WorldWideScience

Sample records for suppressed ka-induced hippocampal

  1. Emotion suppression reduces hippocampal activity during successful memory encoding.

    Science.gov (United States)

    Binder, Julia; de Quervain, Dominique J-F; Friese, Malte; Luechinger, Roger; Boesiger, Peter; Rasch, Björn

    2012-10-15

    People suppressing their emotions while facing an emotional event typically remember it less well. However, the neural mechanisms underlying the impairing effect of emotion suppression on successful memory encoding are not well understood. Because successful memory encoding relies on the hippocampus and the amygdala, we hypothesized that memory impairments due to emotion suppression are associated with down-regulated activity in these brain areas. 59 healthy females were instructed either to simply watch the pictures or to down-regulate their emotions by using a response-focused emotion suppression strategy. Brain activity was recorded using functional magnetic resonance imaging (fMRI), and free recall of pictures was tested afterwards. As expected, suppressing one's emotions resulted in impaired recall of the pictures. On the neural level, the memory impairments were associated with reduced activity in the right hippocampus during successful encoding. No significant effects were observed in the amygdala. In addition, functional connectivity between the hippocampus and the right dorsolateral prefrontal cortex was strongly reduced during emotion suppression, and these reductions predicted free-recall performance. Our results indicate that emotion suppression interferes with memory encoding on the hippocampal level, possibly by decoupling hippocampal and prefrontal encoding processes, suggesting that response-focused emotion suppression might be an adaptive strategy for impairing hippocampal memory formation in highly arousing situations. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Calorie Restriction Suppresses Age-Dependent Hippocampal Transcriptional Signatures.

    Directory of Open Access Journals (Sweden)

    Marissa J Schafer

    Full Text Available Calorie restriction (CR enhances longevity and mitigates aging phenotypes in numerous species. Physiological responses to CR are cell-type specific and variable throughout the lifespan. However, the mosaic of molecular changes responsible for CR benefits remains unclear, particularly in brain regions susceptible to deterioration during aging. We examined the influence of long-term CR on the CA1 hippocampal region, a key learning and memory brain area that is vulnerable to age-related pathologies, such as Alzheimer's disease (AD. Through mRNA sequencing and NanoString nCounter analysis, we demonstrate that one year of CR feeding suppresses age-dependent signatures of 882 genes functionally associated with synaptic transmission-related pathways, including calcium signaling, long-term potentiation (LTP, and Creb signaling in wild-type mice. By comparing the influence of CR on hippocampal CA1 region transcriptional profiles at younger-adult (5 months, 2.5 months of feeding and older-adult (15 months, 12.5 months of feeding timepoints, we identify conserved upregulation of proteome quality control and calcium buffering genes, including heat shock 70 kDa protein 1b (Hspa1b and heat shock 70 kDa protein 5 (Hspa5, protein disulfide isomerase family A member 4 (Pdia4 and protein disulfide isomerase family A member 6 (Pdia6, and calreticulin (Calr. Expression levels of putative neuroprotective factors, klotho (Kl and transthyretin (Ttr, are also elevated by CR in adulthood, although the global CR-specific expression profiles at younger and older timepoints are highly divergent. At a previously unachieved resolution, our results demonstrate conserved activation of neuroprotective gene signatures and broad CR-suppression of age-dependent hippocampal CA1 region expression changes, indicating that CR functionally maintains a more youthful transcriptional state within the hippocampal CA1 sector.

  3. Chronic corticosterone-induced impaired cognitive flexibility is not due to suppressed adult hippocampal neurogenesis.

    Science.gov (United States)

    Lui, E; Salim, M; Chahal, M; Puri, N; Marandi, E; Quadrilatero, J; Satvat, E

    2017-08-14

    Hippocampal neurogenesis has been implicated in the etiology of depression. Recent studies suggest new neurons add flexibility to hippocampal-dependent learning and memory. We hypothesized that suppressed hippocampal neurogenesis may contribute to impaired cognitive flexibility associated with depression. The chronic corticosterone (CORT)-induced animal model of depression was used. In Experiment 1, rats received either CORT (40mg/kg) or vehicle injections for 21days and were subjected to Water maze during the last six days of drug treatment. No group differences were found during the spatial learning phase; however, cognitive flexibility, measured by reversal training, was significantly impaired in the CORT-treated rats. The probe test revealed enhanced memory of the new platform location for the CORT-treated rats. Given the time newborn neurons require to mature, we presumed if impaired cognitive flexibility seen in Experiment 1 were due to suppressed neurogenesis, terminating CORT treatment 3days prior to behavioural testing should still induce the impairment. Therefore, Experiment 2 was similar to Experiment 1, except that CORT injections were terminated 3days prior to behavioural assessment. However, not only was spatial learning significantly enhanced in the CORT-treated rats, but there were also no group differences during reversal or probe tests. Bromodeoxyruidine, administered a day after the first drug treatments in both experiments, was quantified and revealed the number of new neurons were the same in both groups in both experiments. Results suggest cognitive flexibility is impaired in the CORT-induced animal model of depression; an effect that is reversible and independent of suppressed hippocampal neurogenesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Chronic retinoic acid treatment suppresses adult hippocampal neurogenesis, in close correlation with depressive-like behavior.

    Science.gov (United States)

    Hu, Pu; Wang, Yu; Liu, Ji; Meng, Fan-Tao; Qi, Xin-Rui; Chen, Lin; van Dam, Anne-Marie; Joëls, Marian; Lucassen, Paul J; Zhou, Jiang-Ning

    2016-07-01

    Clinical studies have highlighted an association between retinoid treatment and depressive symptoms. As we had shown before that chronic application of all-trans retinoic acid (RA) potently activated the hypothalamus-pituitary-adrenal (HPA) stress axis, we here questioned whether RA also induced changes in adult hippocampal neurogenesis, a form of structural plasticity sensitive to stress and implicated in aspects of depression and hippocampal function. RA was applied intracerebroventricularly (i.c.v.) to adult rats for 19 days after which animals were subjected to tests for depressive-like behavior (sucrose preference) and spatial learning and memory (water maze) performance. On day 27, adult hippocampal neurogenesis and astrogliosis was quantified using BrdU (newborn cell survival), PCNA (proliferation), doublecortin (DCX; neuronal differentiation), and GFAP (astrocytes) as markers. RA was found to increase retinoic acid receptor-α (RAR-α) protein expression in the hippocampus, suggesting an activation of RA-induced signaling mechanisms. RA further potently suppressed cell proliferation, newborn cell survival as well as neurogenesis, but not astrogliosis. These structural plasticity changes were significantly correlated with scores for anhedonia, a core symptom of depression, but not with water maze performance. Our results suggest that RA-induced impairments in hippocampal neurogenesis correlate with depression-like symptoms but not with spatial learning and memory in this design. Thus, manipulations aimed to enhance neurogenesis may help ameliorate emotional aspects of RA-associated mood disorders. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Rosiglitazone Suppresses In Vitro Seizures in Hippocampal Slice by Inhibiting Presynaptic Glutamate Release in a Model of Temporal Lobe Epilepsy.

    Directory of Open Access Journals (Sweden)

    Shi-Bing Wong

    Full Text Available Peroxisomal proliferator-activated receptor gamma (PPARγ is a nuclear hormone receptor whose agonist, rosiglitazone has a neuroprotective effect to hippocampal neurons in pilocarpine-induced seizures. Hippocampal slice preparations treated in Mg2+ free medium can induce ictal and interictal-like epileptiform discharges, which is regarded as an in vitro model of N-methyl-D-aspartate (NMDA receptor-mediated temporal lobe epilepsy (TLE. We applied rosiglitazone in hippocampal slices treated in Mg2+ free medium. The effects of rosiglitazone on hippocampal CA1-Schaffer collateral synaptic transmission were tested. We also examined the neuroprotective effect of rosiglitazone toward NMDA excitotoxicity on cultured hippocampal slices. Application of 10 μM rosiglitazone significantly suppressed amplitude and frequency of epileptiform discharges in CA1 neurons. Pretreatment with the PPARγ antagonist GW9662 did not block the effect of rosiglitazone on suppressing discharge frequency, but reverse the effect on suppressing discharge amplitude. Application of rosiglitazone suppressed synaptic transmission in the CA1-Schaffer collateral pathway. By miniature excitatory-potential synaptic current (mEPSC analysis, rosiglitazone significantly suppressed presynaptic neurotransmitter release. This phenomenon can be reversed by pretreating PPARγ antagonist GW9662. Also, rosiglitazone protected cultured hippocampal slices from NMDA-induced excitotoxicity. The protective effect of 10 μM rosiglitazone was partially antagonized by concomitant high dose GW9662 treatment, indicating that this effect is partially mediated by PPARγ receptors. In conclusion, rosiglitazone suppressed NMDA receptor-mediated epileptiform discharges by inhibition of presynaptic neurotransmitter release. Rosiglitazone protected hippocampal slice from NMDA excitotoxicity partially by PPARγ activation. We suggest that rosiglitazone could be a potential agent to treat patients with TLE.

  6. Progranulin Protects Hippocampal Neurogenesis via Suppression of Neuroinflammatory Responses Under Acute Immune Stress.

    Science.gov (United States)

    Ma, Yanbo; Matsuwaki, Takashi; Yamanouchi, Keitaro; Nishihara, Masugi

    2017-07-01

    Immune stress is well known to suppress adult neurogenesis in the hippocampus. We have demonstrated that progranulin (PGRN) has a mitogenic effect on neurogenesis under several experimental conditions. We have also shown that PGRN suppresses excessive neuroinflammatory responses after traumatic brain injury. However, the role of PGRN in modulating neurogenesis under acute immune stress is yet to be elucidated. In the present study, we evaluated the involvement of PGRN in neurogenesis and inflammatory responses in the hippocampus using a lipopolysaccharide (LPS)-induced immune stress model. Treatment of mice with LPS significantly increased the expression of PGRN in activated microglia and decreased neurogenesis in the dentate gyrus of the hippocampus. PGRN deficiency increased CD68-immunoreactive area and exacerbated suppression of neurogenesis following LPS treatment. The expression levels of lysosomal genes including lysozyme M, macrophage expressed gene 1, and cathepsin Z were higher in PGRN-deficient than in wild-type mice, while PGRN deficiency decreased mammalian target of rapamycin (mTOR) mRNA levels, suggesting that PGRN suppresses excessive lysosomal biogenesis by promoting mTOR signaling. LPS treatment also increased the expression of proinflammatory genes such as interleukin (IL)-1β, tumor necrosis factor-α, and microsomal prostaglandin E synthase-1 (mPGES-1) in the hippocampus, and PGRN deficiency further enhanced gene expression of IL-6 and mPGES-1. These results suggest that PGRN plays a protecting role in hippocampal neurogenesis at least partially by attenuating neuroinflammatory responses during LPS-induced acute immune stress.

  7. NRSF causes cAMP-sensitive suppression of sodium current in cultured hippocampal neurons

    Science.gov (United States)

    Nadeau, H.; Lester, H. A.

    2002-01-01

    The neuron restrictive silencer factor (NRSF/REST) has been shown to bind to the promoters of many neuron-specific genes and is able to suppress transcription of Na(+) channels in PC12 cells, although its functional effect in terminally differentiated neurons is unknown. We constructed lentiviral vectors to express NRSF as a bicistronic message with green fluorescent protein (GFP) and followed infected hippocampal neurons in culture over a period of 1-2 wk. NRSF-expressing neurons showed a time-dependent suppression of Na(+) channel function as measured by whole cell electrophysiology. Suppression was reversed or prevented by the addition of membrane-permeable cAMP analogues and enhanced by cAMP antagonists but not affected by increasing protein expression with a viral enhancer. Secondary effects, including altered sensitivity to glutamate and GABA and reduced outward K(+) currents, were duplicated by culturing GFP-infected control neurons in TTX. The striking similarity of the phenotypes makes NRSF potentially useful as a genetic "silencer" and also suggests avenues of further exploration that may elucidate the transcription factor's in vivo role in neuronal plasticity.

  8. The effects of hippocampal aspiration lesions on conditioning to the CS and to a background stimulus in trace conditioned suppression.

    Science.gov (United States)

    Rawlins, J N; Tanner, J

    1998-03-01

    Rats with hippocampal aspiration lesions or cortical control lesions were compared to sham operated controls in a trace conditioned suppression task, in which a long-lasting background stimulus played the role of more conventional contextual cues. In all three surgical treatment groups, conditioning to the explicit conditioned stimulus (CS) decreased, but conditioning to the background cue increased, when a longer trace interval was used. There was thus no evidence of a differential partitioning of associative conditioning as a result of the lesion, despite the evident sensitivity of the behavioural paradigm to variations in the CS-->unconditioned stimulus (US) interval. This result contrasts with earlier reports using conventional contextual cues in analogous experimental designs, and so suggests that the sensitivity of contextual conditioning to hippocampal dysfunction depends at least in part on the physical nature of conventional contextual cues, and not solely on the less precise predictive information that such cues typically provide.

  9. Hydrogen Suppresses Hypoxia/Reoxygenation-Induced Cell Death in Hippocampal Neurons Through Reducing Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Rong Wei

    2015-05-01

    Full Text Available Background & Aims: Deep hypothermic circulatory arrest (DHCA is a cerebral protection technique that has been used in the operations involving the aortic arch and brain aneurysm for decades. We previous showed that DHCA treated rats developed a significant oxidative stress and apoptosis in neurons. We here intend to investigate the protective the effect of hydrogen against oxidative stress-induced cell injury and the involved mechanisms using an in vitro experimental model of hypoxia/reoxygenation (H/R on HT-22 cells. Methods: The model of H/R was established using an airtight culture container and the anaeropack. Measurement of mitochondrial membrane potential (MMP and reactive oxygen species (ROS production was used H2DCFDA and JC-1 staining. Western blot was used for the quantification of Akt, p-Akt, Bcl-2, Bax and cleaved caspase-3 proteins. The microRNA (miRNA profile in hippocampal neurons from rat model of DHCA was determined by miRNA deep sequencing. Results: The elevation of ROS and reduction of MMP were significantly induced by the treatment with hypoxia for 18 h followed by reoxygenation for 6 h. Hydrogen treatment significantly reduced H/R-caused cell death. The levels of p-Akt (Ser 473 and Bcl-2 were significantly increased while Bax and cleaved caspase-3 were decreased by hydrogen treatment on the model of H/R. The expression of miR-200 family was significantly elevated in model of DHCA and H/R. Hydrogen administration inhibited the H/R-induced expression of miR-200 family in HT-22 cells. In addition, inhibition of miR-200 family suppressed H/R-caused cell death through reducing ROS production. Conclusions: These results suggest that H/R causes oxidative stress-induced cell death and that the hydrogen protects against H/R-induced cell death in HT22 cells, in part, due to reducing expression of miR-200 family.

  10. Acupuncture suppresses kainic acid-induced neuronal death and inflammatory events in mouse hippocampus.

    Science.gov (United States)

    Kim, Seung-Tae; Doo, Ah-Reum; Kim, Seung-Nam; Kim, Song-Yi; Kim, Yoon Young; Kim, Jang-Hyun; Lee, Hyejung; Yin, Chang Shik; Park, Hi-Joon

    2012-09-01

    The administration of kainic acid (KA) causes seizures and produces neurodegeneration in hippocampal CA3 pyramidal cells. The present study investigated a possible role of acupuncture in reducing hippocampal cell death and inflammatory events, using a mouse model of kainic acid-induced epilepsy. Male C57BL/6 mice received acupuncture treatments at acupoint HT8 or in the tail area bilaterally once a day for 2 days and again immediately after an intraperitoneal injection of KA (30 mg/kg). HT8 is located on the palmar surface of the forelimbs, between the fourth and fifth metacarpal bones. Twenty-four hours after the KA injection, neuronal cell survival, the activations of microglia and astrocytes, and mRNA expression of two proinflammatory cytokines, interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), were measured in the hippocampus. Acupuncture stimulation at HT8, but not in the tail area, significantly reduced the KA-induced seizure, neuron death, microglial and astrocyte activations, and IL-1β mRNA expression in the hippocampus. The acupuncture stimulation also decreased the mRNA expression of TNF-α, but it was not significant. These results indicate that acupuncture at HT8 can inhibit hippocampal cell death and suppress KA-induced inflammatory events, suggesting a possible role for acupuncture in the treatment of epilepsy.

  11. Maternal sleep deprivation at different stages of pregnancy impairs the emotional and cognitive functions, and suppresses hippocampal long-term potentiation in the offspring rats.

    Science.gov (United States)

    Peng, Yan; Wang, Wei; Tan, Tao; He, Wenting; Dong, Zhifang; Wang, Yu Tian; Han, Huili

    2016-02-15

    Sleep deprivation during pregnancy is a serious public health problem as it can affect the health of pregnant women and newborns. However, it is not well studied whether sleep deprivation at different stages of pregnancy has similar effects on emotional and cognitive functions of the offspring, and if so, the potential cellular mechanisms also remain poorly understood. In the present study, the pregnant rats were subjected to sleep deprivation for 6 h per day by gentle handling during the first (gestational days 1-7), second (gestational days 8-14) and third trimester (gestational days 15-21) of pregnancy, respectively. The emotional and cognitive functions as well as hippocampal long-term potentiation (LTP) were tested in the offspring rats (postnatal days 42-56). The offspring displayed impaired hippocampal-dependent spatial learning and memory, and increased depressive- and anxiety-like behaviors. Quantification of BrdU-positive cells revealed that adult hippocampal neurogenesis was significantly reduced compared to control. Electrophysiological recording showed that maternal sleep deprivation impaired hippocampal CA1 LTP and reduced basal synaptic transmission, as reflected by a decrease in the frequency and amplitude of miniature excitatory postsynaptic current in the hippocampal CA1 pyramidal neurons. Taken together, these results suggest that maternal sleep deprivation at different stages of pregnancy disrupts the emotional and cognitive functions of the offspring that might be attributable to the suppression of hippocampal LTP and basal synaptic transmission.

  12. Learning deficits and suppression of the cell proliferation in the hippocampal dentate gyrus of offspring are attenuated by maternal chewing during prenatal stress.

    Science.gov (United States)

    Onishi, Mika; Iinuma, Mitsuo; Tamura, Yasuo; Kubo, Kin-Ya

    2014-02-07

    Prenatal stress in dams induces learning deficits and suppresses neurogenesis in the hippocampal dentate gyrus (DG) of offspring via increasing corticosterone levels in the dam. Chewing under stressful conditions prevents stress-induced behavioral impairments and morphologic changes. Here, we examined whether chewing during prenatal stress prevents the stress-induced learning deficits and the suppression of cell proliferation in the hippocampal DG in adult offspring. Pregnant mice were exposed to restraint stress beginning on day 12 of pregnancy and continuing until delivery. Half of the dams were given a wooden stick to chew on during restraint. The pups were raised to adulthood, and learning ability and cell proliferation in the hippocampal DG were assessed. In dams, chewing during prenatal stress attenuated the stress-induced increase in plasma corticosterone levels. In the adult offspring, prenatal stress impaired learning and decreased cell proliferation in the DG, whereas maternal chewing during prenatal stress significantly attenuated the prenatal stress-induced learning deficits and decreased cell proliferation in the DG in their offspring. These findings suggest that maternal chewing during prenatal stress is an effective stress-coping method for the dam to prevent learning deficits and suppression of cell proliferation in offspring. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Treadmill exercise enhances spatial learning ability through suppressing hippocampal apoptosis in Huntington's disease rats.

    Science.gov (United States)

    Ji, Eun-Sang; Kim, You-Mi; Shin, Mal-Soon; Kim, Chang-Ju; Lee, Kwang-Sik; Kim, Kijeong; Ha, Jonglin; Chung, Yong-Rak

    2015-06-01

    Huntington's disease is a chronic neurodegenerative disorder inherited in an autosomal dominant fashion, and characterized as involuntary movement. Quinolinic acid has been used to produce an animal model of Huntington's disease. In the present study, the effect of treadmill exercise on spatial-learning ability and motor coordination focusing on the apoptosis in the hippocampus was investigated using quinolinic acid-induced Huntington's disease rats. Huntington's disease was induced by unilateral intrastriatal injection of quinolinic acid (2 μL of 100 nmol) using stereotaxic instrument. The rats in the treadmill exercise groups were subjected to run on a treadmill for 30 min once a day during 14 days. Spatial learning ability and motor coordination were determined by radial 8-arm maze test and rota-rod test. Immunohistochemistry for caspase-3 and western blot for Bax and Bcl-2 were also conducted for the detection of apoptosis. In the present results, spatial learning ability and motor coordination were deteriorated by intrastriatal injection of quinolinic acid. In contrast, treadmill exercise exerted ameliorating effect on quinolinic acid-induced deterioration of spatial learning ability and motor coordination. Bcl-2 expression in the hippocampus was de-creased and expressions of casepase-3 and Bax in the hippocampus were increased in the quinolinic acid-induced Huntington's disease rats. Treadmill exercise increased Bcl-2 expression and decreased expressions of casepase-3 and Bax in the Huntington's disease rats. The present results showed that treadmill exercise might ameliorate quinolinic acid-induced loss of spatial learning ability and motor coordination by suppressing apoptosis in the hippocampus.

  14. Developmental exposure of aflatoxin B1 reversibly affects hippocampal neurogenesis targeting late-stage neural progenitor cells through suppression of cholinergic signaling in rats

    International Nuclear Information System (INIS)

    Tanaka, Takeshi; Mizukami, Sayaka; Hasegawa-Baba, Yasuko; Onda, Nobuhiko; Sugita-Konishi, Yoshiko; Yoshida, Toshinori; Shibutani, Makoto

    2015-01-01

    Highlights: • Maternal AFB 1 exposure effect on hippocampal neurogenesis was examined in rats. • AFB 1 reversibly reduced cell proliferation and type-3 progenitor cells in the SGZ. • Suppressed cholinergic signals to GABAergic interneurons may reduce type-3 cells. • Suppressed BDNF–TRKB signaling may contribute to aberration of neurogenesis. • The NOAEL for offspring was determined to be 0.1 ppm (7.1–13.6 μg/kg BW/day). - Abstract: To elucidate the maternal exposure effects of aflatoxin B 1 (AFB 1 ) and its metabolite aflatoxin M 1 , which is transferred into milk, on postnatal hippocampal neurogenesis, pregnant Sprague-Dawley rats were provided a diet containing AFB 1 at 0, 0.1, 0.3, or 1.0 ppm from gestational day 6 to day 21 after delivery on weaning. Offspring were maintained through postnatal day (PND) 77 without AFB 1 exposure. Following exposure to 1.0 ppm AFB 1 , offspring showed no apparent systemic toxicity at weaning, whereas dams showed increased liver weight and DNA repair gene upregulation in the liver. In the hippocampal dentate gyrus of male PND 21 offspring, the number of doublecortin + progenitor cells were decreased, which was associated with decreased proliferative cell population in the subgranular zone at ≥0.3 ppm, although T-box brain 2 + cells, tubulin beta III + cells, gamma-H2A histone family, member X + cells, and cyclin-dependent kinase inhibitor 1A + cells did not fluctuate in number. AFB 1 exposure examined at 1.0 ppm also resulted in transcript downregulation of the cholinergic receptor subunit Chrna7 and dopaminergic receptor Drd2 in the dentate gyrus, although there was no change in transcript levels of DNA repair genes. In the hippocampal dentate hilus, interneurons expressing CHRNA7 or phosphorylated tropomyosin receptor kinase B (TRKB) decreased at ≥0.3 ppm. On PND 77, there were no changes in neurogenesis-related parameters. These results suggested that maternal AFB 1 exposure reversibly affects hippocampal

  15. Elaboration versus suppression of cued memories: influence of memory recall instruction and success on parietal lobe, default network, and hippocampal activity.

    Science.gov (United States)

    Gimbel, Sarah I; Brewer, James B

    2014-01-01

    Functional imaging studies of episodic memory retrieval consistently report task-evoked and memory-related activity in the medial temporal lobe, default network and parietal lobe subregions. Associated components of memory retrieval, such as attention-shifts, search, retrieval success, and post-retrieval processing also influence regional activity, but these influences remain ill-defined. To better understand how top-down control affects the neural bases of memory retrieval, we examined how regional activity responses were modulated by task goals during recall success or failure. Specifically, activity was examined during memory suppression, recall, and elaborative recall of paired-associates. Parietal lobe was subdivided into dorsal (BA 7), posterior ventral (BA 39), and anterior ventral (BA 40) regions, which were investigated separately to examine hypothesized distinctions in sub-regional functional responses related to differential attention-to-memory and memory strength. Top-down suppression of recall abolished memory strength effects in BA 39, which showed a task-negative response, and BA 40, which showed a task-positive response. The task-negative response in default network showed greater negatively-deflected signal for forgotten pairs when task goals required recall. Hippocampal activity was task-positive and was influenced by memory strength only when task goals required recall. As in previous studies, we show a memory strength effect in parietal lobe and hippocampus, but we show that this effect is top-down controlled and sensitive to whether the subject is trying to suppress or retrieve a memory. These regions are all implicated in memory recall, but their individual activity patterns show distinct memory-strength-related responses when task goals are varied. In parietal lobe, default network, and hippocampus, top-down control can override the commonly identified effects of memory strength.

  16. 5-Hydroxytryptamine1A receptor-activation hyperpolarizes pyramidal cells and suppresses hippocampal gamma oscillations via Kir3 channel activation.

    Science.gov (United States)

    Johnston, April; McBain, Chris J; Fisahn, André

    2014-10-01

    Rhythmic cortical neuronal oscillations in the gamma frequency band (30-80 Hz, gamma oscillations) have been associated with cognitive processes such as sensory perception and integration, attention, learning, and memory. Gamma oscillations are disrupted in disorders for which cognitive deficits are hallmark symptoms such as schizophrenia and Alzheimer's disease.In vitro, various neurotransmitters have been found to modulate gamma oscillations. Serotonin(5-HT) has long been known to be important for both behavioural and cognitive functions such as learning and memory. Multiple 5-HT receptor subtypes are expressed in the CA3 region of the hippocampus and high doses of 5-HT reduce the power of induced gamma oscillations.Hypothesizing that 5-HT may have cell- and receptor subtype-specific modulatory effects, we investigated the receptor subtypes, cell types and cellular mechanisms engaged by 5-HT in the modulation of gamma oscillations in mice and rats. We found that 5-HT decreases the power of kainate-induced hippocampal gamma oscillations in both species via the 5-HT1A receptor subtype. Whole-cell patch clamp recordings demonstrated that this decrease was caused by a hyperpolarization of CA3 pyramidal cells and a reduction of their firing frequency, but not by alteration of inhibitory neurotransmission. Finally, our results show that the effect on pyramidal cells is mediated via the G protein-coupled receptor inwardly rectifying potassium channel Kir3.Our findings suggest this novel cellular mechanism as a potential target for therapies that are aimed at alleviating cognitive decline by helping the brain to maintain or re-establish normal gamma oscillation levels in neuropsychiatric and neurodegenerative disorders.

  17. Glucocorticoids Suppress the Protective Effect of Cyclooxygenase-2-Related Signaling on Hippocampal Neurogenesis Under Acute Immune Stress.

    Science.gov (United States)

    Ma, Yanbo; Matsuwaki, Takashi; Yamanouchi, Keitaro; Nishihara, Masugi

    2017-04-01

    Stress and glucocorticoids suppress adult neurogenesis in the hippocampus. However, the molecular mechanisms underlying stress-induced impairment of adult neurogenesis are poorly understood. We previously suggested that cyclooxygenase (COX)-2 is a common mediator of stresses in the brain. Here, using a lipopolysaccharide (LPS)-induced acute infectious stress model, we evaluated the roles of COX-2 and its major downstream product prostaglandin E2 (PGE2) in adult neurogenesis and the influence of glucocorticoids on COX-2-related signaling. Treatment of rats with LPS significantly decreased neurogenesis in the dentate gyrus (DG) of the hippocampus, and this inhibitory effect of LPS on neurogenesis was reversed by the glucocorticoid receptor antagonist RU486. Moreover, RU486 significantly enhanced the increase in messenger RNA (mRNA) levels of COX-2 and microsomal prostaglandin E synthase (mPGES)-1 in the hippocampus following LPS stimulation. Administration of AH6809, a selective antagonist of the PGE2 EP2 receptor, as well as NS398, a COX-2 selective inhibitor, exacerbated the suppression of proliferation of neural progenitor cells (NPCs) in the DG. Gene expression of EP1, EP2, and EP3, but not EP4, receptors was also increased following LPS stimulation. Immunohistochemical studies indicated that NPCs expressed EP2 receptor, whereas the majority of cells expressing COX-2 and mPGES-1 were mature neurons in the DG. These results suggest that acute infectious stress upregulates COX-2-related signaling in neurons in the DG, which plays a protective role in neurogenesis through EP2 receptor at least partially. In addition, LPS-induced glucocorticoids suppress this COX-2-related signaling, resulting in decreased neurogenesis.

  18. Acupuncture inhibits kainic Acid-induced hippocampal cell death in mice.

    Science.gov (United States)

    Kim, Seung-Tae; Jeon, Songhee; Park, Hae Jeong; Hong, Mee-Sook; Jeong, Wu Byung; Kim, Jang-Hyun; Kim, Yeonjung; Lee, Hye-Jung; Park, Hi-Joon; Chung, Joo-Ho

    2008-02-01

    We examined whether acupuncture can reduce both the incidence of seizures and hippocampal cell death using a mouse model of kainic acid (KA)-induced epilepsy. ICR mice were given acupuncture once a day at acupoint HT8 (sobu) bilaterally during 2 days before KA injection. After an intracerebroventricular injection of 0.1 microg of KA, acupuncture treatment was subsequently administered once more (total 3 times), and the degree of seizure was observed for 20 min. Three hours after injection, the survival of neuronal cells and the expressions of c-Fos, c-Jun, and glutamate decarboxylase (GAD)-67 in the CA1 and CA3 were determined using immunohistochemistry and Western blotting techniques. Acupuncture reduced the severity of the KA-induced epileptic seizure and the rate of neural cell death, and it also decreased the expressions of c-Fos and c-Jun induced by KA in the hippocampus. Furthermore, acupuncture increased GAD-67 expressions in the same areas. These results demonstrated that it could inhibit the KA-induced epileptic seizure and hippocampal cell death by increasing GAD-67 expressions.

  19. Prior Activation of Inositol 1,4,5-Trisphosphate Receptors Suppresses the Subsequent Induction of Long-Term Potentiation in Hippocampal CA1 Neurons

    Science.gov (United States)

    Fujii, Satoshi; Yamazaki, Yoshihiko; Goto, Jun-Ichi; Fujiwara, Hiroki; Mikoshiba, Katsuhiko

    2016-01-01

    We investigated the role of inositol 1,4,5-trisphosphate receptors (IP3Rs) activated by preconditioning low-frequency afferent stimulation (LFS) in the subsequent induction of long-term potentiation (LTP) in CA1 neurons in hippocampal slices from mature guinea pigs. Induction of LTP in the field excitatory postsynaptic potential or the population…

  20. Human adipose-derived mesenchymal stem cells improve motor functions and are neuroprotective in the 6-hydroxydopamine-rat model for Parkinson's disease when cultured in monolayer cultures but suppress hippocampal neurogenesis and hippocampal memory function when cultured in spheroids.

    Science.gov (United States)

    Berg, Jürgen; Roch, Manfred; Altschüler, Jennifer; Winter, Christine; Schwerk, Anne; Kurtz, Andreas; Steiner, Barbara

    2015-02-01

    Adult human adipose-derived mesenchymal stem cells (MSC) have been reported to induce neuroprotective effects in models for Parkinson's disease (PD). However, these effects strongly depend on the most optimal application of the transplant. In the present study we compared monolayer-cultured (aMSC) and spheroid (sMSC) MSC following transplantation into the substantia nigra (SN) of 6-OHDA lesioned rats regarding effects on the local microenvironment, degeneration of dopaminergic neurons, neurogenesis in the hippocampal DG as well as motor and memory function in the 6-OHDA-rat model for PD. aMSC transplantation significantly increased tyrosine hydroxylase (TH) and brain-derived neurotrophic factor (BDNF) levels in the SN, increased the levels of the glial fibrillary acidic protein (GFAP) and improved motor functions compared to untreated and sMSC treated animals. In contrast, sMSC grafting induced an increased local microgliosis, decreased TH levels in the SN and reduced numbers of newly generated cells in the dentate gyrus (DG) without yet affecting hippocampal learning and memory function. We conclude that the neuroprotective potential of adipose-derived MSC in the rat model of PD crucially depends on the applied cellular phenotype.

  1. Neuroprotective Effect of Uncaria rhynchophylla in Kainic Acid-Induced Epileptic Seizures by Modulating Hippocampal Mossy Fiber Sprouting, Neuron Survival, Astrocyte Proliferation, and S100B Expression

    Directory of Open Access Journals (Sweden)

    Chung-Hsiang Liu

    2012-01-01

    Full Text Available Uncaria rhynchophylla (UR, which is a traditional Chinese medicine, has anticonvulsive effect in our previous studies, and the cellular mechanisms behind this are still little known. Because of this, we wanted to determine the importance of the role of UR on kainic acid- (KA- induced epilepsy. Oral UR for 6 weeks can successfully attenuate the onset of epileptic seizure in animal tests. Hippocampal mossy fiber sprouting dramatically decreased, while neuronal survival increased with UR treatment in hippocampal CA1 and CA3 areas. Furthermore, oral UR for 6 weeks significantly attenuated the overexpression of astrocyte proliferation and S100B proteins but not γ-aminobutyric acid A (GABAA receptors. These results indicate that oral UR for 6 weeks can successfully attenuate mossy fiber sprouting, astrocyte proliferation, and S100B protein overexpression and increase neuronal survival in KA-induced epileptic rat hippocampus

  2. Sleep benefits subsequent hippocampal functioning

    NARCIS (Netherlands)

    van der Werf, Y.D.; Altena, E.; Schoonheim, M.M.; Sanz-Arigita, E.J.; Vis, J.C.; de Rijke, W.; van Someren, E.J.

    2009-01-01

    Sleep before learning benefits memory encoding through unknown mechanisms. We found that even a mild sleep disruption that suppressed slow-wave activity and induced shallow sleep, but did not reduce total sleep time, was sufficient to affect subsequent successful encoding-related hippocampal

  3. PSD95 suppresses dendritic arbor development in mature hippocampal neurons by occluding the clustering of NR2B-NMDA receptors.

    Directory of Open Access Journals (Sweden)

    Fernando J Bustos

    Full Text Available Considerable evidence indicates that the NMDA receptor (NMDAR subunits NR2A and NR2B are critical mediators of synaptic plasticity and dendritogenesis; however, how they differentially regulate these processes is unclear. Here we investigate the roles of the NR2A and NR2B subunits, and of their scaffolding proteins PSD-95 and SAP102, in remodeling the dendritic architecture of developing hippocampal neurons (2-25 DIV. Analysis of the dendritic architecture and the temporal and spatial expression patterns of the NMDARs and anchoring proteins in immature cultures revealed a strong positive correlation between synaptic expression of the NR2B subunit and dendritogenesis. With maturation, the pruning of dendritic branches was paralleled by a strong reduction in overall and synaptic expression of NR2B, and a significant elevation in synaptic expression of NR2A and PSD95. Using constructs that alter the synaptic composition, we found that either over-expression of NR2B or knock-down of PSD95 by shRNA-PSD95 augmented dendritogenesis in immature neurons. Reactivation of dendritogenesis could also be achieved in mature cultured neurons, but required both manipulations simultaneously, and was accompanied by increased dendritic clustering of NR2B. Our results indicate that the developmental increase in synaptic expression of PSD95 obstructs the synaptic clustering of NR2B-NMDARs, and thereby restricts reactivation of dendritic branching. Experiments with shRNA-PSD95 and chimeric NR2A/NR2B constructs further revealed that C-terminus of the NR2B subunit (tail was sufficient to induce robust dendritic branching in mature hippocampal neurons, and suggest that the NR2B tail is important in recruiting calcium-dependent signaling proteins and scaffolding proteins necessary for dendritogenesis.

  4. Proteomic analysis of the effect of acupuncture on the suppression of kainic Acid-induced neuronal destruction in mouse hippocampus.

    Science.gov (United States)

    Bae, Chang-Hwan; Kim, Dong-Soo; Jun, Ye Lee; Kwon, Sunoh; Park, Hi-Joon; Hahm, Dae-Hyun; Lee, Hyejung; Kim, Seung-Tae

    2013-01-01

    Kainic acid (KA) is a neurotoxin that induces epileptic seizures and excitotoxicity in the hippocampus. Acupuncture is frequently used as an alternative therapy for epilepsy, and it has been known to protect hippocampal neurons against KA toxicity. Using proteomic analysis, we investigated protein expression changes in the hippocampus following acupuncture stimulation at HT8. Eight-week-old male C57BL/6 mice (20-25 g) received acupuncture treatment at HT8 acupoint bilaterally once a day for 3 days and were then administered KA (30 mg/kg) intraperitoneally. Twenty-four hours after KA injection, neuronal survival and astrocyte activation in the hippocampus were measured, and protein expression in the hippocampus was identified by 2-dimensional electrophoresis. Acupuncture stimulation at HT8 suppressed KA-induced neuronal death and astrocyte activation in the hippocampus. We identified the changes in the expression of 11 proteins by KA or acupuncture stimulation at HT8 and found that acupuncture stimulation at HT8 normalized the expression of dihydropyrimidinase-related protein 2 and upregulated the expression of transcriptional activator protein pur-alpha, serine/threonine-protein phosphatase 5, and T-complex protein 1 subunit alpha, which are related to the survival of neurons. These results suggest that acupuncture stimulation at HT8 changes protein expression profiles in the hippocampus in favor of neuronal survival in KA-treated mice.

  5. Proteomic Analysis of the Effect of Acupuncture on the Suppression of Kainic Acid-Induced Neuronal Destruction in Mouse Hippocampus

    Directory of Open Access Journals (Sweden)

    Chang-Hwan Bae

    2013-01-01

    Full Text Available Kainic acid (KA is a neurotoxin that induces epileptic seizures and excitotoxicity in the hippocampus. Acupuncture is frequently used as an alternative therapy for epilepsy, and it has been known to protect hippocampal neurons against KA toxicity. Using proteomic analysis, we investigated protein expression changes in the hippocampus following acupuncture stimulation at HT8. Eight-week-old male C57BL/6 mice (20–25 g received acupuncture treatment at HT8 acupoint bilaterally once a day for 3 days and were then administered KA (30 mg/kg intraperitoneally. Twenty-four hours after KA injection, neuronal survival and astrocyte activation in the hippocampus were measured, and protein expression in the hippocampus was identified by 2-dimensional electrophoresis. Acupuncture stimulation at HT8 suppressed KA-induced neuronal death and astrocyte activation in the hippocampus. We identified the changes in the expression of 11 proteins by KA or acupuncture stimulation at HT8 and found that acupuncture stimulation at HT8 normalized the expression of dihydropyrimidinase-related protein 2 and upregulated the expression of transcriptional activator protein pur-alpha, serine/threonine-protein phosphatase 5, and T-complex protein 1 subunit alpha, which are related to the survival of neurons. These results suggest that acupuncture stimulation at HT8 changes protein expression profiles in the hippocampus in favor of neuronal survival in KA-treated mice.

  6. 56Fe particle exposure results in a long-lasting increase in a cellular index of genomic instability and transiently suppresses adult hippocampal neurogenesis in vivo

    Science.gov (United States)

    DeCarolis, Nathan A.; Rivera, Phillip D.; Ahn, Francisca; Amaral, Wellington Z.; LeBlanc, Junie A.; Malhotra, Shveta; Shih, Hung-Ying; Petrik, David; Melvin, Neal R.; Chen, Benjamin P. C.; Eisch, Amelia J.

    2014-07-01

    The high-LET HZE particles from galactic cosmic radiation pose tremendous health risks to astronauts, as they may incur sub-threshold brain injury or maladaptations that may lead to cognitive impairment. The health effects of HZE particles are difficult to predict and unfeasible to prevent. This underscores the importance of estimating radiation risks to the central nervous system as a whole as well as to specific brain regions like the hippocampus, which is central to learning and memory. Given that neurogenesis in the hippocampus has been linked to learning and memory, we investigated the response and recovery of neurogenesis and neural stem cells in the adult mouse hippocampal dentate gyrus after HZE particle exposure using two nestin transgenic reporter mouse lines to label and track radial glia stem cells (Nestin-GFP and Nestin-CreERT2/R26R:YFP mice, respectively). Mice were subjected to 56Fe particle exposure (0 or 1 Gy, at either 300 or 1000 MeV/n) and brains were harvested at early (24 h), intermediate (7 d), and/or long time points (2-3 mo) post-irradiation. 56Fe particle exposure resulted in a robust increase in 53BP1+ foci at both the intermediate and long time points post-irradiation, suggesting long-term genomic instability in the brain. However, 56Fe particle exposure only produced a transient decrease in immature neuron number at the intermediate time point, with no significant decrease at the long time point post-irradiation. 56Fe particle exposure similarly produced a transient decrease in dividing progenitors, with fewer progenitors labeled at the early time point but equal number labeled at the intermediate time point, suggesting a recovery of neurogenesis. Notably, 56Fe particle exposure did not change the total number of nestin-expressing neural stem cells. These results highlight that despite the persistence of an index of genomic instability, 56Fe particle-induced deficits in adult hippocampal neurogenesis may be transient. These data support

  7. Developmental cuprizone exposure impairs oligodendrocyte lineages differentially in cortical and white matter tissues and suppresses glutamatergic neurogenesis signals and synaptic plasticity in the hippocampal dentate gyrus of rats

    International Nuclear Information System (INIS)

    Abe, Hajime; Saito, Fumiyo; Tanaka, Takeshi; Mizukami, Sayaka; Hasegawa-Baba, Yasuko; Imatanaka, Nobuya; Akahori, Yumi; Yoshida, Toshinori; Shibutani, Makoto

    2016-01-01

    Developmental cuprizone (CPZ) exposure impairs rat hippocampal neurogenesis. Here, we captured the developmental neurotoxicity profile of CPZ using a region-specific expression microarray analysis in the hippocampal dentate gyrus, corpus callosum, cerebral cortex and cerebellar vermis of rat offspring exposed to 0, 0.1, or 0.4% CPZ in the maternal diet from gestation day 6 to postnatal day (PND) 21. Transcripts of those genes identified as altered were subjected to immunohistochemical analysis on PNDs 21 and 77. Our results showed that transcripts for myelinogenesis-related genes, including Cnp, were selectively downregulated in the cerebral cortex by CPZ at ≥ 0.1% or 0.4% on PND 21. CPZ at 0.4% decreased immunostaining intensity for 2′,3′-cyclic-nucleotide 3′-phosphodiesterase (CNPase) and CNPase + and OLIG2 + oligodendrocyte densities in the cerebral cortex, whereas CNPase immunostaining intensity alone was decreased in the corpus callosum. By contrast, a striking transcript upregulation for Klotho gene and an increased density of Klotho + oligodendrocytes were detected in the corpus callosum at ≥ 0.1%. In the dentate gyrus, CPZ at ≥ 0.1% or 0.4% decreased the transcript levels for Gria1, Grin2a and Ptgs2, genes related to the synapse and synaptic transmission, and the number of GRIA1 + and GRIN2A + hilar γ-aminobutyric acid (GABA)-ergic interneurons and cyclooxygenase-2 + granule cells. All changes were reversed at PND 77. Thus, developmental CPZ exposure reversibly decreased mature oligodendrocytes in both cortical and white matter tissues, and Klotho protected white matter oligodendrocyte growth. CPZ also reversibly targeted glutamatergic signals of GABAergic interneuron to affect dentate gyrus neurogenesis and synaptic plasticity in granule cells. - Highlights: • We examined developmental cuprizone (CPZ) neurotoxicity in maternally exposed rats. • Multiple brain region-specific global gene expression profiling was performed. • CPZ decreased

  8. Ulinastatin suppresses lipopolysaccharide induced neuro-inflammation through the downregulation of nuclear factor-κB in SD rat hippocampal astrocyte

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuting; Zhao, Lei; Fu, Huiqun [Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, 100053 Beijing (China); Wu, Yan [Department of Anatomy, Capital Medical University, 100069 Beijing (China); Wang, Tianlong, E-mail: litingliting258@163.com [Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, 100053 Beijing (China)

    2015-03-20

    Astrocyte activation plays a pivotal role in neuroinflammation, which contributes to neuronal damage, so the inhibition of astrocyte activation may alleviate the progression of neurodegeneration. Recent studies have proved that urinary trypsin inhibitor ulinastatin could inhibit NF-kB activation. In our study, the inhibitory effects of ulinastatin on the production of pro-inflammatory mediators were investigated in lipopolysaccharide (LPS)-reduced primary astrocyte. Our results showed that ulinastatin significantly inhibited LPS-induced astrogliosis, which is measured by MTT and BrdU. Ulinastatin decreased the production of pro-inflammatory cytokines, such as TNF-α, IL-6, IL-1β, it significantly decreased both the mRNA and the protein levels of these pro-inflammatory cytokines and also increased the protein levels of IκB-α binded to NF-κB, which blocked NF-κB translocation to the nucleus and prevented its activity. Our results suggest that ulinastatin is able to inhibit neuroinflammation by interfering with NF-κB signaling. The study provides direct evidence of potential therapy methods of ulinastatin for the treatment of neuroinflammatory diseases. - Highlights: • The anti-inflammatory effect of UTI on hippocampal astrocyte. • UTI showed protective effect on neuroinflammation by the downregulation of NF-κB. • UTI led to expression of cytokines decreased in concentration and time dependence.

  9. Sigma-1 (σ₁) receptor deficiency reduces β-amyloid(25-35)-induced hippocampal neuronal cell death and cognitive deficits through suppressing phosphorylation of the NMDA receptor NR2B.

    Science.gov (United States)

    Yin, Jun; Sha, Sha; Chen, Tingting; Wang, Conghui; Hong, Juan; Jie, Pinghui; Zhou, Rong; Li, Lin; Sokabe, Masahiro; Chen, Ling

    2015-02-01

    In early Alzheimer's disease (AD) brain, reduction of sigma-1 receptors (σ1R) is detected. In this study, we employed male heterozygous σ1R knockout (σ1R(+/-)) mice showing normal cognitive performance to investigate association of σ1R deficiency with AD risk. Herein we report that a single injection (i.c.v.) of Aβ(25-35) impaired spatial memory with approximately 25% death of pyramidal cells in the hippocampal CA1 region of WT mice (Aβ(25-35)-WT mice), whereas it did not cause such impairments in σ1R(+/-) mice (Aβ(25-35)-σ1R(+/-) mice). Compared with WT mice, Aβ(25-35)-WT mice showed increased levels of NMDA-activated currents (INMDA) and NR2B phosphorylation (phospho-NR2B) in the hippocampal CA1 region at 48 h after Aβ25-35-injection (post-Aβ(25-35)) followed by approximately 40% decline at 72 h post-Aβ(25-35) of their respective control levels, which was inhibited by the σ1R antagonist NE100. In Aβ(25-35)-WT mice, the administration of NR2B inhibitor Ro25-6981 or NE100 on day 1-4 post-Aβ(25-35) attenuated the memory deficits and loss of pyramidal cells. By contrast, Aβ(25-35)-σ1R(+/-) mice showed a slight increase in the INMDA density and the phospho-NR2B at 48 h or 72 h post-Aβ25-35 compared to σ1R(+/-) mice. Treatment with σ1R agonist PRE084 in Aβ(25-35)-σ1R(+/-) mice caused the same changes in the INMDA density and the phospho-NR2B as those in Aβ(25-35)-WT mice. Furthermore, Aβ(25-35)-σ1R(+/-) mice treated with the NMDA receptor agonist NMDA or PRE084 on day 1-4 post-Aβ(25-35) showed a loss of neuronal cells and memory impairment. These results indicate that the σ1R deficiency can reduce Aβ(25-35)-induced neuronal cell death and cognitive deficits through suppressing Aβ(25-35)-enhanced NR2B phosphorylation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Memory loss in chemotherapy-treated rats is exacerbated in high-interference conditions and related to suppression of hippocampal neurogenesis.

    Science.gov (United States)

    Winocur, Gordon; Wojtowicz, J Martin; Tannock, Ian F

    2015-03-15

    Drugs used to treat cancer have neurotoxic effects that often produce memory loss and related cognitive deficits. In a test of the hypothesis that chemotherapy-induced cognitive impairment is related to a loss of inhibitory control, rats injected with a combination of methotrexate+5-fluouracil or equal volumes of saline, were administered a retroactive interference task in which memory for a learned discrimination problem was tested under conditions of high- and low-interference. The drugs had no effect on original learning or on re-learning the discrimination response when there was little interference, but the chemotherapy group was severely impaired in the hippocampus-sensitive, high-interference memory test. The impaired performance correlated significantly with reduced neurogenesis in the hippocampus. The failure to suppress interfering influences is consistent with a breakdown in pattern separation, a process that distinguishes and separates overlapping neural representations of experiences that have a high degree of similarity. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. 3-Methyl-1-phenyl-2-pyrazolin-5-one or N-acetylcysteine prevents hippocampal mossy fiber sprouting and rectifies subsequent convulsive susceptibility in a rat model of kainic acid-induced seizure ceased by pentobarbital.

    Science.gov (United States)

    Nomura, Shohei; Shimakawa, Shuichi; Miyamoto, Ryohei; Fukui, Miho; Tamai, Hiroshi

    2014-11-24

    There is accumulating evidence that reactive oxygen species are involved in the development of seizures under pathological conditions, and antioxidant treatments are a novel therapeutic approach for epilepsy. The kainic acid (KA) model of induced seizures has been widely used to study temporal lobe epilepsy. However, research on the use of free radical scavengers following KA-induced status epilepticus (SE) is limited. We examined whether antioxidants already used in humans could reduce hippocampal neuronal cell loss, mossy fiber sprouting and the acquisition of hyperexcitability when administered as a single dose after SE. The antioxidant 3-methyl-1-phenyl-2-pyrazolin-5-one (edaravone) (30mg/kg) or N-acetylcysteine (NAC) (30mg/kg) was administered after KA-induced SE ceased by pentobarbital. We evaluated neuronal cell viability 1 week after SE, determined the threshold for seizures induced by inhalation of flurothyl ether 12 weeks after SE, and examined the extent of mossy fiber sprouting 12 weeks after SE. We found that edaravone or NAC prevented neuronal cell loss and mossy fiber sprouting, and increased the threshold for seizures induced by flurothyl ether, even when administered after KA-induced SE. These results demonstrate that a single dose of edaravone or NAC can protect against neuronal cell loss and epileptogenesis when administered after SE ceased by pentobarbital. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Neuroprotective Effects of α-Tocotrienol on Kainic Acid-Induced Neurotoxicity in Organotypic Hippocampal Slice Cultures

    Directory of Open Access Journals (Sweden)

    Bae Hwan Lee

    2013-09-01

    Full Text Available Vitamin E, such as alpha-tocopherol (ATPH and alpha-tocotrienol (ATTN, is a chain-breaking antioxidant that prevents the chain propagation step during lipid peroxidation. In the present study, we investigated the effects of ATTN on KA-induced neuronal death using organotypic hippocampal slice culture (OHSC and compared the neuroprotective effects of ATTN and ATPH. After 15 h KA (5 µM treatment, delayed neuronal death was detected in the CA3 region and reactive oxygen species (ROS formation and lipid peroxidation were also increased. Both co-treatment and post-treatment of ATPH (100 µM or ATTN (100 µM significantly increased the cell survival and reduced the number of TUNEL-positive cells in the CA3 region. Increased dichlorofluorescein (DCF fluorescence and levels of thiobarbiturate reactive substances (TBARS were decreased by ATPH and ATTN treatment. These data suggest that ATPH and ATTN treatment have protective effects on KA-induced cell death in OHSC. ATTN treatment tended to be more effective than ATPH treatment, even though there was no significant difference between ATPH and ATTN in co-treatment or post-treatment.

  13. Diazepam treatment blocks the elevation of hippocampal activity and the accelerated proliferation of hippocampal neural stem cells after focal cerebral ischemia in mice.

    Science.gov (United States)

    Nochi, Rokuya; Kaneko, Jun; Okada, Natsumi; Terazono, Yasushi; Matani, Ayumu; Hisatsune, Tatsuhiro

    2013-11-01

    Hippocampal neurogenesis is accelerated during the elevation of hippocampal neural activities under both physiological and pathophysiological conditions. One of these conditions, middle cerebral artery occlusion (MCAO), induces both the hyperactivities of hippocampal network and the elevation of neural stem cell (NSC) proliferation. However, the causal relationship between the elevated activity and the elevation of NSC proliferation is still unclear. In this study, to block the elevation of hippocampal activity after MCAO in mice, we utilized a typical γ-aminobutyric acid type A (GABAA ) receptor active modulator, diazepam. With MCAO mice treated with diazepam, we observed complete disappearance of the elevation of hippocampal activity. Additionally, the diazepam treatment blocked the elevation of NSC proliferation after MCAO. From this result, it is speculated that the increased NSC proliferation is blocked by the suppression of elevated neural activity. However, diazepam might have effects other than the suppression of hippocampal activity, so we performed additional experiment and found that diazepam did not affect the number of bromodeoxyuridine-positive cells under the normal condition, whereas the GABA agonist pentobarbital stimulated NSC/neural progenitor cell proliferation and differentiation. Next, we evaluated the expression of the diazepam-binding inhibitor (DBI) protein and found that the cells expressed DBI in soma and on the surface of cell membrane. From these observations, we can propose that diazepam blocks the elevation of hippocampal activity and also NSC proliferation after MCAO. Copyright © 2013 Wiley Periodicals, Inc.

  14. Chronic peripheral inflammation, hippocampal neurogenesis, and behavior.

    Science.gov (United States)

    Chesnokova, Vera; Pechnick, Robert N; Wawrowsky, Kolja

    2016-11-01

    Adult hippocampal neurogenesis is involved in memory and learning, and disrupted neurogenesis is implicated in cognitive impairment and mood disorders, including anxiety and depression. Some long-term peripheral illnesses and metabolic disorders, as well as normal aging, create a state of chronic peripheral inflammation. These conditions are associated with behavioral disturbances linked to disrupted adult hippocampal neurogenesis, such as cognitive impairment, deficits in learning and memory, and depression and anxiety. Pro-inflammatory cytokines released in the periphery are involved in peripheral immune system-to-brain communication by activating resident microglia in the brain. Activated microglia reduce neurogenesis by suppressing neuronal stem cell proliferation, increasing apoptosis of neuronal progenitor cells, and decreasing survival of newly developing neurons and their integration into existing neuronal circuits. In this review, we summarize evolving evidence that the state of chronic peripheral inflammation reduces adult hippocampal neurogenesis, which, in turn, produces the behavioral disturbances observed in chronic inflammatory disorders. As there are no data available on neurogenesis in humans with chronic peripheral inflammatory disease, we focus on animal models and, in parallel, consider the evidence of cognitive disturbance and mood disorders in human patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Modulation of Hippocampal Activity by Vagus Nerve Stimulation in Freely Moving Rats

    NARCIS (Netherlands)

    Larsen, L.E.; Wadman, W.J.; van Mierlo, P.; Delbeke, J.; Grimonprez, A.; Van Nieuwenhuyse, B.; Portelli, J.; Boon, P; Vonck, K.; Raedt, R.

    2015-01-01

    BACKGROUND: Vagus Nerve Stimulation (VNS) has seizure-suppressing effects but the underlying mechanism is not fully understood. To further elucidate the mechanisms underlying VNS-induced seizure suppression at a neurophysiological level, the present study examined effects of VNS on hippocampal

  16. Food restriction reduces neurogenesis in the avian hippocampal formation.

    Directory of Open Access Journals (Sweden)

    Barbara-Anne Robertson

    Full Text Available The mammalian hippocampus is particularly vulnerable to chronic stress. Adult neurogenesis in the dentate gyrus is suppressed by chronic stress and by administration of glucocorticoid hormones. Post-natal and adult neurogenesis are present in the avian hippocampal formation as well, but much less is known about its sensitivity to chronic stressors. In this study, we investigate this question in a commercial bird model: the broiler breeder chicken. Commercial broiler breeders are food restricted during development to manipulate their growth curve and to avoid negative health outcomes, including obesity and poor reproductive performance. Beyond knowing that these chickens are healthier than fully-fed birds and that they have a high motivation to eat, little is known about how food restriction impacts the animals' physiology. Chickens were kept on a commercial food-restricted diet during the first 12 weeks of life, or released from this restriction by feeding them ad libitum from weeks 7-12 of life. To test the hypothesis that chronic food restriction decreases the production of new neurons (neurogenesis in the hippocampal formation, the cell proliferation marker bromodeoxyuridine was injected one week prior to tissue collection. Corticosterone levels in blood plasma were elevated during food restriction, even though molecular markers of hypothalamic-pituitary-adrenal axis activation did not differ between the treatments. The density of new hippocampal neurons was significantly reduced in the food-restricted condition, as compared to chickens fed ad libitum, similar to findings in rats at a similar developmental stage. Food restriction did not affect hippocampal volume or the total number of neurons. These findings indicate that in birds, like in mammals, reduction in hippocampal neurogenesis is associated with chronically elevated corticosterone levels, and therefore potentially with chronic stress in general. This finding is consistent with the

  17. Update on Hippocampal Sclerosis.

    Science.gov (United States)

    Dutra, Juliana R; Cortés, Etty P; Vonsattel, Jean Paul G

    2015-10-01

    The diagnostic hallmarks of hippocampal sclerosis (HS) are severe volume loss of the hippocampus, severe neuronal loss, and reactive gliosis involving primarily two especially vulnerable fields, CA1 and the subiculum. Occasionally, HS may be the only neuropathological change detected in older individuals with dementia and is known as pure HS. In the majority of cases, HS occurs in the setting of other degenerative changes, usually Alzheimer's disease (AD). In these cases, it is classified as combined HS. Although a clinical profile for HS has been identified, its similarities with AD make the diagnosis during life quite challenging; thus, the diagnosis is often made postmortem. The pathogenesis of HS is not completely understood, but the strong association with transactive response DNA-binding protein 43 (TDP-43), in approximately 90%, and the recent discovery of genetic risk factors are important contributions to a better understanding of the disease process.

  18. Ablation of NMDA receptors enhances the excitability of hippocampal CA3 neurons.

    Directory of Open Access Journals (Sweden)

    Fumiaki Fukushima

    Full Text Available Synchronized discharges in the hippocampal CA3 recurrent network are supposed to underlie network oscillations, memory formation and seizure generation. In the hippocampal CA3 network, NMDA receptors are abundant at the recurrent synapses but scarce at the mossy fiber synapses. We generated mutant mice in which NMDA receptors were abolished in hippocampal CA3 pyramidal neurons by postnatal day 14. The histological and cytological organizations of the hippocampal CA3 region were indistinguishable between control and mutant mice. We found that mutant mice lacking NMDA receptors selectively in CA3 pyramidal neurons became more susceptible to kainate-induced seizures. Consistently, mutant mice showed characteristic large EEG spikes associated with multiple unit activities (MUA, suggesting enhanced synchronous firing of CA3 neurons. The electrophysiological balance between fast excitatory and inhibitory synaptic transmission was comparable between control and mutant pyramidal neurons in the hippocampal CA3 region, while the NMDA receptor-slow AHP coupling was diminished in the mutant neurons. In the adult brain, inducible ablation of NMDA receptors in the hippocampal CA3 region by the viral expression vector for Cre recombinase also induced similar large EEG spikes. Furthermore, pharmacological blockade of CA3 NMDA receptors enhanced the susceptibility to kainate-induced seizures. These results raise an intriguing possibility that hippocampal CA3 NMDA receptors may suppress the excitability of the recurrent network as a whole in vivo by restricting synchronous firing of CA3 neurons.

  19. High dose tetrabromobisphenol A impairs hippocampal neurogenesis and memory retention.

    Science.gov (United States)

    Kim, Ah Hyun; Chun, Hye Jeong; Lee, Seulah; Kim, Hyung Sik; Lee, Jaewon

    2017-08-01

    Tetrabromobisphenol A (TBBPA) is a brominated flame retardant that is commonly used in commercial and household products, such as, computers, televisions, mobile phones, and electronic boards. TBBPA can accumulate in human body fluids, and it has been reported that TBBPA possesses endocrine disruptive activity. However, the neurotoxic effect of TBBPA on hippocampal neurogenesis has not yet been investigated. Accordingly, the present study was undertaken to evaluate the effect of TBBPA on adult hippocampal neurogenesis and cognitive function. Male C57BL/6 mice were orally administrated vehicle or TBBPA (20 mg/kg, 100 mg/kg, or 500 mg/kg daily) for two weeks. TBBPA was observed to significantly and dose-dependently reduce the survival of newly generated cells in the hippocampus but not to affect the proliferation of newly generated cells. Numbers of hippocampal BrdU and NeuN positive cells were dose-dependently reduced by TBBPA, indicating impaired neurogenesis in the hippocampus. Interestingly, glial activation without neuronal death was observed in hippocampi exposed to TBBPA. Furthermore, memory retention was found to be adversely affected by TBBPA exposure by a mechanism involving suppression of the BDNF-CREB signaling pathway. The study suggests high dose TBBPA disrupts hippocampal neurogenesis and induces associated memory deficits. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Necroptosis Mediates TNF-Induced Toxicity of Hippocampal Neurons

    Directory of Open Access Journals (Sweden)

    Shan Liu

    2014-01-01

    Full Text Available Tumor necrosis factor-α (TNF-α is a critical proinflammatory cytokine regulating neuroinflammation. Elevated levels of TNF-α have been associated with various neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. However, the signaling events that lead to TNF-α-initiated neurotoxicity are still unclear. Here, we report that RIP3-mediated necroptosis, a form of regulated necrosis, is activated in the mouse hippocampus after intracerebroventricular injection of TNF-α. RIP3 deficiency attenuates TNF-α-initiated loss of hippocampal neurons. Furthermore, we characterized the molecular mechanism of TNF-α-induced neurotoxicity in HT-22 hippocampal neuronal cells. HT-22 cells are sensitive to TNF-α only upon caspase blockage and subsequently undergo necrosis. The cell death is suppressed by knockdown of CYLD or RIP1 or RIP3 or MLKL, suggesting that this necrosis is necroptosis and mediated by CYLD-RIP1-RIP3-MLKL signaling pathway. TNF-α-induced necroptosis of HT-22 cells is largely independent of both ROS accumulation and calcium influx although these events have been shown to be critical for necroptosis in certain cell lines. Taken together, these data not only provide the first in vivo evidence for a role of RIP3 in TNF-α-induced toxicity of hippocampal neurons, but also demonstrate that TNF-α promotes CYLD-RIP1-RIP3-MLKL-mediated necroptosis of hippocampal neurons largely bypassing ROS accumulation and calcium influx.

  1. Stress, depression and hippocampal damage

    Indian Academy of Sciences (India)

    adrenocortical (HPA) axis which regulates secretion of the stress responsive corticosteroids. The hippocampus is known to provide an inhibitory feedback to the HPA axis. Hippocampal damage then would result in disinhibition of the HPA axis ...

  2. Hippocampal leptin signaling reduces food intake and modulates food-related memory processing.

    Science.gov (United States)

    Kanoski, Scott E; Hayes, Matthew R; Greenwald, Holly S; Fortin, Samantha M; Gianessi, Carol A; Gilbert, Jennifer R; Grill, Harvey J

    2011-08-01

    The increase in obesity prevalence highlights the need for a more comprehensive understanding of the neural systems controlling food intake; one that extends beyond food intake driven by metabolic need and considers that driven by higher-order cognitive factors. The hippocampus, a brain structure involved in learning and memory function, has recently been linked with food intake control. Here we examine whether administration of the adiposity hormone leptin to the dorsal and ventral sub-regions of the hippocampus influences food intake and memory for food. Leptin (0.1 μg) delivered bilaterally to the ventral hippocampus suppressed food intake and body weight measured 24 h after administration; a higher dose (0.4 μg) was needed to suppress intake following dorsal hippocampal delivery. Leptin administration to the ventral but not dorsal hippocampus blocked the expression of a conditioned place preference for food and increased the latency to run for food in an operant runway paradigm. Additionally, ventral but not dorsal hippocampal leptin delivery suppressed memory consolidation for the spatial location of food, whereas hippocampal leptin delivery had no effect on memory consolidation in a non-spatial appetitive response paradigm. Collectively these findings indicate that ventral hippocampal leptin signaling contributes to the inhibition of food-related memories elicited by contextual stimuli. To conclude, the results support a role for hippocampal leptin signaling in the control of food intake and food-related memory processing.

  3. Study on protective effect of ketogenic diet against hippocampal neurons of kainic acid-induced epileptic rats

    Directory of Open Access Journals (Sweden)

    Nan-nan ZHANG

    2015-11-01

    Full Text Available Objective To investigate the protective effects of ketogenic diet on hippocampal neurons of kainic acid (KA-induced epileptic rats.  Methods A total of 40 healthy male specific pathogen free (SPF Sprague-Dawley (SD rats were randomly divided into 4 groups, with each group containing 10 rats. Epileptic rat models were formed by injection of KA through lateral ventricle with brain stereotactic instrument. According to Racine classification, epileptic seizures in rats above grade Ⅳ were defined successful. Then the rats were given different dietary treatment: Group C with normal saline and normal diet, Group K with normal saline and ketogenic diet, Group E with KA and normal diet, Group EK with KA and ketogenic diet. All rats were observed for 21 d, and were recorded each body weight. The epileptic seizure frequency and duration were observed at 12:00-15:00 daily. At the 21st day, all rats were put to death, and the brain hippocampus tissues were separated. Neuron injury of rat hippocampal CA3 region in Group E and EK was observed by HE staining. Normal neuron number of rat hippocampal CA3 region in Group E and EK was counted by Nissl staining. Results Group C and K had no epileptic seizures, and the neuron number in hippocampal CA3 region was normal. Rats in both Group E and EK had grade Ⅳ or Ⅴ seizures. The number of seizures in Group EK [(17.90 ± 4.12 times] after 21-day ketogenic diet was decreased significantly compared to Group E [(30.50 ± 4.40 times] after 21-day normal diet (t = 6.606, P = 0.000. The seizure duration in Group EK [(212.70 ± 17.75 s] after 21-day ketogenic diet was shortened compared to Group E [(335.00 ± 14.21 s] after 21-day normal diet (t = 17.011, P = 0.000. The normal neuron number in hippocampal CA3 region in Group EK (117.67 ± 7.51 was more than those in Group E (71.33 ± 6.11, with statistically significant difference (t = 9.614, P = 0.000.  Conclusions Ketogenic diet has protective effect on hippocampal

  4. Increased glucose metabolism during long-duration recurrent inhibition of hippocampal pyramidal cells

    International Nuclear Information System (INIS)

    Ackermann, R.F.; Finch, D.M.; Babb, T.L.; Engel, J. Jr.

    1984-01-01

    Neurophysiologically confirmed long-duration recurrent inhibition of hippocampal pyramidal unit firing was induced by low frequency (2 to 4 Hz) stimulation of the fornix for 60 min following intravenous infusion of [ 14 C]-2-DG. The resulting autoradiograms showed that long-duration suppression of pyramidal cell firing was accompanied by distinctly increased hippocampal 2-DG uptake, particularly in the stratum pyramidale, which contains a dense plexus of inhibitory interneuronal terminals upon pyramidal cells. Both the pyramidal inhibition and the increased 2-DG uptake were confined to the ipsilateral hippocampus in animals with previously severed fornices and hippocampal commissures. In a second series of rats, the excitatory entorhinohippocampal ''perforant path'' (PP) was stimulated at low frequency (2 to 9 Hz) following 2-DG administration. At 2 to 4 Hz, each PP stimulation resulted in a brief burst of pyramidal unit firing followed by short-duration firing suppression; this result was associated with paradoxically decreased 2-DG uptake in the ipsilateral stratum molecular. By contrast, 7 to 9 Hz entorhinal stimulation induced PP-mediated excitation immediately followed by powerful intrinsic hippocampal inhibition, evidenced by prolonged pyramidal unit suppression after each stimulation. This suppression was accompanied by increased 2-DG uptake in the dentate stratum molecular and hippocampal stratum pyramidale. Thus it appeared that even with entorhinal stimulation, hippocampal 2-DG uptake was more closely associated with long-duration recurrent inhibition than with transient pyramidal excitation. Therefore, although it still remains possible that regions of hypometabolism observed in some previous 2-DG studies may actually reflect mild inhibition, other mechanisms such as disfacilitation are more likely mechanisms for this metabolic pattern

  5. Increased glucose metabolism during long-duration recurrent inhibition of hippocampal pyramidal cells

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, R.F.; Finch, D.M.; Babb, T.L.; Engel, J. Jr.

    1984-01-01

    Neurophysiologically confirmed long-duration recurrent inhibition of hippocampal pyramidal unit firing was induced by low frequency (2 to 4 Hz) stimulation of the fornix for 60 min following intravenous infusion of (/sup 14/C)-2-DG. The resulting autoradiograms showed that long-duration suppression of pyramidal cell firing was accompanied by distinctly increased hippocampal 2-DG uptake, particularly in the stratum pyramidale, which contains a dense plexus of inhibitory interneuronal terminals upon pyramidal cells. Both the pyramidal inhibition and the increased 2-DG uptake were confined to the ipsilateral hippocampus in animals with previously severed fornices and hippocampal commissures. In a second series of rats, the excitatory entorhinohippocampal ''perforant path'' (PP) was stimulated at low frequency (2 to 9 Hz) following 2-DG administration. At 2 to 4 Hz, each PP stimulation resulted in a brief burst of pyramidal unit firing followed by short-duration firing suppression; this result was associated with paradoxically decreased 2-DG uptake in the ipsilateral stratum molecular. By contrast, 7 to 9 Hz entorhinal stimulation induced PP-mediated excitation immediately followed by powerful intrinsic hippocampal inhibition, evidenced by prolonged pyramidal unit suppression after each stimulation. This suppression was accompanied by increased 2-DG uptake in the dentate stratum molecular and hippocampal stratum pyramidale. Thus it appeared that even with entorhinal stimulation, hippocampal 2-DG uptake was more closely associated with long-duration recurrent inhibition than with transient pyramidal excitation. Therefore, although it still remains possible that regions of hypometabolism observed in some previous 2-DG studies may actually reflect mild inhibition, other mechanisms such as disfacilitation are more likely mechanisms for this metabolic pattern.

  6. Hippocampal polysynaptic computation.

    Science.gov (United States)

    Kimura, Rie; Kang, Siu; Takahashi, Naoya; Usami, Atsushi; Matsuki, Norio; Fukai, Tomoki; Ikegaya, Yuji

    2011-09-14

    Neural circuitry is a self-organizing arithmetic device that converts input to output and thereby remodels its computational algorithm to produce more desired output; however, experimental evidence regarding the mechanism by which information is modified and stored while propagating across polysynaptic networks is sparse. We used functional multineuron calcium imaging to monitor the spike outputs from thousands of CA1 neurons in response to the stimulation of two independent sites of the dentate gyrus in rat hippocampal networks ex vivo. Only pyramidal cells were analyzed based on post hoc immunostaining. Some CA1 pyramidal cells were observed to fire action potentials only when both sites were simultaneously stimulated (AND-like neurons), whereas other neurons fired in response to either site of stimulation but not to concurrent stimulation (XOR-like neurons). Both types of neurons were interlaced in the same network and altered their logical operation depending on the timing of paired stimulation. Repetitive paired stimulation for brief periods induced a persistent reorganization of AND and XOR operators, suggesting a flexibility in parallel distributed processing. We simulated these network functions in silico and found that synaptic modification of the CA3 recurrent excitation is pivotal to the shaping of logic plasticity. This work provides new insights into how microscopic synaptic properties are associated with the mesoscopic dynamics of complex microcircuits.

