WorldWideScience

Sample records for suppressed ka-induced hippocampal

  1. Rosiglitazone Suppresses In Vitro Seizures in Hippocampal Slice by Inhibiting Presynaptic Glutamate Release in a Model of Temporal Lobe Epilepsy.

    Directory of Open Access Journals (Sweden)

    Shi-Bing Wong

    Full Text Available Peroxisomal proliferator-activated receptor gamma (PPARγ is a nuclear hormone receptor whose agonist, rosiglitazone has a neuroprotective effect to hippocampal neurons in pilocarpine-induced seizures. Hippocampal slice preparations treated in Mg2+ free medium can induce ictal and interictal-like epileptiform discharges, which is regarded as an in vitro model of N-methyl-D-aspartate (NMDA receptor-mediated temporal lobe epilepsy (TLE. We applied rosiglitazone in hippocampal slices treated in Mg2+ free medium. The effects of rosiglitazone on hippocampal CA1-Schaffer collateral synaptic transmission were tested. We also examined the neuroprotective effect of rosiglitazone toward NMDA excitotoxicity on cultured hippocampal slices. Application of 10 μM rosiglitazone significantly suppressed amplitude and frequency of epileptiform discharges in CA1 neurons. Pretreatment with the PPARγ antagonist GW9662 did not block the effect of rosiglitazone on suppressing discharge frequency, but reverse the effect on suppressing discharge amplitude. Application of rosiglitazone suppressed synaptic transmission in the CA1-Schaffer collateral pathway. By miniature excitatory-potential synaptic current (mEPSC analysis, rosiglitazone significantly suppressed presynaptic neurotransmitter release. This phenomenon can be reversed by pretreating PPARγ antagonist GW9662. Also, rosiglitazone protected cultured hippocampal slices from NMDA-induced excitotoxicity. The protective effect of 10 μM rosiglitazone was partially antagonized by concomitant high dose GW9662 treatment, indicating that this effect is partially mediated by PPARγ receptors. In conclusion, rosiglitazone suppressed NMDA receptor-mediated epileptiform discharges by inhibition of presynaptic neurotransmitter release. Rosiglitazone protected hippocampal slice from NMDA excitotoxicity partially by PPARγ activation. We suggest that rosiglitazone could be a potential agent to treat patients with TLE.

  2. The synthetic cannabinoid HU210 induces spatial memory deficits and suppresses hippocampal firing rate in rats.

    Science.gov (United States)

    Robinson, L; Goonawardena, A V; Pertwee, R G; Hampson, R E; Riedel, G

    2007-07-01

    Previous work implied that the hippocampal cannabinoid system was particularly important in some forms of learning, but direct evidence for this hypothesis is scarce. We therefore assessed the effects of the synthetic cannabinoid HU210 on memory and hippocampal activity. HU210 (100 microg kg(-1)) was administered intraperitoneally to rats under three experimental conditions. One group of animals were pre-trained in spatial working memory using a delayed-matching-to-position task and effects of HU210 were assessed in a within-subject design. In another, rats were injected before acquisition learning of a spatial reference memory task with constant platform location. Finally, a separate group of animals was implanted with electrode bundles in CA1 and CA3 and single unit responses were isolated, before and after HU210 treatment. HU210 treatment had no effect on working or short-term memory. Relative to its control Tween 80, deficits in acquisition of a reference memory version of the water maze were obtained, along with drug-related effects on anxiety, motor activity and spatial learning. Deficits were not reversed by the CB(1) receptor antagonists SR141716A (3 mg kg(-1)) or AM281 (1.5 mg kg(-1)). Single unit recordings from principal neurons in hippocampal CA3 and CA1 confirmed HU210-induced attenuation of the overall firing activity lowering both the number of complex spikes fired and the occurrence of bursts. These data provide the first direct evidence that the underlying mechanism for the spatial memory deficits induced by HU210 in rats is the accompanying abnormality in hippocampal cell firing.

  3. A testbed to explore the optimal electrical stimulation parameters for suppressing inter-ictal spikes in human hippocampal slices.

    Science.gov (United States)

    Min-Chi Hsiao; Pen-Ning Yu; Dong Song; Liu, Charles Y; Heck, Christi N; Millett, David; Berger, Theodore W

    2014-01-01

    New interventions using neuromodulatory devices such as vagus nerve stimulation, deep brain stimulation and responsive neurostimulation are available or under study for the treatment of refractory epilepsy. Since the actual mechanisms of the onset and termination of the seizure are still unclear, most researchers or clinicians determine the optimal stimulation parameters through trial-and-error procedures. It is necessary to further explore what types of electrical stimulation parameters (these may include stimulation frequency, amplitude, duration, interval pattern, and location) constitute a set of optimal stimulation paradigms to suppress seizures. In a previous study, we developed an in vitro epilepsy model using hippocampal slices from patients suffering from mesial temporal lobe epilepsy. Using a planar multi-electrode array system, inter-ictal activity from human hippocampal slices was consistently recorded. In this study, we have further transferred this in vitro seizure model to a testbed for exploring the possible neurostimulation paradigms to inhibit inter-ictal spikes. The methodology used to collect the electrophysiological data, the approach to apply different electrical stimulation parameters to the slices are provided in this paper. The results show that this experimental testbed will provide a platform for testing the optimal stimulation parameters of seizure cessation. We expect this testbed will expedite the process for identifying the most effective parameters, and may ultimately be used to guide programming of new stimulating paradigms for neuromodulatory devices.

  4. Berberine prevents nigrostriatal dopaminergic neuronal loss and suppresses hippocampal apoptosis in mice with Parkinson's disease.

    Science.gov (United States)

    Kim, Mia; Cho, Ki-Ho; Shin, Mal-Soon; Lee, Jae-Min; Cho, Han-Sam; Kim, Chang-Ju; Shin, Dong-Hoon; Yang, Hyeon Jeong

    2014-04-01

    Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the selective loss of nigral dopaminergic neurons and a reduction in striatal dopaminergic fibers, which result in tremors, rigidity, bradykinesia and gait disturbance. In addition to motor dysfunction, dementia is a widely recognized symptom of patients with PD. Berberine, an isoquinoline alkaloid isolated from Berberis vulgaris L., is known to exert anxiolytic, analgesic, anti-inflammatory, antipsychotic, antidepressant and anti-amnesic effects. In the present study, we investigated the effects of berberine on short-term memory in relation to dopamine depletion and hippocampal neurogenesis using a mouse model of PD, induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid (MPTP/P) treatment. Mice in the berberine-treated groups were orally administered berberine once a day for a total of 5 weeks. Our results revealed that the injection of MPTP/P induced dopaminergic neuronal death in the substantia nigra and fiber loss in the striatum. This resulted in impaired motor balance and coordination, as assessed by the beam walking test. We further demonstrated that MPTP/P-induced apoptosis in the hippocampus deteriorated short-term memory, as shown by the step-down avoidance task. By contrast, neurogenesis in the hippocampal dentate gyrus, which is a compensatory adaptive response to excessive apoptosis, was increased upon PD induction. However, treatment with berberine enhanced motor balance and coordination by preventing dopaminergic neuronal damage. Treatment with berberine also improved short-term memory by inhibiting apoptosis in the hippocampus. Berberine demonstrated maximal potency at 50 mg/kg. Based on these data, treatment with berberine may serve as a potential therapeutic strategy for the alleviation of memory impairment and motor dysfunction in patients with PD.

  5. Developmental exposure of aflatoxin B1 reversibly affects hippocampal neurogenesis targeting late-stage neural progenitor cells through suppression of cholinergic signaling in rats

    International Nuclear Information System (INIS)

    Tanaka, Takeshi; Mizukami, Sayaka; Hasegawa-Baba, Yasuko; Onda, Nobuhiko; Sugita-Konishi, Yoshiko; Yoshida, Toshinori; Shibutani, Makoto

    2015-01-01

    Highlights: • Maternal AFB 1 exposure effect on hippocampal neurogenesis was examined in rats. • AFB 1 reversibly reduced cell proliferation and type-3 progenitor cells in the SGZ. • Suppressed cholinergic signals to GABAergic interneurons may reduce type-3 cells. • Suppressed BDNF–TRKB signaling may contribute to aberration of neurogenesis. • The NOAEL for offspring was determined to be 0.1 ppm (7.1–13.6 μg/kg BW/day). - Abstract: To elucidate the maternal exposure effects of aflatoxin B 1 (AFB 1 ) and its metabolite aflatoxin M 1 , which is transferred into milk, on postnatal hippocampal neurogenesis, pregnant Sprague-Dawley rats were provided a diet containing AFB 1 at 0, 0.1, 0.3, or 1.0 ppm from gestational day 6 to day 21 after delivery on weaning. Offspring were maintained through postnatal day (PND) 77 without AFB 1 exposure. Following exposure to 1.0 ppm AFB 1 , offspring showed no apparent systemic toxicity at weaning, whereas dams showed increased liver weight and DNA repair gene upregulation in the liver. In the hippocampal dentate gyrus of male PND 21 offspring, the number of doublecortin + progenitor cells were decreased, which was associated with decreased proliferative cell population in the subgranular zone at ≥0.3 ppm, although T-box brain 2 + cells, tubulin beta III + cells, gamma-H2A histone family, member X + cells, and cyclin-dependent kinase inhibitor 1A + cells did not fluctuate in number. AFB 1 exposure examined at 1.0 ppm also resulted in transcript downregulation of the cholinergic receptor subunit Chrna7 and dopaminergic receptor Drd2 in the dentate gyrus, although there was no change in transcript levels of DNA repair genes. In the hippocampal dentate hilus, interneurons expressing CHRNA7 or phosphorylated tropomyosin receptor kinase B (TRKB) decreased at ≥0.3 ppm. On PND 77, there were no changes in neurogenesis-related parameters. These results suggested that maternal AFB 1 exposure reversibly affects hippocampal

  6. Thiamine and benfotiamine prevent stress-induced suppression of hippocampal neurogenesis in mice exposed to predation without affecting brain thiamine diphosphate levels.

    Science.gov (United States)

    Vignisse, Julie; Sambon, Margaux; Gorlova, Anna; Pavlov, Dmitrii; Caron, Nicolas; Malgrange, Brigitte; Shevtsova, Elena; Svistunov, Andrey; Anthony, Daniel C; Markova, Natalyia; Bazhenova, Natalyia; Coumans, Bernard; Lakaye, Bernard; Wins, Pierre; Strekalova, Tatyana; Bettendorff, Lucien

    2017-07-01

    Thiamine is essential for normal brain function and its deficiency causes metabolic impairment, specific lesions, oxidative damage and reduced adult hippocampal neurogenesis (AHN). Thiamine precursors with increased bioavailability, especially benfotiamine, exert neuroprotective effects not only for thiamine deficiency (TD), but also in mouse models of neurodegeneration. As it is known that AHN is impaired by stress in rodents, we exposed C57BL6/J mice to predator stress for 5 consecutive nights and studied the proliferation (number of Ki67-positive cells) and survival (number of BrdU-positive cells) of newborn immature neurons in the subgranular zone of the dentate gyrus. In stressed mice, the number of Ki67- and BrdU-positive cells was reduced compared to non-stressed animals. This reduction was prevented when the mice were treated (200mg/kg/day in drinking water for 20days) with thiamine or benfotiamine, that were recently found to prevent stress-induced behavioral changes and glycogen synthase kinase-3β (GSK-3β) upregulation in the CNS. Moreover, we show that thiamine and benfotiamine counteract stress-induced bodyweight loss and suppress stress-induced anxiety-like behavior. Both treatments induced a modest increase in the brain content of free thiamine while the level of thiamine diphosphate (ThDP) remained unchanged, suggesting that the beneficial effects observed are not linked to the role of this coenzyme in energy metabolism. Predator stress increased hippocampal protein carbonylation, an indicator of oxidative stress. This effect was antagonized by both thiamine and benfotiamine. Moreover, using cultured mouse neuroblastoma cells, we show that in particular benfotiamine protects against paraquat-induced oxidative stress. We therefore hypothesize that thiamine compounds may act by boosting anti-oxidant cellular defenses, by a mechanism that still remains to be unveiled. Our study demonstrates, for the first time, that thiamine and benfotiamine prevent

  7. Elaboration versus suppression of cued memories: influence of memory recall instruction and success on parietal lobe, default network, and hippocampal activity.

    Science.gov (United States)

    Gimbel, Sarah I; Brewer, James B

    2014-01-01

    Functional imaging studies of episodic memory retrieval consistently report task-evoked and memory-related activity in the medial temporal lobe, default network and parietal lobe subregions. Associated components of memory retrieval, such as attention-shifts, search, retrieval success, and post-retrieval processing also influence regional activity, but these influences remain ill-defined. To better understand how top-down control affects the neural bases of memory retrieval, we examined how regional activity responses were modulated by task goals during recall success or failure. Specifically, activity was examined during memory suppression, recall, and elaborative recall of paired-associates. Parietal lobe was subdivided into dorsal (BA 7), posterior ventral (BA 39), and anterior ventral (BA 40) regions, which were investigated separately to examine hypothesized distinctions in sub-regional functional responses related to differential attention-to-memory and memory strength. Top-down suppression of recall abolished memory strength effects in BA 39, which showed a task-negative response, and BA 40, which showed a task-positive response. The task-negative response in default network showed greater negatively-deflected signal for forgotten pairs when task goals required recall. Hippocampal activity was task-positive and was influenced by memory strength only when task goals required recall. As in previous studies, we show a memory strength effect in parietal lobe and hippocampus, but we show that this effect is top-down controlled and sensitive to whether the subject is trying to suppress or retrieve a memory. These regions are all implicated in memory recall, but their individual activity patterns show distinct memory-strength-related responses when task goals are varied. In parietal lobe, default network, and hippocampus, top-down control can override the commonly identified effects of memory strength.

  8. Elaboration versus suppression of cued memories: influence of memory recall instruction and success on parietal lobe, default network, and hippocampal activity.

    Directory of Open Access Journals (Sweden)

    Sarah I Gimbel

    Full Text Available Functional imaging studies of episodic memory retrieval consistently report task-evoked and memory-related activity in the medial temporal lobe, default network and parietal lobe subregions. Associated components of memory retrieval, such as attention-shifts, search, retrieval success, and post-retrieval processing also influence regional activity, but these influences remain ill-defined. To better understand how top-down control affects the neural bases of memory retrieval, we examined how regional activity responses were modulated by task goals during recall success or failure. Specifically, activity was examined during memory suppression, recall, and elaborative recall of paired-associates. Parietal lobe was subdivided into dorsal (BA 7, posterior ventral (BA 39, and anterior ventral (BA 40 regions, which were investigated separately to examine hypothesized distinctions in sub-regional functional responses related to differential attention-to-memory and memory strength. Top-down suppression of recall abolished memory strength effects in BA 39, which showed a task-negative response, and BA 40, which showed a task-positive response. The task-negative response in default network showed greater negatively-deflected signal for forgotten pairs when task goals required recall. Hippocampal activity was task-positive and was influenced by memory strength only when task goals required recall. As in previous studies, we show a memory strength effect in parietal lobe and hippocampus, but we show that this effect is top-down controlled and sensitive to whether the subject is trying to suppress or retrieve a memory. These regions are all implicated in memory recall, but their individual activity patterns show distinct memory-strength-related responses when task goals are varied. In parietal lobe, default network, and hippocampus, top-down control can override the commonly identified effects of memory strength.

  9. U-shape suppressive effect of phenol red on the epileptiform burst activity via activation of estrogen receptors in primary hippocampal culture.

    Directory of Open Access Journals (Sweden)

    Xu Liu

    Full Text Available Phenol red is widely used in cell culture as a pH indicator. Recently, it also has been reported to have estrogen-like bioactivity and be capable of promoting cell proliferation in different cell lines. However, the effect of phenol red on primary neuronal culture has never been investigated. By using patch clamp technique, we demonstrated that hippocampal pyramidal neurons cultured in neurobasal medium containing no phenol red had large depolarization-associated epileptiform bursting activities, which were rarely seen in neurons cultured in phenol red-containing medium. Further experiment data indicate that the suppressive effect of the phenol red on the abnormal epileptiform burst neuronal activities was U-shape dose related, with the most effective concentration at 28 µM. In addition, this concentration related inhibitory effect of phenol red on the epileptiform neuronal discharges was mimicked by 17-β-estradiol, an estrogen receptor agonist, and inhibited by ICI-182,780, an estrogen receptor antagonist. Our results suggest that estrogen receptor activation by phenol red in the culture medium prevents formation of abnormal, epileptiform burst activity. These studies highlight the importance of phenol red as estrogen receptor stimulator and cautions of careful use of phenol red in cell culture media.

  10. Caffeine suppresses exercise-enhanced long-term and location memory in middle-aged rats: Involvement of hippocampal Akt and CREB signaling.

    Science.gov (United States)

    Cechella, José L; Leite, Marlon R; da Rocha, Juliana T; Dobrachinski, Fernando; Gai, Bibiana M; Soares, Félix A A; Bresciani, Guilherme; Royes, Luiz F F; Zeni, Gilson

    2014-11-05

    The cognitive function decline is closely related with brain changes generated by age. The ability of caffeine and exercise to prevent memory impairment has been reported in animal models and humans. The purpose of the present study was to investigate whether swimming exercise and caffeine administration enhance memory in middle-aged Wistar rats. Male Wistar rats (18months) received caffeine at a dose of 30mg/kg, 5days per week by a period of 4weeks. Animals were subjected to swimming training with a workload (3% of body weight, 20min per day for 4weeks). After 4weeks, the object recognition test (ORT) and the object location test (OLT) were performed. The results of this study demonstrated that caffeine suppressed exercise-enhanced long-term (ORT) and spatial (OLT) memory in middle-aged and this effect may be related to a decrease in hippocampal p-CREB signaling. This study also provided evidence that the effects of this protocol on memory were not accompanied by alterations in the levels of activated Akt. The [(3)H] glutamate uptake was reduced in hippocampus of rats administered with caffeine and submitted to swimming protocol. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Effect of pertussis and cholera toxins administered supraspinally on CA3 hippocampal neuronal cell death and the blood glucose level induced by kainic acid in mice.

    Science.gov (United States)

    Kim, Chea-Ha; Park, Soo-Hyun; Sim, Yun-Beom; Sharma, Naveen; Kim, Sung-Su; Lim, Su-Min; Jung, Jun-Sub; Suh, Hong-Won

    2014-12-01

    The effect of cholera toxin (CTX) or pertussis toxin (PTX) administered supraspinally on hippocampal neuronal cell death in CA3 region induced by kainic acid (KA) was examined in mice. After the pretreatment with either PTX or CTX intracerebroventricularly (i.c.v.), mice were administered i.c.v. with KA. The i.c.v. treatment with KA caused a neuronal cell death in CA3 region and PTX, but not CTX, attenuated the KA-induced neuronal cell death. In addition, i.c.v. treatment with KA caused an elevation of the blood glucose level. The i.c.v. PTX pretreatment alone caused a hypoglycemia and inhibited KA-induced hyperglycemic effect. However, i.c.v. pretreatment with CTX did not affect the basal blood glucose level and KA-induced hyperglycemic effect. Moreover, KA administered i.c.v. caused an elevation of corticosterone level and reduction of the blood insulin level. Whereas, i.c.v. pretreatment with PTX further enhanced KA-induced up-regulation of corticosterone level. Furthermore, i.c.v. administration of PTX alone increased the insulin level and KA-induced hypoinsulinemic effect was reversed. In addition, PTX pretreatment reduces the KA-induced seizure activity. Our results suggest that supraspinally administered PTX, exerts neuroprotective effect against KA-induced neuronal cells death in CA3 region and neuroprotective effect of PTX is mediated by the reduction of KA-induced blood glucose level. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  12. A high-fat high-sugar diet predicts poorer hippocampal-related memory and a reduced ability to suppress wanting under satiety.

    Science.gov (United States)

    Attuquayefio, Tuki; Stevenson, Richard J; Boakes, Robert A; Oaten, Megan J; Yeomans, Martin R; Mahmut, Mehmet; Francis, Heather M

    2016-10-01

    Animal data indicate that greater intake of fats and sugars prevalent in a Western diet impairs hippocampal memory and tests of behavioral inhibition known to be related to hippocampal function (e.g., feature negative discrimination tasks). It has been argued that such high-fat high-sugar diets (HFS) impair the hippocampus, which then becomes less sensitive to modulation by physiological state. Thus retrieval of motivationally salient memories (e.g., when seeing or smelling food) occurs irrespective of state. Here we examine whether evidence of similar effects can be observed in humans using a correlational design. Healthy human participants (N = 94), who varied in their habitual consumption of a HFS diet, completed the verbal paired-associate (VPA) test, a known hippocampal-dependent process, as well as liking and wanting ratings of palatable snack foods, assessed both when hungry and when sated. Greater intake of a HFS diet was significantly associated with a slower VPA learning rate, as predicted. Importantly, for those who regularly consumed a HFS diet, though reductions in liking and wanting occurred between hungry and sated states, the reduction in wanting was far smaller relative to liking. The latter effect was strongly related to VPA learning rate, suggestive of hippocampal mediation. In agreement with the animal literature, human participants with a greater intake of a HFS diet show deficits in hippocampal-dependent learning and memory, and their desire to consume palatable food is less affected by physiological state-a process we suggest that is also hippocampal related. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  13. Tetramethylpyrazine suppresses transient oxygen-glucose deprivation-induced connexin32 expression and cell apoptosis via the ERK1/2 and p38 MAPK pathway in cultured hippocampal neurons.

    Science.gov (United States)

    Gong, Gu; Yuan, Libang; Cai, Lin; Ran, Maorong; Zhang, Yulan; Gong, Huaqu; Dai, Xuemei; Wu, Wei; Dong, Hailong

    2014-01-01

    Tetramethylpyrazine (TMP) has been widely used in China as a drug for the treatment of various diseases. Recent studies have suggested that TMP has a protective effect on ischemic neuronal damage. However, the exact mechanism is still unclear. This study aims to investigate the mechanism of TMP mediated ischemic hippocampal neurons injury induced by oxygen-glucose deprivation (OGD). The effect of TMP on hippocampal neurons viability was detected by MTT assay, LDH release assay and apoptosis rate was measured by flow cytometry. TMP significantly suppressed neuron apoptosis in a concentration-dependent manner. TMP could significantly reduce the elevated levels of connexin32 (Cx32) induced by OGD. Knockdown of Cx32 by siRNA attenuated OGD injury. Moreover, our study showed that viability was increased in siRNA-Cx32-treated-neurons, and neuron apoptosis was suppressed by activating Bcl-2 expression and inhibiting Bax expression. Over expression of Cx32 could decrease neurons viability and increase LDH release. Furthermore, OGD increased phosphorylation of ERK1/2 and p38, whose inhibitors relieved the neuron injury and Cx32 up-regulation. Taken together, TMP can reverse the OGD-induced Cx32 expression and cell apoptosis via the ERK1/2 and p38 MAPK pathways.

  14. Tetramethylpyrazine suppresses transient oxygen-glucose deprivation-induced connexin32 expression and cell apoptosis via the ERK1/2 and p38 MAPK pathway in cultured hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    Gu Gong

    Full Text Available Tetramethylpyrazine (TMP has been widely used in China as a drug for the treatment of various diseases. Recent studies have suggested that TMP has a protective effect on ischemic neuronal damage. However, the exact mechanism is still unclear. This study aims to investigate the mechanism of TMP mediated ischemic hippocampal neurons injury induced by oxygen-glucose deprivation (OGD. The effect of TMP on hippocampal neurons viability was detected by MTT assay, LDH release assay and apoptosis rate was measured by flow cytometry. TMP significantly suppressed neuron apoptosis in a concentration-dependent manner. TMP could significantly reduce the elevated levels of connexin32 (Cx32 induced by OGD. Knockdown of Cx32 by siRNA attenuated OGD injury. Moreover, our study showed that viability was increased in siRNA-Cx32-treated-neurons, and neuron apoptosis was suppressed by activating Bcl-2 expression and inhibiting Bax expression. Over expression of Cx32 could decrease neurons viability and increase LDH release. Furthermore, OGD increased phosphorylation of ERK1/2 and p38, whose inhibitors relieved the neuron injury and Cx32 up-regulation. Taken together, TMP can reverse the OGD-induced Cx32 expression and cell apoptosis via the ERK1/2 and p38 MAPK pathways.

  15. Prior Activation of Inositol 1,4,5-Trisphosphate Receptors Suppresses the Subsequent Induction of Long-Term Potentiation in Hippocampal CA1 Neurons

    Science.gov (United States)

    Fujii, Satoshi; Yamazaki, Yoshihiko; Goto, Jun-Ichi; Fujiwara, Hiroki; Mikoshiba, Katsuhiko

    2016-01-01

    We investigated the role of inositol 1,4,5-trisphosphate receptors (IP3Rs) activated by preconditioning low-frequency afferent stimulation (LFS) in the subsequent induction of long-term potentiation (LTP) in CA1 neurons in hippocampal slices from mature guinea pigs. Induction of LTP in the field excitatory postsynaptic potential or the population…

  16. Neuroprotective Effect of Uncaria rhynchophylla in Kainic Acid-Induced Epileptic Seizures by Modulating Hippocampal Mossy Fiber Sprouting, Neuron Survival, Astrocyte Proliferation, and S100B Expression.

    Science.gov (United States)

    Liu, Chung-Hsiang; Lin, Yi-Wen; Tang, Nou-Ying; Liu, Hsu-Jan; Hsieh, Ching-Liang

    2012-01-01

    Uncaria rhynchophylla (UR), which is a traditional Chinese medicine, has anticonvulsive effect in our previous studies, and the cellular mechanisms behind this are still little known. Because of this, we wanted to determine the importance of the role of UR on kainic acid- (KA-) induced epilepsy. Oral UR for 6 weeks can successfully attenuate the onset of epileptic seizure in animal tests. Hippocampal mossy fiber sprouting dramatically decreased, while neuronal survival increased with UR treatment in hippocampal CA1 and CA3 areas. Furthermore, oral UR for 6 weeks significantly attenuated the overexpression of astrocyte proliferation and S100B proteins but not γ-aminobutyric acid A (GABA(A)) receptors. These results indicate that oral UR for 6 weeks can successfully attenuate mossy fiber sprouting, astrocyte proliferation, and S100B protein overexpression and increase neuronal survival in KA-induced epileptic rat hippocampus.

  17. Neuroprotective Effect of Uncaria rhynchophylla in Kainic Acid-Induced Epileptic Seizures by Modulating Hippocampal Mossy Fiber Sprouting, Neuron Survival, Astrocyte Proliferation, and S100B Expression

    Directory of Open Access Journals (Sweden)

    Chung-Hsiang Liu

    2012-01-01

    Full Text Available Uncaria rhynchophylla (UR, which is a traditional Chinese medicine, has anticonvulsive effect in our previous studies, and the cellular mechanisms behind this are still little known. Because of this, we wanted to determine the importance of the role of UR on kainic acid- (KA- induced epilepsy. Oral UR for 6 weeks can successfully attenuate the onset of epileptic seizure in animal tests. Hippocampal mossy fiber sprouting dramatically decreased, while neuronal survival increased with UR treatment in hippocampal CA1 and CA3 areas. Furthermore, oral UR for 6 weeks significantly attenuated the overexpression of astrocyte proliferation and S100B proteins but not γ-aminobutyric acid A (GABAA receptors. These results indicate that oral UR for 6 weeks can successfully attenuate mossy fiber sprouting, astrocyte proliferation, and S100B protein overexpression and increase neuronal survival in KA-induced epileptic rat hippocampus

  18. Neuroprotective Effect of Uncaria rhynchophylla in Kainic Acid-Induced Epileptic Seizures by Modulating Hippocampal Mossy Fiber Sprouting, Neuron Survival, Astrocyte Proliferation, and S100B Expression

    OpenAIRE

    Chung-Hsiang Liu; Yi-Wen Lin; Nou-Ying Tang; Hsu-Jan Liu; Ching-Liang Hsieh

    2012-01-01

    Uncaria rhynchophylla (UR), which is a traditional Chinese medicine, has anticonvulsive effect in our previous studies, and the cellular mechanisms behind this are still little known. Because of this, we wanted to determine the importance of the role of UR on kainic acid- (KA-) induced epilepsy. Oral UR for 6 weeks can successfully attenuate the onset of epileptic seizure in animal tests. Hippocampal mossy fiber sprouting dramatically decreased, while neuronal survival increased with UR treat...

  19. 56Fe particle exposure results in a long-lasting increase in a cellular index of genomic instability and transiently suppresses adult hippocampal neurogenesis in vivo

    Science.gov (United States)

    DeCarolis, Nathan A.; Rivera, Phillip D.; Ahn, Francisca; Amaral, Wellington Z.; LeBlanc, Junie A.; Malhotra, Shveta; Shih, Hung-Ying; Petrik, David; Melvin, Neal R.; Chen, Benjamin P. C.; Eisch, Amelia J.

    2014-07-01

    The high-LET HZE particles from galactic cosmic radiation pose tremendous health risks to astronauts, as they may incur sub-threshold brain injury or maladaptations that may lead to cognitive impairment. The health effects of HZE particles are difficult to predict and unfeasible to prevent. This underscores the importance of estimating radiation risks to the central nervous system as a whole as well as to specific brain regions like the hippocampus, which is central to learning and memory. Given that neurogenesis in the hippocampus has been linked to learning and memory, we investigated the response and recovery of neurogenesis and neural stem cells in the adult mouse hippocampal dentate gyrus after HZE particle exposure using two nestin transgenic reporter mouse lines to label and track radial glia stem cells (Nestin-GFP and Nestin-CreERT2/R26R:YFP mice, respectively). Mice were subjected to 56Fe particle exposure (0 or 1 Gy, at either 300 or 1000 MeV/n) and brains were harvested at early (24 h), intermediate (7 d), and/or long time points (2-3 mo) post-irradiation. 56Fe particle exposure resulted in a robust increase in 53BP1+ foci at both the intermediate and long time points post-irradiation, suggesting long-term genomic instability in the brain. However, 56Fe particle exposure only produced a transient decrease in immature neuron number at the intermediate time point, with no significant decrease at the long time point post-irradiation. 56Fe particle exposure similarly produced a transient decrease in dividing progenitors, with fewer progenitors labeled at the early time point but equal number labeled at the intermediate time point, suggesting a recovery of neurogenesis. Notably, 56Fe particle exposure did not change the total number of nestin-expressing neural stem cells. These results highlight that despite the persistence of an index of genomic instability, 56Fe particle-induced deficits in adult hippocampal neurogenesis may be transient. These data support

  20. Developmental cuprizone exposure impairs oligodendrocyte lineages differentially in cortical and white matter tissues and suppresses glutamatergic neurogenesis signals and synaptic plasticity in the hippocampal dentate gyrus of rats

    International Nuclear Information System (INIS)

    Abe, Hajime; Saito, Fumiyo; Tanaka, Takeshi; Mizukami, Sayaka; Hasegawa-Baba, Yasuko; Imatanaka, Nobuya; Akahori, Yumi; Yoshida, Toshinori; Shibutani, Makoto

    2016-01-01

    Developmental cuprizone (CPZ) exposure impairs rat hippocampal neurogenesis. Here, we captured the developmental neurotoxicity profile of CPZ using a region-specific expression microarray analysis in the hippocampal dentate gyrus, corpus callosum, cerebral cortex and cerebellar vermis of rat offspring exposed to 0, 0.1, or 0.4% CPZ in the maternal diet from gestation day 6 to postnatal day (PND) 21. Transcripts of those genes identified as altered were subjected to immunohistochemical analysis on PNDs 21 and 77. Our results showed that transcripts for myelinogenesis-related genes, including Cnp, were selectively downregulated in the cerebral cortex by CPZ at ≥ 0.1% or 0.4% on PND 21. CPZ at 0.4% decreased immunostaining intensity for 2′,3′-cyclic-nucleotide 3′-phosphodiesterase (CNPase) and CNPase + and OLIG2 + oligodendrocyte densities in the cerebral cortex, whereas CNPase immunostaining intensity alone was decreased in the corpus callosum. By contrast, a striking transcript upregulation for Klotho gene and an increased density of Klotho + oligodendrocytes were detected in the corpus callosum at ≥ 0.1%. In the dentate gyrus, CPZ at ≥ 0.1% or 0.4% decreased the transcript levels for Gria1, Grin2a and Ptgs2, genes related to the synapse and synaptic transmission, and the number of GRIA1 + and GRIN2A + hilar γ-aminobutyric acid (GABA)-ergic interneurons and cyclooxygenase-2 + granule cells. All changes were reversed at PND 77. Thus, developmental CPZ exposure reversibly decreased mature oligodendrocytes in both cortical and white matter tissues, and Klotho protected white matter oligodendrocyte growth. CPZ also reversibly targeted glutamatergic signals of GABAergic interneuron to affect dentate gyrus neurogenesis and synaptic plasticity in granule cells. - Highlights: • We examined developmental cuprizone (CPZ) neurotoxicity in maternally exposed rats. • Multiple brain region-specific global gene expression profiling was performed. • CPZ decreased

  1. Developmental cuprizone exposure impairs oligodendrocyte lineages differentially in cortical and white matter tissues and suppresses glutamatergic neurogenesis signals and synaptic plasticity in the hippocampal dentate gyrus of rats

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Hajime [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193 (Japan); Saito, Fumiyo [Chemicals Evaluation and Research Institute, Japan, 1-4-25 Koraku, Bunkyo-ku, Tokyo 112-0004 (Japan); Tanaka, Takeshi; Mizukami, Sayaka [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193 (Japan); Hasegawa-Baba, Yasuko [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Imatanaka, Nobuya; Akahori, Yumi [Chemicals Evaluation and Research Institute, Japan, 1-4-25 Koraku, Bunkyo-ku, Tokyo 112-0004 (Japan); Yoshida, Toshinori [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Shibutani, Makoto, E-mail: mshibuta@cc.tuat.ac.jp [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan)

    2016-01-01

    Developmental cuprizone (CPZ) exposure impairs rat hippocampal neurogenesis. Here, we captured the developmental neurotoxicity profile of CPZ using a region-specific expression microarray analysis in the hippocampal dentate gyrus, corpus callosum, cerebral cortex and cerebellar vermis of rat offspring exposed to 0, 0.1, or 0.4% CPZ in the maternal diet from gestation day 6 to postnatal day (PND) 21. Transcripts of those genes identified as altered were subjected to immunohistochemical analysis on PNDs 21 and 77. Our results showed that transcripts for myelinogenesis-related genes, including Cnp, were selectively downregulated in the cerebral cortex by CPZ at ≥ 0.1% or 0.4% on PND 21. CPZ at 0.4% decreased immunostaining intensity for 2′,3′-cyclic-nucleotide 3′-phosphodiesterase (CNPase) and CNPase{sup +} and OLIG2{sup +} oligodendrocyte densities in the cerebral cortex, whereas CNPase immunostaining intensity alone was decreased in the corpus callosum. By contrast, a striking transcript upregulation for Klotho gene and an increased density of Klotho{sup +} oligodendrocytes were detected in the corpus callosum at ≥ 0.1%. In the dentate gyrus, CPZ at ≥ 0.1% or 0.4% decreased the transcript levels for Gria1, Grin2a and Ptgs2, genes related to the synapse and synaptic transmission, and the number of GRIA1{sup +} and GRIN2A{sup +} hilar γ-aminobutyric acid (GABA)-ergic interneurons and cyclooxygenase-2{sup +} granule cells. All changes were reversed at PND 77. Thus, developmental CPZ exposure reversibly decreased mature oligodendrocytes in both cortical and white matter tissues, and Klotho protected white matter oligodendrocyte growth. CPZ also reversibly targeted glutamatergic signals of GABAergic interneuron to affect dentate gyrus neurogenesis and synaptic plasticity in granule cells. - Highlights: • We examined developmental cuprizone (CPZ) neurotoxicity in maternally exposed rats. • Multiple brain region-specific global gene expression profiling

  2. Ulinastatin suppresses lipopolysaccharide induced neuro-inflammation through the downregulation of nuclear factor-κB in SD rat hippocampal astrocyte

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuting; Zhao, Lei; Fu, Huiqun [Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, 100053 Beijing (China); Wu, Yan [Department of Anatomy, Capital Medical University, 100069 Beijing (China); Wang, Tianlong, E-mail: litingliting258@163.com [Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, 100053 Beijing (China)

    2015-03-20

    Astrocyte activation plays a pivotal role in neuroinflammation, which contributes to neuronal damage, so the inhibition of astrocyte activation may alleviate the progression of neurodegeneration. Recent studies have proved that urinary trypsin inhibitor ulinastatin could inhibit NF-kB activation. In our study, the inhibitory effects of ulinastatin on the production of pro-inflammatory mediators were investigated in lipopolysaccharide (LPS)-reduced primary astrocyte. Our results showed that ulinastatin significantly inhibited LPS-induced astrogliosis, which is measured by MTT and BrdU. Ulinastatin decreased the production of pro-inflammatory cytokines, such as TNF-α, IL-6, IL-1β, it significantly decreased both the mRNA and the protein levels of these pro-inflammatory cytokines and also increased the protein levels of IκB-α binded to NF-κB, which blocked NF-κB translocation to the nucleus and prevented its activity. Our results suggest that ulinastatin is able to inhibit neuroinflammation by interfering with NF-κB signaling. The study provides direct evidence of potential therapy methods of ulinastatin for the treatment of neuroinflammatory diseases. - Highlights: • The anti-inflammatory effect of UTI on hippocampal astrocyte. • UTI showed protective effect on neuroinflammation by the downregulation of NF-κB. • UTI led to expression of cytokines decreased in concentration and time dependence.

  3. Ulinastatin suppresses lipopolysaccharide induced neuro-inflammation through the downregulation of nuclear factor-κB in SD rat hippocampal astrocyte

    International Nuclear Information System (INIS)

    Li, Yuting; Zhao, Lei; Fu, Huiqun; Wu, Yan; Wang, Tianlong

    2015-01-01

    Astrocyte activation plays a pivotal role in neuroinflammation, which contributes to neuronal damage, so the inhibition of astrocyte activation may alleviate the progression of neurodegeneration. Recent studies have proved that urinary trypsin inhibitor ulinastatin could inhibit NF-kB activation. In our study, the inhibitory effects of ulinastatin on the production of pro-inflammatory mediators were investigated in lipopolysaccharide (LPS)-reduced primary astrocyte. Our results showed that ulinastatin significantly inhibited LPS-induced astrogliosis, which is measured by MTT and BrdU. Ulinastatin decreased the production of pro-inflammatory cytokines, such as TNF-α, IL-6, IL-1β, it significantly decreased both the mRNA and the protein levels of these pro-inflammatory cytokines and also increased the protein levels of IκB-α binded to NF-κB, which blocked NF-κB translocation to the nucleus and prevented its activity. Our results suggest that ulinastatin is able to inhibit neuroinflammation by interfering with NF-κB signaling. The study provides direct evidence of potential therapy methods of ulinastatin for the treatment of neuroinflammatory diseases. - Highlights: • The anti-inflammatory effect of UTI on hippocampal astrocyte. • UTI showed protective effect on neuroinflammation by the downregulation of NF-κB. • UTI led to expression of cytokines decreased in concentration and time dependence

  4. Characterization of stress-induced suppression of long-term potentiation in the hippocampal CA1 field of freely moving rats.

    Science.gov (United States)

    Hirata, Riki; Togashi, Hiroko; Matsumoto, Machiko; Yamaguchi, Taku; Izumi, Takeshi; Yoshioka, Mitsuhiro

    2008-08-21

    Several lines of evidence have shown that exposure to stress impairs long-term potentiation (LTP) in the CA1 field of the hippocampus, but the detailed mechanisms for this effect remain to be clarified. The present study elucidated the synaptic mechanism of stress-induced LTP suppression in conscious, freely moving rats using electrophysiological approaches. Open field stress (i.e., novel environment stress) and elevated platform stress (i.e., uncontrollable stress) were employed. Basal synaptic transmission was significantly reduced during exposure to elevated platform stress but not during exposure to open field stress. LTP induction was blocked by elevated platform stress but not influenced by open field stress. Significant increases in serum corticosterone levels were observed in the elevated platform stress group compared with the open field stress group. Furthermore, LTP suppression induced by elevated platform stress was prevented by pretreatment with an anxiolytic drug diazepam (1 mg/kg, i.p.). These results suggest that stress-induced LTP suppression depends on the relative intensity of the stressor. The inhibitory synaptic response induced by an intense psychological stress, such as elevated platform stress, may be attributable to LTP impairment in the CA1 field of the hippocampus.

  5. Hyperexcitability and cell loss in kainate-treated hippocampal slice cultures

    DEFF Research Database (Denmark)

    Benedikz, Eirikur; Casaccia-Bonnefil, P; Stelzer, A

    1993-01-01

    Loss of hippocampal interneurons has been reported in patients with severe temporal lobe epilepsy and in animals treated with kainate. We investigated the relationship between KA induced epileptiform discharge and loss of interneurons in hippocampal slice cultures. Application of KA (1 micro......M) produced reversible epileptiform discharge without neurotoxicity. KA (5 microM), in contrast, produced irreversible epileptiform discharge and neurotoxicity, suggesting that the irreversible epileptiform discharge was required for the neuronal loss. Loss of CA3 pyramidal cells and parvalbumin......-like immunoreactive (PV-I) interneurons preceded loss of somatostatin-like immunoreactive (SS-I) interneurons suggesting a different time course of KA neurotoxicity in these subpopulations of interneurons....

  6. Cholinergic denervation of the hippocampal formation does not produce long-term changes in glucose metabolism

    International Nuclear Information System (INIS)

    Harrell, L.E.; Davis, J.N.

    1984-01-01

    Decreased glucose metabolism is found in Alzheimer's disease associated with a loss of cholinergic neurons. The relationship between the chronic cholinergic denervation produced by medial septal lesions and glucose metabolism was studied using 2-deoxy-D-[ 3 H]glucose in the rat hippocampal formation. Hippocampal glucose metabolism was increased 1 week after medial septal lesions. Three weeks after lesions, glucose metabolism was profoundly suppressed in all regions. By 3 months, intraregional hippocampal glucose metabolism had returned to control values. Our results demonstrate that chronic cholinergic denervation of the hippocampal formation does not result in permanent alterations of metabolic activity

  7. Neuroprotective Effects of α-Tocotrienol on Kainic Acid-Induced Neurotoxicity in Organotypic Hippocampal Slice Cultures

    Directory of Open Access Journals (Sweden)

    Bae Hwan Lee

    2013-09-01

    Full Text Available Vitamin E, such as alpha-tocopherol (ATPH and alpha-tocotrienol (ATTN, is a chain-breaking antioxidant that prevents the chain propagation step during lipid peroxidation. In the present study, we investigated the effects of ATTN on KA-induced neuronal death using organotypic hippocampal slice culture (OHSC and compared the neuroprotective effects of ATTN and ATPH. After 15 h KA (5 µM treatment, delayed neuronal death was detected in the CA3 region and reactive oxygen species (ROS formation and lipid peroxidation were also increased. Both co-treatment and post-treatment of ATPH (100 µM or ATTN (100 µM significantly increased the cell survival and reduced the number of TUNEL-positive cells in the CA3 region. Increased dichlorofluorescein (DCF fluorescence and levels of thiobarbiturate reactive substances (TBARS were decreased by ATPH and ATTN treatment. These data suggest that ATPH and ATTN treatment have protective effects on KA-induced cell death in OHSC. ATTN treatment tended to be more effective than ATPH treatment, even though there was no significant difference between ATPH and ATTN in co-treatment or post-treatment.

  8. Stress, depression and hippocampal damage

    Indian Academy of Sciences (India)

    Amongst the prime targets of stress in the brain is the hippocampus, which has high receptor ... effects on different hippocampal subfields (McEwen 1999). ... disorders, and decreases in hippocampal volume have been observed in patients of ...

  9. Modulation of Hippocampal Activity by Vagus Nerve Stimulation in Freely Moving Rats

    NARCIS (Netherlands)

    Larsen, L.E.; Wadman, W.J.; van Mierlo, P.; Delbeke, J.; Grimonprez, A.; Van Nieuwenhuyse, B.; Portelli, J.; Boon, P; Vonck, K.; Raedt, R.

    2015-01-01

    BACKGROUND: Vagus Nerve Stimulation (VNS) has seizure-suppressing effects but the underlying mechanism is not fully understood. To further elucidate the mechanisms underlying VNS-induced seizure suppression at a neurophysiological level, the present study examined effects of VNS on hippocampal

  10. Hippocampal MR volumetry

    Science.gov (United States)

    Haller, John W.; Botteron, K.; Brunsden, Barry S.; Sheline, Yvette I.; Walkup, Ronald K.; Black, Kevin J.; Gado, Mokhtar; Vannier, Michael W.

    1994-09-01

    Goal: To estimate hippocampal volumes from in vivo 3D magnetic resonance (MR) brain images and determine inter-rater and intra- rater repeatability. Objective: The precision and repeatability of hippocampal volume estimates using stereologic measurement methods is sought. Design: Five normal control and five schizophrenic subjects were MR scanned using a MPRAGE protocol. Fixed grid stereologic methods were used to estimate hippocampal volumes on a graphics workstation. The images were preprocessed using histogram analysis to standardize 3D MR image scaling from 16 to 8 bits and image volumes were interpolated to 0.5 mm3 isotropic voxels. The following variables were constant for the repeated stereologic measures: grid size, inter-slice distance (1.5 mm), voxel dimensions (0.5 mm3), number of hippocampi measured (10), total number of measurements per rater (40), and number of raters (5). Two grid sizes were tested to determine the coefficient of error associated with the number of sampled 'hits' (approximately 140 and 280) on the hippocampus. Starting slice and grid position were randomly varied to assure unbiased volume estimates. Raters were blind to subject identity, diagnosis, and side of the brain from which the image volumes were extracted and the order of subject presentation was randomized for each of the raters. Inter- and intra-rater intraclass correlation coefficients (ICC) were determined. Results: The data indicate excellent repeatability of fixed grid stereologic hippocampal volume measures when using an inter-slice distance of 1.5 mm and a 6.25 mm2 grid (inter-rater ICCs equals 0.86 - 0.97, intra- rater ICCs equals 0.85 - 0.97). One major advantage of the current study was the use of 3D MR data which significantly improved visualization of hippocampal boundaries by providing the ability to access simultaneous orthogonal views while counting stereological marks within the hippocampus. Conclusion: Stereological estimates of 3D volumes from 2D MR

  11. Food restriction reduces neurogenesis in the avian hippocampal formation.

    Directory of Open Access Journals (Sweden)

    Barbara-Anne Robertson

    Full Text Available The mammalian hippocampus is particularly vulnerable to chronic stress. Adult neurogenesis in the dentate gyrus is suppressed by chronic stress and by administration of glucocorticoid hormones. Post-natal and adult neurogenesis are present in the avian hippocampal formation as well, but much less is known about its sensitivity to chronic stressors. In this study, we investigate this question in a commercial bird model: the broiler breeder chicken. Commercial broiler breeders are food restricted during development to manipulate their growth curve and to avoid negative health outcomes, including obesity and poor reproductive performance. Beyond knowing that these chickens are healthier than fully-fed birds and that they have a high motivation to eat, little is known about how food restriction impacts the animals' physiology. Chickens were kept on a commercial food-restricted diet during the first 12 weeks of life, or released from this restriction by feeding them ad libitum from weeks 7-12 of life. To test the hypothesis that chronic food restriction decreases the production of new neurons (neurogenesis in the hippocampal formation, the cell proliferation marker bromodeoxyuridine was injected one week prior to tissue collection. Corticosterone levels in blood plasma were elevated during food restriction, even though molecular markers of hypothalamic-pituitary-adrenal axis activation did not differ between the treatments. The density of new hippocampal neurons was significantly reduced in the food-restricted condition, as compared to chickens fed ad libitum, similar to findings in rats at a similar developmental stage. Food restriction did not affect hippocampal volume or the total number of neurons. These findings indicate that in birds, like in mammals, reduction in hippocampal neurogenesis is associated with chronically elevated corticosterone levels, and therefore potentially with chronic stress in general. This finding is consistent with the

  12. Ablation of NMDA receptors enhances the excitability of hippocampal CA3 neurons.

    Directory of Open Access Journals (Sweden)

    Fumiaki Fukushima

    Full Text Available Synchronized discharges in the hippocampal CA3 recurrent network are supposed to underlie network oscillations, memory formation and seizure generation. In the hippocampal CA3 network, NMDA receptors are abundant at the recurrent synapses but scarce at the mossy fiber synapses. We generated mutant mice in which NMDA receptors were abolished in hippocampal CA3 pyramidal neurons by postnatal day 14. The histological and cytological organizations of the hippocampal CA3 region were indistinguishable between control and mutant mice. We found that mutant mice lacking NMDA receptors selectively in CA3 pyramidal neurons became more susceptible to kainate-induced seizures. Consistently, mutant mice showed characteristic large EEG spikes associated with multiple unit activities (MUA, suggesting enhanced synchronous firing of CA3 neurons. The electrophysiological balance between fast excitatory and inhibitory synaptic transmission was comparable between control and mutant pyramidal neurons in the hippocampal CA3 region, while the NMDA receptor-slow AHP coupling was diminished in the mutant neurons. In the adult brain, inducible ablation of NMDA receptors in the hippocampal CA3 region by the viral expression vector for Cre recombinase also induced similar large EEG spikes. Furthermore, pharmacological blockade of CA3 NMDA receptors enhanced the susceptibility to kainate-induced seizures. These results raise an intriguing possibility that hippocampal CA3 NMDA receptors may suppress the excitability of the recurrent network as a whole in vivo by restricting synchronous firing of CA3 neurons.

  13. High dose tetrabromobisphenol A impairs hippocampal neurogenesis and memory retention.

    Science.gov (United States)

    Kim, Ah Hyun; Chun, Hye Jeong; Lee, Seulah; Kim, Hyung Sik; Lee, Jaewon

    2017-08-01

    Tetrabromobisphenol A (TBBPA) is a brominated flame retardant that is commonly used in commercial and household products, such as, computers, televisions, mobile phones, and electronic boards. TBBPA can accumulate in human body fluids, and it has been reported that TBBPA possesses endocrine disruptive activity. However, the neurotoxic effect of TBBPA on hippocampal neurogenesis has not yet been investigated. Accordingly, the present study was undertaken to evaluate the effect of TBBPA on adult hippocampal neurogenesis and cognitive function. Male C57BL/6 mice were orally administrated vehicle or TBBPA (20 mg/kg, 100 mg/kg, or 500 mg/kg daily) for two weeks. TBBPA was observed to significantly and dose-dependently reduce the survival of newly generated cells in the hippocampus but not to affect the proliferation of newly generated cells. Numbers of hippocampal BrdU and NeuN positive cells were dose-dependently reduced by TBBPA, indicating impaired neurogenesis in the hippocampus. Interestingly, glial activation without neuronal death was observed in hippocampi exposed to TBBPA. Furthermore, memory retention was found to be adversely affected by TBBPA exposure by a mechanism involving suppression of the BDNF-CREB signaling pathway. The study suggests high dose TBBPA disrupts hippocampal neurogenesis and induces associated memory deficits. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Necroptosis Mediates TNF-Induced Toxicity of Hippocampal Neurons

    Directory of Open Access Journals (Sweden)

    Shan Liu

    2014-01-01

    Full Text Available Tumor necrosis factor-α (TNF-α is a critical proinflammatory cytokine regulating neuroinflammation. Elevated levels of TNF-α have been associated with various neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. However, the signaling events that lead to TNF-α-initiated neurotoxicity are still unclear. Here, we report that RIP3-mediated necroptosis, a form of regulated necrosis, is activated in the mouse hippocampus after intracerebroventricular injection of TNF-α. RIP3 deficiency attenuates TNF-α-initiated loss of hippocampal neurons. Furthermore, we characterized the molecular mechanism of TNF-α-induced neurotoxicity in HT-22 hippocampal neuronal cells. HT-22 cells are sensitive to TNF-α only upon caspase blockage and subsequently undergo necrosis. The cell death is suppressed by knockdown of CYLD or RIP1 or RIP3 or MLKL, suggesting that this necrosis is necroptosis and mediated by CYLD-RIP1-RIP3-MLKL signaling pathway. TNF-α-induced necroptosis of HT-22 cells is largely independent of both ROS accumulation and calcium influx although these events have been shown to be critical for necroptosis in certain cell lines. Taken together, these data not only provide the first in vivo evidence for a role of RIP3 in TNF-α-induced toxicity of hippocampal neurons, but also demonstrate that TNF-α promotes CYLD-RIP1-RIP3-MLKL-mediated necroptosis of hippocampal neurons largely bypassing ROS accumulation and calcium influx.

  15. Hippocampal leptin signaling reduces food intake and modulates food-related memory processing.

    Science.gov (United States)

    Kanoski, Scott E; Hayes, Matthew R; Greenwald, Holly S; Fortin, Samantha M; Gianessi, Carol A; Gilbert, Jennifer R; Grill, Harvey J

    2011-08-01

    The increase in obesity prevalence highlights the need for a more comprehensive understanding of the neural systems controlling food intake; one that extends beyond food intake driven by metabolic need and considers that driven by higher-order cognitive factors. The hippocampus, a brain structure involved in learning and memory function, has recently been linked with food intake control. Here we examine whether administration of the adiposity hormone leptin to the dorsal and ventral sub-regions of the hippocampus influences food intake and memory for food. Leptin (0.1 μg) delivered bilaterally to the ventral hippocampus suppressed food intake and body weight measured 24 h after administration; a higher dose (0.4 μg) was needed to suppress intake following dorsal hippocampal delivery. Leptin administration to the ventral but not dorsal hippocampus blocked the expression of a conditioned place preference for food and increased the latency to run for food in an operant runway paradigm. Additionally, ventral but not dorsal hippocampal leptin delivery suppressed memory consolidation for the spatial location of food, whereas hippocampal leptin delivery had no effect on memory consolidation in a non-spatial appetitive response paradigm. Collectively these findings indicate that ventral hippocampal leptin signaling contributes to the inhibition of food-related memories elicited by contextual stimuli. To conclude, the results support a role for hippocampal leptin signaling in the control of food intake and food-related memory processing.

  16. Novel genetic loci associated with hippocampal volume

    NARCIS (Netherlands)

    D.P. Hibar (Derrek); H.H.H. Adams (Hieab); N. Jahanshad (Neda); G. Chauhan (Ganesh); J.L. Stein; E. Hofer (Edith); M.E. Rentería (Miguel); J.C. Bis (Joshua); A. Arias-Vásquez (Alejandro); Ikram, M.K. (M. Kamran); S. Desrivières (Sylvane); M.W. Vernooij (Meike); L. Abramovic (Lucija); S. Alhusaini (Saud); N. Amin (Najaf); M. Andersson (Micael); K. Arfanakis (Konstantinos); B. Aribisala (Benjamin); N.J. Armstrong (Nicola J.); L. Athanasiu (Lavinia); T. Axelsson (Tomas); A.H. Beecham (Ashley); A. Beiser (Alexa); M. Bernard (Manon); S.H. Blanton (Susan H.); M.M. Bohlken (Marc M.); M.P.M. Boks (Marco); L.B.C. Bralten (Linda); A.M. Brickman (Adam M.); Carmichael, O. (Owen); M.M. Chakravarty (M. Mallar); Q. Chen (Qiang); C.R.K. Ching (Christopher); V. Chouraki (Vincent); G. Cuellar-Partida (Gabriel); F. Crivello (Fabrice); A. den Braber (Anouk); Doan, N.T. (Nhat Trung); S.M. Ehrlich (Stefan); S. Giddaluru (Sudheer); A.L. Goldman (Aaron L.); R.F. Gottesman (Rebecca); O. Grimm (Oliver); M.D. Griswold (Michael); T. Guadalupe (Tulio); Gutman, B.A. (Boris A.); J. Hass (Johanna); U.K. Haukvik (Unn); D. Hoehn (David); A.J. Holmes (Avram); M. Hoogman (Martine); D. Janowitz (Deborah); T. Jia (Tianye); Jørgensen, K.N. (Kjetil N.); N. Karbalai (Nazanin); D. Kasperaviciute (Dalia); S. Kim (Shinseog); M. Klein (Marieke); B. Kraemer (Bernd); P.H. Lee (Phil); D.C. Liewald (David C.); L.M. Lopez (Lorna); M. Luciano (Michelle); C. MacAre (Christine); Marquand, A.F. (Andre F.); M. Matarin (Mar); R. Mather; M. Mattheisen (Manuel); McKay, D.R. (David R.); Milaneschi, Y. (Yuri); S. Muñoz Maniega (Susana); K. Nho (Kwangsik); A.C. Nugent (Allison); P. Nyquist (Paul); Loohuis, L.M.O. (Loes M. Olde); J. Oosterlaan (Jaap); M. Papmeyer (Martina); Pirpamer, L. (Lukas); B. Pütz (Benno); A. Ramasamy (Adaikalavan); Richards, J.S. (Jennifer S.); S.L. Risacher (Shannon); R. Roiz-Santiañez (Roberto); N. Rommelse (Nanda); S. Ropele (Stefan); E.J. Rose (Emma); N.A. Royle (Natalie); T. Rundek (Tatjana); P.G. Sämann (Philipp); Saremi, A. (Arvin); C.L. Satizabal (Claudia L.); L. Schmaal (Lianne); N.J. Schork (Nicholas); Shen, L. (Li); J. Shin (Jean); Shumskaya, E. (Elena); A.V. Smith (Albert Vernon); R. Sprooten (Roy); L.T. Strike (Lachlan); A. Teumer (Alexander); D. Tordesillas-Gutierrez (Diana); R. Toro (Roberto); D. Trabzuni (Danyah); S. Trompet (Stella); D. Vaidya (Dhananjay); J. van der Grond (Jeroen); S.J. van der Lee (Sven); Van Der Meer, D. (Dennis); M.M.J. Van Donkelaar (Marjolein M. J.); K.R. van Eijk (Kristel); T.G.M. van Erp (Theo G.); Van Rooij, D. (Daan); E. Walton (Esther); L.T. Westlye (Lars); C.D. Whelan (Christopher); B.G. Windham (B Gwen); A.M. Winkler (Anderson); K. Wittfeld (Katharina); G. Woldehawariat (Girma); A. Björnsson (Asgeir); Wolfers, T. (Thomas); L.R. Yanek (Lisa); Yang, J. (Jingyun); A.P. Zijdenbos; M.P. Zwiers (Marcel); I. Agartz (Ingrid); L. Almasy (Laura); D.J. Ames (David); Amouyel, P. (Philippe); O.A. Andreassen (Ole); S. Arepalli (Sampath); A.A. Assareh; S. Barral (Sandra); M.E. Bastin (Mark); Becker, D.M. (Diane M.); J.T. Becker (James); D.A. Bennett (David A.); J. Blangero (John); H. van Bokhoven (Hans); D.I. Boomsma (Dorret); H. Brodaty (Henry); R.M. Brouwer (Rachel); H.G. Brunner; M. Buckner; J.K. Buitelaar (Jan); K. Bulayeva (Kazima); W. Cahn (Wiepke); V.D. Calhoun Vince D. (V.); D.M. Cannon (Dara); G. Cavalleri (Gianpiero); Cheng, C.-Y. (Ching-Yu); S. Cichon (Sven); M.R. Cookson (Mark); A. Corvin (Aiden); B. Crespo-Facorro (Benedicto); J.E. Curran (Joanne); M. Czisch (Michael); A.M. Dale (Anders); G.E. Davies (Gareth); A.J. de Craen (Anton); E.J.C. de Geus (Eco); P.L. de Jager (Philip); G.I. de Zubicaray (Greig); I.J. Deary (Ian J.); S. Debette (Stéphanie); C. DeCarli (Charles); N. Delanty; C. Depondt (Chantal); A.L. DeStefano (Anita); A. Dillman (Allissa); S. Djurovic (Srdjan); D.J. Donohoe (Dennis); D.A. Drevets (Douglas); Duggirala, R. (Ravi); M.D. Dyer (Matthew); C. Enzinger (Christian); S. Erk; T. Espeseth (Thomas); Fedko, I.O. (Iryna O.); Fernández, G. (Guillén); L. Ferrucci (Luigi); S.E. Fisher (Simon); D. Fleischman (Debra); I. Ford (Ian); M. Fornage (Myriam); T. Foroud (Tatiana); P.T. Fox (Peter); C. Francks (Clyde); Fukunaga, M. (Masaki); Gibbs, J.R. (J. Raphael); D.C. Glahn (David); R.L. Gollub (Randy); H.H.H. Göring (Harald H.); R.C. Green (Robert C.); O. Gruber (Oliver); V. Gudnason (Vilmundur); S. Guelfi (Sebastian); Håberg, A.K. (Asta K.); N.K. Hansell (Narelle); J. Hardy (John); C.A. Hartman (C.); Hashimoto, R. (Ryota); K. Hegenscheid (Katrin); J. Heinz (Judith); S. Le Hellard (Stephanie); D.G. Hernandez (Dena); D.J. Heslenfeld (Dirk); Ho, B.-C. (Beng-Choon); P.J. Hoekstra (Pieter); W. Hoffmann (Wolfgang); A. Hofman (Albert); F. Holsboer (Florian); G. Homuth (Georg); N. Hosten (Norbert); J.J. Hottenga (Jouke Jan); M.J. Huentelman (Matthew); H.H. Pol; Ikeda, M. (Masashi); Jack, C.R. (Clifford R.); S. Jenkinson (Sarah); R. Johnson (Robert); Jönsson, E.G. (Erik G.); J.W. Jukema; R. Kahn (René); Kanai, R. (Ryota); I. Kloszewska (Iwona); Knopman, D.S. (David S.); P. Kochunov (Peter); Kwok, J.B. (John B.); S. Lawrie (Stephen); H. Lemaître (Herve); X. Liu (Xinmin); D.L. Longo (Dan L.); O.L. Lopez (Oscar L.); S. Lovestone (Simon); Martinez, O. (Oliver); J.-L. Martinot (Jean-Luc); V.S. Mattay (Venkata S.); McDonald, C. (Colm); A.M. McIntosh (Andrew); McMahon, F.J. (Francis J.); McMahon, K.L. (Katie L.); P. Mecocci (Patrizia); I. Melle (Ingrid); Meyer-Lindenberg, A. (Andreas); S. Mohnke (Sebastian); Montgomery, G.W. (Grant W.); D.W. Morris (Derek W); T.H. Mosley (Thomas H.); T.W. Mühleisen (Thomas); B. Müller-Myhsok (B.); M.A. Nalls (Michael); M. Nauck (Matthias); T.E. Nichols (Thomas); W.J. Niessen (Wiro); M.M. Nöthen (Markus); L. Nyberg (Lars); Ohi, K. (Kazutaka); R.L. Olvera (Rene); R.A. Ophoff (Roel); M. Pandolfo (Massimo); T. Paus (Tomas); Z. Pausova (Zdenka); B.W.J.H. Penninx (Brenda); Pike, G.B. (G. Bruce); S.G. Potkin (Steven); B.M. Psaty (Bruce); S. Reppermund; M. Rietschel (Marcella); J.L. Roffman (Joshua); N. Seiferth (Nina); J.I. Rotter (Jerome I.); M. Ryten (Mina); Sacco, R.L. (Ralph L.); P.S. Sachdev (Perminder); A.J. Saykin (Andrew); R. Schmidt (Reinhold); Schmidt, H. (Helena); C.J. Schofield (Christopher); Sigursson, S. (Sigurdur); Simmons, A. (Andrew); A. Singleton (Andrew); S.M. Sisodiya (Sanjay); Smith, C. (Colin); J.W. Smoller; H. Soininen (H.); V.M. Steen (Vidar); D.J. Stott (David J.); J. Sussmann (Jessika); A. Thalamuthu (Anbupalam); A.W. Toga (Arthur W.); B. Traynor (Bryan); J.C. Troncoso (Juan); M. Tsolaki (Magda); C. Tzourio (Christophe); A.G. Uitterlinden (André); Hernández, M.C.V. (Maria C. Valdés); M.P. van der Brug (Marcel); A. van der Lugt (Aad); N.J. van der Wee (Nic); N.E.M. van Haren (Neeltje E.); D. van 't Ent (Dennis); M.J.D. van Tol (Marie-José); B.N. Vardarajan (Badri); B. Vellas (Bruno); D.J. Veltman (Dick); H. Völzke (Henry); H.J. Walter (Henrik); J. Wardlaw (Joanna); A.M.J. Wassink (Annemarie); M.E. Weale (Michael); Weinberger, D.R. (Daniel R.); Weiner, M.W. (Michael W.); Wen, W. (Wei); E. Westman (Eric); T.J.H. White (Tonya); Wong, T.Y. (Tien Y.); Wright, C.B. (Clinton B.); R.H. Zielke (Ronald H.); A.B. Zonderman; N.G. Martin (Nicholas); C.M. van Duijn (Cornelia); M.J. Wright (Margaret); W.T. Longstreth Jr; G. Schumann (Gunter); H.J. Grabe (Hans Jörgen); B. Franke (Barbara); L.J. Launer (Lenore); S.E. Medland (Sarah Elizabeth); S. Seshadri (Sudha); P.M. Thompson (Paul); M.K. Ikram (Kamran)

    2017-01-01

    textabstractThe hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic

  17. Novel genetic loci associated with hippocampal volume

    NARCIS (Netherlands)

    Hibar, Derrek P.; Adams, Hieab H. H.; Jahanshad, Neda; Chauhan, Ganesh; Stein, Jason L.; Hofer, Edith; Renteria, Miguel E.; Bis, Joshua C.; Arias-Vasquez, Alejandro; Ikram, M. Kamran; Desrivières, Sylvane; Vernooij, Meike W.; Abramovic, Lucija; Alhusaini, Saud; Amin, Najaf; Andersson, Micael; Arfanakis, Konstantinos; Aribisala, Benjamin S.; Armstrong, Nicola J.; Athanasiu, Lavinia; Axelsson, Tomas; Beecham, Ashley H.; Beiser, Alexa; Bernard, Manon; Blanton, Susan H.; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brickman, Adam M.; Carmichael, Owen; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Chouraki, Vincent; Cuellar-Partida, Gabriel; Crivello, Fabrice; den Braber, Anouk; Doan, Nhat Trung; Ehrlich, Stefan; Giddaluru, Sudheer; Goldman, Aaron L.; Gottesman, Rebecca F.; Grimm, Oliver; Griswold, Michael E.; Guadalupe, Tulio; Gutman, Boris A.; Hass, Johanna; Haukvik, Unn K.; Hoehn, David; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Jørgensen, Kjetil N.; Karbalai, Nazanin; Kasperaviciute, Dalia; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Liewald, David C. M.; Lopez, Lorna M.; Luciano, Michelle; Macare, Christine; Marquand, Andre F.; Matarin, Mar; Mather, Karen A.; Mattheisen, Manuel; McKay, David R.; Milaneschi, Yuri; Muñoz Maniega, Susana; Nho, Kwangsik; Nugent, Allison C.; Nyquist, Paul; Loohuis, Loes M. Olde; Oosterlaan, Jaap; Papmeyer, Martina; Pirpamer, Lukas; Pütz, Benno; Ramasamy, Adaikalavan; Richards, Jennifer S.; Risacher, Shannon L.; Roiz-Santiañez, Roberto; Rommelse, Nanda; Ropele, Stefan; Rose, Emma J.; Royle, Natalie A.; Rundek, Tatjana; Sämann, Philipp G.; Saremi, Arvin; Satizabal, Claudia L.; Schmaal, Lianne; Schork, Andrew J.; Shen, Li; Shin, Jean; Shumskaya, Elena; Smith, Albert V.; Sprooten, Emma; Strike, Lachlan T.; Teumer, Alexander; Tordesillas-Gutierrez, Diana; Toro, Roberto; Trabzuni, Daniah; Trompet, Stella; Vaidya, Dhananjay; van der Grond, Jeroen; van der Lee, Sven J.; van der Meer, Dennis; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; van Erp, Theo G. M.; van Rooij, Daan; Walton, Esther; Westlye, Lars T.; Whelan, Christopher D.; Windham, Beverly G.; Winkler, Anderson M.; Wittfeld, Katharina; Woldehawariat, Girma; Wolf, Christiane; Wolfers, Thomas; Yanek, Lisa R.; Yang, Jingyun; Zijdenbos, Alex; Zwiers, Marcel P.; Agartz, Ingrid; Almasy, Laura; Ames, David; Amouyel, Philippe; Andreassen, Ole A.; Arepalli, Sampath; Assareh, Amelia A.; Barral, Sandra; Bastin, Mark E.; Becker, Diane M.; Becker, James T.; Bennett, David A.; Blangero, John; van Bokhoven, Hans; Boomsma, Dorret I.; Brodaty, Henry; Brouwer, Rachel M.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Bulayeva, Kazima B.; Cahn, Wiepke; Calhoun, Vince D.; Cannon, Dara M.; Cavalleri, Gianpiero L.; Cheng, Ching-Yu; Cichon, Sven; Cookson, Mark R.; Corvin, Aiden; Crespo-Facorro, Benedicto; Curran, Joanne E.; Czisch, Michael; Dale, Anders M.; Davies, Gareth E.; de Craen, Anton J. M.; de Geus, Eco J. C.; de Jager, Philip L.; de Zubicaray, Greig I.; Deary, Ian J.; Debette, Stéphanie; Decarli, Charles; Delanty, Norman; Depondt, Chantal; DeStefano, Anita; Dillman, Allissa; Djurovic, Srdjan; Donohoe, Gary; Drevets, Wayne C.; Duggirala, Ravi; Dyer, Thomas D.; Enzinger, Christian; Erk, Susanne; Espeseth, Thomas; Fedko, Iryna O.; Fernández, Guillén; Ferrucci, Luigi; Fisher, Simon E.; Fleischman, Debra A.; Ford, Ian; Fornage, Myriam; Foroud, Tatiana M.; Fox, Peter T.; Francks, Clyde; Fukunaga, Masaki; Gibbs, J. Raphael; Glahn, David C.; Gollub, Randy L.; Göring, Harald H. H.; Green, Robert C.; Gruber, Oliver; Gudnason, Vilmundur; Guelfi, Sebastian; Håberg, Asta K.; Hansell, Narelle K.; Hardy, John; Hartman, Catharina A.; Hashimoto, Ryota; Hegenscheid, Katrin; Heinz, Andreas; Le Hellard, Stephanie; Hernandez, Dena G.; Heslenfeld, Dirk J.; Ho, Beng-Choon; Hoekstra, Pieter J.; Hoffmann, Wolfgang; Hofman, Albert; Holsboer, Florian; Homuth, Georg; Hosten, Norbert; Hottenga, Jouke-Jan; Huentelman, Matthew; Pol, Hilleke E. Hulshoff; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Jönsson, Erik G.; Jukema, J. Wouter; Kahn, René S.; Kanai, Ryota; Kloszewska, Iwona; Knopman, David S.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Lemaître, Hervé; Liu, Xinmin; Longo, Dan L.; Lopez, Oscar L.; Lovestone, Simon; Martinez, Oliver; Martinot, Jean-Luc; Mattay, Venkata S.; McDonald, Colm; McIntosh, Andrew M.; McMahon, Francis J.; McMahon, Katie L.; Mecocci, Patrizia; Melle, Ingrid; Meyer-Lindenberg, Andreas; Mohnke, Sebastian; Montgomery, Grant W.; Morris, Derek W.; Mosley, Thomas H.; Mühleisen, Thomas W.; Müller-Myhsok, Bertram; Nalls, Michael A.; Nauck, Matthias; Nichols, Thomas E.; Niessen, Wiro J.; Nöthen, Markus M.; Nyberg, Lars; Ohi, Kazutaka; Olvera, Rene L.; Ophoff, Roel A.; Pandolfo, Massimo; Paus, Tomas; Pausova, Zdenka; Penninx, Brenda W. J. H.; Pike, G. Bruce; Potkin, Steven G.; Psaty, Bruce M.; Reppermund, Simone; Rietschel, Marcella; Roffman, Joshua L.; Romanczuk-Seiferth, Nina; Rotter, Jerome I.; Ryten, Mina; Sacco, Ralph L.; Sachdev, Perminder S.; Saykin, Andrew J.; Schmidt, Reinhold; Schmidt, Helena; Schofield, Peter R.; Sigursson, Sigurdur; Simmons, Andrew; Singleton, Andrew; Sisodiya, Sanjay M.; Smith, Colin; Smoller, Jordan W.; Soininen, Hilkka; Steen, Vidar M.; Stott, David J.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Tsolaki, Magda; Tzourio, Christophe; Uitterlinden, Andre G.; Hernández, Maria C. Valdés; van der Brug, Marcel; van der Lugt, Aad; van der Wee, Nic J. A.; van Haren, Neeltje E. M.; van 't Ent, Dennis; van Tol, Marie-Jose; Vardarajan, Badri N.; Vellas, Bruno; Veltman, Dick J.; Völzke, Henry; Walter, Henrik; Wardlaw, Joanna M.; Wassink, Thomas H.; Weale, Michael E.; Weinberger, Daniel R.; Weiner, Michael W.; Wen, Wei; Westman, Eric; White, Tonya; Wong, Tien Y.; Wright, Clinton B.; Zielke, Ronald H.; Zonderman, Alan B.; Martin, Nicholas G.; van Duijn, Cornelia M.; Wright, Margaret J.; Longstreth, W. T.; Schumann, Gunter; Grabe, Hans J.; Franke, Barbara; Launer, Lenore J.; Medland, Sarah E.; Seshadri, Sudha; Thompson, Paul M.; Ikram, M. Arfan

    2017-01-01

    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of

  18. Dexamethasone selectively suppresses microglial trophic responses to hippocampal deafferentation

    DEFF Research Database (Denmark)

    Woods, A G; Poulsen, F R; Gall, C M

    1999-01-01

    hippocampus. Daily dexamethasone injections almost completely blocked increases in insulin-like growth factor-1 messenger RNA content, but did not perturb increases in ciliary neurotrophic factor or basic fibroblast growth factor messenger RNA content, in the deafferented dentate gyrus molecular layer...

  19. Novel genetic loci associated with hippocampal volume

    OpenAIRE

    Hibar, Derrek P.; Adams, Hieab H. H.; Jahanshad, Neda; Chauhan, Ganesh; Stein, Jason L.; Hofer, Edith; Renteria, Miguel E.; Bis, Joshua C.; Arias-Vasquez, Alejandro; Ikram, M. Kamran; Desrivieres, Sylvane; Vernooij, Meike W.; Abramovic, Lucija; Alhusaini, Saud; Amin, Najaf

    2017-01-01

    International audience; The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal ...

  20. Hippocampal Sclerosis in Older Patients

    Science.gov (United States)

    Cykowski, Matthew D.; Powell, Suzanne Z.; Schulz, Paul E.; Takei, Hidehiro; Rivera, Andreana L.; Jackson, Robert E.; Roman, Gustavo; Jicha, Gregory A.; Nelson, Peter T.

    2018-01-01

    Context Autopsy studies of the older population (≥65 years of age), and particularly of the “oldest-old” (≥85 years of age), have identified a significant proportion (~20%) of cognitively impaired patients in which hippocampal sclerosis is the major substrate of an amnestic syndrome. Hippocampal sclerosis may also be comorbid with frontotemporal lobar degeneration, Alzheimer disease, and Lewy body disease. Until recently, the terms hippocampal sclerosis of aging or hippocampal sclerosis dementia were applied in this context. Recent discoveries have prompted a conceptual expansion of hippocampal sclerosis of aging because (1) cellular inclusions of TAR DNA-binding protein 43 kDa (TDP-43) are frequent; (2) TDP-43 pathology may be found outside hippocampus; and (3) brain arteriolosclerosis is a common, possibly pathogenic, component. Objective To aid pathologists with recent recommendations for diagnoses of common neuropathologies in older persons, particularly hippocampal sclerosis, and highlight the recent shift in diagnostic terminology from HS-aging to cerebral age-related TDP-43 with sclerosis (CARTS). Data Sources Peer-reviewed literature and 5 autopsy examples that illustrate common age-related neuropathologies, including CARTS, and emphasize the importance of distinguishing CARTS from late-onset frontotemporal lobar degeneration with TDP-43 pathology and from advanced Alzheimer disease with TDP-43 pathology. Conclusions In advanced old age, the substrates of cognitive impairment are often multifactorial. This article demonstrates common and frequently comorbid neuropathologic substrates of cognitive impairment in the older population, including CARTS, to aid those practicing in this area of pathology. PMID:28467211

  1. Suppressed Belief

    Directory of Open Access Journals (Sweden)

    Komarine Romdenh-Romluc

    2009-12-01

    Full Text Available Moran’s revised conception of conscious belief requires us to reconceptualise suppressed belief. The work of Merleau-Ponty offers a way to do this. His account of motor-skills allows us to understand suppressed beliefs as pre-reflective ways of dealing with the world.

  2. Choline-mediated modulation of hippocampal sharp wave-ripple complexes in vitro.

    Science.gov (United States)

    Fischer, Viktoria; Both, Martin; Draguhn, Andreas; Egorov, Alexei V

    2014-06-01

    The cholinergic system is critically involved in the modulation of cognitive functions, including learning and memory. Acetylcholine acts through muscarinic (mAChRs) and nicotinic receptors (nAChRs), which are both abundantly expressed in the hippocampus. Previous evidence indicates that choline, the precursor and degradation product of Acetylcholine, can itself activate nAChRs and thereby affects intrinsic and synaptic neuronal functions. Here, we asked whether the cellular actions of choline directly affect hippocampal network activity. Using mouse hippocampal slices we found that choline efficiently suppresses spontaneously occurring sharp wave-ripple complexes (SPW-R) and can induce gamma oscillations. In addition, choline reduces synaptic transmission between hippocampal subfields CA3 and CA1. Surprisingly, these effects are mediated by activation of both mAChRs and α7-containing nAChRs. Most nicotinic effects became only apparent after local, fast application of choline, indicating rapid desensitization kinetics of nAChRs. Effects were still present following block of choline uptake and are, therefore, likely because of direct actions of choline at the respective receptors. Together, choline turns out to be a potent regulator of patterned network activity within the hippocampus. These actions may be of importance for understanding state transitions in normal and pathologically altered neuronal networks. In this study we asked whether choline, the precursor and degradation product of acetylcholine, directly affects hippocampal network activity. Using mouse hippocampal slices we found that choline efficiently suppresses spontaneously occurring sharp wave-ripple complexes (SPW-R). In addition, choline reduces synaptic transmission between hippocampal subfields. These effects are mediated by direct activation of muscarinic as well as nicotinic cholinergic pathways. Together, choline turns out to be a potent regulator of patterned activity within hippocampal

  3. Comparison of Hippocampal Volume in Dementia Subtypes

    International Nuclear Information System (INIS)

    Vijayakumar, Avinash; Vijayakumar, Abhishek

    2012-01-01

    Aims. To examine the relationship between different types of dementia and hippocampal volume. Methods. Hippocampal volume was measured using FL3D sequence magnetic resonance imaging in 26 Alzheimer's, vascular dementia, mixed dementia, and normal pressure hydrocephalus patients and 15 healthy controls and also hippocampal ratio, analyzed. Minimental scale was used to stratify patients on cognitive function impairments. Results. Hippocampal volume and ratio was reduced by 25% in Alzheimer's disease, 21% in mixed dementia, 11% in vascular dementia and 5% in normal pressure hydrocephalus in comparison to control. Also an asymmetrical decrease in volume of left hippocampus was noted. The severity of dementia increased in accordance to decreasing hippocampal volume. Conclusion. Measurement in hippocampal volume may facilitate in differentiating different types of dementia and in disease progression. There was a correlation between hippocampal volume and severity of cognitive impairment

  4. Hippocampal Abnormalities and Seizure Recurrence

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2006-08-01

    Full Text Available Hippocampal volumetry and T2 relaxometry were performed on 84 consecutive patients (adolescents and adults with partial epilepsy submitted to antiepileptic drug (AED withdrawal after at least 2 years of seizure control, in a study at State University of Campinas-UNICAMP, Brazil.

