WorldWideScience

Sample records for suppress sn whisker

  1. Whisker and Hillock formation on Sn, Sn-Cu and Sn-Pb electrodeposits

    International Nuclear Information System (INIS)

    Boettinger, W.J.; Johnson, C.E.; Bendersky, L.A.; Moon, K.-W.; Williams, M.E.; Stafford, G.R.

    2005-01-01

    High purity bright Sn, Sn-Cu and Sn-Pb layers, 3, 7 and 16 μm thick were electrodeposited on phosphor bronze cantilever beams in a rotating disk apparatus. Beam deflection measurements within 15 min of plating proved that all electrodeposits had in-plane compressive stress. In several days, the surfaces of the Sn-Cu deposits, which have the highest compressive stress, develop 50 μm contorted hillocks and 200 μm whiskers, pure Sn deposits develop 20 μm compact conical hillocks, and Sn-Pb deposits, which have the lowest compressive stress, remain unchanged. The differences between the initial compressive stresses for each alloy and pure Sn is due to the rapid precipitation of Cu 6 Sn 5 or Pb particles, respectively, within supersaturated Sn grains produced by electrodeposition. Over longer time, analysis of beam deflection measurements indicates that the compressive stress is augmented by the formation of Cu 6 Sn 5 on the bronze/Sn interface, while creep of the electrodeposit tends to decrease the compressive stress. Uniform creep occurs for Sn-Pb because it has an equi-axed grain structure. Localized creep in the form of hillocks and whiskers occurs for Sn and Sn-Cu because both have columnar structures. Compact hillocks form for the Sn deposits because the columnar grain boundaries are mobile. Contorted hillocks and whiskers form for the Sn-Cu deposits because the columnar grain boundary motion is impeded

  2. Quantifying the Effect of Stress on Sn Whisker Nucleation Kinetics

    Science.gov (United States)

    Chason, Eric; Vasquez, Justin; Pei, Fei; Jain, Nupur; Hitt, Andrew

    2018-01-01

    Although Sn whiskers have been studied extensively, there is still a need to understand the driving forces behind whisker nucleation and growth. Many studies point to the role of stress, but confirming this requires a quantitative comparison between controlled stress and the resulting whisker evolution. Recent experimental studies applied stress to a Sn layer via thermal cycling and simultaneously monitored the evolution of the temperature, stress and number of nuclei. In this work, we analyze these nucleation kinetics in terms of classical nucleation theory to relate the observed behavior to underlying mechanisms including a stress dependent activation energy and a temperature and stress-dependent whisker growth rate. Non-linear least squares fitting of the data taken at different temperatures and strain rates to the model shows that the results can be understood in terms of stress decreasing the barrier for whisker nucleation.

  3. Whisker-Like Formations in Sn-3.0Ag-Pb Alloys

    Directory of Open Access Journals (Sweden)

    Koncz-Horváth D.

    2017-06-01

    Full Text Available In this study, different types of whisker-like formations of Sn-3.0Ag based alloy were presented. In the experimental process the amount of Pb element was changed between 1000 and 2000 ppm, and the furnace atmosphere and cooling rate were also modified. The novelty of this work was that whisker-like formations in macro scale size were experienced after an exothermic reaction. The whiskers of larger sizes than general provided opportunities to investigate the microstructure and the concentration nearby the whiskers. In addition, the whisker-like formations from Sn-Ag based bulk material did not only consist of pure tin but tin and silver phases. The whisker-like growth appeared in several forms including hillock, spire and nodule shaped formations in accordance with parameters. It was observed that the compound phases were clustered in many cases mainly at hillocks.

  4. The effects of temperature and humidity on the growth of tin whisker and hillock from Sn5Nd alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Cai-Fu [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Liu, Zhi-Quan, E-mail: zqliu@imr.ac.cn [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Shang, Jian-Ku [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2013-02-15

    Highlights: Black-Right-Pointing-Pointer Tin whiskers and hillocks grow from Sn5Nd alloy due to oxidation. Black-Right-Pointing-Pointer Temperature and humidity can affect the oxidation and the growth diversities. Black-Right-Pointing-Pointer Growth models of whiskers and hillocks were proposed upon microstructural study. Black-Right-Pointing-Pointer The proposed models can explain the characteristics of whiskers and hillocks. - Abstract: The effects of exposure time, temperature and humidity on the growth of tin whisker and hillock from Sn5Nd alloy were investigated via scanning electron microscopy. It was found that tin whiskers grew from NdSn{sub 3} compound, while hillocks grew from the tin matrix around the NdSn{sub 3} compound, which was induced by the oxidation of NdSn{sub 3} compound by oxygen and water vapor in the ambient. More tin whiskers and/or hillocks were extruded from the substrate with longer exposure time, higher temperature and higher humidity. This resulted in the formation of various morphologies of tin extrusions at different storage conditions, including thread-like, spiral, flute-like, claw-like, sprout-like, chrysanthemum-like and rod-like whiskers, as well as hillocks. Tin whisker was extruded from the crack of the surface Nd(OH){sub 3} layer which serves as the mold of tin whisker growth. And the proposed growth models of tin whisker and hillock on Sn-Nd alloy can explain the diversity of the whisker morphology.

  5. Mitigating tin whisker risks theory and practice

    CERN Document Server

    Handwerker, Carol A; Bath, Jasbir

    2016-01-01

    Discusses the growth mechanisms of tin whiskers and the effective mitigation strategies necessary to reduce whisker growth risks. This book covers key tin whisker topics, ranging from fundamental science to practical mitigation strategies. The text begins with a review of the characteristic properties of local microstructures around whisker and hillock grains to identify why these particular grains and locations become predisposed to forming whiskers and hillocks. The book discusses the basic properties of tin-based alloy finishes and the effects of various alloying elements on whisker formation, with a focus on potential mechanisms for whisker suppression or enhancement for each element. Tin whisker risk mitigation strategies for each tier of the supply chain for high reliability electronic systems are also described.

  6. Understanding and predicting metallic whisker growth and its effects on reliability : LDRD final report.

    Energy Technology Data Exchange (ETDEWEB)

    Michael, Joseph Richard; Grant, Richard P.; Rodriguez, Mark Andrew; Pillars, Jamin; Susan, Donald Francis; McKenzie, Bonnie Beth; Yelton, William Graham

    2012-01-01

    Tin (Sn) whiskers are conductive Sn filaments that grow from Sn-plated surfaces, such as surface finishes on electronic packages. The phenomenon of Sn whiskering has become a concern in recent years due to requirements for lead (Pb)-free soldering and surface finishes in commercial electronics. Pure Sn finishes are more prone to whisker growth than their Sn-Pb counterparts and high profile failures due to whisker formation (causing short circuits) in space applications have been documented. At Sandia, Sn whiskers are of interest due to increased use of Pb-free commercial off-the-shelf (COTS) parts and possible future requirements for Pb-free solders and surface finishes in high-reliability microelectronics. Lead-free solders and surface finishes are currently being used or considered for several Sandia applications. Despite the long history of Sn whisker research and the recently renewed interest in this topic, a comprehensive understanding of whisker growth remains elusive. This report describes recent research on characterization of Sn whiskers with the aim of understanding the underlying whisker growth mechanism(s). The report is divided into four sections and an Appendix. In Section 1, the Sn plating process is summarized. Specifically, the Sn plating parameters that were successful in producing samples with whiskers will be reviewed. In Section 2, the scanning electron microscopy (SEM) of Sn whiskers and time-lapse SEM studies of whisker growth will be discussed. This discussion includes the characterization of straight as well as kinked whiskers. In Section 3, a detailed discussion is given of SEM/EBSD (electron backscatter diffraction) techniques developed to determine the crystallography of Sn whiskers. In Section 4, these SEM/EBSD methods are employed to determine the crystallography of Sn whiskers, with a statistically significant number of whiskers analyzed. This is the largest study of Sn whisker crystallography ever reported. This section includes a

  7. Suppression of tin precipitation in SiSn alloy layers by implanted carbon

    DEFF Research Database (Denmark)

    Gaiduk, Peter; Hansen, John Lundsgaard; Nylandsted Larsen, Arne

    2014-01-01

    By combining transmission electron microscopy and Rutherford backscattering spectrometry, we have identified carbon related suppression of dislocations and tin precipitation in supersaturated molecular-beam epitaxial grown SiSn alloy layers. Secondary ion mass spectrometry has exposed the accumul......By combining transmission electron microscopy and Rutherford backscattering spectrometry, we have identified carbon related suppression of dislocations and tin precipitation in supersaturated molecular-beam epitaxial grown SiSn alloy layers. Secondary ion mass spectrometry has exposed...

  8. Suppression on allotropic transformation of Sn planar anode with enhanced electrochemical performance

    Science.gov (United States)

    Wang, Peng; Hu, Junhua; Cao, Guoqin; Zhang, Shilin; Zhang, Peng; Liang, Changhao; Wang, Zhuo; Shao, Guosheng

    2018-03-01

    Different configurations of Sn and C films were deposited and used as a planar anode for Li ion battery. The interplay of carbon layer with Sn as supporting and buffering, respectively, was revealed. The suppression on the allotropic transformation to α phase by a carbon layer results in a significantly improved capacity retention rate, which also avoids the crack of Sn film. As expected, a conductive carbon layer improves rating performance. However, a supporting carbon layer (SC) just contributes to the charge transfer process. A DFT approach was used to assess the allotropic transformation process. An additional barrier (∼0.86 eV) exits on the α-β diagram, which is responsible for the irreversibility of α phase back to β phase. An enhanced persistence of β phase in Sn/C anode contributes to cycling performance. A Li rich condition contributes to the stabilization of β-Sn, which is thermodynamically favored. A nano buffering carbon (BC) layer can evidently alleviate the side reaction on Sn surface, which in turn promotes the diffusion of Li ions in electrode and generates a Li rich condition. The direct contact of Sn with electrolyte leads to serious accumulation of α-Sn during cycling and results in a poor cycling performance. By the synergistic effect of BC and SC, a sandwich C/Sn/C structure demonstrates an enchantment in electrochemical behavior.

  9. Amiloride and SN-6 suppress audiogenic seizure susceptibility in genetically epilepsy-prone rats.

    Science.gov (United States)

    Quansah, Hillary; N'Gouemo, Prosper

    2014-09-01

    We have recently reported that amiloride, a potent and nonselective blocker of acid-sensing ion channels, prevents the development of pilocarpine-induced seizures and status epilepticus. Amiloride is also known to suppress the activity of Na(+) /Ca(2+) and Na(+) /H(+) exchangers that have been implicated in the pathophysiology of seizures. Here, we evaluated the effects of amiloride, SN-6 (a potent blocker of Na(+) /Ca(2+) exchangers) and zoniporide (a potent blocker of Na(+) /H(+) exchangers) on acoustically evoked seizures (audiogenic seizures, AGS) in genetically epilepsy-prone rats (GEPR-3s), a model of inherited generalized epilepsy. Male, six-week-old GEPR-3s were used. The GEPR-3s were tested for AGS susceptibility before and after treatment with various doses of amiloride, SN-6, and zoniporide (1, 3, 10, and 30 mg/kg; per os). We found that pretreatment with amiloride and SN-6 markedly reduced the incidence and severity of AGS in the GEPR-3s. In contrast, administration of zoniporide only minimally reduced the incidence and severity of AGS in the GEPR-3s. A combination of noneffective doses of SN-6 and zoniporide also suppressed AGS susceptibility in the GEPR-3s. These findings suggest acid-sensing ion channels and the Na(+) /Ca(2+) exchanger may play an important role in the pathophysiology of inherited AGS susceptibility in the GEPR-3s. © 2014 John Wiley & Sons Ltd.

  10. Synthetische diamant-whisker

    Science.gov (United States)

    Derjaguin, B. V.; Fedoseev, D. V.

    1994-04-01

    РефератUnter speziellen Bedingungen wachsen auf Metallen und auch Nichtmetallen sehr dünne einkristalline Fäden auf, die man als Whisker bezeichnet. Diese Einkristalle zeigen höchst bemerkenswerte Eigenschaften. Uns ist es gelungen, Diamant-Whisker aufwachsen zu lassen unter Bedingungen, bei denen der Diamant eine metastabile Form von Kohlenstoff darstellt (1, 2). Möglicherweise läβt sich daraus ein Verfahren der epitaktischen Diamantsynthese entwickeln.

  11. Anomalous growth of whisker-like bismuth-tin extrusions from tin-enriched tin-Bi deposits

    International Nuclear Information System (INIS)

    Hu, C.-C.; Tsai, Y.-D.; Lin, C.-C.; Lee, G.-L.; Chen, S.-W.; Lee, T.-C.; Wen, T.-C.

    2009-01-01

    This article shows the first finding that the anomalous growth of Bi-Sn extrusions from tin-enriched alloys (Sn-xBi with x between 20 and 10 wt.%) can be induced by post-plating annealing in N 2 between 145 and 260 deg. C for 10 min although metal whiskers were commonly formed on the surface of pure metals or alloys of the enriched component. From SEM observations, very similar to Sn whiskers, Bi-Sn extrusions vary in size, shape, length, and diameter with changing the annealing temperature, which are highly important in regarding the potential for failure of electronic products. Annealing resulting in thermal expansion of Sn grains is believed to squeeze the Bi-Sn alloys with relatively low melting points to form whisker-like extrusions although the exact mechanism is unclear

  12. Tin Whisker Formation — A Stress Relieve Phenomenon

    Science.gov (United States)

    Dittes, M.; Oberndorff, P.; Crema, P.; Su, P.

    2006-02-01

    With the move towards lead-free electronics also the solderable finish of electronic components' terminations are converted. While the typical finish was containing 5 % to 20 % lead (Pb) and thus was almost whisker free, lead (Pb)-free finishes such as pure tin or high tin alloys are rather prone to grow whisker. These whiskers are spontaneous protrusions that grow to a significant length of up to millimeters with a typical diameter in the range of few microns and are suspect to cause shorts in electronic assemblies. The latest details of the mechanisms are not yet understood. However it appears to be well established that the driving force for tin whisker growth is a compressive stress in the tin layer and that this stress is released by whisker formation. Besides the mechanism for whisker growth therefore the mechanism of the stress induction is of interest. The origin of that stress may have multiple sources. Among others the most important one is the volume increase within the tin layer due the formation of intermetallics at the interface to the base material. This applies to all copper based material. For base materials with a coefficient of thermal expansion (cte) significantly different from the tin finish another mechanism plays the dominant role. This is the induction of stress during thermal cycling due to the different expansion of the materials with every temperature change. Another mechanism for stress induction may be the oxidation of the finish, which also leads to a local volume increase. Based on the knowledge of stress induction various mitigation strategies can be deducted. Most common is the introduction of a diffusion barrier (e.g. Ni) in order to prevent the growth of the Cu-Sn intermetallics, the controlled growth of Cu-Sn intermetallics in order to prevent their irregularity or the introduction of a mechanical buffer material targeting at the minimisation of the cte mismatch between base and finish material. With respect to the stress

  13. Tin Whisker Testing and Modeling

    Science.gov (United States)

    2015-11-01

    Center for Advanced Life Cycle Engineering, University of Maryland CTE Coefficient of Thermal Expansion DAU Defense Acquisition University DI...below 2.0% PCB Printed Circuit Board synonymous with PWB PWB Printed Wiring Board synonymous with PCB PCTC Simulated power cycling thermal cycling ...DoD focused tin whisker risk assessments and whisker growth mechanisms (long term testing, corrosion/oxidation in humidity, and thermal cycling

  14. Electromigration Critical Product to Measure Effect of Underfill Material in Suppressing Bi Segregation in Sn-58Bi Solder

    Science.gov (United States)

    Zhao, Xu; Takaya, Satoshi; Muraoka, Mikio

    2017-08-01

    Recently, we detected length-dependent electromigration (EM) behavior in Sn-58Bi (SB) solder and revealed the existence of Bi back-flow, which retards EM-induced Bi segregation and is dependent on solder length. The cause of the back-flow is attributed to an oxide layer formed on the SB solder. At present, underfill (UF) material is commonly used in flip-chip packaging as filler between chip and substrate to surround solder bumps. In this study, we quantitatively investigated the effect of UF material as a passivation layer on EM in SB solder strips. EM tests on SB solder strips with length of 50 μm, 100 μm, and 150 μm were conducted simultaneously. Some samples were coated with commercial thermosetting epoxy UF material, which acted as a passivation layer on the Cu-SB-Cu interconnections. The value of the critical product for SB solder was estimated to be 38 A/cm to 43 A/cm at 353 K to 373 K without UF coating and 59 A/cm at 373 K with UF coating. The UF material acting as a passivation layer suppressed EM-induced Bi segregation and increased the threshold current density by 37% to 55%. However, at very high current density, this effect became very slight. In addition, Bi atoms can diffuse to the anode side through the Sn phase, hence addition of microelements to the Sn phase to form obstacles, such as intermetallic compounds, may retard Bi segregation in SB solder.

  15. Whiskers and fibers of hydroxyapatite; Whiskers e fibras de hidroxiapatita

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, G.B.C.; Motisuke, M.; Zavaglia, C.A.C., E-mail: guicardoso@fem.unicamp.b [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica. Dept. de Engenharia de Materiais; Arruda, A.C.F. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica. Dept. de Engenharia de Petroleo

    2009-07-01

    Hydroxyapatite is a bioactive ceramic, which acts in tissue engineering by attracting bone cells. Occasionally it can be used as a biocompatible reinforcement. The mechanical role of this biomaterial can be defined depending of some characteristics analyzed by scanning electron microscope and X ray power diffraction. It can be classified in whiskers and fibers; each one has their own properties, which were discussed in this work. For its use as reinforcement it is necessary matrix with specific characteristics. (author)

  16. Method for manufacturing whisker preforms and composites

    Science.gov (United States)

    Lessing, P.A.

    1995-11-07

    A process is disclosed for manufacturing Si{sub 3}N{sub 4}/SiAlON whiskers by mixing silicon carbide powder with aluminum nitride powder, adding impurities such as calcium oxide or potassium chloride to control whisker characteristics, forming the mixture in a boron nitrogen mold of desired shaped and hot isostatically pressing the formed mixture in a nitrogen environment to produce whiskers comprised substantially of SiAlON at the nucleating end of the whisker and Si{sub 3}N{sub 4} at the other end of the whisker. In one embodiment, reinforced composites are formed by impregnating the Si{sub 3}N{sub 4}/SiAlON whisker preform with a matrix material such as resin binders, liquid metals, intermetallics or ceramic materials.

  17. Silicon Whisker and Carbon Nanofiber Composite Anode

    Science.gov (United States)

    Ma, Junqing (Inventor); Newman, Aron (Inventor); Lennhoff, John (Inventor)

    2015-01-01

    A carbon nanofiber can have a surface and include at least one crystalline whisker extending from the surface of the carbon nanofiber. A battery anode composition can be formed from a plurality of carbon nanofibers each including a plurality of crystalline whiskers.

  18. Boron carbide whiskers produced by vapor deposition

    Science.gov (United States)

    1965-01-01

    Boron carbide whiskers have an excellent combination of properties for use as a reinforcement material. They are produced by vaporizing boron carbide powder and condensing the vapors on a substrate. Certain catalysts promote the growth rate and size of the whiskers.

  19. Cellulose whiskers: preparation, characterization and surface modification

    International Nuclear Information System (INIS)

    Taipina, Marcia O.; Ferrarezi, Marcia M.F.; Goncalves, Maria C.

    2011-01-01

    The main objectives of this work were to produce cellulose whiskers (from cotton fibers) by acid hydrolysis and subsequently modify the surface of these whiskers with 3-iso-cyanate-propyltrietoxy-silane. Cellulose whiskers structures were characterized by X-ray diffraction and Fourier transform infrared and their morphologies were investigated by scanning and transmission electron microscopy. Due to the hydrophilic nature of native cellulose, the formation of cellulose whisker nanocomposites is limited to water-soluble polymers. The applied methodology for surface modification of the whiskers allowed to obtain nanofibers with surface features more appropriate to allow the adhesion at fiber-matrix interface, which may result in a better performance of these fibers as reinforcing agents of hydrophobic polymer matrices. (author)

  20. Whisker Formation On Galvanic Tin Surface Layer

    Directory of Open Access Journals (Sweden)

    Radanyi A.L.

    2015-06-01

    Full Text Available The present work reports the effect of substrate composition, thickness of the tin electroplate and its morphology on pressure-induced tin whisker formation. Pure tin deposits of different thickness were obtained on a copper and brass substrates using methane sulfonic industrial bath. The deposits were compressed by a steel bearing ball forming imprint on the surface. The microstructure of tin whiskers obtained at the boundary of each imprint, their length and number were studied using both light and scanning electron microscopy. It was shown that the most intensive formation and growth of whiskers was observed in the first two hours. In general, brass substrate was shown to be more prone to whisker formation than copper independently of the tin coating thickness. The results have been compared with industrial bright tin finish on control unit socket leads and proposals have been made as to modification of the production process in order to minimize the risk of whiskering.

  1. The probabilistic distribution of metal whisker lengths

    Energy Technology Data Exchange (ETDEWEB)

    Niraula, D., E-mail: Dipesh.Niraula@rockets.utoledo.edu; Karpov, V. G., E-mail: victor.karpov@utoledo.edu [Department of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606 (United States)

    2015-11-28

    Significant reliability concerns in multiple industries are related to metal whiskers, which are random high aspect ratio filaments growing on metal surfaces and causing shorts in electronic packages. We derive a closed form expression for the probabilistic distribution of metal whisker lengths. Our consideration is based on the electrostatic theory of metal whiskers, according to which whisker growth is interrupted when its tip enters a random local “dead region” of a weak electric field. Here, we use the approximation neglecting the possibility of thermally activated escapes from the “dead regions,” which is later justified. We predict a one-parameter distribution with a peak at a length that depends on the metal surface charge density and surface tension. In the intermediate range, it fits well the log-normal distribution used in the experimental studies, although it decays more rapidly in the range of very long whiskers. In addition, our theory quantitatively explains how the typical whisker concentration is much lower than that of surface grains. Finally, it predicts the stop-and-go phenomenon for some of the whiskers growth.

  2. Inorganic-whisker-reinforced polymer composites synthesis, properties and applications

    CERN Document Server

    Sun, Qiuju

    2015-01-01

    Inorganic-Whisker-Reinforced Polymer Composites: Synthesis, Properties and Applications gives a comprehensive presentation of inorganic microcrystalline fibers, or whiskers, a polymer composite filler. It covers whisker synthesis, surface modification, applications for reinforcing polymer-matrix composites, and analysis of resulting filled polymer composites. It focuses on calcium carbonate whiskers as a primary case study, introducing surface treatment methods for calcium carbonate whiskers and factors that influence them. Along with calcium carbonate, the book discusses potassium titanate and aluminum borate whiskers, which also comprise the new generation of inorganic whiskers. According to research results, composites filled by inorganic whiskers show improved strength, wear-resistance, thermal conductivity, and antistatic properties. It explains the importance of modifying polymer materials for use with inorganic whiskers and describes preparation and evaluation methods of polymers filled with inorganic ...