  7. Novel genetic loci associated with hippocampal volume

    NARCIS (Netherlands)

    D.P. Hibar (Derrek); H.H.H. Adams (Hieab); N. Jahanshad (Neda); G. Chauhan (Ganesh); J.L. Stein; E. Hofer (Edith); M.E. Rentería (Miguel); J.C. Bis (Joshua); A. Arias-Vásquez (Alejandro); Ikram, M.K. (M. Kamran); S. Desrivières (Sylvane); M.W. Vernooij (Meike); L. Abramovic (Lucija); S. Alhusaini (Saud); N. Amin (Najaf); M. Andersson (Micael); K. Arfanakis (Konstantinos); B. Aribisala (Benjamin); N.J. Armstrong (Nicola J.); L. Athanasiu (Lavinia); T. Axelsson (Tomas); A.H. Beecham (Ashley); A. Beiser (Alexa); M. Bernard (Manon); S.H. Blanton (Susan H.); M.M. Bohlken (Marc M.); M.P.M. Boks (Marco); L.B.C. Bralten (Linda); A.M. Brickman (Adam M.); Carmichael, O. (Owen); M.M. Chakravarty (M. Mallar); Q. Chen (Qiang); C.R.K. Ching (Christopher); V. Chouraki (Vincent); G. Cuellar-Partida (Gabriel); F. Crivello (Fabrice); A. den Braber (Anouk); Doan, N.T. (Nhat Trung); S.M. Ehrlich (Stefan); S. Giddaluru (Sudheer); A.L. Goldman (Aaron L.); R.F. Gottesman (Rebecca); O. Grimm (Oliver); M.D. Griswold (Michael); T. Guadalupe (Tulio); Gutman, B.A. (Boris A.); J. Hass (Johanna); U.K. Haukvik (Unn); D. Hoehn (David); A.J. Holmes (Avram); M. Hoogman (Martine); D. Janowitz (Deborah); T. Jia (Tianye); Jørgensen, K.N. (Kjetil N.); N. Karbalai (Nazanin); D. Kasperaviciute (Dalia); S. Kim (Shinseog); M. Klein (Marieke); B. Kraemer (Bernd); P.H. Lee (Phil); D.C. Liewald (David C.); L.M. Lopez (Lorna); M. Luciano (Michelle); C. MacAre (Christine); Marquand, A.F. (Andre F.); M. Matarin (Mar); R. Mather; M. Mattheisen (Manuel); McKay, D.R. (David R.); Milaneschi, Y. (Yuri); S. Muñoz Maniega (Susana); K. Nho (Kwangsik); A.C. Nugent (Allison); P. Nyquist (Paul); Loohuis, L.M.O. (Loes M. Olde); J. Oosterlaan (Jaap); M. Papmeyer (Martina); Pirpamer, L. (Lukas); B. Pütz (Benno); A. Ramasamy (Adaikalavan); Richards, J.S. (Jennifer S.); S.L. Risacher (Shannon); R. Roiz-Santiañez (Roberto); N. Rommelse (Nanda); S. Ropele (Stefan); E.J. Rose (Emma); N.A. Royle (Natalie); T. Rundek (Tatjana); P.G. Sämann (Philipp); Saremi, A. (Arvin); C.L. Satizabal (Claudia L.); L. Schmaal (Lianne); N.J. Schork (Nicholas); Shen, L. (Li); J. Shin (Jean); Shumskaya, E. (Elena); A.V. Smith (Albert Vernon); R. Sprooten (Roy); V.M. Strike (Vanessa); A. Teumer (Alexander); D. Tordesillas-Gutierrez (Diana); R. Toro (Roberto); D. Trabzuni (Danyah); S. Trompet (Stella); D. Vaidya (Dhananjay); J. van der Grond (Jeroen); S.J. van der Lee (Sven); Van Der Meer, D. (Dennis); M.M.J. Van Donkelaar (Marjolein M. J.); K.R. van Eijk (Kristel); T.G.M. van Erp (Theo G.); Van Rooij, D. (Daan); E. Walton (Esther); L.T. Westlye (Lars); C.D. Whelan (Christopher); B.G. Windham (B Gwen); A.M. Winkler (Anderson); K. Wittfeld (Katharina); G. Woldehawariat (Girma); A. Björnsson (Asgeir); Wolfers, T. (Thomas); L.R. Yanek (Lisa); Yang, J. (Jingyun); A.P. Zijdenbos; M.P. Zwiers (Marcel); I. Agartz (Ingrid); L. Almasy (Laura); D.J. Ames (David); Amouyel, P. (Philippe); O.A. Andreassen (Ole); S. Arepalli (Sampath); A.A. Assareh; S. Barral (Sandra); M.E. Bastin (Mark); Becker, D.M. (Diane M.); J.T. Becker (James); D.A. Bennett (David A.); J. Blangero (John); H. van Bokhoven (Hans); D.I. Boomsma (Dorret); H. Brodaty (Henry); R.M. Brouwer (Rachel); H.G. Brunner; M. Buckner; J.K. Buitelaar (Jan); K. Bulayeva (Kazima); W. Cahn (Wiepke); V.D. Calhoun Vince D. (V.); D.M. Cannon (Dara); G. Cavalleri (Gianpiero); Cheng, C.-Y. (Ching-Yu); S. Cichon (Sven); M.R. Cookson (Mark); A. Corvin (Aiden); B. Crespo-Facorro (Benedicto); J.E. Curran (Joanne); M. Czisch (Michael); A.M. Dale (Anders); G.E. Davies (Gareth); A.J. de Craen (Anton); E.J.C. de Geus (Eco); P.L. de Jager (Philip); G.I. de Zubicaray (Greig); I.J. Deary (Ian J.); S. Debette (Stéphanie); C. DeCarli (Charles); N. Delanty; C. Depondt (Chantal); A.L. DeStefano (Anita); A. Dillman (Allissa); S. Djurovic (Srdjan); D.J. Donohoe (Dennis); D.A. Drevets (Douglas); Duggirala, R. (Ravi); M.D. Dyer (Matthew); C. Enzinger (Christian); S. Erk; T. Espeseth (Thomas); Fedko, I.O. (Iryna O.); Fernández, G. (Guillén); L. Ferrucci (Luigi); S.E. Fisher (Simon); D. Fleischman (Debra); I. Ford (Ian); M. Fornage (Myriam); T. Foroud (Tatiana); P.T. Fox (Peter); C. Francks (Clyde); Fukunaga, M. (Masaki); Gibbs, J.R. (J. Raphael); D.C. Glahn (David); R.L. Gollub (Randy); H.H.H. Göring (Harald H.); R.C. Green (Robert C.); O. Gruber (Oliver); V. Gudnason (Vilmundur); S. Guelfi (Sebastian); Håberg, A.K. (Asta K.); N.K. Hansell (Narelle); J. Hardy (John); C.A. Hartman (C.); Hashimoto, R. (Ryota); K. Hegenscheid (Katrin); J. Heinz (Judith); S. Le Hellard (Stephanie); D.G. Hernandez (Dena); D.J. Heslenfeld (Dirk); Ho, B.-C. (Beng-Choon); P.J. Hoekstra (Pieter); W. Hoffmann (Wolfgang); A. Hofman (Albert); F. Holsboer (Florian); G. Homuth (Georg); N. Hosten (Norbert); J.J. Hottenga (Jouke Jan); M.J. Huentelman (Matthew); H.H. Pol; Ikeda, M. (Masashi); Jack, C.R. (Clifford R.); S. Jenkinson (Sarah); R. Johnson (Robert); Jönsson, E.G. (Erik G.); J.W. Jukema; R. Kahn (René); Kanai, R. (Ryota); I. Kloszewska (Iwona); Knopman, D.S. (David S.); P. Kochunov (Peter); Kwok, J.B. (John B.); S. Lawrie (Stephen); H. Lemaître (Herve); X. Liu (Xinmin); D.L. Longo (Dan L.); O.L. Lopez (Oscar L.); S. Lovestone (Simon); Martinez, O. (Oliver); J.-L. Martinot (Jean-Luc); V.S. Mattay (Venkata S.); McDonald, C. (Colm); A.M. McIntosh (Andrew); McMahon, F.J. (Francis J.); McMahon, K.L. (Katie L.); P. Mecocci (Patrizia); I. Melle (Ingrid); Meyer-Lindenberg, A. (Andreas); S. Mohnke (Sebastian); Montgomery, G.W. (Grant W.); D.W. Morris (Derek W); T.H. Mosley (Thomas H.); T.W. Mühleisen (Thomas); B. Müller-Myhsok (B.); M.A. Nalls (Michael); M. Nauck (Matthias); T.E. Nichols (Thomas); W.J. Niessen (Wiro); M.M. Nöthen (Markus); L. Nyberg (Lars); Ohi, K. (Kazutaka); R.L. Olvera (Rene); R.A. Ophoff (Roel); M. Pandolfo (Massimo); T. Paus (Tomas); Z. Pausova (Zdenka); B.W.J.H. Penninx (Brenda); Pike, G.B. (G. Bruce); S.G. Potkin (Steven); B.M. Psaty (Bruce); S. Reppermund; M. Rietschel (Marcella); J.L. Roffman (Joshua); N. Seiferth (Nina); J.I. Rotter (Jerome I.); M. Ryten (Mina); Sacco, R.L. (Ralph L.); P.S. Sachdev (Perminder); A.J. Saykin (Andrew); R. Schmidt (Reinhold); Schmidt, H. (Helena); C.J. Schofield (Christopher); Sigursson, S. (Sigurdur); Simmons, A. (Andrew); A. Singleton (Andrew); S.M. Sisodiya (Sanjay); Smith, C. (Colin); J.W. Smoller; H. Soininen (H.); V.M. Steen (Vidar); D.J. Stott (David J.); J. Sussmann (Jessika); A. Thalamuthu (Anbupalam); A.W. Toga (Arthur W.); B. Traynor (Bryan); J.C. Troncoso (Juan); M. Tsolaki (Magda); C. Tzourio (Christophe); A.G. Uitterlinden (André); Hernández, M.C.V. (Maria C. Valdés); M.P. van der Brug (Marcel); A. van der Lugt (Aad); N.J. van der Wee (Nic); N.E.M. van Haren (Neeltje E.); D. van 't Ent (Dennis); M.J.D. van Tol (Marie-José); B.N. Vardarajan (Badri); B. Vellas (Bruno); D.J. Veltman (Dick); H. Völzke (Henry); H.J. Walter (Henrik); J. Wardlaw (Joanna); A.M.J. Wassink (Annemarie); M.E. Weale (Michael); Weinberger, D.R. (Daniel R.); Weiner, M.W. (Michael W.); Wen, W. (Wei); E. Westman (Eric); T.J.H. White (Tonya); Wong, T.Y. (Tien Y.); Wright, C.B. (Clinton B.); R.H. Zielke (Ronald H.); A.B. Zonderman; N.G. Martin (Nicholas); C.M. van Duijn (Cornelia); M.J. Wright (Margaret); W.T. Longstreth Jr; G. Schumann (Gunter); H.J. Grabe (Hans Jörgen); B. Franke (Barbara); L.J. Launer (Lenore); S.E. Medland (Sarah Elizabeth); S. Seshadri (Sudha); P.M. Thompson (Paul); M.K. Ikram (Kamran)

    2017-01-01

    textabstractThe hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic

  8. Novel genetic loci associated with hippocampal volume

    NARCIS (Netherlands)

    Hibar, Derrek P.; Adams, Hieab H. H.; Jahanshad, Neda; Chauhan, Ganesh; Stein, Jason L.; Hofer, Edith; Renteria, Miguel E.; Bis, Joshua C.; Arias-Vasquez, Alejandro; Ikram, M. Kamran; Desrivières, Sylvane; Vernooij, Meike W.; Abramovic, Lucija; Alhusaini, Saud; Amin, Najaf; Andersson, Micael; Arfanakis, Konstantinos; Aribisala, Benjamin S.; Armstrong, Nicola J.; Athanasiu, Lavinia; Axelsson, Tomas; Beecham, Ashley H.; Beiser, Alexa; Bernard, Manon; Blanton, Susan H.; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brickman, Adam M.; Carmichael, Owen; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Chouraki, Vincent; Cuellar-Partida, Gabriel; Crivello, Fabrice; den Braber, Anouk; Doan, Nhat Trung; Ehrlich, Stefan; Giddaluru, Sudheer; Goldman, Aaron L.; Gottesman, Rebecca F.; Grimm, Oliver; Griswold, Michael E.; Guadalupe, Tulio; Gutman, Boris A.; Hass, Johanna; Haukvik, Unn K.; Hoehn, David; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Jørgensen, Kjetil N.; Karbalai, Nazanin; Kasperaviciute, Dalia; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Liewald, David C. M.; Lopez, Lorna M.; Luciano, Michelle; Macare, Christine; Marquand, Andre F.; Matarin, Mar; Mather, Karen A.; Mattheisen, Manuel; McKay, David R.; Milaneschi, Yuri; Muñoz Maniega, Susana; Nho, Kwangsik; Nugent, Allison C.; Nyquist, Paul; Loohuis, Loes M. Olde; Oosterlaan, Jaap; Papmeyer, Martina; Pirpamer, Lukas; Pütz, Benno; Ramasamy, Adaikalavan; Richards, Jennifer S.; Risacher, Shannon L.; Roiz-Santiañez, Roberto; Rommelse, Nanda; Ropele, Stefan; Rose, Emma J.; Royle, Natalie A.; Rundek, Tatjana; Sämann, Philipp G.; Saremi, Arvin; Satizabal, Claudia L.; Schmaal, Lianne; Schork, Andrew J.; Shen, Li; Shin, Jean; Shumskaya, Elena; Smith, Albert V.; Sprooten, Emma; Strike, Lachlan T.; Teumer, Alexander; Tordesillas-Gutierrez, Diana; Toro, Roberto; Trabzuni, Daniah; Trompet, Stella; Vaidya, Dhananjay; van der Grond, Jeroen; van der Lee, Sven J.; van der Meer, Dennis; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; van Erp, Theo G. M.; van Rooij, Daan; Walton, Esther; Westlye, Lars T.; Whelan, Christopher D.; Windham, Beverly G.; Winkler, Anderson M.; Wittfeld, Katharina; Woldehawariat, Girma; Wolf, Christiane; Wolfers, Thomas; Yanek, Lisa R.; Yang, Jingyun; Zijdenbos, Alex; Zwiers, Marcel P.; Agartz, Ingrid; Almasy, Laura; Ames, David; Amouyel, Philippe; Andreassen, Ole A.; Arepalli, Sampath; Assareh, Amelia A.; Barral, Sandra; Bastin, Mark E.; Becker, Diane M.; Becker, James T.; Bennett, David A.; Blangero, John; van Bokhoven, Hans; Boomsma, Dorret I.; Brodaty, Henry; Brouwer, Rachel M.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Bulayeva, Kazima B.; Cahn, Wiepke; Calhoun, Vince D.; Cannon, Dara M.; Cavalleri, Gianpiero L.; Cheng, Ching-Yu; Cichon, Sven; Cookson, Mark R.; Corvin, Aiden; Crespo-Facorro, Benedicto; Curran, Joanne E.; Czisch, Michael; Dale, Anders M.; Davies, Gareth E.; de Craen, Anton J. M.; de Geus, Eco J. C.; de Jager, Philip L.; de Zubicaray, Greig I.; Deary, Ian J.; Debette, Stéphanie; Decarli, Charles; Delanty, Norman; Depondt, Chantal; DeStefano, Anita; Dillman, Allissa; Djurovic, Srdjan; Donohoe, Gary; Drevets, Wayne C.; Duggirala, Ravi; Dyer, Thomas D.; Enzinger, Christian; Erk, Susanne; Espeseth, Thomas; Fedko, Iryna O.; Fernández, Guillén; Ferrucci, Luigi; Fisher, Simon E.; Fleischman, Debra A.; Ford, Ian; Fornage, Myriam; Foroud, Tatiana M.; Fox, Peter T.; Francks, Clyde; Fukunaga, Masaki; Gibbs, J. Raphael; Glahn, David C.; Gollub, Randy L.; Göring, Harald H. H.; Green, Robert C.; Gruber, Oliver; Gudnason, Vilmundur; Guelfi, Sebastian; Håberg, Asta K.; Hansell, Narelle K.; Hardy, John; Hartman, Catharina A.; Hashimoto, Ryota; Hegenscheid, Katrin; Heinz, Andreas; Le Hellard, Stephanie; Hernandez, Dena G.; Heslenfeld, Dirk J.; Ho, Beng-Choon; Hoekstra, Pieter J.; Hoffmann, Wolfgang; Hofman, Albert; Holsboer, Florian; Homuth, Georg; Hosten, Norbert; Hottenga, Jouke-Jan; Huentelman, Matthew; Pol, Hilleke E. Hulshoff; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Jönsson, Erik G.; Jukema, J. Wouter; Kahn, René S.; Kanai, Ryota; Kloszewska, Iwona; Knopman, David S.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Lemaître, Hervé; Liu, Xinmin; Longo, Dan L.; Lopez, Oscar L.; Lovestone, Simon; Martinez, Oliver; Martinot, Jean-Luc; Mattay, Venkata S.; McDonald, Colm; McIntosh, Andrew M.; McMahon, Francis J.; McMahon, Katie L.; Mecocci, Patrizia; Melle, Ingrid; Meyer-Lindenberg, Andreas; Mohnke, Sebastian; Montgomery, Grant W.; Morris, Derek W.; Mosley, Thomas H.; Mühleisen, Thomas W.; Müller-Myhsok, Bertram; Nalls, Michael A.; Nauck, Matthias; Nichols, Thomas E.; Niessen, Wiro J.; Nöthen, Markus M.; Nyberg, Lars; Ohi, Kazutaka; Olvera, Rene L.; Ophoff, Roel A.; Pandolfo, Massimo; Paus, Tomas; Pausova, Zdenka; Penninx, Brenda W. J. H.; Pike, G. Bruce; Potkin, Steven G.; Psaty, Bruce M.; Reppermund, Simone; Rietschel, Marcella; Roffman, Joshua L.; Romanczuk-Seiferth, Nina; Rotter, Jerome I.; Ryten, Mina; Sacco, Ralph L.; Sachdev, Perminder S.; Saykin, Andrew J.; Schmidt, Reinhold; Schmidt, Helena; Schofield, Peter R.; Sigursson, Sigurdur; Simmons, Andrew; Singleton, Andrew; Sisodiya, Sanjay M.; Smith, Colin; Smoller, Jordan W.; Soininen, Hilkka; Steen, Vidar M.; Stott, David J.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Tsolaki, Magda; Tzourio, Christophe; Uitterlinden, Andre G.; Hernández, Maria C. Valdés; van der Brug, Marcel; van der Lugt, Aad; van der Wee, Nic J. A.; van Haren, Neeltje E. M.; van 't Ent, Dennis; van Tol, Marie-Jose; Vardarajan, Badri N.; Vellas, Bruno; Veltman, Dick J.; Völzke, Henry; Walter, Henrik; Wardlaw, Joanna M.; Wassink, Thomas H.; Weale, Michael E.; Weinberger, Daniel R.; Weiner, Michael W.; Wen, Wei; Westman, Eric; White, Tonya; Wong, Tien Y.; Wright, Clinton B.; Zielke, Ronald H.; Zonderman, Alan B.; Martin, Nicholas G.; van Duijn, Cornelia M.; Wright, Margaret J.; Longstreth, W. T.; Schumann, Gunter; Grabe, Hans J.; Franke, Barbara; Launer, Lenore J.; Medland, Sarah E.; Seshadri, Sudha; Thompson, Paul M.; Ikram, M. Arfan

    2017-01-01

    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of

  9. Dexamethasone selectively suppresses microglial trophic responses to hippocampal deafferentation

    DEFF Research Database (Denmark)

    Woods, A G; Poulsen, F R; Gall, C M

    1999-01-01

    hippocampus. Daily dexamethasone injections almost completely blocked increases in insulin-like growth factor-1 messenger RNA content, but did not perturb increases in ciliary neurotrophic factor or basic fibroblast growth factor messenger RNA content, in the deafferented dentate gyrus molecular layer...

  10. Novel genetic loci associated with hippocampal volume

    OpenAIRE

    Hibar, Derrek P.; Adams, Hieab H. H.; Jahanshad, Neda; Chauhan, Ganesh; Stein, Jason L.; Hofer, Edith; Renteria, Miguel E.; Bis, Joshua C.; Arias-Vasquez, Alejandro; Ikram, M. Kamran; Desrivieres, Sylvane; Vernooij, Meike W.; Abramovic, Lucija; Alhusaini, Saud; Amin, Najaf

    2017-01-01

    International audience; The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal ...

  11. Radiation of the Rat Brain Suppresses Seizure-Induced Neurogenesis and Transiently Enhances Excitability during Kindling Acquisition.

    NARCIS (Netherlands)

    Raedt, R.; Boon, P.; Perssson, A.; Alborn, A.M.; Boterberg, T.; Van Dycke, A.; Linder, B.; De Smedt, T.; Wadman, W.J.; Ben-Menachem, E.; Eriksson, P.S.

    2007-01-01

    Purpose: Adult hippocampal neurogenesis is enhanced in several models for temporal lobe epilepsy (TLE). In this study, we used low-dose whole brain radiation to suppress hippocampal neurogenesis and then studied the effect of this treatment on epileptogenesis in a kindling model for TLE. Methods:

  12. Suppressed Belief

    Directory of Open Access Journals (Sweden)

    Komarine Romdenh-Romluc

    2009-12-01

    Full Text Available Moran’s revised conception of conscious belief requires us to reconceptualise suppressed belief. The work of Merleau-Ponty offers a way to do this. His account of motor-skills allows us to understand suppressed beliefs as pre-reflective ways of dealing with the world.

  13. Hippocampal neurogenesis dysfunction linked to depressive-like behaviors in a neuroinflammation induced model of depression.

    Science.gov (United States)

    Tang, Ming-Ming; Lin, Wen-Juan; Pan, Yu-Qin; Guan, Xi-Ting; Li, Ying-Cong

    2016-07-01

    Our previous work found that triple central lipopolysaccharide (LPS) administration could induce depressive-like behaviors and increased central pro-inflammatory cytokines mRNA, hippocampal cytokine mRNA in particular. Since several neuroinflammation-associated conditions have been reported to impair neurogenesis, in this study, we further investigated whether the neuroinflammation induced depression would be associated with hippocampal neurogenesis dysfunction. An animal model of depression induced by triple central lipopolysaccharide (LPS) administration was used. In the hippocampus, the neuroinflammatory state evoked by LPS was marked by an increased production of pro-inflammatory cytokines, including interleukin-1β, interleukin-6, and tumor necrosis factor-α. It was found that rats in the neuroinflammatory state exhibited depressive-like behaviors, including reduced saccharin preference and locomotor activity as well as increased immobility time in the tail suspension test and latency to feed in the novelty suppressed feeding test. Adult hippocampal neurogenesis was concomitantly inhibited, including decreased cell proliferation and newborn cell survival. We also demonstrated that the decreased hippocampal neurogenesis in cell proliferation was significantly correlated with the depressive-like phenotypes of decreased saccharine preference and distance travelled, the core and characteristic symptoms of depression, under neuro inflammation state. These findings provide the first evidence that hippocampal neurogenesis dysfunction is correlated with neuroinflammation-induced depression, which suggests that hippocampal neurogenesis might be one of biological mechanisms underlying depression induced by neruoinflammation. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Comparison of Hippocampal Volume in Dementia Subtypes

    International Nuclear Information System (INIS)

    Vijayakumar, Avinash; Vijayakumar, Abhishek

    2012-01-01

    Aims. To examine the relationship between different types of dementia and hippocampal volume. Methods. Hippocampal volume was measured using FL3D sequence magnetic resonance imaging in 26 Alzheimer's, vascular dementia, mixed dementia, and normal pressure hydrocephalus patients and 15 healthy controls and also hippocampal ratio, analyzed. Minimental scale was used to stratify patients on cognitive function impairments. Results. Hippocampal volume and ratio was reduced by 25% in Alzheimer's disease, 21% in mixed dementia, 11% in vascular dementia and 5% in normal pressure hydrocephalus in comparison to control. Also an asymmetrical decrease in volume of left hippocampus was noted. The severity of dementia increased in accordance to decreasing hippocampal volume. Conclusion. Measurement in hippocampal volume may facilitate in differentiating different types of dementia and in disease progression. There was a correlation between hippocampal volume and severity of cognitive impairment

  15. Ventral hippocampal histamine increases the frequency of evoked theta rhythm but produces anxiolytic-like effects in the elevated plus maze.

    Science.gov (United States)

    Yeung, Michelle; Treit, Dallas; Dickson, Clayton T

    2016-07-01

    The neurobiological underpinnings of anxiety are of paramount importance to the development of effective therapeutic treatments. To date, there is considerable pharmacological evidence suggesting that the suppression of hippocampal theta frequency is a robust and predictive assay of anxiolytic drug action. Recently, this idea has been challenged using histamine (2-(4-imidazolyl)ethanamine), an endogenous neurotransmitter involved in a number of brain and behavioral functions. Here, we systematically evaluate the effects of dorsal and ventral hippocampal histamine infusions on evoked theta frequency and behavioral anxiety. Given the complex pharmacological profile of histamine and its receptors in the hippocampus, we reasoned that local intra-hippocampal infusions would be a powerful test of the theta suppression model. While dorsal hippocampal infusions of histamine produced neither significant changes in anxious-like behavior in the elevated plus maze nor changes of evoked theta, ventral infusions of histamine produced potent behavioral anxiolysis which corresponded to an increase, and not a decrease, in evoked theta frequency. As a positive neurophysiological control, we demonstrated that diazepam, a proven anxiolytic drug, decreased the frequency of hippocampal theta following both dorsal and ventral hippocampal infusions. Our results further challenge the hippocampal theta frequency suppression model as a measure of anxiolytic drug action. This article is part of the Special Issue entitled 'Histamine Receptors'. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Hippocampal Sclerosis: Causes and Prevention.

    Science.gov (United States)

    Walker, Matthew Charles

    2015-06-01

    Hippocampal sclerosis is the commonest cause of drug-resistant epilepsy in adults, and is associated with alterations to structures and networks beyond the hippocampus.In addition to being a cause of epilepsy, the hippocampus is vulnerable to damage from seizure activity. In particular, prolonged seizures (status epilepticus) can result in hippocampal sclerosis. The hippocampus is also vulnerable to other insults including traumatic brain injury, and inflammation. Hippocampal sclerosis can occur in association with other brain lesions; the prevailing view is that it is probably a secondary consequence. In such instances, successful surgical treatment usually involves the resection of both the lesion and the involved hippocampus. Experimental data have pointed to numerous neuroprotective strategies to prevent hippocampal sclerosis. Initial neuroprotective strategies aimed at glutamate receptors may be effective, but later, metabolic pathways, apoptosis, reactive oxygen species, and inflammation are involved, perhaps necessitating the use of interventions aimed at multiple targets. Some of the therapies that we use to treat status epilepticus may neuroprotect. However, prevention of neuronal death does not necessarily prevent the later development of epilepsy or cognitive deficits. Perhaps, the most important intervention is the early, aggressive treatment of seizure activity, and the prevention of prolonged seizures. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  17. Memory consolidation reconfigures neural pathways involved in the suppression of emotional memories.

    Science.gov (United States)

    Liu, Yunzhe; Lin, Wanjun; Liu, Chao; Luo, Yuejia; Wu, Jianhui; Bayley, Peter J; Qin, Shaozheng

    2016-11-29

    The ability to suppress unwanted emotional memories is crucial for human mental health. Through consolidation over time, emotional memories often become resistant to change. However, how consolidation impacts the effectiveness of emotional memory suppression is still unknown. Using event-related fMRI while concurrently recording skin conductance, we investigated the neurobiological processes underlying the suppression of aversive memories before and after overnight consolidation. Here we report that consolidated aversive memories retain their emotional reactivity and become more resistant to suppression. Suppression of consolidated memories involves higher prefrontal engagement, and less concomitant hippocampal and amygdala disengagement. In parallel, we show a shift away from hippocampal-dependent representational patterns to distributed neocortical representational patterns in the suppression of aversive memories after consolidation. These findings demonstrate rapid changes in emotional memory organization with overnight consolidation, and suggest possible neurobiological bases underlying the resistance to suppression of emotional memories in affective disorders.

  18. Amentoflavone protects hippocampal neurons: anti-inflammatory, antioxidative, and antiapoptotic effects

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    2015-01-01

    Full Text Available Amentoflavone is a natural biflavone compound with many biological properties, including anti-inflammatory, antioxidative, and neuroprotective effects. We presumed that amentoflavone exerts a neuroprotective effect in epilepsy models. Prior to model establishment, mice were intragastrically administered 25 mg/kg amentoflavone for 3 consecutive days. Amentoflavone effectively prevented pilocarpine-induced epilepsy in a mouse kindling model, suppressed nuclear factor-κB activation and expression, inhibited excessive discharge of hippocampal neurons resulting in a reduction in epileptic seizures, shortened attack time, and diminished loss and apoptosis of hippocampal neurons. Results suggested that amentoflavone protected hippocampal neurons in epilepsy mice via anti-inflammation, antioxidation, and antiapoptosis, and then effectively prevented the occurrence of seizures.

  19. Negative rebound in hippocampal neurogenesis following exercise cessation.

    Science.gov (United States)

    Nishijima, Takeshi; Kamidozono, Yoshika; Ishiizumi, Atsushi; Amemiya, Seiichiro; Kita, Ichiro

    2017-03-01

    Physical exercise can improve brain function, but the effects of exercise cessation are largely unknown. This study examined the time-course profile of hippocampal neurogenesis following exercise cessation. Male C57BL/6 mice were randomly assigned to either a control (Con) or an exercise cessation (ExC) group. Mice in the ExC group were reared in a cage with a running wheel for 8 wk and subsequently placed in a standard cage to cease the exercise. Exercise resulted in a significant increase in the density of doublecortin (DCX)-positive immature neurons in the dentate gyrus (at week 0 ). Following exercise cessation, the density of DCX-positive neurons gradually decreased and was significantly lower than that in the Con group at 5 and 8 wk after cessation, indicating that exercise cessation leads to a negative rebound in hippocampal neurogenesis. Immunohistochemistry analysis suggests that the negative rebound in neurogenesis is caused by diminished cell survival, not by suppression of cell proliferation and neural maturation. Neither elevated expression of ΔFosB, a transcription factor involved in neurogenesis regulation, nor increased plasma corticosterone, were involved in the negative neurogenesis rebound. Importantly, exercise cessation suppressed ambulatory activity, and a significant correlation between change in activity and DCX-positive neuron density suggested that the decrease in activity is involved in neurogenesis impairment. Forced treadmill running following exercise cessation failed to prevent the negative neurogenesis rebound. This study indicates that cessation of exercise or a decrease in physical activity is associated with an increased risk for impaired hippocampal function, which might increase vulnerability to stress-induced mood disorders. Copyright © 2017 the American Physiological Society.

  20. Hippocampal GABA transporter distribution in patients with temporal lobe epilepsy and hippocampal sclerosis.

    Science.gov (United States)

    Schijns, Olaf; Karaca, Ümit; Andrade, Pablo; de Nijs, Laurence; Küsters, Benno; Peeters, Andrea; Dings, Jim; Pannek, Heinz; Ebner, Alois; Rijkers, Kim; Hoogland, Govert

    2015-10-01

    To determine hippocampal expression of neuronal GABA-transporter (GAT-1) and glial GABA-transporter (GAT-3) in patients with temporal lobe epilepsy (TLE) and hippocampal sclerosis (HS). Hippocampal sections were immunohistochemically stained for GABA-transporter 1 and GABA-transporter-3, followed by quantification of the immunoreactivity in the hilus by optical density measurements. GABA-transporter 3 positive hilar cells were counted and GABA-transporter protein expression in sections that included all hippocampal subfields was quantified by Western blot. The hilar GABA-transporter 1 expression of patients with severe hippocampal sclerosis was about 7% lower compared to that in the mild hippocampal sclerosis/control group (psclerosis group than in the mild hippocampal sclerosis/control group (non-significant). Also, severe hippocampal sclerosis samples contained 34% less (non-significant) GABA-transporter 3 positive cells compared to that of controls. Protein expression as assessed by Western blot showed that GABA-transporter 1 was equally expressed in mild and severe hippocampal sclerosis samples, whereas GABA-transporter 3 was reduced by about 62% in severe hippocampal sclerosis samples (psclerosis. Implications for the use of GABAergic antiepileptic therapies in hippocampal sclerosis vs non-hippocampal sclerosis patients remain to be studied. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Control of hippocampal theta rhythm by serotonin: role of 5-HT2c receptors.

    Science.gov (United States)

    Sörman, Elin; Wang, Dannie; Hajos, Mihaly; Kocsis, Bernat

    2011-09-01

    The hippocampus plays an important role in learning and memory and has been implicated in a number of diseases, including epilepsy, anxiety and schizophrenia. A prominent feature of the hippocampal network is the capability to generate rhythmic oscillations. Serotonergic modulation is known to play an important role in the regulation of theta rhythm. 5-HT2c receptors represent a specific target of psychopharmacology and, in particular, the behavioral effects of the 5-HT2c receptor agonist mCPP have been thoroughly tested. The present study used this compound and the selective 5-HT2c receptor antagonist SB-242084 to elucidate the role of 5-HT2c receptors in the generation of hippocampal oscillations. Hippocampal EEG was recorded and the power in the theta frequency range was monitored in different behaviors in freely-moving rats and after brainstem stimulation in anesthetized animals. We found that in freely-moving rats, mCPP suppressed hippocampal theta rhythm and the effect was stronger during REM sleep than during waking theta states. Under urethane anesthesia, mCPP decreased the power for both spontaneous and elicited theta rhythm in a dose-dependent manner and the 5-HT2c antagonist reversed this effect. The results of this study demonstrate that 5-HT2c receptors are important element of the serotonergic modulation of hippocampal theta oscillations and thus pharmacological interactions with these receptors can modulate physiological and pathological processes associated with limbic theta activity. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Suppression chamber

    International Nuclear Information System (INIS)

    Goto, Hiroshi; Tsuji, Akio.

    1976-01-01

    Purpose: To miniaturize the storage tank of condensated water in BWR reactor. Constitution: A diaphragm is provided in a suppression chamber thereby to partition the same into an inner compartment and an outer compartment. In one of said compartments there is stored clean water to be used for feeding at the time of separating the reactor and for the core spray system, and in another compartment there is stored water necessary for accomplishing the depressurization effect at the time of coolant loss accident. To the compartment in which clean water is stored there is connected a water cleaning device for constantly maintaining water in clean state. As this cleaning device an already used fuel pool cleaning device can be utilized. Further, downcomers for accomplishing the depressurization function are provided in both inner compartment and outer compartment. The capacity of the storage tank can be reduced by the capacity of clean water within the suppression chamber. (Ikeda, J.)

  3. Mixed neurotransmission in the hippocampal mossy fibers

    Directory of Open Access Journals (Sweden)

    Agnieszka eMuenster-Wandowski

    2013-11-01

    Full Text Available The hippocampal mossy fibers (MFs, the axons of the granule cells of the dentate gyrus, innervate mossy cells and interneurons in the hilus on its way to CA3 where they innervate interneurons and pyramidal cells. Synapses on each target cell have distinct anatomical and functional characteristics. In recent years, the paradigmatic view of the MF synapses being only glutamatergic and, thus, excitatory has been questioned. Several laboratories have provided data supporting the hypothesis that the MFs can transiently release GABA during development and, in the adult, after periods of enhanced excitability. This transient glutamate-GABA co-transmission coincides with the transient expression of the machinery for the synthesis and release of GABA in the glutamatergic granule cells. Although some investigators have deemed this evidence controversial, new data has appeared with direct evidence of co-release of glutamate and GABA from single, identified MF boutons. However, this must still be confirmed by other groups and with other methodologies. A second, intriguing observation is that MF activation produced fast spikelets followed by excitatory postsynaptic potentials in a number of pyramidal cells, which, unlike the spikelets, underwent frequency potentiation and were strongly depressed by activation of metabotropic glutamate receptors. The spikelets persisted during blockade of chemical transmission and were suppressed by the gap junction blocker carbenoxolone. These data is consistent with the hypothesis of mixed electrical-chemical synapses between MFs and some pyramidal cells. Dye coupling between these types of principal cells and ultrastructural studies showing the co-existence of AMPA receptors and connexin 36 in this synapse corroborate their presence. A deeper consideration of mixed neurotransmission taking place in this synapse may expand our search and understanding of communication channels between different regions of the mammalian CNS.

  4. Novel genetic loci associated with hippocampal volume.

    Science.gov (United States)

    Hibar, Derrek P; Adams, Hieab H H; Jahanshad, Neda; Chauhan, Ganesh; Stein, Jason L; Hofer, Edith; Renteria, Miguel E; Bis, Joshua C; Arias-Vasquez, Alejandro; Ikram, M Kamran; Desrivières, Sylvane; Vernooij, Meike W; Abramovic, Lucija; Alhusaini, Saud; Amin, Najaf; Andersson, Micael; Arfanakis, Konstantinos; Aribisala, Benjamin S; Armstrong, Nicola J; Athanasiu, Lavinia; Axelsson, Tomas; Beecham, Ashley H; Beiser, Alexa; Bernard, Manon; Blanton, Susan H; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brickman, Adam M; Carmichael, Owen; Chakravarty, M Mallar; Chen, Qiang; Ching, Christopher R K; Chouraki, Vincent; Cuellar-Partida, Gabriel; Crivello, Fabrice; Den Braber, Anouk; Doan, Nhat Trung; Ehrlich, Stefan; Giddaluru, Sudheer; Goldman, Aaron L; Gottesman, Rebecca F; Grimm, Oliver; Griswold, Michael E; Guadalupe, Tulio; Gutman, Boris A; Hass, Johanna; Haukvik, Unn K; Hoehn, David; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Jørgensen, Kjetil N; Karbalai, Nazanin; Kasperaviciute, Dalia; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Liewald, David C M; Lopez, Lorna M; Luciano, Michelle; Macare, Christine; Marquand, Andre F; Matarin, Mar; Mather, Karen A; Mattheisen, Manuel; McKay, David R; Milaneschi, Yuri; Muñoz Maniega, Susana; Nho, Kwangsik; Nugent, Allison C; Nyquist, Paul; Loohuis, Loes M Olde; Oosterlaan, Jaap; Papmeyer, Martina; Pirpamer, Lukas; Pütz, Benno; Ramasamy, Adaikalavan; Richards, Jennifer S; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rommelse, Nanda; Ropele, Stefan; Rose, Emma J; Royle, Natalie A; Rundek, Tatjana; Sämann, Philipp G; Saremi, Arvin; Satizabal, Claudia L; Schmaal, Lianne; Schork, Andrew J; Shen, Li; Shin, Jean; Shumskaya, Elena; Smith, Albert V; Sprooten, Emma; Strike, Lachlan T; Teumer, Alexander; Tordesillas-Gutierrez, Diana; Toro, Roberto; Trabzuni, Daniah; Trompet, Stella; Vaidya, Dhananjay; Van der Grond, Jeroen; Van der Lee, Sven J; Van der Meer, Dennis; Van Donkelaar, Marjolein M J; Van Eijk, Kristel R; Van Erp, Theo G M; Van Rooij, Daan; Walton, Esther; Westlye, Lars T; Whelan, Christopher D; Windham, Beverly G; Winkler, Anderson M; Wittfeld, Katharina; Woldehawariat, Girma; Wolf, Christiane; Wolfers, Thomas; Yanek, Lisa R; Yang, Jingyun; Zijdenbos, Alex; Zwiers, Marcel P; Agartz, Ingrid; Almasy, Laura; Ames, David; Amouyel, Philippe; Andreassen, Ole A; Arepalli, Sampath; Assareh, Amelia A; Barral, Sandra; Bastin, Mark E; Becker, Diane M; Becker, James T; Bennett, David A; Blangero, John; van Bokhoven, Hans; Boomsma, Dorret I; Brodaty, Henry; Brouwer, Rachel M; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Bulayeva, Kazima B; Cahn, Wiepke; Calhoun, Vince D; Cannon, Dara M; Cavalleri, Gianpiero L; Cheng, Ching-Yu; Cichon, Sven; Cookson, Mark R; Corvin, Aiden; Crespo-Facorro, Benedicto; Curran, Joanne E; Czisch, Michael; Dale, Anders M; Davies, Gareth E; De Craen, Anton J M; De Geus, Eco J C; De Jager, Philip L; De Zubicaray, Greig I; Deary, Ian J; Debette, Stéphanie; DeCarli, Charles; Delanty, Norman; Depondt, Chantal; DeStefano, Anita; Dillman, Allissa; Djurovic, Srdjan; Donohoe, Gary; Drevets, Wayne C; Duggirala, Ravi; Dyer, Thomas D; Enzinger, Christian; Erk, Susanne; Espeseth, Thomas; Fedko, Iryna O; Fernández, Guillén; Ferrucci, Luigi; Fisher, Simon E; Fleischman, Debra A; Ford, Ian; Fornage, Myriam; Foroud, Tatiana M; Fox, Peter T; Francks, Clyde; Fukunaga, Masaki; Gibbs, J Raphael; Glahn, David C; Gollub, Randy L; Göring, Harald H H; Green, Robert C; Gruber, Oliver; Gudnason, Vilmundur; Guelfi, Sebastian; Håberg, Asta K; Hansell, Narelle K; Hardy, John; Hartman, Catharina A; Hashimoto, Ryota; Hegenscheid, Katrin; Heinz, Andreas; Le Hellard, Stephanie; Hernandez, Dena G; Heslenfeld, Dirk J; Ho, Beng-Choon; Hoekstra, Pieter J; Hoffmann, Wolfgang; Hofman, Albert; Holsboer, Florian; Homuth, Georg; Hosten, Norbert; Hottenga, Jouke-Jan; Huentelman, Matthew; Hulshoff Pol, Hilleke E; Ikeda, Masashi; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Jönsson, Erik G; Jukema, J Wouter; Kahn, René S; Kanai, Ryota; Kloszewska, Iwona; Knopman, David S; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Lemaître, Hervé; Liu, Xinmin; Longo, Dan L; Lopez, Oscar L; Lovestone, Simon; Martinez, Oliver; Martinot, Jean-Luc; Mattay, Venkata S; McDonald, Colm; McIntosh, Andrew M; McMahon, Francis J; McMahon, Katie L; Mecocci, Patrizia; Melle, Ingrid; Meyer-Lindenberg, Andreas; Mohnke, Sebastian; Montgomery, Grant W; Morris, Derek W; Mosley, Thomas H; Mühleisen, Thomas W; Müller-Myhsok, Bertram; Nalls, Michael A; Nauck, Matthias; Nichols, Thomas E; Niessen, Wiro J; Nöthen, Markus M; Nyberg, Lars; Ohi, Kazutaka; Olvera, Rene L; Ophoff, Roel A; Pandolfo, Massimo; Paus, Tomas; Pausova, Zdenka; Penninx, Brenda W J H; Pike, G Bruce; Potkin, Steven G; Psaty, Bruce M; Reppermund, Simone; Rietschel, Marcella; Roffman, Joshua L; Romanczuk-Seiferth, Nina; Rotter, Jerome I; Ryten, Mina; Sacco, Ralph L; Sachdev, Perminder S; Saykin, Andrew J; Schmidt, Reinhold; Schmidt, Helena; Schofield, Peter R; Sigursson, Sigurdur; Simmons, Andrew; Singleton, Andrew; Sisodiya, Sanjay M; Smith, Colin; Smoller, Jordan W; Soininen, Hilkka; Steen, Vidar M; Stott, David J; Sussmann, Jessika E; Thalamuthu, Anbupalam; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Tsolaki, Magda; Tzourio, Christophe; Uitterlinden, Andre G; Hernández, Maria C Valdés; Van der Brug, Marcel; van der Lugt, Aad; van der Wee, Nic J A; Van Haren, Neeltje E M; van 't Ent, Dennis; Van Tol, Marie-Jose; Vardarajan, Badri N; Vellas, Bruno; Veltman, Dick J; Völzke, Henry; Walter, Henrik; Wardlaw, Joanna M; Wassink, Thomas H; Weale, Michael E; Weinberger, Daniel R; Weiner, Michael W; Wen, Wei; Westman, Eric; White, Tonya; Wong, Tien Y; Wright, Clinton B; Zielke, Ronald H; Zonderman, Alan B; Martin, Nicholas G; Van Duijn, Cornelia M; Wright, Margaret J; Longstreth, W T; Schumann, Gunter; Grabe, Hans J; Franke, Barbara; Launer, Lenore J; Medland, Sarah E; Seshadri, Sudha; Thompson, Paul M; Ikram, M Arfan

    2017-01-18

    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (r g =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness.

  5. Visual performance of pigeons following hippocampal lesions.

    Science.gov (United States)

    Bingman, V P; Hodos, W

    1992-11-15

    The effect of hippocampal lesions on performance in two psychophysical measures of spatial vision (acuity and size-difference threshold) was examined in 7 pigeons. No difference between the preoperative and postoperative thresholds of the experimental birds was found. The visual performance of pigeons in the psychophysical tasks failed to reveal a role of the hippocampal formation in vision. The results argue strongly that the behavioral deficits found in pigeons with hippocampal lesions when tested in a variety of memory-related spatial tasks is not based on a defect in spatial vision but impaired spatial cognition.

  6. Both oophorectomy and obesity impaired solely hippocampal-dependent memory via increased hippocampal dysfunction.

    Science.gov (United States)

    Mantor, Duangkamol; Pratchayasakul, Wasana; Minta, Wanitchaya; Sutham, Wissuta; Palee, Siripong; Sripetchwandee, Jirapas; Kerdphoo, Sasiwan; Jaiwongkum, Thidarat; Sriwichaiin, Sirawit; Krintratun, Warunsorn; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2018-04-17

    Our previous study demonstrated that obesity aggravated peripheral insulin resistance and brain dysfunction in the ovariectomized condition. Conversely, the effect of obesity followed by oophorectomy on brain oxidative stress, brain apoptosis, synaptic function and cognitive function, particularly in hippocampal-dependent and hippocampal-independent memory, has not been investigated. Our hypothesis was that oophorectomy aggravated metabolic impairment, brain dysfunction and cognitive impairment in obese rats. Thirty-two female rats were fed with either a normal diet (ND, n = 16) or a high-fat diet (HFD, n = 16) for a total of 20 weeks. At week 13, rats in each group were subdivided into sham and ovariectomized subgroups (n = 8/subgroup). At week 20, all rats were tested for hippocampal-dependent and hippocampal-independent memory by using Morris water maze test (MWM) and Novel objective recognition (NOR) tests, respectively. We found that the obese-insulin resistant condition occurred in sham-HFD-fed rats (HFS), ovariectomized-ND-fed rats (NDO), and ovariectomized-HFD-fed rats (HFO). Increased hippocampal oxidative stress level, increased hippocampal apoptosis, increased hippocampal synaptic dysfunction, decreased hippocampal estrogen level and impaired hippocampal-dependent memory were observed in HFS, NDO, and HFO rats. However, the hippocampal-independent memory, cortical estrogen levels, cortical ROS production, and cortical apoptosis showed no significant difference between groups. These findings suggested that oophorectomy and obesity exclusively impaired hippocampal-dependent memory, possibly via increased hippocampal dysfunction. Nonetheless, oophorectomy did not aggravate these deleterious effects under conditions of obesity. Copyright © 2017. Published by Elsevier Inc.

  7. Abnormalities of hippocampal-cortical connectivity in temporal lobe epilepsy patients with hippocampal sclerosis

    Science.gov (United States)

    Li, Wenjing; He, Huiguang; Lu, Jingjing; Wang, Chunheng; Li, Meng; Lv, Bin; Jin, Zhengyu

    2011-03-01

    Hippocampal sclerosis (HS) is the most common damage seen in the patients with temporal lobe epilepsy (TLE). In the present study, the hippocampal-cortical connectivity was defined as the correlation between the hippocampal volume and cortical thickness at each vertex throughout the whole brain. We aimed to investigate the differences of ipsilateral hippocampal-cortical connectivity between the unilateral TLE-HS patients and the normal controls. In our study, the bilateral hippocampal volumes were first measured in each subject, and we found that the ipsilateral hippocampal volume significantly decreased in the left TLE-HS patients. Then, group analysis showed significant thinner average cortical thickness of the whole brain in the left TLE-HS patients compared with the normal controls. We found significantly increased ipsilateral hippocampal-cortical connectivity in the bilateral superior temporal gyrus, the right cingulate gyrus and the left parahippocampal gyrus of the left TLE-HS patients, which indicated structural vulnerability related to the hippocampus atrophy in the patient group. However, for the right TLE-HS patients, no significant differences were found between the patients and the normal controls, regardless of the ipsilateral hippocampal volume, the average cortical thickness or the patterns of hippocampal-cortical connectivity, which might be related to less atrophies observed in the MRI scans. Our study provided more evidence for the structural abnormalities in the unilateral TLE-HS patients.

  8. Neurotoxic effect of 2,5-hexanedione on neural progenitor cells and hippocampal neurogenesis

    International Nuclear Information System (INIS)

    Kim, Min-Sun; Park, Hee Ra; Park, Mikyung; Kim, So Jung; Kwon, Mugil; Yu, Byung Pal; Chung, Hae Young; Kim, Hyung Sik; Kwack, Seung Jun; Kang, Tae Seok; Kim, Seung Hee; Lee, Jaewon

    2009-01-01

    2,5-Hexanedione (HD), a metabolite of n-hexane, causes central and peripheral neuropathy leading to motor neuron deficits. Although chronic exposure to n-hexane is known to cause gradual sensorimotor neuropathy, there are no reports on the effects of low doses of HD on neurogenesis in the central nervous system. In the current study, we explored HD toxicity in murine neural progenitor cells (NPC), primary neuronal culture and young adult mice. HD (500 nM∼50 μM) dose-dependently suppressed NPC proliferation and cell viability, and also increased the production of reactive oxygen species (ROS). HD (10 or 50 mg/kg for 2 weeks) inhibited hippocampal neuronal and NPC proliferation in 6-week-old male ICR mice, as measured by BrdU incorporation in the dentate gyrus, indicating HD impaired hippocampal neurogenesis. In addition, elevated microglial activation was observed in the hippocampal CA3 region and lateral ventricles of HD-treated mice. Lastly, HD dose-dependently decreased the viability of primary cultured neurons. Based on biochemical and histochemical evidence from both cell culture and HD-treated animals, the neurotoxic mechanisms by which HD inhibits NPC proliferation and hippocampal neurogenesis may relate to its ability to elicit an increased generation of deleterious ROS.

  9. Hippocampal synaptic plasticity, spatial memory and anxiety

    OpenAIRE

    Bannerman, David M.; Sprengel, Rolf; Sanderson, David J.; McHugh, Stephen B.; Rawlins, J. Nicholas P.; Monyer, Hannah; Seeburg, Peter H.

    2014-01-01

    Recent studies using transgenic mice lacking NMDA receptors in the hippocampus challenge the long-standing hypothesis that hippocampal long-term potentiation-like mechanisms underlie the encoding and storage of associative long-term spatial memories. However, it may not be the synaptic plasticity-dependent memory hypothesis that is wrong; instead, it may be the role of the hippocampus that needs to be re-examined. We present an account of hippocampal function that explains its role in both me...

  10. Cavernous angioma associated with ipsilateral hippocampal sclerosis

    International Nuclear Information System (INIS)

    Okujava, M.; Ebner, A.; Schmitt, J.; Woermann, F.G.

    2002-01-01

    We report two cases with extratemporal cavernous angioma (CA) and coexisting ipsilateral hippocampal sclerosis. Classically dual pathology is defined as the association of hippocampal sclerosis with an extrahippocampal lesion. Subtle changes in hippocampus might be overlooked in the presence of an unequivocal extrahippocampal abnormality. Seizure outcome after epilepsy surgery in cases with dual pathology is less favourable if only one of the lesions is removed. Dual pathology must always be considered in diagnostic imaging of patients with intractable epilepsy and CA. (orig.)

  11. Hippocampal correlates of aversive mibdrain stimulation.

    Science.gov (United States)

    Routtenberg, A; Kramis, R C

    1968-06-21

    Hippocampal synchronization during aversive dorsal midbrain stimulation was observed in rats both in a conditioning procedure and under d-tubo-curarine paralysis. The results restrict the generality of previous reports which correlated hippocampal synchronization and desynchronization with approach and withdrawal behavior, respectively. Relative to the condition of free movement, curarization reduced the frequency of both "spontaneous" and dorsal midbrain-evoked synchronization, thus suggesting possible direct and indirect effects of d-tubocurarine on subcortical structures.

  12. VPS35 regulates developing mouse hippocampal neuronal morphogenesis by promoting retrograde trafficking of BACE1

    Directory of Open Access Journals (Sweden)

    Chun-Lei Wang

    2012-10-01

    VPS35, a major component of the retromer, plays an important role in the selective endosome-to-Golgi retrieval of membrane proteins. Dysfunction of retromer is a risk factor for neurodegenerative disorders, but its function in developing mouse brain remains poorly understood. Here we provide evidence for VPS35 promoting dendritic growth and maturation, and axonal protein transport in developing mouse hippocampal neurons. Embryonic hippocampal CA1 neurons suppressing Vps35 expression by in utero electroporation of its micro RNAs displayed shortened apical dendrites, reduced dendritic spines, and swollen commissural axons in the neonatal stage, those deficits reflecting a defective protein transport/trafficking in developing mouse neurons. Further mechanistic studies showed that Vps35 depletion in neurons resulted in an impaired retrograde trafficking of BACE1 (β1-secretase and altered BACE1 distribution. Suppression of BACE1 expression in CA1 neurons partially rescued both dendritic and axonal deficits induced by Vps35-deficiency. These results thus demonstrate that BACE1 acts as a critical cargo of retromer in vitro and in vivo, and suggest that VPS35 plays an essential role in regulating apical dendritic maturation and in preventing axonal spheroid formation in developing hippocampal neurons.

  13. Hippocampal EEG and behaviour in dog. II. Hippocampal EEG correlates with elementary motor acts

    NARCIS (Netherlands)

    Arnolds, D.E.A.T.; Lopes da Silva, F.H.; Aitink, J.W.; Kamp, A.

    A positive correlation has been shown between the speed of forced stepping on a conveyor belt and the amplitude and frequency of the concomitant hippocampal EEG. Significant modulation in the spectral properties of the dog's hippocampal EEG has been found in relation to 3 elementary motor acts:

  14. Stimulation of the Hippocampal POMC/MC4R Circuit Alleviates Synaptic Plasticity Impairment in an Alzheimer's Disease Model.

    Science.gov (United States)

    Shen, Yang; Tian, Min; Zheng, Yuqiong; Gong, Fei; Fu, Amy K Y; Ip, Nancy Y

    2016-11-08

    Hippocampal synaptic plasticity is modulated by neuropeptides, the disruption of which might contribute to cognitive deficits observed in Alzheimer's disease (AD). Although pro-opiomelanocortin (POMC)-derived neuropeptides and melanocortin 4 receptor (MC4R) are implicated in hippocampus-dependent synaptic plasticity, how the POMC/MC4R system functions in the hippocampus and its role in synaptic dysfunction in AD are largely unknown. Here, we mapped a functional POMC circuit in the mouse hippocampus, wherein POMC neurons in the cornu ammonis 3 (CA3) activate MC4R in the CA1. Suppression of hippocampal MC4R activity in the APP/PS1 transgenic mouse model of AD exacerbates long-term potentiation impairment, which is alleviated by the replenishment of hippocampal POMC/MC4R activity or activation of hippocampal MC4R-coupled Gs signaling. Importantly, MC4R activation rescues amyloid-β-induced synaptic dysfunction via a Gs/cyclic AMP (cAMP)/PKA/cAMP-response element binding protein (CREB)-dependent mechanism. Hence, disruption of this hippocampal POMC/MC4R circuit might contribute to synaptic dysfunction observed in AD, revealing a potential therapeutic target for the disease. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. Hippocampal hyperactivation in presymptomatic familial Alzheimer's disease.

    Science.gov (United States)

    Quiroz, Yakeel T; Budson, Andrew E; Celone, Kim; Ruiz, Adriana; Newmark, Randall; Castrillón, Gabriel; Lopera, Francisco; Stern, Chantal E

    2010-12-01

    The examination of individuals who carry fully penetrant genetic alterations that result in familial Alzheimer's disease (FAD) provides a unique model for studying the early presymptomatic disease stages. In AD, deficits in episodic and associative memory have been linked to structural and functional changes within the hippocampal system. This study used functional MRI (fMRI) to examine hippocampal function in a group of healthy, young, cognitively-intact presymptomatic individuals (average age 33.7 years) who carry the E280A presenilin-1 (PS1) genetic mutation for FAD. These PS1 subjects will go on to develop the first symptoms of the disease around the age of 45 years. Our objective was to examine hippocampal function years before the onset of clinical symptoms. Twenty carriers of the Alzheimer's-associated E280A PS1 mutation and 19 PS1-negative control subjects participated. Both groups were matched for age, sex, education level, and neuropsychological test performance. All participants performed a face-name associative encoding task while in a Phillips 1.5T fMRI scanner. Analysis focused on the hippocampal system. Despite identical behavioral performance, presymptomatic PS1 mutation carriers exhibited increased activation of the right anterior hippocampus during encoding of novel face-name associations compared to matched controls. Our results demonstrate that functional changes within the hippocampal memory system occur years before cognitive decline in FAD. These presymptomatic changes in hippocampal physiology in FAD suggest that hippocampal fMRI patterns during associative encoding may also provide a preclinical biomarker in sporadic AD.

  16. Combined gene overexpression of neuropeptide Y and its receptor Y5 in the hippocampus suppresses seizures

    DEFF Research Database (Denmark)

    Gøtzsche, Casper René; Nikitidou, Litsa; Sørensen, Andreas Toft

    2012-01-01

    We recently demonstrated that recombinant adeno-associated viral vector-induced hippocampal overexpression of neuropeptide Y receptor, Y2, exerts a seizure-suppressant effect in kindling and kainate-induced models of epilepsy in rats. Interestingly, additional overexpression of neuropeptide Y...

  17. Neural Correlates of Direct and Indirect Suppression of Autobiographical Memories.

    Science.gov (United States)

    Noreen, Saima; O'Connor, Akira R; MacLeod, Malcolm D

    2016-01-01

    Research indicates that there are two possible mechanisms by which particular target memories can be intentionally forgotten. Direct suppression, which involves the suppression of the unwanted memory directly, and is dependent on a fronto-hippocampal modulatory process, and, memory substitution, which includes directing one's attention to an alternative memory in order to prevent the unwanted memory from coming to mind, and involves engaging the caudal prefrontal cortex (cPFC) and the mid-ventrolateral prefrontal cortex (VLPFC) regions. Research to date, however, has investigated the neural basis of memory suppression of relatively simple information. The aim of the current study was to use fMRI to identify the neural mechanisms associated with the suppression of autobiographical memories. In the present study, 22 participants generated memories in response to a series of cue words. In a second session, participants learnt these cue-memory pairings, and were subsequently presented with a cue word and asked either to recall (think) or to suppress (no-think) the associated memory, or to think of an alternative memory in order to suppress the original memory (memory-substitution). Our findings demonstrated successful forgetting effects in the no-think and memory substitution conditions. Although we found no activation in the dorsolateral prefrontal cortex, there was reduced hippocampal activation during direct suppression. In the memory substitution condition, however, we failed to find increased activation in the cPFC and VLPFC regions. Our findings suggest that the suppression of autobiographical memories may rely on different neural mechanisms to those established for other types of material in memory.

  18. Neural Correlates of Direct and Indirect Suppression of Autobiographical Memories

    Directory of Open Access Journals (Sweden)

    Saima eNoreen

    2016-03-01

    Full Text Available Research indicates that there are two possible mechanisms by which particular target memories can be intentionally forgotten. Direct suppression, which involves the suppression of the unwanted memory directly, and is dependent on a fronto-hippocampal modulatory process, and, memory substitution, which includes directing one's attention to an alternative memory in order to prevent the unwanted memory from coming to mind, and involves engaging the caudal prefrontal cortex (cPFC and the mid-ventrolateral prefrontal cortex (VLPFC regions. Research to date, however, has investigated the neural basis of memory suppression of relatively simple information. The aim of the current study was to use fMRI to identify the neural mechanisms associated with the suppression of autobiographical memories. In the present study, 22 participants generated memories in response to a series of cue words. In a second session, participants learnt these cue-memory pairings, and were subsequently presented with a cue word and asked either to recall (think or to suppress (no-think the associated memory, or to think of an alternative memory in order to suppress the original memory (memory-substitution. Our findings demonstrated successful forgetting effects in the no-think and memory substitution conditions. Although we found no activation in the dorsolateral prefrontal cortex there was reduced hippocampal activation during direct suppression. In the memory substitution condition, however, we failed to find increased activation in the cPFC and VLPFC regions. Our findings suggest that the suppression of autobiographical memories may rely on different neural mechanisms to those established for other types of material in memory.

  19. Neural Correlates of Direct and Indirect Suppression of Autobiographical Memories

    Science.gov (United States)

    Noreen, Saima; O’Connor, Akira R.; MacLeod, Malcolm D.

    2016-01-01

    Research indicates that there are two possible mechanisms by which particular target memories can be intentionally forgotten. Direct suppression, which involves the suppression of the unwanted memory directly, and is dependent on a fronto-hippocampal modulatory process, and, memory substitution, which includes directing one’s attention to an alternative memory in order to prevent the unwanted memory from coming to mind, and involves engaging the caudal prefrontal cortex (cPFC) and the mid-ventrolateral prefrontal cortex (VLPFC) regions. Research to date, however, has investigated the neural basis of memory suppression of relatively simple information. The aim of the current study was to use fMRI to identify the neural mechanisms associated with the suppression of autobiographical memories. In the present study, 22 participants generated memories in response to a series of cue words. In a second session, participants learnt these cue-memory pairings, and were subsequently presented with a cue word and asked either to recall (think) or to suppress (no-think) the associated memory, or to think of an alternative memory in order to suppress the original memory (memory-substitution). Our findings demonstrated successful forgetting effects in the no-think and memory substitution conditions. Although we found no activation in the dorsolateral prefrontal cortex, there was reduced hippocampal activation during direct suppression. In the memory substitution condition, however, we failed to find increased activation in the cPFC and VLPFC regions. Our findings suggest that the suppression of autobiographical memories may rely on different neural mechanisms to those established for other types of material in memory. PMID:27047412

  20. Taurine increases hippocampal neurogenesis in aging mice

    Directory of Open Access Journals (Sweden)

    Elias Gebara

    2015-05-01

    Full Text Available Aging is associated with increased inflammation and reduced hippocampal neurogenesis, which may in turn contribute to cognitive impairment. Taurine is a free amino acid found in numerous diets, with anti-inflammatory properties. Although abundant in the young brain, the decrease in taurine concentration with age may underlie reduced neurogenesis. Here, we assessed the effect of taurine on hippocampal neurogenesis in middle-aged mice. We found that taurine increased cell proliferation in the dentate gyrus through the activation of quiescent stem cells, resulting in increased number of stem cells and intermediate neural progenitors. Taurine had a direct effect on stem/progenitor cells proliferation, as observed in vitro, and also reduced activated microglia. Furthermore, taurine increased the survival of newborn neurons, resulting in a net increase in adult neurogenesis. Together, these results show that taurine increases several steps of adult neurogenesis and support a beneficial role of taurine on hippocampal neurogenesis in the context of brain aging.

  1. Adult hippocampal neurogenesis and cognitive aging

    Directory of Open Access Journals (Sweden)

    Román Darío Moreno Fernández

    2013-12-01

    Full Text Available Aging is a normal developmental process associated with neurobiological changes leading to cognitive alterations with preserved, impaired, and enhanced functions. Evidence from animal and human studies is reviewed to explore the potential role of hippocampal plasticity on age-related cognitive changes with special attention to adult hippocampal neurogenesis. Results from lesion and stimulation strategies, as well as correlation data, support either a direct or modulatory role for adult newborn neurons in cognition at advanced ages. Further research on this topic may help to develop new treatments and to improve the quality of life of older people.

  2. 3T MRI quantification of hippocampal volume and signal in mesial temporal lobe epilepsy improves detection of hippocampal sclerosis.

    Science.gov (United States)

    Coan, A C; Kubota, B; Bergo, F P G; Campos, B M; Cendes, F

    2014-01-01

    In mesial temporal lobe epilepsy, MR imaging quantification of hippocampal volume and T2 signal can improve the sensitivity for detecting hippocampal sclerosis. However, the current contributions of these analyses for the diagnosis of hippocampal sclerosis in 3T MRI are not clear. Our aim was to compare visual analysis, volumetry, and signal quantification of the hippocampus for detecting hippocampal sclerosis in 3T MRI. Two hundred three patients with mesial temporal lobe epilepsy defined by clinical and electroencephalogram criteria had 3T MRI visually analyzed by imaging epilepsy experts. As a second step, we performed automatic quantification of hippocampal volumes with FreeSurfer and T2 relaxometry with an in-house software. MRI of 79 healthy controls was used for comparison. Visual analysis classified 125 patients (62%) as having signs of hippocampal sclerosis and 78 (38%) as having normal MRI findings. Automatic volumetry detected atrophy in 119 (95%) patients with visually detected hippocampal sclerosis and in 10 (13%) with visually normal MR imaging findings. Relaxometry analysis detected hyperintense T2 signal in 103 (82%) patients with visually detected hippocampal sclerosis and in 15 (19%) with visually normal MR imaging findings. Considered together, volumetry plus relaxometry detected signs of hippocampal sclerosis in all except 1 (99%) patient with visually detected hippocampal sclerosis and in 22 (28%) with visually normal MR imaging findings. In 3T MRI visually inspected by experts, quantification of hippocampal volume and signal can increase the detection of hippocampal sclerosis in 28% of patients with mesial temporal lobe epilepsy.

  3. The involvement of sigma1 receptors in donepezil-induced rescue of hippocampal LTP impaired by beta-amyloid peptide.

    Science.gov (United States)

    Solntseva, E I; Kapai, N A; Popova, O V; Rogozin, P D; Skrebitsky, V G

    2014-07-01

    Donepezil is a potent acetylcholinesterase inhibitor used for the treatment of Alzheimer's disease (AD). Additional therapeutically relevant target for donepezil is sigma1 receptor (Sig1-R). Beta-amyloid peptide (Aβ) is believed to contribute to the pathogenesis of AD. In our previous work (Kapai et al., 2012), we have shown that donepezil antagonizes the suppressive action of Aβ(1-42) on long-term potentiation (LTP) in rat hippocampal slices. The purpose of the present study was to determine whether Sig1-R is involved into the mechanisms of donepezil action. For this purpose, we have tested whether agonist of Sig1-R PRE-084 mimics, and antagonist of Sig1-R haloperidol abolishes the effect of donepezil. Population spikes (PSs) were recorded from the pyramidal layer of the CA1 region of rat hippocampal slices. Drugs were applied by addition to the perfusate starting 15 min before and ending 5 min after the tetanus. In the control group, the amplitude of PS 30 min post-tetanus reached 153±10%. Aβ (200 nM) markedly suppressed the LTP magnitude or even caused the suppression of baseline PS (82±8%, Pdonepezil was co-administered with Aβ (136±11%, Pdonepezil and 0.5 μM haloperidol and have found that haloperidol antagonized the stimulating effect of donepezil on LTP (92±6%, Pdonepezil-induced rescue of hippocampal LTP impaired by Aβ. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Impaired 2-AG Signaling in Hippocampal Glutamatergic Neurons: Aggravation of Anxiety-Like Behavior and Unaltered Seizure Susceptibility

    Science.gov (United States)

    Guggenhuber, Stephan; Romo-Parra, Hector; Bindila, Laura; Leschik, Julia; Lomazzo, Ermelinda; Remmers, Floortje; Zimmermann, Tina; Lerner, Raissa; Klugmann, Matthias; Pape, Hans-Christian

    2016-01-01

    Background: Postsynaptically generated 2-arachidonoylglycerol activates the presynaptic cannabinoid type-1 receptor, which is involved in synaptic plasticity at both glutamatergic and GABAergic synapses. However, the differential function of 2-arachidonoylglycerol signaling at glutamatergic vs GABAergic synapses in the context of animal behavior has not been investigated yet. Methods: Here, we analyzed the role of 2-arachidonoylglycerol signaling selectively in hippocampal glutamatergic neurons. Monoacylglycerol lipase, the primary degrading enzyme of 2-arachidonoylglycerol, is expressed at presynaptic sites of excitatory and inhibitory neurons. By adeno-associated virus-mediated overexpression of monoacylglycerol lipase in glutamatergic neurons of the mouse hippocampus, we selectively interfered with 2-arachidonoylglycerol signaling at glutamatergic synapses of these neurons. Results: Genetic modification of monoacylglycerol lipase resulted in a 50% decrease in 2-arachidonoylglycerol tissue levels without affecting the content of the second major endocannabinoid anandamide. A typical electrophysiological read-out for 2-arachidonoylglycerol signaling is the depolarization-induced suppression of excitation and of inhibition. Elevated monoacylglycerol lipase levels at glutamatergic terminals selectively impaired depolarization-induced suppression of excitation, while depolarization-induced suppression of inhibition was not significantly changed. At the behavioral level, mice with impaired hippocampal glutamatergic 2-arachidonoylglycerol signaling exhibited increased anxiety-like behavior but showed no alterations in aversive memory formation and seizure susceptibility. Conclusion: Our data indicate that 2-arachidonoylglycerol signaling selectively in hippocampal glutamatergic neurons is essential for the animal’s adaptation to aversive situations. PMID:26232789

  5. Impaired 2-AG Signaling in Hippocampal Glutamatergic Neurons: Aggravation of Anxiety-Like Behavior and Unaltered Seizure Susceptibility.

    Science.gov (United States)

    Guggenhuber, Stephan; Romo-Parra, Hector; Bindila, Laura; Leschik, Julia; Lomazzo, Ermelinda; Remmers, Floortje; Zimmermann, Tina; Lerner, Raissa; Klugmann, Matthias; Pape, Hans-Christian; Lutz, Beat

    2015-08-01

    Postsynaptically generated 2-arachidonoylglycerol activates the presynaptic cannabinoid type-1 receptor, which is involved in synaptic plasticity at both glutamatergic and GABAergic synapses. However, the differential function of 2-arachidonoylglycerol signaling at glutamatergic vs GABAergic synapses in the context of animal behavior has not been investigated yet. Here, we analyzed the role of 2-arachidonoylglycerol signaling selectively in hippocampal glutamatergic neurons. Monoacylglycerol lipase, the primary degrading enzyme of 2-arachidonoylglycerol, is expressed at presynaptic sites of excitatory and inhibitory neurons. By adeno-associated virus-mediated overexpression of monoacylglycerol lipase in glutamatergic neurons of the mouse hippocampus, we selectively interfered with 2-arachidonoylglycerol signaling at glutamatergic synapses of these neurons. Genetic modification of monoacylglycerol lipase resulted in a 50% decrease in 2-arachidonoylglycerol tissue levels without affecting the content of the second major endocannabinoid anandamide. A typical electrophysiological read-out for 2-arachidonoylglycerol signaling is the depolarization-induced suppression of excitation and of inhibition. Elevated monoacylglycerol lipase levels at glutamatergic terminals selectively impaired depolarization-induced suppression of excitation, while depolarization-induced suppression of inhibition was not significantly changed. At the behavioral level, mice with impaired hippocampal glutamatergic 2-arachidonoylglycerol signaling exhibited increased anxiety-like behavior but showed no alterations in aversive memory formation and seizure susceptibility. Our data indicate that 2-arachidonoylglycerol signaling selectively in hippocampal glutamatergic neurons is essential for the animal's adaptation to aversive situations. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  6. Hippocampal insulin resistance and cognitive dysfunction

    NARCIS (Netherlands)

    Biessels, Geert Jan; Reagan, Lawrence P.

    2015-01-01

    Clinical studies suggest a link between type 2 diabetes mellitus (T2DM) and insulin resistance (IR) and cognitive dysfunction, but there are significant gaps in our knowledge of the mechanisms underlying this relationship. Animal models of IR help to bridge these gaps and point to hippocampal IR as

  7. Hippocampal Abnormalities after Prolonged Febrile Convulsions

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2003-11-01

    Full Text Available Hippocampal volume and T2 relaxation times were determined in an MRI study of 14 children with prolonged febrile convulsions (PFC who were investigated, 1 within 5 days of a PFC, and 2 at follow-up 4-8 months after the acute study, at the Institute of Child Health, University College, and Great Ormond Street Hospital, London, UK.

  8. Glucocorticoid receptor knockdown and adult hippocampal neurogenesis

    NARCIS (Netherlands)

    Hooijdonk, Leonarda Wilhelmina Antonia van

    2010-01-01

    The research in this thesis is aimed at the elucidation of the role of the glucocorticoid receptor (GR) in hippocampal neuroplasticity and functioning. To achieve this, we have developed a novel method to specifically knockdown GR in a discrete cell population of the mouse brain. In this thesis I

  9. Resveratrol: A Potential Hippocampal Plasticity Enhancer.

    Science.gov (United States)

    Dias, Gisele Pereira; Cocks, Graham; do Nascimento Bevilaqua, Mário Cesar; Nardi, Antonio Egidio; Thuret, Sandrine

    2016-01-01

    The search for molecules capable of restoring altered hippocampal plasticity in psychiatric and neurological conditions is one of the most important tasks of modern neuroscience. It is well established that neural plasticity, such as the ability of the postnatal hippocampus to continuously generate newly functional neurons throughout life, a process called adult hippocampal neurogenesis (AHN), can be modulated not only by pharmacological agents, physical exercise, and environmental enrichment, but also by "nutraceutical" agents. In this review we focus on resveratrol, a phenol and phytoalexin found in the skin of grapes and red berries, as well as in nuts. Resveratrol has been reported to have antioxidant and antitumor properties, but its effects as a neural plasticity inducer are still debated. The current review examines recent evidence implicating resveratrol in regulating hippocampal neural plasticity and in mitigating the effects of various disorders and diseases on this important brain structure. Overall, findings show that resveratrol can improve cognition and mood and enhance hippocampal plasticity and AHN; however, some studies report opposite effects, with resveratrol inhibiting aspects of AHN. Therefore, further investigation is needed to resolve these controversies before resveratrol can be established as a safe coadjuvant in preventing and treating neuropsychiatric conditions.

  10. Hippocampal theta frequency shifts and operant behaviour

    NARCIS (Netherlands)

    Lopes da Silva, F.H.; Kamp, A.

    1. 1. A shift of hippocampal dominant theta frequency to 6 c/sec has been demonstrated in the post-reward period in two dogs, which occurs consistently related in time to a well defined behavioural pattern in the course of an operant conditioning paradigm. 2. 2. The frequency shift was detected and

  11. Stimulus Configuration, Classical Conditioning, and Hippocampal Function.

    Science.gov (United States)

    Schmajuk, Nestor A.; DiCarlo, James J.

    1991-01-01

    The participation of the hippocampus in classical conditioning is described in terms of a multilayer network portraying stimulus configuration. A model of hippocampal function is presented, and computer simulations are used to study neural activity in the various brain areas mapped according to the model. (SLD)

  12. Amnesia due to bilateral hippocampal glioblastoma

    International Nuclear Information System (INIS)

    Shimauchi, M.; Wakisaka, S.; Kinoshita, K.

    1989-01-01

    The authors report a unique case of glioblastoma which caused permanent amnesia. Magnetic resonance imaging showed the lesion to be limited to the hippocampal formation bilaterally. Although glioblastoma extends frequently into fiber pathways and expands into the opposite cerebral hemisphere, making a 'butterfly' lesion, it is unusual for it to invade the limbic system selectively to this extent. (orig.)

  13. Nocturnal mnemonics: sleep and hippocampal memory processing.

    Science.gov (United States)

    Saletin, Jared M; Walker, Matthew P

    2012-01-01

    As critical as waking brain function is to learning and memory, an established literature now describes an equally important yet complementary role for sleep in information processing. This overview examines the specific contribution of sleep to human hippocampal memory processing; both the detriments caused by a lack of sleep, and conversely, the proactive benefits that develop following the presence of sleep. First, a role for sleep before learning is discussed, preparing the hippocampus for initial memory encoding. Second, a role for sleep after learning is considered, modulating the post-encoding consolidation of hippocampal-dependent memory. Third, a model is outlined in which these encoding and consolidation operations are symbiotically accomplished, associated with specific NREM sleep physiological oscillations. As a result, the optimal network outcome is achieved: increasing hippocampal independence and hence overnight consolidation, while restoring next-day sparse hippocampal encoding capacity for renewed learning ability upon awakening. Finally, emerging evidence is considered suggesting that, unlike previous conceptions, sleep does not universally consolidate all information. Instead, and based on explicit as well as saliency cues during initial encoding, sleep executes the discriminatory offline consolidation only of select information. Consequently, sleep promotes the targeted strengthening of some memories while actively forgetting others; a proposal with significant theoretical and clinical ramifications.

  14. Nocturnal Mnemonics: Sleep and Hippocampal Memory Processing

    Directory of Open Access Journals (Sweden)

    Jared M. Saletin

    2012-05-01

    Full Text Available As critical as waking brain function is to learning and memory, an established literature now describes an equally important yet complementary role for sleep in information processing. This overview examines the specific contribution of sleep to human hippocampal memory processing; both the detriments caused by a lack of sleep, and conversely, the proactive benefits that develop following the presence of sleep. First, a role for sleep before learning is discussed, preparing the hippocampus for initial memory encoding. Second, a role for sleep after learning is considered, modulating the post-encoding consolidation of hippocampal-dependent memory. Third, a model is outlined in which these encoding and consolidation operations are symbiotically accomplished, associated with specific NREM sleep physiological oscillations. As a result, the optimal network outcome is achieved, increasing hippocampal independence and hence overnight consolidation, while restoring next-day sparse hippocampal encoding capacity for renewed learning ability upon awakening. Finally, emerging evidence is considered suggesting that, unlike previous conceptions, sleep does not universally consolidate all information equally. Instead, and based on explicit as well as motivational cues during initial encoding, sleep executes the discriminatory offline consolidation only of select information. Consequently, sleep promotes the targeted strengthening of some memories while actively forgetting others; a proposal with significant theoretical and clinical ramifications.

  15. Klotho regulates CA1 hippocampal synaptic plasticity.

    Science.gov (United States)

    Li, Qin; Vo, Hai T; Wang, Jing; Fox-Quick, Stephanie; Dobrunz, Lynn E; King, Gwendalyn D

    2017-04-07

    Global klotho overexpression extends lifespan while global klotho-deficiency shortens it. As well, klotho protein manipulations inversely regulate cognitive function. Mice without klotho develop rapid onset cognitive impairment before they are 2months old. Meanwhile, adult mice overexpressing klotho show enhanced cognitive function, particularly in hippocampal-dependent tasks. The cognitive enhancing effects of klotho extend to humans with a klotho polymorphism that increases circulating klotho and executive function. To affect cognitive function, klotho could act in or on the synapse to modulate synaptic transmission or plasticity. However, it is not yet known if klotho is located at synapses, and little is known about its effects on synaptic function. To test this, we fractionated hippocampi and detected klotho expression in both pre and post-synaptic compartments. We find that loss of klotho enhances both pre and post-synaptic measures of CA1 hippocampal synaptic plasticity at 5weeks of age. However, a rapid loss of synaptic enhancement occurs such that by 7weeks, when mice are cognitively impaired, there is no difference from wild-type controls. Klotho overexpressing mice show no early life effects on synaptic plasticity, but decreased CA1 hippocampal long-term potentiation was measured at 6months of age. Together these data suggest that klotho affects cognition, at least in part, by regulating hippocampal synaptic plasticity. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Sleep deprivation causes memory deficits by negatively impacting neuronal connectivity in hippocampal area CA1

    Science.gov (United States)

    Havekes, Robbert; Park, Alan J; Tudor, Jennifer C; Luczak, Vincent G; Hansen, Rolf T; Ferri, Sarah L; Bruinenberg, Vibeke M; Poplawski, Shane G; Day, Jonathan P; Aton, Sara J; Radwańska, Kasia; Meerlo, Peter; Houslay, Miles D; Baillie, George S; Abel, Ted

    2016-01-01

    Brief periods of sleep loss have long-lasting consequences such as impaired memory consolidation. Structural changes in synaptic connectivity have been proposed as a substrate of memory storage. Here, we examine the impact of brief periods of sleep deprivation on dendritic structure. In mice, we find that five hours of sleep deprivation decreases dendritic spine numbers selectively in hippocampal area CA1 and increased activity of the filamentous actin severing protein cofilin. Recovery sleep normalizes these structural alterations. Suppression of cofilin function prevents spine loss, deficits in hippocampal synaptic plasticity, and impairments in long-term memory caused by sleep deprivation. The elevated cofilin activity is caused by cAMP-degrading phosphodiesterase-4A5 (PDE4A5), which hampers cAMP-PKA-LIMK signaling. Attenuating PDE4A5 function prevents changes in cAMP-PKA-LIMK-cofilin signaling and cognitive deficits associated with sleep deprivation. Our work demonstrates the necessity of an intact cAMP-PDE4-PKA-LIMK-cofilin activation-signaling pathway for sleep deprivation-induced memory disruption and reduction in hippocampal spine density. DOI: http://dx.doi.org/10.7554/eLife.13424.001 PMID:27549340

  17. Anti-inflammatory effects of Ginkgo biloba extract against trimethyltin-induced hippocampal neuronal injury.

    Science.gov (United States)

    Kaur, Sukhwinder; Sharma, Neha; Nehru, Bimla

    2018-02-01

    Despite the immense neuromodulatory potentials of Ginkgo biloba extract as a memory enhancer, its underlying mechanism seems inadequate particularly with regard to its anti-inflammatory properties. The objective of the present study is to investigate the protective potentials of Ginkgo biloba extract (GBE) against hippocampal neuronal injury induced by trimethyltin (TMT), a potent neurotoxicant. Male SD rats were administered trimethyltin (8.5 mg kg -1 b.wt) single intraperitoneal (i.p.) injection, followed by Ginkgo biloba extract (100 mg kg -1 b.wt i.p) for 21 days. The co-administration of GBE with TMT showed marked improvement in cognitive functions. Concomitantly, there was a significant decrease in oxidative stress as evident by reduction in MDA and total ROS levels. In addition, there was a marked suppression of astrocyte activation (GFAP), transcription factor NFκB and proinflammatory cytokines (TNF-α, IL-1α, 1L-6), which were found to be elevated by TMT administration. Histopathological observations showed remarkable improvement in hippocampal neuronal injury in the conjunctive group. Therefore, it is suggested that Ginkgo biloba extract is an effective agent against trimethyltin-induced hippocampal neuronal loss owing to its antioxidative as well as anti-inflammatory properties.

  18. The Effect of Vitamin D Treatment On Nerve Growth Factor (NGF) Release From Hippocampal Neurons.

    Science.gov (United States)

    Gezen-Ak, Duygu; Dursun, Erdinç; Yilmazer, Selma

    2014-06-01

    Vitamin D, the main function of which is thought to be the maintenance of calcium and phosphate homeostasis and bone structure, has been shown in recent studies to have important roles in brain development as well. A certain vitamin D receptor (VDR) gene haplotype was reported, for the first time by our group, to increase the risk of developing Alzheimer's disease. Our studies also showed that vitamin D prevents beta amyloid-induced calcium elevation and toxicity that target nerve growth factor (NGF) release in cortical neurons; beta amyloid suppresses VDR expression and the disruption of vitamin D-VDR pathway mimics beta amyloid-induced neurodegeneration. In this study, our aim was to investigate the effects of vitamin D on the NGF release from hippocampal neurons. Primary hippocampal neuron cultures that were prepared from 18-day-old Sprague-Dawley rat embryos were treated with vitamin D for 48 hours. The alteration in the NGF release was determined with ELISA. Cytotoxicity tests were also performed for all groups. The NGF release in vitamin D-treated group was significantly higher than in untreated control group. The protective effect of vitamin D against cytotoxicity was also observed. Our results indicated that vitamin D regulates the release of NGF, a very important molecule for neuronal survival of hippocampal neurons as well as cortical neurons.

  19. Sleep deprivation causes memory deficits by negatively impacting neuronal connectivity in hippocampal area CA1.

    Science.gov (United States)

    Havekes, Robbert; Park, Alan J; Tudor, Jennifer C; Luczak, Vincent G; Hansen, Rolf T; Ferri, Sarah L; Bruinenberg, Vibeke M; Poplawski, Shane G; Day, Jonathan P; Aton, Sara J; Radwańska, Kasia; Meerlo, Peter; Houslay, Miles D; Baillie, George S; Abel, Ted

    2016-08-23

    Brief periods of sleep loss have long-lasting consequences such as impaired memory consolidation. Structural changes in synaptic connectivity have been proposed as a substrate of memory storage. Here, we examine the impact of brief periods of sleep deprivation on dendritic structure. In mice, we find that five hours of sleep deprivation decreases dendritic spine numbers selectively in hippocampal area CA1 and increased activity of the filamentous actin severing protein cofilin. Recovery sleep normalizes these structural alterations. Suppression of cofilin function prevents spine loss, deficits in hippocampal synaptic plasticity, and impairments in long-term memory caused by sleep deprivation. The elevated cofilin activity is caused by cAMP-degrading phosphodiesterase-4A5 (PDE4A5), which hampers cAMP-PKA-LIMK signaling. Attenuating PDE4A5 function prevents changes in cAMP-PKA-LIMK-cofilin signaling and cognitive deficits associated with sleep deprivation. Our work demonstrates the necessity of an intact cAMP-PDE4-PKA-LIMK-cofilin activation-signaling pathway for sleep deprivation-induced memory disruption and reduction in hippocampal spine density.

  20. Cannabinoid Receptor Activation Modifies NMDA Receptor Mediated Release of Intracellular Calcium: Implications for Endocannabinoid Control of Hippocampal Neural Plasticity

    Science.gov (United States)

    Hampson, Robert E.; Miller, Frances; Palchik, Guillermo; Deadwyler, Sam A.

    2011-01-01

    Chronic activation or inhibition of cannabinoid receptors (CB1) leads to continuous suppression of neuronal plasticity in hippocampus and other brain regions, suggesting that endocannabinoids may have a functional role in synaptic processes that produce state-dependent transient modulation of hippocampal cell activity. In support of this, it has previously been shown in vitro that cannabinoid CB1 receptors modulate second messenger systems in hippocampal neurons that can modulate intracellular ion channels, including channels which release calcium from intracellular stores. Here we demonstrate in hippocampal slices a similar endocannabinoid action on excitatory glutamatergic synapses via modulation of NMDA-receptor mediated intracellular calcium levels in confocal imaged neurons. Calcium entry through glutamatergic NMDA-mediated ion channels increases intracellular calcium concentrations via modulation of release from ryanodine-sensitive channels in endoplasmic reticulum. The studies reported here show that NMDA-elicited increases in Calcium Green fluorescence are enhanced by CB1 receptor antagonists (i.e. rimonabant), and inhibited by CB1 agonists (i.e. WIN 55,212-2). Suppression of endocannabinoid breakdown by either reuptake inhibition (AM404) or fatty-acid amide hydrolase inhibition (URB597) produced suppression of NMDA elicited calcium increases comparable to WIN 55,212-2, while enhancement of calcium release provoked by endocannabinoid receptor antagonists (Rimonabant) was shown to depend on the blockade of CB1 receptor mediated de-phosphorylation of Ryanodine receptors. Such CB1 receptor modulation of NMDA elicited increases in intracellular calcium may account for the respective disruption and enhancement by CB1 agents of trial-specific hippocampal neuron ensemble firing patterns during performance of a short-term memory task, reported previously from this laboratory. PMID:21288475

  1. Growth hormone suppression test

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003376.htm Growth hormone suppression test To use the sharing features on this page, please enable JavaScript. The growth hormone suppression test determines whether growth hormone production is ...