  5. Restoration of hippocampal growth hormone reverses stress-induced hippocampal impairment

    Directory of Open Access Journals (Sweden)

    Caitlin M. Vander Weele

    2013-06-01

    Full Text Available Though growth hormone (GH is synthesized by hippocampal neurons, where its expression is influenced by stress exposure, its function is poorly characterized. Here, we show that a regimen of chronic stress that impairs hippocampal function in rats also leads to a profound decrease in hippocampal GH levels. Restoration of hippocampal GH in the dorsal hippocampus via viral-mediated gene transfer completely reversed stress-related impairment of two hippocampus-dependent behavioral tasks, auditory trace fear conditioning and contextual fear conditioning, without affecting hippocampal function in unstressed control rats. GH overexpression reversed stress-induced decrements in both fear acquisition and long-term fear memory. These results suggest that loss of hippocampal GH contributes to hippocampal dysfunction following prolonged stress and demonstrate that restoring hippocampal GH levels following stress can promote stress resilience.

  6. Interocular suppression

    Science.gov (United States)

    Tuna, Ana Rita; Almeida Neves Carrega, Filipa; Nunes, Amélia Fernandes

    2017-08-01

    The objective of this work is to quantify the suppressive imbalance, based on the manipulation of ocular luminance, between a group of subjects with normal binocular vision and a group of subjects with amblyopia. The result reveals that there are statistically significant differences in interocular dominance between two groups, evidencing a greater suppressive imbalance in amblyopic subjects. The technique used, proved to be a simple, easy to apply and economic method, for quantified ocular dominance. It is presented as a technique with the potential to accompany subjects with a marked dominance in one of the eyes that makes fusion difficult.

  7. A grading system for hippocampal sclerosis based on the degree of hippocampal mossy fiber sprouting

    NARCIS (Netherlands)

    Gispen, W.H.; Proper, E.A.; Jansen, G.H.; Veelen, C.W. van; Rijen, P.C. van; Graan, P.N.E. de

    2001-01-01

    Abstract. In patients suffering from temporal lobe epilepsy (TLE) a highly variable degree of hippocampal sclerosis (HS) can be observed. For standard neuropathological evaluation after hippocampal resection, neuronal cell loss in the hippocampal subareas is assessed (Wyler score 0-4) [Wyler et al.

  8. Effects of metal ions on agonist-stimulated accumulation of inositol phosphates in hippocampal and cortical slices

    International Nuclear Information System (INIS)

    Bonner, M.J.; Tilson, H.A.

    1990-01-01

    [ 3 H]-inositol was incorporated into rat hippocampal or cortical slices. Zinc chloride and three different forms of inorganic lead compounds, lead chloride, lead nitrate, and lead acetate were used to stimulate PI metabolism at concentrations between 10 -15 and 10 -9 M. At these concentrations, these metal ions did not produce any significant stimulation of IP release. In birth hippocampal and cortical slices, carbachol produced equal levels of IP release. Norepinephrine (NE) produced a 10-15% higher stimulation than carbachol. When the metal ions were added to hippocampal slices together with the agonists, there was a general suppression of carbachol- or NE-induced IP release. This general suppression was not observed in cortical slices. These data suggest that the trace metals used inhibit agonist-induced second messenger release in the hippocampus

  9. Gating of hippocampal activity, plasticity, and memory by entorhinal cortex long-range inhibition.

    Science.gov (United States)

    Basu, Jayeeta; Zaremba, Jeffrey D; Cheung, Stephanie K; Hitti, Frederick L; Zemelman, Boris V; Losonczy, Attila; Siegelbaum, Steven A

    2016-01-08

    The cortico-hippocampal circuit is critical for storage of associational memories. Most studies have focused on the role in memory storage of the excitatory projections from entorhinal cortex to hippocampus. However, entorhinal cortex also sends inhibitory projections, whose role in memory storage and cortico-hippocampal activity remains largely unexplored. We found that these long-range inhibitory projections enhance the specificity of contextual and object memory encoding. At the circuit level, these γ-aminobutyric acid (GABA)-releasing projections target hippocampal inhibitory neurons and thus act as a disinhibitory gate that transiently promotes the excitation of hippocampal CA1 pyramidal neurons by suppressing feedforward inhibition. This enhances the ability of CA1 pyramidal neurons to fire synaptically evoked dendritic spikes and to generate a temporally precise form of heterosynaptic plasticity. Long-range inhibition from entorhinal cortex may thus increase the precision of hippocampal-based long-term memory associations by assessing the salience of mnemonormation to the immediate sensory input. Copyright © 2016, American Association for the Advancement of Science.

  10. Neurogenic function in rats with unilateral hippocampal sclerosis that experienced early-life status epilepticus

    Science.gov (United States)

    Dunleavy, Mark; Schindler, Clara K; Shinoda, Sachiko; Crilly, Shane; Henshall, David C

    2014-01-01

    Status epilepticus in the adult brain invariably causes an increase in hippocampal neurogenesis and the appearance of ectopic cells and this has been implicated as a causal factor in epileptogenesis. The effect of status epilepticus on neurogenesis in the developing brain is less well characterized and models of early-life seizures typically do not reproduce the hippocampal damage common to human mesial temporal sclerosis. We recently reported that evoking status epilepticus by intra-amygdala microinjection of kainic acid in post-natal (P) day 10 rats caused substantial acute neuronal death within the ipsilateral hippocampus and rats later developed unilateral hippocampal sclerosis and spontaneous recurrent seizures. Here, we examined the expression of a selection of genes associated with neurogenesis and assessed neurogenic function in this model. Protein levels of several markers of neurogenesis including polysialic acid neural cell adhesion molecule, neuroD and doublecortin were reduced in the hippocampus three days after status epilepticus in P10 rats. In contrast, protein levels of neurogenesis markers were similar to control in rats at P55. Pulse-chase experiments using thymidine analogues suggested there was a reduction in new neurons at 72 h after status epilepticus in P10 rats, whereas numbers of new neurons labelled in epileptic rats at P55 with hippocampal sclerosis were similar to controls. The present study suggests that status epilepticus in the immature brain suppresses neurogenesis but the neurogenic potential is retained in animals that later develop hippocampal sclerosis. PMID:25755841

  11. Effects of voluntary running on plasma levels of neurotrophins, hippocampal cell proliferation and learning and memory in stressed rats.

    Science.gov (United States)

    Yau, S-Y; Lau, B W-M; Zhang, E-D; Lee, J C-D; Li, A; Lee, T M C; Ching, Y-P; Xu, A-M; So, K-F

    2012-10-11

    Previous studies have shown that a 2-week treatment with 40 mg/kg corticosterone (CORT) in rats suppresses hippocampal neurogenesis and decreases hippocampal brain-derived neurotrophic factor (BDNF) levels and impairs spatial learning, all of which could be counteracted by voluntary wheel running. BDNF and insulin-like growth factor (IGF-1) have been suggested to mediate physical exercise-enhanced hippocampal neurogenesis and cognition. Here we examined whether such running-elicited benefits were accompanied by corresponding changes of peripheral BDNF and IGF-1 levels in a rat model of stress. We examined the effects of acute (5 days) and chronic (4 weeks) treatment with CORT and/or wheel running on (1) hippocampal cell proliferation, (2) spatial learning and memory and (3) plasma levels of BDNF and IGF-1. Acute CORT treatment improved spatial learning without altered cell proliferation compared to vehicle treatment. Acute CORT-treated non-runners showed an increased trend in plasma BDNF levels together with a significant increase in hippocampal BDNF levels. Acute running showed no effect on cognition, cell proliferation and peripheral BDNF and IGF-1 levels. Conversely, chronic CORT treatment in non-runners significantly impaired spatial learning and suppressed cell proliferation in association with a decreased trend in plasma BDNF level and a significant increase in hippocampal BDNF levels. Running counteracted cognitive deficit and restored hippocampal cell proliferation following chronic CORT treatment; but without corresponding changes in plasma BDNF and IGF-1 levels. The results suggest that the beneficial effects of acute stress on cognitive improvement may be mediated by BDNF-enhanced synaptic plasticity that is hippocampal cell proliferation-independent, whereas chronic stress may impair cognition by decreasing hippocampal cell proliferation and BDNF levels. Furthermore, the results indicate a trend in changes of plasma BDNF levels associated with a

  12. Curcumin ameliorates hippocampal neuron damage induced by human immunodeficiency virus-1★

    OpenAIRE

    Tang, Hongmei; Pan, Rui; Fang, Wenli; Xing, Yanyan; Chen, Dexi; Chen, Xiaobao; Yu, Yuanyuan; Wang, Junbing; Gong, Zheng; Xiong, Guoyin; Dong, Jun

    2013-01-01

    Our previous studies have shown that infection with the gp120 V3 loop can cause human immunodeficiency virus-1 associated neurocognitive disorders. Curcumin has been shown to improve these effects to some degree, but the precise mechanisms remain unknown. The present study analyzed the neuroprotective effect and mechanism of curcumin in relation to hippocampal neurons. Results showed that 1 nmol/L gp120 V3 loop suppressed the growth of synapses. After administration of 1 μmol/L curcumin, syna...

  13. TLX is an intrinsic regulator of the negative effects of IL-1β on proliferating hippocampal neural progenitor cells.

    Science.gov (United States)

    Ó'Léime, Ciarán S; Kozareva, Danka A; Hoban, Alan E; Long-Smith, Caitriona M; Cryan, John F; Nolan, Yvonne M

    2018-02-01

    Hippocampal neurogenesis is a lifelong process whereby new neurons are produced and integrate into the host circuitry within the hippocampus. It is regulated by a multitude of extrinsic and intrinsic regulators and is believed to contribute to certain hippocampal-dependent cognitive tasks. Hippocampal neurogenesis and associated cognition have been demonstrated to be impaired after increases in the levels of proinflammatory cytokine IL-1β in the hippocampus, such as that which occurs in various neurodegenerative and psychiatric disorders. IL-1β also suppresses the expression of TLX (orphan nuclear receptor tailless homolog), which is an orphan nuclear receptor that functions to promote neural progenitor cell (NPC) proliferation and suppress neuronal differentiation; therefore, manipulation of TLX represents a potential strategy with which to prevent the antiproliferative effects of IL-1β. In this study, we assessed the mechanism that underlies IL-1β-induced changes in TLX expression and determined the protective capacity of TLX to mitigate the effects of IL-1β on embryonic rat hippocampal neurosphere expansion. We demonstrate that IL-1β activated the NF-κB pathway in proliferating NPCs and that this activation was responsible for IL-1β-induced changes in TLX expression. In addition, we report that enhancing TLX expression prevented the IL-1β-induced suppression of neurosphere expansion. Thus, we highlight TLX as a potential protective regulator of the antiproliferative effects of IL-1β on hippocampal neurogenesis.-Ó'Léime, C. S., Kozareva, D. A., Hoban, A. E., Long-Smith, C. M., Cryan, J. F., Nolan, Y. M. TLX is an intrinsic regulator of the negative effects of IL-1β on proliferating hippocampal neural progenitor cells.

  14. Novel genetic loci associated with hippocampal volume.

    Science.gov (United States)

    Hibar, Derrek P; Adams, Hieab H H; Jahanshad, Neda; Chauhan, Ganesh; Stein, Jason L; Hofer, Edith; Renteria, Miguel E; Bis, Joshua C; Arias-Vasquez, Alejandro; Ikram, M Kamran; Desrivières, Sylvane; Vernooij, Meike W; Abramovic, Lucija; Alhusaini, Saud; Amin, Najaf; Andersson, Micael; Arfanakis, Konstantinos; Aribisala, Benjamin S; Armstrong, Nicola J; Athanasiu, Lavinia; Axelsson, Tomas; Beecham, Ashley H; Beiser, Alexa; Bernard, Manon; Blanton, Susan H; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brickman, Adam M; Carmichael, Owen; Chakravarty, M Mallar; Chen, Qiang; Ching, Christopher R K; Chouraki, Vincent; Cuellar-Partida, Gabriel; Crivello, Fabrice; Den Braber, Anouk; Doan, Nhat Trung; Ehrlich, Stefan; Giddaluru, Sudheer; Goldman, Aaron L; Gottesman, Rebecca F; Grimm, Oliver; Griswold, Michael E; Guadalupe, Tulio; Gutman, Boris A; Hass, Johanna; Haukvik, Unn K; Hoehn, David; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Jørgensen, Kjetil N; Karbalai, Nazanin; Kasperaviciute, Dalia; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Liewald, David C M; Lopez, Lorna M; Luciano, Michelle; Macare, Christine; Marquand, Andre F; Matarin, Mar; Mather, Karen A; Mattheisen, Manuel; McKay, David R; Milaneschi, Yuri; Muñoz Maniega, Susana; Nho, Kwangsik; Nugent, Allison C; Nyquist, Paul; Loohuis, Loes M Olde; Oosterlaan, Jaap; Papmeyer, Martina; Pirpamer, Lukas; Pütz, Benno; Ramasamy, Adaikalavan; Richards, Jennifer S; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rommelse, Nanda; Ropele, Stefan; Rose, Emma J; Royle, Natalie A; Rundek, Tatjana; Sämann, Philipp G; Saremi, Arvin; Satizabal, Claudia L; Schmaal, Lianne; Schork, Andrew J; Shen, Li; Shin, Jean; Shumskaya, Elena; Smith, Albert V; Sprooten, Emma; Strike, Lachlan T; Teumer, Alexander; Tordesillas-Gutierrez, Diana; Toro, Roberto; Trabzuni, Daniah; Trompet, Stella; Vaidya, Dhananjay; Van der Grond, Jeroen; Van der Lee, Sven J; Van der Meer, Dennis; Van Donkelaar, Marjolein M J; Van Eijk, Kristel R; Van Erp, Theo G M; Van Rooij, Daan; Walton, Esther; Westlye, Lars T; Whelan, Christopher D; Windham, Beverly G; Winkler, Anderson M; Wittfeld, Katharina; Woldehawariat, Girma; Wolf, Christiane; Wolfers, Thomas; Yanek, Lisa R; Yang, Jingyun; Zijdenbos, Alex; Zwiers, Marcel P; Agartz, Ingrid; Almasy, Laura; Ames, David; Amouyel, Philippe; Andreassen, Ole A; Arepalli, Sampath; Assareh, Amelia A; Barral, Sandra; Bastin, Mark E; Becker, Diane M; Becker, James T; Bennett, David A; Blangero, John; van Bokhoven, Hans; Boomsma, Dorret I; Brodaty, Henry; Brouwer, Rachel M; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Bulayeva, Kazima B; Cahn, Wiepke; Calhoun, Vince D; Cannon, Dara M; Cavalleri, Gianpiero L; Cheng, Ching-Yu; Cichon, Sven; Cookson, Mark R; Corvin, Aiden; Crespo-Facorro, Benedicto; Curran, Joanne E; Czisch, Michael; Dale, Anders M; Davies, Gareth E; De Craen, Anton J M; De Geus, Eco J C; De Jager, Philip L; De Zubicaray, Greig I; Deary, Ian J; Debette, Stéphanie; DeCarli, Charles; Delanty, Norman; Depondt, Chantal; DeStefano, Anita; Dillman, Allissa; Djurovic, Srdjan; Donohoe, Gary; Drevets, Wayne C; Duggirala, Ravi; Dyer, Thomas D; Enzinger, Christian; Erk, Susanne; Espeseth, Thomas; Fedko, Iryna O; Fernández, Guillén; Ferrucci, Luigi; Fisher, Simon E; Fleischman, Debra A; Ford, Ian; Fornage, Myriam; Foroud, Tatiana M; Fox, Peter T; Francks, Clyde; Fukunaga, Masaki; Gibbs, J Raphael; Glahn, David C; Gollub, Randy L; Göring, Harald H H; Green, Robert C; Gruber, Oliver; Gudnason, Vilmundur; Guelfi, Sebastian; Håberg, Asta K; Hansell, Narelle K; Hardy, John; Hartman, Catharina A; Hashimoto, Ryota; Hegenscheid, Katrin; Heinz, Andreas; Le Hellard, Stephanie; Hernandez, Dena G; Heslenfeld, Dirk J; Ho, Beng-Choon; Hoekstra, Pieter J; Hoffmann, Wolfgang; Hofman, Albert; Holsboer, Florian; Homuth, Georg; Hosten, Norbert; Hottenga, Jouke-Jan; Huentelman, Matthew; Hulshoff Pol, Hilleke E; Ikeda, Masashi; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Jönsson, Erik G; Jukema, J Wouter; Kahn, René S; Kanai, Ryota; Kloszewska, Iwona; Knopman, David S; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Lemaître, Hervé; Liu, Xinmin; Longo, Dan L; Lopez, Oscar L; Lovestone, Simon; Martinez, Oliver; Martinot, Jean-Luc; Mattay, Venkata S; McDonald, Colm; McIntosh, Andrew M; McMahon, Francis J; McMahon, Katie L; Mecocci, Patrizia; Melle, Ingrid; Meyer-Lindenberg, Andreas; Mohnke, Sebastian; Montgomery, Grant W; Morris, Derek W; Mosley, Thomas H; Mühleisen, Thomas W; Müller-Myhsok, Bertram; Nalls, Michael A; Nauck, Matthias; Nichols, Thomas E; Niessen, Wiro J; Nöthen, Markus M; Nyberg, Lars; Ohi, Kazutaka; Olvera, Rene L; Ophoff, Roel A; Pandolfo, Massimo; Paus, Tomas; Pausova, Zdenka; Penninx, Brenda W J H; Pike, G Bruce; Potkin, Steven G; Psaty, Bruce M; Reppermund, Simone; Rietschel, Marcella; Roffman, Joshua L; Romanczuk-Seiferth, Nina; Rotter, Jerome I; Ryten, Mina; Sacco, Ralph L; Sachdev, Perminder S; Saykin, Andrew J; Schmidt, Reinhold; Schmidt, Helena; Schofield, Peter R; Sigursson, Sigurdur; Simmons, Andrew; Singleton, Andrew; Sisodiya, Sanjay M; Smith, Colin; Smoller, Jordan W; Soininen, Hilkka; Steen, Vidar M; Stott, David J; Sussmann, Jessika E; Thalamuthu, Anbupalam; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Tsolaki, Magda; Tzourio, Christophe; Uitterlinden, Andre G; Hernández, Maria C Valdés; Van der Brug, Marcel; van der Lugt, Aad; van der Wee, Nic J A; Van Haren, Neeltje E M; van 't Ent, Dennis; Van Tol, Marie-Jose; Vardarajan, Badri N; Vellas, Bruno; Veltman, Dick J; Völzke, Henry; Walter, Henrik; Wardlaw, Joanna M; Wassink, Thomas H; Weale, Michael E; Weinberger, Daniel R; Weiner, Michael W; Wen, Wei; Westman, Eric; White, Tonya; Wong, Tien Y; Wright, Clinton B; Zielke, Ronald H; Zonderman, Alan B; Martin, Nicholas G; Van Duijn, Cornelia M; Wright, Margaret J; Longstreth, W T; Schumann, Gunter; Grabe, Hans J; Franke, Barbara; Launer, Lenore J; Medland, Sarah E; Seshadri, Sudha; Thompson, Paul M; Ikram, M Arfan

    2017-01-18

    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (r g =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness.

  15. Visual performance of pigeons following hippocampal lesions.

    Science.gov (United States)

    Bingman, V P; Hodos, W

    1992-11-15

    The effect of hippocampal lesions on performance in two psychophysical measures of spatial vision (acuity and size-difference threshold) was examined in 7 pigeons. No difference between the preoperative and postoperative thresholds of the experimental birds was found. The visual performance of pigeons in the psychophysical tasks failed to reveal a role of the hippocampal formation in vision. The results argue strongly that the behavioral deficits found in pigeons with hippocampal lesions when tested in a variety of memory-related spatial tasks is not based on a defect in spatial vision but impaired spatial cognition.

  16. Both oophorectomy and obesity impaired solely hippocampal-dependent memory via increased hippocampal dysfunction.

    Science.gov (United States)

    Mantor, Duangkamol; Pratchayasakul, Wasana; Minta, Wanitchaya; Sutham, Wissuta; Palee, Siripong; Sripetchwandee, Jirapas; Kerdphoo, Sasiwan; Jaiwongkum, Thidarat; Sriwichaiin, Sirawit; Krintratun, Warunsorn; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2018-04-17

    Our previous study demonstrated that obesity aggravated peripheral insulin resistance and brain dysfunction in the ovariectomized condition. Conversely, the effect of obesity followed by oophorectomy on brain oxidative stress, brain apoptosis, synaptic function and cognitive function, particularly in hippocampal-dependent and hippocampal-independent memory, has not been investigated. Our hypothesis was that oophorectomy aggravated metabolic impairment, brain dysfunction and cognitive impairment in obese rats. Thirty-two female rats were fed with either a normal diet (ND, n = 16) or a high-fat diet (HFD, n = 16) for a total of 20 weeks. At week 13, rats in each group were subdivided into sham and ovariectomized subgroups (n = 8/subgroup). At week 20, all rats were tested for hippocampal-dependent and hippocampal-independent memory by using Morris water maze test (MWM) and Novel objective recognition (NOR) tests, respectively. We found that the obese-insulin resistant condition occurred in sham-HFD-fed rats (HFS), ovariectomized-ND-fed rats (NDO), and ovariectomized-HFD-fed rats (HFO). Increased hippocampal oxidative stress level, increased hippocampal apoptosis, increased hippocampal synaptic dysfunction, decreased hippocampal estrogen level and impaired hippocampal-dependent memory were observed in HFS, NDO, and HFO rats. However, the hippocampal-independent memory, cortical estrogen levels, cortical ROS production, and cortical apoptosis showed no significant difference between groups. These findings suggested that oophorectomy and obesity exclusively impaired hippocampal-dependent memory, possibly via increased hippocampal dysfunction. Nonetheless, oophorectomy did not aggravate these deleterious effects under conditions of obesity. Copyright © 2017. Published by Elsevier Inc.

  17. Abnormalities of hippocampal-cortical connectivity in temporal lobe epilepsy patients with hippocampal sclerosis

    Science.gov (United States)

    Li, Wenjing; He, Huiguang; Lu, Jingjing; Wang, Chunheng; Li, Meng; Lv, Bin; Jin, Zhengyu

    2011-03-01

    Hippocampal sclerosis (HS) is the most common damage seen in the patients with temporal lobe epilepsy (TLE). In the present study, the hippocampal-cortical connectivity was defined as the correlation between the hippocampal volume and cortical thickness at each vertex throughout the whole brain. We aimed to investigate the differences of ipsilateral hippocampal-cortical connectivity between the unilateral TLE-HS patients and the normal controls. In our study, the bilateral hippocampal volumes were first measured in each subject, and we found that the ipsilateral hippocampal volume significantly decreased in the left TLE-HS patients. Then, group analysis showed significant thinner average cortical thickness of the whole brain in the left TLE-HS patients compared with the normal controls. We found significantly increased ipsilateral hippocampal-cortical connectivity in the bilateral superior temporal gyrus, the right cingulate gyrus and the left parahippocampal gyrus of the left TLE-HS patients, which indicated structural vulnerability related to the hippocampus atrophy in the patient group. However, for the right TLE-HS patients, no significant differences were found between the patients and the normal controls, regardless of the ipsilateral hippocampal volume, the average cortical thickness or the patterns of hippocampal-cortical connectivity, which might be related to less atrophies observed in the MRI scans. Our study provided more evidence for the structural abnormalities in the unilateral TLE-HS patients.

  18. Mesopontine median raphe regulates hippocampal ripple oscillation and memory consolidation.

    Science.gov (United States)

    Wang, Dong V; Yau, Hau-Jie; Broker, Carl J; Tsou, Jen-Hui; Bonci, Antonello; Ikemoto, Satoshi

    2015-05-01

    Sharp wave-associated field oscillations (∼200 Hz) of the hippocampus, referred to as ripples, are believed to be important for consolidation of explicit memory. Little is known about how ripples are regulated by other brain regions. We found that the median raphe region (MnR) is important for regulating hippocampal ripple activity and memory consolidation. We performed in vivo simultaneous recording in the MnR and hippocampus of mice and found that, when a group of MnR neurons was active, ripples were absent. Consistently, optogenetic stimulation of MnR neurons suppressed ripple activity and inhibition of these neurons increased ripple activity. Notably, using a fear conditioning procedure, we found that photostimulation of MnR neurons interfered with memory consolidation. Our results demonstrate a critical role of the MnR in regulating ripples and memory consolidation.

  19. Protective Effect of SGK1 in Rat Hippocampal Neurons Subjected to Ischemia Reperfusion

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2014-07-01

    Full Text Available Background/Aims: To investigate the protective effect of SGK1 (serum- and glucocorticoid-inducible protein kinase 1 in rat hippocampal neurons in vitro and in vivo following ischemia reperfusion (I/R. Methods: Isolated rat hippocampal neurons were subjected to 2 h of oxygen and glucose deprivation (OGD then returned to normoxic conditions for 10, 30 or 60 min. Cell apoptosis and protein expression of SGK1 were analyzed. To examine SGK1 function, we overexpressed SGK1 in rat hippocampal neurons. Finally we examined the involvement of PI3K/Akt/GSK3β signaling by treating the cells (untransfected or transfected with expression vector encoding SGK1 with the PI3K inhibitor LY294002. Findings were confirmed in vivo in a rat model of middle cerebral artery occlusion. Results: I/R caused a time-dependent increase in apoptosis, both in vitro and in vivo. SGK1 protein levels decreased significantly under the same conditions. Overexpression of SGK1 reduced apoptosis following OGD or I/R compared to cells transfected with empty vector and subjected to the same treatment, or sham-operated animals. Addition of LY294002 revealed that the action of SGK1 in suppressing apoptosis was mediated by the PI3K/Akt/GSK3β pathway. Conclusion: SGK1 plays a protective role in ischemia reperfusion in rat hippocampal neurons, exerting its effects via the PI3K/Akt/GSK3β pathway.

  20. Neurotoxic effect of 2,5-hexanedione on neural progenitor cells and hippocampal neurogenesis

    International Nuclear Information System (INIS)

    Kim, Min-Sun; Park, Hee Ra; Park, Mikyung; Kim, So Jung; Kwon, Mugil; Yu, Byung Pal; Chung, Hae Young; Kim, Hyung Sik; Kwack, Seung Jun; Kang, Tae Seok; Kim, Seung Hee; Lee, Jaewon

    2009-01-01

    2,5-Hexanedione (HD), a metabolite of n-hexane, causes central and peripheral neuropathy leading to motor neuron deficits. Although chronic exposure to n-hexane is known to cause gradual sensorimotor neuropathy, there are no reports on the effects of low doses of HD on neurogenesis in the central nervous system. In the current study, we explored HD toxicity in murine neural progenitor cells (NPC), primary neuronal culture and young adult mice. HD (500 nM∼50 μM) dose-dependently suppressed NPC proliferation and cell viability, and also increased the production of reactive oxygen species (ROS). HD (10 or 50 mg/kg for 2 weeks) inhibited hippocampal neuronal and NPC proliferation in 6-week-old male ICR mice, as measured by BrdU incorporation in the dentate gyrus, indicating HD impaired hippocampal neurogenesis. In addition, elevated microglial activation was observed in the hippocampal CA3 region and lateral ventricles of HD-treated mice. Lastly, HD dose-dependently decreased the viability of primary cultured neurons. Based on biochemical and histochemical evidence from both cell culture and HD-treated animals, the neurotoxic mechanisms by which HD inhibits NPC proliferation and hippocampal neurogenesis may relate to its ability to elicit an increased generation of deleterious ROS.

  1. The cumulative analgesic effect of repeated electroacupuncture involves synaptic remodeling in the hippocampal CA3 region☆

    Science.gov (United States)

    Xu, Qiuling; Liu, Tao; Chen, Shuping; Gao, Yonghui; Wang, Junying; Qiao, Lina; Liu, Junling

    2012-01-01

    In the present study, we examined the analgesic effect of repeated electroacupuncture at bilateral Zusanli (ST36) and Yanglingquan (GB34) once a day for 14 consecutive days in a rat model of chronic sciatic nerve constriction injury-induced neuropathic pain. In addition, concomitant changes in calcium/calmodulin-dependent protein kinase II expression and synaptic ultrastructure of neurons in the hippocampal CA3 region were examined. The thermal pain threshold (paw withdrawal latency) was increased significantly in both groups at 2 weeks after electroacupuncture intervention compared with 2 days of electroacupuncture. In ovariectomized rats with chronic constriction injury, the analgesic effect was significantly reduced. Electroacupuncture for 2 weeks significantly diminished the injury-induced increase in synaptic cleft width and thinning of the postsynaptic density, and it significantly suppressed the down-regulation of intracellular calcium/calmodulin-dependent protein kinase II expression in the hippocampal CA3 region. Repeated electroacupuncture intervention had a cumulative analgesic effect on injury-induced neuropathic pain reactions, and it led to synaptic remodeling of hippocampal neurons and upregulated calcium/calmodulin-dependent protein kinase II expression in the hippocampal CA3 region. PMID:25657670

  2. Cavernous angioma associated with ipsilateral hippocampal sclerosis

    International Nuclear Information System (INIS)

    Okujava, M.; Ebner, A.; Schmitt, J.; Woermann, F.G.

    2002-01-01

    We report two cases with extratemporal cavernous angioma (CA) and coexisting ipsilateral hippocampal sclerosis. Classically dual pathology is defined as the association of hippocampal sclerosis with an extrahippocampal lesion. Subtle changes in hippocampus might be overlooked in the presence of an unequivocal extrahippocampal abnormality. Seizure outcome after epilepsy surgery in cases with dual pathology is less favourable if only one of the lesions is removed. Dual pathology must always be considered in diagnostic imaging of patients with intractable epilepsy and CA. (orig.)

  3. Cavernous angioma associated with ipsilateral hippocampal sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Okujava, M [Institute of Radiology and Interventional Diagnostics, Tbilisi (Georgia); Ebner, A; Schmitt, J; Woermann, F G [Bethel Epilepsy Centre, Mara Hospital, Bielefeld (Germany)

    2002-07-01

    We report two cases with extratemporal cavernous angioma (CA) and coexisting ipsilateral hippocampal sclerosis. Classically dual pathology is defined as the association of hippocampal sclerosis with an extrahippocampal lesion. Subtle changes in hippocampus might be overlooked in the presence of an unequivocal extrahippocampal abnormality. Seizure outcome after epilepsy surgery in cases with dual pathology is less favourable if only one of the lesions is removed. Dual pathology must always be considered in diagnostic imaging of patients with intractable epilepsy and CA. (orig.)

  4. Morphological Variations of Hippocampal Formation in Epilepsy

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2013-02-01

    Full Text Available Researchers at Hospital Sao Paulo and other centers in Brazil compared the hippocampal formation (HF morphology of healthy asymptomatic individuals (n=30 with that of patients with mesial temporal lobe epilepsy and hippocampal sclerosis (MTLE-HS(n=68, of patients with malformations of cortical development (MCD(n=34, and of patients with morphological HF variations without other structural signs (pure MVHF(n=12.

  5. VPS35 regulates developing mouse hippocampal neuronal morphogenesis by promoting retrograde trafficking of BACE1

    Directory of Open Access Journals (Sweden)

    Chun-Lei Wang

    2012-10-01

    VPS35, a major component of the retromer, plays an important role in the selective endosome-to-Golgi retrieval of membrane proteins. Dysfunction of retromer is a risk factor for neurodegenerative disorders, but its function in developing mouse brain remains poorly understood. Here we provide evidence for VPS35 promoting dendritic growth and maturation, and axonal protein transport in developing mouse hippocampal neurons. Embryonic hippocampal CA1 neurons suppressing Vps35 expression by in utero electroporation of its micro RNAs displayed shortened apical dendrites, reduced dendritic spines, and swollen commissural axons in the neonatal stage, those deficits reflecting a defective protein transport/trafficking in developing mouse neurons. Further mechanistic studies showed that Vps35 depletion in neurons resulted in an impaired retrograde trafficking of BACE1 (β1-secretase and altered BACE1 distribution. Suppression of BACE1 expression in CA1 neurons partially rescued both dendritic and axonal deficits induced by Vps35-deficiency. These results thus demonstrate that BACE1 acts as a critical cargo of retromer in vitro and in vivo, and suggest that VPS35 plays an essential role in regulating apical dendritic maturation and in preventing axonal spheroid formation in developing hippocampal neurons.

  6. Intrahippocampal Administration of Amyloid-β1–42 Oligomers Acutely Impairs Spatial Working Memory, Insulin Signaling, and Hippocampal Metabolism

    Science.gov (United States)

    Pearson-Leary, Jiah; McNay, Ewan C.

    2017-01-01

    Increasing evidence suggests that abnormal brain accumulation of amyloid-β1–42 (Aβ1–42) oligomers plays a causal role in Alzheimer’s disease (AD), and in particular may cause the cognitive deficits that are the hallmark of AD. In vitro, Aβ1–42 oligomers impair insulin signaling and suppress neural functioning. We previously showed that endogenous insulin signaling is an obligatory component of normal hippocampal function, and that disrupting this signaling led to a rapid impairment of spatial working memory, while delivery of exogenous insulin to the hippocampus enhanced both memory and metabolism; diet-induced insulin resistance both impaired spatial memory and prevented insulin from increasing metabolism or cognitive function. Hence, we tested the hypothesis that Aβ1–42 oligomers could acutely impair hippocampal metabolic and cognitive processes in vivo in the rat. Our findings support this hypothesis: Aβ1–42 oligomers impaired spontaneous alternation behavior while preventing the task-associated dip in hippocampal ECF glucose observed in control animals. In addition, Aβ1–42 oligomers decreased plasma membrane translocation of the insulin-sensitive glucose transporter 4 (GluT4), and impaired insulin signaling as measured by phosphorylation of Akt. These data show in vivo that Aβ1–42 oligomers can rapidly impair hippocampal cognitive and metabolic processes, and provide support for the hypothesis that elevated Aβ1–42 leads to cognitive impairment via interference with hippocampal insulin signaling. PMID:22430529

  7. Hippocampal NPY gene transfer attenuates seizures without affecting epilepsy-induced impairment of LTP

    DEFF Research Database (Denmark)

    Sørensen, Andreas T; Nikitidou, Litsa; Ledri, Marco

    2009-01-01

    (TLE). However, our previous studies show that recombinant adeno-associated viral (rAAV)-NPY treatment in naive rats attenuates long-term potentiation (LTP) and transiently impairs hippocampal learning process, indicating that negative effect on memory function could be a potential side effect of NPY...... is significantly attenuated in vitro. Importantly, transgene NPY overexpression has no effect on short-term synaptic plasticity, and does not further compromise LTP in kindled animals. These data suggest that epileptic seizure-induced impairment of memory function in the hippocampus may not be further affected...... injected with rAAV-NPY, we show that rapid kindling-induced hippocampal seizures in vivo are effectively suppressed as compared to rAAV-empty injected (control) rats. Six to nine weeks later, basal synaptic transmission and short-term synaptic plasticity are unchanged after rapid kindling, while LTP...

  8. Moxibustion upregulates hippocampal progranulin expression

    Directory of Open Access Journals (Sweden)

    Tao Yi

    2016-01-01

    Full Text Available In China, moxibustion is reported to be useful and has few side effects for chronic fatigue syndrome, but its mechanisms are largely unknown. More recently, the focus has been on the wealth of information supporting stress as a factor in chronic fatigue syndrome, and largely concerns dysregulation in the stress-related hypothalamic-pituitary-adrenal axis. In the present study, we aimed to determine the effect of moxibustion on behavioral symptoms in chronic fatigue syndrome rats and examine possible mechanisms. Rats were subjected to a combination of chronic restraint stress and forced swimming to induce chronic fatigue syndrome. The acupoints Guanyuan (CV4 and Zusanli (ST36, bilateral were simultaneously administered moxibustion. Untreated chronic fatigue syndrome rats and normal rats were used as controls. Results from the forced swimming test, open field test, tail suspension test, real-time PCR, enzyme-linked immunosorbent assay, and western blot assay showed that moxibustion treatment decreased mRNA expression of corticotropin-releasing hormone in the hypothalamus, and adrenocorticotropic hormone and corticosterone levels in plasma, and markedly increased progranulin mRNA and protein expression in the hippocampus. These findings suggest that moxibustion may relieve the behavioral symptoms of chronic fatigue syndrome, at least in part, by modulating the hypothalamic-pituitary-adrenal axis and upregulating hippocampal progranulin.

  9. MicroRNA-132 protects hippocampal neurons against oxygen-glucose deprivation-induced apoptosis.

    Science.gov (United States)

    Sun, Zu-Zhen; Lv, Zhan-Yun; Tian, Wen-Jing; Yang, Yan

    2017-09-01

    Hypoxic-ischemic brain injury (HIBI) results in death or long-term neurologic impairment in both adults and children. In this study, we investigated the effects of microRNA-132 (miR-132) dysregulation on oxygen-glucose deprivation (OGD)-induced apoptosis in fetal rat hippocampal neurons, in order to reveal the therapeutic potential of miR-132 on HIBI. MiR-132 dysregulation was induced prior to OGD exposure by transfection of primary fetal rat hippocampal neurons with miR-132 mimic or miR-132 inhibitor. The effects of miR-132 overexpression and suppression on OGD-stimulated hippocampal neurons were evaluated by detection of cell viability, apoptotic cells rate, and the expression of apoptosis-related proteins. Besides, TargetScan database and dual luciferase activity assay were used to seek a target gene of miR-132. As a result, miR-132 was highly expressed in hippocampal neurons following 2 h of OGD exposure. MiR-132 overexpression significantly increased OGD-diminished cell viability and reduced OGD-induced apoptosis at 12, 24, and 48 h post-OGD. MiR-132 overexpression significantly down-regulated the expressions of Bax, cytochrome c, and caspase-9, but up-regulated BCl-2. Caspase-3 activity was also significantly decreased by miR-132 overexpression. Furthermore, FOXO3 was a direct target of miR-132, and it was negatively regulated by miR-132. To conclude, our results provide evidence that miR-132 protects hippocampal neurons against OGD injury by inhibiting apoptosis.

  10. Combined gene overexpression of neuropeptide Y and its receptor Y5 in the hippocampus suppresses seizures

    DEFF Research Database (Denmark)

    Gøtzsche, Casper René; Nikitidou, Litsa; Sørensen, Andreas Toft

    2012-01-01

    We recently demonstrated that recombinant adeno-associated viral vector-induced hippocampal overexpression of neuropeptide Y receptor, Y2, exerts a seizure-suppressant effect in kindling and kainate-induced models of epilepsy in rats. Interestingly, additional overexpression of neuropeptide Y...

  11. Neural Correlates of Direct and Indirect Suppression of Autobiographical Memories.

    Science.gov (United States)

    Noreen, Saima; O'Connor, Akira R; MacLeod, Malcolm D

    2016-01-01

    Research indicates that there are two possible mechanisms by which particular target memories can be intentionally forgotten. Direct suppression, which involves the suppression of the unwanted memory directly, and is dependent on a fronto-hippocampal modulatory process, and, memory substitution, which includes directing one's attention to an alternative memory in order to prevent the unwanted memory from coming to mind, and involves engaging the caudal prefrontal cortex (cPFC) and the mid-ventrolateral prefrontal cortex (VLPFC) regions. Research to date, however, has investigated the neural basis of memory suppression of relatively simple information. The aim of the current study was to use fMRI to identify the neural mechanisms associated with the suppression of autobiographical memories. In the present study, 22 participants generated memories in response to a series of cue words. In a second session, participants learnt these cue-memory pairings, and were subsequently presented with a cue word and asked either to recall (think) or to suppress (no-think) the associated memory, or to think of an alternative memory in order to suppress the original memory (memory-substitution). Our findings demonstrated successful forgetting effects in the no-think and memory substitution conditions. Although we found no activation in the dorsolateral prefrontal cortex, there was reduced hippocampal activation during direct suppression. In the memory substitution condition, however, we failed to find increased activation in the cPFC and VLPFC regions. Our findings suggest that the suppression of autobiographical memories may rely on different neural mechanisms to those established for other types of material in memory.

  12. Neural Correlates of Direct and Indirect Suppression of Autobiographical Memories

    Directory of Open Access Journals (Sweden)

    Saima eNoreen

    2016-03-01

    Full Text Available Research indicates that there are two possible mechanisms by which particular target memories can be intentionally forgotten. Direct suppression, which involves the suppression of the unwanted memory directly, and is dependent on a fronto-hippocampal modulatory process, and, memory substitution, which includes directing one's attention to an alternative memory in order to prevent the unwanted memory from coming to mind, and involves engaging the caudal prefrontal cortex (cPFC and the mid-ventrolateral prefrontal cortex (VLPFC regions. Research to date, however, has investigated the neural basis of memory suppression of relatively simple information. The aim of the current study was to use fMRI to identify the neural mechanisms associated with the suppression of autobiographical memories. In the present study, 22 participants generated memories in response to a series of cue words. In a second session, participants learnt these cue-memory pairings, and were subsequently presented with a cue word and asked either to recall (think or to suppress (no-think the associated memory, or to think of an alternative memory in order to suppress the original memory (memory-substitution. Our findings demonstrated successful forgetting effects in the no-think and memory substitution conditions. Although we found no activation in the dorsolateral prefrontal cortex there was reduced hippocampal activation during direct suppression. In the memory substitution condition, however, we failed to find increased activation in the cPFC and VLPFC regions. Our findings suggest that the suppression of autobiographical memories may rely on different neural mechanisms to those established for other types of material in memory.

  13. Taurine increases hippocampal neurogenesis in aging mice

    Directory of Open Access Journals (Sweden)

    Elias Gebara

    2015-05-01

    Full Text Available Aging is associated with increased inflammation and reduced hippocampal neurogenesis, which may in turn contribute to cognitive impairment. Taurine is a free amino acid found in numerous diets, with anti-inflammatory properties. Although abundant in the young brain, the decrease in taurine concentration with age may underlie reduced neurogenesis. Here, we assessed the effect of taurine on hippocampal neurogenesis in middle-aged mice. We found that taurine increased cell proliferation in the dentate gyrus through the activation of quiescent stem cells, resulting in increased number of stem cells and intermediate neural progenitors. Taurine had a direct effect on stem/progenitor cells proliferation, as observed in vitro, and also reduced activated microglia. Furthermore, taurine increased the survival of newborn neurons, resulting in a net increase in adult neurogenesis. Together, these results show that taurine increases several steps of adult neurogenesis and support a beneficial role of taurine on hippocampal neurogenesis in the context of brain aging.

  14. Caffeine Increases Hippocampal Sharp Waves in Vitro.

    Science.gov (United States)

    Watanabe, Yusuke; Ikegaya, Yuji

    2017-01-01

    Caffeine promotes memory consolidation. Memory consolidation is thought to depend at least in part on hippocampal sharp waves (SWs). In the present study, we investigated the effect of bath-application of caffeine in spontaneously occurring SWs in mouse acute hippocampal slices. Caffeine induced an about 100% increase in the event frequency of SWs at concentrations of 60 and 200 µM. The effect of caffeine was reversible after washout of caffeine and was mimicked by an adenosine A 1 receptor antagonist, but not by an A 2A receptor antagonist. Caffeine increased SWs even in dentate-CA3 mini-slices without the CA2 regions, in which adenosine A 1 receptors are abundantly expressed in the hippocampus. Thus, caffeine facilitates SWs by inhibiting adenosine A 1 receptors in the hippocampal CA3 region or the dentate gyrus.

  15. Adult hippocampal neurogenesis and cognitive aging

    Directory of Open Access Journals (Sweden)

    Román Darío Moreno Fernández

    2013-12-01

    Full Text Available Aging is a normal developmental process associated with neurobiological changes leading to cognitive alterations with preserved, impaired, and enhanced functions. Evidence from animal and human studies is reviewed to explore the potential role of hippocampal plasticity on age-related cognitive changes with special attention to adult hippocampal neurogenesis. Results from lesion and stimulation strategies, as well as correlation data, support either a direct or modulatory role for adult newborn neurons in cognition at advanced ages. Further research on this topic may help to develop new treatments and to improve the quality of life of older people.

  16. Memory impairment in multiple sclerosis: Relevance of hippocampal activation and hippocampal connectivity

    NARCIS (Netherlands)

    Hulst, H.E.; Schoonheim, M.M.; van Geest, Q.; Uitdehaag, B.M.J.; Barkhof, F.; Geurts, J.J.G.

    2015-01-01

    Background: Memory impairment is frequent in multiple sclerosis (MS), but it is unclear what functional brain changes underlie this cognitive deterioration. Objective: To investigate functional hippocampal activation and connectivity, in relation to memory performance in MS. Methods: Structural and

  17. Spatial learning depends on both the addition and removal of new hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    David Dupret

    2007-08-01

    Full Text Available The role of adult hippocampal neurogenesis in spatial learning remains a matter of debate. Here, we show that spatial learning modifies neurogenesis by inducing a cascade of events that resembles the selective stabilization process characterizing development. Learning promotes survival of relatively mature neurons, apoptosis of more immature cells, and finally, proliferation of neural precursors. These are three interrelated events mediating learning. Thus, blocking apoptosis impairs memory and inhibits learning-induced cell survival and cell proliferation. In conclusion, during learning, similar to the selective stabilization process, neuronal networks are sculpted by a tightly regulated selection and suppression of different populations of newly born neurons.

  18. Hippocampal insulin resistance and cognitive dysfunction

    NARCIS (Netherlands)

    Biessels, Geert Jan; Reagan, Lawrence P.

    2015-01-01

    Clinical studies suggest a link between type 2 diabetes mellitus (T2DM) and insulin resistance (IR) and cognitive dysfunction, but there are significant gaps in our knowledge of the mechanisms underlying this relationship. Animal models of IR help to bridge these gaps and point to hippocampal IR as

  19. Hippocampal Abnormalities after Prolonged Febrile Convulsions

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2003-11-01

    Full Text Available Hippocampal volume and T2 relaxation times were determined in an MRI study of 14 children with prolonged febrile convulsions (PFC who were investigated, 1 within 5 days of a PFC, and 2 at follow-up 4-8 months after the acute study, at the Institute of Child Health, University College, and Great Ormond Street Hospital, London, UK.

  20. Amnesia due to bilateral hippocampal glioblastoma

    International Nuclear Information System (INIS)

    Shimauchi, M.; Wakisaka, S.; Kinoshita, K.

    1989-01-01

    The authors report a unique case of glioblastoma which caused permanent amnesia. Magnetic resonance imaging showed the lesion to be limited to the hippocampal formation bilaterally. Although glioblastoma extends frequently into fiber pathways and expands into the opposite cerebral hemisphere, making a 'butterfly' lesion, it is unusual for it to invade the limbic system selectively to this extent. (orig.)

  1. Hippocampal theta frequency shifts and operant behaviour

    NARCIS (Netherlands)

    Lopes da Silva, F.H.; Kamp, A.

    1. 1. A shift of hippocampal dominant theta frequency to 6 c/sec has been demonstrated in the post-reward period in two dogs, which occurs consistently related in time to a well defined behavioural pattern in the course of an operant conditioning paradigm. 2. 2. The frequency shift was detected and

  2. Hippocampal gamma oscillations increase with memory load

    NARCIS (Netherlands)

    Van Vugt, Marieke K.; Schulze-Bonhage, Andreas; Litt, Brian; Brandt, Armin; Kahana, Michael J.

    2010-01-01

    Although the hippocampus plays a crucial role in encoding and retrieval of contextually mediated episodic memories, considerable controversy surrounds the role of the hippocampus in short-term or working memory. To examine both hippocampal and neocortical contributions to working memory function, we

  3. Hippocampal sclerosis in advanced age: clinical and pathological features.

    Science.gov (United States)

    Nelson, Peter T; Schmitt, Frederick A; Lin, Yushun; Abner, Erin L; Jicha, Gregory A; Patel, Ela; Thomason, Paula C; Neltner, Janna H; Smith, Charles D; Santacruz, Karen S; Sonnen, Joshua A; Poon, Leonard W; Gearing, Marla; Green, Robert C; Woodard, John L; Van Eldik, Linda J; Kryscio, Richard J

    2011-05-01

    Hippocampal sclerosis is a relatively common neuropathological finding (∼10% of individuals over the age of 85 years) characterized by cell loss and gliosis in the hippocampus that is not explained by Alzheimer's disease. Hippocampal sclerosis pathology can be associated with different underlying causes, and we refer to hippocampal sclerosis in the aged brain as hippocampal sclerosis associated with ageing. Much remains unknown about hippocampal sclerosis associated with ageing. We combined three different large autopsy cohorts: University of Kentucky Alzheimer's Disease Centre, the Nun Study and the Georgia Centenarian Study to obtain a pool of 1110 patients, all of whom were evaluated neuropathologically at the University of Kentucky. We focused on the subset of cases with neuropathology-confirmed hippocampal sclerosis (n=106). For individuals aged≥95 years at death (n=179 in our sample), each year of life beyond the age of 95 years correlated with increased prevalence of hippocampal sclerosis pathology and decreased prevalence of 'definite' Alzheimer's disease pathology. Aberrant TAR DNA protein 43 immunohistochemistry was seen in 89.9% of hippocampal sclerosis positive patients compared with 9.7% of hippocampal sclerosis negative patients. TAR DNA protein 43 immunohistochemistry can be used to demonstrate that the disease is usually bilateral even when hippocampal sclerosis pathology is not obvious by haematoxylin and eosin stains. TAR DNA protein 43 immunohistochemistry was negative on brain sections from younger individuals (n=10) after hippocampectomy due to seizures, who had pathologically confirmed hippocampal sclerosis. There was no association between cases with hippocampal sclerosis associated with ageing and apolipoprotein E genotype. Age of death and clinical features of hippocampal sclerosis associated with ageing (with or without aberrant TAR DNA protein 43) were distinct from previously published cases of frontotemporal lobar degeneration TAR

  4. IGF-1 Receptor Differentially Regulates Spontaneous and Evoked Transmission via Mitochondria at Hippocampal Synapses

    Science.gov (United States)

    Gazit, Neta; Vertkin, Irena; Shapira, Ilana; Helm, Martin; Slomowitz, Edden; Sheiba, Maayan; Mor, Yael; Rizzoli, Silvio; Slutsky, Inna

    2016-01-01

    Summary The insulin-like growth factor-1 receptor (IGF-1R) signaling is a key regulator of lifespan, growth, and development. While reduced IGF-1R signaling delays aging and Alzheimer’s disease progression, whether and how it regulates information processing at central synapses remains elusive. Here, we show that presynaptic IGF-1Rs are basally active, regulating synaptic vesicle release and short-term plasticity in excitatory hippocampal neurons. Acute IGF-1R blockade or transient knockdown suppresses spike-evoked synaptic transmission and presynaptic cytosolic Ca2+ transients, while promoting spontaneous transmission and resting Ca2+ level. This dual effect on transmitter release is mediated by mitochondria that attenuate Ca2+ buffering in the absence of spikes and decrease ATP production during spiking activity. We conclude that the mitochondria, activated by IGF-1R signaling, constitute a critical regulator of information processing in hippocampal neurons by maintaining evoked-to-spontaneous transmission ratio, while constraining synaptic facilitation at high frequencies. Excessive IGF-1R tone may contribute to hippocampal hyperactivity associated with Alzheimer’s disease. Video Abstract PMID:26804996

  5. Sleep deprivation causes memory deficits by negatively impacting neuronal connectivity in hippocampal area CA1

    Science.gov (United States)

    Havekes, Robbert; Park, Alan J; Tudor, Jennifer C; Luczak, Vincent G; Hansen, Rolf T; Ferri, Sarah L; Bruinenberg, Vibeke M; Poplawski, Shane G; Day, Jonathan P; Aton, Sara J; Radwańska, Kasia; Meerlo, Peter; Houslay, Miles D; Baillie, George S; Abel, Ted

    2016-01-01

    Brief periods of sleep loss have long-lasting consequences such as impaired memory consolidation. Structural changes in synaptic connectivity have been proposed as a substrate of memory storage. Here, we examine the impact of brief periods of sleep deprivation on dendritic structure. In mice, we find that five hours of sleep deprivation decreases dendritic spine numbers selectively in hippocampal area CA1 and increased activity of the filamentous actin severing protein cofilin. Recovery sleep normalizes these structural alterations. Suppression of cofilin function prevents spine loss, deficits in hippocampal synaptic plasticity, and impairments in long-term memory caused by sleep deprivation. The elevated cofilin activity is caused by cAMP-degrading phosphodiesterase-4A5 (PDE4A5), which hampers cAMP-PKA-LIMK signaling. Attenuating PDE4A5 function prevents changes in cAMP-PKA-LIMK-cofilin signaling and cognitive deficits associated with sleep deprivation. Our work demonstrates the necessity of an intact cAMP-PDE4-PKA-LIMK-cofilin activation-signaling pathway for sleep deprivation-induced memory disruption and reduction in hippocampal spine density. DOI: http://dx.doi.org/10.7554/eLife.13424.001 PMID:27549340

  6. Updating the lamellar hypothesis of hippocampal organization

    Directory of Open Access Journals (Sweden)

    Robert S Sloviter

    2012-12-01

    Full Text Available In 1971, Andersen and colleagues proposed that excitatory activity in the entorhinal cortex propagates topographically to the dentate gyrus, and on through a trisynaptic circuit lying within transverse hippocampal slices or lamellae [Andersen, Bliss, and Skrede. 1971. Lamellar organization of hippocampal pathways. Exp Brain Res 13, 222-238]. In this way, a relatively simple structure might mediate complex functions in a manner analogous to the way independent piano keys can produce a nearly infinite variety of unique outputs. The lamellar hypothesis derives primary support from the lamellar distribution of dentate granule cell axons (the mossy fibers, which innervate dentate hilar neurons and area CA3 pyramidal cells and interneurons within the confines of a thin transverse hippocampal segment. Following the initial formulation of the lamellar hypothesis, anatomical studies revealed that unlike granule cells, hilar mossy cells, CA3 pyramidal cells, and Layer II entorhinal cells all form axonal projections that are more divergent along the longitudinal axis than the clearly lamellar mossy fiber pathway. The existence of pathways with translamellar distribution patterns has been interpreted, incorrectly in our view, as justifying outright rejection of the lamellar hypothesis [Amaral and Witter. 1989. The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience 31, 571-591]. We suggest that the functional implications of longitudinally-projecting axons depend not on whether they exist, but on what they do. The observation that focal granule cell layer discharges normally inhibit, rather than excite, distant granule cells suggests that longitudinal axons in the dentate gyrus may mediate "lateral" inhibition and define lamellar function, rather than undermine it. In this review, we attempt a reconsideration of the evidence that most directly impacts the physiological concept of hippocampal lamellar

  7. Dexamethasone suppression test

    Science.gov (United States)

    DST; ACTH suppression test; Cortisol suppression test ... During this test, you will receive dexamethasone. This is a strong man-made (synthetic) glucocorticoid medicine. Afterward, your blood is drawn ...

  8. Deconstructing continuous flash suppression

    OpenAIRE

    Yang, Eunice; Blake, Randolph

    2012-01-01

    In this paper, we asked to what extent the depth of interocular suppression engendered by continuous flash suppression (CFS) varies depending on spatiotemporal properties of the suppressed stimulus and CFS suppressor. An answer to this question could have implications for interpreting the results in which CFS influences the processing of different categories of stimuli to different extents. In a series of experiments, we measured the selectivity and depth of suppression (i.e., elevation in co...

  9. The effects of benzodiazepine (triazolam), cyclopyrrolone (zopiclone) and imidazopyridine (zolpidem) hypnotics on the frequency of hippocampal theta activity and sleep structure in rats.

    Science.gov (United States)

    Yoshimoto, M; Higuchi, H; Kamata, M; Yoshida, K; Shimizu, T; Hishikawa, Y

    1999-01-01

    In order to investigate the relative efficacy and safety of zopiclone and zolpidem, we compared the effects of higher doses of zopiclone and zolpidem on the frequency of hippocampal theta activity and sleep structure with that of triazolam. Rats were divided into triazolam treatment group (1 mg/kg, 5 mg/kg), zopiclone treatment group (20 mg/kg, 100 mg/kg) and zolpidem treatment group (20 mg/kg, 100 mg/kg). Rats were injected intraperitoneally with these drugs or their vehicle. Polygraphic sleep recording and visual frequency analysis of the hippocampal EEG activity in REM sleep were carried out for 6 h after each injection. Zolpidem, unlike triazolam and zopiclone, had a much milder reducing-effect on the frequency of hippocampal theta activity and suppressing-effect on REM sleep. These results suggest that zolpidem may prove to be a safer hypnotic drug which has fewer or milder side effects than are benzodiazepine and cyclopyrrolone hypnotics.

  10. Adiponectin modulates synaptic plasticity in hippocampal dentate gyrus.

    Science.gov (United States)

    Pousti, Farideh; Ahmadi, Ramesh; Mirahmadi, Fatemeh; Hosseinmardi, Narges; Rohampour, Kambiz

    2018-01-01

    Recent studies have suggested the involvement of some metabolic hormones in memory formation and synaptic plasticity. Insulin dysfunction is known as an essential process in the pathogenesis of sporadic Alzheimer's disease (AD). In this study we examined whether adiponectin (ADN), as an insulin-sensitizing adipokine, could affect hippocampal synaptic plasticity. Field potential recordings were performed on intracerebroventricular (icv) cannulated urethane anesthetized rats. After baseline recording from dentate gyrus (DG) and 10min prior to high/low frequency stimulation (HFS/LFS), 10μl icv ADN (600nm) were injected. The slope of field excitatory postsynaptic potentials (fEPSP) and the amplitude of population spikes (PS) were recorded in response to perforanth path (PP) stimulation. Paired pulse stimuli and ADN injection without any stimulation protocols were also evaluated. Application of ADN before HFS increased PS amplitude recorded in DG significantly (P≤0.05) in comparison to HFS only group. ADN suppressed the potency of LFS to induce long-term depression (LTD), causing a significant difference between fEPSP slope (P≤0.05) and PS amplitude (P≤0.01) between ADN+LFS and ADN group. Paired pulse stimuli applied at 20ms intervals showed more paired pulse facilitation (PPF), when applied after ADN (P≤0.05). ADN induced a chemical long-term potentiation (LTP) in which fEPSP slope and PS amplitude increased significantly (P≤0.01 and P≤0.05, respectively). It is concluded that ADN is able to potentiate the HFS-induced LTP and suppress LFS-induced LTD. ADN caused a chemical LTP, when applied without any tetanic protocol. ADN may enhance the presynaptic release probability. Copyright © 2017. Published by Elsevier B.V.

  11. Effects of Edaravone on Hippocampal Antioxidants in EL Mice.

    Science.gov (United States)

    Baba, Asami; Kawakami, Yasuhiko; Saito, Kenichi; Murashima, Yoshiya L; Itoh, Yasuhiko

    2016-01-01

    The role of oxidative stress in susceptibility to seizures has been the focus of several recent studies. The aim of the present study was to evaluate the antiepileptic effects of the free radical scavenger edaravone on EL mice, a strain that is highly susceptible to convulsive seizures. EL mice were treated intraperitoneally with edaravone or saline for 1 week. The levels of reduced glutathione (GSH), oxidized glutathione (GSSG) and 3 isozymes of superoxide dismutase (SOD) (cytoplasmic copper- and zinc-containing SOD, extracellular SOD, and mitochondrial manganese-containing SOD) were measured in the hippocampus, and electroencephalograms (EEGs) were used to evaluate seizure sensitivity. Hippocampal levels of GSSG were lower in the edaravone group than in the untreated control group, and the GSH/GSSG ratio, Cu/Zn-SOD, and EC-SOD activities were higher in the edaravone group. Edaravone shortened the duration of interictal spike discharges and clinically suppressed epileptic seizures. Edaravone increases antioxidant potency and reduces seizure susceptibility in EL mice, making it a promising novel antiepileptic agent.

  12. Prediction of dementia by hippocampal shape analysis

    DEFF Research Database (Denmark)

    Achterberg, Hakim C.; van der Lijn, Fedde; den Heijer, Tom

    2010-01-01

    This work investigates the possibility of predicting future onset of dementia in subjects who are cognitively normal, using hippocampal shape and volume information extracted from MRI scans. A group of 47 subjects who were non-demented normal at the time of the MRI acquisition, but were diagnosed...... with dementia during a 9 year follow-up period, was selected from a large population based cohort study. 47 Age and gender matched subjects who stayed cognitively intact were selected from the same cohort study as a control group. The hippocampi were automatically segmented and all segmentations were inspected...... and, if necessary, manually corrected by a trained observer. From this data a statistical model of hippocampal shape was constructed, using an entropy-based particle system. This shape model provided the input for a Support Vector Machine classifier to predict dementia. Cross validation experiments...

  13. Relationships between hippocampal activity and breathing patterns

    DEFF Research Database (Denmark)

    Harper, R M; Poe, G R; Rector, D M

    1998-01-01

    Single cell discharge, EEG activity, and optical changes accompanying alterations in breathing patterns, as well as the knowledge that respiratory musculature is heavily involved in movement and other behavioral acts, implicate hippocampal regions in some aspects of breathing control. The control...... is unlikely to reside in oscillatory breathing movements, because such patterns emerge in preparations retaining only the medulla (and perhaps only the spinal cord). However, momentary changes in breathing patterns induced by affect, startle, whole-body movement changes, or compensatory ventilatory changes...... of hippocampal contributions to breathing control should be viewed in the context that significant interactions exist between blood pressure changes and ventilation, and that modest breathing challenges, such as exposure to hypercapnia or to increased resistive loads, bring into action a vast array of brain...

  14. Hippocampal Processing of Ambiguity Enhances Fear Memory.

    Science.gov (United States)

    Amadi, Ugwechi; Lim, Seh Hong; Liu, Elizabeth; Baratta, Michael V; Goosens, Ki A

    2017-02-01

    Despite the ubiquitous use of Pavlovian fear conditioning as a model for fear learning, the highly predictable conditions used in the laboratory do not resemble real-world conditions, in which dangerous situations can lead to unpleasant outcomes in unpredictable ways. In the current experiments, we varied the timing of aversive events after predictive cues in rodents and discovered that temporal ambiguity of aversive events greatly enhances fear. During fear conditioning with unpredictably timed aversive events, pharmacological inactivation of the dorsal hippocampus or optogenetic silencing of cornu ammonis 1 cells during aversive negative prediction errors prevented this enhancement of fear without affecting fear learning for predictable events. Dorsal hippocampal inactivation also prevented ambiguity-related enhancement of fear during auditory fear conditioning under a partial-reinforcement schedule. These results reveal that information about the timing and occurrence of aversive events is rapidly acquired and that unexpectedly timed or omitted aversive events generate hippocampal signals to enhance fear learning.

  15. Hippocampal Neurogenesis, Depressive Disorders, and Antidepressant Therapy

    Directory of Open Access Journals (Sweden)

    Eleni Paizanis

    2007-01-01

    Full Text Available There is a growing body of evidence that neural stem cells reside in the adult central nervous system where neurogenesis occurs throughout lifespan. Neurogenesis concerns mainly two areas in the brain: the subgranular zone of the dentate gyrus in the hippocampus and the subventricular zone, where it is controlled by several trophic factors and neuroactive molecules. Neurogenesis is involved in processes such as learning and memory and accumulating evidence implicates hippocampal neurogenesis in the physiopathology of depression. We herein review experimental and clinical data demonstrating that stress and antidepressant treatments affect neurogenesis in opposite direction in rodents. In particular, the stimulation of hippocampal neurogenesis by all types of antidepressant drugs supports the view that neuroplastic phenomena are involved in the physiopathology of depression and underlie—at least partly—antidepressant therapy.

  16. A Compressed Sensing Perspective of Hippocampal Function

    Directory of Open Access Journals (Sweden)

    Panagiotis ePetrantonakis

    2014-08-01

    Full Text Available Hippocampus is one of the most important information processing units in the brain. Input from the cortex passes through convergent axon pathways to the downstream hippocampal subregions and, after being appropriately processed, is fanned out back to the cortex. Here, we review evidence of the hypothesis that information flow and processing in the hippocampus complies with the principles of Compressed Sensing (CS. The CS theory comprises a mathematical framework that describes how and under which conditions, restricted sampling of information (data set can lead to condensed, yet concise, forms of the initial, subsampled information entity (i.e. of the original data set. In this work, hippocampus related regions and their respective circuitry are presented as a CS-based system whose different components collaborate to realize efficient memory encoding and decoding processes. This proposition introduces a unifying mathematical framework for hippocampal function and opens new avenues for exploring coding and decoding strategies in the brain.

  17. Active sulforhodamine 101 uptake into hippocampal astrocytes.

    Directory of Open Access Journals (Sweden)

    Christian Schnell

    Full Text Available Sulforhodamine 101 (SR101 is widely used as a marker of astrocytes. In this study we investigated labeling of astrocytes by SR101 in acute slices from the ventrolateral medulla and the hippocampus of transgenic mice expressing EGFP under the control of the astrocyte-specific human GFAP promoter. While SR101 efficiently and specifically labeled EGFP-expressing astrocytes in hippocampus, we found that the same staining procedure failed to label astrocytes efficiently in the ventrolateral medulla. Although carbenoxolone is able to decrease the SR101-labeling of astrocytes in the hippocampus, it is unlikely that SR101 is taken up via gap-junction hemichannels because mefloquine, a blocker for pannexin and connexin hemichannels, was unable to prevent SR101-labeling of hippocampal astrocytes. However, SR101-labeling of the hippocampal astrocytes was significantly reduced by substrates of organic anion transport polypeptides, including estron-3-sulfate and dehydroepiandrosterone sulfate, suggesting that SR101 is actively transported into hippocampal astrocytes.

  18. [Effect of Scalp-acupuncture Stimulation on Neurological Function and Expression of ASIC 1 a and ASIC 2 b of Hippocampal CA 1 Region in Cerebral Ischemia Rats].

    Science.gov (United States)

    Tian, Liang; Wang, Jin-Hai; Zhao, Min; Bao, Ying-Cun; Shang, Jun-Fang; Yan, Qi; Zhang, Zhen-Chang; Du, Xiao-Zheng; Jiang, Hua; Sun, Run-Jie; Yuan, Bo; Zhang, Xing-Hua; Zhang, Ting-Zhuo; Li, Xing-Lan

    2016-10-25

    To observe the influence of scalp-acupuncture on the expression of acid-sensing ion channels (ASICs) 1 a and 2 b of hippocampal CA 1 region in cerebral ischemia (CI) rats, so as to investigate its mechanism underlying improvement of ischemic stroke. Thirty-two male SD rats were randomly allocated to normal control, model, scalp-acupuncture and Amiloride group ( n =8 in each group). The model of focal CI was established by middle cerebral artery occlusion (MCAO). Scalp acupuncture stimulation was applied to bilateral Dingnieqianxiexian (MS 6) and Dingniehouxiexian (MS 7), once daily for 7 days. Rats of the Amiloride group were fed with Amiloride solution, twice a day for 7 days, and those of the normal control and model groups were grabbled and fixed in the same way with the acupuncture and Amiloride groups. The neurological deficit score was given according to Longa's method. The expression of hippocampal ASIC 1 a and ASIC 2 b was detected by immunohistochemistry, and the Ca 2+ concentration in the hippocampal tissue assayed using flowing cytometry. After the intervention, the neurological deficit score of both the scalp-acupuncture and Amiloride groups were significantly decreased in comparison with pre-treatment ( P ASIC 1 a and ASIC 2 b in the hippocampal CA 1 region and hip-pocampal Ca 2+ concentration were significantly up-regulated in the model group compared with the normal control group ( P ASIC 1 a and ASIC 2 b expression and Ca 2+ concentration ( P >0.05). Scalp-acupuncture stimulation can improve neurological function in CI rats, which may be related to its effects in suppressing the increased expression of hippocampal ASIC 1 a and ASIC 2 b proteins and in reducing calcium overload in hip-pocampal neurocytes.

  19. Efficacy of the fluid attenuated inversion recovery (FLAIR) sequence of MRI as a preoperative diagnosis of hippocampal sclerosis

    International Nuclear Information System (INIS)

    Morioka, Takato; Nishio, Shunji; Mihara, Futoshi; Muraishi, Mitsuteru; Hisada, Kei; Hasuo, Kanehiro; Fukui, Masashi

    1998-01-01

    A newly advanced MRI pulse sequence, the FLAIR (fluid attenuated inversion recovery) imaging, in which a long TE spin echo sequence is used with suppression of the CSF with an inversion pulse, displays the CSF space as a no-signal intensity area. There have been only a few reports on the FLAIR pulse sequence of temporal lobe epilepsy (TLE) as yet. We examined 9 cases of intractable TLE by FLAIR images and analyzed the advantages and disadvantages of the FLAIR pulse sequence for decision making on temporal lobectomy. All patients underwent anterior temporal lobectomy with hippocampectomy, and the diagnoses were confirmed histologically after surgery. Abnormally high T2 signals (HT2S) were more conspicuous with the FLAIR sequence than with any of the conventional sequences. Tilted axial plane, orientated along to the long axis of the hippocampal body, clearly demonstrated hippocampal atrophy (HA). Selection of a FLAIR sequence into the routine MR examination of patients with TLE is recommended. (author)

  20. Alkaloid fraction of Uncaria rhynchophylla protects against N-methyl-D-aspartate-induced apoptosis in rat hippocampal slices.

    Science.gov (United States)

    Lee, Jongseok; Son, Dongwook; Lee, Pyeongjae; Kim, Sun-Yeou; Kim, Hocheol; Kim, Chang-Ju; Lim, Eunhee

    2003-09-04

    Uncaria rhynchophylla is a medicinal herb which has sedative and anticonvulsive effects and has been applied in the treatment of epilepsy in Oriental medicine. In this study, the effect of alkaloid fraction of U. rhynchophylla against N-methyl-D-aspartate (NMDA)-induced neuronal cell death was investigated. Pretreatment with an alkaloid fraction of U. rhynchophylla for 1 h decreased the degree of neuronal damage induced by NMDA exposure in cultured hippocampal slices and also inhibited NMDA-induced enhanced expressions of apoptosis-related genes such as c-jun, p53, and bax. In the present study, the alkaloid fraction of U. rhynchophylla was shown to have a protective property against NMDA-induced cytotoxicity by suppressing the NMDA-induced apoptosis in rat hippocampal slices.

  1. Possible relationship between the stress-induced synaptic response and metaplasticity in the hippocampal CA1 field of freely moving rats.

    Science.gov (United States)

    Hirata, Riki; Matsumoto, Machiko; Judo, Chika; Yamaguchi, Taku; Izumi, Takeshi; Yoshioka, Mitsuhiro; Togashi, Hiroko

    2009-07-01

    Hippocampal long-term potentiation (LTP) is suppressed not only by stress paradigms but also by low frequency stimulation (LFS) prior to LTP-inducing high frequency stimulation (HFS; tetanus), termed metaplasticity. These synaptic responses are dependent on N-methyl-D-aspartate receptors, leading to speculations about the possible relationship between metaplasticity and stress-induced LTP impairment. However, the functional significance of metaplasticity has been unclear. The present study elucidated the electrophysiological and neurochemical profiles of metaplasticity in the hippocampal CA1 field, with a focus on the synaptic response induced by the emotional stress, contextual fear conditioning (CFC). The population spike amplitude in the CA1 field was decreased during exposure to CFC, and LTP induction was suppressed after CFC in conscious rats. The synaptic response induced by CFC was mimicked by LFS, i.e., LFS impaired the synaptic transmission and subsequent LTP. Plasma corticosterone levels were increased by both CFC and LFS. Extracellular levels of gamma-aminobutyric acid (GABA), but not glutamate, in the hippocampus increased during exposure to CFC or LFS. Furthermore, electrical stimulation of the medial prefrontal cortex (mPFC), which caused decreases in freezing behavior during exposure to CFC, counteracted the LTP impairment induced by LFS. These findings suggest that metaplasticity in the rat hippocampal CA1 field is related to the neural basis of stress experience-dependent fear memory, and that hippocampal synaptic response associated stress-related processes is under mPFC regulation.

  2. Deconstructing continuous flash suppression.

    Science.gov (United States)

    Yang, Eunice; Blake, Randolph

    2012-03-08

    In this paper, we asked to what extent the depth of interocular suppression engendered by continuous flash suppression (CFS) varies depending on spatiotemporal properties of the suppressed stimulus and CFS suppressor. An answer to this question could have implications for interpreting the results in which CFS influences the processing of different categories of stimuli to different extents. In a series of experiments, we measured the selectivity and depth of suppression (i.e., elevation in contrast detection thresholds) as a function of the visual features of the stimulus being suppressed and the stimulus evoking suppression, namely, the popular "Mondrian" CFS stimulus (N. Tsuchiya & C. Koch, 2005). First, we found that CFS differentially suppresses the spatial components of the suppressed stimulus: Observers' sensitivity for stimuli of relatively low spatial frequency or cardinally oriented features was more strongly impaired in comparison to high spatial frequency or obliquely oriented stimuli. Second, we discovered that this feature-selective bias primarily arises from the spatiotemporal structure of the CFS stimulus, particularly within information residing in the low spatial frequency range and within the smooth rather than abrupt luminance changes over time. These results imply that this CFS stimulus operates by selectively attenuating certain classes of low-level signals while leaving others to be potentially encoded during suppression. These findings underscore the importance of considering the contribution of low-level features in stimulus-driven effects that are reported under CFS.

  3. BDNF val(66)met affects hippocampal volume and emotion-related hippocampal memory activity

    NARCIS (Netherlands)

    Molendijk, M. L.; van Tol, M-J; Penninx, B. W. J. H.; van der Wee, N. J. A.; Aleman, A.; Veltman, D. J.; Spinhoven, P.; Elzinga, B. M.

    2012-01-01

    The val(66)met polymorphism on the BDNF gene has been reported to explain individual differences in hippocampal volume and memory-related activity. These findings, however, have not been replicated consistently and no studies to date controlled for the potentially confounding impact of early life

  4. Hippocampal EEG and behaviour in dog. I. Hippocampal EEG correlates of gross motor behaviour

    NARCIS (Netherlands)

    Arnolds, D.E.A.T.; Lopes da Silva, F.H.; Aitink, J.W.; Kamp, A.

    It was shown that rewarding spectral shifts (i.e. increase in amplitude or peak frequency of the hippocampal EEG) causes a solitary dog to show increased motor behaviour. Rewarded spectral shifts concurred with a variety of behavioural transitions. It was found that statistically significant

  5. Preservation of hippocampal neuron numbers and hippocampal subfield volumes in behaviorally characterized aged tree shrews

    NARCIS (Netherlands)

    Keuker, J.I.H.; de Biurrun, G.; Luiten, P.G.M.; Fuchs, E.

    2004-01-01

    Aging is associated with a decreased ability to store and retrieve information. The hippocampal formation plays a critical role in such memory processes, and its integrity is affected during normal aging. We used tree shrews (Tupaia belangeri) as an animal model of aging, because in many

  6. Hippocampal “Time Cells”: Time versus Path Integration

    Science.gov (United States)

    Kraus, Benjamin J.; Robinson, Robert J.; White, John A.; Eichenbaum, Howard; Hasselmo, Michael E.

    2014-01-01

    SUMMARY Recent studies have reported the existence of hippocampal “time cells,” neurons that fire at particular moments during periods when behavior and location are relatively constant. However, an alternative explanation of apparent time coding is that hippocampal neurons “path integrate” to encode the distance an animal has traveled. Here, we examined hippocampal neuronal firing patterns as rats ran in place on a treadmill, thus “clamping” behavior and location, while we varied the treadmill speed to distinguish time elapsed from distance traveled. Hippocampal neurons were strongly influenced by time and distance, and less so by minor variations in location. Furthermore, the activity of different neurons reflected integration over time and distance to varying extents, with most neurons strongly influenced by both factors and some significantly influenced by only time or distance. Thus, hippocampal neuronal networks captured both the organization of time and distance in a situation where these dimensions dominated an ongoing experience. PMID:23707613

  7. Hippocampal sclerosis in children younger than 2 years

    Energy Technology Data Exchange (ETDEWEB)

    Kadom, Nadja [Children' s National Medical Center, Department of Diagnostic Imaging and Radiology, Washington, DC (United States); Tsuchida, Tammy; Gaillard, William D. [Children' s National Medical Center, Department of Neurology, Washington, DC (United States)

    2011-10-15

    Hippocampal sclerosis (HS) is rarely considered as a diagnosis in children younger than 2 years. To describe imaging features in conjunction with clinical information in patients with hippocampal sclerosis who are younger than 2 years. We retrospectively reviewed MR brain imaging and clinical information in five children in whom the diagnosis of HS was made both clinically and by MRI prior to 2 years of age. Imaging features establishing the diagnosis of hippocampal sclerosis were bright T2 signal and volume loss, while the internal architecture of the hippocampal formation was preserved in almost all children. Clinically, all children had an infectious trigger. It is necessary for radiologists to consider HS in children with certain clinical features to plan an MRI protocol that is appropriate for detection of hippocampal pathology. (orig.)

  8. Hippocampal sclerosis in children younger than 2 years

    International Nuclear Information System (INIS)

    Kadom, Nadja; Tsuchida, Tammy; Gaillard, William D.

    2011-01-01

    Hippocampal sclerosis (HS) is rarely considered as a diagnosis in children younger than 2 years. To describe imaging features in conjunction with clinical information in patients with hippocampal sclerosis who are younger than 2 years. We retrospectively reviewed MR brain imaging and clinical information in five children in whom the diagnosis of HS was made both clinically and by MRI prior to 2 years of age. Imaging features establishing the diagnosis of hippocampal sclerosis were bright T2 signal and volume loss, while the internal architecture of the hippocampal formation was preserved in almost all children. Clinically, all children had an infectious trigger. It is necessary for radiologists to consider HS in children with certain clinical features to plan an MRI protocol that is appropriate for detection of hippocampal pathology. (orig.)

  9. Alzheimer's Disease Diagnostic Performance of a Multi-Atlas Hippocampal Segmentation Method using the Harmonized Hippocampal Protocol

    DEFF Research Database (Denmark)

    Anker, Cecilie Benedicte; Sørensen, Lauge; Pai, Akshay

    PURPOSE Hippocampal volumetry is the most widely used structural MRI biomarker of Alzheimer’s disease (AD), and state-of-the-art, automatic hippocampal segmentation can be obtained using longitudinal FreeSurfer. In this study, we compare the diagnostic AD performance of a single time point, multi...

  10. Hippocampal sclerosis in advanced age: clinical and pathological features

    Science.gov (United States)

    Schmitt, Frederick A.; Lin, Yushun; Abner, Erin L.; Jicha, Gregory A.; Patel, Ela; Thomason, Paula C.; Neltner, Janna H.; Smith, Charles D.; Santacruz, Karen S.; Sonnen, Joshua A.; Poon, Leonard W.; Gearing, Marla; Green, Robert C.; Woodard, John L.; Van Eldik, Linda J.; Kryscio, Richard J.

    2011-01-01

    Hippocampal sclerosis is a relatively common neuropathological finding (∼10% of individuals over the age of 85 years) characterized by cell loss and gliosis in the hippocampus that is not explained by Alzheimer’s disease. Hippocampal sclerosis pathology can be associated with different underlying causes, and we refer to hippocampal sclerosis in the aged brain as hippocampal sclerosis associated with ageing. Much remains unknown about hippocampal sclerosis associated with ageing. We combined three different large autopsy cohorts: University of Kentucky Alzheimer’s Disease Centre, the Nun Study and the Georgia Centenarian Study to obtain a pool of 1110 patients, all of whom were evaluated neuropathologically at the University of Kentucky. We focused on the subset of cases with neuropathology-confirmed hippocampal sclerosis (n = 106). For individuals aged ≥95 years at death (n = 179 in our sample), each year of life beyond the age of 95 years correlated with increased prevalence of hippocampal sclerosis pathology and decreased prevalence of ‘definite’ Alzheimer’s disease pathology. Aberrant TAR DNA protein 43 immunohistochemistry was seen in 89.9% of hippocampal sclerosis positive patients compared with 9.7% of hippocampal sclerosis negative patients. TAR DNA protein 43 immunohistochemistry can be used to demonstrate that the disease is usually bilateral even when hippocampal sclerosis pathology is not obvious by haematoxylin and eosin stains. TAR DNA protein 43 immunohistochemistry was negative on brain sections from younger individuals (n = 10) after hippocampectomy due to seizures, who had pathologically confirmed hippocampal sclerosis. There was no association between cases with hippocampal sclerosis associated with ageing and apolipoprotein E genotype. Age of death and clinical features of hippocampal sclerosis associated with ageing (with or without aberrant TAR DNA protein 43) were distinct from previously published cases of frontotemporal lobar

  11. Hippocampal and diencephalic pathology in developmental amnesia.

    Science.gov (United States)

    Dzieciol, Anna M; Bachevalier, Jocelyne; Saleem, Kadharbatcha S; Gadian, David G; Saunders, Richard; Chong, W K Kling; Banks, Tina; Mishkin, Mortimer; Vargha-Khadem, Faraneh

    2017-01-01

    Developmental amnesia (DA) is a selective episodic memory disorder associated with hypoxia-induced bilateral hippocampal atrophy of early onset. Despite the systemic impact of hypoxia-ischaemia, the resulting brain damage was previously reported to be largely limited to the hippocampus. However, the thalamus and the mammillary bodies are parts of the hippocampal-diencephalic network and are therefore also at risk of injury following hypoxic-ischaemic events. Here, we report a neuroimaging investigation of diencephalic damage in a group of 18 patients with DA (age range 11-35 years), and an equal number of controls. Importantly, we uncovered a marked degree of atrophy in the mammillary bodies in two thirds of our patients. In addition, as a group, patients had mildly reduced thalamic volumes. The size of the anterior-mid thalamic (AMT) segment was correlated with patients' visual memory performance. Thus, in addition to the hippocampus, the diencephalic structures also appear to play a role in the patients' memory deficit. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Spatio-temporal specialization of GABAergic septo-hippocampal neurons for rhythmic network activity.