  3. Cellulose whisker/epoxy resin nanocomposites.

    Science.gov (United States)

    Tang, Liming; Weder, Christoph

    2010-04-01

    New nanocomposites composed of cellulose nanofibers or "whiskers" and an epoxy resin were prepared. Cellulose whiskers with aspect ratios of approximately 10 and approximately 84 were isolated from cotton and sea animals called tunicates, respectively. Suspensions of these whiskers in dimethylformamide were combined with an oligomeric difunctional diglycidyl ether of bisphenol A with an epoxide equivalent weight of 185-192 and a diethyl toluenediamine-based curing agent. Thin films were produced by casting these mixtures and subsequent curing. The whisker content was systematically varied between 4 and 24% v/v. Electron microscopy studies suggest that the whiskers are evenly dispersed within the epoxy matrix. Dynamic mechanical thermoanalysis revealed that the glass transition temperature (T(g)) of the materials was not significantly influenced by the incorporation of the cellulose filler. Between room temperature and 150 degrees C, i.e., below T(g), the tensile storage moduli (E') of the nanocomposites increased modestly, for example from 1.6 GPa for the neat polymer to 4.9 and 3.6 GPa for nanocomposites comprising 16% v/v tunicate or cotton whiskers. The relative reinforcement was more significant at 185 degrees C (i.e., above T(g)), where E' was increased from approximately 16 MPa (neat polymer) to approximately 1.6 GPa (tunicate) or approximately 215 MPa (cotton). The mechanical properties of the new materials are well-described by the percolation model and are the result of the formation of a percolating whisker network in which stress transfer is facilitated by strong interactions between the whiskers.

  4. Whisker sensory system - from receptor to decision.

    Science.gov (United States)

    Diamond, Mathew E; Arabzadeh, Ehsan

    2013-04-01

    One of the great challenges of systems neuroscience is to understand how the neocortex transforms neuronal representations of the physical characteristics of sensory stimuli into the percepts which can guide the animal's decisions. Here we present progress made in understanding behavioral and neurophysiological aspects of a highly efficient sensory apparatus, the rat whisker system. Beginning with the 1970s discovery of "barrels" in the rat and mouse brain, one line of research has focused on unraveling the circuits that transmit information from the whiskers to the sensory cortex, together with the cellular mechanisms that underlie sensory responses. A second, more recent line of research has focused on tactile psychophysics, that is, quantification of the behavioral capacities supported by whisker sensation. The opportunity to join these two lines of investigation makes whisker-mediated sensation an exciting platform for the study of the neuronal bases of perception and decision-making. Even more appealing is the beginning-to-end prospective offered by this system: the inquiry can start at the level of the sensory receptor and conclude with the animal's choice. We argue that rats can switch between two modes of operation of the whisker sensory system: (1) generative mode and (2) receptive mode. In the generative mode, the rat moves its whiskers forward and backward to actively seek contact with objects and to palpate the object after initial contact. In the receptive mode, the rat immobilizes its whiskers to optimize the collection of signals from an object that is moving by its own power. We describe behavioral tasks that rats perform in these different modes. Next, we explore which neuronal codes in sensory cortex account for the rats' discrimination capacities. Finally, we present hypotheses for mechanisms through which "downstream" brain regions may read out the activity of sensory cortex in order to extract the significance of sensory stimuli and, ultimately

  5. Radial furnace shows promise for growing straight boron carbide whiskers

    Science.gov (United States)

    Feingold, E.

    1967-01-01

    Radial furnace, with a long graphite vaporization tube, maintains a uniform thermal gradient, favoring the growth of straight boron carbide whiskers. This concept seems to offer potential for both the quality and yield of whiskers.

  6. Time exponent suppression of growth of the Zr–Sn diffusion layers between amorphous Zr{sub 55}Cu{sub 30}Al{sub 10}Ni{sub 5} and Sn

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Kan [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Lin, Tiesong, E-mail: hitjoining@hit.edu.cn [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); He, Peng [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Sun, Jianfei [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2015-10-15

    The growth kinetics of the diffusion layer between molten Sn and Zr{sub 55}Cu{sub 30}Al{sub 10}Ni{sub 5} bulk metallic glass (BMG) substrate were examined by isothermal aging at the temperature range between 513 and 633 K with 30 K temperature interval. The aged samples were characterized by scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). The growth of the diffusion layer is mainly controlled by a diffusion-controlled mechanism over the temperature range at stage I, and the value of the time exponent is approximately 1/2 by fitting the experiment data. As well as there is unusual stage II, whose time exponent of the growth is suppressed to 1/3. Based on phenomenological description, it could deduced that phase transition such like nucleation and coalescence occur in vicinity of the interface of diffusion layer at the late stage of clusters growth processes similar to Ostwald ripening. - Highlights: • Linear fitting of all experiment data of the thickness derivate the time exponent n be suppressed from 0.52 to 0.36. • There is the value of the time exponent following two stages by fitting the data segmentations. • The value of the time exponent is 1/2 at stage I, and 1/3 at stage II. • Phase transition such like nucleation, coalescence occur in vicinity of the interface of diffusion layer at stage II.

  7. Whisker encoding of mechanical events during active tactile exploration

    Directory of Open Access Journals (Sweden)

    Yves eBoubenec

    2012-11-01

    Full Text Available Rats use their whiskers to extract a wealth of information about their immediate environment, such as the shape, position or texture of an object. The information is conveyed to mechanoreceptors located within the whisker follicle in the form of a sequence of whisker deflections induced by the whisker/object contact interaction. How the whiskers filter and shape the mechanical information and effectively participate in the coding of tactile features remains an open question to date. In the present article, a biomechanical model was developed that provides predictions of the whisker dynamics during active tactile exploration, amenable to quantitative experimental comparison. This model is based on a decomposition of the whisker profile into a slow, quasi-static sequence and rapid resonant small-scale vibrations. It was applied to the typical situation of a rat whisking across an object. Having derived the quasi-static sequence of whisker deformation, the resonant properties of the whisker were analyzed, taking into account the boundary conditions imposed by the whisker/surface contact. We then focused on two elementary mechanical events that are expected to trigger neural responses, namely (i the whisker/object first contact and (ii the whisker detachment from the object. Both events were found to trigger a deflection wave propagating upward to the mystacial pad at constant velocity of 3-5m/s. This yielded a characteristic mechanical signature at the whisker base, in the form of a large peak of negative curvature occurring 4ms after the event was triggered. The dependence in amplitude and lag of this mechanical signal with the main contextual parameters (such as radial or angular distance was investigated. The model was validated experimentally by comparing its predictions to high-speed video recordings of shock-induced whisker deflections performed on anesthetized rats. The consequences of these results on possible tactile encoding schemes are

  8. Biopolymer nanocomposite films reinforced with nanocellulose whiskers

    Science.gov (United States)

    Amit Saxena; Marcus Foston; Mohamad Kassaee; Thomas J. Elder; Arthur J. Ragauskas

    2011-01-01

    A xylan nanocomposite film with improved strength and barrier properties was prepared by a solution casting using nanocellulose whiskers as a reinforcing agent. The 13C cross-polarization magic angle spinning (CP/MAS) nuclear magnetic resonance (NMR) analysis of the spectral data obtained for the NCW/xylan nanocomposite films indicated the signal intensity originating...

  9. Innovation Incubator: Whisker Labs Technical Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, Bethany F. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Frank, Stephen M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Earle, Lieko [National Renewable Energy Lab. (NREL), Golden, CO (United States); Scheib, Jennifer G. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-08-01

    The Wells Fargo Innovation Incubator (IN2) is a program to foster and accelerate startup companies with commercial building energy-efficiency and demand management technologies. The program is funded by the Wells Fargo Foundation and co-administered by the National Renewable Energy Laboratory (NREL). Whisker Labs, an Oakland, California-based company, was one of four awardees in the first IN2 cohort and was invited to participate in the program because of its novel electrical power sensing technology for circuit breakers. The stick-on Whisker meters install directly on the front face of the circuit breakers in an electrical panel using adhesive, eliminating the need to open the panel and install current transducers (CTs) on the circuit wiring.

  10. Growth of intermetallics between Sn/Ni/Cu, Sn/Ag/Cu and Sn/Cu layered structures

    International Nuclear Information System (INIS)

    Horváth, Barbara; Illés, Balázs; Shinohara, Tadashi

    2014-01-01

    Intermetallic growth mechanisms and rates are investigated in Sn/Ni/Cu, Sn/Ag/Cu and Sn/Cu layer systems. An 8–10 μm thick Sn surface finish layer was electroplated onto a Cu substrate with a 1.5–2 μm thick Ni or Ag barrier layer. In order to induce intermetallic layer growth, the samples were aged in elevated temperatures: 50 °C and 125 °C. Intermetallic layer growth was checked by focused ion beam–scanning ion microscope. The microstructures and chemical compositions of the intermetallic layers were observed with a transmission electron microscope. It has been found that Ni barrier layers can effectively block the development of Cu 6 Sn 5 intermetallics. The intermetallic growth characteristics in the Sn/Cu and Sn/Ni/Cu systems are very similar. The intermetallic layer grows towards the Sn layer and forms a discrete layer. Differences were observed only in the growth gradients and surface roughness of the intermetallic layer which may explain the different tin whiskering properties. It was observed that the intermetallic layer growth mechanisms are completely different in the Ag barrier layers compared to the Ni layers. In the case of Sn/Ag/Cu systems, the Sn and Cu diffused through the Ag layer, formed Cu 6 Sn 5 intermetallics mainly at the Sn/Ag interface and consumed the Ag barrier layer. - Highlights: • Intermetallic growth was characterised in Sn/Ni/Cu, Sn/Ag/Cu and Sn/Cu layer systems. • Intermetallic growth rates and roughness are similar in the Sn/Cu and Sn/Ni/Cu systems. • Sn/Ni/Cu system contains the following intermetallic layer structure Sn–Ni3Sn4–Ni3Sn2–Ni3Sn–Ni. • In the case of Sn/Ag/Cu systems the Sn and Cu diffusion consumes the Ag barrier layer. • When Cu reaches the Sn/Ag interface a large amount of Cu 6 Sn 5 forms above the Ag layer

  11. Silicon carbide whisker-zirconia reinforced mullite and alumina ceramics

    Science.gov (United States)

    Becher, Paul F.; Tiegs, Terry N.

    1987-01-01

    The flexural strength and/or fracture toughness of SiC whisker-reinforced composites utilizing mullite or alumina as the matrix material for the composite are increased by the addition of zirconia in a monoclinic or tetragonal phase to the matrix. The zirconia addition also provides for a lower hot-pressing temperature and increases the flexural strength and/or fracture toughness of the SiC whisker-reinforced composites over SiC whisker-reinforced composites of the similar matrix materials reinforced with similar concentrations of SiC whiskers.

  12. Whiskers and Localized Corrosion on Copper in Repository Environment

    International Nuclear Information System (INIS)

    Hermansson, Hans-Peter; Gillen, Peter

    2004-03-01

    Previous studies have demonstrated that whiskers (thread/hair shaped structures) can form on copper in a sulphide containing environment. A remaining important question is whether the attack on the copper metal surface beneath a whisker is of a localized or of a general nature. This issue has not been clarified as whiskers are very fragile and have always detached and fallen off from the surface at some stage of handling. It has therefore been very difficult to link the growth root of the whisker to underlying structures in the metal surface. A study was therefore initiated to settle the important issue of the relation between whisker position and the type of underlying metal attack. The usage of a porous medium was originally planned to support the whiskers in order to keep them in place and by post examinations characterize the nature of the whisker roots and thus the type of attack on the metal. However, the early stages of the present experimental work clearly indicated that other ways of study were necessary. A photographic method for the registration and positioning of whisker growth was therefore developed. It proved to be a successful means to coordinate whisker position and to link it with the attack on the underlying metal. Shortage of sulphide in previous experiments caused a retarded growth rate of whiskers. Therefore, in present experiments the sulphide concentration was kept at a more constant level throughout an experiment and a hindered whisker growth did not limit the attack on underlying metal. Whiskers and substrates were observed with a video camera throughout an experiment and the phase composition was examined with Laser Raman Spectroscopy, LRS and the Raman video microscope. Post examinations were also performed using light optical microscopy. By combining the results from the optical methods it has been possible to distinguish two kinds of whisker roots (small/large diameter) with the underlying metal surface. It has also been demonstrated

  13. Automated tracking of whiskers in videos of head fixed rodents.

    Science.gov (United States)

    Clack, Nathan G; O'Connor, Daniel H; Huber, Daniel; Petreanu, Leopoldo; Hires, Andrew; Peron, Simon; Svoboda, Karel; Myers, Eugene W

    2012-01-01

    We have developed software for fully automated tracking of vibrissae (whiskers) in high-speed videos (>500 Hz) of head-fixed, behaving rodents trimmed to a single row of whiskers. Performance was assessed against a manually curated dataset consisting of 1.32 million video frames comprising 4.5 million whisker traces. The current implementation detects whiskers with a recall of 99.998% and identifies individual whiskers with 99.997% accuracy. The average processing rate for these images was 8 Mpx/s/cpu (2.6 GHz Intel Core2, 2 GB RAM). This translates to 35 processed frames per second for a 640 px×352 px video of 4 whiskers. The speed and accuracy achieved enables quantitative behavioral studies where the analysis of millions of video frames is required. We used the software to analyze the evolving whisking strategies as mice learned a whisker-based detection task over the course of 6 days (8148 trials, 25 million frames) and measure the forces at the sensory follicle that most underlie haptic perception.

  14. Anatomical pathways involved in generating and sensing rhythmic whisker movements

    Directory of Open Access Journals (Sweden)

    Laurens W.J. Bosman

    2011-10-01

    Full Text Available The rodent whisker system is widely used as a model system for investigating sensorimotor integration, neural mechanisms of complex cognitive tasks, neural development, and robotics. The whisker pathways to the barrel cortex have received considerable attention. However, many subcortical structures are paramount to the whisker system. They contribute to important processes, like filtering out salient features, integration with other senses and adaptation of the whisker system to the general behavioral state of the animal. We present here an overview of the brain regions and their connections involved in the whisker system. We do not only describe the anatomy and functional roles of the cerebral cortex, but also those of subcortical structures like the striatum, superior colliculus, cerebellum, pontomedullary reticular formation, zona incerta and anterior pretectal nucleus as well as those of level setting systems like the cholinergic, histaminergic, serotonergic and noradrenergic pathways. We conclude by discussing how these brain regions may affect each other and how they together may control the precise timing of whisker movements and coordinate whisker perception.

  15. SYNTHESIS OF ALUMINIUM BORATE WHISKERS THROUGH WET MOLTEN SALT METHOD

    Directory of Open Access Journals (Sweden)

    Xue Zhang

    2017-12-01

    Full Text Available Aluminium borate (Al₄B₂O₉ whiskers were successfully synthesized by the wet molten salt method at 800 oC through control the aluminum/boron atomic ratio and synthesis temperature. The as-received Al₄B₂O₉ whiskers were characterized by scanning electron microscopy (SEM, X-ray diffraction (XRD and thermal analysis. A solution-liquid-solid (SLS mechanism was proposed for the growth mechanism of the whiskers on the basis of the experimental phenomena and the TG-DSC data of the mixed raw materials.

  16. Interface in silicon carbide whisker reinforced aluminium composites

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Li; Geng, Lin; Yao, Zhongkai; Lei, Tingquan (Harbin Institute of Technology (China))

    1989-09-01

    The interface in SiCw/Al composites was examined. The Auger electron spectroscope analysis of the fracture surface after sputter etching shows that the bonding between SiC whisker and Al matrix is quite good. TEM and X-ray diffraction analysis show that there is no reaction layer at the SiC-Al interface. Si and C cannot diffuse into the matrix, and Al cannot diffuse into the whisker. The experimental results also show that there may be certain orientation relationships between the SiC whisker and the nearby matrix. 7 refs.

  17. Optimization of Dry Sliding Wear Performance of Ceramic Whisker Filled Epoxy Composites Using Taguchi Approach

    Directory of Open Access Journals (Sweden)

    M. Sudheer

    2012-01-01

    Full Text Available This study evaluates the influence of independent parameters such as sliding velocity (A, normal load (B, filler content (C, and sliding distance (D on wear performance of potassium-titanate-whiskers (PTW reinforced epoxy composites using a statistical approach. The PTW were reinforced in epoxy resin to prepare whisker reinforced composites of different compositions using vacuum-assisted casting technique. Dry sliding wear tests were conducted using a standard pin on disc test setup following a well planned experimental schedule based on Taguchi’s orthogonal arrays. With the signal-to-noise (S/N ratio and analysis of variance (ANOVA optimal combination of parameters to minimize the wear rate was determined. It was found that inclusion of PTW has greatly improved the wear resistance property of the composites. Normal load was found to be the most significant factor affecting the wear rate followed by (C, (D, and (A. Interaction effects of various control parameters were less significant on wear rate of composites.

  18. Silicon Whisker and Carbon Nanofiber Composite Anode, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. (PSI) proposes to develop a silicon whisker and carbon nanofiber composite anode for lithium ion batteries on a Phase I program. This anode...

  19. Silicon Whisker and Carbon Nanofiber Composite Anode, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. (PSI) has successfully developed a silicon whisker and carbon nanofiber composite anode for lithium ion batteries on a Phase I program. PSI...

  20. Bio-Inspired PVDF-Based, Mouse Whisker Mimicking, Tactile Sensor

    Directory of Open Access Journals (Sweden)

    Mohsin Islam Tiwana

    2016-10-01

    Full Text Available The design and fabrication of a Polyvinylidene fluoride (PVDF based, mouse (or rodent whisker mimicking, tactile sensor is presented. Unlike previous designs reported in the literature, this sensor mimics the mouse whisker not only mechanically, but it also makes macro movements just like a real mouse whisker in a natural environment. We have developed a mathematical model and performed finite element analysis using COMSOL, in order to optimise the whisker to have the same natural frequency as that of a biological whisker. Similarly, we have developed a control system that enables the whisker mimicking sensor to vibrate at variable frequencies and conducted practical experiments to validate the response of the sensor. The natural frequency of the whisker can be designed anywhere between 35 and 110 Hz, the same as a biological whisker, by choosing different materials and physical dimensions. The control system of this sensor enables the whisker to vibrate between 5 and 236 Hz.

  1. Research on SiC Whisker Prepared by H-PSO

    Directory of Open Access Journals (Sweden)

    WANG Yao

    2017-10-01

    Full Text Available SiC whiskers were prepared on the matrix of graphite by using high hydrogenous silicone oil(PSO as raw material. The effect of surface conditions of graphite and heating temperature on the growth of SiC whisker was mainly studied in this paper. The main factor which affects the nucleation and growth of SiC whisker is the heating temperature, with the heating temperature rising, the production of SiC whisker increases. The surface condition of graphite matrix also influences the growth of SiC whisker. With the nucleation points provided by graphite matrix defects increasing, the production of SiC whisker incleases and SiC whisker starts to overlap with each other. The formation process of SiC whisker includes two steps:nucleation and growth. SiC whisker nucleates at low temperature and grows at high temperature, which follows the VLS (vapor-liquid-solid growth mechanism.

  2. Low-temperature strain gauges based on silicon whiskers

    Directory of Open Access Journals (Sweden)

    Druzhinin A. A.

    2008-08-01

    Full Text Available To create low-temperature strain gauges based on p-type silicon whiskers tensoresistive characteristics of these crystals in 4,2—300 K temperature range were studied. On the basis of p-type Si whiskers with different resistivity the strain gauges for different materials operating at cryogenic temperatures with extremely high gauge factor at 4,2 K were developed, as well as strain gauges operating at liquid helium temperatures in high magnetic fields.

  3. A novel biomimetic whisker technology based on fiber Bragg grating and its application

    Science.gov (United States)

    Zhao, Chenlu; Jiang, Qi; Li, Yibin

    2017-09-01

    The paper describes a novel, biomimetic whisker-based sensing technology following the basic design of the facial whiskers of animals such as rats and mice. The sensor consists of a 3× 2 whisker array on each side of a robot. In experiments with the artificial whiskers, the motor drives rotating whiskers, and the center wavelength of a fiber Bragg grating pasted on the whisker will shift when the whisker touches an obstacle. The distance will be obtained by processing the wavelength shift data with algorithms. Then the shape recognition can be realized by postprocessing the distance data. The experimental results prove that the whisker array is capable of accurately gathering the distance and shape information of an object.

  4. Strengthening and toughening of poly(L-lactide) composites by surface modified MgO whiskers

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Wei [Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Luo, Binghong, E-mail: tluobh@jnu.edu.cn [Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China); Qin, Xiaopeng; Li, Cairong [Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Liu, Mingxian; Ding, Shan [Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China); Zhou, Changren, E-mail: tcrz9@jnu.edu.cn [Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China)

    2015-03-30

    Highlights: • The grafted PLLA chain on the surface of g-MgO whisker was ruled out by FTIR spectroscopy and TG/DTG analyses. • The excellent dispersion of g-MgO whiskers and the strong interfacial adhesion of g-MgO whiskers/PLLA composite were proved by FSEM. • Comparing to MgO particles and MgO whiskers, fibrous-like g-MgO whiskers are the most effective reinforcing and toughening fillers for PLLA. - Abstract: To improve both the strength and toughness of poly(L-lactide) (PLLA), fibrous-like MgO whiskers with diameters of 0.15–1 μm and lengths of 15–110 μm were prepared, and subsequently surface modified with L-lactide to obtain grafted MgO whiskers (g-MgO whiskers). The structures and properties of MgO whiskers and g-MgO whiskers were studied. Then, a series of MgO whiskers/PLLA and g-MgO whiskers/PLLA composites were prepared by solution casting method, for comparison, MgO particles/PLLA composite was prepared too. The resulting composites were evaluated in terms of hydrophilicity, crystallinity, dispersion of whiskers, interfacial adhesion and mechanical performance by means of polarized optical microscopy (POM), contact angle measurement, field emission scanning electron microscope (FSEM), transmission electron microscopy (TEM) and tensile testing. The results revealed that the crystallization rate and hydrophilicity of PLLA were improved by the introduction of MgO whiskers and g-MgO whiskers. The g-MgO whiskers can disperse more uniformly in and show stronger interfacial adhesion with the matrix than MgO whiskers as a result of the surface modification. Due to the bridge effect of the whiskers and the excellent interfacial adhesion between g-MgO whiskers and PLLA, g-MgO whiskers/PLLA composites exhibited remarkably higher strength, modulus and toughness compared to the pristine PLLA, MgO particles/PLLA and MgO whiskers/PLLA composites.

  5. DC Characterisation of C60 Whiskers and Nanowhiskers

    DEFF Research Database (Denmark)

    Larsson, Michael; Kjelstrup-Hansen, Jakob; Lucyszyn, Stepan

    2007-01-01

    C60 whiskers exhibit increasing conductivity with decreasing diameter. At diameters of 1 mm and below, a single-crystal structure predominates, and enhanced electrical characteristics are expected; however, no supporting data exists in the literature. Here, results of four-point probe measurements......, indicating strong potential for use in organic electronic applications of the future. Repeated current cycling in air is observed to promote sample degradation, possibly due to progressive oxidation of the carbon structure. A micromachined four-point probe is also used to try to establish non...... on C60 whiskers and nanowhiskers with diameters in the range 650 nm to 1.3 mm are reported for the first time. Samples are attached to pre-patterned planar and raised electrodes using FIB-deposited tungsten. A low resistivity of 3 Wcm is measured in air, on a C60 whisker having a diameter of 650 nm...