  2. D2 dopamine receptors enable Δ9-tetrahydrocannabinol induced memory impairment and reduction of hippocampal extracellular acetylcholine concentration

    Science.gov (United States)

    Nava, F; Carta, G; Battasi, A M; Gessa, G L

    2000-01-01

    The systemic administration of Δ9-tetrahydrocannabinol (2.5–7.5 mg kg−1) reduced hippocampal extracellular acetylcholine concentration and impaired working memory in rats.Both effects were antagonized not only by the CB1 cannabinoid receptor antagonist SR141716A (0.5 mg kg−1, i.p.) but also unexpectedly by the D2 dopamine receptor antagonist S(−)-sulpiride (5, 10 and 25 mg kg−1, i.p.). Conversely, Δ9-tetrahydrocannabinol-induced memory impairment and inhibition of hippocampal extracellular acetylcholine concentration were potentiated by the subcutaneous administration of the D2 dopamine receptor agonist (−)-quinpirole (25 and 500 μg kg−1). The inhibition of hippocampal extracellular acetylcholine concentration and working memory produced by the combination of (−)-quinpirole and Δ9-tetrahydrocannabinol was suppressed by either SR141716A or S(−)-sulpiride.Our findings suggest that impairment of working memory and inhibition of hippocampal extracellular acetylcholine concentration are mediated by the concomitant activation of D2 dopamine and CB1 cannabinoid receptors, and that D2 dopamine receptor antagonists may be useful in the treatment of the cognitive deficits induced by marijuana. PMID:10903956

  3. Adiponectin modulates synaptic plasticity in hippocampal dentate gyrus.

    Science.gov (United States)

    Pousti, Farideh; Ahmadi, Ramesh; Mirahmadi, Fatemeh; Hosseinmardi, Narges; Rohampour, Kambiz

    2018-01-01

    Recent studies have suggested the involvement of some metabolic hormones in memory formation and synaptic plasticity. Insulin dysfunction is known as an essential process in the pathogenesis of sporadic Alzheimer's disease (AD). In this study we examined whether adiponectin (ADN), as an insulin-sensitizing adipokine, could affect hippocampal synaptic plasticity. Field potential recordings were performed on intracerebroventricular (icv) cannulated urethane anesthetized rats. After baseline recording from dentate gyrus (DG) and 10min prior to high/low frequency stimulation (HFS/LFS), 10μl icv ADN (600nm) were injected. The slope of field excitatory postsynaptic potentials (fEPSP) and the amplitude of population spikes (PS) were recorded in response to perforanth path (PP) stimulation. Paired pulse stimuli and ADN injection without any stimulation protocols were also evaluated. Application of ADN before HFS increased PS amplitude recorded in DG significantly (P≤0.05) in comparison to HFS only group. ADN suppressed the potency of LFS to induce long-term depression (LTD), causing a significant difference between fEPSP slope (P≤0.05) and PS amplitude (P≤0.01) between ADN+LFS and ADN group. Paired pulse stimuli applied at 20ms intervals showed more paired pulse facilitation (PPF), when applied after ADN (P≤0.05). ADN induced a chemical long-term potentiation (LTP) in which fEPSP slope and PS amplitude increased significantly (P≤0.01 and P≤0.05, respectively). It is concluded that ADN is able to potentiate the HFS-induced LTP and suppress LFS-induced LTD. ADN caused a chemical LTP, when applied without any tetanic protocol. ADN may enhance the presynaptic release probability. Copyright © 2017. Published by Elsevier B.V.

  4. Hippocampal volume and cognitive function in anorexia nervosa.

    Science.gov (United States)

    Connan, Frances; Murphy, Fay; Connor, Steve E J; Rich, Phil; Murphy, Tara; Bara-Carill, Nuria; Landau, Sabine; Krljes, Sanya; Ng, Virginia; Williams, Steve; Morris, Robin G; Campbell, Iain C; Treasure, Janet

    2006-03-31

    We hypothesised that hippocampal volume would be reduced in underweight anorexia nervosa (AN) and associated with impaired hippocampus-dependent cognitive function. Hippocampal and whole brain volumes were measured in 16 women with AN and 16 matched healthy women using magnetic resonance imaging (MRI) and a manual tracing method. Participants also completed the Doors and People Test of hippocampus-dependent memory and an IQ test. After adjustment for total cerebral volume, there was significant bilateral reduction in hippocampal volume in the AN group (8.2% right; 7.5% left). There was no evidence of impaired hippocampus-dependent cognitive function and no evidence of a relationship between hippocampal volume and clinical features of AN. The reduced hippocampal volume in anorexia nervosa is not associated with changes in cognitive function. To understand the cause and consequence of hippocampal size and function, it will be important to integrate endocrine, neuropsychological and neuroimaging studies.

  5. Hippocampal sclerosis and chronic epilepsy following posterior reversible encephalopathy syndrome.

    Science.gov (United States)

    Kapina, Viktoria; Vargas, Maria-Isabel; Wohlrab, Gabriele; Vulliemoz, Serge; Fluss, Joel; Seeck, Margitta

    2013-12-01

    Chronic epilepsy has rarely been reported after posterior reversible encephalopathy syndrome (PRES) and the association with hippocampal sclerosis has been suggested only once before. We report the case of a girl admitted at the age of 8 years with idiopathic nephrotic syndrome. On the second day of admission, she presented with focal complex seizures and cerebral MRI showed posterior encephalopathy and no hippocampal sclerosis. MRI after one month confirmed the diagnosis of PRES. The seizures recurred and the girl developed pharmacoresistant epilepsy and was admitted to our hospital for further investigation. Cerebral MRI three years after the diagnosis of PRES showed hippocampal sclerosis which was not present on the initial MRI. We conclude that there is a triggering role of PRES in the development of hippocampal sclerosis. Hippocampal sclerosis may have resulted from seizure-associated damage, alternatively, hypertensive encephalopathy may have led to hippocampal damage via a vascular mechanism.

  6. Acute pentobarbital treatment impairs spatial learning and memory and hippocampal long-term potentiation in rats.

    Science.gov (United States)

    Wang, Wei; Tan, Tao; Tu, Man; He, Wenting; Dong, Zhifang; Han, Huili

    2015-10-01

    Reports of the effects of pentobarbital on learning and memory are contradictory. Some studies have not shown any interference with learning and memory, whereas others have shown that pentobarbital impairs memory and that these impairments can last for long periods. However, it is unclear whether acute local microinjections of pentobarbital affect learning and memory, and if so, the potential mechanisms are also unclear. Here, we reported that the intra-hippocampal infusion of pentobarbital (8.0mM, 1μl per side) significantly impaired hippocampus-dependent spatial learning and memory retrieval. Moreover, in vitro electrophysiological recordings revealed that these behavioral changes were accompanied by impaired hippocampal CA1 long-term potentiation (LTP) and suppressed neuronal excitability as reflected by a decrease in the number of action potentials (APs). These results suggest that acute pentobarbital application causes spatial learning and memory deficits that might be attributable to the suppression of synaptic plasticity and neuronal excitability. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. A Compressed Sensing Perspective of Hippocampal Function

    Directory of Open Access Journals (Sweden)

    Panagiotis ePetrantonakis

    2014-08-01

    Full Text Available Hippocampus is one of the most important information processing units in the brain. Input from the cortex passes through convergent axon pathways to the downstream hippocampal subregions and, after being appropriately processed, is fanned out back to the cortex. Here, we review evidence of the hypothesis that information flow and processing in the hippocampus complies with the principles of Compressed Sensing (CS. The CS theory comprises a mathematical framework that describes how and under which conditions, restricted sampling of information (data set can lead to condensed, yet concise, forms of the initial, subsampled information entity (i.e. of the original data set. In this work, hippocampus related regions and their respective circuitry are presented as a CS-based system whose different components collaborate to realize efficient memory encoding and decoding processes. This proposition introduces a unifying mathematical framework for hippocampal function and opens new avenues for exploring coding and decoding strategies in the brain.

  8. Hippocampal Neurogenesis, Depressive Disorders, and Antidepressant Therapy

    Directory of Open Access Journals (Sweden)

    Eleni Paizanis

    2007-01-01

    Full Text Available There is a growing body of evidence that neural stem cells reside in the adult central nervous system where neurogenesis occurs throughout lifespan. Neurogenesis concerns mainly two areas in the brain: the subgranular zone of the dentate gyrus in the hippocampus and the subventricular zone, where it is controlled by several trophic factors and neuroactive molecules. Neurogenesis is involved in processes such as learning and memory and accumulating evidence implicates hippocampal neurogenesis in the physiopathology of depression. We herein review experimental and clinical data demonstrating that stress and antidepressant treatments affect neurogenesis in opposite direction in rodents. In particular, the stimulation of hippocampal neurogenesis by all types of antidepressant drugs supports the view that neuroplastic phenomena are involved in the physiopathology of depression and underlie—at least partly—antidepressant therapy.

  9. Prediction of dementia by hippocampal shape analysis

    DEFF Research Database (Denmark)

    Achterberg, Hakim C.; van der Lijn, Fedde; den Heijer, Tom

    2010-01-01

    This work investigates the possibility of predicting future onset of dementia in subjects who are cognitively normal, using hippocampal shape and volume information extracted from MRI scans. A group of 47 subjects who were non-demented normal at the time of the MRI acquisition, but were diagnosed...... with dementia during a 9 year follow-up period, was selected from a large population based cohort study. 47 Age and gender matched subjects who stayed cognitively intact were selected from the same cohort study as a control group. The hippocampi were automatically segmented and all segmentations were inspected...... and, if necessary, manually corrected by a trained observer. From this data a statistical model of hippocampal shape was constructed, using an entropy-based particle system. This shape model provided the input for a Support Vector Machine classifier to predict dementia. Cross validation experiments...

  10. Relationships between hippocampal activity and breathing patterns

    DEFF Research Database (Denmark)

    Harper, R M; Poe, G R; Rector, D M

    1998-01-01

    Single cell discharge, EEG activity, and optical changes accompanying alterations in breathing patterns, as well as the knowledge that respiratory musculature is heavily involved in movement and other behavioral acts, implicate hippocampal regions in some aspects of breathing control. The control...... is unlikely to reside in oscillatory breathing movements, because such patterns emerge in preparations retaining only the medulla (and perhaps only the spinal cord). However, momentary changes in breathing patterns induced by affect, startle, whole-body movement changes, or compensatory ventilatory changes...... of hippocampal contributions to breathing control should be viewed in the context that significant interactions exist between blood pressure changes and ventilation, and that modest breathing challenges, such as exposure to hypercapnia or to increased resistive loads, bring into action a vast array of brain...

  11. Taurine increases hippocampal neurogenesis in aging mice.

    Science.gov (United States)

    Gebara, Elias; Udry, Florian; Sultan, Sébastien; Toni, Nicolas

    2015-05-01

    Aging is associated with increased inflammation and reduced hippocampal neurogenesis, which may in turn contribute to cognitive impairment. Taurine is a free amino acid found in numerous diets, with anti-inflammatory properties. Although abundant in the young brain, the decrease in taurine concentration with age may underlie reduced neurogenesis. Here, we assessed the effect of taurine on hippocampal neurogenesis in middle-aged mice. We found that taurine increased cell proliferation in the dentate gyrus through the activation of quiescent stem cells, resulting in increased number of stem cells and intermediate neural progenitors. Taurine had a direct effect on stem/progenitor cells proliferation, as observed in vitro, and also reduced activated microglia. Furthermore, taurine increased the survival of newborn neurons, resulting in a net increase in adult neurogenesis. Together, these results show that taurine increases several steps of adult neurogenesis and support a beneficial role of taurine on hippocampal neurogenesis in the context of brain aging. Copyright © 2015. Published by Elsevier B.V.

  12. Active sulforhodamine 101 uptake into hippocampal astrocytes.

    Directory of Open Access Journals (Sweden)

    Christian Schnell

    Full Text Available Sulforhodamine 101 (SR101 is widely used as a marker of astrocytes. In this study we investigated labeling of astrocytes by SR101 in acute slices from the ventrolateral medulla and the hippocampus of transgenic mice expressing EGFP under the control of the astrocyte-specific human GFAP promoter. While SR101 efficiently and specifically labeled EGFP-expressing astrocytes in hippocampus, we found that the same staining procedure failed to label astrocytes efficiently in the ventrolateral medulla. Although carbenoxolone is able to decrease the SR101-labeling of astrocytes in the hippocampus, it is unlikely that SR101 is taken up via gap-junction hemichannels because mefloquine, a blocker for pannexin and connexin hemichannels, was unable to prevent SR101-labeling of hippocampal astrocytes. However, SR101-labeling of the hippocampal astrocytes was significantly reduced by substrates of organic anion transport polypeptides, including estron-3-sulfate and dehydroepiandrosterone sulfate, suggesting that SR101 is actively transported into hippocampal astrocytes.

  13. Tuberous sclerosis complex coexistent with hippocampal sclerosis.

    Science.gov (United States)

    Lang, Min; Prayson, Richard A

    2016-02-01

    Tuberous sclerosis and hippocampal sclerosis are both well-defined entities associated with medically intractable epilepsy. To our knowledge, there has been only one prior case of these two pathologies being co-existent. We report a 7-month-old boy who presented with intractable seizures at 2 months of age. MRI studies showed diffuse volume loss in the brain with bilateral, multiple cortical tubers and subcortical migration abnormalities. Subependymal nodules were noted without subependymal giant cell astrocytoma. Genetic testing revealed TSC2 and PRD gene deletions. Histopathology of the hippocampus showed CA1 sclerosis marked by loss of neurons in the CA1 region. Sections from the temporal, parietal and occipital lobes showed multiple cortical tubers characterized by cortical architectural disorganization, gliosis, calcifications and increased number of large balloon cells. Focal white matter balloon cells and spongiform changes were also present. The patient underwent resection of the right fronto-parietal lobe and a subsequent resection of the right temporal, parietal and occipital lobes. The patient is free of seizures on anti-epileptic medication 69 months after surgery. Although hippocampal sclerosis is well documented to be associated with coexistent focal cortical dysplasia, the specific co-existence of cortical tubers and hippocampal sclerosis appears to be rare. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Early detection of Alzheimer's disease using MRI hippocampal texture

    DEFF Research Database (Denmark)

    Sørensen, Lauge; Igel, Christian; Hansen, Naja Liv

    2016-01-01

    Cognitive impairment in patients with Alzheimer's disease (AD) is associated with reduction in hippocampal volume in magnetic resonance imaging (MRI). However, it is unknown whether hippocampal texture changes in persons with mild cognitive impairment (MCI) that does not have a change...... in hippocampal volume. We tested the hypothesis that hippocampal texture has association to early cognitive loss beyond that of volumetric changes. The texture marker was trained and evaluated using T1-weighted MRI scans from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, and subsequently...

  15. [Effect of Scalp-acupuncture Stimulation on Neurological Function and Expression of ASIC 1 a and ASIC 2 b of Hippocampal CA 1 Region in Cerebral Ischemia Rats].

    Science.gov (United States)

    Tian, Liang; Wang, Jin-Hai; Zhao, Min; Bao, Ying-Cun; Shang, Jun-Fang; Yan, Qi; Zhang, Zhen-Chang; Du, Xiao-Zheng; Jiang, Hua; Sun, Run-Jie; Yuan, Bo; Zhang, Xing-Hua; Zhang, Ting-Zhuo; Li, Xing-Lan

    2016-10-25

    To observe the influence of scalp-acupuncture on the expression of acid-sensing ion channels (ASICs) 1 a and 2 b of hippocampal CA 1 region in cerebral ischemia (CI) rats, so as to investigate its mechanism underlying improvement of ischemic stroke. Thirty-two male SD rats were randomly allocated to normal control, model, scalp-acupuncture and Amiloride group ( n =8 in each group). The model of focal CI was established by middle cerebral artery occlusion (MCAO). Scalp acupuncture stimulation was applied to bilateral Dingnieqianxiexian (MS 6) and Dingniehouxiexian (MS 7), once daily for 7 days. Rats of the Amiloride group were fed with Amiloride solution, twice a day for 7 days, and those of the normal control and model groups were grabbled and fixed in the same way with the acupuncture and Amiloride groups. The neurological deficit score was given according to Longa's method. The expression of hippocampal ASIC 1 a and ASIC 2 b was detected by immunohistochemistry, and the Ca 2+ concentration in the hippocampal tissue assayed using flowing cytometry. After the intervention, the neurological deficit score of both the scalp-acupuncture and Amiloride groups were significantly decreased in comparison with pre-treatment ( P ASIC 1 a and ASIC 2 b in the hippocampal CA 1 region and hip-pocampal Ca 2+ concentration were significantly up-regulated in the model group compared with the normal control group ( P ASIC 1 a and ASIC 2 b expression and Ca 2+ concentration ( P >0.05). Scalp-acupuncture stimulation can improve neurological function in CI rats, which may be related to its effects in suppressing the increased expression of hippocampal ASIC 1 a and ASIC 2 b proteins and in reducing calcium overload in hip-pocampal neurocytes.

  16. Automatic calculation of hippocampal atrophy rates using a hippocampal template and the boundary shift integral.

    Science.gov (United States)

    Barnes, J; Boyes, R G; Lewis, E B; Schott, J M; Frost, C; Scahill, R I; Fox, N C

    2007-11-01

    We describe a method of automatically calculating hippocampal atrophy rates on T1-weighted MR images without manual delineation of hippocampi. This method was applied to a group of Alzheimer's disease (AD) (n=36) and control (n=19) subjects and compared with manual methods (manual segmentation of baseline and repeat-image hippocampi) and semi-automated methods (manual segmentation of baseline hippocampi only). In controls, mean (S.D.) atrophy rates for manual, semi-automated, and automated methods were 18.1 (53.5), 15.3 (50.2) and 11.3 (50.4) mm3 loss per year, respectively. In AD patients these rates were 174.6 (106.5) 159.4 (101.2) and 172.1 (123.1) mm3 loss per year, respectively. The automated method was a significant predictor of disease (p=0.001) and gave similar group discrimination compared with both semi-automated and manual methods. The automated hippocampal analysis in this small study took approximately 20 min per hippocampal pair on a 3.4 GHz Intel Xeon server, whereas manual delineation of each hippocampal pair took approximately 90 min of operator-intensive labour. This method may be useful diagnostically or in studies where analysis of many scans may be required.

  17. Hippocampal EEG and behaviour in dog. I. Hippocampal EEG correlates of gross motor behaviour

    NARCIS (Netherlands)

    Arnolds, D.E.A.T.; Lopes da Silva, F.H.; Aitink, J.W.; Kamp, A.

    It was shown that rewarding spectral shifts (i.e. increase in amplitude or peak frequency of the hippocampal EEG) causes a solitary dog to show increased motor behaviour. Rewarded spectral shifts concurred with a variety of behavioural transitions. It was found that statistically significant

  18. Localized gene transfer into organotypic hippocampal slice cultures and acute hippocampal slices

    DEFF Research Database (Denmark)

    Casaccia-Bonnefil, P; Benedikz, Eirikur; Shen, H

    1993-01-01

    Viral vectors derived from herpes simplex virus, type-1 (HSV), can transfer and express genes into fully differentiated, post-mitotic neurons. These vectors also transduce cells effectively in organotypic hippocampal slice cultures. Nanoliter quantities of a virus stock of HSVlac, an HSV vector...

  19. Regional hippocampal involvement and cognitive impairment in pediatric multiple sclerosis.

    Science.gov (United States)

    Rocca, Maria A; Morelli, Maria E; Amato, Maria P; Moiola, Lucia; Ghezzi, Angelo; Veggiotti, Pierangelo; Capra, Ruggero; Pagani, Elisabetta; Portaccio, Emilio; Fiorino, Agnese; Pippolo, Lorena; Pera, Maria C; Comi, Giancarlo; Falini, Andrea; Filippi, Massimo

    2016-04-01

    We assessed global and regional hippocampal volume abnormalities in pediatric multiple sclerosis (MS) patients and their correlations with clinical, neuropsychological and magnetic resonance imaging metrics. From 53 pediatric MS patients and 18 healthy controls, global hippocampal volume was computed using a manual tracing procedure. Regional hippocampal volume modifications were assessed using a radial mapping analysis. MS patients with abnormal performance in three or more tests of a neuropsychological battery for children were classified as cognitively impaired. Global hippocampal volume was reduced in MS patients compared with controls, but did not correlate with clinical, neuropsychological and magnetic resonance imaging measures. Compared to controls, MS patients experienced bilateral radial atrophy of the cornu ammonis, subiculum and dentate gyrus subfields as well as radial hypertrophy of the dentate gyrus subfield. Regional hippocampal volume modifications correlated with brain T2 lesion volume as well as attention and language abilities. Global hippocampal volume did not differ between cognitively impaired (n=12) and cognitively preserved MS patients. Compared to cognitively preserved, cognitively impaired MS patients had atrophy of the subiculum and dentate gyrus subfields of the right hippocampus. Hippocampal subregions have different vulnerability to damage in pediatric MS. Regional rather than global hippocampal involvement contributes to global cognitive impairment as well as to deficits of selected cognitive tests. © The Author(s), 2015.

  20. The Impact of Sleep Loss on Hippocampal Function

    Science.gov (United States)

    Prince, Toni-Moi; Abel, Ted

    2013-01-01

    Hippocampal cellular and molecular processes critical for memory consolidation are affected by the amount and quality of sleep attained. Questions remain with regard to how sleep enhances memory, what parameters of sleep after learning are optimal for memory consolidation, and what underlying hippocampal molecular players are targeted by sleep…

  1. Triheteromeric NMDA Receptors at Hippocampal Synapses

    Science.gov (United States)

    Tovar, Kenneth R.; McGinley, Matthew J.; Westbrook, Gary L.

    2013-01-01

    NMDA receptors are composed of two GluN1 (N1) and two GluN2 (N2) subunits. Constituent N2 subunits control the pharmacological and kinetic characteristics of the receptor. NMDA receptors in hippocampal or cortical neurons are often thought of as diheteromeric, i.e., containing only one type of N2 subunit. However, triheteromeric receptors with more than one type of N2 subunit also have been reported and the relative contribution of di- and triheteromeric NMDA receptors at synapses has been difficult to assess. Because wild-type hippocampal principal neurons express N1, N2A and N2B, we used cultured hippocampal principal neurons from N2A and N2B-knockout mice as templates for diheteromeric synaptic receptors. Summation of N1/N2B and N1/N2A excitatory postsynaptic currents could not account for the deactivation kinetics of wild-type excitatory postsynaptic currents (EPSCs) however. To make a quantitative estimate of NMDA receptor subtypes at wild-type synapses, we used the deactivation kinetics, as well as the effects of the competitive antagonist NVP-AAM077. Our results indicate that three types of NMDA receptors contribute to the wild-type EPSC, with at least two-thirds being triheteromeric receptors. Functional isolation of synaptic triheteromeric receptors revealed deactivation kinetics and pharmacology distinct from either diheteromeric receptor subtype. Because of differences in open probability, synaptic triheteromeric receptors outnumbered N1/N2A receptors by 5.8 to 1 and N1/N2B receptors by 3.2 to 1. Our results suggest that triheteromeric NMDA receptors must be either preferentially assembled or preferentially localized at synapses. PMID:23699525

  2. Physical exercise induces hippocampal neurogenesis and prevents cognitive decline.

    Science.gov (United States)

    Ma, Chun-Lian; Ma, Xiao-Tang; Wang, Jin-Ju; Liu, Hua; Chen, Yan-Fang; Yang, Yi

    2017-01-15

    Accumulating evidence from animal and human research indicate that adult hippocampal neurogenesis plays a key role in cognition. Meanwhile, cognitive decline is well known to associate with ageing-related neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). Therefore, prevention of hippocampal neurogenesis reduction should be critical for these diseases. Physical exercise, a potent enhancer of adult hippocampal neurogenesis, has emerged as a potential therapy or an adjunctive therapeutic strategy for cognitive decline. In this review, we discuss the recent findings on hippocampal neurogenesis and the incorporation of new born neurons into the neuronal network in humans and in rodents. By focusing on hippocampal neurogenesis, we illustrate the role and possible mechanisms of physical exercise in cognition preservation. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Hippocampal “Time Cells”: Time versus Path Integration

    Science.gov (United States)

    Kraus, Benjamin J.; Robinson, Robert J.; White, John A.; Eichenbaum, Howard; Hasselmo, Michael E.

    2014-01-01

    SUMMARY Recent studies have reported the existence of hippocampal “time cells,” neurons that fire at particular moments during periods when behavior and location are relatively constant. However, an alternative explanation of apparent time coding is that hippocampal neurons “path integrate” to encode the distance an animal has traveled. Here, we examined hippocampal neuronal firing patterns as rats ran in place on a treadmill, thus “clamping” behavior and location, while we varied the treadmill speed to distinguish time elapsed from distance traveled. Hippocampal neurons were strongly influenced by time and distance, and less so by minor variations in location. Furthermore, the activity of different neurons reflected integration over time and distance to varying extents, with most neurons strongly influenced by both factors and some significantly influenced by only time or distance. Thus, hippocampal neuronal networks captured both the organization of time and distance in a situation where these dimensions dominated an ongoing experience. PMID:23707613

  4. [Effects of sleep deprivation in hippocampal neurogenesis].

    Science.gov (United States)

    López-Virgen, Verónica; Zárate-López, David; Adirsch, Fabián L; Collas-Aguilar, Jorge; González-Pérez, Óscar

    2015-01-01

    Adult neurogenesis in the dentate gyrus (DG) in the hippocampus is a process that involves proliferation, differentiation, maturation, migration, and integration of young neurons in the granular layer of DG. These newborn neurons mature in three to four weeks and incorporate into neural circuits in the hippocampus. There, these new neurons play a role in cognitive functions, such as acquisition and retention of memory, which are consolidated during sleep period. In this review, we describe recent findings that associate sleep deprivation with changes in hippocampal neurogenesis and cognitive processes. In addition, we describe possible mechanisms implicated in this deterioration such as circadian rhythm, melatonin receptors, and growth factors.

  5. Aerobic fitness, hippocampal viscoelasticity, and relational memory performance.

    Science.gov (United States)

    Schwarb, Hillary; Johnson, Curtis L; Daugherty, Ana M; Hillman, Charles H; Kramer, Arthur F; Cohen, Neal J; Barbey, Aron K

    2017-06-01

    The positive relationship between hippocampal structure, aerobic fitness, and memory performance is often observed among children and older adults; but evidence of this relationship among young adults, for whom the hippocampus is neither developing nor atrophying, is less consistent. Studies have typically relied on hippocampal volumetry (a gross proxy of tissue composition) to assess individual differences in hippocampal structure. While volume is not specific to microstructural tissue characteristics, microstructural differences in hippocampal integrity may exist even among healthy young adults when volumetric differences are not diagnostic of tissue health or cognitive function. Magnetic resonance elastography (MRE) is an emerging noninvasive imaging technique for measuring viscoelastic tissue properties and provides quantitative measures of tissue integrity. We have previously demonstrated that individual differences in hippocampal viscoelasticity are related to performance on a relational memory task; however, little is known about health correlates to this novel measure. In the current study, we investigated the relationship between hippocampal viscoelasticity and cardiovascular health, and their mutual effect on relational memory in a group of healthy young adults (N=51). We replicated our previous finding that hippocampal viscoelasticity correlates with relational memory performance. We extend this work by demonstrating that better aerobic fitness, as measured by VO 2 max, was associated with hippocampal viscoelasticity that mediated the benefits of fitness on memory function. Hippocampal volume, however, did not account for individual differences in memory. Therefore, these data suggest that hippocampal viscoelasticity may provide a more sensitive measure to microstructural tissue organization and its consequences to cognition among healthy young adults. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Alzheimer's Disease Diagnostic Performance of a Multi-Atlas Hippocampal Segmentation Method using the Harmonized Hippocampal Protocol

    DEFF Research Database (Denmark)

    Anker, Cecilie Benedicte; Sørensen, Lauge; Pai, Akshay

    PURPOSE Hippocampal volumetry is the most widely used structural MRI biomarker of Alzheimer’s disease (AD), and state-of-the-art, automatic hippocampal segmentation can be obtained using longitudinal FreeSurfer. In this study, we compare the diagnostic AD performance of a single time point, multi...

  7. Pressure suppression device

    International Nuclear Information System (INIS)

    Ichiki, Tadaharu; Funahashi, Toshihiro.

    1976-01-01

    Purpose: To provide a structure which permits the absorption of shocks and vibratory load produced on the floor of a pressure suppression chamber due to nitrogen gas or the like discharged into pool water in the pressure suppression chamber at the time of a loss-of-coolant accident. Constitution: A pressure suppression chamber accommodating pool water is comprised of a bottom wall and side walls constructed of concrete on the inner side of a liner. By providing concrete on the bottom surface and side wall surfaces of a pressure suppression chamber, it is possible to prevent non-condensing gas and steam exhausted from the vent duct and exhaust duct of a main vapor escapement safety valve exhaust duct from exerting impact forces and vibratory forces upon the bottom and side surfaces of the pressure suppression chamber. (Horiuchi, T.)

  8. Endogenous ACh suppresses LTD induction and nicotine relieves the suppression via different nicotinic ACh receptor subtypes in the mouse hippocampus.

    Science.gov (United States)

    Nakauchi, Sakura; Sumikawa, Katumi

    2014-08-28

    Studying the normal role of nicotinic cholinergic systems in hippocampal synaptic plasticity is critical for understanding how cholinergic loss in Alzheimer's disease (AD) and tobacco use affect cognitive function. However, it is largely unknown how nicotinic cholinergic systems regulate the induction of long-term depression (LTD). Extracellular field potential recordings were performed in hippocampal slices prepared from wild-type, α2, α7, and β2 knockout (KO) mice. Effects of nicotine and nicotinic antagonists on LTD induction in wild-type, α2, α7, and β2 KO mice were compared. Activation of α7 nicotinic acetylcholine receptors (nAChRs) occurs during LTD-inducing stimulation to suppress LTD induction at CA3-CA1 synapses. Nicotine relieves this suppression, causing larger LTD. This nicotine effect was mediated by the activation of non-α7 nAChR subtypes, which were not activated by ACh released during LTD-inducing stimulation, and requires the presence of endogenous ACh-induced α7 nAChR activation. Furthermore, the effect of nicotine was prevented in the presence of mecamylamine, but not dihydro-β-erythroidine, and was still observed in both α2 KO and β2 KO mice. This is the first report to evaluate the involvement of different nAChR subtypes in LTD induction. Findings indicate the involvement of unique non-α7 nAChR subtypes, which have not been considered in the nicotinic modulation of hippocampal long-term potentiation, in the control of LTD induction. The implication of our results is that the loss of cholinergic projections to the hippocampus, which reduces ACh release as seen in AD patients, and nicotine from tobacco smoking can differentially affect LTD induction. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Can Molecular Hippocampal Alterations Explain Behavioral ...

    Science.gov (United States)

    Studies in both humans and animals have shown that prenatal stress can alter cognitive function and other neurological behaviors in adult offspring. One possible underlying mechanism for this may lie with alterations in hippocampal gene expression. The present study examined genotypical outcomes in adult male and female offspring of rats exposed to variable stress during pregnancy. Dams (n=15/treatment) were subjected to several non-chemical stressors including intermittent noise, light, crowding, restraint, and altered circadian lighting, from gestational day (GD) 13 to 20. Tail blood was drawn on GD 12, 16 and 20 to verify a stress response. Corticosterone levels were not different between the stressed and non-stressed dams on GD12 but was significantly increased in stressed dams on GD 16 and 20 compared to controls. Dams gave birth on GD22 (postnatal day or PND 0). Several behavioral tests were used to assess the cognitive and behavioral phenotype of the offspring from PND 49 through 86, including the Morris water maze and novel object recognition. Male and female stressed offspring showed reduced reversal learning on the Morris water maze and stressed females did not show a significant preference for the novel object (57 ± 8%) while control females did (71 ± 3%). This indicates altered cognition in prenatally stressed offspring. On PND 91-92, offspring were necropsied and hippocampal tissue was collected. Genotypic outcomes of prenatal stress w

  10. Extremely weak magnetic field exposure may inhibit hippocampal neurogenesis of Sprague Dawley rats

    Science.gov (United States)

    Zhang, B.; Tian, L.; Cai, Y.; Xu, H.; Pan, Y.

    2016-12-01

    Hippocampal neurogenesis occurs throughout life in mammals brains and can be influenced by animals' age as well as environmental factors. Lines of evidences have shown that the magnetic field is an important physics environmental factor influencing many animals' growth and development, and extremely weak magnetic field exposures have been proved having serious adverse effects on the metabolism and behaviors in some animals, but few studies have examined the response of hippocampal neurogenesis to it. In the present study, we experimentally examined the extremely weak magnetic field effects on neurogenesis of the dentate gyrus (DG) of hippocampus of adult Sprague Dawley (SD) rats. Two types of magnetic fields were used, an extremely weak magnetic field (≤ 0.5μT) and the geomagnetic fields (strength 31-58μT) as controls. Thirty-two SD rats (3-weeks old) were used in this study. New cell survival in hippocampus was assessed at 0, 14, 28, and 42 days after a 7-day intraperitoneal injections of 5-bromo-2'-deoxyuridine (BrdU). Meanwhile, the amounts of immature neurons and mature neurons which are both related to hippocampal neurogenesis, as documented by labeling with doublecortin (DCX) and neuron (NeuN), respectively, were also analyzed at 0, 14, 28, and 42 days. Compared with geomagnetic field exposure groups, numbers of BrdU-, DCX-positive cells of DG of hippocampus in tested rats reduces monotonously and more rapidly after 14 days, and NeuN-positive cells significantly decreases after 28days when exposed in the extremely weak magnetic field condition. Our data suggest that the exposure to an extremely weak magnetic field may suppress the neurogenesis in DG of SD rats.

  11. The role of 19S proteasome associated deubiquitinases in activity-dependent hippocampal synaptic plasticity.

    Science.gov (United States)

    Yun, Di; Zhuang, Yinghan; Kreutz, Michael R; Behnisch, Thomas

    2018-01-31

    Posttranslational modification and degradation of proteins by the ubiquitin-proteasome system (UPS) is crucial to synaptic transmission. It is well established that 19S proteasome associated deubiquitinases (DUBs) reverse the process of ubiquitination by removing ubiquitin from their substrates. However, their potential contribution to hippocampal synaptic plasticity has not been addressed in detail. Here, we report that inhibition of the 19S proteasome associated DUBs, ubiquitin C-terminal hydrolase 5 (UCHL5) and ubiquitin-specific peptidase 14 (USP14) by b-AP15 results in an accumulation of polyubiquitinated proteins and a reduction of monomeric ubiquitin without overt effects on 26S proteasome activity. b-AP15 led to a suppression of mTOR-p70S6K signaling and an increase in levels of p-p38 MAPK, two pathways essentially involved in establishing various forms of activity-dependent plasticity. Additionally, b-AP15 impaired the induction of late-phase long-term potentiation (L-LTP), induced the transformation of mGluR-mediated protein synthesis-independent long-term depression (early-LTD) to L-LTD and promoted heterosynaptic stabilization through synaptic tagging/capture (STC) in the hippocampal CA1 region of mice. The activity of 19S proteasome associated DUBs was also required for the enhancement of short-term potentiation (STP) induced by brain-derived neurotrophic factor (BDNF). Altogether, these results indicate an essential role of 19S proteasome associated DUBs in regulating activity-dependent hippocampal synaptic plasticity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Acupuncture reversed hippocampal mitochondrial dysfunction in vascular dementia rats.

    Science.gov (United States)

    Li, Hui; Liu, Yi; Lin, Li-Ting; Wang, Xue-Rui; Du, Si-Qi; Yan, Chao-Qun; He, Tian; Yang, Jing-Wen; Liu, Cun-Zhi

    2016-01-01

    Hippocampal mitochondrial dysfunction due to oxidative stress has been considered to play a major role in the pathogenesis of vascular dementia (VD). Previous studies suggested that acupuncture could improve cerebral hypoperfusion-induced cognitive impairments. However, whether hippocampal mitochondria are associated with this cognitive improvement remains unclear. In this study, an animal model of VD was established via bilateral common carotid arteries occlusion (BCCAO) to investigate the alterations of cognitive ability and hippocampal mitochondrial function. BCCAO rats showed impairments in hippocampal mitochondrial function, overproduction of reactive oxygen species (ROS) and learning and memory deficits. After two-week acupuncture treatment, BCCAO-induced spatial learning and memory impairments as shown in Morris water maze were ameliorated. Hippocampal mitochondrial respiratory complex enzymes (complex I, II, IV) activities and cytochrome c oxidase IV expression significantly increased, which might contribute to the reduction of hippocampal ROS generation. In addition, acupuncture significantly improve mitochondrial bioenergy parameters such as mitochondrial respiratory control rate and membrane potential not PDH A1 expression. Placebo-acupuncture did not produce similar therapeutic effects. These findings suggested that acupuncture reversed BCCAO-induced hippocampal mitochondrial dysfunction, which might contribute to its prevention on cognitive deficits. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Hippocampal sclerosis: correlation of MR imaging findings with surgical outcome

    International Nuclear Information System (INIS)

    Kim, Yoon Hee; Chang, Kee Hyun; Kim, Kyung Won; Han, Moon Hee; Park, Sung Ho; Nam, Hyun Woo; Choi, Kyu Ho; Cho, Woo Ho

    2001-01-01

    Atrophy and a high T2 signal of the hippocampus are known to be the principal MR imaging findings of hippocampal sclerosis. The purpose of this study was to determine whether or not individual MRI findings correlate with surgical outcome in patients with this condition. Preoperative MR imaging findings in 57 consecutive patients with pathologically-proven hippocampal sclerosis who underwent anterior temporal lobectomy and were followed-up for 24 months or more were retrospectively reviewed, and the results were compared with the postsurgical outcome (Engel classification). The MR images included routine sagittal T1-weighted and axial T2-weighted spin-echo images, and oblique coronal T1-weighted 3D gradient-echo and T2-weighted 2D fast spin-echo images obtained on either a 1.5 T or 1.0 T unit. The images were visually evaluated by two neuroradiologists blinded to the outcome; their focus was the presence or absence of atrophy and a high T2 hippocampal signal. Hippocampal atrophy was seen in 96% of cases (55/57) [100% (53/53) of the good outcome group (Engel class I and II), and 50% (2/4) of the poor outcome group (class III and IV)]. A high T2 hippocampal signal was seen in 61% of cases (35/57) [62% (33/53) of the good outcome group and 50% (2/4) of the poor outcome group]. All 35 patients with a high T2 signal had hippocampal atrophy. 'Normal' hippocampus, as revealed by MR imaging, occurred in 4% of patients (2/57), both of whom showed a poor outcome (Engel class III). The presence or absence of hippocampal atrophy correlated well with surgical outcome (p 0.05). Compared with a high T2 hippocampal signal, hippocampal atrophy is more common and correlates better with surgical outcome. For the prediction of this, it thus appears to be the more useful indicator

  14. Memory Encoding in Hippocampal Ensembles is Negatively Influenced by Cannabinoid CB1 Receptors

    Science.gov (United States)

    Hampson, Robert E.; Sweatt, Andrew J.; Goonawardena, Anushka V.; Song, Dong; Chan, Rosa H.M.; Marmarelis, Vasilis Z.; Berger, Theodore W.; Deadwyler, Sam A.

    2011-01-01

    It has been previously demonstrated that the detrimental effect on performance of a delayed nonmatch to sample (DNMS) memory task by exogenously administered cannabinoid CB1 receptor agonist, WIN 55212-2 (WIN), is reversed by the receptor antagonist Rimonabant (Rmbt). In addition Rmbt administered alone elevates DNMS performance, presumably via suppression of negative modulation by released endocannabinoids during normal task performance. Other investigations have shown that Rmbt enhances encoding of DNMS task-relevant information on a trial-by-trial, delay-dependent basis. In the current study these reciprocal pharmacological actions were fully characterized by long-term, chronic intrahippocampal infusion of both agents (WIN and Rmbt) in successive 2 week intervals. Such long-term exposure allowed extraction and confirmation of task-related firing patterns where Rmbt reversed effects of CB1 agonists. This information was then utilized to artificially impose the facilitatory effects of Rmbt and reverse the effects of WIN on DNMS performance, by delivering multichannel electrical stimulation in the same firing patterns to the same hippocampal regions. Direct comparison of normal and WIN injected animals, in which Rmbt injections and ensemble firing facilitated performance, verified reversal of the modulation of hippocampal memory processes by CB1 receptor agonists, including released endocannabinoids. PMID:21558844

  15. Postischemic Anhedonia Associated with Neurodegenerative Changes in the Hippocampal Dentate Gyrus of Rats

    Directory of Open Access Journals (Sweden)

    Jiro Kasahara

    2016-01-01

    Full Text Available Poststroke depression is one of the major symptoms observed in the chronic stage of brain stroke such as cerebral ischemia. Its pathophysiological mechanisms, however, are not well understood. Using the transient right middle cerebral artery occlusion- (MCAO-, 90 min operated rats as an ischemia model in this study, we first observed that aggravation of anhedonia spontaneously occurred especially after 20 weeks of MCAO, and it was prevented by chronic antidepressants treatment (imipramine or fluvoxamine. The anhedonia specifically associated with loss of the granular neurons in the ipsilateral side of hippocampal dentate gyrus and was also prevented by an antidepressant imipramine. Immunohistochemical analysis showed increased apoptosis inside the granular cell layer prior to and associated with the neuronal loss, and imipramine seemed to recover the survival signal rather than suppressing the death signal to prevent neurons from apoptosis. Proliferation and development of the neural stem cells were increased transiently in the subgranular zone of both ipsi- and contralateral hippocampus within one week after MCAO and then decreased and almost ceased after 6 weeks of MCAO, while chronic imipramine treatment prevented them partially. Overall, our study suggests new insights for the mechanistic correlation between poststroke depression and the delayed neurodegenerative changes in the hippocampal dentate gyrus with effective use of antidepressants on them.

  16. GABAA receptor-mediated modulation of neuronal activity propagation upon tetanic stimulation in rat hippocampal slices.

    Science.gov (United States)

    Tominaga, Takashi; Tominaga, Yoko

    2010-10-01

    Tetanic stimulation (100 Hz), which can induce long-term potentiation in synaptic connections in the hippocampal CA1 region, causes γ-aminobutyric acid (GABA)(A) receptor-mediated long-lasting depolarization of postsynaptic neurons. However, it is not clear how this stimulation modulates neuronal activity propagation. We studied tetanic burst-induced neuronal responses in the hippocampal CA1 region by using optical-recording methods employing a voltage-sensitive dye and focused on GABA(A) receptor-mediated modulation. We observed that burst stimulation induced long-lasting depolarization and progressive decrease in individual excitatory postsynaptic potentials (EPSPs). Both these effects were suppressed by picrotoxin, a GABA(A) receptor antagonist. Under whole-cell voltage-clamp conditions, we observed a long-lasting inhibitory current (IPSC) and a prominent progressive decrease in the amplitude of the excitatory postsynaptic current (EPSC). Further, picrotoxin inhibited the IPSC and the progressive decrease in EPSC. The optically recorded long-lasting depolarization and progressive decrease of EPSPs were strongly dependent on the distance between the recording electrode and the stimulation site. Optical recordings performed across a wide swatch of CA1 revealed that the decrease in activity propagation was followed by facilitation of propagation after recovery and that this facilitation also depended on GABA(A) receptors. Intense activation of GABA(A) receptors is a key factor shaping the spatiotemporal patterns of high-frequency stimulation-induced responses in the CA1 region.

  17. SNAP-25 in hippocampal CA3 region is required for long-term memory formation

    International Nuclear Information System (INIS)

    Hou Qiuling; Gao Xiang; Lu Qi; Zhang Xuehan; Tu Yanyang; Jin Meilei; Zhao Guoping; Yu Lei; Jing Naihe; Li Baoming

    2006-01-01

    SNAP-25 is a synaptosomal protein of 25 kDa, a key component of synaptic vesicle-docking/fusion machinery, and plays a critical role in exocytosis and neurotransmitter release. We previously reported that SNAP-25 in the hippocampal CA1 region is involved in consolidation of contextual fear memory and water-maze spatial memory (Hou et al. European J Neuroscience, 20: 1593-1603, 2004). SNAP-25 is expressed not only in the CA1 region, but also in the CA3 region, and the SNAP-25 mRNA level in the CA3 region is higher than in the CA1 region. Here, we provide evidence that SNAP-25 in the CA3 region is also involved in learning/memory. Intra-CA3 infusion of SNAP-25 antisense oligonucleotide impaired both long-term contextual fear memory and water-maze spatial memory, with short-term memory intact. Furthermore, the SNAP-25 antisense oligonucleotide suppressed the long-term potentiation (LTP) of field excitatory post-synaptic potential (fEPSP) in the mossy-fiber pathway (DG-CA3 pathway), with no effect on paired-pulse facilitation of the fEPSP. These results are consistent with the notion that SNAP-25 in the hippocampal CA3 region is required for long-term memory formation

  18. Inhibiting 11β-hydroxysteroid dehydrogenase type 1 prevents stress effects on hippocampal synaptic plasticity and impairs contextual fear conditioning.

    Science.gov (United States)

    Sarabdjitsingh, R Angela; Zhou, Ming; Yau, Joyce L W; Webster, Scott P; Walker, Brian R; Seckl, Jonathan R; Joëls, Marian; Krugers, Harm J

    2014-06-01

    11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) catalyzes intracellular regeneration of corticosterone and cortisol, thereby enhancing glucocorticoid action. Inhibition of 11β-HSD1 reverses the deficits in cognition with aging, a state of elevated glucocorticoid levels. However, any impact of 11β-HSD1 inhibition during high glucocorticoid states in younger animals is unknown. Here we examined whether a single injection of the selective 11β-HSD1 inhibitor UE2316 modifies the effect of stress on hippocampal long-term potentiation and fear conditioning, a learning paradigm that is strongly modulated by glucocorticoids. We found that novelty stress suppresses hippocampal synaptic potentiation. This effect was completely prevented by administration of UE2316 one hour before stress exposure. A single injection of UE2316 also impaired contextual, but not tone-cue-fear conditioning. These observations suggest that local metabolism of glucocorticoids is relevant for the outcome of stress effects on hippocampal synaptic plasticity and contextual fear conditioning. Selective 11β-HSD1 inhibitors may be an interesting new approach to the prevention of trauma-associated psychopathology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Hippocampal activation of microglia may underlie the shared neurobiology of comorbid posttraumatic stress disorder and chronic pain.

    Science.gov (United States)

    Sun, Rao; Zhang, Zuoxia; Lei, Yishan; Liu, Yue; Lu, Cui'e; Rong, Hui; Sun, Yu'e; Zhang, Wei; Ma, Zhengliang; Gu, Xiaoping

    2016-01-01

    The high comorbidity rates of posttraumatic stress disorder and chronic pain have been widely reported, but the underlying mechanisms remain unclear. Emerging evidence suggested that an excess of inflammatory immune activities in the hippocampus involved in the progression of both posttraumatic stress disorder and chronic pain. Considering that microglia are substrates underlying the initiation and propagation of the neuroimmune response, we hypothesized that stress-induced activation of hippocampal microglia may contribute to the pathogenesis of posttraumatic stress disorder-pain comorbidity. We showed that rats exposed to single prolonged stress, an established posttraumatic stress disorder model, exhibited persistent mechanical allodynia and anxiety-like behavior, which were accompanied by increased activation of microglia and secretion of pro-inflammatory cytokines in the hippocampus. Correlation analyses showed that hippocampal activation of microglia was significantly correlated with mechanical allodynia and anxiety-like behavior. Our data also showed that both intraperitoneal and intra-hippocampal injection of minocycline suppressed single prolonged stress-induced microglia activation and inflammatory cytokines accumulation in the hippocampus, and attenuated both single prolonged stress-induced mechanical allodynia and anxiety-like behavior. Taken together, the present study suggests that stress-induced microglia activation in the hippocampus may serve as a critical mechanistic link in the comorbid relationship between posttraumatic stress disorder and chronic pain. The novel concept introduces the possibility of cotreating chronic pain and posttraumatic stress disorder. © The Author(s) 2016.

  20. Menstrual suppression for adolescents.

    Science.gov (United States)

    Altshuler, Anna Lea; Hillard, Paula J Adams

    2014-10-01

    The purpose of this review is to highlight the recent literature and emerging data describing clinical situations in which menstrual suppression may improve symptoms and quality of life for adolescents. A variety of conditions occurring frequently in adolescents and young adults, including heavy menstrual bleeding, and dysmenorrhea as well as gynecologic conditions such as endometriosis and pelvic pain, can safely be improved or alleviated with appropriate menstrual management. Recent publications have highlighted the efficacy and benefit of extended cycle or continuous combined oral contraceptives, the levonorgestrel intrauterine device, and progestin therapies for a variety of medical conditions. This review places menstrual suppression in an historical context, summarizes methods of hormonal therapy that can suppress menses, and reviews clinical conditions for which menstrual suppression may be helpful.

  1. Cryogenic Acoustic Suppression Testing

    Data.gov (United States)

    National Aeronautics and Space Administration — A proof-of-concept method utilizing a cryogenic fluid for acoustic suppression in rocket engine testing environments will be demonstrated. It is hypothesized that...

  2. Schizophrenia polygenic risk score predicts mnemonic hippocampal activity.

    Science.gov (United States)

    Chen, Qiang; Ursini, Gianluca; Romer, Adrienne L; Knodt, Annchen R; Mezeivtch, Karleigh; Xiao, Ena; Pergola, Giulio; Blasi, Giuseppe; Straub, Richard E; Callicott, Joseph H; Berman, Karen F; Hariri, Ahmad R; Bertolino, Alessandro; Mattay, Venkata S; Weinberger, Daniel R

    2018-02-03

    The use of polygenic risk scores has become a practical translational approach to investigating the complex genetic architecture of schizophrenia, but the link between polygenic risk scores and pathophysiological components of this disorder has been the subject of limited research. We investigated in healthy volunteers whether schizophrenia polygenic risk score predicts hippocampal activity during simple memory encoding, which has been proposed as a risk-associated intermediate phenotype of schizophrenia. We analysed the relationship between polygenic risk scores and hippocampal activity in a discovery sample of 191 unrelated healthy volunteers from the USA and in two independent replication samples of 76 and 137 healthy unrelated participants from Europe and the USA, respectively. Polygenic risk scores for each individual were calculated as the sum of the imputation probability of reference alleles weighted by the natural log of odds ratio from the recent schizophrenia genome-wide association study. We examined hippocampal activity during simple memory encoding of novel visual stimuli assessed using blood oxygen level-dependent functional MRI. Polygenic risk scores were significantly associated with hippocampal activity in the discovery sample [P = 0.016, family-wise error (FWE) corrected within Anatomical Automatic Labeling (AAL) bilateral hippocampal-parahippocampal mask] and in both replication samples (P = 0.033, FWE corrected within AAL right posterior hippocampal-parahippocampal mask in Bari sample, and P = 0.002 uncorrected in the Duke Neurogenetics Study sample). The relationship between polygenic risk scores and hippocampal activity was consistently negative, i.e. lower hippocampal activity in individuals with higher polygenic risk scores, consistent with previous studies reporting decreased hippocampal-parahippocampal activity during declarative memory tasks in patients with schizophrenia and in their healthy siblings. Polygenic risk scores accounted for

  3. Sodium fire suppression

    International Nuclear Information System (INIS)

    Malet, J.C.

    1979-01-01

    Ignition and combustion studies have provided valuable data and guidelines for sodium fire suppression research. The primary necessity is to isolate the oxidant from the fuel, rather than to attempt to cool the sodium below its ignition temperature. Work along these lines has led to the development of smothering tank systems and a dry extinguishing powder. Based on the results obtained, the implementation of these techniques is discussed with regard to sodium fire suppression in the Super-Phenix reactor. (author)

  4. Hippocampal-thalamic wiring in medial temporal lobe epilepsy: Enhanced connectivity per hippocampal voxel.

    Science.gov (United States)

    Dinkelacker, Vera; Valabregue, Romain; Thivard, Lionel; Lehéricy, Stéphane; Baulac, Michel; Samson, Séverine; Dupont, Sophie

    2015-08-01

    Medial temporal lobe epilepsy (TLE) with hippocampal sclerosis is often accompanied by widespread changes in ipsilateral and contralateral white matter connectivity. Recent studies have proposed that patients may show pathologically enhanced wiring of the limbic circuits. To better address this issue, we specifically probed connection patterns between hippocampus and thalamus and examined their impact on cognitive function. A group of 44 patients with TLE (22 with right and 22 with left hippocampal sclerosis) and 24 healthy control participants were examined with high-resolution T1 imaging, memory functional magnetic resonance imaging (fMRI) and probabilistic diffusion tractography. Thirty-four patients had further extensive neuropsychological testing. After whole brain segmentation with FreeSurfer, tractography streamline samples were drawn with hippocampus as the seed and thalamus as the target region. Two tractography strategies were applied: The first targeted the anatomic thalamic volume segmented in FreeSurfer and the second a functional region of interest in the mediodorsal thalamus derived from the activation during delayed recognition memory. We found a pronounced enhancement of connectivity between the sclerotic hippocampus and the ipsilateral thalamus both in the right and left TLE as compared to healthy control participants. This finding held for both the anatomically and the functionally defined thalamic target. Although differences were apparent in the number of absolute fibers, they were most pronounced when correcting for hippocampal volume. In terms of cognitive function, the number of hippocampal-thalamic connections was negatively correlated with performance in a variety of executive tasks, notably in the Trail Making Test, thus suggesting that the pathologic wiring did not compensate cognitive curtailing. We suggest that TLE is accompanied by an abnormal and dysfunctional enhancement of connectivity between the hippocampus and the thalamus

  5. Smaller neuron size in schizophrenia in hippocampal subfields that mediate cortical-hippocampal interactions.

    Science.gov (United States)

    Arnold, S E; Franz, B R; Gur, R C; Gur, R E; Shapiro, R M; Moberg, P J; Trojanowski, J Q

    1995-05-01

    The goal of this study was to characterize the hippocampal formation in patients with schizophrenia by measuring neuron density, neuron size, and variability of neuronal axis orientation. Brain tissue was obtained at autopsy from 14 prospectively accrued elderly patients with chronic schizophrenia and 10 age-compatible individuals without psychiatric disorder. Eight hippocampal regions of interest and two internal control regions (primary motor and visual cortices) were identified on Nissl-stained sections. Morphometric measurements were made without knowledge of diagnosis by means of a computer-based image analysis system. The patients exhibited smaller neuron size in the hippocampal regions relative to the control regions, which was significant only for the subiculum, CA1, and layer II of the entorhinal cortex. Neuron size in the control regions was nearly identical in the two groups. No significant differences in neuron density or in variability of neuronal axis orientation were identified for any region. There was no correlation between neuron size in any area and several potentially confounding variables (age, post-mortem interval, neuroleptic exposure, sex, brain hemisphere studied, duration of illness), with the exception of a negative correlation with age in layer II of the entorhinal cortex. Regression analyses indicated that the findings could not be attributed to these age effects. The subiculum, entorhinal cortex, and CA1 are the major subfields of the hippocampal region that maintain the afferent and efferent connections of the hippocampus with widespread cortical and subcortical targets. The smaller size of neurons in these subfields may reflect the presence of structural or functional impairments that disrupt these connections, which in turn could have important behavioral sequelae.

  6. Age-dependent suppression of hippocampal epileptic afterdischarges by metabotropic glutamate receptor 5 antagonist MTEP

    Czech Academy of Sciences Publication Activity Database

    Zavala-Tecuapetla, Cecília; Kubová, Hana; Otáhal, Jakub; Tsenov, Grygoriy; Mareš, Pavel

    2014-01-01

    Roč. 66, č. 5 (2014), s. 927-930 ISSN 1734-1140 R&D Projects: GA ČR(CZ) GA305/09/0846; GA ČR(CZ) GBP304/12/G069 Institutional support: RVO:67985823 Keywords : epileptic afterdischarge * hippocampus * rat * ontogeny * metabotropic glutamate receptor 5 Subject RIV: FH - Neurology Impact factor: 1.928, year: 2014

  7. Parallel Regulation of Memory and Emotion Supports the Suppression of Intrusive Memories.

    Science.gov (United States)

    Gagnepain, Pierre; Hulbert, Justin; Anderson, Michael C

    2017-07-05

    Intrusive memories often take the form of distressing images that emerge into a person's awareness, unbidden. A fundamental goal of clinical neuroscience is to understand the mechanisms allowing people to control these memory intrusions and reduce their emotional impact. Mnemonic control engages a right frontoparietal network that interrupts episodic retrieval by modulating hippocampal activity; less is known, however, about how this mechanism contributes to affect regulation. Here we report evidence in humans (males and females) that stopping episodic retrieval to suppress an unpleasant image triggers parallel inhibition of mnemonic and emotional content. Using fMRI, we found that regulation of both mnemonic and emotional content was driven by a shared frontoparietal inhibitory network and was predicted by a common profile of medial temporal lobe downregulation involving the anterior hippocampus and the amygdala. Critically, effective connectivity analysis confirmed that reduced amygdala activity was not merely an indirect consequence of hippocampal suppression; rather, both the hippocampus and the amygdala were targeted by a top-down inhibitory control signal originating from the dorsolateral prefrontal cortex. This negative coupling was greater when unwanted memories intruded into awareness and needed to be purged. Together, these findings support the broad principle that retrieval suppression is achieved by regulating hippocampal processes in tandem with domain-specific brain regions involved in reinstating specific content, in an activity-dependent fashion. SIGNIFICANCE STATEMENT Upsetting events sometimes trigger intrusive images that cause distress and that may contribute to psychiatric disorders. People often respond to intrusions by suppressing their retrieval, excluding them from awareness. Here we examined whether suppressing aversive images might also alter emotional responses to them, and the mechanisms underlying such changes. We found that the better

  8. Spatial relational memory requires hippocampal adult neurogenesis.

    Directory of Open Access Journals (Sweden)

    David Dupret

    Full Text Available The dentate gyrus of the hippocampus is one of the few regions of the mammalian brain where new neurons are generated throughout adulthood. This adult neurogenesis has been proposed as a novel mechanism that mediates spatial memory. However, data showing a causal relationship between neurogenesis and spatial memory are controversial. Here, we developed an inducible transgenic strategy allowing specific ablation of adult-born hippocampal neurons. This resulted in an impairment of spatial relational memory, which supports a capacity for flexible, inferential memory expression. In contrast, less complex forms of spatial knowledge were unaltered. These findings demonstrate that adult-born neurons are necessary for complex forms of hippocampus-mediated learning.

  9. Gene-environment effects on hippocampal neurodevelopment

    DEFF Research Database (Denmark)

    Rosenthal, Eva Helga

    factors. Hence, a deeper understanding is needed of how cortical neurodevelopmental deficiencies can arise from such gene-environment interactions. The convergence of genetic and environmental risk factors is a recent field of research. It is now clear that disease, infection and stress factors may...... disrupt the normal function of neurodevelopmental genes. Here, the transcriptional repressor Zbtb20, which we and others have shown is a master regulator of hippocampal neurodevelopment, deserves special interest. We study the possibility that environmental factors such as steroid hormones, cytokines......Mental disorders like schizophrenia and autism put a heavy load on today’s societies, creating a steady call for revealing underlying disease mechanisms and the development of effective treatments. The etiology of major psychiatric illnesses is complex involving gene by environment susceptibility...

  10. Tau protein and adult hippocampal neurogenesis

    Directory of Open Access Journals (Sweden)

    Almudena eFuster-Matanzo

    2012-07-01

    Full Text Available Tau protein is a microtubule associated protein found in the axonal compartment that stabilizes neuronal microtubules under normal physiological conditions. Tau metabolism has attracted much attention because of its role in neurodegenerative disorders called tauopathies, mainly Alzheimer disease. Here, we review recent findings suggesting that axonal outgrowth in subgranular zone during adult hippocampal neurogenesis requires a dynamic microtubule network and tau protein facilitates to maintain that dynamic cytoskeleton. Those functions are carried out in part by tau isoform with only three microtubule-binding domains (without exon 10 and by presence of hypherphosphorylated tau forms. Thus, tau is a good marker and a valuable tool to study new axons in adult neurogenesis.

  11. Hummingbirds have a greatly enlarged hippocampal formation.

    Science.gov (United States)

    Ward, Brian J; Day, Lainy B; Wilkening, Steven R; Wylie, Douglas R; Saucier, Deborah M; Iwaniuk, Andrew N

    2012-08-23

    Both field and laboratory studies demonstrate that hummingbirds (Apodiformes, Trochilidae) have exceptional spatial memory. The complexity of spatial-temporal information that hummingbirds must retain and use daily is probably subserved by the hippocampal formation (HF), and therefore, hummingbirds should have a greatly expanded HF. Here, we compare the relative size of the HF in several hummingbird species with that of other birds. Our analyses reveal that the HF in hummingbirds is significantly larger, relative to telencephalic volume, than any bird examined to date. When expressed as a percentage of telencephalic volume, the hummingbird HF is two to five times larger than that of caching and non-caching songbirds, seabirds and woodpeckers. This HF expansion in hummingbirds probably underlies their ability to remember the location, distribution and nectar content of flowers, but more detailed analyses are required to determine the extent to which this arises from an expansion of HF or a decrease in size of other brain regions.

  12. Alcohol and adult hippocampal neurogenesis: Promiscuous drug, wanton effects

    Science.gov (United States)

    Geil, Chelsea R.; Hayes, Dayna M.; McClain, Justin A.; Liput, Daniel J.; Marshall, S. Alex; Chen, Kevin Y.; Nixon, Kimberly

    2014-01-01

    Adult neurogenesis is now widely accepted as an important contributor to hippocampal integrity and function but also dysfunction when adult neurogenesis is affected in neuropsychiatric diseases such as alcohol use disorders. Excessive alcohol consumption, the defining characteristic of alcohol use disorders, results in a variety of cognitive and behavioral impairments related wholly or in part to hippocampal structure and function. Recent preclinical work has shown that adult neurogenesis may be one route by which alcohol produces hippocampal neuropathology. Alcohol is a pharmacologically promiscuous drug capable of interfering with adult neurogenesis through multiple mechanisms. This review will discuss the primary mechanisms underlying alcohol-induced changes in adult hippocampal neurogenesis including alcohol's effects on neurotransmitters, CREB and its downstream effectors, and the neurogenic niche. PMID:24842804

  13. DEVELOPMENTAL HYPOTHYROIDISM IMPAIRS HIPPOCAMPAL LEARNING AND SYNAPTIC TRANSMISSION IN VIVO.

    Science.gov (United States)

    A number of environmental chemicals have been reported to alter thyroid hormone (TH) function. It is well established that severe hypothyroidism during critical periods of brain development leads to alterations in hippocampal structure and learning deficits, yet evaluation of ...

  14. Rhinal-hippocampal EEG coherence is reduced during human sleep.

    NARCIS (Netherlands)

    Fell, J.; Staedtgen, M.; Burr, W.; Kockelmann, E.; Helmstaedter, C.; Schaller, C.; Elger, C.E.; Fernandez, G.S.E.

    2003-01-01

    The deficiency of declarative memory compared with waking state is an often overlooked characteristic of sleep. Here, we investigated whether rhinal-hippocampal coherence, an electrophysiological correlate of declarative memory formation, is significantly altered during sleep as compared with waking

  15. The impact of sleep loss on hippocampal function

    OpenAIRE

    Prince, Toni-Moi; Abel, Ted

    2013-01-01

    Hippocampal cellular and molecular processes critical for memory consolidation are affected by the amount and quality of sleep attained. Questions remain with regard to how sleep enhances memory, what parameters of sleep after learning are optimal for memory consolidation, and what underlying hippocampal molecular players are targeted by sleep deprivation to impair memory consolidation and plasticity. In this review, we address these topics with a focus on the detrimental effects of post-lear...

  16. Le Projet hippocampe devient un important protagoniste de la ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Le Projet hippocampe devient un important protagoniste de la conservation de la faune marine. 29 octobre 2012. Image. Stephen Dale. Des effets durables. Pour certains, le Projet hippocampe est un organisme qui a mobilisé des collectivités de pêcheurs pauvres des Philippines pour créer des dizaines d'aires protégées ...

  17. Automated hippocampal segmentation in patients with epilepsy: Available free online

    Science.gov (United States)

    Winston, Gavin P; Cardoso, M Jorge; Williams, Elaine J; Burdett, Jane L; Bartlett, Philippa A; Espak, Miklos; Behr, Charles; Duncan, John S; Ourselin, Sebastien

    2013-01-01

    Purpose Hippocampal sclerosis, a common cause of refractory focal epilepsy, requires hippocampal volumetry for accurate diagnosis and surgical planning. Manual segmentation is time-consuming and subject to interrater/intrarater variability. Automated algorithms perform poorly in patients with temporal lobe epilepsy. We validate and make freely available online a novel automated method. Methods Manual hippocampal segmentation was performed on 876, 3T MRI scans and 202, 1.5T scans. A template database of 400 high-quality manual segmentations was used to perform automated segmentation of all scans with a multi-atlas–based segmentation propagation method adapted to perform label fusion based on local similarity to ensure accurate segmentation regardless of pathology. Agreement between manual and automated segmentations was assessed by degree of overlap (Dice coefficient) and comparison of hippocampal volumes. Key Findings The automated segmentation algorithm provided robust delineation of the hippocampi on 3T scans with no more variability than that seen between different human raters (Dice coefficients: interrater 0.832, manual vs. automated 0.847). In addition, the algorithm provided excellent results with the 1.5T scans (Dice coefficient 0.827), and automated segmentation remained accurate even in small sclerotic hippocampi. There was a strong correlation between manual and automated hippocampal volumes (Pearson correlation coefficient 0.929 on the left and 0.941 on the right in 3T scans). Significance We demonstrate reliable identification of hippocampal atrophy in patients with hippocampal sclerosis, which is crucial for clinical management of epilepsy, particularly if surgical treatment is being contemplated. We provide a free online Web-based service to enable hippocampal volumetry to be available globally, with consequent greatly improved evaluation of those with epilepsy. PMID:24151901

  18. Sparse encoding of automatic visual association in hippocampal networks

    DEFF Research Database (Denmark)

    Hulme, Oliver J; Skov, Martin; Chadwick, Martin J

    2014-01-01

    by these stimuli. Using multivariate Bayesian decoding, we show that human hippocampal and temporal neocortical structures host sparse associative representations that are automatically triggered by visual input. Furthermore, as predicted theoretically, there was a significant increase in sparsity in the Cornu...... for the sparse encoding of associative density. In the absence of reportability or attentional confounds, this charts a distribution of visual associative representations within hippocampal populations and their temporal lobe afferent fields, and demonstrates the viability of retrospective associative sampling...

  19. The effects of hormones and physical exercise on hippocampal structural plasticity.

    Science.gov (United States)

    Triviño-Paredes, Juan; Patten, Anna R; Gil-Mohapel, Joana; Christie, Brian R

    2016-04-01

    The hippocampus plays an integral role in certain aspects of cognition. Hippocampal structural plasticity and in particular adult hippocampal neurogenesis can be influenced by several intrinsic and extrinsic factors. Here we review how hormones (i.e., intrinsic modulators) and physical exercise (i.e., an extrinsic modulator) can differentially modulate hippocampal plasticity in general and adult hippocampal neurogenesis in particular. Specifically, we provide an overview of the effects of sex hormones, stress hormones, and metabolic hormones on hippocampal structural plasticity and adult hippocampal neurogenesis. In addition, we also discuss how physical exercise modulates these forms of hippocampal plasticity, giving particular emphasis on how this modulation can be affected by variables such as exercise regime, duration, and intensity. Understanding the neurobiological mechanisms underlying the modulation of hippocampal structural plasticity by intrinsic and extrinsic factors will impact the design of new therapeutic approaches aimed at restoring hippocampal plasticity following brain injury or neurodegeneration. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Hippocampal correlates of depression in healthy elderly adults.

    Science.gov (United States)

    Ezzati, Ali; Zimmerman, Molly E; Katz, Mindy J; Lipton, Richard B

    2013-12-01

    Mixed findings have been reported on the relationship between hippocampal integrity and major depression in clinical populations. Few neuroimaging studies have investigated associations between hippocampal measures and depressive symptoms in nondemented older adults. Here, we address this issue by imaging 36 nondemented adults over age 70 from the Einstein Aging Study, a community-based sample from the Bronx, NY. Depressive symptoms were assessed using the 15-item Geriatric Depression scale (GDS). Clinically significant depression was defined using a cut-off score of 5 or greater. Hippocampal data included MRI-derived volume data normalized to midsagittal area and MRS-derived N-acetylaspartate to creatine ratios (NAA/Cr). Our result indicates that smaller total hippocampal volume was associated with higher GDS scores, but there were no significant association between hippocampal NAA/Cr and GDS score. These effects were consistent after controlling for age, education, and gender. Reduction in hippocampal volume could represent a risk factor or a consequence of depression in older adults. Further studies are needed to better understand the role of the hippocampus in the development and experience of depression in older adults. Copyright © 2013 Wiley Periodicals, Inc.

  1. Two reentrant pathways in the hippocampal-entorhinal system.

    Science.gov (United States)

    Kloosterman, Fabian; van Haeften, Theo; Lopes da Silva, Fernando H

    2004-01-01

    The entorhinal cortex has long been recognized as an important interface between the hippocampal formation and the neocortex. The notion of bidirectional connections between the entorhinal cortex and the hippocampal formation have led to the suggestion that hippocampal output originating in CA1 and subiculum may reenter hippocampal subfields via the entorhinal cortex. To investigate this, we used simultaneous multi-site field potential recordings and current source density analysis in the entorhinal cortex and hippocampal formation of the rat in vivo. Under ketamine/xylazine anesthesia, we found that repetitive stimulation of subiculum or Schaffer collaterals facilitated entorhinal responses, such that a population spike appeared in layer III. In addition, a current sink in stratum lacunosum-moleculare of area CA1 was found, that followed responses in the entorhinal cortex, indicating reentrance into this area. Responses indicating reentrance in the dentate gyrus were not found under ketamine/xylazine anesthesia, but were readily evoked under urethane anesthesia. Reentrance into CA1 was also encountered under urethane anesthesia. These results suggest that parallel, but possibly functionally distinct, connections are present between the output of the hippocampal formation and cells in layers III and II of the entorhinal cortex that project to area CA1 and the dentate gyrus, respectively. 2004 Wiley-Liss, Inc.

  2. Adult Hippocampal Neurogenesis Modulates Fear Learning through Associative and Nonassociative Mechanisms

    Science.gov (United States)

    Seo, Dong-oh; Carillo, Mary Ann; Chih-Hsiung Lim, Sean; Tanaka, Kenji F.

    2015-01-01

    Adult hippocampal neurogenesis is believed to support hippocampus-dependent learning and emotional regulation. These putative functions of adult neurogenesis have typically been studied in isolation, and little is known about how they interact to produce adaptive behavior. We used trace fear conditioning as a model system to elucidate mechanisms through which adult hippocampal neurogenesis modulates processing of aversive experience. To achieve a specific ablation of neurogenesis, we generated transgenic mice that express herpes simplex virus thymidine kinase specifically in neural progenitors and immature neurons. Intracerebroventricular injection of the prodrug ganciclovir caused a robust suppression of neurogenesis without suppressing gliogenesis. Neurogenesis ablation via this method or targeted x-irradiation caused an increase in context conditioning in trace but not delay fear conditioning. Data suggest that this phenotype represents opposing effects of neurogenesis ablation on associative and nonassociative components of fear learning. Arrest of neurogenesis sensitizes mice to nonassociative effects of fear conditioning, as evidenced by increased anxiety-like behavior in the open field after (but not in the absence of) fear conditioning. In addition, arrest of neurogenesis impairs associative trace conditioning, but this impairment can be masked by nonassociative fear. The results suggest that adult neurogenesis modulates emotional learning via two distinct but opposing mechanisms: it supports associative trace conditioning while also buffering against the generalized fear and anxiety caused by fear conditioning. SIGNIFICANCE STATEMENT The role of adult hippocampal neurogenesis in fear learning is controversial, with some studies suggesting neurogenesis is needed for aspects of fear learning and others suggesting it is dispensable. We generated transgenic mice in which neural progenitors can be selectively and inducibly ablated. Our data suggest that adult

  3. Pressure suppression device

    International Nuclear Information System (INIS)

    Mizumachi, Wataru; Fukuda, Akira; Kitaguchi, Hidemi; Shimizu, Toshiaki.

    1976-01-01

    Object: To relieve and absorb impact wave vibrations caused by steam and non-condensed gases releasing into the pressure suppression chamber at the time of an accident. Structure: The reactor container is filled with inert gases. A safety valve attached main steam pipe is provided to permit the excessive steam to escape, the valve being communicated with the pressure suppression chamber through an exhaust pipe. In the pressure suppression chamber, a doughnut-like cylindrical outer wall is filled at its bottom with pool water to condense the high temperature vapor released through the exhaust pipe. A head portion of a vent tube which leads the exhaust pipe is positioned at the top, and a down comer and an exhaust vent tube are locked by means of steady rests. At the bottom is mounted a pressure adsorber device which adsorbs a pressure from the pool water. (Kamimura, M.)

  4. Thyroxin hormone suppression treatment

    International Nuclear Information System (INIS)

    Samuel, A.M.

    1999-01-01

    One of the important modalities of treatment of thyroid cancer (TC) after surgery is the administration of thyroxin as an adjuvant treatment. The analysis supports the theory that thyroid suppression plays an important role in patient management. 300 μg of thyroxin, as this is an adequate dose for suppression is given. Ideally the dose should be tailored by testing s-TSH levels. However, since a large number of the patients come from out station cities and villages this is impractical. We therefore depend on clinical criteria of hyperthyroid symptoms and adjust the dose. Very few patients need such adjustment

  5. Plasma suppression of beamstrahlung

    International Nuclear Information System (INIS)

    Whittum, D.H.; Sessler, A.M.; Stewart, J.J.; Yu, S.S.

    1988-06-01

    We investigate the use of a plasma at the interaction point of two colliding beams to suppress beamsstrahlung and related phenomena. We derive conditions for good current cancellation via plasma return currents and report on numerical simulations conducted to confirm our analytic results. 10 refs., 5 figs., 4 tabs

  6. Role of adult hippocampal neurogenesis in stress resilience

    Directory of Open Access Journals (Sweden)

    Brunno R. Levone

    2015-01-01

    Full Text Available There is a growing appreciation that adult hippocampal neurogenesis plays a role in emotional and cognitive processes related to psychiatric disorders. Although many studies have investigated the effects of stress on adult hippocampal neurogenesis, most have not focused on whether stress-induced changes in neurogenesis occur specifically in animals that are more resilient or more susceptible to the behavioural and neuroendocrine effects of stress. Thus, in the present review we explore whether there is a clear relationship between stress-induced changes in adult hippocampal neurogenesis, stress resilience and antidepressant-induced recovery from stress-induced changes in behaviour. Exposure to different stressors is known to reduce adult hippocampal neurogenesis, but some stressors have also been shown to exert opposite effects. Ablation of neurogenesis does not lead to a depressive phenotype, but it can enhance responsiveness to stress and affect stress susceptibility. Monoaminergic-targeted antidepressants, environmental enrichment and adrenalectomy are beneficial for reversing stress-induced changes in behaviour and have been shown to do so in a neurogenesis-dependant manner. In addition, stress and antidepressants can affect hippocampal neurogenesis, preferentially in the ventral hippocampus. Together, these data show that adult hippocampal neurogenesis may play a role in the neuroendocrine and behavioural responses to stress, although it is not yet fully clear under which circumstances neurogenesis promotes resilience or susceptibility to stress. It will be important that future studies carefully examine how adult hippocampal neurogenesis can contribute to stress resilience/susceptibility so that it may be appropriately exploited for the development of new and more effective treatments for stress-related psychiatric disorders.

  7. Hippocampal Hyperactivation in Presymptomatic Familial Alzheimer’s Disease

    Science.gov (United States)

    Quiroz, Yakeel T.; Budson, Andrew E.; Celone, Kim; Ruiz, Adriana; Newmark, Randall; Castrillón, Gabriel; Lopera, Francisco; Stern, Chantal E.

    2011-01-01

    Objective The examination of individuals who carry fully penetrant genetic alterations that result in familial Alzheimer’s disease (FAD) provides a unique model for studying the early presymptomatic disease stages. In AD, deficits in episodic and associative memory have been linked to structural and functional changes within the hippocampal system. This study used functional MRI (fMRI) to examine hippocampal function in a group of healthy, young, cognitively-intact presymptomatic individuals (average age 33.7 years) who carry the E280A presenilin-1 (PS1) genetic mutation for FAD. These PS1 subjects will go on to develop the first symptoms of the disease around the age of 45 years. Our objective was to examine hippocampal function years before the onset of clinical symptoms. Methods Twenty carriers of the Alzheimer’s-associated E280A PS1 mutation and 19 PS1-negative control subjects participated. Both groups were matched for age, sex, education level, and neuropsychological test performance. All participants performed a face-name associative encoding task while in a Philips 1.5T fMRI scanner. Analysis focused on the hippocampal system. Results Despite identical behavioral performance, presymptomatic PS1 mutation carriers exhibited increased activation of the right anterior hippocampus during encoding of novel face-name associations compared to matched controls. Interpretation Our results demonstrate that functional changes within the hippocampal memory system occur years before cognitive decline in FAD. These presymptomatic changes in hippocampal physiology in FAD suggest that hippocampal fMRI patterns during associative encoding may also provide a preclinical biomarker in sporadic AD. PMID:21194156

  8. Associative reinstatement memory measures hippocampal function in Parkinson's Disease.

    Science.gov (United States)

    Cohn, Melanie; Giannoylis, Irene; De Belder, Maya; Saint-Cyr, Jean A; McAndrews, Mary Pat

    2016-09-01

    In Parkinson's Disease (PD), hippocampal atrophy is associated with rapid cognitive decline. Hippocampal function is typically assessed using memory tests but current clinical tools (e.g., free recall) also rely on executive functions or use material that is not optimally engaging hippocampal memory networks. Because of the ubiquity of executive dysfunction in PD, our ability to detect true memory deficits is suboptimal. Our previous behavioural and neuroimaging work in other populations suggests that an experimental memory task - Associative Reinstatement Memory (ARM) - may prove useful in investigating hippocampal function in PD. In this study, we investigated whether ARM is compromised in PD and we assessed its convergent and divergent validity by comparing it to standardized measures of memory and of attention and executive functioning in PD, respectively. Using fMRI, we also investigated whether performance in PD relates to degree of hippocampal engagement. Fifteen participants with PD and 13 age-matched healthy controls completed neuropsychological testing as well as an ARM fMRI recognition paradigm in which they were instructed to identify word pairs comprised of two studied words (intact or rearranged pairs) and those containing at least one new word (new or half new pairs). ARM is measured by the differences in hit rates between intact and rearranged pairs. Behaviourally, ARM was poorer in PD relative to controls and was correlated with verbal memory measures, but not with attention or executive functioning in the PD group. Hippocampal activation associated with ARM was reduced in PD relative to controls and covaried with ARM scores in both groups. To conclude, ARM is a sensitive measure of hippocampal memory function that is unaffected by attention or executive dysfunction in PD. Our study highlights the benefit of integrating cognitive neuroscience frameworks and novel experimental tasks to improve the practice of clinical neuropsychology in PD

  9. Acetylcholine release in mouse hippocampal CA1 preferentially activates inhibitory-selective interneurons via alpha4 beta2* nicotinic receptor activation

    Directory of Open Access Journals (Sweden)

    L. Andrew Bell

    2015-04-01

    Full Text Available Acetylcholine (ACh release onto nicotinic receptors directly activates subsets of inhibitory interneurons in hippocampal CA1. However, the specific interneurons activated and their effect on the hippocampal network is not completely understood. Therefore, we investigated subsets of hippocampal CA1 interneurons that respond to ACh release through the activation of nicotinic receptors and the potential downstream effects this may have on hippocampal CA1 network function. ACh was optogenetically released in mouse hippocampal slices by expressing the excitatory optogenetic protein oChIEF-tdTomato in medial septum/diagonal band of Broca cholinergic neurons using Cre recombinase-dependent adeno-associated viral mediated transfection. The actions of optogenetically released ACh were assessed on both pyramidal neurons and different interneuron subtypes via whole cell patch clamp methods. Vasoactive intestinal peptide (VIP-expressing interneurons that selectively innervate other interneurons (VIP/IS were excited by ACh through the activation of nicotinic receptors containing alpah4 and beta2 subunits (alpha4 beta2*. ACh release onto VIP/IS was presynaptically inhibited by M2 muscarinic autoreceptors. ACh release produced spontaneous inhibitory postsynaptic current (sIPSC barrages blocked by dihydro-beta-erythroidine in interneurons but not pyramidal neurons. Optogenetic suppression of VIP interneurons did not inhibit these sIPSC barrages suggesting other interneuron-selective interneurons were also excited by 42* nicotinic receptor activation. In contrast, interneurons that innervate pyramidal neuron perisomatic regions were not activated by ACh release onto nicotinic receptors. Therefore, we propose ACh release in CA1 facilitates disinhibition through activation of 42* nicotinic receptors on interneuron-selective interneurons whereas interneurons that innervate pyramidal neurons are less affected by nicotinic receptor activation.