    Science.gov (United States)

    Unal, Gunes; Crump, Michael G; Viney, Tim J; Éltes, Tímea; Katona, Linda; Klausberger, Thomas; Somogyi, Peter

    2018-03-03

    Medial septal GABAergic neurons of the basal forebrain innervate the hippocampus and related cortical areas, contributing to the coordination of network activity, such as theta oscillations and sharp wave-ripple events, via a preferential innervation of GABAergic interneurons. Individual medial septal neurons display diverse activity patterns, which may be related to their termination in different cortical areas and/or to the different types of innervated interneurons. To test these hypotheses, we extracellularly recorded and juxtacellularly labeled single medial septal neurons in anesthetized rats in vivo during hippocampal theta and ripple oscillations, traced their axons to distant cortical target areas, and analyzed their postsynaptic interneurons. Medial septal GABAergic neurons exhibiting different hippocampal theta phase preferences and/or sharp wave-ripple related activity terminated in restricted hippocampal regions, and selectively targeted a limited number of interneuron types, as established on the basis of molecular markers. We demonstrate the preferential innervation of bistratified cells in CA1 and of basket cells in CA3 by individual axons. One group of septal neurons was suppressed during sharp wave-ripples, maintained their firing rate across theta and non-theta network states and mainly fired along the descending phase of CA1 theta oscillations. In contrast, neurons that were active during sharp wave-ripples increased their firing significantly during "theta" compared to "non-theta" states, with most firing during the ascending phase of theta oscillations. These results demonstrate that specialized septal GABAergic neurons contribute to the coordination of network activity through parallel, target area- and cell type-selective projections to the hippocampus.

  13. Extremely weak magnetic field exposure may inhibit hippocampal neurogenesis of Sprague Dawley rats

    Science.gov (United States)

    Zhang, B.; Tian, L.; Cai, Y.; Xu, H.; Pan, Y.

    2016-12-01

    Hippocampal neurogenesis occurs throughout life in mammals brains and can be influenced by animals' age as well as environmental factors. Lines of evidences have shown that the magnetic field is an important physics environmental factor influencing many animals' growth and development, and extremely weak magnetic field exposures have been proved having serious adverse effects on the metabolism and behaviors in some animals, but few studies have examined the response of hippocampal neurogenesis to it. In the present study, we experimentally examined the extremely weak magnetic field effects on neurogenesis of the dentate gyrus (DG) of hippocampus of adult Sprague Dawley (SD) rats. Two types of magnetic fields were used, an extremely weak magnetic field (≤ 0.5μT) and the geomagnetic fields (strength 31-58μT) as controls. Thirty-two SD rats (3-weeks old) were used in this study. New cell survival in hippocampus was assessed at 0, 14, 28, and 42 days after a 7-day intraperitoneal injections of 5-bromo-2'-deoxyuridine (BrdU). Meanwhile, the amounts of immature neurons and mature neurons which are both related to hippocampal neurogenesis, as documented by labeling with doublecortin (DCX) and neuron (NeuN), respectively, were also analyzed at 0, 14, 28, and 42 days. Compared with geomagnetic field exposure groups, numbers of BrdU-, DCX-positive cells of DG of hippocampus in tested rats reduces monotonously and more rapidly after 14 days, and NeuN-positive cells significantly decreases after 28days when exposed in the extremely weak magnetic field condition. Our data suggest that the exposure to an extremely weak magnetic field may suppress the neurogenesis in DG of SD rats.

  14. FG7142, yohimbine, and βCCE produce anxiogenic-like effects in the elevated plus-maze but do not affect brainstem activated hippocampal theta.

    Science.gov (United States)

    Yeung, Michelle; Lu, Lily; Hughes, Adam M; Treit, Dallas; Dickson, Clayton T

    2013-12-01

    The neurobiological underpinnings of anxiety are of paramount importance to selective and efficacious pharmaceutical intervention. Hippocampal theta frequency in urethane anaesthetized rats is suppressed by all known (and some previously unknown) anti-anxiety (anxiolytic) drugs. Although these findings support the predictive validity of this assay, its construct validity (i.e., whether theta frequency actually indexes anxiety per se) has not been a subject of systematic investigation. We reasoned that if anxiolytic drugs suppress hippocampal theta frequency, then drugs that increase anxiety (i.e., anxiogenic agents) should increase theta frequency, thus providing evidence of construct validity. We used three proven anxiogenic drugs--two benzodiazepine receptor inverse agonists, N-methyl-β-carboline-3-carboxamide (FG7142) and β-carboline-3-carboxylate ethyl ester (βCCE), and one α2 noradrenergic receptor antagonist, 17α-hydroxy-yohimban-16α-carboxylic acid methyl ester (yohimbine) as pharmacological probes to assess the construct validity of the theta model. Although all three anxiogenic drugs significantly increased behavioural measures of anxiety in the elevated plus-maze, none of the three increased the frequency of hippocampal theta oscillations in the neurophysiological model. As a positive control, we demonstrated that diazepam, a proven anxiolytic drug, decreased the frequency of hippocampal theta, as in all other studies using this model. Given this discrepancy between the significant effects of anxiogenic drugs in the behavioural model and the null effects of these drugs in the neurophysiological model, we conclude that the construct validity of the hippocampal theta model of anxiety is questionable. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Cortisol, Cytokines, and Hippocampal Volume in the Elderly

    Directory of Open Access Journals (Sweden)

    Keith Daniel Sudheimer

    2014-07-01

    Full Text Available Separate bodies of literature report that elevated pro-inflammatory cytokines and cortisol negatively affect hippocampal structure and cognitive functioning, particularly in older adults. Although interactions between cytokines and cortisol occur through a variety of known mechanisms, few studies consider how their interactions affect brain structure. In this preliminary study, we assess the impact of interactions between circulating levels of IL-1Beta, IL-6, IL-8, IL-10, IL-12, TNF-alpha, and waking cortisol on hippocampal volume. Twenty-eight community-dwelling older adults underwent blood draws for quantification of circulating cytokines and saliva collections to quantify the cortisol awakening response. Hippocampal volume measurements were made using structural magnetic resonance imaging. Elevated levels of waking cortisol in conjunction with higher concentrations of IL-6 and TNF-alpha were associated with smaller hippocampal volumes. In addition, independent of cortisol, higher levels of IL-1beta and TNF-alpha were also associated with smaller hippocampal volumes. These data provide preliminary evidence that higher cortisol, in conjunction with higher IL-6 and TNF-alpha, are associated with smaller hippocampal volume in older adults. We suggest that the dynamic balance between the hypothalamic-pituitary adrenal axis and inflammation processes may explain hippocampal volume reductions in older adults better than either set of measures do in isolation.

  16. Hippocampal multimodal structural changes and subclinical depression in healthy individuals.

    Science.gov (United States)

    Spalletta, Gianfranco; Piras, Fabrizio; Caltagirone, Carlo; Fagioli, Sabrina

    2014-01-01

    Several neuroimaging studies report reduced hippocampal volume in depressed patients. However, it is still unclear if hippocampal changes in healthy individuals can be considered a risk factor for progression to clinical depression. Here, we investigated subclinical depression and its hippocampal correlates in a non-clinical sample of healthy individuals, with particular regard to gender differences. One-hundred-two participants underwent a comprehensive clinical assessment, a high-resolution T1-weighted magnetic resonance imaging and diffusion tensor imaging protocol using a 3T MRI scanner. Data of macro-(volume) and micro-(mean diffusivity, MD) structural changes of the hippocampus were analyzed with reference to the Beck Depression Inventory score. Results of multivariate regression analyses revealed reduced bilateral volume, along with increased bilateral MD in hippocampal formation predicting subclinical depressive phenomenology only in healthy males. Conversely, subclinical depressive phenomenology in healthy female was accounted for by only lower educational level, in the absence of any hippocampal structure variations. To date, this is the only evidence reporting a relationship between subclinical depressive phenomenology and changes in hippocampal formation in healthy individuals. Our findings demonstrated that reduced volume, along with increased MD in hippocampal formation, is significantly associated with subclinical depressive phenomenology in healthy males. This encourages to study the hypothesis that early macro- and microstructural changes in hippocampi associated with subclinical depression may constitute a risk factor of developing depressive disorders in males. © 2013 Elsevier B.V. All rights reserved.

  17. Cognitive deficits caused by prefrontal cortical and hippocampal neural disinhibition.

    Science.gov (United States)

    Bast, Tobias; Pezze, Marie; McGarrity, Stephanie

    2017-10-01

    We review recent evidence concerning the significance of inhibitory GABA transmission and of neural disinhibition, that is, deficient GABA transmission, within the prefrontal cortex and the hippocampus, for clinically relevant cognitive functions. Both regions support important cognitive functions, including attention and memory, and their dysfunction has been implicated in cognitive deficits characterizing neuropsychiatric disorders. GABAergic inhibition shapes cortico-hippocampal neural activity, and, recently, prefrontal and hippocampal neural disinhibition has emerged as a pathophysiological feature of major neuropsychiatric disorders, especially schizophrenia and age-related cognitive decline. Regional neural disinhibition, disrupting spatio-temporal control of neural activity and causing aberrant drive of projections, may disrupt processing within the disinhibited region and efferent regions. Recent studies in rats showed that prefrontal and hippocampal neural disinhibition (by local GABA antagonist microinfusion) dysregulates burst firing, which has been associated with important aspects of neural information processing. Using translational tests of clinically relevant cognitive functions, these studies showed that prefrontal and hippocampal neural disinhibition disrupts regional cognitive functions (including prefrontal attention and hippocampal memory function). Moreover, hippocampal neural disinhibition disrupted attentional performance, which does not require the hippocampus but requires prefrontal-striatal circuits modulated by the hippocampus. However, some prefrontal and hippocampal functions (including inhibitory response control) are spared by regional disinhibition. We consider conceptual implications of these findings, regarding the distinct relationships of distinct cognitive functions to prefrontal and hippocampal GABA tone and neural activity. Moreover, the findings support the proposition that prefrontal and hippocampal neural disinhibition

  18. Hippocampal sclerosis: correlation of MR imaging findings with surgical outcome

    International Nuclear Information System (INIS)

    Kim, Yoon Hee; Chang, Kee Hyun; Kim, Kyung Won; Han, Moon Hee; Park, Sung Ho; Nam, Hyun Woo; Choi, Kyu Ho; Cho, Woo Ho

    2001-01-01

    Atrophy and a high T2 signal of the hippocampus are known to be the principal MR imaging findings of hippocampal sclerosis. The purpose of this study was to determine whether or not individual MRI findings correlate with surgical outcome in patients with this condition. Preoperative MR imaging findings in 57 consecutive patients with pathologically-proven hippocampal sclerosis who underwent anterior temporal lobectomy and were followed-up for 24 months or more were retrospectively reviewed, and the results were compared with the postsurgical outcome (Engel classification). The MR images included routine sagittal T1-weighted and axial T2-weighted spin-echo images, and oblique coronal T1-weighted 3D gradient-echo and T2-weighted 2D fast spin-echo images obtained on either a 1.5 T or 1.0 T unit. The images were visually evaluated by two neuroradiologists blinded to the outcome; their focus was the presence or absence of atrophy and a high T2 hippocampal signal. Hippocampal atrophy was seen in 96% of cases (55/57) [100% (53/53) of the good outcome group (Engel class I and II), and 50% (2/4) of the poor outcome group (class III and IV)]. A high T2 hippocampal signal was seen in 61% of cases (35/57) [62% (33/53) of the good outcome group and 50% (2/4) of the poor outcome group]. All 35 patients with a high T2 signal had hippocampal atrophy. 'Normal' hippocampus, as revealed by MR imaging, occurred in 4% of patients (2/57), both of whom showed a poor outcome (Engel class III). The presence or absence of hippocampal atrophy correlated well with surgical outcome (p 0.05). Compared with a high T2 hippocampal signal, hippocampal atrophy is more common and correlates better with surgical outcome. For the prediction of this, it thus appears to be the more useful indicator

  19. SNAP-25 in hippocampal CA3 region is required for long-term memory formation

    International Nuclear Information System (INIS)

    Hou Qiuling; Gao Xiang; Lu Qi; Zhang Xuehan; Tu Yanyang; Jin Meilei; Zhao Guoping; Yu Lei; Jing Naihe; Li Baoming

    2006-01-01

    SNAP-25 is a synaptosomal protein of 25 kDa, a key component of synaptic vesicle-docking/fusion machinery, and plays a critical role in exocytosis and neurotransmitter release. We previously reported that SNAP-25 in the hippocampal CA1 region is involved in consolidation of contextual fear memory and water-maze spatial memory (Hou et al. European J Neuroscience, 20: 1593-1603, 2004). SNAP-25 is expressed not only in the CA1 region, but also in the CA3 region, and the SNAP-25 mRNA level in the CA3 region is higher than in the CA1 region. Here, we provide evidence that SNAP-25 in the CA3 region is also involved in learning/memory. Intra-CA3 infusion of SNAP-25 antisense oligonucleotide impaired both long-term contextual fear memory and water-maze spatial memory, with short-term memory intact. Furthermore, the SNAP-25 antisense oligonucleotide suppressed the long-term potentiation (LTP) of field excitatory post-synaptic potential (fEPSP) in the mossy-fiber pathway (DG-CA3 pathway), with no effect on paired-pulse facilitation of the fEPSP. These results are consistent with the notion that SNAP-25 in the hippocampal CA3 region is required for long-term memory formation

  20. Postischemic Anhedonia Associated with Neurodegenerative Changes in the Hippocampal Dentate Gyrus of Rats

    Directory of Open Access Journals (Sweden)

    Jiro Kasahara

    2016-01-01

    Full Text Available Poststroke depression is one of the major symptoms observed in the chronic stage of brain stroke such as cerebral ischemia. Its pathophysiological mechanisms, however, are not well understood. Using the transient right middle cerebral artery occlusion- (MCAO-, 90 min operated rats as an ischemia model in this study, we first observed that aggravation of anhedonia spontaneously occurred especially after 20 weeks of MCAO, and it was prevented by chronic antidepressants treatment (imipramine or fluvoxamine. The anhedonia specifically associated with loss of the granular neurons in the ipsilateral side of hippocampal dentate gyrus and was also prevented by an antidepressant imipramine. Immunohistochemical analysis showed increased apoptosis inside the granular cell layer prior to and associated with the neuronal loss, and imipramine seemed to recover the survival signal rather than suppressing the death signal to prevent neurons from apoptosis. Proliferation and development of the neural stem cells were increased transiently in the subgranular zone of both ipsi- and contralateral hippocampus within one week after MCAO and then decreased and almost ceased after 6 weeks of MCAO, while chronic imipramine treatment prevented them partially. Overall, our study suggests new insights for the mechanistic correlation between poststroke depression and the delayed neurodegenerative changes in the hippocampal dentate gyrus with effective use of antidepressants on them.

  1. Hippocampal activation of microglia may underlie the shared neurobiology of comorbid posttraumatic stress disorder and chronic pain.

    Science.gov (United States)

    Sun, Rao; Zhang, Zuoxia; Lei, Yishan; Liu, Yue; Lu, Cui'e; Rong, Hui; Sun, Yu'e; Zhang, Wei; Ma, Zhengliang; Gu, Xiaoping

    2016-01-01

    The high comorbidity rates of posttraumatic stress disorder and chronic pain have been widely reported, but the underlying mechanisms remain unclear. Emerging evidence suggested that an excess of inflammatory immune activities in the hippocampus involved in the progression of both posttraumatic stress disorder and chronic pain. Considering that microglia are substrates underlying the initiation and propagation of the neuroimmune response, we hypothesized that stress-induced activation of hippocampal microglia may contribute to the pathogenesis of posttraumatic stress disorder-pain comorbidity. We showed that rats exposed to single prolonged stress, an established posttraumatic stress disorder model, exhibited persistent mechanical allodynia and anxiety-like behavior, which were accompanied by increased activation of microglia and secretion of pro-inflammatory cytokines in the hippocampus. Correlation analyses showed that hippocampal activation of microglia was significantly correlated with mechanical allodynia and anxiety-like behavior. Our data also showed that both intraperitoneal and intra-hippocampal injection of minocycline suppressed single prolonged stress-induced microglia activation and inflammatory cytokines accumulation in the hippocampus, and attenuated both single prolonged stress-induced mechanical allodynia and anxiety-like behavior. Taken together, the present study suggests that stress-induced microglia activation in the hippocampus may serve as a critical mechanistic link in the comorbid relationship between posttraumatic stress disorder and chronic pain. The novel concept introduces the possibility of cotreating chronic pain and posttraumatic stress disorder. © The Author(s) 2016.

  2. Influence of dietary zinc on convulsive seizures and hippocampal NADPH diaphorase-positive neurons in seizure susceptible EL mouse.

    Science.gov (United States)

    Nagatomo, I; Akasaki, Y; Uchida, M; Kuchiiwa, S; Nakagawa, S; Takigawa, M

    1998-04-13

    Adequate, high and deficient dietary levels of zinc (Zn) were compared in seizure-susceptible EL mice with respect to convulsions and to nicotinamide adenine dinucleotide phosphate (NADPH) diaphorase-positive hippocampal neurons. Diaphorase positivity is associated with nitric oxide (NO) production. Convulsive seizures in the EL mice given the various diets did not differ over 1-4 weeks, but convulsions in EL mice given the Zn-deficient diet for 4 weeks were more effectively suppressed by injection of zonisamide (ZNS) (75 mg/kg intraperitoneally) than in mice receiving high- or adequate-Zn diet for the same period. Numbers of NADPH diaphorase-positive neurons in the CA1/CA2 region of the hippocampal formation were significantly higher in mice given the Zn-deficient diet for 4 weeks than in mice fed adequate Zn. Mice receiving the high-Zn diet for the same period had significantly fewer NADPH diaphorase-positive neurons in the subiculum than mice with adequate Zn. These results suggest that Zn deficiency inhibits convulsive seizures of EL mice, and that dietary Zn influences numbers of NO producing neurons in the hippocampal formation. Copyright 1998 Elsevier Science B.V.

  3. Sodium fire suppression

    Energy Technology Data Exchange (ETDEWEB)

    Malet, J C [DSN/SESTR, Centre de Cadarache, Saint-Paul-lez-Durance (France)

    1979-03-01

    Ignition and combustion studies have provided valuable data and guidelines for sodium fire suppression research. The primary necessity is to isolate the oxidant from the fuel, rather than to attempt to cool the sodium below its ignition temperature. Work along these lines has led to the development of smothering tank systems and a dry extinguishing powder. Based on the results obtained, the implementation of these techniques is discussed with regard to sodium fire suppression in the Super-Phenix reactor. (author)

  4. Sodium fire suppression

    International Nuclear Information System (INIS)

    Malet, J.C.

    1979-01-01

    Ignition and combustion studies have provided valuable data and guidelines for sodium fire suppression research. The primary necessity is to isolate the oxidant from the fuel, rather than to attempt to cool the sodium below its ignition temperature. Work along these lines has led to the development of smothering tank systems and a dry extinguishing powder. Based on the results obtained, the implementation of these techniques is discussed with regard to sodium fire suppression in the Super-Phenix reactor. (author)

  5. Hippocampal atrophy on MRI is predictive of histopathological patterns and surgical prognosis in mesial temporal lobe epilepsy with hippocampal sclerosis.

    Science.gov (United States)

    Jardim, Anaclara Prada; Corso, Jeana Torres; Garcia, Maria Teresa Fernandes Castilho; Gaça, Larissa Botelho; Comper, Sandra Mara; Lancellotti, Carmen Lúcia Penteado; Centeno, Ricardo Silva; Carrete, Henrique; Cavalheiro, Esper Abrão; Scorza, Carla Alessandra; Yacubian, Elza Márcia Targas

    2016-12-01

    To correlate hippocampal volumes obtained from brain structural imaging with histopathological patterns of hippocampal sclerosis (HS), in order to predict surgical outcome. Patients with mesial temporal lobe epilepsy (MTLE) with HS were selected. Clinical data were assessed pre-operatively and surgical outcome in the first year post surgery. One block of mid hippocampal body was selected for HS classification according to ILAE criteria. NeuN-immunoreactive cell bodies were counted within hippocampal subfields, in four randomly visual fields, and cell densities were transformed into z-score values. FreeSurfer processing of 1.5T brain structural images was used for subcortical and cortical volumetric estimation of the ipsilateral hippocampus. Univariate analysis of variance and Pearson's correlation test were applied for statistical analyses. Sixty-two cases (31 female, 32 right HS) were included. ILAE type 1 HS was identified in 48 patients, type 2 in eight, type 3 in two, and four had no-HS. Better results regarding seizure control, i.e. ILAE 1, were achieved by patients with type 1 HS (58.3%). Patients with types 1 and 2 had smaller hippocampal volumes compared to those with no-HS (p<0.001 and p=0.004, respectively). Positive correlation was encountered between hippocampal volumes and CA1, CA3, CA4, and total estimated neuronal densities. CA2 was the only sector which did not correlate its neuronal density with hippocampal volume (p=0.390). This is the first study correlating hippocampal volume on MRI submitted to FreeSurfer processing with ILAE patterns of HS and neuronal loss within each hippocampal subfield, a fundamental finding to anticipate surgical prognosis for patients with drug-resistant MTLE and HS. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Age-dependent suppression of hippocampal epileptic afterdischarges by metabotropic glutamate receptor 5 antagonist MTEP

    Czech Academy of Sciences Publication Activity Database

    Zavala-Tecuapetla, Cecília; Kubová, Hana; Otáhal, Jakub; Tsenov, Grygoriy; Mareš, Pavel

    2014-01-01

    Roč. 66, č. 5 (2014), s. 927-930 ISSN 1734-1140 R&D Projects: GA ČR(CZ) GA305/09/0846; GA ČR(CZ) GBP304/12/G069 Institutional support: RVO:67985823 Keywords : epileptic afterdischarge * hippocampus * rat * ontogeny * metabotropic glutamate receptor 5 Subject RIV: FH - Neurology Impact factor: 1.928, year: 2014

  7. Hippocampal Atrophy Is Associated with Altered Hippocampus-Posterior Cingulate Cortex Connectivity in Mesial Temporal Lobe Epilepsy with Hippocampal Sclerosis.

    Science.gov (United States)

    Shih, Y C; Tseng, C E; Lin, F-H; Liou, H H; Tseng, W Y I

    2017-03-01

    Unilateral mesial temporal lobe epilepsy and hippocampal sclerosis have structural and functional abnormalities in the mesial temporal regions. To gain insight into the pathophysiology of the epileptic network in mesial temporal lobe epilepsy with hippocampal sclerosis, we aimed to clarify the relationships between hippocampal atrophy and the altered connection between the hippocampus and the posterior cingulate cortex in patients with mesial temporal lobe epilepsy with hippocampal sclerosis. Fifteen patients with left mesial temporal lobe epilepsy with hippocampal sclerosis and 15 healthy controls were included in the study. Multicontrast MR imaging, including high-resolution T1WI, diffusion spectrum imaging, and resting-state fMRI, was performed to measure the hippocampal volume, structural connectivity of the inferior cingulum bundle, and intrinsic functional connectivity between the hippocampus and the posterior cingulate cortex, respectively. Compared with controls, patients had decreased left hippocampal volume (volume ratio of the hippocampus and controls, 0.366% ± 0.029%; patients, 0.277% ± 0.063%, corrected P = .002), structural connectivity of the bilateral inferior cingulum bundle (generalized fractional anisotropy, left: controls, 0.234 ± 0.020; patients, 0.193 ± 0.022, corrected P = .0001, right: controls, 0.226 ± 0.022; patients, 0.208 ± 0.017, corrected P = .047), and intrinsic functional connectivity between the left hippocampus and the left posterior cingulate cortex (averaged z-value: controls, 0.314 ± 0.152; patients, 0.166 ± 0.062). The left hippocampal volume correlated with structural connectivity positively (standardized β = 0.864, P = .001), but it had little correlation with intrinsic functional connectivity (standardized β = -0.329, P = .113). On the contralesional side, the hippocampal volume did not show any significant correlation with structural connectivity or intrinsic functional connectivity ( F 2,12 = 0.284, P = .757, R 2

  8. Tau protein and adult hippocampal neurogenesis

    Directory of Open Access Journals (Sweden)

    Almudena eFuster-Matanzo

    2012-07-01

    Full Text Available Tau protein is a microtubule associated protein found in the axonal compartment that stabilizes neuronal microtubules under normal physiological conditions. Tau metabolism has attracted much attention because of its role in neurodegenerative disorders called tauopathies, mainly Alzheimer disease. Here, we review recent findings suggesting that axonal outgrowth in subgranular zone during adult hippocampal neurogenesis requires a dynamic microtubule network and tau protein facilitates to maintain that dynamic cytoskeleton. Those functions are carried out in part by tau isoform with only three microtubule-binding domains (without exon 10 and by presence of hypherphosphorylated tau forms. Thus, tau is a good marker and a valuable tool to study new axons in adult neurogenesis.

  9. Spatial relational memory requires hippocampal adult neurogenesis.

    Directory of Open Access Journals (Sweden)

    David Dupret

    Full Text Available The dentate gyrus of the hippocampus is one of the few regions of the mammalian brain where new neurons are generated throughout adulthood. This adult neurogenesis has been proposed as a novel mechanism that mediates spatial memory. However, data showing a causal relationship between neurogenesis and spatial memory are controversial. Here, we developed an inducible transgenic strategy allowing specific ablation of adult-born hippocampal neurons. This resulted in an impairment of spatial relational memory, which supports a capacity for flexible, inferential memory expression. In contrast, less complex forms of spatial knowledge were unaltered. These findings demonstrate that adult-born neurons are necessary for complex forms of hippocampus-mediated learning.

  10. Gene-environment effects on hippocampal neurodevelopment

    DEFF Research Database (Denmark)

    Rosenthal, Eva Helga

    Mental disorders like schizophrenia and autism put a heavy load on today’s societies, creating a steady call for revealing underlying disease mechanisms and the development of effective treatments. The etiology of major psychiatric illnesses is complex involving gene by environment susceptibility...... factors. Hence, a deeper understanding is needed of how cortical neurodevelopmental deficiencies can arise from such gene-environment interactions. The convergence of genetic and environmental risk factors is a recent field of research. It is now clear that disease, infection and stress factors may...... and antipsychotics mediate their effects on hippocampal neurodevelopment through deregulation of the Zbtb20 gene. A short presentation of the status of this work will shown....

  11. Hummingbirds have a greatly enlarged hippocampal formation.

    Science.gov (United States)

    Ward, Brian J; Day, Lainy B; Wilkening, Steven R; Wylie, Douglas R; Saucier, Deborah M; Iwaniuk, Andrew N

    2012-08-23

    Both field and laboratory studies demonstrate that hummingbirds (Apodiformes, Trochilidae) have exceptional spatial memory. The complexity of spatial-temporal information that hummingbirds must retain and use daily is probably subserved by the hippocampal formation (HF), and therefore, hummingbirds should have a greatly expanded HF. Here, we compare the relative size of the HF in several hummingbird species with that of other birds. Our analyses reveal that the HF in hummingbirds is significantly larger, relative to telencephalic volume, than any bird examined to date. When expressed as a percentage of telencephalic volume, the hummingbird HF is two to five times larger than that of caching and non-caching songbirds, seabirds and woodpeckers. This HF expansion in hummingbirds probably underlies their ability to remember the location, distribution and nectar content of flowers, but more detailed analyses are required to determine the extent to which this arises from an expansion of HF or a decrease in size of other brain regions.

  12. Glucocorticoid effects on hippocampal protein synthesis

    International Nuclear Information System (INIS)

    Schlatter, L.K.

    1988-01-01

    Following subcutaneous injection of rats with 5 mg corticosterone, hippocampal slices in vitro show increased [ 35 S]-methionine labeling of a cytosolic protein with an apparent molecular weight (M r ) of 35,000 and an isoelectric point (IEP) of 6.6. This labeling is temporally consistent with a transcriptional event, and is steroid- and tissue-specific. The pear serum concentration of steroid occurs one hour or less following the injection. Maximal labeling of this protein is reached whenever serum corticosterone values are approximately 100 ng/ml. When endogenous corticosterone levels are elevated to 100 ng/ml through stressors or exogenous ACTH injections the same maximal increase in synthesis of the 35,000 M r protein is observed. Adrenalectomy prevents the observed response from occurring following stressor application or ACTH injections. Comparison of the increases observed after administration of the type 2 receptor agonist RU 28362 and aldosterone, which has a higher affinity for the type 1 receptor, shows a 50-fold greater sensitivity of the response to the type 2 receptor agonist. Synthesis of this protein following serum increases of steroid possibly correlates to the theorized function of the type 2 receptor feedback regulation. The similar protein in the liver has an IEP of 6.8 and a slightly higher M r . A second hippocampal protein with an M r of 46,000 and an IEP of 6.2 is also increased in labeling. Two additional liver proteins, one of Mr 53,000 (IEP of 6.2) and the other with an M r of 45,000 (IEP of 8.7-7.8) are increased in the liver following glucocorticoid administration

  13. Brain-derived neurotrophic factor reduces inflammation and hippocampal apoptosis in experimental Streptococcus pneumoniae meningitis.

    Science.gov (United States)

    Xu, Danfeng; Lian, Di; Wu, Jing; Liu, Ying; Zhu, Mingjie; Sun, Jiaming; He, Dake; Li, Ling

    2017-08-04

    Streptococcus pneumoniae meningitis is a serious inflammatory disease of the central nervous system (CNS) and is associated with high morbidity and mortality rates. The inflammatory processes initiated by recognition of bacterial components contribute to apoptosis in the hippocampal dentate gyrus. Brain-derived neurotrophic factor (BDNF) has long been recommended for the treatment of CNS diseases due to its powerful neuro-survival properties, as well as its recently reported anti-inflammatory and anti-apoptotic effects in vitro and in vivo. In this study, we investigated the effects of BDNF-related signaling on the inflammatory response and hippocampal apoptosis in experimental models of pneumococcal meningitis. Pretreatment with exogenous BDNF or the tropomyosin-receptor kinase B (TrkB) inhibitor k252a was performed to assess the activation or inhibition of the BDNF/TrkB-signaling axis prior to intracisternal infection with live S. pneumoniae. At 24 h post-infection, rats were assessed for clinical severity and sacrificed to harvest the brains. Paraffin-embedded brain sections underwent hematoxylin and eosin staining to evaluate pathological severity, and cytokine and chemokine levels in the hippocampus and cortex were evaluated by enzyme-linked immunosorbent assay. Additionally, apoptotic neurons were detected in the hippocampal dentate gyrus by terminal deoxynucleotidyl transferase dUTP-nick-end labeling, key molecules associated with the related signaling pathway were analyzed by real-time polymerase chain reaction and western blot, and the DNA-binding activity of nuclear factor kappa B (NF-κB) was measured by electrophoretic mobility shift assay. Rats administered BDNF exhibited reduced clinical impairment, pathological severity, and hippocampal apoptosis. Furthermore, BDNF pretreatment suppressed the expression of inflammatory factors, including tumor necrosis factor α, interleukin (IL)-1β, and IL-6, and increased the expression of the anti

  14. Expression changes of hippocampal energy metabolism enzymes contribute to behavioural abnormalities during chronic morphine treatment

    Institute of Scientific and Technical Information of China (English)

    Xiao-Lan Chen; Jing-Gen Liu; Gang Lu; Ying-Xia Gong; Liang-Cai Zhao; Jie Chen; Zhi-Qiang Chi; Yi-Ming Yang; Zhong Chen; Qing-lin Li

    2007-01-01

    Dependence and impairment of learning and memory are two well-established features caused by abused drugs such as opioids. The hippocampus is an important region associated with both drug dependence and learning and memory. However, the molecular events in hippocampus following exposure to abused drugs such as opioids are not well understood. Here we examined the effect of chronic morphine treatment on hippocampal protein expression by proteomic analyses. We found that chronic exposure of mice to morphine for 10 days produced robust morphine withdrawal jumping and memory impairment, and also resulted in a significant downregulation of hippocampal protein levels of three metabolic enzymes, including Fe-S protein 1 of NADH dehydrogenase, dihydrolipoamide acetyltransferase or E2 component of the pyruvate dehydrogenase complex and lactate dehydrogenase 2. Further real-time quantitative PCR analyses confirmed that the levels of the corresponding mRNAs were also remarkably reduced. Consistent with these findings, lower ATP levels and an impaired ability to convert glucose into ATP were also observed in the hippocampus of chronically treated mice. Opioid antagonist naltrexone administrated concomitantly with morphine significantly suppressed morphine withdrawal jumping and reversed the downregulation of these proteins. Acute exposure to morphine also produced robust morphine withdrawal jumping and significant memory impairment, but failed to decrease the expression of these three proteins. Intrahippocampal injection of D-glucose before morphine administration significantly enhanced ATP levels and suppressed morphine withdrawal jumping and memory impairment in acute morphine-treated but not in chronic morphine-treated mice. Intraperitoneal injection of high dose of D-glucose shows a similar effect on morphine-induced withdrawal jumping as the central treatment. Taken together, our results suggest that reduced expression of the three metabolic enzymes in the hippocampus as

  15. Hippocampal damage and memory impairment in congenital cyanotic heart disease.

    Science.gov (United States)

    Muñoz-López, Mónica; Hoskote, Aparna; Chadwick, Martin J; Dzieciol, Anna M; Gadian, David G; Chong, Kling; Banks, Tina; de Haan, Michelle; Baldeweg, Torsten; Mishkin, Mortimer; Vargha-Khadem, Faraneh

    2017-04-01

    Neonatal hypoxia can lead to hippocampal atrophy, which can lead, in turn, to memory impairment. To test the generalizability of this causal sequence, we examined a cohort of 41 children aged 8-16, who, having received the arterial switch operation to correct for transposition of the great arteries, had sustained significant neonatal cyanosis but were otherwise neurodevelopmentally normal. As predicted, the cohort had significant bilateral reduction of hippocampal volumes relative to the volumes of 64 normal controls. They also had significant, yet selective, impairment of episodic memory as measured by standard tests of memory, despite relatively normal levels of intelligence, academic attainment, and verbal fluency. Across the cohort, degree of memory impairment was correlated with degree of hippocampal atrophy suggesting that even as early as neonatal life no other structure can fully compensate for hippocampal injury and its special role in serving episodic long term memory. © 2017 Wiley Periodicals, Inc. © 2017 The Authors. Hippocampus Published by Wiley Periodicals, Inc.

  16. Extent of hippocampal atrophy predicts degree of deficit in recall.

    Science.gov (United States)

    Patai, Eva Zita; Gadian, David G; Cooper, Janine M; Dzieciol, Anna M; Mishkin, Mortimer; Vargha-Khadem, Faraneh

    2015-10-13

    Which specific memory functions are dependent on the hippocampus is still debated. The availability of a large cohort of patients who had sustained relatively selective hippocampal damage early in life enabled us to determine which type of mnemonic deficit showed a correlation with extent of hippocampal injury. We assessed our patient cohort on a test that provides measures of recognition and recall that are equated for difficulty and found that the patients' performance on the recall tests correlated significantly with their hippocampal volumes, whereas their performance on the equally difficult recognition tests did not and, indeed, was largely unaffected regardless of extent of hippocampal atrophy. The results provide new evidence in favor of the view that the hippocampus is essential for recall but not for recognition.

  17. DEVELOPMENTAL HYPOTHYROIDISM IMPAIRS HIPPOCAMPAL LEARNING AND SYNAPTIC TRANSMISSION IN VIVO.

    Science.gov (United States)

    A number of environmental chemicals have been reported to alter thyroid hormone (TH) function. It is well established that severe hypothyroidism during critical periods of brain development leads to alterations in hippocampal structure and learning deficits, yet evaluation of ...

  18. Erythropoietin enhances hippocampal response during memory retrieval in humans

    DEFF Research Database (Denmark)

    Miskowiak, Kamilla; O'Sullivan, Ursula; Harmer, Catherine J

    2007-01-01

    Although erythropoietin (Epo) is best known for its effects on erythropoiesis, recent evidence suggests that it also has neurotrophic and neuroprotective properties in animal models of hippocampal function. Such an action in humans would make it an intriguing novel compound for the treatment....... This is consistent with upregulation of hippocampal BDNF and neurotrophic actions found in animals and highlights Epo as a promising candidate for treatment of psychiatric disorders....

  19. Comparison with hippocampal atrophy and hypoperfusion in Alzheimer's disease

    International Nuclear Information System (INIS)

    Chung, YA; Kim, SH; Chung, SK; Juh, RH; Sohn, HS; Suh, TS; Choe, BY

    2004-01-01

    Objective: Hypoperfusion and hippocampal atropy of the medial temporal lobe are peculiarity of Alzheimer's disease (AD). The manual ROI (region of interest) technique for hippocampal volume estimation is specific and sensitive for the detection of hippocampal atrophy. In patients with AD reported a significant correlation between hippocampal volume and hypoperfusion. This study investigated correlations between atrophy distinct medial temporal lobe structure and hypoperfusion in hippocampal volumetry. Methods: The hippocampi were individually outlined on Tl-weighted volumetry MRI and calculated with MATLAB in 12 patients with AD. All volume measurements were performed by a segmentation technique with a combination of tracing and thresholding. The volume of a given structure in each slice was obtained by automatically counting the number of pixels within the segmented regions and multiplying the number by a voxel size. In order to permit direct regional comparisons, both of each patient's Tc- 99m ECD SPECT was then registered to the patient's MRI. Delineation continued anteriorly in each contiguous slice reaching the head of the hippocampus, which was distinguished from the overlying amygdala by the presence of the alveus or uncal recess. The right hippocampus (RH) was measured first, followed by the left hippocampus (LH). The accuracy of registration was investigated in a validation study with developed brain phantom. Results:The mean total intracranial volume of the AD was significantly smaller volume (1492.9 cm 3 ) and hypo perfused than those in normal subjects. The mean hippocampal volumes were 2.01 cm 3 and l.99 cm 3 for the RH and LH. The correlations between volume and hypoperfusion in the affected hippocampi were found to be significant; especially the medial temporal lobe is markedly hypo perfused. Conclusion: Volumetry is the most sensitive tool for the detection of hippocampal abnormality in AD, and significant correlation between asymmetry in

  20. Damage of hippocampal neurons in rats with chronic alcoholism

    OpenAIRE

    Du, Ailin; Jiang, Hongbo; Xu, Lei; An, Na; Liu, Hui; Li, Yinsheng; Zhang, Ruiling

    2014-01-01

    Chronic alcoholism can damage the cytoskeleton and aggravate neurological deficits. However, the effect of chronic alcoholism on hippocampal neurons remains unclear. In this study, a model of chronic alcoholism was established in rats that were fed with 6% alcohol for 42 days. Endogenous hydrogen sulfide content and cystathionine-beta-synthase activity in the hippocampus of rats with chronic alcoholism were significantly increased, while F-actin expression was decreased. Hippocampal neurons i...

  1. The effects of hormones and physical exercise on hippocampal structural plasticity.

    Science.gov (United States)

    Triviño-Paredes, Juan; Patten, Anna R; Gil-Mohapel, Joana; Christie, Brian R

    2016-04-01

    The hippocampus plays an integral role in certain aspects of cognition. Hippocampal structural plasticity and in particular adult hippocampal neurogenesis can be influenced by several intrinsic and extrinsic factors. Here we review how hormones (i.e., intrinsic modulators) and physical exercise (i.e., an extrinsic modulator) can differentially modulate hippocampal plasticity in general and adult hippocampal neurogenesis in particular. Specifically, we provide an overview of the effects of sex hormones, stress hormones, and metabolic hormones on hippocampal structural plasticity and adult hippocampal neurogenesis. In addition, we also discuss how physical exercise modulates these forms of hippocampal plasticity, giving particular emphasis on how this modulation can be affected by variables such as exercise regime, duration, and intensity. Understanding the neurobiological mechanisms underlying the modulation of hippocampal structural plasticity by intrinsic and extrinsic factors will impact the design of new therapeutic approaches aimed at restoring hippocampal plasticity following brain injury or neurodegeneration. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Tooth loss early in life suppresses neurogenesis and synaptophysin expression in the hippocampus and impairs learning in mice.

    Science.gov (United States)

    Kubo, Kin-Ya; Murabayashi, Chika; Kotachi, Mika; Suzuki, Ayumi; Mori, Daisuke; Sato, Yuichi; Onozuka, Minoru; Azuma, Kagaku; Iinuma, Mitsuo

    2017-02-01

    Tooth loss induced neurological alterations through activation of a stress hormone, corticosterone. Age-related hippocampal morphological and functional changes were accelerated by early tooth loss in senescence-accelerated mouse prone 8 (SAMP8). In order to explore the mechanism underlying the impaired hippocampal function resulting from early masticatory dysfunction due to tooth loss, we investigated the effects of early tooth loss on plasma corticosterone levels, learning ability, neurogenesis, and synaptophysin expression in the hippocampus later in life of SAMP8 mice. We examined the effects of tooth loss soon after tooth eruption (1 month of age) on plasma corticosterone levels, learning ability in the Morris water maze, newborn cell proliferation, survival and differentiation in the hippocampal dentate gyrus, and synaptophysin expression in the hippocampus of aged (8 months of age) SAMP8 mice. Aged mice with early tooth loss exhibited increased plasma corticosterone levels, hippocampus-dependent learning deficits in the Morris water maze, decreased cell proliferation, and cell survival in the dentate gyrus, and suppressed synaptophysin expression in the hippocampus. Newborn cell differentiation in the hippocampal dentate gyrus, however, was not affected by early tooth loss. These findings suggest that learning deficits in aged SAMP8 mice with tooth loss soon after tooth eruption are associated with suppressed neurogenesis and decreased synaptophysin expression resulting from increased plasma corticosterone levels, and that long-term tooth loss leads to impaired cognitive function in older age. Copyright © 2016. Published by Elsevier Ltd.

  3. Hippocampal lesions, contextual retrieval, and autoshaping in pigeons.

    Science.gov (United States)

    Richmond, Jenny; Colombo, Michael

    2002-02-22

    Both pigeons and rats with damage to the hippocampus are slow to acquire an autoshaped response and emit fewer overall responses than control animals. Experiment 1 explored the possibility that the autoshaping deficit was due to an impairment in contextual retrieval. Pigeons were trained for 14 days on an autoshaping task in which a red stimulus was followed by reinforcement in context A, and a green stimulus was followed by reinforcement in context B. On day 15, the subjects were given a context test in which the red and green stimuli were presented simultaneously in context A and then later in context B. Both control and hippocampal animals showed context specificity, that is, they responded more to the red stimulus in context A and to the green stimulus in context B. In Experiment 2 we video-recorded the control and hippocampal animals performing the autoshaping task. Hippocampal animals tended to miss-peck the key more often than control animals. In addition, the number of missed pecks increased across days for hippocampal animals but not for control animals, suggesting that while the control animals increased their pecking accuracy, the hippocampal animals actually decreased their pecking accuracy. Our findings suggest that impairments in moving through space may underlie the hippocampal autoshaping deficit.

  4. Preliminary evidence of hippocampal damage in chronic users of ecstasy.

    Science.gov (United States)

    den Hollander, Bjørnar; Schouw, Marieke; Groot, Paul; Huisman, Henk; Caan, Matthan; Barkhof, Frederik; Reneman, Liesbeth

    2012-01-01

    Various studies have shown that ecstasy (3,4-methylenedioxymethamphetamine) users display significant memory impairments, whereas their performance on other cognitive tests is generally normal. The hippocampus plays an essential role in short-term memory. There are, however, no structural human data on the effects of ecstasy on the hippocampus. The objective of this study was to investigate whether the hippocampal volume of chronic ecstasy users is reduced when compared with healthy polydrug-using controls, as an indicator of hippocampal damage. The hippocampus was manually outlined in volumetric MRI scans in 10 male ecstasy users (mean age 25.4 years) and seven healthy age- and gender-matched control subjects (21.3 years). Other than the use of ecstasy, there were no statistically significant differences between both groups in exposure to other drugs of abuse and alcohol. The ecstasy users were on average drug-free for more than 2 months and had used on average 281 tablets over the past six and a half years. The hippocampal volume in the ecstasy using group was on average 10.5% smaller than the hippocampal volume in the control group (p=0.032). These data provide preliminary evidence that ecstasy users may be prone to incurring hippocampal damage, in line with previous reports of acute hippocampal sclerosis and subsequent atrophy in chronic users of this drug.

  5. Interactions between entorhinal axons and target hippocampal neurons: a role for glutamate in the development of hippocampal circuitry.

    Science.gov (United States)

    Mattson, M P; Lee, R E; Adams, M E; Guthrie, P B; Kater, S B

    1988-11-01

    A coculture system consisting of input axons from entorhinal cortex explants and target hippocampal pyramidal neurons was used to demonstrate that glutamate, released spontaneously from afferent axons, can influence both dendritic geometry of target neurons and formation of presumptive synaptic sites. Dendritic outgrowth was reduced in hippocampal neurons growing on entorhinal axons when compared with neurons growing off the axons. Presumptive presynaptic sites were observed in association with hippocampal neuron dendrites and somas. HPLC analysis showed that glutamate was released from the explants in an activity- and Ca2(+)-dependent manner. The general glutamate receptor antagonist D-glutamylglycine significantly increased dendritic outgrowth in pyramidal neurons associated with entorhinal axons and reduced presumptive presynaptic sites. Tetrodotoxin and reduction of extracellular Ca2+ also promoted dendritic outgrowth and reduced the formation of presumptive synaptic sites. The results suggest that the neurotransmitter glutamate may play important roles in the development of hippocampal circuitry.

  6. Pressure suppression device

    International Nuclear Information System (INIS)

    Mizumachi, Wataru; Fukuda, Akira; Kitaguchi, Hidemi; Shimizu, Toshiaki.

    1976-01-01

    Object: To relieve and absorb impact wave vibrations caused by steam and non-condensed gases releasing into the pressure suppression chamber at the time of an accident. Structure: The reactor container is filled with inert gases. A safety valve attached main steam pipe is provided to permit the excessive steam to escape, the valve being communicated with the pressure suppression chamber through an exhaust pipe. In the pressure suppression chamber, a doughnut-like cylindrical outer wall is filled at its bottom with pool water to condense the high temperature vapor released through the exhaust pipe. A head portion of a vent tube which leads the exhaust pipe is positioned at the top, and a down comer and an exhaust vent tube are locked by means of steady rests. At the bottom is mounted a pressure adsorber device which adsorbs a pressure from the pool water. (Kamimura, M.)

  7. Thyroxin hormone suppression treatment

    International Nuclear Information System (INIS)

    Samuel, A.M.

    1999-01-01

    One of the important modalities of treatment of thyroid cancer (TC) after surgery is the administration of thyroxin as an adjuvant treatment. The analysis supports the theory that thyroid suppression plays an important role in patient management. 300 μg of thyroxin, as this is an adequate dose for suppression is given. Ideally the dose should be tailored by testing s-TSH levels. However, since a large number of the patients come from out station cities and villages this is impractical. We therefore depend on clinical criteria of hyperthyroid symptoms and adjust the dose. Very few patients need such adjustment

  8. Pressure suppressing device

    International Nuclear Information System (INIS)

    Naito, Makoto.

    1980-01-01

    Purpose: To prevent the pressure in the reactor container from excessively increasing even when vapor leaks from the dry well to a space of the suppression chamber, without passing though the suppression pool at the time of loss of coolant accident. Constitution: When vapor of a high temperature and a high pressure at the time of loss of coolant accident flows from the dry well to the suppression chamber without passing through suppression pool water, vapor dose not condense with pool water, and therefore the pressure within the chamber abnormally increases. For this reason, this abnormal pressure is detected by a pressure detector thereby to start the operations of a blower and a pump. By starting the blower, the pressure in the dry well becomes lower than the pressure in the chamber, and vapor entirely passes through the pool water and entirely condenses with the pool water. By starting the pump, the pool water is sprayed over the space of the chamber, and vapor in the space is condensed. (Yoshino, Y.)

  9. Role of adult hippocampal neurogenesis in stress resilience

    Directory of Open Access Journals (Sweden)

    Brunno R. Levone

    2015-01-01

    Full Text Available There is a growing appreciation that adult hippocampal neurogenesis plays a role in emotional and cognitive processes related to psychiatric disorders. Although many studies have investigated the effects of stress on adult hippocampal neurogenesis, most have not focused on whether stress-induced changes in neurogenesis occur specifically in animals that are more resilient or more susceptible to the behavioural and neuroendocrine effects of stress. Thus, in the present review we explore whether there is a clear relationship between stress-induced changes in adult hippocampal neurogenesis, stress resilience and antidepressant-induced recovery from stress-induced changes in behaviour. Exposure to different stressors is known to reduce adult hippocampal neurogenesis, but some stressors have also been shown to exert opposite effects. Ablation of neurogenesis does not lead to a depressive phenotype, but it can enhance responsiveness to stress and affect stress susceptibility. Monoaminergic-targeted antidepressants, environmental enrichment and adrenalectomy are beneficial for reversing stress-induced changes in behaviour and have been shown to do so in a neurogenesis-dependant manner. In addition, stress and antidepressants can affect hippocampal neurogenesis, preferentially in the ventral hippocampus. Together, these data show that adult hippocampal neurogenesis may play a role in the neuroendocrine and behavioural responses to stress, although it is not yet fully clear under which circumstances neurogenesis promotes resilience or susceptibility to stress. It will be important that future studies carefully examine how adult hippocampal neurogenesis can contribute to stress resilience/susceptibility so that it may be appropriately exploited for the development of new and more effective treatments for stress-related psychiatric disorders.

  10. Longitudinal study of hippocampal volumes in heavy cannabis users.

    Science.gov (United States)

    Koenders, L; Lorenzetti, V; de Haan, L; Suo, C; Vingerhoets, Wam; van den Brink, W; Wiers, R W; Meijer, C J; Machielsen, Mwj; Goudriaan, A E; Veltman, D J; Yücel, M; Cousijn, J

    2017-08-01

    Cannabis exposure, particularly heavy cannabis use, has been associated with neuroanatomical alterations in regions rich with cannabinoid receptors such as the hippocampus in some but not in other (mainly cross-sectional) studies. However, it remains unclear whether continued heavy cannabis use alters hippocampal volume, and whether an earlier age of onset and/or a higher dosage exacerbate these changes. Twenty heavy cannabis users (mean age 21 years, range 18-24 years) and 23 matched non-cannabis using healthy controls were submitted to a comprehensive psychological assessment and magnetic resonance imaging scan at baseline and at follow-up (average of 39 months post-baseline; standard deviation=2.4). Cannabis users started smoking around 16 years and smoked on average five days per week. A novel aspect of the current study is that hippocampal volume estimates were obtained from manual tracing the hippocampus on T1-weighted anatomical magnetic resonance imaging scans, using a previously validated protocol. Compared to controls, cannabis users did not show hippocampal volume alterations at either baseline or follow-up. Hippocampal volumes increased over time in both cannabis users and controls, following similar trajectories of increase. Cannabis dose and age of onset of cannabis use did not affect hippocampal volumes. Continued heavy cannabis use did not affect hippocampal neuroanatomical changes in early adulthood. This contrasts with prior evidence on alterations in this region in samples of older adult cannabis users. In young adults using cannabis at this level, cannabis use may not be heavy enough to affect hippocampal neuroanatomy.

  11. Associative reinstatement memory measures hippocampal function in Parkinson's Disease.

    Science.gov (United States)

    Cohn, Melanie; Giannoylis, Irene; De Belder, Maya; Saint-Cyr, Jean A; McAndrews, Mary Pat

    2016-09-01

    In Parkinson's Disease (PD), hippocampal atrophy is associated with rapid cognitive decline. Hippocampal function is typically assessed using memory tests but current clinical tools (e.g., free recall) also rely on executive functions or use material that is not optimally engaging hippocampal memory networks. Because of the ubiquity of executive dysfunction in PD, our ability to detect true memory deficits is suboptimal. Our previous behavioural and neuroimaging work in other populations suggests that an experimental memory task - Associative Reinstatement Memory (ARM) - may prove useful in investigating hippocampal function in PD. In this study, we investigated whether ARM is compromised in PD and we assessed its convergent and divergent validity by comparing it to standardized measures of memory and of attention and executive functioning in PD, respectively. Using fMRI, we also investigated whether performance in PD relates to degree of hippocampal engagement. Fifteen participants with PD and 13 age-matched healthy controls completed neuropsychological testing as well as an ARM fMRI recognition paradigm in which they were instructed to identify word pairs comprised of two studied words (intact or rearranged pairs) and those containing at least one new word (new or half new pairs). ARM is measured by the differences in hit rates between intact and rearranged pairs. Behaviourally, ARM was poorer in PD relative to controls and was correlated with verbal memory measures, but not with attention or executive functioning in the PD group. Hippocampal activation associated with ARM was reduced in PD relative to controls and covaried with ARM scores in both groups. To conclude, ARM is a sensitive measure of hippocampal memory function that is unaffected by attention or executive dysfunction in PD. Our study highlights the benefit of integrating cognitive neuroscience frameworks and novel experimental tasks to improve the practice of clinical neuropsychology in PD

  12. Hippocampal dosimetry correlates with the change in neurocognitive function after hippocampal sparing during whole brain radiotherapy: a prospective study

    International Nuclear Information System (INIS)

    Tsai, Ping-Fang; Yang, Chi-Cheng; Chuang, Chi-Cheng; Huang, Ting-Yi; Wu, Yi-Ming; Pai, Ping-Ching; Tseng, Chen-Kan; Wu, Tung-Ho; Shen, Yi-Liang; Lin, Shinn-Yn

    2015-01-01

    Whole brain radiotherapy (WBRT) has been the treatment of choice for patients with brain metastases. However, change/decline of neurocognitive functions (NCFs) resulting from impaired hippocampal neurogenesis might occur after WBRT. It is reported that conformal hippocampal sparing would provide the preservation of NCFs. Our study aims to investigate the hippocampal dosimetry and to demonstrate the correlation between hippocampal dosimetry and neurocognitive outcomes in patients receiving hippocampal sparing during WBRT (HS-WBRT). Forty prospectively recruited cancer patients underwent HS-WBRT for therapeutic or prophylactic purposes. Before receiving HS-WBRT, all participants received a battery of baseline neurocognitive assessment, including memory, executive functions and psychomotor speed. The follow-up neurocognitive assessment at 4 months after HS-WBRT was also performed. For the delivery of HS-WBRT, Volumetric Modulated Arc Therapy (VMAT) with two full arcs and two non-coplanar partial arcs was employed. For each treatment planning, dose volume histograms were generated for left hippocampus, right hippocampus, and the composite hippocampal structure respectively. Biologically equivalent doses in 2-Gy fractions (EQD 2 ) assuming an alpha/beta ratio of 2 Gy were computed. To perform analyses addressing the correlation between hippocampal dosimetry and the change in scores of NCFs, pre- and post-HS-WBRT neurocognitive assessments were available in 24 patients in this study. Scores of NCFs were quite stable before and after HS-WBRT in terms of hippocampus-dependent memory. Regarding verbal memory, the corresponding EQD 2 values of 0, 10, 50, 80 % irradiating the composite hippocampal structure with <12.60 Gy, <8.81, <7.45 Gy and <5.83 Gy respectively were significantly associated with neurocognitive preservation indicated by the immediate recall of Word List Test of Wechsler Memory Scale-III. According to logistic regression analyses, it was noted that

  13. Prefrontal-hippocampal interactions for spatial navigation.

    Science.gov (United States)

    Ito, Hiroshi T

    2018-04-01

    Animals have the ability to navigate to a desired location by making use of information about environmental landmarks and their own movements. While decades of neuroscience research have identified neurons in the hippocampus and parahippocampal structures that represent an animal's position in space, it is still largely unclear how an animal can choose the next movement direction to reach a desired goal. As the goal destination is typically located somewhere outside of the range of sensory perception, the animal is required to rely on the internal metric of space to estimate the direction and distance of the destination to plan a next action. Therefore, the hippocampal spatial map should interact with action-planning systems in other cortical regions. In accordance with this idea, several recent studies have indicated the importance of functional interactions between the hippocampus and the prefrontal cortex for goal-directed navigation. In this paper, I will review these studies and discuss how an animal can estimate its future positions correspond to a next movement. Investigation of the navigation problem may further provide general insights into internal models of the brain for action planning. Copyright © 2017 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  14. Tactile modulation of hippocampal place fields.

    Science.gov (United States)

    Gener, Thomas; Perez-Mendez, Lorena; Sanchez-Vives, Maria V

    2013-12-01

    Neural correlates of spatial representation can be found in the activity of the hippocampal place cells. These neurons are characterized by firing whenever the animal is located in a particular area of the space, the place field. Place fields are modulated by sensory cues, such as visual, auditory, or olfactory cues, being the influence of visual inputs the most thoroughly studied. Tactile information gathered by the whiskers has a prominent representation in the rat cerebral cortex. However, the influence of whisker-detected tactile cues on place fields remains an open question. Here we studied place fields in an enriched tactile environment where the remaining sensory cues were occluded. First, place cells were recorded before and after blockade of tactile transmission by means of lidocaine applied on the whisker pad. Following tactile deprivation, the majority of place cells decreased their firing rate and their place fields expanded. We next rotated the tactile cues and 90% of place fields rotated with them. Our results demonstrate that tactile information is integrated into place cells at least in a tactile-enriched arena and when other sensory cues are not available. Copyright © 2013 Wiley Periodicals, Inc.

  15. Juvenile Hippocampal CA2 Region Expresses Aggrecan

    Directory of Open Access Journals (Sweden)

    Asako Noguchi

    2017-05-01

    Full Text Available Perineuronal nets (PNNs are distributed primarily around inhibitory interneurons in the hippocampus, such as parvalbumin-positive interneurons. PNNs are also present around excitatory neurons in some brain regions and prevent plasticity in these neurons. A recent study demonstrated that PNNs also exist around mouse hippocampal pyramidal cells, which are the principle type of excitatory neurons, in the CA2 subregion and modulate the excitability and plasticity of these neurons. However, the development of PNNs in the CA2 region during postnatal maturation was not fully investigated. This study found that a main component of PNNs, aggrecan, existed in the pyramidal cell layer of the putative CA2 subarea prior to the appearance of the CA2 region, which was defined by the CA2 marker protein regulator of G protein signaling 14 (RGS14. We also found that aggrecan immunoreactivity was more evident in the anterior sections of the CA2 area than the posterior sections, which suggests that the function of CA2 PNNs varies along the anterior-posterior axis.

  16. D-serine increases adult hippocampal neurogenesis

    Directory of Open Access Journals (Sweden)

    Sebastien eSultan

    2013-08-01

    Full Text Available Adult hippocampal neurogenesis results in the continuous formation of new neurons and is a process of brain plasticity involved in learning and memory. The neurogenic niche regulates the stem cell proliferation and the differentiation and survival of new neurons and a major contributor to the neurogenic niche are astrocytes. Among the molecules secreted by astrocytes, D-serine is an important gliotransmitter and is a co-agonist of the glutamate, N-methyl-D-aspartate (NMDA receptor. D-serine has been shown to enhance the proliferation of neural stem cells in vitro, but its effect on adult neurogenesis in vivo is unknown. Here, we tested the effect of exogenous administration of D-serine on adult neurogenesis in the mouse dentate gyrus. We found that 1 week of treatment with D-serine increased cell proliferation in vivo and in vitro and increased the density of neural stem cells and transit amplifying progenitors. Furthermore, D-serine increased the survival of newborn neurons. Together, these results indicate that D-serine treatment resulted in the improvement of several steps of adult neurogenesis in vivo.

  17. Active hippocampal networks undergo spontaneous synaptic modification.

    Directory of Open Access Journals (Sweden)

    Masako Tsukamoto-Yasui

    Full Text Available The brain is self-writable; as the brain voluntarily adapts itself to a changing environment, the neural circuitry rearranges its functional connectivity by referring to its own activity. How the internal activity modifies synaptic weights is largely unknown, however. Here we report that spontaneous activity causes complex reorganization of synaptic connectivity without any external (or artificial stimuli. Under physiologically relevant ionic conditions, CA3 pyramidal cells in hippocampal slices displayed spontaneous spikes with bistable slow oscillations of membrane potential, alternating between the so-called UP and DOWN states. The generation of slow oscillations did not require fast synaptic transmission, but their patterns were coordinated by local circuit activity. In the course of generating spontaneous activity, individual neurons acquired bidirectional long-lasting synaptic modification. The spontaneous synaptic plasticity depended on a rise in intracellular calcium concentrations of postsynaptic cells, but not on NMDA receptor activity. The direction and amount of the plasticity varied depending on slow oscillation patterns and synapse locations, and thus, they were diverse in a network. Once this global synaptic refinement occurred, the same neurons now displayed different patterns of spontaneous activity, which in turn exhibited different levels of synaptic plasticity. Thus, active networks continuously update their internal states through ongoing synaptic plasticity. With computational simulations, we suggest that with this slow oscillation-induced plasticity, a recurrent network converges on a more specific state, compared to that with spike timing-dependent plasticity alone.

  18. Trafficking of astrocytic vesicles in hippocampal slices

    International Nuclear Information System (INIS)

    Potokar, Maja; Kreft, Marko; Lee, So-Young; Takano, Hajime; Haydon, Philip G.; Zorec, Robert

    2009-01-01

    The increasingly appreciated role of astrocytes in neurophysiology dictates a thorough understanding of the mechanisms underlying the communication between astrocytes and neurons. In particular, the uptake and release of signaling substances into/from astrocytes is considered as crucial. The release of different gliotransmitters involves regulated exocytosis, consisting of the fusion between the vesicle and the plasma membranes. After fusion with the plasma membrane vesicles may be retrieved into the cytoplasm and may continue to recycle. To study the mobility implicated in the retrieval of secretory vesicles, these structures have been previously efficiently and specifically labeled in cultured astrocytes, by exposing live cells to primary and secondary antibodies. Since the vesicle labeling and the vesicle mobility properties may be an artifact of cell culture conditions, we here asked whether the retrieving exocytotic vesicles can be labeled in brain tissue slices and whether their mobility differs to that observed in cell cultures. We labeled astrocytic vesicles and recorded their mobility with two-photon microscopy in hippocampal slices from transgenic mice with fluorescently tagged astrocytes (GFP mice) and in wild-type mice with astrocytes labeled by Fluo4 fluorescence indicator. Glutamatergic vesicles and peptidergic granules were labeled by the anti-vesicular glutamate transporter 1 (vGlut1) and anti-atrial natriuretic peptide (ANP) antibodies, respectively. We report that the vesicle mobility parameters (velocity, maximal displacement and track length) recorded in astrocytes from tissue slices are similar to those reported previously in cultured astrocytes.

  19. Effects of GABA-B receptor positive modulator on ketamine-induced psychosis-relevant behaviors and hippocampal electrical activity in freely moving rats.

    Science.gov (United States)

    Ma, Jingyi; Stan Leung, L

    2017-10-01

    Decreased GABA B receptor function is proposed to mediate some symptoms of schizophrenia. In this study, we tested the effect of CGP7930, a GABA B receptor positive allosteric modulator, on ketamine-induced psychosis-relevant behaviors and hippocampal electrical activity in behaving rats. Electrodes were bilaterally implanted into the hippocampus, and cannulae were placed into the lateral ventricles of Long-Evans rats. CGP7930 or vehicle was injected intraperitoneally (i.p.) or intracerebroventricularly (i.c.v.), alone or 15 min prior to ketamine (3 mg/kg, subcutaneous) injection. Paired click auditory evoked potentials in the hippocampus (AEP), prepulse inhibition (PPI), and locomotor activity were recorded before and after drug injection. CGP7930 at doses of 1 mg/kg (i.p.) prevented ketamine-induced deficit of PPI. CGP7930 (1 mg/kg i.p.) also prevented the decrease in gating of hippocampal AEP and the increase in hippocampal gamma (65-100 Hz) waves induced by ketamine. Unilateral i.c.v. infusion of CGP7930 (0.3 mM/1 μL) also prevented the decrease in gating of hippocampal AEP induced by ketamine. Ketamine-induced behavioral hyperlocomotion was suppressed by 5 mg/kg i.p. CGP7930. CGP7930 alone, without ketamine, did not significantly affect integrated PPI, locomotion, gating of hippocampal AEP, or gamma waves. CGP7930 (1 mg/kg i.p.) increased heterosynaptically mediated paired pulse depression in the hippocampus, a measure of GABA B receptor function in vivo. CGP7930 reduces the behavioral and electrophysiological disruptions induced by ketamine in animals, and the hippocampus may be one of the neural targets where CGP7930 exerts its actions.

  20. Role of silent information regulator 1 in the protective effect of hydrogen sulfide on homocysteine-induced cognitive dysfunction: Involving reduction of hippocampal ER stress.

    Science.gov (United States)

    Tang, Yi-Yun; Wang, Ai-Ping; Wei, Hai-Jun; Li, Man-Hong; Zou, Wei; Li, Xiang; Wang, Chun-Yan; Zhang, Ping; Tang, Xiao-Qing

    2018-04-16

    Homocysteine (Hcy) causes cognitive deficits and hippocampal endoplasmic reticulum (ER) stress. Our previous study has confirmed that Hydrogen sulfide (H 2 S) attenuates Hcy-induced cognitive dysfunction and hippocampal ER stress. Silent information regulator 1 (Sirt-1) is indispensable in the formation of learning and memory. Therefore, the aim of this study was to explore the role of Sirt-1 in the protective effect of H 2 S against Hcy-induced cognitive dysfunction. We found that NaHS (a donor of H 2 S) markedly up-regulated the expression of Sirt-1 in the hippocampus of Hcy-exposed rats. Sirtinol, a specific inhibitor of Sirt-1, reversed the improving role of NaHS in the cognitive function of Hcy-exposed rats, as evidenced by that sirtinol increased the escape latency and the swim distance in the acquisition trial of morris water maze (MWM) test, decreased the times crossed through and the time spent in the target quadrant in the probe trail of MWM test, and reduced the discrimination index in the novel object recognition test (NORT) in the rats cotreated with NaHS and Hcy. We also found that sirtinol reversed the protection of NaHS against Hcy-induced hippocampal ER-stress, as evidenced by up-regulating the expressions of GRP78, CHOP, and cleaved caspase-12 in the hippocampus of rats cotreated with NaHS and Hcy. These results suggested the contribution of upregulation of hippocampal Sirt-1 to the improving role of H 2 S in the cognitive function of Hcy-exposed rats, which involves suppression of hippocampal ER stress. Our finding provides a new insight into the mechanism underlying the inhibitory role of H 2 S in Hcy-induced cognitive dysfunction. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Training labels for hippocampal segmentation based on the EADC-ADNI harmonized hippocampal protocol.

    Science.gov (United States)

    Boccardi, Marina; Bocchetta, Martina; Morency, Félix C; Collins, D Louis; Nishikawa, Masami; Ganzola, Rossana; Grothe, Michel J; Wolf, Dominik; Redolfi, Alberto; Pievani, Michela; Antelmi, Luigi; Fellgiebel, Andreas; Matsuda, Hiroshi; Teipel, Stefan; Duchesne, Simon; Jack, Clifford R; Frisoni, Giovanni B

    2015-02-01

    The European Alzheimer's Disease Consortium and Alzheimer's Disease Neuroimaging Initiative (ADNI) Harmonized Protocol (HarP) is a Delphi definition of manual hippocampal segmentation from magnetic resonance imaging (MRI) that can be used as the standard of truth to train new tracers, and to validate automated segmentation algorithms. Training requires large and representative data sets of segmented hippocampi. This work aims to produce a set of HarP labels for the proper training and certification of tracers and algorithms. Sixty-eight 1.5 T and 67 3 T volumetric structural ADNI scans from different subjects, balanced by age, medial temporal atrophy, and scanner manufacturer, were segmented by five qualified HarP tracers whose absolute interrater intraclass correlation coefficients were 0.953 and 0.975 (left and right). Labels were validated as HarP compliant through centralized quality check and correction. Hippocampal volumes (mm(3)) were as follows: controls: left = 3060 (standard deviation [SD], 502), right = 3120 (SD, 897); mild cognitive impairment (MCI): left = 2596 (SD, 447), right = 2686 (SD, 473); and Alzheimer's disease (AD): left = 2301 (SD, 492), right = 2445 (SD, 525). Volumes significantly correlated with atrophy severity at Scheltens' scale (Spearman's ρ = segmentation algorithms. The publicly released labels will allow the widespread implementation of the standard segmentation protocol. Copyright © 2015 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  2. DDPH ameliorated oxygen and glucose deprivation-induced injury in rat hippocampal neurons via interrupting Ca2+ overload and glutamate release.

    Science.gov (United States)

    He, Zhi; Lu, Qing; Xu, Xulin; Huang, Lin; Chen, Jianguo; Guo, Lianjun

    2009-01-28

    Our previous work has demonstrated that DDPH (1-(2, 6-dimethylphenoxy)-2-(3, 4-dimethoxyphenylethylamino) propane hydrochloride), a competitive alpha(1)-adrenoceptor antagonist, could improve cognitive deficits, reduce histopathological damage and facilitate synaptic plasticity in vivo possibly via increasing NR2B (NMDA receptor 2B) expression and antioxidation of DDPH itself. The present study further evaluated effects of DDPH on OGD (Oxygen and glucose deprivation)-induced neuronal damage in rat primary hippocampal cells. The addition of DDPH to the cultured cells 12 h before OGD for 4 h significantly reduced neuronal damage as determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and LDH (lactate dehydrogenase) release experiments. The effects of DDPH on intracellular calcium concentration were explored by Fura-2 based calcium imaging techniques and results showed that DDPH at the dosages of 5 microM and 10 microM suppressed the increase of intracellular calcium ([Ca(2+)](i)) stimulated by 50 mM KCl in Ca(2+)-containing extracellular solutions. However, DDPH couldn't suppress the increase of [Ca(2+)](i) induced by both 50 microM glutamate in Ca(2+)-containing extracellular solutions and 20 microM ATP (Adenosine Triphosphate) in Ca(2+)-free solution. These results indicated that DDPH prevented [Ca(2+)](i) overload in hippocampal neurons by blocking Ca(2+) influx (voltage-dependent calcium channel) but not Ca(2+) mobilization from the intracellular Ca(2+) store in endoplasm reticulum (ER). We also demonstrated that DDPH could decrease glutamate release when hippocampal cells were subjected to OGD. These observations demonstrated that DDPH protected hippocampal neurons against OGD-induced damage by preventing the Ca(2+) influx and decreasing glutamate release.

  3. BDNF/TrkB Pathway Mediates the Antidepressant-Like Role of H2S in CUMS-Exposed Rats by Inhibition of Hippocampal ER Stress.

    Science.gov (United States)

    Wei, Le; Kan, Li-Yuan; Zeng, Hai-Ying; Tang, Yi-Yun; Huang, Hong-Lin; Xie, Ming; Zou, Wei; Wang, Chun-Yan; Zhang, Ping; Tang, Xiao-Qing

    2018-06-01

    Our previous works have shown that hydrogen sulfide (H 2 S) significantly attenuates chronic unpredictable mild stress (CUMS)-induced depressive-like behaviors and hippocampal endoplasmic reticulum (ER) stress. Brain-derived neurotrophic factor (BDNF) generates an antidepressant-like effect by its receptor tyrosine protein kinase B (TrkB). We have previously found that H 2 S upregulates the expressions of BDNF and p-TrkB in the hippocampus of CUMS-exposed rats. Therefore, the present work was to explore whether BDNF/TrkB pathway mediates the antidepressant-like role of H 2 S by blocking hippocampal ER stress. We found that treatment with K252a (an inhibitor of BDNF/TrkB pathway) significantly increased the immobility time in the forced swim test and tail suspension test and increased the latency to feed in the novelty-suppressed feeding test in the rats cotreated with sodium hydrosulfide (NaHS, a donor of H 2 S) and CUMS. Similarly, K252a reversed the protective effect of NaHS against CUMS-induced hippocampal ER stress, as evidenced by increases in the levels of ER stress-related proteins, glucose-regulated protein 78, CCAAT/enhancer binding protein homologous protein and cleaved caspase-12. Taken together, our results suggest that BDNF/TrkB pathway plays an important mediatory role in the antidepressant-like action of H 2 S in CUMS-exposed rats, which is by suppression of hippocampal ER stress. These data provide a novel mechanism underlying the protection of H 2 S against CUMS-induced depressive-like behaviors.

  4. Memory reconsolidation mediates the updating of hippocampal memory content

    Directory of Open Access Journals (Sweden)

    Jonathan L C Lee

    2010-11-01

    Full Text Available The retrieval or reactivation of a memory places it into a labile state, requiring a process of reconsolidation to restabilize it. This retrieval-induced plasticity is a potential mechanism for the modification of the existing memory. Following previous data supportive of a functional role for memory reconsolidation in the modification of memory strength, here I show that hippocampal memory reconsolidation also supports the updating of contextual memory content. Using a procedure that separates the learning of pure context from footshock-motivated contextual fear learning, I demonstrate doubly dissociable hippocampal mechanisms of initial context learning and subsequent updating of the neutral contextual representation to incorporate the footshock. Contextual memory consolidation was dependent upon BDNF expression in the dorsal hippocampus, whereas the footshock modification of the contextual representation required the expression of Zif268. These mechanisms match those previously shown to be selectively involved in hippocampal memory consolidation and reconsolidation, respectively. Moreover, memory reactivation is a necessary step in modifying memory content, as inhibition of hippocampal synaptic protein degradation also prevented the footshock-mediated memory modification. Finally, dorsal hippocampal knockdown of Zif268 impaired the reconsolidation of the pure contextual memory only under conditions of weak context memory training, as well as failing to disrupt contextual freezing when a strong contextual fear memory is reactivated by further conditioning. Therefore, an adaptive function of the reactivation and reconsolidation process is to enable the updating of memory content.

  5. Remote semantic memory is impoverished in hippocampal amnesia.

    Science.gov (United States)

    Klooster, Nathaniel B; Duff, Melissa C

    2015-12-01

    The necessity of the hippocampus for acquiring new semantic concepts is a topic of considerable debate. However, it is generally accepted that any role the hippocampus plays in semantic memory is time limited and that previously acquired information becomes independent of the hippocampus over time. This view, along with intact naming and word-definition matching performance in amnesia, has led to the notion that remote semantic memory is intact in patients with hippocampal amnesia. Motivated by perspectives of word learning as a protracted process where additional features and senses of a word are added over time, and by recent discoveries about the time course of hippocampal contributions to on-line relational processing, reconsolidation, and the flexible integration of information, we revisit the notion that remote semantic memory is intact in amnesia. Using measures of semantic richness and vocabulary depth from psycholinguistics and first and second language-learning studies, we examined how much information is associated with previously acquired, highly familiar words in a group of patients with bilateral hippocampal damage and amnesia. Relative to healthy demographically matched comparison participants and a group of brain-damaged comparison participants, the patients with hippocampal amnesia performed significantly worse on both productive and receptive measures of vocabulary depth and semantic richness. These findings suggest that remote semantic memory is impoverished in patients with hippocampal amnesia and that the hippocampus may play a role in the maintenance and updating of semantic memory beyond its initial acquisition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Hippocampal and Amygdalar Volumes in Dissociative Identity Disorder

    Science.gov (United States)

    Vermetten, Eric; Schmahl, Christian; Lindner, Sanneke; Loewenstein, Richard J.; Bremner, J. Douglas

    2011-01-01

    Objective Smaller hippocampal volume has been reported in several stress-related psychiatric disorders, including posttraumatic stress disorder (PTSD), borderline personality disorder with early abuse, and depression with early abuse. Patients with borderline personality disorder and early abuse have also been found to have smaller amygdalar volume. The authors examined hippocampal and amygdalar volumes in patients with dissociative identity disorder, a disorder that has been associated with a history of severe childhood trauma. Method The authors used magnetic resonance imaging to measure the volumes of the hippocampus and amygdala in 15 female patients with dissociative identity disorder and 23 female subjects without dissociative identity disorder or any other psychiatric disorder. The volumetric measurements for the two groups were compared. Results Hippocampal volume was 19.2% smaller and amygdalar volume was 31.6% smaller in the patients with dissociative identity disorder, compared to the healthy subjects. The ratio of hippocampal volume to amygdalar volume was significantly different between groups. Conclusions The findings are consistent with the presence of smaller hippocampal and amygdalar volumes in patients with dissociative identity disorder, compared with healthy subjects. PMID:16585437

  7. Stimulation of estradiol biosynthesis by tributyltin in rat hippocampal slices.

    Science.gov (United States)

    Munetsuna, Eiji; Hattori, Minoru; Yamazaki, Takeshi

    2014-01-01

    Hippocampal functions are influenced by steroid hormones, such as testosterone and estradiol. It has been demonstrated that hippocampus-derived steroid hormones play important roles in neuronal protection and synapse formation. Our research groups have demonstrated that estradiol is de novo synthesized in the rat hippocampus. However, the mechanism(s) regulating this synthesis remains unclear. It has been reported that tributyltin, an environmental pollutant, binds to the retinoid X receptor (RXR) and modifies estrogen synthesis in human granulosa-like tumor cells. This compound can penetrate the blood brain barrier, and tends to accumulate in the brain. Based on these facts, we hypothesized that tributyltin could influence the hippocampal estradiol synthesis. A concentration of 0.1 μM tributyltin induced an increase in the mRNA content of P450(17α) and P450arom in hippocampal slices, as determined using real-time PCR. The transcript levels of other steroidogenic enzymes and a steroidogenic acute regulatory protein were not affected. The estradiol level in rat hippocampal slices was subsequently determined using a radioimmunoassay. We found that the estradiol synthesis was stimulated by ∼2-fold following a 48-h treatment with 0.1 μM tributyltin, and this was accompanied by transcriptional activation of P450(17α) and P450arom. Tributyltin stimulated de novo hippocampal estradiol synthesis by modifying the transcription of specific steroidogenic enzymes.

  8. Hippocampal and amygdalar volumes in dissociative identity disorder.

    Science.gov (United States)

    Vermetten, Eric; Schmahl, Christian; Lindner, Sanneke; Loewenstein, Richard J; Bremner, J Douglas

    2006-04-01

    Smaller hippocampal volume has been reported in several stress-related psychiatric disorders, including posttraumatic stress disorder (PTSD), borderline personality disorder with early abuse, and depression with early abuse. Patients with borderline personality disorder and early abuse have also been found to have smaller amygdalar volume. The authors examined hippocampal and amygdalar volumes in patients with dissociative identity disorder, a disorder that has been associated with a history of severe childhood trauma. The authors used magnetic resonance imaging to measure the volumes of the hippocampus and amygdala in 15 female patients with dissociative identity disorder and 23 female subjects without dissociative identity disorder or any other psychiatric disorder. The volumetric measurements for the two groups were compared. Hippocampal volume was 19.2% smaller and amygdalar volume was 31.6% smaller in the patients with dissociative identity disorder, compared to the healthy subjects. The ratio of hippocampal volume to amygdalar volume was significantly different between groups. The findings are consistent with the presence of smaller hippocampal and amygdalar volumes in patients with dissociative identity disorder, compared with healthy subjects.