  6. Tin Whisker Electrical Short Circuit Characteristics Part 2

    Science.gov (United States)

    Courey, Karim J.; Asfour, Shihab S.; Bayliss, Jon A.; Ludwib, Lawrence L.; Zapata, Maria C.

    2007-01-01

    Existing risk simulations make the assumption that when a free tin whisker has bridged two adjacent exposed electrical conductors, the result is an electrical short circuit. This conservative assumption is made because shorting is a random event that has a currently unknown probability associated with it. Due to contact resistance electrical shorts may not occur at lower voltage levels. In this experiment, we study the effect of varying voltage on the breakdown of the contact resistance which leads to a short circuit. From this data we can estimate the probability of an electrical short, as a function of voltage, given that a free tin whisker has bridged two adjacent exposed electrical conductors. In addition, three tin whiskers grown from the same Space Shuttle Orbiter card guide used in the aforementioned experiment were cross-sectioned and studied using a focused ion beam (FIB).

  7. Plasma deposition of polymer composite films incorporating nanocellulose whiskers

    Science.gov (United States)

    Samyn, P.; Airoudj, A.; Laborie, M.-P.; Mathew, A. P.; Roucoules, V.

    2011-11-01

    In a trend for sustainable engineering and functionalization of surfaces, we explore the possibilities of gas phase processes to deposit nanocomposite films. From an analysis of pulsed plasma polymerization of maleic anhydride in the presence of nanocellulose whiskers, it seems that thin nanocomposite films can be deposited with various patterns. By specifically modifying plasma parameters such as total power, duty cycle, and monomer gas pressure, the nanocellulose whiskers are either incorporated into a buckled polymer film or single nanocellulose whiskers are deposited on top of a polymeric film. The density of the latter can be controlled by modifying the exact positioning of the substrate in the reactor. The resulting morphologies are evaluated by optical microscopy, AFM, contact angle measurements and ellipsometry.

  8. Encoding of whisker input by cerebellar Purkinje cells.

    Science.gov (United States)

    Bosman, Laurens W J; Koekkoek, Sebastiaan K E; Shapiro, Jöel; Rijken, Bianca F M; Zandstra, Froukje; van der Ende, Barry; Owens, Cullen B; Potters, Jan-Willem; de Gruijl, Jornt R; Ruigrok, Tom J H; De Zeeuw, Chris I

    2010-10-01

    The cerebellar cortex is crucial for sensorimotor integration. Sensorimotor inputs converge on cerebellar Purkinje cells via two afferent pathways: the climbing fibre pathway triggering complex spikes, and the mossy fibre–parallel fibre pathway, modulating the simple spike activities of Purkinje cells. We used, for the first time, the mouse whisker system as a model system to study the encoding of somatosensory input by Purkinje cells.We show that most Purkinje cells in ipsilateral crus 1 and crus 2 of awake mice respond to whisker stimulation with complex spike and/or simple spike responses. Single-whisker stimulation in anaesthetised mice revealed that the receptive fields of complex spike and simple spike responses were strikingly different. Complex spike responses, which proved to be sensitive to the amplitude, speed and direction of whisker movement, were evoked by only one or a few whiskers. Simple spike responses, which were not affected by the direction of movement, could be evoked by many individual whiskers. The receptive fields of Purkinje cells were largely intermingled, and we suggest that this facilitates the rapid integration of sensory inputs from different sources. Furthermore, we describe that individual Purkinje cells, at least under anaesthesia, may be bound in two functional ensembles based on the receptive fields and the synchrony of the complex spike and simple spike responses. The ‘complex spike ensembles’ were oriented in the sagittal plane, following the anatomical organization of the climbing fibres, while the ‘simple spike ensembles’ were oriented in the transversal plane, as are the beams of parallel fibres.

  9. Synthesis and growth mechanisms of ZrC whiskers fabricated by a VLS process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dongju [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of). Nuclear Materials Development Division; Song, Sung Ho [Kongju National Univ., Chungnam (Korea, Republic of). Division of Advanced Materials Engineering

    2017-08-15

    The mechanisms of nano-sized ZrC whisker formation by a vapor-liquid-solid process (VLS) are investigated, which produces a very high purity, single crystal whisker. Rectangular ZrC whiskers with a cross-sectional diameter of 100-200 nm and lengths up to tens of microns are formed under the catalytic effect of nickel. The ZrC whiskers are characterized using scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. ZrC whiskers can be used as a potential reinforcing and strengthening phase for ceramic composites.

  10. The effect of whisker movement on radial distance estimation: a case study in comparative robotics

    Directory of Open Access Journals (Sweden)

    Mathew H Evans

    2013-01-01

    Full Text Available Whisker movement has been shown to be under active control in certain specialist animals such as rats and mice. Though this whisker movement is well characterised, the role and effect of this movement on subsequent sensing is poorly understood. One method for investigating this phenomena is to generate artificial whisker deflections with robotic hardware under different movement conditions. A limitation of this approach is that assumptions must be made in the design of any artificial whisker actuators, which will impose certain restrictions on the whisker-object interaction. In this paper we present three robotic whisker platforms, each with different mechanical whisker properties and actuation mechanisms. A feature-based classifier is used to simultaneously discriminate radial distance to contact and contact speed for the first time. We show that whisker-object contact speed predictably affects deflection magnitudes, invariant of whisker material or whisker movement trajectory. We propose that rodent whisker control allows the animal to improve sensing accuracy by regulating contact speed induced touch-to-touch variability.

  11. Vortex Shedding in the Wake Induced by a Real Elephant Seal Whisker

    Science.gov (United States)

    Turk, Jodi; Omilion, Alexis; Zhang, Wei; Kim, Jeong-Jae; Kim, Jeong-Ju; Choi, Woo-Rak; Lee, Sang-Joon

    2017-11-01

    Biomimicry has been adopted to create innovative solutions in a vast range of applications. One such application is the design of seal-whisker-inspired flow sensors for autonomous underwater vehicles (AUVs). In dark, cramped, and unstable terrain AUVs are not able to maneuver using visual and sonar-based navigation. Hence, it is critical to use underwater flow sensors to accurately detect minute disturbances in the surroundings. Certain seal whiskers exhibit a unique undulating three-dimensional morphology that can reduce vortex induced vibrations (VIVs) if the major axis of the whisker cross-section is aligned to the inflow. This allows the seal to precisely track prey fish upstream using solely their whiskers. The current study aims to understand the effect of a real seal whisker's morphology on the vortex shedding behavior. Despite extensive studies of wake induced by scaled whisker-like models, the vortex shedding in the wake of a real seal whisker is not well understood. A series of experiments are conducted with a high-speed Particle Imaging Velocimetry (PIV) system in a water channel to examine the vortex shedding downstream from a smooth whisker and an undulating whisker at a Reynolds number of a few hundred. Results of the vortex shedding induced by real seal whiskers can provide insights on developing high-sensitivity underwater flow sensors for AUVs and other whisker-inspired structures.

  12. Facile Synthesis of Electroconductive AZO@TiO2 Whiskers and Their Application in Textiles

    Directory of Open Access Journals (Sweden)

    Hui Ma

    2016-01-01

    Full Text Available The electroconductive AZO@TiO2 whiskers have been successfully prepared via coating Al doped ZnO onto TiO2 whisker. The orthogonal tests were employed to optimize the synthetic conditions. The crystallographic structure and the morphology of the AZO@TiO2 whiskers and the polypropylene nonwoven fabrics modified with AZO@TiO2 whiskers were characterized by X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscope, four-probe meter, and electrometer. The results showed the AZO@TiO2 whiskers exhibited good electroconductive performance. Moreover, the polypropylene nonwoven fabrics modified with AZO@TiO2 whiskers revealed excellent antistatic performance indicating wide application of AZO@TiO2 whiskers in the antistatic textiles.

  13. Controlled growth of filamentary crystals and fabrication of single-crystal whisker probes

    International Nuclear Information System (INIS)

    Givargizov, E. I.

    2006-01-01

    The growth of filamentary crystals (whiskers) on a single-crystal substrate through the vapour-liquid-solid mechanism is described. The possibility of fabricating oriented systems of whiskers on the basis of this mechanism of crystal growth is noted. A phenomenon that is important for nanotechnology is noted: the existence of a critical diameter of whiskers, below which they are not formed. The phenomenon of radial periodic instability, which is characteristic of nanowhiskers, is described and the ways of its elimination are shown. The possibility of transforming whiskers into single-crystal tips and the growth of crystalline diamond particles at their apices are noted as important for practice. Possible applications of systems of whiskers and tips are described briefly. Particular attention is paid to the latest direction in whisker technology-fabrication of single-crystal whisker probes for atomic force microscopy

  14. Box-and-Whisker Plots Applied to Food Chemistry

    Science.gov (United States)

    Ferreira, Joao E. V.; Miranda, Ricardo M.; Figueiredo, Antonio F.; Barbosa, Jardel P.; Brasil, Edykarlos M.

    2016-01-01

    Box-and-whisker plots or simply boxplots are powerful graphical representations that give an overview of a data set. In this work five different examples illustrate the applications of boxplots in food chemistry. The examples involve relative sweetness of sugars and sugar alcohols with respect to sucrose, the potassium content of fruits and…

  15. Isoniazid loaded gelatin-cellulose whiskers nanoparticles for ...

    Indian Academy of Sciences (India)

    Natural polymers like gelatin have been used as a potential drug carrier for controlled delivery applications due to their various advantages over synthetic polymers. Cellulose Whiskers (CWs) have the capacity to form strong hydrogen bonds which help in controlling the release of drug and also provide goodstrength to the ...

  16. Method of making in-situ whisker reinforced glass ceramic

    Science.gov (United States)

    Brown, Jesse J.; Hirschfeld, Deidre A.; Lee, K. H.

    1993-02-16

    A heat processing procedure is used to create reinforcing whiskers of TiO.sub.2 in glass-ceramic materials in the LAS and MAS family. The heat processing procedure has particular application in creating TiO.sub.2 in-situ in a modified .beta.-eucryptite system.

  17. Synthesis of Bi2Sr2CaCu2O8+δ whiskers and cross-whisker intrinsic Josephson junction

    International Nuclear Information System (INIS)

    Hatano, T.; Takano, Y.; Arisawa, S.; Ishii, A.; Togano, K.; Fukuyo, A.

    2001-01-01

    A synthesis technique of Bi 2 Sr 2 CaCu 2 O 8+δ single-crystal whiskers was studied. The whiskers were synthesized by heating glassy melt-quenched Bi-Sr-Ca-Cu-O (3:2:2:4 in cationic ratio) plates. The atmospheric condition of the whisker growth, especially oxygen partial pressure and gas flow, was investigated. It was found out that the whisker growth rate shows a maximum at P O2 =2/3 bar. For the crystalline quality of the whiskers, the airtight condition was found to be useful as compared to the conventional oxygen stream condition. The crystalline quality, especially the straightness and morphology of the surface, could be improved by keeping the growing whiskers under the equilibrium P Bi condition. Over 20-mm-long whisker crystals have been successfully synthesized by choosing optimum oxygen partial pressure around the P O2 =2/3 bar in the airtight condition. The growth condition and mechanism of the Bi 2 Sr 2 CaCu 2 O 8+δ whiskers were investigated by an in-situ high-temperature x-ray diffraction analysis and an in-situ high-temperature microscope observation. It was found that the whiskers grow in a partially melted state at a temperature of 10-40 degrees below the melting point. The result obtained demonstrates that Bi 2 Sr 2 CaCu 2 O 8+δ whiskers grow at their bottom by the conventional liquid-phase growth mechanism, as was proposed by Matsubara et al. (author)

  18. A radial map of multi-whisker correlation selectivity in the rat barrel cortex.

    Science.gov (United States)

    Estebanez, Luc; Bertherat, Julien; Shulz, Daniel E; Bourdieu, Laurent; Léger, Jean-François

    2016-11-21

    In the barrel cortex, several features of single-whisker stimuli are organized in functional maps. The barrel cortex also encodes spatio-temporal correlation patterns of multi-whisker inputs, but so far the cortical mapping of neurons tuned to such input statistics is unknown. Here we report that layer 2/3 of the rat barrel cortex contains an additional functional map based on neuronal tuning to correlated versus uncorrelated multi-whisker stimuli: neuron responses to uncorrelated multi-whisker stimulation are strongest above barrel centres, whereas neuron responses to correlated and anti-correlated multi-whisker stimulation peak above the barrel-septal borders, forming rings of multi-whisker synchrony-preferring cells.

  19. Fabrication of α-chitin whisker-reinforced poly(vinyl alcohol) nanocomposite nanofibres by electrospinning

    International Nuclear Information System (INIS)

    Junkasem, Jirawut; Rujiravanit, Ratana; Supaphol, Pitt

    2006-01-01

    The present contribution reports, for the first time, the successful fabrication of α-chitin whisker-reinforced poly(vinyl alcohol) (PVA) nanocomposite nanofibres by electrospinning. The α-chitin whiskers were prepared from α-chitin flakes from shrimp shells by acid hydrolysis. The as-prepared chitin whiskers exhibited lengths in the range 231-969 nm and widths in the range 12-65 nm, with the average length and width being about 549 and 31 nm, respectively. Successful incorporation of the chitin whiskers within the as-spun PVA/chitin whisker nanocomposite nanofibres was verified by infrared spectroscopic and thermogravimetric methods. The incorporation of chitin whiskers within the as-spun nanocomposite fibre mats increased the Young's modulus by about 4-8 times over that of the neat as-spun PVA fibre mat

  20. The Preparation and Characterization of β-SiAlON Nanostructure Whiskers

    Directory of Open Access Journals (Sweden)

    Pengli Dong

    2008-01-01

    Full Text Available Two kinds of β-SiAlON nanostructure whiskers, rod-like and wool-like whiskers, were synthesized by pressure-less sintering method at 1773 K for 5 hours. The whiskers synthesized were characterized by powder X-ray diffraction (XRD, scanning electron microscope (SEM, transmission electron microscope (TEM, and high-resolution electron microscope (HREM techniques. It was found that diameter distribution of rod-like whiskers was about 80–250 nm, while it was about 45–55 nm in diameter for the wool-like whiskers. The growth mechanisms of β-SiAlON nanostructure whiskers are discussed by the vapor-solid (VS and vapor-liquid-solid (VLS mechanisms, respectively.

  1. Mystacial Whisker Layout and Musculature in the Guinea Pig (Cavia porcellus): A Social, Diurnal Mammal.

    Science.gov (United States)

    Grant, Robyn A; Delaunay, Mariane G; Haidarliu, Sebastian

    2017-03-01

    All mammals (apart from apes and humans) have whiskers that make use of a similar muscle arrangement. Whisker specialists, such as rats and mice, tend to be nocturnal and arboreal, relying on their whisker sense of touch to guide exploration around tree canopies at night. As such, nocturnal arboreal rodents have many whiskers that are organised into a grid-like pattern, and moved using a complex array of muscles. Indeed, most arboreal, nocturnal mammals tend to have specialised whiskers that are longer and arranged in a dense, regular grid, compared with terrestrial, diurnal mammals. The guinea pig diverged early from murid rodents (around 75 million years ago), and are ground-dwelling, diurnal animals. It would be predicted that, as a terrestrial mammal, they may have less whiskers and a reduced muscle architecture compared to arboreal, nocturnal rodents. We examined the mystacial whisker layout, musculature and movement capacity of Guinea pig (Cavia porcellus) whiskers and found that they did indeed have a disorganized whisker layout, with a fortification around the eye area. In addition, there was a reduction in musculature, especially in the intrinsic muscles. Despite guinea pigs not cyclically moving their whiskers, the mystacial musculature was still very similar to that of murid rodents. We suggest that the conserved presence of whisker layout and musculature, even in visual mammals such as primates and guinea pigs, may indicate that whiskers still play an important role in these animals, including protecting the eyes and being involved in tactile social behaviors. Anat Rec, 300:527-536, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Surface modification of magnesium hydroxide sulfate hydrate whiskers using a silane coupling agent by dry process

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Donghai, E-mail: zhudonghai-2001@163.com [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008 (China); Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Chinese Academy of Sciences, Xining, 810008 (China); Nai, Xueying [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008 (China); Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Chinese Academy of Sciences, Xining, 810008 (China); Lan, Shengjie; Bian, Shaoju [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008 (China); Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Chinese Academy of Sciences, Xining, 810008 (China); University of Chinese Academy of Sciences, Beijing, 100049 (China); Liu, Xin [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008 (China); Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Chinese Academy of Sciences, Xining, 810008 (China); Li, Wu, E-mail: driverlaoli@163.com [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008 (China); Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Chinese Academy of Sciences, Xining, 810008 (China)

    2016-12-30

    Highlights: • Dry process was adopted to modify the surface of MHSH whiskers using silane. • Si−O−Mg bonds were formed directly by the reaction between Si−OC{sub 2}H{sub 5} and −OH of MHSH. • Dispersibility and compatibility of modified whiskers greatly improved in organic phase. • Thermal stability of whiskers was enhanced after modified. - Abstract: In order to improve the compatibility of magnesium hydroxide sulfate hydrate (MHSH) whiskers with polymers, the surface of MHSH whiskers was modified using vinyltriethoxysilane (VTES) by dry process. The possible mechanism of the surface modification and the interfacial interactions between MHSH whiskers and VTES, as well as the effect of surface modification, were studied. Scanning electronic microscopy (SEM), transmission electron microscopy (TEM) and X-ray powder diffraction (XRD) analyses showed that the agglomerations were effectively separated and a thin layer was formed on the surface of the whiskers after modification. Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS) analyses showed that the VTES molecules were bound to the surface of MHSH whiskers after modification. Chemical bonds (Si−O−Mg) were formed by the reaction between Si−OC{sub 2}H{sub 5} or Si−OH and the hydroxyl group of MHSH whiskers. The effect of surface modification was evaluated by sedimentation tests, contact angle measurements and thermogravimetric analysis (TGA). The results showed that the surface of MHSH whiskers was transformed from hydrophilic to hydrophobic, and the dispersibility and the compatibility of MHSH whiskers were significantly improved in the organic phase. Additionally, the thermal stability of the VTES-modified MHSH whiskers was improved significantly.

  3. Pulmonary response, in vivo, to silicon carbide whiskers.

    Science.gov (United States)

    Vaughan, G L; Trently, S A; Wilson, R B

    1993-11-01

    Fischer rats were exposed to silicon carbide whiskers (SiCW), boron carbide whiskers (BCW), silicon carbide platelets (SiCP), or crocidolite asbestos separately administered by intratracheal instillation. SiCW proved to be the most toxic material within the test group. Dramatic increases in alveolar macrophage populations within 1 week of exposure to SiCW persisted for at least 28 days, evidence of the chronic inflammation observed in necropsies during the first months of the study. The most common finding in histological preparations of tissues taken from animals 18 months after exposure to SiCW was a high incidence (frequency > 0.85) of multiple pulmonary granulomas which occasionally occluded airways. Lesions associated with crocidolite were similar to those found with SiCW. Equivalent treatment with BCW and SiCP produced no significant histological changes within 18 months of exposure.

  4. Investigation into ramie whisker reinforced arylated soy protein composites

    CSIR Research Space (South Africa)

    Kumar, R

    2010-03-01

    Full Text Available Reinforced Arylated Soy Protein Composites Rakesh Kumar1,2*, Lina Zhang2 1CSIR MSM, Port Elizabeth 6000, South Africa 2Department of Chemistry, Wuhan University, Wuhan 430072, China Abstract Whiskers were prepared from ramie fibers and were... of synthetic fibers and matrices the reuse of classical fibers reinforced composites are not possible. To get rid from these types of composites we use landfill disposable systems. Due to increasing population, lots of nonbiodegradable wastes are generated...

  5. Peripheral optogenetic stimulation induces whisker movement and sensory perception in head-fixed mice.

    Science.gov (United States)

    Park, Sunmee; Bandi, Akhil; Lee, Christian R; Margolis, David J

    2016-06-08

    We discovered that optical stimulation of the mystacial pad in Emx1-Cre;Ai27D transgenic mice induces whisker movements due to activation of ChR2 expressed in muscles controlling retraction and protraction. Using high-speed videography in anesthetized mice, we characterize the amplitude of whisker protractions evoked by varying the intensity, duration, and frequency of optogenetic stimulation. Recordings from primary somatosensory cortex (S1) in anesthetized mice indicated that optogenetic whisker pad stimulation evokes robust yet longer latency responses than mechanical whisker stimulation. In head-fixed mice trained to report optogenetic whisker pad stimulation, psychometric curves showed similar dependence on stimulus duration as evoked whisker movements and S1 activity. Furthermore, optogenetic stimulation of S1 in expert mice was sufficient to substitute for peripheral stimulation. We conclude that whisker protractions evoked by optogenetic activation of whisker pad muscles results in cortical activity and sensory perception, consistent with the coding of evoked whisker movements by reafferent sensory input.

  6. Aluminum nitride-silicon carbide whisker composites: Processing, properties, and microstructural stability

    Energy Technology Data Exchange (ETDEWEB)

    Cross, M.T.

    1990-01-01

    Aluminum nitride -- silicon carbide whisker composites with up to 20 vol % whiskers were fabricated by pressureless sintering (1750{degree}--1800{degree}C) and by hot-pressing (1700{degree}--1800{degree}C). Silicon carbide whiskers were found to degrade depending on the type of protective powder bed used during sintering. Whiskers were found to degraded in high oxygen containing samples by reaction with sintering additives. Whisker degradation was also due to the formation of silicon carbide -- aluminum nitride solid solution. No whisker degradation was observed in hot-pressed samples. For these samples Young's modulus and fracture toughness were measured. A 33% increase in the fracture toughness was measured by the indentation technique for a 20 vol % whisker composite. Operative toughening mechanisms were investigated using scanning electron microscopy. Crack deflection and whisker bridging were the dominant mechanisms. It was also shown that load transfer from matrix to whiskers can be a contributing factor to toughening. 88 refs., 34 figs., 11 tabs.

  7. Modeling the emergence of whisker direction maps in rat barrel cortex.

    Directory of Open Access Journals (Sweden)

    Stuart P Wilson

    Full Text Available Based on measuring responses to rat whiskers as they are mechanically stimulated, one recent study suggests that barrel-related areas in layer 2/3 rat primary somatosensory cortex (S1 contain a pinwheel map of whisker motion directions. Because this map is reminiscent of topographic organization for visual direction in primary visual cortex (V1 of higher mammals, we asked whether the S1 pinwheels could be explained by an input-driven developmental process as is often suggested for V1. We developed a computational model to capture how whisker stimuli are conveyed to supragranular S1, and simulate lateral cortical interactions using an established self-organizing algorithm. Inputs to the model each represent the deflection of a subset of 25 whiskers as they are contacted by a moving stimulus object. The subset of deflected whiskers corresponds with the shape of the stimulus, and the deflection direction corresponds with the movement direction of the stimulus. If these two features of the inputs are correlated during the training of the model, a somatotopically aligned map of direction emerges for each whisker in S1. Predictions of the model that are immediately testable include (1 that somatotopic pinwheel maps of whisker direction exist in adult layer 2/3 barrel cortex for every large whisker on the rat's face, even peripheral whiskers; and (2 in the adult, neurons with similar directional tuning are interconnected by a network of horizontal connections, spanning distances of many whisker representations. We also propose specific experiments for testing the predictions of the model by manipulating patterns of whisker inputs experienced during early development. The results suggest that similar intracortical mechanisms guide the development of primate V1 and rat S1.