  10. Effect of Opioid on Adult Hippocampal Neurogenesis

    Directory of Open Access Journals (Sweden)

    Yue Zhang

    2016-01-01

    Full Text Available During the past decade, the study of the mechanisms and functional implications of adult neurogenesis has significantly progressed. Many studies focus on the factors that regulate proliferation and fate determination of adult neural stem/progenitor cells, including addictive drugs such as opioid. Here, we review the most recent works on opiate drugs’ effect on different developmental stages of adult hippocampal neurogenesis, as well as the possible underlying mechanisms. We conclude that opiate drugs in general cause a loss of newly born neural progenitors in the subgranular zone of dentate gyrus, by either modulating proliferation or interfering with differentiation and maturation. We also discuss the consequent impact of regulation of adult neurogenesis in animal’s opioid addiction behavior. We further look into the future directions in studying the convergence between the adult neurogenesis field and opioid addiction field, since the adult-born granular cells were shown to play a role in neuroplasticity and may help to reduce the vulnerability to drug craving and relapse.

  11. D-serine increases adult hippocampal neurogenesis

    Directory of Open Access Journals (Sweden)

    Sebastien eSultan

    2013-08-01

    Full Text Available Adult hippocampal neurogenesis results in the continuous formation of new neurons and is a process of brain plasticity involved in learning and memory. The neurogenic niche regulates the stem cell proliferation and the differentiation and survival of new neurons and a major contributor to the neurogenic niche are astrocytes. Among the molecules secreted by astrocytes, D-serine is an important gliotransmitter and is a co-agonist of the glutamate, N-methyl-D-aspartate (NMDA receptor. D-serine has been shown to enhance the proliferation of neural stem cells in vitro, but its effect on adult neurogenesis in vivo is unknown. Here, we tested the effect of exogenous administration of D-serine on adult neurogenesis in the mouse dentate gyrus. We found that 1 week of treatment with D-serine increased cell proliferation in vivo and in vitro and increased the density of neural stem cells and transit amplifying progenitors. Furthermore, D-serine increased the survival of newborn neurons. Together, these results indicate that D-serine treatment resulted in the improvement of several steps of adult neurogenesis in vivo.

  12. Trafficking of astrocytic vesicles in hippocampal slices

    International Nuclear Information System (INIS)

    Potokar, Maja; Kreft, Marko; Lee, So-Young; Takano, Hajime; Haydon, Philip G.; Zorec, Robert

    2009-01-01

    The increasingly appreciated role of astrocytes in neurophysiology dictates a thorough understanding of the mechanisms underlying the communication between astrocytes and neurons. In particular, the uptake and release of signaling substances into/from astrocytes is considered as crucial. The release of different gliotransmitters involves regulated exocytosis, consisting of the fusion between the vesicle and the plasma membranes. After fusion with the plasma membrane vesicles may be retrieved into the cytoplasm and may continue to recycle. To study the mobility implicated in the retrieval of secretory vesicles, these structures have been previously efficiently and specifically labeled in cultured astrocytes, by exposing live cells to primary and secondary antibodies. Since the vesicle labeling and the vesicle mobility properties may be an artifact of cell culture conditions, we here asked whether the retrieving exocytotic vesicles can be labeled in brain tissue slices and whether their mobility differs to that observed in cell cultures. We labeled astrocytic vesicles and recorded their mobility with two-photon microscopy in hippocampal slices from transgenic mice with fluorescently tagged astrocytes (GFP mice) and in wild-type mice with astrocytes labeled by Fluo4 fluorescence indicator. Glutamatergic vesicles and peptidergic granules were labeled by the anti-vesicular glutamate transporter 1 (vGlut1) and anti-atrial natriuretic peptide (ANP) antibodies, respectively. We report that the vesicle mobility parameters (velocity, maximal displacement and track length) recorded in astrocytes from tissue slices are similar to those reported previously in cultured astrocytes.

  13. A Nonlinear Model for Hippocampal Cognitive Prosthesis: Memory Facilitation by Hippocampal Ensemble Stimulation

    Science.gov (United States)

    Hampson, Robert E.; Song, Dong; Chan, Rosa H.M.; Sweatt, Andrew J.; Riley, Mitchell R.; Gerhardt, Gregory A.; Shin, Dae C.; Marmarelis, Vasilis Z.; Berger, Theodore W.; Deadwyler, Samuel A.

    2012-01-01

    Collaborative investigations have characterized how multineuron hippocampal ensembles encode memory necessary for subsequent successful performance by rodents in a delayed nonmatch to sample (DNMS) task and utilized that information to provide the basis for a memory prosthesis to enhance performance. By employing a unique nonlinear dynamic multi-input/multi-output (MIMO) model, developed and adapted to hippocampal neural ensemble firing patterns derived from simultaneous recorded CA1 and CA3 activity, it was possible to extract information encoded in the sample phase necessary for successful performance in the nonmatch phase of the task. The extension of this MIMO model to online delivery of electrical stimulation delivered to the same recording loci that mimicked successful CA1 firing patterns, provided the means to increase levels of performance on a trial-by-trial basis. Inclusion of several control procedures provides evidence for the specificity of effective MIMO model generated patterns of electrical stimulation. Increased utility of the MIMO model as a prosthesis device was exhibited by the demonstration of cumulative increases in DNMS task performance with repeated MIMO stimulation over many sessions on both stimulation and nonstimulation trials, suggesting overall system modification with continued exposure. Results reported here are compatible with and extend prior demonstrations and further support the candidacy of the MIMO model as an effective cortical prosthesis. PMID:22438334

  14. Cortico-hippocampal interaction and adaptive stimulus representation: A neurocomputational theory of associative learning and memory.

    NARCIS (Netherlands)

    Gluck, M.A.; Myers, C.E; Meeter, M.

    2005-01-01

    Computational models of the hippocampal region link psychological theories of associative learning with their underlying physiological and anatomical substrates. Our approach to theory development began with a broad description of the computations that depend on the hippocampal region in classical

  15. Qualitative and Quantitative Hippocampal MRI Assessments in Intractable Epilepsy

    Directory of Open Access Journals (Sweden)

    Paramdeep Singh

    2013-01-01

    Full Text Available Aims. To acquire normative data of hippocampal volumes and T2 relaxation times, to evaluate and compare qualitative and quantitative assessments in evaluating hippocampi in patients with different durations of intractable epilepsy, and to propose an imaging protocol based on performance of these techniques. Methods. MRI analysis was done in 50 nonepileptic controls and 30 patients with intractable epilepsy on 1.5T scanner. Visual assessment and hippocampal volumetry were done on oblique coronal IR/T2W and T1W MP-RAGE images, respectively. T2 relaxation times were measured using 16-echo Carr-Purcell-Meiboom-Gill sequence. Volumetric data was normalized for variation in head size between individuals. Patients were divided into temporal ( and extratemporal ( groups based on clinical and EEG localization. Results. In controls, right hippocampal volume was slightly more than the left with no effect of age or gender. In TLE patients, hippocampal volumetry provided maximum concordance with EEG. Visual assessment of unilateral pathology concurred well with measured quantitative values but poorly in cases with bilateral pathologies. There were no significant differences of mean values between extratemporal group and controls group. Quantitative techniques detected mild abnormalities, undetected on visual assessment. Conclusions. Quantitative techniques are more sensitive to diagnose bilateral and mild unilateral hippocampal abnormalities.

  16. Hippocampal and Amygdalar Volumes in Dissociative Identity Disorder

    Science.gov (United States)

    Vermetten, Eric; Schmahl, Christian; Lindner, Sanneke; Loewenstein, Richard J.; Bremner, J. Douglas

    2011-01-01

    Objective Smaller hippocampal volume has been reported in several stress-related psychiatric disorders, including posttraumatic stress disorder (PTSD), borderline personality disorder with early abuse, and depression with early abuse. Patients with borderline personality disorder and early abuse have also been found to have smaller amygdalar volume. The authors examined hippocampal and amygdalar volumes in patients with dissociative identity disorder, a disorder that has been associated with a history of severe childhood trauma. Method The authors used magnetic resonance imaging to measure the volumes of the hippocampus and amygdala in 15 female patients with dissociative identity disorder and 23 female subjects without dissociative identity disorder or any other psychiatric disorder. The volumetric measurements for the two groups were compared. Results Hippocampal volume was 19.2% smaller and amygdalar volume was 31.6% smaller in the patients with dissociative identity disorder, compared to the healthy subjects. The ratio of hippocampal volume to amygdalar volume was significantly different between groups. Conclusions The findings are consistent with the presence of smaller hippocampal and amygdalar volumes in patients with dissociative identity disorder, compared with healthy subjects. PMID:16585437

  17. Vitamin D and hippocampal development-the story so far.

    Science.gov (United States)

    Lardner, Anne L

    2015-01-01

    Epidemiological studies suggest that vitamin D insufficiency may be prevalent in young as well as older populations. The pleiotropic effects of vitamin D are now beyond dispute and a growing number of studies provide accumulating evidence of a role for vitamin D in brain development and function. A number of studies to date have investigated the effects of early-life vitamin D deprivation on adult hippocampus in animals and humans, and there is a growing body of evidence to suggest a role for this hormone in the development of selected hippocampal functions such as latent inhibition and hole board habituation in rats. There are few studies to date of vitamin D deprivation or supplementation on early hippocampal development in vivo. However, a small number of studies, mostly in vitro, point to a role for vitamin D in differentiation and development of hippocampal neurons. There is also limited evidence that supplementation with vitamin D following a period of deprivation is capable of restoring cellular activity and later function. Further avenues of future research are outlined including animal studies on the effects of vitamin D deprivation and inadequacy on early hippocampal biochemistry and function, e.g., measurement of BDNF levels, GABAergic activity, long-term potentiation (LTP) and spatial navigation. It also remains to be established if there are critical developmental windows during which vitamin D is required. In light of the importance of the hippocampus in LTP and spatial learning, further investigations on the early effects of vitamin D deprivation on hippocampal development are warranted.

  18. Remote semantic memory is impoverished in hippocampal amnesia.

    Science.gov (United States)

    Klooster, Nathaniel B; Duff, Melissa C

    2015-12-01

    The necessity of the hippocampus for acquiring new semantic concepts is a topic of considerable debate. However, it is generally accepted that any role the hippocampus plays in semantic memory is time limited and that previously acquired information becomes independent of the hippocampus over time. This view, along with intact naming and word-definition matching performance in amnesia, has led to the notion that remote semantic memory is intact in patients with hippocampal amnesia. Motivated by perspectives of word learning as a protracted process where additional features and senses of a word are added over time, and by recent discoveries about the time course of hippocampal contributions to on-line relational processing, reconsolidation, and the flexible integration of information, we revisit the notion that remote semantic memory is intact in amnesia. Using measures of semantic richness and vocabulary depth from psycholinguistics and first and second language-learning studies, we examined how much information is associated with previously acquired, highly familiar words in a group of patients with bilateral hippocampal damage and amnesia. Relative to healthy demographically matched comparison participants and a group of brain-damaged comparison participants, the patients with hippocampal amnesia performed significantly worse on both productive and receptive measures of vocabulary depth and semantic richness. These findings suggest that remote semantic memory is impoverished in patients with hippocampal amnesia and that the hippocampus may play a role in the maintenance and updating of semantic memory beyond its initial acquisition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Amyloid Beta Peptide Slows Down Sensory-Induced Hippocampal Oscillations

    Directory of Open Access Journals (Sweden)

    Fernando Peña-Ortega

    2012-01-01

    Full Text Available Alzheimer’s disease (AD progresses with a deterioration of hippocampal function that is likely induced by amyloid beta (Aβ oligomers. Hippocampal function is strongly dependent on theta rhythm, and disruptions in this rhythm have been related to the reduction of cognitive performance in AD. Accordingly, both AD patients and AD-transgenic mice show an increase in theta rhythm at rest but a reduction in cognitive-induced theta rhythm. We have previously found that monomers of the short sequence of Aβ (peptide 25–35 reduce sensory-induced theta oscillations. However, considering on the one hand that different Aβ sequences differentially affect hippocampal oscillations and on the other hand that Aβ oligomers seem to be responsible for the cognitive decline observed in AD, here we aimed to explore the effect of Aβ oligomers on sensory-induced theta rhythm. Our results show that intracisternal injection of Aβ1–42 oligomers, which has no significant effect on spontaneous hippocampal activity, disrupts the induction of theta rhythm upon sensory stimulation. Instead of increasing the power in the theta band, the hippocampus of Aβ-treated animals responds to sensory stimulation (tail pinch with an increase in lower frequencies. These findings demonstrate that Aβ alters induced theta rhythm, providing an in vivo model to test for therapeutic approaches to overcome Aβ-induced hippocampal and cognitive dysfunctions.

  20. Hippocampal-neocortical functional reorganization underlies children's cognitive development.

    Science.gov (United States)

    Qin, Shaozheng; Cho, Soohyun; Chen, Tianwen; Rosenberg-Lee, Miriam; Geary, David C; Menon, Vinod

    2014-09-01

    The importance of the hippocampal system for rapid learning and memory is well recognized, but its contributions to a cardinal feature of children's cognitive development-the transition from procedure-based to memory-based problem-solving strategies-are unknown. Here we show that the hippocampal system is pivotal to this strategic transition. Longitudinal functional magnetic resonance imaging (fMRI) in 7-9-year-old children revealed that the transition from use of counting to memory-based retrieval parallels increased hippocampal and decreased prefrontal-parietal engagement during arithmetic problem solving. Longitudinal improvements in retrieval-strategy use were predicted by increased hippocampal-neocortical functional connectivity. Beyond childhood, retrieval-strategy use continued to improve through adolescence into adulthood and was associated with decreased activation but more stable interproblem representations in the hippocampus. Our findings provide insights into the dynamic role of the hippocampus in the maturation of memory-based problem solving and establish a critical link between hippocampal-neocortical reorganization and children's cognitive development.

  1. Hippocampal functional connectivity and episodic memory in early childhood.

    Science.gov (United States)

    Riggins, Tracy; Geng, Fengji; Blankenship, Sarah L; Redcay, Elizabeth

    2016-06-01

    Episodic memory relies on a distributed network of brain regions, with the hippocampus playing a critical and irreplaceable role. Few studies have examined how changes in this network contribute to episodic memory development early in life. The present addressed this gap by examining relations between hippocampal functional connectivity and episodic memory in 4- and 6-year-old children (n=40). Results revealed similar hippocampal functional connectivity between age groups, which included lateral temporal regions, precuneus, and multiple parietal and prefrontal regions, and functional specialization along the longitudinal axis. Despite these similarities, developmental differences were also observed. Specifically, 3 (of 4) regions within the hippocampal memory network were positively associated with episodic memory in 6-year-old children, but negatively associated with episodic memory in 4-year-old children. In contrast, all 3 regions outside the hippocampal memory network were negatively associated with episodic memory in older children, but positively associated with episodic memory in younger children. These interactions are interpreted within an interactive specialization framework and suggest the hippocampus becomes functionally integrated with cortical regions that are part of the hippocampal memory network in adults and functionally segregated from regions unrelated to memory in adults, both of which are associated with age-related improvements in episodic memory ability. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Altered Hippocampal Morphology in Unmedicated Patients with Major Depressive Illness

    Directory of Open Access Journals (Sweden)

    Carrie E Bearden

    2009-10-01

    Full Text Available Despite converging evidence that major depressive illness is associated with both memory impairment and hippocampal pathology, findings vary widely across studies and it is not known whether these changes are regionally specific. In the present study we acquired brain MRIs (magnetic resonance images from 31 unmedicated patients with MDD (major depressive disorder; mean age 39.2±11.9 years; 77% female and 31 demographically comparable controls. Three-dimensional parametric mesh models were created to examine localized alterations of hippocampal morphology. Although global volumes did not differ between groups, statistical mapping results revealed that in MDD patients, more severe depressive symptoms were associated with greater left hippocampal atrophy, particularly in CA1 (cornu ammonis 1 subfields and the subiculum. However, previous treatment with atypical antipsychotics was associated with a trend towards larger left hippocampal volume. Our findings suggest effects of illness severity on hippocampal size, as well as a possible effect of past history of atypical antipsychotic treatment, which may reflect prolonged neuroprotective effects. This possibility awaits confirmation in longitudinal studies.

  3. Hippocampal and amygdalar volumes in dissociative identity disorder.

    Science.gov (United States)

    Vermetten, Eric; Schmahl, Christian; Lindner, Sanneke; Loewenstein, Richard J; Bremner, J Douglas

    2006-04-01

    Smaller hippocampal volume has been reported in several stress-related psychiatric disorders, including posttraumatic stress disorder (PTSD), borderline personality disorder with early abuse, and depression with early abuse. Patients with borderline personality disorder and early abuse have also been found to have smaller amygdalar volume. The authors examined hippocampal and amygdalar volumes in patients with dissociative identity disorder, a disorder that has been associated with a history of severe childhood trauma. The authors used magnetic resonance imaging to measure the volumes of the hippocampus and amygdala in 15 female patients with dissociative identity disorder and 23 female subjects without dissociative identity disorder or any other psychiatric disorder. The volumetric measurements for the two groups were compared. Hippocampal volume was 19.2% smaller and amygdalar volume was 31.6% smaller in the patients with dissociative identity disorder, compared to the healthy subjects. The ratio of hippocampal volume to amygdalar volume was significantly different between groups. The findings are consistent with the presence of smaller hippocampal and amygdalar volumes in patients with dissociative identity disorder, compared with healthy subjects.

  4. J/Ψ suppression

    International Nuclear Information System (INIS)

    Giubellino, P.; Abreu, M.C.; Alessandro, B.; Alexa, C.; Arnaldi, R.; Astruc, J.; Atayan, M.; Baglin, C.; Baldit, A.; Bedjidian, M.; Bellaiche, F.; Beole, S.; Boldea, V.; Bordalo, P.; Bussiere, A.; Capony, V.; Casagrande, L.; Castor, J.; Chambon, T.; Chaurand, B.; Chevrot, I.; Cheynis, B.; Chiavassa, E.; Cicalo, C.; Comets, M.P.; Constantinescu, S.; Cruz, J.; De Falco, A.; De Marco, N.; Dellacasa, G.; Devaux, A.; Dita, S.; Drapier, O.; Espagnon, B.; Fargeix, J.; Filippov, S.N.; Fleuret, F.; Force, P.; Gallio, M.; Gavrilov, Y.K.; Gerschel, C.; Giubellino, P.; Golubeva, M.B.; Gonin, M.; Grigorian, A.A.; Grossiord, J.Y.; Guber, F.F.; Guichard, A.; Gulkaninan, H.; Hakobyan, R.; Haroutunian, R.; Idzik, M.; Jouan, D.; Karavitcheva, T.L.; Kluberg, L.; Kurepin, A.B.; Le Bornec, Y.; Lourenco, C.; Mac Cormick, M.; Macciotta, P.; Marzari-Chiesa, A.; Masera, M.; Masoni, A.; Mehrabyan, S.; Mourgues, S.; Musso, A.; Ohlsson-Malek, F.; Petiau, P.; Piccotti, A.; Pizzi, J.R.; Prado da Silva, W.L.; Puddu, G.; Quintans, C.; Racca, C.; Ramello, L.; Ramos, S.; Rato-Mendes, P.; Riccati, L.; Romana, A.; Sartori, S.; Saturnini, P.; Scomparin, E.; Serci, S.; Shahoyan, R.; Silva, S.; Soave, C.; Sonderegger, P.; Tarrago, X.; Temnikov, P.; Topilskaya, N.S.; Usai, G.; Vale, C.; Vercellin, E.; Willis, N.

    1999-01-01

    The cross section for J/Ψ production in Pb-Pb interactions at 158 GeV per nucleon is measured at the CERN SPS by the NA50 experiment. The final results from the 1995 run are presented here together with preliminary ones from the high-statistics 1996 run. An anomalous J/Ψ suppression is observed in Pb-Pb collisions as compared to extrapolations of the previous results obtained by the NA38 experiment with proton and lighter ion beams. The results of the two runs are in good agreement. The results from the 1996 run allow the study of the onset of the anomalous suppression within the same set of data, showing evidence of a sharp change of behaviour around a value of neutral transverse energy, as measured by our electromagnetic calorimeter, of about 50 GeV

  5. Maternal exposure to hexachlorophene targets intermediate-stage progenitor cells of the hippocampal neurogenesis in rat offspring via dysfunction of cholinergic inputs by myelin vacuolation

    International Nuclear Information System (INIS)

    Itahashi, Megu; Abe, Hajime; Tanaka, Takeshi; Mizukami, Sayaka; Kimura, Masayuki; Yoshida, Toshinori; Shibutani, Makoto

    2015-01-01

    Highlights: • The effect of maternal exposure to HCP on rat hippocampal neurogenesis was examined. • HCP induces myelin vacuolation of nerve tracts in the septal–hippocampal pathway. • Myelin changes suppress Chrnb2-mediated cholinergic inputs to the dentate gyrus. • SGZ apoptosis occurs via the mitochondrial pathway and targets type-2b cells. • Dysfunction of cholinergic inputs is related to type-2b SGZ cell apoptosis. - Abstract: Hexachlorophene (HCP) is known to induce myelin vacuolation corresponding to intramyelinic edema of nerve fibers in the central and peripheral nervous system in animals. This study investigated the effect of maternal exposure to HCP on hippocampal neurogenesis in rat offspring using pregnant rats supplemented with 0 (controls), 100, or 300 ppm HCP in the diet from gestational day 6 to day 21 after delivery. On postnatal day (PND) 21, the numbers of T box brain 2 + progenitor cells and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling + apoptotic cells in the hippocampal subgranular zone (SGZ) decreased in female offspring at 300 ppm, which was accompanied by myelin vacuolation and punctate tubulin beta-3 chain staining of nerve fibers in the hippocampal fimbria. In addition, transcript levels of the cholinergic receptor, nicotinic beta 2 (Chrnb2) and B-cell CLL/lymphoma 2 (Bcl2) decreased in the dentate gyrus. HCP-exposure did not alter the numbers of SGZ proliferating cells and reelin- or calcium-binding protein-expressing γ-aminobutyric acid (GABA)-ergic interneuron subpopulations in the dentate hilus on PND 21 and PND 77. Although some myelin vacuolation remained, all other changes observed in HCP-exposed offspring on PND 21 disappeared on PND 77. These results suggest that maternal HCP exposure reversibly decreases type-2b intermediate-stage progenitor cells via the mitochondrial apoptotic pathway in offspring hippocampal neurogenesis at 300 ppm HCP. Neurogenesis may be affected by dysfunction

  6. Hippocampal neuron populations are reduced in vervet monkeys with fetal alcohol exposure

    DEFF Research Database (Denmark)

    Burke, Mark W; Ptito, Maurice; Ervin, Frank R

    2015-01-01

    of pregnancy. Here, we report significant numerical reductions in the principal hippocampal neurons of fetal alcohol-exposed (FAE) offspring, as compared to age-matched, similarly housed conspecifics with isocaloric sucrose exposure. These deficits, particularly marked in CA1 and CA3, are present neonatally...... late pregnancy results in a stable loss of hippocampal neurons and a progressive reduction of hippocampal volume....

  7. Divergent Roles of Central Serotonin in Adult Hippocampal Neurogenesis

    Directory of Open Access Journals (Sweden)

    Ning-Ning Song

    2017-06-01

    Full Text Available The central serotonin (5-HT system is the main target of selective serotonin reuptake inhibitors (SSRIs, the first-line antidepressants widely used in current general practice. One of the prominent features of chronic SSRI treatment in rodents is the enhanced adult neurogenesis in the hippocampus, which has been proposed to contribute to antidepressant effects. Therefore, tremendous effort has been made to decipher how central 5-HT regulates adult hippocampal neurogenesis. In this paper, we review how changes in the central serotonergic system alter adult hippocampal neurogenesis. We focus on data obtained from three categories of genetically engineered mouse models: (1 mice with altered central 5-HT levels from embryonic stages, (2 mice with deletion of 5-HT receptors from embryonic stages, and (3 mice with altered central 5-HT system exclusively in adulthood. These recent findings provide unique insights to interpret the multifaceted roles of central 5-HT on adult hippocampal neurogenesis and its associated effects on depression.

  8. Cannabinoids modulate hippocampal memory and plasticity.

    Science.gov (United States)

    Abush, Hila; Akirav, Irit

    2010-10-01

    Considerable evidence demonstrates that cannabinoid agonists impair whereas cannabinoid antagonists improve memory and plasticity. However, recent studies suggest that the effects of cannabinoids on learning do not necessarily follow these simple patterns, particularly when emotional memory processes are involved. We investigated the involvement of the cannabinoid system in hippocampal learning and plasticity using the fear-related inhibitory avoidance (IA) and the non-fear-related spatial learning paradigms, and cellular models of learning and memory, i.e., long-term potentiation (LTP) and long-term depression (LTD). We found that microinjection into the CA1 of the CB1/CB2 receptor agonist WIN55,212-2 (5 μg/side) and an inhibitor of endocannabinoid reuptake and breakdown AM404 (200 ng/side) facilitated the extinction of IA, while the CB1 receptor antagonist AM251 (6 ng/side) impaired it. WIN55,212-2 and AM251 did not affect IA conditioning, while AM404 enhanced it, probably due to a drug-induced increase in pain sensitivity. However, in the water maze, systemic or local CA1 injections of AM251, WIN55,212-2, and AM404 all impaired spatial learning. We also found that i.p. administration of WIN55,212-2 (0.5 mg/kg), AM404 (10 mg/kg), and AM251 (2 mg/kg) impaired LTP in the Schaffer collateral-CA1 projection, whereas AM404 facilitated LTD. Our findings suggest diverse effects of the cannabinoid system on CA1 memory and plasticity that cannot be categorized simply into an impairing or an enhancing effect of cannabinoid activation and deactivation, respectively. Moreover, they provide preclinical support for the suggestion that targeting the endocannabinoid system may aid in the treatment of disorders associated with impaired extinction-like processes, such as post-traumatic stress disorder. © 2009 Wiley-Liss, Inc.

  9. Sampling the Mouse Hippocampal Dentate Gyrus

    Directory of Open Access Journals (Sweden)

    Lisa Basler

    2017-12-01

    Full Text Available Sampling is a critical step in procedures that generate quantitative morphological data in the neurosciences. Samples need to be representative to allow statistical evaluations, and samples need to deliver a precision that makes statistical evaluations not only possible but also meaningful. Sampling generated variability should, e.g., not be able to hide significant group differences from statistical detection if they are present. Estimators of the coefficient of error (CE have been developed to provide tentative answers to the question if sampling has been “good enough” to provide meaningful statistical outcomes. We tested the performance of the commonly used Gundersen-Jensen CE estimator, using the layers of the mouse hippocampal dentate gyrus as an example (molecular layer, granule cell layer and hilus. We found that this estimator provided useful estimates of the precision that can be expected from samples of different sizes. For all layers, we found that a smoothness factor (m of 0 generally provided better estimates than an m of 1. Only for the combined layers, i.e., the entire dentate gyrus, better CE estimates could be obtained using an m of 1. The orientation of the sections impacted on CE sizes. Frontal (coronal sections are typically most efficient by providing the smallest CEs for a given amount of work. Applying the estimator to 3D-reconstructed layers and using very intense sampling, we observed CE size plots with m = 0 to m = 1 transitions that should also be expected but are not often observed in real section series. The data we present also allows the reader to approximate the sampling intervals in frontal, horizontal or sagittal sections that provide CEs of specified sizes for the layers of the mouse dentate gyrus.

  10. Bilateral reorganization of the dentate gyrus in hippocampal sclerosis

    Science.gov (United States)

    Thom, M; Martinian, L; Catarino, C; Yogarajah, M; Koepp, M J.; Caboclo, L; Sisodiya, S M.

    2009-01-01

    Background: Hippocampal sclerosis (HS) is the most common surgical pathology associated with mesial temporal lobe epilepsy (MTLE). HS is typically characterized by mossy fiber sprouting (MFS) and reorganization of neuropeptide Y (NPY) fiber networks in the dentate gyrus. One potential cause of postoperative seizure recurrence following temporal lobe surgery may be the presence of seizure-associated bilateral hippocampal damage. We aimed to investigate patterns of hippocampal abnormalities in a postmortem series as identified by NPY and dynorphin immunohistochemistry. Methods: Analysis of dentate gyrus fiber reorganization, using dynorphin (to demonstrate MFS) and NPY immunohistochemistry, was carried out in a postmortem epilepsy series of 25 cases (age range 21–96 years). In 9 patients, previously refractory seizures had become well controlled for up to 34 years prior to death. Results: Bilateral MFS or abnormal NPY patterns were seen in 15 patients including those with bilateral symmetric, asymmetric, and unilateral HS by conventional histologic criteria. MFS and NPY reorganization was present in all classical HS cases, more variably in atypical HS, present in both MTLE and non-MTLE syndromes and with seizure histories of up to 92 years, despite seizure remission in some patients. Conclusion: Synaptic reorganization in the dentate gyrus may be a bilateral, persistent process in epilepsy. It is unlikely to be sufficient to generate seizures and more likely to represent a seizure-induced phenomenon. GLOSSARY AED = antiepileptic drug; CA1p = CA1-predominant hippocampal sclerosis; CHS = classical hippocampal sclerosis; EFG = end folium gliosis; EFS = end folium sclerosis; GCD = granule cell dispersion; GCL = granule cell layer; HS = hippocampal sclerosis; MFS = mossy fiber sprouting; MTLE = mesial temporal lobe epilepsy; NPY = neuropeptide Y; ROI = region of interest; SE = status epilepticus; TLE = temporal lobe epilepsy. PMID:19710404

  11. Roles of hippocampal subfields in verbal and visual episodic memory.

    Science.gov (United States)

    Zammit, Andrea R; Ezzati, Ali; Zimmerman, Molly E; Lipton, Richard B; Lipton, Michael L; Katz, Mindy J

    2017-01-15

    Selective hippocampal (HC) subfield atrophy has been reported in older adults with mild cognitive impairment and Alzheimer's disease. The goal of this study was to investigate the associations between the volume of hippocampal subfields and visual and verbal episodic memory in cognitively normal older adults. This study was conducted on a subset of 133 participants from the Einstein Aging Study (EAS), a community-based study of non-demented older adults systematically recruited from the Bronx, N.Y. All participants completed comprehensive EAS neuropsychological assessment. Visual episodic memory was assessed using the Complex Figure Delayed Recall subtest from the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). Verbal episodic memory was assessed using Delayed Recall from the Free and Cued Selective Reminding Test (FCSRT). All participants underwent 3T MRI brain scanning with subsequent automatic measurement of the hemispheric hippocampal subfield volumes (CA1, CA2-CA3, CA4-dente gyrus, presubiculum, and subiculum). We used linear regressions to model the association between hippocampal subfield volumes and visual and verbal episodic memory tests while adjusting for age, sex, education, and total intracranial volume. Participants had a mean age of 78.9 (SD=5.1) and 60.2% were female. Total hippocampal volume was associated with Complex Figure Delayed Recall (β=0.31, p=0.001) and FCSRT Delayed Recall (β=0.27, p=0.007); subiculum volume was associated with Complex Figure Delayed Recall (β=0.27, p=0.002) and FCSRT Delayed Recall (β=0.24, p=0.010); CA1 was associated with Complex Figure Delayed Recall (β=0.26, pmemory. Our results suggest that hippocampal subfields have sensitive roles in the process of visual and verbal episodic memory. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Higher-order conditioning is impaired by hippocampal lesions.

    Science.gov (United States)

    Gilboa, Asaf; Sekeres, Melanie; Moscovitch, Morris; Winocur, Gordon

    2014-09-22

    Behavior in the real world is rarely motivated by primary conditioned stimuli that have been directly associated with potent unconditioned reinforcers. Instead, motivation and choice behavior are driven by complex chains of higher-order associations that are only indirectly linked to intrinsic reward and often exert their influence outside awareness. Second-order conditioning (SOC) [1] is a basic associative-learning mechanism whereby stimuli acquire motivational salience by proxy, in the absence of primary incentives [2, 3]. Memory-systems theories consider first-order conditioning (FOC) and SOC to be prime examples of hippocampal-independent nondeclarative memory [4, 5]. Accordingly, neurobiological models of SOC focus almost exclusively on nondeclarative neural systems that support motivational salience and reward value. Transfer of value from a conditioned stimulus to a neutral stimulus is thought to require the basolateral amygdala [6, 7] and the ventral striatum [2, 3], but not the hippocampus. We developed a new paradigm to measure appetitive SOC of tones in rats. Hippocampal lesions severely impaired both acquisition and expression of SOC despite normal FOC. Unlike controls, rats with hippocampal lesions could not discriminate between positive and negative secondary conditioned tones, although they exhibited general familiarity with previously presented tones compared with new tones. Importantly, normal rats' behavior, in contrast to that of hippocampal groups, also revealed different confidence levels as indexed by effort, a central characteristic of hippocampal relational memory. The results indicate, contrary to current systems models, that representations of intrinsic relationships between reward value, stimulus identity, and motivation require hippocampal mediation when these relationships are of a higher order. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Modulation of hippocampal activity with fornix Deep Brain Stimulation.

    Science.gov (United States)

    Stypulkowski, Paul H; Stanslaski, Scott R; Giftakis, Jonathon E

    Deep Brain Stimulation (DBS) within the Papez circuit is under investigation as a treatment for epilepsy and Alzheimer's disease. We previously reported the effects of stimulation at nodes within this network (anterior thalamic nucleus and hippocampus) on hippocampal activity in a large animal model, using a chronic implantable, clinical-grade system that permits concurrent stimulation and recording. In this study we extended earlier work to compare the effects of fornix DBS on evoked potentials (EPs) and local field potential (LFP) activity within the hippocampus, and to assess closed-loop stimulation. Unilateral fornix and hippocampal DBS leads were implanted in three ovine subjects using image-guided, frameless stereotaxy. Chronic, awake recordings of EPs and LFPs in response to fornix and hippocampal stimulation were collected with the implanted device and analyzed off-line. Stimulation of the fornix produced robust, short latency hippocampal EPs. High frequency fornix stimulation generated parameter-dependent effects. At low amplitudes, short lasting inhibition of LFP activity occurred. Above a specific amplitude threshold, DBS elicited pronounced bursts of theta activity, followed by a marked state shift in hippocampal activity. These effects persisted for minutes post-DBS and were reflected as changes in LFP spectral content and phase-amplitude coupling. Real-time modulation of hippocampal activity via the implanted device was demonstrated using LFPs as the control signal for closed-loop stimulation. The current results expand earlier findings and demonstrate target-specific effects produced by DBS within this neural circuit. These changes in network activity may provide insights into stimulation targets and parameter selection for clinical investigations. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Effects of propofol and pentobarbital on calcium concentration in presynaptic boutons on a rat hippocampal neuron.

    Science.gov (United States)

    Ito, Shinichi; Sugiyama, Hitomi; Kitahara, Seiko; Ikemoto, Yoshimi; Yokoyama, Takeshi

    2011-10-01

    Numerous reports suggest that intravenously administered (IV) anesthetics affect postsynaptic events in the central nervous system. However, there is little evidence about how general anesthetics influence the presynaptic processes. The level of presynaptic calcium (Ca(2+)) concentration ([Ca(2+)](pre)) regulates neurotransmitter release. In this study, we investigated the effects of anesthetic propofol IV and the barbiturate pentobarbital on neurotransmitter release by measuring [Ca(2+)](pre) in the presynaptic nerve terminals (boutons) on a dissociated single hippocampal rat neuron. Sprague-Dawley rats 10-14 days old were decapitated under pentobarbital anesthesia, and brain slices were prepared. The hippocampal CA1 area was touched with a fire-polished glass pipette, which vibrated horizontally, and neurons were dissociated, along with the attached presynaptic boutons. The presynaptic boutons were visualized under a confocal laser-scanning microscope after staining with FM1-43 dye, and [Ca(2+)](pre) was measured with acetoxymethyl ester of fluo-3 (fluo-3 AM). High potassium (K(+)) (15-90 mM) increased the [Ca(2+)](pre) in the Ca(2+)-containing solution in a concentration-dependent manner. Whereas propofol (10 μM) and pentobarbital (300 μM) suppressed the high K(+) (60 mM)-induced increase in [Ca(2+)](pre) in the boutons attached to the dendrite, they did not affect [Ca(2+)](pre) in the boutons attached to the soma or dendrite base. As a large majority of excitatory synapses are located on dendritic spines, these agents may affect Ca(2+) mobilization in the excitatory presynaptic boutons. Propofol and pentobarbital may affect neurotransmitter release from the excitatory presynaptic nerve terminals due to inhibition of increase in [Ca(2+)](pre).

  15. Involvement of Adult Hippocampal Neurogenesis in Learning and Forgetting

    Science.gov (United States)

    Yau, Suk-yu; Li, Ang; So, Kwok-Fai

    2015-01-01

    Adult hippocampal neurogenesis is a process involving the continuous generation of newborn neurons in the hippocampus of adult animals. Mounting evidence has suggested that hippocampal neurogenesis contributes to some forms of hippocampus-dependent learning and memory; however, the detailed mechanism concerning how this small number of newborn neurons could affect learning and memory remains unclear. In this review, we discuss the relationship between adult-born neurons and learning and memory, with a highlight on recently discovered potential roles of neurogenesis in pattern separation and forgetting. PMID:26380120

  16. How to suppress obsessive thoughts.

    Science.gov (United States)

    Rassin, Eric; Diepstraten, Philip

    2003-01-01

    Thought suppression (i.e. consciously trying to avoid certain thoughts from entering consciousness) has been argued to be an inadequate strategy in case of unwanted intrusions. That is, thought suppression seems to result in more rather than less intrusions. Although this experimental finding has been explained in terms of failing attempts to distract oneself from the target thought, the White Bear Suppression Inventory (WBSI; a scale that measures chronic thought suppression tendencies) does not address the means by which respondents try to suppress unwanted thoughts. To examine which strategies of mental control people use to suppress unwanted thoughts, obsessive-compulsive disorder patients (N=47) completed the WBSI, the Thought Control Questionnaire, and two measures of psychopathology. Results suggest that the crucial mechanism in thought suppression may not be distraction, but self-punishment.

  17. Postoperative intermittent fasting prevents hippocampal oxidative stress and memory deficits in a rat model of chronic cerebral hypoperfusion.

    Science.gov (United States)

    Hu, Yuan; Zhang, Miao; Chen, Yunyun; Yang, Ying; Zhang, Jun-Jian

    2018-01-11

    Whether intermittent fasting (IF) treatment after stroke can prevent its long-term detrimental effects remains unknown. Here, we investigate the effects of postoperative IF on cognitive deficits and its underlying mechanisms in a permanent two-vessel occlusion (2VO) vascular dementia rat model. Rats were subjected to either IF or ad libitum feeding 1 week after 2VO surgery. The cognition of rats was assessed using the novel object recognition (NOR) task and Morris water maze (MWM) 8 weeks after surgery. After behavioral testing, hippocampal malondialdehyde (MDA) and glutathione (GSH) concentrations, superoxide dismutase (SOD) activity, gene expression of antioxidative enzymes, inflammatory protein levels, and microglia density were determined. Postoperative IF significantly ameliorated the cognitive performance of 2VO rats in the NOR and MWM tests. Cognitive enhancement paralleled preservation of the PSD95 and BDNF levels in the 2VO rat hippocampus. Mechanistically, postoperative IF mitigated hippocampal oxidative stress in 2VO rats, as indicated by the reduced MDA concentration and mRNA and the protein levels of the reactive oxygen species-generating enzyme nicotinamide adenine dinucleotide phosphate oxidase 1. IF treatment also preserved the GSH level and SOD activity, as well as the levels of their upstream regulating enzymes, resulting in preserved antioxidative capability. In addition, postoperative IF prevented hippocampal microglial activation and elevation of sphingosine 1-phosphate receptor 1 and inflammatory cytokines in 2VO rats. Our results suggest that postoperative IF suppresses neuroinflammation and oxidative stress induced by chronic cerebral ischemia, thereby preserving cognitive function in a vascular dementia rat model.

  18. Photoperiod is associated with hippocampal volume in a large community sample.

    Science.gov (United States)

    Miller, Megan A; Leckie, Regina L; Donofry, Shannon D; Gianaros, Peter J; Erickson, Kirk I; Manuck, Stephen B; Roecklein, Kathryn A

    2015-04-01

    Although animal research has demonstrated seasonal changes in hippocampal volume, reflecting seasonal neuroplasticity, seasonal differences in human hippocampal volume have yet to be documented. Hippocampal volume has also been linked to depressed mood, a seasonally varying phenotype. Therefore, we hypothesized that seasonal differences in day-length (i.e., photoperiod) would predict differences in hippocampal volume, and that this association would be linked to low mood. Healthy participants aged 30-54 (M=43; SD=7.32) from the University of Pittsburgh Adult Health and Behavior II project (n=404; 53% female) were scanned in a 3T MRI scanner. Hippocampal volumes were determined using an automated segmentation algorithm using FreeSurfer. A mediation model tested whether hippocampal volume mediated the relationship between photoperiod and mood. Secondary analyses included seasonally fluctuating variables (i.e., sleep and physical activity) which have been shown to influence hippocampal volume. Shorter photoperiods were significantly associated with higher BDI scores (R(2)=0.01, β=-0.12, P=0.02) and smaller hippocampal volumes (R(2)=0.40, β=0.08, P=0.04). However, due to the lack of an association between hippocampal volume and Beck Depression Inventory scores in the current sample, the mediation hypothesis was not supported. This study is the first to demonstrate an association between season and hippocampal volume. These data offer preliminary evidence that human hippocampal plasticity could be associated with photoperiod and indicates a need for longitudinal studies. © 2014 Wiley Periodicals, Inc.

  19. Unihemispheric burst suppression

    Directory of Open Access Journals (Sweden)

    Edward C. Mader Jr.

    2014-08-01

    Full Text Available Burst suppression (BS consists of bursts of high-voltage slow and sharp wave activity alternating with periods of background suppression in the electroencephalogram (EEG. When induced by deep anesthesia or encephalopathy, BS is bihemispheric and is often viewed as a non-epileptic phenomenon. In contrast, unihemispheric BS is rare and its clinical significance is poorly understood. We describe here two cases of unihemispheric BS. The first patient is a 56-year-old woman with a left temporoparietal tumor who presented in convulsive status epilepticus. EEG showed left hemispheric BS after clinical seizure termination with lorazepam and propofol. The second patient is a 39-year-old woman with multiple medical problems and a vague history of seizures. After abdominal surgery, she experienced a convulsive seizure prompting treatment with propofol. Her EEG also showed left hemispheric BS. In both cases, increasing the propofol infusion rate resulted in disappearance of unihemispheric BS and clinical improvement. The prevailing view that typical bihemispheric BS is non-epileptic should not be extrapolated automatically to unihemispheric BS. The fact that unihemispheric BS was associated with clinical seizure and resolved with propofol suggests that, in both cases, an epileptic mechanism was responsible for unihemispheric BS.

  20. Hippocampal ER stress and learning deficits following repeated pyrethroid exposure.

    Science.gov (United States)

    Hossain, Muhammad M; DiCicco-Bloom, Emanuel; Richardson, Jason R

    2015-01-01

    Endoplasmic reticulum (ER) stress is implicated as a significant contributor to neurodegeneration and cognitive dysfunction. Previously, we reported that the widely used pyrethroid pesticide deltamethrin causes ER stress-mediated apoptosis in SK-N-AS neuroblastoma cells. Whether or not this occurs in vivo remains unknown. Here, we demonstrate that repeated deltamethrin exposure (3 mg/kg every 3 days for 60 days) causes hippocampal ER stress and learning deficits in adult mice. Repeated exposure to deltamethrin caused ER stress in the hippocampus as indicated by increased levels of C/EBP-homologous protein (131%) and glucose-regulated protein 78 (96%). This was accompanied by increased levels of caspase-12 (110%) and activated caspase-3 (50%). To determine whether these effects resulted in learning deficits, hippocampal-dependent learning was evaluated using the Morris water maze. Deltamethrin-treated animals exhibited profound deficits in the acquisition of learning. We also found that deltamethrin exposure resulted in decreased BrdU-positive cells (37%) in the dentate gyrus of the hippocampus, suggesting potential impairment of hippocampal neurogenesis. Collectively, these results demonstrate that repeated deltamethrin exposure leads to ER stress, apoptotic cell death in the hippocampus, and deficits in hippocampal precursor proliferation, which is associated with learning deficits. © The Author 2014. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Cranial Radiation Therapy and Damage to Hippocampal Neurogenesis

    Science.gov (United States)

    Monje, Michelle

    2008-01-01

    Cranial radiation therapy is associated with a progressive decline in cognitive function, prominently memory function. Impairment of hippocampal neurogenesis is thought to be an important mechanism underlying this cognitive decline. Recent work has elucidated the mechanisms of radiation-induced failure of neurogenesis. Potential therapeutic…

  2. Endurance Factors Improve Hippocampal Neurogenesis and Spatial Memory in Mice

    Science.gov (United States)

    Kobilo, Tali; Yuan, Chunyan; van Praag, Henriette

    2011-01-01

    Physical activity improves learning and hippocampal neurogenesis. It is unknown whether compounds that increase endurance in muscle also enhance cognition. We investigated the effects of endurance factors, peroxisome proliferator-activated receptor [delta] agonist GW501516 and AICAR, activator of AMP-activated protein kinase on memory and…

  3. Evaluating Alzheimer's disease progression using rate of regional hippocampal atrophy.

    Directory of Open Access Journals (Sweden)

    Edit Frankó

    Full Text Available Alzheimer's disease (AD is characterized by neurofibrillary tangle and neuropil thread deposition, which ultimately results in neuronal loss. A large number of magnetic resonance imaging studies have reported a smaller hippocampus in AD patients as compared to healthy elderlies. Even though this difference is often interpreted as atrophy, it is only an indirect measurement. A more direct way of measuring the atrophy is to use repeated MRIs within the same individual. Even though several groups have used this appropriate approach, the pattern of hippocampal atrophy still remains unclear and difficult to relate to underlying pathophysiology. Here, in this longitudinal study, we aimed to map hippocampal atrophy rates in patients with AD, mild cognitive impairment (MCI and elderly controls. Data consisted of two MRI scans for each subject. The symmetric deformation field between the first and the second MRI was computed and mapped onto the three-dimensional hippocampal surface. The pattern of atrophy rate was similar in all three groups, but the rate was significantly higher in patients with AD than in control subjects. We also found higher atrophy rates in progressive MCI patients as compared to stable MCI, particularly in the antero-lateral portion of the right hippocampus. Importantly, the regions showing the highest atrophy rate correspond to those that were described to have the highest burden of tau deposition. Our results show that local hippocampal atrophy rate is a reliable biomarker of disease stage and progression and could also be considered as a method to objectively evaluate treatment effects.

  4. Impaired Odor Recognition Memory in Patients with Hippocampal Lesions

    Science.gov (United States)

    Levy, Daniel A.; Squire, Larry R.; Hopkins, Ramona O.

    2004-01-01

    In humans, impaired recognition memory following lesions thought to be limited to the hippocampal region has been demonstrated for a wide variety of tasks. However, the importance of the human hippocampus for olfactory recognition memory has scarcely been explored. We evaluated the ability of memory-impaired patients with damage thought to be…

  5. Remodeling of Hippocampal Synapses After Hippocampus-Dependent Associative Learning

    NARCIS (Netherlands)

    Geinisman, Yuri; Disterhoft, John F.; Gundersen, Hans Jørgen G.; McEchron, Matthew D.; Persina, Inna S.; Power, John M.; Zee, Eddy A. van der; West, Mark J.

    2000-01-01

    The aim of this study was to determine whether hippocampus-dependent associative learning involves changes in the number and/or structure of hippocampal synapses. A behavioral paradigm of trace eyeblink conditioning was used. Young adult rabbits were given daily 80 trial sessions to a criterion of

  6. Inhibition of hippocampal synaptic transmission by impairment of Ral function

    DEFF Research Database (Denmark)

    Owe-Larsson, Björn; Chaves-Olarte, Esteban; Chauhan, Ashok

    2005-01-01

    Large clostridial cytotoxins and protein overexpression were used to probe for involvement of Ras-related GTPases (guanosine triphosphate) in synaptic transmission in cultured rat hippocampal neurons. The toxins TcdA-10463 (inactivates Rho, Rac, Cdc42, Rap) and TcsL-1522 (inactivates Ral, Rac, Ra...

  7. Depression may be associated with hippocampal volume changes ...

    African Journals Online (AJOL)

    Adele

    pression whereas there was no relationship between cumulative time treated with antidepressants during depression.31. The HPA Axis in Depression. The HPA axis and its vulnerability to stress may be the common fac- tor in the hippocampal atrophy and associated memory deficits seen in depression and other disorders ...

  8. Acceleration of hippocampal atrophy rates in asymptomatic amyloidosis.

    Science.gov (United States)

    Andrews, K Abigail; Frost, Chris; Modat, Marc; Cardoso, M Jorge; Rowe, Chris C; Villemagne, Victor; Fox, Nick C; Ourselin, Sebastien; Schott, Jonathan M

    2016-03-01

    Increased rates of brain atrophy measured from serial magnetic resonance imaging precede symptom onset in Alzheimer's disease and may be useful outcome measures for prodromal clinical trials. Appropriate trial design requires a detailed understanding of the relationships between β-amyloid load and accumulation, and rate of brain change at this stage of the disease. Fifty-two healthy individuals (72.3 ± 6.9 years) from Australian Imaging, Biomarkers and Lifestyle Study of Aging had serial (0, 18 m, 36 m) magnetic resonance imaging, (0, 18 m) Pittsburgh compound B positron emission tomography, and clinical assessments. We calculated rates of whole brain and hippocampal atrophy, ventricular enlargement, amyloid accumulation, and cognitive decline. Over 3 years, rates of whole brain atrophy (p atrophy (p = 0.001, p = 0.023), and ventricular expansion (p atrophy rates were also independently associated with β-amyloid accumulation over the first 18 months (p = 0.003). Acceleration of left hippocampal atrophy rate was associated with baseline β-amyloid load across the cohort (p atrophy are associated with both baseline β-amyloid load and accumulation, and that there is presymptomatic, amyloid-mediated acceleration of hippocampal atrophy. Clinical trials using rate of hippocampal atrophy as an outcome measure should not assume linear decline in the presymptomatic phase. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Input from the medial septum regulates adult hippocampal neurogenesis

    NARCIS (Netherlands)

    Van der Borght, Karin; Mulder, Jan; Keijser, Jan N; Eggen, Bart J L; Luiten, Paul G.M.; Van der Zee, Eddy A; Keijser, Johannes

    2005-01-01

    Neural progenitors in the subgranular zone of the hippocampal formation form a continuously proliferating cell population, generating new granule neurons throughout adult life. Between 10 days and 1 month after their formation, many of the newly generated cells die. The present study investigated

  10. Classical Conditioning of Hippocampal Theta Patterns in the Rat.

    Science.gov (United States)

    1976-08-01

    associated with changes in performance of learned tasks , 1,4,5, 8,9 there have been very few studies of neurona l plasticity of the hippocampus It self...rapid development of a conditioned hippocampal theta response to a visual sti mulus demonstrates tha t there is considerable neurona l plasticity in the

  11. Increased hippocampal-prefrontal functional connectivity in insomnia

    NARCIS (Netherlands)

    Leerssen, Jeanne; Wassing, Rick; Ramautar, Jennifer R; Stoffers, Diederick; Lakbila-Kamal, Oti; Perrier, Joy; Bruijel, Jessica; Foster-Dingley, Jessica C; Aghajani, Moji; van Someren, Eus J W

    2018-01-01

    Insomnia Disorder (ID) is the second-most common mental disorder and has a far-reaching impact on daytime functioning. A meta-analysis indicates that, of all cognitive domains, declarative memory involving the hippocampus is most affected in insomnia. Hippocampal functioning has consistently been

  12. Trimethyltin (TMT) neurotoxicity in organotypic rat hippocampal slice cultures

    DEFF Research Database (Denmark)

    Noraberg, J; Gramsbergen, J B; Fonnum, F

    1998-01-01

    The neurotoxic effects of trimethyltin (TMT) on the hippocampus have been extensively studied in vivo. In this study, we examined whether the toxicity of TMT to hippocampal neurons could be reproduced in organotypic brain slice cultures in order to test the potential of this model for neurotoxico...

  13. Hippocampal development in youth with a history of childhood maltreatment.

    Science.gov (United States)

    Paquola, Casey; Bennett, Maxwell R; Hatton, Sean N; Hermens, Daniel F; Groote, Inge; Lagopoulos, Jim

    2017-08-01

    Childhood maltreatment (CM) is associated with enhanced risk of psychiatric illness and reduced subcortical grey matter in adulthood. The hippocampus and amygdala, due to their involvement in stress and emotion circuitries, have been subject to extensive investigations regarding the effect of CM. However, the complex relationship between CM, subcortical grey matter and mental illness remains poorly understood partially due to a lack of longitudinal studies. Here we used segmentation and linear mixed effect modelling to examine the impact of CM on hippocampal and amygdala development in young people with emerging mental illness. A total of 215 structural magnetic resonance imaging (MRI) scans were acquired from 123 individuals (age: 14-28 years, 79 female), 52 of whom were scanned twice or more. Hippocampal and amygdala volumes increased linearly with age, and their developmental trajectories were not moderated by symptom severity. However, exposure to CM was associated with significantly stunted right hippocampal growth. This finding bridges the gap between child and adult research in the field and provides novel evidence that CM is associated with disrupted hippocampal development in youth. Although CM was associated with worse symptom severity, we did not find evidence that CM-induced structural abnormalities directly underpin psychopathology. This study has important implications for the psychiatric treatment of individuals with CM since they are clinically and neurobiologically distinct from their peers who were not maltreated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Amnesia due to bilateral hippocampal glioblastoma. MRI finding

    Energy Technology Data Exchange (ETDEWEB)

    Shimauchi, M.; Wakisaka, S.; Kinoshita, K. (Miyazaki Medical Coll., Kiyotake (Japan). Dept. of Neurosurgery)

    1989-11-01

    The authors report a unique case of glioblastoma which caused permanent amnesia. Magnetic resonance imaging showed the lesion to be limited to the hippocampal formation bilaterally. Although glioblastoma extends frequently into fiber pathways and expands into the opposite cerebral hemisphere, making a 'butterfly' lesion, it is unusual for it to invade the limbic system selectively to this extent. (orig.).

  15. IFNgamma enhances microglial reactions to hippocampal axonal degeneration

    DEFF Research Database (Denmark)

    Jensen, M B; Hegelund, I V; Lomholt, N D

    2000-01-01

    Glial reactivity is implicated in CNS repair and regenerative responses. Microglia, the cells responding earliest to axonal injury, produce tumor necrosis factor-alpha (TNFalpha), a cytokine with both cytopathic and neuroprotective effects. We have studied activation of hippocampal microglia to p...

  16. Inhibition of microglial activation protects hippocampal neurogenesis and improves cognitive deficits in a transgenic mouse model for Alzheimer's disease.

    Science.gov (United States)

    Biscaro, Barbara; Lindvall, Olle; Tesco, Giuseppina; Ekdahl, Christine T; Nitsch, Roger M

    2012-01-01

    Activated microglia with macrophage-like functions invade and surround β-amyloid (Aβ) plaques in Alzheimer's disease (AD), possibly contributing to the turnover of Aβ, but they can also secrete proinflammatory factors that may be involved in the pathogenesis of AD. Microglia are known to modulate adult hippocampal neurogenesis. To determine the role of microglia on neurogenesis in brains with Aβ pathology, we inhibited microglial activation with the tetracycline derivative minocycline in doubly transgenic mice expressing mutant human amyloid precursor protein (APP) and mutant human presenilin-1 (PS1). Minocycline increased the survival of new dentate granule cells in APP/PS1 mice indicated by more BrdU+/NeuN+ cells as compared to vehicle-treated transgenic littermates, accompanied by improved behavioral performance in a hippocampus-dependent learning task. Both brain levels of Aβ and Aβ-related morphological deficits in the new neurons labeled with GFP-expressing retrovirus were unaffected in minocycline-treated mice. These results suggest a role for microglia in Aβ-related functional deficits and in suppressing the survival of new neurons, and show that modulation of microglial function with minocycline can protect hippocampal neurogenesis in the presence of Aβ pathology. Copyright © 2012 S. Karger AG, Basel.

  17. Effect of Repeated Electroacupuncture Intervention on Hippocampal ERK and p38MAPK Signaling in Neuropathic Pain Rats

    Directory of Open Access Journals (Sweden)

    Jun-ying Wang

    2015-01-01

    Full Text Available Results of our past studies showed that hippocampal muscarinic acetylcholine receptor (mAChR-1 mRNA and differentially expressed proteins participating in MAPK signaling were involved in electroacupuncture (EA induced cumulative analgesia in neuropathic pain rats, but the underlying intracellular mechanism remains unknown. The present study was designed to observe the effect of EA stimulation (EAS on hippocampal extracellular signal-regulated kinases (ERK and p38 MAPK signaling in rats with chronic constrictive injury (CCI of the sciatic nerve, so as to reveal its related intracellular targets in pain relief. After CCI, the thermal pain thresholds of the affected hind were significantly decreased compared with the control group (P<0.05. Following one and two weeks’ EAS of ST 36-GB34, the pain thresholds were significantly upregulated (P<0.05, and the effect of EA2W was remarkably superior to that of EA2D and EA1W (P<0.05. Correspondingly, CCI-induced decreased expression levels of Ras, c-Raf, ERK1 and p-ERK1/2 proteins, and p38 MAPK mRNA and p-p38MAPK protein in the hippocampus tissues were reversed by EA2W (P<0.05. The above mentioned results indicated that EA2W induced cumulative analgesic effect may be closely associated with its function in removing neuropathic pain induced suppression of intracellular ERK and p38MAPK signaling in the hippocampus.

  18. Thalamic Spindles Promote Memory Formation during Sleep through Triple Phase-Locking of Cortical, Thalamic, and Hippocampal Rhythms.

    Science.gov (United States)

    Latchoumane, Charles-Francois V; Ngo, Hong-Viet V; Born, Jan; Shin, Hee-Sup

    2017-07-19

    While the interaction of the cardinal rhythms of non-rapid-eye-movement (NREM) sleep-the thalamo-cortical spindles, hippocampal ripples, and the cortical slow oscillations-is thought to be critical for memory consolidation during sleep, the role spindles play in this interaction is elusive. Combining optogenetics with a closed-loop stimulation approach in mice, we show here that only thalamic spindles induced in-phase with cortical slow oscillation up-states, but not out-of-phase-induced spindles, improve consolidation of hippocampus-dependent memory during sleep. Whereas optogenetically stimulated spindles were as efficient as spontaneous spindles in nesting hippocampal ripples within their excitable troughs, stimulation in-phase with the slow oscillation up-state increased spindle co-occurrence and frontal spindle-ripple co-occurrence, eventually resulting in increased triple coupling of slow oscillation-spindle-ripple events. In-phase optogenetic suppression of thalamic spindles impaired hippocampus-dependent memory. Our results suggest a causal role for thalamic sleep spindles in hippocampus-dependent memory consolidation, conveyed through triple coupling of slow oscillations, spindles, and ripples. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Inhibiting PTEN protects hippocampal neurons against stretch injury by decreasing membrane translocation of AMPA receptor GluR2 subunit.

    Directory of Open Access Journals (Sweden)

    Yuan Liu

    Full Text Available The AMPA type of glutamate receptors (AMPARs-mediated excitotoxicity is involved in the secondary neuronal death following traumatic brain injury (TBI. But the underlying cellular and molecular mechanisms remain unclear. In this study, the role of phosphatase and tensin homolog deleted on chromosome 10 (PTEN in GluR2-lacking AMPARs mediated neuronal death was investigated through an in vitro stretch injury model of neurons. It was indicated that both the mRNA and protein levels of PTEN were increased in cultured hippocampal neurons after stretch injury, which was associated with the decreasing expression of GluR2 subunits on the surface of neuronal membrane. Inhibition of PTEN activity by its inhibitor can promote the survival of neurons through preventing reduction of GluR2 on membrane. Moreover, the effect of inhibiting GluR2-lacking AMPARs was similar to PTEN suppression-mediated neuroprotective effect in stretch injury-induced neuronal death. Further evidence identified that the total GluR2 protein of neurons was not changed in all groups. So inhibition of PTEN or blockage of GluR2-lacking AMPARs may attenuate the death of hippocampal neurons post injury through decreasing the translocation of GluR2 subunit on the membrane effectively.

  20. Paternal physical exercise improves spatial learning ability by enhancing hippocampal neuroplasticity in male pups born from obese maternal rats.

    Science.gov (United States)

    Park, Hye-Sang; Kim, Tae-Woon

    2017-06-01

    Maternal obesity exerts negative effects on cognitive function and behavior of the offspring. In the present study, we assessed the effects of paternal physical exercise on spatial learning ability in relation with hippocampal neuroplasticity in the rat pups born from the obese maternal rats. There were four experimental groups: paternal nonexercised male pups from normal maternal rats, paternal exercised male pups from normal maternal rats, paternal nonexercised male pups from obese maternal rats, and paternal exercised male pups from obese maternal rats. Normal diet was supplied for normal maternal rats and high-fat diet was supplied for obese maternal rats for a 12-week period until mating, and the same diet for each group continued throughout pregnancy and lactation period. Male rats in the exercising groups exercised for a 12-week period. Spatial learning ability was reduced in the male rat pups born from the obese maternal rats. Expressions of brain-derived neurotrophic factor (BDNF) and tyrosine kinase B receptor (TrkB) in the hippocampus were suppressed and cell proliferation and differentiation in the hippocampus were reduced in the male rat pups born from the obese maternal rats. Paternal treadmill exercise improved spatial learning ability, increased BDNF and TrkB expressions, and enhanced cell proliferation and differentiation in the male rat pups born from the obese maternal rats. It can be suggested that paternal exercise enhances hippocampal neuroplasticity and consequently improved spatial learning ability in the rat pups born from the obese maternal rats.

  1. Saccades during visual exploration align hippocampal 3-8 Hz rhythms in human and non-human primates

    Directory of Open Access Journals (Sweden)

    Kari L Hoffman

    2013-08-01

    Full Text Available Visual exploration in primates depends on saccadic eye movements that cause alternations of neural suppression and enhancement. This modulation extends beyond retinotopic areas, and is thought to facilitate perception; yet saccades may also influence brain regions critical for forming memories of these exploratory episodes. The hippocampus, for example, shows oscillatory activity that is generally associated with encoding of information. Whether or how hippocampal oscillations are influenced by eye movements is unknown. We recorded the neural activity in the human and macaque hippocampus during visual scene search. Across species, saccadic eye movements were associated with a time-limited alignment of a low-frequency (3-8 Hz rhythm. The phase alignment depended on the task and not only on eye movements per se, and the frequency band was not a direct consequence of saccade rate. Hippocampal theta-frequency oscillations are produced by other mammals during repetitive exploratory behaviors, including whisking, sniffing, echolocation and locomotion. The present results may reflect a similar yet distinct primate homologue supporting active perception during exploration.

  2. Nxf7 deficiency impairs social exploration and spatio-cognitive abilities as well as hippocampal synaptic plasticity in mice

    Directory of Open Access Journals (Sweden)

    Zsuzsanna eCallaerts-Vegh

    2015-07-01

    Full Text Available Nuclear RNA export factors (NXF are conserved in all metazoans and are deemed essential for shuttling RNA across the nuclear envelope and other post-transcriptional processes (such as mRNA metabolism, storage and stability. Disruption of human NXF5 has been implicated in intellectual and psychosocial disabilities. In the present report, we use recently described Nxf7 knockout mice as an experimental model to analyze in detail the behavioral consequences of clinical NXF5 deficiency. We examined male Nxf7 knockout mice using an extended cognitive and behavioral test battery, and recorded extracellular field potentials in the hippocampal CA1 region. We observed various cognitive and behavioral changes including alterations in social exploration, impaired spatial learning and spatio-cognitive abilities. We also defined a new experimental paradigm to discriminate search strategies in Morris water maze and showed significant differences between Nxf7 knockout and control animals. Furthermore, while we observed no difference in nose poke suppression in an conditioned emotional response protocol, Nxf7 knockout mice were impaired in discriminating between differentially reinforced cues in an auditory fear conditioning protocol. This distinct neurocognitive phenotype was accompanied by impaired hippocampal long-term potentiation, while long-term depression was not affected by Nxf7 deficiency. Our data demonstrate that disruption of murine Nxf7 leads to behavioral phenotypes that may relate to the intellectual and social deficits in patients with NXF5 deficiency.

  3. Surgery-induced hippocampal angiotensin II elevation causes blood-brain barrier disruption via MMP/TIMP in aged rats

    Directory of Open Access Journals (Sweden)

    Zhengqian eLi

    2016-04-01

    Full Text Available Reversible BBB disruption has been uniformly reported in several animal models of postoperative cognitive dysfunction (POCD. Nevertheless, the precise mechanism underlying this occurrence remains unclear. Using an aged rat model of POCD, we investigated the dynamic changes in expression of molecules involved in BBB disintegration, matrix metalloproteinase-2 (MMP-2 and -9 (MMP-9, as well as three of their endogenous tissue inhibitors (TIMP-1, -2, -3, and tried to establish the correlation between MMP/TIMP balance and surgery-induced hippocampal BBB disruption. We validated the increased hippocampal expression of angiotensin II (Ang II and Ang II receptor type 1 (AT1 after surgery. We also found MMP/TIMP imbalance as early as 6 h after surgery, together with increased BBB permeability and decreased expression of Occludin and zonula occludens-1 (ZO-1, as well as increased basal lamina protein laminin at 24 h postsurgery. The AT1 antagonist candesartan restored MMP/TIMP equilibrium and modulated expression of Occludin and laminin, but not ZO-1, thereby improving BBB permeability. These events were accompanied by suppression of the surgery-induced canonical nuclear factor-κB (NF-κB activation cascade. Nevertheless, AT1 antagonism did not affect nuclear receptor peroxisome proliferator-activated receptor-γ expression. Collectively, these findings suggest that surgery-induced Ang II release impairs BBB integrity by activating NF-κB signaling and disrupting downstream MMP/TIMP balance via AT1 receptor.

  4. Adult-generated hippocampal neurons allow the flexible use of spatially precise learning strategies.

    Science.gov (United States)

    Garthe, Alexander; Behr, Joachim; Kempermann, Gerd

    2009-01-01

    rather than just a configurational map of the environment. The discovery of highly specific behavioral deficits as consequence of a suppression of adult hippocampal neurogenesis thus allows to link cellular hippocampal plasticity to well-defined hypotheses from theoretical models.

  5. Hippocampal sleep features: relations to human memory function

    Directory of Open Access Journals (Sweden)

    Michele eFerrara

    2012-04-01

    Full Text Available The recent spread of intracranial EEG recordings techniques for presurgical evaluation of drug-resistant epileptic patients is providing new information on the activity of different brain structures during both wakefulness and sleep. The interest has been mainly focused on the medial temporal lobe, and in particular the hippocampal formation, whose peculiar local sleep features have been recently described, providing support to the idea that sleep is not a spatially global phenomenon. The study of the hippocampal sleep electrophysiology is particularly interesting because of its central role in the declarative memory formation. Recent data indicate that sleep contributes to memory formation. Therefore, it is relevant to understand whether specific pattern of activity taking place during sleep are related to memory consolidation processes. Fascinating similarities between different states of consciousness (wakefulness, REM sleep, NREM sleep in some electrophysiological mechanisms underlying cognitive processes have been reported. For instance, large-scale synchrony in gamma activity is important for waking memory and perception processes, and its changes during sleep may be the neurophysiological substrate of sleep-related deficits of declarative memory. Hippocampal activity seems to specifically support memory consolidation during sleep, through specific coordinated neurophysiological events (slow waves, spindles, ripples that would facilitate the integration of new information into the pre-existing cortical networks. A few studies indeed provided direct evidence that rhinal ripples as well as slow hippocampal oscillations are correlated with memory consolidation in humans. More detailed electrophysiological investigations assessing the specific relations between different types of memory consolidation and hippocampal EEG features are in order. These studies will add an important piece of knowledge to the elucidation of the ultimate sleep

  6. Vitamin D and hippocampal development-the story so far.

    Directory of Open Access Journals (Sweden)

    Anne L Lardner

    2015-10-01

    Full Text Available Epidemiological studies suggest that vitamin D insufficiency may be prevalent in young as well as older populations. The pleiotropic effects of vitamin D are now beyond dispute and a growing number of studies provide accumulating evidence of a role for vitamin D in brain development and function. A number of studies to date have investigated the effects of early-life vitamin D deprivation on adult hippocampus in animals and humans, and there is a growing body of evidence to suggest a role for this hormone in the development of selected hippocampal functions such as latent inhibition and hole board habituation in rats. There are few studies to date of vitamin D deprivation or supplementation on early hippocampal development in vivo. However, a small number of studies, mostly in vitro, point to a role for vitamin D in differentiation and development of hippocampal neurons. There is also limited evidence that supplementation with vitamin D following a period of deprivation is capable of restoring cellular activity and later function. Further avenues of future research are outlined including animal studies on the effects of vitamin D deprivation and inadequacy on early hippocampal biochemistry and function e.g. measurement of BDNF levels, GABAergic activity, long-term potentiation and spatial navigation,. It also remains to be established if there are critical developmental windows during which vitamin D is required. In light of the importance of the hippocampus in LTP and spatial learning, further investigations on the early effects of vitamin D deprivation on hippocampal development are warranted

  7. Dedicated Hippocampal Inhibitory Networks for Locomotion and Immobility.

    Science.gov (United States)

    Arriaga, Moises; Han, Edward B

    2017-09-20

    Network activity is strongly tied to animal movement; however, hippocampal circuits selectively engaged during locomotion or immobility remain poorly characterized. Here we examined whether distinct locomotor states are encoded differentially in genetically defined classes of hippocampal interneurons. To characterize the relationship between interneuron activity and movement, we used in vivo , two-photon calcium imaging in CA1 of male and female mice, as animals performed a virtual-reality (VR) track running task. We found that activity in most somatostatin-expressing and parvalbumin-expressing interneurons positively correlated with locomotion. Surprisingly, nearly one in five somatostatin or one in seven parvalbumin interneurons were inhibited during locomotion and activated during periods of immobility. Anatomically, the somata of somatostatin immobility-activated neurons were smaller than those of movement-activated neurons. Furthermore, immobility-activated interneurons were distributed across cell layers, with somatostatin-expressing cells predominantly in stratum oriens and parvalbumin-expressing cells mostly in stratum pyramidale. Importantly, each cell's correlation between activity and movement was stable both over time and across VR environments. Our findings suggest that hippocampal interneuronal microcircuits are preferentially active during either movement or immobility periods. These inhibitory networks may regulate information flow in "labeled lines" within the hippocampus to process information during distinct behavioral states. SIGNIFICANCE STATEMENT The hippocampus is required for learning and memory. Movement controls network activity in the hippocampus but it's unclear how hippocampal neurons encode movement state. We investigated neural circuits active during locomotion and immobility and found interneurons were selectively active during movement or stopped periods, but not both. Each cell's response to locomotion was consistent across time

  8. Suppression of sympathetic detonation

    Science.gov (United States)

    Foster, J. C., Jr.; Gunger, M. E.; Craig, B. G.; Parsons, G. H.

    1984-08-01

    There are two basic approaches to suppression of sympathetic detonation. Minimizing the shock sensitivity of the explosive to long duration pressure will obviously reduce interround separation distances. However, given that the explosive sensitivity is fixed, then much can be gained through the use of simple barriers placed between the rounds. Researchers devised calculational methods for predicting shock transmission; experimental methods have been developed to characterize explosive shock sensitivity and observe the response of acceptors to barriers. It was shown that both EAK and tritonal can be initiated to detonation with relatively low pressure shocks of long durations. It was also shown that to be an effective barrier between the donor and acceptor, the material must attenuate shock and defect fragments. Future actions will concentrate on refining the design of barriers to minimize weight, volume, and cost.

  9. Hippocampal EEG and behaviour in dog. III. Hippocampal EEG correlates of stimulus-response tasks and of sexual behaviour

    NARCIS (Netherlands)

    Arnolds, D.E.A.T.; Lopes da Silva, F.H.; Aitink, J.W.; Kamp, A.

    A dog was trained to perform a spatial sound discrimination. The hippocampal EEG correlates and the movement correlates of correct trials were compared with those of incorrect trials and of ‘pressings in between’. Correct and wrong responses on a place learning task were compared both with

  10. The effects of early-life seizures on hippocampal dendrite development and later-life learning and memory.

    Science.gov (United States)

    Casanova, J R; Nishimura, Masataka; Swann, John W

    2014-04-01

    Severe childhood epilepsy is commonly associated with intellectual developmental disabilities. The reasons for these cognitive deficits are likely multifactorial and will vary between epilepsy syndromes and even among children with the same syndrome. However, one factor these children have in common is the recurring seizures they experience - sometimes on a daily basis. Supporting the idea that the seizures themselves can contribute to intellectual disabilities are laboratory results demonstrating spatial learning and memory deficits in normal mice and rats that have experienced recurrent seizures in infancy. Studies reviewed here have shown that seizures in vivo and electrographic seizure activity in vitro both suppress the growth of hippocampal pyramidal cell dendrites. A simplification of dendritic arborization and a resulting decrease in the number and/or properties of the excitatory synapses on them could help explain the observed cognitive disabilities. There are a wide variety of candidate mechanisms that could be involved in seizure-induced growth suppression. The challenge is designing experiments that will help focus research on a limited number of potential molecular events. Thus far, results suggest that growth suppression is NMDA receptor-dependent and associated with a decrease in activation of the transcription factor CREB. The latter result is intriguing since CREB is known to play an important role in dendrite growth. Seizure-induced dendrite growth suppression may not occur as a single process in which pyramidal cells dendrites simply stop growing or grow slower compared to normal neurons. Instead, recent results suggest that after only a few hours of synchronized epileptiform activity in vitro dendrites appear to partially retract. This acute response is also NMDA receptor dependent and appears to be mediated by the Ca(+2)/calmodulin-dependent phosphatase, calcineurin. An understanding of the staging of seizure-induced growth suppression and the

  11. Hippocampal agenesis in an individual who engaged in violent criminal behaviors after discontinuing carbamazepine and paroxetine treatment.

    Science.gov (United States)

    Hanada, Hiroaki; Akiyoshi, Jotaro; Kanehisa, Masayuki; Ishitobi, Yoshinobu; Tsuru, Jusen; Tanaka, Yoshihiro; Shimomura, Tsuyoshi; Kawano, Yoshihisa

    2013-01-01

    Antidepressant discontinuation syndrome (ADS) occurs after abrupt discontinuation of an antidepressant medication. A 23-year-old man with right hippocampal agenesis demonstrated sexual crime (hypersexuality) since the age of eight and had been successfully treated with carbamazepine since the age of 13. He had required increased doses of paroxetine and carbamazepine owing to the development of an unstable affect after quitting his job. He abruptly stopped taking his medication for 3 days and his criminal behaviors re-emerged. We examined changes in brain structure and activity before and after medication cessation, using MRI and functional MRI (fMRI). The image of a girl in a swimsuit increased activity in the thalamus only after medication discontinuation. The alteration in thalamic activity might induce hypersexuality. We conclude that a primary hypersexuality had been suppressed with carbamazepine and paroxetine treatment, and the discontinuation of the medication caused the hypersexuality. © 2012 American Academy of Forensic Sciences.

  12. Audiovisual speech integration does not rely on the motor system: evidence from articulatory suppression, the McGurk effect, and fMRI.

    Science.gov (United States)

    Matchin, William; Groulx, Kier; Hickok, Gregory

    2014-03-01

    Visual speech influences the perception of heard speech. A classic example of this is the McGurk effect, whereby an auditory /pa/ overlaid onto a visual /ka/ induces the fusion percept of /ta/. Recent behavioral and neuroimaging research has highlighted the importance of both articulatory representations and motor speech regions of the brain, particularly Broca's area, in audiovisual (AV) speech integration. Alternatively, AV speech integration may be accomplished by the sensory system through multisensory integration in the posterior STS. We assessed the claims regarding the involvement of the motor system in AV integration in two experiments: (i) examining the effect of articulatory suppression on the McGurk effect and (ii) determining if motor speech regions show an AV integration profile. The hypothesis regarding experiment (i) is that if the motor system plays a role in McGurk fusion, distracting the motor system through articulatory suppression should result in a reduction of McGurk fusion. The results of experiment (i) showed that articulatory suppression results in no such reduction, suggesting that the motor system is not responsible for the McGurk effect. The hypothesis of experiment (ii) was that if the brain activation to AV speech in motor regions (such as Broca's area) reflects AV integration, the profile of activity should reflect AV integration: AV > AO (auditory only) and AV > VO (visual only). The results of experiment (ii) demonstrate that motor speech regions do not show this integration profile, whereas the posterior STS does. Instead, activity in motor regions is task dependent. The combined results suggest that AV speech integration does not rely on the motor system.

  13. Activation of muscarinic receptors by ACh release in hippocampal CA1 depolarizes VIP but has varying effects on parvalbumin-expressing basket cells.