  9. Hippocampal functional connectivity and episodic memory in early childhood.

    Science.gov (United States)

    Riggins, Tracy; Geng, Fengji; Blankenship, Sarah L; Redcay, Elizabeth

    2016-06-01

    Episodic memory relies on a distributed network of brain regions, with the hippocampus playing a critical and irreplaceable role. Few studies have examined how changes in this network contribute to episodic memory development early in life. The present addressed this gap by examining relations between hippocampal functional connectivity and episodic memory in 4- and 6-year-old children (n=40). Results revealed similar hippocampal functional connectivity between age groups, which included lateral temporal regions, precuneus, and multiple parietal and prefrontal regions, and functional specialization along the longitudinal axis. Despite these similarities, developmental differences were also observed. Specifically, 3 (of 4) regions within the hippocampal memory network were positively associated with episodic memory in 6-year-old children, but negatively associated with episodic memory in 4-year-old children. In contrast, all 3 regions outside the hippocampal memory network were negatively associated with episodic memory in older children, but positively associated with episodic memory in younger children. These interactions are interpreted within an interactive specialization framework and suggest the hippocampus becomes functionally integrated with cortical regions that are part of the hippocampal memory network in adults and functionally segregated from regions unrelated to memory in adults, both of which are associated with age-related improvements in episodic memory ability. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Qualitative and Quantitative Hippocampal MRI Assessments in Intractable Epilepsy

    Directory of Open Access Journals (Sweden)

    Paramdeep Singh

    2013-01-01

    Full Text Available Aims. To acquire normative data of hippocampal volumes and T2 relaxation times, to evaluate and compare qualitative and quantitative assessments in evaluating hippocampi in patients with different durations of intractable epilepsy, and to propose an imaging protocol based on performance of these techniques. Methods. MRI analysis was done in 50 nonepileptic controls and 30 patients with intractable epilepsy on 1.5T scanner. Visual assessment and hippocampal volumetry were done on oblique coronal IR/T2W and T1W MP-RAGE images, respectively. T2 relaxation times were measured using 16-echo Carr-Purcell-Meiboom-Gill sequence. Volumetric data was normalized for variation in head size between individuals. Patients were divided into temporal ( and extratemporal ( groups based on clinical and EEG localization. Results. In controls, right hippocampal volume was slightly more than the left with no effect of age or gender. In TLE patients, hippocampal volumetry provided maximum concordance with EEG. Visual assessment of unilateral pathology concurred well with measured quantitative values but poorly in cases with bilateral pathologies. There were no significant differences of mean values between extratemporal group and controls group. Quantitative techniques detected mild abnormalities, undetected on visual assessment. Conclusions. Quantitative techniques are more sensitive to diagnose bilateral and mild unilateral hippocampal abnormalities.

  11. Hippocampal-neocortical functional reorganization underlies children's cognitive development.

    Science.gov (United States)

    Qin, Shaozheng; Cho, Soohyun; Chen, Tianwen; Rosenberg-Lee, Miriam; Geary, David C; Menon, Vinod

    2014-09-01

    The importance of the hippocampal system for rapid learning and memory is well recognized, but its contributions to a cardinal feature of children's cognitive development-the transition from procedure-based to memory-based problem-solving strategies-are unknown. Here we show that the hippocampal system is pivotal to this strategic transition. Longitudinal functional magnetic resonance imaging (fMRI) in 7-9-year-old children revealed that the transition from use of counting to memory-based retrieval parallels increased hippocampal and decreased prefrontal-parietal engagement during arithmetic problem solving. Longitudinal improvements in retrieval-strategy use were predicted by increased hippocampal-neocortical functional connectivity. Beyond childhood, retrieval-strategy use continued to improve through adolescence into adulthood and was associated with decreased activation but more stable interproblem representations in the hippocampus. Our findings provide insights into the dynamic role of the hippocampus in the maturation of memory-based problem solving and establish a critical link between hippocampal-neocortical reorganization and children's cognitive development.

  12. Inter-relationships among Diet, Obesity and Hippocampal-dependent Cognitive Function

    OpenAIRE

    Davidson, Terry L.; Hargrave, Sara L.; Swithers, Susan E.; Sample, Camille H.; Fu, Xue; Kinzig, Kimberly P.; Zheng, Wei

    2013-01-01

    Intake of a Western diet (WD), which is high in saturated fat and sugar, is associated with deficits in hippocampal-dependent learning and memory processes as well as with markers of hippocampal pathology. In the present study, rats were trained to asymptote on hippocampal-dependent serial feature negative (FN) and hippocampal-independent simple discrimination problems. Performance was then assessed following 7 days on ad libitum chow and after 10, 24, 40, 60, and 90 days of maintenance on WD...

  13. Propylparaben reduces the excitability of hippocampal neurons by blocking sodium channels.

    Science.gov (United States)

    Lara-Valderrábano, Leonardo; Rocha, Luisa; Galván, Emilio J

    2016-12-01

    Propylparaben (PPB) is an antimicrobial preservative widely used in food, cosmetics, and pharmaceutics. Virtual screening methodologies predicted anticonvulsant activity of PPB that was confirmed in vivo. Thus, we explored the effects of PPB on the excitability of hippocampal neurons by using standard patch clamp techniques. Bath perfusion of PPB reduced the fast-inactivating sodium current (I Na ) amplitude, causing a hyperpolarizing shift in the inactivation curve of the I Na, and markedly delayed the sodium channel recovery from the inactivation state. Also, PPB effectively suppressed the riluzole-sensitive, persistent sodium current (I NaP ). PPB perfusion also modified the action potential kinetics, and higher concentrations of PPB suppressed the spike activity. Nevertheless, the modulatory effects of PPB did not occur when PPB was internally applied by whole-cell dialysis. These results indicate that PPB reduces the excitability of CA1 pyramidal neurons by modulating voltage-dependent sodium channels. The mechanistic basis of this effect is a marked delay in the recovery from inactivation state of the voltage-sensitive sodium channels. Our results indicate that similar to local anesthetics and anticonvulsant drugs that act on sodium channels, PPB acts in a use-dependent manner. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. J/Ψ suppression

    International Nuclear Information System (INIS)

    Giubellino, P.; Abreu, M.C.; Alessandro, B.; Alexa, C.; Arnaldi, R.; Astruc, J.; Atayan, M.; Baglin, C.; Baldit, A.; Bedjidian, M.; Bellaiche, F.; Beole, S.; Boldea, V.; Bordalo, P.; Bussiere, A.; Capony, V.; Casagrande, L.; Castor, J.; Chambon, T.; Chaurand, B.; Chevrot, I.; Cheynis, B.; Chiavassa, E.; Cicalo, C.; Comets, M.P.; Constantinescu, S.; Cruz, J.; De Falco, A.; De Marco, N.; Dellacasa, G.; Devaux, A.; Dita, S.; Drapier, O.; Espagnon, B.; Fargeix, J.; Filippov, S.N.; Fleuret, F.; Force, P.; Gallio, M.; Gavrilov, Y.K.; Gerschel, C.; Giubellino, P.; Golubeva, M.B.; Gonin, M.; Grigorian, A.A.; Grossiord, J.Y.; Guber, F.F.; Guichard, A.; Gulkaninan, H.; Hakobyan, R.; Haroutunian, R.; Idzik, M.; Jouan, D.; Karavitcheva, T.L.; Kluberg, L.; Kurepin, A.B.; Le Bornec, Y.; Lourenco, C.; Mac Cormick, M.; Macciotta, P.; Marzari-Chiesa, A.; Masera, M.; Masoni, A.; Mehrabyan, S.; Mourgues, S.; Musso, A.; Ohlsson-Malek, F.; Petiau, P.; Piccotti, A.; Pizzi, J.R.; Prado da Silva, W.L.; Puddu, G.; Quintans, C.; Racca, C.; Ramello, L.; Ramos, S.; Rato-Mendes, P.; Riccati, L.; Romana, A.; Sartori, S.; Saturnini, P.; Scomparin, E.; Serci, S.; Shahoyan, R.; Silva, S.; Soave, C.; Sonderegger, P.; Tarrago, X.; Temnikov, P.; Topilskaya, N.S.; Usai, G.; Vale, C.; Vercellin, E.; Willis, N.

    1999-01-01

    The cross section for J/Ψ production in Pb-Pb interactions at 158 GeV per nucleon is measured at the CERN SPS by the NA50 experiment. The final results from the 1995 run are presented here together with preliminary ones from the high-statistics 1996 run. An anomalous J/Ψ suppression is observed in Pb-Pb collisions as compared to extrapolations of the previous results obtained by the NA38 experiment with proton and lighter ion beams. The results of the two runs are in good agreement. The results from the 1996 run allow the study of the onset of the anomalous suppression within the same set of data, showing evidence of a sharp change of behaviour around a value of neutral transverse energy, as measured by our electromagnetic calorimeter, of about 50 GeV

  15. Maternal exposure to hexachlorophene targets intermediate-stage progenitor cells of the hippocampal neurogenesis in rat offspring via dysfunction of cholinergic inputs by myelin vacuolation

    International Nuclear Information System (INIS)

    Itahashi, Megu; Abe, Hajime; Tanaka, Takeshi; Mizukami, Sayaka; Kimura, Masayuki; Yoshida, Toshinori; Shibutani, Makoto

    2015-01-01

    Highlights: • The effect of maternal exposure to HCP on rat hippocampal neurogenesis was examined. • HCP induces myelin vacuolation of nerve tracts in the septal–hippocampal pathway. • Myelin changes suppress Chrnb2-mediated cholinergic inputs to the dentate gyrus. • SGZ apoptosis occurs via the mitochondrial pathway and targets type-2b cells. • Dysfunction of cholinergic inputs is related to type-2b SGZ cell apoptosis. - Abstract: Hexachlorophene (HCP) is known to induce myelin vacuolation corresponding to intramyelinic edema of nerve fibers in the central and peripheral nervous system in animals. This study investigated the effect of maternal exposure to HCP on hippocampal neurogenesis in rat offspring using pregnant rats supplemented with 0 (controls), 100, or 300 ppm HCP in the diet from gestational day 6 to day 21 after delivery. On postnatal day (PND) 21, the numbers of T box brain 2 + progenitor cells and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling + apoptotic cells in the hippocampal subgranular zone (SGZ) decreased in female offspring at 300 ppm, which was accompanied by myelin vacuolation and punctate tubulin beta-3 chain staining of nerve fibers in the hippocampal fimbria. In addition, transcript levels of the cholinergic receptor, nicotinic beta 2 (Chrnb2) and B-cell CLL/lymphoma 2 (Bcl2) decreased in the dentate gyrus. HCP-exposure did not alter the numbers of SGZ proliferating cells and reelin- or calcium-binding protein-expressing γ-aminobutyric acid (GABA)-ergic interneuron subpopulations in the dentate hilus on PND 21 and PND 77. Although some myelin vacuolation remained, all other changes observed in HCP-exposed offspring on PND 21 disappeared on PND 77. These results suggest that maternal HCP exposure reversibly decreases type-2b intermediate-stage progenitor cells via the mitochondrial apoptotic pathway in offspring hippocampal neurogenesis at 300 ppm HCP. Neurogenesis may be affected by dysfunction

  16. Evidence for holistic episodic recollection via hippocampal pattern completion.

    Science.gov (United States)

    Horner, Aidan J; Bisby, James A; Bush, Daniel; Lin, Wen-Jing; Burgess, Neil

    2015-07-02

    Recollection is thought to be the hallmark of episodic memory. Here we provide evidence that the hippocampus binds together the diverse elements forming an event, allowing holistic recollection via pattern completion of all elements. Participants learn complex 'events' from multiple overlapping pairs of elements, and are tested on all pairwise associations. At encoding, element 'types' (locations, people and objects/animals) produce activation in distinct neocortical regions, while hippocampal activity predicts memory performance for all within-event pairs. When retrieving a pairwise association, neocortical activity corresponding to all event elements is reinstated, including those incidental to the task. Participant's degree of incidental reinstatement correlates with their hippocampal activity. Our results suggest that event elements, represented in distinct neocortical regions, are bound into coherent 'event engrams' in the hippocampus that enable episodic recollection--the re-experiencing or holistic retrieval of all aspects of an event--via a process of hippocampal pattern completion and neocortical reinstatement.

  17. Role of adult neurogenesis in hippocampal-cortical memory consolidation

    Science.gov (United States)

    2014-01-01

    Acquired memory is initially dependent on the hippocampus (HPC) for permanent memory formation. This hippocampal dependency of memory recall progressively decays with time, a process that is associated with a gradual increase in dependency upon cortical structures. This process is commonly referred to as systems consolidation theory. In this paper, we first review how memory becomes hippocampal dependent to cortical dependent with an emphasis on the interactions that occur between the HPC and cortex during systems consolidation. We also review the mechanisms underlying the gradual decay of HPC dependency during systems consolidation from the perspective of memory erasures by adult hippocampal neurogenesis. Finally, we discuss the relationship between systems consolidation and memory precision. PMID:24552281

  18. Divergent Roles of Central Serotonin in Adult Hippocampal Neurogenesis

    Directory of Open Access Journals (Sweden)

    Ning-Ning Song

    2017-06-01

    Full Text Available The central serotonin (5-HT system is the main target of selective serotonin reuptake inhibitors (SSRIs, the first-line antidepressants widely used in current general practice. One of the prominent features of chronic SSRI treatment in rodents is the enhanced adult neurogenesis in the hippocampus, which has been proposed to contribute to antidepressant effects. Therefore, tremendous effort has been made to decipher how central 5-HT regulates adult hippocampal neurogenesis. In this paper, we review how changes in the central serotonergic system alter adult hippocampal neurogenesis. We focus on data obtained from three categories of genetically engineered mouse models: (1 mice with altered central 5-HT levels from embryonic stages, (2 mice with deletion of 5-HT receptors from embryonic stages, and (3 mice with altered central 5-HT system exclusively in adulthood. These recent findings provide unique insights to interpret the multifaceted roles of central 5-HT on adult hippocampal neurogenesis and its associated effects on depression.

  19. Sampling the Mouse Hippocampal Dentate Gyrus

    Directory of Open Access Journals (Sweden)

    Lisa Basler

    2017-12-01

    Full Text Available Sampling is a critical step in procedures that generate quantitative morphological data in the neurosciences. Samples need to be representative to allow statistical evaluations, and samples need to deliver a precision that makes statistical evaluations not only possible but also meaningful. Sampling generated variability should, e.g., not be able to hide significant group differences from statistical detection if they are present. Estimators of the coefficient of error (CE have been developed to provide tentative answers to the question if sampling has been “good enough” to provide meaningful statistical outcomes. We tested the performance of the commonly used Gundersen-Jensen CE estimator, using the layers of the mouse hippocampal dentate gyrus as an example (molecular layer, granule cell layer and hilus. We found that this estimator provided useful estimates of the precision that can be expected from samples of different sizes. For all layers, we found that a smoothness factor (m of 0 generally provided better estimates than an m of 1. Only for the combined layers, i.e., the entire dentate gyrus, better CE estimates could be obtained using an m of 1. The orientation of the sections impacted on CE sizes. Frontal (coronal sections are typically most efficient by providing the smallest CEs for a given amount of work. Applying the estimator to 3D-reconstructed layers and using very intense sampling, we observed CE size plots with m = 0 to m = 1 transitions that should also be expected but are not often observed in real section series. The data we present also allows the reader to approximate the sampling intervals in frontal, horizontal or sagittal sections that provide CEs of specified sizes for the layers of the mouse dentate gyrus.

  20. Cannabinoids modulate hippocampal memory and plasticity.

    Science.gov (United States)

    Abush, Hila; Akirav, Irit

    2010-10-01

    Considerable evidence demonstrates that cannabinoid agonists impair whereas cannabinoid antagonists improve memory and plasticity. However, recent studies suggest that the effects of cannabinoids on learning do not necessarily follow these simple patterns, particularly when emotional memory processes are involved. We investigated the involvement of the cannabinoid system in hippocampal learning and plasticity using the fear-related inhibitory avoidance (IA) and the non-fear-related spatial learning paradigms, and cellular models of learning and memory, i.e., long-term potentiation (LTP) and long-term depression (LTD). We found that microinjection into the CA1 of the CB1/CB2 receptor agonist WIN55,212-2 (5 μg/side) and an inhibitor of endocannabinoid reuptake and breakdown AM404 (200 ng/side) facilitated the extinction of IA, while the CB1 receptor antagonist AM251 (6 ng/side) impaired it. WIN55,212-2 and AM251 did not affect IA conditioning, while AM404 enhanced it, probably due to a drug-induced increase in pain sensitivity. However, in the water maze, systemic or local CA1 injections of AM251, WIN55,212-2, and AM404 all impaired spatial learning. We also found that i.p. administration of WIN55,212-2 (0.5 mg/kg), AM404 (10 mg/kg), and AM251 (2 mg/kg) impaired LTP in the Schaffer collateral-CA1 projection, whereas AM404 facilitated LTD. Our findings suggest diverse effects of the cannabinoid system on CA1 memory and plasticity that cannot be categorized simply into an impairing or an enhancing effect of cannabinoid activation and deactivation, respectively. Moreover, they provide preclinical support for the suggestion that targeting the endocannabinoid system may aid in the treatment of disorders associated with impaired extinction-like processes, such as post-traumatic stress disorder. © 2009 Wiley-Liss, Inc.

  1. Socioeconomic status, cognition, and hippocampal sclerosis.

    Science.gov (United States)

    Baxendale, Sallie; Heaney, Dominic

    2011-01-01

    Poorer surgical outcomes in patients with low socioeconomic status have previously been reported, but the mechanisms underlying this pattern are unknown. Lower socioeconomic status may be a proxy marker for the limited economic opportunities associated with compromised cognitive function. The aim of this study was to examine the preoperative neuropsychological characteristics of patients with unilateral hippocampal sclerosis (HS) and their relationship to socioeconomic status. Two hundred ninety-two patients with medically intractable temporal lobe epilepsy and unilateral HS completed tests of memory and intellectual function prior to surgery. One hundred thirty-one had right HS (RHS), and 161 had left HS (LHS). The socioeconomic status of each participant was determined via the Index of Multiple Deprivation (IMD) associated with their postcode. The IMD was not associated with age at the time of assessment, age at onset of epilepsy, or duration of active epilepsy. The RHS and LHS groups did not differ on the IMD. The IMD was negatively correlated with all neuropsychological test scores in the LHS group. In the RHS group, the IMD was not significantly correlated with any of the neuropsychological measures. There were no significant correlations in the RHS group. Regression analyses suggested that IMD score explained 3% of variance in the measures of intellect, but 8% of the variance in verbal learning in the LHS group. The IMD explained 1% or less of the variance in neuropsychological scores in the RHS group. Controlling for overall level of intellectual function, the IMD score explained a small but significant proportion of the variance in verbal learning in the LHS group and visual learning for the RHS group. Our findings suggest that patients living in an area with a high IMD enter surgery with greater focal deficits associated with their epilepsy and more widespread cognitive deficits if they have LHS. Further work is needed to establish the direction of the

  2. Bilateral reorganization of the dentate gyrus in hippocampal sclerosis

    Science.gov (United States)

    Thom, M; Martinian, L; Catarino, C; Yogarajah, M; Koepp, M J.; Caboclo, L; Sisodiya, S M.

    2009-01-01

    Background: Hippocampal sclerosis (HS) is the most common surgical pathology associated with mesial temporal lobe epilepsy (MTLE). HS is typically characterized by mossy fiber sprouting (MFS) and reorganization of neuropeptide Y (NPY) fiber networks in the dentate gyrus. One potential cause of postoperative seizure recurrence following temporal lobe surgery may be the presence of seizure-associated bilateral hippocampal damage. We aimed to investigate patterns of hippocampal abnormalities in a postmortem series as identified by NPY and dynorphin immunohistochemistry. Methods: Analysis of dentate gyrus fiber reorganization, using dynorphin (to demonstrate MFS) and NPY immunohistochemistry, was carried out in a postmortem epilepsy series of 25 cases (age range 21–96 years). In 9 patients, previously refractory seizures had become well controlled for up to 34 years prior to death. Results: Bilateral MFS or abnormal NPY patterns were seen in 15 patients including those with bilateral symmetric, asymmetric, and unilateral HS by conventional histologic criteria. MFS and NPY reorganization was present in all classical HS cases, more variably in atypical HS, present in both MTLE and non-MTLE syndromes and with seizure histories of up to 92 years, despite seizure remission in some patients. Conclusion: Synaptic reorganization in the dentate gyrus may be a bilateral, persistent process in epilepsy. It is unlikely to be sufficient to generate seizures and more likely to represent a seizure-induced phenomenon. GLOSSARY AED = antiepileptic drug; CA1p = CA1-predominant hippocampal sclerosis; CHS = classical hippocampal sclerosis; EFG = end folium gliosis; EFS = end folium sclerosis; GCD = granule cell dispersion; GCL = granule cell layer; HS = hippocampal sclerosis; MFS = mossy fiber sprouting; MTLE = mesial temporal lobe epilepsy; NPY = neuropeptide Y; ROI = region of interest; SE = status epilepticus; TLE = temporal lobe epilepsy. PMID:19710404

  3. Studies on hippocampal sclerosis by 1H MRS and MRI

    International Nuclear Information System (INIS)

    Qi Jing; Du Xiangke; Luan Guoming; Wang Dehang

    2000-01-01

    Objective: To determine the relative utility of 1 H MRS and MRI for pre-surgical diagnosis of hippocampal sclerosis by the study on metabolic abnormalities and anatomical alterations in the brain of patients with temporal lobe epilepsy (TLE). Methods: 1 H MRS and MRI were performed on 8 patients with pathologically confirmed hippocampal sclerosis and 8 healthy volunteers on 2.0 T 1 H MRS/MRI system. The values of NAA, Cr and Cho were calculated by integration of their peaks and the ratios of NAA/Cr, NAA/(Cr + Cho), and Cho/Cr were measured. The volumes of both hippocampal formations in every case were observed and the differences of hippocampal formation (DHF) were analyzed. Results: The ratios of NAA/Cr, NAA/(Cr + Cho), and Cho/Cr in ipsilateral side were 0.55, 1.77 and 1.38, and in control subjects were 0.77, 1.38 and 1.06 separately. The ratios of NAA/Cr and NAA/(Cr + Cho) were decreased on ipsilateral side (t = 2.15, 4.83 separately, P 1 H MRS and MRI, seven of eight cases could be lateralized. Conclusion: 1 H MRS is sensitive to the diagnosis of neuron abnormality and coincident well with the pathological results 1 H MRS and MRI correctly lateralize most patients with hippocampal sclerosis and complement each other in final lateralization. The combination of 1 H MRS and MRI can provide useful information for pre-surgical diagnosis of hippocampal sclerosis

  4. Spectroscopic evidence of hippocampal abnormalities in neocortical epilepsy

    Science.gov (United States)

    Mueller, S. G.; Laxer, K. D.; Cashdollar, N.; Lopez, R. C.; Weiner, M. W.

    2009-01-01

    Lesional neocortical epilepsy (NE) can be associated with hippocampal sclerosis or hippocampal spectroscopic abnormalities without atrophy (dual pathology). In this study, magnetic resonance spectroscopic imaging (MRSI) was used to determine the frequency of hippocampal damage/dysfunction in NE with and without structural lesion. Sixteen patients with NE [seven temporal NE (NE-T), nine extratemporal (NE-ET)] and 16 controls were studied with a 2D MRSI sequence (Repetition time/echo time (TR/TE) = 1800/135 ms) covering both hippocampi. Seven NE patients had MR visible lesions (NE-Les), nine had normal MRI (NE-no). In each hippocampus, 12 voxels were uniformly selected. In controls, mean (± SD) NAA/(Cr + Cho) values for each voxel were calculated and voxels with NAA/(Cr + Cho) ≤ (mean in controls – 2SD in controls) were defined as ‘pathological’ in patients. Eight of 16 NE patients had at least two ‘pathological’ voxel (mean 2.5, range 2–5) in one hippocampus. Four were NE-Les and four NE-no. Three (43%) NE-T patients, had evidence for hippocampal damage/dysfunction and five (56%) had NE-ET. The ipsilateral hippocampus was affected in six of eight NE patients. Evidence for unilateral hippocampal damage/dysfunction was demonstrated in 50% of the NE patients. The type of NE, i.e. NE-Les or NE-no, NE-T or NE-ET, had no influence on the occurrence of hippocampal damage/dysfunction. PMID:16618342

  5. Roles of hippocampal subfields in verbal and visual episodic memory.

    Science.gov (United States)

    Zammit, Andrea R; Ezzati, Ali; Zimmerman, Molly E; Lipton, Richard B; Lipton, Michael L; Katz, Mindy J

    2017-01-15

    Selective hippocampal (HC) subfield atrophy has been reported in older adults with mild cognitive impairment and Alzheimer's disease. The goal of this study was to investigate the associations between the volume of hippocampal subfields and visual and verbal episodic memory in cognitively normal older adults. This study was conducted on a subset of 133 participants from the Einstein Aging Study (EAS), a community-based study of non-demented older adults systematically recruited from the Bronx, N.Y. All participants completed comprehensive EAS neuropsychological assessment. Visual episodic memory was assessed using the Complex Figure Delayed Recall subtest from the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). Verbal episodic memory was assessed using Delayed Recall from the Free and Cued Selective Reminding Test (FCSRT). All participants underwent 3T MRI brain scanning with subsequent automatic measurement of the hemispheric hippocampal subfield volumes (CA1, CA2-CA3, CA4-dente gyrus, presubiculum, and subiculum). We used linear regressions to model the association between hippocampal subfield volumes and visual and verbal episodic memory tests while adjusting for age, sex, education, and total intracranial volume. Participants had a mean age of 78.9 (SD=5.1) and 60.2% were female. Total hippocampal volume was associated with Complex Figure Delayed Recall (β=0.31, p=0.001) and FCSRT Delayed Recall (β=0.27, p=0.007); subiculum volume was associated with Complex Figure Delayed Recall (β=0.27, p=0.002) and FCSRT Delayed Recall (β=0.24, p=0.010); CA1 was associated with Complex Figure Delayed Recall (β=0.26, pepisodic memory. Our results suggest that hippocampal subfields have sensitive roles in the process of visual and verbal episodic memory. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Higher-order conditioning is impaired by hippocampal lesions.

    Science.gov (United States)

    Gilboa, Asaf; Sekeres, Melanie; Moscovitch, Morris; Winocur, Gordon

    2014-09-22

    Behavior in the real world is rarely motivated by primary conditioned stimuli that have been directly associated with potent unconditioned reinforcers. Instead, motivation and choice behavior are driven by complex chains of higher-order associations that are only indirectly linked to intrinsic reward and often exert their influence outside awareness. Second-order conditioning (SOC) [1] is a basic associative-learning mechanism whereby stimuli acquire motivational salience by proxy, in the absence of primary incentives [2, 3]. Memory-systems theories consider first-order conditioning (FOC) and SOC to be prime examples of hippocampal-independent nondeclarative memory [4, 5]. Accordingly, neurobiological models of SOC focus almost exclusively on nondeclarative neural systems that support motivational salience and reward value. Transfer of value from a conditioned stimulus to a neutral stimulus is thought to require the basolateral amygdala [6, 7] and the ventral striatum [2, 3], but not the hippocampus. We developed a new paradigm to measure appetitive SOC of tones in rats. Hippocampal lesions severely impaired both acquisition and expression of SOC despite normal FOC. Unlike controls, rats with hippocampal lesions could not discriminate between positive and negative secondary conditioned tones, although they exhibited general familiarity with previously presented tones compared with new tones. Importantly, normal rats' behavior, in contrast to that of hippocampal groups, also revealed different confidence levels as indexed by effort, a central characteristic of hippocampal relational memory. The results indicate, contrary to current systems models, that representations of intrinsic relationships between reward value, stimulus identity, and motivation require hippocampal mediation when these relationships are of a higher order. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Tuning afferent synapses of hippocampal interneurons by neuropeptide Y

    DEFF Research Database (Denmark)

    Ledri, Marco; Sørensen, Andreas Toft; Erdelyi, Ferenc

    2011-01-01

    Cholecystokinin (CCK)-expressing basket cells encompass a subclass of inhibitory GABAergic interneurons that regulate memory-forming oscillatory network activity of the hippocampal formation in accordance to the emotional and motivational state of the animal, conveyed onto these cells by respective...... are modulated by neuropeptide Y (NPY), one of the major local neuropeptides that strongly inhibits hippocampal excitability and has significant effect on its memory function. Here, using GAD65-GFP transgenic mice for prospective identification of CCK basket cells and whole-cell patch-clamp recordings, we show...

  8. Hippocampal MRI volumetry at 3 Tesla: reliability and practical guidance.

    Science.gov (United States)

    Jeukens, Cécile R L P N; Vlooswijk, Mariëlle C G; Majoie, H J Marian; de Krom, Marc C T F M; Aldenkamp, Albert P; Hofman, Paul A M; Jansen, Jacobus F A; Backes, Walter H

    2009-09-01

    Although volumetry of the hippocampus is considered to be an established technique, protocols reported in literature are not described in great detail. This article provides a complete and detailed protocol for hippocampal volumetry applicable to T1-weighted magnetic resonance (MR) images acquired at 3 Tesla, which has become the standard for structural brain research. The protocol encompasses T1-weighted image acquisition at 3 Tesla, anatomic guidelines for manual hippocampus delineation, requirements of delineation software, reliability measures, and criteria to assess and ensure sufficient reliability. Moreover, the validity of the correction for total intracranial volume size was critically assessed. The protocol was applied by 2 readers to the MR images of 36 patients with cryptogenic localization-related epilepsy, 4 patients with unilateral hippocampal sclerosis, and 20 healthy control subjects. The uncorrected hippocampal volumes were 2923 +/- 500 mm3 (mean +/- SD) (left) and 3120 +/- 416 mm3 (right) for the patient group and 3185 +/- 411 mm3 (left) and 3302 +/- 411 mm3 (right) for the healthy control group. The volume of the 4 pathologic hippocampi of the patients with unilateral hippocampal sclerosis was 2980 +/- 422 mm3. The inter-reader reliability values were determined: intraclass-correlation-coefficient (ICC) = 0.87 (left) and 0.86 (right), percentage volume difference (VD) = 7.0 +/- 4.7% (left) and 6.0 +/- 3.8% (right), and overlap ratio (OR) = 0.82 +/- 0.04 (left) and 0.82 +/- 0.03 (right). The positive Pearson correlation between hippocampal volume and total intracranial volume was found to be low: r = 0.48 (P = 0.03, left) and r = 0.62 (P = 0.004, right) and did not significantly reduce the volumetric variances, showing the limited benefit of the brain size correction. A protocol was described to determine hippocampal volumes based on 3 Tesla MR images with high inter-reader reliability. Although the reliability of hippocampal volumetry at 3 Tesla

  9. Hippocampal volume and serotonin transporter polymorphism in major depressive disorder

    DEFF Research Database (Denmark)

    Ahdidan, Jamila; Foldager, Leslie; Rosenberg, Raben

    2013-01-01

    Objective: The main aim of the present study was to replicate a previous finding in major depressive disorder (MDD) of association between reduced hippocampal volume and the long variant of the di- and triallelic serotonin transporter polymorphism in SLC6A4 on chromosome 17q11.2. Secondarily, we...... that we aimed to replicate, and no significant associations with the serotonin transporter polymorphism were found. Conclusions: The present quantitative and morphometric MRI study was not able to replicate the previous finding of association between reduced hippocampal volume in depressed patients...... and the serotonin transporter polymorphism....

  10. Inhibitory effects of caffeine on hippocampal neurogenesis and function.

    Science.gov (United States)

    Han, Myoung-Eun; Park, Kyu-Hyun; Baek, Sun-Yong; Kim, Bong-Seon; Kim, Jae-Bong; Kim, Hak-Jin; Oh, Sae-Ock

    2007-05-18

    Caffeine is one of the most extensively consumed psychostimulants in the world. However, compared to short-term effects of caffeine, the long-term effects of caffeine consumption on learning and memory are poorly characterized. The present study found that long-term consumption of low dose caffeine (0.3 g/L) slowed hippocampus-dependent learning and impaired long-term memory. Caffeine consumption for 4 weeks also significantly reduced hippocampal neurogenesis compared to controls. From these results, we concluded that long-term consumption of caffeine could inhibit hippocampus-dependent learning and memory partially through inhibition of hippocampal neurogenesis.

  11. Atorvastatin prevents Aβ oligomer-induced neurotoxicity in cultured rat hippocampal neurons by inhibiting Tau cleavage

    Science.gov (United States)

    Sui, Hai-juan; Zhang, Ling-ling; Liu, Zhou; Jin, Ying

    2015-01-01

    Aim: The proteolytic cleavage of Tau is involved in Aβ-induced neuronal dysfunction and cell death. In this study, we investigated whether atorvastatin could prevent Tau cleavage and hence prevent Aβ1–42 oligomer (AβO)-induced neurotoxicity in cultured cortical neurons. Methods: Cultured rat hippocampal neurons were incubated in the presence of AβOs (1.25 μmol/L) with or without atorvastatin pretreatment. ATP content and LDH in the culture medium were measured to assess the neuronal viability. Caspase-3/7 and calpain protease activities were detected. The levels of phospho-Akt, phospho-Erk1/2, phospho-GSK3β, p35 and Tau proteins were measured using Western blotting. Results: Treatment of the neurons with AβO significantly decreased the neuronal viability, induced rapid activation of calpain and caspase-3/7 proteases, accompanied by Tau degradation and relatively stable fragments generated in the neurons. AβO also suppressed Akt and Erk1/2 kinase activity, while increased GSK3β and Cdk5 activity in the neurons. Pretreatment with atorvastatin (0.5, 1, 2.5 μmol/L) dose-dependently inhibited AβO-induced activation of calpain and caspase-3/7 proteases, and effectively diminished the generation of Tau fragments, attenuated synaptic damage and increased neuronal survival. Atorvastatin pretreatment also prevented AβO-induced decreases in Akt and Erk1/2 kinase activity and the increases in GSK3β and Cdk5 kinase activity. Conclusion: Atorvastatin prevents AβO-induced neurotoxicity in cultured rat hippocampal neurons by inhibiting calpain- and caspase-mediated Tau cleavage. PMID:25891085

  12. The orphan nuclear receptor TLX regulates hippocampal transcriptome changes induced by IL-1β.

    Science.gov (United States)

    Ó'Léime, Ciarán S; Hoban, Alan E; Hueston, Cara M; Stilling, Roman; Moloney, Gerard; Cryan, John F; Nolan, Yvonne M

    2018-05-01

    TLX is an orphan nuclear receptor highly expressed within neural progenitor cells (NPCs) in the hippocampus where is regulates proliferation. Inflammation has been shown to have negative effects on hippocampal function as well as on NPC proliferation. Specifically, the pro-inflammatory cytokine IL-1β suppresses NPC proliferation as well as TLX expression in the hippocampus. However, it is unknown whether TLX itself is involved in regulating the inflammatory response in the hippocampus. To explore the role of TLX in inflammation, we assessed changes in the transcriptional landscape of the hippocampus of TLX knockout mice (TLX -/- ) compared to wildtype (WT) littermate controls with and without intrahippocampal injection of IL-1β using a whole transcriptome RNA sequencing approach. We demonstrated that there is an increase in the transcription of genes involved in the promotion of inflammation and regulation of cell chemotaxis (Tnf, Il1b, Cxcr1, Cxcr2, Tlr4) and a decrease in the expression of genes relating to synaptic signalling (Lypd1, Syt4, Cplx2) in cannulated TLX -/- mice compared to WT controls. We demonstrate that mice lacking in TLX share a similar increase in 176 genes involved in regulating inflammation (e.g. Cxcl1, Tnf, Il1b) as WT mice injected with IL-1β into the hippocampus. Moreover, TLX -/- mice injected with IL-1β displayed a blunted transcriptional profile compared to WT mice injected with IL-1β. Thus, TLX -/- mice, which already have an exaggerated inflammatory profile after cannulation surgery, are primed to respond differently to an inflammatory stimulus such as IL-1β. Together, these results demonstrate that TLX regulates hippocampal inflammatory transcriptome response to brain injury (in this case cannulation surgery) and cytokine stimulation. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Glucocorticoid acts on a putative G protein-coupled receptor to rapidly regulate the activity of NMDA receptors in hippocampal neurons.

    Science.gov (United States)

    Zhang, Yanmin; Sheng, Hui; Qi, Jinshun; Ma, Bei; Sun, Jihu; Li, Shaofeng; Ni, Xin

    2012-04-01

    Glucocorticoids (GCs) have been demonstrated to act through both genomic and nongenomic mechanisms. The present study demonstrated that corticosterone rapidly suppressed the activity of N-methyl-D-aspartate (NMDA) receptors in cultured hippocampal neurons. The effect was maintained with corticosterone conjugated to bovine serum albumin and blocked by inhibition of G protein activity with intracellular GDP-β-S application. Corticosterone increased GTP-bound G(s) protein and cyclic AMP (cAMP) production, activated phospholipase Cβ(3) (PLC-β(3)), and induced inositol-1,4,5-triphosphate (IP(3)) production. Blocking PLC and the downstream cascades with PLC inhibitor, IP(3) receptor antagonist, Ca(2+) chelator, and protein kinase C (PKC) inhibitors prevented the actions of corticosterone. Blocking adenylate cyclase (AC) and protein kinase A (PKA) caused a decrease in NMDA-evoked currents. Application of corticosterone partly reversed the inhibition of NMDA currents caused by blockage of AC and PKA. Intracerebroventricular administration of corticosterone significantly suppressed long-term potentiation (LTP) in the CA1 region of the hippocampus within 30 min in vivo, implicating the possibly physiological significance of rapid effects of GC on NMDA receptors. Taken together, our results indicate that GCs act on a putative G protein-coupled receptor to activate multiple signaling pathways in hippocampal neurons, and the rapid suppression of NMDA activity by GCs is dependent on PLC and downstream signaling.

  14. The pressure suppression system

    International Nuclear Information System (INIS)

    Aust, E.

    1985-01-01

    Nuclear plants with boiling water reactors have a safety containment with a pressure suppression system (PSS). Proceeding on significant self-developments, today the three PSS-lines of General Electric Co. (GE), Kraftwerk Union AG (KWU) and ASEA-ATOM are predominant, which are currently represented by the MARK III type, the KWU type 72 and the BWR 75 containment. In addition, there are special developments for the nuclear ship propulsion and for the pressurized water reactors in the Soviet Union. Key design values of the PSS allow a first valuation of its loads during a hypothetical loss-of-coolant accident. (orig.) [de

  15. Postoperative intermittent fasting prevents hippocampal oxidative stress and memory deficits in a rat model of chronic cerebral hypoperfusion.

    Science.gov (United States)

    Hu, Yuan; Zhang, Miao; Chen, Yunyun; Yang, Ying; Zhang, Jun-Jian

    2018-01-11

    Whether intermittent fasting (IF) treatment after stroke can prevent its long-term detrimental effects remains unknown. Here, we investigate the effects of postoperative IF on cognitive deficits and its underlying mechanisms in a permanent two-vessel occlusion (2VO) vascular dementia rat model. Rats were subjected to either IF or ad libitum feeding 1 week after 2VO surgery. The cognition of rats was assessed using the novel object recognition (NOR) task and Morris water maze (MWM) 8 weeks after surgery. After behavioral testing, hippocampal malondialdehyde (MDA) and glutathione (GSH) concentrations, superoxide dismutase (SOD) activity, gene expression of antioxidative enzymes, inflammatory protein levels, and microglia density were determined. Postoperative IF significantly ameliorated the cognitive performance of 2VO rats in the NOR and MWM tests. Cognitive enhancement paralleled preservation of the PSD95 and BDNF levels in the 2VO rat hippocampus. Mechanistically, postoperative IF mitigated hippocampal oxidative stress in 2VO rats, as indicated by the reduced MDA concentration and mRNA and the protein levels of the reactive oxygen species-generating enzyme nicotinamide adenine dinucleotide phosphate oxidase 1. IF treatment also preserved the GSH level and SOD activity, as well as the levels of their upstream regulating enzymes, resulting in preserved antioxidative capability. In addition, postoperative IF prevented hippocampal microglial activation and elevation of sphingosine 1-phosphate receptor 1 and inflammatory cytokines in 2VO rats. Our results suggest that postoperative IF suppresses neuroinflammation and oxidative stress induced by chronic cerebral ischemia, thereby preserving cognitive function in a vascular dementia rat model.

  16. Radiation effluent suppression system

    International Nuclear Information System (INIS)

    Watanabe, Atsushi.

    1992-01-01

    In a radiation release suppression system upon accident, an electromotive valve, a pneumatic operation valve or a manual operation valve is disposed to gas ventilation pipelines which are extended from both of a dry well and a wet well of a reactor container to a stuck. In addition, a combination filter of a metal fiber filter made of stainless steel etc. and an activated carbon fiber filter is disposed in the midway of pipelines in a reactor building. With such a constitution, the inside of the container can be depressurized (prevention of ruptures) and the amount of radioactive substances released to circumstances is remarkably suppressed by the effect of radioactive substance capturing effect of the metal fiber filter made of stainless steel etc. disposed in the vent pipe in the container and a radioactive substance capturing effect by the combination filter of the metal fiber filter made of stainless steel, etc. and the activated carbon fiber filter disposed in the gas ventilation pipelines even upon occurrence of an accident exceeding design basis. Systems can be simplified and minimized, and cost down can also be attained. (N.H.)

  17. Planck-suppressed operators

    International Nuclear Information System (INIS)

    Assassi, Valentin; Baumann, Daniel; Green, Daniel; McAllister, Liam

    2014-01-01

    We show that the recent Planck limits on primordial non-Gaussianity impose strong constraints on light hidden sector fields coupled to the inflaton via operators suppressed by a high mass scale Λ. We study a simple effective field theory in which a hidden sector field is coupled to a shift-symmetric inflaton via arbitrary operators up to dimension five. Self-interactions in the hidden sector lead to non-Gaussianity in the curvature perturbations. To be consistent with the Planck limit on local non-Gaussianity, the coupling to any hidden sector with light fields and natural cubic couplings must be suppressed by a very high scale Λ > 10 5 H. Even if the hidden sector has Gaussian correlations, nonlinearities in the mixing with the inflaton still lead to non-Gaussian curvature perturbations. In this case, the non-Gaussianity is of the equilateral or orthogonal type, and the Planck data requires Λ > 10 2 H

  18. Impaired Odor Recognition Memory in Patients with Hippocampal Lesions

    Science.gov (United States)

    Levy, Daniel A.; Squire, Larry R.; Hopkins, Ramona O.

    2004-01-01

    In humans, impaired recognition memory following lesions thought to be limited to the hippocampal region has been demonstrated for a wide variety of tasks. However, the importance of the human hippocampus for olfactory recognition memory has scarcely been explored. We evaluated the ability of memory-impaired patients with damage thought to be…

  19. Evaluating Alzheimer's disease progression using rate of regional hippocampal atrophy.

    Directory of Open Access Journals (Sweden)

    Edit Frankó

    Full Text Available Alzheimer's disease (AD is characterized by neurofibrillary tangle and neuropil thread deposition, which ultimately results in neuronal loss. A large number of magnetic resonance imaging studies have reported a smaller hippocampus in AD patients as compared to healthy elderlies. Even though this difference is often interpreted as atrophy, it is only an indirect measurement. A more direct way of measuring the atrophy is to use repeated MRIs within the same individual. Even though several groups have used this appropriate approach, the pattern of hippocampal atrophy still remains unclear and difficult to relate to underlying pathophysiology. Here, in this longitudinal study, we aimed to map hippocampal atrophy rates in patients with AD, mild cognitive impairment (MCI and elderly controls. Data consisted of two MRI scans for each subject. The symmetric deformation field between the first and the second MRI was computed and mapped onto the three-dimensional hippocampal surface. The pattern of atrophy rate was similar in all three groups, but the rate was significantly higher in patients with AD than in control subjects. We also found higher atrophy rates in progressive MCI patients as compared to stable MCI, particularly in the antero-lateral portion of the right hippocampus. Importantly, the regions showing the highest atrophy rate correspond to those that were described to have the highest burden of tau deposition. Our results show that local hippocampal atrophy rate is a reliable biomarker of disease stage and progression and could also be considered as a method to objectively evaluate treatment effects.

  20. PirB regulates asymmetries in hippocampal circuitry.

    Directory of Open Access Journals (Sweden)

    Hikari Ukai

    Full Text Available Left-right asymmetry is a fundamental feature of higher-order brain structure; however, the molecular basis of brain asymmetry remains unclear. We recently identified structural and functional asymmetries in mouse hippocampal circuitry that result from the asymmetrical distribution of two distinct populations of pyramidal cell synapses that differ in the density of the NMDA receptor subunit GluRε2 (also known as NR2B, GRIN2B or GluN2B. By examining the synaptic distribution of ε2 subunits, we previously found that β2-microglobulin-deficient mice, which lack cell surface expression of the vast majority of major histocompatibility complex class I (MHCI proteins, do not exhibit circuit asymmetry. In the present study, we conducted electrophysiological and anatomical analyses on the hippocampal circuitry of mice with a knockout of the paired immunoglobulin-like receptor B (PirB, an MHCI receptor. As in β2-microglobulin-deficient mice, the PirB-deficient hippocampus lacked circuit asymmetries. This finding that MHCI loss-of-function mice and PirB knockout mice have identical phenotypes suggests that MHCI signals that produce hippocampal asymmetries are transduced through PirB. Our results provide evidence for a critical role of the MHCI/PirB signaling system in the generation of asymmetries in hippocampal circuitry.

  1. Classical Conditioning of Hippocampal Theta Patterns in the Rat.

    Science.gov (United States)

    1976-08-01

    associated with changes in performance of learned tasks , 1,4,5, 8,9 there have been very few studies of neurona l plasticity of the hippocampus It self...rapid development of a conditioned hippocampal theta response to a visual sti mulus demonstrates tha t there is considerable neurona l plasticity in the

  2. Amnesia due to bilateral hippocampal glioblastoma. MRI finding

    Energy Technology Data Exchange (ETDEWEB)

    Shimauchi, M.; Wakisaka, S.; Kinoshita, K. (Miyazaki Medical Coll., Kiyotake (Japan). Dept. of Neurosurgery)

    1989-11-01

    The authors report a unique case of glioblastoma which caused permanent amnesia. Magnetic resonance imaging showed the lesion to be limited to the hippocampal formation bilaterally. Although glioblastoma extends frequently into fiber pathways and expands into the opposite cerebral hemisphere, making a 'butterfly' lesion, it is unusual for it to invade the limbic system selectively to this extent. (orig.).

  3. Early detection of Alzheimer's disease using MRI hippocampal texture

    DEFF Research Database (Denmark)

    Sørensen, Lauge; Igel, Christian; Hansen, Naja Liv

    2016-01-01

    the receiver operating characteristic curve [AUC] 0.74 vs 0.67; DeLong test, p = 0.005), and provided even better prognostic results in AIBL (AUC 0.83). Hippocampal texture, but not volume, correlated with Addenbrooke's cognitive examination score (Pearson correlation, r = −0.25, p ...

  4. Hippocampal declarative memory supports gesture production: Evidence from amnesia.

    Science.gov (United States)

    Hilverman, Caitlin; Cook, Susan Wagner; Duff, Melissa C

    2016-12-01

    Spontaneous co-speech hand gestures provide a visuospatial representation of what is being communicated in spoken language. Although it is clear that gestures emerge from representations in memory for what is being communicated (De Ruiter, 1998; Wesp, Hesse, Keutmann, & Wheaton, 2001), the mechanism supporting the relationship between gesture and memory is unknown. Current theories of gesture production posit that action - supported by motor areas of the brain - is key in determining whether gestures are produced. We propose that when and how gestures are produced is determined in part by hippocampally-mediated declarative memory. We examined the speech and gesture of healthy older adults and of memory-impaired patients with hippocampal amnesia during four discourse tasks that required accessing episodes and information from the remote past. Consistent with previous reports of impoverished spoken language in patients with hippocampal amnesia, we predicted that these patients, who have difficulty generating multifaceted declarative memory representations, may in turn have impoverished gesture production. We found that patients gestured less overall relative to healthy comparison participants, and that this was particularly evident in tasks that may rely more heavily on declarative memory. Thus, gestures do not just emerge from the motor representation activated for speaking, but are also sensitive to the representation available in hippocampal declarative memory, suggesting a direct link between memory and gesture production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. HIPPOCAMPAL SCLEROSIS IN EPILEPSY AND CHILDHOOD FEBRILE SEIZURES

    NARCIS (Netherlands)

    KUKS, JBM; COOK, MJ; FISH, DR; STEVENS, JM; SHORVON, SD

    1993-01-01

    The connection between hippocampal sclerosis and childhood febrile seizures (CFS) is a contentious issue in the study of epilepsy. We investigated 107 patients with drug-resistant epilepsy by high-resolution volumetric magnetic resonance imaging (MRI). 20 had a history of CFS, 45 had focal (26) or

  6. Adult hippocampal neurogenesis in natural populations of mammals.

    Science.gov (United States)

    Amrein, Irmgard

    2015-05-01

    This review will discuss adult hippocampal neurogenesis in wild mammals of different taxa and outline similarities with and differences from laboratory animals. It begins with a review of evidence for hippocampal neurogenesis in various mammals, and shows the similar patterns of age-dependent decline in cell proliferation in wild and domesticated mammals. In contrast, the pool of immature neurons that originate from proliferative activity varies between species, implying a selective advantage for mammals that can make use of a large number of these functionally special neurons. Furthermore, rapid adaptation of hippocampal neurogenesis to experimental challenges appears to be a characteristic of laboratory rodents. Wild mammals show species-specific, rather stable hippocampal neurogenesis, which appears related to demands that characterize the niche exploited by a species rather than to acute events in the life of its members. Studies that investigate adult neurogenesis in wild mammals are not numerous, but the findings of neurogenesis under natural conditions can provide new insights, and thereby also address the question to which cognitive demands neurogenesis may respond during selection. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.

  7. Endurance Factors Improve Hippocampal Neurogenesis and Spatial Memory in Mice

    Science.gov (United States)

    Kobilo, Tali; Yuan, Chunyan; van Praag, Henriette

    2011-01-01

    Physical activity improves learning and hippocampal neurogenesis. It is unknown whether compounds that increase endurance in muscle also enhance cognition. We investigated the effects of endurance factors, peroxisome proliferator-activated receptor [delta] agonist GW501516 and AICAR, activator of AMP-activated protein kinase on memory and…

  8. Hippocampal development in youth with a history of childhood maltreatment.

    Science.gov (United States)

    Paquola, Casey; Bennett, Maxwell R; Hatton, Sean N; Hermens, Daniel F; Groote, Inge; Lagopoulos, Jim

    2017-08-01

    Childhood maltreatment (CM) is associated with enhanced risk of psychiatric illness and reduced subcortical grey matter in adulthood. The hippocampus and amygdala, due to their involvement in stress and emotion circuitries, have been subject to extensive investigations regarding the effect of CM. However, the complex relationship between CM, subcortical grey matter and mental illness remains poorly understood partially due to a lack of longitudinal studies. Here we used segmentation and linear mixed effect modelling to examine the impact of CM on hippocampal and amygdala development in young people with emerging mental illness. A total of 215 structural magnetic resonance imaging (MRI) scans were acquired from 123 individuals (age: 14-28 years, 79 female), 52 of whom were scanned twice or more. Hippocampal and amygdala volumes increased linearly with age, and their developmental trajectories were not moderated by symptom severity. However, exposure to CM was associated with significantly stunted right hippocampal growth. This finding bridges the gap between child and adult research in the field and provides novel evidence that CM is associated with disrupted hippocampal development in youth. Although CM was associated with worse symptom severity, we did not find evidence that CM-induced structural abnormalities directly underpin psychopathology. This study has important implications for the psychiatric treatment of individuals with CM since they are clinically and neurobiologically distinct from their peers who were not maltreated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Inhibition of local estrogen synthesis in the hippocampus impairs hippocampal memory consolidation in ovariectomized female mice.

    Science.gov (United States)

    Tuscher, Jennifer J; Szinte, Julia S; Starrett, Joseph R; Krentzel, Amanda A; Fortress, Ashley M; Remage-Healey, Luke; Frick, Karyn M

    2016-07-01

    The potent estrogen 17β-Estradiol (E2) plays a critical role in mediating hippocampal function, yet the precise mechanisms through which E2 enhances hippocampal memory remain unclear. In young adult female rodents, the beneficial effects of E2 on memory are generally attributed to ovarian-synthesized E2. However, E2 is also synthesized in the adult brain in numerous species, where it regulates synaptic plasticity and is synthesized in response to experiences such as exposure to females or conspecific song. Although de novo E2 synthesis has been demonstrated in rodent hippocampal cultures, little is known about the functional role of local E2 synthesis in mediating hippocampal memory function. Therefore, the present study examined the role of hippocampal E2 synthesis in hippocampal memory consolidation. Using bilateral dorsal hippocampal infusions of the aromatase inhibitor letrozole, we first found that blockade of dorsal hippocampal E2 synthesis impaired hippocampal memory consolidation. We next found that elevated levels of E2 in the dorsal hippocampus observed 30min after object training were blocked by dorsal hippocampal infusion of letrozole, suggesting that behavioral experience increases acute and local E2 synthesis. Finally, aromatase inhibition did not prevent exogenous E2 from enhancing hippocampal memory consolidation, indicating that hippocampal E2 synthesis is not necessary for exogenous E2 to enhance hippocampal memory. Combined, these data are consistent with the hypothesis that hippocampally-synthesized E2 is necessary for hippocampus-dependent memory consolidation in rodents. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Surgery-induced hippocampal angiotensin II elevation causes blood-brain barrier disruption via MMP/TIMP in aged rats

    Directory of Open Access Journals (Sweden)

    Zhengqian eLi

    2016-04-01

    Full Text Available Reversible BBB disruption has been uniformly reported in several animal models of postoperative cognitive dysfunction (POCD. Nevertheless, the precise mechanism underlying this occurrence remains unclear. Using an aged rat model of POCD, we investigated the dynamic changes in expression of molecules involved in BBB disintegration, matrix metalloproteinase-2 (MMP-2 and -9 (MMP-9, as well as three of their endogenous tissue inhibitors (TIMP-1, -2, -3, and tried to establish the correlation between MMP/TIMP balance and surgery-induced hippocampal BBB disruption. We validated the increased hippocampal expression of angiotensin II (Ang II and Ang II receptor type 1 (AT1 after surgery. We also found MMP/TIMP imbalance as early as 6 h after surgery, together with increased BBB permeability and decreased expression of Occludin and zonula occludens-1 (ZO-1, as well as increased basal lamina protein laminin at 24 h postsurgery. The AT1 antagonist candesartan restored MMP/TIMP equilibrium and modulated expression of Occludin and laminin, but not ZO-1, thereby improving BBB permeability. These events were accompanied by suppression of the surgery-induced canonical nuclear factor-κB (NF-κB activation cascade. Nevertheless, AT1 antagonism did not affect nuclear receptor peroxisome proliferator-activated receptor-γ expression. Collectively, these findings suggest that surgery-induced Ang II release impairs BBB integrity by activating NF-κB signaling and disrupting downstream MMP/TIMP balance via AT1 receptor.

  11. Discovery of talatisamine as a novel specific blocker for the delayed rectifier K+ channels in rat hippocampal neurons.

    Science.gov (United States)

    Song, M-K; Liu, H; Jiang, H-L; Yue, J-M; Hu, G-Y; Chen, H-Z

    2008-08-13

    Blocking specific K+ channels has been proposed as a promising strategy for the treatment of neurodegenerative diseases. Using a computational virtual screening approach and electrophysiological testing, we found four Aconitum alkaloids are potent blockers of the delayed rectifier K+ channel in rat hippocampal neurons. In the present study, we first tested the action of the four alkaloids on the voltage-gated K+, Na+ and Ca2+ currents in rat hippocampal neurons, and then identified that talatisamine is a specific blocker for the delayed rectifier K+ channel. External application of talatisamine reversibly inhibited the delayed rectifier K+ current (IK) with an IC50 value of 146.0+/-5.8 microM in a voltage-dependent manner, but exhibited very slight blocking effect on the voltage-gated Na+ and Ca2+ currents even at the high concentration of 1-3 mM. Moreover, talatisamine exerted a significant hyperpolarizing shift of the steady-state activation, but did not influence the steady state inactivation of IK and its recovery from inactivation, suggesting that talatisamine had no allosteric action on IK channel and was a pure blocker binding to the external pore entry of the channel. Our present study made the first discovery of potent and specific IK channel blocker from Aconitum alkaloids. It has been argued that suppressing K+ efflux by blocking IK channel may be favorable for Alzheimer's disease therapy. Talatisamine can therefore be considered as a leading compound worthy of further investigations.

  12. Inhibition of microglial activation protects hippocampal neurogenesis and improves cognitive deficits in a transgenic mouse model for Alzheimer's disease.

    Science.gov (United States)

    Biscaro, Barbara; Lindvall, Olle; Tesco, Giuseppina; Ekdahl, Christine T; Nitsch, Roger M

    2012-01-01

    Activated microglia with macrophage-like functions invade and surround β-amyloid (Aβ) plaques in Alzheimer's disease (AD), possibly contributing to the turnover of Aβ, but they can also secrete proinflammatory factors that may be involved in the pathogenesis of AD. Microglia are known to modulate adult hippocampal neurogenesis. To determine the role of microglia on neurogenesis in brains with Aβ pathology, we inhibited microglial activation with the tetracycline derivative minocycline in doubly transgenic mice expressing mutant human amyloid precursor protein (APP) and mutant human presenilin-1 (PS1). Minocycline increased the survival of new dentate granule cells in APP/PS1 mice indicated by more BrdU+/NeuN+ cells as compared to vehicle-treated transgenic littermates, accompanied by improved behavioral performance in a hippocampus-dependent learning task. Both brain levels of Aβ and Aβ-related morphological deficits in the new neurons labeled with GFP-expressing retrovirus were unaffected in minocycline-treated mice. These results suggest a role for microglia in Aβ-related functional deficits and in suppressing the survival of new neurons, and show that modulation of microglial function with minocycline can protect hippocampal neurogenesis in the presence of Aβ pathology. Copyright © 2012 S. Karger AG, Basel.

  13. Effect of Repeated Electroacupuncture Intervention on Hippocampal ERK and p38MAPK Signaling in Neuropathic Pain Rats

    Directory of Open Access Journals (Sweden)

    Jun-ying Wang

    2015-01-01

    Full Text Available Results of our past studies showed that hippocampal muscarinic acetylcholine receptor (mAChR-1 mRNA and differentially expressed proteins participating in MAPK signaling were involved in electroacupuncture (EA induced cumulative analgesia in neuropathic pain rats, but the underlying intracellular mechanism remains unknown. The present study was designed to observe the effect of EA stimulation (EAS on hippocampal extracellular signal-regulated kinases (ERK and p38 MAPK signaling in rats with chronic constrictive injury (CCI of the sciatic nerve, so as to reveal its related intracellular targets in pain relief. After CCI, the thermal pain thresholds of the affected hind were significantly decreased compared with the control group (P<0.05. Following one and two weeks’ EAS of ST 36-GB34, the pain thresholds were significantly upregulated (P<0.05, and the effect of EA2W was remarkably superior to that of EA2D and EA1W (P<0.05. Correspondingly, CCI-induced decreased expression levels of Ras, c-Raf, ERK1 and p-ERK1/2 proteins, and p38 MAPK mRNA and p-p38MAPK protein in the hippocampus tissues were reversed by EA2W (P<0.05. The above mentioned results indicated that EA2W induced cumulative analgesic effect may be closely associated with its function in removing neuropathic pain induced suppression of intracellular ERK and p38MAPK signaling in the hippocampus.

  14. Leptin attenuates the detrimental effects of β-amyloid on spatial memory and hippocampal later-phase long term potentiation in rats.

    Science.gov (United States)

    Tong, Jia-Qing; Zhang, Jun; Hao, Ming; Yang, Ju; Han, Yu-Fei; Liu, Xiao-Jie; Shi, Hui; Wu, Mei-Na; Liu, Qing-Song; Qi, Jin-Shun

    2015-07-01

    β-Amyloid (Aβ) is the main component of amyloid plaques developed in the brain of patients with Alzheimer's disease (AD). The increasing burden of Aβ in the cortex and hippocampus is closely correlated with memory loss and cognition deficits in AD. Recently, leptin, a 16kD peptide derived mainly from white adipocyte tissue, has been appreciated for its neuroprotective function, although less is known about the effects of leptin on spatial memory and synaptic plasticity. The present study investigated the neuroprotective effects of leptin against Aβ-induced deficits in spatial memory and in vivo hippocampal late-phase long-term potentiation (L-LTP) in rats. Y maze spontaneous alternation was used to assess short term working memory, and the Morris water maze task was used to assess long term reference memory. Hippocampal field potential recordings were performed to observe changes in L-LTP. We found that chronically intracerebroventricular injection of leptin (1μg) effectively alleviated Aβ1-42 (20μg)-induced spatial memory impairments of Y maze spontaneous alternation and Morris water maze. In addition, chronic administration of leptin also reversed Aβ1-42-induced suppression of in vivo hippocampal L-LTP in rats. Together, these results suggest that chronic leptin treatments reversed Aβ-induced deficits in learning and memory and the maintenance of L-LTP. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Distemper virus encephalitis exerts detrimental effects on hippocampal neurogenesis.

    Science.gov (United States)

    von Rüden, E-L; Avemary, J; Zellinger, C; Algermissen, D; Bock, P; Beineke, A; Baumgärtner, W; Stein, V M; Tipold, A; Potschka, H

    2012-08-01

    Despite knowledge about the impact of brain inflammation on hippocampal neurogenesis, data on the influence of virus encephalitis on dentate granule cell neurogenesis are so far limited. Canine distemper is considered an interesting model of virus encephalitis, which can be associated with a chronic progressing disease course and can cause symptomatic seizures. To determine the impact of canine distemper virus (CDV) infection on hippocampal neurogenesis, we compared post-mortem tissue from dogs with infection with and without seizures, from epileptic dogs with non-viral aetiology and from dogs without central nervous system diseases. The majority of animals with infection and with epilepsy of non-viral aetiology exhibited neuronal progenitor numbers below the age average in controls. Virus infection with and without seizures significantly decreased the mean number of neuronal progenitor cells by 43% and 76% as compared to age-matched controls. Ki-67 labelling demonstrated that hippocampal cell proliferation was neither affected by infection nor by epilepsy of non-viral aetiology. Analysis of CDV infection in cells expressing caspase-3, doublecortin or Ki-67 indicated that infection of neuronal progenitor cells is extremely rare and suggests that infection might damage non-differentiated progenitor cells, hamper neuronal differentiation and promote glial differentiation. A high inter-individual variance in the number of lectin-reactive microglial cells was evident in dogs with distemper infection. Statistical analyses did not reveal a correlation between the number of lectin-reactive microglia cells and neuronal progenitor cells. Our data demonstrate that virus encephalitis with and without seizures can exert detrimental effects on hippocampal neurogenesis, which might contribute to long-term consequences of the disease. The lack of a significant impact of distemper virus on Ki-67-labelled cells indicates that the infection affected neuronal differentiation and

  16. Hippocampal sleep features: relations to human memory function

    Directory of Open Access Journals (Sweden)

    Michele eFerrara

    2012-04-01

    Full Text Available The recent spread of intracranial EEG recordings techniques for presurgical evaluation of drug-resistant epileptic patients is providing new information on the activity of different brain structures during both wakefulness and sleep. The interest has been mainly focused on the medial temporal lobe, and in particular the hippocampal formation, whose peculiar local sleep features have been recently described, providing support to the idea that sleep is not a spatially global phenomenon. The study of the hippocampal sleep electrophysiology is particularly interesting because of its central role in the declarative memory formation. Recent data indicate that sleep contributes to memory formation. Therefore, it is relevant to understand whether specific pattern of activity taking place during sleep are related to memory consolidation processes. Fascinating similarities between different states of consciousness (wakefulness, REM sleep, NREM sleep in some electrophysiological mechanisms underlying cognitive processes have been reported. For instance, large-scale synchrony in gamma activity is important for waking memory and perception processes, and its changes during sleep may be the neurophysiological substrate of sleep-related deficits of declarative memory. Hippocampal activity seems to specifically support memory consolidation during sleep, through specific coordinated neurophysiological events (slow waves, spindles, ripples that would facilitate the integration of new information into the pre-existing cortical networks. A few studies indeed provided direct evidence that rhinal ripples as well as slow hippocampal oscillations are correlated with memory consolidation in humans. More detailed electrophysiological investigations assessing the specific relations between different types of memory consolidation and hippocampal EEG features are in order. These studies will add an important piece of knowledge to the elucidation of the ultimate sleep

  17. Hippocampal Sleep Features: Relations to Human Memory Function

    Science.gov (United States)

    Ferrara, Michele; Moroni, Fabio; De Gennaro, Luigi; Nobili, Lino

    2012-01-01

    The recent spread of intracranial electroencephalographic (EEG) recording techniques for presurgical evaluation of drug-resistant epileptic patients is providing new information on the activity of different brain structures during both wakefulness and sleep. The interest has been mainly focused on the medial temporal lobe, and in particular the hippocampal formation, whose peculiar local sleep features have been recently described, providing support to the idea that sleep is not a spatially global phenomenon. The study of the hippocampal sleep electrophysiology is particularly interesting because of its central role in the declarative memory formation. Recent data indicate that sleep contributes to memory formation. Therefore, it is relevant to understand whether specific patterns of activity taking place during sleep are related to memory consolidation processes. Fascinating similarities between different states of consciousness (wakefulness, REM sleep, non-REM sleep) in some electrophysiological mechanisms underlying cognitive processes have been reported. For instance, large-scale synchrony in gamma activity is important for waking memory and perception processes, and its changes during sleep may be the neurophysiological substrate of sleep-related deficits of declarative memory. Hippocampal activity seems to specifically support memory consolidation during sleep, through specific coordinated neurophysiological events (slow waves, spindles, ripples) that would facilitate the integration of new information into the pre-existing cortical networks. A few studies indeed provided direct evidence that rhinal ripples as well as slow hippocampal oscillations are correlated with memory consolidation in humans. More detailed electrophysiological investigations assessing the specific relations between different types of memory consolidation and hippocampal EEG features are in order. These studies will add an important piece of knowledge to the elucidation of the ultimate

  18. Hippocampal agenesis in an individual who engaged in violent criminal behaviors after discontinuing carbamazepine and paroxetine treatment.

    Science.gov (United States)

    Hanada, Hiroaki; Akiyoshi, Jotaro; Kanehisa, Masayuki; Ishitobi, Yoshinobu; Tsuru, Jusen; Tanaka, Yoshihiro; Shimomura, Tsuyoshi; Kawano, Yoshihisa

    2013-01-01

    Antidepressant discontinuation syndrome (ADS) occurs after abrupt discontinuation of an antidepressant medication. A 23-year-old man with right hippocampal agenesis demonstrated sexual crime (hypersexuality) since the age of eight and had been successfully treated with carbamazepine since the age of 13. He had required increased doses of paroxetine and carbamazepine owing to the development of an unstable affect after quitting his job. He abruptly stopped taking his medication for 3 days and his criminal behaviors re-emerged. We examined changes in brain structure and activity before and after medication cessation, using MRI and functional MRI (fMRI). The image of a girl in a swimsuit increased activity in the thalamus only after medication discontinuation. The alteration in thalamic activity might induce hypersexuality. We conclude that a primary hypersexuality had been suppressed with carbamazepine and paroxetine treatment, and the discontinuation of the medication caused the hypersexuality. © 2012 American Academy of Forensic Sciences.

  19. The effects of early-life seizures on hippocampal dendrite development and later-life learning and memory.

    Science.gov (United States)

    Casanova, J R; Nishimura, Masataka; Swann, John W

    2014-04-01

    Severe childhood epilepsy is commonly associated with intellectual developmental disabilities. The reasons for these cognitive deficits are likely multifactorial and will vary between epilepsy syndromes and even among children with the same syndrome. However, one factor these children have in common is the recurring seizures they experience - sometimes on a daily basis. Supporting the idea that the seizures themselves can contribute to intellectual disabilities are laboratory results demonstrating spatial learning and memory deficits in normal mice and rats that have experienced recurrent seizures in infancy. Studies reviewed here have shown that seizures in vivo and electrographic seizure activity in vitro both suppress the growth of hippocampal pyramidal cell dendrites. A simplification of dendritic arborization and a resulting decrease in the number and/or properties of the excitatory synapses on them could help explain the observed cognitive disabilities. There are a wide variety of candidate mechanisms that could be involved in seizure-induced growth suppression. The challenge is designing experiments that will help focus research on a limited number of potential molecular events. Thus far, results suggest that growth suppression is NMDA receptor-dependent and associated with a decrease in activation of the transcription factor CREB. The latter result is intriguing since CREB is known to play an important role in dendrite growth. Seizure-induced dendrite growth suppression may not occur as a single process in which pyramidal cells dendrites simply stop growing or grow slower compared to normal neurons. Instead, recent results suggest that after only a few hours of synchronized epileptiform activity in vitro dendrites appear to partially retract. This acute response is also NMDA receptor dependent and appears to be mediated by the Ca(+2)/calmodulin-dependent phosphatase, calcineurin. An understanding of the staging of seizure-induced growth suppression and the

  20. Screening for suppression in young children: the Polaroid Suppression test

    NARCIS (Netherlands)

    Pott, J.W.R.; Oosterveen, DK; Van Hof-van Duin, J

    1998-01-01

    Background: Assessment of monocular visual impairment during screening of young children is often hampered by lack of cooperation. Because strabismus, amblyopia, or anisometropia may lead to monocular suppression during binocular viewing conditions, a test was developed to screen far suppression in

  1. The neuroprotective action of pyrroloquinoline quinone against glutamate-induced apoptosis in hippocampal neurons is mediated through the activation of PI3K/Akt pathway

    International Nuclear Information System (INIS)

    Zhang Qi; Shen Mi; Ding Mei; Shen Dingding; Ding Fei

    2011-01-01

    Pyrroloquinoline quinone (PQQ), a cofactor in several enzyme-catalyzed redox reactions, possesses a potential capability of scavenging reactive oxygen species (ROS) and inhibiting cell apoptosis. In this study, we investigated the effects of PQQ on glutamate-induced cell death in primary cultured hippocampal neurons and the possible underlying mechanisms. We found that glutamate-induced apoptosis in cultured hippocampal neurons was significantly attenuated by the ensuing PQQ treatment, which also inhibited the glutamate-induced increase in Ca2+ influx, caspase-3 activity, and ROS production, and reversed the glutamate-induced decrease in Bcl-2/Bax ratio. The examination of signaling pathways revealed that PQQ treatment activated the phosphorylation of Akt and suppressed the glutamate-induced phosphorylation of c-Jun N-terminal protein kinase (JNK). And inhibition of phosphatidylinositol-3-kinase (PI3K)/Akt cascade by LY294002 and wortmannin significantly blocked the protective effects of PQQ, and alleviated the increase in Bcl-2/Bax ratio. Taken together, our results indicated that PQQ could protect primary cultured hippocampal neurons against glutamate-induced cell damage by scavenging ROS, reducing Ca2+ influx, and caspase-3 activity, and suggested that PQQ-activated PI3K/Akt signaling might be responsible for its neuroprotective action through modulation of glutamate-induced imbalance between Bcl-2 and Bax. - Research Highlights: →PQQ attenuated glutamate-induced cell apoptosis of cultured hippocampal neurons. →PQQ inhibited glutamate-induced Ca 2+ influx and caspase-3 activity. →PQQ reduced glutamate-induced increase in ROS production. →PQQ affected phosphorylation of Akt and JNK signalings after glutamate injury. →PI3K/Akt was required for neuroprotection of PQQ by modulating Bcl-2/Bax ratio.

  2. Hippocampal Damage Increases Deontological Responses during Moral Decision Making.

    Science.gov (United States)

    McCormick, Cornelia; Rosenthal, Clive R; Miller, Thomas D; Maguire, Eleanor A

    2016-11-30

    Complex moral decision making is associated with the ventromedial prefrontal cortex (vmPFC) in humans, and damage to this region significantly increases the frequency of utilitarian judgments. Since the vmPFC has strong anatomical and functional links with the hippocampus, here we asked how patients with selective bilateral hippocampal damage would derive moral decisions on a classic moral dilemmas paradigm. We found that the patients approved of the utilitarian options significantly less often than control participants, favoring instead deontological responses-rejecting actions that harm even one person. Thus, patients with hippocampal damage have a strikingly opposite approach to moral decision making than vmPFC-lesioned patients. Skin-conductance data collected during the task showed increased emotional arousal in the hippocampal-damaged patients and they stated that their moral decisions were based on emotional instinct. By contrast, control participants made moral decisions based on the integration of an adverse emotional response to harming others, visualization of the consequences of one's action, and the rational re-evaluation of future benefits. This integration may be disturbed in patients with either hippocampal or vmPFC damage. Hippocampal lesions decreased the ability to visualize a scenario and its future consequences, which seemed to render the adverse emotional response overwhelmingly dominant. In patients with vmPFC damage, visualization might also be reduced alongside an inability to detect the adverse emotional response, leaving only the utilitarian option open. Overall, these results provide insights into the processes involved in moral decision making and highlight the complementary roles played by two closely connected brain regions. The ventromedial prefrontal cortex (vmPFC) is closely associated with the ability to make complex moral judgements. When this area is damaged, patients become more utilitarian (the ends justify the means) and have

  3. Pressure suppression device

    International Nuclear Information System (INIS)

    Yoshida, Toyokazu.

    1976-01-01

    Purpose: To provide a pressure suppression device for a gas cooled reactor wherein the coolant is discharged in a reactor building by a loss-of-coolant accident or the like, the increase in the pressure and temperature is controlled and thermal energy of the discharged coolant of high temperature and high pressure can be absorbed. Constitution: A low heat source unit is provided at the upper part in an inner space of a reactor building provided around the reactor, and at the upper part of the low heat source unit a stirring fan for mixing gas within the building, and a low heat source circulating the low heat source through a pipe is connected to the low heat source unit. The low heat source unit is provided with the pipe arranged in a spiral shape at the upper part of the space of the unit, and a large number of fins are provided at the outer surface of the pipe for increasing the transmission area and improve the heat exchange. When the coolant of high temperature and high pressure has been lost in the building, the thermal energy of the coolant is absorbed by the low heat source unit. (Aizawa, K.)

  4. Semaphorin 5A inhibits synaptogenesis in early postnatal- and adult-born hippocampal dentate granule cells.

    Science.gov (United States)

    Duan, Yuntao; Wang, Shih-Hsiu; Song, Juan; Mironova, Yevgeniya; Ming, Guo-li; Kolodkin, Alex L; Giger, Roman J

    2014-10-14

    Human SEMAPHORIN 5A (SEMA5A) is an autism susceptibility gene; however, its function in brain development is unknown. In this study, we show that mouse Sema5A negatively regulates synaptogenesis in early, developmentally born, hippocampal dentate granule cells (GCs). Sema5A is strongly expressed by GCs and regulates dendritic spine density in a cell-autonomous manner. In the adult mouse brain, newly born Sema5A-/- GCs show an increase in dendritic spine density and increased AMPA-type synaptic responses. Sema5A signals through PlexinA2 co-expressed by GCs, and the PlexinA2-RasGAP activity is necessary to suppress spinogenesis. Like Sema5A-/- mutants, PlexinA2-/- mice show an increase in GC glutamatergic synapses, and we show that Sema5A and PlexinA2 genetically interact with respect to GC spine phenotypes. Sema5A-/- mice display deficits in social interaction, a hallmark of autism-spectrum-disorders. These experiments identify novel intra-dendritic Sema5A/PlexinA2 interactions that inhibit excitatory synapse formation in developmentally born and adult-born GCs, and they provide support for SEMA5A contributions to autism-spectrum-disorders.

  5. Hippocampal place cells construct reward related sequences through unexplored space.

    Science.gov (United States)

    Ólafsdóttir, H Freyja; Barry, Caswell; Saleem, Aman B; Hassabis, Demis; Spiers, Hugo J

    2015-06-26

    Dominant theories of hippocampal function propose that place cell representations are formed during an animal's first encounter with a novel environment and are subsequently replayed during off-line states to support consolidation and future behaviour. Here we report that viewing the delivery of food to an unvisited portion of an environment leads to off-line pre-activation of place cells sequences corresponding to that space. Such 'preplay' was not observed for an unrewarded but otherwise similar portion of the environment. These results suggest that a hippocampal representation of a visible, yet unexplored environment can be formed if the environment is of motivational relevance to the animal. We hypothesise such goal-biased preplay may support preparation for future experiences in novel environments.

  6. Independent rate and temporal coding in hippocampal pyramidal cells.

    Science.gov (United States)

    Huxter, John; Burgess, Neil; O'Keefe, John

    2003-10-23

    In the brain, hippocampal pyramidal cells use temporal as well as rate coding to signal spatial aspects of the animal's environment or behaviour. The temporal code takes the form of a phase relationship to the concurrent cycle of the hippocampal electroencephalogram theta rhythm. These two codes could each represent a different variable. However, this requires the rate and phase to vary independently, in contrast to recent suggestions that they are tightly coupled, both reflecting the amplitude of the cell's input. Here we show that the time of firing and firing rate are dissociable, and can represent two independent variables: respectively the animal's location within the place field, and its speed of movement through the field. Independent encoding of location together with actions and stimuli occurring there may help to explain the dual roles of the hippocampus in spatial and episodic memory, or may indicate a more general role of the hippocampus in relational/declarative memory.

  7. Modulation of Hippocampal Neural Plasticity by Glucose-Related Signaling

    Directory of Open Access Journals (Sweden)

    Marco Mainardi

    2015-01-01

    Full Text Available Hormones and peptides involved in glucose homeostasis are emerging as important modulators of neural plasticity. In this regard, increasing evidence shows that molecules such as insulin, insulin-like growth factor-I, glucagon-like peptide-1, and ghrelin impact on the function of the hippocampus, which is a key area for learning and memory. Indeed, all these factors affect fundamental hippocampal properties including synaptic plasticity (i.e., synapse potentiation and depression, structural plasticity (i.e., dynamics of dendritic spines, and adult neurogenesis, thus leading to modifications in cognitive performance. Here, we review the main mechanisms underlying the effects of glucose metabolism on hippocampal physiology. In particular, we discuss the role of these signals in the modulation of cognitive functions and their potential implications in dysmetabolism-related cognitive decline.

  8. The impact of sleep loss on hippocampal function

    Science.gov (United States)

    Prince, Toni-Moi; Abel, Ted

    2013-01-01

    Hippocampal cellular and molecular processes critical for memory consolidation are affected by the amount and quality of sleep attained. Questions remain with regard to how sleep enhances memory, what parameters of sleep after learning are optimal for memory consolidation, and what underlying hippocampal molecular players are targeted by sleep deprivation to impair memory consolidation and plasticity. In this review, we address these topics with a focus on the detrimental effects of post-learning sleep deprivation on memory consolidation. Obtaining adequate sleep is challenging in a society that values “work around the clock.” Therefore, the development of interventions to combat the negative cognitive effects of sleep deprivation is key. However, there are a limited number of therapeutics that are able to enhance cognition in the face of insufficient sleep. The identification of molecular pathways implicated in the deleterious effects of sleep deprivation on memory could potentially yield new targets for the development of more effective drugs. PMID:24045505

  9. Ethanol induces MAP2 changes in organotypic hippocampal slice cultures

    DEFF Research Database (Denmark)

    Noraberg, J; Zimmer, J

    1998-01-01

    loss of CA3 pyramidal cells and moderate loss of dentate granule cells, as seen in vivo. The results indicate that brain slice cultures combined with immunostaining for cytoskeleton and neuronal markers can be used for studies of ethanol and organic solvent neurotoxicity.......Microtubule-associated protein 2 (MAP2) and neuron-specific protein (NeuN) immunostains were used to demonstrate neurotoxic effects in mature hippocampal slice cultures exposed to ethanol (50, 100, 200 mM) for 4 weeks. At the low dose the density of MAP2 immunostaining in the dentate molecular...... layer was 118% of the control cultures, with no detectable changes in CA1 and CA3. At 100 mM no changes were detected, while 200 mM ethanol significantly reduced the MAP2 density in both dentate (19%) and hippocampal dendritic fields (CA3, 52%; CA1, 55%). At this dose NeuN staining showed considerable...