  8. SN Refsdal

    DEFF Research Database (Denmark)

    Kelly, P. L.; Brammer, G.; Selsing, J.

    2016-01-01

    broad and strong H-alpha absorption. From the grism spectrum, we measure an H-alpha expansion velocity consistent with those of SN 1987A-like SNe at a similar phase. The luminosity, evolution, and Gaussian profile of the H-alpha emission of the WFC3 and X-shooter spectra, separated by ~2.5 months......We have acquired Hubble Space Telescope (HST) and Very Large Telescope near-infrared spectra and images of supernova (SN) Refsdal after its discovery as an Einstein cross in Fall 2014. The HST light curve of SN Refsdal matches the distinctive, slowly rising light curves of SN 1987A-like supernovae...... 1987A, we estimate it would have an ejecta mass of 20+-5 solar masses. The evolution of the light curve at late times will provide additional evidence about the potential existence of any substantial circumstellar material (CSM). Using MOSFIRE and X-shooter spectra, we estimate a subsolar host...

  9. Preparation and characterization of keratin-K2Ti6O13 whisker ...

    African Journals Online (AJOL)

    USER

    2010-05-10

    May 10, 2010 ... application of the keratin material as a biomaterial. In this article, it was firstly proposed that potassium hexatitanate (K2Ti6O13) whiskers be used to reinforce keratin film. The effects of coupling agent, whisker content, distribution and orientation on properties of composite were investigated by microscope ...

  10. Parallel coding schemes of whisker velocity in the rat's somatosensory system.

    Science.gov (United States)

    Lottem, Eran; Gugig, Erez; Azouz, Rony

    2015-03-15

    The function of rodents' whisker somatosensory system is to transform tactile cues, in the form of vibrissa vibrations, into neuronal responses. It is well established that rodents can detect numerous tactile stimuli and tell them apart. However, the transformation of tactile stimuli obtained through whisker movements to neuronal responses is not well-understood. Here we examine the role of whisker velocity in tactile information transmission and its coding mechanisms. We show that in anaesthetized rats, whisker velocity is related to the radial distance of the object contacted and its own velocity. Whisker velocity is accurately and reliably coded in first-order neurons in parallel, by both the relative time interval between velocity-independent first spike latency of rapidly adapting neurons and velocity-dependent first spike latency of slowly adapting neurons. At the same time, whisker velocity is also coded, although less robustly, by the firing rates of slowly adapting neurons. Comparing first- and second-order neurons, we find similar decoding efficiencies for whisker velocity using either temporal or rate-based methods. Both coding schemes are sufficiently robust and hardly affected by neuronal noise. Our results suggest that whisker kinematic variables are coded by two parallel coding schemes and are disseminated in a similar way through various brain stem nuclei to multiple brain areas. Copyright © 2015 the American Physiological Society.

  11. Hydrophobic modification of chitin whisker and its potential application in structuring oil

    NARCIS (Netherlands)

    Huang, Yao; He, Meng; Lu, Ang; Zhou, Weizheng; Stoyanov, S.D.; Pelan, E.G.; Zhang, Lina

    2015-01-01

    A facile approach was developed to modify chitin whiskers by reacting them with bromohexadecane, and the potential application of modified whiskers in structuring oil was evaluated. The results of Fourier transform infrared spectra (FT-IR), wide-angle X-ray diffraction (XRD), elemental analysis,

  12. Synthesis of zirconium carbide whiskers by a combination of microwave hydrothermal and carbothermal reduction

    Science.gov (United States)

    Li, Kezhi; Zhou, Xuan; Zhao, Zhigang; Chen, Chunyu; Wang, Changcong; Ren, Biyun; Zhang, Leilei

    2018-02-01

    Zirconium carbide (ZrC) whiskers were successfully synthesized by a combination of microwave hydrothermal (MH) and carbothermal reduction. The precursors of ZrC whiskers were produced by MH, subsequently carbothermally reduced to ZrC whiskers at 1100-1600 °C in an Ar atmosphere. Effects of the reduction temperature and precursors with various carbon/zirconium (C/Zr) molar ratios on the synthesis of ZrC whiskers were investigated. The results showed that the carbothermal reduction occurred at 1100 °C, and terminated at a relatively low temperature (1400 °C). When the reduction temperature was 1500 °C and the C/Zr molar ratio was 5:1, the ZrC whiskers with the largest aspect ratio and the most uniform distribution were produced. The whiskers exhibited the diameters of 0.1-2 μm and the lengths of 5-30 μm. The synthesized ZrC whiskers with a single crystalline phase displayed cylindrical and pagoda-like morphologies. The growth of ZrC whiskers was considered to be governed by the Ostwald ripening and S-L-S mechanism.

  13. Mechanical Attributes of Uniaxial Compression for Calcium Carbonate Whisker Reinforced Oil Well Cement Pastes

    Directory of Open Access Journals (Sweden)

    Yuanyi Yang

    2017-01-01

    Full Text Available It is crucial for design and safety of the cementing sheath to develop better understanding of the CaCO3 whisker reinforced oil well cement pastes. The uniaxial compression curve, mechanical constitutive relation, and reinforcing mechanism of the CaCO3 whisker reinforced oil well cement pastes are studied in this script. The results indicate that the CaCO3 whisker under the 10% dosage could improve the tensile strength of the cement paste significantly. The peak stress, elasticity modulus, and the energy at different stages of the stress-strain curve of the CaCO3 whisker reinforced cement paste are reinforced with the increasing of CaCO3 whisker. Afterward, the constitutive model of stress-strain curve, the toughness index, and capability coefficients index of the CaCO3 whisker reinforced cement paste are established. A physical model of the interface layer is also established and the micromechanical reinforcement is related to the double film layer between the CaCO3 whisker and cement matrix which could be bonded with much more fastness to the cement surface. The development of this script provides new ways to analyze the toughening mechanism of CaCO3 whisker and establishes a correlation between basic material structure and the physical properties.

  14. Morphometric Plasticity of Nitric Oxide Containing Neurons in the Barrel Cortex of De-whiskered Rats

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Afarinesh

    2015-04-01

    Full Text Available Background: The rodent somatosensory barrel cortex is an ideal model to examine the effect of experience-dependent plasticity on developing brain circuitry. Sensory deprivation such as whisker deprivation may affect neuroanatomical aspects of the brain during developmental processes. The present study designed to investigate the possible effects of whisker deprivation on the morphometric characteristics of NADPH-d positive neurons in the barrel field cortex of adolescent rats.Materials and Methods: Pups were divided into the intact (n=4 and whisker-deprived groups (n=4. In whisker-deprived group, the total whiskers of subjects were trimmed every other day from postnatal day (PND 0 to PND 60. NADPH-d histochemistry reaction was processed to quantitatively analyze the feature of NADPH-d containing neurons of barrel cortex.Results: Our results showed that the number of NADPH-d positive neurons remained unchanged in whisker-deprived group compared to controls. The mean soma diameter, dendritic length and the number of 3rd order processes were significantly decreased in the whisker-deprived rats (p<0.05.Conclusion: Our results indicate that postnatal whisker deprivation possibly alter NADPH-d/NOS neuronal features in the barrel cortex. The functional implications of these data may relate the plasticity of synaptic receptive field and developmental brain circuits.

  15. Contributions of stress and oxidation on the formation of whiskers in Pb-free solders

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, A. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hoffman, E. N. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-01-01

    Understanding the environmental factors influencing formation of tin whiskers on electrodeposited lead free, tin coatings over copper (or copper containing) substrates is the topic of this study . An interim report* summarized initial observations as to the role of stress and oxide formation on whisker growth. From the initial results, two main areas were chosen to be the focus of additional research: the demonstration of effects of elastic stress state in the nucleation of whiskers and the confirmation of the effect of oxygen content in the formation of whiskers. Different levels of elastic stress were induced with the incorporation of a custom designed fixture that loaded the sample in a four-point bending configuration and were maintained in an environmental chamber under conditions deemed favorable for whisker growth. The effects of oxygen content were studied by aging substrates in gas vials of varying absolute pressure and different oxygen partial pressure.

  16. Catalytic growth of metallic tungsten whiskers based on the vapor-solid-solid mechanism

    International Nuclear Information System (INIS)

    Wang, S L; He, Y H; Huang, B Y; Zou, J; Wang, Y; Huang, H; Liu, C T; Liaw, P K

    2008-01-01

    Metallic W whiskers with tip diameters of 50-250 nm and lengths of 2-4 μm have been successfully synthesized in large quantities using Co-Ni alloyed catalysts. The relatively low growth temperature of 850 deg. C and the large catalyst size (over 100 nm) suggest that the growth of the W whiskers must be governed by the vapor-solid-solid mechanism. Our results show that the vapor-solid-solid model is suitable not only for the growth of nano-scaled whiskers with diameters below 100 nm, but also for submicro-scaled whiskers with diameters well above 100 nm. This technique has great potential to synthesize well controlled metallic whiskers

  17. Synthesis and characterization of different morphological SnS nanomaterials

    International Nuclear Information System (INIS)

    Chaki, Sunil H; Chaudhary, Mahesh D; Deshpande, M P

    2014-01-01

    SnS in three nano forms possessing different morphologies such as particles, whiskers and ribbons were synthesised by chemical route. The morphology variation was brought about in the chemical route synthesis by varying a synthesis parameter such as temperature and influencing the synthesis by use of surfactant. The elemental composition determination by energy dispersive analysis of x-rays (EDAX) showed that all three synthesized SnS nanomaterials were tin deficient. The x-ray diffraction (XRD) study of the three SnS nanomaterials showed that all of them possess orthorhombic structure. The Raman spectra of the three SnS nanomaterials showed that all three samples possess three common distinguishable peaks. In them two peaks lying at 98 ± 1 cm −1 and 224 ± 4 cm −1 are the characteristic A g mode of SnS. The third peak lying at 302 ± 1 cm −1 is associated with secondary Sn 2 S 3 phase. The transmission electron microscopy (TEM) confirmed the respective morphologies. The optical analysis showed that they possess direct as well as indirect optical bandgap. The electrical transport properties study on the pellets prepared from the different nanomaterials of SnS showed them to be semiconducting and p-type in nature. The current–voltage (I–V) plots of the silver (Ag)/SnS nanomaterials pellets for dark and incandescent illumination showed that all configurations showed good ohmic behaviour except Ag/SnS nanoribbons pellet configuration under illumination. All the obtained results are discussed in detail. (paper)

  18. Growth of highly textured SnS on mica using an SnSe buffer layer

    International Nuclear Information System (INIS)

    Wang, S.F.; Fong, W.K.; Wang, W.; Surya, C.

    2014-01-01

    We report the growth of SnS thin films on mica substrates by molecular beam epitaxy. Excellent 2D layered structure and strong (001) texture were observed with a record low rocking curve full width at half maximum of ∼ 0.101° for the SnS(004) diffraction. An interface model is used to investigate the nucleation of SnS on mica which indicates the co-existence of six pairs of lateral growth orientations and is in excellent agreement with the experimental Φ-scan measurements indicating 12 peaks separated by 30° from each other. To control the lateral growth of the SnS epilayers we investigate the utilization of a thin SnSe buffer layer deposited on the mica substrate prior to the growth of the SnS thin film. The excellent lattice match between SnSe and mica enhances the alignment of the nucleation of SnS and suppresses the minor lateral orientations along the mica[110] direction and its orthogonal axis. Detailed low-frequency noise measurement was performed to characterize the trap density in the films and our results clearly demonstrate substantial reduction in the density of the localized states in the SnS epilayer with the use of an SnSe buffer layer. - Highlights: • A record low rocking curve FWHM for deposited SnS on mica • Investigation of the nucleation of SnS on mica using the interface model • Investigation of nucleation mechanism by phi-scan measurement • Grain boundary formation from crystallites of various nucleation orientations • Suppression of nucleation orientations using an SnSe buffer layer

  19. Secretoneurin suppresses cardiac hypertrophy through suppression of oxidant stress.

    Science.gov (United States)

    Chen, Hua-Li; Liu, Yan; Jiang, Wei; Wang, Xiao-Xiao; Yuan, Guo-Lin; Zhao, Yi-Lin; Yu, Chao

    2018-03-05

    The neuropeptide secretoneurin (SN) plays protective roles in myocardial ischemia. In the present study, the effect of SN in cardiac hypertrophy was investigated. We observed that, in isoproterenol (ISO) treatment induced cardiac or cardiomyocytes hypertrophy, a marked increase in the expression of endogenous SN in mouse plasma, myocardium and primary-cultured cardiomyocytes occurs. In hypertrophic mice, the heart size, heart weight/body weight (HW/BW) ratio, cardiomyocyte size, and atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) expression were significantly higher than those in controls but were effectively suppressed by SN gene therapy. Similarly, the protective effects of SN were also observed in cultured cardiomyocytes following ISO treatment. SN significantly increased the activity of catalase and superoxide dismutase (SOD) in parallel with the decrease in reactive oxygen species levels in cardiomyocytes. We observed that SN evoked the activation of all of the AMPK, P38/MAPK and ERK/MAPK pathways in cardiomyocytes, but pretreatment with only AMPK inhibitor (compound C) and ERK1/2/MAPK inhibitor (PD98059) counteracted the protective effects of SN against cardiomyocyte hypertrophy and the suppressive effects of SN on oxidant stress in cardiomyocytes. These results indicated that endogenous SN is induced in hypertrophic cardiomyocytes, and may play a protective role in the pathogenesis of cardiac hypertrophy. These results suggest that exogenous SN supplementation protects the cardiac hypertrophy induced by ISO treatment through the activation of AMPK and ERK/MAPK pathways, thus upregulating antioxidants and suppressing oxidative stress. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Crystalline instability of Bi-2212 superconducting whiskers near room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Cagliero, Stefano; Khan, Mohammad Mizanur Rahman [Torino Universita, ' NIS' Centre of Excellence, Dip. Chimica Generale e Chimica Organica, and CNISM UdR, Turin (Italy); Torino Universita, ' NIS' Centre of Excellence, Dip. Fisica Sperimentale, and CNISM UdR, Turin (Italy); Agostino, Angelo [Torino Universita, ' NIS' Centre of Excellence, Dip. Chimica Generale e Chimica Organica, and CNISM UdR, Turin (Italy); Truccato, Marco [Torino Universita, ' NIS' Centre of Excellence, Dip. Fisica Sperimentale, and CNISM UdR, Turin (Italy); Orsini, Francesco; Marinone, Massimo; Poletti, Giulio [Universita degli Studi di Milano, Istituto di Fisiologia Generale e Chimica Biologica, Milan (Italy); CNR-INFM-S3 NRC, Modena (Italy); Lascialfari, Alessandro [Universita degli Studi di Milano, Istituto di Fisiologia Generale e Chimica Biologica, Milan (Italy); CNR-INFM-S3 NRC, Modena (Italy); Universita degli Studi di Pavia, INFM-CNR c/o Dipartimento di Fisica A. Volta, Pavia (Italy)

    2009-05-15

    We report new evidences for the thermodynamic instability of whisker crystals in the Bi-Sr-Ca-Cu-O (BSCCO) system. Annealing treatments at 90 C have been performed on two sets of samples, which were monitored by means of X-rays diffraction (XRD) and atomic force microscopy (AFM) measurements, respectively. Two main crystalline domains of Bi{sub 2}Sr{sub 2}CuCa{sub 2}O{sub 8+x} (Bi-2212) were identified in the samples by the XRD data, which underwent an evident crystalline segregation after about 60 hours. Very fast dynamics of the surface modifications was also described by the AFM monitoring. Two typologies of surface structures formed after about 3 annealing hours: continuous arrays of dome shaped bodies were observed along the edges of the whiskers, while in the central regions a dense texture of flat bodies was found. These modifications are described in terms of the formation of simple oxide clusters involving a degradation of the internal layers. (orig.)

  1. Structure of a single whisker representation in layer 2 of mouse somatosensory cortex.

    Science.gov (United States)

    Clancy, Kelly B; Schnepel, Philipp; Rao, Antara T; Feldman, Daniel E

    2015-03-04

    Layer (L)2 is a major output of primary sensory cortex that exhibits very sparse spiking, but the structure of sensory representation in L2 is not well understood. We combined two-photon calcium imaging with deflection of many whiskers to map whisker receptive fields, characterize sparse coding, and quantitatively define the point representation in L2 of mouse somatosensory cortex. Neurons within a column-sized imaging field showed surprisingly heterogeneous, salt-and-pepper tuning to many different whiskers. Single whisker deflection elicited low-probability spikes in highly distributed, shifting neural ensembles spanning multiple cortical columns. Whisker-evoked response probability correlated strongly with spontaneous firing rate, but weakly with tuning properties, indicating a spectrum of inherent responsiveness across pyramidal cells. L2 neurons projecting to motor and secondary somatosensory cortex differed in whisker tuning and responsiveness, and carried different amounts of information about columnar whisker deflection. From these data, we derive a quantitative, fine-scale picture of the distributed point representation in L2. Copyright © 2015 the authors 0270-6474/15/353946-13$15.00/0.

  2. Effect of linear alcohol molecular size on the self-assembly of fullerene whiskers

    International Nuclear Information System (INIS)

    Amer, Maher S.; Todd, T. Kyle; Busbee, John D.

    2011-01-01

    Highlights: → The longer the alcohol molecule, the shorter the length of the assembled whisker. → Interaction between alcohol and fullerene solvent is the key factor. → The stronger the alcohol/solvent interaction, the longer the whisker. - Abstract: The recent development of self-assembled fullerene whiskers and wires has created an enormous potential and resolved a serious challenge for utilizing such unique class of carbon material in advanced nano-scale, molecular-based electronic, optical, and thermal devices. In this paper we investigate, the self-assembly of C 60 molecules into one-dimensional whiskers using a series of linear alcohols H(CH 2 ) n OH, with n changing from 1 (methanol) to 3 (isopropyl alcohol), to elucidate the effect of alcohol molecular size on the size distribution of the self-assemble fullerene whiskers. Our results show that the length of the produced fullerene whiskers is affected by the molecular size of the alcohol used in the process. The crucial role played by solvent/alcohol interaction in the assembly process is discussed. In addition, Raman spectroscopy measurements support the notion that the self-assembled whiskers are primarily held by depletion forces and no evidence of fullerene polymerization was observed.

  3. Intrinsic signal imaging of deprivation-induced contraction of whisker representations in rat somatosensory cortex.

    Science.gov (United States)

    Drew, Patrick J; Feldman, Daniel E

    2009-02-01

    In classical sensory cortical map plasticity, the representation of deprived or underused inputs contracts within cortical sensory maps, whereas spared inputs expand. Expansion of spared inputs occurs preferentially into nearby cortical columns representing temporally correlated spared inputs, suggesting that expansion involves correlation-based learning rules at cross-columnar synapses. It is unknown whether deprived representations contract in a similar anisotropic manner, which would implicate similar learning rules and sites of plasticity. We briefly deprived D-row whiskers in 20-day-old rats, so that each deprived whisker had deprived (D-row) and spared (C- and E-row) neighbors. Intrinsic signal optical imaging revealed that D-row deprivation weakened and contracted the functional representation of deprived D-row whiskers in L2/3 of somatosensory (S1) cortex. Spared whisker representations did not strengthen or expand, indicating that D-row deprivation selectively engages the depression component of map plasticity. Contraction of deprived whisker representations was spatially uniform, with equal withdrawal from spared and deprived neighbors. Single-unit electrophysiological recordings confirmed these results, and showed substantial weakening of responses to deprived whiskers in layer 2/3 of S1, and modest weakening in L4. The observed isotropic contraction of deprived whisker representations during D-row deprivation is consistent with plasticity at intracolumnar, rather than cross-columnar, synapses.

  4. Properties and Microstructures of Sn-Ag-Cu-X Lead-Free Solder Joints in Electronic Packaging

    Directory of Open Access Journals (Sweden)

    Lei Sun

    2015-01-01

    Full Text Available SnAgCu solder alloys were considered as one of the most popular lead-free solders because of its good reliability and mechanical properties. However, there are also many problems that need to be solved for the SnAgCu solders, such as high melting point and poor wettability. In order to overcome these shortcomings, and further enhance the properties of SnAgCu solders, many researchers choose to add a series of alloying elements (In, Ti, Fe, Zn, Bi, Ni, Sb, Ga, Al, and rare earth and nanoparticles to the SnAgCu solders. In this paper, the work of SnAgCu lead-free solders containing alloying elements and nanoparticles was reviewed, and the effects of alloying elements and nanoparticles on the melting temperature, wettability, mechanical properties, hardness properties, microstructures, intermetallic compounds, and whiskers were discussed.

  5. Improved mechanical properties of hydroxyapatite whisker-reinforced poly(L-lactic acid) scaffold by surface modification of hydroxyapatite.

    Science.gov (United States)

    Fang, Zhou; Feng, Qingling

    2014-02-01

    To improve the mechanical properties of porous hydroxyapatite/poly(L-lactic acid) (HA/PLLA) composites, HA whiskers with high crystallinity and high aspect ratio were synthesized. HA whiskers were modified with γ-aminopropyltriethoxysilane (APTES) to improve the interface between HA whiskers and PLLA. The composite scaffold consists of a porous PLLA matrix with HA whiskers distributed homogeneously. The morphology and the distributions of pore sizes of PLLA scaffold was not influenced by introducing HA whiskers, while the mechanical properties were improved. Both the compressive strength and compressive modulus were increased with the weight ratio of APTES-modified HA whiskers up to 30 wt.%, but only up to 15 wt.% for non-modified HA whiskers. With more than 15 wt.% HA whiskers, the mechanical properties of HA/PLLA scaffold were better improved with APTES-modified HA whiskers than non-modified. The HA whisker/PLLA scaffold with high porosity and improved mechanical properties is attractive in the application of tissue engineering. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Beta 2-adrenergic receptors are colocalized and coregulated with whisker barrels in rat somatosensory cortex

    Energy Technology Data Exchange (ETDEWEB)

    Vos, P.; Kaufmann, D.; Hand, P.J.; Wolfe, B.B. (Univ. of Pennsylvania, Philadelphia (USA))

    1990-07-01

    Autoradiography has been used to visualize independently the subtypes of beta-adrenergic receptors in rat somatosensory cortex. Beta 2-adrenergic receptors, but not beta 1-adrenergic receptors colocalize with whisker barrels in this tissue. Thus, each whisker sends a specific multisynaptic pathway to the somatosensory cortex that can be histochemically visualized and only one subtype of beta-adrenergic receptor is specifically associated with this cortical representation. Additionally, neonatal lesion of any or all of the whisker follicles results in loss of the corresponding barrel(s) as shown by histochemical markers. This loss is paralleled by a similar loss in the organization of beta 2-adrenergic receptors in the somatosensory cortex. Other results indicate that these beta 2-adrenergic receptors are not involved in moment-to-moment signal transmission in this pathway and, additionally, are not involved in a gross way in the development of whisker-barrel array.

  7. Synthesis and characterization of cellulose whiskers/polymer nanocomposite dispersion by mini-emulsion polymerization.