    Science.gov (United States)

    Bell, L Andrew; Bell, Karen A; McQuiston, A Rory

    2015-01-01

    Optogenetically released acetylcholine (ACh) from medial septal afferents activates muscarinic receptors on both vasoactive intestinal peptide-expressing (VIP) and parvalbumin-expressing (PV) basket cells (BCs) in mouse hippocampal CA1. ACh release depolarized VIP BCs whereas PV BCs depolarized, hyperpolarized or produced biphasic responses. Depolarizing responses in VIP or PV BCs resulted in increased amplitudes and frequencies of spontaneous inhibitory postsynaptic currents (sIPSCs) in CA1 pyramidal neurons. The instantaneous frequency of sIPSCs that result from excitation of VIP or PV BCs primarily occurred within the low gamma frequency band (25-50 Hz). We investigated the effect of acetylcholine release on mouse hippocampal CA1 perisomatically projecting interneurons. Acetylcholine was optogenetically released in hippocampal slices by expressing the excitatory optogenetic protein oChIEF-tdTomato in medial septum/diagonal band of Broca cholinergic neurons using Cre recombinase-dependent adeno-associated virally mediated transfection. The effect of optogenetically released acetylcholine was assessed on interneurons expressing Cre recombinase in vasoactive intestinal peptide (VIP) or parvalbumin (PV) interneurons using whole cell patch clamp methods. Acetylcholine released onto VIP interneurons that innervate pyramidal neuron perisomatic regions (basket cells, BCs) were depolarized by muscarinic receptors. Although PV BCs were also excited by muscarinic receptor activation, they more frequently responded with hyperpolarizing or biphasic responses. Muscarinic receptor activation resulting from ACh release increased the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) in downstream hippocampal CA1 pyramidal neurons with peak instantaneous frequencies occurring in both the gamma and theta bandwidths. Both PV and VIP BCs contributed to the increased sIPSC frequency in pyramidal neurons and optogenetic suppression of PV or VIP BCs inhibited s

  14. The neuroprotective action of pyrroloquinoline quinone against glutamate-induced apoptosis in hippocampal neurons is mediated through the activation of PI3K/Akt pathway

    International Nuclear Information System (INIS)

    Zhang Qi; Shen Mi; Ding Mei; Shen Dingding; Ding Fei

    2011-01-01

    Pyrroloquinoline quinone (PQQ), a cofactor in several enzyme-catalyzed redox reactions, possesses a potential capability of scavenging reactive oxygen species (ROS) and inhibiting cell apoptosis. In this study, we investigated the effects of PQQ on glutamate-induced cell death in primary cultured hippocampal neurons and the possible underlying mechanisms. We found that glutamate-induced apoptosis in cultured hippocampal neurons was significantly attenuated by the ensuing PQQ treatment, which also inhibited the glutamate-induced increase in Ca2+ influx, caspase-3 activity, and ROS production, and reversed the glutamate-induced decrease in Bcl-2/Bax ratio. The examination of signaling pathways revealed that PQQ treatment activated the phosphorylation of Akt and suppressed the glutamate-induced phosphorylation of c-Jun N-terminal protein kinase (JNK). And inhibition of phosphatidylinositol-3-kinase (PI3K)/Akt cascade by LY294002 and wortmannin significantly blocked the protective effects of PQQ, and alleviated the increase in Bcl-2/Bax ratio. Taken together, our results indicated that PQQ could protect primary cultured hippocampal neurons against glutamate-induced cell damage by scavenging ROS, reducing Ca2+ influx, and caspase-3 activity, and suggested that PQQ-activated PI3K/Akt signaling might be responsible for its neuroprotective action through modulation of glutamate-induced imbalance between Bcl-2 and Bax. - Research Highlights: →PQQ attenuated glutamate-induced cell apoptosis of cultured hippocampal neurons. →PQQ inhibited glutamate-induced Ca 2+ influx and caspase-3 activity. →PQQ reduced glutamate-induced increase in ROS production. →PQQ affected phosphorylation of Akt and JNK signalings after glutamate injury. →PI3K/Akt was required for neuroprotection of PQQ by modulating Bcl-2/Bax ratio.

  15. The role of hippocampal iron concentration and hippocampal volume in age-related differences in memory.

    Science.gov (United States)

    Rodrigue, Karen M; Daugherty, Ana M; Haacke, E Mark; Raz, Naftali

    2013-07-01

    The goal of this study was to examine the relationships between 2 age-sensitive indices of brain integrity--volume and iron concentration--and the associated age differences in memory performance. In 113 healthy adults (age 19-83 years), we measured the volume and estimated iron concentration in the hippocampus (HC), caudate nucleus (Cd), and primary visual cortex (VC) in vivo with T2* relaxation times, and assessed memory performance with multiple tests. We applied structural equation modeling to evaluate the contribution of individual differences in 2 indices of integrity, volume and T2*, to age-related memory variance. The results show that in healthy adults, age differences in memory can be explained in part by individual differences in HC volume that in turn are associated with differences in HC iron concentration. Lower memory scores were linked to smaller HC and higher HC iron concentration. No such associations were noted for Cd and VC. We conclude that the association between age-related declines in memory and reduced hippocampal volume may reflect the impact of oxidative stress related to increase in free iron concentration. Longitudinal follow-up is needed to test whether altered iron homeostasis in the HC is an early marker for age-related cognitive decline.

  16. Hippocampal Damage Increases Deontological Responses during Moral Decision Making.

    Science.gov (United States)

    McCormick, Cornelia; Rosenthal, Clive R; Miller, Thomas D; Maguire, Eleanor A

    2016-11-30

    Complex moral decision making is associated with the ventromedial prefrontal cortex (vmPFC) in humans, and damage to this region significantly increases the frequency of utilitarian judgments. Since the vmPFC has strong anatomical and functional links with the hippocampus, here we asked how patients with selective bilateral hippocampal damage would derive moral decisions on a classic moral dilemmas paradigm. We found that the patients approved of the utilitarian options significantly less often than control participants, favoring instead deontological responses-rejecting actions that harm even one person. Thus, patients with hippocampal damage have a strikingly opposite approach to moral decision making than vmPFC-lesioned patients. Skin-conductance data collected during the task showed increased emotional arousal in the hippocampal-damaged patients and they stated that their moral decisions were based on emotional instinct. By contrast, control participants made moral decisions based on the integration of an adverse emotional response to harming others, visualization of the consequences of one's action, and the rational re-evaluation of future benefits. This integration may be disturbed in patients with either hippocampal or vmPFC damage. Hippocampal lesions decreased the ability to visualize a scenario and its future consequences, which seemed to render the adverse emotional response overwhelmingly dominant. In patients with vmPFC damage, visualization might also be reduced alongside an inability to detect the adverse emotional response, leaving only the utilitarian option open. Overall, these results provide insights into the processes involved in moral decision making and highlight the complementary roles played by two closely connected brain regions. The ventromedial prefrontal cortex (vmPFC) is closely associated with the ability to make complex moral judgements. When this area is damaged, patients become more utilitarian (the ends justify the means) and have

  17. An Alternative to Thought Suppression?

    Science.gov (United States)

    Boice, Robert

    2012-01-01

    Comments on the original article, "Setting free the bears: Escape from thought suppression," by D. M. Wegner (see record 2011-25622-008). While Wegner supposed that we might have to learn to live with bad thoughts, the present author discusses the use of imagination and guided imagery as an alternative to forced thought suppression.

  18. Accumulating microglia phagocytose injured neurons in hippocampal slice cultures: involvement of p38 MAP kinase.

    Directory of Open Access Journals (Sweden)

    Takahiro Katayama

    Full Text Available In this study, microglial migration and phagocytosis were examined in mouse organotypic hippocampal slice cultures, which were treated with N-methyl-D-aspartate (NMDA to selectively injure neuronal cells. Microglial cells were visualized by the expression of enhanced green fluorescent protein. Daily observation revealed microglial accumulation in the pyramidal cell layer, which peaked 5 to 6 days after NMDA treatment. Time-lapse imaging showed that microglia migrated to the pyramidal cell layer from adjacent and/or remote areas. There was no difference in the number of proliferating microglia between control and NMDA-treated slices in both the pyramidal cell layer and stratum radiatum, suggesting that microglial accumulation in the injured areas is mainly due to microglial migration, not to proliferation. Time-lapse imaging also showed that the injured neurons, which were visualized by propidium iodide (PI, disappeared just after being surrounded by microglia. Daily observation revealed that the intensity of PI fluorescence gradually attenuated, and this attenuation was suppressed by pretreatment with clodronate, a microglia toxin. These findings suggest that accumulating microglia phagocytosed injured neurons, and that PI fluorescence could be a useful indicator for microglial phagocytosis. Using this advantage to examine microglial phagocytosis in living slice cultures, we investigated the involvements of mitogen-activated protein (MAP kinases in microglial accumulation and phagocytosis. p38 MAP kinase inhibitor SB203580, but not MAP kinase/extracellular signal-regulated kinase inhibitor PD98059 or c-Jun N-terminal kinase inhibitor SP600125, suppressed the attenuation of PI fluorescence. On the other hand, microglial accumulation in the injured areas was not inhibited by any of these inhibitors. These data suggest that p38 MAP kinase plays an important role in microglial phagocytosis of injured neurons.

  19. Adult hippocampal neurogenesis: Is it the alpha and omega of antidepressant action?

    Science.gov (United States)

    Eliwa, Hoda; Belzung, Catherine; Surget, Alexandre

    2017-10-01

    It is now well established that all clinically available antidepressants share a common aptitude: they increase the production of adult-generated neurons in the dentate gyrus of the hippocampus. This was first observed in animal models and subsequently in human populations, highlighting the clinical relevance of this finding. Later, it was suggested that hippocampal neurogenesis was not an epiphenomenal correlate of antidepressant action but was causally involved. Indeed, when neurogenesis is suppressed, antidepressant compounds can no longer achieve remission. This action of adult-born neurons seems necessary to achieve remission, but less evidence exists to show that it is sufficient alone. In the following decades, a new generation of putative antidepressants that act through different non-monoaminergic mechanisms were proposed in preclinical research as potential therapies. Interestingly, these treatments all increased neurogenesis in animal models of pathological states: this was observed with drugs acting through peptidergic or glutamatergic mechanisms and with neurostimulation strategies not targeting the hippocampus. However, the involvement of neurogenesis was not always causal. To advance further in this field, an understanding of how adult-generated neurons induce therapeutic effects and how this is related to the pathophysiology of depression are required. Copyright © 2017. Published by Elsevier Inc.

  20. The Edible Red Alga Porphyra yezoensis Promotes Neuronal Survival and Cytoarchitecture in Primary Hippocampal Neurons.

    Science.gov (United States)

    Mohibbullah, Md; Bhuiyan, Mohammad Maqueshudul Haque; Hannan, Md Abdul; Getachew, Paulos; Hong, Yong-Ki; Choi, Jae-Suk; Choi, In Soon; Moon, Il Soo

    2016-07-01

    The edible red alga Porphyra yezoensis is among the most popular marine algae and is of economic and medicinal importance. In the present study, the neurotrophic and neuroprotective activities of the ethanol extract of P. yezoensis (PYE) were investigated in primary cultures of hippocampal neurons. Results revealed that PYE significantly increased neurite outgrowth at an optimal concentration of 15 µg/mL. PYE dose-dependently increased viable cells, significantly accelerated the rate of neuronal differentiation in cultures, promoted axodendritic arborization, and eventually induced synaptogenesis. In addition to morphological development, PYE also promoted functional maturation as indicated by the staining of live cultures with FM 1-43. Moreover, PYE increased neuronal survivability, which was attributed to reduced apoptosis and its ROS scavenging activity. Taurine, a major organic acid in PYE (2.584/100 mg of dry PYE) promoted neurite outgrowth in a dose-dependent manner, and this promotion was suppressed by the taurine antagonist isethionic acid. The study indicates that PYE and its active component, taurine, facilitate neuronal development and maturation and have a neuroprotective effect.

  1. The Antiepileptic Ketogenic Diet Alters Hippocampal Transporter Levels and Reduces Adiposity in Aged Rats.

    Science.gov (United States)

    Hernandez, Abbi R; Hernandez, Caesar M; Campos, Keila T; Truckenbrod, Leah M; Sakarya, Yasemin; McQuail, Joseph A; Carter, Christy S; Bizon, Jennifer L; Maurer, Andrew P; Burke, Sara N

    2018-03-14

    Nutritional ketosis is induced by high fat/low carbohydrate dietary regimens, which produce high levels of circulating ketone bodies, shifting metabolism away from glucose utilization. While ketogenic diets (KD) were initially introduced to suppress seizures, they are garnering attention for their potential to treat a myriad of neurodegenerative and metabolic disorders that are associated with advanced age. The feasibility and physiological impact of implementing a long-term KD in old animals, however, has not been systematically examined. In this study, young and aged rats consumed a calorically- and nutritionally-matched KD or control diet for 12 weeks. All KD-fed rats maintained higher levels of BHB and lower levels of glucose relative to controls. However, it took the aged rats longer to reach asymptotic levels of BHB compared to young animals. Moreover, KD-fed rats had significantly less visceral white and brown adipose tissue than controls without a loss of lean mass. Interestingly, the KD led to significant alterations in protein levels of hippocampal transporters for monocarboxylates, glucose, and vesicular glutamate and gamma-aminobutyric acid. Most notably, the age-related decline in vesicular glutamate transporter expression was reversed by the KD. These data demonstrate the feasibility and potential benefits of KDs for treating age-associated neural dysfunction.

  2. Gongjin-Dan Enhances Hippocampal Memory in a Mouse Model of Scopolamine-Induced Amnesia.

    Science.gov (United States)

    Lee, Jin-Seok; Hong, Sung-Shin; Kim, Hyeong-Geug; Lee, Hye-Won; Kim, Won-Yong; Lee, Sam-Keun; Son, Chang-Gue

    2016-01-01

    We evaluated the neuropharmacological effects of Gongjin-Dan (GJD) on the memory impairment caused by scopolamine injection. BALB/c mice were orally treated with GJD (100, 200, or 400 mg/kg, daily) or tacrine (THA, 10 mg/kg) for 10 days, and scopolamine (2 mg/kg) was injected intraperitoneally. The radial arm maze and passive avoidance tests were performed to evaluate the animal's learning and memory. Scopolamine increased the task completing time, the number of total errors (reference and working memory error) in the radial arm maze task, and the latency time in the passive avoidance test, which were significantly ameliorated by treatment with GJD. The GJD treatment also attenuated the scopolamine-induced hyperactivation of acetylcholinesterase activity, and suppression of the expression of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF) and their receptors in the hippocampus. These effects of GJD were supported by both the doublecortin (DCX)-positive staining and Nissl staining, which were used to measure hippocampal neurogenesis and atrophy, respectively. These findings strongly suggest that GJD exerts a potent anti-amnesic effect, and its underlying mechanism might involve the modulation of cholinergic activity.

  3. Gongjin-Dan Enhances Hippocampal Memory in a Mouse Model of Scopolamine-Induced Amnesia.

    Directory of Open Access Journals (Sweden)

    Jin-Seok Lee

    Full Text Available We evaluated the neuropharmacological effects of Gongjin-Dan (GJD on the memory impairment caused by scopolamine injection. BALB/c mice were orally treated with GJD (100, 200, or 400 mg/kg, daily or tacrine (THA, 10 mg/kg for 10 days, and scopolamine (2 mg/kg was injected intraperitoneally. The radial arm maze and passive avoidance tests were performed to evaluate the animal's learning and memory. Scopolamine increased the task completing time, the number of total errors (reference and working memory error in the radial arm maze task, and the latency time in the passive avoidance test, which were significantly ameliorated by treatment with GJD. The GJD treatment also attenuated the scopolamine-induced hyperactivation of acetylcholinesterase activity, and suppression of the expression of brain-derived neurotrophic factor (BDNF, nerve growth factor (NGF and their receptors in the hippocampus. These effects of GJD were supported by both the doublecortin (DCX-positive staining and Nissl staining, which were used to measure hippocampal neurogenesis and atrophy, respectively. These findings strongly suggest that GJD exerts a potent anti-amnesic effect, and its underlying mechanism might involve the modulation of cholinergic activity.

  4. State-dependent alterations in hippocampal oscillations in serotonin 1A receptor-deficient mice.

    Science.gov (United States)

    Gordon, Joshua A; Lacefield, Clay O; Kentros, Clifford G; Hen, Rene

    2005-07-13

    Mice lacking the serotonin 1A receptor (5-HT(1A)R) show increased levels of anxiety-related behavior across multiple tests and background strains. Tissue-specific rescue experiments, lesion studies, and neurophysiological findings all point toward the hippocampus as a potential mediator of the phenotype. Serotonin, acting through 5-HT(1A)Rs, can suppress hippocampal theta-frequency oscillations, suggesting that theta oscillations might be increased in the knock-outs. To test this hypothesis, local field potential recordings were obtained from the hippocampus of awake, behaving knock-outs and wild-type littermates. The magnitude of theta oscillations was increased in the knock-outs, specifically in the anxiety-provoking elevated plus maze and not in a familiar environment or during rapid eye movement sleep. Theta power correlated with the fraction of time spent in the open arms, an anxiety-related behavioral variable. These results suggest a possible role for the hippocampus, and theta oscillations in particular, in the expression of anxiety in 5-HT(1A)R-deficient mice.

  5. Modulation of Adult Hippocampal Neurogenesis by Sleep: Impact on Mental Health

    Directory of Open Access Journals (Sweden)

    Cristina Navarro-Sanchis

    2017-10-01

    Full Text Available The process of neurogenesis has been demonstrated to occur throughout life in the subgranular zone (SGZ of the hippocampal dentate gyrus of several mammals, including humans. The basal rate of adult hippocampal neurogenesis can be altered by lifestyle and environmental factors. In this perspective review, the evidence for sleep as a modulator of adult hippocampal neurogenesis is first summarized. Following this, the impacts of sleep and sleep disturbances on hippocampal-dependent functions, including learning and memory, and depression are critically evaluated. Finally, we postulate that the effects of sleep on hippocampal-dependent functions may possibly be mediated by a change in adult hippocampal neurogenesis. This could provide a route to new treatments for cognitive impairments and psychiatric disorders.

  6. Modulation of Adult Hippocampal Neurogenesis by Sleep: Impact on Mental Health

    Science.gov (United States)

    Navarro-Sanchis, Cristina; Brock, Olivier; Winsky-Sommerer, Raphaelle; Thuret, Sandrine

    2017-01-01

    The process of neurogenesis has been demonstrated to occur throughout life in the subgranular zone (SGZ) of the hippocampal dentate gyrus of several mammals, including humans. The basal rate of adult hippocampal neurogenesis can be altered by lifestyle and environmental factors. In this perspective review, the evidence for sleep as a modulator of adult hippocampal neurogenesis is first summarized. Following this, the impacts of sleep and sleep disturbances on hippocampal-dependent functions, including learning and memory, and depression are critically evaluated. Finally, we postulate that the effects of sleep on hippocampal-dependent functions may possibly be mediated by a change in adult hippocampal neurogenesis. This could provide a route to new treatments for cognitive impairments and psychiatric disorders. PMID:29075182

  7. Metallothionein reduces central nervous system inflammation, neurodegeneration, and cell death following kainic acid-induced epileptic seizures

    DEFF Research Database (Denmark)

    Penkowa, Milena; Florit, Sergi; Giralt, Mercedes

    2005-01-01

    We examined metallothionein (MT)-induced neuroprotection during kainic acid (KA)-induced excitotoxicity by studying transgenic mice with MT-I overexpression (TgMT mice). KA induces epileptic seizures and hippocampal excitotoxicity, followed by inflammation and delayed brain damage. We show for th...

  8. Modulation of Hippocampal Neural Plasticity by Glucose-Related Signaling

    Directory of Open Access Journals (Sweden)

    Marco Mainardi

    2015-01-01

    Full Text Available Hormones and peptides involved in glucose homeostasis are emerging as important modulators of neural plasticity. In this regard, increasing evidence shows that molecules such as insulin, insulin-like growth factor-I, glucagon-like peptide-1, and ghrelin impact on the function of the hippocampus, which is a key area for learning and memory. Indeed, all these factors affect fundamental hippocampal properties including synaptic plasticity (i.e., synapse potentiation and depression, structural plasticity (i.e., dynamics of dendritic spines, and adult neurogenesis, thus leading to modifications in cognitive performance. Here, we review the main mechanisms underlying the effects of glucose metabolism on hippocampal physiology. In particular, we discuss the role of these signals in the modulation of cognitive functions and their potential implications in dysmetabolism-related cognitive decline.

  9. Spatial memory and hippocampal function: Where are we now?

    Directory of Open Access Journals (Sweden)

    Mark Good

    2002-01-01

    Full Text Available The main aim of this paper is to provide an overview of current debates concerning the role of the mammalian hippocampus in learning with a particular emphasis on spatial learning. The review discusses recent debates on (1 the role of the primate hippocampus in recognition memory and object-in-place memory, (2 the role of the hippocampus in spatial navigation in both rats and humans, and (3 the effects of hippocampal damage on processing contextual information. Evidence from these lines of research have led many current theories to posit a function for the hippocampus that has as its organizing principle the association or binding of stimulus representations. Based on this principle, recent theories of hippocampal function have extended their application beyond the spatial domain to capture features of declarative and episodic memory processes.

  10. The impact of sleep loss on hippocampal function

    Science.gov (United States)

    Prince, Toni-Moi; Abel, Ted

    2013-01-01

    Hippocampal cellular and molecular processes critical for memory consolidation are affected by the amount and quality of sleep attained. Questions remain with regard to how sleep enhances memory, what parameters of sleep after learning are optimal for memory consolidation, and what underlying hippocampal molecular players are targeted by sleep deprivation to impair memory consolidation and plasticity. In this review, we address these topics with a focus on the detrimental effects of post-learning sleep deprivation on memory consolidation. Obtaining adequate sleep is challenging in a society that values “work around the clock.” Therefore, the development of interventions to combat the negative cognitive effects of sleep deprivation is key. However, there are a limited number of therapeutics that are able to enhance cognition in the face of insufficient sleep. The identification of molecular pathways implicated in the deleterious effects of sleep deprivation on memory could potentially yield new targets for the development of more effective drugs. PMID:24045505

  11. Controllability and hippocampal activation during pain expectation in fibromyalgia syndrome.

    Science.gov (United States)

    González-Roldán, Ana María; Bomba, Isabelle C; Diesch, Eugen; Montoya, Pedro; Flor, Herta; Kamping, Sandra

    2016-12-01

    To examine the role of perceived control in pain perception, fibromyalgia patients and healthy controls participated in a reaction time experiment under different conditions of pain controllability. No significant differences between groups were found in pain intensity and unpleasantness ratings. However, during the expectation of uncontrollable pain, patients compared to controls showed higher hippocampal activation. In addition, hippocampal activity during the pain expectation period predicted activation of the posterior cingulate cortex (PCC), precuneus and hippocampus during pain stimulation in fibromyalgia patients. The increased activation of the hippocampus during pain expectation and subsequent activation of the PCC/precuneus during the lack of control phase points towards an influence of pain perception through heightening of alertness and anxiety responses to pain in fibromyalgia patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Colchicine induces apoptosis in organotypic hippocampal slice cultures

    DEFF Research Database (Denmark)

    Kristensen, Bjarne W; Noer, Helle; Gramsbergen, Jan Bert

    2003-01-01

    The microtubule-disrupting agent colchicine is known to be particular toxic for certain types of neurons, including the granule cells of the dentate gyrus. In this study we investigated whether colchicine could induce such neuron-specific degeneration in developing (1 week in vitro) and mature (3...... weeks in vitro) organotypic hippocampal slice cultures and whether the induced cell death was apoptotic and/or necrotic. When applied to 1-week-old cultures for 48 h, colchicine induced primarily apoptotic, but also a minor degree of necrotic cell death in the dentate granule cells, as investigated...... the formation of active caspase 3 protein and apoptotic nuclei induced by colchicine, but the formation of necrotic nuclei increased correspondingly and the PI uptake was unaffected. We conclude that colchicine induces caspase 3-dependent apoptotic cell death of dentate granule cells in hippocampal brain slice...

  13. Ethanol induces MAP2 changes in organotypic hippocampal slice cultures

    DEFF Research Database (Denmark)

    Noraberg, J; Zimmer, J

    1998-01-01

    Microtubule-associated protein 2 (MAP2) and neuron-specific protein (NeuN) immunostains were used to demonstrate neurotoxic effects in mature hippocampal slice cultures exposed to ethanol (50, 100, 200 mM) for 4 weeks. At the low dose the density of MAP2 immunostaining in the dentate molecular...... layer was 118% of the control cultures, with no detectable changes in CA1 and CA3. At 100 mM no changes were detected, while 200 mM ethanol significantly reduced the MAP2 density in both dentate (19%) and hippocampal dendritic fields (CA3, 52%; CA1, 55%). At this dose NeuN staining showed considerable...... loss of CA3 pyramidal cells and moderate loss of dentate granule cells, as seen in vivo. The results indicate that brain slice cultures combined with immunostaining for cytoskeleton and neuronal markers can be used for studies of ethanol and organic solvent neurotoxicity....

  14. The impact of sleep loss on hippocampal function.

    Science.gov (United States)

    Prince, Toni-Moi; Abel, Ted

    2013-09-17

    Hippocampal cellular and molecular processes critical for memory consolidation are affected by the amount and quality of sleep attained. Questions remain with regard to how sleep enhances memory, what parameters of sleep after learning are optimal for memory consolidation, and what underlying hippocampal molecular players are targeted by sleep deprivation to impair memory consolidation and plasticity. In this review, we address these topics with a focus on the detrimental effects of post-learning sleep deprivation on memory consolidation. Obtaining adequate sleep is challenging in a society that values "work around the clock." Therefore, the development of interventions to combat the negative cognitive effects of sleep deprivation is key. However, there are a limited number of therapeutics that are able to enhance cognition in the face of insufficient sleep. The identification of molecular pathways implicated in the deleterious effects of sleep deprivation on memory could potentially yield new targets for the development of more effective drugs.

  15. Protective Variant for Hippocampal Atrophy Identified by Whole Exome Sequencing

    Science.gov (United States)

    Nho, Kwangsik; Kim, Sungeun; Risacher, Shannon L.; Shen, Li; Corneveaux, Jason J.; Swaminathan, Shanker; Lin, Hai; Ramanan, Vijay K.; Liu, Yunlong; Foroud, Tatiana M.; Inlow, Mark H.; Siniard, Ashley L.; Reiman, Rebecca A.; Aisen, Paul S.; Petersen, Ronald C.; Green, Robert C.; Jack, Clifford R.; Weiner, Michael W.; Baldwin, Clinton T.; Lunetta, Kathryn L.; Farrer, Lindsay A.; Furney, Simon J.; Lovestone, Simon; Simmons, Andrew; Mecocci, Patrizia; Vellas, Bruno; Tsolaki, Magda; Kloszewska, Iwona; Soininen, Hilkka; McDonald, Brenna C.; Farlow, Martin R.; Ghetti, Bernardino; Huentelman, Matthew J.; Saykin, Andrew J.

    2015-01-01

    We used whole-exome sequencing to identify variants other than APOE associated with the rate of hippocampal atrophy in amnestic mild cognitive impairment. An in-silico predicted missense variant in REST (rs3796529) was found exclusively in subjects with slow hippocampal volume loss and validated using unbiased whole-brain analysis and meta-analysis across 5 independent cohorts. REST is a master regulator of neurogenesis and neuronal differentiation that has not been previously implicated in Alzheimer’s disease. These findings nominate REST and its functional pathways as protective and illustrate the potential of combining next-generation sequencing with neuroimaging to discover novel disease mechanisms and potential therapeutic targets. PMID:25559091

  16. A weak magnetic field inhibits hippocampal neurogenesis in SD rats

    Science.gov (United States)

    Zhang, B.; Tian, L.; Cai, Y.; Pan, Y.

    2017-12-01

    Geomagnetic field is an important barrier that protects life forms on Earth from solar wind and radiation. Paleomagnetic data have well demonstrated that the strength of ancient geomagnetic field was dramatically weakened during a polarity transition. Accumulating evidence has shown that weak magnetic field exposures has serious adverse effects on the metabolism and behaviors in organisms. Hippocampal neurogenesis occurs throughout life in mammals' brains which plays a key role in brain function, and can be influenced by animals' age as well as environmental factors, but few studies have examined the response of hippocampal neurogenesis to it. In the present study, we have investigated the weak magnetic field effects on hippocampal neurogenesis of adult Sprague Dawley (SD) rats. Two types of magnetic fields were used, a weak magnetic field (≤1.3 μT) and the geomagnetic fields (51 μT).The latter is treated as a control condition. SD rats were exposure to the weak magnetic field up to 6 weeks. We measured the changes of newborn nerve cells' proliferation and survival, immature neurons, neurons and apoptosis in the dentate gyrus (DG) of hippocampus in SD rats. Results showed that, the weak magnetic field (≤1.3 μT) inhibited their neural stem cells proliferation and significantly reduced the survival of newborn nerve cells, immature neurons and neurons after 2 or 4 weeks continuous treatment (i.e. exposure to weak magnetic field). Moreover, apoptosis tests indicated the weak magnetic field can promote apoptosis of nerve cells in the hippocampus after 4 weeks treatment. Together, our new data indicate that weak magnetic field decrease adult hippocampal neurogenesis through inhibiting neural stem cells proliferation and promoting apoptosis, which provides useful experimental constraints on better understanding the mechanism of linkage between life and geomagnetic field.

  17. Linking adult hippocampal neurogenesis with human physiology and disease.

    Science.gov (United States)

    Bowers, Megan; Jessberger, Sebastian

    2016-07-01

    We here review the existing evidence linking adult hippocampal neurogenesis and human brain function in physiology and disease. Furthermore, we aim to point out where evidence is missing, highlight current promising avenues of investigation, and suggest future tools and approaches to foster the link between life-long neurogenesis and human brain function. Developmental Dynamics 245:702-709, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Neuroprotective function for ramified microglia in hippocampal excitotoxicity

    OpenAIRE

    Vinet, Jonathan; van Weering, Hilmar RJ; Heinrich, Annette; Kälin, Roland E; Wegner, Anja; Brouwer, Nieske; Heppner, Frank L; van Rooijen, Nico; Boddeke, Hendrikus WGM; Biber, Knut

    2012-01-01

    Abstract Background Most of the known functions of microglia, including neurotoxic and neuroprotective properties, are attributed to morphologically-activated microglia. Resting, ramified microglia are suggested to primarily monitor their environment including synapses. Here, we show an active protective role of ramified microglia in excitotoxicity-induced neurodegeneration. Methods Mouse organotypic hippocampal slice cultures were treated with N-methyl-D-aspartic acid (NMDA) to induce excito...

  19. Changes in rat hippocampal CA1 synapses following imipramine treatment

    DEFF Research Database (Denmark)

    Chen, Fenghua; Madsen, Torsten M; Wegener, Gregers

    2008-01-01

    Neuronal plasticity in hippocampus is hypothesized to play an important role in both the pathophysiology of depressive disorders and the treatment. In this study, we investigated the consequences of imipramine treatment on neuroplasticity (including neurogenesis, synaptogenesis, and remodelling...... and number of neurons of hippocampal subregions following imipramine treatment were found. However, the number and percentage of CA1 asymmetric spine synapses increased significantly and, conversely, the percentage of asymmetric shaft synapses significantly decreased in the imipramine treated group. Our...

  20. Hippocampal volume reduction in congenital central hypoventilation syndrome.

    Directory of Open Access Journals (Sweden)

    Paul M Macey

    Full Text Available Children with congenital central hypoventilation syndrome (CCHS, a genetic disorder characterized by diminished drive to breathe during sleep and impaired CO(2 sensitivity, show brain structural and functional changes on magnetic resonance imaging (MRI scans, with impaired responses in specific hippocampal regions, suggesting localized injury.We assessed total volume and regional variation in hippocampal surface morphology to identify areas affected in the syndrome. We studied 18 CCHS (mean age+/-std: 15.1+/-2.2 years; 8 female and 32 healthy control (age 15.2+/-2.4 years; 14 female children, and traced hippocampi on 1 mm(3 resolution T1-weighted scans, collected with a 3.0 Tesla MRI scanner. Regional hippocampal volume variations, adjusted for cranial volume, were compared between groups based on t-tests of surface distances to the structure midline, with correction for multiple comparisons. Significant tissue losses emerged in CCHS patients on the left side, with a trend for loss on the right; however, most areas affected on the left also showed equivalent right-sided volume reductions. Reduced regional volumes appeared in the left rostral hippocampus, bilateral areas in mid and mid-to-caudal regions, and a dorsal-caudal region, adjacent to the fimbria.The volume losses may result from hypoxic exposure following hypoventilation during sleep-disordered breathing, or from developmental or vascular consequences of genetic mutations in the syndrome. The sites of change overlap regions of abnormal functional responses to respiratory and autonomic challenges. Affected hippocampal areas have roles associated with memory, mood, and indirectly, autonomic regulation; impairments in these behavioral and physiological functions appear in CCHS.

  1. Bilateral hippocampal infarction and amnesia: A case report

    OpenAIRE

    Kostić Smiljana; Pasovski Viktor; Krsmanović Željko; Bošković Željko; Kostić Dejan; Jovanovski Aleksandar; Jović-Stošić Jasmina

    2015-01-01

    The hippocampus along with other structures of the medial temporal lobe plays an important role in the process of learning and memory consolidation. Bilateral hippocampal lesions lead to persistent anterograde amnesia while unilateral damage results in milder, content-specific forms of amnesia. Hippocampus may be affected by an acute or chronic pathologic process from a wide spectrum of neurological disorders. Case report. A 61-year-old female patient with ...

  2. HIPPOCAMPAL CONTRIBUTIONS TO THE PROCESSING OF SOCIAL EMOTIONS

    OpenAIRE

    Immordino-Yang, Mary Helen; Singh, Vanessa

    2011-01-01

    Inducing and experiencing emotions about others’ mental and physical circumstances is thought to involve self-relevant processing and personal memories of similar experiences. The hippocampus is important for self-referential processing during recall and prospection; however, its contributions during social emotions have not been systematically investigated. We use event-related averaging and Granger causal connectivity mapping to investigate hippocampal contributions during the processing of...

  3. Hippocampal harms, protection and recovery following regular cannabis use

    Science.gov (United States)

    Yücel, M; Lorenzetti, V; Suo, C; Zalesky, A; Fornito, A; Takagi, M J; Lubman, D I; Solowij, N

    2016-01-01

    Shifting policies towards legalisation of cannabis for therapeutic and recreational use raise significant ethical issues for health-care providers seeking evidence-based recommendations. We investigated whether heavy cannabis use is associated with persistent harms to the hippocampus, if exposure to cannabidiol offers protection, and whether recovery occurs with abstinence. To do this, we assessed 111 participants: 74 long-term regular cannabis users (with an average of 15.4 years of use) and 37 non-user healthy controls. Cannabis users included subgroups of participants who were either exposed to Δ9-tetrahydrocannabinol (THC) but not to cannabidiol (CBD) or exposed to both, and former users with sustained abstinence. Participants underwent magnetic resonance imaging from which three measures of hippocampal integrity were assessed: (i) volume; (ii) fractional anisotropy; and (iii) N-acetylaspartate (NAA). Three curve-fitting models across the entire sample were tested for each measure to examine whether cannabis-related hippocampal harms are persistent, can be minimised (protected) by exposure to CBD or recovered through long-term abstinence. These analyses supported a protection and recovery model for hippocampal volume (P=0.003) and NAA (P=0.001). Further pairwise analyses showed that cannabis users had smaller hippocampal volumes relative to controls. Users not exposed to CBD had 11% reduced volumes and 15% lower NAA concentrations. Users exposed to CBD and former users did not differ from controls on any measure. Ongoing cannabis use is associated with harms to brain health, underpinned by chronic exposure to THC. However, such harms are minimised by CBD, and can be recovered with extended periods of abstinence. PMID:26756903

  4. Hippocampal CA1 pyramidal cells form functionally distinct sublayers

    OpenAIRE

    Mizuseki, Kenji; Diba, Kamran; Pastalkova, Eva; Buzsáki, György

    2011-01-01

    Summary Hippocampal CA1 pyramidal neurons have frequently been regarded as a homogeneous cell population in biophysical, pharmacological and modeling studies. Here we report robust differences between pyramidal neurons residing in the deep and superficial CA1 sublayers in the rat. Compared to their superficial peers, deep pyramidal cells fired at higher rates, burst more frequently, were more likely to have place fields and were more strongly modulated by slow oscillations of sleep. Both deep...

  5. Neuroprotective function for ramified microglia in hippocampal excitotoxicity

    Directory of Open Access Journals (Sweden)

    Vinet Jonathan

    2012-01-01

    Full Text Available Abstract Background Most of the known functions of microglia, including neurotoxic and neuroprotective properties, are attributed to morphologically-activated microglia. Resting, ramified microglia are suggested to primarily monitor their environment including synapses. Here, we show an active protective role of ramified microglia in excitotoxicity-induced neurodegeneration. Methods Mouse organotypic hippocampal slice cultures were treated with N-methyl-D-aspartic acid (NMDA to induce excitotoxic neuronal cell death. This procedure was performed in slices containing resting microglia or slices that were chemically or genetically depleted of their endogenous microglia. Results Treatment of mouse organotypic hippocampal slice cultures with 10-50 μM N-methyl-D-aspartic acid (NMDA induced region-specific excitotoxic neuronal cell death with CA1 neurons being most vulnerable, whereas CA3 and DG neurons were affected less. Ablation of ramified microglia severely enhanced NMDA-induced neuronal cell death in the CA3 and DG region rendering them almost as sensitive as CA1 neurons. Replenishment of microglia-free slices with microglia restored the original resistance of CA3 and DG neurons towards NMDA. Conclusions Our data strongly suggest that ramified microglia not only screen their microenvironment but additionally protect hippocampal neurons under pathological conditions. Morphological activation of ramified microglia is thus not required to influence neuronal survival.

  6. Hippocampal adult neurogenesis: Does the immune system matter?

    Science.gov (United States)

    de Miranda, Aline Silva; Zhang, Cun-Jin; Katsumoto, Atsuko; Teixeira, Antônio Lúcio

    2017-01-15

    Adult hippocampal neurogenesis involves proliferation, survival, differentiation and integration of newborn neurons into pre-existing neuronal networks. Although its functional significance in the central nervous system (CNS) has not comprehensively elucidated, adult neurogenesis has been attributed a role in cognition, learning and memory. There is a growing body of evidence that CNS resident as well as peripheral immune cells participate in regulating hippocampal adult neurogenesis. Microglial cells are closely associated with neural stem/progenitor cell (NSPC) in the neurogenic niche engaged in a bidirectional communication with neurons, which may be important for adult neurogenesis. Microglial and neuronal crosstalk is mediated in part by CX3CL1/CX3CR1 signaling and a disruption in this pathway has been associated with impaired neurogenesis. It has been also reported that microglial neuroprotective or neurotoxic effects in adult neurogenesis occur in a context-dependent manner. Apart from microglia other brain resident and peripheral immune cells including pericytes, perivascular macrophages, mast cells and T-cells also modulate this phenomenon. It is worth mentioning that under some physiological circumstances such as normal aging there is a significant decrease in hippocampal neurogenesis. A role for innate and adaptive immune system in adult neurogenesis has been also reported during aging. Here, we review the current evidence regarding neuro-immune interactions in the regulation of neurogenesis under distinct conditions, including aging. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Hippocampal sclerosis dementia: An amnesic variant of frontotemporal degeneration

    Directory of Open Access Journals (Sweden)

    Chiadi U. Onyike

    Full Text Available ABSTRACT Objective: To describe characteristics of hippocampal sclerosis dementia. Methods: Convenience sample of Hippocampal sclerosis dementia (HSD recruited from the Johns Hopkins University Brain Resource Center. Twenty-four cases with post-mortem pathological diagnosis of hippocampal sclerosis dementia were reviewed for clinical characterization. Results: The cases showed atrophy and neuronal loss localized to the hippocampus, amygdala and entorrhinal cortex. The majority (79.2% had amnesia at illness onset, and many (54.2% showed abnormal conduct and psychiatric disorder. Nearly 42% presented with an amnesic state, and 37.5% presented with amnesia plus abnormal conduct and psychiatric disorder. All eventually developed a behavioral or psychiatric disorder. Disorientation, executive dysfunction, aphasia, agnosia and apraxia were uncommon at onset. Alzheimer disease (AD was the initial clinical diagnosis in 89% and the final clinical diagnosis in 75%. Diagnosis of frontotemporal dementia (FTD was uncommon (seen in 8%. Conclusion: HSD shows pathological characteristics of FTD and clinical features that mimic AD and overlap with FTD. The findings, placed in the context of earlier work, support the proposition that HSD belongs to the FTD family, where it may be identified as an amnesic variant.

  8. Past, present, and future in hippocampal formation and memory research.

    Science.gov (United States)

    Muñoz-López, Mónica

    2015-06-01

    Over 100 years of research on the hippocampal formation has led us understand the consequences of lesions in humans, the functional networks, anatomical pathways, neuronal types and their local circuitry, receptors, molecules, intracellular cascades, and some of the physiological mechanisms underlying long-term spatial and episodic memory. In addition, complex computational models allow us to formulate sophisticated hypotheses; many of them testable with techniques recently developed unthinkable in the past. Although the neurobiology of the cognitive map is starting to be revealed today, we still face a future with many unresolved questions. The aim of this commentary is twofold. First is to point out some of the critical findings in hippocampal formation research and new challenges. Second, to briefly summarize what the anatomy of memory can tell us about how highly processed sensory information from distant cortical areas communicate with different subareas of the entorhinal cortex, dentate gyrus, and hippocampal subfields to integrate and consolidate unique episodic memory traces. © 2015 Wiley Periodicals, Inc.

  9. Hippocampal Transcriptomic Profiles: Subfield Vulnerability to Age and Cognitive Impairment

    Directory of Open Access Journals (Sweden)

    Lara Ianov

    2017-12-01

    Full Text Available The current study employed next-generation RNA sequencing to examine gene expression differences related to brain aging, cognitive decline, and hippocampal subfields. Young and aged rats were trained on a spatial episodic memory task. Hippocampal regions CA1, CA3, and the dentate gyrus were isolated. Poly-A mRNA was examined using two different sequencing platforms, Illumina, and Ion Proton. The Illumina platform was used to generate seed lists of genes that were statistically differentially expressed across regions, ages, or in association with cognitive function. The gene lists were then retested using the data from the Ion Proton platform. The results indicate hippocampal subfield differences in gene expression and point to regional differences in vulnerability to aging. Aging was associated with increased expression of immune response-related genes, particularly in the dentate gyrus. For the memory task, impaired performance of aged animals was linked to the regulation of Ca2+ and synaptic function in region CA1. Finally, we provide a transcriptomic characterization of the three subfields regardless of age or cognitive status, highlighting and confirming a correspondence between cytoarchitectural boundaries and molecular profiling.

  10. Inflammation subverts hippocampal synaptic plasticity in experimental multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Robert Nisticò

    Full Text Available Abnormal use-dependent synaptic plasticity is universally accepted as the main physiological correlate of memory deficits in neurodegenerative disorders. It is unclear whether synaptic plasticity deficits take place during neuroinflammatory diseases, such as multiple sclerosis (MS and its mouse model, experimental autoimmune encephalomyelitis (EAE. In EAE mice, we found significant alterations of synaptic plasticity rules in the hippocampus. When compared to control mice, in fact, hippocampal long-term potentiation (LTP induction was favored over long-term depression (LTD in EAE, as shown by a significant rightward shift in the frequency-synaptic response function. Notably, LTP induction was also enhanced in hippocampal slices from control mice following interleukin-1β (IL-1β perfusion, and both EAE and IL-1β inhibited GABAergic spontaneous inhibitory postsynaptic currents (sIPSC without affecting glutamatergic transmission and AMPA/NMDA ratio. EAE was also associated with selective loss of GABAergic interneurons and with reduced gamma-frequency oscillations in the CA1 region of the hippocampus. Finally, we provided evidence that microglial activation in the EAE hippocampus was associated with IL-1β expression, and hippocampal slices from control mice incubated with activated microglia displayed alterations of GABAergic transmission similar to those seen in EAE brains, through a mechanism dependent on enhanced IL-1β signaling. These data may yield novel insights into the basis of cognitive deficits in EAE and possibly of MS.

  11. The hippocampal CA2 ensemble is sensitive to contextual change.

    Science.gov (United States)

    Wintzer, Marie E; Boehringer, Roman; Polygalov, Denis; McHugh, Thomas J

    2014-02-19

    Contextual learning involves associating cues with an environment and relating them to past experience. Previous data indicate functional specialization within the hippocampal circuit: the dentate gyrus (DG) is crucial for discriminating similar contexts, whereas CA3 is required for associative encoding and recall. Here, we used Arc/H1a catFISH imaging to address the contribution of the largely overlooked CA2 region to contextual learning by comparing ensemble codes across CA3, CA2, and CA1 in mice exposed to familiar, altered, and novel contexts. Further, to manipulate the quality of information arriving in CA2 we used two hippocampal mutant mouse lines, CA3-NR1 KOs and DG-NR1 KOs, that result in hippocampal CA3 neuronal activity that is uncoupled from the animal's sensory environment. Our data reveal largely coherent responses across the CA axis in control mice in purely novel or familiar contexts; however, in the mutant mice subject to these protocols the CA2 response becomes uncoupled from CA1 and CA3. Moreover, we show in wild-type mice that the CA2 ensemble is more sensitive than CA1 and CA3 to small changes in overall context. Our data suggest that CA2 may be tuned to remap in response to any conflict between stored and current experience.

  12. A comparison of accurate automatic hippocampal segmentation methods.

    Science.gov (United States)

    Zandifar, Azar; Fonov, Vladimir; Coupé, Pierrick; Pruessner, Jens; Collins, D Louis

    2017-07-15

    The hippocampus is one of the first brain structures affected by Alzheimer's disease (AD). While many automatic methods for hippocampal segmentation exist, few studies have compared them on the same data. In this study, we compare four fully automated hippocampal segmentation methods in terms of their conformity with manual segmentation and their ability to be used as an AD biomarker in clinical settings. We also apply error correction to the four automatic segmentation methods, and complete a comprehensive validation to investigate differences between the methods. The effect size and classification performance is measured for AD versus normal control (NC) groups and for stable mild cognitive impairment (sMCI) versus progressive mild cognitive impairment (pMCI) groups. Our study shows that the nonlinear patch-based segmentation method with error correction is the most accurate automatic segmentation method and yields the most conformity with manual segmentation (κ=0.894). The largest effect size between AD versus NC and sMCI versus pMCI is produced by FreeSurfer with error correction. We further show that, using only hippocampal volume, age, and sex as features, the area under the receiver operating characteristic curve reaches up to 0.8813 for AD versus NC and 0.6451 for sMCI versus pMCI. However, the automatic segmentation methods are not significantly different in their performance. Copyright © 2017. Published by Elsevier Inc.

  13. Recruitment of Perisomatic Inhibition during Spontaneous Hippocampal Activity In Vitro.

    Directory of Open Access Journals (Sweden)

    Anna Beyeler

    Full Text Available It was recently shown that perisomatic GABAergic inhibitory postsynaptic potentials (IPSPs originating from basket and chandelier cells can be recorded as population IPSPs from the hippocampal pyramidal layer using extracellular electrodes (eIPSPs. Taking advantage of this approach, we have investigated the recruitment of perisomatic inhibition during spontaneous hippocampal activity in vitro. Combining intracellular and extracellular recordings from pyramidal cells and interneurons, we confirm that inhibitory signals generated by basket cells can be recorded extracellularly, but our results suggest that, during spontaneous activity, eIPSPs are mostly confined to the CA3 rather than CA1 region. CA3 eIPSPs produced the powerful time-locked inhibition of multi-unit activity expected from perisomatic inhibition. Analysis of the temporal dynamics of spike discharges relative to eIPSPs suggests significant but moderate recruitment of excitatory and inhibitory neurons within the CA3 network on a 10 ms time scale, within which neurons recruit each other through recurrent collaterals and trigger powerful feedback inhibition. Such quantified parameters of neuronal interactions in the hippocampal network may serve as a basis for future characterisation of pathological conditions potentially affecting the interactions between excitation and inhibition in this circuit.

  14. Selective amygdalohippocampectomy for hippocampal sclerosis: postoperative MR appearance.

    Science.gov (United States)

    Renowden, S A; Matkovic, Z; Adams, C B; Carpenter, K; Oxbury, S; Molyneux, A J; Anslow, P; Oxbury, J

    1995-10-01

    To analyze the anatomic consequences of selective amygdalohippocampectomy (AH) in patients with hippocampal sclerosis and to correlate the clinical outcome with the MR appearance. Seventeen patients were examined with clinical and neuropsychologic examination and cranial MR after AH (7 transcortical AH, 10 trans-Sylvian AH). The clinical and neuropsychologic outcomes after AH were compared with those of anterior lobectomy (ATL). There was no significant difference in seizure cure between transcortical or trans-Sylvian AH and ATL. However, patients with left AH fared significantly better in terms of verbal IQ and nonverbal memory when compared with those with left ATL. Verbal memory and cognition were not significantly different in the two AH groups. Variable amounts of hippocampal and amygdala remnants were found in both AH groups and did not correlate with seizure cure. White matter change consistent with gliosis probably secondary to wallerian degeneration was demonstrated in the anterior temporal lobe to a mean distance of 4.5 cm after transcortical AH and to a lesser degree as a consequence of trans-Sylvian AH. Nine patients (53%) (4 transcortical All, 5 trans-Sylvian AH) demonstrated wallerian degeneration in the optic radiations after surgery. All had incomplete contralateral quadrantanopia. There is more secondary damage to the temporal lobe after AH than was previously recognized. The extent of hippocampal and amygdala resection in AH do not seem to be directly related to seizure cure. Visual field defects are common in AH because of the anterior but variable course of the optic radiations

  15. Acupuncture modulates resting state hippocampal functional connectivity in Alzheimer disease.

    Directory of Open Access Journals (Sweden)

    Zhiqun Wang

    Full Text Available Our objective is to clarify the effects of acupuncture on hippocampal connectivity in patients with Alzheimer disease (AD using functional magnetic resonance imaging (fMRI. Twenty-eight right-handed subjects (14 AD patients and 14 healthy elders participated in this study. Clinical and neuropsychological examinations were performed on all subjects. MRI was performed using a SIEMENS verio 3-Tesla scanner. The fMRI study used a single block experimental design. We first acquired baseline resting state data during the initial 3 minutes and then performed acupuncture stimulation on the Tai chong and He gu acupoints for 3 minutes. Last, we acquired fMRI data for another 10 minutes after the needle was withdrawn. The preprocessing and data analysis were performed using statistical parametric mapping (SPM5 software. Two-sample t-tests were performed using data from the two groups in different states. We found that during the resting state, several frontal and temporal regions showed decreased hippocampal connectivity in AD patients relative to control subjects. During the resting state following acupuncture, AD patients showed increased connectivity in most of these hippocampus related regions compared to the first resting state. In conclusion, we investigated the effect of acupuncture on AD patients by combing fMRI and traditional acupuncture. Our fMRI study confirmed that acupuncture at Tai chong and He gu can enhance the hippocampal connectivity in AD patients.

  16. Contribution of cerebellar sensorimotor adaptation to hippocampal spatial memory.

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Passot

    Full Text Available Complementing its primary role in motor control, cerebellar learning has also a bottom-up influence on cognitive functions, where high-level representations build up from elementary sensorimotor memories. In this paper we examine the cerebellar contribution to both procedural and declarative components of spatial cognition. To do so, we model a functional interplay between the cerebellum and the hippocampal formation during goal-oriented navigation. We reinterpret and complete existing genetic behavioural observations by means of quantitative accounts that cross-link synaptic plasticity mechanisms, single cell and population coding properties, and behavioural responses. In contrast to earlier hypotheses positing only a purely procedural impact of cerebellar adaptation deficits, our results suggest a cerebellar involvement in high-level aspects of behaviour. In particular, we propose that cerebellar learning mechanisms may influence hippocampal place fields, by contributing to the path integration process. Our simulations predict differences in place-cell discharge properties between normal mice and L7-PKCI mutant mice lacking long-term depression at cerebellar parallel fibre-Purkinje cell synapses. On the behavioural level, these results suggest that, by influencing the accuracy of hippocampal spatial codes, cerebellar deficits may impact the exploration-exploitation balance during spatial navigation.

  17. Fimbria-fornix (FF)-transected hippocampal extracts induce the activation of astrocytes in vitro.

    Science.gov (United States)

    Zou, Linqing; Li, Haoming; Jin, Guohua; Tian, Meiling; Qin, Jianbing; Zhao, Heyan

    2014-03-01

    Hippocampus is one of the neurogenesis areas in adult mammals, but the function of astrocytes in this area is still less known. In our previous study, the fimbria-fornix (FF)-transected hippocampal extracts promoted the proliferation and neuronal differentiation of radial glial cells in vitro. To explore the effects of hippocampal extracts on gliogenesis, the hippocampal astrocytes were treated by normal or ff-transected hippocampal extracts in vitro. The cells were immunostained by brain lipid-binding protein (BLBP), nestin, and SOX2 to assess their state of activation. The effects of astrocyte-conditioned medium on the neuronal differentiation of hippocampal neural stem cells (NSCs) were also investigated. After treatment of FF-transected hippocampal extracts, the number of BLBP, nestin, and Sox-positive cells were obviously more than the cells which treated by normal hippocampal extracts, these cells maintained a state of activation and the activated astrocyte-conditioned medium also promoted the differentiation of NSCs into more neurons. These findings suggest that the astrocytes can be activated by FF-transected hippocampal extracts and these activated cells also can promote the neuronal differentiation of hippocampal NSCs in vitro.

  18. MDMA enhances hippocampal-dependent learning and memory under restrictive conditions, and modifies hippocampal spine density.

    Science.gov (United States)

    Abad, Sònia; Fole, Alberto; del Olmo, Nuria; Pubill, David; Pallàs, Mercè; Junyent, Fèlix; Camarasa, Jorge; Camins, Antonio; Escubedo, Elena

    2014-03-01

    Addictive drugs produce forms of structural plasticity in the nucleus accumbens and prefrontal cortex. The aim of this study was to investigate the impact of chronic MDMA exposure on pyramidal neurons in the CA1 region of hippocampus and drug-related spatial learning and memory changes. Adolescent rats were exposed to saline or MDMA in a regime that mimicked chronic administration. One week later, when acquisition or reference memory was evaluated in a standard Morris water maze (MWM), no differences were obtained between groups. However, MDMA-exposed animals performed better when the MWM was implemented under more difficult conditions. Animals of MDMA group were less anxious and were more prepared to take risks, as in the open field test they ventured more frequently into the central area. We have demonstrated that MDMA caused an increase in brain-derived neurotrophic factor (BDNF) expression. When spine density was evaluated, MDMA-treated rats presented a reduced density when compared with saline, but overall, training increased the total number of spines, concluding that in MDMA-group, training prevented a reduction in spine density or induced its recovery. This study provides support for the conclusion that binge administration of MDMA, known to be associated to neurotoxic damage of hippocampal serotonergic terminals, increases BDNF expression and stimulates synaptic plasticity when associated with training. In these conditions, adolescent rats perform better in a more difficult water maze task under restricted conditions of learning and memory. The effect on this task could be modulated by other behavioural changes provoked by MDMA.

  19. Menstrual suppression in the adolescent.

    Science.gov (United States)

    Kantartzis, Kelly L; Sucato, Gina S

    2013-06-01

    Menstrual suppression, the use of contraceptive methods to eliminate or decrease the frequency of menses, is often prescribed for adolescents to treat menstrual disorders or to accommodate patient preference. For young women using hormonal contraceptives, there is no medical indication for menstruation to occur monthly, and various hormonal contraceptives can be used to decrease the frequency of menstruation with different side effect profiles and rates of amenorrhea. This article reviews the different modalities for menstrual suppression, common conditions in adolescents which may improve with menstrual suppression, and strategies for managing common side effects. Copyright © 2013 North American Society for Pediatric and Adolescent Gynecology. Published by Elsevier Inc. All rights reserved.

  20. Mind-Wandering in People with Hippocampal Damage.

    Science.gov (United States)

    McCormick, Cornelia; Rosenthal, Clive R; Miller, Thomas D; Maguire, Eleanor A

    2018-03-14

    Subjective inner experiences, such as mind-wandering, represent the fundaments of human cognition. Although the precise function of mind-wandering is still debated, it is increasingly acknowledged to have influence across cognition on processes such as future planning, creative thinking, and problem-solving and even on depressive rumination and other mental health disorders. Recently, there has been important progress in characterizing mind-wandering and identifying the associated neural networks. Two prominent features of mind-wandering are mental time travel and visuospatial imagery, which are often linked with the hippocampus. People with selective bilateral hippocampal damage cannot vividly recall events from their past, envision their future, or imagine fictitious scenes. This raises the question of whether the hippocampus plays a causal role in mind-wandering and, if so, in what way. Leveraging a unique opportunity to shadow people (all males) with bilateral hippocampal damage for several days, we examined, for the first time, what they thought about spontaneously, without direct task demands. We found that they engaged in as much mind-wandering as control participants. However, whereas controls thought about the past, present, and future, imagining vivid visual scenes, hippocampal damage resulted in thoughts primarily about the present comprising verbally mediated semantic knowledge. These findings expose the hippocampus as a key pillar in the neural architecture of mind-wandering and also reveal its impact beyond episodic memory, placing it at the heart of our mental life. SIGNIFICANCE STATEMENT Humans tend to mind-wander ∼30-50% of their waking time. Two prominent features of this pervasive form of thought are mental time travel and visuospatial imagery, which are often associated with the hippocampus. To examine whether the hippocampus plays a causal role in mind-wandering, we examined the frequency and phenomenology of mind-wandering in patients with

  1. Hippocampal phosphoproteomics of F344 rats exposed to 1-bromopropane

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhenlie [Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510-300 (China); Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Ichihara, Sahoko [Graduate School of Regional Innovation Studies, Mie University, Tsu 514-8507 (Japan); Oikawa, Shinji [Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie 514-8507 (Japan); Chang, Jie [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Graduate School of Regional Innovation Studies, Mie University, Tsu 514-8507 (Japan); Zhang, Lingyi [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510 (Japan); Hu, Shijie [Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510-300 (China); Huang, Hanlin, E-mail: huanghl@gdoh.org [Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510-300 (China); Ichihara, Gaku, E-mail: gak@rs.tus.ac.jp [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510 (Japan)

    2015-01-15

    1-Bromopropane (1-BP) is neurotoxic in both experimental animals and human. To identify phosphorylated modification on the unrecognized post-translational modifications of proteins and investigate their role in 1-BP-induced neurotoxicity, changes in hippocampal phosphoprotein expression levels were analyzed quantitatively in male F344 rats exposed to 1-BP inhalation at 0, 400, or 1000 ppm for 8 h/day for 1 or 4 weeks. Hippocampal protein extracts were analyzed qualitatively and quantitatively by Pro-Q Diamond gel staining and SYPRO Ruby staining coupled with two-dimensional difference in gel electrophoresis (2D-DIGE), respectively, as well as by matrix-assisted laser-desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) to identify phosphoproteins. Changes in selected proteins were further confirmed by Manganese II (Mn{sup 2+})-Phos-tag SDS-polyacrylamide gel electrophoresis (SDS-PAGE). Bax and cytochrome c protein levels were determined by western blotting. Pro-Q Diamond gel staining combined with 2D-DIGE identified 26 phosphoprotein spots (p < 0.05), and MALDI-TOF/MS identified 18 up-regulated proteins and 8 down-regulated proteins. These proteins are involved in the biological process of response to stimuli, metabolic processes, and apoptosis signaling. Changes in the expression of phosphorylated 14-3-3 θ were further confirmed by Mn{sup 2+}-Phos-tag SDS-PAGE. Western blotting showed overexpression of Bax protein in the mitochondria with down-regulation in the cytoplasm, whereas cytochrome c expression was high in the cytoplasm but low in the mitochondria after 1-BP exposure. Our results suggest that the pathogenesis of 1-BP-induced hippocampal damage involves inhibition of antiapoptosis process. Phosphoproteins identified in this study can potentially serve as biomarkers for 1-BP-induced neurotoxicity. - Highlights: • 1-BP modified hippocampal phosphoproteome in rat and 23 altered proteins were identified. • 1-BP changed phosphorylation

  2. Effect of dorsal hippocampal lesion compared to dorsal hippocampal blockade by atropine on reference memory in vision deprived rats.

    Science.gov (United States)

    Dhume, R A; Noronha, A; Nagwekar, M D; Mascarenhas, J F

    1989-10-01

    In order to study the primacy of the hippocampus in place learning function 24 male adult albino rats were hippocampally-lesioned in dorsal hippocampus involving fornical damage (group I); sham operated for comparison with group I (group II); cannulated for instillation of atropine sulphate in the same loci as group I (group III); and cannulated for instillation of saline which served as control for group III (group IV). All the animals were enucleated and their reference memory (long-term memory) was tested, using open 4-arm radial maze. There was loss of reference memory in groups I and III. However, hippocampally-lesioned animals, showed recovery of reference memory deficit within a short period of 10 days or so. Whereas atropinized animals showed persistent reference memory deficit as long as the instillation effect continued. The mechanism involved in the recovery of reference memory in hippocampally-lesioned animals and persistent deficit of reference memory in atropinized animals has been postulated to explain the primacy of hippocampus in the place learning function under normal conditions.

  3. Compton suppression gamma ray spectrometry

    International Nuclear Information System (INIS)

    Landsberger, S.; Iskander, F.Y.; Niset, M.; Heydorn, K.

    2002-01-01

    In the past decade there have been many studies to use Compton suppression methods in routine neutron activation analysis as well as in the traditional role of low level gamma ray counting of environmental samples. On a separate path there have been many new PC based software packages that have been developed to enhance photopeak fitting. Although the newer PC based algorithms have had significant improvements, they still suffer from being effectively used in weak gamma ray lines in natural samples or in neutron activated samples that have very high Compton backgrounds. We have completed a series of experiments to show the usefulness of Compton suppression. As well we have shown the pitfalls when using Compton suppression methods for high counting deadtimes as in the case of neutron activated samples. We have also investigated if counting statistics are the same both suppressed and normal modes. Results are presented in four separate experiments. (author)

  4. Thyroid suppression test with dextrothyroxine

    International Nuclear Information System (INIS)

    Rosenthal, D.; Fridman, J.; Ribeiro, H.B.

    1978-01-01

    The classic thyroid suppression test with triiodothyronine (l-T 3 ) has been shown to be efficient as an auxiliary method in the diagnosis of thyroid diseases, but should not be performed on elderly patients or on those with heart disease or a tendency to tachycardia. Since these subjects seem able to support a short period of dextro-thyronine (d-T 4 ) feeding, we compared the effect of d-T 4 and l-T 3 on the 24 hours thyroid uptake in euthyroid and hyperthyroid subjects. After basal radio-iodine uptake determination, 99 patients without hyperthyroidism and 27 with Graves' disease were randomly divided in 2 groups; one received 100μg of l-T 3 per day and the other 4 mg of d-T 4 per day, both groups being treated for a period of 10 days. At the end of this suppression period the 24 hours radio-iodine uptake was measured again and the percentual suppression index (S.I.) calculated. Since the comparison of the two groups showed no difference between the suppressive effect of l-T 3 and d-T 4 in euthyroid subjects, while dextro-thyronine, as levo-triiodothyronine, did not suppress the 24 hours uptake of hyperthyroid patients, l-T 3 or d-T 4 can be used interchangeably to test thyroid suppressibility. In the euthyroid subjects the normal range for the post-suppression uptake was 0-17.1% and for the suppression index 54,7.100% [pt

  5. In vivo Treg suppression assays.

    Science.gov (United States)

    Workman, Creg J; Collison, Lauren W; Bettini, Maria; Pillai, Meenu R; Rehg, Jerold E; Vignali, Dario A A

    2011-01-01

    To fully examine the functionality of a regulatory T cell (T(reg)) population, one needs to assess their ability to suppress in a variety of in vivo models. We describe five in vivo models that examine the suppressive capacity of T(regs) upon different target cell types. The advantages and disadvantages of each model including resources, time, and technical expertise required to execute each model are also described.

  6. In Vivo Treg Suppression Assays

    OpenAIRE

    Workman, Creg J.; Collison, Lauren W.; Bettini, Maria; Pillai, Meenu R.; Rehg, Jerold E.; Vignali, Dario A.A.

    2011-01-01

    To fully examine the functionality of a regulatory T cell (Treg) population, one needs to assess their ability to suppress in a variety of in vivo models. We describe five in vivo models that examine the suppressive capacity of Tregs upon different target cell types. The advantages and disadvantages of each model includ ing resources, time, and technical expertise required to execute each model are also described.

  7. Neuropathologic correlates of hippocampal atrophy in the elderly: a clinical, pathologic, postmortem MRI study.

    Directory of Open Access Journals (Sweden)

    Robert J Dawe

    Full Text Available The volume of the hippocampus measured with structural magnetic resonance imaging (MRI is increasingly used as a biomarker for Alzheimer's disease (AD. However, the neuropathologic basis of structural MRI changes in the hippocampus in the elderly has not been directly assessed. Postmortem MRI of the aging human brain, combined with histopathology, could be an important tool to address this issue. Therefore, this study combined postmortem MRI and histopathology in 100 elderly subjects from the Rush Memory and Aging Project and the Religious Orders Study. First, to validate the information contained in postmortem MRI data, we tested the hypothesis that postmortem hippocampal volume is smaller in subjects with clinically diagnosed Alzheimer's disease compared to subjects with mild or no cognitive impairment, as observed in antemortem imaging studies. Subsequently, the relations of postmortem hippocampal volume to AD pathology, Lewy bodies, amyloid angiopathy, gross infarcts, microscopic infarcts, and hippocampal sclerosis were examined. It was demonstrated that hippocampal volume was smaller in persons with a clinical diagnosis of AD compared to those with no cognitive impairment (P = 2.6 × 10(-7 or mild cognitive impairment (P = 9.6 × 10(-7. Additionally, hippocampal volume was related to multiple cognitive abilities assessed proximate to death, with its strongest association with episodic memory. Among all pathologies investigated, the most significant factors related to lower hippocampal volume were shown to be AD pathology (P = 0.0018 and hippocampal sclerosis (P = 4.2 × 10(-7. Shape analysis allowed for visualization of the hippocampal regions most associated with volume loss for each of these two pathologies. Overall, this investigation confirmed the relation of hippocampal volume measured postmortem to clinical diagnosis of AD and measures of cognition, and concluded that both AD pathology and hippocampal sclerosis affect hippocampal

  8. Burst Suppression for ICP Control.

    Science.gov (United States)

    Zeiler, Frederick A; Akoth, Eva; Gillman, Lawrence M; West, Michael

    2017-02-01

    The goal of our study was to perform a systematic review of the literature to determine the effect that burst suppression has on intracranial pressure (ICP) control. All articles from MEDLINE, BIOSIS, EMBASE, Global Health, Scopus, Cochrane Library, the International Clinical Trials Registry Platform (inception to January 2015), reference lists of relevant articles, and gray literature were searched. The strength of evidence was adjudicated using both the Oxford and the Grading of Recommendation Assessment Development and Education (GRADE) methodology. Seven articles were considered for review. A total of 108 patients were studied, all receiving burst suppression therapy. Two studies failed to document a decrease in ICP with burst suppression therapy. There were reports of severe hypotension and increased infection rates with barbiturate-based therapy. Etomidate-based suppressive therapy was linked to severe renal dysfunction. There currently exists both Oxford level 2b and GRADE C evidence to support that achieving burst suppression reduces ICP, and also has no effect on ICP, in severe traumatic brain injury. The literature suggests burst suppression therapy may be useful for ICP reduction in certain cases, although these situations are currently unclear. In addition, the impact on patient functional outcome is unclear. Further prospective study is warranted.

  9. Maternal care determines rapid effects of stress mediators on synaptic plasticity in adult rat hippocampal dentate gyrus

    NARCIS (Netherlands)

    Bagot, R.C.; van Hasselt, F.N.; Champagne, D.L.; Meaney, M.J.; Krugers, H.J.; Joëls, M.

    2009-01-01

    Maternal care in the rat influences hippocampal development, synaptic plasticity and cognition. Previous studies, however, have examined animals under minimally stressful conditions. Here we tested the hypothesis that maternal care influences hippocampal function differently when this structure is

  10. Suppressed Charmed B Decay

    Energy Technology Data Exchange (ETDEWEB)

    Snoek, Hella Leonie [Vrije Univ., Amsterdam (Netherlands)

    2009-06-02

    This thesis describes the measurement of the branching fractions of the suppressed charmed B0 → D*- a0+ decays and the non-resonant B0 → D*- ηπ+ decays in approximately 230 million Υ(4S) → B$\\bar{B}$ events. The data have been collected with the BABAR detector at the PEP-II B factory at the Stanford Linear Accelerator Center in California. Theoretical predictions of the branching fraction of the B0 → D*- a{sub 0}+ decays show large QCD model dependent uncertainties. Non-factorizing terms, in the naive factorization model, that can be calculated by QCD factorizing models have a large impact on the branching fraction of these decay modes. The predictions of the branching fractions are of the order of 10-6. The measurement of the branching fraction gives more insight into the theoretical models. In general a better understanding of QCD models will be necessary to conduct weak interaction physics at the next level. The presence of CP violation in electroweak interactions allows the differentiation between matter and antimatter in the laws of physics. In the Standard Model, CP violation is incorporated in the CKM matrix that describes the weak interaction between quarks. Relations amongst the CKM matrix elements are used to present the two relevant parameters as the apex of a triangle (Unitarity Triangle) in a complex plane. The over-constraining of the CKM triangle by experimental measurements is an important test of the Standard Model. At this moment no stringent direct measurements of the CKM angle γ, one of the interior angles of the Unitarity Triangle, are available. The measurement of the angle γ can be performed using the decays of neutral B mesons. The B0 → D*- a0+ decay is sensitive to the angle γ and, in comparison to the current decays that are being employed, could significantly

  11. Chewing Prevents Stress-Induced Hippocampal LTD Formation and Anxiety-Related Behaviors: A Possible Role of the Dopaminergic System

    Directory of Open Access Journals (Sweden)

    Yumie Ono

    2015-01-01

    Full Text Available The present study examined the effects of chewing on stress-induced long-term depression (LTD and anxiogenic behavior. Experiments were performed in adult male rats under three conditions: restraint stress condition, voluntary chewing condition during stress, and control condition without any treatments except handling. Chewing ameliorated LTD development in the hippocampal CA1 region. It also counteracted the stress-suppressed number of entries to the center region of the open field when they were tested immediately, 30 min, or 60 min after restraint. At the latter two poststress time periods, chewing during restraint significantly increased the number of times of open arm entries in the elevated plus maze, when compared with those without chewing. The in vivo microdialysis further revealed that extracellular dopamine concentration in the ventral hippocampus, which is involved in anxiety-related behavior, was significantly greater in chewing rats than in those without chewing from 30 to 105 min after stress exposure. Development of LTD and anxiolytic effects ameliorated by chewing were counteracted by administering the D1 dopamine receptor antagonist SCH23390, which suggested that chewing may activate the dopaminergic system in the ventral hippocampus to suppress stress-induced anxiogenic behavior.

  12. Caffeine-Induced Suppression of GABAergic Inhibition and Calcium-Independent Metaplasticity

    Directory of Open Access Journals (Sweden)

    Masako Isokawa

    2016-01-01

    Full Text Available GABAergic inhibition plays a critical role in the regulation of neuron excitability; thus, it is subject to modulations by many factors. Recent evidence suggests the elevation of intracellular calcium ([Ca2+]i and calcium-dependent signaling molecules underlie the modulations. Caffeine induces a release of calcium from intracellular stores. We tested whether caffeine modulated GABAergic transmission by increasing [Ca2+]i. A brief local puff-application of caffeine to hippocampal CA1 pyramidal cells transiently suppressed GABAergic inhibitory postsynaptic currents (IPSCs by 73.2 ± 6.98%. Time course of suppression and the subsequent recovery of IPSCs resembled DSI (depolarization-induced suppression of inhibition, mediated by endogenous cannabinoids that require a [Ca2+]i rise. However, unlike DSI, caffeine-induced suppression of IPSCs (CSI persisted in the absence of a [Ca2+]i rise. Intracellular applications of BAPTA and ryanodine (which blocks caffeine-induced calcium release from intracellular stores failed to prevent the generation of CSI. Surprisingly, ruthenium red, an inhibitor of multiple calcium permeable/release channels including those of stores, induced metaplasticity by amplifying the magnitude of CSI independently of calcium. This metaplasticity was accompanied with the generation of a large inward current. Although ionic basis of this inward current is undetermined, the present result demonstrates that caffeine has a robust Ca2+-independent inhibitory action on GABAergic inhibition and causes metaplasticity by opening plasma membrane channels.

  13. NT-3 Facilitates Hippocampal Plasticity and Learning and Memory by Regulating Neurogenesis

    Science.gov (United States)

    Sakata, Kazuko; Akbarian, Schahram; Bates, Brian; Jaenisch, Rudolf; Lu, Bai; Shimazu, Kazuhiro; Zhao, Mingrui

    2006-01-01

    In the adult brain, the expression of NT-3 is largely confined to the hippocampal dentate gyrus (DG), an area exhibiting significant neurogenesis. Using a conditional mutant line in which the "NT-3" gene is deleted in the brain, we investigated the role of NT-3 in adult neurogenesis, hippocampal plasticity, and memory. Bromodeoxyuridine…

  14. Peripheral telomere length and hippocampal volume in adolescents with major depressive disorder.

    Science.gov (United States)

    Henje Blom, E; Han, L K M; Connolly, C G; Ho, T C; Lin, J; LeWinn, K Z; Simmons, A N; Sacchet, M D; Mobayed, N; Luna, M E; Paulus, M; Epel, E S; Blackburn, E H; Wolkowitz, O M; Yang, T T

    2015-11-10

    Several studies have reported that adults with major depressive disorder have shorter telomere length and reduced hippocampal volumes. Moreover, studies of adult populations without major depressive disorder suggest a relationship between peripheral telomere length and hippocampal volume. However, the relationship of these findings in adolescents with major depressive disorder has yet to be explored. We examined whether adolescent major depressive disorder is associated with altered peripheral telomere length and hippocampal volume, and whether these measures relate to one another. In 54 unmedicated adolescents (13-18 years) with major depressive disorder and 63 well-matched healthy controls, telomere length was assessed from saliva using quantitative polymerase chain reaction methods, and bilateral hippocampal volumes were measured with magnetic resonance imaging. After adjusting for age and sex (and total brain volume in the hippocampal analysis), adolescents with major depressive disorder exhibited significantly shorter telomere length and significantly smaller right, but not left hippocampal volume. When corrected for age, sex, diagnostic group and total brain volume, telomere length was not significantly associated with left or right hippocampal volume, suggesting that these cellular and neural processes may be mechanistically distinct during adolescence. Our findings suggest that shortening of telomere length and reduction of hippocampal volume are already present in early-onset major depressive disorder and thus unlikely to be only a result of accumulated years of exposure to major depressive disorder.

  15. Stimulus Similarity and Encoding Time Influence Incidental Recognition Memory in Adult Monkeys with Selective Hippocampal Lesions

    Science.gov (United States)

    Zeamer, Alyson; Meunier, Martine; Bachevalier, Jocelyne

    2011-01-01

    Recognition memory impairment after selective hippocampal lesions in monkeys is more profound when measured with visual paired-comparison (VPC) than with delayed nonmatching-to-sample (DNMS). To clarify this issue, we assessed the impact of stimuli similarity and encoding duration on the VPC performance in monkeys with hippocampal lesions and…

  16. Low Proliferation and Differentiation Capacities of Adult Hippocampal Stem Cells Correlate with Memory Dysfunction in Humans

    Science.gov (United States)

    Coras, Roland; Siebzehnrubl, Florian A.; Pauli, Elisabeth; Huttner, Hagen B.; Njunting, Marleisje; Kobow, Katja; Villmann, Carmen; Hahnen, Eric; Neuhuber, Winfried; Weigel, Daniel; Buchfelder, Michael; Stefan, Hermann; Beck, Heinz; Steindler, Dennis A.; Blumcke, Ingmar

    2010-01-01

    The hippocampal dentate gyrus maintains its capacity to generate new neurons throughout life. In animal models, hippocampal neurogenesis is increased by cognitive tasks, and experimental ablation of neurogenesis disrupts specific modalities of learning and memory. In humans, the impact of neurogenesis on cognition remains unclear. Here, we…

  17. Associations between hippocampal morphometry and neuropathologic markers of Alzheimer's disease using 7 T MRI

    Directory of Open Access Journals (Sweden)

    Anna E. Blanken

    2017-01-01

    Full Text Available Hippocampal atrophy, amyloid plaques, and neurofibrillary tangles are established pathologic markers of Alzheimer's disease. We analyzed the temporal lobes of 9 Alzheimer's dementia (AD and 7 cognitively normal (NC subjects. Brains were scanned post-mortem at 7 Tesla. We extracted hippocampal volumes and radial distances using automated segmentation techniques. Hippocampal slices were stained for amyloid beta (Aβ, tau, and cresyl violet to evaluate neuronal counts. The hippocampal subfields, CA1, CA2, CA3, CA4, and subiculum were manually traced so that the neuronal counts, Aβ, and tau burden could be obtained for each region. We used linear regression to detect associations between hippocampal atrophy in 3D, clinical diagnosis and total as well as subfield pathology burden measures. As expected, we found significant correlations between hippocampal radial distance and mean neuronal count, as well as diagnosis. There were subfield specific associations between hippocampal radial distance and tau in CA2, and cresyl violet neuronal counts in CA1 and subiculum. These results provide further validation for the European Alzheimer's Disease Consortium Alzheimer's Disease Neuroimaging Initiative Center Harmonized Hippocampal Segmentation Protocol (HarP.

  18. Phase Matters: Responding to and Learning about Peripheral Stimuli Depends on Hippocampal ? Phase at Stimulus Onset

    Science.gov (United States)

    Nokia, Miriam S.; Waselius, Tomi; Mikkonen, Jarno E.; Wikgren, Jan; Penttonen, Markku

    2015-01-01

    Hippocampal ? (3-12 Hz) oscillations are implicated in learning and memory, but their functional role remains unclear. We studied the effect of the phase of local ? oscillation on hippocampal responses to a neutral conditioned stimulus (CS) and subsequent learning of classical trace eyeblink conditioning in adult rabbits. High-amplitude, regular…

  19. Hippocampal insulin resistance links maternal obesity with impaired neuronal plasticity in adult offspring.

    Science.gov (United States)

    Schmitz, Lisa; Kuglin, Rebecca; Bae-Gartz, Inga; Janoschek, Ruth; Appel, Sarah; Mesaros, Andrea; Jakovcevski, Igor; Vohlen, Christina; Handwerk, Marion; Ensenauer, Regina; Dötsch, Jörg; Hucklenbruch-Rother, Eva

    2017-12-28

    Maternal obesity and a disturbed metabolic environment during pregnancy and lactation have been shown to result in many long-term health consequences for the offspring. Among them, impairments in neurocognitive development and performance belong to the most dreaded ones. So far, very few mechanistic approaches have aimed to determine the responsible molecular events. In a mouse model of maternal diet-induced obesity and perinatal hyperinsulinemia, we assessed adult offspring's hippocampal insulin signaling as well as concurrent effects on markers of hippocampal neurogenesis, synaptic plasticity and function using western blotting and immunohistochemistry. In search for a potential link between neuronal insulin resistance and hippocampal plasticity, we additionally quantified protein expression of key molecules of synaptic plasticity in an in vitro model of acute neuronal insulin resistance. Maternal obesity and perinatal hyperinsulinemia result in adult hippocampal insulin resistance with subsequently reduced hippocampal mTor signaling and altered expression of markers of neurogenesis (doublecortin), synaptic plasticity (FoxO1, pSynapsin) and function (vGlut, vGAT) in the offspring. The observed effects are independent of the offspring's adult metabolic phenotype and can be associated with multiple previously reported behavioral abnormalities. Additionally, we demonstrate that induction of insulin resistance in cultured hippocampal neurons reduces mTor signaling, doublecortin and vGAT protein expression. Hippocampal insulin resistance might play a key role in mediating the long-term effects of maternal obesity and perinatal hyperinsulinemia on hippocampal plasticity and the offspring's neurocognitive outcome. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Effect of Exercise Training on Hippocampal Volume in Humans: A Pilot Study

    Science.gov (United States)

    Parker, Beth A.; Thompson, Paul D.; Jordan, Kathryn C.; Grimaldi, Adam S.; Assaf, Michal; Jagannathan, Kanchana; Pearlson, Godfrey D.

    2011-01-01

    The hippocampus is the primary site of memory and learning in the brain. Both normal aging and various disease pathologies (e.g., alcoholism, schizophrenia, and major depressive disorder) are associated with lower hippocampal volumes in humans and hippocampal atrophy predicts progression of Alzheimers disease. In animals, there is convincing…

  1. Predicting memory performance in normal ageing using different measures of hippocampal size

    International Nuclear Information System (INIS)

    Lye, T.C.; Creasey, H.; Kril, J.J.; Grayson, D.A.; Piguet, O.; Bennett, H.P.; Ridley, L.J.; Broe, G.A.