  10. Spatial memory and hippocampal function: Where are we now?

    Directory of Open Access Journals (Sweden)

    Mark Good

    2002-01-01

    Full Text Available The main aim of this paper is to provide an overview of current debates concerning the role of the mammalian hippocampus in learning with a particular emphasis on spatial learning. The review discusses recent debates on (1 the role of the primate hippocampus in recognition memory and object-in-place memory, (2 the role of the hippocampus in spatial navigation in both rats and humans, and (3 the effects of hippocampal damage on processing contextual information. Evidence from these lines of research have led many current theories to posit a function for the hippocampus that has as its organizing principle the association or binding of stimulus representations. Based on this principle, recent theories of hippocampal function have extended their application beyond the spatial domain to capture features of declarative and episodic memory processes.

  11. Decoding the cognitive map: ensemble hippocampal sequences and decision making.

    Science.gov (United States)

    Wikenheiser, Andrew M; Redish, A David

    2015-06-01

    Tolman proposed that complex animal behavior is mediated by the cognitive map, an integrative learning system that allows animals to reconfigure previous experience in order to compute predictions about the future. The discovery of place cells in the rodent hippocampus immediately suggested a plausible neural mechanism to fulfill the 'map' component of Tolman's theory. Recent work examining hippocampal representations occurring at fast time scales suggests that these sequences might be important for supporting the inferential mental operations associated with the cognitive map function. New findings that hippocampal sequences play an important causal role in mediating adaptive behavior on a moment-by-moment basis suggest specific neural processes that may underlie Tolman's cognitive map framework. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Spatial representation in the hippocampal formation: a history.

    Science.gov (United States)

    Moser, Edvard I; Moser, May-Britt; McNaughton, Bruce L

    2017-10-26

    Since the first place cell was recorded and the cognitive-map theory was subsequently formulated, investigation of spatial representation in the hippocampal formation has evolved in stages. Early studies sought to verify the spatial nature of place cell activity and determine its sensory origin. A new epoch started with the discovery of head direction cells and the realization of the importance of angular and linear movement-integration in generating spatial maps. A third epoch began when investigators turned their attention to the entorhinal cortex, which led to the discovery of grid cells and border cells. This review will show how ideas about integration of self-motion cues have shaped our understanding of spatial representation in hippocampal-entorhinal systems from the 1970s until today. It is now possible to investigate how specialized cell types of these systems work together, and spatial mapping may become one of the first cognitive functions to be understood in mechanistic detail.

  13. Inhibition of hippocampal synaptic transmission by impairment of Ral function

    DEFF Research Database (Denmark)

    Owe-Larsson, Björn; Chaves-Olarte, Esteban; Chauhan, Ashok

    2005-01-01

    Large clostridial cytotoxins and protein overexpression were used to probe for involvement of Ras-related GTPases (guanosine triphosphate) in synaptic transmission in cultured rat hippocampal neurons. The toxins TcdA-10463 (inactivates Rho, Rac, Cdc42, Rap) and TcsL-1522 (inactivates Ral, Rac, Ras......, R-Ras, Rap) both inhibited autaptic responses. In a proportion of the neurons (25%, TcdA-10463; 54%, TcsL-1522), the inhibition was associated with a shift from activity-dependent depression to facilitation, indicating that the synaptic release probability was reduced. Overexpression of a dominant...... negative Ral mutant, Ral A28N, caused a strong inhibition of autaptic responses, which was associated with a shift to facilitation in a majority (80%) of the neurons. These results indicate that Ral, along with at least one other non-Rab GTPase, participates in presynaptic regulation in hippocampal neurons....

  14. Damage of hippocampal neurons in rats with chronic alcoholism.

    Science.gov (United States)

    Du, Ailin; Jiang, Hongbo; Xu, Lei; An, Na; Liu, Hui; Li, Yinsheng; Zhang, Ruiling

    2014-09-01

    Chronic alcoholism can damage the cytoskeleton and aggravate neurological deficits. However, the effect of chronic alcoholism on hippocampal neurons remains unclear. In this study, a model of chronic alcoholism was established in rats that were fed with 6% alcohol for 42 days. Endogenous hydrogen sulfide content and cystathionine-beta-synthase activity in the hippocampus of rats with chronic alcoholism were significantly increased, while F-actin expression was decreased. Hippocampal neurons in rats with chronic alcoholism appeared to have a fuzzy nuclear membrane, mitochondrial edema, and ruptured mitochondrial crista. These findings suggest that chronic alcoholism can cause learning and memory decline in rats, which may be associated with the hydrogen sulfide/cystathionine-beta-synthase system, mitochondrial damage and reduced expression of F-actin.

  15. Modulating Hippocampal Plasticity with In Vivo Brain Stimulation

    Science.gov (United States)

    2016-11-17

    wires were left unhooked from stimulation device. Following stimulation , the animals were returned to their homecage until time of euthanasia and...current stimulation (tDCS) to enhance cognitive training: effect of timing of stimulation . Exp Brain Res 232:3345-3351. 15 DISTRIBUTION...AFRL-RH-WP-TR-2016-0082 MODULATING HIPPOCAMPAL PLASTICITY WITH IN-VIVO BRAIN STIMULATION Joyce G. Rohan Oakridge Institute

  16. Changes in rat hippocampal CA1 synapses following imipramine treatment

    DEFF Research Database (Denmark)

    Chen, Fenghua; Madsen, Torsten M; Wegener, Gregers

    2008-01-01

    Neuronal plasticity in hippocampus is hypothesized to play an important role in both the pathophysiology of depressive disorders and the treatment. In this study, we investigated the consequences of imipramine treatment on neuroplasticity (including neurogenesis, synaptogenesis, and remodelling...... and number of neurons of hippocampal subregions following imipramine treatment were found. However, the number and percentage of CA1 asymmetric spine synapses increased significantly and, conversely, the percentage of asymmetric shaft synapses significantly decreased in the imipramine treated group. Our...

  17. Linking adult hippocampal neurogenesis with human physiology and disease.

    Science.gov (United States)

    Bowers, Megan; Jessberger, Sebastian

    2016-07-01

    We here review the existing evidence linking adult hippocampal neurogenesis and human brain function in physiology and disease. Furthermore, we aim to point out where evidence is missing, highlight current promising avenues of investigation, and suggest future tools and approaches to foster the link between life-long neurogenesis and human brain function. Developmental Dynamics 245:702-709, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. A weak magnetic field inhibits hippocampal neurogenesis in SD rats

    Science.gov (United States)

    Zhang, B.; Tian, L.; Cai, Y.; Pan, Y.

    2017-12-01

    Geomagnetic field is an important barrier that protects life forms on Earth from solar wind and radiation. Paleomagnetic data have well demonstrated that the strength of ancient geomagnetic field was dramatically weakened during a polarity transition. Accumulating evidence has shown that weak magnetic field exposures has serious adverse effects on the metabolism and behaviors in organisms. Hippocampal neurogenesis occurs throughout life in mammals' brains which plays a key role in brain function, and can be influenced by animals' age as well as environmental factors, but few studies have examined the response of hippocampal neurogenesis to it. In the present study, we have investigated the weak magnetic field effects on hippocampal neurogenesis of adult Sprague Dawley (SD) rats. Two types of magnetic fields were used, a weak magnetic field (≤1.3 μT) and the geomagnetic fields (51 μT).The latter is treated as a control condition. SD rats were exposure to the weak magnetic field up to 6 weeks. We measured the changes of newborn nerve cells' proliferation and survival, immature neurons, neurons and apoptosis in the dentate gyrus (DG) of hippocampus in SD rats. Results showed that, the weak magnetic field (≤1.3 μT) inhibited their neural stem cells proliferation and significantly reduced the survival of newborn nerve cells, immature neurons and neurons after 2 or 4 weeks continuous treatment (i.e. exposure to weak magnetic field). Moreover, apoptosis tests indicated the weak magnetic field can promote apoptosis of nerve cells in the hippocampus after 4 weeks treatment. Together, our new data indicate that weak magnetic field decrease adult hippocampal neurogenesis through inhibiting neural stem cells proliferation and promoting apoptosis, which provides useful experimental constraints on better understanding the mechanism of linkage between life and geomagnetic field.

  19. Decoding the cognitive map: ensemble hippocampal sequences and decision making

    OpenAIRE

    Wikenheiser, Andrew M.; Redish, A. David

    2014-01-01

    Tolman proposed that complex animal behavior is mediated by the cognitive map, an integrative learning system that allows animals to reconfigure previous experience in order to compute predictions about the future. The discovery of place cells in the rodent hippocampus immediately suggested a plausible neural mechanism to fulfill the “map” component of Tolman’s theory. Recent work examining hippocampal representations occurring at fast time scales suggests that these sequences might be import...

  20. Gonadal Steroids: Effects on Excitability of Hippocampal Pyramidal Cells

    Science.gov (United States)

    Teyler, Timothy J.; Vardaris, Richard M.; Lewis, Deborah; Rawitch, Allen B.

    1980-08-01

    Electrophysiological field potentials from hippocampal slices of rat brain show sex-linked differences in response to 1 × 10-10M concentrations of estradiol and testosterone added to the incubation medium. Slices from male rats show increased excitability to estradiol and not to testosterone. Slices from female rats are not affected by estradiol, but slices from female rats in diestrus show increased excitability in response to testosterone whereas slices from females in proestrus show decreased excitability.

  1. Hippocampal volume reduction in congenital central hypoventilation syndrome.

    Directory of Open Access Journals (Sweden)

    Paul M Macey

    Full Text Available Children with congenital central hypoventilation syndrome (CCHS, a genetic disorder characterized by diminished drive to breathe during sleep and impaired CO(2 sensitivity, show brain structural and functional changes on magnetic resonance imaging (MRI scans, with impaired responses in specific hippocampal regions, suggesting localized injury.We assessed total volume and regional variation in hippocampal surface morphology to identify areas affected in the syndrome. We studied 18 CCHS (mean age+/-std: 15.1+/-2.2 years; 8 female and 32 healthy control (age 15.2+/-2.4 years; 14 female children, and traced hippocampi on 1 mm(3 resolution T1-weighted scans, collected with a 3.0 Tesla MRI scanner. Regional hippocampal volume variations, adjusted for cranial volume, were compared between groups based on t-tests of surface distances to the structure midline, with correction for multiple comparisons. Significant tissue losses emerged in CCHS patients on the left side, with a trend for loss on the right; however, most areas affected on the left also showed equivalent right-sided volume reductions. Reduced regional volumes appeared in the left rostral hippocampus, bilateral areas in mid and mid-to-caudal regions, and a dorsal-caudal region, adjacent to the fimbria.The volume losses may result from hypoxic exposure following hypoventilation during sleep-disordered breathing, or from developmental or vascular consequences of genetic mutations in the syndrome. The sites of change overlap regions of abnormal functional responses to respiratory and autonomic challenges. Affected hippocampal areas have roles associated with memory, mood, and indirectly, autonomic regulation; impairments in these behavioral and physiological functions appear in CCHS.

  2. Dendrosomatic Sonic Hedgehog Signaling in Hippocampal Neurons Regulates Axon Elongation

    Science.gov (United States)

    Petralia, Ronald S.; Ott, Carolyn; Wang, Ya-Xian; Lippincott-Schwartz, Jennifer; Mattson, Mark P.

    2015-01-01

    The presence of Sonic Hedgehog (Shh) and its signaling components in the neurons of the hippocampus raises a question about what role the Shh signaling pathway may play in these neurons. We show here that activation of the Shh signaling pathway stimulates axon elongation in rat hippocampal neurons. This Shh-induced effect depends on the pathway transducer Smoothened (Smo) and the transcription factor Gli1. The axon itself does not respond directly to Shh; instead, the Shh signal transduction originates from the somatodendritic region of the neurons and occurs in neurons with and without detectable primary cilia. Upon Shh stimulation, Smo localization to dendrites increases significantly. Shh pathway activation results in increased levels of profilin1 (Pfn1), an actin-binding protein. Mutations in Pfn1's actin-binding sites or reduction of Pfn1 eliminate the Shh-induced axon elongation. These findings indicate that Shh can regulate axon growth, which may be critical for development of hippocampal neurons. SIGNIFICANCE STATEMENT Although numerous signaling mechanisms have been identified that act directly on axons to regulate their outgrowth, it is not known whether signals transduced in dendrites may also affect axon outgrowth. We describe here a transcellular signaling pathway in embryonic hippocampal neurons in which activation of Sonic Hedgehog (Shh) receptors in dendrites stimulates axon growth. The pathway involves the dendritic-membrane-associated Shh signal transducer Smoothened (Smo) and the transcription factor Gli, which induces the expression of the gene encoding the actin-binding protein profilin 1. Our findings suggest scenarios in which stimulation of Shh in dendrites results in accelerated outgrowth of the axon, which therefore reaches its presumptive postsynaptic target cell more quickly. By this mechanism, Shh may play critical roles in the development of hippocampal neuronal circuits. PMID:26658865

  3. Memory reconsolidation mediates the updating of hippocampal memory content

    OpenAIRE

    Jonathan L C Lee

    2010-01-01

    The retrieval or reactivation of a memory places it into a labile state, requiring a process of reconsolidation to restabilize it. This retrieval-induced plasticity is a potential mechanism for the modification of the existing memory. Following previous data supportive of a functional role for memory reconsolidation in the modification of memory strength, here I show that hippocampal memory reconsolidation also supports the updating of contextual memory content. Using a procedure that se...

  4. Focal CA3 hippocampal subfield atrophy following LGI1 VGKC-complex antibody limbic encephalitis

    OpenAIRE

    Miller, T; Chong, T; Aimola Davies, A; Ng, T; Johnson, M; Irani, S; Vincent, A; Husain, M; Jacob, S; Maddison, P; Kennard, C; Gowland, P; Rosenthal, C

    2017-01-01

    Magnetic resonance imaging has linked chronic voltage-gated potassium channel (VGKC) complex antibody-mediated limbic encephalitis with generalized hippocampal atrophy. However, autoantibodies bind to specific rodent hippocampal subfields. Here, human hippocampal subfield (subiculum, cornu ammonis 1-3, and dentate gyrus) targets of immunomodulation-treated LGI1 VGKC-complex antibody-mediated limbic encephalitis were investigated using in vivo ultra-high resolution (0.39 × 0....

  5. Abnormalities of hippocampal signal intensity in patients with familial mesial temporal lobe epilepsy

    Directory of Open Access Journals (Sweden)

    Coan A.C.

    2004-01-01

    Full Text Available Mesial temporal lobe epilepsy (MTLE is associated with hippocampal atrophy and hippocampal signal abnormalities. In our series of familial MTLE (FMTLE, we found a high proportion of hippocampal abnormalities. To quantify signal abnormalities in patients with FMTLE we studied 152 individuals (46 of them asymptomatic with FMTLE. We used NIH-Image® for volumetry and signal quantification in coronal T1 inversion recovery and T2 for all cross-sections of the hippocampus. Values diverging by 2 or more SD from the control mean were considered abnormal. T2 hippocampal signal abnormalities were found in 52% of all individuals: 54% of affected subjects and 48% of asymptomatic subjects. T1 hippocampal signal changes were found in 34% of all individuals: 42.5% of affected subjects and 15% of asymptomatic subjects. Analysis of the hippocampal head (first three slices revealed T2 abnormalities in 73% of all individuals (74% of affected subjects and 72% of asymptomatic subjects and T1 abnormalities in 59% (67% of affected subjects and 41% of asymptomatic subjects. Affected individuals had smaller volumes than controls (P < 0.0001. There was no difference in hippocampal volumes between asymptomatic subjects and controls, although 39% of asymptomatic patients had hippocampal atrophy. Patients with an abnormal hippocampal signal (133 individuals had smaller ipsilateral volume, but no linear correlation could be determined. Hippocampal signal abnormalities in FMTLE were more frequently found in the hippocampal head in both affected and asymptomatic family members, including those with normal volumes. These results indicate that subtle abnormalities leading to an abnormal hippocampal signal in FMTLE are not necessarily related to seizures and may be determined by genetic factors.

  6. The hippocampal CA2 ensemble is sensitive to contextual change.

    Science.gov (United States)

    Wintzer, Marie E; Boehringer, Roman; Polygalov, Denis; McHugh, Thomas J

    2014-02-19

    Contextual learning involves associating cues with an environment and relating them to past experience. Previous data indicate functional specialization within the hippocampal circuit: the dentate gyrus (DG) is crucial for discriminating similar contexts, whereas CA3 is required for associative encoding and recall. Here, we used Arc/H1a catFISH imaging to address the contribution of the largely overlooked CA2 region to contextual learning by comparing ensemble codes across CA3, CA2, and CA1 in mice exposed to familiar, altered, and novel contexts. Further, to manipulate the quality of information arriving in CA2 we used two hippocampal mutant mouse lines, CA3-NR1 KOs and DG-NR1 KOs, that result in hippocampal CA3 neuronal activity that is uncoupled from the animal's sensory environment. Our data reveal largely coherent responses across the CA axis in control mice in purely novel or familiar contexts; however, in the mutant mice subject to these protocols the CA2 response becomes uncoupled from CA1 and CA3. Moreover, we show in wild-type mice that the CA2 ensemble is more sensitive than CA1 and CA3 to small changes in overall context. Our data suggest that CA2 may be tuned to remap in response to any conflict between stored and current experience.

  7. Inflammation subverts hippocampal synaptic plasticity in experimental multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Robert Nisticò

    Full Text Available Abnormal use-dependent synaptic plasticity is universally accepted as the main physiological correlate of memory deficits in neurodegenerative disorders. It is unclear whether synaptic plasticity deficits take place during neuroinflammatory diseases, such as multiple sclerosis (MS and its mouse model, experimental autoimmune encephalomyelitis (EAE. In EAE mice, we found significant alterations of synaptic plasticity rules in the hippocampus. When compared to control mice, in fact, hippocampal long-term potentiation (LTP induction was favored over long-term depression (LTD in EAE, as shown by a significant rightward shift in the frequency-synaptic response function. Notably, LTP induction was also enhanced in hippocampal slices from control mice following interleukin-1β (IL-1β perfusion, and both EAE and IL-1β inhibited GABAergic spontaneous inhibitory postsynaptic currents (sIPSC without affecting glutamatergic transmission and AMPA/NMDA ratio. EAE was also associated with selective loss of GABAergic interneurons and with reduced gamma-frequency oscillations in the CA1 region of the hippocampus. Finally, we provided evidence that microglial activation in the EAE hippocampus was associated with IL-1β expression, and hippocampal slices from control mice incubated with activated microglia displayed alterations of GABAergic transmission similar to those seen in EAE brains, through a mechanism dependent on enhanced IL-1β signaling. These data may yield novel insights into the basis of cognitive deficits in EAE and possibly of MS.

  8. Inflammation Subverts Hippocampal Synaptic Plasticity in Experimental Multiple Sclerosis

    Science.gov (United States)

    Mandolesi, Georgia; Piccinin, Sonia; Berretta, Nicola; Pignatelli, Marco; Feligioni, Marco; Musella, Alessandra; Gentile, Antonietta; Mori, Francesco; Bernardi, Giorgio; Nicoletti, Ferdinando; Mercuri, Nicola B.; Centonze, Diego

    2013-01-01

    Abnormal use-dependent synaptic plasticity is universally accepted as the main physiological correlate of memory deficits in neurodegenerative disorders. It is unclear whether synaptic plasticity deficits take place during neuroinflammatory diseases, such as multiple sclerosis (MS) and its mouse model, experimental autoimmune encephalomyelitis (EAE). In EAE mice, we found significant alterations of synaptic plasticity rules in the hippocampus. When compared to control mice, in fact, hippocampal long-term potentiation (LTP) induction was favored over long-term depression (LTD) in EAE, as shown by a significant rightward shift in the frequency–synaptic response function. Notably, LTP induction was also enhanced in hippocampal slices from control mice following interleukin-1β (IL-1β) perfusion, and both EAE and IL-1β inhibited GABAergic spontaneous inhibitory postsynaptic currents (sIPSC) without affecting glutamatergic transmission and AMPA/NMDA ratio. EAE was also associated with selective loss of GABAergic interneurons and with reduced gamma-frequency oscillations in the CA1 region of the hippocampus. Finally, we provided evidence that microglial activation in the EAE hippocampus was associated with IL-1β expression, and hippocampal slices from control mice incubated with activated microglia displayed alterations of GABAergic transmission similar to those seen in EAE brains, through a mechanism dependent on enhanced IL-1β signaling. These data may yield novel insights into the basis of cognitive deficits in EAE and possibly of MS. PMID:23355887

  9. Hippocampal sclerosis dementia: An amnesic variant of frontotemporal degeneration

    Directory of Open Access Journals (Sweden)

    Chiadi U. Onyike

    Full Text Available ABSTRACT Objective: To describe characteristics of hippocampal sclerosis dementia. Methods: Convenience sample of Hippocampal sclerosis dementia (HSD recruited from the Johns Hopkins University Brain Resource Center. Twenty-four cases with post-mortem pathological diagnosis of hippocampal sclerosis dementia were reviewed for clinical characterization. Results: The cases showed atrophy and neuronal loss localized to the hippocampus, amygdala and entorrhinal cortex. The majority (79.2% had amnesia at illness onset, and many (54.2% showed abnormal conduct and psychiatric disorder. Nearly 42% presented with an amnesic state, and 37.5% presented with amnesia plus abnormal conduct and psychiatric disorder. All eventually developed a behavioral or psychiatric disorder. Disorientation, executive dysfunction, aphasia, agnosia and apraxia were uncommon at onset. Alzheimer disease (AD was the initial clinical diagnosis in 89% and the final clinical diagnosis in 75%. Diagnosis of frontotemporal dementia (FTD was uncommon (seen in 8%. Conclusion: HSD shows pathological characteristics of FTD and clinical features that mimic AD and overlap with FTD. The findings, placed in the context of earlier work, support the proposition that HSD belongs to the FTD family, where it may be identified as an amnesic variant.

  10. Hippocampal sclerosis dementia: an amnesic variant of frontotemporal degeneration

    Science.gov (United States)

    Onyike, Chiadi U.; Pletnikova, Olga; Sloane, Kelly L.; Sullivan, Campbell; Troncoso, Juan C.; Rabins, Peter V.

    2013-01-01

    OBJECTIVE To describe characteristics of hippocampal sclerosis dementia. METHODS Convenience sample of Hippocampal sclerosis dementia (HSD) recruited from the Johns Hopkins University Brain Resource Center. Twenty-four cases with post-mortem pathological diagnosis of hippocampal sclerosis dementia were reviewed for clinical characterization. RESULTS The cases showed atrophy and neuronal loss localized to the hippocampus, amygdala and entorrhinal cortex. The majority (79.2%) had amnesia at illness onset, and many (54.2%) showed abnormal conduct and psychiatric disorder. Nearly 42% presented with an amnesic state, and 37.5% presented with amnesia plus abnormal conduct and psychiatric disorder. All eventually developed a behavioral or psychiatric disorder. Disorientation, executive dysfunction, aphasia, agnosia and apraxia were uncommon at onset. Alzheimer disease (AD) was the initial clinical diagnosis in 89% and the final clinical diagnosis in 75%. Diagnosis of frontotemporal dementia (FTD) was uncommon (seen in 8%). CONCLUSION HSD shows pathological characteristics of FTD and clinical features that mimic AD and overlap with FTD. The findings, placed in the context of earlier work, support the proposition that HSD belongs to the FTD family, where it may be identified as an amnesic variant. PMID:24363834

  11. Recruitment of Perisomatic Inhibition during Spontaneous Hippocampal Activity In Vitro.

    Directory of Open Access Journals (Sweden)

    Anna Beyeler

    Full Text Available It was recently shown that perisomatic GABAergic inhibitory postsynaptic potentials (IPSPs originating from basket and chandelier cells can be recorded as population IPSPs from the hippocampal pyramidal layer using extracellular electrodes (eIPSPs. Taking advantage of this approach, we have investigated the recruitment of perisomatic inhibition during spontaneous hippocampal activity in vitro. Combining intracellular and extracellular recordings from pyramidal cells and interneurons, we confirm that inhibitory signals generated by basket cells can be recorded extracellularly, but our results suggest that, during spontaneous activity, eIPSPs are mostly confined to the CA3 rather than CA1 region. CA3 eIPSPs produced the powerful time-locked inhibition of multi-unit activity expected from perisomatic inhibition. Analysis of the temporal dynamics of spike discharges relative to eIPSPs suggests significant but moderate recruitment of excitatory and inhibitory neurons within the CA3 network on a 10 ms time scale, within which neurons recruit each other through recurrent collaterals and trigger powerful feedback inhibition. Such quantified parameters of neuronal interactions in the hippocampal network may serve as a basis for future characterisation of pathological conditions potentially affecting the interactions between excitation and inhibition in this circuit.

  12. Contribution of cerebellar sensorimotor adaptation to hippocampal spatial memory.

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Passot

    Full Text Available Complementing its primary role in motor control, cerebellar learning has also a bottom-up influence on cognitive functions, where high-level representations build up from elementary sensorimotor memories. In this paper we examine the cerebellar contribution to both procedural and declarative components of spatial cognition. To do so, we model a functional interplay between the cerebellum and the hippocampal formation during goal-oriented navigation. We reinterpret and complete existing genetic behavioural observations by means of quantitative accounts that cross-link synaptic plasticity mechanisms, single cell and population coding properties, and behavioural responses. In contrast to earlier hypotheses positing only a purely procedural impact of cerebellar adaptation deficits, our results suggest a cerebellar involvement in high-level aspects of behaviour. In particular, we propose that cerebellar learning mechanisms may influence hippocampal place fields, by contributing to the path integration process. Our simulations predict differences in place-cell discharge properties between normal mice and L7-PKCI mutant mice lacking long-term depression at cerebellar parallel fibre-Purkinje cell synapses. On the behavioural level, these results suggest that, by influencing the accuracy of hippocampal spatial codes, cerebellar deficits may impact the exploration-exploitation balance during spatial navigation.

  13. Past, present, and future in hippocampal formation and memory research.

    Science.gov (United States)

    Muñoz-López, Mónica

    2015-06-01

    Over 100 years of research on the hippocampal formation has led us understand the consequences of lesions in humans, the functional networks, anatomical pathways, neuronal types and their local circuitry, receptors, molecules, intracellular cascades, and some of the physiological mechanisms underlying long-term spatial and episodic memory. In addition, complex computational models allow us to formulate sophisticated hypotheses; many of them testable with techniques recently developed unthinkable in the past. Although the neurobiology of the cognitive map is starting to be revealed today, we still face a future with many unresolved questions. The aim of this commentary is twofold. First is to point out some of the critical findings in hippocampal formation research and new challenges. Second, to briefly summarize what the anatomy of memory can tell us about how highly processed sensory information from distant cortical areas communicate with different subareas of the entorhinal cortex, dentate gyrus, and hippocampal subfields to integrate and consolidate unique episodic memory traces. © 2015 Wiley Periodicals, Inc.

  14. Neuroprotective function for ramified microglia in hippocampal excitotoxicity

    Directory of Open Access Journals (Sweden)

    Vinet Jonathan

    2012-01-01

    Full Text Available Abstract Background Most of the known functions of microglia, including neurotoxic and neuroprotective properties, are attributed to morphologically-activated microglia. Resting, ramified microglia are suggested to primarily monitor their environment including synapses. Here, we show an active protective role of ramified microglia in excitotoxicity-induced neurodegeneration. Methods Mouse organotypic hippocampal slice cultures were treated with N-methyl-D-aspartic acid (NMDA to induce excitotoxic neuronal cell death. This procedure was performed in slices containing resting microglia or slices that were chemically or genetically depleted of their endogenous microglia. Results Treatment of mouse organotypic hippocampal slice cultures with 10-50 μM N-methyl-D-aspartic acid (NMDA induced region-specific excitotoxic neuronal cell death with CA1 neurons being most vulnerable, whereas CA3 and DG neurons were affected less. Ablation of ramified microglia severely enhanced NMDA-induced neuronal cell death in the CA3 and DG region rendering them almost as sensitive as CA1 neurons. Replenishment of microglia-free slices with microglia restored the original resistance of CA3 and DG neurons towards NMDA. Conclusions Our data strongly suggest that ramified microglia not only screen their microenvironment but additionally protect hippocampal neurons under pathological conditions. Morphological activation of ramified microglia is thus not required to influence neuronal survival.

  15. Structural hippocampal network alterations during healthy aging: A multi-modal MRI study

    Directory of Open Access Journals (Sweden)

    Amandine ePelletier

    2013-12-01

    Full Text Available While hippocampal atrophy has been described during healthy aging, few studies have examined its relationship with the integrity of White Matter (WM connecting tracts of the limbic system. This investigation examined WM structural damage specifically related to hippocampal atrophy in healthy aging subjects (n=129, using morphological MRI to assess hippocampal volume and Diffusion Tensor Imaging (DTI to assess WM integrity. Subjects with Mild Cognitive Impairment (MCI or dementia were excluded from the analysis. In our sample, increasing age was significantly associated with reduced hippocampal volume and reduced Fractional Anisotropy (FA at the level of the fornix and the cingulum bundle. The findings also demonstrate that hippocampal atrophy was specifically associated with reduced FA of the fornix bundle, but it was not related to alteration of the cingulum bundle. Our results indicate that the relationship between hippocampal atrophy and fornix FA values is not due to an independent effect of age on both structures. A recursive regression procedure was applied to evaluate sequential relationships between the alterations of these two brain structures. When both hippocampal atrophy and fornix FA values were included in the same model to predict age, fornix FA values remained significant whereas hippocampal atrophy was no longer significantly associated with age. According to this latter finding, hippocampal atrophy in healthy aging could be mediated by a loss of fornix connections. Structural alterations of this part of the limbic system, which have been associated with neurodegeneration in Alzheimer’s disease, result at least in part from the aging process.

  16. MDMA enhances hippocampal-dependent learning and memory under restrictive conditions, and modifies hippocampal spine density.

    Science.gov (United States)

    Abad, Sònia; Fole, Alberto; del Olmo, Nuria; Pubill, David; Pallàs, Mercè; Junyent, Fèlix; Camarasa, Jorge; Camins, Antonio; Escubedo, Elena

    2014-03-01

    Addictive drugs produce forms of structural plasticity in the nucleus accumbens and prefrontal cortex. The aim of this study was to investigate the impact of chronic MDMA exposure on pyramidal neurons in the CA1 region of hippocampus and drug-related spatial learning and memory changes. Adolescent rats were exposed to saline or MDMA in a regime that mimicked chronic administration. One week later, when acquisition or reference memory was evaluated in a standard Morris water maze (MWM), no differences were obtained between groups. However, MDMA-exposed animals performed better when the MWM was implemented under more difficult conditions. Animals of MDMA group were less anxious and were more prepared to take risks, as in the open field test they ventured more frequently into the central area. We have demonstrated that MDMA caused an increase in brain-derived neurotrophic factor (BDNF) expression. When spine density was evaluated, MDMA-treated rats presented a reduced density when compared with saline, but overall, training increased the total number of spines, concluding that in MDMA-group, training prevented a reduction in spine density or induced its recovery. This study provides support for the conclusion that binge administration of MDMA, known to be associated to neurotoxic damage of hippocampal serotonergic terminals, increases BDNF expression and stimulates synaptic plasticity when associated with training. In these conditions, adolescent rats perform better in a more difficult water maze task under restricted conditions of learning and memory. The effect on this task could be modulated by other behavioural changes provoked by MDMA.

  17. Peripheral Etanercept Administration Normalizes Behavior, Hippocampal Neurogenesis, and Hippocampal Reelin and GABAA Receptor Expression in a Preclinical Model of Depression

    Directory of Open Access Journals (Sweden)

    Kyle J. Brymer

    2018-02-01

    Full Text Available Depression is a serious psychiatric disorder frequently comorbid with autoimmune disorders. Previous work in our lab has demonstrated that repeated corticosterone (CORT injections in rats reliably increase depressive-like behavior, impair hippocampal-dependent memory, reduce the number and complexity of adult-generated neurons in the dentate gyrus, decrease hippocampal reelin expression, and alter markers of GABAergic function. We hypothesized that peripheral injections of the TNF-α inhibitor etanercept could exert antidepressant effects through a restoration of many of these neurobiological changes. To test this hypothesis, we examined the effect of repeated CORT injections and concurrent injections of etanercept on measures of object-location and object-in-place memory, forced-swim test behavior, hippocampal neurogenesis, and reelin and GABA β2/3 immunohistochemistry. CORT increased immobility behavior in the forced swim test and impaired both object-location and object-in-place memory, and these effects were reversed by etanercept. CORT also decreased both the number and complexity of adult-generated neurons, but etanercept restored these measures back to control levels. Finally, CORT decreased the number of reelin and GABA β2/3-ir cells within the subgranular zone of the dentate gyrus, and etanercept restored these to control levels. These novel results demonstrate that peripheral etanercept has antidepressant effects that are accompanied by a restoration of cognitive function, hippocampal neurogenesis, and GABAergic plasticity, and suggest that a normalization of reelin expression in the dentate gyrus could be a key component underlying these novel antidepressant effects.

  18. Hippocampal phosphoproteomics of F344 rats exposed to 1-bromopropane

    International Nuclear Information System (INIS)

    Huang, Zhenlie; Ichihara, Sahoko; Oikawa, Shinji; Chang, Jie; Zhang, Lingyi; Hu, Shijie; Huang, Hanlin; Ichihara, Gaku

    2015-01-01

    1-Bromopropane (1-BP) is neurotoxic in both experimental animals and human. To identify phosphorylated modification on the unrecognized post-translational modifications of proteins and investigate their role in 1-BP-induced neurotoxicity, changes in hippocampal phosphoprotein expression levels were analyzed quantitatively in male F344 rats exposed to 1-BP inhalation at 0, 400, or 1000 ppm for 8 h/day for 1 or 4 weeks. Hippocampal protein extracts were analyzed qualitatively and quantitatively by Pro-Q Diamond gel staining and SYPRO Ruby staining coupled with two-dimensional difference in gel electrophoresis (2D-DIGE), respectively, as well as by matrix-assisted laser-desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) to identify phosphoproteins. Changes in selected proteins were further confirmed by Manganese II (Mn 2+ )-Phos-tag SDS-polyacrylamide gel electrophoresis (SDS-PAGE). Bax and cytochrome c protein levels were determined by western blotting. Pro-Q Diamond gel staining combined with 2D-DIGE identified 26 phosphoprotein spots (p < 0.05), and MALDI-TOF/MS identified 18 up-regulated proteins and 8 down-regulated proteins. These proteins are involved in the biological process of response to stimuli, metabolic processes, and apoptosis signaling. Changes in the expression of phosphorylated 14-3-3 θ were further confirmed by Mn 2+ -Phos-tag SDS-PAGE. Western blotting showed overexpression of Bax protein in the mitochondria with down-regulation in the cytoplasm, whereas cytochrome c expression was high in the cytoplasm but low in the mitochondria after 1-BP exposure. Our results suggest that the pathogenesis of 1-BP-induced hippocampal damage involves inhibition of antiapoptosis process. Phosphoproteins identified in this study can potentially serve as biomarkers for 1-BP-induced neurotoxicity. - Highlights: • 1-BP modified hippocampal phosphoproteome in rat and 23 altered proteins were identified. • 1-BP changed phosphorylation of GRP78

  19. Hippocampal phosphoproteomics of F344 rats exposed to 1-bromopropane

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhenlie [Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510-300 (China); Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Ichihara, Sahoko [Graduate School of Regional Innovation Studies, Mie University, Tsu 514-8507 (Japan); Oikawa, Shinji [Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie 514-8507 (Japan); Chang, Jie [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Graduate School of Regional Innovation Studies, Mie University, Tsu 514-8507 (Japan); Zhang, Lingyi [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510 (Japan); Hu, Shijie [Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510-300 (China); Huang, Hanlin, E-mail: huanghl@gdoh.org [Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510-300 (China); Ichihara, Gaku, E-mail: gak@rs.tus.ac.jp [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510 (Japan)

    2015-01-15

    1-Bromopropane (1-BP) is neurotoxic in both experimental animals and human. To identify phosphorylated modification on the unrecognized post-translational modifications of proteins and investigate their role in 1-BP-induced neurotoxicity, changes in hippocampal phosphoprotein expression levels were analyzed quantitatively in male F344 rats exposed to 1-BP inhalation at 0, 400, or 1000 ppm for 8 h/day for 1 or 4 weeks. Hippocampal protein extracts were analyzed qualitatively and quantitatively by Pro-Q Diamond gel staining and SYPRO Ruby staining coupled with two-dimensional difference in gel electrophoresis (2D-DIGE), respectively, as well as by matrix-assisted laser-desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) to identify phosphoproteins. Changes in selected proteins were further confirmed by Manganese II (Mn{sup 2+})-Phos-tag SDS-polyacrylamide gel electrophoresis (SDS-PAGE). Bax and cytochrome c protein levels were determined by western blotting. Pro-Q Diamond gel staining combined with 2D-DIGE identified 26 phosphoprotein spots (p < 0.05), and MALDI-TOF/MS identified 18 up-regulated proteins and 8 down-regulated proteins. These proteins are involved in the biological process of response to stimuli, metabolic processes, and apoptosis signaling. Changes in the expression of phosphorylated 14-3-3 θ were further confirmed by Mn{sup 2+}-Phos-tag SDS-PAGE. Western blotting showed overexpression of Bax protein in the mitochondria with down-regulation in the cytoplasm, whereas cytochrome c expression was high in the cytoplasm but low in the mitochondria after 1-BP exposure. Our results suggest that the pathogenesis of 1-BP-induced hippocampal damage involves inhibition of antiapoptosis process. Phosphoproteins identified in this study can potentially serve as biomarkers for 1-BP-induced neurotoxicity. - Highlights: • 1-BP modified hippocampal phosphoproteome in rat and 23 altered proteins were identified. • 1-BP changed phosphorylation

  20. Mind-Wandering in People with Hippocampal Damage.

    Science.gov (United States)

    McCormick, Cornelia; Rosenthal, Clive R; Miller, Thomas D; Maguire, Eleanor A

    2018-03-14

    Subjective inner experiences, such as mind-wandering, represent the fundaments of human cognition. Although the precise function of mind-wandering is still debated, it is increasingly acknowledged to have influence across cognition on processes such as future planning, creative thinking, and problem-solving and even on depressive rumination and other mental health disorders. Recently, there has been important progress in characterizing mind-wandering and identifying the associated neural networks. Two prominent features of mind-wandering are mental time travel and visuospatial imagery, which are often linked with the hippocampus. People with selective bilateral hippocampal damage cannot vividly recall events from their past, envision their future, or imagine fictitious scenes. This raises the question of whether the hippocampus plays a causal role in mind-wandering and, if so, in what way. Leveraging a unique opportunity to shadow people (all males) with bilateral hippocampal damage for several days, we examined, for the first time, what they thought about spontaneously, without direct task demands. We found that they engaged in as much mind-wandering as control participants. However, whereas controls thought about the past, present, and future, imagining vivid visual scenes, hippocampal damage resulted in thoughts primarily about the present comprising verbally mediated semantic knowledge. These findings expose the hippocampus as a key pillar in the neural architecture of mind-wandering and also reveal its impact beyond episodic memory, placing it at the heart of our mental life. SIGNIFICANCE STATEMENT Humans tend to mind-wander ∼30-50% of their waking time. Two prominent features of this pervasive form of thought are mental time travel and visuospatial imagery, which are often associated with the hippocampus. To examine whether the hippocampus plays a causal role in mind-wandering, we examined the frequency and phenomenology of mind-wandering in patients with

  1. The hippocampal network model: A transdiagnostic metaconnectomic approach

    Directory of Open Access Journals (Sweden)

    Eithan Kotkowski

    Full Text Available Purpose: The hippocampus plays a central role in cognitive and affective processes and is commonly implicated in neurodegenerative diseases. Our study aimed to identify and describe a hippocampal network model (HNM using trans-diagnostic MRI data from the BrainMap® database. We used meta-analysis to test the network degeneration hypothesis (NDH (Seeley et al., 2009 by identifying structural and functional covariance in this hippocampal network. Methods: To generate our network model, we used BrainMap's VBM database to perform a region-to-whole-brain (RtWB meta-analysis of 269 VBM experiments from 165 published studies across a range of 38 psychiatric and neurological diseases reporting hippocampal gray matter density alterations. This step identified 11 significant gray matter foci, or nodes. We subsequently used meta-analytic connectivity modeling (MACM to define edges of structural covariance between nodes from VBM data as well as functional covariance using the functional task-activation database, also from BrainMap. Finally, we applied a correlation analysis using Pearson's r to assess the similarities and differences between the structural and functional covariance models. Key findings: Our hippocampal RtWB meta-analysis reported consistent and significant structural covariance in 11 key regions. The subsequent structural and functional MACMs showed a strong correlation between HNM nodes with a significant structural-functional covariance correlation of r = .377 (p = .000049. Significance: This novel method of studying network covariance using VBM and functional meta-analytic techniques allows for the identification of generalizable patterns of functional and structural abnormalities pertaining to the hippocampus. In accordance with the NDH, this framework could have major implications in studying and predicting spatial disease patterns using network-based assays. Keywords: Anatomic likelihood estimation, ALE, BrainMap, Functional

  2. Effect of dorsal hippocampal lesion compared to dorsal hippocampal blockade by atropine on reference memory in vision deprived rats.

    Science.gov (United States)

    Dhume, R A; Noronha, A; Nagwekar, M D; Mascarenhas, J F

    1989-10-01

    In order to study the primacy of the hippocampus in place learning function 24 male adult albino rats were hippocampally-lesioned in dorsal hippocampus involving fornical damage (group I); sham operated for comparison with group I (group II); cannulated for instillation of atropine sulphate in the same loci as group I (group III); and cannulated for instillation of saline which served as control for group III (group IV). All the animals were enucleated and their reference memory (long-term memory) was tested, using open 4-arm radial maze. There was loss of reference memory in groups I and III. However, hippocampally-lesioned animals, showed recovery of reference memory deficit within a short period of 10 days or so. Whereas atropinized animals showed persistent reference memory deficit as long as the instillation effect continued. The mechanism involved in the recovery of reference memory in hippocampally-lesioned animals and persistent deficit of reference memory in atropinized animals has been postulated to explain the primacy of hippocampus in the place learning function under normal conditions.

  3. Compton suppression gamma ray spectrometry

    International Nuclear Information System (INIS)

    Landsberger, S.; Iskander, F.Y.; Niset, M.; Heydorn, K.

    2002-01-01

    In the past decade there have been many studies to use Compton suppression methods in routine neutron activation analysis as well as in the traditional role of low level gamma ray counting of environmental samples. On a separate path there have been many new PC based software packages that have been developed to enhance photopeak fitting. Although the newer PC based algorithms have had significant improvements, they still suffer from being effectively used in weak gamma ray lines in natural samples or in neutron activated samples that have very high Compton backgrounds. We have completed a series of experiments to show the usefulness of Compton suppression. As well we have shown the pitfalls when using Compton suppression methods for high counting deadtimes as in the case of neutron activated samples. We have also investigated if counting statistics are the same both suppressed and normal modes. Results are presented in four separate experiments. (author)

  4. Thyroid suppression test with dextrothyroxine

    International Nuclear Information System (INIS)

    Rosenthal, D.; Fridman, J.; Ribeiro, H.B.

    1978-01-01

    The classic thyroid suppression test with triiodothyronine (l-T 3 ) has been shown to be efficient as an auxiliary method in the diagnosis of thyroid diseases, but should not be performed on elderly patients or on those with heart disease or a tendency to tachycardia. Since these subjects seem able to support a short period of dextro-thyronine (d-T 4 ) feeding, we compared the effect of d-T 4 and l-T 3 on the 24 hours thyroid uptake in euthyroid and hyperthyroid subjects. After basal radio-iodine uptake determination, 99 patients without hyperthyroidism and 27 with Graves' disease were randomly divided in 2 groups; one received 100μg of l-T 3 per day and the other 4 mg of d-T 4 per day, both groups being treated for a period of 10 days. At the end of this suppression period the 24 hours radio-iodine uptake was measured again and the percentual suppression index (S.I.) calculated. Since the comparison of the two groups showed no difference between the suppressive effect of l-T 3 and d-T 4 in euthyroid subjects, while dextro-thyronine, as levo-triiodothyronine, did not suppress the 24 hours uptake of hyperthyroid patients, l-T 3 or d-T 4 can be used interchangeably to test thyroid suppressibility. In the euthyroid subjects the normal range for the post-suppression uptake was 0-17.1% and for the suppression index 54,7.100% [pt

  5. Maternal care determines rapid effects of stress mediators on synaptic plasticity in adult rat hippocampal dentate gyrus

    NARCIS (Netherlands)

    Bagot, R.C.; van Hasselt, F.N.; Champagne, D.L.; Meaney, M.J.; Krugers, H.J.; Joëls, M.

    2009-01-01

    Maternal care in the rat influences hippocampal development, synaptic plasticity and cognition. Previous studies, however, have examined animals under minimally stressful conditions. Here we tested the hypothesis that maternal care influences hippocampal function differently when this structure is

  6. Vagus Nerve Stimulation Applied with a Rapid Cycle Has More Profound Influence on Hippocampal Electrophysiology Than a Standard Cycle.

    NARCIS (Netherlands)

    Larsen, L.E.; Wadman, W.J.; Marinazzo, D.; van Mierlo, P.; Delbeke, J.; Daelemans, S.; Sprengers, M.; Thyrion, L.; Van Lysebettens, W.; Carrette, E.; Boon, P; Vonck, K.; Raedt, R.

    2016-01-01

    Although vagus nerve stimulation (VNS) is widely used, therapeutic mechanisms and optimal stimulation parameters remain elusive. In the present study, we investigated the effect of VNS on hippocampal field activity and compared the efficiency of different VNS paradigms. Hippocampal

  7. Suppressed Charmed B Decay

    Energy Technology Data Exchange (ETDEWEB)

    Snoek, Hella Leonie [Vrije Univ., Amsterdam (Netherlands)

    2009-06-02

    This thesis describes the measurement of the branching fractions of the suppressed charmed B0 → D*- a0+ decays and the non-resonant B0 → D*- ηπ+ decays in approximately 230 million Υ(4S) → B$\\bar{B}$ events. The data have been collected with the BABAR detector at the PEP-II B factory at the Stanford Linear Accelerator Center in California. Theoretical predictions of the branching fraction of the B0 → D*- a{sub 0}+ decays show large QCD model dependent uncertainties. Non-factorizing terms, in the naive factorization model, that can be calculated by QCD factorizing models have a large impact on the branching fraction of these decay modes. The predictions of the branching fractions are of the order of 10-6. The measurement of the branching fraction gives more insight into the theoretical models. In general a better understanding of QCD models will be necessary to conduct weak interaction physics at the next level. The presence of CP violation in electroweak interactions allows the differentiation between matter and antimatter in the laws of physics. In the Standard Model, CP violation is incorporated in the CKM matrix that describes the weak interaction between quarks. Relations amongst the CKM matrix elements are used to present the two relevant parameters as the apex of a triangle (Unitarity Triangle) in a complex plane. The over-constraining of the CKM triangle by experimental measurements is an important test of the Standard Model. At this moment no stringent direct measurements of the CKM angle γ, one of the interior angles of the Unitarity Triangle, are available. The measurement of the angle γ can be performed using the decays of neutral B mesons. The B0 → D*- a0+ decay is sensitive to the angle γ and, in comparison to the current decays that are being employed, could significantly

  8. Suppression of oxidative stress and 5-lipoxygenase activation by edaravone improves depressive-like behavior after concussion.

    Science.gov (United States)

    Higashi, Youichirou; Hoshijima, Michihiro; Yawata, Toshio; Nobumoto, Atsuya; Tsuda, Masayuki; Shimizu, Takahiro; Saito, Motoaki; Ueba, Tetuya

    2014-10-15

    Brain concussions are a serious public concern and are associated with neuropsychiatric disorders, such as depression. Patients with concussion who suffer from depression often experience distress. Nevertheless, few pre-clinical studies have examined concussion-induced depression, and there is little information regarding its pharmacological management. Edaravone, a free radical scavenger, can exert neuroprotective effects in several animal models of neurological disorders. However, the effectiveness of edaravone in animal models of concussion-induced depression remains unclear. In this study, we examined whether edaravone could prevent concussion-induced depression. Mice were subjected to a weight-drop injury and intravenously administered edaravone (3.0 mg/kg) or vehicle immediately after impact. Serial magnetic resonance imaging showed no abnormalities of the cerebrum on diffusion T1- and T2-weighted images. We found that edaravone suppressed concussion-induced depressive-like behavior in the forced swim test, which was accompanied by inhibition of increased hippocampal and cortical oxidative stress (OS) and suppression of 5-lipoxygenase (5-LOX) translocation to the nuclear envelope in hippocampal astrocytes. Hippocampal OS in concussed mice was also prevented by the nicotinamide adenine dinucleotide phosphate oxidase inhibitor, apocynin, and administration of BWB70C, a 5-LOX inhibitor, immediately and 24 h after injury prevented depressive-like behaviors in concussed mice. Further, antidepressant effects of edaravone were observed in mice receiving 1.0 or 3.0 mg/kg of edaravone immediately after impact, but not at a lower dose of 0.1 mg/kg. This antidepressant effect persisted up to 1 h after impact, whereas edaravone treatment at 3 h after impact had no effect on concussion-induced depressive-like behavior. These results suggest that edaravone protects against concussion-induced depression, and this protection is mediated by suppression of OS and 5

  9. Chewing Prevents Stress-Induced Hippocampal LTD Formation and Anxiety-Related Behaviors: A Possible Role of the Dopaminergic System

    Science.gov (United States)

    Koizumi, So; Onozuka, Minoru

    2015-01-01

    The present study examined the effects of chewing on stress-induced long-term depression (LTD) and anxiogenic behavior. Experiments were performed in adult male rats under three conditions: restraint stress condition, voluntary chewing condition during stress, and control condition without any treatments except handling. Chewing ameliorated LTD development in the hippocampal CA1 region. It also counteracted the stress-suppressed number of entries to the center region of the open field when they were tested immediately, 30 min, or 60 min after restraint. At the latter two poststress time periods, chewing during restraint significantly increased the number of times of open arm entries in the elevated plus maze, when compared with those without chewing. The in vivo microdialysis further revealed that extracellular dopamine concentration in the ventral hippocampus, which is involved in anxiety-related behavior, was significantly greater in chewing rats than in those without chewing from 30 to 105 min after stress exposure. Development of LTD and anxiolytic effects ameliorated by chewing were counteracted by administering the D1 dopamine receptor antagonist SCH23390, which suggested that chewing may activate the dopaminergic system in the ventral hippocampus to suppress stress-induced anxiogenic behavior. PMID:26075223

  10. Chewing prevents stress-induced hippocampal LTD formation and anxiety-related behaviors: a possible role of the dopaminergic system.

    Science.gov (United States)

    Ono, Yumie; Koizumi, So; Onozuka, Minoru

    2015-01-01

    The present study examined the effects of chewing on stress-induced long-term depression (LTD) and anxiogenic behavior. Experiments were performed in adult male rats under three conditions: restraint stress condition, voluntary chewing condition during stress, and control condition without any treatments except handling. Chewing ameliorated LTD development in the hippocampal CA1 region. It also counteracted the stress-suppressed number of entries to the center region of the open field when they were tested immediately, 30 min, or 60 min after restraint. At the latter two poststress time periods, chewing during restraint significantly increased the number of times of open arm entries in the elevated plus maze, when compared with those without chewing. The in vivo microdialysis further revealed that extracellular dopamine concentration in the ventral hippocampus, which is involved in anxiety-related behavior, was significantly greater in chewing rats than in those without chewing from 30 to 105 min after stress exposure. Development of LTD and anxiolytic effects ameliorated by chewing were counteracted by administering the D1 dopamine receptor antagonist SCH23390, which suggested that chewing may activate the dopaminergic system in the ventral hippocampus to suppress stress-induced anxiogenic behavior.

  11. Chewing Prevents Stress-Induced Hippocampal LTD Formation and Anxiety-Related Behaviors: A Possible Role of the Dopaminergic System

    Directory of Open Access Journals (Sweden)

    Yumie Ono

    2015-01-01

    Full Text Available The present study examined the effects of chewing on stress-induced long-term depression (LTD and anxiogenic behavior. Experiments were performed in adult male rats under three conditions: restraint stress condition, voluntary chewing condition during stress, and control condition without any treatments except handling. Chewing ameliorated LTD development in the hippocampal CA1 region. It also counteracted the stress-suppressed number of entries to the center region of the open field when they were tested immediately, 30 min, or 60 min after restraint. At the latter two poststress time periods, chewing during restraint significantly increased the number of times of open arm entries in the elevated plus maze, when compared with those without chewing. The in vivo microdialysis further revealed that extracellular dopamine concentration in the ventral hippocampus, which is involved in anxiety-related behavior, was significantly greater in chewing rats than in those without chewing from 30 to 105 min after stress exposure. Development of LTD and anxiolytic effects ameliorated by chewing were counteracted by administering the D1 dopamine receptor antagonist SCH23390, which suggested that chewing may activate the dopaminergic system in the ventral hippocampus to suppress stress-induced anxiogenic behavior.

  12. Caffeine-Induced Suppression of GABAergic Inhibition and Calcium-Independent Metaplasticity

    Directory of Open Access Journals (Sweden)

    Masako Isokawa

    2016-01-01

    Full Text Available GABAergic inhibition plays a critical role in the regulation of neuron excitability; thus, it is subject to modulations by many factors. Recent evidence suggests the elevation of intracellular calcium ([Ca2+]i and calcium-dependent signaling molecules underlie the modulations. Caffeine induces a release of calcium from intracellular stores. We tested whether caffeine modulated GABAergic transmission by increasing [Ca2+]i. A brief local puff-application of caffeine to hippocampal CA1 pyramidal cells transiently suppressed GABAergic inhibitory postsynaptic currents (IPSCs by 73.2 ± 6.98%. Time course of suppression and the subsequent recovery of IPSCs resembled DSI (depolarization-induced suppression of inhibition, mediated by endogenous cannabinoids that require a [Ca2+]i rise. However, unlike DSI, caffeine-induced suppression of IPSCs (CSI persisted in the absence of a [Ca2+]i rise. Intracellular applications of BAPTA and ryanodine (which blocks caffeine-induced calcium release from intracellular stores failed to prevent the generation of CSI. Surprisingly, ruthenium red, an inhibitor of multiple calcium permeable/release channels including those of stores, induced metaplasticity by amplifying the magnitude of CSI independently of calcium. This metaplasticity was accompanied with the generation of a large inward current. Although ionic basis of this inward current is undetermined, the present result demonstrates that caffeine has a robust Ca2+-independent inhibitory action on GABAergic inhibition and causes metaplasticity by opening plasma membrane channels.

  13. Neuropsychology, autobiographical memory and hippocampal volume in younger and older patients with chronic schizophrenia

    Directory of Open Access Journals (Sweden)

    Christina Josefa Herold

    2015-04-01

    Full Text Available Despite a wide range of studies on neuropsychology in schizophrenia, autobiographical memory (AM has been scarcely investigated in these patients. Hence less is known about AM in older patients and hippocampal contribution to autobiographical memories of varying remoteness. Therefore we investigated hippocampal volume and AM along with important neuropsychological domains in patients with chronic schizophrenia and the respective relationships between these parameters. We compared 25 older patients with chronic schizophrenia to 23 younger patients and an older healthy control group (N = 21 with respect to AM, additional neuropsychological parameters and hippocampal volume. Personal episodic and semantic memory was investigated using a semi-structured interview. Additional neuropsychological parameters were assessed by using a battery of standard neuropsychological tests. Structural magnetic resonance imaging data were analysed with an automated region-of-interest procedure. While hippocampal volume reduction and neuropsychological impairment were more pronounced in the older than in the younger patients, both groups showed equivalent reduced AM performance for recent personal episodes. In the patient group significant correlations between left hippocampal volume and recent autobiographical episodes as well as personal semantic memories arose. Verbal memory and working memory were significantly correlated with right hippocampal volume, executive functions, however, were associated with bilateral hippocampal volumes. These findings underline the complexity of AM and its impairments in the course of schizophrenia in comparison to rather progressive neuropsychological deficits and address the importance of hippocampal contribution.

  14. Neuropsychology, autobiographical memory, and hippocampal volume in "younger" and "older" patients with chronic schizophrenia.

    Science.gov (United States)

    Herold, Christina Josefa; Lässer, Marc Montgomery; Schmid, Lena Anna; Seidl, Ulrich; Kong, Li; Fellhauer, Iven; Thomann, Philipp Arthur; Essig, Marco; Schröder, Johannes

    2015-01-01

    Despite a wide range of studies on neuropsychology in schizophrenia, autobiographical memory (AM) has been scarcely investigated in these patients. Hence, less is known about AM in older patients and hippocampal contribution to autobiographical memories of varying remoteness. Therefore, we investigated hippocampal volume and AM along with important neuropsychological domains in patients with chronic schizophrenia and the respective relationships between these parameters. We compared 25 older patients with chronic schizophrenia to 23 younger patients and an older healthy control group (N = 21) with respect to AM, additional neuropsychological parameters, and hippocampal volume. Personal episodic and semantic memory was investigated using a semi-structured interview. Additional neuropsychological parameters were assessed by using a battery of standard neuropsychological tests. Structural magnetic resonance imaging data were analyzed with an automated region-of-interest procedure. While hippocampal volume reduction and neuropsychological impairment were more pronounced in the older than in the younger patients, both groups showed equivalent reduced AM performance for recent personal episodes. In the patient group, significant correlations between left hippocampal volume and recent autobiographical episodes as well as personal semantic memories arose. Verbal memory and working memory were significantly correlated with right hippocampal volume; executive functions, however, were associated with bilateral hippocampal volumes. These findings underline the complexity of AM and its impairments in the course of schizophrenia in comparison to rather progressive neuropsychological deficits and address the importance of hippocampal contribution.

  15. Hippocampal EEG and motor activity in the cat: The role of eye movements and body acceleration

    NARCIS (Netherlands)

    Kamp, A.; Arnolds, D.E.A.T.; Lopes da Silva, F.H.; Boeijinga, P.; Aitink, W.

    1984-01-01

    In cat the relation between various behaviours and the spectral properties of the hippocampal EEG was investigated. Both EEG and behaviour were quantified and results were evaluated statistically. Significant relationships were found between the properties of the hippocampal EEG and motor acts

  16. The hippocampal formation: morphological changes induced by thyroid, gonadal and adrenal hormones.

    Science.gov (United States)

    Gould, E; Woolley, C S; McEwen, B S

    1991-01-01

    The hippocampal formation is of considerable interest due to its proposed role in a number of important functions, including learning and memory processes. Manipulations of thyroid, gonadal and adrenal hormones have been shown to influence hippocampal physiology as well as learning and memory. The cellular events which underlie these hormone-induced functional changes are largely unexplored. However, studies suggest that hormonal manipulations during development and in adulthood result in dramatic morphological changes within the hippocampal formation. Because neuronal physiology has been suggested to depend upon neuronal morphology, we have been determining the morphologic sensitivity of hippocampal neurons to thyroid and steroid hormones in an effort to elucidate possible structural mechanisms to account for differences in hippocampal function. In this review, hormone-induced structural changes in the developing and adult hippocampal formation are discussed, with particular emphasis on their functional relevance. Sex differences, as well as the developmental effects of thyroid hormone and glucocorticoids, are described. Moreover, the effects of ovarian steroids, thyroid hormone and glucocorticoids on neuronal morphology in the hippocampal formation of the adult rat are reviewed. These hormone-induced structural changes may account, at least in part, for previously reported hormone-induced changes in hippocampal function.

  17. Hippocampal disconnection in early Alzheimer's disease: a 7 tesla MRI study

    NARCIS (Netherlands)

    Wisse, L.E.; Reijmer, Y.D.; Telgte, A. ter; Kuijf, H.J.; Leemans, A.; Luijten, P.R.; Koek, H.L.; Geerlings, M.I.; Biessels, G.J.

    2015-01-01

    BACKGROUND: In patients with Alzheimer's disease (AD), atrophy of the entorhinal cortex (ERC) and hippocampal formation may induce degeneration of connecting white matter tracts. OBJECTIVE: We examined the association of hippocampal subfield and ERC atrophy at 7 tesla MRI with fornix and

  18. Stimulus Similarity and Encoding Time Influence Incidental Recognition Memory in Adult Monkeys with Selective Hippocampal Lesions

    Science.gov (United States)

    Zeamer, Alyson; Meunier, Martine; Bachevalier, Jocelyne

    2011-01-01

    Recognition memory impairment after selective hippocampal lesions in monkeys is more profound when measured with visual paired-comparison (VPC) than with delayed nonmatching-to-sample (DNMS). To clarify this issue, we assessed the impact of stimuli similarity and encoding duration on the VPC performance in monkeys with hippocampal lesions and…

  19. Delayed recall, hippocampal volume and Alzheimer neuropathology: findings from the Nun Study.

    Science.gov (United States)

    Mortimer, J A; Gosche, K M; Riley, K P; Markesbery, W R; Snowdon, D A

    2004-02-10

    To examine the associations of hippocampal volume and the severity of neurofibrillary lesions determined at autopsy with delayed verbal recall performance evaluated an average of 1 year prior to death. Hippocampal volumes were computed using postmortem brain MRI from the first 56 scanned participants of the Nun Study. Quantitative neuropathologic studies included lesion counts, Braak staging, and determination of whether neuropathologic criteria for Alzheimer disease (AD) were met. Multiple regression was used to assess the association of hippocampal volume and neuropathologic lesions with the number of words (out of 10) recalled on the Consortium to Establish a Registry for Alzheimer's Disease Delayed Word Recall Test administered an average of 1 year prior to death. When entered separately, hippocampal volume, Braak stage, and the mean neurofibrillary tangle counts in the CA-1 region of the hippocampus and the subiculum were strongly associated with the number of words recalled after a delay, adjusting for age and education. When hippocampal volume was entered together with each neuropathologic index, only hippocampal volume retained a significant association with the delayed recall measure. The association between hippocampal volume and the number of words recalled was present in both demented and nondemented individuals as well as in those with and without substantial AD neurofibrillary pathology. The association of neurofibrillary tangles with delayed verbal recall may reflect associated hippocampal atrophy.

  20. Anticonvulsant Effects of Memantine and MK-801 in Guinea Pig Hippocampal Neurons.

    Science.gov (United States)

    investigation we compared the anticonvulsant properties of Mem to those of MK-801 in guinea pig hippocampal slices. Extracellular recordings were...obtained from area CA1 of guinea pig hippocampal slices in a total submersion chamber at 32 deg C in normal oxygenated artificial cerebrospinal fluid (ACSF

  1. Predicting memory performance in normal ageing using different measures of hippocampal size

    International Nuclear Information System (INIS)

    Lye, T.C.; Creasey, H.; Kril, J.J.; Grayson, D.A.; Piguet, O.; Bennett, H.P.; Ridley, L.J.; Broe, G.A.

    2006-01-01

    A number of different methods have been employed to correct hippocampal volumes for individual variation in head size. Researchers have previously used qualitative visual inspection to gauge hippocampal atrophy. The purpose of this study was to determine the best measure(s) of hippocampal size for predicting memory functioning in 102 community-dwelling individuals over 80 years of age. Hippocampal size was estimated using magnetic resonance imaging (MRI) volumetry and qualitative visual assessment. Right and left hippocampal volumes were adjusted by three different estimates of head size: total intracranial volume (TICV), whole-brain volume including ventricles (WB+V) and a more refined measure of whole-brain volume with ventricles extracted (WB). We compared the relative efficacy of these three volumetric adjustment methods and visual ratings of hippocampal size in predicting memory performance using linear regression. All four measures of hippocampal size were significant predictors of memory performance. TICV-adjusted volumes performed most poorly in accounting for variance in memory scores. Hippocampal volumes adjusted by either measure of whole-brain volume performed equally well, although qualitative visual ratings of the hippocampus were at least as effective as the volumetric measures in predicting memory performance in community-dwelling individuals in the ninth or tenth decade of life. (orig.)

  2. Imbalance of incidental encoding across tasks: an explanation for non-memory-related hippocampal activations?

    Science.gov (United States)

    Reas, Emilie T; Brewer, James B

    2013-11-01

    Functional neuroimaging studies have increasingly noted hippocampal activation associated with a variety of cognitive functions--such as decision making, attention, perception, incidental learning, prediction, and working memory--that have little apparent relation to declarative memory. Such findings might be difficult to reconcile with classical hippocampal lesion studies that show remarkable sparing of cognitive functions outside the realm of declarative memory. Even the oft-reported hippocampal activations during confident episodic retrieval are not entirely congruent with evidence that hippocampal lesions reliably impair encoding but inconsistently affect retrieval. Here we explore the conditions under which the hippocampus responds during episodic recall and recognition. Our findings suggest that anterior hippocampal activity may be related to the imbalance of incidental encoding across tasks and conditions rather than due to retrieval per se. Incidental encoding and hippocampal activity may be reduced during conditions where retrieval requires greater attentional engagement. During retrieval, anterior hippocampal activity decreases with increasing search duration and retrieval effort, and this deactivation corresponds with a coincident impaired encoding of the external environment (Israel, Seibert, Black, & Brewer, 2010; Reas & Brewer, 2013; Reas, Gimbel, Hales, & Brewer, 2011). In light of this emerging evidence, we discuss the proposal that some hippocampal activity observed during memory retrieval, or other non-memory conditions, may in fact be attributable to concomitant encoding activity that is regulated by the attentional demands of the principal task. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  3. Epigenetic control of hippocampal stem cells: modulation by hyperactivation, glucocorticoids and aging

    NARCIS (Netherlands)

    Schouten, M.

    2015-01-01

    The adult brain has the ability to structurally and functionally adapt to changes in its environment. Examples of these adaptations are the addition of new neurons to neurogenic regions such as the hippocampal dentate gyrus, termed adult hippocampal neurogenesis, and alterations in neuronal

  4. Intermediate levels of hippocampal activity appear optimal for associative memory formation.

    NARCIS (Netherlands)

    Liu, X.; Qin, S.; Rijpkema, M.J.P.; Luo, J.; Fernandez, G.S.E.

    2010-01-01

    BACKGROUND: It is well established that hippocampal activity is positively related to effective associative memory formation. However, in biological systems often optimal levels of activity are contrasted by both sub- and supra-optimal levels. Sub-optimal levels of hippocampal activity are commonly

  5. Hippocampal volume measurement in patients with Meniere's disease : a pilot study

    NARCIS (Netherlands)

    van Cruijsen, Nynke; Hiemstra, Wilma M.; Meiners, Linda C.; Wit, Hero P.; Albers, Frans W. J.

    2007-01-01

    Conclusion. No signs of chronic stress as in hippocampal atrophy were present in patients with Meniere's disease. Objective. To evaluate the effect of chronic stress (allostatic load) by measuring hippocampal volume in patients with Meniere's disease. Subjects and methods. Ten patients with

  6. Associations between hippocampal morphometry and neuropathologic markers of Alzheimer's disease using 7 T MRI

    Directory of Open Access Journals (Sweden)

    Anna E. Blanken

    2017-01-01

    Full Text Available Hippocampal atrophy, amyloid plaques, and neurofibrillary tangles are established pathologic markers of Alzheimer's disease. We analyzed the temporal lobes of 9 Alzheimer's dementia (AD and 7 cognitively normal (NC subjects. Brains were scanned post-mortem at 7 Tesla. We extracted hippocampal volumes and radial distances using automated segmentation techniques. Hippocampal slices were stained for amyloid beta (Aβ, tau, and cresyl violet to evaluate neuronal counts. The hippocampal subfields, CA1, CA2, CA3, CA4, and subiculum were manually traced so that the neuronal counts, Aβ, and tau burden could be obtained for each region. We used linear regression to detect associations between hippocampal atrophy in 3D, clinical diagnosis and total as well as subfield pathology burden measures. As expected, we found significant correlations between hippocampal radial distance and mean neuronal count, as well as diagnosis. There were subfield specific associations between hippocampal radial distance and tau in CA2, and cresyl violet neuronal counts in CA1 and subiculum. These results provide further validation for the European Alzheimer's Disease Consortium Alzheimer's Disease Neuroimaging Initiative Center Harmonized Hippocampal Segmentation Protocol (HarP.

  7. Encoding, Consolidation, and Retrieval of Contextual Memory: Differential Involvement of Dorsal CA3 and CA1 Hippocampal Subregions

    Science.gov (United States)

    Daumas, Stephanie; Halley, Helene; Frances, Bernard; Lassalle, Jean-Michel

    2005-01-01

    Studies on human and animals shed light on the unique hippocampus contributions to relational memory. However, the particular role of each hippocampal subregion in memory processing is still not clear. Hippocampal computational models and theories have emphasized a unique function in memory for each hippocampal subregion, with the CA3 area acting…

  8. Radiation Dose–Dependent Hippocampal Atrophy Detected With Longitudinal Volumetric Magnetic Resonance Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Seibert, Tyler M.; Karunamuni, Roshan [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States); Bartsch, Hauke [Department of Radiology, University of California, San Diego, La Jolla, California (United States); Kaifi, Samar [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States); Krishnan, Anitha Priya [Department of Radiology, University of California, San Diego, La Jolla, California (United States); Dalia, Yoseph; Burkeen, Jeffrey; Murzin, Vyacheslav; Moiseenko, Vitali [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States); Kuperman, Joshua; White, Nathan S. [Department of Radiology, University of California, San Diego, La Jolla, California (United States); Brewer, James B. [Department of Radiology, University of California, San Diego, La Jolla, California (United States); Department of Neurosciences, University of California, San Diego, La Jolla, California (United States); Farid, Nikdokht [Department of Radiology, University of California, San Diego, La Jolla, California (United States); McDonald, Carrie R. [Department of Psychiatry, University of California, San Diego, La Jolla, California (United States); Hattangadi-Gluth, Jona A., E-mail: jhattangadi@ucsd.edu [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States)

    2017-02-01

    Purpose: After radiation therapy (RT) to the brain, patients often experience memory impairment, which may be partially mediated by damage to the hippocampus. Hippocampal sparing in RT planning is the subject of recent and ongoing clinical trials. Calculating appropriate hippocampal dose constraints would be improved by efficient in vivo measurements of hippocampal damage. In this study we sought to determine whether brain RT was associated with dose-dependent hippocampal atrophy. Methods and Materials: Hippocampal volume was measured with magnetic resonance imaging (MRI) in 52 patients who underwent fractionated, partial brain RT for primary brain tumors. Study patients had high-resolution, 3-dimensional volumetric MRI before and 1 year after RT. Images were processed using software with clearance from the US Food and Drug Administration and Conformité Européene marking for automated measurement of hippocampal volume. Automated results were inspected visually for accuracy. Tumor and surgical changes were censored. Mean hippocampal dose was tested for correlation with hippocampal atrophy 1 year after RT. Average hippocampal volume change was also calculated for hippocampi receiving high (>40 Gy) or low (<10 Gy) mean RT dose. A multivariate analysis was conducted with linear mixed-effects modeling to evaluate other potential predictors of hippocampal volume change, including patient (random effect), age, hemisphere, sex, seizure history, and baseline volume. Statistical significance was evaluated at α = 0.05. Results: Mean hippocampal dose was significantly correlated with hippocampal volume loss (r=−0.24, P=.03). Mean hippocampal volume was significantly reduced 1 year after high-dose RT (mean −6%, P=.009) but not after low-dose RT. In multivariate analysis, both RT dose and patient age were significant predictors of hippocampal atrophy (P<.01). Conclusions: The hippocampus demonstrates radiation dose–dependent atrophy after treatment for brain

  9. Optogenetic stimulation of a hippocampal engram activates fear memory recall.

    Science.gov (United States)

    Liu, Xu; Ramirez, Steve; Pang, Petti T; Puryear, Corey B; Govindarajan, Arvind; Deisseroth, Karl; Tonegawa, Susumu

    2012-03-22

    A specific memory is thought to be encoded by a sparse population of neurons. These neurons can be tagged during learning for subsequent identification and manipulation. Moreover, their ablation or inactivation results in reduced memory expression, suggesting their necessity in mnemonic processes. However, the question of sufficiency remains: it is unclear whether it is possible to elicit the behavioural output of a specific memory by directly activating a population of neurons that was active during learning. Here we show in mice that optogenetic reactivation of hippocampal neurons activated during fear conditioning is sufficient to induce freezing behaviour. We labelled a population of hippocampal dentate gyrus neurons activated during fear learning with channelrhodopsin-2 (ChR2) and later optically reactivated these neurons in a different context. The mice showed increased freezing only upon light stimulation, indicating light-induced fear memory recall. This freezing was not detected in non-fear-conditioned mice expressing ChR2 in a similar proportion of cells, nor in fear-conditioned mice with cells labelled by enhanced yellow fluorescent protein instead of ChR2. Finally, activation of cells labelled in a context not associated with fear did not evoke freezing in mice that were previously fear conditioned in a different context, suggesting that light-induced fear memory recall is context specific. Together, our findings indicate that activating a sparse but specific ensemble of hippocampal neurons that contribute to a memory engram is sufficient for the recall of that memory. Moreover, our experimental approach offers a general method of mapping cellular populations bearing memory engrams.

  10. Adaptive emotional memory: the key hippocampal-amygdalar interaction.

    Science.gov (United States)

    Desmedt, Aline; Marighetto, Aline; Richter-Levin, Gal; Calandreau, Ludovic

    2015-01-01

    For centuries philosophical and clinical studies have emphasized a fundamental dichotomy between emotion and cognition, as, for instance, between behavioral/emotional memory and explicit/representative memory. However, the last few decades cognitive neuroscience have highlighted data indicating that emotion and cognition, as well as their underlying neural networks, are in fact in close interaction. First, it turns out that emotion can serve cognition, as exemplified by its critical contribution to decision-making or to the enhancement of episodic memory. Second, it is also observed that reciprocally cognitive processes as reasoning, conscious appraisal or explicit representation of events can modulate emotional responses, like promoting or reducing fear. Third, neurobiological data indicate that reciprocal amygdalar-hippocampal influences underlie such mutual regulation of emotion and cognition. While supporting this view, the present review discusses experimental data, obtained in rodents, indicating that the hippocampal and amygdalar systems not only regulate each other and their functional outcomes, but also qualify specific emotional memory representations through specific activations and interactions. Specifically, we review consistent behavioral, electrophysiological, pharmacological, biochemical and imaging data unveiling a direct contribution of both the amygdala and hippocampal-septal system to the identification of the predictor of a threat in different situations of fear conditioning. Our suggestion is that these two brain systems and their interplay determine the selection of relevant emotional stimuli, thereby contributing to the adaptive value of emotional memory. Hence, beyond the mutual quantitative regulation of these two brain systems described so far, we develop the idea that different activations of the hippocampus and amygdala, leading to specific configurations of neural activity, qualitatively impact the formation of emotional memory

  11. Hippocampal Astrocytes in Migrating and Wintering Semipalmated Sandpiper Calidris pusilla.

    Science.gov (United States)

    Carvalho-Paulo, Dario; de Morais Magalhães, Nara G; de Almeida Miranda, Diego; Diniz, Daniel G; Henrique, Ediely P; Moraes, Isis A M; Pereira, Patrick D C; de Melo, Mauro A D; de Lima, Camila M; de Oliveira, Marcus A; Guerreiro-Diniz, Cristovam; Sherry, David F; Diniz, Cristovam W P

    2017-01-01

    Seasonal migratory birds return to the same breeding and wintering grounds year after year, and migratory long-distance shorebirds are good examples of this. These tasks require learning and long-term spatial memory abilities that are integrated into a navigational system for repeatedly locating breeding, wintering, and stopover sites. Previous investigations focused on the neurobiological basis of hippocampal plasticity and numerical estimates of hippocampal neurogenesis in birds but only a few studies investigated potential contributions of glial cells to hippocampal-dependent tasks related to migration. Here we hypothesized that the astrocytes of migrating and wintering birds may exhibit significant morphological and numerical differences connected to the long-distance flight. We used as a model the semipalmated sandpiper Calidris pusilla , that migrates from northern Canada and Alaska to South America. Before the transatlantic non-stop long-distance component of their flight, the birds make a stopover at the Bay of Fundy in Canada. To test our hypothesis, we estimated total numbers and compared the three-dimensional (3-D) morphological features of adult C. pusilla astrocytes captured in the Bay of Fundy ( n = 249 cells) with those from birds captured in the coastal region of Bragança, Brazil, during the wintering period ( n = 250 cells). Optical fractionator was used to estimate the number of astrocytes and for 3-D reconstructions we used hierarchical cluster analysis. Both morphological phenotypes showed reduced morphological complexity after the long-distance non-stop flight, but the reduction in complexity was much greater in Type I than in Type II astrocytes. Coherently, we also found a significant reduction in the total number of astrocytes after the transatlantic flight. Taken together these findings suggest that the long-distance non-stop flight altered significantly the astrocytes population and that morphologically distinct astrocytes may play

  12. Differential response of hippocampal subregions to stress and learning.

    Directory of Open Access Journals (Sweden)

    Darby F Hawley

    Full Text Available The hippocampus has two functionally distinct subregions-the dorsal portion, primarily associated with spatial navigation, and the ventral portion, primarily associated with anxiety. In a prior study of chronic unpredictable stress (CUS in rodents, we found that it selectively enhanced cellular plasticity in the dorsal hippocampal subregion while negatively impacting it in the ventral. In the present study, we determined whether this adaptive plasticity in the dorsal subregion would confer CUS rats an advantage in a spatial task-the radial arm water maze (RAWM. RAWM exposure is both stressful and requires spatial navigation, and therefore places demands simultaneously upon both hippocampal subregions. Therefore, we used Western blotting to investigate differential expression of plasticity-associated proteins (brain derived neurotrophic factor [BDNF], proBDNF and postsynaptic density-95 [PSD-95] in the dorsal and ventral subregions following RAWM exposure. Lastly, we used unbiased stereology to compare the effects of CUS on proliferation, survival and neuronal differentiation of cells in the dorsal and ventral hippocampal subregions. We found that CUS and exposure to the RAWM both increased corticosterone, indicating that both are stressful; nevertheless, CUS animals had significantly better long-term spatial memory. We also observed a subregion-specific pattern of protein expression following RAWM, with proBDNF increased in the dorsal and decreased in the ventral subregion, while PSD-95 was selectively upregulated in the ventral. Finally, consistent with our previous study, we found that CUS most negatively affected neurogenesis in the ventral (compared to the dorsal subregion. Taken together, our data support a dual role for the hippocampus in stressful experiences, with the more resilient dorsal portion undergoing adaptive plasticity (perhaps to facilitate escape from or neutralization of the stressor, and the ventral portion involved in

  13. Hippocampal Astrocytes in Migrating and Wintering Semipalmated Sandpiper Calidris pusilla

    Directory of Open Access Journals (Sweden)

    Dario Carvalho-Paulo

    2018-01-01

    Full Text Available Seasonal migratory birds return to the same breeding and wintering grounds year after year, and migratory long-distance shorebirds are good examples of this. These tasks require learning and long-term spatial memory abilities that are integrated into a navigational system for repeatedly locating breeding, wintering, and stopover sites. Previous investigations focused on the neurobiological basis of hippocampal plasticity and numerical estimates of hippocampal neurogenesis in birds but only a few studies investigated potential contributions of glial cells to hippocampal-dependent tasks related to migration. Here we hypothesized that the astrocytes of migrating and wintering birds may exhibit significant morphological and numerical differences connected to the long-distance flight. We used as a model the semipalmated sandpiper Calidris pusilla, that migrates from northern Canada and Alaska to South America. Before the transatlantic non-stop long-distance component of their flight, the birds make a stopover at the Bay of Fundy in Canada. To test our hypothesis, we estimated total numbers and compared the three-dimensional (3-D morphological features of adult C. pusilla astrocytes captured in the Bay of Fundy (n = 249 cells with those from birds captured in the coastal region of Bragança, Brazil, during the wintering period (n = 250 cells. Optical fractionator was used to estimate the number of astrocytes and for 3-D reconstructions we used hierarchical cluster analysis. Both morphological phenotypes showed reduced morphological complexity after the long-distance non-stop flight, but the reduction in complexity was much greater in Type I than in Type II astrocytes. Coherently, we also found a significant reduction in the total number of astrocytes after the transatlantic flight. Taken together these findings suggest that the long-distance non-stop flight altered significantly the astrocytes population and that morphologically distinct astrocytes

  14. Regional hippocampal volumes and development predict learning and memory.

    Science.gov (United States)

    Tamnes, Christian K; Walhovd, Kristine B; Engvig, Andreas; Grydeland, Håkon; Krogsrud, Stine K; Østby, Ylva; Holland, Dominic; Dale, Anders M; Fjell, Anders M

    2014-01-01

    The hippocampus is an anatomically and functionally heterogeneous structure, but longitudinal studies of its regional development are scarce and it is not known whether protracted maturation of the hippocampus in adolescence is related to memory development. First, we investigated hippocampal subfield development using 170 longitudinally acquired brain magnetic resonance imaging scans from 85 participants aged 8-21 years. Hippocampal subfield volumes were estimated by the use of automated segmentation of 7 subfields, including the cornu ammonis (CA) sectors and the dentate gyrus (DG), while longitudinal subfield volumetric change was quantified using a nonlinear registration procedure. Second, associations between subfield volumes and change and verbal learning/memory across multiple retention intervals (5 min, 30 min and 1 week) were tested. It was hypothesized that short and intermediate memory would be more closely related to CA2-3/CA4-DG and extended, remote memory to CA1. Change rates were significantly different across hippocampal subfields, but nearly all subfields showed significant volume decreases over time throughout adolescence. Several subfield volumes were larger in the right hemisphere and in males, while for change rates there were no hemisphere or sex differences. Partly in support of the hypotheses, greater volume of CA1 and CA2-3 was related to recall and retention after an extended delay, while longitudinal reduction of CA2-3 and CA4-DG was related to learning. This suggests continued regional development of the hippocampus across adolescence and that volume and volume change in specific subfields differentially predict verbal learning and memory over different retention intervals, but future high-resolution studies are called for. © 2014 S. Karger AG, Basel.