    Science.gov (United States)

    Ben Mabrouk, Ayman; Rei Vilar, Manuel; Magnin, Albert; Belgacem, Mohamed Naceur; Boufi, Sami

    2011-11-01

    Stable film-forming nanocomposite particles with diameters ranging from 120 to 300 nm, based on polybutylmethacrylate (PBMA) and cellulose whiskers in water dispersions, were successfully synthesized in one step through mini-emulsion polymerization. The nanocomposite dispersion with a solid content of 25 wt.% and up to 5 wt.% of nanofiller loading was prepared by in situ polymerization, in the presence of the whiskers using dodecylpyridinium chloride (DPC), as a cationic surfactant, and 2,2-azobis(isobutyronitrile) (AIBN), as initiator. The electrostatic interaction between the positively charged droplets and negatively charged whiskers ensured the anchoring of the nanofiller around the polymer particles. The ensuing dispersions were characterized by Dynamic Light Scattering (DLS), ζ-Potential Measurements, and Field-Emission Scanning Electron Microscopy (FE-SEM). After the film formation process, the nanocomposite film exhibits a high transparency, denoting the good dispersion of the whiskers throughout the matrix. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Effect of Ammonium Chloride Solution on the Growth of Phosphorus Gypsum Whisker and Its Modification

    Directory of Open Access Journals (Sweden)

    Shouwei Jian

    2016-01-01

    Full Text Available Phosphogypsum is the by-product of phosphate of fertilizer or phosphate which causes serious environmental pollution. In this work, a series of phosphogypsum whiskers were prepared using phosphogypsum as raw materials and NH4Cl as additive through the atmospheric water solution method. The results showed that the ammonium chloride solution has a great influence on phosphogypsum whiskers growth and the solubility. The best whisker aspect ratio of phosphogypsum was preferred in 1 mol/L NH4Cl solution, in which the solubility achieved 6.434 mg/mL and the aspect ratio reached 69.29. Besides, NH4Cl was found to have a modified effect on gypsum whiskers’ growth and it can be used to get mesh or dendritic whiskers.

  9. Fused traditional and geometric morphometrics demonstrate pinniped whisker diversity.

    Directory of Open Access Journals (Sweden)

    Carly C Ginter

    Full Text Available Vibrissae (whiskers are important components of the mammalian tactile sensory system, and primarily function as detectors of vibrotactile information from the environment. Pinnipeds possess the largest vibrissae among mammals and their vibrissal hair shafts demonstrate a diversity of shapes. The vibrissae of most phocid seals exhibit a beaded morphology with repeating sequences of crests and troughs along their length. However, there are few detailed analyses of pinniped vibrissal morphology, and these are limited to a few species. Therefore, we comparatively characterized differences in vibrissal hair shaft morphologies among phocid species with a beaded profile, phocid species with a smooth profile, and otariids with a smooth profile using traditional and geometric morphometric methods. Traditional morphometric measurements (peak-to-peak distance, crest width, trough width and total length were collected using digital photographs. Elliptic Fourier analysis (geometric morphometrics was used to quantify the outlines of whole vibrissae. The traditional and geometric morphometric datasets were subsequently combined by mathematically scaling each to true rank, followed by a single eigendecomposition. Quadratic discriminant function analysis demonstrated that 79.3, 97.8 and 100% of individuals could be correctly classified to their species based on vibrissal shape variables in the traditional, geometric and combined morphometric analyses, respectively. Phocids with beaded vibrissae, phocids with smooth vibrissae, and otariids each occupied distinct morphospace in the geometric morphometric and combined data analyses. Otariids split into two groups in the geometric morphometric analysis and gray seals appeared intermediate between beaded- and smooth-whiskered species in the traditional and combined analyses. Vibrissal hair shafts modulate the transduction of environmental stimuli to the mechanoreceptors in the follicle-sinus complex (F-SC, which

  10. Properties of ZnO whiskers under CO2-laser irradiation

    International Nuclear Information System (INIS)

    Shkumbatyuk, P. S.

    2010-01-01

    Needlelike ZnO single crystals (whiskers) 0.3-0.8 mm long and 1-10 μm in diameter with a resistivity from 3 x 10 2 to 1 Ω cm have been grown under cw CO 2 -laser irradiation. The whiskers exhibit weak electroluminescence caused by injection from contacts with participation of intrinsic defects, which affect the electric field distribution.

  11. Effect of Sn addition on the microstructure and superelasticity in Ti-Nb-Mo-Sn alloys.

    Science.gov (United States)

    Zhang, D C; Yang, S; Wei, M; Mao, Y F; Tan, C G; Lin, J G

    2012-09-01

    Ti-7.5Nb-4Mo-xSn (x=0-4at%) alloys were developed as the biomedical materials. The effect of the Sn content on the microstructure and superelasticity of the alloys was investigated. It is found that Sn is a strong stabilizer of the β phase, which is effective in suppressing the formation of α″ and ω phases in the alloys. Moreover, the Sn addition has a significant impact on the mechanical properties of the alloys. With the increase of Sn addition, the yield stress of the alloys increase, but their elastic modulus, the fracture strength and the ductility decrease, and the deformation mode of the alloys changes from (322) twining to α″ transformation and then to slip. The Ti-7.5Nb-4Mo-1Sn and Ti-7.5Nb-4Mo-3Sn alloys exhibit a good superelasticity with a high σ(SIM) due to the relatively high athermal ω phases containing or the solution hardening at room temperature. Under the maximum strain of 5%, Ti-7.5Nb-4Mo-3Sn (at%) alloy exhibits higher super elastic stability than that of Ti-7.5Nb-4Mo-1Sn alloy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Contributions of Stress And Oxidation on the Formation of Whiskers in Pb-Free Solders

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, Andrew J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Materials Science & Technology; Hoffman, Elizabeth N. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-03-25

    This report summarizes the research activities of WP-1754. The study focusses on the environmental factors influencing formation of lead free whiskers on electrodeposited tin coatings over copper (or copper containing) substrates. Much of the initial results are summarized in an interim report. From the initial results, two main areas were chosen to be the focus of additional research: the demonstration of effects of elastic stress state in the nucleation of whiskers and the confirmation of the effect of oxygen/nitrogen ratio in the formation of whiskers. Different levels of elastic stress were induced with the incorporation of a custom designed fixture that loaded the substrates in a four-point bending configuration and were maintained in an environmental chamber under conditions deemed favorable for whisker growth. The results show that induced elastic stress slightly increased the concentration of nucleation sites of whiskers. The effects of oxygen content were studied by aging substrates in gas vials of varying absolute pressure and different oxygen/nitrogen ratios. The concentration of whiskers were measured and appear to be sensitive to absolute pressure but are not sensitive to oxygen content (as previously observed).

  13. A truncated conical beam model for analysis of the vibration of rat whiskers.

    Science.gov (United States)

    Yan, Wenyi; Kan, Qianhua; Kergrene, Kenan; Kang, Guozheng; Feng, Xi-Qiao; Rajan, Ramesh

    2013-08-09

    A truncated conical beam model is developed to study the vibration behaviour of a rat whisker. Translational and rotational springs are introduced to better represent the constraint conditions at the base of the whiskers in a living rat. Dimensional analysis shows that the natural frequency of a truncated conical beam with generic spring constraints at its ends is inversely proportional to the square root of the mass density. Under all the combinations of the classical free, pinned, sliding or fixed boundary conditions of a truncated conical beam, it is proved that the natural frequency can be expressed as f = α(rb/L(2))E/ρ and the frequency coefficient α only depends on the ratio of the radii at the two ends of the beam. The natural frequencies of a representative rat whisker are predicted for two typical situations: freely whisking in air and the tip touching an object. Our numerical results show that there exists a window where the natural frequencies of a rat whisker are very sensitive to the change of the rotational constraint at the base. This finding is also confirmed by the numerical results of 18 whiskers with their data available from literature. It can be concluded that the natural frequencies of a rat whisker can be adjusted within a wide range through manipulating the constraints of the follicle on the rat base by a behaving animal. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Prenatal Ethanol Exposure and Whisker Clipping Disrupt Ultrasonic Vocalizations and Play Behavior in Adolescent Rats

    Directory of Open Access Journals (Sweden)

    Jaylyn Waddell

    2016-09-01

    Full Text Available Prenatal ethanol exposure can result in social deficits in humans and animals, including altered social interaction and poor communication. Rats exposed to ethanol prenatally show reduced play fighting, and a combination of prenatal ethanol exposure and neonatal whisker clipping further reduces play fighting compared with ethanol exposure alone. In this study, we explored whether expression of hedonic ultrasonic vocalizations (USVs correlated with the number of playful attacks by ethanol-exposed rats, rats subjected to postnatal sensory deprivation by whisker clipping or both compared to control animals. In normally developing rats, hedonic USVs precede such interactions and correlate with the number of play interactions exhibited in dyads. Pregnant Long-Evans rats were fed an ethanol-containing liquid diet or a control diet. After birth, male and female pups from each litter were randomly assigned to the whisker-clipped or non-whisker-clipped condition. Animals underwent a social interaction test with a normally developing play partner during early or late-adolescence. USVs were recorded during play. Prenatal ethanol exposure reduced both play and hedonic USVs in early adolescence compared to control rats and persistently reduced social play. Interestingly, ethanol exposure, whisker clipping and the combination abolished the significant correlation between hedonic USVs and social play detected in control rats in early adolescence. This relationship remained disrupted in late adolescence only in rats subjected to both prenatal ethanol and whisker clipping. Thus, both insults more persistently disrupted the relationship between social communication and social play.

  15. Prenatal Ethanol Exposure and Whisker Clipping Disrupt Ultrasonic Vocalizations and Play Behavior in Adolescent Rats

    Science.gov (United States)

    Waddell, Jaylyn; Yang, Tianqi; Ho, Eric; Wellmann, Kristen A.; Mooney, Sandra M.

    2016-01-01

    Prenatal ethanol exposure can result in social deficits in humans and animals, including altered social interaction and poor communication. Rats exposed to ethanol prenatally show reduced play fighting, and a combination of prenatal ethanol exposure and neonatal whisker clipping further reduces play fighting compared with ethanol exposure alone. In this study, we explored whether expression of hedonic ultrasonic vocalizations (USVs) correlated with the number of playful attacks by ethanol-exposed rats, rats subjected to postnatal sensory deprivation by whisker clipping or both compared to control animals. In normally developing rats, hedonic USVs precede such interactions and correlate with the number of play interactions exhibited in dyads. Pregnant Long-Evans rats were fed an ethanol-containing liquid diet or a control diet. After birth, male and female pups from each litter were randomly assigned to the whisker-clipped or non-whisker-clipped condition. Animals underwent a social interaction test with a normally developing play partner during early or late-adolescence. USVs were recorded during play. Prenatal ethanol exposure reduced both play and hedonic USVs in early adolescence compared to control rats and persistently reduced social play. Interestingly, ethanol exposure, whisker clipping and the combination abolished the significant correlation between hedonic USVs and social play detected in control rats in early adolescence. This relationship remained disrupted in late adolescence only in rats subjected to both prenatal ethanol and whisker clipping. Thus, both insults more persistently disrupted the relationship between social communication and social play. PMID:27690116

  16. Growth of cadmium oxide whiskers on cadmium sulphide single crystals with copper as growth activator

    International Nuclear Information System (INIS)

    Koparanova, N.; Simov, S.

    1985-01-01

    Some results on the growth and morphology of cadmium oxide whiskers, obtained on cadmium sulphide single crystals with copper as a growth activator, are presented in this work. Cadmium oxide whiskers have been obtained on brace 112-bar0 brace faces of cadmium sulphide plates with a copper layer deposited in advance. The whiskers grew during the annealing of the plates in a weak stream of technically pure argon at temperatures 670 to 730 deg C for 15 min to 3.5 h. Details about the procedure have been given elsewhere. The composition and morphology of the whiskers have been studied by an X-ray microanalyser JEOL 35 DDS and a scanning electron microscope JEOL, JSM 35. The optical microscopic observations have shown that after annealing, a gray-black granular layer is formed on the cadmium sulphide single crystals and this layer can easily be separated from the crystal substrate. Under the granular layer the crystal is heavily damaged. The whiskers grow on the granular layer and they are coloured yellow-brown or red-brown. The maximum whisker length attains several hundreds of micrometres and in some cases up to 1 mm or more. (author)

  17. Growth of cadmium oxide whiskers on cadmium sulphide single crystals with copper as growth activator

    Energy Technology Data Exchange (ETDEWEB)

    Koparanova, N.; Simov, S. (Bylgarska Akademiya na Naukite, Sofia. Inst. po Fizika na Tvyrdoto Tyalo); Genchev, D. (Bylgarska Akademiya na Naukite, Sofia. Inst. za Yadrena Izsledvaniya i Yadrena Energetika); Metchenov, G. (Research Inst. of Criminalistics and Criminology, Sofia (Bulgaria))

    1985-02-01

    Some results on the growth and morphology of cadmium oxide whiskers, obtained on cadmium sulphide single crystals with copper as a growth activator, are presented in this work. Cadmium oxide whiskers have been obtained on brace 112-bar0 brace faces of cadmium sulphide plates with a copper layer deposited in advance. The whiskers grew during the annealing of the plates in a weak stream of technically pure argon at temperatures 670 to 730 deg C for 15 min to 3.5 h. Details about the procedure have been given elsewhere. The composition and morphology of the whiskers have been studied by an X-ray microanalyser JEOL 35 DDS and a scanning electron microscope JEOL, JSM 35. The optical microscopic observations have shown that after annealing, a gray-black granular layer is formed on the cadmium sulphide single crystals and this layer can easily be separated from the crystal substrate. Under the granular layer the crystal is heavily damaged. The whiskers grow on the granular layer and they are coloured yellow-brown or red-brown. The maximum whisker length attains several hundreds of micrometres and in some cases up to 1 mm or more.

  18. Separation of Lead with a Novel Ion Separating Agent Prepared by Clothing a Chitin Whisker on a Potassium Tetratitanate Whisker

    Directory of Open Access Journals (Sweden)

    Juan Liu

    2017-03-01

    Full Text Available Separation of Pb2+ from Cu2+-Pb2+ mixed solution by a newly-developed ion separating agent was examined, which was obtained by clothing chitin whiskers (ChW on the surface of potassium tetratitanate whiskers (PTW. The separation capability and mechanism of the ion separating agent (ChW-PTW was determined, based on the difference of the adsorption isotherm pattern and the adsorption kinetics model between ChW and PTW on Cu2+ and Pb2+, respectively. The results showed that the adsorption process of ChW could be described by Freundlish isotherm. The adsorption affinity of Cu2+ (kF = 0.085·g−1 on ChW was greater than Pb2+ (kF = 0.077 g−1. The adsorption pattern of PTW was inclined to the Langmuir isotherm, and Pb2+ (kL = 310.59 L·mmol−1 could be obviously more easily adsorbed on PTW than Cu2+ (kL = 25.85 L·mmol−1. The experimental data both fitted well with the pseudo-second order kinetics. The reaction rate of Pb2+ (k2 = 4.442 for ChW and k2 = 0.846 for PTW was greater than that of Cu2+ on both ChW and PTW, while the diffusion rate of intra-particles of PTW was much higher than ChW. The adsorption model of ChW and PTW could illustrate well the separation mechanism of ChW-PTW and allowed for relevant results.

  19. Reactions in Electrodeposited Cu/Sn and Cu/Ni/Sn Nanoscale Multilayers for Interconnects

    Directory of Open Access Journals (Sweden)

    Pay Ying Chia

    2016-05-01

    Full Text Available Miniaturization of electronic devices has led to the development of 3D IC packages which require ultra-small-scale interconnections. Such small interconnects can be completely converted into Cu-Sn based intermetallic compounds (IMCs after reflow. In an effort to improve IMC based interconnects, an attempt is made to add Ni to Cu-Sn-based IMCs. Multilayer interconnects consisting of stacks of Cu/Sn/Cu/Sn/Cu or Cu/Ni/Sn/Ni/Sn/Cu/Ni/Sn/Ni/Cu with Ni = 35 nm, 70 nm, and 150 nm were electrodeposited sequentially using copper pyrophosphate, tin methanesulfonic, and nickel Watts baths, respectively. These multilayer interconnects were investigated under room temperature aging conditions and for solid-liquid reactions, where the samples were subjected to 250 °C reflow for 60 s and also 300 °C for 3600 s. The progress of the reaction in the multilayers was monitored by using X-ray Diffraction, Scanning Electron Microscope, and Energy dispersive X-ray Spectroscopy. FIB-milled samples were also prepared for investigation under room temperature aging conditions. Results show that by inserting a 70 nanometres thick Ni layer between copper and tin, premature reaction between Cu and Sn at room temperature can be avoided. During short reflow, the addition of Ni suppresses formation of Cu3Sn IMC. With increasing Ni thickness, Cu consumption is decreased and Ni starts acting as a barrier layer. On the other hand, during long reflow, two types of IMC were found in the Cu/Ni/Sn samples which are the (Cu,Ni6Sn5 and (Cu,Ni3Sn, respectively. Details of the reaction sequence and mechanisms are discussed.

  20. Device simulation of GeSn/GeSiSn pocket n-type tunnel field-effect transistor for analog and RF applications

    Science.gov (United States)

    Wang, Suyuan; Zheng, Jun; Xue, Chunlai; Li, Chuanbo; Zuo, Yuhua; Cheng, Buwen; Wang, Qiming

    2017-11-01

    We present the device simulations of analog and radio frequency (RF) performances of four double-gate pocket n-type tunneling field-effect transistors (NTFETs). The direct current (DC), analog and RF performances of the Ge-homo, GeSn-homo, GeSn/Ge and GeSn/GeSiSn NTFETs, are compared. The GeSn NTFETs greatly improve the on-state current (ION) and average subthreshold slope (SS), when compared with the Ge NTFET. Moreover, the GeSn/GeSiSn NTFET has the largest intrinsic gain (Av), and exhibits a suppressed ambipolar behavior, improved cut-off frequency (fT), and gain bandwidth product (GBW), according to the analyzed analog and RF figures of merit (FOM). Therefore, it can be concluded that the GeSn/GeSiSn NTFET has great potential as a promising candidate for the realization of future generation low-power analog/RF applications.

  1. Synthesis of AlN whiskers using cobalt oxide catalyst and their alignments for the improvement of thermal conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Dang, Thi My Linh [Nano-Convergence Materials Center, Korea Institute of Ceramic Engineering and Technology, Soho-ro 10, Jinju-si, Kyeoungsangnam-do, 660-031 (Korea, Republic of); Electronic Materials Lab., School of Advanced Materials Science and Engineering, SungKyunKwan Univ., Suwon-si, Gyeonggi-do, 440-746 (Korea, Republic of); Yoon, Dae-Ho, E-mail: dhyoon@skku.edu [Electronic Materials Lab., School of Advanced Materials Science and Engineering, SungKyunKwan Univ., Suwon-si, Gyeonggi-do, 440-746 (Korea, Republic of); Kim, Chang-Yeoul, E-mail: cykim15@kicet.re.kr [Nano-Convergence Materials Center, Korea Institute of Ceramic Engineering and Technology, Soho-ro 10, Jinju-si, Kyeoungsangnam-do, 660-031 (Korea, Republic of)

    2016-08-15

    We synthesized one dimensional (1-D) AlN whiskers by using the cobalt oxide catalyst-assisted carbothermal reduction method. The formation of AlN whiskers is investigated by the thermo-gravimetric and differential thermal analysis, Fourier-transformed infrared spectra, X-ray diffraction patterns, scanning electron microscopy and transmission electron microscopy observations. It was found that Co{sub 3}O{sub 4} droplets on the surfaces of Al{sub 2}O{sub 3} acted as a catalyst for the growth of AlN whiskers by vapor-liquid-solid (VLS) mechanism. In addition, AlN whiskers/PVA composites aligned in parallel with the heat flow direction showed an excellent thermal conductivity about three times higher than those of the perpendicularly aligned whisker composites. - Highlights: • AlN whiskers with high aspect ratio were synthesized from Al{sub 2}O{sub 3}. • Co{sub 3}O{sub 4} droplets on the surface of Al{sub 2}O{sub 3} acts as a catalyst for the whisker growth. • AlN whiskers are aligned within PVA in perpendicular and parallel with heat flow. • AlN whisker/PVA composite in perpendicular alignment shows a excellent heat conductivity.

  2. In-situ measurement of bending strength of TiC whiskers in the scanning electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Seino, Yutaka; Shin, Shoichiro; Nagai, Satoshi [National Research Lab. of Metrology, Tsukuba, Ibaraki (Japan)

    1995-10-01

    The three-point bending strength of TiC whiskers was measured in a scanning electron microscope. The whisker samples have {approximately} 50 {micro}m length and 2 {approximately} 4 {micro}m diameter and are commercially available as reinforcements. For composite materials. The distribution of the bending strengths of the whiskers showed a double peak around 5.2GPa and 30.4GPa, respectively. The difference in these values is attributed to differences in the cleavage strength of two crystal planes depending on whisker growth direction.

  3. Demethylation restores SN38 sensitivity in cells with acquired resistance to SN38 derived from human cervical squamous cancer cells

    Science.gov (United States)

    TANAKA, TETSUJI; BAI, TAO; TOUJIMA, SAORI; UTSUNOMIYA, TOMOKO; MATSUOKA, TOSHIHIDE; KOBAYASHI, AYA; YAMAMOTO, MADOKA; SASAKI, NORIYUKI; TANIZAKI, YUKO; UTSUNOMIYA, HIROTOSHI; TANAKA, JUNKO; YUKAWA, KAZUNORI

    2012-01-01

    Using seven monoclonal SN38-resistant subclones established from ME180 human cervical squamous cell carcinoma cells, we examined the demethylation effects of 5-aza-2′-deoxycytidine (5-aza-CdR) on the SN38-sensitivity of the cells as well as the expression of death-associated protein kinase (DAPK) in the SN38-resistant cells. The DAPK expression levels were evaluated among parent ME180 cells, SN38-resistant ME180 cells and cisplatin-resistant ME180 cells by methylation-specific DAPK-PCR, quantitative RT-PCR and western blot analysis. The SN38-resistant cells co-treated with SN38 and 5-aza-CdR strongly exhibited enhanced SN38-sensitivities resembling those found in the parent cells. In the SN38-resistant subclones, no relationships were found between the restored SN38 sensitivity and hypermethylation of the DAPK promoter, DAPK mRNA expression, DAPK protein expression and induction of DAPK protein after 5-aza-CdR treatment, unlike the strong suppression of 5-aza-CdR-induced DAPK protein expression in the cisplatin-resistant subclones. These findings indicate that reversibly methylated molecules, but not DAPK, may regulate SN38 resistance, and that demethylating agents can be strong sensitizing anticancer chemotherapeutic drugs for SN38-resistant cancers. PMID:22246465

  4. Isolation of whiskers from natural sources and their dispersed in a non-aqueous medium

    Energy Technology Data Exchange (ETDEWEB)

    Vestena, Mauro; Gross, Idejan Padilha; Pires, Alfredo Tiburcio Nunes; Muller, Carmen Maria Olivera, E-mail: mauro@utfpr.edu.br [Universidade Federal Santa Catarina (UFSC), Florianopolis, SC (Brazil)

    2016-10-15

    Whiskers have been used as a nano material dispersed in polymer matrices to modify the microscopic and macroscopic properties of the polymer. These nanomaterials can be isolated from cellulose, one of the most abundant natural renewable sources of biodegradable polymer. In this study, whiskers were isolated from sugarcane bagasse and corn cob straw fibers. Initially, the cellulose fiber was treated through an alkaline/oxidative process followed by acid hydrolysis. Dimethylformamide and dimethyl sulfoxide were used to replace the aqueous medium for the dispersion of the whiskers. For the solvent exchange, dimethylformamide or dimethyl sulfoxide was added to the aqueous dispersion and the water was then removed by fractional distillation. FTIR, TGA, XRD, TEM, Zeta and DLS techniques were used to evaluate the efficiency of the isolation process as well as the morphology and dimensions of the whiskers. The dimensions of the whiskers are comparable with values reported in the literature, maintaining the uniformity and homogeneity in both aqueous and non-aqueous solvents. (author)

  5. Fast feedback in active sensing: touch-induced changes to whisker-object interaction.

    Directory of Open Access Journals (Sweden)

    Dudi Deutsch

    Full Text Available Whisking mediated touch is an active sense whereby whisker movements are modulated by sensory input and behavioral context. Here we studied the effects of touching an object on whisking in head-fixed rats. Simultaneous movements of whiskers C1, C2, and D1 were tracked bilaterally and their movements compared. During free-air whisking, whisker protractions were typically characterized by a single acceleration-deceleration event, whisking amplitude and velocity were correlated, and whisk duration correlated with neither amplitude nor velocity. Upon contact with an object, a second acceleration-deceleration event occurred in about 25% of whisk cycles, involving both contacting (C2 and non-contacting (C1, D1 whiskers ipsilateral to the object. In these cases, the rostral whisker (C2 remained in contact with the object throughout the double-peak phase, which effectively prolonged the duration of C2 contact. These "touch-induced pumps" (TIPs were detected, on average, 17.9 ms after contact. On a slower time scale, starting at the cycle following first touch, contralateral amplitude increased while ipsilateral amplitude decreased. Our results demonstrate that sensory-induced motor modulations occur at various timescales, and directly affect object palpation.