    2006-01-01

    A number of different methods have been employed to correct hippocampal volumes for individual variation in head size. Researchers have previously used qualitative visual inspection to gauge hippocampal atrophy. The purpose of this study was to determine the best measure(s) of hippocampal size for predicting memory functioning in 102 community-dwelling individuals over 80 years of age. Hippocampal size was estimated using magnetic resonance imaging (MRI) volumetry and qualitative visual assessment. Right and left hippocampal volumes were adjusted by three different estimates of head size: total intracranial volume (TICV), whole-brain volume including ventricles (WB+V) and a more refined measure of whole-brain volume with ventricles extracted (WB). We compared the relative efficacy of these three volumetric adjustment methods and visual ratings of hippocampal size in predicting memory performance using linear regression. All four measures of hippocampal size were significant predictors of memory performance. TICV-adjusted volumes performed most poorly in accounting for variance in memory scores. Hippocampal volumes adjusted by either measure of whole-brain volume performed equally well, although qualitative visual ratings of the hippocampus were at least as effective as the volumetric measures in predicting memory performance in community-dwelling individuals in the ninth or tenth decade of life. (orig.)

  2. Intermediate levels of hippocampal activity appear optimal for associative memory formation.

    NARCIS (Netherlands)

    Liu, X.; Qin, S.; Rijpkema, M.J.P.; Luo, J.; Fernandez, G.S.E.

    2010-01-01

    BACKGROUND: It is well established that hippocampal activity is positively related to effective associative memory formation. However, in biological systems often optimal levels of activity are contrasted by both sub- and supra-optimal levels. Sub-optimal levels of hippocampal activity are commonly

  3. Sub-regional hippocampal injury is associated with fornix degeneration in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Dong Young Lee

    2012-04-01

    Full Text Available We examined in vivo evidence of axonal degeneration in association with neuronal pathology in Alzheimer’s disease (AD through analysis of fornix microstructural integrity and measures of hippocampal subfield atrophy. Based on known anatomical topography, we hypothesized that the local thickness of subiculum and CA1 hippocampus fields would be associated with fornix integrity, reflecting an association between AD-related injury to hippocampal neurons and degeneration of associated axon fibers. To test this hypothesis, multi-modal imaging, combining measures of local hippocampal radii with diffusion tensor imaging (DTI, was applied to 44 individuals clinically diagnosed with AD, 44 individuals clinically diagnosed with mild cognitive impairment (MCI, and 96 cognitively normal individuals. Fornix microstructural degradation, as measured by reduced DTI-based fractional anisotropy (FA, was prominent in both MCI and AD, and was associated with reduced hippocampal volumes. Further, reduced fornix FA was associated with reduced anterior CA1 and antero-medial subiculum thickness. Finally, while both lesser fornix FA and lesser hippocampal volume were associated with lesser episodic memory, only the hippocampal measures were significant predictors of episodic memory in models including both hippocampal and fornix predictors. The region-specific association between fornix integrity and hippocampal neuronal death may provide in vivo evidence for degenerative white matter injury in AD: axonal pathology that is closely linked to neuronal injury.

  4. Hippocampal Disconnection in Early Alzheimer's Disease : A 7 Tesla MRI Study

    NARCIS (Netherlands)

    Wisse, Laura E. M.; Reijmer, Yael D.; ter Telgte, Annemieke; Kuijf, Hugo J.; Leemans, Alexander; Luijten, Peter R.; Koek, Huiberdina L.; Geerlings, Mirjam I.; Biessels, Geert Jan

    2015-01-01

    Background: In patients with Alzheimer's disease (AD), atrophy of the entorhinal cortex (ERC) and hippocampal formation may induce degeneration of connecting white matter tracts. Objective: We examined the association of hippocampal subfield and ERC atrophy at 7 tesla MRI with fornix and

  5. Hippocampal disconnection in early Alzheimer's disease: a 7 tesla MRI study

    NARCIS (Netherlands)

    Wisse, L.E.; Reijmer, Y.D.; Telgte, A. ter; Kuijf, H.J.; Leemans, A.; Luijten, P.R.; Koek, H.L.; Geerlings, M.I.; Biessels, G.J.

    2015-01-01

    BACKGROUND: In patients with Alzheimer's disease (AD), atrophy of the entorhinal cortex (ERC) and hippocampal formation may induce degeneration of connecting white matter tracts. OBJECTIVE: We examined the association of hippocampal subfield and ERC atrophy at 7 tesla MRI with fornix and

  6. Sub-Regional Hippocampal Injury is Associated with Fornix Degeneration in Alzheimer’s Disease

    Science.gov (United States)

    Lee, Dong Young; Fletcher, Evan; Carmichael, Owen Thomas; Singh, Baljeet; Mungas, Dan; Reed, Bruce; Martinez, Oliver; Buonocore, Michael H.; Persianinova, Maria; DeCarli, Charles

    2012-01-01

    We examined in vivo evidence of axonal degeneration in association with neuronal pathology in Alzheimer’s disease (AD) through analysis of fornix microstructural integrity and measures of hippocampal subfield atrophy. Based on known anatomical topography, we hypothesized that the local thickness of subiculum and CA1 hippocampus fields would be associated with fornix integrity, reflecting an association between AD-related injury to hippocampal neurons and degeneration of associated axon fibers. To test this hypothesis, multi-modal imaging, combining measures of local hippocampal radii with diffusion tensor imaging (DTI), was applied to 44 individuals clinically diagnosed with AD, 44 individuals clinically diagnosed with mild cognitive impairment (MCI), and 96 cognitively normal individuals. Fornix microstructural degradation, as measured by reduced DTI-based fractional anisotropy (FA), was prominent in both MCI and AD, and was associated with reduced hippocampal volumes. Further, reduced fornix FA was associated with reduced anterior CA1 and antero-medial subiculum thickness. Finally, while both lesser fornix FA and lesser hippocampal volume were associated with lesser episodic memory, only the hippocampal measures were significant predictors of episodic memory in models including both hippocampal and fornix predictors. The region-specific association between fornix integrity and hippocampal neuronal death may provide in vivo evidence for degenerative white matter injury in AD: axonal pathology that is closely linked to neuronal injury. PMID:22514534

  7. Radiation Dose–Dependent Hippocampal Atrophy Detected With Longitudinal Volumetric Magnetic Resonance Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Seibert, Tyler M.; Karunamuni, Roshan [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States); Bartsch, Hauke [Department of Radiology, University of California, San Diego, La Jolla, California (United States); Kaifi, Samar [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States); Krishnan, Anitha Priya [Department of Radiology, University of California, San Diego, La Jolla, California (United States); Dalia, Yoseph; Burkeen, Jeffrey; Murzin, Vyacheslav; Moiseenko, Vitali [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States); Kuperman, Joshua; White, Nathan S. [Department of Radiology, University of California, San Diego, La Jolla, California (United States); Brewer, James B. [Department of Radiology, University of California, San Diego, La Jolla, California (United States); Department of Neurosciences, University of California, San Diego, La Jolla, California (United States); Farid, Nikdokht [Department of Radiology, University of California, San Diego, La Jolla, California (United States); McDonald, Carrie R. [Department of Psychiatry, University of California, San Diego, La Jolla, California (United States); Hattangadi-Gluth, Jona A., E-mail: jhattangadi@ucsd.edu [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States)

    2017-02-01

    Purpose: After radiation therapy (RT) to the brain, patients often experience memory impairment, which may be partially mediated by damage to the hippocampus. Hippocampal sparing in RT planning is the subject of recent and ongoing clinical trials. Calculating appropriate hippocampal dose constraints would be improved by efficient in vivo measurements of hippocampal damage. In this study we sought to determine whether brain RT was associated with dose-dependent hippocampal atrophy. Methods and Materials: Hippocampal volume was measured with magnetic resonance imaging (MRI) in 52 patients who underwent fractionated, partial brain RT for primary brain tumors. Study patients had high-resolution, 3-dimensional volumetric MRI before and 1 year after RT. Images were processed using software with clearance from the US Food and Drug Administration and Conformité Européene marking for automated measurement of hippocampal volume. Automated results were inspected visually for accuracy. Tumor and surgical changes were censored. Mean hippocampal dose was tested for correlation with hippocampal atrophy 1 year after RT. Average hippocampal volume change was also calculated for hippocampi receiving high (>40 Gy) or low (<10 Gy) mean RT dose. A multivariate analysis was conducted with linear mixed-effects modeling to evaluate other potential predictors of hippocampal volume change, including patient (random effect), age, hemisphere, sex, seizure history, and baseline volume. Statistical significance was evaluated at α = 0.05. Results: Mean hippocampal dose was significantly correlated with hippocampal volume loss (r=−0.24, P=.03). Mean hippocampal volume was significantly reduced 1 year after high-dose RT (mean −6%, P=.009) but not after low-dose RT. In multivariate analysis, both RT dose and patient age were significant predictors of hippocampal atrophy (P<.01). Conclusions: The hippocampus demonstrates radiation dose–dependent atrophy after treatment for brain

  8. The three-dimensional organization of the hippocampal formation: a review of anatomical data.

    Science.gov (United States)

    Amaral, D G; Witter, M P

    1989-01-01

    In the early 1970s, Andersen and colleagues proposed that the principal excitatory pathways of the hippocampal formation were organized in a lamellar fashion. This proposition, based heavily on the physiological studies of the proponents, indicated that "a point source of entorhinal activity projects its impulses through the four membered pathway (of the hippocampal formation) along a slice or lamella, of hippocampal tissue oriented normally to the alvear surface" [Anderson P., Bliss V.P. and Skrede K. K. (1971) Expl Brain Res. 13, 222-238] and perpendicular to the long axis of the hippocampus. Andersen et al. further suggested that, "By means of this lamellar organization, small strips of the hippocampal cortex may operate as independent functional units, although excitatory and inhibitory transverse connections may modify the behavior of neighboring lamellae." The "lamellar hypothesis" of hippocampal anatomical organization has had tremendous influence on the conceptualization of hippocampal information processing and was largely responsible for prompting the establishment of the in vitro hippocampal slice technology. While the "lamellar hypothesis" was consistent with the known neuroanatomy, subsequent neuroanatomical investigations, using a variety of modern tracing techniques, have invariably demonstrated that all of the major hippocampal projections, except for those arising from the granule cells of the dentate gyrus, are much more divergent than would be consistent with a strict interpretation of the lamellar hypothesis. This has become particularly clear in ongoing studies of the intrinsic hippocampal projections using the recently introduced anterograde tracer, Phaseolus vulgaris leucoagglutinin. Citing the conclusions from several papers dealing with the anatomical organization of the hippocampal formation and using examples from recent Phaseolus vulgaris leucoagglutinin mapping studies, the following are demonstrated. (1) That the major hippocampal

  9. Treadmill exercise ameliorates symptoms of Alzheimer disease through suppressing microglial activation-induced apoptosis in rats.

    Science.gov (United States)

    Baek, Seung-Soo; Kim, Sang-Hoon

    2016-12-01

    Alzheimer disease (AD) is a most common form of dementia and eventually causes impairments of learning ability and memory function. In the present study, we investigated the effects of treadmill exercise on the symptoms of AD focusing on the microglial activation-induced apoptosis. AD was made by bilateral intracerebroventricular injection of streptozotocin. The rats in the exercise groups were made to run on a treadmill once a day for 30 min during 4 weeks. The distance and latency in the Morris water maze task and the latency in the step-down avoidance task were increased in the AD rats, in contrast, treadmill exercise shortened these parameters. The numbers of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive and caspase-3-positive cells in the hippocampal dentate gyrus were decreased in the AD rats, in contrast, treadmill exercise suppressed these numbers. Expressions of glial fibrillary acidic protein (GFAP) and cluster of differentiation molecule 11B (CD11b) in the hippocampal dentate gyrus were increased in the AD rats, in contrast, treadmill exercise suppressed GFAP and CD11b expressions. Bax expression was increased and Bcl-2 expression was decreased in the hippocampus of AD rats, in contrast, treadmill exercise decreased Bax expression and increased Bcl-2 expression. The present results demonstrated that treadmill exercise ameliorated AD-induced impairments of spatial learning ability and short-term memory through suppressing apoptosis. The antiapoptotic effect of treadmill exercise might be ascribed to the inhibitory effect of treadmill exercise on microglial activation.

  10. Adaptive emotional memory: the key hippocampal-amygdalar interaction.

    Science.gov (United States)

    Desmedt, Aline; Marighetto, Aline; Richter-Levin, Gal; Calandreau, Ludovic

    2015-01-01

    For centuries philosophical and clinical studies have emphasized a fundamental dichotomy between emotion and cognition, as, for instance, between behavioral/emotional memory and explicit/representative memory. However, the last few decades cognitive neuroscience have highlighted data indicating that emotion and cognition, as well as their underlying neural networks, are in fact in close interaction. First, it turns out that emotion can serve cognition, as exemplified by its critical contribution to decision-making or to the enhancement of episodic memory. Second, it is also observed that reciprocally cognitive processes as reasoning, conscious appraisal or explicit representation of events can modulate emotional responses, like promoting or reducing fear. Third, neurobiological data indicate that reciprocal amygdalar-hippocampal influences underlie such mutual regulation of emotion and cognition. While supporting this view, the present review discusses experimental data, obtained in rodents, indicating that the hippocampal and amygdalar systems not only regulate each other and their functional outcomes, but also qualify specific emotional memory representations through specific activations and interactions. Specifically, we review consistent behavioral, electrophysiological, pharmacological, biochemical and imaging data unveiling a direct contribution of both the amygdala and hippocampal-septal system to the identification of the predictor of a threat in different situations of fear conditioning. Our suggestion is that these two brain systems and their interplay determine the selection of relevant emotional stimuli, thereby contributing to the adaptive value of emotional memory. Hence, beyond the mutual quantitative regulation of these two brain systems described so far, we develop the idea that different activations of the hippocampus and amygdala, leading to specific configurations of neural activity, qualitatively impact the formation of emotional memory

  11. Hippocampal remapping is constrained by sparseness rather than capacity.

    Directory of Open Access Journals (Sweden)

    Axel Kammerer

    2014-12-01

    Full Text Available Grid cells in the medial entorhinal cortex encode space with firing fields that are arranged on the nodes of spatial hexagonal lattices. Potential candidates to read out the space information of this grid code and to combine it with other sensory cues are hippocampal place cells. In this paper, we investigate a population of grid cells providing feed-forward input to place cells. The capacity of the underlying synaptic transformation is determined by both spatial acuity and the number of different spatial environments that can be represented. The codes for different environments arise from phase shifts of the periodical entorhinal cortex patterns that induce a global remapping of hippocampal place fields, i.e., a new random assignment of place fields for each environment. If only a single environment is encoded, the grid code can be read out at high acuity with only few place cells. A surplus in place cells can be used to store a space code for more environments via remapping. The number of stored environments can be increased even more efficiently by stronger recurrent inhibition and by partitioning the place cell population such that learning affects only a small fraction of them in each environment. We find that the spatial decoding acuity is much more resilient to multiple remappings than the sparseness of the place code. Since the hippocampal place code is sparse, we thus conclude that the projection from grid cells to the place cells is not using its full capacity to transfer space information. Both populations may encode different aspects of space.

  12. Differential response of hippocampal subregions to stress and learning.

    Directory of Open Access Journals (Sweden)

    Darby F Hawley

    Full Text Available The hippocampus has two functionally distinct subregions-the dorsal portion, primarily associated with spatial navigation, and the ventral portion, primarily associated with anxiety. In a prior study of chronic unpredictable stress (CUS in rodents, we found that it selectively enhanced cellular plasticity in the dorsal hippocampal subregion while negatively impacting it in the ventral. In the present study, we determined whether this adaptive plasticity in the dorsal subregion would confer CUS rats an advantage in a spatial task-the radial arm water maze (RAWM. RAWM exposure is both stressful and requires spatial navigation, and therefore places demands simultaneously upon both hippocampal subregions. Therefore, we used Western blotting to investigate differential expression of plasticity-associated proteins (brain derived neurotrophic factor [BDNF], proBDNF and postsynaptic density-95 [PSD-95] in the dorsal and ventral subregions following RAWM exposure. Lastly, we used unbiased stereology to compare the effects of CUS on proliferation, survival and neuronal differentiation of cells in the dorsal and ventral hippocampal subregions. We found that CUS and exposure to the RAWM both increased corticosterone, indicating that both are stressful; nevertheless, CUS animals had significantly better long-term spatial memory. We also observed a subregion-specific pattern of protein expression following RAWM, with proBDNF increased in the dorsal and decreased in the ventral subregion, while PSD-95 was selectively upregulated in the ventral. Finally, consistent with our previous study, we found that CUS most negatively affected neurogenesis in the ventral (compared to the dorsal subregion. Taken together, our data support a dual role for the hippocampus in stressful experiences, with the more resilient dorsal portion undergoing adaptive plasticity (perhaps to facilitate escape from or neutralization of the stressor, and the ventral portion involved in

  13. Hippocampal Astrocytes in Migrating and Wintering Semipalmated Sandpiper Calidris pusilla

    Directory of Open Access Journals (Sweden)

    Dario Carvalho-Paulo

    2018-01-01

    Full Text Available Seasonal migratory birds return to the same breeding and wintering grounds year after year, and migratory long-distance shorebirds are good examples of this. These tasks require learning and long-term spatial memory abilities that are integrated into a navigational system for repeatedly locating breeding, wintering, and stopover sites. Previous investigations focused on the neurobiological basis of hippocampal plasticity and numerical estimates of hippocampal neurogenesis in birds but only a few studies investigated potential contributions of glial cells to hippocampal-dependent tasks related to migration. Here we hypothesized that the astrocytes of migrating and wintering birds may exhibit significant morphological and numerical differences connected to the long-distance flight. We used as a model the semipalmated sandpiper Calidris pusilla, that migrates from northern Canada and Alaska to South America. Before the transatlantic non-stop long-distance component of their flight, the birds make a stopover at the Bay of Fundy in Canada. To test our hypothesis, we estimated total numbers and compared the three-dimensional (3-D morphological features of adult C. pusilla astrocytes captured in the Bay of Fundy (n = 249 cells with those from birds captured in the coastal region of Bragança, Brazil, during the wintering period (n = 250 cells. Optical fractionator was used to estimate the number of astrocytes and for 3-D reconstructions we used hierarchical cluster analysis. Both morphological phenotypes showed reduced morphological complexity after the long-distance non-stop flight, but the reduction in complexity was much greater in Type I than in Type II astrocytes. Coherently, we also found a significant reduction in the total number of astrocytes after the transatlantic flight. Taken together these findings suggest that the long-distance non-stop flight altered significantly the astrocytes population and that morphologically distinct astrocytes

  14. Hippocampal activity during the transverse patterning task declines with cognitive competence but not with age

    Directory of Open Access Journals (Sweden)

    Leirer Vera M

    2010-09-01

    Full Text Available Abstract Background The hippocampus is a brain region that is particularly affected by age-related morphological changes. It is generally assumed that a loss in hippocampal volume results in functional deficits that contribute to age-related cognitive decline. In a combined cross-sectional behavioural and magnetoencephalography (MEG study we investigated whether hippocampal-associated neural current flow during a transverse patterning task - which requires learning relational associations between stimuli - correlates with age and whether it is modulated by cognitive competence. Results Better performance in several tests of verbal memory, verbal fluency and executive function was indeed associated with higher hippocampal neural activity. Age, however, was not related to the strength of hippocampal neural activity: elderly participants responded slower than younger individuals but on average produced the same neural mass activity. Conclusions Our results suggest that in non-pathological aging, hippocampal neural activity does not decrease with age but is rather related to cognitive competence.

  15. Hippocampal dentation: Structural variation and its association with episodic memory in healthy adults.

    Science.gov (United States)

    Fleming Beattie, Julia; Martin, Roy C; Kana, Rajesh K; Deshpande, Hrishikesh; Lee, Seongtaek; Curé, Joel; Ver Hoef, Lawrence

    2017-07-01

    While the hippocampus has long been identified as a structure integral to memory, the relationship between morphology and function has yet to be fully explained. We present an analysis of hippocampal dentation, a morphological feature previously unexplored in regard to its relationship with episodic memory. "Hippocampal dentation" in this case refers to surface convolutions, primarily present in the CA1/subiculum on the inferior aspect of the hippocampus. Hippocampal dentation was visualized using ultra-high resolution structural MRI and evaluated using a novel visual rating scale. The degree of hippocampal dentation was found to vary considerably across individuals, and was positively associated with verbal memory recall and visual memory recognition in a sample of 22 healthy adults. This study is the first to characterize the variation in hippocampal dentation in a healthy cohort and to demonstrate its association with aspects of episodic memory. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Porencephaly in dogs and cats: relationships between magnetic resonance imaging (MRI) features and hippocampal atrophy.

    Science.gov (United States)

    Hori, Ai; Hanazono, Kiwamu; Miyoshi, Kenjirou; Nakade, Tetsuya

    2015-07-01

    Porencephaly is the congenital cerebral defect and a rare malformation and described few MRI reports in veterinary medicine. MRI features of porencephaly are recognized the coexistence with the unilateral/bilateral hippocampal atrophy, caused by the seizure symptoms in human medicine. We studied 2 dogs and 1 cat with congenital porencephaly to characterize the clinical signs and MRI, and to discuss the associated MRI with hippocampal atrophy. The main clinical sign was the seizure symptoms, and all had hippocampal atrophy at the lesion side or the larger defect side. There is association between hippocampal atrophy or the cyst volume and the severe of clinical signs, and it is suggested that porencephaly coexists with hippocampal atrophy as well as humans in this study.

  17. Canine hippocampal formation composited into three-dimensional structure using MPRAGE.

    Science.gov (United States)

    Jung, Mi-Ae; Nahm, Sang-Soep; Lee, Min-Su; Lee, In-Hye; Lee, Ah-Ra; Jang, Dong-Pyo; Kim, Young-Bo; Cho, Zang-Hee; Eom, Ki-Dong

    2010-07-01

    This study was performed to anatomically illustrate the living canine hippocampal formation in three-dimensions (3D), and to evaluate its relationship to surrounding brain structures. Three normal beagle dogs were scanned on a MR scanner with inversion recovery segmented 3D gradient echo sequence (known as MP-RAGE: Magnetization Prepared Rapid Gradient Echo). The MRI data was manually segmented and reconstructed into a 3D model using the 3D slicer software tool. From the 3D model, the spatial relationships between hippocampal formation and surrounding structures were evaluated. With the increased spatial resolution and contrast of the MPRAGE, the canine hippocampal formation was easily depicted. The reconstructed 3D image allows easy understanding of the hippocampal contour and demonstrates the structural relationship of the hippocampal formation to surrounding structures in vivo.

  18. Spatial navigation impairment is proportional to right hippocampal volume

    Czech Academy of Sciences Publication Activity Database

    Nedelská, Z.; Andel, R.; Laczó, J.; Vlček, Kamil; Hořínek, D.; Lisý, J.; Sheardová, K.; Bureš, Jan; Hort, J.

    2012-01-01

    Roč. 109, č. 7 (2012), s. 2590-2594 ISSN 0027-8424 R&D Projects: GA ČR(CZ) GA309/09/1053; GA ČR(CZ) GA309/09/0286; GA MŠk(CZ) 1M0517; GA MŠk(CZ) LC554 Grant - others:GA MZd(CZ) NS10331 Institutional research plan: CEZ:AV0Z50110509 Keywords : spatial navigation * Alzheimer’s Disease * hippocampal volume Subject RIV: FH - Neurology Impact factor: 9.737, year: 2012

  19. IFNgamma enhances microglial reactions to hippocampal axonal degeneration

    DEFF Research Database (Denmark)

    Jensen, M B; Hegelund, I V; Lomholt, N D

    2000-01-01

    Glial reactivity is implicated in CNS repair and regenerative responses. Microglia, the cells responding earliest to axonal injury, produce tumor necrosis factor-alpha (TNFalpha), a cytokine with both cytopathic and neuroprotective effects. We have studied activation of hippocampal microglia...... periods. Message for the immune cytokine interferon-gamma (IFNgamma) was undetectable, and glial reactivity to axonal lesions occurred as normal in IFNgamma-deficient mice. Microglial responses to lesion-induced neuronal injury were markedly enhanced in myelin basic protein promoter-driven transgenic mice...

  20. Investigating the synchronization of hippocampal neural network in response to acute nicotine exposure

    Directory of Open Access Journals (Sweden)

    Akay Metin

    2010-07-01

    Full Text Available Abstract Previous studies suggested that γ oscillations in the brain are associated with higher order cognitive function including selective visual attention, motor task planning, sensory perception, working memory and dreaming REM sleep. These oscillations are mainly observed in cortical regions and also occur in neocortical and subcortical areas and the hippocampus. In this paper, we investigate the influence of acute exposure to nicotine on the complexity of hippocampal γ oscillations. Using the approximate entropy method, the influence of acute nicotine exposure on the hippocampal γ oscillations was investigated. The hippocampal γ oscillations have been generated in response to the 100 Hz stimulus and isolated using the visual inspection and spectral analysis method. Our central hypothesis is that acute exposure to nicotine significantly reduces the complexity of hippocampal γ oscillations. We used brain-slice recordings and the approximate entropy method to test this hypothesis. The approximate entropy (complexity values of the hippocampal γ oscillations are estimated from the 14 hippocampal slices. Our results show that it takes at least 100 msec to see any hippocampal activities in response to the 100 Hz stimulus. These patterns noticeably changed after 100 msec until 300 msec after the stimulus Finally, they were less prominent after 300 msec. We have analyzed the isolated hippocampal γ oscillations (between 150 and 250 msec after the stimulus using the approximate entropy (ApEn method. Our results showed that the ApEn (complexity values of hippocampal γ oscillations during nicotine exposure were reduced compared to those of hippocampal γ oscillations during control, and washout. This reduction was much more significant in response to acute nicotine exposure (p

  1. Zolpidem reduces hippocampal neuronal activity in freely behaving mice: a large scale calcium imaging study with miniaturized fluorescence microscope.

    Directory of Open Access Journals (Sweden)

    Tamara Berdyyeva

    Full Text Available Therapeutic drugs for cognitive and psychiatric disorders are often characterized by their molecular mechanism of action. Here we demonstrate a new approach to elucidate drug action on large-scale neuronal activity by tracking somatic calcium dynamics in hundreds of CA1 hippocampal neurons of pharmacologically manipulated behaving mice. We used an adeno-associated viral vector to express the calcium sensor GCaMP3 in CA1 pyramidal cells under control of the CaMKII promoter and a miniaturized microscope to observe cellular dynamics. We visualized these dynamics with and without a systemic administration of Zolpidem, a GABAA agonist that is the most commonly prescribed drug for the treatment of insomnia in the United States. Despite growing concerns about the potential adverse effects of Zolpidem on memory and cognition, it remained unclear whether Zolpidem alters neuronal activity in the hippocampus, a brain area critical for cognition and memory. Zolpidem, when delivered at a dose known to induce and prolong sleep, strongly suppressed CA1 calcium signaling. The rate of calcium transients after Zolpidem administration was significantly lower compared to vehicle treatment. To factor out the contribution of changes in locomotor or physiological conditions following Zolpidem treatment, we compared the cellular activity across comparable epochs matched by locomotor and physiological assessments. This analysis revealed significantly depressive effects of Zolpidem regardless of the animal's state. Individual hippocampal CA1 pyramidal cells differed in their responses to Zolpidem with the majority (∼ 65% significantly decreasing the rate of calcium transients, and a small subset (3% showing an unexpected and significant increase. By linking molecular mechanisms with the dynamics of neural circuitry and behavioral states, this approach has the potential to contribute substantially to the development of new therapeutics for the treatment of CNS disorders.

  2. Beyond viral suppression of HIV

    DEFF Research Database (Denmark)

    Lazarus, Jeffrey V.; Safreed-Harmon, Kelly; Barton, Simon E

    2016-01-01

    BACKGROUND: In 2016, the World Health Organization (WHO) adopted a new Global Health Sector Strategy on HIV for 2016-2021. It establishes 15 ambitious targets, including the '90-90-90' target calling on health systems to reduce under-diagnosis of HIV, treat a greater number of those diagnosed......, and ensure that those being treated achieve viral suppression. DISCUSSION: The WHO strategy calls for person-centered chronic care for people living with HIV (PLHIV), implicitly acknowledging that viral suppression is not the ultimate goal of treatment. However, it stops short of providing an explicit target...... for health-related quality of life. It thus fails to take into account the needs of PLHIV who have achieved viral suppression but still must contend with other intense challenges such as serious non-communicable diseases, depression, anxiety, financial stress, and experiences of or apprehension about HIV...

  3. Resonance suppression from color reconnection

    Science.gov (United States)

    Acconcia, R.; Chinellato, D. D.; de Souza, R. Derradi; Takahashi, J.; Torrieri, G.; Markert, C.

    2018-02-01

    We present studies that show how multi-parton interaction and color reconnection affect the hadro-chemistry in proton-proton (pp) collisions with special focus on the production of resonances using the pythia8 event generator. We find that color reconnection suppresses the relative production of meson resonances such as ρ0 and K* , providing an alternative explanation for the K*/K decrease observed in proton-proton collisions as a function of multiplicity by the ALICE collaboration. Detailed studies of the underlying mechanism causing meson resonance suppression indicate that color reconnection leads to shorter, less energetic strings whose fragmentation is less likely to produce more massive hadrons for a given quark content, therefore reducing ratios such as K*/K and ρ0/π in high-multiplicity pp collisions. In addition, we have also studied the effects of allowing string junctions to form and found that these may also contribute to resonance suppression.

  4. Teaching to suppress Polglish processes

    OpenAIRE

    Dziubalska-Kołaczyk, Katarzyna; Balas, Anna; Schwartz, Geoffrey; Rojczyk, Arkadiusz; Wrembel, Magdalena

    2015-01-01

    Advanced second language (henceforth L2) learners in a formal setting can suppress many first language (henceforth L1) processes in L2 pronunciation when provided with sufficient exposure to L2 and meta competence (see Sect. 4 for a definition of this term). This paper shows how imitation in L2 teaching can be enhanced on the basis of current phonetic research and how complex allophonic processes such as nasal vocalization and glottal stop insertion can be suppressed using “repair”—a method o...

  5. Effects of Aging on Hippocampal Neurogenesis After Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Zoey [Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); Institute of Medical Science, University of Toronto, Toronto, Ontario (Canada); Li, Yu-Qing [Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); Wong, C. Shun, E-mail: shun.wong@sunnybrook.ca [Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); Institute of Medical Science, University of Toronto, Toronto, Ontario (Canada); Departments of Radiation Oncology and Medical Biophysics, University of Toronto, Toronto, Ontario (Canada)

    2016-04-01

    Purpose: To assess the influence of aging on hippocampal neuronal development after irradiation (IR). Methods and Materials: Male mice, 2, 4, 6, 12, and 18 months of age, were given a single dose of 0 or 5 Gy of IR. A bromodeoxyuridine (BrdU) incorporation study was used to label newborn cells. Neural progenitors, newborn neurons, and microglia in dentate gyrus (DG) were identified by phenotypic markers, and their numbers were quantified by nonbiased stereology 9 weeks after IR. Results: BrdU-positive or newborn cells in DG decreased with aging and after IR. The number of neuroblasts and newborn neurons decreased with aging, and a further significant reduction was observed after IR. Total type 1 cells (the putative neural stem cells), and newborn type 1 cells decreased with aging, and further reduction in total type 1 cells was observed after IR. Aging-associated activation of microglia in hippocampus was enhanced after IR. Conclusions: The aging-associated decline in hippocampal neurogenesis was further inhibited after IR. Ablation of neural progenitors and activation of microglia may contribute to the inhibition of neuronal development after IR across all ages.

  6. Effect of stress on hippocampal nociceptin expression in the rat.

    Science.gov (United States)

    Nativio, Paola; Pascale, Esterina; Maffei, Angelo; Scaccianoce, Sergio; Passarelli, Francesca

    2012-07-01

    Nociceptin/orphanin FQ (N/OFQ) peptide and its receptor are not only ubiquitously expressed in mammalian brain and spinal cord but are also abundant in limbic structures, particularly in the hippocampus. The widespread distribution of N/OFQ reflects the broad spectrum of its biological actions such as nociception, food intake, spontaneous locomotor activity, and learning and memory processes. Since the hippocampus is involved in the control of adrenocortical activity, its role in stress-related phenomena is well characterized. In male Wistar rats, we first examined the effects of acute restraint stress (120 min) on the brain immunohistochemical localization of N/OFQ. The analysis carried out on sections obtained at the onset of stress revealed enhanced expression of N/OFQ in CA1, CA3, and the dentate gyrus as well as increased plasma corticosterone concentrations. Next, we examined whether endogenous glucocorticoid hormone plays a role in the modulation of hippocampal N/OFQ expression in response to stress. To this end, rats were injected with corticosterone (1 mg/kg) or subjected to restraint stress 1 week after adrenalectomy. Two hours after corticosterone administration, plasma glucocorticoid concentrations were comparable to those observed after restraint stress, while N/OFQ expression had significantly increased in all the hippocampal subfields examined. By contrast, in adrenalectomized rats, stress did not modify protein expression. These results confirm that stress can affect N/OFQ expression and that glucocorticoids may constitute hormonal mediators of this complex interplay.

  7. Environmental enrichment normalizes hippocampal timing coding in a malformed hippocampus

    Science.gov (United States)

    Curry, Willie; Richard, Greg; Lucas, Marcella M.; Massey, Andrew; Holmes, Gregory L.

    2018-01-01

    Neurodevelopmental insults leading to malformations of cortical development (MCD) are a common cause of psychiatric disorders, learning impairments and epilepsy. In the methylazoxymethanol (MAM) model of MCDs, animals have impairments in spatial cognition that, remarkably, are improved by post-weaning environmental enrichment (EE). To establish how EE impacts network-level mechanisms of spatial cognition, hippocampal in vivo single unit recordings were performed in freely moving animals in an open arena. We took a generalized linear modeling approach to extract fine spike timing (FST) characteristics and related these to place cell fidelity used as a surrogate of spatial cognition. We find that MAM disrupts FST and place-modulated rate coding in hippocampal CA1 and that EE improves many FST parameters towards normal. Moreover, FST parameters predict spatial coherence of neurons, suggesting that mechanisms determining altered FST are responsible for impaired cognition in MCDs. This suggests that FST parameters could represent a therapeutic target to improve cognition even in the context of a brain that develops with a structural abnormality. PMID:29394267

  8. Treadmill Exercise Induces Hippocampal Astroglial Alterations in Rats

    Directory of Open Access Journals (Sweden)

    Caren Bernardi

    2013-01-01

    Full Text Available Physical exercise effects on brain health and cognitive performance have been described. Synaptic remodeling in hippocampus induced by physical exercise has been described in animal models, but the underlying mechanisms remain poorly understood. Changes in astrocytes, the glial cells involved in synaptic remodeling, need more characterization. We investigated the effect of moderate treadmill exercise (20 min/day for 4 weeks on some parameters of astrocytic activity in rat hippocampal slices, namely, glial fibrillary acidic protein (GFAP, glutamate uptake and glutamine synthetase (GS activities, glutathione content, and S100B protein content and secretion, as well as brain-derived neurotrophic factor (BDNF levels and glucose uptake activity in this tissue. Results show that moderate treadmill exercise was able to induce a decrease in GFAP content (evaluated by ELISA and immunohistochemistry and an increase in GS activity. These changes could be mediated by corticosterone, whose levels were elevated in serum. BDNF, another putative mediator, was not altered in hippocampal tissue. Moreover, treadmill exercise caused a decrease in NO content. Our data indicate specific changes in astrocyte markers induced by physical exercise, the importance of studying astrocytes for understanding brain plasticity, as well as reinforce the relevance of physical exercise as a neuroprotective strategy.

  9. Hippocampal Dendritic Spines Modifications Induced by Perinatal Asphyxia

    Directory of Open Access Journals (Sweden)

    G. E. Saraceno

    2012-01-01

    Full Text Available Perinatal asphyxia (PA affects the synaptic function and morphological organization. In previous works, we have shown neuronal and synaptic changes in rat neostriatum subjected to hypoxia leading to long-term ubi-protein accumulation. Since F-actin is highly concentrated in dendritic spines, modifications in its organization could be related with alterations induced by hypoxia in the central nervous system (CNS. In the present study, we investigate the effects of PA on the actin cytoskeleton of hippocampal postsynaptic densities (PSD in 4-month-old rats. PSD showed an increment in their thickness and in the level of ubiquitination. Correlative fluorescence-electron microscopy photooxidation showed a decrease in the number of F-actin-stained spines in hippocampal excitatory synapses subjected to PA. Although Western Blot analysis also showed a slight decrease in β-actin in PSD in PA animals, the difference was not significant. Taken together, this data suggests that long-term actin cytoskeleton might have role in PSD alterations which would be a spread phenomenon induced by PA.

  10. Extinction of Learned Fear Induces Hippocampal Place Cell Remapping

    Science.gov (United States)

    Wang, Melissa E.; Yuan, Robin K.; Keinath, Alexander T.; Ramos Álvarez, Manuel M.

    2015-01-01

    The extinction of learned fear is a hippocampus-dependent process thought to embody new learning rather than erasure of the original fear memory, although it is unknown how these competing contextual memories are represented in the hippocampus. We previously demonstrated that contextual fear conditioning results in hippocampal place cell remapping and long-term stabilization of novel representations. Here we report that extinction learning also induces place cell remapping in C57BL/6 mice. Specifically, we observed cells that preferentially remapped during different stages of learning. While some cells remapped in both fear conditioning and extinction, others responded predominantly during extinction, which may serve to modify previous representations as well as encode new safe associations. Additionally, we found cells that remapped primarily during fear conditioning, which could facilitate reacquisition of the original fear association. Moreover, we also observed cells that were stable throughout learning, which may serve to encode the static aspects of the environment. The short-term remapping observed during extinction was not found in animals that did not undergo fear conditioning, or when extinction was conducted outside of the conditioning context. Finally, conditioning and extinction produced an increase in spike phase locking to the theta and gamma frequencies. However, the degree of remapping seen during conditioning and extinction only correlated with gamma synchronization. Our results suggest that the extinction learning is a complex process that involves both modification of pre-existing memories and formation of new ones, and these traces coexist within the same hippocampal representation. PMID:26085635

  11. Evidence for regional hippocampal damage in patients with schizophrenia

    International Nuclear Information System (INIS)

    Singh, Sadhana; Khushu, Subash; Kumar, Pawan; Goyal, Satnam; Bhatia, Triptish; Deshpande, Smita N.

    2018-01-01

    Schizophrenia patients show cognitive and mood impairments, including memory loss and depression, suggesting damage in the brain regions. The hippocampus is a brain structure that is significantly involved in memory and mood function and shows impairment in schizophrenia. In the present study, we examined the regional hippocampal changes in schizophrenia patients using voxel-based morphometry (VBM), Freesurfer, and proton magnetic resonance spectroscopy ( 1 H MRS) procedures. 1 H MRS and high-resolution T1-weighted magnetic resonance imaging were collected in both healthy control subjects (N = 28) and schizophrenia patients (N = 28) using 3-Tesla whole body MRI system. Regional hippocampal volume was analyzed using VBM and Freesufer procedures. The relative ratios of the neurometabolites were calculated using linear combination model (LCModel). Compared to controls, schizophrenia patients showed significantly decreased gray matter volume in the hippocampus. Schizophrenia patients also showed significantly reduced glutamate (Glu) and myo-inositol (mI) ratios in the hippocampus. Additionally, significant positive correlation between gray matter volume and Glu/tCr was also observed in the hippocampus in schizophrenia. Our findings provide an evidence for a possible association between structural deficits and metabolic alterations in schizophrenia patients. (orig.)

  12. Electrical coupling between hippocampal astrocytes in rat brain slices.

    Science.gov (United States)

    Meme, William; Vandecasteele, Marie; Giaume, Christian; Venance, Laurent

    2009-04-01

    Gap junctions in astrocytes play a crucial role in intercellular communication by supporting both biochemical and electrical coupling between adjacent cells. Despite the critical role of electrical coupling in the network organization of these glial cells, the electrophysiological properties of gap junctions have been characterized in cultures while no direct evidence has been sought in situ. In the present study, gap-junctional currents were investigated using simultaneous dual whole-cell patch-clamp recordings between astrocytes from rat hippocampal slices. Bidirectional electrotonic coupling was observed in 82% of the cell pairs with an average coupling coefficient of 5.1%. Double patch-clamp analysis indicated that junctional currents were independent of the transjunctional voltage over a range from -100 to +110 mV. Interestingly, astrocytic electrical coupling displayed weak low-pass filtering properties compared to neuronal electrical synapses. Finally, during uncoupling processes triggered by either the gap-junction inhibitor carbenoxolone or endothelin-1, an increase in the input resistance in the injected cell paralleled the decrease in the coupling coefficient. Altogether, these results demonstrate that hippocampal astrocytes are electrically coupled through gap-junction channels characterized by properties that are distinct from those of electrical synapses between neurons. In addition, gap-junctional communication is efficiently regulated by endogenous compounds. This is taken to represent a mode of communication that may have important implications for the functional role of astrocyte networks in situ.

  13. Endocannabinoids block status epilepticus in cultured hippocampal neurons

    Science.gov (United States)

    Deshpande, Laxmikant S.; Blair, Robert E.; Ziobro, Julie M.; Sombati, Sompong; Martin, Billy R.; DeLorenzo, Robert J.

    2008-01-01

    Status epilepticus is a serious neurological disorder associated with a significant morbidity and mortality. Antiepileptic drugs such as diazepam, phenobarbital and phenytoin are the mainstay of status epilepticus treatment. However, over 20% of status epilepticus cases are refractory to the initial treatment with two or more antiepileptic drugs. Endocannabinoids have been implicated as playing an important role in regulating seizure activity and seizure termination. This study evaluated the effects of the major endocannabinoids methanandamide and 2-arachidonylglycerol (2-AG) on status epilepticus in the low-Mg2+ hippocampal neuronal culture model. Status epilepticus in this model was resistant to treatment with phenobarbital and phenytoin. Methanandamide and 2-AG inhibited status epilepticus in a dose-dependent manner with an EC50 of 145±4.15 nM and 1.68±0.19 µM, respectively. In addition, the anti-status epilepticus effects of methanandamide and 2-AG were mediated by activation of the cannabinoid CB1 receptor since they were blocked by the cannabinoid CB1 receptor antagonist AM251. These results provide the first evidence that the endocannabinoids, methanandamide and 2-AG, are effective inhibitors of refractory status epilepticus in the hippocampal neuronal culture model and indicate that regulating the endocannabinoid system may provide a novel therapeutic approach for treating refractory status epilepticus. PMID:17174949

  14. Effects of Aging on Hippocampal Neurogenesis After Irradiation

    International Nuclear Information System (INIS)

    Cheng, Zoey; Li, Yu-Qing; Wong, C. Shun

    2016-01-01

    Purpose: To assess the influence of aging on hippocampal neuronal development after irradiation (IR). Methods and Materials: Male mice, 2, 4, 6, 12, and 18 months of age, were given a single dose of 0 or 5 Gy of IR. A bromodeoxyuridine (BrdU) incorporation study was used to label newborn cells. Neural progenitors, newborn neurons, and microglia in dentate gyrus (DG) were identified by phenotypic markers, and their numbers were quantified by nonbiased stereology 9 weeks after IR. Results: BrdU-positive or newborn cells in DG decreased with aging and after IR. The number of neuroblasts and newborn neurons decreased with aging, and a further significant reduction was observed after IR. Total type 1 cells (the putative neural stem cells), and newborn type 1 cells decreased with aging, and further reduction in total type 1 cells was observed after IR. Aging-associated activation of microglia in hippocampus was enhanced after IR. Conclusions: The aging-associated decline in hippocampal neurogenesis was further inhibited after IR. Ablation of neural progenitors and activation of microglia may contribute to the inhibition of neuronal development after IR across all ages.

  15. Amyloid Beta Peptides Differentially Affect Hippocampal Theta Rhythms In Vitro

    Directory of Open Access Journals (Sweden)

    Armando I. Gutiérrez-Lerma

    2013-01-01

    Full Text Available Soluble amyloid beta peptide (Aβ is responsible for the early cognitive dysfunction observed in Alzheimer's disease. Both cholinergically and glutamatergically induced hippocampal theta rhythms are related to learning and memory, spatial navigation, and spatial memory. However, these two types of theta rhythms are not identical; they are associated with different behaviors and can be differentially modulated by diverse experimental conditions. Therefore, in this study, we aimed to investigate whether or not application of soluble Aβ alters the two types of theta frequency oscillatory network activity generated in rat hippocampal slices by application of the cholinergic and glutamatergic agonists carbachol or DHPG, respectively. Due to previous evidence that oscillatory activity can be differentially affected by different Aβ peptides, we also compared Aβ25−35 and Aβ1−42 for their effects on theta rhythms in vitro at similar concentrations (0.5 to 1.0 μM. We found that Aβ25−35 reduces, with less potency than Aβ1−42, carbachol-induced population theta oscillatory activity. In contrast, DHPG-induced oscillatory activity was not affected by a high concentration of Aβ25−35 but was reduced by Aβ1−42. Our results support the idea that different amyloid peptides might alter specific cellular mechanisms related to the generation of specific neuronal network activities, instead of exerting a generalized inhibitory effect on neuronal network function.

  16. Auditory stimuli elicit hippocampal neuronal responses during sleep

    Directory of Open Access Journals (Sweden)

    Ekaterina eVinnik

    2012-06-01

    Full Text Available To investigate how hippocampal neurons code behaviorally salient stimuli, we recorded from neurons in the CA1 region of hippocampus in rats while they learned to associate the presence of sound with water reward. Rats learned to alternate between two reward ports at which, in 50 percent of the trials, sound stimuli were presented followed by water reward after a 3-second delay. Sound at the water port predicted subsequent reward delivery in 100 percent of the trials and the absence of sound predicted reward omission. During this task, 40% of recorded neurons fired differently according to which of the 2 reward ports the rat was visiting. A smaller fraction of neurons demonstrated onset response to sound/nosepoke (19% and reward delivery (24%. When the sounds were played during passive wakefulness, 8% of neurons responded with short latency onset responses; 25% of neurons responded to sounds when they were played during sleep. Based on the current findings and the results of previous experiments we propose the existence of two types of hippocampal neuronal responses to sounds: sound-onset responses with very short latency and longer-lasting sound-specific responses that are likely to be present when the animal is actively engaged in the task. During sleep the short-latency responses in hippocampus are intermingled with sustained activity which in the current experiment was detected for 1-2 seconds.

  17. Temporal dynamics of hippocampal neurogenesis in chronic neurodegeneration

    Science.gov (United States)

    Suzzi, Stefano; Vargas-Caballero, Mariana; Fransen, Nina L.; Al-Malki, Hussain; Cebrian-Silla, Arantxa; Garcia-Verdugo, Jose Manuel; Riecken, Kristoffer; Fehse, Boris; Perry, V. Hugh

    2014-01-01

    The study of neurogenesis during chronic neurodegeneration is crucial in order to understand the intrinsic repair mechanisms of the brain, and key to designing therapeutic strategies. In this study, using an experimental model of progressive chronic neurodegeneration, murine prion disease, we define the temporal dynamics of the generation, maturation and integration of new neurons in the hippocampal dentate gyrus, using dual pulse-chase, multicolour γ-retroviral tracing, transmission electron microscopy and patch-clamp. We found increased neurogenesis during the progression of prion disease, which partially counteracts the effects of chronic neurodegeneration, as evidenced by blocking neurogenesis with cytosine arabinoside, and helps to preserve the hippocampal function. Evidence obtained from human post-mortem samples, of both variant Creutzfeldt-Jakob disease and Alzheimer’s disease patients, also suggests increased neurogenic activity. These results open a new avenue into the exploration of the effects and regulation of neurogenesis during chronic neurodegeneration, and offer a new model to reproduce the changes observed in human neurodegenerative diseases. PMID:24941947

  18. Hippocampal Dendritic Spines Are Segregated Depending on Their Actin Polymerization.

    Science.gov (United States)

    Domínguez-Iturza, Nuria; Calvo, María; Benoist, Marion; Esteban, José Antonio; Morales, Miguel

    2016-01-01

    Dendritic spines are mushroom-shaped protrusions of the postsynaptic membrane. Spines receive the majority of glutamatergic synaptic inputs. Their morphology, dynamics, and density have been related to synaptic plasticity and learning. The main determinant of spine shape is filamentous actin. Using FRAP, we have reexamined the actin dynamics of individual spines from pyramidal hippocampal neurons, both in cultures and in hippocampal organotypic slices. Our results indicate that, in cultures, the actin mobile fraction is independently regulated at the individual spine level, and mobile fraction values do not correlate with either age or distance from the soma. The most significant factor regulating actin mobile fraction was the presence of astrocytes in the culture substrate. Spines from neurons growing in the virtual absence of astrocytes have a more stable actin cytoskeleton, while spines from neurons growing in close contact with astrocytes show a more dynamic cytoskeleton. According to their recovery time, spines were distributed into two populations with slower and faster recovery times, while spines from slice cultures were grouped into one population. Finally, employing fast lineal acquisition protocols, we confirmed the existence of loci with high polymerization rates within the spine.

  19. Cardiovascular Risk and Hippocampal Thickness in Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Markus Donix

    2013-01-01

    Full Text Available Cardiovascular risk factors influence onset and progression of Alzheimer’s disease. Among cognitively healthy people, changes in brain structure and function associated with high blood pressure, diabetes, or other vascular risks suggest differential regional susceptibility to neuronal damage. In patients with Alzheimer’s disease, hippocampal and medial temporal lobe atrophy indicate early neuronal loss preferentially in key areas for learning and memory. We wanted to investigate whether this regional cortical thinning would be modulated by cardiovascular risk factors. We utilized high-resolution magnetic resonance imaging and a cortical unfolding technique to determine the cortical thickness of medial temporal subregions in 30 patients with Alzheimer’s disease. Cardiovascular risk was assessed using a sex-specific multivariable risk score. Greater cardiovascular risk was associated with cortical thinning in the hippocampus CA2/3/dentate gyrus area but not other hippocampal and medial temporal subregions. APOE genotype, a family history of Alzheimer’s disease, and age did not influence cortical thickness. Alzheimer’s disease-related atrophy could mask the influence of genetic risk factors or age on regional cortical thickness in medial temporal lobe regions, whereas the impact of vascular risk factors remains detectable. This highlights the importance of cardiovascular disease prevention and treatment in patients with Alzheimer’s disease.

  20. [Isoflurane provides neuroprotection in neonatal hypoxic ischemic brain injury by suppressing apoptosis].

    Science.gov (United States)

    Zhao, De-An; Bi, Ling-Yun; Huang, Qian; Zhang, Fang-Min; Han, Zi-Ming

    Isoflurane is halogenated volatile ether used for inhalational anesthesia. It is widely used in clinics as an inhalational anesthetic. Neonatal hypoxic ischemia injury ensues in the immature brain that results in delayed cell death via excitotoxicity and oxidative stress. Isoflurane has shown neuroprotective properties that make a beneficial basis of using isoflurane in both cell culture and animal models, including various models of brain injury. We aimed to determine the neuroprotective effect of isoflurane on hypoxic brain injury and elucidated the underlying mechanism. A hippocampal slice, in artificial cerebrospinal fluid with glucose and oxygen deprivation, was used as an in vitro model for brain hypoxia. The orthodromic population spike and hypoxic injury potential were recorded in the CA1 and CA3 regions. Amino acid neurotransmitters concentration in perfusion solution of hippocampal slices was measured. Isoflurane treatment caused delayed elimination of population spike and improved the recovery of population spike; decreased frequency of hypoxic injury potential, postponed the onset of hypoxic injury potential and increased the duration of hypoxic injury potential. Isoflurane treatment also decreased the hypoxia-induced release of amino acid neurotransmitters such as aspartate, glutamate and glycine induced by hypoxia, but the levels of γ-aminobutyric acid were elevated. Morphological studies showed that isoflurane treatment attenuated edema of pyramid neurons in the CA1 region. It also reduced apoptosis as evident by lowered expression of caspase-3 and PARP genes. Isoflurane showed a neuro-protective effect on hippocampal neuron injury induced by hypoxia through suppression of apoptosis. Copyright © 2016 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  1. Isoflurane provides neuroprotection in neonatal hypoxic ischemic brain injury by suppressing apoptosis.

    Science.gov (United States)

    Zhao, De-An; Bi, Ling-Yun; Huang, Qian; Zhang, Fang-Min; Han, Zi-Ming

    Isoflurane is halogenated volatile ether used for inhalational anesthesia. It is widely used in clinics as an inhalational anesthetic. Neonatal hypoxic ischemia injury ensues in the immature brain that results in delayed cell death via excitotoxicity and oxidative stress. Isoflurane has shown neuroprotective properties that make a beneficial basis of using isoflurane in both cell culture and animal models, including various models of brain injury. We aimed to determine the neuroprotective effect of isoflurane on hypoxic brain injury and elucidated the underlying mechanism. A hippocampal slice, in artificial cerebrospinal fluid with glucose and oxygen deprivation, was used as an in vitro model for brain hypoxia. The orthodromic population spike and hypoxic injury potential were recorded in the CA1 and CA3 regions. Amino acid neurotransmitters concentration in perfusion solution of hippocampal slices was measured. Isoflurane treatment caused delayed elimination of population spike and improved the recovery of population spike; decreased frequency of hypoxic injury potential, postponed the onset of hypoxic injury potential and increased the duration of hypoxic injury potential. Isoflurane treatment also decreased the hypoxia-induced release of amino acid neurotransmitters such as aspartate, glutamate and glycine induced by hypoxia, but the levels of γ-aminobutyric acid were elevated. Morphological studies showed that isoflurane treatment attenuated edema of pyramid neurons in the CA1 region. It also reduced apoptosis as evident by lowered expression of caspase-3 and PARP genes. Isoflurane showed a neuro-protective effect on hippocampal neuron injury induced by hypoxia through suppression of apoptosis. Copyright © 2016 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.

  2. The effect of exercise on hippocampal volume and neurotrophines in patients with major depression--a randomized clinical trial

    DEFF Research Database (Denmark)

    Krogh, Jesper; Rostrup, Egill; Thomsen, Carsten

    2014-01-01

    BACKGROUND: The hippocampal volume is reduced in patients with major depression. Exercise leads to an increased hippocampal volume in schizophrenia and in healthy old adults. The effect of exercise on hippocampal volume is potentially mediated by brain derived neurotrophic factor (BDNF), vascular...... endothelial growth factor (VEGF), and insulin like growth factor 1 (IGF-1). The aim of this trial was to assess the effect of an aerobic exercise intervention on hippocampal volume and serum BDNF, VEGF, and IGF-1 in patients with major depression. METHODS: Patients were randomized to an aerobic exercise.......2) in the control group (p=0.03). The hippocampal volume, BDNF, VEGF, or IGF-1 did not differ between the two groups. Post-hoc we found a positive association between change in hippocampal volume and verbal memory (Rho=0.27; p=0.05) and change in hippocampal volume and depressive symptoms (Rho=0.30; p=0...

  3. Conditioned suppression, punishment, and aversion

    Science.gov (United States)

    Orme-Johnson, D. W.; Yarczower, M.

    1974-01-01

    The aversive action of visual stimuli was studied in two groups of pigeons which received response-contingent or noncontingent electric shocks in cages with translucent response keys. Presentation of grain for 3 sec, contingent on key pecking, was the visual stimulus associated with conditioned punishment or suppression. The responses of the pigeons in three different experiments are compared.

  4. Plasma suppression of beamstrahlung: Revision

    International Nuclear Information System (INIS)

    Whittum, D.H.; Sessler, A.M.; Stewart, J.J.; Yu, S.S.

    1988-06-01

    We investigate the use of a plasma at the interaction point of two colliding beams to suppress beamstrahlung and related phenomena. We derive conditions for good current cancellation via plasma return currents and report on numerical simulations conducted to confirm our analytic results. 17 refs., 5 figs., 5 tabs

  5. Longitudinal changes in hippocampal volumes and cognition in remitted geriatric depressive disorder.

    Science.gov (United States)

    Hou, Zhenghua; Yuan, Yonggui; Zhang, Zhijun; Bai, Feng; Hou, Gang; You, Jiayong

    2012-02-01

    Growing evidences suggest that the abnormality of hippocampal volume may occur in the process of depression. In this longitudinal study, we calculated the hippocampal volume of 14 remitted geriatric depressed (RGD) patients and 19 healthy participants at baseline and follow-up. We found significant improvement of performance in Trail Making Test-A (P=0.038) and Test-B (P=0.032), and the right hippocampal volume increased mildly in RGD. However, in RGD patients, positive correlations were seen between the changes in right hippocampal volumes and Symbol Digit Modality Test scores (r=0.675, P=0.008), and changes in left hippocampal volumes and Mini-Mental State Examination scores (r=0.743, P=0.002). Our findings suggest that hippocampus related cognitive impairment and previously addressed decreased hippocampal volume might represent a state rather than a permanent trait of the depressive disorder. The results suggest that hippocampal volume may be a useful risk marker for conversion to Alzheimer's disease in RGD patients. Additionally, our study indicates that effective antidepressants treatment might postpone and even revise the deterioration of hippocampus to some degree. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. The Neuropsychiatric Disease-Associated Gene cacna1c Mediates Survival of Young Hippocampal Neurons123

    Science.gov (United States)

    Lee, Anni S.; Kabir, Zeeba D.; Knobbe, Whitney; Orr, Madeline; Burgdorf, Caitlin; Huntington, Paula; McDaniel, Latisha; Britt, Jeremiah K.; Hoffmann, Franz; Brat, Daniel J.; Rajadhyaksha, Anjali M.

    2016-01-01

    Genetic variations in CACNA1C, which encodes the Cav1.2 subunit of L-type calcium channels (LTCCs), are associated with multiple forms of neuropsychiatric disease that manifest high anxiety in patients. In parallel, mice harboring forebrain-specific conditional knockout of cacna1c (forebrain-Cav1.2 cKO) display unusually high anxiety-like behavior. LTCCs in general, including the Cav1.3 subunit, have been shown to mediate differentiation of neural precursor cells (NPCs). However, it has not previously been determined whether Cav1.2 affects postnatal hippocampal neurogenesis in vivo. Here, we show that forebrain-Cav1.2 cKO mice exhibit enhanced cell death of young hippocampal neurons, with no change in NPC proliferation, hippocampal size, dentate gyrus thickness, or corticosterone levels compared with wild-type littermates. These mice also exhibit deficits in brain levels of brain-derived neurotrophic factor (BDNF), and Cre recombinase-mediated knockdown of adult hippocampal Cav1.2 recapitulates the deficit in young hippocampal neurons survival. Treatment of forebrain-Cav1.2 cKO mice with the neuroprotective agent P7C3-A20 restored the net magnitude of postnatal hippocampal neurogenesis to wild-type levels without ameliorating their deficit in BDNF expression. The role of Cav1.2 in young hippocampal neurons survival may provide new approaches for understanding and treating neuropsychiatric disease associated with aberrations in CACNA1C. Visual Abstract PMID:27066530

  7. Hippocampal development at gestation weeks 23 to 36. An ultrasound study on preterm neonates

    Energy Technology Data Exchange (ETDEWEB)

    Bajic, Dragan; Raininko, Raili [Uppsala University, Department of Radiology, University Hospital, Uppsala (Sweden); Ewald, Uwe [Uppsala University, Department of Women' s and Children' s Health, Uppsala (Sweden)

    2010-06-15

    During fetal development, the hippocampal structures fold around the hippocampal sulcus into the temporal lobe. According to the literature, this inversion should be completed at gestation week (GW) 21. Thereafter, the hippocampal shape should resemble the adult shape. However, incomplete hippocampal inversion (IHI) is found in 19% of the common population. The aim of this study was to study fetal hippocampal development by examining neonates born preterm. We analyzed cranial ultrasound examinations, performed as a part of the routine assessment of all preterm infants, over a 3-year period and excluded the infants with brain pathology. The final material consisted of 158 children born <35 GW. A rounded form (the ratio between the horizontal and vertical diameters of the hippocampal body {<=}1) in coronal slices was considered the sign of IHI. The age at examination was 23-24 GW in 24 neonates, 25-28 GW in 70 neonates, and 29-36 GW in 64 neonates. IHI was found in 50%, 24%, and 14%, respectively. The difference between the neonates <25 GW and {>=}25 GW was statistically highly significant (p < 0.001). The frequency of bilateral IHI was highest in the youngest age group. In the other groups, the left-sided IHI was the most common. In about 50% of the neonates, hippocampal inversion is not completed up to GW 24; but from 25 GW onwards, the frequency and laterality of IHI is similar to that in the adult population. (orig.)

  8. Episodic autobiographical memory is associated with variation in the size of hippocampal subregions.

    Science.gov (United States)

    Palombo, Daniela J; Bacopulos, Agnes; Amaral, Robert S C; Olsen, Rosanna K; Todd, Rebecca M; Anderson, Adam K; Levine, Brian

    2018-02-01

    Striking individual differences exist in the human capacity to recollect past events, yet, little is known about the neural correlates of such individual differences. Studies investigating hippocampal volume in relation to individual differences in laboratory measures of episodic memory in young adults suggest that whole hippocampal volume is unrelated (or even negatively associated) with episodic memory. However, anatomical and functional specialization across hippocampal subregions suggests that individual differences in episodic memory may be linked to particular hippocampal subregions, as opposed to whole hippocampal volume. Given that the DG/CA 2/3 circuitry is thought to be especially critical for supporting episodic memory in humans, we predicted that the volume of this region would be associated with individual variability in episodic memory. This prediction was supported using high-resolution MRI of the hippocampal subfields and measures of real-world (autobiographical) episodic memory. In addition to the association with DG/CA 2/3 , we further observed a relationship between episodic autobiographical memory and subiculum volume, whereas no association was observed with CA 1 or with whole hippocampal volume. These findings provide insight into the possible neural substrates that mediate individual differences in real-world episodic remembering in humans. © 2017 Wiley Periodicals, Inc.

  9. Postnatal administration of memantine rescues TNF-α-induced decreased hippocampal precursor proliferation.

    Science.gov (United States)

    Wang, Zhongke; He, Xie; Fan, Xiaotang

    2018-01-01

    Pro-inflammatory cytokine exposure in early postnatal life triggers clear neurotoxic effects on the developing hippocampus. Tumor necrosis factor alpha (TNF-α) is one of the inflammatory mediators and is a potent inhibitor of neurogenesis. Memantine (MEM) is an uncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist that has been demonstrated to increase the proliferation of hippocampal progenitor cells. However, the effects of MEM on TNF-α-mediated impairment of hippocampal precursor proliferation remain unclear. In this study, mice were exposed to TNF-α and later treated with MEM to evaluate its protective effects on TNF-α-mediated toxicity during hippocampal development. The results indicated that brief exposure to TNF-α on postnatal days 3 and 5 resulted in a significant impairment of hippocampal precursor proliferation and a depletion of hippocampal neural precursor cells (NPCs). This effect was attenuated by MEM treatment. We further confirmed that MEM treatment reversed the TNF-α-induced microglia activation and up-regulation of hippocampal NF-κB, MCP-1 and IL-6 mRNA levels, which may be related to the proliferation and maintenance of NPCs. Overall, our results suggest that MEM treatment protects against TNF-α-induced repression of hippocampal precursor proliferation in postnatal mice by partially attenuating neuroinflammatory responses. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Elevated extracellular potassium ion concentrations suppress ...

    African Journals Online (AJOL)

    To address this question, we examined how elevations of [K+]o affect hippocampal oscillations in Scn1a mutant mouse, a mouse model of Dravet syndrome, a devastating genetic-epilepsy associated with gliosis, a major cause of dysregulated K+ homeostasis in epileptic brain. Methods: To this end, performing local field ...

  11. Cuprizone decreases intermediate and late-stage progenitor cells in hippocampal neurogenesis of rats in a framework of 28-day oral dose toxicity study

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Hajime; Tanaka, Takeshi; Kimura, Masayuki; Mizukami, Sayaka [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193 (Japan); Saito, Fumiyo; Imatanaka, Nobuya; Akahori, Yumi [Chemicals Evaluation and Research Institute, Japan, 1-4-25 Koraku, Bunkyo-ku, Tokyo 112-0004 (Japan); Yoshida, Toshinori [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Shibutani, Makoto, E-mail: mshibuta@cc.tuat.ac.jp [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan)

    2015-09-15

    Developmental exposure to cuprizone (CPZ), a demyelinating agent, impairs intermediate-stage neurogenesis in the hippocampal dentate gyrus of rat offspring. To investigate the possibility of alterations in adult neurogenesis following postpubertal exposure to CPZ in a framework of general toxicity studies, CPZ was orally administered to 5-week-old male rats at 0, 120, or 600 mg/kg body weight/day for 28 days. In the subgranular zone (SGZ), 600 mg/kg CPZ increased the number of cleaved caspase-3{sup +} apoptotic cells. At ≥ 120 mg/kg, the number of SGZ cells immunoreactive for TBR2, doublecortin, or PCNA was decreased, while that for SOX2 was increased. In the granule cell layer, CPZ at ≥ 120 mg/kg decreased the number of postmitotic granule cells immunoreactive for NEUN, CHRNA7, ARC or FOS. In the dentate hilus, CPZ at ≥ 120 mg/kg decreased phosphorylated TRKB{sup +} interneurons, although the number of reelin{sup +} interneurons was unchanged. At 600 mg/kg, mRNA levels of Bdnf and Chrna7 were decreased, while those of Casp4, Casp12 and Trib3 were increased in the dentate gyrus. These data suggest that CPZ in a scheme of 28-day toxicity study causes endoplasmic reticulum stress-mediated apoptosis of granule cell lineages, resulting in aberrations of intermediate neurogenesis and late-stage neurogenesis and following suppression of immediate early gene-mediated neuronal plasticity. Suppression of BDNF signals to interneurons caused by decreased cholinergic signaling may play a role in these effects of CPZ. The effects of postpubertal CPZ on neurogenesis were similar to those observed with developmental exposure, except for the lack of reelin response, which may contribute to a greater decrease in SGZ cells. - Highlights: • Effect of 28-day CPZ exposure on hippocampal neurogenesis was examined in rats. • CPZ suppressed intermediate neurogenesis and late-stage neurogenesis in the dentate gyrus. • CPZ suppressed BDNF signals to interneurons by decrease of

  12. Cuprizone decreases intermediate and late-stage progenitor cells in hippocampal neurogenesis of rats in a framework of 28-day oral dose toxicity study

    International Nuclear Information System (INIS)

    Abe, Hajime; Tanaka, Takeshi; Kimura, Masayuki; Mizukami, Sayaka; Saito, Fumiyo; Imatanaka, Nobuya; Akahori, Yumi; Yoshida, Toshinori; Shibutani, Makoto

    2015-01-01

    Developmental exposure to cuprizone (CPZ), a demyelinating agent, impairs intermediate-stage neurogenesis in the hippocampal dentate gyrus of rat offspring. To investigate the possibility of alterations in adult neurogenesis following postpubertal exposure to CPZ in a framework of general toxicity studies, CPZ was orally administered to 5-week-old male rats at 0, 120, or 600 mg/kg body weight/day for 28 days. In the subgranular zone (SGZ), 600 mg/kg CPZ increased the number of cleaved caspase-3 + apoptotic cells. At ≥ 120 mg/kg, the number of SGZ cells immunoreactive for TBR2, doublecortin, or PCNA was decreased, while that for SOX2 was increased. In the granule cell layer, CPZ at ≥ 120 mg/kg decreased the number of postmitotic granule cells immunoreactive for NEUN, CHRNA7, ARC or FOS. In the dentate hilus, CPZ at ≥ 120 mg/kg decreased phosphorylated TRKB + interneurons, although the number of reelin + interneurons was unchanged. At 600 mg/kg, mRNA levels of Bdnf and Chrna7 were decreased, while those of Casp4, Casp12 and Trib3 were increased in the dentate gyrus. These data suggest that CPZ in a scheme of 28-day toxicity study causes endoplasmic reticulum stress-mediated apoptosis of granule cell lineages, resulting in aberrations of intermediate neurogenesis and late-stage neurogenesis and following suppression of immediate early gene-mediated neuronal plasticity. Suppression of BDNF signals to interneurons caused by decreased cholinergic signaling may play a role in these effects of CPZ. The effects of postpubertal CPZ on neurogenesis were similar to those observed with developmental exposure, except for the lack of reelin response, which may contribute to a greater decrease in SGZ cells. - Highlights: • Effect of 28-day CPZ exposure on hippocampal neurogenesis was examined in rats. • CPZ suppressed intermediate neurogenesis and late-stage neurogenesis in the dentate gyrus. • CPZ suppressed BDNF signals to interneurons by decrease of cholinergic

  13. Endogenous acetylcholine rescues NMDA-induced long-lasting hippocampal cell damage via stimulation of muscarinic M(1) receptors: elucidation using organic hippocampal slice cultures.

    Science.gov (United States)

    Inada, Chikako; Thi Le, Xoan; Tsuneyama, Koichi; Fujiwara, Hironori; Miyata, Takeshi; Matsumoto, Kinzo

    2013-01-15

    This study aimed to investigate a recuing role of cholinergic systems in the excitotoxicity-induced hippocampal cell damage. Organotypic hippocampal slice cultures (OHSCs) were prepared from 7-day-old mice and exposed to N-methyl-d-aspartate (NMDA) for 24h. After washing out the NMDA, OHSCs were incubated in medium containing test drugs for 0-6 days. Hippocampal cell damage was evaluated by propidium iodide staining, immunofluorescence, and Western blotting. NMDA (1-10 μM) dose-dependently damaged hippocampal cells. The toxic effect of 3 μM NMDA was also observed at 3-6 days, even after washing out NMDA, and was blocked by MK-801 from day 3 to day 6. Post-treatments with tacrine, donepezil, and galantamine reduced the NMDA-induced long-lasting hippocampal cell damage. The effect of tacrine was induced in a manner dependent on the incubation period after NMDA treatment and was confirmed by Nissl staining and immunostaining with NeuN, a marker of mature neurons. The effect of tacrine was attenuated by scopolamine and a muscarinic M(1) receptor antagonist, pirenzepine, but not by a muscarinic M(3) receptor antagonist, darifenacin, or a nicotinic receptor antagonist, mecamylamine. The protein kinase C inhibitor Ro-31-8220 abolished the effect of tacrine. The pretreatment with 3 μM NMDA had no effect on the expression level of presynaptic cholinergic markers, choline acetyltransferase and vesicular acetylcholine transporter, in OHSCs. These results suggest that a low concentration of NMDA causes long-lasting hippocampal cell damage and that endogenous acetylcholine plays, via muscarinic M(1) receptor, a rescuing role in the excitotoxicity-induced long-lasting hippocampal cell damage. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Stress and adolescent hippocampal neurogenesis: diet and exercise as cognitive modulators.

    Science.gov (United States)

    Hueston, C M; Cryan, J F; Nolan, Y M

    2017-04-04

    Adolescence is a critical period for brain maturation. Deciphering how disturbances to the central nervous system at this time affect structure, function and behavioural outputs is important to better understand any long-lasting effects. Hippocampal neurogenesis occurs during development and continues throughout life. In adulthood, integration of these new cells into the hippocampus is important for emotional behaviour, cognitive function and neural plasticity. During the adolescent period, maturation of the hippocampus and heightened levels of hippocampal neurogenesis are observed, making alterations to neurogenesis at this time particularly consequential. As stress negatively affects hippocampal neurogenesis, and adolescence is a particularly stressful time of life, it is important to investigate the impact of stressor exposure at this time on hippocampal neurogenesis and cognitive function. Adolescence may represent not only a time for which stress can have long-lasting effects, but is also a critical period during which interventions, such as exercise and diet, could ameliorate stress-induced changes to hippocampal function. In addition, intervention at this time may also promote life-long behavioural changes that would aid in fostering increased hippocampal neurogenesis and cognitive function. This review addresses both the acute and long-term stress-induced alterations to hippocampal neurogenesis and cognition during the adolescent period, as well as changes to the stress response and pubertal hormones at this time which may result in differential effects than are observed in adulthood. We hypothesise that adolescence may represent an optimal time for healthy lifestyle changes to have a positive and long-lasting impact on hippocampal neurogenesis, and to protect against stress-induced deficits. We conclude that future research into the mechanisms underlying the susceptibility of the adolescent hippocampus to stress, exercise and diet and the consequent effect

  15. Detection of the Hippocampal Formation Asymmetry in Patients With Posttraumatic Stress Disorder

    Directory of Open Access Journals (Sweden)

    Aida Sarač-Hadžihalilović

    2007-05-01

    Full Text Available The goal of this work was to analyze asymmetry of hippocampal formation in PTSD patients. The objects of the analysis were 10 MRI scans of patients with PTSD with established cognitive function damage. MRI scans were obtained using MAGNET IMPACT SIEMENS 1,0 TESLA in T1 and T2 relaxation. The measurement of hippocampal formation dimensions, and comparisons between the right and the left side were done using evaluate - distance program on the MRI instrument of the Institute of Radiology at Sarajevo Clinics Center. We tested 20 patients with PTSD 49,9 years of average age with standard deviation of 4,62 years. Based on the analysis of our results regarding the size of hippocampal formation in all the three projections (axial, coronal and sagital, in the group of patients with PTSD, we can the make the following observations: In axial slice the length of hippocampal formation measured on the left and right side is significantly asymmetric in all patients. In the sagital slice, the hippocampal formation measured on the left side is in many cases longer than in the right - 50 %.In coronal slice no significant differences were found in the proportion of patients according to symmetry/asymmetry of hippocampal formation width on the left and right.The difference in average size of hippocampal formation between the left and right side measured in axial and coronal slices is not statistically significant, but it is significant in sagitall slice.So, the results of this new research, showed smaller hippocampal dimensions in PTSD as measured using MRI. We have to be careful about what projection we are refusing to as being watched hippocampal formation because the results will depend on that. We suggest that future studies be done in more projections because of the importance of statistically significant conclusions. MRI - volumetric measurements have their value.

  16. Induction of the Wnt antagonist Dickkopf-1 is involved in stress-induced hippocampal damage.

    Directory of Open Access Journals (Sweden)

    Francesco Matrisciano

    Full Text Available The identification of mechanisms that mediate stress-induced hippocampal damage may shed new light into the pathophysiology of depressive disorders and provide new targets for therapeutic intervention. We focused on the secreted glycoprotein Dickkopf-1 (Dkk-1, an inhibitor of the canonical Wnt pathway, involved in neurodegeneration. Mice exposed to mild restraint stress showed increased hippocampal levels of Dkk-1 and reduced expression of β-catenin, an intracellular protein positively regulated by the canonical Wnt signalling pathway. In adrenalectomized mice, Dkk-1 was induced by corticosterone injection, but not by exposure to stress. Corticosterone also induced Dkk-1 in mouse organotypic hippocampal cultures and primary cultures of hippocampal neurons and, at least in the latter model, the action of corticosterone was reversed by the type-2 glucocorticoid receptor antagonist mifepristone. To examine whether induction of Dkk-1 was causally related to stress-induced hippocampal damage, we used doubleridge mice, which are characterized by a defective induction of Dkk-1. As compared to control mice, doubleridge mice showed a paradoxical increase in basal hippocampal Dkk-1 levels, but no Dkk-1 induction in response to stress. In contrast, stress reduced Dkk-1 levels in doubleridge mice. In control mice, chronic stress induced a reduction in hippocampal volume associated with neuronal loss and dendritic atrophy in the CA1 region, and a reduced neurogenesis in the dentate gyrus. Doubleridge mice were resistant to the detrimental effect of chronic stress and, instead, responded to stress with increases in dendritic arborisation and neurogenesis. Thus, the outcome of chronic stress was tightly related to changes in Dkk-1 expression in the hippocampus. These data indicate that induction of Dkk-1 is causally related to stress-induced hippocampal damage and provide the first evidence that Dkk-1 expression is regulated by corticosteroids in the central

  17. Vitamin A status regulates glucocorticoid availability in Wistar rats: consequences on cognitive functions and hippocampal neurogenesis ?

    Directory of Open Access Journals (Sweden)

    Damien eBonhomme

    2014-02-01

    Full Text Available A disruption of the vitamin A signaling pathway has been involved in age-related memory decline and hippocampal plasticity alterations. Using vitamin A deficiency (VAD, a nutritional model leading to a hyposignaling of the retinoid pathway, we have recently demonstrated that retinoic acid (RA, the active metabolite of vitamin A, is efficient to reverse VAD-induced spatial memory deficits and adult hippocampal neurogenesis alterations. Besides, excess of glucocorticoids (GCs occurring with aging is known to strongly inhibit hippocampal plasticity and functions and few studies report on the counteracting effects of RA signaling pathway on GCs action. Here, we have addressed whether the modulation of brain GCs availability could be one of the biological mechanisms involved in the effects of vitamin A status on hippocampal plasticity and functions. Thus, we have studied the effects of a vitamin A-free diet for 14 weeks and a 4-week vitamin A supplementation on plasma and hippocampal corticosterone (CORT levels in Wistar rats. We have also investigated corticosteroid binding globulin (CBG binding capacity and 11beta-Hydrosteroid Dehydrogenase type 1 (11β-HSD1 activity, both important modulators of CORT availability at the peripheral and hippocampal levels respectively. Interestingly, we show that the vitamin A status regulates levels of free plasma CORT and hippocampal CORT levels, by acting through a regulation of CBG binding capacity and 11β-HSD1 activity. Moreover, our results suggest that increased CORT levels in VAD rats could have some deleterious consequences on spatial memory, anxiety-like behavior and adult hippocampal neurogenesis whereas these effects could be corrected by a vitamin A supplementation. Thus, the modulation of GCs availability by vitamin A status is an important biological mechanism that should be taken into account in order to prevent age-related cognitive decline and hippocampal plasticity alterations.

  18. Optimizing patient positioning for intensity modulated radiation therapy in hippocampal-sparing whole brain radiation therapy.