  15. The role of endoplasmic reticulum stress in hippocampal insulin resistance.

    Science.gov (United States)

    Sims-Robinson, Catrina; Bakeman, Anna; Glasser, Rebecca; Boggs, Janet; Pacut, Crystal; Feldman, Eva L

    2016-03-01

    Metabolic syndrome, which includes hypertension, hyperglycemia, obesity, insulin resistance, and dyslipidemia, has a negative impact on cognitive health. Endoplasmic reticulum (ER) stress is activated during metabolic syndrome, however it is not known which factor associated with metabolic syndrome contributes to this stress. ER stress has been reported to play a role in the development of insulin resistance in peripheral tissues. The role of ER stress in the development of insulin resistance in hippocampal neurons is not known. In the current study, we investigated ER stress in the hippocampus of 3 different mouse models of metabolic syndrome: the C57BL6 mouse on a high fat (HF) diet; apolipoprotein E, leptin, and apolipoprotein B-48 deficient (ApoE 3KO) mice; and the low density lipoprotein receptor, leptin, and apolipoprotein B-48 deficient (LDLR 3KO) mice. We demonstrate that ER stress is activated in the hippocampus of HF mice, and for the first time, in ApoE 3KO mice, but not LDLR 3KO mice. The HF and ApoE 3KO mice are hyperglycemic; however, the LDLR 3KO mice have normal glycemia. This suggests that hyperglycemia may play a role in the activation of ER stress in the hippocampus. Similarly, we also demonstrate that impaired insulin signaling is only present in the HF and ApoE 3KO mice, which suggests that ER stress may play a role in insulin resistance in the hippocampus. To confirm this we pharmacologically induced ER stress with thapsigargin in human hippocampal neurons. We demonstrate for the first time that thapsigargin leads to ER stress and impaired insulin signaling in human hippocampal neurons. Our results may provide a potential mechanism that links metabolic syndrome and cognitive health. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Hippocampal volume is decreased in adults with hypothyroidism.

    Science.gov (United States)

    Cooke, Gillian E; Mullally, Sinead; Correia, Neuman; O'Mara, Shane M; Gibney, James

    2014-03-01

    Thyroid hormones are important for the adult brain, particularly regions of the hippocampus including the dentate gyrus and CA1 and CA3 regions. The hippocampus is a thyroid hormone receptor-rich region of the brain involved in learning and memory. Consequently, alterations in thyroid hormone levels have been reported to impair hippocampal-associated learning and memory, synaptic plasticity, and neurogenesis. While these effects have been shown primarily in developing rats, as well as in adult rats, little is known about the effects in adult humans. There are currently no data regarding structural changes in the hippocampus as a result of adult-onset hypothyroidism. We aimed to establish whether hippocampal volume was reduced in patients with untreated adult-onset hypothyroidism compared to age-matched healthy controls. High-resolution magnetization-prepared rapid acquisition with gradient echo (MPRAGE) scans were performed on 11 untreated hypothyroid adults and 9 age-matched control subjects. Hypothyroidism was diagnosed based on increased levels of thyrotropin (TSH) and reduced levels of free thyroxine (fT4). Volumetric analysis of the right and left hippocampal regions, using functional magnetic resonance imaging of the brain (FMRIB) integrated registration and segmentation tool (FIRST), demonstrated significant volume reduction in the right hippocampus in the hypothyroid patients relative to the control group. These findings provide preliminary evidence that hypothyroidism results in structural deficits in the adult human brain. Decreases in volume in the right hippocampus were evident in patients with adult-onset overt hypothyroidism, supporting some of the findings in animal models.

  17. Brain Injury-Induced Synaptic Reorganization in Hilar Inhibitory Neurons Is Differentially Suppressed by Rapamycin.

    Science.gov (United States)

    Butler, Corwin R; Boychuk, Jeffery A; Smith, Bret N

    2017-01-01

    Following traumatic brain injury (TBI), treatment with rapamycin suppresses mammalian (mechanistic) target of rapamycin (mTOR) activity and specific components of hippocampal synaptic reorganization associated with altered cortical excitability and seizure susceptibility. Reemergence of seizures after cessation of rapamycin treatment suggests, however, an incomplete suppression of epileptogenesis. Hilar inhibitory interneurons regulate dentate granule cell (DGC) activity, and de novo synaptic input from both DGCs and CA3 pyramidal cells after TBI increases their excitability but effects of rapamycin treatment on the injury-induced plasticity of interneurons is only partially described. Using transgenic mice in which enhanced green fluorescent protein (eGFP) is expressed in the somatostatinergic subset of hilar inhibitory interneurons, we tested the effect of daily systemic rapamycin treatment (3 mg/kg) on the excitability of hilar inhibitory interneurons after controlled cortical impact (CCI)-induced focal brain injury. Rapamycin treatment reduced, but did not normalize, the injury-induced increase in excitability of surviving eGFP+ hilar interneurons. The injury-induced increase in response to selective glutamate photostimulation of DGCs was reduced to normal levels after mTOR inhibition, but the postinjury increase in synaptic excitation arising from CA3 pyramidal cell activity was unaffected by rapamycin treatment. The incomplete suppression of synaptic reorganization in inhibitory circuits after brain injury could contribute to hippocampal hyperexcitability and the eventual reemergence of the epileptogenic process upon cessation of mTOR inhibition. Further, the cell-selective effect of mTOR inhibition on synaptic reorganization after CCI suggests possible mechanisms by which rapamycin treatment modifies epileptogenesis in some models but not others.

  18. Evidence of Hippocampal Structural Alterations in Gulf War Veterans With Predicted Exposure to the Khamisiyah Plume.

    Science.gov (United States)

    Chao, Linda L; Raymond, Morgan R; Leo, Cynthia K; Abadjian, Linda R

    2017-10-01

    To replicate and expand our previous findings of smaller hippocampal volumes in Gulf War (GW) veterans with predicted exposure to the Khamisiyah plume. Total hippocampal and hippocampal subfield volumes were quantified from 3 Tesla magnetic resonance images in 113 GW veterans, 62 of whom had predicted exposure as per the Department of Defense exposure models. Veterans with predicted exposure had smaller total hippocampal and CA3/dentate gyrus volumes compared with unexposed veterans, even after accounting for potentially confounding genetic and clinical variables. Among veterans with predicted exposure, memory performance was positively correlated with hippocampal volume and negatively correlated with estimated exposure levels and self-reported memory difficulties. These results replicate and extend our previous finding that low-level exposure to chemical nerve agents from the Khamisiyah pit demolition has detrimental, lasting effects on brain structure and function.

  19. Nuclear receptor TLX stimulates hippocampal neurogenesis and enhances learning and memory in a transgenic mouse model.

    Science.gov (United States)

    Murai, Kiyohito; Qu, Qiuhao; Sun, GuoQiang; Ye, Peng; Li, Wendong; Asuelime, Grace; Sun, Emily; Tsai, Guochuan E; Shi, Yanhong

    2014-06-24

    The role of the nuclear receptor TLX in hippocampal neurogenesis and cognition has just begun to be explored. In this study, we generated a transgenic mouse model that expresses TLX under the control of the promoter of nestin, a neural precursor marker. Transgenic TLX expression led to mice with enlarged brains with an elongated hippocampal dentate gyrus and increased numbers of newborn neurons. Specific expression of TLX in adult hippocampal dentate gyrus via lentiviral transduction increased the numbers of BrdU(+) cells and BrdU(+)NeuN(+) neurons. Furthermore, the neural precursor-specific expression of the TLX transgene substantially rescued the neurogenic defects of TLX-null mice. Consistent with increased neurogenesis in the hippocampus, the TLX transgenic mice exhibited enhanced cognition with increased learning and memory. These results suggest a strong association between hippocampal neurogenesis and cognition, as well as significant contributions of TLX to hippocampal neurogenesis, learning, and memory.

  20. Porencephaly in dogs and cats: relationships between magnetic resonance imaging (MRI) features and hippocampal atrophy.

    Science.gov (United States)

    Hori, Ai; Hanazono, Kiwamu; Miyoshi, Kenjirou; Nakade, Tetsuya

    2015-07-01

    Porencephaly is the congenital cerebral defect and a rare malformation and described few MRI reports in veterinary medicine. MRI features of porencephaly are recognized the coexistence with the unilateral/bilateral hippocampal atrophy, caused by the seizure symptoms in human medicine. We studied 2 dogs and 1 cat with congenital porencephaly to characterize the clinical signs and MRI, and to discuss the associated MRI with hippocampal atrophy. The main clinical sign was the seizure symptoms, and all had hippocampal atrophy at the lesion side or the larger defect side. There is association between hippocampal atrophy or the cyst volume and the severe of clinical signs, and it is suggested that porencephaly coexists with hippocampal atrophy as well as humans in this study.

  1. Hippocampal dentation: Structural variation and its association with episodic memory in healthy adults.

    Science.gov (United States)

    Fleming Beattie, Julia; Martin, Roy C; Kana, Rajesh K; Deshpande, Hrishikesh; Lee, Seongtaek; Curé, Joel; Ver Hoef, Lawrence

    2017-07-01

    While the hippocampus has long been identified as a structure integral to memory, the relationship between morphology and function has yet to be fully explained. We present an analysis of hippocampal dentation, a morphological feature previously unexplored in regard to its relationship with episodic memory. "Hippocampal dentation" in this case refers to surface convolutions, primarily present in the CA1/subiculum on the inferior aspect of the hippocampus. Hippocampal dentation was visualized using ultra-high resolution structural MRI and evaluated using a novel visual rating scale. The degree of hippocampal dentation was found to vary considerably across individuals, and was positively associated with verbal memory recall and visual memory recognition in a sample of 22 healthy adults. This study is the first to characterize the variation in hippocampal dentation in a healthy cohort and to demonstrate its association with aspects of episodic memory. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Canine hippocampal formation composited into three-dimensional structure using MPRAGE.

    Science.gov (United States)

    Jung, Mi-Ae; Nahm, Sang-Soep; Lee, Min-Su; Lee, In-Hye; Lee, Ah-Ra; Jang, Dong-Pyo; Kim, Young-Bo; Cho, Zang-Hee; Eom, Ki-Dong

    2010-07-01

    This study was performed to anatomically illustrate the living canine hippocampal formation in three-dimensions (3D), and to evaluate its relationship to surrounding brain structures. Three normal beagle dogs were scanned on a MR scanner with inversion recovery segmented 3D gradient echo sequence (known as MP-RAGE: Magnetization Prepared Rapid Gradient Echo). The MRI data was manually segmented and reconstructed into a 3D model using the 3D slicer software tool. From the 3D model, the spatial relationships between hippocampal formation and surrounding structures were evaluated. With the increased spatial resolution and contrast of the MPRAGE, the canine hippocampal formation was easily depicted. The reconstructed 3D image allows easy understanding of the hippocampal contour and demonstrates the structural relationship of the hippocampal formation to surrounding structures in vivo.

  3. Trimethyltin (TMT) neurotoxicity in organotypic rat hippocampal slice cultures

    DEFF Research Database (Denmark)

    Noraberg, J; Gramsbergen, J B; Fonnum, F

    1998-01-01

    ) propidium iodide (PI) uptake, (b) lactate dehydrogenase (LDH) efflux into the culture medium, (c) cellular cobalt uptake as an index of calcium influx, (d) ordinary Nissl cell staining, and (e) immunohistochemical staining for microtubule-associated protein 2 (MAP-2). Cellular degeneration as assessed...... to in vivo cell stain observations of rats acutely exposed to TMT. The mean PI uptake of the cultures and the LDH efflux into the medium were highly correlated. The combined results obtained by the different markers indicate that the hippocampal slice culture method is a feasible model for further studies...

  4. Spatial navigation impairment is proportional to right hippocampal volume

    Czech Academy of Sciences Publication Activity Database

    Nedelská, Z.; Andel, R.; Laczó, J.; Vlček, Kamil; Hořínek, D.; Lisý, J.; Sheardová, K.; Bureš, Jan; Hort, J.

    2012-01-01

    Roč. 109, č. 7 (2012), s. 2590-2594 ISSN 0027-8424 R&D Projects: GA ČR(CZ) GA309/09/1053; GA ČR(CZ) GA309/09/0286; GA MŠk(CZ) 1M0517; GA MŠk(CZ) LC554 Grant - others:GA MZd(CZ) NS10331 Institutional research plan: CEZ:AV0Z50110509 Keywords : spatial navigation * Alzheimer’s Disease * hippocampal volume Subject RIV: FH - Neurology Impact factor: 9.737, year: 2012

  5. Zolpidem Reduces Hippocampal Neuronal Activity in Freely Behaving Mice: A Large Scale Calcium Imaging Study with Miniaturized Fluorescence Microscope

    Science.gov (United States)

    Berdyyeva, Tamara; Otte, Stephani; Aluisio, Leah; Ziv, Yaniv; Burns, Laurie D.; Dugovic, Christine; Yun, Sujin; Ghosh, Kunal K.; Schnitzer, Mark J.; Lovenberg, Timothy; Bonaventure, Pascal

    2014-01-01

    Therapeutic drugs for cognitive and psychiatric disorders are often characterized by their molecular mechanism of action. Here we demonstrate a new approach to elucidate drug action on large-scale neuronal activity by tracking somatic calcium dynamics in hundreds of CA1 hippocampal neurons of pharmacologically manipulated behaving mice. We used an adeno-associated viral vector to express the calcium sensor GCaMP3 in CA1 pyramidal cells under control of the CaMKII promoter and a miniaturized microscope to observe cellular dynamics. We visualized these dynamics with and without a systemic administration of Zolpidem, a GABAA agonist that is the most commonly prescribed drug for the treatment of insomnia in the United States. Despite growing concerns about the potential adverse effects of Zolpidem on memory and cognition, it remained unclear whether Zolpidem alters neuronal activity in the hippocampus, a brain area critical for cognition and memory. Zolpidem, when delivered at a dose known to induce and prolong sleep, strongly suppressed CA1 calcium signaling. The rate of calcium transients after Zolpidem administration was significantly lower compared to vehicle treatment. To factor out the contribution of changes in locomotor or physiological conditions following Zolpidem treatment, we compared the cellular activity across comparable epochs matched by locomotor and physiological assessments. This analysis revealed significantly depressive effects of Zolpidem regardless of the animal’s state. Individual hippocampal CA1 pyramidal cells differed in their responses to Zolpidem with the majority (∼65%) significantly decreasing the rate of calcium transients, and a small subset (3%) showing an unexpected and significant increase. By linking molecular mechanisms with the dynamics of neural circuitry and behavioral states, this approach has the potential to contribute substantially to the development of new therapeutics for the treatment of CNS disorders. PMID:25372144

  6. Zolpidem reduces hippocampal neuronal activity in freely behaving mice: a large scale calcium imaging study with miniaturized fluorescence microscope.

    Directory of Open Access Journals (Sweden)

    Tamara Berdyyeva

    Full Text Available Therapeutic drugs for cognitive and psychiatric disorders are often characterized by their molecular mechanism of action. Here we demonstrate a new approach to elucidate drug action on large-scale neuronal activity by tracking somatic calcium dynamics in hundreds of CA1 hippocampal neurons of pharmacologically manipulated behaving mice. We used an adeno-associated viral vector to express the calcium sensor GCaMP3 in CA1 pyramidal cells under control of the CaMKII promoter and a miniaturized microscope to observe cellular dynamics. We visualized these dynamics with and without a systemic administration of Zolpidem, a GABAA agonist that is the most commonly prescribed drug for the treatment of insomnia in the United States. Despite growing concerns about the potential adverse effects of Zolpidem on memory and cognition, it remained unclear whether Zolpidem alters neuronal activity in the hippocampus, a brain area critical for cognition and memory. Zolpidem, when delivered at a dose known to induce and prolong sleep, strongly suppressed CA1 calcium signaling. The rate of calcium transients after Zolpidem administration was significantly lower compared to vehicle treatment. To factor out the contribution of changes in locomotor or physiological conditions following Zolpidem treatment, we compared the cellular activity across comparable epochs matched by locomotor and physiological assessments. This analysis revealed significantly depressive effects of Zolpidem regardless of the animal's state. Individual hippocampal CA1 pyramidal cells differed in their responses to Zolpidem with the majority (∼ 65% significantly decreasing the rate of calcium transients, and a small subset (3% showing an unexpected and significant increase. By linking molecular mechanisms with the dynamics of neural circuitry and behavioral states, this approach has the potential to contribute substantially to the development of new therapeutics for the treatment of CNS disorders.

  7. Beyond viral suppression of HIV

    DEFF Research Database (Denmark)

    Lazarus, Jeffrey V.; Safreed-Harmon, Kelly; Barton, Simon E

    2016-01-01

    BACKGROUND: In 2016, the World Health Organization (WHO) adopted a new Global Health Sector Strategy on HIV for 2016-2021. It establishes 15 ambitious targets, including the '90-90-90' target calling on health systems to reduce under-diagnosis of HIV, treat a greater number of those diagnosed......, and ensure that those being treated achieve viral suppression. DISCUSSION: The WHO strategy calls for person-centered chronic care for people living with HIV (PLHIV), implicitly acknowledging that viral suppression is not the ultimate goal of treatment. However, it stops short of providing an explicit target...... for health-related quality of life. It thus fails to take into account the needs of PLHIV who have achieved viral suppression but still must contend with other intense challenges such as serious non-communicable diseases, depression, anxiety, financial stress, and experiences of or apprehension about HIV...

  8. Impact of hippocampal subfield histopathology in episodic memory impairment in mesial temporal lobe epilepsy and hippocampal sclerosis.

    Science.gov (United States)

    Comper, Sandra Mara; Jardim, Anaclara Prada; Corso, Jeana Torres; Gaça, Larissa Botelho; Noffs, Maria Helena Silva; Lancellotti, Carmen Lúcia Penteado; Cavalheiro, Esper Abrão; Centeno, Ricardo Silva; Yacubian, Elza Márcia Targas

    2017-10-01

    The objective of the study was to analyze preoperative visual and verbal episodic memories in a homogeneous series of patients with mesial temporal lobe epilepsy (MTLE) and unilateral hippocampal sclerosis (HS) submitted to corticoamygdalohippocampectomy and its association with neuronal cell density of each hippocampal subfield. The hippocampi of 72 right-handed patients were collected and prepared for histopathological examination. Hippocampal sclerosis patterns were determined, and neuronal cell density was calculated. Preoperatively, two verbal and two visual memory tests (immediate and delayed recalls) were applied, and patients were divided into two groups, left and right MTLE (36/36). There were no statistical differences between groups regarding demographic and clinical data. Cornu Ammonis 4 (CA4) neuronal density was significantly lower in the right hippocampus compared with the left (p=0.048). The groups with HS presented different memory performance - the right HS were worse in visual memory test [Complex Rey Figure, immediate (p=0.001) and delayed (p=0.009)], but better in one verbal task [RAVLT delayed (p=0.005)]. Multiple regression analysis suggested that the verbal memory performance of the group with left HS was explained by CA1 neuronal density since both tasks were significantly influenced by CA1 [Logical Memory immediate recall (p=0.050) and Logical Memory and RAVLT delayed recalls (p=0.004 and p=0.001, respectively)]. For patients with right HS, both CA1 subfield integrity (p=0.006) and epilepsy duration (p=0.012) explained Complex Rey Figure immediate recall performance. Ultimately, epilepsy duration also explained the performance in the Complex Rey Figure delayed recall (pepilepsy duration were associated with visual memory performance in patients with right HS. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Aging and repeated thought suppression success.

    Directory of Open Access Journals (Sweden)

    Ann E Lambert

    Full Text Available Intrusive thoughts and attempts to suppress them are common, but while suppression may be effective in the short-term, it can increase thought recurrence in the long-term. Because intentional suppression involves controlled processing, and many aspects of controlled processing decline with age, age differences in thought suppression outcomes may emerge, especially over repeated thought suppression attempts as cognitive resources are expended. Using multilevel modeling, we examined age differences in reactions to thought suppression attempts across four thought suppression sequences in 40 older and 42 younger adults. As expected, age differences were more prevalent during suppression than during free monitoring periods, with younger adults indicating longer, more frequent thought recurrences and greater suppression difficulty. Further, younger adults' thought suppression outcomes changed over time, while trajectories for older adults' were relatively stable. Results are discussed in terms of older adults' reduced thought recurrence, which was potentially afforded by age-related changes in reactive control and distractibility.

  10. Accentuation-suppression and scaling

    DEFF Research Database (Denmark)

    Sørensen, Thomas Alrik; Bundesen, Claus

    2012-01-01

    The limitations of the visual short-term memory (VSTM) system have become an increasingly popular field of study. One line of inquiry has focused on the way attention selects objects for encoding into VSTM. Using the framework of the Theory of Visual Attention (TVA; Bundesen, 1990 Psychological...... a scaling mechanism modulating the decision bias of the observer and also through an accentuation-suppression mechanism that modulates the degree of subjective relevance of objects, contracting attention around fewer, highly relevant objects while suppressing less relevant objects. These mechanisms may...

  11. Long-lasting suppression of hippocampal cell proliferation and impaired cognitive performance by methotrexate in the rat

    NARCIS (Netherlands)

    Seigers, Riejanne; Schagen, Sanne B.; Beerling, Wieteke; Boogerd, Willem; Van Tellingen, Olaf; Van Dam, Frits S. A. M.; Koolhaas, Jaap M.; Buwalda, Bauke

    2008-01-01

    Methotrexate (MTX) is a cytostatic agent widely used in combination with other agents as adjuvant chemotherapy for breast cancer and is associated with cognitive impairment as a long-term side effect in some cancer patients. This paper aimed to identify a neurobiological mechanism possibly

  12. Robust hippocampal responsivity during retrieval of consolidated associative memory.

    Science.gov (United States)

    Hattori, Shoai; Chen, Lillian; Weiss, Craig; Disterhoft, John F

    2015-05-01

    A contentious point in memory research is whether or not the hippocampus plays a time-limited role in the consolidation of declarative memories. A widely held view is that declarative memories are initially encoded in the hippocampus, then transferred to the neocortex for long-term storage. Alternate views argue instead that the hippocampus continues to play a role in remote memory recall. These competing theories are largely based on human amnesic and animal lesion/inactivation studies. However, in vivo electrophysiological evidence supporting these views is scarce. Given that other studies examining the role of the hippocampus in remote memory retrieval using lesion and imaging techniques in human and animal models have provided mixed results, it would be particularly useful to gain insight at the in vivo electrophysiological level. Here we report hippocampal single-neuron and theta activity recorded longitudinally during acquisition and remote retrieval of trace eyeblink conditioning. Results from conditioned rabbits were compared to those obtained from yoked pseudo-conditioned control rabbits. Results reveal continued learning-specific hippocampal activity one month after initial acquisition of the task. Our findings yield insight into the normal physiological responses of the hippocampus during memory processes and provide compelling in vivo electrophysiological evidence that the hippocampus is involved in both acquisition and retrieval of consolidated memories. © 2014 The Authors Hippocampus Published by Wiley Periodicals, Inc.

  13. Effects of Aging on Hippocampal Neurogenesis After Irradiation

    International Nuclear Information System (INIS)

    Cheng, Zoey; Li, Yu-Qing; Wong, C. Shun

    2016-01-01

    Purpose: To assess the influence of aging on hippocampal neuronal development after irradiation (IR). Methods and Materials: Male mice, 2, 4, 6, 12, and 18 months of age, were given a single dose of 0 or 5 Gy of IR. A bromodeoxyuridine (BrdU) incorporation study was used to label newborn cells. Neural progenitors, newborn neurons, and microglia in dentate gyrus (DG) were identified by phenotypic markers, and their numbers were quantified by nonbiased stereology 9 weeks after IR. Results: BrdU-positive or newborn cells in DG decreased with aging and after IR. The number of neuroblasts and newborn neurons decreased with aging, and a further significant reduction was observed after IR. Total type 1 cells (the putative neural stem cells), and newborn type 1 cells decreased with aging, and further reduction in total type 1 cells was observed after IR. Aging-associated activation of microglia in hippocampus was enhanced after IR. Conclusions: The aging-associated decline in hippocampal neurogenesis was further inhibited after IR. Ablation of neural progenitors and activation of microglia may contribute to the inhibition of neuronal development after IR across all ages.

  14. Auditory stimuli elicit hippocampal neuronal responses during sleep

    Directory of Open Access Journals (Sweden)

    Ekaterina eVinnik

    2012-06-01

    Full Text Available To investigate how hippocampal neurons code behaviorally salient stimuli, we recorded from neurons in the CA1 region of hippocampus in rats while they learned to associate the presence of sound with water reward. Rats learned to alternate between two reward ports at which, in 50 percent of the trials, sound stimuli were presented followed by water reward after a 3-second delay. Sound at the water port predicted subsequent reward delivery in 100 percent of the trials and the absence of sound predicted reward omission. During this task, 40% of recorded neurons fired differently according to which of the 2 reward ports the rat was visiting. A smaller fraction of neurons demonstrated onset response to sound/nosepoke (19% and reward delivery (24%. When the sounds were played during passive wakefulness, 8% of neurons responded with short latency onset responses; 25% of neurons responded to sounds when they were played during sleep. Based on the current findings and the results of previous experiments we propose the existence of two types of hippocampal neuronal responses to sounds: sound-onset responses with very short latency and longer-lasting sound-specific responses that are likely to be present when the animal is actively engaged in the task. During sleep the short-latency responses in hippocampus are intermingled with sustained activity which in the current experiment was detected for 1-2 seconds.

  15. Hippocampal Dendritic Spines Are Segregated Depending on Their Actin Polymerization.

    Science.gov (United States)

    Domínguez-Iturza, Nuria; Calvo, María; Benoist, Marion; Esteban, José Antonio; Morales, Miguel

    2016-01-01

    Dendritic spines are mushroom-shaped protrusions of the postsynaptic membrane. Spines receive the majority of glutamatergic synaptic inputs. Their morphology, dynamics, and density have been related to synaptic plasticity and learning. The main determinant of spine shape is filamentous actin. Using FRAP, we have reexamined the actin dynamics of individual spines from pyramidal hippocampal neurons, both in cultures and in hippocampal organotypic slices. Our results indicate that, in cultures, the actin mobile fraction is independently regulated at the individual spine level, and mobile fraction values do not correlate with either age or distance from the soma. The most significant factor regulating actin mobile fraction was the presence of astrocytes in the culture substrate. Spines from neurons growing in the virtual absence of astrocytes have a more stable actin cytoskeleton, while spines from neurons growing in close contact with astrocytes show a more dynamic cytoskeleton. According to their recovery time, spines were distributed into two populations with slower and faster recovery times, while spines from slice cultures were grouped into one population. Finally, employing fast lineal acquisition protocols, we confirmed the existence of loci with high polymerization rates within the spine.

  16. Erythropoietin enhances hippocampal long-term potentiation and memory

    Directory of Open Access Journals (Sweden)

    El-Kordi Ahmed

    2008-09-01

    Full Text Available Abstract Background Erythropoietin (EPO improves cognition of human subjects in the clinical setting by as yet unknown mechanisms. We developed a mouse model of robust cognitive improvement by EPO to obtain the first clues of how EPO influences cognition, and how it may act on hippocampal neurons to modulate plasticity. Results We show here that a 3-week treatment of young mice with EPO enhances long-term potentiation (LTP, a cellular correlate of learning processes in the CA1 region of the hippocampus. This treatment concomitantly alters short-term synaptic plasticity and synaptic transmission, shifting the balance of excitatory and inhibitory activity. These effects are accompanied by an improvement of hippocampus dependent memory, persisting for 3 weeks after termination of EPO injections, and are independent of changes in hematocrit. Networks of EPO-treated primary hippocampal neurons develop lower overall spiking activity but enhanced bursting in discrete neuronal assemblies. At the level of developing single neurons, EPO treatment reduces the typical increase in excitatory synaptic transmission without changing the number of synaptic boutons, consistent with prolonged functional silencing of synapses. Conclusion We conclude that EPO improves hippocampus dependent memory by modulating plasticity, synaptic connectivity and activity of memory-related neuronal networks. These mechanisms of action of EPO have to be further exploited for treating neuropsychiatric diseases.

  17. Evidence for regional hippocampal damage in patients with schizophrenia

    International Nuclear Information System (INIS)

    Singh, Sadhana; Khushu, Subash; Kumar, Pawan; Goyal, Satnam; Bhatia, Triptish; Deshpande, Smita N.

    2018-01-01

    Schizophrenia patients show cognitive and mood impairments, including memory loss and depression, suggesting damage in the brain regions. The hippocampus is a brain structure that is significantly involved in memory and mood function and shows impairment in schizophrenia. In the present study, we examined the regional hippocampal changes in schizophrenia patients using voxel-based morphometry (VBM), Freesurfer, and proton magnetic resonance spectroscopy ( 1 H MRS) procedures. 1 H MRS and high-resolution T1-weighted magnetic resonance imaging were collected in both healthy control subjects (N = 28) and schizophrenia patients (N = 28) using 3-Tesla whole body MRI system. Regional hippocampal volume was analyzed using VBM and Freesufer procedures. The relative ratios of the neurometabolites were calculated using linear combination model (LCModel). Compared to controls, schizophrenia patients showed significantly decreased gray matter volume in the hippocampus. Schizophrenia patients also showed significantly reduced glutamate (Glu) and myo-inositol (mI) ratios in the hippocampus. Additionally, significant positive correlation between gray matter volume and Glu/tCr was also observed in the hippocampus in schizophrenia. Our findings provide an evidence for a possible association between structural deficits and metabolic alterations in schizophrenia patients. (orig.)

  18. Effects of Aging on Hippocampal Neurogenesis After Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Zoey [Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); Institute of Medical Science, University of Toronto, Toronto, Ontario (Canada); Li, Yu-Qing [Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); Wong, C. Shun, E-mail: shun.wong@sunnybrook.ca [Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); Institute of Medical Science, University of Toronto, Toronto, Ontario (Canada); Departments of Radiation Oncology and Medical Biophysics, University of Toronto, Toronto, Ontario (Canada)

    2016-04-01

    Purpose: To assess the influence of aging on hippocampal neuronal development after irradiation (IR). Methods and Materials: Male mice, 2, 4, 6, 12, and 18 months of age, were given a single dose of 0 or 5 Gy of IR. A bromodeoxyuridine (BrdU) incorporation study was used to label newborn cells. Neural progenitors, newborn neurons, and microglia in dentate gyrus (DG) were identified by phenotypic markers, and their numbers were quantified by nonbiased stereology 9 weeks after IR. Results: BrdU-positive or newborn cells in DG decreased with aging and after IR. The number of neuroblasts and newborn neurons decreased with aging, and a further significant reduction was observed after IR. Total type 1 cells (the putative neural stem cells), and newborn type 1 cells decreased with aging, and further reduction in total type 1 cells was observed after IR. Aging-associated activation of microglia in hippocampus was enhanced after IR. Conclusions: The aging-associated decline in hippocampal neurogenesis was further inhibited after IR. Ablation of neural progenitors and activation of microglia may contribute to the inhibition of neuronal development after IR across all ages.

  19. Serum vitamin D and hippocampal gray matter volume in schizophrenia.

    Science.gov (United States)

    Shivakumar, Venkataram; Kalmady, Sunil V; Amaresha, Anekal C; Jose, Dania; Narayanaswamy, Janardhanan C; Agarwal, Sri Mahavir; Joseph, Boban; Venkatasubramanian, Ganesan; Ravi, Vasanthapuram; Keshavan, Matcheri S; Gangadhar, Bangalore N

    2015-08-30

    Disparate lines of evidence including epidemiological and case-control studies have increasingly implicated vitamin D in the pathogenesis of schizophrenia. Vitamin D deficiency can lead to dysfunction of the hippocampus--a brain region hypothesized to be critically involved in schizophrenia. In this study, we examined for potential association between serum vitamin D level and hippocampal gray matter volume in antipsychotic-naïve or antipsychotic-free schizophrenia patients (n = 35). Serum vitamin D level was estimated using 25-OH vitamin D immunoassay. Optimized voxel-based morphometry was used to analyze 3-Tesla magnetic resonance imaging (MRI) (1-mm slice thickness). Ninety-seven percent of the schizophrenia patients (n = 34) had sub-optimal levels of serum vitamin D (83%, deficiency; 14%, insufficiency). A significant positive correlation was seen between vitamin D and regional gray matter volume in the right hippocampus after controlling for age, years of education and total intracranial volume (Montreal Neurological Institute (MNI) coordinates: x = 35, y = -18, z = -8; t = 4.34 pFWE(Corrected) = 0.018). These observations support a potential role of vitamin D deficiency in mediating hippocampal volume deficits, possibly through neurotrophic, neuroimmunomodulatory and glutamatergic effects. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Transient extracellular application of gold nanostars increases hippocampal neuronal activity.

    Science.gov (United States)

    Salinas, Kirstie; Kereselidze, Zurab; DeLuna, Frank; Peralta, Xomalin G; Santamaria, Fidel

    2014-08-20

    With the increased use of nanoparticles in biomedical applications there is a growing need to understand the effects that nanoparticles may have on cell function. Identifying these effects and understanding the mechanism through which nanoparticles interfere with the normal functioning of a cell is necessary for any therapeutic or diagnostic application. The aim of this study is to evaluate if gold nanoparticles can affect the normal function of neurons, namely their activity and coding properties. We synthesized star shaped gold nanoparticles of 180 nm average size. We applied the nanoparticles to acute mouse hippocampal slices while recording the action potentials from single neurons in the CA3 region. Our results show that CA3 hippocampal neurons increase their firing rate by 17% after the application of gold nanostars. The increase in excitability lasted for as much as 50 minutes after a transient 5 min application of the nanoparticles. Further analyses of the action potential shape and computational modeling suggest that nanoparticles block potassium channels responsible for the repolarization of the action potentials, thus allowing the cell to increase its firing rate. Our results show that gold nanoparticles can affect the coding properties of neurons by modifying their excitability.

  1. Environmental enrichment normalizes hippocampal timing coding in a malformed hippocampus.

    Directory of Open Access Journals (Sweden)

    Amanda E Hernan

    Full Text Available Neurodevelopmental insults leading to malformations of cortical development (MCD are a common cause of psychiatric disorders, learning impairments and epilepsy. In the methylazoxymethanol (MAM model of MCDs, animals have impairments in spatial cognition that, remarkably, are improved by post-weaning environmental enrichment (EE. To establish how EE impacts network-level mechanisms of spatial cognition, hippocampal in vivo single unit recordings were performed in freely moving animals in an open arena. We took a generalized linear modeling approach to extract fine spike timing (FST characteristics and related these to place cell fidelity used as a surrogate of spatial cognition. We find that MAM disrupts FST and place-modulated rate coding in hippocampal CA1 and that EE improves many FST parameters towards normal. Moreover, FST parameters predict spatial coherence of neurons, suggesting that mechanisms determining altered FST are responsible for impaired cognition in MCDs. This suggests that FST parameters could represent a therapeutic target to improve cognition even in the context of a brain that develops with a structural abnormality.

  2. A computational theory of the hippocampal cognitive map.

    Science.gov (United States)

    O'Keefe, J

    1990-01-01

    Evidence from single unit and lesion studies suggests that the hippocampal formation acts as a spatial or cognitive map (O'Keefe and Nadel, 1978). In this chapter, I summarise some of the unit recording data and then outline the most recent computational version of the cognitive map theory. The novel aspects of the present version of the theory are that it identifies two allocentric parameters, the centroid and the eccentricity, which can be calculated from the array of cues in an environment and which can serve as the bases for an allocentric polar co-ordinate system. Computations within this framework enable the animal to identify its location within an environment, to predict the location which will be reached as a result of any specific movement from that location, and conversely, to calculate the spatial transformation necessary to go from the current location to a desired location. Aspects of the model are identified with the information provided by cells in the hippocampus and dorsal presubiculum. The hippocampal place cells are involved in the calculation of the centroid and the presubicular direction cells in the calculation of the eccentricity.

  3. Electrical coupling between hippocampal astrocytes in rat brain slices.

    Science.gov (United States)

    Meme, William; Vandecasteele, Marie; Giaume, Christian; Venance, Laurent

    2009-04-01

    Gap junctions in astrocytes play a crucial role in intercellular communication by supporting both biochemical and electrical coupling between adjacent cells. Despite the critical role of electrical coupling in the network organization of these glial cells, the electrophysiological properties of gap junctions have been characterized in cultures while no direct evidence has been sought in situ. In the present study, gap-junctional currents were investigated using simultaneous dual whole-cell patch-clamp recordings between astrocytes from rat hippocampal slices. Bidirectional electrotonic coupling was observed in 82% of the cell pairs with an average coupling coefficient of 5.1%. Double patch-clamp analysis indicated that junctional currents were independent of the transjunctional voltage over a range from -100 to +110 mV. Interestingly, astrocytic electrical coupling displayed weak low-pass filtering properties compared to neuronal electrical synapses. Finally, during uncoupling processes triggered by either the gap-junction inhibitor carbenoxolone or endothelin-1, an increase in the input resistance in the injected cell paralleled the decrease in the coupling coefficient. Altogether, these results demonstrate that hippocampal astrocytes are electrically coupled through gap-junction channels characterized by properties that are distinct from those of electrical synapses between neurons. In addition, gap-junctional communication is efficiently regulated by endogenous compounds. This is taken to represent a mode of communication that may have important implications for the functional role of astrocyte networks in situ.

  4. Review: Hippocampal sclerosis in epilepsy: a neuropathology review

    Science.gov (United States)

    Thom, Maria

    2014-01-01

    Hippocampal sclerosis (HS) is a common pathology encountered in mesial temporal lobe epilepsy (MTLE) as well as other epilepsy syndromes and in both surgical and post-mortem practice. The 2013 International League Against Epilepsy (ILAE) classification segregates HS into typical (type 1) and atypical (type 2 and 3) groups, based on the histological patterns of subfield neuronal loss and gliosis. In addition, granule cell reorganization and alterations of interneuronal populations, neuropeptide fibre networks and mossy fibre sprouting are distinctive features of HS associated with epilepsies; they can be useful diagnostic aids to discriminate from other causes of HS, as well as highlighting potential mechanisms of hippocampal epileptogenesis. The cause of HS remains elusive and may be multifactorial; the contribution of febrile seizures, genetic susceptibility, inflammatory and neurodevelopmental factors are discussed. Post-mortem based research in HS, as an addition to studies on surgical samples, has the added advantage of enabling the study of the wider network changes associated with HS, the long-term effects of epilepsy on the pathology and associated comorbidities. It is likely that HS is heterogeneous in aspects of its cause, epileptogenetic mechanisms, network alterations and response to medical and surgical treatments. Future neuropathological studies will contribute to better recognition and understanding of these clinical and patho-aetiological subtypes of HS. PMID:24762203

  5. Temporal dynamics of hippocampal neurogenesis in chronic neurodegeneration

    Science.gov (United States)

    Suzzi, Stefano; Vargas-Caballero, Mariana; Fransen, Nina L.; Al-Malki, Hussain; Cebrian-Silla, Arantxa; Garcia-Verdugo, Jose Manuel; Riecken, Kristoffer; Fehse, Boris; Perry, V. Hugh

    2014-01-01

    The study of neurogenesis during chronic neurodegeneration is crucial in order to understand the intrinsic repair mechanisms of the brain, and key to designing therapeutic strategies. In this study, using an experimental model of progressive chronic neurodegeneration, murine prion disease, we define the temporal dynamics of the generation, maturation and integration of new neurons in the hippocampal dentate gyrus, using dual pulse-chase, multicolour γ-retroviral tracing, transmission electron microscopy and patch-clamp. We found increased neurogenesis during the progression of prion disease, which partially counteracts the effects of chronic neurodegeneration, as evidenced by blocking neurogenesis with cytosine arabinoside, and helps to preserve the hippocampal function. Evidence obtained from human post-mortem samples, of both variant Creutzfeldt-Jakob disease and Alzheimer’s disease patients, also suggests increased neurogenic activity. These results open a new avenue into the exploration of the effects and regulation of neurogenesis during chronic neurodegeneration, and offer a new model to reproduce the changes observed in human neurodegenerative diseases. PMID:24941947

  6. Extinction of Learned Fear Induces Hippocampal Place Cell Remapping

    Science.gov (United States)

    Wang, Melissa E.; Yuan, Robin K.; Keinath, Alexander T.; Ramos Álvarez, Manuel M.

    2015-01-01

    The extinction of learned fear is a hippocampus-dependent process thought to embody new learning rather than erasure of the original fear memory, although it is unknown how these competing contextual memories are represented in the hippocampus. We previously demonstrated that contextual fear conditioning results in hippocampal place cell remapping and long-term stabilization of novel representations. Here we report that extinction learning also induces place cell remapping in C57BL/6 mice. Specifically, we observed cells that preferentially remapped during different stages of learning. While some cells remapped in both fear conditioning and extinction, others responded predominantly during extinction, which may serve to modify previous representations as well as encode new safe associations. Additionally, we found cells that remapped primarily during fear conditioning, which could facilitate reacquisition of the original fear association. Moreover, we also observed cells that were stable throughout learning, which may serve to encode the static aspects of the environment. The short-term remapping observed during extinction was not found in animals that did not undergo fear conditioning, or when extinction was conducted outside of the conditioning context. Finally, conditioning and extinction produced an increase in spike phase locking to the theta and gamma frequencies. However, the degree of remapping seen during conditioning and extinction only correlated with gamma synchronization. Our results suggest that the extinction learning is a complex process that involves both modification of pre-existing memories and formation of new ones, and these traces coexist within the same hippocampal representation. PMID:26085635

  7. Evidence for regional hippocampal damage in patients with schizophrenia

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Sadhana; Khushu, Subash; Kumar, Pawan [DRDO, NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), Delhi (India); Goyal, Satnam; Bhatia, Triptish; Deshpande, Smita N. [RML Hospital, Post Graduate Institute of Medical Education and Research (PGIMER), New Delhi (India)

    2018-02-15

    Schizophrenia patients show cognitive and mood impairments, including memory loss and depression, suggesting damage in the brain regions. The hippocampus is a brain structure that is significantly involved in memory and mood function and shows impairment in schizophrenia. In the present study, we examined the regional hippocampal changes in schizophrenia patients using voxel-based morphometry (VBM), Freesurfer, and proton magnetic resonance spectroscopy ({sup 1}H MRS) procedures. {sup 1}H MRS and high-resolution T1-weighted magnetic resonance imaging were collected in both healthy control subjects (N = 28) and schizophrenia patients (N = 28) using 3-Tesla whole body MRI system. Regional hippocampal volume was analyzed using VBM and Freesufer procedures. The relative ratios of the neurometabolites were calculated using linear combination model (LCModel). Compared to controls, schizophrenia patients showed significantly decreased gray matter volume in the hippocampus. Schizophrenia patients also showed significantly reduced glutamate (Glu) and myo-inositol (mI) ratios in the hippocampus. Additionally, significant positive correlation between gray matter volume and Glu/tCr was also observed in the hippocampus in schizophrenia. Our findings provide an evidence for a possible association between structural deficits and metabolic alterations in schizophrenia patients. (orig.)

  8. CRMPs colocalize and interact with cytoskeleton in hippocampal neurons

    Science.gov (United States)

    Yang, Yuhao; Zhao, Bo; Ji, Zhisheng; Zhang, Guowei; Zhang, Jifeng; Li, Sumei; Guo, Guoqing; Lin, Hongsheng

    2015-01-01

    CRMP family proteins (CRMPs) are widely expressed in the developing neurons, mediating a variety of fundamental functions such as growth cone guidance, neuronal polarity and axon elongation. However, whether all the CRMP proteins interact with cytoskeleton remains unknown. In this study, we found that in cultured hippocampal neurons, CRMPs mainly colocalized with tubulin and actin network in neurites. In growth cones, CRMPs colocalized with tubulinmainly in the central (C-) domain and transition zone (T-zone), less in the peripheral (P-) domain and colocalized with actin in all the C-domain, T-zone and P-domain. The correlation efficiency of CRMPs between actin was significantly higher than that between tubulin, especially in growth cones. We successfully constructed GST-CRMPs plasmids, expressed and purified the GST-CRMP proteins. By GST-pulldown assay, all the CRMP family proteins were found to beinteracted with cytoskeleton proteins. Taken together, we revealed that CRMPs were colocalized with cytoskeleton in hippocampal neurons, especially in growth cones. CRMPs can interact with both tubulin and actin, thus mediating neuronal development. PMID:26885211

  9. Response of hippocampal mossy fiber zinc to excessive glutamate release.

    Science.gov (United States)

    Takeda, Atsushi; Minami, Akira; Sakurada, Naomi; Nakajima, Satoko; Oku, Naoto

    2007-01-01

    The response of hippocampal mossy fiber zinc to excessive glutamate release was examined to understand the role of the zinc in excessive excitation in the hippocampus. Extracellular zinc and glutamate concentrations during excessive stimulation with high K(+) were compared between the hippocampal CA3 and CA1 by the in vivo microdialysis. Zinc concentration in the CA3 was more increased than that in the CA1, while glutamate concentration in the CA3 was less increased than that in the CA1. It is likely that more increase in extracellular zinc is linked with less increase in extracellular glutamate in the CA3. To see zinc action in mossy fiber synapses during excessive excitation, furthermore, 1mM glutamate was regionally delivered to the stratum lucidum in the presence of zinc or CaEDTA, a membrane-impermeable zinc chelator, and intracellular calcium signal was measured in the CA3 pyramidal cell layer. The persistent increase in calcium signal during stimulation with glutamate was significantly attenuated in the presence of 100 microM zinc, while significantly enhanced in the presence of 1mM CaEDTA. These results suggest that zinc released from mossy fibers attenuates the increase in intracellular calcium signal in mossy fiber synapses and postsynaptic CA3 neurons after excessive inputs to dentate granular cells.

  10. Saikosaponin D relieves unpredictable chronic mild stress induced depressive-like behavior in rats: involvement of HPA axis and hippocampal neurogenesis.

    Science.gov (United States)

    Li, Hong-Yan; Zhao, Ying-Hua; Zeng, Min-Jie; Fang, Fang; Li, Min; Qin, Ting-Ting; Ye, Lu-Yu; Li, Hong-Wei; Qu, Rong; Ma, Shi-Ping

    2017-11-01

    Saikosaponin D (SSD), a major bioactive component isolated from Radix Bupleuri, has been reported to exert neuroprotective properties. The present study was designed to investigate the anti-depressant-like effects and the potential mechanisms of SSD. Behavioural tests including sucrose preference test (SPT), open field test (OFT) and forced swim test (FST) were performed to study the antidepressant-like effects of SSD. In addition, we examined corticosterone and glucocorticoid receptor (GR) levels to evaluate hypothalamic-pituitary-adrenal (HPA) axis function. Furthermore, hippocampal neurogenesis was assessed by testing doublecortin (DCX) levels, and neurotrophic molecule levels were also investigated in the hippocampus of rats. We found that unpredictable chronic mild stress (UCMS) rats displayed lost body weight, decreased sucrose consumption in SPT, reduced locomotive activity in OFT, and increased immobility time in FST. Chronic treatment with SSD (0.75, 1.50 mg/kg) remarkably ameliorated the behavioral deficiency induced by UCMS procedure. SSD administration downregulated elevated serum corticosterone levels, as well as alleviated the suppression of GR expression and nuclear translocation caused by UCMS, suggesting that SSD is able to remit the dysfunction of HPA axis. In addition, Western blot and immunohistochemistry analysis showed that SSD treatment significantly increased the generation of neurons in the hippocampus of UCMS rats indicated by elevated DCX levels. Moreover, hippocampal neurotrophic molecule levels of UCMS rats such as phosphorylated cAMP response element binding protein (p-CREB) and brain-derived neurotrophic factor (BDNF) were raised after SSD treatment. Together, Our results suggest that SSD opposed UCMS-induced depressive behaviors in rats, which was mediated, partially, by the enhancement of HPA axis function and consolidation of hippocampal neurogenesis.

  11. [Isoflurane provides neuroprotection in neonatal hypoxic ischemic brain injury by suppressing apoptosis].

    Science.gov (United States)

    Zhao, De-An; Bi, Ling-Yun; Huang, Qian; Zhang, Fang-Min; Han, Zi-Ming

    Isoflurane is halogenated volatile ether used for inhalational anesthesia. It is widely used in clinics as an inhalational anesthetic. Neonatal hypoxic ischemia injury ensues in the immature brain that results in delayed cell death via excitotoxicity and oxidative stress. Isoflurane has shown neuroprotective properties that make a beneficial basis of using isoflurane in both cell culture and animal models, including various models of brain injury. We aimed to determine the neuroprotective effect of isoflurane on hypoxic brain injury and elucidated the underlying mechanism. A hippocampal slice, in artificial cerebrospinal fluid with glucose and oxygen deprivation, was used as an in vitro model for brain hypoxia. The orthodromic population spike and hypoxic injury potential were recorded in the CA1 and CA3 regions. Amino acid neurotransmitters concentration in perfusion solution of hippocampal slices was measured. Isoflurane treatment caused delayed elimination of population spike and improved the recovery of population spike; decreased frequency of hypoxic injury potential, postponed the onset of hypoxic injury potential and increased the duration of hypoxic injury potential. Isoflurane treatment also decreased the hypoxia-induced release of amino acid neurotransmitters such as aspartate, glutamate and glycine induced by hypoxia, but the levels of γ-aminobutyric acid were elevated. Morphological studies showed that isoflurane treatment attenuated edema of pyramid neurons in the CA1 region. It also reduced apoptosis as evident by lowered expression of caspase-3 and PARP genes. Isoflurane showed a neuro-protective effect on hippocampal neuron injury induced by hypoxia through suppression of apoptosis. Copyright © 2016 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  12. Isoflurane provides neuroprotection in neonatal hypoxic ischemic brain injury by suppressing apoptosis.

    Science.gov (United States)

    Zhao, De-An; Bi, Ling-Yun; Huang, Qian; Zhang, Fang-Min; Han, Zi-Ming

    Isoflurane is halogenated volatile ether used for inhalational anesthesia. It is widely used in clinics as an inhalational anesthetic. Neonatal hypoxic ischemia injury ensues in the immature brain that results in delayed cell death via excitotoxicity and oxidative stress. Isoflurane has shown neuroprotective properties that make a beneficial basis of using isoflurane in both cell culture and animal models, including various models of brain injury. We aimed to determine the neuroprotective effect of isoflurane on hypoxic brain injury and elucidated the underlying mechanism. A hippocampal slice, in artificial cerebrospinal fluid with glucose and oxygen deprivation, was used as an in vitro model for brain hypoxia. The orthodromic population spike and hypoxic injury potential were recorded in the CA1 and CA3 regions. Amino acid neurotransmitters concentration in perfusion solution of hippocampal slices was measured. Isoflurane treatment caused delayed elimination of population spike and improved the recovery of population spike; decreased frequency of hypoxic injury potential, postponed the onset of hypoxic injury potential and increased the duration of hypoxic injury potential. Isoflurane treatment also decreased the hypoxia-induced release of amino acid neurotransmitters such as aspartate, glutamate and glycine induced by hypoxia, but the levels of γ-aminobutyric acid were elevated. Morphological studies showed that isoflurane treatment attenuated edema of pyramid neurons in the CA1 region. It also reduced apoptosis as evident by lowered expression of caspase-3 and PARP genes. Isoflurane showed a neuro-protective effect on hippocampal neuron injury induced by hypoxia through suppression of apoptosis. Copyright © 2016 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.

  13. Isoflurane provides neuroprotection in neonatal hypoxic ischemic brain injury by suppressing apoptosis

    Directory of Open Access Journals (Sweden)

    De-An Zhao

    Full Text Available Abstract Background and objectives: Isoflurane is halogenated volatile ether used for inhalational anesthesia. It is widely used in clinics as an inhalational anesthetic. Neonatal hypoxic ischemia injury ensues in the immature brain that results in delayed cell death via excitotoxicity and oxidative stress. Isoflurane has shown neuroprotective properties that make a beneficial basis of using isoflurane in both cell culture and animal models, including various models of brain injury. We aimed to determine the neuroprotective effect of isoflurane on hypoxic brain injury and elucidated the underlying mechanism. Methods: A hippocampal slice, in artificial cerebrospinal fluid with glucose and oxygen deprivation, was used as an in vitro model for brain hypoxia. The orthodromic population spike and hypoxic injury potential were recorded in the CA1 and CA3 regions. Amino acid neurotransmitters concentration in perfusion solution of hippocampal slices was measured. Results: Isoflurane treatment caused delayed elimination of population spike and improved the recovery of population spike; decreased frequency of hypoxic injury potential, postponed the onset of hypoxic injury potential and increased the duration of hypoxic injury potential. Isoflurane treatment also decreased the hypoxia-induced release of amino acid neurotransmitters such as aspartate, glutamate and glycine induced by hypoxia, but the levels of γ-aminobutyric acid were elevated. Morphological studies showed that isoflurane treatment attenuated edema of pyramid neurons in the CA1 region. It also reduced apoptosis as evident by lowered expression of caspase-3 and PARP genes. Conclusions: Isoflurane showed a neuro-protective effect on hippocampal neuron injury induced by hypoxia through suppression of apoptosis.

  14. Hippocampal development at gestation weeks 23 to 36. An ultrasound study on preterm neonates

    Energy Technology Data Exchange (ETDEWEB)

    Bajic, Dragan; Raininko, Raili [Uppsala University, Department of Radiology, University Hospital, Uppsala (Sweden); Ewald, Uwe [Uppsala University, Department of Women' s and Children' s Health, Uppsala (Sweden)

    2010-06-15

    During fetal development, the hippocampal structures fold around the hippocampal sulcus into the temporal lobe. According to the literature, this inversion should be completed at gestation week (GW) 21. Thereafter, the hippocampal shape should resemble the adult shape. However, incomplete hippocampal inversion (IHI) is found in 19% of the common population. The aim of this study was to study fetal hippocampal development by examining neonates born preterm. We analyzed cranial ultrasound examinations, performed as a part of the routine assessment of all preterm infants, over a 3-year period and excluded the infants with brain pathology. The final material consisted of 158 children born <35 GW. A rounded form (the ratio between the horizontal and vertical diameters of the hippocampal body {<=}1) in coronal slices was considered the sign of IHI. The age at examination was 23-24 GW in 24 neonates, 25-28 GW in 70 neonates, and 29-36 GW in 64 neonates. IHI was found in 50%, 24%, and 14%, respectively. The difference between the neonates <25 GW and {>=}25 GW was statistically highly significant (p < 0.001). The frequency of bilateral IHI was highest in the youngest age group. In the other groups, the left-sided IHI was the most common. In about 50% of the neonates, hippocampal inversion is not completed up to GW 24; but from 25 GW onwards, the frequency and laterality of IHI is similar to that in the adult population. (orig.)

  15. Effects of Estradiol on Learned Helplessness and Associated Remodeling of Hippocampal Spine Synapses in Female Rats

    Science.gov (United States)

    Hajszan, Tibor; Szigeti-Buck, Klara; Sallam, Nermin L; Bober, Jeremy; Parducz, Arpad; MacLusky, Neil J; Leranth, Csaba; Duman, Ronald S

    2009-01-01

    Background Despite the fact that women are twice as likely to develop depression as men, our understanding of depression neurobiology in females is limited. We have recently reported in male rats that development of helpless behavior is associated with a severe loss of hippocampal spine synapses, which is reversed by treatment with the antidepressant, desipramine. Considering the fact that estradiol has a hippocampal synaptogenic effect similar to those of antidepressants, the presence of estradiol during the female reproductive life may influence behavioral and synaptic responses to stress and depression. Methods Using electron microscopic stereology, we analyzed hippocampal spine synapses in association with helpless behavior in ovariectomized female rats (n=70), under different conditions of estradiol exposure. Results Stress induced an acute and persistent loss of hippocampal spine synapses, while subchronic treatment with desipramine reversed the stress-induced synaptic loss. Estradiol supplementation given either prior to stress or prior to escape testing of nonstressed animals both increased the number of hippocampal spine synapses. Correlation analysis demonstrated a statistically significant negative correlation between the severity of helpless behavior and hippocampal spine synapse numbers. Conclusions These findings suggest that hippocampal spine synapse remodeling may be a critical factor underlying learned helplessness and, possibly, the neurobiology of depression. PMID:19811775

  16. Episodic autobiographical memory is associated with variation in the size of hippocampal subregions.

    Science.gov (United States)

    Palombo, Daniela J; Bacopulos, Agnes; Amaral, Robert S C; Olsen, Rosanna K; Todd, Rebecca M; Anderson, Adam K; Levine, Brian

    2018-02-01

    Striking individual differences exist in the human capacity to recollect past events, yet, little is known about the neural correlates of such individual differences. Studies investigating hippocampal volume in relation to individual differences in laboratory measures of episodic memory in young adults suggest that whole hippocampal volume is unrelated (or even negatively associated) with episodic memory. However, anatomical and functional specialization across hippocampal subregions suggests that individual differences in episodic memory may be linked to particular hippocampal subregions, as opposed to whole hippocampal volume. Given that the DG/CA 2/3 circuitry is thought to be especially critical for supporting episodic memory in humans, we predicted that the volume of this region would be associated with individual variability in episodic memory. This prediction was supported using high-resolution MRI of the hippocampal subfields and measures of real-world (autobiographical) episodic memory. In addition to the association with DG/CA 2/3 , we further observed a relationship between episodic autobiographical memory and subiculum volume, whereas no association was observed with CA 1 or with whole hippocampal volume. These findings provide insight into the possible neural substrates that mediate individual differences in real-world episodic remembering in humans. © 2017 Wiley Periodicals, Inc.

  17. Hippocampal atrophy in people with memory deficits: results from the population-based IPREA study.

    Science.gov (United States)

    Ferrarini, Luca; van Lew, Baldur; Reiber, Johan H C; Gandin, Claudia; Galluzzo, Lucia; Scafato, Emanuele; Frisoni, Giovanni B; Milles, Julien; Pievani, Michela

    2014-07-01

    Clinical studies have shown that hippocampal atrophy is present before dementia in people with memory deficits and can predict dementia development. The question remains whether this association holds in the general population. This is of interest for the possible use of hippocampal atrophy to screen population for preventive interventions. The aim of this study was to assess hippocampal volume and shape abnormalities in elderly adults with memory deficits in a cross-sectional population-based study. We included individuals participating in the Italian Project on the Epidemiology of Alzheimer Disease (IPREA) study: 75 cognitively normal individuals (HC), 31 individuals with memory deficits (MEM), and 31 individuals with memory deficits not otherwise specified (MEMnos). Hippocampal volumes and shape were extracted through manual tracing and the growing and adaptive meshes (GAMEs) shape-modeling algorithm. We investigated between-group differences in hippocampal volume and shape, and correlations with memory deficits. In MEM participants, hippocampal volumes were significantly smaller than in HC and were mildly associated with worse memory scores. Memory-associated shape changes mapped to the anterior hippocampus. Shape-based analysis detected no significant difference between MEM and HC, while MEMnos showed shape changes in the posterior hippocampus compared with HC and MEM groups. These findings support the discriminant validity of hippocampal volumetry as a biomarker of memory impairment in the general population. The detection of shape changes in MEMnos but not in MEM participants suggests that shape-based biomarkers might lack sensitivity to detect Alzheimer's-like pathology in the general population.

  18. Relation between hippocampal damage and cerebral cortical function in Alzheimer's disease

    International Nuclear Information System (INIS)

    Hanyu, Haruo; Asano, Tetsuichi; Kogure, Daiji; Sakurai, Hirofumi; Iwamoto, Toshihiko; Takasaki, Masaru

    2000-01-01

    We investigated the relation between hippocampal damage and cerebral cortical dysfunction in Alzheimer's disease (AD) using MRI and SPECT. Nineteen patients with AD and 10 control subjects were studied. Hippocampal damage (including hippocampal formation, entorhinal cortex, and parahippocampal white matter) was assessed to evaluate the severity of atrophy and the magnetization transfer ratio (MTR) and cerebral cortical dysfunction was evaluated by quantitative cerebral blood flow (CBF) measurements using SPECT with 99mTc-ECD. Compared with controls, patients with AD had significantly more atrophy of the medial temporal lobe and a decrease in MTRs of the hippocampus and parahippocampus. There were significant correlations between the severity of hippocampal damage and regional CBF in temporoparietal lobes. Mini-Mental State Examination scores significantly correlated with the severity of hippocampal damage and regional CBFs in temporoparietal lobes. These results suggest that the functional effect of hippocampal damage occurs in temporoparietal lobes in AD, probably due to neuronal disconnections between hippocampal areas (including the entorhinal cortex) and temporoparietal lobes. (author)

  19. Elevated extracellular potassium ion concentrations suppress ...

    African Journals Online (AJOL)

    To address this question, we examined how elevations of [K+]o affect hippocampal oscillations in Scn1a mutant mouse, a mouse model of Dravet syndrome, a devastating genetic-epilepsy associated with gliosis, a major cause of dysregulated K+ homeostasis in epileptic brain. Methods: To this end, performing local field ...

  20. Behavior-Dependent Activity and Synaptic Organization of Septo-hippocampal GABAergic Neurons Selectively Targeting the Hippocampal CA3 Area.

    Science.gov (United States)

    Joshi, Abhilasha; Salib, Minas; Viney, Tim James; Dupret, David; Somogyi, Peter

    2017-12-20

    Rhythmic medial septal (MS) GABAergic input coordinates cortical theta oscillations. However, the rules of innervation of cortical cells and regions by diverse septal neurons are unknown. We report a specialized population of septal GABAergic neurons, the Teevra cells, selectively innervating the hippocampal CA3 area bypassing CA1, CA2, and the dentate gyrus. Parvalbumin-immunopositive Teevra cells show the highest rhythmicity among MS neurons and fire with short burst duration (median, 38 ms) preferentially at the trough of both CA1 theta and slow irregular oscillations, coincident with highest hippocampal excitability. Teevra cells synaptically target GABAergic axo-axonic and some CCK interneurons in restricted septo-temporal CA3 segments. The rhythmicity of their firing decreases from septal to temporal termination of individual axons. We hypothesize that Teevra neurons coordinate oscillatory activity across the septo-temporal axis, phasing the firing of specific CA3 interneurons, thereby contributing to the selection of pyramidal cell assemblies at the theta trough via disinhibition. VIDEO ABSTRACT. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Correlation between volume and morphological changes in the hippocampal formation in Alzheimer's disease: rounding of the outline of the hippocampal body on coronal MR images

    International Nuclear Information System (INIS)

    Adachi, Michito; Sato, Takamichi; Kawakatsu, Shinobu; Ohshima, Fumi

    2012-01-01

    The aim of this study was to investigate whether the outline of the hippocampal body becomes rounded on coronal magnetic resonance imaging (MRI) as the volume of the hippocampal formation decreases in Alzheimer's disease (AD). Institutional review board approval of the study protocol was obtained, and all subjects provided informed consent for the mini-mental state examination (MMSE) and MRI. The MRI and MMSE were prospectively performed in all 103 subjects (27 men and 76 women; mean age ± standard deviation, 77.7 ± 7.8 years) who had AD or were concerned about having of dementia and who consulted our institute over 1 year. The subjects included 14 non-dementia cases (MMSE score ≥ 28) and 89 AD cases (MMSE score ≤ 27). The total volume of the bilateral hippocampal formation (VHF) was assessed with a tracing method, and the ratio of the VHF to the intracranial volume (RVHF) and the rounding ratio (RR) of the hippocampal body (mean ratio of its short dimension to the long dimension in the bilateral hippocampal body) were calculated. Using Spearman's correlation coefficient, the correlations between RR and VHF and between RR and RVHF were assessed. Correlation coefficients between RR and VHF and between RR and RVHF were -0.419 (p < 0.01) and -0.418 (p < 0.01), respectively. There was a significant negative correlation between RR and the volume of the hippocampal formation. The outline of the body of the hippocampal formation becomes rounded on coronal images as its volume decreases in AD. (orig.)

  2. Induction of the Wnt antagonist Dickkopf-1 is involved in stress-induced hippocampal damage.

    Directory of Open Access Journals (Sweden)

    Francesco Matrisciano

    Full Text Available The identification of mechanisms that mediate stress-induced hippocampal damage may shed new light into the pathophysiology of depressive disorders and provide new targets for therapeutic intervention. We focused on the secreted glycoprotein Dickkopf-1 (Dkk-1, an inhibitor of the canonical Wnt pathway, involved in neurodegeneration. Mice exposed to mild restraint stress showed increased hippocampal levels of Dkk-1 and reduced expression of β-catenin, an intracellular protein positively regulated by the canonical Wnt signalling pathway. In adrenalectomized mice, Dkk-1 was induced by corticosterone injection, but not by exposure to stress. Corticosterone also induced Dkk-1 in mouse organotypic hippocampal cultures and primary cultures of hippocampal neurons and, at least in the latter model, the action of corticosterone was reversed by the type-2 glucocorticoid receptor antagonist mifepristone. To examine whether induction of Dkk-1 was causally related to stress-induced hippocampal damage, we used doubleridge mice, which are characterized by a defective induction of Dkk-1. As compared to control mice, doubleridge mice showed a paradoxical increase in basal hippocampal Dkk-1 levels, but no Dkk-1 induction in response to stress. In contrast, stress reduced Dkk-1 levels in doubleridge mice. In control mice, chronic stress induced a reduction in hippocampal volume associated with neuronal loss and dendritic atrophy in the CA1 region, and a reduced neurogenesis in the dentate gyrus. Doubleridge mice were resistant to the detrimental effect of chronic stress and, instead, responded to stress with increases in dendritic arborisation and neurogenesis. Thus, the outcome of chronic stress was tightly related to changes in Dkk-1 expression in the hippocampus. These data indicate that induction of Dkk-1 is causally related to stress-induced hippocampal damage and provide the first evidence that Dkk-1 expression is regulated by corticosteroids in the central

  3. Effects of low-level sarin and cyclosarin exposure on hippocampal microstructure in Gulf War Veterans.

    Science.gov (United States)

    Chao, Linda L; Zhang, Yu

    2018-05-04

    In early March 1991, shortly after the end of the Gulf War (GW), a munitions dump was destroyed at Khamisiyah, Iraq. Later, in 1996, the dump was found to have contained the organophosphorus (OP) nerve agents sarin and cyclosarin. We previously reported evidence of smaller hippocampal volumes in GW veterans with predicted exposure to the Khamisiyah plume compared to unexposed GW veterans. To investigate whether these macroscopic hippocampal volume changes are accompanied by microstructural alterations in the hippocampus, the current study acquired diffusion-tensor imaging (DTI), T1-, and T2-weighted images from 170 GW veterans (mean age: 53 ± 7 years), 81 of whom had predicted exposure to the Khamisiyah plume according to Department of Defense (DOD) plume modeling. We examined fractional anisotropy (FA), mean diffusivity (MD), and grey matter (GM) density from a hippocampal region of interest (ROI). Results indicate that, even after accounting for total hippocampal GM density (or hippocampal volume), age, sex, apolipoprotein ε4 genotype, and potential confounding OP pesticide exposures, hippocampal MD significantly predicted Khamisiyah exposure status (model p = 0.005, R 2  = 0.215, standardized coefficient β = 0.26, t = 2.85). Hippocampal MD was also inversely correlated with verbal memory learning performance in the entire study sample (p = 0.001). There were no differences in hippocampal FA or GM density; however, veterans with predicted Khamisiyah exposure had smaller hippocampal volumes compared to unexposed veterans. Because MD is sensitive to general microstructural disruptions that lead to increased extracellular spaces due to neuronal death, inflammation and gliosis, and/or to axonal loss or demyelination, these findings suggest that low-level exposure to the Khamisiyah plume has a detrimental, lasting effects on both macro- and micro-structure of the hippocampus. Copyright © 2018. Published by Elsevier Inc.

  4. Reduced hippocampal volume is associated with overgeneralization of negative context in individuals with PTSD.

    Science.gov (United States)

    Levy-Gigi, Einat; Szabo, Csilla; Richter-Levin, Gal; Kéri, Szabolcs

    2015-01-01

    Previous studies demonstrated reduced hippocampal volume in individuals with posttraumatic stress disorder (PTSD). However, the functional role the hippocampus plays in PTSD symptomatology is still unclear. The aim of the present study was to explore generalization learning and its connection to hippocampal volume in individuals with and without PTSD. Animal and human models argue that hippocampal deficit may result in failure to process contextual information. Therefore we predicted associations between reduced hippocampal volume and overgeneralization of context in individuals with PTSD. We conducted MRI scans of bilateral hippocampal and amygdala formations as well as intracranial and total brain volumes. Generalization was measured using a novel-learning paradigm, which separately evaluates generalization of cue and context in conditions of negative and positive outcomes. As expected, MRI scans indicated reduced hippocampal volume in PTSD compared to non-PTSD participants. Behavioral results revealed a selective deficit in context generalization learning in individuals with PTSD, F(1, 43) = 8.27, p < .01, η(p)² = .16. Specifically, as predicted, while generalization of cue was spared in both groups, individuals with PTSD showed overgeneralization of negative context. Hence, they could not learn that a previously negative context is later associated with a positive outcome, F(1, 43) = 7.33, p = .01, η(p)² = .15. Most importantly, overgeneralization of negative context significantly correlated with right and left hippocampal volume (r = .61, p = .000; r = .5, p = .000). Finally, bilateral hippocampal volume provided the strongest prediction of overgeneralization of negative context. Reduced hippocampal volume may account for the difficulty of individuals with PTSD to differentiate negative and novel conditions and hence may facilitate reexperiencing symptoms. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  5. Low-intensity daily walking activity is associated with hippocampal volume in older adults.

    Science.gov (United States)

    Varma, Vijay R; Chuang, Yi-Fang; Harris, Gregory C; Tan, Erwin J; Carlson, Michelle C

    2015-05-01

    Hippocampal atrophy is associated with memory impairment and dementia and serves as a key biomarker in the preclinical stages of Alzheimer's disease. Physical activity, one of the most promising behavioral interventions to prevent or delay cognitive decline, has been shown to be associated with hippocampal volume; specifically increased aerobic activity and fitness may have a positive effect on the size of the hippocampus. The majority of older adults, however, are sedentary and have difficulty initiating and maintaining exercise programs. A modestly more active lifestyle may nonetheless be beneficial. This study explored whether greater objectively measured daily walking activity was associated with larger hippocampal volume. We additionally explored whether greater low-intensity walking activity, which may be related to leisure-time physical, functional, and social activities, was associated with larger hippocampal volume independent of exercise and higher-intensity walking activity. Segmentation of hippocampal volumes was performed using Functional Magnetic Resonance Imaging of the Brain's Software Library (FSL), and daily walking activity was assessed using a step activity monitor on 92, nondemented, older adult participants. After controlling for age, education, body mass index, cardiovascular disease risk factors, and the Mini Mental State Exam, we found that a greater amount, duration, and frequency of total daily walking activity were each associated with larger hippocampal volume among older women, but not among men. These relationships were specific to hippocampal volume, compared with the thalamus, used as a control brain region, and remained significant for low-intensity walking activity, independent of moderate- to vigorous-intensity activity and self-reported exercise. This is the first study, to our knowledge, to explore the relationship between objectively measured daily walking activity and hippocampal volume in an older adult population. Findings

  6. Deficits in memory and visuospatial learning correlate with regional hippocampal atrophy in MS.

    Science.gov (United States)

    Longoni, Giulia; Rocca, Maria A; Pagani, Elisabetta; Riccitelli, Gianna C; Colombo, Bruno; Rodegher, Mariaemma; Falini, Andrea; Comi, Giancarlo; Filippi, Massimo

    2015-01-01

    The hippocampus has a critical role in episodic memory and visuospatial learning and consolidation. We assessed the patterns of whole and regional hippocampal atrophy in a large group of multiple sclerosis (MS) patients, and their correlations with neuropsychological impairment. From 103 MS patients and 28 healthy controls (HC), brain dual-echo and high-resolution 3D T1-weighted images were acquired using a 3.0-Tesla scanner. All patients underwent a neuropsychological assessment of hippocampal-related cognitive functions, including Paired Associate Word Learning, Short Story, delayed recall of Rey-Osterrieth Complex Figure and Paced Auditory Serial Attention tests. The hippocampi were manually segmented and volumes derived. Regional atrophy distribution was assessed using a radial mapping analysis. Correlations between hippocampal atrophy and clinical, neuropsychological and MRI metrics were also evaluated. Hippocampal volume was reduced in MS patients vs HC (p right and hippocampus). In MS patients, radial atrophy affected CA1 subfield and subiculum of posterior hippocampus, bilaterally. The dentate hilus (DG:H) of the right hippocampal head was also affected. Regional hippocampal atrophy correlated with brain T2 and T1 lesion volumes, while no correlation was found with disability. Damage to the CA1 and subiculum was significantly correlated to the performances at hippocampal-targeted neuropsychological tests. These results show that hippocampal subregions have a different vulnerability to MS-related damage, with a relative sparing of the head of the left hippocampus. The assessment of regional hippocampal atrophy may help explain deficits of specific cognitive functions in MS patients, including memory and visuospatial abilities.

  7. Memory Dysfunction in Type 2 Diabetes Mellitus Correlates with Reduced Hippocampal CA1 and Subiculum Volumes

    Directory of Open Access Journals (Sweden)

    Yan-Wei Zhang

    2015-01-01

    Full Text Available Background: Little attention has been paid to the role of subcortical deep gray matter (SDGM structures in type 2 diabetes mellitus (T2DM-induced cognitive impairment, especially hippocampal subfields. Our aims were to assess the in vivo volumes of SDGM structures and hippocampal subfields using magnetic resonance imaging (MRI and to test their associations with cognitive performance in T2DM. Methods: A total of 80 T2DM patients and 80 neurologically unimpaired healthy controls matched by age, sex and education level was enrolled in this study. We assessed the volumes of the SDGM structures and seven hippocampal subfields on MRI using a novel technique that enabled automated volumetry. We used Mini-Mental State Examination and Montreal Cognitive Assessment (MoCA scores as measures of cognitive performance. The association of glycosylated hemoglobin (HbA1c with SDGM structures and neuropsychological tests and correlations between hippocampal subfields and neuropsychological tests were assessed by partial correlation analysis in T2DM. Results: Bilaterally, the hippocampal volumes were smaller in T2DM patients, mainly in the CA1 and subiculum subfields. Partial correlation analysis showed that the MoCA scores, particularly those regarding delayed memory, were significantly positively correlated with reduced hippocampal CA1 and subiculum volumes in T2DM patients. Additionally, higher HbA1c levels were significantly associated with poor memory performance and hippocampal atrophy among T2DM patients. Conclusions: These data indicate that the hippocampus might be the main affected region among the SDGM structures in T2DM. These structural changes in the hippocampal CA1 and subiculum areas might be at the core of underlying neurobiological mechanisms of hippocampal dysfunction, suggesting that degeneration in these regions could be responsible for memory impairments in T2DM patients.

  8. Intermediate levels of hippocampal activity appear optimal for associative memory formation.

    Directory of Open Access Journals (Sweden)

    Xiao Liu

    Full Text Available BACKGROUND: It is well established that hippocampal activity is positively related to effective associative memory formation. However, in biological systems often optimal levels of activity are contrasted by both sub- and supra-optimal levels. Sub-optimal levels of hippocampal activity are commonly attributed to unsuccessful memory formation, whereas the supra-optimal levels of hippocampal activity related to unsuccessful memory formation have been rarely studied. It is still unclear under what circumstances such supra-optimal levels of hippocampal activity occur. To clarify this issue, we aimed at creating a condition, in which supra-optimal hippocampal activity is associated with encoding failure. We assumed that such supra-optimal activity occurs when task-relevant information is embedded in task-irrelevant, distracting information, which can be considered as noise. METHODOLOGY/PRINCIPAL FINDINGS: In the present fMRI study, we probed neural correlates of associative memory formation in a full-factorial design with associative memory (subsequently remembered versus forgotten and noise (induced by high versus low distraction as factors. Results showed that encoding failure was associated with supra-optimal activity in the high-distraction condition and with sub-optimal activity in the low distraction condition. Thus, we revealed evidence for a bell-shape function relating hippocampal activity with associative encoding success. CONCLUSIONS/SIGNIFICANCE: Our findings indicate that intermediate levels of hippocampal activity are optimal while both too low and too high levels appear detrimental for associative memory formation. Supra-optimal levels of hippocampal activity seem to occur when task-irrelevant information is added to task-relevant signal. If such task-irrelevant noise is reduced adequately, hippocampal activity is lower and thus optimal for associative memory formation.