  6. Peculiarities of magnetoresistance in InSb whiskers at cryogenic temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Druzhinin, A., E-mail: druzh@polynet.lviv.ua [Lviv Polytechnic National University, Bandera Str., 12, 79013 Lviv (Ukraine); International Laboratory of High Magnetic Fields and Low Temperatures, Gajowicka 95, Wroclaw (Poland); Ostrovskii, I.; Khoverko, Yu. [Lviv Polytechnic National University, Bandera Str., 12, 79013 Lviv (Ukraine); International Laboratory of High Magnetic Fields and Low Temperatures, Gajowicka 95, Wroclaw (Poland); Liakh-Kaguy, N.; Khytruk, I. [Lviv Polytechnic National University, Bandera Str., 12, 79013 Lviv (Ukraine); Rogacki, K. [International Laboratory of High Magnetic Fields and Low Temperatures, Gajowicka 95, Wroclaw (Poland)

    2015-12-15

    Highlights: • Magnetoresistance in InSb whiskers with impurity concentration near MIT is studied. • SdH oscillations of transverse and longitudinal magnetoresistance are examined. • Mechanisms of electron scattering are determined • Main crystal parameters of InSb whiskers are determined. - Abstract: The study of the magnetoresistance in InSb whiskers with an impurity concentration in the vicinity to the metal-insulator phase transition, at low temperature range 4.2–77 K, and in fields, with induction up to 14 T, was conducted. The presence of Shubnikov-de Haas oscillations in both transverse and longitudinal magnetoresistance was observed. The following parameters of InSb whiskers were defined: period of oscillations 0.1 T{sup −1}, cyclotron effective mass of electrons m{sub c} ≈ 0.14m{sub o,} concentration of charge carriers 2.3 × 10{sup 17} cm{sup −3}, g-factor g{sup *} ≈ 30 and Dingle temperature T{sub D} = 14.5 K. To determine the nature of crystal defects, the electron scattering processes on the short-range potential, caused by interaction with polar and nonpolar optical phonons, piezoelectric and acoustic phonons, static strain centers and ionized impurities in n-InSb whiskers, with defect concentration 2.9 × 10{sup 17} cm{sup −3}, are considered. The temperature dependences of electron mobility in the range 4.2–500 K were calculated.

  7. Isolation of whiskers from natural sources and their dispersed in a non-aqueous medium

    Directory of Open Access Journals (Sweden)

    Mauro Vestena

    Full Text Available Abstract Whiskers have been used as a nanomaterial dispersed in polymer matrices to modify the microscopic and macroscopic properties of the polymer. These nanomaterials can be isolated from cellulose, one of the most abundant natural renewable sources of biodegradable polymer. In this study, whiskers were isolated from sugarcane bagasse and corn cob straw fibers. Initially, the cellulose fiber was treated through an alkaline/oxidative process followed by acid hydrolysis. Dimethylformamide and dimethyl sulfoxide were used to replace the aqueous medium for the dispersion of the whiskers. For the solvent exchange, dimethylformamide or dimethyl sulfoxide was added to the aqueous dispersion and the water was then removed by fractional distillation. FTIR, TGA, XRD, TEM, Zeta and DLS techniques were used to evaluate the efficiency of the isolation process as well as the morphology and dimensions of the whiskers. The dimensions of the whiskers are comparable with values reported in the literature, maintaining the uniformity and homogeneity in both aqueous and non-aqueous solvents.

  8. Preparation of mullite whiskers reinforced SiC/Al2O3 composites by microwave sintering

    Directory of Open Access Journals (Sweden)

    Wei Li

    2016-12-01

    Full Text Available Mullite whiskers reinforced SiC/Al2O3 composites were prepared by microwave sintering in a microwave chamber with TE666 resonant mode. Original SiC particles were coated with SiO2 using sol-gel processing and mixed with Al2O3 particles. Mullite was formed in the reaction between SiO2 and Al2O3. The isostatically pressed cylindrical pellets were sintered from 1350 °C to 1600 °C for 30 min. Physical and chemical responses were investigated by detecting changes in reflected power during the microwave sintering process. XRD was carried out to characterize the samples and showed that mullite could be formed at 1200 °C. Bridging of mullite whiskers between Al2O3 and SiC particles was observed by SEM and is due to a so-called local hot spot effect, which was the unique feature for microwave sintering. The optimized microwave sintering temperature was 1500 °C corresponding to the maximum amount of mullite whiskers within SiC/Al2O3 composites. The high electro-magnetic field enhanced the decomposition of mullite at higher temperatures above 1550 °C. The mechanical properties of mullite whiskers reinforced SiC/Al2O3 composites are much better than the SiC/Al2O3 composites without mullite whiskers.

  9. Wear properties of hybrid ABO+BN+CNT/Al-Sn alloy matrix composites for engine bearing materials

    Science.gov (United States)

    Bak, Ji Hyeon; Cho, Dae Hyun; Shin, Sunmi; Park, Jin Young; Park, Ik Min

    2018-01-01

    Engine bearing materials need improved wear resistance to withstand high speeds and heavy loads. To meet the requirements of bearing materials, a new metal matrix composite (MMC) was designed. Here, the hybrid aluminum borate whisker (Al18B4O33, ABO) + hexagonal boron nitride (BN) + carbon nanotubes (CNTs)/Al-5Sn alloy MMCs were fabricated by squeeze infiltration. The wear properties of the hybrid MMCs were evaluated using a ball-on-disk tester. The effect of hybridization of ABO, BN, and CNTs on the wear properties of the Al-Sn MMCs was investigated. The microstructure of the hybrid MMCs showed a uniform distribution of the reinforcements. The wear resistance of the Al-5Sn alloy improved with the addition of ABO. The wear properties of the ABO+BN/ Al-Sn and ABO+CNT/Al-Sn MMCs were considerably enhanced compared to those of the ABO reinforced Al-Sn MMC because of the lubricating characteristic of BN and CNTs, and the CNTs were more effective than BN. The friction coefficient and wear rate of 20ABO+5BN+5CNT/Al-Sn MMC decreased by 1/4 and 1/20, respectively, compared to that of the ABO/Al-Sn MMC.

  10. Tapered ZnO Whiskers: {hkil}-Specific Mosaic Twinning VLS Growth from a Partially Molten Bottom Source

    Directory of Open Access Journals (Sweden)

    Chen Shuei-Yuan

    2009-01-01

    Full Text Available Abstract Zn particulates overlaid with wurtzite (W-type ZnO condensates having nearly orthogonal and facets were found to self-catalyze unusual tapered W-ZnO whiskers upon isothermal atmospheric annealing, i.e., thermal oxidation, at 600 °C. Analytical electron microscopic observations indicated that such whiskers formed tapered slabs having mosaic and twinned domains. The tapered whiskers can be rationalized by an alternative vapor–liquid–solid growth, i.e., {hkil}-specific coalescence twinning growth from the ZnO condensates taking advantage of a partially molten bottom source of Zn and the adsorption of atoms at the whisker tips and ledges under the influence of capillarity effect. The tapered whiskers having strong photoluminescence at 391 nm and with a considerable flexibility could have potential applications.

  11. A mutant with bilateral whisker to barrel inputs unveils somatosensory mapping rules in the cerebral cortex.

    Science.gov (United States)

    Renier, Nicolas; Dominici, Chloé; Erzurumlu, Reha S; Kratochwil, Claudius F; Rijli, Filippo M; Gaspar, Patricia; Chédotal, Alain

    2017-03-28

    In mammals, tactile information is mapped topographically onto the contralateral side of the brain in the primary somatosensory cortex (S1). In this study, we describe Robo3 mouse mutants in which a sizeable fraction of the trigemino-thalamic inputs project ipsilaterally rather than contralaterally. The resulting mixture of crossed and uncrossed sensory inputs creates bilateral whisker maps in the thalamus and cortex. Surprisingly, these maps are segregated resulting in duplication of whisker representations and doubling of the number of barrels without changes in the size of S1. Sensory deprivation shows competitive interactions between the ipsi/contralateral whisker maps. This study reveals that the somatosensory system can form a somatotopic map to integrate bilateral sensory inputs, but organizes the maps in a different way from that in the visual or auditory systems. Therefore, while molecular pre-patterning constrains their orientation and position, preservation of the continuity of inputs defines the layout of the somatosensory maps.

  12. Stability to irradiation of SiGe whisker crystals used for sensors of physical values

    Directory of Open Access Journals (Sweden)

    Druzhinin A. A.

    2011-04-01

    Full Text Available An influence of g-irradiation (Co60 with doze up to 1—1018 сm–2 and magnetic field with induction up to 14 T on conduction of 1–xGex (х = 0,03 whisker crystals with resistivity of 0,08—0,025 Оhm·сm in temperature range 4,2—300 K have been studied. It is shown that whisker crystals resistance faintly varies under irradiation with doze 2·1017 сm–2, while their magnetoresistance substantially changes. The strain sensors stable to irradiation action operating in high magnetic fields on the base of the whiskers have been designed.

  13. Sensory prediction on a whiskered robot: A tactile analogy to "optic flow"

    Directory of Open Access Journals (Sweden)

    Christopher L Schroeder

    2012-10-01

    Full Text Available When an animal moves an array of sensors (e.g., the hand, the eye through the environment, spatial and temporal gradients of sensory data are related by the velocity of the moving sensory array. In vision, the relationship between spatial and temporal brightness gradients is quantified in the optical flow equation. In the present work, we suggest an analog to optical flow for the rodent vibrissal (whisker array, in which the perceptual intensity that flows over the array is bending moment. Changes in bending moment are directly related to radial object distance, defined as the distance between the base of a whisker and the point of contact with the object. Using both simulations and a 1x5 array (row of artificial whiskers, we demonstrate that local object curvature can be estimated based on differences in radial distance across the array. We then develop two algorithms, both based on tactile flow, to predict the future contact points that will be obtained as the whisker array translates along the object. The translation of the robotic whisker array represents the rat's head velocity. The first algorithm uses a calculation of the local object slope, while the second uses a calculation of the local object curvature. Both algorithms successfully predict future contact points for simple surfaces. The algorithm based on curvature was found to more accurately predict future contact points as surfaces became more irregular. We quantify the inter-related effects of whisker spacing and the object’s spatial frequencies, and examine the issues that arise in the presence of real-world noise, friction, and slip.

  14. The 'whisker sign' as an indicator of ochronosis in skeletal scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Paul, R.; Ylinen, S.L. (Turku Univ. (Finland). Dept. of Nuclear Medicine)

    1991-03-01

    A patient with alkaptonuria and ochronotic arthrosis was imaged twice with ({sup 99m}Tc-DPD) - once during a bout of arthritic knee pain and once when symptom-free. There was a marked accumulation of radioactivity in the large joints. During the episode of arthritis the knee joints had a higher uptake than when the patient was without symptoms. The intervertebral discs showed a high uptake which extended laterally from the axial vertebral column; the finding gave an impression of whiskers, and this 'whisker sign' may be characteristic of ochronosis. (orig.).

  15. Advancing whisker based navigation through the implementation of bio-inspired whisking strategies

    OpenAIRE

    Salman, M.; Pearson, M.

    2016-01-01

    An active whisking tactile sensor array has been\\ud successfully integrated with the RatSLAM algorithm and\\ud demonstrated as capable of reducing error in pose estimates of a mobile robot. A new metric for evaluating the performance of RatSLAM is introduced in order to evaluate the impact in performance of whisker-RatSLAM through the adoption of a biomimetic active whisker control scheme and different approaches to tactile sensory pre-processing. Improvements in performance are presented and ...

  16. Extensive Hair Shaft Growth after Mouse Whisker Follicle Isolation, Cryopreservation and Transplantation in Nude Mice.

    Science.gov (United States)

    Cao, Wenluo; Li, Lingna; Tran, Benjamin; Kajiura, Satoshi; Amoh, Yasuyuki; Liu, Fang; Hoffman, Robert M

    2015-01-01

    We previously demonstrated that whole hair follicles could be cryopreserved to maintain their stem-cells differentation potential. In the present study, we demonstrated that cryopreserved mouse whisker hair follicles maintain their hair growth potential. DMSO better cryopreserved mouse whisker follicles compared to glycerol. Cryopreserved hair follicles also maintained the hair follicle-associated-pluripotent (HAP) stem cells, evidenced by P75NTR expression. Subcutaneous transplantation of DMSO-cryopreserved hair follicles in nude mice resulted in extensive hair fiber growth over 8 weeks, indicating the functional recovery of hair shaft growth of cryopreserved hair follicles.

  17. Effects of Ce and La Additions on the Microstructure and Mechanical Properties of Sn-9Zn Solder Joints

    Science.gov (United States)

    Lin, Hsiu-Jen; Chuang, Tung-Han

    2010-02-01

    The effects of rare-earth elements on the microstructure and mechanical properties of Sn-9Zn alloys and solder joints in ball grid array packages with Ni/Au(ENIG) surface finishes have been investigated. Metallographic observations showed that (Ce0.8Zn0.2)Sn3 and (La0.9Zn0.1)Sn3 intermetallic compounds appeared in the solder matrix of Sn-9Zn-0.5Ce and Sn-9Zn-0.5La alloys, respectively. Both fiber- and hillock-shaped tin whiskers were inhibited in the Sn-9Zn-0.5Ce solder, while tin fibers were still observed on the surface of oxidized (La0.9Zn0.1)Sn3 intermetallics in Sn-9Zn-0.5La after air exposure at room temperature. Mechanical testing indicated that the tensile strength of Sn-9Zn alloys doped with Ce and La increased significantly, and the elongation decreased, in comparison with the undoped Sn-9Zn. The bonding strengths of the as-reflowed Sn-9Zn-0.5Ce and Sn-9Zn-0.5La solder joints were also improved. However, aging treatment at 100°C and 150°C caused degradation of ball shear strength in all specimens. During the reflowing and aging processes, AuZn8 intermetallic phases appeared at the interfaces of all solder joints. In addition, Zn-rich phases were observed to migrate from the solder matrix to the solder/pad interfaces of the aged specimens.

  18. In situ measurement of electromigration-induced transient stress in Pb-free Sn-Cu solder joints by synchrotron radiation based X-ray polychromatic microdiffraction

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Kai; Tamura, Nobumichi; Kunz, Martin; Tu, King-Ning; Lai, Yi-Shao

    2009-12-01

    Electromigration-induced hydrostatic elastic stress in Pb-free SnCu solder joints was studied by in situ synchrotron X-ray white beam microdiffraction. The elastic stresses in two different grains with similar crystallographic orientation, one located at the anode end and the other at the cathode end, were analyzed based on the elastic anisotropy of the Beta-Sn crystal structure. The stress in the grain at the cathode end remained constant except for temperature fluctuations, while the compressive stress in the grain at the anode end was built-up as a function of time during electromigration until a steady state was reached. The measured compressive stress gradient between the cathode and the anode is much larger than what is needed to initiate Sn whisker growth. The effective charge number of Beta-Sn derived from the electromigration data is in good agreement with the calculated value.

  19. In situ measurement of electromigration-induced transient stress in Pb-free Sn-Cu solder joints by synchrotron radiation based X-ray polychromatic microdiffraction

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Kai; Tamura, Nobumichi; Kunz, Martin; Tu, King-Ning; Lai, Yi-Shao

    2009-05-15

    Electromigration-induced hydrostatic elastic stress in Pb-free SnCu solder joints was studied by in situ synchrotron X-ray white beam microdiffraction. The elastic stresses in two different grains with similar crystallographic orientation, one located at the anode end and the other at the cathode end, were analyzed based on the elastic anisotropy of the {beta}-Sn crystal structure. The stress in the grain at the cathode end remained constant except for temperature fluctuations, while the compressive stress in the grain at the anode end was built-up as a function of time during electromigration until a steady state was reached. The measured compressive stress gradient between the cathode and the anode is much larger than what is needed to initiate Sn whisker growth. The effective charge number of {beta}-Sn derived from the electromigration data is in good agreement with the calculated value.

  20. Parallel pathways from whisker and visual sensory cortices to distinct frontal regions of mouse neocortex.

    Science.gov (United States)

    Sreenivasan, Varun; Kyriakatos, Alexandros; Mateo, Celine; Jaeger, Dieter; Petersen, Carl C H

    2017-07-01

    The spatial organization of mouse frontal cortex is poorly understood. Here, we used voltage-sensitive dye to image electrical activity in the dorsal cortex of awake head-restrained mice. Whisker-deflection evoked the earliest sensory response in a localized region of primary somatosensory cortex and visual stimulation evoked the earliest responses in a localized region of primary visual cortex. Over the next milliseconds, the initial sensory response spread within the respective primary sensory cortex and into the surrounding higher order sensory cortices. In addition, secondary hotspots in the frontal cortex were evoked by whisker and visual stimulation, with the frontal hotspot for whisker deflection being more anterior and lateral compared to the frontal hotspot evoked by visual stimulation. Investigating axonal projections, we found that the somatosensory whisker cortex and the visual cortex directly innervated frontal cortex, with visual cortex axons innervating a region medial and posterior to the innervation from somatosensory cortex, consistent with the location of sensory responses in frontal cortex. In turn, the axonal outputs of these two frontal cortical areas innervate distinct regions of striatum, superior colliculus, and brainstem. Sensory input, therefore, appears to map onto modality-specific regions of frontal cortex, perhaps participating in distinct sensorimotor transformations, and directing distinct motor outputs.

  1. High-temperature pressure sensors with strain gauges based on silicon whiskers

    Directory of Open Access Journals (Sweden)

    Druzhinin A. A.

    2012-12-01

    Full Text Available Studies aimed at the creating of piezoresistive pressure sensors based on silicon whiskers, operating at high temperatures were carried out. Using the glass adhesive for strain gauges mounting on spring elements of covar alloy gave the possibility to elevate the sensor’s operating temperature range. Several modifications of pressure sensors based on the proposed strain-unit design were developed.

  2. Transformation of adaptation and gain rescaling along the whisker sensory pathway.

    Science.gov (United States)

    Maravall, Miguel; Alenda, Andrea; Bale, Michael R; Petersen, Rasmus S

    2013-01-01

    Neurons in all sensory systems have a remarkable ability to adapt their sensitivity to the statistical structure of the sensory signals to which they are tuned. In the barrel cortex, firing rate adapts to the variance of a whisker stimulus and neuronal sensitivity (gain) adjusts in inverse proportion to the stimulus standard deviation. To determine how adaptation might be transformed across the ascending lemniscal pathway, we measured the responses of single units in the first and last subcortical stages, the trigeminal ganglion (TRG) and ventral posterior medial thalamic nucleus (VPM), to controlled whisker stimulation in urethane-anesthetized rats. We probed adaptation using a filtered white noise stimulus that switched between low- and high-variance epochs. We found that the firing rate of both TRG and VPM neurons adapted to stimulus variance. By fitting the responses of each unit to a Linear-Nonlinear-Poisson model, we tested whether adaptation changed feature selectivity and/or sensitivity. We found that, whereas feature selectivity was unaffected by stimulus variance, units often exhibited a marked change in sensitivity. The extent of these sensitivity changes increased systematically along the pathway from TRG to barrel cortex. However, there was marked variability across units, especially in VPM. In sum, in the whisker system, the adaptation properties of subcortical neurons are surprisingly diverse. The significance of this diversity may be that it contributes to a rich population representation of whisker dynamics.

  3. Transformation of adaptation and gain rescaling along the whisker sensory pathway.

    Directory of Open Access Journals (Sweden)

    Miguel Maravall

    Full Text Available Neurons in all sensory systems have a remarkable ability to adapt their sensitivity to the statistical structure of the sensory signals to which they are tuned. In the barrel cortex, firing rate adapts to the variance of a whisker stimulus and neuronal sensitivity (gain adjusts in inverse proportion to the stimulus standard deviation. To determine how adaptation might be transformed across the ascending lemniscal pathway, we measured the responses of single units in the first and last subcortical stages, the trigeminal ganglion (TRG and ventral posterior medial thalamic nucleus (VPM, to controlled whisker stimulation in urethane-anesthetized rats. We probed adaptation using a filtered white noise stimulus that switched between low- and high-variance epochs. We found that the firing rate of both TRG and VPM neurons adapted to stimulus variance. By fitting the responses of each unit to a Linear-Nonlinear-Poisson model, we tested whether adaptation changed feature selectivity and/or sensitivity. We found that, whereas feature selectivity was unaffected by stimulus variance, units often exhibited a marked change in sensitivity. The extent of these sensitivity changes increased systematically along the pathway from TRG to barrel cortex. However, there was marked variability across units, especially in VPM. In sum, in the whisker system, the adaptation properties of subcortical neurons are surprisingly diverse. The significance of this diversity may be that it contributes to a rich population representation of whisker dynamics.

  4. Cerebellar potentiation and learning a whisker-based object localization task with a time response window

    NARCIS (Netherlands)

    Rahmati, Negah; Owens, Cullen B; Bosman, Laurens W J; Spanke, Jochen K; Lindeman, Sander; Gong, Wei; Potters, Jan-Willem; Romano, Vincenzo; Voges, Kai; Moscato, Letizia; Koekkoek, Sebastiaan K E; Negrello, Mario; De Zeeuw, Chris I

    2014-01-01

    Whisker-based object localization requires activation and plasticity of somatosensory and motor cortex. These parts of the cerebral cortex receive strong projections from the cerebellum via the thalamus, but it is unclear whether and to what extent cerebellar processing may contribute to such a

  5. Analysis of the collar-whisker structure of temperate lactococcal bacteriophage TP901-1

    DEFF Research Database (Denmark)

    Vegge, Christina Skovgaard; Neve, Horst; Brøndsted, Lone

    2006-01-01

    Proteins homologous to the protein NPS (neck passage structure) are widespread among lactococcal phages. We investigated the hypothesis that NPS is involved in the infection of phage TP901-1 by analysis of an NPS mutant. NPS was determined to form a collar-whisker complex but was shown to be none...