    Science.gov (United States)

    Siglin, Joshua; Champ, Colin E; Vakhnenko, Yelena; Witek, Matthew E; Peng, Cheng; Zaorsky, Nicholas G; Harrison, Amy S; Shi, Wenyin

    2014-01-01

    Sparing the hippocampus during whole brain radiation therapy (WBRT) offers potential neurocognitive benefits. However, previously reported intensity modulated radiation therapy (IMRT) plans use multiple noncoplanar beams for treatment delivery. An optimized coplanar IMRT template for hippocampal-sparing WBRT would assist in clinical workflow and minimize resource utilization. In this study, we sought to determine the optimal patient position to facilitate coplanar treatment planning and delivery of hippocampal-sparing WBRT using IMRT. A variable angle, inclined board was utilized for patient positioning. An anthropomorphic phantom underwent computed tomography simulation at various head angles. The IMRT goals were designed to achieve target coverage of the brain while maintaining hippocampal dose-volume constraints designed to conform to the Radiation Therapy Oncology Group 0933 protocol. Optimal head angle was then verified using data from 8 patients comparing coplanar and noncoplanar WBRT IMRT plans. Hippocampal, hippocampal avoidance region, and whole brain mean volumes were 1.1 cm(3), 12.5 cm(3), and 1185.1 cm(3), respectively. The hippocampal avoidance region occupied 1.1% of the whole brain planning volume. For the 30-degree head angle, a 7-field coplanar IMRT plan was generated, sparing the hippocampus to a maximum dose of 14.7 Gy; D100% of the hippocampus was 7.4 Gy and mean hippocampal dose was 9.3 Gy. In comparison, for flat head positioning the hippocampal Dmax was 22.9 Gy with a D100% of 9.2 Gy and mean dose of 11.7 Gy. Target coverage and dose homogeneity was comparable with previously published noncoplanar IMRT plans. Compared with conventional supine positioning, an inclined head board at 30 degrees optimizes coplanar whole brain IMRT treatment planning. Clinically acceptable hippocampal-sparing WBRT dosimetry can be obtained using a simplified coplanar plan at a 30-degree head angle, thus obviating the need for complex and time consuming noncoplanar

  19. Intermediate levels of hippocampal activity appear optimal for associative memory formation.

    Directory of Open Access Journals (Sweden)

    Xiao Liu

    Full Text Available BACKGROUND: It is well established that hippocampal activity is positively related to effective associative memory formation. However, in biological systems often optimal levels of activity are contrasted by both sub- and supra-optimal levels. Sub-optimal levels of hippocampal activity are commonly attributed to unsuccessful memory formation, whereas the supra-optimal levels of hippocampal activity related to unsuccessful memory formation have been rarely studied. It is still unclear under what circumstances such supra-optimal levels of hippocampal activity occur. To clarify this issue, we aimed at creating a condition, in which supra-optimal hippocampal activity is associated with encoding failure. We assumed that such supra-optimal activity occurs when task-relevant information is embedded in task-irrelevant, distracting information, which can be considered as noise. METHODOLOGY/PRINCIPAL FINDINGS: In the present fMRI study, we probed neural correlates of associative memory formation in a full-factorial design with associative memory (subsequently remembered versus forgotten and noise (induced by high versus low distraction as factors. Results showed that encoding failure was associated with supra-optimal activity in the high-distraction condition and with sub-optimal activity in the low distraction condition. Thus, we revealed evidence for a bell-shape function relating hippocampal activity with associative encoding success. CONCLUSIONS/SIGNIFICANCE: Our findings indicate that intermediate levels of hippocampal activity are optimal while both too low and too high levels appear detrimental for associative memory formation. Supra-optimal levels of hippocampal activity seem to occur when task-irrelevant information is added to task-relevant signal. If such task-irrelevant noise is reduced adequately, hippocampal activity is lower and thus optimal for associative memory formation.

  20. Vitamin A status regulates glucocorticoid availability in Wistar rats: consequences on cognitive functions and hippocampal neurogenesis?

    Science.gov (United States)

    Bonhomme, Damien; Minni, Amandine M; Alfos, Serge; Roux, Pascale; Richard, Emmanuel; Higueret, Paul; Moisan, Marie-Pierre; Pallet, Véronique; Touyarot, Katia

    2014-01-01

    A disruption of the vitamin A signaling pathway has been involved in age-related memory decline and hippocampal plasticity alterations. Using vitamin A deficiency (VAD), a nutritional model leading to a hyposignaling of the retinoid pathway, we have recently demonstrated that retinoic acid (RA), the active metabolite of vitamin A, is efficient to reverse VAD-induced spatial memory deficits and adult hippocampal neurogenesis alterations. Besides, excess of glucocorticoids (GCs) occurring with aging is known to strongly inhibit hippocampal plasticity and functions and few studies report on the counteracting effects of RA signaling pathway on GCs action. Here, we have addressed whether the modulation of brain GCs availability could be one of the biological mechanisms involved in the effects of vitamin A status on hippocampal plasticity and functions. Thus, we have studied the effects of a vitamin A-free diet for 14 weeks and a 4-week vitamin A supplementation on plasma and hippocampal corticosterone (CORT) levels in Wistar rats. We have also investigated corticosteroid binding globulin (CBG) binding capacity and 11beta-Hydrosteroid Dehydrogenase type 1 (11β-HSD1) activity, both important modulators of CORT availability at the peripheral and hippocampal levels respectively. Interestingly, we show that the vitamin A status regulates levels of free plasma CORT and hippocampal CORT levels, by acting through a regulation of CBG binding capacity and 11β-HSD1 activity. Moreover, our results suggest that increased CORT levels in VAD rats could have some deleterious consequences on spatial memory, anxiety-like behavior and adult hippocampal neurogenesis whereas these effects could be corrected by a vitamin A supplementation. Thus, the modulation of GCs availability by vitamin A status is an important biological mechanism that should be taken into account in order to prevent age-related cognitive decline and hippocampal plasticity alterations.

  1. Protracted hippocampal development is associated with age-related improvements in memory during early childhood.

    Science.gov (United States)

    Riggins, Tracy; Geng, Fengji; Botdorf, Morgan; Canada, Kelsey; Cox, Lisa; Hancock, Gregory R

    2018-03-05

    The hippocampus is a structure that is critical for memory. Previous studies have shown that age-related differences in specialization along the longitudinal axis of this structure (i.e., subregions) and within its internal circuitry (i.e., subfields) relate to age-related improvements in memory in school-age children and adults. However, the influence of age on hippocampal development and its relations with memory ability earlier in life remains under-investigated. This study examined effects of age and sex on hippocampal subregion (i.e., head, body, tail) and subfield (i.e., subiculum, CA1, CA2-4/DG) volumes, and their relations with memory, using a large sample of 4- to 8-year-old children. Results examining hippocampal subregions suggest influences of both age and sex on the hippocampal head during early childhood. Results examining subfields within hippocampal head suggest these age effects may arise from CA1, whereas sex differences may arise from subiculum and CA2-4/DG. Memory ability was not associated with hippocampal subregion volume but was associated with subfield volume. Specifically, within the hippocampal head, relations between memory and CA1 were moderated by age; in younger children bigger was better, whereas in older children smaller was superior. Within the hippocampal body, smaller CA1 and larger CA2-4/DG contributed to better memory performance across all ages. Together, these results shed light on hippocampal development during early childhood and support claims that the prolonged developmental trajectory of the hippocampus contributes to memory development early in life. Copyright © 2018. Published by Elsevier Inc.

  2. Closed-Loop Interruption of Hippocampal Ripples through Fornix Stimulation in the Non-Human Primate.

    Science.gov (United States)

    Talakoub, Omid; Gomez Palacio Schjetnan, Andrea; Valiante, Taufik A; Popovic, Milos R; Hoffman, Kari L

    Hippocampal sharp-wave ripples (SWRs) arising from synchronous bursting in CA3 pyramidal cells and propagating to CA1 are thought to facilitate memory consolidation. Stimulation of the CA3 axon collaterals comprising the hippocampal commissure in rats interrupts sharp-wave ripples and leads to memory impairment. In primates, however, these commissural collaterals are limited. Other hippocampal fiber pathways, like the fornix, may be potential targets for modulating ongoing hippocampal activity, with the short latencies necessary to interrupt ripples. The aim of this study is to determine the efficacy of closed-loop stimulation adjacent to the fornix for interrupting hippocampal ripples. Stimulating electrodes were implanted bilaterally alongside the fornix in the macaque, together with microelectrodes targeting the hippocampus for recording SWRs. We first verified that fornix stimulation reliably and selectively evoked a response in the hippocampus. We then implemented online detection and stimulation as hippocampal ripples occurred. The closed-loop interruption method was effective in interrupting ripples as well as the associated hippocampal multi-unit activity, demonstrating the feasibility of ripple interruption using fornix stimulation in primates. Analogous to murine research, such an approach will likely be useful in understanding the role of SWRs in memory formation in macaques and other primates sharing these pathways, such as humans. More generally, closed-loop stimulation of the fornix may prove effective in interrogating hippocampal-dependent memory processes. Finally, this rapid, contingent-DBS approach may be a means for modifying pathological high-frequency events within the hippocampus, and potentially throughout the extended hippocampal circuit. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Kindling-induced potentiation of excitatory and inhibitory inputs to hippocampal dentate granule cells. II. Effects of the NMDA antagonist MK-801.

    LENUS (Irish Health Repository)

    Robinson, G B

    1991-10-18

    The effect of the non-competitive N-methyl-D-aspartate antagonist MK-801 on the early development of kindling-induced potentiation was examined in the rabbit hippocampal dentate gyrus. MK-801 (0.5 mg\\/kg) was administered 2 h before each daily kindling stimulation was applied to the perforant path. This treatment continued for the first 10 days of kindling. MK-801 depressed the growth of the afterdischarge duration and suppressed development of behavioral seizures. MK-801 did not block kindling-induced potentiation of either the perforant path-dentate granule cell population spike or excitatory postsynaptic potential. Random impulse train stimulation and non-linear systems analytic techniques were used to examine kindling-induced potentiation of presumed GABAergic recurrent inhibitory circuits. Both the magnitude and duration of kindling-induced response inhibition, to the second of each pair of impulses within the train, were reduced in rabbits pretreated with MK-801. These results suggest that MK-801 differentially affects kindling-induced potentiation of excitatory and inhibitory circuits within the rabbit hippocampal dentate gyrus.

  4. A septo-temporal molecular gradient of sfrp3 in the dentate gyrus differentially regulates quiescent adult hippocampal neural stem cell activation.

    Science.gov (United States)

    Sun, Jiaqi; Bonaguidi, Michael A; Jun, Heechul; Guo, Junjie U; Sun, Gerald J; Will, Brett; Yang, Zhengang; Jang, Mi-Hyeon; Song, Hongjun; Ming, Guo-li; Christian, Kimberly M

    2015-09-04

    A converging body of evidence indicates that levels of adult hippocampal neurogenesis vary along the septo-temporal axis of the dentate gyrus, but the molecular mechanisms underlying this regional heterogeneity are not known. We previously identified a niche mechanism regulating proliferation and neuronal development in the adult mouse dentate gyrus resulting from the activity-regulated expression of secreted frizzled-related protein 3 (sfrp3) by mature neurons, which suppresses activation of radial glia-like neural stem cells (RGLs) through inhibition of Wingless/INT (WNT) protein signaling. Here, we show that activation rates within the quiescent RGL population decrease gradually along the septo-temporal axis in the adult mouse dentate gyrus, as defined by MCM2 expression in RGLs. Using in situ hybridization and quantitative real-time PCR, we identified an inverse septal-to-temporal increase in the expression of sfrp3 that emerges during postnatal development. Elimination of sfrp3 and its molecular gradient leads to increased RGL activation, preferentially in the temporal region of the adult dentate gyrus. Our study identifies a niche mechanism that contributes to the graded distribution of neurogenesis in the adult dentate gyrus and has important implications for understanding functional differences associated with adult hippocampal neurogenesis along the septo-temporal axis.

  5. Elevation of hippocampal neurogenesis induces a temporally-graded pattern of forgetting of contextual fear memories.

    Science.gov (United States)

    Gao, Aijing; Xia, Frances; Guskjolen, Axel; Ramsaran, Adam I; Santoro, Adam; Josselyn, Sheena A; Frankland, Paul W

    2018-02-16

    Throughout life neurons are continuously generated in the subgranular zone of the hippocampus. The subsequent integration of newly-generated neurons alters patterns of dentate gyrus input and output connectivity, potentially rendering memories already stored in those circuits harder to access. Consistent with this prediction, we previously showed that increasing hippocampal neurogenesis after training induces forgetting of hippocampus-dependent memories, including contextual fear memory. However, the brain regions supporting contextual fear memories change with time, and this time-dependent memory reorganization might regulate the sensitivity of contextual fear memories to fluctuations in hippocampal neurogenesis. By virally expressing the inhibitory DREADD hM4Di we first confirmed that chemogenetic inhibition of dorsal hippocampal neurons impairs retrieval of recent (day-old) but not remote (month-old) contextual fear memories in male mice. We then contrasted the effects of increasing hippocampal neurogenesis at recent vs remote time points after contextual fear conditioning in male and female mice. Increasing hippocampal neurogenesis immediately following training reduced conditioned freezing when mice were replaced in the context one month later. In contrast, when hippocampal neurogenesis was increased time points remote to training, conditioned freezing levels were unaltered when mice were subsequently tested. These temporally-graded forgetting effects were observed using both environmental and genetic interventions to increase hippocampal neurogenesis. Our experiments identify memory age as a boundary condition for neurogenesis-mediated forgetting and suggest that as contextual fear memories mature they become less sensitive to changes in hippocampal neurogenesis levels because they no longer depend on the hippocampus for their expression. Significance statement: New neurons are generated in the hippocampus throughout life. As they integrate into the

  6. Automatic planning on hippocampal avoidance whole-brain radiotherapy

    International Nuclear Information System (INIS)

    Wang, Shuo; Zheng, Dandan; Zhang, Chi; Ma, Rongtao; Bennion, Nathan R.; Lei, Yu; Zhu, Xiaofeng; Enke, Charles A.; Zhou, Sumin

    2017-01-01

    Mounting evidence suggests that radiation-induced damage to the hippocampus plays a role in neurocognitive decline for patients receiving whole-brain radiotherapy (WBRT). Hippocampal avoidance whole-brain radiotherapy (HA-WBRT) has been proposed to reduce the putative neurocognitive deficits by limiting the dose to the hippocampus. However, urgency of palliation for patients as well as the complexities of the treatment planning may be barriers to protocol enrollment to accumulate further clinical evidence. This warrants expedited quality planning of HA-WBRT. Pinnacle 3 Automatic treatment planning was designed to increase planning efficiency while maintaining or improving plan quality and consistency. The aim of the present study is to evaluate the performance of the Pinnacle 3 Auto-Planning on HA-WBRT treatment planning. Ten patients previously treated for brain metastases were selected. Hippocampal volumes were contoured on T1 magnetic resonance (MR) images, and planning target volumes (PTVs) were generated based on RTOG0933. The following 2 types of plans were generated by Pinnacle 3 Auto-Planning: the one with 2 coplanar volumetric modulated arc therapy (VMAT) arcs and the other with 9-field noncoplanar intensity-modulated radiation therapy (IMRT). D 2% and D 98% of PTV were used to calculate homogeneity index (HI). HI and Paddick Conformity index (CI) of PTV as well as D 100% and D max of the hippocampus were used to evaluate the plan quality. All the auto-plans met the dose coverage and constraint objectives based on RTOG0933. The auto-plans eliminated the necessity of generating pseudostructures by the planners, and it required little manual intervention which expedited the planning process. IMRT quality assurance (QA) results also suggest that all the auto-plans are practically acceptable on delivery. Pinnacle 3 Auto-Planning generates acceptable plans by RTOG0933 criteria without time-consuming planning process. The expedited quality planning achieved by

  7. Novelty detection and repetition suppression in a passive picture viewing task: a possible approach for the evaluation of neuropsychiatric disorders.

    Science.gov (United States)

    Jessen, Frank; Manka, Christoph; Scheef, Lukas; Granath, Dirk-Oliver; Schild, Hans H; Heun, Reinhard

    2002-12-01

    The applicability of functional magnetic resonance imaging (fMRI) in patients with Alzheimer's disease (AD) or schizophrenia is frequently limited by cognitive impairment, which prevents the adequate execution of complex tasks. An experimental design that puts only minor demands on the patients' cognitive ability but engages disease-relevant brain structures would be of benefit. Novelty detection and repetition suppression are two basic components of memory that might be used to investigate specific brain areas under these conditions. Novelty detection has been related to hippocampal activation increases. Stimulus repetition related activation decreases (suppression) have been observed in the extrastriate cortex and have been related to perceptual priming. Both processes have been examined primarily in neuroimaging studies with complex cognitive tasks. We used event-related fMRI to investigate novelty- and repetition-related effects in an attended but passive picture-viewing task in healthy subjects. The differential activation, detected in the novel vs. repeated contrast, was located in the bilateral anterior hippocampus and in bilateral occipital and inferior-temporal areas. The hippocampal activation is of interest because medial temporal lobe lesions are key features in AD and schizophrenia. The repetition-related activation decreases in the extrastriate areas are of potential value in investigating the conflicting results regarding perceptual priming impairment in both disorders. Our results indicate that activation of disease-relevant brain regions under passive task conditions is possible. This might increase the utility of functional imaging in cognitively impaired patients. Copyright 2002 Wiley-Liss, Inc.

  8. Strangeness Suppression and Color Deconfinement

    Science.gov (United States)

    Satz, Helmut

    2018-02-01

    The relative multiplicities for hadron production in different high energy collisions are in general well described by an ideal gas of all hadronic resonances, except that under certain conditions, strange particle rates are systematically reduced. We show that the suppression factor γs, accounting for reduced strange particle rates in pp, pA and AA collisions at different collision energies, becomes a universal function when expressed in terms of the initial entropy density s0 or the initial temperature T of the produced thermal medium. It is found that γs increases from about 0.5 to 1.0 in a narrow temperature range around the quark-hadron transition temperature Tc ≃ 160 MeV. Strangeness suppression thus disappears with the onset of color deconfinement; subsequently, full equilibrium resonance gas behavior is attained.

  9. Suppression of stratified explosive interactions

    Energy Technology Data Exchange (ETDEWEB)

    Meeks, M.K.; Shamoun, B.I.; Bonazza, R.; Corradini, M.L. [Wisconsin Univ., Madison, WI (United States). Dept. of Nuclear Engineering and Engineering Physics

    1998-01-01

    Stratified Fuel-Coolant Interaction (FCI) experiments with Refrigerant-134a and water were performed in a large-scale system. Air was uniformly injected into the coolant pool to establish a pre-existing void which could suppress the explosion. Two competing effects due to the variation of the air flow rate seem to influence the intensity of the explosion in this geometrical configuration. At low flow rates, although the injected air increases the void fraction, the concurrent agitation and mixing increases the intensity of the interaction. At higher flow rates, the increase in void fraction tends to attenuate the propagated pressure wave generated by the explosion. Experimental results show a complete suppression of the vapor explosion at high rates of air injection, corresponding to an average void fraction of larger than 30%. (author)

  10. Suppressing Quantum Fluctuations in Classicalization

    CERN Document Server

    Vikman, Alexander

    2013-01-01

    We study vacuum quantum fluctuations of simple Nambu-Goldstone bosons - derivatively coupled single scalar-field theories possessing shift-symmetry in field space. We argue that quantum fluctuations of the interacting field can be drastically suppressed with respect to the free-field case. Moreover, the power-spectrum of these fluctuations can soften to become red for sufficiently small scales. In quasiclassical approximation, we demonstrate that this suppression can only occur for those theories that admit such classical static backgrounds around which small perturbations propagate faster than light. Thus a quasiclassical softening of quantum fluctuations is only possible for theories which classicalize instead of having a usual Lorentz invariant and local Wilsonian UV- completion. We illustrate our analysis by estimating the quantum fluctuations for the DBI-like theories.

  11. Hippocampal neurogenesis in the new model of global cerebral ischemia

    Science.gov (United States)

    Kisel, A. A.; Chernysheva, G. A.; Smol'yakova, V. I.; Savchenko, R. R.; Plotnikov, M. B.; Khodanovich, M. Yu.

    2015-11-01

    The study aimed to evaluate the changes of hippocampal neurogenesis in a new model of global transient cerebral ischemia which was performed by the occlusion of the three main vessels (tr. brachiocephalicus, a. subclavia sinistra, and a. carotis communis sinistra) branching from the aortic arch and supplying the brain. Global transitory cerebral ischemia was modeled on male rats (weight = 250-300 g) under chloral hydrate with artificial lung ventilation. Animals after the same surgical operation without vessel occlusion served as sham-operated controls. The number of DCX-positive (doublecortin, the marker of immature neurons) cells in dentate gyrus (DG) and CA1-CA3 fields of hippocampus was counted at the 31st day after ischemia modeling. It was revealed that global cerebral ischemia decreased neurogenesis in dentate gyrus in comparison with the sham-operated group (Pneurogenesis in CA1-CA3 fields was increased as compared to the control (P<0.05).

  12. Bacteremia causes hippocampal apoptosis in experimental pneumococcal meningitis

    DEFF Research Database (Denmark)

    Andersen, Christian Østergaard; Leib, S.L.; Rowland, Ian J

    2010-01-01

    ABSTRACT: BACKGROUND: Bacteremia and systemic complications both play important roles in brain pathophysiological alterations and the outcome of pneumococcal meningitis. Their individual contributions to the development of brain damage, however, still remain to be defined. METHODS: Using an adult...... rat pneumococcal meningitis model, the impact of bacteremia accompanying meningitis on the development of hippocampal injury was studied. The study comprised of the three groups: I. Meningitis (n=11), II. meningitis with attenuated bacteremia resulting from iv injection of serotype......-specific pneumococcal antibodies (n=14), and III. uninfected controls (n=6). RESULTS: Pneumococcal meningitis resulted in a significantly higher apoptosis score 0.22 (0.18-0.35) compared to uninfected controls (0.02 (0.00-0.02), Mann Whitney test, P=0.0003). Also, meningitis with an attenuation of bacteremia...

  13. (/sup 3/H) clonidine binding to rat hippocampal membranes

    Energy Technology Data Exchange (ETDEWEB)

    George, C.R.

    1982-02-01

    Alpha adrenergic receptor subtypes in rat hippocampal membranes were studied, using (/sup 3/H) clonidine as the radioactive ligand. On the basis of competitive binding studies, using the selective antagonist-prazosin, WB-4101, and yohimbine, (/sup 3/H) clonidine appeared to bind to a population of presynaptic sites that are pharmacologically similar to receptors previously classified as alpha 2. A computerized model that linearized and produced the best possible fit to the experimental data points indicated that (/sup 3/H) clonidine binds to a single population of receptors possessing equal affinity for the ligand. Binding data also indicated that rat hippo-campus contains significantly fewer (/sup 3/H)clonidine binding sites than rat cortex.

  14. The Cognitive Architecture of Spatial Navigation: Hippocampal and Striatal Contributions.

    Science.gov (United States)

    Chersi, Fabian; Burgess, Neil

    2015-10-07

    Spatial navigation can serve as a model system in cognitive neuroscience, in which specific neural representations, learning rules, and control strategies can be inferred from the vast experimental literature that exists across many species, including humans. Here, we review this literature, focusing on the contributions of hippocampal and striatal systems, and attempt to outline a minimal cognitive architecture that is consistent with the experimental literature and that synthesizes previous related computational modeling. The resulting architecture includes striatal reinforcement learning based on egocentric representations of sensory states and actions, incidental Hebbian association of sensory information with allocentric state representations in the hippocampus, and arbitration of the outputs of both systems based on confidence/uncertainty in medial prefrontal cortex. We discuss the relationship between this architecture and learning in model-free and model-based systems, episodic memory, imagery, and planning, including some open questions and directions for further experiments. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Neuropeptide Y inhibits hippocampal seizures and wet dog shakes

    DEFF Research Database (Denmark)

    Woldbye, D P; Madsen, T M; Larsen, P J

    1996-01-01

    The effects of intracerebroventricular neuropeptide Y (NPY) or somatostatin were studied upon hippocampal EEG seizures elicited by electrical stimulation of the rat dentate gyrus or subiculum. At doses of 6 and 12 nmol, the latter dose being more effective, NPY reduced the primary afterdischarge...... effects in the dentate gyrus and subiculum, but also in areas to which epileptiform EEG activity spreads before reverberating. In addition, NPY strongly reduced seizure-related 'wet dog shakes' (WDS). This is consistent with previous studies showing that the dentate gyrus is essential for the generation...... of WDS. However, NPY inhibited WDS even when 1.ADDs were evoked which did not differ from those of vehicle rats, indicating extra-dentate inhibition by NPY as well. No effects were seen with somatostatin. These results show that NPY exerts antiepileptiform effects in vivo, suggesting that increased NPY...

  16. Neurofibromin Modulates Adult Hippocampal Neurogenesis and Behavioral Effects of Antidepressants

    Science.gov (United States)

    Li, Yun; Li, Yanjiao; McKay, Renée M.; Riethmacher, Dieter; Parada, Luis F.

    2012-01-01

    Neurogenesis persists in the rodent dentate gyrus (DG) throughout adulthood but declines with age and stress. Neural progenitor cells (NPCs) residing in the subgranular zone of the DG are regulated by an array of growth factors and respond to the microenvironment, adjusting their proliferation level to determine the rate of neurogenesis. Here we report that genetic deletion of neurofibromin (Nf1), a tumor suppressor with RAS-GAP activity,in adult NPCs enhanced DG proliferation and increased generation of new neurons in mice. Nf1 loss-associated neurogenesis had the functional effect of enhancing behavioral responses to subchronic antidepressants and, over time, led to spontaneous antidepressive-like behaviors. Thus, our findings establish an important role for the Nf1-Ras pathway in regulating adult hippocampal neurogenesis, and demonstrate that activation of adult NPCs is sufficient to modulate depression- and anxiety-like behaviors. PMID:22399775

  17. Spontaneous Plasticity of Multineuronal Activity Patterns in Activated Hippocampal Networks

    Directory of Open Access Journals (Sweden)

    Atsushi Usami

    2008-01-01

    Full Text Available Using functional multineuron imaging with single-cell resolution, we examined how hippocampal networks by themselves change the spatiotemporal patterns of spontaneous activity during the course of emitting spontaneous activity. When extracellular ionic concentrations were changed to those that mimicked in vivo conditions, spontaneous activity was increased in active cell number and activity frequency. When ionic compositions were restored to the control conditions, the activity level returned to baseline, but the weighted spatial dispersion of active cells, as assessed by entropy-based metrics, did not. Thus, the networks can modify themselves by altering the internal structure of their correlated activity, even though they as a whole maintained the same level of activity in space and time.

  18. [Spontaneous synchronous discharges in hippocampal slices. Simulation and experiment].

    Science.gov (United States)

    Dudkin, A O; Sbitnev, V I

    2000-01-01

    Chaotic oscillations of extracellular potential of field-type nerve tissues are simulated by a 2D coupled map lattice. These tissues, say, the fields of the hippocampus, are represented by neural mass sheets consisting of current sources. The relationship between the source-sink ensembles and the extracellular field potential at each discrete instant of time t = 1, 2, ... is described by a single-site map creating chaos. The 2D coupled map lattice is viewed as a network of diffusively coupled the maps creating spatiotemporal chaos. The conversion of chaotic oscillations into synchronous ones, which are typical for epileptiform discharges, is studied. The results obtained are in good agreement with those derived from hippocampal slices treated with picrotoxin.

  19. Persistent gliosis interferes with neurogenesis in organotypic hippocampal slice cultures

    Directory of Open Access Journals (Sweden)

    Johannes eGerlach

    2016-05-01

    Full Text Available Neurogenesis in the adult hippocampus has become an intensively investigated research topic, as it is essential for proper hippocampal function and considered to bear therapeutic potential for the replacement of pathologically lost neurons. On the other hand, neurogenesis itself is frequently affected by CNS insults. To identify processes leading to the disturbance of neurogenesis, we made use of organotypic hippocampal slice cultures (OHSC, which, for unknown reasons, lose their neurogenic potential during cultivation. In the present study, we show by BrdU/Prox1 double-immunostaining that the generation of new granule cells drops by 90% during the first week of cultivation. Monitoring neurogenesis dynamically in OHSC from POMC-eGFP mice, in which immature granule cells are endogenously labeled, revealed a gradual decay of the eGFP signal, reaching 10% of initial values within seven days of cultivation. Accordingly, RT-qPCR analysis showed the downregulation of the neurogenesis-related genes doublecortin and Hes5, a crucial target of the stem cell-maintaining Notch signaling pathway. In parallel, we demonstrate a strong and long-lasting activation of astrocytes and microglial cells, both, morphologically and on the level of gene expression. Enhancement of astroglial activation by treating OHSC with ciliary neurotrophic factor (CNTF accelerated the loss of neurogenesis, whereas treatment with indomethacin or an antagonist of the purinergic P2Y12 receptor exhibited potent protective effects on the neurogenic outcome. Therefore, we conclude that OHSC rapidly lose their neurogenic capacity due to persistent inflammatory processes taking place after the slice preparation. As inflammation is also considered to affect neurogenesis in many CNS pathologies, OHSC appear as a useful tool to study this interplay and its molecular basis. Furthermore, we propose that modification of glial activation might bear the therapeutic potential of enabling

  20. The CRISP theory of hippocampal function in episodic memory

    Science.gov (United States)

    Cheng, Sen

    2013-01-01

    Over the past four decades, a “standard framework” has emerged to explain the neural mechanisms of episodic memory storage. This framework has been instrumental in driving hippocampal research forward and now dominates the design and interpretation of experimental and theoretical studies. It postulates that cortical inputs drive plasticity in the recurrent cornu ammonis 3 (CA3) synapses to rapidly imprint memories as attractor states in CA3. Here we review a range of experimental studies and argue that the evidence against the standard framework is mounting, notwithstanding the considerable evidence in its support. We propose CRISP as an alternative theory to the standard framework. CRISP is based on Context Reset by dentate gyrus (DG), Intrinsic Sequences in CA3, and Pattern completion in cornu ammonis 1 (CA1). Compared to previous models, CRISP uses a radically different mechanism for storing episodic memories in the hippocampus. Neural sequences are intrinsic to CA3, and inputs are mapped onto these intrinsic sequences through synaptic plasticity in the feedforward projections of the hippocampus. Hence, CRISP does not require plasticity in the recurrent CA3 synapses during the storage process. Like in other theories DG and CA1 play supporting roles, however, their function in CRISP have distinct implications. For instance, CA1 performs pattern completion in the absence of CA3 and DG contributes to episodic memory retrieval, increasing the speed, precision, and robustness of retrieval. We propose the conceptual theory, discuss its implications for experimental results and suggest testable predictions. It appears that CRISP not only accounts for those experimental results that are consistent with the standard framework, but also for results that are at odds with the standard framework. We therefore suggest that CRISP is a viable, and perhaps superior, theory for the hippocampal function in episodic memory. PMID:23653597

  1. Hippocampal-cortical contributions to strategic exploration during perceptual discrimination.

    Science.gov (United States)

    Voss, Joel L; Cohen, Neal J

    2017-06-01

    The hippocampus is crucial for long-term memory; its involvement in short-term or immediate expressions of memory is more controversial. Rodent hippocampus has been implicated in an expression of memory that occurs on-line during exploration termed "vicarious trial-and-error" (VTE) behavior. VTE occurs when rodents iteratively explore options during perceptual discrimination or at choice points. It is strategic in that it accelerates learning and improves later memory. VTE has been associated with activity of rodent hippocampal neurons, and lesions of hippocampus disrupt VTE and associated learning and memory advantages. Analogous findings of VTE in humans would support the role of hippocampus in active use of short-term memory to guide strategic behavior. We therefore measured VTE using eye-movement tracking during perceptual discrimination and identified relevant neural correlates with functional magnetic resonance imaging. A difficult perceptual-discrimination task was used that required visual information to be maintained during a several second trial, but with no long-term memory component. VTE accelerated discrimination. Neural correlates of VTE included robust activity of hippocampus and activity of a network of medial prefrontal and lateral parietal regions involved in memory-guided behavior. This VTE-related activity was distinct from activity associated with simply viewing visual stimuli and making eye movements during the discrimination task, which occurred in regions frequently associated with visual processing and eye-movement control. Subjects were mostly unaware of performing VTE, thus further distancing VTE from explicit long-term memory processing. These findings bridge the rodent and human literatures on neural substrates of memory-guided behavior, and provide further support for the role of hippocampus and a hippocampal-centered network of cortical regions in the immediate use of memory in on-line processing and the guidance of behavior. © 2017

  2. Semantic congruence affects hippocampal response to repetition of visual associations.

    Science.gov (United States)

    McAndrews, Mary Pat; Girard, Todd A; Wilkins, Leanne K; McCormick, Cornelia

    2016-09-01

    Recent research has shown complementary engagement of the hippocampus and medial prefrontal cortex (mPFC) in encoding and retrieving associations based on pre-existing or experimentally-induced schemas, such that the latter supports schema-congruent information whereas the former is more engaged for incongruent or novel associations. Here, we attempted to explore some of the boundary conditions in the relative involvement of those structures in short-term memory for visual associations. The current literature is based primarily on intentional evaluation of schema-target congruence and on study-test paradigms with relatively long delays between learning and retrieval. We used a continuous recognition paradigm to investigate hippocampal and mPFC activation to first and second presentations of scene-object pairs as a function of semantic congruence between the elements (e.g., beach-seashell versus schoolyard-lamp). All items were identical at first and second presentation and the context scene, which was presented 500ms prior to the appearance of the target object, was incidental to the task which required a recognition response to the central target only. Very short lags 2-8 intervening stimuli occurred between presentations. Encoding the targets with congruent contexts was associated with increased activation in visual cortical regions at initial presentation and faster response time at repetition, but we did not find enhanced activation in mPFC relative to incongruent stimuli at either presentation. We did observe enhanced activation in the right anterior hippocampus, as well as regions in visual and lateral temporal and frontal cortical regions, for the repetition of incongruent scene-object pairs. This pattern demonstrates rapid and incidental effects of schema processing in hippocampal, but not mPFC, engagement during continuous recognition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Analysis of parahippocampal gyrus in 115 patients with hippocampal sclerosis

    Directory of Open Access Journals (Sweden)

    Ferreira Nelson Fortes

    2003-01-01

    Full Text Available PURPOSE: Analysis of the parahippocampal gyrus (PHG involvement in 115 patients with hippocampal sclerosis (HS by MR imaging. The simultaneous occurrence of ipsilateral fornix (F and mamillary body (MB volume loss was checked also. These findings were correlated with the side of hippocampal involvement, the sex, patient´s age, and the symptoms onset. METHOD: The MR images of 115 patients with HS were studied retrospectively. All the examinations were performed on 1.5 T units (SIGNA, GE, Milwaukee, WI and included high resolution coronal T2-weighted images (3 mm thickness, 0.6 mm gap. RESULTS: The patient's age ranged between 3.5 and 80 years (mean 34.1; 62 (53.9% were female and 53 (46.1% were male. There were HS on the left side in 53 (46.0%, on the right side in 51 (44.3%, and bilateral in 11 (9.7%. In 43 (37.3% cases there were ipsilateral PHG volume loss and signal hyper intensity on T2-weighted imaging. In 29 (25.2% cases there were ipsilateral fornix volume loss and in 10 (34.5% of this there were also ipsilateral MB changes. In abnormal PHG, 23 (53.4% were on the left side, 17 (39.5% were on the right side, and 3 (7.1% were bilateral. There were fornix changes in 15 (34.8% cases and MB volume loss in 5 (11.6% cases. Pertinent clinical data were obtained in only 18 (41.8% of the PHG lesion cases and 11 (61.1% of these patients had epileptic attacks for more than 20 years before the examination. CONCLUSION: PHG involvement must be investigated in patients with HS and we suggest that the term mesial temporal sclerosis should be used only if there are also changes at this anatomical site.

  4. Ethosuximide Induces Hippocampal Neurogenesis and Reverses Cognitive Deficits in an Amyloid-β Toxin-induced Alzheimer Rat Model via the Phosphatidylinositol 3-Kinase (PI3K)/Akt/Wnt/β-Catenin Pathway.

    Science.gov (United States)

    Tiwari, Shashi Kant; Seth, Brashket; Agarwal, Swati; Yadav, Anuradha; Karmakar, Madhumita; Gupta, Shailendra Kumar; Choubey, Vinay; Sharma, Abhay; Chaturvedi, Rajnish Kumar

    2015-11-20

    Neurogenesis involves generation of new neurons through finely tuned multistep processes, such as neural stem cell (NSC) proliferation, migration, differentiation, and integration into existing neuronal circuitry in the dentate gyrus of the hippocampus and subventricular zone. Adult hippocampal neurogenesis is involved in cognitive functions and altered in various neurodegenerative disorders, including Alzheimer disease (AD). Ethosuximide (ETH), an anticonvulsant drug is used for the treatment of epileptic seizures. However, the effects of ETH on adult hippocampal neurogenesis and the underlying cellular and molecular mechanism(s) are yet unexplored. Herein, we studied the effects of ETH on rat multipotent NSC proliferation and neuronal differentiation and adult hippocampal neurogenesis in an amyloid β (Aβ) toxin-induced rat model of AD-like phenotypes. ETH potently induced NSC proliferation and neuronal differentiation in the hippocampus-derived NSC in vitro. ETH enhanced NSC proliferation and neuronal differentiation and reduced Aβ toxin-mediated toxicity and neurodegeneration, leading to behavioral recovery in the rat AD model. ETH inhibited Aβ-mediated suppression of neurogenic and Akt/Wnt/β-catenin pathway gene expression in the hippocampus. ETH activated the PI3K·Akt and Wnt·β-catenin transduction pathways that are known to be involved in the regulation of neurogenesis. Inhibition of the PI3K·Akt and Wnt·β-catenin pathways effectively blocked the mitogenic and neurogenic effects of ETH. In silico molecular target prediction docking studies suggest that ETH interacts with Akt, Dkk-1, and GSK-3β. Our findings suggest that ETH stimulates NSC proliferation and differentiation in vitro and adult hippocampal neurogenesis via the PI3K·Akt and Wnt·β-catenin signaling. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Activation of the canonical nuclear factor-κB pathway is involved in isoflurane-induced hippocampal interleukin-1β elevation and the resultant cognitive deficits in aged rats

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zheng-Qian; Rong, Xiao-Ying; Liu, Ya-Jie; Ni, Cheng [Department of Anesthesiology, Peking University Third Hospital, Beijing 100191 (China); Tian, Xiao-Sheng [Neuroscience Research Institute and Department of Neurobiology, Key Laboratory for Neuroscience, Ministry of Education and Ministry of Public Health, Peking University Health Science Center, Beijing 100191 (China); Mo, Na [Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing 100021 (China); Chui, De-Hua, E-mail: dchui@bjmu.edu.cn [Neuroscience Research Institute and Department of Neurobiology, Key Laboratory for Neuroscience, Ministry of Education and Ministry of Public Health, Peking University Health Science Center, Beijing 100191 (China); Guo, Xiang-Yang, E-mail: puthmzk@163.com [Department of Anesthesiology, Peking University Third Hospital, Beijing 100191 (China)

    2013-09-06

    Highlights: •Isoflurane induces hippocampal IL-1β elevation and cognitive deficits in aged rats. •Isoflurane transiently activates the canonical NF-κB pathway in aged rat hippocampus. •NF-κB inhibitor mitigates isoflurane-induced IL-1β elevation and cognitive deficits. •We report a linkage between NF-κB signaling, IL-1β expression, and cognitive changes. -- Abstract: Although much recent evidence has demonstrated that neuroinflammation contributes to volatile anesthetic-induced cognitive deficits, there are few existing mechanistic explanations for this inflammatory process. This study was conducted to investigate the effects of the volatile anesthetic isoflurane on canonical nuclear factor (NF)-κB signaling, and to explore its association with hippocampal interleukin (IL)-1β levels and anesthetic-related cognitive changes in aged rats. After a 4-h exposure to 1.5% isoflurane in 20-month-old rats, increases in IκB kinase and IκB phosphorylation, as well as a reduction in the NF-κB inhibitory protein (IκBα), were observed in the hippocampi of isoflurane-exposed rats compared with control rats. These events were accompanied by an increase in NF-κB p65 nuclear translocation at 6 h after isoflurane exposure and hippocampal IL-1β elevation from 1 to 6 h after isoflurane exposure. Nevertheless, no significant neuroglia activation was observed. Pharmacological inhibition of NF-κB activation by pyrrolidine dithiocarbamate markedly suppressed the IL-1β increase and NF-κB signaling, and also mitigated the severity of cognitive deficits in the Morris water maze task. Overall, our results demonstrate that isoflurane-induced cognitive deficits may stem from upregulation of hippocampal IL-1β, partially via activation of the canonical NF-κB pathway, in aged rats.

  6. Activation of the canonical nuclear factor-κB pathway is involved in isoflurane-induced hippocampal interleukin-1β elevation and the resultant cognitive deficits in aged rats

    International Nuclear Information System (INIS)

    Li, Zheng-Qian; Rong, Xiao-Ying; Liu, Ya-Jie; Ni, Cheng; Tian, Xiao-Sheng; Mo, Na; Chui, De-Hua; Guo, Xiang-Yang

    2013-01-01

    Highlights: •Isoflurane induces hippocampal IL-1β elevation and cognitive deficits in aged rats. •Isoflurane transiently activates the canonical NF-κB pathway in aged rat hippocampus. •NF-κB inhibitor mitigates isoflurane-induced IL-1β elevation and cognitive deficits. •We report a linkage between NF-κB signaling, IL-1β expression, and cognitive changes. -- Abstract: Although much recent evidence has demonstrated that neuroinflammation contributes to volatile anesthetic-induced cognitive deficits, there are few existing mechanistic explanations for this inflammatory process. This study was conducted to investigate the effects of the volatile anesthetic isoflurane on canonical nuclear factor (NF)-κB signaling, and to explore its association with hippocampal interleukin (IL)-1β levels and anesthetic-related cognitive changes in aged rats. After a 4-h exposure to 1.5% isoflurane in 20-month-old rats, increases in IκB kinase and IκB phosphorylation, as well as a reduction in the NF-κB inhibitory protein (IκBα), were observed in the hippocampi of isoflurane-exposed rats compared with control rats. These events were accompanied by an increase in NF-κB p65 nuclear translocation at 6 h after isoflurane exposure and hippocampal IL-1β elevation from 1 to 6 h after isoflurane exposure. Nevertheless, no significant neuroglia activation was observed. Pharmacological inhibition of NF-κB activation by pyrrolidine dithiocarbamate markedly suppressed the IL-1β increase and NF-κB signaling, and also mitigated the severity of cognitive deficits in the Morris water maze task. Overall, our results demonstrate that isoflurane-induced cognitive deficits may stem from upregulation of hippocampal IL-1β, partially via activation of the canonical NF-κB pathway, in aged rats

  7. Enduring neurobehavioral effects of early life trauma mediated through learning and corticosterone suppression

    Directory of Open Access Journals (Sweden)

    Stephanie Moriceau

    2009-09-01

    Full Text Available Early life trauma alters later life emotions, including fear. To better understand mediating mechanisms, we subjected pups to either predictable or unpredictable trauma, in the form of paired or unpaired odor-0.5mA shock conditioning which, during a sensitive period, produces an odor preference and no learning respectively. Fear conditioning and its neural correlates were then assessed after the sensitive period at postnatal day (PN13 or in adulthood, ages when amygdala-dependent fear occurs. Our results revealed that paired odor-shock conditioning starting during the sensitive period (PN8-12 blocked fear conditioning in older infants (PN13 and pups continued to express olfactory bulb-dependent odor preference learning. This PN13 fear learning inhibition was also associated with suppression of shock-induced corticosterone, although the age appropriate amygdala-dependent fear learning was reinstated with systemic corticosterone (3mg/kg during conditioning. On the other hand, sensitive period odor-shock conditioning did not prevent adult fear conditioning, although freezing, amygdala and hippocampal 2-DG uptake and corticosterone levels were attenuated compared to adult conditioning without infant conditioning. Normal levels of freezing, amygdala and hippocampal 2-DG uptake were induced with systemic corticosterone (5mg/kg during adult conditioning. These results suggest that the contingency of early life trauma mediates at least some effects of early life stress through learning and suppression of corticosterone levels. However, developmental differences between infants and adults are expressed with PN13 infants’ learning consistent with the original learned preference, while adult conditioning overrides the original learned preference with attenuated amygdala-dependent fear learning.

  8. Protective effect of Lycium Barbarum polysaccharides on dextromethorphan-induced mood impairment and neurogenesis suppression.

    Science.gov (United States)

    Po, Kevin Kai-Ting; Leung, Joseph Wai-Hin; Chan, Jackie Ngai-Man; Fung, Timothy Kai-Hang; Sánchez-Vidaña, Dalinda Isabel; Sin, Emily Lok-Lam; So, Kwok-Fai; Lau, Benson Wui-Man; Siu, Andrew Man-Hong

    2017-09-01

    Dextromethorphan (DXM) is one of the common drugs abused by adolescents. It is the active ingredient found in cough medicine which is used for suppressing cough. High dosage of DXM can induce euphoria, dissociative effects and even hallucinations. Chronic use of DXM may also lead to depressive-related symptoms. Lycium barbarum, commonly known as wolfberry, has been used as a traditional Chinese medicine for the treatment of ageing-related neurodegenerative diseases. A recent study has shown the potential beneficial effect of Lycium barbarum to reduce depression-like behavior. In the present study, we investigated the role of Lycium barbarum polysaccharide (LBP) to alleviate DXM-induced emotional distress. Sprague Dawley rats were divided into 4 groups (n=6 per group), including the normal control (vehicles only), DXM-treated group (40 mg/kg DXM), LBP-treated group (1 mg/kg LBP) and DXM+ LBP-treated group (40 mg/kg DXM and 1 mg/kg LBP). After two-week treatment, the DXM-treated group showed increased depression-like and social anxiety-like behaviors in the forced swim test and social interaction test respectively. On the other hand, the adverse behavioral effects induced by DXM were reduced by LBP treatment. Histological results showed that LBP treatment alone did not promote hippocampal neurogenesis when compared to the normal control, but LBP could lessen the suppression of hippocampal neurogenesis induced by DXM. The findings provide insights for the potential use of wolfberry as an adjunct treatment option for alleviating mood disturbances during rehabilitation of cough syrup abusers. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Regulation of hippocampal neurogenesis by systemic factors including stress, glucocorticoids, sleep, and inflammation

    NARCIS (Netherlands)

    Lucassen, P.J.; Oomen, C.; van Dam, A.-M.; Czéh, B.; Gage, F.H.; Kempermann, G.; Song, H.

    2008-01-01

    This review summarizes and discusses the regulation of adult neurogenesis and hippocampal cellular plasticity by systemic factors. We focus on the role of stress, glucocorticoids, and related factors such as sleep deprivation and inflammation.

  10. Adult Hippocampal Neurogenesis is Impaired by Transient and Moderate Developmental Thyroid Hormone Disruption

    Science.gov (United States)

    Severe thyroid hormone (TH) deprivation during development impairs neurogenesis throughout the brain. The hippocampus also maintains a capacity for neurogenesis throughout life which is reduced in adult-onset hypothyroidism. This study examined hippocampal volume in the neonate a...

  11. BDNF downregulates 5-HT(2A) receptor protein levels in hippocampal cultures

    DEFF Research Database (Denmark)

    Trajkovska, V; Santini, M A; Marcussen, Anders Bue

    2009-01-01

    Both brain-derived neurotrophic factor (BDNF) and the serotonin receptor 2A (5-HT(2A)) have been related to depression pathology. Specific 5-HT(2A) receptor changes seen in BDNF conditional mutant mice suggest that BDNF regulates the 5-HT(2A) receptor level. Here we show a direct effect of BDNF...... on 5-HT(2A) receptor protein levels in primary hippocampal neuronal and mature hippocampal organotypic cultures exposed to different BDNF concentrations for either 1, 3, 5 or 7 days. In vivo effects of BDNF on hippocampal 5-HT(2A) receptor levels were further corroborated in (BDNF +/-) mice...... with reduced BDNF levels. In primary neuronal cultures, 7 days exposure to 25 and 50ng/mL BDNF resulted in downregulation of 5-HT(2A), but not of 5-HT(1A), receptor protein levels. The BDNF-associated downregulation of 5-HT(2A) receptor levels was also observed in mature hippocampal organotypic cultures...

  12. Integrating incremental learning and episodic memory models of the hippocampal region.

    NARCIS (Netherlands)

    Meeter, M.; Myers, C.E; Gluck, M.A.

    2005-01-01

    By integrating previous computational models of corticohippocampal function, the authors develop and test a unified theory of the neural substrates of familiarity, recollection, and classical conditioning. This approach integrates models from 2 traditions of hippocampal modeling, those of episodic

  13. Mnemonic networks in the hippocampal formation: from spatial maps to temporal and conceptual codes

    NARCIS (Netherlands)

    Milivojevic, B.; Doeller, C.F.

    2013-01-01

    The hippocampal formation has been associated with a wide variety of functions including spatial navigation and planning, memory encoding and retrieval, relational processing, novelty detection, and imagination. These functions are dissimilar in terms of their behavioral consequences and modality of

  14. Spontaneous perseverative turning in rats with radiation-induced hippocampal damage

    International Nuclear Information System (INIS)

    Mickley, G.A.; Ferguson, J.L.; Nemeth, T.J.; Mulvihill, M.A.; Alderks, C.E.

    1989-01-01

    This study found a new behavioral correlate of lesions specific to the dentate granule cell layer of the hippocampus: spontaneous perseverative turning. Irradiation of a portion of the neonatal rat cerebral hemispheres produced hypoplasia of the granule cell layer of the hippocampal dentate gyrus while sparing the rest of the brain. Radiation-induced damage to the hippocampal formation caused rats placed in bowls to spontaneously turn in long, slow bouts without reversals. Irradiated subjects also exhibited other behaviors characteristic of hippocampal damage (e.g., perseveration in spontaneous exploration of the arms of a T-maze, retarded acquisition of a passive avoidance task, and increased horizontal locomotion). These data extend previously reported behavioral correlates of fascia dentata lesions and suggest the usefulness of a bout analysis of spontaneous bowl turning as a measure of nondiscrete-trial spontaneous alternation and a sensitive additional indicator of radiation-induced hippocampal damage

  15. Electroconvulsive stimulation results in long-term survival of newly generated hippocampal neurons in rats

    DEFF Research Database (Denmark)

    Olesen, Mikkel Vestergaard; Wörtwein, Gitta; Folke, Jonas

    2017-01-01

    Electroconvulsive stimulation (ECS) is one of the strongest stimulators of hippocampal neurogenesis in rodents that represents a plausible mechanism for the efficacy of electroconvulsive therapy (ECT) in major depressive disorder. Using design-based stereological cell counting, we recently...

  16. Temporal lobe epilepsy with mesial temporal sclerosis: hippocampal neuronal loss as a predictor of surgical outcome

    Directory of Open Access Journals (Sweden)

    Anaclara Prada Jardim

    2012-05-01

    Full Text Available OBJECTIVE: To analyze retrospectively a series of patients with temporal lobe epilepsy (TLE and mesial temporal sclerosis (MTS, and the association of patterns of hippocampal sclerosis with clinical data and surgical prognosis. METHOD: Sixty-six patients with medically refractory TLE with unilateral MTS after anterior temporal lobectomy were included. Quantitative neuropathological evaluation was performed on NeuN-stained hippocampal sections. Patient's clinical data and surgical outcome were reviewed. RESULTS: Occurrence of initial precipitating insult (IPI, as well as better postoperative seizure control (i.e. Engel class 1, were associated with classical and severe patterns of hippocampal sclerosis (MTS type 1a and 1b, respectively. CONCLUSION: Quantitative evaluation of hippocampal neuronal loss patterns predicts surgical outcome in patients with TLE-MTS.

  17. Temporal lobe epilepsy with mesial temporal sclerosis: hippocampal neuronal loss as a predictor of surgical outcome.

    Science.gov (United States)

    Jardim, Anaclara Prada; Neves, Rafael Scarpa da Costa; Caboclo, Luís Otávio Sales Ferreira; Lancellotti, Carmen Lucia Penteado; Marinho, Murilo Martinez; Centeno, Ricardo Silva; Cavalheiro, Esper Abrão; Scorza, Carla Alessandra; Yacubian, Elza Márcia Targas

    2012-05-01

    To analyze retrospectively a series of patients with temporal lobe epilepsy (TLE) and mesial temporal sclerosis (MTS), and the association of patterns of hippocampal sclerosis with clinical data and surgical prognosis. Sixty-six patients with medically refractory TLE with unilateral MTS after anterior temporal lobectomy were included. Quantitative neuropathological evaluation was performed on NeuN-stained hippocampal sections. Patient's clinical data and surgical outcome were reviewed. Occurrence of initial precipitating insult (IPI), as well as better postoperative seizure control (i.e. Engel class 1), were associated with classical and severe patterns of hippocampal sclerosis (MTS type 1a and 1b, respectively). Quantitative evaluation of hippocampal neuronal loss patterns predicts surgical outcome in patients with TLE-MTS.

  18. PROPYLTHIOURACIL (PTU)-INDUCED HYPOTHYROIDISM: EFFECTS ON SYNAPTIC TRANSMISSION AND LONG TERM POTENTIATION IN HIPPOCAMPAL SLICES.

    Science.gov (United States)

    Concern has been raised over endocrine effects of some classes of environmental chemicals. Severe hypothyroidism during critical periods of brain developmental leads to alterations in hippocampal structure, learning deficits, yet neurophysiological properties of the hippocampus...

  19. Reading, writing, and reserve: Literacy activities are linked to hippocampal volume and memory in multiple sclerosis.

    Science.gov (United States)

    Sumowski, James F; Rocca, Maria A; Leavitt, Victoria M; Riccitelli, Gianna; Meani, Alessandro; Comi, Giancarlo; Filippi, Massimo

    2016-10-01

    Engagement in cognitive leisure activities during early adulthood has been linked to preserved memory and larger hippocampal volume in persons with multiple sclerosis (MS). To investigate which specific types of cognitive leisure activities contribute to hippocampal volume and memory. We investigated links between three types of cognitive activities (Reading-Writing, Art-Music, Games-Hobbies) and (a) hippocampal volume within independent samples of Italian (n=187) and American (n=55) MS patients and (b) memory in subsamples of Italian (n=97) and American (n=53) patients. Reading-Writing was the only predictor of hippocampal volume (rp=.204, p=.002), and the best predictor of memory (rp=.288, p=.001). Findings inform the development of targeted evidence-based enrichment programs aiming to bolster reserve against memory decline. © The Author(s), 2016.

  20. Transverse patterning dissociates human EEG theta power and hippocampal BOLD activation.

    Science.gov (United States)

    Meltzer, Jed A; Fonzo, Greg A; Constable, R Todd

    2009-01-01

    Theta oscillations (4-8 Hz) are often modulated in human electroencephalogram (EEG) studies of memory, whereas overlapping frequencies dominate rodent hippocampal EEG. An emerging parallelism between theta reactivity and hippocampal functional magnetic resonance imaging activation has suggested a homology between theta activity in humans and rodents, representing a process of cortico-hippocampal interaction involved in memory. In the present study, we investigated EEG reactivity during performance of a relational memory task that induces a negative hippocampal blood oxygenation level dependent (BOLD) signal change, compared to a nonrelational control condition. Relational trials induced theta increases and alpha decreases. Low Resolution Electromagnetic Brain Tomography estimates localized theta and alpha modulation to frontal midline and parietal midline cortices, respectively, both of which exhibit negative BOLD responses in this task. Thus, theta and alpha dynamics are dissociable from positive BOLD activation, and may, in fact, colocalize with negative BOLD responses.

  1. Arteriolosclerosis that affects multiple brain regions is linked to hippocampal sclerosis of ageing.

    Science.gov (United States)

    Neltner, Janna H; Abner, Erin L; Baker, Steven; Schmitt, Frederick A; Kryscio, Richard J; Jicha, Gregory A; Smith, Charles D; Hammack, Eleanor; Kukull, Walter A; Brenowitz, Willa D; Van Eldik, Linda J; Nelson, Peter T

    2014-01-01

    Hippocampal sclerosis of ageing is a prevalent brain disease that afflicts older persons and has been linked with cerebrovascular pathology. Arteriolosclerosis is a subtype of cerebrovascular pathology characterized by concentrically thickened arterioles. Here we report data from multiple large autopsy series (University of Kentucky Alzheimer's Disease Centre, Nun Study, and National Alzheimer's Coordinating Centre) showing a specific association between hippocampal sclerosis of ageing pathology and arteriolosclerosis. The present analyses incorporate 226 cases of autopsy-proven hippocampal sclerosis of ageing and 1792 controls. Case-control comparisons were performed including digital pathological assessments for detailed analyses of blood vessel morphology. We found no evidence of associations between hippocampal sclerosis of ageing pathology and lacunar infarcts, large infarcts, Circle of Willis atherosclerosis, or cerebral amyloid angiopathy. Individuals with hippocampal sclerosis of ageing pathology did not show increased rates of clinically documented hypertension, diabetes, or other cardiac risk factors. The correlation between arteriolosclerosis and hippocampal sclerosis of ageing pathology was strong in multiple brain regions outside of the hippocampus. For example, the presence of arteriolosclerosis in the frontal cortex (Brodmann area 9) was strongly associated with hippocampal sclerosis of ageing pathology (P technical studies to optimize immunostaining methods for small blood vessel visualization, our analyses focused on sections immunostained for smooth muscle actin (a marker of arterioles) and CD34 (an endothelial marker), with separate analyses on grey and white matter. A total of 43 834 smooth muscle actin-positive vascular profiles and 603 798 CD34-positive vascular profiles were evaluated. In frontal cortex of cases with hippocampal sclerosis of ageing, smooth muscle actin-immunoreactive arterioles had thicker walls (P < 0.05), larger perimeters

  2. In the suppression of regge cut contributions

    International Nuclear Information System (INIS)

    Chia, S.P.

    1975-07-01

    It is shown that contributions of reggeon-pomeron cuts are suppressed in amplitudes with opposite natural to the reggeon. This suppression grows logarithmically with energy. The suppression in the πP cut is, however, found to be weak. Consequence on conspiracy is discussed

  3. Ketamine Affects the Neurogenesis of the Hippocampal Dentate Gyrus in 7-Day-Old Rats.

    Science.gov (United States)

    Huang, He; Liu, Cun-Ming; Sun, Jie; Hao, Ting; Xu, Chun-Mei; Wang, Dan; Wu, Yu-Qing

    2016-08-01

    Ketamine has been reported to cause neonatal neurotoxicity via a neuronal apoptosis mechanism; however, no in vivo research has reported whether ketamine could affect postnatal neurogenesis in the hippocampal dentate gyrus (DG). A growing number of experiments suggest that postnatal hippocampal neurogenesis is the foundation of maintaining normal hippocampus function into adulthood. Therefore, this study investigated the effect of ketamine on hippocampal neurogenesis. Male Sprague-Dawley rats were divided into two groups: the control group (equal volume of normal saline), and the ketamine-anesthesia group (40 mg/kg ketamine in four injections at 1 h intervals). The S-phase marker 5-bromodeoxyuridine (BrdU) was administered after ketamine exposure to postnatal day 7 (PND-7) rats, and the neurogenesis in the hippocampal DG was assessed using single- or double-immunofluorescence staining. The expression of GFAP in the hippocampal DG was measured by western blot analysis. Spatial reference memory was tested by Morris water maze at 2 months after PND-7 rats exposed to ketamine treatment. The present results showed that neonatal ketamine exposure significantly inhibited neural stem cell (NSC) proliferation, decreased astrocytic differentiation, and markedly enhanced neuronal differentiation. The disruptive effect of ketamine on the proliferation and differentiation of NSCs lasted at least 1 week and disappeared by 2 weeks after ketamine exposure. Moreover, the migration of newborn neurons in the granule cell layer and the growth of astrocytes in the hippocampal DG were inhibited by ketamine on PND-37 and PND-44. Finally, ketamine caused a deficit in hippocampal-dependent spatial reference memory tasks at 2 months old. Our results suggested that ketamine may interfere with hippocampal neurogenesis and long-term neurocognitive function in PND-7 rats. These findings may provide a new perspective to explain the adult neurocognitive dysfunction induced by neonatal

  4. Correlation between hippocampal volumes and medial temporal lobe atrophy in patients with Alzheimer's disease.

    Science.gov (United States)

    Dhikav, Vikas; Duraiswamy, Sharmila; Anand, Kuljeet Singh

    2017-01-01

    Hippocampus undergoes atrophy in patients with Alzheimer's disease (AD). Calculation of hippocampal volumes can be done by a variety of methods using T1-weighted images of magnetic resonance imaging (MRI) of the brain. Medial temporal lobes atrophy (MTL) can be rated visually using T1-weighted MRI brain images. The present study was done to see if any correlation existed between hippocampal volumes and visual rating scores of the MTL using Scheltens Visual Rating Method. We screened 84 subjects presented to the Department of Neurology of a Tertiary Care Hospital and enrolled forty subjects meeting the National Institute of Neurological and Communicative Disorders and Stroke, AD related Disease Association criteria. Selected patients underwent MRI brain and T1-weighted images in a plane perpendicular to long axis of hippocampus were obtained. Hippocampal volumes were calculated manually using a standard protocol. The calculated hippocampal volumes were correlated with Scheltens Visual Rating Method for Rating MTL. A total of 32 cognitively normal age-matched subjects were selected to see the same correlation in the healthy subjects as well. Sensitivity and specificity of both methods was calculated and compared. There was an insignificant correlation between the hippocampal volumes and MTL rating scores in cognitively normal elderly ( n = 32; Pearson Correlation coefficient = 0.16, P > 0.05). In the AD Group, there was a moderately strong correlation between measured hippocampal volumes and MTL Rating (Pearson's correlation coefficient = -0.54; P < 0.05. There was a moderately strong correlation between hippocampal volume and Mini-Mental Status Examination in the AD group. Manual delineation was superior compared to the visual method ( P < 0.05). Good correlation was present between manual hippocampal volume measurements and MTL scores. Sensitivity and specificity of manual measurement of hippocampus was higher compared to visual rating scores for MTL in patients

  5. Impaired everyday memory associated with encephalopathy of severe malaria: the role of seizures and hippocampal damage

    OpenAIRE

    Kihara, Michael; Carter, Julie A; Holding, Penny A; Vargha-Khadem, Faraneh; Scott, Rod C; Idro, Richard; Fegan, Greg W; de Haan, Michelle; Neville, Brian GR; Newton, Charles RJC

    2009-01-01

    Abstract Background Seizures are common in children admitted with severe falciparum malaria and are associated with neuro-cognitive impairments. Prolonged febrile seizures are associated with hippocampal damage and impaired memory. It was hypothesized that severe malaria causes impaired everyday memory which may be associated with hippocampal damage. Methods An everyday memory battery was administered on 152 children with cerebral malaria (CM) (mean age, 7 y 4 months [SD 13 months]; 77 males)...

  6. A High-Fat/High-Cholesterol Diet Inhibits Growth of Fetal Hippocampal Transplants via Increased Inflammation

    OpenAIRE

    Freeman, L. R.; Small, B. J.; Bickford, P. C.; Umphlet, C.; Granholm, A.-Ch.

    2011-01-01

    A diet containing high levels of saturated fat and cholesterol is detrimental to many aspects of health and is known to lead to obesity, metabolic syndrome, heart disease, diabetes, and cancer. However, the effects of a diet rich in saturated fat and cholesterol on the brain are not currently well understood. In order to determine direct effects of a high saturated fat and cholesterol diet upon fetal hippocampal tissue, we transplanted hippocampal grafts from embryonic day 18 rats to the ante...

  7. Septal innervation regulates the function of alpha7 nicotinic receptors in CA1 hippocampal interneurons.

    Science.gov (United States)

    Thinschmidt, Jeffrey S; Frazier, Charles J; King, Michael A; Meyer, Edwin M; Papke, Roger L

    2005-10-01

    The hippocampus receives substantial input from the medial septum/diagonal band of broca (MS/DB) via the fibria-fornix (FF). Projections from the MS/DB innervate hippocampal interneurons that express alpha7 nicotinic receptors and regulate excitation in principal cell populations. In the present report we used stereotaxic surgery, whole-cell patch clamping, and immunohistochemical techniques to evaluate the effects of FF and MS/DB lesions on alpha7 nicotinic receptors in stratum radiatum interneurons. Focal somatic application of ACh (1 mM) evoked methyllycaconitine (MLA)-sensitive currents that were markedly reduced following aspirative lesions of the FF. Reductions in current amplitudes were prevented or restored to levels not significantly different from controls following in vivo treatment with the alpha7-selective agonist GTS-21, and GTS-21 treatment did not change current amplitudes measured in tissue from unlesioned animals. MS/DB injections of the selective cholinergic neurotoxin 192 IgG-saporin did not affect alpha7 receptor currents, although MS/DB ChAT and hippocampal AChE immunolabeling were significantly reduced. In contrast, kainic acid lesions of the MS/DB, potentially more selective for GABAergic projection neurons, produced significant reductions in current amplitudes. These findings are the first to show functional changes in alpha7 receptors following hippocampal denervation and suggest that MS/DB hippocampal innervation regulates functional aspects of hippocampal alpha7 receptors. The results confirm hippocampal alpha7 nicotinic receptors as viable therapeutic targets in diseases that involve degradation of the septohippocampal pathway and may indicate that GABAergic MS/DB hippocampal input plays a more substantial role in the regulation of alpha7 nicotinic receptor function than MS/DB hippocampal cholinergic input.

  8. Retinoic acid restores adult hippocampal neurogenesis and reverses spatial memory deficit in vitamin a deprived rats

    OpenAIRE

    Bonnet, Emilie; Touyarot, katia; Alfos, Serge; Pallet, Véronique; Higueret, Paul; Abrous, Djoher Nora

    2008-01-01

    A dysfunction of retinoid hippocampal signaling pathway has been involved in the appearance of affective and cognitive disorders. However, the underlying neurobiological mechanisms remain unknown. Hippocampal granule neurons are generated throughout life and are involved in emotion and memory. Here, we investigated the effects of vitamin A deficiency (VAD) on neurogenesis and memory and the ability of retinoic acid (RA) treatment to prevent VAD-induced impairments. Adult retinoid-deficient ra...

  9. Building hippocampal circuits to learn and remember: insights into the development of human memory.

    Science.gov (United States)

    Lavenex, Pierre; Banta Lavenex, Pamela

    2013-10-01

    The hippocampal formation is essential for the processing of episodic memories for autobiographical events that happen in unique spatiotemporal contexts. Interestingly, before 2 years of age, children are unable to form or store episodic memories for recall later in life, a phenomenon known as infantile amnesia. From 2 to 7 years of age, there are fewer memories than predicted based on a forgetting function alone, a phenomenon known as childhood amnesia. Here, we discuss the postnatal maturation of the primate hippocampal formation with the goal of characterizing the development of the neurobiological substrates thought to subserve the emergence of episodic memory. Distinct regions, layers and cells of the hippocampal formation exhibit different profiles of structural and molecular development during early postnatal life. The protracted period of neuronal addition and maturation in the dentate gyrus is accompanied by the late maturation of specific layers in different hippocampal regions that are located downstream from the dentate gyrus, particularly CA3. In contrast, distinct layers in several hippocampal regions, particularly CA1, which receive direct projections from the entorhinal cortex, exhibit an early maturation. In addition, hippocampal regions that are more highly interconnected with subcortical structures, including the subiculum, presubiculum, parasubiculum and CA2, mature even earlier. These findings, together with our studies of the development of human spatial memory, support the hypothesis that the differential maturation of distinct hippocampal circuits might underlie the differential emergence of specific "hippocampus-dependent" memory processes, culminating in the emergence of episodic memory concomitant with the maturation of all hippocampal circuits. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Correlation between hippocampal volumes and medial temporal lobe atrophy in patients with Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Vikas Dhikav

    2017-01-01

    Full Text Available Introduction: Hippocampus undergoes atrophy in patients with Alzheimer's disease (AD. Calculation of hippocampal volumes can be done by a variety of methods using T1-weighted images of magnetic resonance imaging (MRI of the brain. Medial temporal lobes atrophy (MTL can be rated visually using T1-weighted MRI brain images. The present study was done to see if any correlation existed between hippocampal volumes and visual rating scores of the MTL using Scheltens Visual Rating Method. Materials and Methods: We screened 84 subjects presented to the Department of Neurology of a Tertiary Care Hospital and enrolled forty subjects meeting the National Institute of Neurological and Communicative Disorders and Stroke, AD related Disease Association criteria. Selected patients underwent MRI brain and T1-weighted images in a plane perpendicular to long axis of hippocampus were obtained. Hippocampal volumes were calculated manually using a standard protocol. The calculated hippocampal volumes were correlated with Scheltens Visual Rating Method for Rating MTL. A total of 32 cognitively normal age-matched subjects were selected to see the same correlation in the healthy subjects as well. Sensitivity and specificity of both methods was calculated and compared. Results: There was an insignificant correlation between the hippocampal volumes and MTL rating scores in cognitively normal elderly (n = 32; Pearson Correlation coefficient = 0.16, P> 0.05. In the AD Group, there was a moderately strong correlation between measured hippocampal volumes and MTL Rating (Pearson's correlation coefficient = −0.54;P< 0.05. There was a moderately strong correlation between hippocampal volume and Mini-Mental Status Examination in the AD group. Manual delineation was superior compared to the visual method (P < 0.05. Conclusions: Good correlation was present between manual hippocampal volume measurements and MTL scores. Sensitivity and specificity of manual measurement of

  11. Hippocampal volume reduction in elderly patients at risk for postoperative cognitive dysfunction.

    Science.gov (United States)

    Chen, Ming-hua; Liao, Yan; Rong, Peng-fei; Hu, Rong; Lin, Guo-xin; Ouyang, Wen

    2013-08-01

    Postoperative cognitive dysfunction (POCD) is a formidable public health issue, which would not only affect the quality of life among elderly patients but also lead to pulmonary infection and increased mortality. While, there is a lack of an effective indicator in predicting POCD. As one pivotal part of the limbic system in brain, hippocampus is associated with cognitive function. Hippocampal atrophy could indicate the degree of changes in cognitive function. Forty-one ASA II or III patients (23 male, 18 female) aged ≥65 years undergoing open gastrointestinal tract surgery were enrolled in this study. MRI was performed to measure the volume of hippocampal formation before surgery and the results were standardized according to individual intracranial volume. All patients underwent a battery of neuropsychological tests including sensitive tests on the Wechsler adult memory scale and Wechsler adult intelligence scale, trail making test and the grooved pegboard test. We used the Z score to identify POCD as recommended by ISPOCD. All patients were then divided into POCD group and non-POCD group according to the results of the neuropsychological tests. The results of the tests were correlated with the volume of hippocampal formation measured by MRI. The value of MRI measurement of hippocampal volume in predicting POCD was analyzed. Multivariate linear correlation analyses of compositive Z score using potential contributing factors such as age, duration of anesthesia, education and hippocampal volume was carried out. Thirty-six patients completed the whole battery of neuropsychological tests after surgery. Thirteen of the 36 patients were found to have POCD (36 %) on the postoperative 4th day. The hippocampal volume was significantly smaller in POCD group (4.75 ± 0.23) than in non-POCD group (5.06 ± 0.31). Hippocampal volume had great influence on Z score, and had negative correlation with Z score. The MRI measurement of hippocampal volume is suggested to be valuable

  12. Secretoneurin suppresses cardiac hypertrophy through suppression of oxidant stress.

    Science.gov (United States)

    Chen, Hua-Li; Liu, Yan; Jiang, Wei; Wang, Xiao-Xiao; Yuan, Guo-Lin; Zhao, Yi-Lin; Yu, Chao

    2018-03-05

    The neuropeptide secretoneurin (SN) plays protective roles in myocardial ischemia. In the present study, the effect of SN in cardiac hypertrophy was investigated. We observed that, in isoproterenol (ISO) treatment induced cardiac or cardiomyocytes hypertrophy, a marked increase in the expression of endogenous SN in mouse plasma, myocardium and primary-cultured cardiomyocytes occurs. In hypertrophic mice, the heart size, heart weight/body weight (HW/BW) ratio, cardiomyocyte size, and atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) expression were significantly higher than those in controls but were effectively suppressed by SN gene therapy. Similarly, the protective effects of SN were also observed in cultured cardiomyocytes following ISO treatment. SN significantly increased the activity of catalase and superoxide dismutase (SOD) in parallel with the decrease in reactive oxygen species levels in cardiomyocytes. We observed that SN evoked the activation of all of the AMPK, P38/MAPK and ERK/MAPK pathways in cardiomyocytes, but pretreatment with only AMPK inhibitor (compound C) and ERK1/2/MAPK inhibitor (PD98059) counteracted the protective effects of SN against cardiomyocyte hypertrophy and the suppressive effects of SN on oxidant stress in cardiomyocytes. These results indicated that endogenous SN is induced in hypertrophic cardiomyocytes, and may play a protective role in the pathogenesis of cardiac hypertrophy. These results suggest that exogenous SN supplementation protects the cardiac hypertrophy induced by ISO treatment through the activation of AMPK and ERK/MAPK pathways, thus upregulating antioxidants and suppressing oxidative stress. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Neuroinflammation negatively affects adult hippocampal neurogenesis and cognition: can exercise compensate?

    Science.gov (United States)

    Ryan, Sinéad M; Nolan, Yvonne M

    2016-02-01

    Adult hippocampal neurogenesis is believed to be integral for certain forms of learning and memory. Dysregulation of hippocampal neurogenesis has been shown to be an important mechanism underlying the cognitive impairment associated with normal aging, as well as the cognitive deficits evident in preclinical models of Alzheimer's disease and other neurodegenerative diseases. Neuroinflammation is a significant pathological feature of these conditions; it contributes to the observed cognitive decline, and recent evidence demonstrates that it also negatively affects hippocampal neurogenesis. Conversely, during the past twenty years, it has been robustly shown that exercise is a potent inducer of hippocampal neurogenesis, and it is believed that the positive beneficial effect of exercise on cognitive function is likely due to its pro-neurogenic effects. However, the interplay between exercise- and neuroinflammatory-induced changes in hippocampal neurogenesis and associated cognitive function has only recently begun to receive attention. Here we review the current literature on exercise-induced effects on hippocampal neurogenesis, cognitive function and neuroinflammation, and consider exercise as a potential pro-neurogenic and anti-inflammatory intervention for cognition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. A prospective evaluation of hippocampal radiation dose volume effects and memory deficits following cranial irradiation.

    Science.gov (United States)

    Ma, Ting Martin; Grimm, Jimm; McIntyre, Riley; Anderson-Keightly, Heather; Kleinberg, Lawrence R; Hales, Russell K; Moore, Joseph; Vannorsdall, Tracy; Redmond, Kristin J

    2017-11-01

    To prospectively evaluate hippocampal radiation dose volume effects and memory decline following cranial irradiation. Effects of hippocampal radiation over a wide range of doses were investigated by combining data from three prospective studies. In one, adults with small cell lung cancer received hippocampal-avoidance prophylactic cranial irradiation. In the other two, adults with glioblastoma multiforme received neural progenitor cell sparing radiation or no sparing with extra dose delivered to subventricular zone. Memory was measured by the Hopkins Verbal Learning Test-Revised Delayed Recall (HVLT-R DR) at 6 months after radiation. Dose-volume histograms were generated and dose-response data were fitted to a nonlinear model. Of 60 patients enrolled, 30 were analyzable based on HVLT-R DR testing completion status, baseline HVLT-R DR and intracranial metastasis/recurrence or prior hippocampal resection status. We observed a dose-response of radiation to the hippocampus with regard to decline in HVLT-R DR. D50% of the bilateral hippocampi of 22.1 Gy is associated with 20% risk of decline. This prospective study demonstrates an association between hippocampal dose volume effects and memory decline measured by HVLT-R DR over a wide dose range. These data support a potential benefit of hippocampal sparing and encourage continued trial enrollment. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The relationship between hippocampal asymmetry and temperament in adolescent borderline and antisocial personality pathology.

    Science.gov (United States)

    Jovev, Martina; Whittle, Sarah; Yücel, Murat; Simmons, Julian Guy; Allen, Nicholas B; Chanen, Andrew M

    2014-02-01

    Investigating etiological processes early in the life span represents an important step toward a better understanding of the development of personality pathology. The current study evaluated the interaction between an individual difference risk factor (i.e., temperament) and a biological risk factor for aggressive behavior (i.e., atypical [larger] rightward hippocampal asymmetry) in predicting the emergence of borderline personality disorder (BPD) and antisocial personality disorder symptoms during early adolescence. The sample consisted of 153 healthy adolescents (M = 12.6 years, SD = 0.4, range = 11.4-13.7) who were selected from a larger sample to maximize variation in temperament. Interactions between four temperament factors (effortful control, negative affectivity, surgency, and affiliativeness), based on the Early Adolescent Temperament Questionnaire-Revised, and volumetric measures of hippocampal asymmetry were examined as cross-sectional predictors of BPD and antisocial personality disorder symptoms. Boys were more likely to have elevated BPD symptoms if they were high on affiliation and had larger rightward hippocampal asymmetry. In boys, low affiliation was a significant predictor of BPD symptoms in the presence of low rightward hippocampal asymmetry. For girls, low effortful control was associated with elevated BPD symptoms in the presence of atypical rightward hippocampal asymmetry. This study builds on previous work reporting significant associations between atypical hippocampal asymmetry and poor behavioral regulation.

  16. Potential hippocampal region atrophy in diabetes mellitus type 2. A voxel-based morphometry VSRAD study

    International Nuclear Information System (INIS)

    Kamiyama, Kazutoshi; Sugihara, Masaki; Wada, Akihiko

    2010-01-01

    Among diabetes mellitus type 2 (DM2) patients, the frequency of cognitive dysfunction is higher and the relative risk of Alzheimer's disease (AD) is approximately twice that of nondiabetics. Cognitive impairment symptoms of AD are induced by limbic system dysfunction, and an early-stage AD brain without dementia has the potential for atrophy in the hippocampal region. In this study, we estimated potential hippocampal region atrophy in DM2 and pursued the association between DM2 and cognitive impairment/AD. Voxel-based morphometry analysis was performed in 28 diabetics (14 men, 14 women; ages 59-79 years, mean 70.7 years) and 28 sex- and age- matched (±1 year) nondiabetics. Severity of gray matter loss in the hippocampal region and whole brain were investigated. Group analysis was performed using two-tailed unpaired t-test; significance was assumed with less than 1% (P<0.01) of the critical rate. There was a significant difference between diabetics and nondiabetics regarding the severity of hippocampal region atrophy and whole-brain atrophy. Only diabetics showed a positive correlation for severity of hippocampal region atrophy and whole-brain atrophy (rs=0.69, P<0.0001). Aged DM2 patients have the potential for hippocampal region atrophy, and its dysfunction can be related to the expression of a cognitive impairment that resembles AD. (author)

  17. Morphological variations of hippocampal formation in epilepsy: image, clinical and electrophysiological data.

    Science.gov (United States)

    Hamad, Ana Paula Andrade; Carrete, Henrique; Bianchin, Marino Muxfeldt; Ferrari-Marinho, Taissa; Lin, Katia; Yacubian, Elza Márcia Targas; Vilanova, Luiz Celso Pereira; Garzon, Eliana; Caboclo, Luís Otávio; Sakamoto, Américo Ceiki

    2013-01-01

    Morphological variations of hippocampal formation (MVHF) are observed in patients with epilepsy but also in asymptomatic individuals. The precise role of these findings in epilepsy is not yet fully understood. This study analyzes the hippocampal formation (HF) morphology of asymptomatic individuals (n = 30) and of patients with mesial temporal lobe epilepsy associated with hippocampal sclerosis (MTLE-HS) (n = 68), patients with malformations of cortical development (MCD) (n = 34), or patients with pure morphological variations of hippocampal formation (pure MVHF) (n = 12). Main clinical and electrophysiological data of patients with MVHF were also analyzed. Morphological variations of hippocampal formation are more frequently observed in patients with MCD than in patients with MTLE-HS or in asymptomatic individuals. Patients with pure morphological variations of hippocampal formation showed higher incidence of extratemporal seizure onset. Refractoriness seems to be more associated with other abnormalities, like HS or MCD, than with the HF variation itself. Thus, although morphological HF abnormalities might play a role in epileptogenicity, they seem to contribute less to refractoriness. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Modulation of hippocampal plasticity and cognitive behavior by short-term blueberry supplementation in aged rats.

    Science.gov (United States)

    Casadesus, Gemma; Shukitt-Hale, Barbara; Stellwagen, Heather M; Zhu, Xiongwei; Lee, Hyoung-Gon; Smith, Mark A; Joseph, James A

    2004-01-01

    During aging, reductions in hippocampal neurogenesis are associated with memory decline indicating a causal relationship. Indeed, insulin-like growth factor-1 (IGF-1), a major activator of the extracellular receptor kinase pathway that is central in learning and memory processes, is also a key modulator of hippocampal neurogenesis. Previously, we showed that age-related declines in spatial memory tasks can be improved by antioxidant-rich diets containing blueberries. In this study, to begin to understand the mechanisms responsible for the beneficial effects of blueberries, we assessed changes in hippocampal plasticity parameters such as hippocampal neurogenesis, extracellular receptor kinase activation, and IGF-1 and IGF-1R levels in blueberry-supplemented aged animals. Our results show that all these parameters of hippocampal neuronal plasticity are increased in supplemented animals and aspects such as proliferation, extracellular receptor kinase activation and IGF-1 and IGF-1R levels correlate with improvements in spatial memory. Therefore, cognitive improvements afforded by polyphenolic-rich fruits such as blueberries appear, in part, to be mediated by their effects on hippocampal plasticity.