  9. Distinguishing among potential mechanisms of singleton suppression.

    Science.gov (United States)

    Gaspelin, Nicholas; Luck, Steven J

    2018-04-01

    Previous research has revealed that people can suppress salient stimuli that might otherwise capture visual attention. The present study tests between 3 possible mechanisms of visual suppression. According to first-order feature suppression models , items are suppressed on the basis of simple feature values. According to second-order feature suppression models , items are suppressed on the basis of local discontinuities within a given feature dimension. According to global-salience suppression models , items are suppressed on the basis of their dimension-independent salience levels. The current study distinguished among these models by varying the predictability of the singleton color value. If items are suppressed by virtue of salience alone, then it should not matter whether the singleton color is predictable. However, evidence from probe processing and eye movements indicated that suppression is possible only when the color values are predictable. Moreover, the ability to suppress salient items developed gradually as participants gained experience with the feature that defined the salient distractor. These results are consistent with first-order feature suppression models, and are inconsistent with the other models of suppression. In other words, people primarily suppress salient distractors on the basis of their simple features and not on the basis of salience per se. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  10. Cuprizone decreases intermediate and late-stage progenitor cells in hippocampal neurogenesis of rats in a framework of 28-day oral dose toxicity study

    International Nuclear Information System (INIS)

    Abe, Hajime; Tanaka, Takeshi; Kimura, Masayuki; Mizukami, Sayaka; Saito, Fumiyo; Imatanaka, Nobuya; Akahori, Yumi; Yoshida, Toshinori; Shibutani, Makoto

    2015-01-01

    Developmental exposure to cuprizone (CPZ), a demyelinating agent, impairs intermediate-stage neurogenesis in the hippocampal dentate gyrus of rat offspring. To investigate the possibility of alterations in adult neurogenesis following postpubertal exposure to CPZ in a framework of general toxicity studies, CPZ was orally administered to 5-week-old male rats at 0, 120, or 600 mg/kg body weight/day for 28 days. In the subgranular zone (SGZ), 600 mg/kg CPZ increased the number of cleaved caspase-3 + apoptotic cells. At ≥ 120 mg/kg, the number of SGZ cells immunoreactive for TBR2, doublecortin, or PCNA was decreased, while that for SOX2 was increased. In the granule cell layer, CPZ at ≥ 120 mg/kg decreased the number of postmitotic granule cells immunoreactive for NEUN, CHRNA7, ARC or FOS. In the dentate hilus, CPZ at ≥ 120 mg/kg decreased phosphorylated TRKB + interneurons, although the number of reelin + interneurons was unchanged. At 600 mg/kg, mRNA levels of Bdnf and Chrna7 were decreased, while those of Casp4, Casp12 and Trib3 were increased in the dentate gyrus. These data suggest that CPZ in a scheme of 28-day toxicity study causes endoplasmic reticulum stress-mediated apoptosis of granule cell lineages, resulting in aberrations of intermediate neurogenesis and late-stage neurogenesis and following suppression of immediate early gene-mediated neuronal plasticity. Suppression of BDNF signals to interneurons caused by decreased cholinergic signaling may play a role in these effects of CPZ. The effects of postpubertal CPZ on neurogenesis were similar to those observed with developmental exposure, except for the lack of reelin response, which may contribute to a greater decrease in SGZ cells. - Highlights: • Effect of 28-day CPZ exposure on hippocampal neurogenesis was examined in rats. • CPZ suppressed intermediate neurogenesis and late-stage neurogenesis in the dentate gyrus. • CPZ suppressed BDNF signals to interneurons by decrease of cholinergic

  11. Cuprizone decreases intermediate and late-stage progenitor cells in hippocampal neurogenesis of rats in a framework of 28-day oral dose toxicity study

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Hajime; Tanaka, Takeshi; Kimura, Masayuki; Mizukami, Sayaka [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193 (Japan); Saito, Fumiyo; Imatanaka, Nobuya; Akahori, Yumi [Chemicals Evaluation and Research Institute, Japan, 1-4-25 Koraku, Bunkyo-ku, Tokyo 112-0004 (Japan); Yoshida, Toshinori [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Shibutani, Makoto, E-mail: mshibuta@cc.tuat.ac.jp [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan)

    2015-09-15

    Developmental exposure to cuprizone (CPZ), a demyelinating agent, impairs intermediate-stage neurogenesis in the hippocampal dentate gyrus of rat offspring. To investigate the possibility of alterations in adult neurogenesis following postpubertal exposure to CPZ in a framework of general toxicity studies, CPZ was orally administered to 5-week-old male rats at 0, 120, or 600 mg/kg body weight/day for 28 days. In the subgranular zone (SGZ), 600 mg/kg CPZ increased the number of cleaved caspase-3{sup +} apoptotic cells. At ≥ 120 mg/kg, the number of SGZ cells immunoreactive for TBR2, doublecortin, or PCNA was decreased, while that for SOX2 was increased. In the granule cell layer, CPZ at ≥ 120 mg/kg decreased the number of postmitotic granule cells immunoreactive for NEUN, CHRNA7, ARC or FOS. In the dentate hilus, CPZ at ≥ 120 mg/kg decreased phosphorylated TRKB{sup +} interneurons, although the number of reelin{sup +} interneurons was unchanged. At 600 mg/kg, mRNA levels of Bdnf and Chrna7 were decreased, while those of Casp4, Casp12 and Trib3 were increased in the dentate gyrus. These data suggest that CPZ in a scheme of 28-day toxicity study causes endoplasmic reticulum stress-mediated apoptosis of granule cell lineages, resulting in aberrations of intermediate neurogenesis and late-stage neurogenesis and following suppression of immediate early gene-mediated neuronal plasticity. Suppression of BDNF signals to interneurons caused by decreased cholinergic signaling may play a role in these effects of CPZ. The effects of postpubertal CPZ on neurogenesis were similar to those observed with developmental exposure, except for the lack of reelin response, which may contribute to a greater decrease in SGZ cells. - Highlights: • Effect of 28-day CPZ exposure on hippocampal neurogenesis was examined in rats. • CPZ suppressed intermediate neurogenesis and late-stage neurogenesis in the dentate gyrus. • CPZ suppressed BDNF signals to interneurons by decrease of

  12. Kindling-induced potentiation of excitatory and inhibitory inputs to hippocampal dentate granule cells. II. Effects of the NMDA antagonist MK-801.

    LENUS (Irish Health Repository)

    Robinson, G B

    1991-10-18

    The effect of the non-competitive N-methyl-D-aspartate antagonist MK-801 on the early development of kindling-induced potentiation was examined in the rabbit hippocampal dentate gyrus. MK-801 (0.5 mg\\/kg) was administered 2 h before each daily kindling stimulation was applied to the perforant path. This treatment continued for the first 10 days of kindling. MK-801 depressed the growth of the afterdischarge duration and suppressed development of behavioral seizures. MK-801 did not block kindling-induced potentiation of either the perforant path-dentate granule cell population spike or excitatory postsynaptic potential. Random impulse train stimulation and non-linear systems analytic techniques were used to examine kindling-induced potentiation of presumed GABAergic recurrent inhibitory circuits. Both the magnitude and duration of kindling-induced response inhibition, to the second of each pair of impulses within the train, were reduced in rabbits pretreated with MK-801. These results suggest that MK-801 differentially affects kindling-induced potentiation of excitatory and inhibitory circuits within the rabbit hippocampal dentate gyrus.

  13. A septo-temporal molecular gradient of sfrp3 in the dentate gyrus differentially regulates quiescent adult hippocampal neural stem cell activation.

    Science.gov (United States)

    Sun, Jiaqi; Bonaguidi, Michael A; Jun, Heechul; Guo, Junjie U; Sun, Gerald J; Will, Brett; Yang, Zhengang; Jang, Mi-Hyeon; Song, Hongjun; Ming, Guo-li; Christian, Kimberly M

    2015-09-04

    A converging body of evidence indicates that levels of adult hippocampal neurogenesis vary along the septo-temporal axis of the dentate gyrus, but the molecular mechanisms underlying this regional heterogeneity are not known. We previously identified a niche mechanism regulating proliferation and neuronal development in the adult mouse dentate gyrus resulting from the activity-regulated expression of secreted frizzled-related protein 3 (sfrp3) by mature neurons, which suppresses activation of radial glia-like neural stem cells (RGLs) through inhibition of Wingless/INT (WNT) protein signaling. Here, we show that activation rates within the quiescent RGL population decrease gradually along the septo-temporal axis in the adult mouse dentate gyrus, as defined by MCM2 expression in RGLs. Using in situ hybridization and quantitative real-time PCR, we identified an inverse septal-to-temporal increase in the expression of sfrp3 that emerges during postnatal development. Elimination of sfrp3 and its molecular gradient leads to increased RGL activation, preferentially in the temporal region of the adult dentate gyrus. Our study identifies a niche mechanism that contributes to the graded distribution of neurogenesis in the adult dentate gyrus and has important implications for understanding functional differences associated with adult hippocampal neurogenesis along the septo-temporal axis.

  14. Consequences of stereotype suppression and internal suppression motivation : A self-regulation approach

    NARCIS (Netherlands)

    Gordijn, Ernestine H; Hindriks, Inge; Koomen, W; Dijksterhuis, Ap; van Knipppenberg, A.

    The present research studied the effects of suppression of stereotypes on subsequent stereotyping. Moreover, the moderating influence of motivation to suppress stereotypes was examined. The first three experiments showed that suppression of stereotypes leads to the experience of engaging in

  15. Resveratrol Ameliorates Tau Hyperphosphorylation at Ser396 Site and Oxidative Damage in Rat Hippocampal Slices Exposed to Vanadate: Implication of ERK1/2 and GSK-3β Signaling Cascades.

    Science.gov (United States)

    Jhang, Kyoung A; Park, Jin-Sun; Kim, Hee-Sun; Chong, Young Hae

    2017-11-08

    The objective of this study was to investigate the effect of resveratrol (a natural polyphenolic phytostilbene) on tau hyperphosphorylation and oxidative damage induced by sodium orthovanadate (Na 3 VO 4 ), the prevalent species of vanadium (vanadate), in rat hippocampal slices. Our results showed that resveratrol significantly inhibited Na 3 VO 4 -induced hyperphosphorylation of tau at the Ser396 (p-S396-tau) site, which is upregulated in the hippocampus of Alzheimer's disease (AD) brains and principally linked to AD-associated cognitive dysfunction. Subsequent mechanistic studies revealed that reduction of ERK1/2 activation was involved in the inhibitory effect of resveratrol by inhibiting the ERK1/2 pathway with SL327 mimicking the aforementioned effect of resveratrol. Moreover, resveratrol potently induced GSK-3β Ser9 phosphorylation and reduced Na 3 VO 4 -induced p-S396-tau levels, which were markedly replicated by pharmacologic inhibition of GSK-3β with LiCl. These results indicate that resveratrol could suppress Na 3 VO 4 -induced p-S396-tau levels via downregulating ERK1/2 and GSK-3β signaling cascades in rat hippocampal slices. In addition, resveratrol diminished the increased extracellular reactive oxygen species generation and hippocampal toxicity upon long-term exposure to Na 3 VO 4 or FeCl 2 . Our findings strongly support the notion that resveratrol may serve as a potential nutraceutical agent for AD.

  16. Automatic planning on hippocampal avoidance whole-brain radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shuo, E-mail: shuo0220@gmail.com; Zheng, Dandan; Zhang, Chi; Ma, Rongtao; Bennion, Nathan R.; Lei, Yu; Zhu, Xiaofeng; Enke, Charles A.; Zhou, Sumin

    2017-04-01

    Mounting evidence suggests that radiation-induced damage to the hippocampus plays a role in neurocognitive decline for patients receiving whole-brain radiotherapy (WBRT). Hippocampal avoidance whole-brain radiotherapy (HA-WBRT) has been proposed to reduce the putative neurocognitive deficits by limiting the dose to the hippocampus. However, urgency of palliation for patients as well as the complexities of the treatment planning may be barriers to protocol enrollment to accumulate further clinical evidence. This warrants expedited quality planning of HA-WBRT. Pinnacle{sup 3} Automatic treatment planning was designed to increase planning efficiency while maintaining or improving plan quality and consistency. The aim of the present study is to evaluate the performance of the Pinnacle{sup 3} Auto-Planning on HA-WBRT treatment planning. Ten patients previously treated for brain metastases were selected. Hippocampal volumes were contoured on T1 magnetic resonance (MR) images, and planning target volumes (PTVs) were generated based on RTOG0933. The following 2 types of plans were generated by Pinnacle{sup 3} Auto-Planning: the one with 2 coplanar volumetric modulated arc therapy (VMAT) arcs and the other with 9-field noncoplanar intensity-modulated radiation therapy (IMRT). D{sub 2%} and D{sub 98%} of PTV were used to calculate homogeneity index (HI). HI and Paddick Conformity index (CI) of PTV as well as D{sub 100%} and D{sub max} of the hippocampus were used to evaluate the plan quality. All the auto-plans met the dose coverage and constraint objectives based on RTOG0933. The auto-plans eliminated the necessity of generating pseudostructures by the planners, and it required little manual intervention which expedited the planning process. IMRT quality assurance (QA) results also suggest that all the auto-plans are practically acceptable on delivery. Pinnacle{sup 3} Auto-Planning generates acceptable plans by RTOG0933 criteria without time-consuming planning process. The

  17. Automatic planning on hippocampal avoidance whole-brain radiotherapy

    International Nuclear Information System (INIS)

    Wang, Shuo; Zheng, Dandan; Zhang, Chi; Ma, Rongtao; Bennion, Nathan R.; Lei, Yu; Zhu, Xiaofeng; Enke, Charles A.; Zhou, Sumin

    2017-01-01

    Mounting evidence suggests that radiation-induced damage to the hippocampus plays a role in neurocognitive decline for patients receiving whole-brain radiotherapy (WBRT). Hippocampal avoidance whole-brain radiotherapy (HA-WBRT) has been proposed to reduce the putative neurocognitive deficits by limiting the dose to the hippocampus. However, urgency of palliation for patients as well as the complexities of the treatment planning may be barriers to protocol enrollment to accumulate further clinical evidence. This warrants expedited quality planning of HA-WBRT. Pinnacle 3 Automatic treatment planning was designed to increase planning efficiency while maintaining or improving plan quality and consistency. The aim of the present study is to evaluate the performance of the Pinnacle 3 Auto-Planning on HA-WBRT treatment planning. Ten patients previously treated for brain metastases were selected. Hippocampal volumes were contoured on T1 magnetic resonance (MR) images, and planning target volumes (PTVs) were generated based on RTOG0933. The following 2 types of plans were generated by Pinnacle 3 Auto-Planning: the one with 2 coplanar volumetric modulated arc therapy (VMAT) arcs and the other with 9-field noncoplanar intensity-modulated radiation therapy (IMRT). D 2% and D 98% of PTV were used to calculate homogeneity index (HI). HI and Paddick Conformity index (CI) of PTV as well as D 100% and D max of the hippocampus were used to evaluate the plan quality. All the auto-plans met the dose coverage and constraint objectives based on RTOG0933. The auto-plans eliminated the necessity of generating pseudostructures by the planners, and it required little manual intervention which expedited the planning process. IMRT quality assurance (QA) results also suggest that all the auto-plans are practically acceptable on delivery. Pinnacle 3 Auto-Planning generates acceptable plans by RTOG0933 criteria without time-consuming planning process. The expedited quality planning achieved by

  18. Inhibiting the Activity of CA1 Hippocampal Neurons Prevents the Recall of Contextual Fear Memory in Inducible ArchT Transgenic Mice.

    Directory of Open Access Journals (Sweden)

    Masanori Sakaguchi

    Full Text Available The optogenetic manipulation of light-activated ion-channels/pumps (i.e., opsins can reversibly activate or suppress neuronal activity with precise temporal control. Therefore, optogenetic techniques hold great potential to establish causal relationships between specific neuronal circuits and their function in freely moving animals. Due to the critical role of the hippocampal CA1 region in memory function, we explored the possibility of targeting an inhibitory opsin, ArchT, to CA1 pyramidal neurons in mice. We established a transgenic mouse line in which tetracycline trans-activator induces ArchT expression. By crossing this line with a CaMKIIα-tTA transgenic line, the delivery of light via an implanted optrode inhibits the activity of excitatory CA1 neurons. We found that light delivery to the hippocampus inhibited the recall of a contextual fear memory. Our results demonstrate that this optogenetic mouse line can be used to investigate the neuronal circuits underlying behavior.

  19. Suppression of stratified explosive interactions

    Energy Technology Data Exchange (ETDEWEB)

    Meeks, M.K.; Shamoun, B.I.; Bonazza, R.; Corradini, M.L. [Wisconsin Univ., Madison, WI (United States). Dept. of Nuclear Engineering and Engineering Physics

    1998-01-01

    Stratified Fuel-Coolant Interaction (FCI) experiments with Refrigerant-134a and water were performed in a large-scale system. Air was uniformly injected into the coolant pool to establish a pre-existing void which could suppress the explosion. Two competing effects due to the variation of the air flow rate seem to influence the intensity of the explosion in this geometrical configuration. At low flow rates, although the injected air increases the void fraction, the concurrent agitation and mixing increases the intensity of the interaction. At higher flow rates, the increase in void fraction tends to attenuate the propagated pressure wave generated by the explosion. Experimental results show a complete suppression of the vapor explosion at high rates of air injection, corresponding to an average void fraction of larger than 30%. (author)

  20. Strangeness Suppression and Color Deconfinement

    Science.gov (United States)

    Satz, Helmut

    2018-02-01

    The relative multiplicities for hadron production in different high energy collisions are in general well described by an ideal gas of all hadronic resonances, except that under certain conditions, strange particle rates are systematically reduced. We show that the suppression factor γs, accounting for reduced strange particle rates in pp, pA and AA collisions at different collision energies, becomes a universal function when expressed in terms of the initial entropy density s0 or the initial temperature T of the produced thermal medium. It is found that γs increases from about 0.5 to 1.0 in a narrow temperature range around the quark-hadron transition temperature Tc ≃ 160 MeV. Strangeness suppression thus disappears with the onset of color deconfinement; subsequently, full equilibrium resonance gas behavior is attained.

  1. Bacteremia causes hippocampal apoptosis in experimental pneumococcal meningitis

    DEFF Research Database (Denmark)

    Andersen, Christian Østergaard; Leib, S.L.; Rowland, Ian J

    2010-01-01

    ABSTRACT: BACKGROUND: Bacteremia and systemic complications both play important roles in brain pathophysiological alterations and the outcome of pneumococcal meningitis. Their individual contributions to the development of brain damage, however, still remain to be defined. METHODS: Using an adult...... rat pneumococcal meningitis model, the impact of bacteremia accompanying meningitis on the development of hippocampal injury was studied. The study comprised of the three groups: I. Meningitis (n=11), II. meningitis with attenuated bacteremia resulting from iv injection of serotype......-specific pneumococcal antibodies (n=14), and III. uninfected controls (n=6). RESULTS: Pneumococcal meningitis resulted in a significantly higher apoptosis score 0.22 (0.18-0.35) compared to uninfected controls (0.02 (0.00-0.02), Mann Whitney test, P=0.0003). Also, meningitis with an attenuation of bacteremia...

  2. Calcified neurocysticercosis lesions and hippocampal sclerosis: potential dual pathology?

    Science.gov (United States)

    Rathore, Chaturbhuj; Thomas, Bejoy; Kesavadas, Chandrasekharan; Radhakrishnan, Kurupath

    2012-04-01

    In areas where cysticercosis is endemic, calcified neurocysticercosis lesion(s) (CNL) and hippocampal sclerosis (HS) commonly coexist in patients with localization-related epilepsies. To understand the pathogenesis of HS associated with CNL, we compared the characteristics of three groups of patients with antiepileptic drug-resistant epilepsies: CNL with HS, CNL without HS (CNL alone), and HS without CNL (HS alone). In comparison to patients with CNL alone, those with CNL with HS had CNL more frequently located in the ipsilateral temporal lobe. Those with CNL with HS had a lower incidence of febrile seizures, older age at initial precipitating injury and at onset of habitual complex partial seizures, and more frequent clustering of seizures and extratemporal/bitemporal interictal epileptiform discharges as compared to patients with HS alone. Our study illustrates that HS associated with CNL might have a different pathophysiologic basis as compared to classical HS. Wiley Periodicals, Inc. © 2012 International League Against Epilepsy.

  3. Spontaneous Plasticity of Multineuronal Activity Patterns in Activated Hippocampal Networks

    Directory of Open Access Journals (Sweden)

    Atsushi Usami

    2008-01-01

    Full Text Available Using functional multineuron imaging with single-cell resolution, we examined how hippocampal networks by themselves change the spatiotemporal patterns of spontaneous activity during the course of emitting spontaneous activity. When extracellular ionic concentrations were changed to those that mimicked in vivo conditions, spontaneous activity was increased in active cell number and activity frequency. When ionic compositions were restored to the control conditions, the activity level returned to baseline, but the weighted spatial dispersion of active cells, as assessed by entropy-based metrics, did not. Thus, the networks can modify themselves by altering the internal structure of their correlated activity, even though they as a whole maintained the same level of activity in space and time.

  4. Pyramidal cell-interneuron interactions underlie hippocampal ripple oscillations.

    Science.gov (United States)

    Stark, Eran; Roux, Lisa; Eichler, Ronny; Senzai, Yuta; Royer, Sebastien; Buzsáki, György

    2014-07-16

    High-frequency ripple oscillations, observed most prominently in the hippocampal CA1 pyramidal layer, are associated with memory consolidation. The cellular and network mechanisms underlying the generation, frequency control, and spatial coherence of the rhythm are poorly understood. Using multisite optogenetic manipulations in freely behaving rodents, we found that depolarization of a small group of nearby pyramidal cells was sufficient to induce high-frequency oscillations, whereas closed-loop silencing of pyramidal cells or activation of parvalbumin- (PV) or somatostatin-immunoreactive interneurons aborted spontaneously occurring ripples. Focal pharmacological blockade of GABAA receptors abolished ripples. Localized PV interneuron activation paced ensemble spiking, and simultaneous induction of high-frequency oscillations at multiple locations resulted in a temporally coherent pattern mediated by phase-locked interneuron spiking. These results constrain competing models of ripple generation and indicate that temporally precise local interactions between excitatory and inhibitory neurons support ripple generation in the intact hippocampus. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Chk1 suppressed cell death

    Directory of Open Access Journals (Sweden)

    Meuth Mark

    2010-09-01

    Full Text Available Abstract The role of Chk1 in the cellular response to DNA replication stress is well established. However recent work indicates a novel role for Chk1 in the suppression of apoptosis following the disruption of DNA replication or DNA damage. This review will consider these findings in the context of known pathways of Chk1 signalling and potential applications of therapies that target Chk1.

  6. The CRISP theory of hippocampal function in episodic memory

    Science.gov (United States)

    Cheng, Sen

    2013-01-01

    Over the past four decades, a “standard framework” has emerged to explain the neural mechanisms of episodic memory storage. This framework has been instrumental in driving hippocampal research forward and now dominates the design and interpretation of experimental and theoretical studies. It postulates that cortical inputs drive plasticity in the recurrent cornu ammonis 3 (CA3) synapses to rapidly imprint memories as attractor states in CA3. Here we review a range of experimental studies and argue that the evidence against the standard framework is mounting, notwithstanding the considerable evidence in its support. We propose CRISP as an alternative theory to the standard framework. CRISP is based on Context Reset by dentate gyrus (DG), Intrinsic Sequences in CA3, and Pattern completion in cornu ammonis 1 (CA1). Compared to previous models, CRISP uses a radically different mechanism for storing episodic memories in the hippocampus. Neural sequences are intrinsic to CA3, and inputs are mapped onto these intrinsic sequences through synaptic plasticity in the feedforward projections of the hippocampus. Hence, CRISP does not require plasticity in the recurrent CA3 synapses during the storage process. Like in other theories DG and CA1 play supporting roles, however, their function in CRISP have distinct implications. For instance, CA1 performs pattern completion in the absence of CA3 and DG contributes to episodic memory retrieval, increasing the speed, precision, and robustness of retrieval. We propose the conceptual theory, discuss its implications for experimental results and suggest testable predictions. It appears that CRISP not only accounts for those experimental results that are consistent with the standard framework, but also for results that are at odds with the standard framework. We therefore suggest that CRISP is a viable, and perhaps superior, theory for the hippocampal function in episodic memory. PMID:23653597

  7. Developmental changes in hippocampal shape among preadolescent children.

    Science.gov (United States)

    Lin, Muqing; Fwu, Peter T; Buss, Claudia; Davis, Elysia P; Head, Kevin; Muftuler, L Tugan; Sandman, Curt A; Su, Min-Ying

    2013-11-01

    It is known that the largest developmental changes in the hippocampus take place during the prenatal period and during the first two years of postnatal life. Few studies have been conducted to address the normal developmental trajectory of the hippocampus during childhood. In this study shape analysis was applied to study the normal developing hippocampus in a group of 103 typically developing 6- to 10-year-old preadolescent children. The individual brain was normalized to a template, and then the hippocampus was manually segmented and further divided into the head, body, and tail sub-regions. Three different methods were applied for hippocampal shape analysis: radial distance mapping, surface-based template registration using the robust point matching (RPM) algorithm, and volume-based template registration using the Demons algorithm. All three methods show that the older children have bilateral expanded head segments compared to the younger children. The results analyzed based on radial distance to the centerline were consistent with those analyzed using template-based registration methods. In analyses stratified by sex, it was found that the age-associated anatomical changes were similar in boys and girls, but the age-association was strongest in girls. Total hippocampal volume and sub-regional volumes analyzed using manual segmentation did not show a significant age-association. Our results suggest that shape analysis is sensitive to detect sub-regional differences that are not revealed in volumetric analysis. The three methods presented in this study may be applied in future studies to investigate the normal developmental trajectory of the hippocampus in children. They may be further applied to detect early deviations from the normal developmental trajectory in young children for evaluating susceptibility for psychopathological disorders involving hippocampus. Copyright © 2013 ISDN. Published by Elsevier Ltd. All rights reserved.

  8. Hippocampal-cortical contributions to strategic exploration during perceptual discrimination.

    Science.gov (United States)

    Voss, Joel L; Cohen, Neal J

    2017-06-01

    The hippocampus is crucial for long-term memory; its involvement in short-term or immediate expressions of memory is more controversial. Rodent hippocampus has been implicated in an expression of memory that occurs on-line during exploration termed "vicarious trial-and-error" (VTE) behavior. VTE occurs when rodents iteratively explore options during perceptual discrimination or at choice points. It is strategic in that it accelerates learning and improves later memory. VTE has been associated with activity of rodent hippocampal neurons, and lesions of hippocampus disrupt VTE and associated learning and memory advantages. Analogous findings of VTE in humans would support the role of hippocampus in active use of short-term memory to guide strategic behavior. We therefore measured VTE using eye-movement tracking during perceptual discrimination and identified relevant neural correlates with functional magnetic resonance imaging. A difficult perceptual-discrimination task was used that required visual information to be maintained during a several second trial, but with no long-term memory component. VTE accelerated discrimination. Neural correlates of VTE included robust activity of hippocampus and activity of a network of medial prefrontal and lateral parietal regions involved in memory-guided behavior. This VTE-related activity was distinct from activity associated with simply viewing visual stimuli and making eye movements during the discrimination task, which occurred in regions frequently associated with visual processing and eye-movement control. Subjects were mostly unaware of performing VTE, thus further distancing VTE from explicit long-term memory processing. These findings bridge the rodent and human literatures on neural substrates of memory-guided behavior, and provide further support for the role of hippocampus and a hippocampal-centered network of cortical regions in the immediate use of memory in on-line processing and the guidance of behavior. © 2017

  9. PKC/CREB pathway mediates the expressions of GABAA receptor subunits in cultured hippocampal neurons after low-Mg2+ solution treatment.

    Science.gov (United States)

    Wu, Guofeng; Yu, Jinpeng; Wang, Likun; Ren, Siying; Zhang, Yixia

    2018-02-01

    To investigate the potential effects of the PKC/CREB pathway on the expressions of GABA A receptor subunits α1, γ2, and δ in cultured hippocampal neurons using a model of epilepsy that employed conditions of low magnesium (Mg 2+ ). A total of 108 embryonic rats at the age of 18 embryonic days (E18)prepared from adult female SD rats were used as experimental subjects. Primary rat hippocampal cultures were prepared from the embryonic 18 days rats. The cultured hippocampal neurons were then treated with artificial cerebrospinal fluid containing low Mg 2+ solutions to generate a low Mg 2+ model of epilepsy. The low Mg 2+ stimulation lasted for 3 h and then returned to in maintenance medium for 20 h. The changes of the GABA A receptor subunit α1, γ2, δ were observed by blocking or activating the function of the CREB. The quantification of the GABA A receptor subunit α1, γ2, δ and the CREB were determined by a qRT-PCR and a Western blot method. After the neurons were exposed to a low-Mg 2+ solution for 3 h, GABA A receptor mRNA expression markedly increased compared to the control, and then gradually decreased. In contrast, CREB mRNA levels exhibited a dramatic down-regulation 3 h after terminating low-Mg 2+ treatment, and then peaked at 9 h. Western blot analyses verified that staurosporine suppressed CREB phosphorylation (p-CREB). The mRNA expression of GABA A receptor subunit α1 increased only in the presence of staurosporine, whereas the expressions of subunits γ2 and δ significantly increased in the presence of either KG-501 or staurosporine. Furthermore, phorbol 12-myristate 13-acetate (PMA) decreased the expressions of GABA A subunits α1, γ2, and δ when administered alone. However, the administration of either KG-501 or staurosporine reversed the inhibitory effects of PMA. The PKC/CREB pathway may negatively regulate the expressions of GABA A receptor subunits α1, γ2, and δ in cultured hippocampal neurons in low Mg 2+ model of

  10. In-Flight Suppressant Deployment Temperatures

    National Research Council Canada - National Science Library

    Bein, Donald

    2006-01-01

    .... An assessment is made of the model output versus some aircraft measurement data, fire suppressant boiling point criterion, as well as the history of altitude/temperature at which fire suppressants have been deployed...

  11. Activation of the canonical nuclear factor-κB pathway is involved in isoflurane-induced hippocampal interleukin-1β elevation and the resultant cognitive deficits in aged rats

    International Nuclear Information System (INIS)

    Li, Zheng-Qian; Rong, Xiao-Ying; Liu, Ya-Jie; Ni, Cheng; Tian, Xiao-Sheng; Mo, Na; Chui, De-Hua; Guo, Xiang-Yang

    2013-01-01

    Highlights: •Isoflurane induces hippocampal IL-1β elevation and cognitive deficits in aged rats. •Isoflurane transiently activates the canonical NF-κB pathway in aged rat hippocampus. •NF-κB inhibitor mitigates isoflurane-induced IL-1β elevation and cognitive deficits. •We report a linkage between NF-κB signaling, IL-1β expression, and cognitive changes. -- Abstract: Although much recent evidence has demonstrated that neuroinflammation contributes to volatile anesthetic-induced cognitive deficits, there are few existing mechanistic explanations for this inflammatory process. This study was conducted to investigate the effects of the volatile anesthetic isoflurane on canonical nuclear factor (NF)-κB signaling, and to explore its association with hippocampal interleukin (IL)-1β levels and anesthetic-related cognitive changes in aged rats. After a 4-h exposure to 1.5% isoflurane in 20-month-old rats, increases in IκB kinase and IκB phosphorylation, as well as a reduction in the NF-κB inhibitory protein (IκBα), were observed in the hippocampi of isoflurane-exposed rats compared with control rats. These events were accompanied by an increase in NF-κB p65 nuclear translocation at 6 h after isoflurane exposure and hippocampal IL-1β elevation from 1 to 6 h after isoflurane exposure. Nevertheless, no significant neuroglia activation was observed. Pharmacological inhibition of NF-κB activation by pyrrolidine dithiocarbamate markedly suppressed the IL-1β increase and NF-κB signaling, and also mitigated the severity of cognitive deficits in the Morris water maze task. Overall, our results demonstrate that isoflurane-induced cognitive deficits may stem from upregulation of hippocampal IL-1β, partially via activation of the canonical NF-κB pathway, in aged rats

  12. Enduring neurobehavioral effects of early life trauma mediated through learning and corticosterone suppression

    Directory of Open Access Journals (Sweden)

    Stephanie Moriceau

    2009-09-01

    Full Text Available Early life trauma alters later life emotions, including fear. To better understand mediating mechanisms, we subjected pups to either predictable or unpredictable trauma, in the form of paired or unpaired odor-0.5mA shock conditioning which, during a sensitive period, produces an odor preference and no learning respectively. Fear conditioning and its neural correlates were then assessed after the sensitive period at postnatal day (PN13 or in adulthood, ages when amygdala-dependent fear occurs. Our results revealed that paired odor-shock conditioning starting during the sensitive period (PN8-12 blocked fear conditioning in older infants (PN13 and pups continued to express olfactory bulb-dependent odor preference learning. This PN13 fear learning inhibition was also associated with suppression of shock-induced corticosterone, although the age appropriate amygdala-dependent fear learning was reinstated with systemic corticosterone (3mg/kg during conditioning. On the other hand, sensitive period odor-shock conditioning did not prevent adult fear conditioning, although freezing, amygdala and hippocampal 2-DG uptake and corticosterone levels were attenuated compared to adult conditioning without infant conditioning. Normal levels of freezing, amygdala and hippocampal 2-DG uptake were induced with systemic corticosterone (5mg/kg during adult conditioning. These results suggest that the contingency of early life trauma mediates at least some effects of early life stress through learning and suppression of corticosterone levels. However, developmental differences between infants and adults are expressed with PN13 infants’ learning consistent with the original learned preference, while adult conditioning overrides the original learned preference with attenuated amygdala-dependent fear learning.

  13. Suppression of synaptic plasticity by fullerenol in rat hippocampus in vitro

    Directory of Open Access Journals (Sweden)

    Wang XX

    2016-09-01

    Full Text Available Xin-Xing Wang,1,2,* Ying-Ying Zha,3,* Bo Yang,1 Lin Chen,1,2 Ming Wang1,2 1CAS Key Laboratory of Brain Function and Diseases, 2Auditory Research Laboratory, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, People’s Republic of China; 3Cell Electrophysiology Laboratory, Wannan Medical College, Wuhu, Anhui, People’s Republic of China *These authors contributed equally to this work Abstract: Fullerenol, a water-soluble fullerene derivative, has attracted much attention due to its bioactive properties, including the antioxidative properties and free radical scavenging ability. Due to its superior nature, fullerenol represents a promising diagnostic, therapeutic, and protective agent. Therefore, elucidation of the possible side effects of fullerenol is important in determining its potential role. In the present study, we investigated the acute effects of 5 µM fullerenol on synaptic plasticity in hippocampal brain slices of rats. Incubation with fullerenol for 20 minutes significantly decreased the peak of paired-pulse facilitation and long-term potentiation, indicating that fullerenol suppresses the short- and long-term synaptic plasticity of region I of hippocampus. We found that fullerenol depressed the activity and the expression of nitric oxide (NO synthase in hippocampus. In view of the important role of NO in synaptic plasticity, the inhibition of fullerenol on NO synthase may contribute to the suppression of synaptic plasticity. These findings may facilitate the evaluation of the side effects of fullerenol. Keywords: fullerenol, hippocampal slice, nitric oxide synthase, synaptic plasticity, oxidative stress

  14. Protective effect of Lycium Barbarum polysaccharides on dextromethorphan-induced mood impairment and neurogenesis suppression.

    Science.gov (United States)

    Po, Kevin Kai-Ting; Leung, Joseph Wai-Hin; Chan, Jackie Ngai-Man; Fung, Timothy Kai-Hang; Sánchez-Vidaña, Dalinda Isabel; Sin, Emily Lok-Lam; So, Kwok-Fai; Lau, Benson Wui-Man; Siu, Andrew Man-Hong

    2017-09-01

    Dextromethorphan (DXM) is one of the common drugs abused by adolescents. It is the active ingredient found in cough medicine which is used for suppressing cough. High dosage of DXM can induce euphoria, dissociative effects and even hallucinations. Chronic use of DXM may also lead to depressive-related symptoms. Lycium barbarum, commonly known as wolfberry, has been used as a traditional Chinese medicine for the treatment of ageing-related neurodegenerative diseases. A recent study has shown the potential beneficial effect of Lycium barbarum to reduce depression-like behavior. In the present study, we investigated the role of Lycium barbarum polysaccharide (LBP) to alleviate DXM-induced emotional distress. Sprague Dawley rats were divided into 4 groups (n=6 per group), including the normal control (vehicles only), DXM-treated group (40 mg/kg DXM), LBP-treated group (1 mg/kg LBP) and DXM+ LBP-treated group (40 mg/kg DXM and 1 mg/kg LBP). After two-week treatment, the DXM-treated group showed increased depression-like and social anxiety-like behaviors in the forced swim test and social interaction test respectively. On the other hand, the adverse behavioral effects induced by DXM were reduced by LBP treatment. Histological results showed that LBP treatment alone did not promote hippocampal neurogenesis when compared to the normal control, but LBP could lessen the suppression of hippocampal neurogenesis induced by DXM. The findings provide insights for the potential use of wolfberry as an adjunct treatment option for alleviating mood disturbances during rehabilitation of cough syrup abusers. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Spontaneous perseverative turning in rats with radiation-induced hippocampal damage

    International Nuclear Information System (INIS)

    Mickley, G.A.; Ferguson, J.L.; Nemeth, T.J.; Mulvihill, M.A.; Alderks, C.E.

    1989-01-01

    This study found a new behavioral correlate of lesions specific to the dentate granule cell layer of the hippocampus: spontaneous perseverative turning. Irradiation of a portion of the neonatal rat cerebral hemispheres produced hypoplasia of the granule cell layer of the hippocampal dentate gyrus while sparing the rest of the brain. Radiation-induced damage to the hippocampal formation caused rats placed in bowls to spontaneously turn in long, slow bouts without reversals. Irradiated subjects also exhibited other behaviors characteristic of hippocampal damage (e.g., perseveration in spontaneous exploration of the arms of a T-maze, retarded acquisition of a passive avoidance task, and increased horizontal locomotion). These data extend previously reported behavioral correlates of fascia dentata lesions and suggest the usefulness of a bout analysis of spontaneous bowl turning as a measure of nondiscrete-trial spontaneous alternation and a sensitive additional indicator of radiation-induced hippocampal damage

  16. Temporal lobe epilepsy with mesial temporal sclerosis: hippocampal neuronal loss as a predictor of surgical outcome

    Directory of Open Access Journals (Sweden)

    Anaclara Prada Jardim

    2012-05-01

    Full Text Available OBJECTIVE: To analyze retrospectively a series of patients with temporal lobe epilepsy (TLE and mesial temporal sclerosis (MTS, and the association of patterns of hippocampal sclerosis with clinical data and surgical prognosis. METHOD: Sixty-six patients with medically refractory TLE with unilateral MTS after anterior temporal lobectomy were included. Quantitative neuropathological evaluation was performed on NeuN-stained hippocampal sections. Patient's clinical data and surgical outcome were reviewed. RESULTS: Occurrence of initial precipitating insult (IPI, as well as better postoperative seizure control (i.e. Engel class 1, were associated with classical and severe patterns of hippocampal sclerosis (MTS type 1a and 1b, respectively. CONCLUSION: Quantitative evaluation of hippocampal neuronal loss patterns predicts surgical outcome in patients with TLE-MTS.

  17. Temporal lobe epilepsy with mesial temporal sclerosis: hippocampal neuronal loss as a predictor of surgical outcome.

    Science.gov (United States)

    Jardim, Anaclara Prada; Neves, Rafael Scarpa da Costa; Caboclo, Luís Otávio Sales Ferreira; Lancellotti, Carmen Lucia Penteado; Marinho, Murilo Martinez; Centeno, Ricardo Silva; Cavalheiro, Esper Abrão; Scorza, Carla Alessandra; Yacubian, Elza Márcia Targas

    2012-05-01

    To analyze retrospectively a series of patients with temporal lobe epilepsy (TLE) and mesial temporal sclerosis (MTS), and the association of patterns of hippocampal sclerosis with clinical data and surgical prognosis. Sixty-six patients with medically refractory TLE with unilateral MTS after anterior temporal lobectomy were included. Quantitative neuropathological evaluation was performed on NeuN-stained hippocampal sections. Patient's clinical data and surgical outcome were reviewed. Occurrence of initial precipitating insult (IPI), as well as better postoperative seizure control (i.e. Engel class 1), were associated with classical and severe patterns of hippocampal sclerosis (MTS type 1a and 1b, respectively). Quantitative evaluation of hippocampal neuronal loss patterns predicts surgical outcome in patients with TLE-MTS.

  18. BDNF downregulates 5-HT(2A) receptor protein levels in hippocampal cultures

    DEFF Research Database (Denmark)

    Trajkovska, V; Santini, M A; Marcussen, Anders Bue

    2009-01-01

    Both brain-derived neurotrophic factor (BDNF) and the serotonin receptor 2A (5-HT(2A)) have been related to depression pathology. Specific 5-HT(2A) receptor changes seen in BDNF conditional mutant mice suggest that BDNF regulates the 5-HT(2A) receptor level. Here we show a direct effect of BDNF...... on 5-HT(2A) receptor protein levels in primary hippocampal neuronal and mature hippocampal organotypic cultures exposed to different BDNF concentrations for either 1, 3, 5 or 7 days. In vivo effects of BDNF on hippocampal 5-HT(2A) receptor levels were further corroborated in (BDNF +/-) mice...... with reduced BDNF levels. In primary neuronal cultures, 7 days exposure to 25 and 50ng/mL BDNF resulted in downregulation of 5-HT(2A), but not of 5-HT(1A), receptor protein levels. The BDNF-associated downregulation of 5-HT(2A) receptor levels was also observed in mature hippocampal organotypic cultures...

  19. Delphi definition of the EADC-ADNI Harmonized Protocol for hippocampal segmentation on magnetic resonance

    NARCIS (Netherlands)

    Boccardi, M.; Bocchetta, M.; Apostolova, L.G.; Barnes, J.; Bartzokis, G.; Corbetta, G.; deCarli, C.; DeToledo-Morrell, L.; Firbank, M.; Ganzola, R.; Gerritsen, L.; Henneman, W.; Killiany, R.J.; Malykhin, N.; Pasqualetti, P.; Pruessner, J.C.; Redolfi, A.; Robitaille, N.; Soininen, H.; Tolomeo, D.; Wang, L.; Watson, C.; Wolf, H; Duvernoy, H.; Duchesne, S.; Jack, C.R.; Frisoni, G. B.

    2015-01-01

    Background: This study aimed to have international experts converge on a harmonized definition of whole hippocampus boundaries and segmentation procedures, to define standard operating procedures for magnetic resonance (MR)-based manual hippocampal segmentation. Methods: The panel received a

  20. Integrating incremental learning and episodic memory models of the hippocampal region.

    NARCIS (Netherlands)

    Meeter, M.; Myers, C.E; Gluck, M.A.

    2005-01-01

    By integrating previous computational models of corticohippocampal function, the authors develop and test a unified theory of the neural substrates of familiarity, recollection, and classical conditioning. This approach integrates models from 2 traditions of hippocampal modeling, those of episodic

  1. Adult Hippocampal Neurogenesis is Impaired by Transient and Moderate Developmental Thyroid Hormone Disruption

    Science.gov (United States)

    Severe thyroid hormone (TH) deprivation during development impairs neurogenesis throughout the brain. The hippocampus also maintains a capacity for neurogenesis throughout life which is reduced in adult-onset hypothyroidism. This study examined hippocampal volume in the neonate a...

  2. Reading, writing, and reserve: Literacy activities are linked to hippocampal volume and memory in multiple sclerosis.

    Science.gov (United States)

    Sumowski, James F; Rocca, Maria A; Leavitt, Victoria M; Riccitelli, Gianna; Meani, Alessandro; Comi, Giancarlo; Filippi, Massimo

    2016-10-01

    Engagement in cognitive leisure activities during early adulthood has been linked to preserved memory and larger hippocampal volume in persons with multiple sclerosis (MS). To investigate which specific types of cognitive leisure activities contribute to hippocampal volume and memory. We investigated links between three types of cognitive activities (Reading-Writing, Art-Music, Games-Hobbies) and (a) hippocampal volume within independent samples of Italian (n=187) and American (n=55) MS patients and (b) memory in subsamples of Italian (n=97) and American (n=53) patients. Reading-Writing was the only predictor of hippocampal volume (rp=.204, p=.002), and the best predictor of memory (rp=.288, p=.001). Findings inform the development of targeted evidence-based enrichment programs aiming to bolster reserve against memory decline. © The Author(s), 2016.

  3. Regulation of hippocampal neurogenesis by systemic factors including stress, glucocorticoids, sleep, and inflammation

    NARCIS (Netherlands)

    Lucassen, P.J.; Oomen, C.; van Dam, A.-M.; Czéh, B.; Gage, F.H.; Kempermann, G.; Song, H.

    2008-01-01

    This review summarizes and discusses the regulation of adult neurogenesis and hippocampal cellular plasticity by systemic factors. We focus on the role of stress, glucocorticoids, and related factors such as sleep deprivation and inflammation.

  4. PROPYLTHIOURACIL (PTU)-INDUCED HYPOTHYROIDISM: EFFECTS ON SYNAPTIC TRANSMISSION AND LONG TERM POTENTIATION IN HIPPOCAMPAL SLICES.

    Science.gov (United States)

    Concern has been raised over endocrine effects of some classes of environmental chemicals. Severe hypothyroidism during critical periods of brain developmental leads to alterations in hippocampal structure, learning deficits, yet neurophysiological properties of the hippocampus...

  5. Arteriolosclerosis that affects multiple brain regions is linked to hippocampal sclerosis of ageing.

    Science.gov (United States)

    Neltner, Janna H; Abner, Erin L; Baker, Steven; Schmitt, Frederick A; Kryscio, Richard J; Jicha, Gregory A; Smith, Charles D; Hammack, Eleanor; Kukull, Walter A; Brenowitz, Willa D; Van Eldik, Linda J; Nelson, Peter T

    2014-01-01

    Hippocampal sclerosis of ageing is a prevalent brain disease that afflicts older persons and has been linked with cerebrovascular pathology. Arteriolosclerosis is a subtype of cerebrovascular pathology characterized by concentrically thickened arterioles. Here we report data from multiple large autopsy series (University of Kentucky Alzheimer's Disease Centre, Nun Study, and National Alzheimer's Coordinating Centre) showing a specific association between hippocampal sclerosis of ageing pathology and arteriolosclerosis. The present analyses incorporate 226 cases of autopsy-proven hippocampal sclerosis of ageing and 1792 controls. Case-control comparisons were performed including digital pathological assessments for detailed analyses of blood vessel morphology. We found no evidence of associations between hippocampal sclerosis of ageing pathology and lacunar infarcts, large infarcts, Circle of Willis atherosclerosis, or cerebral amyloid angiopathy. Individuals with hippocampal sclerosis of ageing pathology did not show increased rates of clinically documented hypertension, diabetes, or other cardiac risk factors. The correlation between arteriolosclerosis and hippocampal sclerosis of ageing pathology was strong in multiple brain regions outside of the hippocampus. For example, the presence of arteriolosclerosis in the frontal cortex (Brodmann area 9) was strongly associated with hippocampal sclerosis of ageing pathology (P studies to optimize immunostaining methods for small blood vessel visualization, our analyses focused on sections immunostained for smooth muscle actin (a marker of arterioles) and CD34 (an endothelial marker), with separate analyses on grey and white matter. A total of 43 834 smooth muscle actin-positive vascular profiles and 603 798 CD34-positive vascular profiles were evaluated. In frontal cortex of cases with hippocampal sclerosis of ageing, smooth muscle actin-immunoreactive arterioles had thicker walls (P < 0.05), larger perimeters (P < 0

  6. Estradiol and luteinizing hormone regulate recognition memory following subchronic phencyclidine: Evidence for hippocampal GABA action.

    Science.gov (United States)

    Riordan, Alexander J; Schaler, Ari W; Fried, Jenny; Paine, Tracie A; Thornton, Janice E

    2018-05-01

    The cognitive symptoms of schizophrenia are poorly understood and difficult to treat. Estrogens may mitigate these symptoms via unknown mechanisms. To examine these mechanisms, we tested whether increasing estradiol (E) or decreasing luteinizing hormone (LH) could mitigate short-term episodic memory loss in a phencyclidine (PCP) model of schizophrenia. We then assessed whether changes in cortical or hippocampal GABA may underlie these effects. Female rats were ovariectomized and injected subchronically with PCP. To modulate E and LH, animals received estradiol capsules or Antide injections. Short-term episodic memory was assessed using the novel object recognition task (NORT). Brain expression of GAD67 was analyzed via western blot, and parvalbumin-containing cells were counted using immunohistochemistry. Some rats received hippocampal infusions of a GABA A agonist, GABA A antagonist, or GAD inhibitor before behavioral testing. We found that PCP reduced hippocampal GAD67 and abolished recognition memory. Antide restored hippocampal GAD67 and rescued recognition memory in PCP-treated animals. Estradiol prevented PCP's amnesic effect in NORT but failed to restore hippocampal GAD67. PCP did not cause significant differences in number of parvalbumin-expressing cells or cortical expression of GAD67. Hippocampal infusions of a GABA A agonist restored recognition memory in PCP-treated rats. Blocking hippocampal GAD or GABA A receptors in ovx animals reproduced recognition memory loss similar to PCP and inhibited estradiol's protection of recognition memory in PCP-treated animals. In summary, decreasing LH or increasing E can lessen short-term episodic memory loss, as measured by novel object recognition, in a PCP model of schizophrenia. Alterations in hippocampal GABA may contribute to both PCP's effects on recognition memory and the hormones' ability to prevent or reverse them. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Neuropsychology, Autobiographical Memory, and Hippocampal Volume in ?Younger? and ?Older? Patients with Chronic Schizophrenia

    OpenAIRE

    Herold, Christina Josefa; L?sser, Marc Montgomery; Schmid, Lena Anna; Seidl, Ulrich; Kong, Li; Fellhauer, Iven; Thomann, Philipp Arthur; Essig, Marco; Schr?der, Johannes

    2015-01-01

    Despite a wide range of studies on neuropsychology in schizophrenia, autobiographical memory (AM) has been scarcely investigated in these patients. Hence, less is known about AM in older patients and hippocampal contribution to autobiographical memories of varying remoteness. Therefore, we investigated hippocampal volume and AM along with important neuropsychological domains in patients with chronic schizophrenia and the respective relationships between these parameters. We compared 25 older ...

  8. Aerobic exercise increases hippocampal volume and improves memory in multiple sclerosis: preliminary findings.

    Science.gov (United States)

    Leavitt, V M; Cirnigliaro, C; Cohen, A; Farag, A; Brooks, M; Wecht, J M; Wylie, G R; Chiaravalloti, N D; DeLuca, J; Sumowski, J F

    2014-01-01

    Multiple sclerosis leads to prominent hippocampal atrophy, which is linked to memory deficits. Indeed, 50% of multiple sclerosis patients suffer memory impairment, with negative consequences for quality of life. There are currently no effective memory treatments for multiple sclerosis either pharmacological or behavioral. Aerobic exercise improves memory and promotes hippocampal neurogenesis in nonhuman animals. Here, we investigate the benefits of aerobic exercise in memory-impaired multiple sclerosis patients. Pilot data were collected from two ambulatory, memory-impaired multiple sclerosis participants randomized to non-aerobic (stretching) and aerobic (stationary cycling) conditions. The following baseline/follow-up measurements were taken: high-resolution MRI (neuroanatomical volumes), fMRI (functional connectivity), and memory assessment. Intervention was 30-minute sessions 3 times per week for 3 months. Aerobic exercise resulted in 16.5% increase in hippocampal volume and 53.7% increase in memory, as well as increased hippocampal resting-state functional connectivity. Improvements were specific, with no comparable changes in overall cerebral gray matter (+2.4%), non-hippocampal deep gray matter structures (thalamus, caudate: -4.0%), or in non-memory cognitive functioning (executive functions, processing speed, working memory: changes ranged from -11% to +4%). Non-aerobic exercise resulted in relatively no change in hippocampal volume (2.8%) or memory (0.0%), and no changes in hippocampal functional connectivity. This is the first evidence for aerobic exercise to increase hippocampal volume and connectivity and improve memory in multiple sclerosis. Aerobic exercise represents a cost-effective, widely available, natural, and self-administered treatment with no adverse side effects that may be the first effective memory treatment for multiple sclerosis patients.

  9. Imbalance of incidental encoding across tasks: An explanation for non-memory-related hippocampal activations?

    OpenAIRE

    Reas, Emilie T.; Brewer, James B.

    2013-01-01

    Functional neuroimaging studies have increasingly noted hippocampal activation associated with a variety of cognitive functions such as decision-making, attention, perception, incidental learning, prediction and working memory, which have little apparent relation to declarative memory. Such findings might be difficult to reconcile with classical hippocampal lesion studies that show remarkable sparing of cognitive functions outside the realm of declarative memory. Even the oft-reported hippoca...

  10. Asymmetry of limbic structure (hippocampal formation and amygdaloidal complex at PTSD

    Directory of Open Access Journals (Sweden)

    Aida Sarač-Hadžihalilović

    2003-05-01

    Full Text Available Defining exact position of weak anatomic function which is find in a base of neurological and psychiatric disorder is just became the subject of intensive research interest. For this purposes it is important to implement structural and functional MRI techniques, also for further lightening and seeing subject of this work, more concretely connected to PTSD. Therefore, exactly MRI gives most sensitive volumetric measuring of hippocampal formation and amygdaloidal complex.The goal of this work was to research asymmetry of hippocampal formation and amygdaloidal complex to the PTSD patients.Results showed that at the axial slice length of hippocampal formation on the left and right side of all patients are significantly asymmetric. At the sagittal slice from the left side of hippocampal formation is in many cases longer than right about 50 %. At the coronal slice, there are no significant differences toward patient proportion according to symm. / asymm. of the hippocampal formation width at the right and left side. Difference in volume average of hippocampal formation between right and left side for axial and coronal slice is not statistically significant, but it is significant for sagittal slice. In about amygdaloidal complex patients with PTSD toward symm. / asymm. Amygdaloidal complex at the right and left side of axial and sagittal slice in all three measurement shows asymmetry, what is especially shown at sagittal slice. Difference in average length of amygdaloidal complex at the right and left side is not statistically significant for no one slice.Therefore, results of a new research that are used MRI, showed smaller hippocampal level at PTSD (researched by Van der Kolka 1996, Pitman 1996, Bremner et al., 1995.. Application of MRI technique in research of asymmetry of hippocampal formation and amygdaloidal complex, which we used in our research, we recommend as a template for future researches in a sense of lightening anatomic function that is

  11. 17β Estradiol increases resilience and improves hippocampal synaptic function in helpless ovariectomized rats

    Science.gov (United States)

    Bredemann, Teruko M.; McMahon, Lori L.

    2014-01-01

    Summary Memory impairment is the most commonly reported cognitive symptom associated with major depressive disorder. Decreased hippocampal volume and neurogenesis in depression link hippocampal dysfunction with deficits in memory. Stress decreases hippocampal dendritic spine density and long-term potentiation (LTP) at glutamate synapses, a cellular correlate of learning and memory. However, elevated plasma levels of 17β estradiol (E2) during proestrus increase hippocampal structure and function, directly opposing the negative consequences of stress. In women, significant fluctuations in ovarian hormones likely increase vulnerability of hippocampal circuits to stress, potentially contributing to the greater incidence of depression compared to men. Using the learned helplessness model of depression and ovariectomized female rats, we investigated whether acquisition of helplessness and hippocampal synaptic dysfunction is differentially impacted by the presence or absence of plasma E2. We find that inescapable shock induces a greater incidence of helplessness in vehicle- versus E2-treated OVX rats. In the vehicle-treated group, LTP was absent at CA3-CA1 synapses in slices only from helpless rats, and CA1 spine density was decreased compared to resilient rats. In contrast, significant LTP was observed in slices from E2-treated helpless rats; importantly, spine density was not different between E2-treated helpless and resilient rats, dissociating spine density from the LTP magnitude. We also find that E2 replacement can reverse previously established helpless behavior. Thus, our results show that E2 replacement in OVX rats increases resilience and improves hippocampal plasticity, suggesting that E2 therapy may increase resilience to stress and preserve hippocampal function in women experiencing large fluctuations in plasma estrogen levels. PMID:24636504

  12. Hippocampal subfield volumetry in mild cognitive impairment, Alzheimer's disease and semantic dementia.

    Science.gov (United States)

    La Joie, Renaud; Perrotin, Audrey; de La Sayette, Vincent; Egret, Stéphanie; Doeuvre, Loïc; Belliard, Serge; Eustache, Francis; Desgranges, Béatrice; Chételat, Gaël

    2013-01-01

    Hippocampal atrophy is a well-known feature of Alzheimer's disease (AD), but sensitivity and specificity of hippocampal volumetry are limited. Neuropathological studies have shown that hippocampal subfields are differentially vulnerable to AD; hippocampal subfield volumetry may thus prove to be more accurate than global hippocampal volumetry to detect AD. CA1, subiculum and other subfields were manually delineated from 40 healthy controls, 18 AD, 17 amnestic Mild Cognitive Impairment (aMCI), and 8 semantic dementia (SD) patients using a previously developed high resolution MRI procedure. Non-parametric group comparisons and receiver operating characteristic (ROC) analyses were conducted. Complementary analyses were conducted to evaluate differences of hemispheric asymmetry and anterior-predominance between AD and SD patients and to distinguish aMCI patients with or without β-amyloid deposition as assessed by Florbetapir-TEP. Global hippocampi were atrophied in all three patient groups and volume decreases were maximal in the CA1 subfield (22% loss in aMCI, 27% in both AD and SD; all p volumetry was more accurate than global hippocampal measurement to distinguish patients from controls (areas under the ROC curve = 0.88 and 0.76, respectively; p = 0.05) and preliminary analyses suggest that it was independent from the presence of β-amyloid deposition. In patients with SD, whereas the degree of CA1 and subiculum atrophy was similar to that found in AD patients, hemispheric and anterior-posterior asymmetry were significantly more marked than in AD with greater involvement of the left and anterior hippocampal subfields. The findings suggest that CA1 measurement is more sensitive than global hippocampal volumetry to detect structural changes at the pre-dementia stage, although the predominance of CA1 atrophy does not appear to be specific to AD pathophysiological processes.

  13. Correlation between hippocampal volumes and medial temporal lobe atrophy in patients with Alzheimer's disease

    OpenAIRE

    Dhikav, Vikas; Duraiswamy, Sharmila; Anand, Kuljeet Singh

    2017-01-01

    Introduction: Hippocampus undergoes atrophy in patients with Alzheimer's disease (AD). Calculation of hippocampal volumes can be done by a variety of methods using T1-weighted images of magnetic resonance imaging (MRI) of the brain. Medial temporal lobes atrophy (MTL) can be rated visually using T1-weighted MRI brain images. The present study was done to see if any correlation existed between hippocampal volumes and visual rating scores of the MTL using Scheltens Visual Rating Method. Materia...

  14. Building hippocampal circuits to learn and remember: insights into the development of human memory.

    Science.gov (United States)

    Lavenex, Pierre; Banta Lavenex, Pamela

    2013-10-01

    The hippocampal formation is essential for the processing of episodic memories for autobiographical events that happen in unique spatiotemporal contexts. Interestingly, before 2 years of age, children are unable to form or store episodic memories for recall later in life, a phenomenon known as infantile amnesia. From 2 to 7 years of age, there are fewer memories than predicted based on a forgetting function alone, a phenomenon known as childhood amnesia. Here, we discuss the postnatal maturation of the primate hippocampal formation with the goal of characterizing the development of the neurobiological substrates thought to subserve the emergence of episodic memory. Distinct regions, layers and cells of the hippocampal formation exhibit different profiles of structural and molecular development during early postnatal life. The protracted period of neuronal addition and maturation in the dentate gyrus is accompanied by the late maturation of specific layers in different hippocampal regions that are located downstream from the dentate gyrus, particularly CA3. In contrast, distinct layers in several hippocampal regions, particularly CA1, which receive direct projections from the entorhinal cortex, exhibit an early maturation. In addition, hippocampal regions that are more highly interconnected with subcortical structures, including the subiculum, presubiculum, parasubiculum and CA2, mature even earlier. These findings, together with our studies of the development of human spatial memory, support the hypothesis that the differential maturation of distinct hippocampal circuits might underlie the differential emergence of specific "hippocampus-dependent" memory processes, culminating in the emergence of episodic memory concomitant with the maturation of all hippocampal circuits. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Effects of Early-Life Adversity on Hippocampal Structures and Associated HPA Axis Functions.

    Science.gov (United States)

    Dahmen, Brigitte; Puetz, Vanessa B; Scharke, Wolfgang; von Polier, Georg G; Herpertz-Dahlmann, Beate; Konrad, Kerstin

    2018-01-01

    Early-life adversity (ELA) is one of the major risk factors for serious mental and physical health risks later in life. ELA has been associated with dysfunctional neurodevelopment, especially in brain structures such as the hippocampus, and with dysfunction of the stress system, including the hypothalamic-pituitary-adrenal (HPA) axis. Children who have experienced ELA are also more likely to suffer from mental health disorders such as depression later in life. The exact interplay of aberrant neurodevelopment and HPA axis dysfunction as risks for psychopathology is not yet clear. We investigated volume differences in the bilateral hippocampus and in stress-sensitive hippocampal subfields, behavior problems, and diurnal cortisol activity in 24 children who had experienced documented ELA (including out-of-home placement) in a circumscribed duration of adversity only in their first 3 years of life in comparison to data on 25 control children raised by their biological parents. Hippocampal volumes and stress-sensitive hippocampal subfields (Cornu ammonis [CA]1, CA3, and the granule-cell layer of the dentate gyrus [GCL-DG]) were significantly smaller in children who had experienced ELA, taking psychiatric diagnoses and dimensional psychopathological symptoms into account. ELA moderated the relationship between left hippocampal volume and cortisol: in the control group, hippocampal volumes were not related to diurnal cortisol, while in ELA children, a positive linear relationship between left hippocampal volume and diurnal cortisol was present. Our findings show that ELA is associated with altered development of the hippocampus, and an altered relationship between hippocampal volume and HPA axis activity in youth in care, even after they have lived in stable and caring foster family environments for years. Altered hippocampal development after ELA could thus be associated with a risk phenotype for the development of psychiatric disorders later in life. © 2017 S. Karger

  16. In the suppression of regge cut contributions

    International Nuclear Information System (INIS)

    Chia, S.P.

    1975-07-01

    It is shown that contributions of reggeon-pomeron cuts are suppressed in amplitudes with opposite natural to the reggeon. This suppression grows logarithmically with energy. The suppression in the πP cut is, however, found to be weak. Consequence on conspiracy is discussed

  17. Late-Onset Alzheimer's Disease Polygenic Risk Profile Score Predicts Hippocampal Function.

    Science.gov (United States)

    Xiao, Ena; Chen, Qiang; Goldman, Aaron L; Tan, Hao Yang; Healy, Kaitlin; Zoltick, Brad; Das, Saumitra; Kolachana, Bhaskar; Callicott, Joseph H; Dickinson, Dwight; Berman, Karen F; Weinberger, Daniel R; Mattay, Venkata S

    2017-11-01

    We explored the cumulative effect of several late-onset Alzheimer's disease (LOAD) risk loci using a polygenic risk profile score (RPS) approach on measures of hippocampal function, cognition, and brain morphometry. In a sample of 231 healthy control subjects (19-55 years of age), we used an RPS to study the effect of several LOAD risk loci reported in a recent meta-analysis on hippocampal function (determined by its engagement with blood oxygen level-dependent functional magnetic resonance imaging during episodic memory) and several cognitive metrics. We also studied effects on brain morphometry in an overlapping sample of 280 subjects. There was almost no significant association of LOAD-RPS with cognitive or morphometric measures. However, there was a significant negative relationship between LOAD-RPS and hippocampal function (familywise error [small volume correction-hippocampal region of interest] p risk score based on APOE haplotype, and for a combined LOAD-RPS + APOE haplotype risk profile score (p risk genes on hippocampal function even in healthy volunteers. The effect of LOAD-RPS on hippocampal function in the relative absence of any effect on cognitive and morphometric measures is consistent with the reported temporal characteristics of LOAD biomarkers with the earlier manifestation of synaptic dysfunction before morphometric and cognitive changes. Copyright © 2017 Society of Biological Psychiatry. All rights reserved.

  18. Hippocampal volume in relation to clinical and cognitive outcome after electroconvulsive therapy in depression.

    Science.gov (United States)

    Nordanskog, P; Larsson, M R; Larsson, E-M; Johanson, A

    2014-04-01

    In a previous magnetic resonance imaging (MRI) study, we found a significant increase in hippocampal volume immediately after electroconvulsive therapy (ECT) in patients with depression. The aim of this study was to evaluate hippocampal volume up to 1 year after ECT and investigate its possible relation to clinical and cognitive outcome. Clinical and cognitive outcome in 12 in-patients with depression receiving antidepressive pharmacological treatment referred for ECT were investigated with the Montgomery-Asberg Depression Rating Scale (MADRS) and a broad neuropsychological test battery within 1 week before and after ECT. The assessments were repeated 6 and 12 months after baseline in 10 and seven of these patients, respectively. Hippocampal volumes were measured on all four occasions with 3 Tesla MRI. Hippocampal volume returned to baseline during the follow-up period of 6 months. Neither the significant antidepressant effect nor the significant transient decrease in executive and verbal episodic memory tests after ECT could be related to changes in hippocampal volume. No persistent cognitive side effects were observed 1 year after ECT. The immediate increase in hippocampal volume after ECT is reversible and is not related to clinical or cognitive outcome. © 2013 The Authors. Acta Psychiatrica Scandinavica published by John Wiley & Sons Ltd.

  19. Hippocampal Structure Predicts Statistical Learning and Associative Inference Abilities during Development.

    Science.gov (United States)

    Schlichting, Margaret L; Guarino, Katharine F; Schapiro, Anna C; Turk-Browne, Nicholas B; Preston, Alison R

    2017-01-01

    Despite the importance of learning and remembering across the lifespan, little is known about how the episodic memory system develops to support the extraction of associative structure from the environment. Here, we relate individual differences in volumes along the hippocampal long axis to performance on statistical learning and associative inference tasks-both of which require encoding associations that span multiple episodes-in a developmental sample ranging from ages 6 to 30 years. Relating age to volume, we found dissociable patterns across the hippocampal long axis, with opposite nonlinear volume changes in the head and body. These structural differences were paralleled by performance gains across the age range on both tasks, suggesting improvements in the cross-episode binding ability from childhood to adulthood. Controlling for age, we also found that smaller hippocampal heads were associated with superior behavioral performance on both tasks, consistent with this region's hypothesized role in forming generalized codes spanning events. Collectively, these results highlight the importance of examining hippocampal development as a function of position along the hippocampal axis and suggest that the hippocampal head is particularly important in encoding associative structure across development.

  20. Morphological variations of hippocampal formation in epilepsy: image, clinical and electrophysiological data.

    Science.gov (United States)

    Hamad, Ana Paula Andrade; Carrete, Henrique; Bianchin, Marino Muxfeldt; Ferrari-Marinho, Taissa; Lin, Katia; Yacubian, Elza Márcia Targas; Vilanova, Luiz Celso Pereira; Garzon, Eliana; Caboclo, Luís Otávio; Sakamoto, Américo Ceiki

    2013-01-01

    Morphological variations of hippocampal formation (MVHF) are observed in patients with epilepsy but also in asymptomatic individuals. The precise role of these findings in epilepsy is not yet fully understood. This study analyzes the hippocampal formation (HF) morphology of asymptomatic individuals (n = 30) and of patients with mesial temporal lobe epilepsy associated with hippocampal sclerosis (MTLE-HS) (n = 68), patients with malformations of cortical development (MCD) (n = 34), or patients with pure morphological variations of hippocampal formation (pure MVHF) (n = 12). Main clinical and electrophysiological data of patients with MVHF were also analyzed. Morphological variations of hippocampal formation are more frequently observed in patients with MCD than in patients with MTLE-HS or in asymptomatic individuals. Patients with pure morphological variations of hippocampal formation showed higher incidence of extratemporal seizure onset. Refractoriness seems to be more associated with other abnormalities, like HS or MCD, than with the HF variation itself. Thus, although morphological HF abnormalities might play a role in epileptogenicity, they seem to contribute less to refractoriness. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Autopsy-confirmed hippocampal-sparing Alzheimer's disease with delusional jealousy as initial manifestation.

    Science.gov (United States)

    Fujishiro, Hiroshige; Iritani, Shuji; Hattori, Miho; Sekiguchi, Hirotaka; Matsunaga, Shinji; Habuchi, Chikako; Torii, Youta; Umeda, Kentaro; Ozaki, Norio; Yoshida, Mari; Fujita, Kiyoshi

    2015-09-01

    Alzheimer's disease (AD) is clinically characterized by gradual onset over years with worsening of cognition. The initial and most prominent cognitive deficit is commonly memory dysfunction. However, a subset of AD cases has less hippocampal atrophy than would be expected relative to the predominance of cortical atrophy. These hippocampal-sparing cases have distinctive clinical features, including the presence of focal cortical clinical syndromes. Given that previous studies have indicated that severe hippocampal atrophy corresponds to prominent loss of episodic memory, it is likely that memory impairment is initially absent in hippocampal-sparing AD cases. Here, we report on a patient with an 8-year history of delusional jealousy with insidious onset who was clinically diagnosed as possible AD and pathologically confirmed to have AD with relatively preserved neurons in the hippocampus. This patient had delusional jealousy with a long pre-dementia stage, which initially was characterized by lack of memory impairment. Head magnetic resonance imaging findings showed preserved hippocampal volume with bilateral enlarged ventricles and mild-to-moderate cortical atrophy. Head single-photon emission computed tomography revealed severely decreased regional cerebral blood flow in the right temporal lobe. The resolution of the delusion was attributed to pharmacotherapy by an acetylcholinesterase inhibitor, suggesting that the occurrence of delusional jealousy was due to the disease process of AD. Although the neural basis of delusional jealousy remains unclear, this hippocampal-sparing AD case may be classified as an atypical presentation of AD. © 2015 The Authors. Psychogeriatrics © 2015 Japanese Psychogeriatric Society.

  2. Potential hippocampal region atrophy in diabetes mellitus type 2. A voxel-based morphometry VSRAD study

    International Nuclear Information System (INIS)

    Kamiyama, Kazutoshi; Sugihara, Masaki; Wada, Akihiko

    2010-01-01

    Among diabetes mellitus type 2 (DM2) patients, the frequency of cognitive dysfunction is higher and the relative risk of Alzheimer's disease (AD) is approximately twice that of nondiabetics. Cognitive impairment symptoms of AD are induced by limbic system dysfunction, and an early-stage AD brain without dementia has the potential for atrophy in the hippocampal region. In this study, we estimated potential hippocampal region atrophy in DM2 and pursued the association between DM2 and cognitive impairment/AD. Voxel-based morphometry analysis was performed in 28 diabetics (14 men, 14 women; ages 59-79 years, mean 70.7 years) and 28 sex- and age- matched (±1 year) nondiabetics. Severity of gray matter loss in the hippocampal region and whole brain were investigated. Group analysis was performed using two-tailed unpaired t-test; significance was assumed with less than 1% (P<0.01) of the critical rate. There was a significant difference between diabetics and nondiabetics regarding the severity of hippocampal region atrophy and whole-brain atrophy. Only diabetics showed a positive correlation for severity of hippocampal region atrophy and whole-brain atrophy (rs=0.69, P<0.0001). Aged DM2 patients have the potential for hippocampal region atrophy, and its dysfunction can be related to the expression of a cognitive impairment that resembles AD. (author)

  3. Differential Atrophy of Hippocampal Subfields: A Comparative Study of Dementia with Lewy Bodies and Alzheimer Disease.

    Science.gov (United States)

    Mak, Elijah; Su, Li; Williams, Guy B; Watson, Rosie; Firbank, Michael; Blamire, Andrew; O'Brien, John

    2016-02-01

    Dementia with Lewy bodies (DLB) is characterized by relative preservation of the medial temporal lobe compared with Alzheimer disease (AD). The differential involvement of the hippocampal subfields in both diseases has not been clearly established, however. We aim to investigate hippocampal subfield differences in vivo in a clinical cohort of DLB and AD subjects. 104 participants (35 DLBs, 36 ADs, and 35 healthy comparison [HC] subjects) underwent clinical assessment and 3T T1-weighted imaging. A Bayesian model implemented in Freesurfer was used to automatically segment the hippocampus and its subfields. We also examined associations between hippocampal subfields and tests of memory function. Both the AD and DLB groups demonstrated significant atrophy of the total hippocampus relative to HC but the DLB group was characterized by preservation of the cornu ammonis 1 (CA1), fimbria, and fissure. In contrast, all the hippocampal subfields except the fissure were significantly atrophied in AD compared with both DLB and HC groups. Among DLB subjects, CA1 was correlated with the Recent Memory score of the CAMCOG and Delayed Recall subscores of the HVLT. DLB is characterized by milder hippocampal atrophy that was accompanied by preservation of the CA1. The CA1 was also associated with memory function in DLB. Our findings highlight the promising role of hippocampal subfield volumetry, particularly that of the CA1, as a biomarker for the distinction between AD and DLB. Copyright © 2016 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.

  4. A mathematical model of aging-related and cortisol induced hippocampal dysfunction

    Directory of Open Access Journals (Sweden)

    Jones Janette JL

    2009-03-01

    Full Text Available Abstract Background The hippocampus is essential for declarative memory synthesis and is a core pathological substrate for Alzheimer's disease (AD, the most common aging-related dementing disease. Acute increases in plasma cortisol are associated with transient hippocampal inhibition and retrograde amnesia, while chronic cortisol elevation is associated with hippocampal atrophy. Thus, cortisol levels could be monitored and managed in older people, to decrease their risk of AD type hippocampal dysfunction. We generated an in silicomodel of the chronic effects of elevated plasma cortisol on hippocampal activity and atrophy, using the systems biology mark-up language (SBML. We further challenged the model with biologically based interventions to ascertain if cortisol associated hippocampal dysfunction could be abrogated. Results The in silicoSBML model reflected the in vivoaging of the hippocampus and increased plasma cortisol and negative feedback to the hypothalamic pituitary axis. Aging induced a 12% decrease in hippocampus activity (HA, increased to 30% by acute and 40% by chronic elevations in cortisol. The biological intervention attenuated the cortisol associated decrease in HA by 2% in the acute cortisol simulation and by 8% in the chronic simulation. Conclusion Both acute and chronic elevations in cortisol secretion increased aging-associated hippocampal atrophy and a loss of HA in the model. We suggest that this first SMBL model, in tandem with in vitroand in vivostudies, may provide a backbone to further frame computational cortisol and brain aging models, which may help predict aging-related brain changes in vulnerable older people.

  5. Specific responses of human hippocampal neurons are associated with better memory.

    Science.gov (United States)

    Suthana, Nanthia A; Parikshak, Neelroop N; Ekstrom, Arne D; Ison, Matias J; Knowlton, Barbara J; Bookheimer, Susan Y; Fried, Itzhak

    2015-08-18

    A population of human hippocampal neurons has shown responses to individual concepts (e.g., Jennifer Aniston) that generalize to different instances of the concept. However, recordings from the rodent hippocampus suggest an important function of these neurons is their ability to discriminate overlapping representations, or pattern separate, a process that may facilitate discrimination of similar events for successful memory. In the current study, we explored whether human hippocampal neurons can also demonstrate the ability to discriminate between overlapping representations and whether this selectivity could be directly related to memory performance. We show that among medial temporal lobe (MTL) neurons, certain populations of neurons are selective for a previously studied (target) image in that they show a significant decrease in firing rate to very similar (lure) images. We found that a greater proportion of these neurons can be found in the hippocampus compared with other MTL regions, and that memory for individual items is correlated to the degree of selectivity of hippocampal neurons responsive to those items. Moreover, a greater proportion of hippocampal neurons showed selective firing for target images in good compared with poor performers, with overall memory performance correlated with hippocampal selectivity. In contrast, selectivity in other MTL regions was not associated with memory performance. These findings show that a substantial proportion of human hippocampal neurons encode specific memories that support the discrimination of overlapping representations. These results also provide previously unidentified evidence consistent with a unique role of the human hippocampus in orthogonalization of representations in declarative memory.

  6. A prospective evaluation of hippocampal radiation dose volume effects and memory deficits following cranial irradiation.

    Science.gov (United States)

    Ma, Ting Martin; Grimm, Jimm; McIntyre, Riley; Anderson-Keightly, Heather; Kleinberg, Lawrence R; Hales, Russell K; Moore, Joseph; Vannorsdall, Tracy; Redmond, Kristin J

    2017-11-01

    To prospectively evaluate hippocampal radiation dose volume effects and memory decline following cranial irradiation. Effects of hippocampal radiation over a wide range of doses were investigated by combining data from three prospective studies. In one, adults with small cell lung cancer received hippocampal-avoidance prophylactic cranial irradiation. In the other two, adults with glioblastoma multiforme received neural progenitor cell sparing radiation or no sparing with extra dose delivered to subventricular zone. Memory was measured by the Hopkins Verbal Learning Test-Revised Delayed Recall (HVLT-R DR) at 6 months after radiation. Dose-volume histograms were generated and dose-response data were fitted to a nonlinear model. Of 60 patients enrolled, 30 were analyzable based on HVLT-R DR testing completion status, baseline HVLT-R DR and intracranial metastasis/recurrence or prior hippocampal resection status. We observed a dose-response of radiation to the hippocampus with regard to decline in HVLT-R DR. D50% of the bilateral hippocampi of 22.1 Gy is associated with 20% risk of decline. This prospective study demonstrates an association between hippocampal dose volume effects and memory decline measured by HVLT-R DR over a wide dose range. These data support a potential benefit of hippocampal sparing and encourage continued trial enrollment. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Hippocampal effects of neuronostatin on memory, anxiety-like behavior and food intake in rats.

    Science.gov (United States)

    Carlini, V P; Ghersi, M; Gabach, L; Schiöth, H B; Pérez, M F; Ramirez, O A; Fiol de Cuneo, M; de Barioglio, S R

    2011-12-01

    A 13-amino acid peptide named neuronostatin (NST) encoded in the somatostatin pro-hormone has been recently reported. It is produced throughout the body, particularly in brain areas that have significant actions over the metabolic and autonomic regulation. The present study was performed in order to elucidate the functional role of NST on memory, anxiety-like behavior and food intake and the hippocampal participation in these effects. When the peptide was intra-hippocampally administered at 3.0 nmol/μl, it impaired memory retention in both, object recognition and step-down test. Also, this dose blocked the hippocampal long-term potentiation (LTP) generation. When NST was intra-hippocampally administered at 0.3 nmol/μl and 3.0 nmol/μl, anxiolytic effects were observed. Also, the administration in the third ventricle at the higher dose (3.0 nmol/μl) induced similar effects, and both doses reduced food intake. The main result of the present study is the relevance of the hippocampal formation in the behavioral effects induced by NST, and these effects could be associated to a reduced hippocampal synaptic plasticity. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. The relationship between hippocampal asymmetry and temperament in adolescent borderline and antisocial personality pathology.

    Science.gov (United States)

    Jovev, Martina; Whittle, Sarah; Yücel, Murat; Simmons, Julian Guy; Allen, Nicholas B; Chanen, Andrew M

    2014-02-01

    Investigating etiological processes early in the life span represents an important step toward a better understanding of the development of personality pathology. The current study evaluated the interaction between an individual difference risk factor (i.e., temperament) and a biological risk factor for aggressive behavior (i.e., atypical [larger] rightward hippocampal asymmetry) in predicting the emergence of borderline personality disorder (BPD) and antisocial personality disorder symptoms during early adolescence. The sample consisted of 153 healthy adolescents (M = 12.6 years, SD = 0.4, range = 11.4-13.7) who were selected from a larger sample to maximize variation in temperament. Interactions between four temperament factors (effortful control, negative affectivity, surgency, and affiliativeness), based on the Early Adolescent Temperament Questionnaire-Revised, and volumetric measures of hippocampal asymmetry were examined as cross-sectional predictors of BPD and antisocial personality disorder symptoms. Boys were more likely to have elevated BPD symptoms if they were high on affiliation and had larger rightward hippocampal asymmetry. In boys, low affiliation was a significant predictor of BPD symptoms in the presence of low rightward hippocampal asymmetry. For girls, low effortful control was associated with elevated BPD symptoms in the presence of atypical rightward hippocampal asymmetry. This study builds on previous work reporting significant associations between atypical hippocampal asymmetry and poor behavioral regulation.

  9. ⍺4-GABAA receptors of hippocampal pyramidal neurons are associated with resilience against activity-based anorexia for adolescent female mice but not for males.