  6. Fully 3D Printed Multi-Material Soft Bio-Inspired Whisker Sensor for Underwater-Induced Vortex Detection.

    Science.gov (United States)

    Gul, Jahan Zeb; Su, Kim Young; Choi, Kyung Hyun

    2018-04-01

    Bio-mimicking the underwater sensors has tremendous potential in soft robotics, under water exploration and human interfaces. Pinniped are semiaquatic carnivores that use their whiskers to sense food by tracking the vortices left by potential prey. To detect and track the vortices inside the water, a fully 3D printed pinniped inspired multi-material whisker sensor is fabricated and characterized. The fabricated whisker is composed of a polyurethane rod with a length-to-diameter ratio (L/d) of 20:1 with four graphene patterns (length × diameter: 60 × 0.3 mm) perpendicular to each other. The graphene patterns are further connected with output signal wires via copper tape. The displacement (∼5 mm) of the whisker rod in any direction (0-360°) causes the change in resistance [Formula: see text] because of generated tensile. The analog signals (resistance change) are digitalized by using analog to digital modules and fed to a microcontroller to detect the vortex. A virtual environment is designed such that it consists of a 3D printed fish fin, a water tank, a camera, and data loggers to study the response of fabricated whisker. The underwater sensitivity of the whisker sensor in any direction is detectable and remarkably high ([Formula: see text]% ∼1180). The mechanical reliability of the whisker sensor is tested by bending it up to 2000 cycles. The fabricated whisker's structure and material are unique, and no one has fabricated them by using cost-effective 3D printing methods earlier. This fully 3D printable flexible whisker sensor should be applicable to a wide range of soft robotic applications.

  7. Hydrothermal synthesis of nanostructured SnO particles through crystal growth in the presence of gelatin

    Science.gov (United States)

    Uchiyama, Hiroaki; Nakanishi, Shunsuke; Kozuka, Hiromitsu

    2014-09-01

    Crystalline SnO particles were obtained from Sn6O4(OH)4 by the hydrothermal treatment in aqueous solutions containing gelatin at 150 °C for 24 h, where the morphologies of the SnO products changed from blocks to layered disks, stacked plates and unshaped aggregates with increasing amount of gelatin in the solutions. Such morphological changes of SnO particles were thought to be attributed to the suppression of the growth of SnO crystals by the adsorbed gelatin.

  8. Observation of 100Sn

    International Nuclear Information System (INIS)

    Lewitowicz, M.; Anne, R.; Auger, G.; Borcea, C.; Corre, J.M.; Doerfler, T.; Grzywacz, R.; Guillemaud-Mueller, D.; Huyse, M.; Keller, H.; Lukyanov, S.; Mueller, A.C.; Penionzhkevich, Yu.; Pfuetzner, M.; Pougheon, F.; Rykaczewski, K.; Saint-Laurent, M.G.; Schmidt-Ott, W.D.; Sorlin, O.; Tarasov, O.; Zylicz, J.

    1995-01-01

    Using a 112 Sn beam delivered by the GANIL cyclotrons in conjunction with the high acceptance device SISSI, proton-rich nuclei in the region of A=100 have been produced and subsequently analysed by the LISE3 spectrometer. As a result the doubly magic nucleus 100 Sn was identified with 11 events recorded during 44 hours. ((orig.))

  9. Observation of 100Sn

    International Nuclear Information System (INIS)

    Lewitowicz, M.; Anne, R.; Auger, G.; Corre, J.M.; Saint-Laurent, M.G.; Grzywacz, R.; Pfuetzner, M.; Rykaczewski, K.; Zylicz, J.; Lukyanov, S.

    1994-01-01

    Using a 112 Sn beam delivered by the GANIL cyclotrons in conjunction with the high acceptance device SISSI, proton rich nuclei in the region of A=100 have been produced and subsequently analysed by the LISE3 spectrometer. As a result the doubly magic nucleus 100 Sn was identified with 11 events recorded during 44 hours. (authors). 3 refs., 2 figs

  10. Hydrothermal synthesis of nanostructured SnO particles through crystal growth in the presence of gelatin

    Energy Technology Data Exchange (ETDEWEB)

    Uchiyama, Hiroaki, E-mail: h_uchi@kansai-u.ac.jp; Nakanishi, Shunsuke; Kozuka, Hiromitsu

    2014-09-15

    Crystalline SnO particles were obtained from Sn{sub 6}O{sub 4}(OH){sub 4} by the hydrothermal treatment in aqueous solutions containing gelatin at 150 °C for 24 h, where the morphologies of the SnO products changed from blocks to layered disks, stacked plates and unshaped aggregates with increasing amount of gelatin in the solutions. Such morphological changes of SnO particles were thought to be attributed to the suppression of the growth of SnO crystals by the adsorbed gelatin. - Graphical abstract: Nanostructured SnO particles were obtained from Sn{sub 6}O{sub 4}(OH){sub 4} by the hydrothermal treatment in gelatin solutions. - Highlights: • SnO particles were prepared from Sn{sub 6}O{sub 4}(OH){sub 4} by the hydrothermal treatment. • The adsorption of gelatin suppressed the growth of SnO crystals. • The shape of SnO particles depends on the amount of gelatin. • Blocks, disks, stacked plates and unshaped aggregates were obtained.

  11. Neural Computation via Neural Geometry: A Place Code for Inter-whisker Timing in the Barrel Cortex?

    Science.gov (United States)

    Wilson, Stuart P.; Bednar, James A.; Prescott, Tony J.; Mitchinson, Ben

    2011-01-01

    The place theory proposed by Jeffress (1948) is still the dominant model of how the brain represents the movement of sensory stimuli between sensory receptors. According to the place theory, delays in signalling between neurons, dependent on the distances between them, compensate for time differences in the stimulation of sensory receptors. Hence the location of neurons, activated by the coincident arrival of multiple signals, reports the stimulus movement velocity. Despite its generality, most evidence for the place theory has been provided by studies of the auditory system of auditory specialists like the barn owl, but in the study of mammalian auditory systems the evidence is inconclusive. We ask to what extent the somatosensory systems of tactile specialists like rats and mice use distance dependent delays between neurons to compute the motion of tactile stimuli between the facial whiskers (or ‘vibrissae’). We present a model in which synaptic inputs evoked by whisker deflections arrive at neurons in layer 2/3 (L2/3) somatosensory ‘barrel’ cortex at different times. The timing of synaptic inputs to each neuron depends on its location relative to sources of input in layer 4 (L4) that represent stimulation of each whisker. Constrained by the geometry and timing of projections from L4 to L2/3, the model can account for a range of experimentally measured responses to two-whisker stimuli. Consistent with that data, responses of model neurons located between the barrels to paired stimulation of two whiskers are greater than the sum of the responses to either whisker input alone. The model predicts that for neurons located closer to either barrel these supralinear responses are tuned for longer inter-whisker stimulation intervals, yielding a topographic map for the inter-whisker deflection interval across the surface of L2/3. This map constitutes a neural place code for the relative timing of sensory stimuli. PMID:22022245

  12. Magnetic whiskers of p-aminobenzoic acid and their use for preparation of filled and microchannel silicone rubbers

    Science.gov (United States)

    Semenov, V. V.; Loginova, V. V.; Zolotareva, N. V.; Razov, E. N.; Kotomina, V. E.; Kruglov, A. V.

    2016-07-01

    A thin cobalt layer has been formed on the surface of p-aminobenzoic acid whiskers by chemical vapor deposition (CVD). The metallized crystals have been oriented in liquid polydimethylsiloxane rubber by applying a dc magnetic field. After vulcanization, the filler has been removed by processing in an alcohol solution of trifluoroacetic acid. The cobalt deposition on the surface of the organic compound and the properties of metallized whiskers are investigated by optical microscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM).

  13. Magnetic whiskers of p-aminobenzoic acid and their use for preparation of filled and microchannel silicone rubbers

    International Nuclear Information System (INIS)

    Semenov, V. V.; Loginova, V. V.; Zolotareva, N. V.; Razov, E. N.; Kotomina, V. E.; Kruglov, A. V.

    2016-01-01

    A thin cobalt layer has been formed on the surface of p-aminobenzoic acid whiskers by chemical vapor deposition (CVD). The metallized crystals have been oriented in liquid polydimethylsiloxane rubber by applying a dc magnetic field. After vulcanization, the filler has been removed by processing in an alcohol solution of trifluoroacetic acid. The cobalt deposition on the surface of the organic compound and the properties of metallized whiskers are investigated by optical microscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM).

  14. Neonatal Whisker Trimming Impairs Fear/Anxiety-Related Emotional Systems of the Amygdala and Social Behaviors in Adult Mice.

    Directory of Open Access Journals (Sweden)

    Hitomi Soumiya

    Full Text Available Abnormalities in tactile perception, such as sensory defensiveness, are common features in autism spectrum disorder (ASD. While not a diagnostic criterion for ASD, deficits in tactile perception contribute to the observed lack of social communication skills. However, the influence of tactile perception deficits on the development of social behaviors remains uncertain, as do the effects on neuronal circuits related to the emotional regulation of social interactions. In neonatal rodents, whiskers are the most important tactile apparatus, so bilateral whisker trimming is used as a model of early tactile deprivation. To address the influence of tactile deprivation on adult behavior, we performed bilateral whisker trimming in mice for 10 days after birth (BWT10 mice and examined social behaviors, tactile discrimination, and c-Fos expression, a marker of neural activation, in adults after full whisker regrowth. Adult BWT10 mice exhibited significantly shorter crossable distances in the gap-crossing test than age-matched controls, indicating persistent deficits in whisker-dependent tactile perception. In contrast to controls, BWT10 mice exhibited no preference for the social compartment containing a conspecific in the three-chamber test. Furthermore, the development of amygdala circuitry was severely affected in BWT10 mice. Based on the c-Fos expression pattern, hyperactivity was found in BWT10 amygdala circuits for processing fear/anxiety-related responses to height stress but not in circuits for processing reward stimuli during whisker-dependent cued learning. These results demonstrate that neonatal whisker trimming and concomitant whisker-dependent tactile discrimination impairment severely disturbs the development of amygdala-dependent emotional regulation.

  15. Neural computation via neural geometry: a place code for inter-whisker timing in the barrel cortex?

    Directory of Open Access Journals (Sweden)

    Stuart P Wilson

    2011-10-01

    Full Text Available The place theory proposed by Jeffress (1948 is still the dominant model of how the brain represents the movement of sensory stimuli between sensory receptors. According to the place theory, delays in signalling between neurons, dependent on the distances between them, compensate for time differences in the stimulation of sensory receptors. Hence the location of neurons, activated by the coincident arrival of multiple signals, reports the stimulus movement velocity. Despite its generality, most evidence for the place theory has been provided by studies of the auditory system of auditory specialists like the barn owl, but in the study of mammalian auditory systems the evidence is inconclusive. We ask to what extent the somatosensory systems of tactile specialists like rats and mice use distance dependent delays between neurons to compute the motion of tactile stimuli between the facial whiskers (or 'vibrissae'. We present a model in which synaptic inputs evoked by whisker deflections arrive at neurons in layer 2/3 (L2/3 somatosensory 'barrel' cortex at different times. The timing of synaptic inputs to each neuron depends on its location relative to sources of input in layer 4 (L4 that represent stimulation of each whisker. Constrained by the geometry and timing of projections from L4 to L2/3, the model can account for a range of experimentally measured responses to two-whisker stimuli. Consistent with that data, responses of model neurons located between the barrels to paired stimulation of two whiskers are greater than the sum of the responses to either whisker input alone. The model predicts that for neurons located closer to either barrel these supralinear responses are tuned for longer inter-whisker stimulation intervals, yielding a topographic map for the inter-whisker deflection interval across the surface of L2/3. This map constitutes a neural place code for the relative timing of sensory stimuli.

  16. Electrochemical preparation of Al–Sm intermetallic compound whisker in LiCl–KCl Eutectic Melts

    International Nuclear Information System (INIS)

    Ji, De−Bin; Yan, Yong−De; Zhang, Mi−Lin; Li, Xing; Jing, Xiao−Yan; Han, Wei; Xue, Yun; Zhang, Zhi−Jian; Hartmann, Thomas

    2015-01-01

    Highlights: • The reduction process of Sm(III) was investigated in LiCl–KCl melt on an aluminum electrode at 773 K. • Al–Sm alloy with different phase structure (Al 2 Sm and Al 3 Sm) was prepared by potentiostatic electrolysis on an aluminum electrode with the change of electrolytic potentials and time in LiCl–KCl–SmCl 3 melts. • Al − Sm alloy containing whiskers (Al 4 Sm) was obtained by potentiostatic electrolysis (−2.10 V) on an aluminum electrode for 7 hours with the change of electrolytic temperature and cooling rate in LiCl–KCl–SmCl 3 (16.5 wt. %) melts. The results from micro–hardness test and potentiodynamic polarization test show the micro hardness and corrosion property are remarkably improved with the help of Al–Sm intermetallic compound whiskers. - Abstract: This work presents the electrochemical study of Sm(III) on an aluminum electrode in LiCl–KCl melts at 773 K by different electrochemical methods. Three electrochemical signals in cyclic voltammetry, square wave voltammetry, open circuit chronopotentiometry, and cathode polarization curve are attributed to different kinds of Al–Sm intermetallic compounds, Al 2 Sm, Al 3 Sm, and Al 4 Sm, respectively. Al–Sm alloy with different phase structure (Al 2 Sm and Al 3 Sm) could be obtained by the potentiostatic electrolysis with the change of electrolytic potentials and time. Al–Sm alloy containing whiskers (Al 4 Sm) was obtained by potentiostatic electrolysis (−2.10 V) on an aluminum electrode for 7 hours with the change of electrolytic temperature and cooling rate in LiCl–KCl–SmCl 3 (16.5 wt. %) melts. The XRD and SEM&EDS were employed to investigate the phase composition and microstructure of Al–Sm alloy. SEM analysis shows that lots of needle−like precipitates formed in Al–Sm alloy, and their ratios of length to diameter are found to be greater than 10 to 1. The TEM and electron diffraction pattern were performed to investigate the crystal structure of the

  17. Long-Term Extensive Ectopic Hair Growth on the Spinal Cord of Mice from Transplanted Whisker Follicles.

    Directory of Open Access Journals (Sweden)

    Wenluo Cao

    Full Text Available We have previously demonstrated that hair follicles contain nestin-expressing pluripotent stem cells that can effect nerve and spinal cord repair upon transplantation. In the present study, isolated whisker follicles from nestin-driven green fluorescent protein (ND-GFP mice were histocultured on Gelfoam for 3 weeks for the purpose of transplantation to the spinal cord to heal an induced injury. The hair shaft was cut off from Gelfoam-histocultured whisker follicles, and the remaining part of the whisker follicles containing GFP-nestin expressing pluripotent stem cells were transplanted into the injured spinal cord of nude mice, along with the Gelfoam. After 90 days, the mice were sacrificed and the spinal cord lesion was observed to have healed. ND-GFP expression was intense at the healed area of the spinal cord, as observed by fluorescence microscopy, demonstrating that the hair follicle stem cells were involved in healing the spinal cord. Unexpectedly, the transplanted whisker follicles sprouted out remarkably long hair shafts in the spinal cord during the 90 days after transplantation of Gelfoam whisker histocultures to the injured spine. The pigmented hair fibers, grown from the transplanted whisker histocultures, curved and enclosed the spinal cord. The unanticipated results demonstrate the great potential of hair growth after transplantation of Gelfoam hair follicle histocultures, even at an ectopic site.

  18. Probing cation intermixing in Li 2 SnO 3

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhong [General Research Institute of Nonferrous Metals; Beijing; China; China Automotive Battery Research Institute Co. Ltd; Beijing; Ren, Yang [X-ray Science Division; Advanced Photon Sources; Argonne National Laboratory; Argonne; USA; Ma, Tianyuan [Chemical Sciences and Engineering Division; Argonne National Laboratory; Argonne; USA; Zhuang, Weidong [General Research Institute of Nonferrous Metals; Beijing; China; China Automotive Battery Research Institute Co. Ltd; Beijing; Lu, Shigang [General Research Institute of Nonferrous Metals; Beijing; China; China Automotive Battery Research Institute Co. Ltd; Beijing; Xu, Guiliang [Chemical Sciences and Engineering Division; Argonne National Laboratory; Argonne; USA; Abouimrane, Ali [Chemical Sciences and Engineering Division; Argonne National Laboratory; Argonne; USA; Amine, Khalil [Chemical Sciences and Engineering Division; Argonne National Laboratory; Argonne; USA; Chen, Zonghai [Chemical Sciences and Engineering Division; Argonne National Laboratory; Argonne; USA

    2016-01-01

    A significant amount of intra-layer Li–Sn intermixing was observed. It was shown that the intra-layer Li–Sn was the cause of the suppression of the characteristic high-order super-reflection peaks for theC2/cstructure.

  19. Poly(Butylene Terephthalate Based Composites Containing Alumina Whiskers: Influence of Filler Functionalization on Dielectric Properties

    Directory of Open Access Journals (Sweden)

    Pietro Russo

    2014-01-01

    Full Text Available Poly(butylene terephthalate (PBT is one of the most widely used semicrystalline thermoplastics polyester because of its superior thermal and mechanical properties, high dimensional stability and excellent processability. In this research PBT-based nanocomposites, including various amounts (up to 10 wt% of commercial alumina whiskers, have been prepared by using a Brabender internal chamber mixer and analysed in terms of morphological features and dielectric properties. Specific attention has been focused on the effect of the filler functionalization considering 3-glycidoxy propylmethoxysilane (GPS or 3-methacryloxypropyltrimethoxysilane (MPS as coupling agents. Tests, performed on compounds filled with neat and functionalized alumina whiskers, show a clear dependence of relative dielectric permittivity εr, invariance of dissipation factor (tgδ, and a sensible increase of volume electrical resistivity (ρv with the filler’s content and are encouraging for a future introduction of such composites in many electrical applications.

  20. Cryptic mammalian species: a new species of whiskered bat (Myotis alcathoe n. sp.) in Europe

    Science.gov (United States)

    von Helversen, O.; Heller, K.-G.; Mayer, F.; Nemeth, A.; Volleth, M.; Gombkötö, P.

    2001-05-01

    The analysis of morphological, behavioural and genetic characters of whiskered bats revealed a new European bat species within the family Vespertilionidae. We describe the morphology, karyology, genetic similarity, ecology and distribution of Myotis alcathoe n. sp. It closely resembles Myotis mystacinus, Myotis brandtii and Myotis ikonnikovi in morphology, but all four species show clear genetic differences in two mitochondrial genes (ND1 and 12S rRNA). Myotis alcathoe n. sp. is the smallest species among the European whiskered bats and uses the highest-frequency echolocation calls of all the European Myotis species. It prefers to hunt in small valleys with deciduous trees and flowing water, which is an endangered habitat. Records from Greece and Hungary indicate a distribution range in south-eastern Europe.

  1. Effect of heating parameters on sintering behaviors and properties of mullite whisker frameworks

    Science.gov (United States)

    Zhang, Y. M.; Zeng, D. J.; Wang, B.; Yang, J. F.

    2018-04-01

    Mullite whisker frameworks were fabricated by vapor-solid reaction with SiO2, Al2O3 and AlF3 powders as the whisker forming agent at high temperatures. The effects of heating temperature and soaking time on the weight loss, liner shrinkage, porosity, microstructure and compressive strength were investigated. The results showed that with the increasing of the sintering temperature and soaking time, the weight loss and liner shrinkage of the samples increased and the porosities decreased due to the accelerated vapor-solid reaction, resulting in strong bonding and grain growth of the mullite frameworks. The compressive strength of the samples increased with increasing the sintering temperature from 1500 to 1650 °C, and decreased with the soaking time extended to more than 5 h for 1500 °C and 2 h for 1650 °C. A maximum compressive strength of 142 MPa at a porosity of 62.3% was obtained for the mullite whisker framework heated at 1500 °C for 5 h. The enhanced strength was attributed to the strong bonding strength and fine mullite grains resulting from a relative lower heating temperature and a modest soaking time.

  2. The Room-Temperature Chemiresistive Properties of Potassium Titanate Whiskers versus Organic Vapors

    Directory of Open Access Journals (Sweden)

    Alexey S. Varezhnikov

    2017-12-01

    Full Text Available The development of portable gas-sensing units implies a special care of their power efficiency, which is often approached by operation at room temperature. This issue primarily appeals to a choice of suitable materials whose functional properties are sensitive toward gas vapors at these conditions. While the gas sensitivity is nowadays advanced by employing the materials at nano-dimensional domain, the room temperature operation might be targeted via the application of layered solid-state electrolytes, like titanates. Here, we report gas-sensitive properties of potassium titanate whiskers, which are placed over a multielectrode chip by drop casting from suspension to yield a matrix mono-layer of varied density. The material synthesis conditions are straightforward both to get stable single-crystalline quasi-one-dimensional whiskers with a great extent of potassium replacement and to favor the increase of specific surface area of the structures. The whisker layer is found to be sensitive towards volatile organic compounds (ethanol, isopropanol, acetone in the mixture with air at room temperature. The vapor identification is obtained via processing the vector signal generated by sensor array of the multielectrode chip with the help of pattern recognition algorithms.

  3. Zinc oxide crystal whiskers as a novel sorbent for solid-phase extraction of flavonoids.

    Science.gov (United States)

    Wang, Licheng; Shangguan, Yangnan; Hou, Xiudan; Jia, Yong; Liu, Shujuan; Sun, Yingxin; Guo, Yong

    2017-08-15

    As a novel solid-phase extraction material, zinc oxide crystal whiskers were used to extract flavonoid compounds and showed good extraction abilities. X-ray diffraction, scanning electron microscopy with energy dispersive X-ray spectroscopy and surface area/pore volume characterized the sorbent. The zinc oxide was packed into a solid-phase extraction micro-column and its extraction ability was evaluated by four model flavonoid compounds. The sample loading and elution parameters were optimized and the zinc oxide based analytical method for flavonoids was established. It showed that the method has wide linearities from 1 to 150μg/L and low limits of detection at 0.25μg/L. The relative standard deviations of a single column repeatability and column to column reproducibility were less than 6.8% and 10.6%. Several real samples were analyzed by the established method and satisfactory results were obtained. The interactions between flavonoids and zinc oxide were calculated and proved to be from the Van der Waals' forces between the 4p and 5d orbitals from zinc atom and the neighboring π orbitals from flavonoid phenyl groups. Moreover, the zinc oxide crystal whiskers showed good stability and could be reused more than 50 times under the operation conditions. This work proves that the zinc oxide crystal whiskers are a good candidate for flavonoids enrichment. Copyright © 2017. Published by Elsevier B.V.