  19. Hippocampal volume in relation to clinical and cognitive outcome after electroconvulsive therapy in depression.

    Science.gov (United States)

    Nordanskog, P; Larsson, M R; Larsson, E-M; Johanson, A

    2014-04-01

    In a previous magnetic resonance imaging (MRI) study, we found a significant increase in hippocampal volume immediately after electroconvulsive therapy (ECT) in patients with depression. The aim of this study was to evaluate hippocampal volume up to 1 year after ECT and investigate its possible relation to clinical and cognitive outcome. Clinical and cognitive outcome in 12 in-patients with depression receiving antidepressive pharmacological treatment referred for ECT were investigated with the Montgomery-Asberg Depression Rating Scale (MADRS) and a broad neuropsychological test battery within 1 week before and after ECT. The assessments were repeated 6 and 12 months after baseline in 10 and seven of these patients, respectively. Hippocampal volumes were measured on all four occasions with 3 Tesla MRI. Hippocampal volume returned to baseline during the follow-up period of 6 months. Neither the significant antidepressant effect nor the significant transient decrease in executive and verbal episodic memory tests after ECT could be related to changes in hippocampal volume. No persistent cognitive side effects were observed 1 year after ECT. The immediate increase in hippocampal volume after ECT is reversible and is not related to clinical or cognitive outcome. © 2013 The Authors. Acta Psychiatrica Scandinavica published by John Wiley & Sons Ltd.

  20. Hippocampal effects of neuronostatin on memory, anxiety-like behavior and food intake in rats.

    Science.gov (United States)

    Carlini, V P; Ghersi, M; Gabach, L; Schiöth, H B; Pérez, M F; Ramirez, O A; Fiol de Cuneo, M; de Barioglio, S R

    2011-12-01

    A 13-amino acid peptide named neuronostatin (NST) encoded in the somatostatin pro-hormone has been recently reported. It is produced throughout the body, particularly in brain areas that have significant actions over the metabolic and autonomic regulation. The present study was performed in order to elucidate the functional role of NST on memory, anxiety-like behavior and food intake and the hippocampal participation in these effects. When the peptide was intra-hippocampally administered at 3.0 nmol/μl, it impaired memory retention in both, object recognition and step-down test. Also, this dose blocked the hippocampal long-term potentiation (LTP) generation. When NST was intra-hippocampally administered at 0.3 nmol/μl and 3.0 nmol/μl, anxiolytic effects were observed. Also, the administration in the third ventricle at the higher dose (3.0 nmol/μl) induced similar effects, and both doses reduced food intake. The main result of the present study is the relevance of the hippocampal formation in the behavioral effects induced by NST, and these effects could be associated to a reduced hippocampal synaptic plasticity. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. A mathematical model of aging-related and cortisol induced hippocampal dysfunction

    Directory of Open Access Journals (Sweden)

    Jones Janette JL

    2009-03-01

    Full Text Available Abstract Background The hippocampus is essential for declarative memory synthesis and is a core pathological substrate for Alzheimer's disease (AD, the most common aging-related dementing disease. Acute increases in plasma cortisol are associated with transient hippocampal inhibition and retrograde amnesia, while chronic cortisol elevation is associated with hippocampal atrophy. Thus, cortisol levels could be monitored and managed in older people, to decrease their risk of AD type hippocampal dysfunction. We generated an in silicomodel of the chronic effects of elevated plasma cortisol on hippocampal activity and atrophy, using the systems biology mark-up language (SBML. We further challenged the model with biologically based interventions to ascertain if cortisol associated hippocampal dysfunction could be abrogated. Results The in silicoSBML model reflected the in vivoaging of the hippocampus and increased plasma cortisol and negative feedback to the hypothalamic pituitary axis. Aging induced a 12% decrease in hippocampus activity (HA, increased to 30% by acute and 40% by chronic elevations in cortisol. The biological intervention attenuated the cortisol associated decrease in HA by 2% in the acute cortisol simulation and by 8% in the chronic simulation. Conclusion Both acute and chronic elevations in cortisol secretion increased aging-associated hippocampal atrophy and a loss of HA in the model. We suggest that this first SMBL model, in tandem with in vitroand in vivostudies, may provide a backbone to further frame computational cortisol and brain aging models, which may help predict aging-related brain changes in vulnerable older people.

  2. Effect of mineralocorticoid receptor blockade on hippocampal-dependent memory in adults with obesity.

    Science.gov (United States)

    Rotenstein, Lisa S; Sheridan, Margaret; Garg, Rajesh; Adler, Gail K

    2015-06-01

    The hippocampus is crucial for paired-associate learning. Obesity is associated with increased mineralocorticoid receptor (MR) activity in peripheral and possibly central tissues, decreased hippocampal size in humans, and impaired hippocampal learning in rodents. The MR is expressed in hippocampal neurons, and MR blockade improves hippocampal learning in obese animals. The goal of the study was to determine whether MR blockade would modulate paired-associate learning in men and women with obesity. Men and women ages 20-61 years with BMI between 30-45 kg/m(2) were randomly assigned to placebo (n = 11; 7 women) or 50 mg spironolactone daily (n = 12; 7 women) for six weeks. At baseline and post-treatment, subjects underwent a clinical and hormonal evaluation. They also underwent a computerized task that assesses paired-associate learning and has been shown by functional magnetic resonance imaging to activate the hippocampus. In an ANCOVA model that adjusted for baseline paired-associate learning, age, and race, spironolactone treatment was associated with a significant (P = 0.043) improvement in hippocampal memory as compared to placebo treatment. Our findings demonstrate, for the first time, that blocking MR with chronic, low-dose spironolactone treatment improves paired-associate learning in individuals with obesity, suggesting that MR activation contributes to hippocampal memory modulation in humans. © 2015 The Obesity Society.

  3. APOE ε4 is associated with disproportionate progressive hippocampal atrophy in AD.

    Directory of Open Access Journals (Sweden)

    Emily N Manning

    Full Text Available To investigate whether APOE ε4 carriers have higher hippocampal atrophy rates than non-carriers in Alzheimer's disease (AD, mild cognitive impairment (MCI and controls, and if so, whether higher hippocampal atrophy rates are still observed after adjusting for concurrent whole-brain atrophy rates.MRI scans from all available visits in ADNI (148 AD, 307 MCI, 167 controls were used. MCI subjects were divided into "progressors" (MCI-P if diagnosed with AD within 36 months or "stable" (MCI-S if a diagnosis of MCI was maintained. A joint multi-level mixed-effect linear regression model was used to analyse the effect of ε4 carrier-status on hippocampal and whole-brain atrophy rates, adjusting for age, gender, MMSE and brain-to-intracranial volume ratio. The difference in hippocampal rates between ε4 carriers and non-carriers after adjustment for concurrent whole-brain atrophy rate was then calculated.Mean adjusted hippocampal atrophy rates in ε4 carriers were significantly higher in AD, MCI-P and MCI-S (p≤0.011, all tests compared with ε4 non-carriers. After adjustment for whole-brain atrophy rate, the difference in mean adjusted hippocampal atrophy rate between ε4 carriers and non-carriers was reduced but remained statistically significant in AD and MCI-P.These results suggest that the APOE ε4 allele drives atrophy to the medial-temporal lobe region in AD.

  4. Apigetrin from Scutellaria baicalensis Georgi Inhibits Neuroinflammation in BV-2 Microglia and Exerts Neuroprotective Effect in HT22 Hippocampal Cells.

    Science.gov (United States)

    Lim, Hye-Sun; Kim, Ohn-Soon; Kim, Bu-Yeo; Jeong, Soo-Jin

    2016-11-01

    Apigetrin is a flavonoid isolated from various herbal medicines such as Scutellaria baicalensis Georgi, Matricaria chamomilla, Stachys tibetica Vatke, and Teucrium gnaphalodes. In the present study, we investigated the inhibitory effects of apigetrin on neuroinflammation using the BV-2 microglia cell line. Our data revealed that apigetrin significantly reduced secretion and mRNA expression of inflammatory cytokines, tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), in lipopolysaccharide (LPS)-stimulated BV-2 mouse microglia. Apigetrin also significantly decreased LPS-mediated production of prostaglandin E 2 (PGE 2 ) level and nitric oxide (NO) production as well as expression of cyclooxygenase 2 (COX-2) and inducible nitric oxide synthase (iNOS) in BV-2 cells. In addition, apigetrin suppressed nuclear expression of nuclear factor kappa B (NF-κB) in LPS-stimulated BV-2 cells. Furthermore, apigetrin significantly impaired reactive oxygen species (ROS) generation and enhanced expression of antioxidant enzymes, hempxygenase 1 (HO-1) and nuclear factor-like 2 (Nrf2), in BV-2 cells. Apigetrin also increased 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activity, indicating antioxidative activity of apigetrin. Moreover, we found that apigetrin inhibited hydrogen peroxide (H 2 O 2 )-induced cell death in HT22 hippocampal cells. Overall, our findings indicate that apigetrin has inhibitory effects on neuroinflammation as well as antioxidation and neuroprotection, suggesting the potential prophylactic activity for neurodegenerative diseases through the inter-regulation of neuroinflammation, oxidative stress, and neuronal injury.

  5. Phosphorylation of p62 by AMP-activated protein kinase mediates autophagic cell death in adult hippocampal neural stem cells.

    Science.gov (United States)

    Ha, Shinwon; Jeong, Seol-Hwa; Yi, Kyungrim; Chung, Kyung Min; Hong, Caroline Jeeyeon; Kim, Seong Who; Kim, Eun-Kyoung; Yu, Seong-Woon

    2017-08-18

    In the adult brain, programmed death of neural stem cells is considered to be critical for tissue homeostasis and cognitive function and is dysregulated in neurodegeneration. Previously, we have reported that adult rat hippocampal neural (HCN) stem cells undergo autophagic cell death (ACD) following insulin withdrawal. Because the apoptotic capability of the HCN cells was intact, our findings suggested activation of unique molecular mechanisms linking insulin withdrawal to ACD rather than apoptosis. Here, we report that phosphorylation of autophagy-associated protein p62 by AMP-activated protein kinase (AMPK) drives ACD and mitophagy in HCN cells. Pharmacological inhibition of AMPK or genetic ablation of the AMPK α2 subunit by clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 genome editing suppressed ACD, whereas AMPK activation promoted ACD in insulin-deprived HCN cells. We found that following insulin withdrawal AMPK phosphorylated p62 at a novel site, Ser-293/Ser-294 (in rat and human p62, respectively). Phosphorylated p62 translocated to mitochondria and induced mitophagy and ACD. Interestingly, p62 phosphorylation at Ser-293 was not required for staurosporine-induced apoptosis in HCN cells. To the best of our knowledge, this is the first report on the direct phosphorylation of p62 by AMPK. Our data suggest that AMPK-mediated p62 phosphorylation is an ACD-specific signaling event and provide novel mechanistic insight into the molecular mechanisms in ACD. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Fibroblast growth factor-2 counteracts the effect of ciliary neurotrophic factor on spontaneous differentiation in adult hippocampal progenitor cells.

    Science.gov (United States)

    He, Zhili; Ding, Jun; Zhang, Jianfang; Liu, Ying; Gong, Chengxin; Sun, Shenggang; Chen, Honghui

    2012-12-01

    Neural stem/progenitor cells (NSCs) can spontaneously differentiate into neurons and glial cells in the absence of mitogen fibroblast growth factor-2 (FGF-2) or epidermal growth factor (EGF) in medium and the spontaneous differentiation of NSCs is mediated partially by endogenous ciliary neurotrophic factor (CNTF). This study examined the relationship of FGF-2 and CNTF in the spontaneous differentiation of adult hippocampal progenitor cells (AHPs). AHPs were cultured in the medium containing different concentration of FGF-2 (1-100 ng/mL). Western blotting and immunofluorescence staining were applied to detect the expression of the astrocytic marker GFAP, the neuronal marker Tuj1, the oligodendrocytic marker CNPase and, Nestin, the marker of AHPs. The expression of endogenous CNTF in AHPs at early (passage 4) and late stage (passage 22) was also measured by Western blotting. The results showed that FGF-2 increased the expression of Nestin, dramatically inhibited the expression of GFAP and Tuj1 and slightly suppressed the expression of CNPase. FGF-2 down-regulated the expression of endogenous CNTF in AHPs at both early (passage 4) and late stage (passage 22). These results suggested that FGF-2 could inhibit the spontaneous differentiation of cultured AHPs by negatively regulating the expression of endogenous CNTF in AHPs.

  7. Robust increase of microglia proliferation in the fornix of hippocampal axonal pathway after a single LPS stimulation.

    Science.gov (United States)

    Fukushima, Shohei; Furube, Eriko; Itoh, Masanobu; Nakashima, Toshihiro; Miyata, Seiji

    2015-08-15

    Microglia are resident immunocompetent cells having important roles in innate immunity in the brains. In the present study, we found that a single lipopolysaccharide (LPS) administration significantly increased microglial proliferation in the fornix and dentate gyrus (DG) but not the cerebral cortex and corpus callosum of adult mice. LPS-induced microglial proliferation was especially robust at the white matter of the fornix. The density of microglia increased in the fornix and DG for roughly one week and returned to basal levels at least 20days after a single LPS administration. Consecutive LPS administration did not induce such dramatic increase of microglial proliferation in the fornix. The inhibition of vascular endothelial growth factor signaling by AZD2171 largely suppressed LPS-induced increase of microglial proliferation in the fornix. In conclusion, the present study indicates that the hippocampal neuronal system has a higher proliferative microglial capability against LPS-induced inflammatory administration compared with other brain regions. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Background Suppression Effects on Signal Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Burr, Tom [Los Alamos National Laboratory

    2008-01-01

    Gamma detectors at border crossings are intended to detect illicit nuclear material. One performance challenge involves the fact that vehicles suppress the natural background, thus potentially reducing detection probability for threat items. Methods to adjust for background suppression have been considered in related but different settings. Here, methods to adjust for background suppression are tested in the context of signal estimation. Adjustment methods include several clustering options. We find that for the small-to-moderate suppression magnitudes exhibited in the analyzed data, suppression adjustment is only moderatel helpful in locating the signal peak, and in estimating its width or magnitude.

  9. Novel Roles for the Insulin-Regulated Glucose Transporter-4 in Hippocampally Dependent Memory.

    Science.gov (United States)

    Pearson-Leary, Jiah; McNay, Ewan C

    2016-11-23

    The insulin-regulated glucose transporter-4 (GluT4) is critical for insulin- and contractile-mediated glucose uptake in skeletal muscle. GluT4 is also expressed in some hippocampal neurons, but its functional role in the brain is unclear. Several established molecular modulators of memory processing regulate hippocampal GluT4 trafficking and hippocampal memory formation is limited by both glucose metabolism and insulin signaling. Therefore, we hypothesized that hippocampal GluT4 might be involved in memory processes. Here, we show that, in male rats, hippocampal GluT4 translocates to the plasma membrane after memory training and that acute, selective intrahippocampal inhibition of GluT4-mediated glucose transport impaired memory acquisition, but not memory retrieval. Other studies have shown that prolonged systemic GluT4 blockade causes insulin resistance. Unexpectedly, we found that prolonged hippocampal blockade of glucose transport through GluT4-upregulated markers of hippocampal insulin signaling prevented task-associated depletion of hippocampal glucose and enhanced both working and short-term memory while also impairing long-term memory. These effects were accompanied by increased expression of hippocampal AMPA GluR1 subunits and the neuronal GluT3, but decreased expression of hippocampal brain-derived neurotrophic factor, consistent with impaired ability to form long-term memories. Our findings are the first to show the cognitive impact of brain GluT4 modulation. They identify GluT4 as a key regulator of hippocampal memory processing and also suggest differential regulation of GluT4 in the hippocampus from that in peripheral tissues. The role of insulin-regulated glucose transporter-4 (GluT4) in the brain is unclear. In the current study, we demonstrate that GluT4 is a critical component of hippocampal memory processes. Memory training increased hippocampal GluT4 translocation and memory acquisition was impaired by GluT4 blockade. Unexpectedly, whereas long

  10. Suppression effects on musical and verbal memory.

    Science.gov (United States)

    Schendel, Zachary A; Palmer, Caroline

    2007-06-01

    Three experiments contrasted the effects of articulatory suppression on recognition memory for musical and verbal sequences. In Experiment 1, a standard/comparison task was employed, with digit or note sequences presented visually or auditorily while participants remained silent or produced intermittent verbal suppression (saying "the") or musical suppression (singing "la"). Both suppression types decreased performance by equivalent amounts, as compared with no suppression. Recognition accuracy was lower during suppression for visually presented digits than during that for auditorily presented digits (consistent with phonological loop predictions), whereas accuracy was equivalent for visually presented notes and auditory tones. When visual interference filled the retention interval in Experiment 2, performance with visually presented notes but not digits was impaired. Experiment 3 forced participants to translate visually presented music sequences by presenting comparison sequences auditorily. Suppression effects for visually presented music resembled those for digits only when the recognition task required sensory translation of cues.

  11. Nuclear reactor scram suppression device

    International Nuclear Information System (INIS)

    Koshi, Hiroshi; Ozawa, Hisamitsu.

    1993-01-01

    The device of the present invention suppresses reactor scram due to increase of neutrons caused by pressure elevation in the reactor even when a portion of main steam pipes is closed by some or other causes such as closure of a main steam isolation valve in a BWR type power plant. That is, when a flow channel is closed, such as upon closure of a main steam isolation valve, a flow rate signal sent from each of main steam flow rate detection means is inputted to a selective circuit of a pressure control device, from which a normal value is obtained. A deviation value for each of the main steam flow rate values is determined from the value described above and a flow rate average value obtained in an averaging circuit. Abnormality in the main steam pipelines is judged if a level for each of the deviation values is greater than a predetermined value. Further, the insertion of selective control rods and trip and run back instructions for recycling pumps are controlled by output signals of the deviation value detection circuit, to decrease the reactor power and prevent elevation in the reactor. As a result, reactor scram due to increase of neutron fluxes is suppressed. (I.S.)

  12. Hippocampal developmental vulnerability to methylmercury extends into prepubescence

    Directory of Open Access Journals (Sweden)

    Maryann eObiorah

    2015-05-01

    Full Text Available The developing brain is sensitive to environmental toxicants such as methylmercury (MeHg, to which humans are exposed via contaminated seafood. Prenatal exposure in children is associated with learning, memory and IQ deficits, which can result from hippocampal dysfunction. To explore underlying mechanisms, we have used the postnatal day (P7 rat to model the third trimester of human gestation. We previously showed that a single low exposure (0.6 µg/gbw that approaches human exposure reduced hippocampal neurogenesis in the dentate gyrus (DG 24 hours later, including later proliferation and memory in adolescence. Yet, the vulnerable stem cell population and period of developmental vulnerability remain undefined. In this study, we find that P7 exposure of stem cells has long-term consequences for adolescent neurogenesis. It reduced the number of mitotic S-phase cells (BrdU, especially those in the highly proliferative Tbr2+ population, and immature neurons (Doublecortin in adolescence, suggesting partial depletion of the later stem cell pool. To define developmental vulnerability to MeHg in prepubescent (P14 and adolescent (P21 rats, we examined acute 24 h effects of MeHg exposure on mitosis and apoptosis. We found that low exposure did not adversely impact neurogenesis at either age, but that a higher exposure (5 µg/gbw at P14 reduced the total number of neural stem cells (Sox2+ by 23% and BrdU+ cells by 26% in the DG hilus, suggesting that vulnerability diminishes with age. To see if these effects may reflect changes in MeHg transfer across the blood brain barrier, we assessed Hg content in the hippocampus after peripheral injection and found that similar levels (~800 ng/gm were obtained at 24 h at both P14 and P21, declining in parallel, suggesting that changes in vulnerability depend more on local tissue and cellular mechanisms. Together, we show that MeHg vulnerability depends on age, and that early exposure impairs later neurogenesis in

  13. Hippocampal neurogenesis and volume in migrating and wintering semipalmated sandpipers (Calidris pusilla).

    Science.gov (United States)

    de Morais Magalhães, Nara Gyzely; Guerreiro Diniz, Cristovam; Guerreiro Diniz, Daniel; Pereira Henrique, Ediely; Corrêa Pereira, Patrick Douglas; Matos Moraes, Isis Ananda; Damasceno de Melo, Mauro André; Sherry, David Francis; Wanderley Picanço Diniz, Cristovam

    2017-01-01

    Long distance migratory birds find their way by sensing and integrating information from a large number of cues in their environment. These cues are essential to navigate over thousands of kilometers and reach the same breeding, stopover, and wintering sites every year. The semipalmated sandpiper (Calidris pusilla) is a long-distance migrant that breeds in the arctic tundra of Canada and Alaska and winters on the northeast coast of South America. Its fall migration includes a 5,300-kilometer nonstop flight over the Atlantic Ocean. The avian hippocampus has been proposed to play a central role in the integration of multisensory spatial information for navigation. Hippocampal neurogenesis may contribute to hippocampal function and a variety of factors including cognitive activity, exercise, enrichment, diet and stress influence neurogenesis in the hippocampus. We quantified hippocampal neurogenesis and volume in adult migrating and wintering semipalmated sandpipers using stereological counts of doublecortin (DCX) immunolabeled immature neurons. We found that birds captured in the coastal region of Bragança, Brazil during the wintering period had more DCX positive neurons and larger volume in the hippocampus than individuals captured in the Bay of Fundy, Canada during fall migration. We also estimate the number of NeuN immunolabeled cells in migrating and wintering birds and found no significant differences between them. These findings suggest that, at this time window, neurogenesis just replaced neurons that might be lost during the transatlantic flight. Our findings also show that in active fall migrating birds, a lower level of adult hippocampal neurogenesis is associated with a smaller hippocampal formation. High levels of adult hippocampal neurogenesis and a larger hippocampal formation found in wintering birds may be late occurring effects of long distance migratory flight or the result of conditions the birds experienced while wintering.

  14. Distinguishing cognitive state with multifractal complexity of hippocampal interspike interval sequences

    Directory of Open Access Journals (Sweden)

    Dustin eFetterhoff

    2015-09-01

    Full Text Available Fractality, represented as self-similar repeating patterns, is ubiquitous in nature and the brain. Dynamic patterns of hippocampal spike trains are known to exhibit multifractal properties during working memory processing; however, it is unclear whether the multifractal properties inherent to hippocampal spike trains reflect active cognitive processing. To examine this possibility, hippocampal neuronal ensembles were recorded from rats before, during and after a spatial working memory task following administration of tetrahydrocannabinol (THC, a memory-impairing component of cannabis. Multifractal detrended fluctuation analysis was performed on hippocampal interspike interval sequences to determine characteristics of monofractal long-range temporal correlations (LRTCs, quantified by the Hurst exponent, and the degree/magnitude of multifractal complexity, quantified by the width of the singularity spectrum. Our results demonstrate that multifractal firing patterns of hippocampal spike trains are a marker of functional memory processing, as they are more complex during the working memory task and significantly reduced following administration of memory impairing THC doses. Conversely, LRTCs are largest during resting state recordings, therefore reflecting different information compared to multifractality. In order to deepen conceptual understanding of multifractal complexity and LRTCs, these measures were compared to classical methods using hippocampal frequency content and firing variability measures. These results showed that LRTCs, multifractality, and theta rhythm represent independent processes, while delta rhythm correlated with multifractality. Taken together, these results provide a novel perspective on memory function by demonstrating that the multifractal nature of spike trains reflects hippocampal microcircuit activity that can be used to detect and quantify cognitive, physiological and pathological states.

  15. Subregional Hippocampal Morphology and Psychiatric Outcome in Adolescents Who Were Born Very Preterm and at Term.

    Directory of Open Access Journals (Sweden)

    James H Cole

    Full Text Available The hippocampus has been reported to be structurally and functionally altered as a sequel of very preterm birth (<33 weeks gestation, possibly due its vulnerability to hypoxic-ischemic damage in the neonatal period. We examined hippocampal volumes and subregional morphology in very preterm born individuals in mid- and late adolescence and their association with psychiatric outcome.Structural brain magnetic resonance images were acquired at two time points (baseline and follow-up from 65 ex-preterm adolescents (mean age = 15.5 and 19.6 years and 36 term-born controls (mean age=15.0 and 19.0 years. Hippocampal volumes and subregional morphometric differences were measured from manual tracings and with three-dimensional shape analysis. Psychiatric outcome was assessed with the Rutter Parents' Scale at baseline, the General Health Questionnaire at follow-up and the Peters Delusional Inventory at both time points.In contrast to previous studies we did not find significant difference in the cross-sectional or longitudinal hippocampal volumes between individuals born preterm and controls, despite preterm individual having significantly smaller whole brain volumes. Shape analysis at baseline revealed subregional deformations in 28% of total bilateral hippocampal surface, reflecting atrophy, in ex-preterm individuals compared to controls, and in 22% at follow-up. In ex-preterm individuals, longitudinal changes in hippocampal shape accounted for 11% of the total surface, while in controls they reached 20%. In the whole sample (both groups larger right hippocampal volume and bilateral anterior surface deformations at baseline were associated with delusional ideation scores at follow-up.This study suggests a dynamic association between cross-sectional hippocampal volumes, longitudinal changes and surface deformations and psychosis proneness.

  16. Aggravation of chronic stress effects on hippocampal neurogenesis and spatial memory in LPA₁ receptor knockout mice.

    Directory of Open Access Journals (Sweden)

    Estela Castilla-Ortega

    Full Text Available The lysophosphatidic acid LPA₁ receptor regulates plasticity and neurogenesis in the adult hippocampus. Here, we studied whether absence of the LPA₁ receptor modulated the detrimental effects of chronic stress on hippocampal neurogenesis and spatial memory.Male LPA₁-null (NULL and wild-type (WT mice were assigned to control or chronic stress conditions (21 days of restraint, 3 h/day. Immunohistochemistry for bromodeoxyuridine and endogenous markers was performed to examine hippocampal cell proliferation, survival, number and maturation of young neurons, hippocampal structure and apoptosis in the hippocampus. Corticosterone levels were measured in another a separate cohort of mice. Finally, the hole-board test assessed spatial reference and working memory. Under control conditions, NULL mice showed reduced cell proliferation, a defective population of young neurons, reduced hippocampal volume and moderate spatial memory deficits. However, the primary result is that chronic stress impaired hippocampal neurogenesis in NULLs more severely than in WT mice in terms of cell proliferation; apoptosis; the number and maturation of young neurons; and both the volume and neuronal density in the granular zone. Only stressed NULLs presented hypocortisolemia. Moreover, a dramatic deficit in spatial reference memory consolidation was observed in chronically stressed NULL mice, which was in contrast to the minor effect observed in stressed WT mice.These results reveal that the absence of the LPA₁ receptor aggravates the chronic stress-induced impairment to hippocampal neurogenesis and its dependent functions. Thus, modulation of the LPA₁ receptor pathway may be of interest with respect to the treatment of stress-induced hippocampal pathology.

  17. Combined effects of marijuana and nicotine on memory performance and hippocampal volume.

    Science.gov (United States)

    Filbey, Francesca M; McQueeny, Tim; Kadamangudi, Shrinath; Bice, Collette; Ketcherside, Ariel

    2015-10-15

    Combined use of marijuana (MJ) and tobacco is highly prevalent in today's population. Individual use of either substance is linked to structural brain changes and altered cognitive function, especially with consistent reports of hippocampal volume deficits and poorer memory performance. However, the combined effects of MJ and tobacco on hippocampal structure and on learning and memory processes remain unknown. In this study, we examined both the individual and combined effects of MJ and tobacco on hippocampal volumes and memory performance in four groups of adults taken from two larger studies: MJ-only users (n=36), nicotine-only (Nic-only, n=19), combined marijuana and nicotine users (MJ+Nic, n=19) and non-using healthy controls (n=16). Total bilateral hippocampal volumes and memory performance (WMS-III logical memory) were compared across groups controlling for total brain size and recent alcohol use. Results found MJ and MJ+Nic groups had smaller total hippocampal volumes compared to Nic-only and controls. No significant difference between groups was found between immediate and delayed story recall. However, the controls showed a trend for larger hippocampal volumes being associated with better memory scores, while MJ+Nic users showed a unique inversion, whereby smaller hippocampal volume was associated with better memory. Overall, results suggest abnormalities in the brain-behavior relationships underlying memory processes with combined use of marijuana and nicotine use. Further research will need to address these complex interactions between MJ and nicotine. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Why trace and delay conditioning are sometimes (but not always) hippocampal dependent: A computational model

    Science.gov (United States)

    Moustafa, Ahmed A.; Wufong, Ella; Servatius, Richard J.; Pang, Kevin C. H.; Gluck, Mark A.; Myers, Catherine E.

    2013-01-01

    A recurrent-network model provides a unified account of the hippocampal region in mediating the representation of temporal information in classical eyeblink conditioning. Much empirical research is consistent with a general conclusion that delay conditioning (in which the conditioned stimulus CS and unconditioned stimulus US overlap and co-terminate) is independent of the hippocampal system, while trace conditioning (in which the CS terminates before US onset) depends on the hippocampus. However, recent studies show that, under some circumstances, delay conditioning can be hippocampal-dependent and trace conditioning can be spared following hippocampal lesion. Here, we present an extension of our prior trial-level models of hippocampal function and stimulus representation that can explain these findings within a unified framework. Specifically, the current model includes adaptive recurrent collateral connections that aid in the representation of intra-trial temporal information. With this model, as in our prior models, we argue that the hippocampus is not specialized for conditioned response timing, but rather is a general-purpose system that learns to predict the next state of all stimuli given the current state of variables encoded by activity in recurrent collaterals. As such, the model correctly predicts that hippocampal involvement in classical conditioning should be critical not only when there is an intervening trace interval, but also when there is a long delay between CS onset and US onset. Our model simulates empirical data from many variants of classical conditioning, including delay and trace paradigms in which the length of the CS, the inter-stimulus interval, or the trace interval is varied. Finally, we discuss model limitations, future directions, and several novel empirical predictions of this temporal processing model of hippocampal function and learning. PMID:23178699

  19. α-Calcium calmodulin kinase II modulates the temporal structure of hippocampal bursting patterns.

    Directory of Open Access Journals (Sweden)

    Jeiwon Cho

    Full Text Available The alpha calcium calmodulin kinase II (α-CaMKII is known to play a key role in CA1/CA3 synaptic plasticity, hippocampal place cell stability and spatial learning. Additionally, there is evidence from hippocampal electrophysiological slice studies that this kinase has a role in regulating ion channels that control neuronal excitability. Here, we report in vivo single unit studies, with α-CaMKII mutant mice, in which threonine 305 was replaced with an aspartate (α-CaMKII(T305D mutants, that indicate that this kinase modulates spike patterns in hippocampal pyramidal neurons. Previous studies showed that α-CaMKII(T305D mutants have abnormalities in both hippocampal LTP and hippocampal-dependent learning. We found that besides decreased place cell stability, which could be caused by their LTP impairments, the hippocampal CA1 spike patterns of α-CaMKII(T305D mutants were profoundly abnormal. Although overall firing rate, and overall burst frequency were not significantly altered in these mutants, inter-burst intervals, mean number of intra-burst spikes, ratio of intra-burst spikes to total spikes, and mean intra-burst intervals were significantly altered. In particular, the intra burst intervals of place cells in α-CaMKII(T305D mutants showed higher variability than controls. These results provide in vivo evidence that besides its well-known function in synaptic plasticity, α-CaMKII, and in particular its inhibitory phosphorylation at threonine 305, also have a role in shaping the temporal structure of hippocampal burst patterns. These results suggest that some of the molecular processes involved in acquiring information may also shape the patterns used to encode this information.

  20. Smaller hippocampal volume as a vulnerability factor for the persistence of post-traumatic stress disorder.

    Science.gov (United States)

    van Rooij, S J H; Kennis, M; Sjouwerman, R; van den Heuvel, M P; Kahn, R S; Geuze, E

    2015-10-01

    Smaller hippocampal volume has often been observed in patients with post-traumatic stress disorder (PTSD). However, there is no consensus whether this is a result of stress/trauma exposure, or constitutes a vulnerability factor for the development of PTSD. Second, it is unclear whether hippocampal volume normalizes with successful treatment of PTSD, or whether a smaller hippocampus is a risk factor for the persistence of PTSD. Magnetic resonance imaging (MRI) scans and clinical interviews were collected from 47 war veterans with PTSD, 25 healthy war veterans (combat controls) and 25 healthy non-military controls. All veterans were scanned a second time with a 6- to 8-month interval, during which PTSD patients received trauma-focused therapy. Based on post-treatment PTSD symptoms, patients were divided into a PTSD group who was in remission (n = 22) and a group in whom PTSD symptoms persisted (n = 22). MRI data were analysed with Freesurfer. Smaller left hippocampal volume was observed in PTSD patients compared with both control groups. Hippocampal volume of the combat controls did not differ from healthy controls. Second, pre- and post-treatment analyses of the PTSD patients and combat controls revealed reduced (left) hippocampal volume only in the persistent patients at both time points. Importantly, hippocampal volume did not change with treatment. Our findings suggest that a smaller (left) hippocampus is not the result of stress/trauma exposure. Furthermore, hippocampal volume does not increase with successful treatment. Instead, we demonstrate for the first time that a smaller (left) hippocampus constitutes a risk factor for the persistence of PTSD.

  1. Hippocampal sparing radiotherapy for pediatric medulloblastoma: impact of treatment margins and treatment technique.

    Science.gov (United States)

    Brodin, N Patrik; Munck af Rosenschöld, Per; Blomstrand, Malin; Kiil-Berthlesen, Anne; Hollensen, Christian; Vogelius, Ivan R; Lannering, Birgitta; Bentzen, Søren M; Björk-Eriksson, Thomas

    2014-04-01

    We investigated how varying the treatment margin and applying hippocampal sparing and proton therapy impact the risk of neurocognitive impairment in pediatric medulloblastoma patients compared with current standard 3D conformal radiotherapy. We included 17 pediatric medulloblastoma patients to represent the variability in tumor location relative to the hippocampal region. Treatment plans were generated using 3D conformal radiotherapy, hippocampal sparing intensity-modulated radiotherapy, and spot-scanned proton therapy, using 3 different treatment margins for the conformal tumor boost. Neurocognitive impairment risk was estimated based on dose-response models from pediatric CNS malignancy survivors and compared among different margins and treatment techniques. Mean hippocampal dose and corresponding risk of cognitive impairment were decreased with decreasing treatment margins (P < .05). The largest risk reduction, however, was seen when applying hippocampal sparing proton therapy-the estimated risk of impaired task efficiency (95% confidence interval) was 92% (66%-98%), 81% (51%-95%), and 50% (30%-70%) for 3D conformal radiotherapy, intensity-modulated radiotherapy, and proton therapy, respectively, for the smallest boost margin and 98% (78%-100%), 90% (60%-98%), and 70% (39%-90%) if boosting the whole posterior fossa. Also, the distance between the closest point of the planning target volume and the center of the hippocampus can be used to predict mean hippocampal dose for a given treatment technique. We estimate a considerable clinical benefit of hippocampal sparing radiotherapy. In choosing treatment margins, the tradeoff between margin size and risk of neurocognitive impairment quantified here should be considered.

  2. Hippocampal neurogenesis and volume in migrating and wintering semipalmated sandpipers (Calidris pusilla.

    Directory of Open Access Journals (Sweden)

    Nara Gyzely de Morais Magalhães

    Full Text Available Long distance migratory birds find their way by sensing and integrating information from a large number of cues in their environment. These cues are essential to navigate over thousands of kilometers and reach the same breeding, stopover, and wintering sites every year. The semipalmated sandpiper (Calidris pusilla is a long-distance migrant that breeds in the arctic tundra of Canada and Alaska and winters on the northeast coast of South America. Its fall migration includes a 5,300-kilometer nonstop flight over the Atlantic Ocean. The avian hippocampus has been proposed to play a central role in the integration of multisensory spatial information for navigation. Hippocampal neurogenesis may contribute to hippocampal function and a variety of factors including cognitive activity, exercise, enrichment, diet and stress influence neurogenesis in the hippocampus. We quantified hippocampal neurogenesis and volume in adult migrating and wintering semipalmated sandpipers using stereological counts of doublecortin (DCX immunolabeled immature neurons. We found that birds captured in the coastal region of Bragança, Brazil during the wintering period had more DCX positive neurons and larger volume in the hippocampus than individuals captured in the Bay of Fundy, Canada during fall migration. We also estimate the number of NeuN immunolabeled cells in migrating and wintering birds and found no significant differences between them. These findings suggest that, at this time window, neurogenesis just replaced neurons that might be lost during the transatlantic flight. Our findings also show that in active fall migrating birds, a lower level of adult hippocampal neurogenesis is associated with a smaller hippocampal formation. High levels of adult hippocampal neurogenesis and a larger hippocampal formation found in wintering birds may be late occurring effects of long distance migratory flight or the result of conditions the birds experienced while wintering.

  3. CXCR4 antagonist AMD3100 reverses the neurogenesis promoted by enriched environment and suppresses long-term seizure activity in adult rats of temporal lobe epilepsy.

    Science.gov (United States)

    Zhou, Zhike; Liu, Tingting; Sun, Xiaoyu; Mu, Xiaopeng; Zhu, Gang; Xiao, Ting; Zhao, Mei; Zhao, Chuansheng

    2017-03-30

    It has been showed that enriched environment (EE) enhances the hippocampal neurogenesis and improves the cognitive impairments, accompanied by the increased expressions of stromal cell-derived factor-1 (SDF-1) in adult rats of temporal lobe epilepsy (TLE). We examined whether the enhanced neurogenesis and improved cognitive functions induced by EE following seizures were mediated by SDF-1/CXCR4 pathway. Therefore, we investigated the effects of the EE combined with CXCR4 antagonist AMD3100 on neurogenesis, cognitive functions and the long-term seizure activity in the TLE model. Adult rats were randomly assigned as control rats, rats treated with EE, rats subjected to status epilepticus (SE), post-SE rats treated with EE, AMD3100 or EE combined with AMD3100 respectively. We used immunofluorescence staining to analyze the hippocampal neurogenesis and Nissl staining to evaluate hippocampal damage. Electroencephalography was used to measure the frequency and mean duration of spontaneous seizures. Cognitive function was evaluated by Morris water maze test. EE treatment significantly, as well as improved cognitive impairments and decreased long-term seizure activity, and that these effects might be mediated through SDF-1/CXCR4 pathway during the chronic stage of TLE. Although AMD3100 reversed the effect of EE on neurogenesis, it did not abolish the cognitive improvement induced by EE following seizures. More importantly, EE combined with AMD3100 treatment significantly suppressed long-term seizure activity, which provided promising evidences to treat TLE. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Mechanism of PAMAM Dendrimers Internalization in Hippocampal Neurons.

    Science.gov (United States)

    Vidal, Felipe; Vásquez, Pilar; Díaz, Carola; Nova, Daniela; Alderete, Joel; Guzmán, Leonardo

    2016-10-03

    Polyamidoamine (PAMAM) dendrimers are hyperbranched macromolecules which have been described as one of the most promising drug nanocarrier systems. A key process to understand is their cellular internalization mechanism because of its direct influence on their intracellular distribution, association with organelles, entry kinetics, and cargo release. Despite that internalization mechanisms of dendrimers have been studied in different cell types, in the case of neurons they are not completely described. Considering the relevance of central nervous system (CNS) diseases and neuropharmacology, the aim of this report is to describe the molecular internalization mechanism of different PAMAM-based dendrimer systems in hippocampal neurons. Four dendrimers based on fourth generation PAMAM with different surface properties were studied: unmodified G4, with a positively charged surface; PP50, with a substitution of the 50% of amino surface groups with polyethylene glycol neutral groups; PAc, with a substitution of the 30% of amino surface groups with acrylate anionic groups; and PFO, decorated with folic acid groups in a 25% of total terminal groups. Confocal images show that both G4 and PFO are able to enter the neurons, but not PP50 and PAc. Colocalization study with specific endocytosis markers and specific endocytosis inhibitor assay demonstrate that clathrin-mediated endocytosis would be the main internalization mechanism for G4, whereas clathrin- and caveolae-mediated endocytosis would be implicated in PFO internalization. These results show the existence of different internalization mechanisms for PAMAM dendrimers in neurons and the possibility to control their internalization properties with specific chemical modifications.

  5. Interaction between Neurogenesis and Hippocampal Memory System: New Vistas

    Science.gov (United States)

    Abrous, Djoher Nora; Wojtowicz, Jan Martin

    2015-01-01

    During the last decade, the questions on the functionality of adult neurogenesis have changed their emphasis from if to how the adult-born neurons participate in a variety of memory processes. The emerging answers are complex because we are overwhelmed by a variety of behavioral tasks that apparently require new neurons to be performed optimally. With few exceptions, the hippocampal memory system seems to use the newly generated neurons for multiple roles. Adult neurogenesis has given the dentate gyrus new capabilities not previously thought possible within the scope of traditional synaptic plasticity. Looking at these new developments from the perspective of past discoveries, the science of adult neurogenesis has emerged from its initial phase of being, first, a surprising oddity and, later, exciting possibility, to the present state of being an integral part of mainstream neuroscience. The answers to many remaining questions regarding adult neurogenesis will come along only with our growing understanding of the functionality of the brain as a whole. This, in turn, will require integration of multiple levels of organization from molecules and cells to circuits and systems, ultimately resulting in comprehension of behavioral outcomes. PMID:26032718

  6. Incomplete hippocampal inversion - is there a relation to epilepsy?

    Energy Technology Data Exchange (ETDEWEB)

    Bajic, Dragan [Uppsala University Hospital, Department of Radiology, Uppsala (Sweden); Kumlien, Eva; Mattsson, Peter [Uppsala University Hospital, Department of Neuroscience, Neurology, Uppsala (Sweden); Lundberg, Staffan [Uppsala University Hospital, Department of Women' s and Children' s Health, Uppsala (Sweden); Wang, Chen [Karolinska University Hospital, Department of Neuroradiology, Stockholm (Sweden); Raininko, Raili [Uppsala University, Department of Radiology, Uppsala (Sweden)

    2009-10-15

    Incomplete hippocampal inversion (IHI) has been described in patients with epilepsy or severe midline malformations but also in nonepileptic subjects without obvious developmental anomalies. We studied the frequency of IHI in different epilepsy syndromes to evaluate their relationship. Three hundred patients were drawn from the regional epilepsy register. Of these, 99 were excluded because of a disease or condition affecting the temporal lobes or incomplete data. Controls were 150 subjects without epilepsy or obvious intracranial developmental anomalies. The coronal MR images were analysed without knowledge of the clinical data. Among epilepsy patients, 30% had IHI (40 left-sided, 4 right-sided, 16 bilateral). Of controls, 18% had IHI (20 left-sided, 8 bilateral). The difference was statistically significant (P<0.05). Of temporal lobe epilepsy (TLE) patients, 25% had IHI, which was not a significantly higher frequency than in controls (P=0.34). There was no correlation between EEG and IHI laterality. A total of 44% of Rolandic epilepsy patients and 57% of cryptogenic generalised epilepsy patients had IHI. The IHI frequency was very high in some epileptic syndromes, but not significantly higher in TLE compared to controls. No causality between TLE and IHI could be found. IHI can be a sign of disturbed cerebral development affecting other parts of the brain, maybe leading to epilepsy. (orig.)

  7. Pannexin 1 Regulates Bidirectional Hippocampal Synaptic Plasticity in Adult Mice

    Directory of Open Access Journals (Sweden)

    Alvaro O. Ardiles

    2014-10-01

    Full Text Available The threshold for bidirectional modification of synaptic plasticity is known to be controlled by several factors, including the balance between protein phosphorylation and dephosphorylation, postsynaptic free Ca2+ concentration and NMDA receptor (NMDAR composition of GluN2 subunits. Pannexin 1 (Panx1, a member of the integral membrane protein family, has been shown to form non-selective channels and to regulate the induction of synaptic plasticity as well as hippocampal-dependent learning. Although Panx1 channels have been suggested to play a role in excitatory long-term potentiation (LTP, it remains unknown whether these channels also modulate long-term depression (LTD or the balance between both types of synaptic plasticity. To study how Panx1 contributes to excitatory synaptic efficacy, we examined the age-dependent effects of eliminating or blocking Panx1 channels on excitatory synaptic plasticity within the CA1 region of the mouse hippocampus. By using different protocols to induce bidirectional synaptic plasticity, Panx1 channel blockade or lack of Panx1 were found to enhance LTP, whereas both conditions precluded the induction of LTD in adults, but not in young animals. These findings suggest that Panx1 channels restrain the sliding threshold for the induction of synaptic plasticity and underlying brain mechanisms of learning and memory.

  8. Effects of Sun ginseng on memory enhancement and hippocampal neurogenesis.

    Science.gov (United States)

    Lee, Chang Hwan; Kim, Jong Min; Kim, Dong Hyun; Park, Se Jin; Liu, Xiaotong; Cai, Mudan; Hong, Jin Gyu; Park, Jeong Hill; Ryu, Jong Hoon

    2013-09-01

    Panax ginseng C.A. Meyer has been used in traditional herb prescriptions for thousands of years. A heat-processing method has been used to increase the efficacy of ginseng, yielding what is known as red ginseng. In addition, recently, a slightly modified heat-processing method was applied to ginseng, to obtain a new type of processed ginseng with increased biological activity; this new form of ginseng is referred to as Sun ginseng (SG). The aim of this study was to investigate the effect of SG on memory enhancement and neurogenesis in the hippocampal dentate gyrus (DG) region. The subchronic administration of SG (for 14 days) significantly increased the latency time in the passive avoidance task relative to the administration of the vehicle control (P memory-enhancing activities and that these effects are mediated, in part, by the increase in the levels of pERK and pAkt and by the increases in cell proliferation and cell survival. Copyright © 2012 John Wiley & Sons, Ltd.

  9. Dynamic Properties of the Alkaline Vesicle Population at Hippocampal Synapses

    Science.gov (United States)

    Röther, Mareike; Brauner, Jan M.; Ebert, Katrin; Welzel, Oliver; Jung, Jasmin; Bauereiss, Anna; Kornhuber, Johannes; Groemer, Teja W.

    2014-01-01

    In compensatory endocytosis, scission of vesicles from the plasma membrane to the cytoplasm is a prerequisite for intravesicular reacidification and accumulation of neurotransmitter molecules. Here, we provide time-resolved measurements of the dynamics of the alkaline vesicle population which appears upon endocytic retrieval. Using fast perfusion pH-cycling in live-cell microscopy, synapto-pHluorin expressing rat hippocampal neurons were electrically stimulated. We found that the relative size of the alkaline vesicle population depended significantly on the electrical stimulus size: With increasing number of action potentials the relative size of the alkaline vesicle population expanded. In contrast to that, increasing the stimulus frequency reduced the relative size of the population of alkaline vesicles. Measurement of the time constant for reacification and calculation of the time constant for endocytosis revealed that both time constants were variable with regard to the stimulus condition. Furthermore, we show that the dynamics of the alkaline vesicle population can be predicted by a simple mathematical model. In conclusion, here a novel methodical approach to analyze dynamic properties of alkaline vesicles is presented and validated as a convenient method for the detection of intracellular events. Using this method we show that the population of alkaline vesicles is highly dynamic and depends both on stimulus strength and frequency. Our results implicate that determination of the alkaline vesicle population size may provide new insights into the kinetics of endocytic retrieval. PMID:25079223

  10. Cognitive dysfunction and hippocampal changes in experimental type 1 diabetes.

    Science.gov (United States)

    Alvarez, Edgardo O; Beauquis, Juan; Revsin, Yanina; Banzan, Arturo M; Roig, Paulina; De Nicola, Alejandro F; Saravia, Flavia

    2009-03-02

    Type 1 diabetes (T1D) is accompanied by a "diabetic encephalopathy" including hypersensitivity to stress, increased risk of stroke, dementia and cognitive impairment. In previous works we reported several brain alterations including a strong decrease in hippocampal proliferation and survival in both spontaneous and streptozotocin-induced models of experimental T1D. The aim of this study was to explore in streptozotocin-treated mice and other parameters associated to mild neurodegeneration in the dentate gyrus and the potential correlation with behavioural changes. The neurogenic status, measured by doublecortin (DCX) expression, showed an important decline in the number of positive cells in the subgranular zone (SGZ). However, neuronal migration was not affected. We found a marked enhancement of intracellular lipofuscin deposits, characteristic of increased oxidative stress and aging in both, the hilus and the SGZ and granular cell layer (GCL). Diabetic mice showed a significant impairment in learning and memory tests, exhibiting a higher latency to show an escape response and a poorer learning efficiency of an active avoiding response compared with control mice. Both, exploratory and non-exploratory activities in a conflictive environment in the asymmetric elevated plus maze were not affected by the diabetic condition. In conclusion, experimental diabetes showed clear signs of changes in the dentate gyrus, changes similar to those present in the aging process. Correlatively, these alterations were in line with a reduced performance in learning and memory tests. The mechanism that could potentially link neural and behavioural disturbances is not yet fully comprehended.

  11. Falcarindiol allosterically modulates GABAergic currents in cultured rat hippocampal neurons.

    Science.gov (United States)

    Wyrembek, Paulina; Negri, Roberto; Kaczor, Przemysław; Czyżewska, Marta; Appendino, Giovanni; Mozrzymas, Jerzy Wladyslaw

    2012-04-27

    Falcarindiol (1), a C-17 polyacetylenic diol, shows a pleiotropic profile of bioactivity, but the mechanism(s) underlying its actions are largely unknown. Large amounts of 1 co-occur in water hemlock (Oenanthe crocata) along with the convulsant polyacetylenic toxin oenanthotoxin (2), a potent GABA(A) receptor (GABA(A)R) inhibitor. Since these compounds are structurally and biogenetically related, it was considered of interest to evaluate whether 1 could affect GABAergic activity, and for this purpose a model of hippocampal cultured neurons was used. Compound 1 significantly increased the amplitude of miniature inhibitory postsynaptic currents, accelerated their onset, and prolonged the decay kinetics. This compound enhanced also the amplitude of currents elicited by 3 μM GABA and accelerated their fading, reducing, however, currents evoked by a saturating (10 mM) GABA concentration. Moreover, kinetic analysis of responses to 10 mM GABA revealed that 1 upregulated the rate and extent of desensitization and slowed the current onset and deactivation. Taken together, these data show that 1 exerts a potent modulatory action on GABA(A)Rs, possibly by modulating agonist binding and desensitization, overall potentially decreasing the toxicity of co-occurring GABA-inhibiting convulsant toxins. © 2012 American Chemical Society and American Society of Pharmacognosy

  12. Ketamine Protects Gamma Oscillations by Inhibiting Hippocampal LTD

    Science.gov (United States)

    Huang, Lanting; Yang, Xiu-Juan; Huang, Ying; Sun, Eve Y.

    2016-01-01

    NMDA receptors have been widely reported to be involved in the regulation of synaptic plasticity through effects on long-term potentiation (LTP) and long-term depression (LTD). LTP and LTD have been implicated in learning and memory processes. Besides synaptic plasticity, it is known that the phenomenon of gamma oscillations is critical in cognitive functions. Synaptic plasticity has been widely studied, however it is still not clear, to what degree synaptic plasticity regulates the oscillations of neuronal networks. Two NMDA receptor antagonists, ketamine and memantine, have been shown to regulate LTP and LTD, to promote cognitive functions, and have even been reported to bring therapeutic effects in major depression and Alzheimer’s disease respectively. These compounds allow us to investigate the putative interrelationship between network oscillations and synaptic plasticity and to learn more about the mechanisms of their therapeutic effects. In the present study, we have identified that ketamine and memantine could inhibit LTD, without impairing LTP in the CA1 region of mouse hippocampus, which may underlie the mechanism of these drugs’ therapeutic effects. Our results suggest that NMDA-induced LTD caused a marked loss in the gamma power, and pretreatment with 10 μM ketamine prevented the oscillatory loss via its inhibitory effect on LTD. Our study provides a new understanding of the role of NMDA receptors on hippocampal plasticity and oscillations. PMID:27467732

  13. Functional clustering in hippocampal cultures: relating network structure and dynamics

    International Nuclear Information System (INIS)

    Feldt, S; Dzakpasu, R; Olariu, E; Żochowski, M; Wang, J X; Shtrahman, E

    2010-01-01

    In this work we investigate the relationship between gross anatomic structural network properties, neuronal dynamics and the resultant functional structure in dissociated rat hippocampal cultures. Specifically, we studied cultures as they developed under two conditions: the first supporting glial cell growth (high glial group), and the second one inhibiting it (low glial group). We then compared structural network properties and the spatio-temporal activity patterns of the neurons. Differences in dynamics between the two groups could be linked to the impact of the glial network on the neuronal network as the cultures developed. We also implemented a recently developed algorithm called the functional clustering algorithm (FCA) to obtain the resulting functional network structure. We show that this new algorithm is useful for capturing changes in functional network structure as the networks evolve over time. The FCA detects changes in functional structure that are consistent with expected dynamical differences due to the impact of the glial network. Cultures in the high glial group show an increase in global synchronization as the cultures age, while those in the low glial group remain locally synchronized. We additionally use the FCA to quantify the amount of synchronization present in the cultures and show that the total level of synchronization in the high glial group is stronger than in the low glial group. These results indicate an interdependence between the glial and neuronal networks present in dissociated cultures

  14. Selective noradrenaline depletion impairs working memory and hippocampal neurogenesis.

    Science.gov (United States)

    Coradazzi, Marino; Gulino, Rosario; Fieramosca, Francesco; Falzacappa, Lucia Verga; Riggi, Margherita; Leanza, Giampiero

    2016-12-01

    Noradrenergic neurons in the locus coeruleus play a role in learning and memory, and their loss is an early event in Alzheimer's disease pathogenesis. Moreover, noradrenaline may sustain hippocampal neurogenesis; however, whether are these events related is still unknown. Four to five weeks following the selective immunotoxic ablation of locus coeruleus neurons, young adult rats underwent reference and working memory tests, followed by postmortem quantitative morphological analyses to assess the extent of the lesion, as well as the effects on proliferation and/or survival of neural progenitors in the hippocampus. When tested in the Water Maze task, lesioned animals exhibited no reference memory deficit, whereas working memory abilities were seen significantly impaired, as compared with intact or sham-lesioned controls. Stereological analyses confirmed a dramatic noradrenergic neuron loss associated to reduced proliferation, but not survival or differentiation, of 5-bromo-2'deoxyuridine-positive progenitors in the dentate gyrus. Thus, ascending noradrenergic afferents may be involved in more complex aspects of cognitive performance (i.e., working memory) possibly via newly generated progenitors in the hippocampus. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Ketamine Protects Gamma Oscillations by Inhibiting Hippocampal LTD.

    Directory of Open Access Journals (Sweden)

    Lanting Huang

    Full Text Available NMDA receptors have been widely reported to be involved in the regulation of synaptic plasticity through effects on long-term potentiation (LTP and long-term depression (LTD. LTP and LTD have been implicated in learning and memory processes. Besides synaptic plasticity, it is known that the phenomenon of gamma oscillations is critical in cognitive functions. Synaptic plasticity has been widely studied, however it is still not clear, to what degree synaptic plasticity regulates the oscillations of neuronal networks. Two NMDA receptor antagonists, ketamine and memantine, have been shown to regulate LTP and LTD, to promote cognitive functions, and have even been reported to bring therapeutic effects in major depression and Alzheimer's disease respectively. These compounds allow us to investigate the putative interrelationship between network oscillations and synaptic plasticity and to learn more about the mechanisms of their therapeutic effects. In the present study, we have identified that ketamine and memantine could inhibit LTD, without impairing LTP in the CA1 region of mouse hippocampus, which may underlie the mechanism of these drugs' therapeutic effects. Our results suggest that NMDA-induced LTD caused a marked loss in the gamma power, and pretreatment with 10 μM ketamine prevented the oscillatory loss via its inhibitory effect on LTD. Our study provides a new understanding of the role of NMDA receptors on hippocampal plasticity and oscillations.

  16. Chronic Loss of CA2 Transmission Leads to Hippocampal Hyperexcitability.

    Science.gov (United States)

    Boehringer, Roman; Polygalov, Denis; Huang, Arthur J Y; Middleton, Steven J; Robert, Vincent; Wintzer, Marie E; Piskorowski, Rebecca A; Chevaleyre, Vivien; McHugh, Thomas J

    2017-05-03

    Hippocampal CA2 pyramidal cells project into both the neighboring CA1 and CA3 subfields, leaving them well positioned to influence network physiology and information processing for memory and space. While recent work has suggested unique roles for CA2, including encoding position during immobility and generating ripple oscillations, an interventional examination of the integrative functions of these connections has yet to be reported. Here we demonstrate that CA2 recruits feedforward inhibition in CA3 and that chronic genetically engineered shutdown of CA2-pyramidal-cell synaptic transmission consequently results in increased excitability of the recurrent CA3 network. In behaving mice, this led to spatially triggered episodes of network-wide hyperexcitability during exploration accompanied by the emergence of high-frequency discharges during rest. These findings reveal CA2 as a regulator of network processing in hippocampus and suggest that CA2-mediated inhibition in CA3 plays a key role in establishing the dynamic excitatory and inhibitory balance required for proper network function. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Hippocampal network oscillations in APP/APLP2-deficient mice.

    Directory of Open Access Journals (Sweden)

    Xiaomin Zhang

    Full Text Available The physiological function of amyloid precursor protein (APP and its two homologues APP-like protein 1 (APLP1 and 2 (APLP2 is largely unknown. Previous work suggests that lack of APP or APLP2 impairs synaptic plasticity and spatial learning. There is, however, almost no data on the role of APP or APLP at the network level which forms a critical interface between cellular functions and behavior. We have therefore investigated memory-related synaptic and network functions in hippocampal slices from three lines of transgenic mice: APPsα-KI (mice expressing extracellular fragment of APP, corresponding to the secreted APPsα ectodomain, APLP2-KO, and combined APPsα-KI/APLP2-KO (APPsα-DM for "double mutants". We analyzed two prominent patterns of network activity, gamma oscillations and sharp-wave ripple complexes (SPW-R. Both patterns were generally preserved in all strains. We find, however, a significantly reduced frequency of gamma oscillations in CA3 of APLP2-KO mice in comparison to APPsα-KI and WT mice. Network activity, basic synaptic transmission and short-term plasticity were unaltered in the combined mutants (APPsα-DM which showed, however, reduced long-term potentiation (LTP. Together, our data indicate that APLP2 and the intracellular domain of APP are not essential for coherent activity patterns in the hippocampus, but have subtle effects on synaptic plasticity and fine-tuning of network oscillations.

  18. Incomplete hippocampal inversion - is there a relation to epilepsy?

    International Nuclear Information System (INIS)

    Bajic, Dragan; Kumlien, Eva; Mattsson, Peter; Lundberg, Staffan; Wang, Chen; Raininko, Raili

    2009-01-01

    Incomplete hippocampal inversion (IHI) has been described in patients with epilepsy or severe midline malformations but also in nonepileptic subjects without obvious developmental anomalies. We studied the frequency of IHI in different epilepsy syndromes to evaluate their relationship. Three hundred patients were drawn from the regional epilepsy register. Of these, 99 were excluded because of a disease or condition affecting the temporal lobes or incomplete data. Controls were 150 subjects without epilepsy or obvious intracranial developmental anomalies. The coronal MR images were analysed without knowledge of the clinical data. Among epilepsy patients, 30% had IHI (40 left-sided, 4 right-sided, 16 bilateral). Of controls, 18% had IHI (20 left-sided, 8 bilateral). The difference was statistically significant (P<0.05). Of temporal lobe epilepsy (TLE) patients, 25% had IHI, which was not a significantly higher frequency than in controls (P=0.34). There was no correlation between EEG and IHI laterality. A total of 44% of Rolandic epilepsy patients and 57% of cryptogenic generalised epilepsy patients had IHI. The IHI frequency was very high in some epileptic syndromes, but not significantly higher in TLE compared to controls. No causality between TLE and IHI could be found. IHI can be a sign of disturbed cerebral development affecting other parts of the brain, maybe leading to epilepsy. (orig.)

  19. Corpora amylacea in temporal lobe epilepsy associated with hippocampal sclerosis

    Directory of Open Access Journals (Sweden)

    Ribeiro Marlise de Castro

    2003-01-01

    Full Text Available Hippocampal sclerosis (HS is the commonest pathology in epileptic patients undergoing temporal lobe epilepsy surgery. Beside, there are an increased density of corpora amylacea (CA founded in 6 to 63% of those cases. OBJECTIVE: verify the presence of CA and the clinical correlates of their occurrence in a consective series of patients undergoing temporal surgery with diagnosis of HS. METHOD: We reviewed 72 hippocampus specimens from January 1997 to July 2000. Student's t test for independent, samples, ANOVA and Tukey test were performed for statistical analysis. RESULTS: CA were found in 35 patients (49%, whose mean epilepsy duration (28.7 years was significantly longer than that group of patients without CA (19.5 years, p= 0.001. Besides, when CA were found, duration was also significantly correlated with distribution within hippocampus: 28.7 years with diffuse distribution of CA, 15.4 with exclusively subpial and 17.4 years with distribution subpial plus perivascular (p= 0.001. CONCLUSION: Our findings corroborate the presence of CA in patients with HS and suggest that a longer duration of epilepsy correlate with a more distribution of CA in hippocampus.

  20. The association of visual memory with hippocampal volume.

    Directory of Open Access Journals (Sweden)

    Andrea R Zammit

    Full Text Available In this study we investigated the role of hippocampal volume (HV in visual memory.Participants were a subsample of older adults (> = 70 years from the Einstein Aging Study. Visual performance was measured using the Complex Figure (CF copy and delayed recall tasks from the Repeatable Battery for the Assessment of Neuropsychological Status. Linear regressions were fitted to study associations between HV and visual tasks.Participants' (n = 113, mean age = 78.9 years average scores on the CF copy and delayed recall were 17.4 and 11.6, respectively. CF delayed recall was associated with total (β = .031, p = 0.001 and left (β = 0.031, p = 0.001 and right HVs (β = 0.24, p = 0.012. CF delayed recall remained significantly associated with left HV even after we also included right HV (β = 0.27, p = 0.025 and the CF copy task (β = 0.30, p = 0.009 in the model. CF copy did not show any significant associations with HV.Our results suggest that left HV contributes in retrieval of visual memory in older adults.

  1. Hippocampal dysfunction and cognitive impairment in Fragile-X Syndrome.

    Science.gov (United States)

    Bostrom, Crystal; Yau, Suk-Yu; Majaess, Namat; Vetrici, Mariana; Gil-Mohapel, Joana; Christie, Brian R

    2016-09-01

    Fragile-X Syndrome (FXS) is the most common form of inherited intellectual disability and the leading genetic cause of autism spectrum disorder. FXS is caused by transcriptional silencing of the Fragile X Mental Retardation 1 (Fmr1) gene due to a CGG repeat expansion, resulting in the loss of Fragile X Mental Retardation Protein (FMRP). FMRP is involved in transcriptional regulation and trafficking of mRNA from the nucleus to the cytoplasm and distal sites both in pre- and post-synaptic terminals. Consequently, FXS is a multifaceted disorder associated with impaired synaptic plasticity. One region of the brain that is significantly impacted by the loss of FMRP is the hippocampus, a structure that plays a critical role in the regulation of mood and cognition. This review provides an overview of the neuropathology of Fragile-X Syndrome, highlighting how structural and synaptic deficits in hippocampal subregions, including the CA1 exhibiting exaggerated metabotropic glutamate receptor dependent long-term depression and the dentate gyrus displaying hypofunction of N-methyl-d-aspartate receptors, contribute to cognitive impairments associated with this neurodevelopmental disorder. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Spectral characteristics of the hippocampal LFP during contextual fear conditioning

    Directory of Open Access Journals (Sweden)

    Birajara Soares Machado

    2012-06-01

    Full Text Available Objective: The hippocampus has an important role in the acquisitionand recall of aversive memories. The objective of this study was toinvestigate the relationship among hippocampal rhythms. Methods:Microeletrodes arrays were implanted in the hippocampus of Wistarrats. The animals were trained and tested in a contextual fearconditioning task. The training consisted in applying shocks in thelegs. The memory test was performed 1 day (recent memory or 18days (remote memory after training. We proposed a measure basedon the FFT power spectrum, denominated “delta-theta ratio”, tocharacterize the different behaviors (active exploration and freezingand the memories types. Results: The delta-theta ratio was able todistinguish recent and remote memories. In this study, the ratio forthe 18-day group was smaller than for the 1-day group. Moreover,this measure was useful to distinguish the different behavior states– active exploration and freezing. Conclusions: The results suggestdelta-theta oscillations could reflect the demands on informationprocessing during recent and remote memory recalls.

  3. Hippocampal volume predicts fluid intelligence in musically trained people.

    Science.gov (United States)

    Oechslin, Mathias S; Descloux, Céline; Croquelois, Alexandre; Chanal, Julien; Van De Ville, Dimitri; Lazeyras, François; James, Clara E

    2013-07-01

    Recently, age-related hippocampal (HP) volume loss could be associated with a decrease in general fluid intelligence (gF). In the present study we investigated whether and how extensive musical training modulates human HP volume and gF performance. Previously, some studies demonstrated positive effects of musical training on higher cognitive functions such as learning and memory, associated with neural adaptations beyond the auditory domain. In order to detect possible associations between musical training and gF, we bilaterally segmented the HP formation and assessed the individual gF performance of people with different levels of musical expertise. Multiple regression analyses revealed that HP volume predicts gF in musicians but not in nonmusicians; in particular, bilaterally enhanced HP volume is associated with increased gF exclusively in musically trained people (amateurs and experts). This result suggests that musical training facilitates the recruitment of cognitive resources, which are essential for gF and linked to HP functioning. Musical training, even at a moderate level of intensity, can thus be considered as a potential strategy to decelerate age-related effects of cognitive decline. Copyright © 2013 Wiley Periodicals, Inc.

  4. Prenatal stress inhibits hippocampal neurogenesis but spares olfactory bulb neurogenesis.

    Directory of Open Access Journals (Sweden)

    Laure Belnoue

    Full Text Available The dentate gyrus (DG and the olfactory bulb (OB are two regions of the adult brain in which new neurons are integrated daily in the existing networks. It is clearly established that these newborn neurons are implicated in specific functions sustained by these regions and that different factors can influence neurogenesis in both structures. Among these, life events, particularly occurring during early life, were shown to profoundly affect adult hippocampal neurogenesis and its associated functions like spatial learning, but data regarding their impact on adult bulbar neurogenesis are lacking. We hypothesized that prenatal stress could interfere with the development of the olfactory system, which takes place during the prenatal period, leading to alterations in adult bulbar neurogenesis and in olfactory capacities. To test this hypothesis we exposed pregnant C57Bl/6J mice to gestational restraint stress and evaluated behavioral and anatomic consequences in adult male offspring. We report that prenatal stress has no impact on adult bulbar neurogenesis, and does not alter olfactory functions in adult male mice. However, it decreases cell proliferation and neurogenesis in the DG of the hippocampus, thus confirming previous reports on rats. Altogether our data support a selective and cross-species long-term impact of prenatal stress on neurogenesis.

  5. Pannexin 1 regulates bidirectional hippocampal synaptic plasticity in adult mice.

    Science.gov (United States)

    Ardiles, Alvaro O; Flores-Muñoz, Carolina; Toro-Ayala, Gabriela; Cárdenas, Ana M; Palacios, Adrian G; Muñoz, Pablo; Fuenzalida, Marco; Sáez, Juan C; Martínez, Agustín D

    2014-01-01

    The threshold for bidirectional modification of synaptic plasticity is known to be controlled by several factors, including the balance between protein phosphorylation and dephosphorylation, postsynaptic free Ca(2+) concentration and NMDA receptor (NMDAR) composition of GluN2 subunits. Pannexin 1 (Panx1), a member of the integral membrane protein family, has been shown to form non-selective channels and to regulate the induction of synaptic plasticity as well as hippocampal-dependent learning. Although Panx1 channels have been suggested to play a role in excitatory long-term potentiation (LTP), it remains unknown whether these channels also modulate long-term depression (LTD) or the balance between both types of synaptic plasticity. To study how Panx1 contributes to excitatory synaptic efficacy, we examined the age-dependent effects of eliminating or blocking Panx1 channels on excitatory synaptic plasticity within the CA1 region of the mouse hippocampus. By using different protocols to induce bidirectional synaptic plasticity, Panx1 channel blockade or lack of Panx1 were found to enhance LTP, whereas both conditions precluded the induction of LTD in adults, but not in young animals. These findings suggest that Panx1 channels restrain the sliding threshold for the induction of synaptic plasticity and underlying brain mechanisms of learning and memory.

  6. Contribution of Hippocampal 5-HT3 Receptors in Hippocampal Autophagy and Extinction of Conditioned Fear Responses after a Single Prolonged Stress Exposure in Rats.

    Science.gov (United States)

    Wu, Zhong-Min; Yang, Li-Hua; Cui, Rong; Ni, Gui-Lian; Wu, Feng-Tian; Liang, Yong

    2017-05-01

    One of the hypotheses about the pathogenesis of posttraumatic stress disorder (PTSD) is the dysfunction of serotonin (5-HT) neurotransmission. While certain 5-HT receptor subtypes are likely critical for the symptoms of PTSD, few studies have examined the role of 5-HT 3 receptor in the development of PTSD, even though 5-HT 3 receptor is critical for contextual fear extinction and anxiety-like behavior. Therefore, we hypothesized that stimulation of 5-HT 3 receptor in the dorsal hippocampus (DH) could prevent hippocampal autophagy and the development of PTSD-like behavior in animals. To this end, we infused SR57227, selective 5-HT 3 agonist, into the DH after a single prolonged stress (SPS) treatment in rats. Three weeks later, we evaluated the effects of this pharmacological treatment on anxiety-related behaviors and extinction of contextual fear memory. We also accessed hippocampal autophagy and the expression of 5-HT 3A subunit, Beclin-1, LC3-I, and LC3-II in the DH. We found that SPS treatment did not alter anxiety-related behaviors but prolonged the extinction of contextual fear memory, and such a behavioral phenomenon was correlated with increased hippocampal autophagy, decreased 5-HT 3A expression, and increased expression of Beclin-1 and LC3-II/LC3-I ratio in the DH. Furthermore, intraDH infusions of SR57227 dose-dependently promoted the extinction of contextual fear memory, prevented hippocampal autophagy, and decreased expression of Beclin-1 and LC3-II/LC3-I ratio in the DH. These results indicated that 5-HT 3 receptor in the hippocampus may play a critical role in the pathogenesis of hippocampal autophagy, and is likely involved in the pathophysiology of PTSD.

  7. Moderate exercise ameliorates dysregulated hippocampal glycometabolism and memory function in a rat model of type 2 diabetes.

    Science.gov (United States)

    Shima, Takeru; Matsui, Takashi; Jesmin, Subrina; Okamoto, Masahiro; Soya, Mariko; Inoue, Koshiro; Liu, Yu-Fan; Torres-Aleman, Ignacio; McEwen, Bruce S; Soya, Hideaki

    2017-03-01

    Type 2 diabetes is likely to be an independent risk factor for hippocampal-based memory dysfunction, although this complication has yet to be investigated in detail. As dysregulated glycometabolism in peripheral tissues is a key symptom of type 2 diabetes, it is hypothesised that diabetes-mediated memory dysfunction is also caused by hippocampal glycometabolic dysfunction. If so, such dysfunction should also be ameliorated with moderate exercise by normalising hippocampal glycometabolism, since 4 weeks of moderate exercise enhances memory function and local hippocampal glycogen levels in normal animals. The hippocampal glycometabolism in OLETF rats (model of human type 2 diabetes) was assessed and, subsequently, the effects of exercise on memory function and hippocampal glycometabolism were investigated. OLETF rats, which have memory dysfunction, exhibited higher levels of glycogen in the hippocampus than did control rats, and breakdown of hippocampal glycogen with a single bout of exercise remained unimpaired. However, OLETF rats expressed lower levels of hippocampal monocarboxylate transporter 2 (MCT2, a transporter for lactate to neurons). Four weeks of moderate exercise improved spatial memory accompanied by further increase in hippocampal glycogen levels and restoration of MCT2 expression independent of neurotrophic factor and clinical symptoms in OLETF rats. Our findings are the first to describe detailed profiles of glycometabolism in the type 2 diabetic hippocampus and to show that 4 weeks of moderate exercise improves memory dysfunction in type 2 diabetes via amelioration of dysregulated hippocampal glycometabolism. Dysregulated hippocampal lactate-transport-related glycometabolism is a possible aetiology of type-2-diabetes-mediated memory dysfunction.

  8. Safety system for pressure suppression

    International Nuclear Information System (INIS)

    Wood, L.E.; Ludwig, G.J.; Tulsa, O.

    1975-01-01

    The rupture disk with rated breaking points is constrained by two supporting elements and has a convex-concave shape. For pressure suppression, it is reversable inversely to its bulging. Its surface has notches which are the rated breaking points and respond to higher pressures. The centre of the rupture disk contains an area of relatively smaller thickness that will burst at lower pressure and thus makes it applicable for lower pressures. For the response of the rupture disk centre, a thrust ring with a central opening may also be used. Its edge is formed into a convex-concave section supported on the edge of the rupture disk on the exit side. The free centre of the rupture disk is then the area of relative weakness. (RW/AK) [de

  9. MEK5 suppresses osteoblastic differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Kaneshiro, Shoichi [Department of Orthopaedic Surgery, Japan Community Health Care Organization Osaka Hospital, 4-2-78 Fukushima, Fukushima Ward, Osaka City, Osaka 553-0003 (Japan); Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Otsuki, Dai; Yoshida, Kiyoshi; Yoshikawa, Hideki [Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Higuchi, Chikahisa, E-mail: c-higuchi@umin.ac.jp [Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2015-07-31

    Extracellular signal-regulated kinase 5 (ERK5) is a member of the mitogen-activated protein kinase (MAPK) family and is activated by its upstream kinase, MAPK kinase 5 (MEK5), which is a member of the MEK family. Although the role of MEK5 has been investigated in several fields, little is known about its role in osteoblastic differentiation. In this study, we have demonstrated the role of MEK5 in osteoblastic differentiation in mouse preosteoblastic MC3T3-E1 cells and bone marrow stromal ST2 cells. We found that treatment with BIX02189, an inhibitor of MEK5, increased alkaline phosphatase (ALP) activity and the gene expression of ALP, osteocalcin (OCN) and osterix, as well as it enhanced the calcification of the extracellular matrix. Moreover, osteoblastic cell proliferation decreased at a concentration of greater than 0.5 μM. In addition, knockdown of MEK5 using siRNA induced an increase in ALP activity and in the gene expression of ALP, OCN, and osterix. In contrast, overexpression of wild-type MEK5 decreased ALP activity and attenuated osteoblastic differentiation markers including ALP, OCN and osterix, but promoted cell proliferation. In summary, our results indicated that MEK5 suppressed the osteoblastic differentiation, but promoted osteoblastic cell proliferation. These results implied that MEK5 may play a pivotal role in cell signaling to modulate the differentiation and proliferation of osteoblasts. Thus, inhibition of MEK5 signaling in osteoblasts may be of potential use in the treatment of osteoporosis. - Highlights: • MEK5 inhibitor BIX02189 suppresses proliferation of osteoblasts. • MEK5 knockdown and MEK5 inhibitor promote differentiation of osteoblasts. • MEK5 overexpression inhibits differentiation of osteoblasts.

  10. Hippocampal Mismatch Signals Are Modulated by the Strength of Neural Predictions and Their Similarity to Outcomes.

    Science.gov (United States)

    Long, Nicole M; Lee, Hongmi; Kuhl, Brice A

    2016-12-14

    The hippocampus is thought to compare predicted events with current perceptual input, generating a mismatch signal when predictions are violated. However, most prior studies have only inferred when predictions occur without measuring them directly. Moreover, an important but unresolved question is whether hippocampal mismatch signals are modulated by the degree to which predictions differ from outcomes. Here, we conducted a human fMRI study in which subjects repeatedly studied various word-picture pairs, learning to predict particular pictures (outcomes) from the words (cues). After initial learning, a subset of cues was paired with a novel, unexpected outcome, whereas other cues continued to predict the same outcome. Critically, when outcomes changed, the new outcome was either "near" to the predicted outcome (same visual category as the predicted picture) or "far" from the predicted outcome (different visual category). Using multivoxel pattern analysis, we indexed cue-evoked reactivation (prediction) within neocortical areas and related these trial-by-trial measures of prediction strength to univariate hippocampal responses to the outcomes. We found that prediction strength positively modulated hippocampal responses to unexpected outcomes, particularly when unexpected outcomes were close, but not identical, to the prediction. Hippocampal responses to unexpected outcomes were also associated with a tradeoff in performance during a subsequent memory test: relatively faster retrieval of new (updated) associations, but relatively slower retrieval of the original (older) associations. Together, these results indicate that hippocampal mismatch signals reflect a comparison between active predictions and current outcomes and that these signals are most robust when predictions are similar, but not identical, to outcomes. Although the hippocampus is widely thought to signal "mismatches" between memory-based predictions and outcomes, previous research has not linked

  11. Distinguishing Depressive Pseudodementia from Alzheimer Disease: A Comparative Study of Hippocampal Volumetry and Cognitive Tests

    Directory of Open Access Journals (Sweden)

    Sevki Sahin

    2017-07-01

    Full Text Available Background and Aim: Depressive pseudodementia (DPD is a condition which may develop secondary to depression. The aim of this study was to contribute to the differential diagnosis between Alzheimer disease (AD and DPD by comparing the neurocognitive tests and hippocampal volume. Materials and Methods: Patients who met criteria of AD/DPD were enrolled in the study. All patients were assessed using the Wechsler Memory Scale (WMS, clock-drawing test, Stroop test, Benton Facial Recognition Test (BFRT, Boston Naming Test, Mini-Mental State Examination (MMSE, and Geriatric Depression Scale (GDS. Hippocampal volume was measured by importing the coronal T1-weighted magnetic resonance images to the Vitrea 2 workstation. Results: A significant difference was found between the AD and DPD groups on the WMS test, clock-drawing test, Stroop test, Boston Naming Test, MMSE, GDS, and left hippocampal volume. A significant correlation between BFRT and bilateral hippocampal volumes was found in the AD group. No correlation was found among parameters in DPD patients. Conclusions: Our results suggest that evaluation of facial recognition and left hippocampal volume may provide more reliable evidence for distinguishing DPD from AD. Further investigations combined with functional imaging techniques including more patients are needed.

  12. An association between human hippocampal volume and topographical memory in healthy young adults.

    Science.gov (United States)

    Hartley, Tom; Harlow, Rachel

    2012-01-01

    The association between human hippocampal structure and topographical memory was investigated in healthy adults (N = 30). Structural MR images were acquired, and voxel-based morphometry (VBM) was used to estimate local gray matter volume throughout the brain. A complementary automated mesh-based segmentation approach was used to independently isolate and measure specified structures including the hippocampus. Topographical memory was assessed using a version of the Four Mountains Task, a short test designed to target hippocampal spatial function. Each item requires subjects to briefly study a landscape scene before recognizing the depicted place from a novel viewpoint and under altered non-spatial conditions when presented amongst similar alternative scenes. Positive correlations between topographical memory performance and hippocampal volume were observed in both VBM and segmentation-based analyses. Score on the topographical memory task was also correlated with the volume of some subcortical structures, extra-hippocampal gray matter, and total brain volume, with the most robust and extensive covariation seen in circumscribed neocortical regions in the insula and anterior temporal lobes. Taken together with earlier findings, the results suggest that global variat