    Science.gov (United States)

    Chen, Yi-Wen; Actor-Engel, Hannah; Aoki, Chiye

    2018-04-20

    Activity-based anorexia (ABA) is an animal model of anorexia nervosa, a mental illness with highest mortality and with onset that is most frequently during adolescence. We questioned whether vulnerability of adolescent mice to ABA differs between sexes and whether individual differences in resilience are causally linked to alpha4betadelta-GABA A R expression. C57BL6/J WT and α4-KO adolescent male and female mice underwent ABA induction by combining wheel access with food restriction. ABA vulnerability was measured as the extent of food restriction-evoked hyperactivity on a running wheel and body weight losses. alpha4betadelta-GABA A R levels at plasma membranes of pyramidal cells in dorsal hippocampus were assessed by electron microscopic immunocytochemistry. Temporal patterns and extent of weight loss during ABA induction were similar between sexes. Both sexes also exhibited individual differences in ABA vulnerability. Correlation analyses revealed that, for both sexes, body weight changes precede and thus are likely to drive suppression of wheel running. However, the suppression was during the food-anticipatory hours for males, while for females, suppression was delayed by a day and during food-access hours. Correspondingly, only females adaptively increased food intake. ABA induced up-regulation of alpha4betadelta-GABA A Rs at plasma membranes of dorsal hippocampal pyramidal cells of females, and especially those females exhibiting resilience. Conversely, α4-KO females exhibited greater food restriction-evoked hyperactivity than WT females. In contrast, ABA males did not up-regulate alpha4betadelta-GABA A Rs, did not exhibit genotype differences in vulnerability, and exhibited no correlation between plasmalemmal alpha4betadelta-GABA A Rs and ABA resilience. Thus, food restriction-evoked hyperactivity is driven by anxiety but can be suppressed through upregulation of hippocampal alpha4betadelta-GABA A Rs for female but not for males. This knowledge of sex

  10. Novel Roles for the Insulin-Regulated Glucose Transporter-4 in Hippocampally Dependent Memory.

    Science.gov (United States)

    Pearson-Leary, Jiah; McNay, Ewan C

    2016-11-23

    The insulin-regulated glucose transporter-4 (GluT4) is critical for insulin- and contractile-mediated glucose uptake in skeletal muscle. GluT4 is also expressed in some hippocampal neurons, but its functional role in the brain is unclear. Several established molecular modulators of memory processing regulate hippocampal GluT4 trafficking and hippocampal memory formation is limited by both glucose metabolism and insulin signaling. Therefore, we hypothesized that hippocampal GluT4 might be involved in memory processes. Here, we show that, in male rats, hippocampal GluT4 translocates to the plasma membrane after memory training and that acute, selective intrahippocampal inhibition of GluT4-mediated glucose transport impaired memory acquisition, but not memory retrieval. Other studies have shown that prolonged systemic GluT4 blockade causes insulin resistance. Unexpectedly, we found that prolonged hippocampal blockade of glucose transport through GluT4-upregulated markers of hippocampal insulin signaling prevented task-associated depletion of hippocampal glucose and enhanced both working and short-term memory while also impairing long-term memory. These effects were accompanied by increased expression of hippocampal AMPA GluR1 subunits and the neuronal GluT3, but decreased expression of hippocampal brain-derived neurotrophic factor, consistent with impaired ability to form long-term memories. Our findings are the first to show the cognitive impact of brain GluT4 modulation. They identify GluT4 as a key regulator of hippocampal memory processing and also suggest differential regulation of GluT4 in the hippocampus from that in peripheral tissues. The role of insulin-regulated glucose transporter-4 (GluT4) in the brain is unclear. In the current study, we demonstrate that GluT4 is a critical component of hippocampal memory processes. Memory training increased hippocampal GluT4 translocation and memory acquisition was impaired by GluT4 blockade. Unexpectedly, whereas long

  11. Polypyrrole Actuators for Tremor Suppression

    DEFF Research Database (Denmark)

    Skaarup, Steen; Mogensen, Naja; Bay, Lasse

    2003-01-01

    Neurological tremor affecting limbs can be divided into at least 6 different types with frequencies ranging from 2 to about 20 Hz. In order to alleviate the symptoms by suppressing the tremor, sensing and actuation systems able to perform at these frequencies are needed. Electroactive polymers...... exemplify 'soft actuator' technology that may be especially suitable for use in conjunction with human limbs. The electrochemical and mechanical properties of polypyrrole dodecyl benzene sulphonate actuator films have been studied with this application in mind. The results show that the time constants...

  12. Suppression effects on musical and verbal memory.

    Science.gov (United States)

    Schendel, Zachary A; Palmer, Caroline

    2007-06-01

    Three experiments contrasted the effects of articulatory suppression on recognition memory for musical and verbal sequences. In Experiment 1, a standard/comparison task was employed, with digit or note sequences presented visually or auditorily while participants remained silent or produced intermittent verbal suppression (saying "the") or musical suppression (singing "la"). Both suppression types decreased performance by equivalent amounts, as compared with no suppression. Recognition accuracy was lower during suppression for visually presented digits than during that for auditorily presented digits (consistent with phonological loop predictions), whereas accuracy was equivalent for visually presented notes and auditory tones. When visual interference filled the retention interval in Experiment 2, performance with visually presented notes but not digits was impaired. Experiment 3 forced participants to translate visually presented music sequences by presenting comparison sequences auditorily. Suppression effects for visually presented music resembled those for digits only when the recognition task required sensory translation of cues.

  13. Hippocampal Volume Reduction in Humans Predicts Impaired Allocentric Spatial Memory in Virtual-Reality Navigation.

    Science.gov (United States)

    Guderian, Sebastian; Dzieciol, Anna M; Gadian, David G; Jentschke, Sebastian; Doeller, Christian F; Burgess, Neil; Mishkin, Mortimer; Vargha-Khadem, Faraneh

    2015-10-21

    The extent to which navigational spatial memory depends on hippocampal integrity in humans is not well documented. We investigated allocentric spatial recall using a virtual environment in a group of patients with severe hippocampal damage (SHD), a group of patients with "moderate" hippocampal damage (MHD), and a normal control group. Through four learning blocks with feedback, participants learned the target locations of four different objects in a circular arena. Distal cues were present throughout the experiment to provide orientation. A circular boundary as well as an intra-arena landmark provided spatial reference frames. During a subsequent test phase, recall of all four objects was tested with only the boundary or the landmark being present. Patients with SHD were impaired in both phases of this task. Across groups, performance on both types of spatial recall was highly correlated with memory quotient (MQ), but not with intelligence quotient (IQ), age, or sex. However, both measures of spatial recall separated experimental groups beyond what would be expected based on MQ, a widely used measure of general memory function. Boundary-based and landmark-based spatial recall were both strongly related to bilateral hippocampal volumes, but not to volumes of the thalamus, putamen, pallidum, nucleus accumbens, or caudate nucleus. The results show that boundary-based and landmark-based allocentric spatial recall are similarly impaired in patients with SHD, that both types of recall are impaired beyond that predicted by MQ, and that recall deficits are best explained by a reduction in bilateral hippocampal volumes. In humans, bilateral hippocampal atrophy can lead to profound impairments in episodic memory. Across species, perhaps the most well-established contribution of the hippocampus to memory is not to episodic memory generally but to allocentric spatial memory. However, the extent to which navigational spatial memory depends on hippocampal integrity in humans is

  14. Arteriolosclerosis that affects multiple brain regions is linked to hippocampal sclerosis of ageing

    Science.gov (United States)

    Neltner, Janna H.; Abner, Erin L.; Baker, Steven; Schmitt, Frederick A.; Kryscio, Richard J.; Jicha, Gregory A.; Smith, Charles D.; Hammack, Eleanor; Kukull, Walter A.; Brenowitz, Willa D.; Van Eldik, Linda J.

    2014-01-01

    Hippocampal sclerosis of ageing is a prevalent brain disease that afflicts older persons and has been linked with cerebrovascular pathology. Arteriolosclerosis is a subtype of cerebrovascular pathology characterized by concentrically thickened arterioles. Here we report data from multiple large autopsy series (University of Kentucky Alzheimer’s Disease Centre, Nun Study, and National Alzheimer’s Coordinating Centre) showing a specific association between hippocampal sclerosis of ageing pathology and arteriolosclerosis. The present analyses incorporate 226 cases of autopsy-proven hippocampal sclerosis of ageing and 1792 controls. Case–control comparisons were performed including digital pathological assessments for detailed analyses of blood vessel morphology. We found no evidence of associations between hippocampal sclerosis of ageing pathology and lacunar infarcts, large infarcts, Circle of Willis atherosclerosis, or cerebral amyloid angiopathy. Individuals with hippocampal sclerosis of ageing pathology did not show increased rates of clinically documented hypertension, diabetes, or other cardiac risk factors. The correlation between arteriolosclerosis and hippocampal sclerosis of ageing pathology was strong in multiple brain regions outside of the hippocampus. For example, the presence of arteriolosclerosis in the frontal cortex (Brodmann area 9) was strongly associated with hippocampal sclerosis of ageing pathology (P ageing (n = 15) and control (n = 42) cases. Following technical studies to optimize immunostaining methods for small blood vessel visualization, our analyses focused on sections immunostained for smooth muscle actin (a marker of arterioles) and CD34 (an endothelial marker), with separate analyses on grey and white matter. A total of 43 834 smooth muscle actin-positive vascular profiles and 603 798 CD34-positive vascular profiles were evaluated. In frontal cortex of cases with hippocampal sclerosis of ageing, smooth muscle actin

  15. Pressure suppression pool thermal mixing

    International Nuclear Information System (INIS)

    Cook, D.H.

    1984-01-01

    A model is developed and verified to describe the thermal mixing that occurs in the pressure suppression pool (PSP) of a commercial BWR. The model is designed specifically for a Mark-I containment and is intended for use in severe accident sequence analyses. The model produces space and time dependent temperature results throughout the PSP and is useful for evaluating the bulk PSP thermal mixing, the condensation effectiveness of the PSP, and the long-term containment integrity. The model is designed to accommodate single or multiple discharging T-quenchers, a PSP circumferential circulation induced by the residual heat removal system discharge, and the thermal stratification of the pool that occurs immediately after the relief valves close. The PSP thermal mixing model is verified by comparing the model predicted temperatures to experimental temperatures that were measured in an operating BWR suppression pool. The model is then used to investigate several PSP thermal mixing problems that include the time to saturate at full relief valve flow, the temperature response to a typical stuck open relief valve scenario, and the effect of operator rotation of the relief valve discharge point

  16. Hippocampal developmental vulnerability to methylmercury extends into prepubescence

    Directory of Open Access Journals (Sweden)

    Maryann eObiorah

    2015-05-01

    Full Text Available The developing brain is sensitive to environmental toxicants such as methylmercury (MeHg, to which humans are exposed via contaminated seafood. Prenatal exposure in children is associated with learning, memory and IQ deficits, which can result from hippocampal dysfunction. To explore underlying mechanisms, we have used the postnatal day (P7 rat to model the third trimester of human gestation. We previously showed that a single low exposure (0.6 µg/gbw that approaches human exposure reduced hippocampal neurogenesis in the dentate gyrus (DG 24 hours later, including later proliferation and memory in adolescence. Yet, the vulnerable stem cell population and period of developmental vulnerability remain undefined. In this study, we find that P7 exposure of stem cells has long-term consequences for adolescent neurogenesis. It reduced the number of mitotic S-phase cells (BrdU, especially those in the highly proliferative Tbr2+ population, and immature neurons (Doublecortin in adolescence, suggesting partial depletion of the later stem cell pool. To define developmental vulnerability to MeHg in prepubescent (P14 and adolescent (P21 rats, we examined acute 24 h effects of MeHg exposure on mitosis and apoptosis. We found that low exposure did not adversely impact neurogenesis at either age, but that a higher exposure (5 µg/gbw at P14 reduced the total number of neural stem cells (Sox2+ by 23% and BrdU+ cells by 26% in the DG hilus, suggesting that vulnerability diminishes with age. To see if these effects may reflect changes in MeHg transfer across the blood brain barrier, we assessed Hg content in the hippocampus after peripheral injection and found that similar levels (~800 ng/gm were obtained at 24 h at both P14 and P21, declining in parallel, suggesting that changes in vulnerability depend more on local tissue and cellular mechanisms. Together, we show that MeHg vulnerability depends on age, and that early exposure impairs later neurogenesis in

  17. Combined effects of marijuana and nicotine on memory performance and hippocampal volume.

    Science.gov (United States)

    Filbey, Francesca M; McQueeny, Tim; Kadamangudi, Shrinath; Bice, Collette; Ketcherside, Ariel

    2015-10-15

    Combined use of marijuana (MJ) and tobacco is highly prevalent in today's population. Individual use of either substance is linked to structural brain changes and altered cognitive function, especially with consistent reports of hippocampal volume deficits and poorer memory performance. However, the combined effects of MJ and tobacco on hippocampal structure and on learning and memory processes remain unknown. In this study, we examined both the individual and combined effects of MJ and tobacco on hippocampal volumes and memory performance in four groups of adults taken from two larger studies: MJ-only users (n=36), nicotine-only (Nic-only, n=19), combined marijuana and nicotine users (MJ+Nic, n=19) and non-using healthy controls (n=16). Total bilateral hippocampal volumes and memory performance (WMS-III logical memory) were compared across groups controlling for total brain size and recent alcohol use. Results found MJ and MJ+Nic groups had smaller total hippocampal volumes compared to Nic-only and controls. No significant difference between groups was found between immediate and delayed story recall. However, the controls showed a trend for larger hippocampal volumes being associated with better memory scores, while MJ+Nic users showed a unique inversion, whereby smaller hippocampal volume was associated with better memory. Overall, results suggest abnormalities in the brain-behavior relationships underlying memory processes with combined use of marijuana and nicotine use. Further research will need to address these complex interactions between MJ and nicotine. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Maturation- and sex-sensitive depression of hippocampal excitatory transmission in a rat schizophrenia model.

    Science.gov (United States)

    Patrich, Eti; Piontkewitz, Yael; Peretz, Asher; Weiner, Ina; Attali, Bernard

    2016-01-01

    Schizophrenia is associated with behavioral and brain structural abnormalities, of which the hippocampus appears to be one of the most consistent region affected. Previous studies performed on the poly I:C model of schizophrenia suggest that alterations in hippocampal synaptic transmission and plasticity take place in the offspring. However, these investigations yielded conflicting results and the neurophysiological alterations responsible for these deficits are still unclear. Here we performed for the first time a longitudinal study examining the impact of prenatal poly I:C treatment and of gender on hippocampal excitatory neurotransmission. In addition, we examined the potential preventive/curative effects of risperidone (RIS) treatment during the peri-adolescence period. Excitatory synaptic transmission was determined by stimulating Schaffer collaterals and monitoring fiber volley amplitude and slope of field-EPSP (fEPSP) in CA1 pyramidal neurons in male and female offspring hippocampal slices from postnatal days (PNDs) 18-20, 34, 70 and 90. Depression of hippocampal excitatory transmission appeared at juvenile age in male offspring of the poly I:C group, while it expressed with a delay in female, manifesting at adulthood. In addition, a reduced hippocampal size was found in both adult male and female offspring of poly I:C treated dams. Treatment with RIS at the peri-adolescence period fully restored in males but partly repaired in females these deficiencies. A maturation- and sex-dependent decrease in hippocampal excitatory transmission occurs in the offspring of poly I:C treated pregnant mothers. Pharmacological intervention with RIS during peri-adolescence can cure in a gender-sensitive fashion early occurring hippocampal synaptic deficits. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Why trace and delay conditioning are sometimes (but not always) hippocampal dependent: A computational model

    Science.gov (United States)

    Moustafa, Ahmed A.; Wufong, Ella; Servatius, Richard J.; Pang, Kevin C. H.; Gluck, Mark A.; Myers, Catherine E.

    2013-01-01

    A recurrent-network model provides a unified account of the hippocampal region in mediating the representation of temporal information in classical eyeblink conditioning. Much empirical research is consistent with a general conclusion that delay conditioning (in which the conditioned stimulus CS and unconditioned stimulus US overlap and co-terminate) is independent of the hippocampal system, while trace conditioning (in which the CS terminates before US onset) depends on the hippocampus. However, recent studies show that, under some circumstances, delay conditioning can be hippocampal-dependent and trace conditioning can be spared following hippocampal lesion. Here, we present an extension of our prior trial-level models of hippocampal function and stimulus representation that can explain these findings within a unified framework. Specifically, the current model includes adaptive recurrent collateral connections that aid in the representation of intra-trial temporal information. With this model, as in our prior models, we argue that the hippocampus is not specialized for conditioned response timing, but rather is a general-purpose system that learns to predict the next state of all stimuli given the current state of variables encoded by activity in recurrent collaterals. As such, the model correctly predicts that hippocampal involvement in classical conditioning should be critical not only when there is an intervening trace interval, but also when there is a long delay between CS onset and US onset. Our model simulates empirical data from many variants of classical conditioning, including delay and trace paradigms in which the length of the CS, the inter-stimulus interval, or the trace interval is varied. Finally, we discuss model limitations, future directions, and several novel empirical predictions of this temporal processing model of hippocampal function and learning. PMID:23178699

  20. Remote infarct of the temporal lobe with coexistent hippocampal sclerosis in mesial temporal lobe epilepsy.

    Science.gov (United States)

    Gales, Jordan M; Prayson, Richard A

    2016-02-01

    In patients undergoing surgery for temporal lobe epilepsy, hippocampal sclerosis remains the most commonly observed pathology. In addition to hippocampal sclerosis, 5% to 30% of these resections on magnetic resonance imaging contain a second independently epileptogenic lesion, commonly referred to as dual pathology. A second etiology of seizure activity, as seen in dual pathology, may serve as an important cause of treatment failure in striving for post-operative seizure control. Dual pathology, consisting of hippocampal sclerosis and a remote infarct of the adjacent cortex, has been rarely reported. Cases of pathologically confirmed hippocampal sclerosis diagnosed between January 2000 and December 2012 (n = 349) were reviewed, and 7 cases of coexistent infarct (2%) formed the study group. Seven individuals (mean age, 29years; range, 5-47 years) with a mean epilepsy duration of 12.5years (3.3-25 years) and a mean pre-surgery frequency of 15 seizures per week (range, 0.5-56 seizures/week) were followed up postoperatively for a mean duration of 64months (range, 3-137 months). Pathologically, the most common form of hippocampal sclerosis observed was International League against Epilepsy type Ib or severe variant (n = 4). Four of the six individuals with post-surgery follow-up were seizure free at last encounter. The reported incidence of dual pathology, including hippocampal sclerosis and remote infarct, is low (2% in the present study) but may indicate a slightly increased risk of developing hippocampal sclerosis in the setting of a remote infarct. Surgical intervention for such cases anecdotally appears effective in achieving seizure control. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Subregional Hippocampal Morphology and Psychiatric Outcome in Adolescents Who Were Born Very Preterm and at Term.

    Directory of Open Access Journals (Sweden)

    James H Cole

    Full Text Available The hippocampus has been reported to be structurally and functionally altered as a sequel of very preterm birth (<33 weeks gestation, possibly due its vulnerability to hypoxic-ischemic damage in the neonatal period. We examined hippocampal volumes and subregional morphology in very preterm born individuals in mid- and late adolescence and their association with psychiatric outcome.Structural brain magnetic resonance images were acquired at two time points (baseline and follow-up from 65 ex-preterm adolescents (mean age = 15.5 and 19.6 years and 36 term-born controls (mean age=15.0 and 19.0 years. Hippocampal volumes and subregional morphometric differences were measured from manual tracings and with three-dimensional shape analysis. Psychiatric outcome was assessed with the Rutter Parents' Scale at baseline, the General Health Questionnaire at follow-up and the Peters Delusional Inventory at both time points.In contrast to previous studies we did not find significant difference in the cross-sectional or longitudinal hippocampal volumes between individuals born preterm and controls, despite preterm individual having significantly smaller whole brain volumes. Shape analysis at baseline revealed subregional deformations in 28% of total bilateral hippocampal surface, reflecting atrophy, in ex-preterm individuals compared to controls, and in 22% at follow-up. In ex-preterm individuals, longitudinal changes in hippocampal shape accounted for 11% of the total surface, while in controls they reached 20%. In the whole sample (both groups larger right hippocampal volume and bilateral anterior surface deformations at baseline were associated with delusional ideation scores at follow-up.This study suggests a dynamic association between cross-sectional hippocampal volumes, longitudinal changes and surface deformations and psychosis proneness.

  2. Hippocampal volumes are important predictors for memory function in elderly women

    Directory of Open Access Journals (Sweden)

    Adolfsdottir Steinunn

    2009-08-01

    Full Text Available Abstract Background Normal aging involves a decline in cognitive function that has been shown to correlate with volumetric change in the hippocampus, and with genetic variability in the APOE-gene. In the present study we utilize 3D MR imaging, genetic analysis and assessment of verbal memory function to investigate relationships between these factors in a sample of 170 healthy volunteers (age range 46–77 years. Methods Brain morphometric analysis was performed with the automated segmentation work-flow implemented in FreeSurfer. Genetic analysis of the APOE genotype was determined with polymerase chain reaction (PCR on DNA from whole-blood. All individuals were subjected to extensive neuropsychological testing, including the California Verbal Learning Test-II (CVLT. To obtain robust and easily interpretable relationships between explanatory variables and verbal memory function we applied the recent method of conditional inference trees in addition to scatterplot matrices and simple pairwise linear least-squares regression analysis. Results APOE genotype had no significant impact on the CVLT results (scores on long delay free recall, CVLT-LD or the ICV-normalized hippocampal volumes. Hippocampal volumes were found to decrease with age and a right-larger-than-left hippocampal asymmetry was also found. These findings are in accordance with previous studies. CVLT-LD score was shown to correlate with hippocampal volume. Multivariate conditional inference analysis showed that gender and left hippocampal volume largely dominated predictive values for CVLT-LD scores in our sample. Left hippocampal volume dominated predictive values for females but not for males. APOE genotype did not alter the model significantly, and age was only partly influencing the results. Conclusion Gender and left hippocampal volumes are main predictors for verbal memory function in normal aging. APOE genotype did not affect the results in any part of our analysis.

  3. Distinguishing cognitive state with multifractal complexity of hippocampal interspike interval sequences

    Directory of Open Access Journals (Sweden)

    Dustin eFetterhoff

    2015-09-01

    Full Text Available Fractality, represented as self-similar repeating patterns, is ubiquitous in nature and the brain. Dynamic patterns of hippocampal spike trains are known to exhibit multifractal properties during working memory processing; however, it is unclear whether the multifractal properties inherent to hippocampal spike trains reflect active cognitive processing. To examine this possibility, hippocampal neuronal ensembles were recorded from rats before, during and after a spatial working memory task following administration of tetrahydrocannabinol (THC, a memory-impairing component of cannabis. Multifractal detrended fluctuation analysis was performed on hippocampal interspike interval sequences to determine characteristics of monofractal long-range temporal correlations (LRTCs, quantified by the Hurst exponent, and the degree/magnitude of multifractal complexity, quantified by the width of the singularity spectrum. Our results demonstrate that multifractal firing patterns of hippocampal spike trains are a marker of functional memory processing, as they are more complex during the working memory task and significantly reduced following administration of memory impairing THC doses. Conversely, LRTCs are largest during resting state recordings, therefore reflecting different information compared to multifractality. In order to deepen conceptual understanding of multifractal complexity and LRTCs, these measures were compared to classical methods using hippocampal frequency content and firing variability measures. These results showed that LRTCs, multifractality, and theta rhythm represent independent processes, while delta rhythm correlated with multifractality. Taken together, these results provide a novel perspective on memory function by demonstrating that the multifractal nature of spike trains reflects hippocampal microcircuit activity that can be used to detect and quantify cognitive, physiological and pathological states.

  4. Smaller hippocampal volume as a vulnerability factor for the persistence of post-traumatic stress disorder.

    Science.gov (United States)

    van Rooij, S J H; Kennis, M; Sjouwerman, R; van den Heuvel, M P; Kahn, R S; Geuze, E

    2015-10-01

    Smaller hippocampal volume has often been observed in patients with post-traumatic stress disorder (PTSD). However, there is no consensus whether this is a result of stress/trauma exposure, or constitutes a vulnerability factor for the development of PTSD. Second, it is unclear whether hippocampal volume normalizes with successful treatment of PTSD, or whether a smaller hippocampus is a risk factor for the persistence of PTSD. Magnetic resonance imaging (MRI) scans and clinical interviews were collected from 47 war veterans with PTSD, 25 healthy war veterans (combat controls) and 25 healthy non-military controls. All veterans were scanned a second time with a 6- to 8-month interval, during which PTSD patients received trauma-focused therapy. Based on post-treatment PTSD symptoms, patients were divided into a PTSD group who was in remission (n = 22) and a group in whom PTSD symptoms persisted (n = 22). MRI data were analysed with Freesurfer. Smaller left hippocampal volume was observed in PTSD patients compared with both control groups. Hippocampal volume of the combat controls did not differ from healthy controls. Second, pre- and post-treatment analyses of the PTSD patients and combat controls revealed reduced (left) hippocampal volume only in the persistent patients at both time points. Importantly, hippocampal volume did not change with treatment. Our findings suggest that a smaller (left) hippocampus is not the result of stress/trauma exposure. Furthermore, hippocampal volume does not increase with successful treatment. Instead, we demonstrate for the first time that a smaller (left) hippocampus constitutes a risk factor for the persistence of PTSD.

  5. COMT Val158Met polymorphism moderates the association between PTSD symptom severity and hippocampal volume.

    Science.gov (United States)

    Hayes, Jasmeet P; Logue, Mark W; Reagan, Andrew; Salat, David; Wolf, Erika J; Sadeh, Naomi; Spielberg, Jeffrey M; Sperbeck, Emily; Hayes, Scott M; McGlinchey, Regina E; Milberg, William P; Verfaellie, Mieke; Stone, Annjanette; Schichman, Steven A; Miller, Mark W

    2017-03-01

    Memory-based alterations are among the hallmark symptoms of posttraumatic stress disorder (PTSD) and may be associated with the integrity of the hippocampus. However, neuroimaging studies of hippocampal volume in individuals with PTSD have yielded inconsistent results, raising the possibility that various moderators, such as genetic factors, may influence this association. We examined whether the catechol-O-methyltransferase (COMT) Val158Met polymorphism, which has previously been shown to be associated with hippocampal volume in healthy individuals, moderates the association between PTSD and hippocampal volume. Recent war veterans underwent structural MRI on a 3 T scanner. We extracted volumes of the right and left hippocampus using FreeSurfer and adjusted them for individual differences in intracranial volume. We assessed PTSD severity using the Clinician-Administered PTSD Scale. Hierarchical linear regression was used to model the genotype (Val158Met polymorphism) × PTSD severity interaction and its association with hippocampal volume. We included 146 white, non-Hispanic recent war veterans (90% male, 53% with diagnosed PTSD) in our analyses. A significant genotype × PTSD symptom severity interaction emerged such that individuals with greater current PTSD symptom severity who were homozygous for the Val allele showed significant reductions in left hippocampal volume. The direction of proposed effects is unknown, thus precluding definitive assessment of whether differences in hippocampal volume reflect a consequence of PTSD, a pre-existing characteristic, or both. Our findings suggest that the COMT polymorphism moderates the association between PTSD and hippocampal volume. These results highlight the role that the dopaminergic system has in brain structure and suggest a possible mechanism for memory disturbance in individuals with PTSD.

  6. Hippocampal sparing radiotherapy for pediatric medulloblastoma: impact of treatment margins and treatment technique.

    Science.gov (United States)

    Brodin, N Patrik; Munck af Rosenschöld, Per; Blomstrand, Malin; Kiil-Berthlesen, Anne; Hollensen, Christian; Vogelius, Ivan R; Lannering, Birgitta; Bentzen, Søren M; Björk-Eriksson, Thomas

    2014-04-01

    We investigated how varying the treatment margin and applying hippocampal sparing and proton therapy impact the risk of neurocognitive impairment in pediatric medulloblastoma patients compared with current standard 3D conformal radiotherapy. We included 17 pediatric medulloblastoma patients to represent the variability in tumor location relative to the hippocampal region. Treatment plans were generated using 3D conformal radiotherapy, hippocampal sparing intensity-modulated radiotherapy, and spot-scanned proton therapy, using 3 different treatment margins for the conformal tumor boost. Neurocognitive impairment risk was estimated based on dose-response models from pediatric CNS malignancy survivors and compared among different margins and treatment techniques. Mean hippocampal dose and corresponding risk of cognitive impairment were decreased with decreasing treatment margins (P < .05). The largest risk reduction, however, was seen when applying hippocampal sparing proton therapy-the estimated risk of impaired task efficiency (95% confidence interval) was 92% (66%-98%), 81% (51%-95%), and 50% (30%-70%) for 3D conformal radiotherapy, intensity-modulated radiotherapy, and proton therapy, respectively, for the smallest boost margin and 98% (78%-100%), 90% (60%-98%), and 70% (39%-90%) if boosting the whole posterior fossa. Also, the distance between the closest point of the planning target volume and the center of the hippocampus can be used to predict mean hippocampal dose for a given treatment technique. We estimate a considerable clinical benefit of hippocampal sparing radiotherapy. In choosing treatment margins, the tradeoff between margin size and risk of neurocognitive impairment quantified here should be considered.

  7. The role of suppression in amblyopia.

    Science.gov (United States)

    Li, Jingrong; Thompson, Benjamin; Lam, Carly S Y; Deng, Daming; Chan, Lily Y L; Maehara, Goro; Woo, George C; Yu, Minbin; Hess, Robert F

    2011-06-13

    This study had three main goals: to assess the degree of suppression in patients with strabismic, anisometropic, and mixed amblyopia; to establish the relationship between suppression and the degree of amblyopia; and to compare the degree of suppression across the clinical subgroups within the sample. Using both standard measures of suppression (Bagolini lenses and neutral density [ND] filters, Worth 4-Dot test) and a new approach involving the measurement of dichoptic motion thresholds under conditions of variable interocular contrast, the degree of suppression in 43 amblyopic patients with strabismus, anisometropia, or a combination of both was quantified. There was good agreement between the quantitative measures of suppression made with the new dichoptic motion threshold technique and measurements made with standard clinical techniques (Bagolini lenses and ND filters, Worth 4-Dot test). The degree of suppression was found to correlate directly with the degree of amblyopia within our clinical sample, whereby stronger suppression was associated with a greater difference in interocular acuity and poorer stereoacuity. Suppression was not related to the type or angle of strabismus when this was present or the previous treatment history. These results suggest that suppression may have a primary role in the amblyopia syndrome and therefore have implications for the treatment of amblyopia.

  8. Ketamine Protects Gamma Oscillations by Inhibiting Hippocampal LTD

    Science.gov (United States)

    Huang, Lanting; Yang, Xiu-Juan; Huang, Ying; Sun, Eve Y.

    2016-01-01

    NMDA receptors have been widely reported to be involved in the regulation of synaptic plasticity through effects on long-term potentiation (LTP) and long-term depression (LTD). LTP and LTD have been implicated in learning and memory processes. Besides synaptic plasticity, it is known that the phenomenon of gamma oscillations is critical in cognitive functions. Synaptic plasticity has been widely studied, however it is still not clear, to what degree synaptic plasticity regulates the oscillations of neuronal networks. Two NMDA receptor antagonists, ketamine and memantine, have been shown to regulate LTP and LTD, to promote cognitive functions, and have even been reported to bring therapeutic effects in major depression and Alzheimer’s disease respectively. These compounds allow us to investigate the putative interrelationship between network oscillations and synaptic plasticity and to learn more about the mechanisms of their therapeutic effects. In the present study, we have identified that ketamine and memantine could inhibit LTD, without impairing LTP in the CA1 region of mouse hippocampus, which may underlie the mechanism of these drugs’ therapeutic effects. Our results suggest that NMDA-induced LTD caused a marked loss in the gamma power, and pretreatment with 10 μM ketamine prevented the oscillatory loss via its inhibitory effect on LTD. Our study provides a new understanding of the role of NMDA receptors on hippocampal plasticity and oscillations. PMID:27467732

  9. Functional clustering in hippocampal cultures: relating network structure and dynamics

    International Nuclear Information System (INIS)

    Feldt, S; Dzakpasu, R; Olariu, E; Żochowski, M; Wang, J X; Shtrahman, E

    2010-01-01

    In this work we investigate the relationship between gross anatomic structural network properties, neuronal dynamics and the resultant functional structure in dissociated rat hippocampal cultures. Specifically, we studied cultures as they developed under two conditions: the first supporting glial cell growth (high glial group), and the second one inhibiting it (low glial group). We then compared structural network properties and the spatio-temporal activity patterns of the neurons. Differences in dynamics between the two groups could be linked to the impact of the glial network on the neuronal network as the cultures developed. We also implemented a recently developed algorithm called the functional clustering algorithm (FCA) to obtain the resulting functional network structure. We show that this new algorithm is useful for capturing changes in functional network structure as the networks evolve over time. The FCA detects changes in functional structure that are consistent with expected dynamical differences due to the impact of the glial network. Cultures in the high glial group show an increase in global synchronization as the cultures age, while those in the low glial group remain locally synchronized. We additionally use the FCA to quantify the amount of synchronization present in the cultures and show that the total level of synchronization in the high glial group is stronger than in the low glial group. These results indicate an interdependence between the glial and neuronal networks present in dissociated cultures

  10. Cognitive dysfunction and hippocampal changes in experimental type 1 diabetes.

    Science.gov (United States)

    Alvarez, Edgardo O; Beauquis, Juan; Revsin, Yanina; Banzan, Arturo M; Roig, Paulina; De Nicola, Alejandro F; Saravia, Flavia

    2009-03-02

    Type 1 diabetes (T1D) is accompanied by a "diabetic encephalopathy" including hypersensitivity to stress, increased risk of stroke, dementia and cognitive impairment. In previous works we reported several brain alterations including a strong decrease in hippocampal proliferation and survival in both spontaneous and streptozotocin-induced models of experimental T1D. The aim of this study was to explore in streptozotocin-treated mice and other parameters associated to mild neurodegeneration in the dentate gyrus and the potential correlation with behavioural changes. The neurogenic status, measured by doublecortin (DCX) expression, showed an important decline in the number of positive cells in the subgranular zone (SGZ). However, neuronal migration was not affected. We found a marked enhancement of intracellular lipofuscin deposits, characteristic of increased oxidative stress and aging in both, the hilus and the SGZ and granular cell layer (GCL). Diabetic mice showed a significant impairment in learning and memory tests, exhibiting a higher latency to show an escape response and a poorer learning efficiency of an active avoiding response compared with control mice. Both, exploratory and non-exploratory activities in a conflictive environment in the asymmetric elevated plus maze were not affected by the diabetic condition. In conclusion, experimental diabetes showed clear signs of changes in the dentate gyrus, changes similar to those present in the aging process. Correlatively, these alterations were in line with a reduced performance in learning and memory tests. The mechanism that could potentially link neural and behavioural disturbances is not yet fully comprehended.

  11. Attention promotes episodic encoding by stabilizing hippocampal representations

    Science.gov (United States)

    Aly, Mariam; Turk-Browne, Nicholas B.

    2016-01-01

    Attention influences what is later remembered, but little is known about how this occurs in the brain. We hypothesized that behavioral goals modulate the attentional state of the hippocampus to prioritize goal-relevant aspects of experience for encoding. Participants viewed rooms with paintings, attending to room layouts or painting styles on different trials during high-resolution functional MRI. We identified template activity patterns in each hippocampal subfield that corresponded to the attentional state induced by each task. Participants then incidentally encoded new rooms with art while attending to the layout or painting style, and memory was subsequently tested. We found that when task-relevant information was better remembered, the hippocampus was more likely to have been in the correct attentional state during encoding. This effect was specific to the hippocampus, and not found in medial temporal lobe cortex, category-selective areas of the visual system, or elsewhere in the brain. These findings provide mechanistic insight into how attention transforms percepts into memories. PMID:26755611

  12. Astrocytes regulate heterogeneity of presynaptic strengths in hippocampal networks

    Science.gov (United States)

    Letellier, Mathieu; Park, Yun Kyung; Chater, Thomas E.; Chipman, Peter H.; Gautam, Sunita Ghimire; Oshima-Takago, Tomoko; Goda, Yukiko

    2016-01-01

    Dendrites are neuronal structures specialized for receiving and processing information through their many synaptic inputs. How input strengths are modified across dendrites in ways that are crucial for synaptic integration and plasticity remains unclear. We examined in single hippocampal neurons the mechanism of heterosynaptic interactions and the heterogeneity of synaptic strengths of pyramidal cell inputs. Heterosynaptic presynaptic plasticity that counterbalances input strengths requires N-methyl-d-aspartate receptors (NMDARs) and astrocytes. Importantly, this mechanism is shared with the mechanism for maintaining highly heterogeneous basal presynaptic strengths, which requires astrocyte Ca2+ signaling involving NMDAR activation, astrocyte membrane depolarization, and L-type Ca2+ channels. Intracellular infusion of NMDARs or Ca2+-channel blockers into astrocytes, conditionally ablating the GluN1 NMDAR subunit, or optogenetically hyperpolarizing astrocytes with archaerhodopsin promotes homogenization of convergent presynaptic inputs. Our findings support the presence of an astrocyte-dependent cellular mechanism that enhances the heterogeneity of presynaptic strengths of convergent connections, which may help boost the computational power of dendrites. PMID:27118849

  13. Factors affecting graded and ungraded memory loss following hippocampal lesions.

    Science.gov (United States)

    Winocur, Gordon; Moscovitch, Morris; Sekeres, Melanie J

    2013-11-01

    This review evaluates three current theories--Standard Consolidation (Squire & Wixted, 2011), Overshadowing (Sutherland, Sparks, & Lehmann, 2010), and Multiple Trace-Transformation (Winocur, Moscovitch, & Bontempi, 2010)--in terms of their ability to account for the role of the hippocampus in recent and remote memory in animals. Evidence, based on consistent findings from tests of spatial memory and memory for acquired food preferences, favours the transformation account, but this conclusion is undermined by inconsistent results from studies that measured contextual fear memory, probably the most commonly used test of hippocampal involvement in anterograde and retrograde memory. Resolution of this issue may depend on exercising greater control over critical factors (e.g., contextual environment, amount of pre-exposure to the conditioning chamber, the number and distribution of foot-shocks) that can affect the representation of the memory shortly after learning and over the long-term. Research strategies aimed at characterizing the neural basis of long-term consolidation/transformation, as well as other outstanding issues are discussed. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Chronic Loss of CA2 Transmission Leads to Hippocampal Hyperexcitability.

    Science.gov (United States)

    Boehringer, Roman; Polygalov, Denis; Huang, Arthur J Y; Middleton, Steven J; Robert, Vincent; Wintzer, Marie E; Piskorowski, Rebecca A; Chevaleyre, Vivien; McHugh, Thomas J

    2017-05-03

    Hippocampal CA2 pyramidal cells project into both the neighboring CA1 and CA3 subfields, leaving them well positioned to influence network physiology and information processing for memory and space. While recent work has suggested unique roles for CA2, including encoding position during immobility and generating ripple oscillations, an interventional examination of the integrative functions of these connections has yet to be reported. Here we demonstrate that CA2 recruits feedforward inhibition in CA3 and that chronic genetically engineered shutdown of CA2-pyramidal-cell synaptic transmission consequently results in increased excitability of the recurrent CA3 network. In behaving mice, this led to spatially triggered episodes of network-wide hyperexcitability during exploration accompanied by the emergence of high-frequency discharges during rest. These findings reveal CA2 as a regulator of network processing in hippocampus and suggest that CA2-mediated inhibition in CA3 plays a key role in establishing the dynamic excitatory and inhibitory balance required for proper network function. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Hippocampal morphology mediates biased memories of chronic pain

    Science.gov (United States)

    Berger, Sara E.; Vachon-Presseau, Étienne; Abdullah, Taha B.; Baria, Alex T.; Schnitzer, Thomas J.; Apkarian, A. Vania

    2018-01-01

    Experiences and memories are often mismatched. While multiple studies have investigated psychological underpinnings of recall error with respect to emotional events, the neurobiological mechanisms underlying the divergence between experiences and memories remain relatively unexplored in the domain of chronic pain. Here we examined the discrepancy between experienced chronic low back pain (CBP) intensity (twice daily ratings) and remembered pain intensity (n = 48 subjects) relative to psychometric properties, hippocampus morphology, memory capabilities, and personality traits related to reward. 77% of CBP patients exaggerated remembered pain, which depended on their strongest experienced pain and their most recent mood rating. This bias persisted over nearly 1 year and was related to reward memory bias and loss aversion. Shape displacement of a specific region in the left posterior hippocampus mediated personality effects on pain memory bias, predicted pain memory bias in a validation CBP group (n = 21), and accounted for 55% of the variance of pain memory bias. In two independent groups (n = 20/group), morphology of this region was stable over time and unperturbed by the development of chronic pain. These results imply that a localized hippocampal circuit, and personality traits associated with reward processing, largely determine exaggeration of daily pain experiences in chronic pain patients. PMID:29080714

  16. Incomplete hippocampal inversion - is there a relation to epilepsy?

    Energy Technology Data Exchange (ETDEWEB)

    Bajic, Dragan [Uppsala University Hospital, Department of Radiology, Uppsala (Sweden); Kumlien, Eva; Mattsson, Peter [Uppsala University Hospital, Department of Neuroscience, Neurology, Uppsala (Sweden); Lundberg, Staffan [Uppsala University Hospital, Department of Women' s and Children' s Health, Uppsala (Sweden); Wang, Chen [Karolinska University Hospital, Department of Neuroradiology, Stockholm (Sweden); Raininko, Raili [Uppsala University, Department of Radiology, Uppsala (Sweden)

    2009-10-15

    Incomplete hippocampal inversion (IHI) has been described in patients with epilepsy or severe midline malformations but also in nonepileptic subjects without obvious developmental anomalies. We studied the frequency of IHI in different epilepsy syndromes to evaluate their relationship. Three hundred patients were drawn from the regional epilepsy register. Of these, 99 were excluded because of a disease or condition affecting the temporal lobes or incomplete data. Controls were 150 subjects without epilepsy or obvious intracranial developmental anomalies. The coronal MR images were analysed without knowledge of the clinical data. Among epilepsy patients, 30% had IHI (40 left-sided, 4 right-sided, 16 bilateral). Of controls, 18% had IHI (20 left-sided, 8 bilateral). The difference was statistically significant (P<0.05). Of temporal lobe epilepsy (TLE) patients, 25% had IHI, which was not a significantly higher frequency than in controls (P=0.34). There was no correlation between EEG and IHI laterality. A total of 44% of Rolandic epilepsy patients and 57% of cryptogenic generalised epilepsy patients had IHI. The IHI frequency was very high in some epileptic syndromes, but not significantly higher in TLE compared to controls. No causality between TLE and IHI could be found. IHI can be a sign of disturbed cerebral development affecting other parts of the brain, maybe leading to epilepsy. (orig.)

  17. The association of visual memory with hippocampal volume.

    Science.gov (United States)

    Zammit, Andrea R; Ezzati, Ali; Katz, Mindy J; Zimmerman, Molly E; Lipton, Michael L; Sliwinski, Martin J; Lipton, Richard B

    2017-01-01

    In this study we investigated the role of hippocampal volume (HV) in visual memory. Participants were a subsample of older adults (> = 70 years) from the Einstein Aging Study. Visual performance was measured using the Complex Figure (CF) copy and delayed recall tasks from the Repeatable Battery for the Assessment of Neuropsychological Status. Linear regressions were fitted to study associations between HV and visual tasks. Participants' (n = 113, mean age = 78.9 years) average scores on the CF copy and delayed recall were 17.4 and 11.6, respectively. CF delayed recall was associated with total (β = .031, p = 0.001) and left (β = 0.031, p = 0.001) and right HVs (β = 0.24, p = 0.012). CF delayed recall remained significantly associated with left HV even after we also included right HV (β = 0.27, p = 0.025) and the CF copy task (β = 0.30, p = 0.009) in the model. CF copy did not show any significant associations with HV. Our results suggest that left HV contributes in retrieval of visual memory in older adults.

  18. Hippocampal network oscillations in APP/APLP2-deficient mice.

    Directory of Open Access Journals (Sweden)

    Xiaomin Zhang

    Full Text Available The physiological function of amyloid precursor protein (APP and its two homologues APP-like protein 1 (APLP1 and 2 (APLP2 is largely unknown. Previous work suggests that lack of APP or APLP2 impairs synaptic plasticity and spatial learning. There is, however, almost no data on the role of APP or APLP at the network level which forms a critical interface between cellular functions and behavior. We have therefore investigated memory-related synaptic and network functions in hippocampal slices from three lines of transgenic mice: APPsα-KI (mice expressing extracellular fragment of APP, corresponding to the secreted APPsα ectodomain, APLP2-KO, and combined APPsα-KI/APLP2-KO (APPsα-DM for "double mutants". We analyzed two prominent patterns of network activity, gamma oscillations and sharp-wave ripple complexes (SPW-R. Both patterns were generally preserved in all strains. We find, however, a significantly reduced frequency of gamma oscillations in CA3 of APLP2-KO mice in comparison to APPsα-KI and WT mice. Network activity, basic synaptic transmission and short-term plasticity were unaltered in the combined mutants (APPsα-DM which showed, however, reduced long-term potentiation (LTP. Together, our data indicate that APLP2 and the intracellular domain of APP are not essential for coherent activity patterns in the hippocampus, but have subtle effects on synaptic plasticity and fine-tuning of network oscillations.

  19. Anoxia increases potassium conductance in hippocampal nerve cells.

    Science.gov (United States)

    Hansen, A J; Hounsgaard, J; Jahnsen, H

    1982-07-01

    The effect of anoxia on nerve cell function was studied by intra- and extracellular microelectrode recordings from the CA1 and CA3 region in guinea pig hippocampal slices. Hyperpolarization and concomitant reduction of the nerve cell input resistance was observed early during anoxia. During this period the spontaneous activity first disappeared, then the evoked activity gradually disappeared. The hyperpolarization was followed by depolarization and an absence of a measurable input resistance. All the induced changes were reversed when the slice was reoxygenated. Reversal of the electro-chemical gradient for Cl- across the nerve cell membrane did not affect the course of events during anoxia. Aminopyridines blocked the anoxic hyperpolarization and attenuated the decrease of membrane resistance, but had no effect on the later depolarization. Blockers of synaptic transmission. Mn++, Mg++ and of Na+-channels (TTX) were without effect on the nerve cell changes during anoxia. It is suggested that the reduction of nerve cell excitability in anoxia is primarily due to increased K+-conductance. Thus, the nerve cells are hyperpolarized and the input resistance reduced, causing higher threshold and reduction of synaptic potentials. The mechanism of the K+-conductance activation is unknown at present.

  20. Exposure of rat hippocampal astrocytes to Ziram increases oxidative stress.

    Science.gov (United States)

    Matei, Ann-Marie; Trombetta, Louis D

    2016-04-01

    Pesticides have been shown in several studies to be the leading candidates of environmental toxins and may contribute to the pathogenesis of several neurodegenerative diseases. Ziram (zinc-bis(dimethyldithiocarbamate)) is an agricultural dithiocarbamate fungicide that is used to treat a variety of plant diseases. In spite of their generally acknowledged low toxicity, dithiocarbamates are known to cause a wide range of neurobehavioral effects as well as neuropathological changes in the brain. Astrocytes play a key role in normal brain physiology and in the pathology of the nervous system. This investigation studied the effects of 1.0 µM Ziram on rat hippocampal astrocytes. The thiobarbituric acid reactive substance assay performed showed a significant increase in malondialdehyde, a product of lipid peroxidation, in the Ziram-treated cells. Biochemical analysis also revealed a significant increase in the induction of 70 kDa heat shock and heme oxygenase 1 stress proteins. In addition, an increase of glutathione peroxidase (GPx) and a significant increase in oxidized glutathione (GSSG) were observed in the Ziram-treated cells. The ratio GSH to GSSG calculated from the treated cells was also decreased. Light and transmission electron microscopy supported the biochemical findings in Ziram-treated astrocytes. This data suggest that the cytotoxic effects observed with Ziram treatments may be related to the increase of oxidative stress. © The Author(s) 2013.

  1. Selective noradrenaline depletion impairs working memory and hippocampal neurogenesis.

    Science.gov (United States)

    Coradazzi, Marino; Gulino, Rosario; Fieramosca, Francesco; Falzacappa, Lucia Verga; Riggi, Margherita; Leanza, Giampiero

    2016-12-01

    Noradrenergic neurons in the locus coeruleus play a role in learning and memory, and their loss is an early event in Alzheimer's disease pathogenesis. Moreover, noradrenaline may sustain hippocampal neurogenesis; however, whether are these events related is still unknown. Four to five weeks following the selective immunotoxic ablation of locus coeruleus neurons, young adult rats underwent reference and working memory tests, followed by postmortem quantitative morphological analyses to assess the extent of the lesion, as well as the effects on proliferation and/or survival of neural progenitors in the hippocampus. When tested in the Water Maze task, lesioned animals exhibited no reference memory deficit, whereas working memory abilities were seen significantly impaired, as compared with intact or sham-lesioned controls. Stereological analyses confirmed a dramatic noradrenergic neuron loss associated to reduced proliferation, but not survival or differentiation, of 5-bromo-2'deoxyuridine-positive progenitors in the dentate gyrus. Thus, ascending noradrenergic afferents may be involved in more complex aspects of cognitive performance (i.e., working memory) possibly via newly generated progenitors in the hippocampus. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Childhood onset temporal lobe epilepsy: Beyond hippocampal sclerosis.

    Science.gov (United States)

    Mühlebner, Angelika; Breu, Markus; Kasprian, Gregor; Schmook, Maria T; Stefanits, Harald; Scholl, Theresa; Samueli, Sharon; Gröppel, Gudrun; Dressler, Anastasia; Prayer, Daniela; Czech, Thomas; Hainfellner, Johannes A; Feucht, Martha

    2016-03-01

    Hippocampal Sclerosis (HS) is widely recognized as a significant underlying cause of drug-resistant temporal lobe epilepsy (TLE) in adults. In contrast, HS is a rare finding in pediatric surgical series, and a higher incidence of HS associated with cortical dysplasia (i.e. FCD type IIIa according to the new ILAE classification) than in adult series has been reported. Data about the electro-clinical characteristics of this subgroup are scarce. We studied 15 children and adolescents with drug-resistant TLE and HS who had anterior temporal lobe resection at our center with regard to electroclinical characteristics, MRI features and histopathology. Children in whom histopathology was consistent with Focal Cortical Dysplasia (FCD) type IIIa (n = 7) were compared with those who had HS only (n = 8). Clinical characteristics associated with this highly selective subset of patients with FCD type IIIa were: the presence of febrile seizures during infancy, a shorter duration of active epilepsy and a lower age at epilepsy surgery. In addition, there were non-significant trends towards more extended abnormalities on both EEG and neuroimaging. We were, however, not able to find group differences with respect to neuropathologic subtyping of the HS. We present the first detailed description and comprehensive data analysis of children with FCD type IIIa. According to our results, this patient group seems to show a distinct clinical phenotype. Copyright © 2016 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  3. Spectral characteristics of the hippocampal LFP during contextual fear conditioning

    Directory of Open Access Journals (Sweden)

    Birajara Soares Machado

    2012-06-01

    Full Text Available Objective: The hippocampus has an important role in the acquisitionand recall of aversive memories. The objective of this study was toinvestigate the relationship among hippocampal rhythms. Methods:Microeletrodes arrays were implanted in the hippocampus of Wistarrats. The animals were trained and tested in a contextual fearconditioning task. The training consisted in applying shocks in thelegs. The memory test was performed 1 day (recent memory or 18days (remote memory after training. We proposed a measure basedon the FFT power spectrum, denominated “delta-theta ratio”, tocharacterize the different behaviors (active exploration and freezingand the memories types. Results: The delta-theta ratio was able todistinguish recent and remote memories. In this study, the ratio forthe 18-day group was smaller than for the 1-day group. Moreover,this measure was useful to distinguish the different behavior states– active exploration and freezing. Conclusions: The results suggestdelta-theta oscillations could reflect the demands on informationprocessing during recent and remote memory recalls.

  4. Effects of Sun ginseng on memory enhancement and hippocampal neurogenesis.

    Science.gov (United States)

    Lee, Chang Hwan; Kim, Jong Min; Kim, Dong Hyun; Park, Se Jin; Liu, Xiaotong; Cai, Mudan; Hong, Jin Gyu; Park, Jeong Hill; Ryu, Jong Hoon

    2013-09-01

    Panax ginseng C.A. Meyer has been used in traditional herb prescriptions for thousands of years. A heat-processing method has been used to increase the efficacy of ginseng, yielding what is known as red ginseng. In addition, recently, a slightly modified heat-processing method was applied to ginseng, to obtain a new type of processed ginseng with increased biological activity; this new form of ginseng is referred to as Sun ginseng (SG). The aim of this study was to investigate the effect of SG on memory enhancement and neurogenesis in the hippocampal dentate gyrus (DG) region. The subchronic administration of SG (for 14 days) significantly increased the latency time in the passive avoidance task relative to the administration of the vehicle control (P memory-enhancing activities and that these effects are mediated, in part, by the increase in the levels of pERK and pAkt and by the increases in cell proliferation and cell survival. Copyright © 2012 John Wiley & Sons, Ltd.

  5. NFIX Regulates Neural Progenitor Cell Differentiation During Hippocampal Morphogenesis

    Science.gov (United States)

    Heng, Yee Hsieh Evelyn; McLeay, Robert C.; Harvey, Tracey J.; Smith, Aaron G.; Barry, Guy; Cato, Kathleen; Plachez, Céline; Little, Erica; Mason, Sharon; Dixon, Chantelle; Gronostajski, Richard M.; Bailey, Timothy L.; Richards, Linda J.; Piper, Michael

    2014-01-01

    Neural progenitor cells have the ability to give rise to neurons and glia in the embryonic, postnatal and adult brain. During development, the program regulating whether these cells divide and self-renew or exit the cell cycle and differentiate is tightly controlled, and imbalances to the normal trajectory of this process can lead to severe functional consequences. However, our understanding of the molecular regulation of these fundamental events remains limited. Moreover, processes underpinning development of the postnatal neurogenic niches within the cortex remain poorly defined. Here, we demonstrate that Nuclear factor one X (NFIX) is expressed by neural progenitor cells within the embryonic hippocampus, and that progenitor cell differentiation is delayed within Nfix−/− mice. Moreover, we reveal that the morphology of the dentate gyrus in postnatal Nfix−/− mice is abnormal, with fewer subgranular zone neural progenitor cells being generated in the absence of this transcription factor. Mechanistically, we demonstrate that the progenitor cell maintenance factor Sry-related HMG box 9 (SOX9) is upregulated in the hippocampus of Nfix−/− mice and demonstrate that NFIX can repress Sox9 promoter-driven transcription. Collectively, our findings demonstrate that NFIX plays a central role in hippocampal morphogenesis, regulating the formation of neuronal and glial populations within this structure. PMID:23042739

  6. Incomplete hippocampal inversion - is there a relation to epilepsy?

    International Nuclear Information System (INIS)

    Bajic, Dragan; Kumlien, Eva; Mattsson, Peter; Lundberg, Staffan; Wang, Chen; Raininko, Raili

    2009-01-01

    Incomplete hippocampal inversion (IHI) has been described in patients with epilepsy or severe midline malformations but also in nonepileptic subjects without obvious developmental anomalies. We studied the frequency of IHI in different epilepsy syndromes to evaluate their relationship. Three hundred patients were drawn from the regional epilepsy register. Of these, 99 were excluded because of a disease or condition affecting the temporal lobes or incomplete data. Controls were 150 subjects without epilepsy or obvious intracranial developmental anomalies. The coronal MR images were analysed without knowledge of the clinical data. Among epilepsy patients, 30% had IHI (40 left-sided, 4 right-sided, 16 bilateral). Of controls, 18% had IHI (20 left-sided, 8 bilateral). The difference was statistically significant (P<0.05). Of temporal lobe epilepsy (TLE) patients, 25% had IHI, which was not a significantly higher frequency than in controls (P=0.34). There was no correlation between EEG and IHI laterality. A total of 44% of Rolandic epilepsy patients and 57% of cryptogenic generalised epilepsy patients had IHI. The IHI frequency was very high in some epileptic syndromes, but not significantly higher in TLE compared to controls. No causality between TLE and IHI could be found. IHI can be a sign of disturbed cerebral development affecting other parts of the brain, maybe leading to epilepsy. (orig.)

  7. The association of visual memory with hippocampal volume.

    Directory of Open Access Journals (Sweden)

    Andrea R Zammit

    Full Text Available In this study we investigated the role of hippocampal volume (HV in visual memory.Participants were a subsample of older adults (> = 70 years from the Einstein Aging Study. Visual performance was measured using the Complex Figure (CF copy and delayed recall tasks from the Repeatable Battery for the Assessment of Neuropsychological Status. Linear regressions were fitted to study associations between HV and visual tasks.Participants' (n = 113, mean age = 78.9 years average scores on the CF copy and delayed recall were 17.4 and 11.6, respectively. CF delayed recall was associated with total (β = .031, p = 0.001 and left (β = 0.031, p = 0.001 and right HVs (β = 0.24, p = 0.012. CF delayed recall remained significantly associated with left HV even after we also included right HV (β = 0.27, p = 0.025 and the CF copy task (β = 0.30, p = 0.009 in the model. CF copy did not show any significant associations with HV.Our results suggest that left HV contributes in retrieval of visual memory in older adults.

  8. Mechanism of PAMAM Dendrimers Internalization in Hippocampal Neurons.

    Science.gov (United States)

    Vidal, Felipe; Vásquez, Pilar; Díaz, Carola; Nova, Daniela; Alderete, Joel; Guzmán, Leonardo

    2016-10-03

    Polyamidoamine (PAMAM) dendrimers are hyperbranched macromolecules which have been described as one of the most promising drug nanocarrier systems. A key process to understand is their cellular internalization mechanism because of its direct influence on their intracellular distribution, association with organelles, entry kinetics, and cargo release. Despite that internalization mechanisms of dendrimers have been studied in different cell types, in the case of neurons they are not completely described. Considering the relevance of central nervous system (CNS) diseases and neuropharmacology, the aim of this report is to describe the molecular internalization mechanism of different PAMAM-based dendrimer systems in hippocampal neurons. Four dendrimers based on fourth generation PAMAM with different surface properties were studied: unmodified G4, with a positively charged surface; PP50, with a substitution of the 50% of amino surface groups with polyethylene glycol neutral groups; PAc, with a substitution of the 30% of amino surface groups with acrylate anionic groups; and PFO, decorated with folic acid groups in a 25% of total terminal groups. Confocal images show that both G4 and PFO are able to enter the neurons, but not PP50 and PAc. Colocalization study with specific endocytosis markers and specific endocytosis inhibitor assay demonstrate that clathrin-mediated endocytosis would be the main internalization mechanism for G4, whereas clathrin- and caveolae-mediated endocytosis would be implicated in PFO internalization. These results show the existence of different internalization mechanisms for PAMAM dendrimers in neurons and the possibility to control their internalization properties with specific chemical modifications.

  9. Hippocampal volumetry: Normative data in the Indian population.

    Science.gov (United States)

    Mohandas, Aravind Narayan; Bharath, Rose Dawn; Prathyusha, Parthipulli Vasuki; Gupta, Arun K

    2014-07-01

    Mesial temporal sclerosis (MTS) is the most common cause of temporal lobe epilepsy. Quantitative analysis of the hippocampus using volumetry is commonly being used in the diagnosis of MTS and is being used as a marker in prognostication of seizure control. Although normative data for hippocampal volume (HV) is available for the western population, no such data is available for the Indian population. The aim of the study was to establish normative data for HV for the Indian population, which can aid in the accurate diagnosis of MTS. Magnetic resonance imaging (MRI) scans of 200 healthy volunteers were acquired using a 3 Tesla (3T) MRI scanner. Manual segmentation and volumetry was done using Siemens Syngo software. The data was analyzed using two tailed t-test to detect associations between HV and age, gender, and education. The data so obtained was also correlated with the data available from the rest of the world. A mean HV of 2.411 cm(3) (standard deviation -0.299) was found in the study, which was significantly smaller when compared to the data from the western population. The right hippocampus was larger than the left, with a mean volume of 2.424 cm(3) and 2.398 cm(3), respectively. HV was detected to be significantly higher in males. No association was found between HV and age and education. The values obtained in this study may be adopted as a standard in the evaluation of patients with intractable epilepsy.

  10. Acetylcholine release and inhibitory interneuron activity in hippocampal CA1

    Directory of Open Access Journals (Sweden)

    A. Rory McQuiston

    2014-09-01

    Full Text Available Acetylcholine release in the central nervous system (CNS has an important role in attention, recall and memory formation. One region influenced by acetylcholine is the hippocampus, which receives inputs from the medial septum and diagonal band of Broca complex (MS/DBB. Release of acetylcholine from the MS/DBB can directly affect several elements of the hippocampus including glutamatergic and GABAergic neurons, presynaptic terminals, postsynaptic receptors and astrocytes. A significant portion of acetylcholine’s effect likely results from the modulation of GABAergic inhibitory interneurons, which have crucial roles in controlling excitatory inputs, synaptic integration, rhythmic coordination of principal neurons and outputs in the hippocampus. Acetylcholine affects interneuron function in large part by altering their membrane potential via muscarinic and nicotinic receptor activation. This minireview describes recent data from mouse hippocampus that investigated changes in CA1 interneuron membrane potentials following acetylcholine release. The interneuron subtypes affected, the receptor subtypes activated, and the potential outcome on hippocampal CA1 network function is discussed.

  11. Corpora amylacea in temporal lobe epilepsy associated with hippocampal sclerosis

    Directory of Open Access Journals (Sweden)

    Ribeiro Marlise de Castro

    2003-01-01

    Full Text Available Hippocampal sclerosis (HS is the commonest pathology in epileptic patients undergoing temporal lobe epilepsy surgery. Beside, there are an increased density of corpora amylacea (CA founded in 6 to 63% of those cases. OBJECTIVE: verify the presence of CA and the clinical correlates of their occurrence in a consective series of patients undergoing temporal surgery with diagnosis of HS. METHOD: We reviewed 72 hippocampus specimens from January 1997 to July 2000. Student's t test for independent, samples, ANOVA and Tukey test were performed for statistical analysis. RESULTS: CA were found in 35 patients (49%, whose mean epilepsy duration (28.7 years was significantly longer than that group of patients without CA (19.5 years, p= 0.001. Besides, when CA were found, duration was also significantly correlated with distribution within hippocampus: 28.7 years with diffuse distribution of CA, 15.4 with exclusively subpial and 17.4 years with distribution subpial plus perivascular (p= 0.001. CONCLUSION: Our findings corroborate the presence of CA in patients with HS and suggest that a longer duration of epilepsy correlate with a more distribution of CA in hippocampus.

  12. Hand gestures support word learning in patients with hippocampal amnesia.

    Science.gov (United States)

    Hilverman, Caitlin; Cook, Susan Wagner; Duff, Melissa C

    2018-06-01

    Co-speech hand gesture facilitates learning and memory, yet the cognitive and neural mechanisms supporting this remain unclear. One possibility is that motor information in gesture may engage procedural memory representations. Alternatively, iconic information from gesture may contribute to declarative memory representations mediated by the hippocampus. To investigate these alternatives, we examined gesture's effects on word learning in patients with hippocampal damage and declarative memory impairment, with intact procedural memory, and in healthy and in brain-damaged comparison groups. Participants learned novel label-object pairings while producing gesture, observing gesture, or observing without gesture. After a delay, recall and object identification were assessed. Unsurprisingly, amnesic patients were unable to recall the labels at test. However, they correctly identified objects at above chance levels, but only if they produced a gesture at encoding. Comparison groups performed well above chance at both recall and object identification regardless of gesture. These findings suggest that gesture production may support word learning by engaging nondeclarative (procedural) memory. © 2018 Wiley Periodicals, Inc.

  13. Contribution of Hippocampal 5-HT3 Receptors in Hippocampal Autophagy and Extinction of Conditioned Fear Responses after a Single Prolonged Stress Exposure in Rats.

    Science.gov (United States)

    Wu, Zhong-Min; Yang, Li-Hua; Cui, Rong; Ni, Gui-Lian; Wu, Feng-Tian; Liang, Yong

    2017-05-01

    One of the hypotheses about the pathogenesis of posttraumatic stress disorder (PTSD) is the dysfunction of serotonin (5-HT) neurotransmission. While certain 5-HT receptor subtypes are likely critical for the symptoms of PTSD, few studies have examined the role of 5-HT 3 receptor in the development of PTSD, even though 5-HT 3 receptor is critical for contextual fear extinction and anxiety-like behavior. Therefore, we hypothesized that stimulation of 5-HT 3 receptor in the dorsal hippocampus (DH) could prevent hippocampal autophagy and the development of PTSD-like behavior in animals. To this end, we infused SR57227, selective 5-HT 3 agonist, into the DH after a single prolonged stress (SPS) treatment in rats. Three weeks later, we evaluated the effects of this pharmacological treatment on anxiety-related behaviors and extinction of contextual fear memory. We also accessed hippocampal autophagy and the expression of 5-HT 3A subunit, Beclin-1, LC3-I, and LC3-II in the DH. We found that SPS treatment did not alter anxiety-related behaviors but prolonged the extinction of contextual fear memory, and such a behavioral phenomenon was correlated with increased hippocampal autophagy, decreased 5-HT 3A expression, and increased expression of Beclin-1 and LC3-II/LC3-I ratio in the DH. Furthermore, intraDH infusions of SR57227 dose-dependently promoted the extinction of contextual fear memory, prevented hippocampal autophagy, and decreased expression of Beclin-1 and LC3-II/LC3-I ratio in the DH. These results indicated that 5-HT 3 receptor in the hippocampus may play a critical role in the pathogenesis of hippocampal autophagy, and is likely involved in the pathophysiology of PTSD.

  14. Moderate exercise ameliorates dysregulated hippocampal glycometabolism and memory function in a rat model of type 2 diabetes.

    Science.gov (United States)

    Shima, Takeru; Matsui, Takashi; Jesmin, Subrina; Okamoto, Masahiro; Soya, Mariko; Inoue, Koshiro; Liu, Yu-Fan; Torres-Aleman, Ignacio; McEwen, Bruce S; Soya, Hideaki

    2017-03-01

    Type 2 diabetes is likely to be an independent risk factor for hippocampal-based memory dysfunction, although this complication has yet to be investigated in detail. As dysregulated glycometabolism in peripheral tissues is a key symptom of type 2 diabetes, it is hypothesised that diabetes-mediated memory dysfunction is also caused by hippocampal glycometabolic dysfunction. If so, such dysfunction should also be ameliorated with moderate exercise by normalising hippocampal glycometabolism, since 4 weeks of moderate exercise enhances memory function and local hippocampal glycogen levels in normal animals. The hippocampal glycometabolism in OLETF rats (model of human type 2 diabetes) was assessed and, subsequently, the effects of exercise on memory function and hippocampal glycometabolism were investigated. OLETF rats, which have memory dysfunction, exhibited higher levels of glycogen in the hippocampus than did control rats, and breakdown of hippocampal glycogen with a single bout of exercise remained unimpaired. However, OLETF rats expressed lower levels of hippocampal monocarboxylate transporter 2 (MCT2, a transporter for lactate to neurons). Four weeks of moderate exercise improved spatial memory accompanied by further increase in hippocampal glycogen levels and restoration of MCT2 expression independent of neurotrophic factor and clinical symptoms in OLETF rats. Our findings are the first to describe detailed profiles of glycometabolism in the type 2 diabetic hippocampus and to show that 4 weeks of moderate exercise improves memory dysfunction in type 2 diabetes via amelioration of dysregulated hippocampal glycometabolism. Dysregulated hippocampal lactate-transport-related glycometabolism is a possible aetiology of type-2-diabetes-mediated memory dysfunction.

  15. Safety system for pressure suppression

    International Nuclear Information System (INIS)

    Wood, L.E.; Ludwig, G.J.; Tulsa, O.

    1975-01-01

    The rupture disk with rated breaking points is constrained by two supporting elements and has a convex-concave shape. For pressure suppression, it is reversable inversely to its bulging. Its surface has notches which are the rated breaking points and respond to higher pressures. The centre of the rupture disk contains an area of relatively smaller thickness that will burst at lower pressure and thus makes it applicable for lower pressures. For the response of the rupture disk centre, a thrust ring with a central opening may also be used. Its edge is formed into a convex-concave section supported on the edge of the rupture disk on the exit side. The free centre of the rupture disk is then the area of relative weakness. (RW/AK) [de

  16. MEK5 suppresses osteoblastic differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Kaneshiro, Shoichi [Department of Orthopaedic Surgery, Japan Community Health Care Organization Osaka Hospital, 4-2-78 Fukushima, Fukushima Ward, Osaka City, Osaka 553-0003 (Japan); Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Otsuki, Dai; Yoshida, Kiyoshi; Yoshikawa, Hideki [Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Higuchi, Chikahisa, E-mail: c-higuchi@umin.ac.jp [Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2015-07-31

    Extracellular signal-regulated kinase 5 (ERK5) is a member of the mitogen-activated protein kinase (MAPK) family and is activated by its upstream kinase, MAPK kinase 5 (MEK5), which is a member of the MEK family. Although the role of MEK5 has been investigated in several fields, little is known about its role in osteoblastic differentiation. In this study, we have demonstrated the role of MEK5 in osteoblastic differentiation in mouse preosteoblastic MC3T3-E1 cells and bone marrow stromal ST2 cells. We found that treatment with BIX02189, an inhibitor of MEK5, increased alkaline phosphatase (ALP) activity and the gene expression of ALP, osteocalcin (OCN) and osterix, as well as it enhanced the calcification of the extracellular matrix. Moreover, osteoblastic cell proliferation decreased at a concentration of greater than 0.5 μM. In addition, knockdown of MEK5 using siRNA induced an increase in ALP activity and in the gene expression of ALP, OCN, and osterix. In contrast, overexpression of wild-type MEK5 decreased ALP activity and attenuated osteoblastic differentiation markers including ALP, OCN and osterix, but promoted cell proliferation. In summary, our results indicated that MEK5 suppressed the osteoblastic differentiation, but promoted osteoblastic cell proliferation. These results implied that MEK5 may play a pivotal role in cell signaling to modulate the differentiation and proliferation of osteoblasts. Thus, inhibition of MEK5 signaling in osteoblasts may be of potential use in the treatment of osteoporosis. - Highlights: • MEK5 inhibitor BIX02189 suppresses proliferation of osteoblasts. • MEK5 knockdown and MEK5 inhibitor promote differentiation of osteoblasts. • MEK5 overexpression inhibits differentiation of osteoblasts.

  17. Hippocampal atrophy and altered brain responses to pleasant tastes among obese compared with healthy weight children.

    Science.gov (United States)

    Mestre, Z L; Bischoff-Grethe, A; Eichen, D M; Wierenga, C E; Strong, D; Boutelle, K N

    2017-10-01

    The hippocampus is a key structure implicated in food motivation and intake. Research has shown that the hippocampus is vulnerable to the consumption of a western diet (i.e., high saturated fat and simple carbohydrates). Studies of patients with obesity (OB), compared with healthy weight (HW), show changes in hippocampal volume and response to food cues. Moreover, evidence suggests that OB children, relative to HW, have greater hippocampal response to taste. However, no study has examined the association of hippocampal volume with taste functioning in children. We hypothesized that OB children, relative to HW, would show a significant reduction in hippocampal volume and that decreased volume would be significantly associated with greater activation to taste. Finally, we explored whether hippocampal activation would be associated with measures on eating and eating habits. Twenty-five 8-12-year-old children (i.e., 13 HW, 12 OB) completed a magnetic resonance imaging scan while participating in a taste paradigm (i.e., 1 ml of 10% sucrose or ionic water delivered pseudorandomly every 20 s). Children with OB, relative to HW, showed reduced left hippocampal volume (t=1.994, P=0.03, 95% confidence interval (CI)=-40.23,  755.42), and greater response to taste in three clusters within the left hippocampus (z=3.3, P=0.001, 95% CI=-0.241, -0.041; z=3.3, P=0.001, 95% CI=-0.2711, -0.0469; z=2.7, P=0.007, 95% CI=-0.6032, -0.0268). Activation within the hippocampus was associated with eating in the absence of hunger (EAH%; t=2.408, P=0.025, 95% CI= 1.751708, 23.94109) and two subscales on a measure of eating behaviors (Food responsiveness, t=2.572, P=0.017, 95% CI= 0.9565195, 9.043440; Food enjoyment, t=2.298, P=0.032, 95% CI=0.2256749, 4.531298). As hypothesized, OB children, relative to HW, had significantly reduced hippocampal volume, and greater hippocampal activation to taste. Moreover, hippocampal activation was associated with measures of eating. These results

  18. Charmonium formation and suppression in nuclear matter

    International Nuclear Information System (INIS)

    Xu Jiajun; Wang Jia; Zhuang Chao; Zhuang Pengfei

    2005-01-01

    The coupling Schroedinger equations describing the evolution of cc-bar states in nuclear matter are analytically and systematically solved via perturbation method, and the correlation between charmonium formation and nuclear absorption is investigated. After calculating J/Ψ and Ψ' suppression in nucleon-nucleus collisions and comparing with experiment data, it is found that the formation time effect plays an important rule in charmonium suppression, especially in Ψ' suppression. (authors)

  19. Poppers: more evidence of suppressed immunity.

    Science.gov (United States)

    James, J S

    1999-08-20

    Evidence from studies in mice shows that exposure to isobutyl nitrite suppresses the immune system. This immune suppression allows for bacterial growth in the lungs and livers of infected mice and can inhibit the ability of mediastinal lymph nodes to respond to antigen-specific stimulation. The mechanism for immune suppression may be a reduction in CD4+ and CD8+ T cell populations in the mediastinal lymph nodes following pulmonary infection with Listeria monocytogenes.

  20. Nitrous Oxide Induces Prominent Cell Proliferation in Adult Rat Hippocampal Dentate Gyrus

    Directory of Open Access Journals (Sweden)

    Farah Chamaa

    2018-05-01

    Full Text Available The identification of distinct and more efficacious antidepressant treatments is highly needed. Nitrous oxide (N2O is an N-methyl-D-aspartic acid (NMDA antagonist that has been reported to exhibit antidepressant effects in treatment-resistant depression (TRD patients. Yet, no studies have investigated the effects of sub-anesthetic dosages of N2O on hippocampal cell proliferation and neurogenesis in adult brain rats. In our study, adult male Sprague-Dawley rats were exposed to single or multiple exposures to mixtures of 70% N2O and 30% oxygen (O2. Sham groups were exposed to 30% O2 and the control groups to atmospheric air. Hippocampal cell proliferation was assessed by bromodeoxyuridine (BrdU incorporation, and BrdU-positive cells were counted in the dentate gyrus (DG using confocal microscopy. Results showed that while the rates of hippocampal cell proliferation were comparable between the N2O and sham groups at day 1, levels increased by 1.4 folds at day 7 after one session exposure to N2O. Multiple N2O exposures significantly increased the rate of hippocampal cell proliferation to two folds. Therefore, sub-anesthetic doses of N2O, similar to ketamine, increase hippocampal cell proliferation, suggesting that there will ultimately be an increase in neurogenesis. Future studies should investigate added N2O exposures and their antidepressant behavioral correlates.

  1. β-Adrenergic Control of Hippocampal Function: Subserving the Choreography of Synaptic Information Storage and Memory

    Science.gov (United States)

    Hagena, Hardy; Hansen, Niels; Manahan-Vaughan, Denise

    2016-01-01

    Noradrenaline (NA) is a key neuromodulator for the regulation of behavioral state and cognition. It supports learning by increasing arousal and vigilance, whereby new experiences are “earmarked” for encoding. Within the hippocampus, experience-dependent information storage occurs by means of synaptic plasticity. Furthermore, novel spatial, contextual, or associative learning drives changes in synaptic strength, reflected by the strengthening of long-term potentiation (LTP) or long-term depression (LTD). NA acting on β-adrenergic receptors (β-AR) is a key determinant as to whether new experiences result in persistent hippocampal synaptic plasticity. This can even dictate the direction of change of synaptic strength. The different hippocampal subfields play different roles in encoding components of a spatial representation through LTP and LTD. Strikingly, the sensitivity of synaptic plasticity in these subfields to β-adrenergic control is very distinct (dentate gyrus > CA3 > CA1). Moreover, NA released from the locus coeruleus that acts on β-AR leads to hippocampal LTD and an enhancement of LTD-related memory processing. We propose that NA acting on hippocampal β-AR, that is graded according to the novelty or saliency of the experience, determines the content and persistency of synaptic information storage in the hippocampal subfields and therefore of spatial memories. PMID:26804338

  2. Real-time changes in hippocampal energy demands during a spatial working memory task.

    Science.gov (United States)

    Kealy, John; Bennett, Rachel; Woods, Barbara; Lowry, John P

    2017-05-30

    Activity-dependent changes in hippocampal energy consumption have largely been determined using microdialysis. However, real-time recordings of brain energy consumption can be more accurately achieved using amperometric sensors, allowing for sensitive real-time monitoring of concentration changes. Here, we test the theory that systemic pre-treatment with glucose in rats prevents activity-dependent decreases in hippocampal glucose levels and thus enhances their performance in a spontaneous alternation task. Male Sprague Dawley rats were implanted into the hippocampus with either: 1) microdialysis probe; or 2) an oxygen sensor and glucose biosensor co-implanted together. Animals were pre-treated with either saline or glucose (250mg/kg) 30min prior to performing a single 20-min spontaneous alternation task in a +-maze. There were no significant differences found between either treatment group in terms of spontaneous alternation performance. Additionally, there was a significant difference found between treatment groups on hippocampal glucose levels measured using microdialysis (a decrease associated with glucose pre-treatment in control animals) but not amperometry. There were significant increases in hippocampal oxygen during +-maze exploration. Combining the findings from both methods, it appears that hippocampal activity in the spontaneous alternation task does not cause an increase in glucose consumption, despite an increase in regional cerebral blood flow (using oxygen supply as an index of blood flow) and, as such, pre-treatment with glucose does not enhance spontaneous alternation performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Synaptic plasticity in the hippocampal area CA1-subiculum projection: implications for theories of memory.

    Science.gov (United States)

    O'Mara, S M; Commins, S; Anderson, M

    2000-01-01

    This paper reviews investigations of synaptic plasticity in the major, and underexplored, pathway from hippocampal area CA1 to the subiculum. This brain area is the major synaptic relay for the majority of hippocampal area CA1 neurons, making the subiculum the last relay of the hippocampal formation prior to the cortex. The subiculum thus has a very major role in mediating hippocampal-cortical interactions. We demonstrate that the projection from hippocampal area CA1 to the subiculum sustains plasticity on a number of levels. We show that this pathway is capable of undergoing both long-term potentiation (LTP) and paired-pulse facilitation (PPF, a short-term plastic effect). Although we failed to induce long-term depression (LTD) of this pathway with low-frequency stimulation (LFS) and two-pulse stimulation (TPS), both protocols can induce a "late-developing" potentiation of synaptic transmission. We further demonstrate that baseline synaptic transmission can be dissociated from paired-pulse stimulation of the same pathway; we also show that it is possible, using appropriate protocols, to change PPF to paired-pulse depression, thus revealing subtle and previously undescribed mechanisms which regulate short-term synaptic plasticity. Finally, we successfully recorded from individual subicular units in the freely-moving animal, and provide a description of the characteristics of such neurons in a pellet-chasing task. We discuss the implications of these findings in relation to theories of the biological consolidation of memory.

  4. Initiation of sleep-dependent cortical-hippocampal correlations at wakefulness-sleep transition.

    Science.gov (United States)

    Haggerty, Daniel C; Ji, Daoyun

    2014-10-01

    Sleep is involved in memory consolidation. Current theories propose that sleep-dependent memory consolidation requires active communication between the hippocampus and neocortex. Indeed, it is known that neuronal activities in the hippocampus and various neocortical areas are correlated during slow-wave sleep. However, transitioning from wakefulness to slow-wave sleep is a gradual process. How the hippocampal-cortical correlation is established during the wakefulness-sleep transition is unknown. By examining local field potentials and multiunit activities in the rat hippocampus and visual cortex, we show that the wakefulness-sleep transition is characterized by sharp-wave ripple events in the hippocampus and high-voltage spike-wave events in the cortex, both of which are accompanied by highly synchronized multiunit activities in the corresponding area. Hippocampal ripple events occur earlier than the cortical high-voltage spike-wave events, and hippocampal ripple incidence is attenuated by the onset of cortical high-voltage spike waves. This attenuation leads to a temporary weak correlation in the hippocampal-cortical multiunit activities, which eventually evolves to a strong correlation as the brain enters slow-wave sleep. The results suggest that the hippocampal-cortical correlation is established through a concerted, two-step state change that first synchronizes the neuronal firing within each brain area and then couples the synchronized activities between the two regions. Copyright © 2014 the American Physiological Society.

  5. Susceptibility to hippocampal kind