  4. Psychometric curve and behavioral strategies for whisker-based texture discrimination in rats.

    Directory of Open Access Journals (Sweden)

    Takeshi Morita

    Full Text Available The rodent whisker system is a major model for understanding neural mechanisms for tactile sensation of surface texture (roughness. Rats discriminate surface texture using the whiskers, and several theories exist for how texture information is physically sensed by the long, moveable macrovibrissae and encoded in spiking of neurons in somatosensory cortex. However, evaluating these theories requires a psychometric curve for texture discrimination, which is lacking. Here we trained rats to discriminate rough vs. fine sandpapers and grooved vs. smooth surfaces. Rats intermixed trials at macrovibrissa contact distance (nose >2 mm from surface with trials at shorter distance (nose <2 mm from surface. Macrovibrissae were required for distant contact trials, while microvibrissae and non-whisker tactile cues were used for short distance trials. A psychometric curve was measured for macrovibrissa-based sandpaper texture discrimination. Rats discriminated rough P150 from smoother P180, P280, and P400 sandpaper (100, 82, 52, and 35 µm mean grit size, respectively. Use of olfactory, visual, and auditory cues was ruled out. This is the highest reported resolution for rodent texture discrimination, and constrains models of neural coding of texture information.

  5. Piriform cortical glutamatergic and GABAergic neurons express coordinated plasticity for whisker-induced odor recall.

    Science.gov (United States)

    Liu, Yahui; Gao, Zilong; Chen, Changfeng; Wen, Bo; Huang, Li; Ge, Rongjing; Zhao, Shidi; Fan, Ruichen; Feng, Jing; Lu, Wei; Wang, Liping; Wang, Jin-Hui

    2017-11-10

    Neural plasticity occurs in learning and memory. Coordinated plasticity at glutamatergic and GABAergic neurons during memory formation remains elusive, which we investigate in a mouse model of associative learning by cellular imaging and electrophysiology. Paired odor and whisker stimulations lead to whisker-induced olfaction response. In mice that express this cross-modal memory, the neurons in the piriform cortex are recruited to encode newly acquired whisker signal alongside innate odor signal, and their response patterns to these associated signals are different. There are emerged synaptic innervations from barrel cortical neurons to piriform cortical neurons from these mice. These results indicate the recruitment of associative memory cells in the piriform cortex after associative memory. In terms of the structural and functional plasticity at these associative memory cells in the piriform cortex, glutamatergic neurons and synapses are upregulated, GABAergic neurons and synapses are downregulated as well as their mutual innervations are refined in the coordinated manner. Therefore, the associated activations of sensory cortices triggered by their input signals induce the formation of their mutual synapse innervations, the recruitment of associative memory cells and the coordinated plasticity between the GABAergic and glutamatergic neurons, which work for associative memory cells to encode cross-modal associated signals in their integration, associative storage and distinguishable retrieval.

  6. Imposition of defined states of stress on thin films by a wafer-curvature method; validation and application to aging Sn films

    International Nuclear Information System (INIS)

    Stein, J.; Pascher, M.; Welzel, U.; Huegel, W.; Mittemeijer, E.J.

    2014-01-01

    A wafer-curvature method has been developed to subject thin films, deposited on (Si) substrates, to well defined and controllable loads in a contact-free manner. To this end, a custom-made glass pan (i.e. a roof-less cylinder with a connection piece for vacuum tubes) connected to a needle valve, a vacuum pump and a pressure gauge has been used as an experimental setup. By fixing the coated Si wafer on top of the glass cylinder and evacuating the glass cylinder to a defined low-pressure, a state of stress is imposed in the thin film due to bending of the wafer. It has been shown that the (initial) stress state of a film and its change, due to its bending with the help of the wafer-curvature method, can be analyzed accurately close to the wafer center by application of one of two independent X-ray diffraction techniques: i) conventional X-ray diffraction stress analysis (i.e. application of the well known sin 2 ψ-method) to reflections originating from the film and ii) determination of the radii of curvature by rocking curve measurements utilizing reflections originating from the substrate. The validation of this stress-imposition method has been carried out with a tungsten film of 500 nm thickness, since tungsten is known to be (practically) intrinsically elastically isotropic. Further, the method has been applied to an electro-deposited, potentially whiskering, aging Sn film of 3 μm thickness where a combination of both stress-measurement techniques is essential for the determination of initial and (by wafer bending) imposed stresses. The results of the aging experiment of the Sn film under load have been discussed with respect to the current whisker-growth model. - Highlights: • A wafer-curvature method has been developed to subject thin films to defined loads. • Two X-ray diffraction techniques were employed for the analysis of stresses. • The wafer-curvature method was validated by application to a W film. • Application to a potentially whiskering Sn

  7. Large-Scale Growth of Tubular Aragonite Whiskers through a MgCl2-Assisted Hydrothermal Process

    Directory of Open Access Journals (Sweden)

    Changyin Dong

    2011-08-01

    Full Text Available In this paper, we have developed a facile MgCl2-assissted hydrothermal synthesis route to grow tubular aragonite whiskers on a large scale. The products have been characterized by powder X-ray diffraction (XRD, optical microscopy, and scanning electronic microscopy (SEM. The results show the as-grown product is pure tubular aragonite crystalline whiskers with a diameter of 5–10 mm and a length of 100–200 mm, respectively. The concentration of Mg2+ plays an important role in determining the quality and purity of the products. Furthermore, the method can be extended to fabricate CaSO4 fibers. The high quality of the product and the mild conditions used mean that the present route has good prospects for the growth of inorganic crystalline whiskers.

  8. Cerebellar potentiation and learning a whisker-based object localization task with a time response window.

    Science.gov (United States)

    Rahmati, Negah; Owens, Cullen B; Bosman, Laurens W J; Spanke, Jochen K; Lindeman, Sander; Gong, Wei; Potters, Jan-Willem; Romano, Vincenzo; Voges, Kai; Moscato, Letizia; Koekkoek, Sebastiaan K E; Negrello, Mario; De Zeeuw, Chris I

    2014-01-29

    Whisker-based object localization requires activation and plasticity of somatosensory and motor cortex. These parts of the cerebral cortex receive strong projections from the cerebellum via the thalamus, but it is unclear whether and to what extent cerebellar processing may contribute to such a sensorimotor task. Here, we subjected knock-out mice, which suffer from impaired intrinsic plasticity in their Purkinje cells and long-term potentiation at their parallel fiber-to-Purkinje cell synapses (L7-PP2B), to an object localization task with a time response window (RW). Water-deprived animals had to learn to localize an object with their whiskers, and based upon this location they were trained to lick within a particular period ("go" trial) or refrain from licking ("no-go" trial). L7-PP2B mice were not ataxic and showed proper basic motor performance during whisking and licking, but were severely impaired in learning this task compared with wild-type littermates. Significantly fewer L7-PP2B mice were able to learn the task at long RWs. Those L7-PP2B mice that eventually learned the task made unstable progress, were significantly slower in learning, and showed deficiencies in temporal tuning. These differences became greater as the RW became narrower. Trained wild-type mice, but not L7-PP2B mice, showed a net increase in simple spikes and complex spikes of their Purkinje cells during the task. We conclude that cerebellar processing, and potentiation in particular, can contribute to learning a whisker-based object localization task when timing is relevant. This study points toward a relevant role of cerebellum-cerebrum interaction in a sophisticated cognitive task requiring strict temporal processing.

  9. The morphology of the rat vibrissal array: a model for quantifying spatiotemporal patterns of whisker-object contact.

    Directory of Open Access Journals (Sweden)

    R Blythe Towal

    2011-04-01

    Full Text Available In all sensory modalities, the data acquired by the nervous system is shaped by the biomechanics, material properties, and the morphology of the peripheral sensory organs. The rat vibrissal (whisker system is one of the premier models in neuroscience to study the relationship between physical embodiment of the sensor array and the neural circuits underlying perception. To date, however, the three-dimensional morphology of the vibrissal array has not been characterized. Quantifying array morphology is important because it directly constrains the mechanosensory inputs that will be generated during behavior. These inputs in turn shape all subsequent neural processing in the vibrissal-trigeminal system, from the trigeminal ganglion to primary somatosensory ("barrel" cortex. Here we develop a set of equations for the morphology of the vibrissal array that accurately describes the location of every point on every whisker to within ±5% of the whisker length. Given only a whisker's identity (row and column location within the array, the equations establish the whisker's two-dimensional (2D shape as well as three-dimensional (3D position and orientation. The equations were developed via parameterization of 2D and 3D scans of six rat vibrissal arrays, and the parameters were specifically chosen to be consistent with those commonly measured in behavioral studies. The final morphological model was used to simulate the contact patterns that would be generated as a rat uses its whiskers to tactually explore objects with varying curvatures. The simulations demonstrate that altering the morphology of the array changes the relationship between the sensory signals acquired and the curvature of the object. The morphology of the vibrissal array thus directly constrains the nature of the neural computations that can be associated with extraction of a particular object feature. These results illustrate the key role that the physical embodiment of the sensor array

  10. Effects of chitin nano-whiskers on the antibacterial and physicochemical properties of maize starch films.

    Science.gov (United States)

    Qin, Yang; Zhang, Shuangling; Yu, Jing; Yang, Jie; Xiong, Liu; Sun, Qingjie

    2016-08-20

    We investigated the effects of chitin nano-whiskers (CNWs) on the antibacterial and physiochemical properties of maize starch-based films. The microstructures, crystalline structures, and thermal, mechanical and barrier properties of the nanocomposite films were characterized by using transmission electron microscopy, X-ray diffraction analysis, thermogravimetric, differential scanning calorimeter, and texture profile analysis. The tensile strength of the maize starch films increased from 1.64MPa to 3.69MPa (Pstarch films. Furthermore, the nanocomposite films exhibited strong antimicrobial activity against Gram-positive Listeria monocytogenes but not against Gram-negative Escherichia coli. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Studies on the Polypropylene Composites Reinforced by Ramier Fiber and K2Ti6O13 Whisker

    Directory of Open Access Journals (Sweden)

    Chun-Guang Long

    2007-01-01

    Full Text Available Polypropylene composites reinforced by the ramier fiber and K2Ti6O13 whisker were successfully prepared by means of the torque rheometer blending and transfer molding. Their mechanical properties were tested, and the fracture surface of the composite was analysed by SEM technique. Results showed that the mechanical properties were improved by the addition of 10% of K2Ti6O13 whisker besides the impact strength. The RF is benefit for improving the mechanical properties of PP after being surface-treated properly.

  12. The role of interfacial microstructure in the mechanical properties of SiC whisker reinforced Si3N4

    International Nuclear Information System (INIS)

    Swan, A.H.; Dunlop, G.L.

    1991-01-01

    SiC whisker reinforced Si 3 N 4 can be produced using a number of different methods. These include hot pressing (HP), hot isostatic pressing (HIP), reaction bonding (RB), nitrided pressureless sintering (NPS) and various combinations of these methods. This paper is concerned with the microstructure of SiC whisker reinforced Si 3 N 4 materials fabricated by both nitrided pressureless sintering and hot pressing. Attention has been given to the microstructure of as-sintered materials, crack paths within the microstructure and also microstructural changes that occur during high temperature deformation

  13. Suppressed Belief

    Directory of Open Access Journals (Sweden)

    Komarine Romdenh-Romluc

    2009-12-01

    Full Text Available Moran’s revised conception of conscious belief requires us to reconceptualise suppressed belief. The work of Merleau-Ponty offers a way to do this. His account of motor-skills allows us to understand suppressed beliefs as pre-reflective ways of dealing with the world.

  14. Improving cycle stability of SnS anode for sodium-ion batteries by limiting Sn agglomeration

    Science.gov (United States)

    Wang, Wenhui; Shi, Liang; Lan, Danni; Li, Quan

    2018-02-01

    Flower-like SnS nanostructures are obtained by a simple solvothermal method for anode applications in Na-ion batteries. We show experimental evidence of progressive Sn agglomeration and crystalline Na2S enrichment at the end of de-sodiation process of the SnS electrode, both of which contribute to the capacity decay of the electrode upon repeated cycles. By replacing the commonly adopted acetylene black conductive additive with multi-wall carbon nanotubes (MWCNT), the cycle stability of the SnS electrode is largely improved, which correlates well with the observed suppression of both Sn agglomeration and Na2S enrichment at the end of de-sodiation cycle. A full cell is assembled with the SnS/MWCNT anode and the P2-Na2/3Ni1/3Mn1/2Ti1/6O2 cathode. An initial energy density of 262 Wh/kg (normalized to the total mass of cathode and anode) is demonstrated for the full cell, which retains 71% of the first discharge capacity after 40 cycles.

  15. Zirconia toughened SiC whisker reinforced alumina composites small business innovation research

    Science.gov (United States)

    Loutfy, R. O.; Stuffle, K. L.; Withers, J. C.; Lee, C. T.

    1987-01-01

    The objective of this phase 1 project was to develop a ceramic composite with superior fracture toughness and high strength, based on combining two toughness inducing materials: zirconia for transformation toughening and SiC whiskers for reinforcement, in a controlled microstructure alumina matrix. The controlled matrix microstructure is obtained by controlling the nucleation frequency of the alumina gel with seeds (submicron alpha-alumina). The results demonstrate the technical feasibility of producing superior binary composites (Al2O3-ZrO2) and tertiary composites (Al2O3-ZrO2-SiC). Thirty-two composites were prepared, consolidated, and fracture toughness tested. Statistical analysis of the results showed that: (1) the SiC type is the key statistically significant factor for increased toughness; (2) sol-gel processing with a-alumina seed had a statistically significant effect on increasing toughness of the binary and tertiary composites compared to the corresponding mixed powder processing; and (3) ZrO2 content within the range investigated had a minor effect. Binary composites with an average critical fracture toughness of 6.6MPam sup 1/2, were obtained. Tertiary composites with critical fracture toughness in the range of 9.3 to 10.1 MPam sup 1/2 were obtained. Results indicate that these composites are superior to zirconia toughened alumina and SiC whisker reinforced alumina ceramic composites produced by conventional techniques with similar composition from published data.

  16. Improved Ablation Resistance of Silicone Rubber Composites by Introducing Montmorillonite and Silicon Carbide Whisker

    Directory of Open Access Journals (Sweden)

    Guangwu Zhang

    2016-08-01

    Full Text Available Montmorillonite (MMT was added to silicone rubber (SR to improve the ablation resistance of the silicone. Following this, different quantities of silicon carbide whiskers (SiCw were incorporated into the MMT/SR to yield a hybrid, ablative composite. The tensile strength and elongation at break of the composite increased after the addition of MMT. The ablation test results showed that MMT helped to form a covering layer by bonding with the silica and other components on the ablated surface. The linear and mass ablation rates exhibited decreases of 22.5% and 18.2%, respectively, in comparison to a control sample. After further incorporation of SiCw as the second filler, the resulting composites exhibited significantly higher tensile strength and ablation resistance, but not particularly lower elongation at break in comparison to the control sample. The SiCw/MMT fillers were beneficial in forming a dense and compact covering layer that delayed the heat and oxygen diffusion into the inner layers, which improved the ablation properties effectively. The remaining whiskers acted as a micro skeleton to maintain the composite’s char strength. Compared to the control sample, the linear and mass ablation rates of the composite after incorporating 6 phr SiCw and 10 phr MMT decreased by 59.2% and 43.6%, respectively. These experimental results showed that the fabricated composites exhibited outstanding mechanical properties and excellent ablation resistance.

  17. Study of neutron-deficient Sn isotopes

    International Nuclear Information System (INIS)

    Auger, G.

    1982-05-01

    The formation of neutron deficient nuclei by heavy ion reactions is investigated. The experimental technique is presented, and the results obtained concerning Sn et In isotopes reported: first excited states of 106 Sn, high spin states in 107 Sn and 107 In; Yrast levels of 106 Sn, 107 Sn, 108 Sn; study of neutron deficient Sn and In isotopes formed by the desintegration of the compound nucleus 112 Xe. All these results are discussed [fr

  18. Prussian Blue Modified Solid Carbon Nanorod Whisker Paste Composite Electrodes: Evaluation towards the Electroanalytical Sensing of H2O2

    Directory of Open Access Journals (Sweden)

    Carolin Siimenson

    2012-01-01

    Full Text Available Metallic impurity free solid carbon nanorod “Whiskers” (SCNR Whiskers, a derivative of carbon nanotubes, are explored in the fabrication of a Prussian Blue composite electrode and critically evaluated towards the mediated electroanalytical sensing of H2O2. The sensitivity and detection limits for H2O2 on the paste electrodes containing 20% (w/w Prussian Blue, mineral oil, and carbon nanorod whiskers were explored and found to be 120 mA/(M cm2 and 4.1 μM, respectively, over the concentration range 0.01 to 0.10 mM. Charge transfer constant for the 20% Prussian Blue containing SCNR Whiskers paste electrode was calculated, for the reduction of Prussian Blue to Prussian White, to reveal a value of 1.8±0.2 1/s (α=0.43, N=3. Surprisingly, our studies indicate that these metallic impurity-free SCNR Whiskers, in this configuration, behave electrochemically similar to that of an electrode constructed from graphite.

  19. Synthesis, Electromagnetic and Wave-Absorbing Properties of a FeNi Alloy Nano-Whisker/Particle Mixture

    Science.gov (United States)

    Zhou, Jia; Zhu, Zheng-Hou; Xiong, Chao

    2018-02-01

    A Fe20Ni80 alloy nano-whisker/particle mixture was synthesized by a hydrazine hydrate reduction method at 60°C. Electromagnetic parameters of the alloy nano-whisker/particle mixture after a 0.3-T magnetic treatment were measured in the 1.0-8.0 GHz range using an E5063A vector network analyzer. The results showed that the real part ( ɛ') of the complex permittivity of the Fe20Ni80 alloy nano-whisker/particle mixture in the 1.0-8.0 GHz range was between 23 and 18, and the imaginary part ( ɛ″) was approximately 4. The real part ( μ') of the complex permeability in 1.0-5.0 GHz range decreased greatly with increasing frequency, from a maximum of 2.5 to a minimum of 1. The imaginary part ( μ″) presented a parabolic shape change; when the frequency was 4.0 GHz, there was a maximum of 1.5. After the 0.3-T magnetic treatment, both the real part ( ɛ') and the imaginary part ( ɛ″) of the complex permittivity decreased: the real part ( μ') of the complex permeability increased sharply, and the imaginary part ( μ″) decreased slightly. The dissipation factor ( tgδ) of the Fe20Ni80 alloy nano-whisker/particle mixture in the 4.0-7.0 GHz range was approximately 1.0, which shows it has excellent wave-absorbing properties. The thickness of interference-absorbing was approximately 11 mm at 1.0 GHz; it decreased with increasing frequency. The thickness of interference-absorbing was 2.5-2 mm in the 4.0-8.0 GHz range, which shows that the Fe20Ni80 alloy nano-whisker/particle mixture has good interference-absorbing properties when the thickness is 2 mm.

  20. Low-temperature processed SnO{sub 2} compact layer for efficient mesostructure perovskite solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Jinxia; Xiong, Qiu; Feng, Bingjie; Xu, Yang; Zhang, Jun; Wang, Hao, E-mail: nanoguy@126.com

    2017-01-01

    Highlights: • Low-temperature processed 70 nm cl-SnO{sub 2} device exhibits maximum PCE. • Champion PSC after SnCl{sub 4} treatment acquires PCE of 15.07%. • Cl-SnO{sub 2} PSC via SnCl{sub 4} treatment exhibits superior stability to cl-TiO{sub 2} based PSC. - Abstract: SnO{sub 2} nanoparticle film has been synthesized via low- temperature (∼180 °C) solution-processing and proposed as compact layer in mesostructure perovskite-type solar cell (PSC). Low-temperature processed SnO{sub 2} compact layer (cl-SnO{sub 2}) brings perfect crystal-lattice and band-gap matching between electron selective layer and FTO substrate and close interface-contact between cl-SnO{sub 2} and mesoporous TiO{sub 2} layer (mp-TiO{sub 2}), which contributes to suppressing carrier recombination and optimizing device performance. In varied thickness cells, 70 nm cl-SnO{sub 2} device exhibits maximum power conversion efficiency (PCE). In order to further restrain photoelectron recombination and improve the photovoltaic performance, the surface modification of cl-SnO{sub 2} by SnCl{sub 4} aqueous solution has been carried out. The recombination behavior in the cell interior is greatly retarded via SnCl{sub 4} treatment and champion PSC after SnCl{sub 4} treatment has acquire PCE of 15.07%, which is higher than PCE of cl-TiO{sub 2} based PSC fabricated with same mp-TiO{sub 2} and perovskite procedures (13.3%). The stability of cl-SnO{sub 2} PSC via SnCl{sub 4} treatment has also been measured and its PCE reduces to 13.0% after 2 weeks in air.

  1. Effect of Fermented Chitin Nano whiskers on Properties of Polylactic Acid Bio composite Films

    International Nuclear Information System (INIS)

    Syazeven Effatin Azma Mohd Asri; Zainoha Zakaria

    2014-01-01

    The fermented chitin nano whiskers (FCNW) filled polylactic acid (PLA) bio composite films were successfully produced using solution casting method. The bio composite films were characterized in terms of tensile properties. The Young's modulus increased with increasing FCNW content while the tensile strength increased and reached the maximum value at 4 phr FCNW loading. Therefore it can be concluded that the optimum loading of FCNW is at 4 phr and further addition of FCNW may lead to agglomeration resulting in a decrease in tensile strength. The elongation at break of the bio composite films decreased rapidly upon addition of FCNW into PLA. From the Atomic Force Microscopy, the surface morphology of the PLA changed upon addition of FCNW and tendency for agglomeration of FCNW at high loading was observed. (author)

  2. Cellulose whiskers from sisal fibers: a study about the variable of extraction by acid hydrolysis

    International Nuclear Information System (INIS)

    Teodoro, Kelcilene B.R.; Teixeira, Eliangela de Morais; Correa, Ana Carolina; Campos, Adriana de; Marconcini, Jose Manoel; Mattoso, Luiz Henrique Capparelli

    2011-01-01

    The incorporation of cellulosic nanostructures in polymeric matrices has been studied due to their properties of biodegradation, and expected higher mechanical performance than the traditional composites. In this work, cellulose nanofibers were obtained from sisal bleached with reagents without chlorine, where it was used an acid mixture, with acetic acid and nitric acid, and after the bleached fibers were submitted to acid hydrolysis. The influence of the temperature and time of hydrolysis on the morphology and dimensions, crystallinity and thermal stability were analyzed by scanning transmission electronic microscopy (TEM), x-ray diffraction (XRD) and thermogravimetric analysis (TGA), respectively. The hydrolysis condition of 60 deg C and 15 minutes showed to be the most effective condition to obtain whiskers from sisal fibers, resulting in nanostructures with higher crystallinity and thermal. (author)

  3. Whisker: a client-server high-performance multimedia research control system.

    Science.gov (United States)

    Cardinal, Rudolf N; Aitken, Michael R F

    2010-11-01

    We describe an original client-server approach to behavioral research control and the Whisker system, a specific implementation of this design. The server process controls several types of hardware, including digital input/output devices, multiple graphical monitors and touchscreens, keyboards, mice, and sound cards. It provides a way to access this hardware for client programs, communicating with them via a simple text-based network protocol based on the standard Internet protocol. Clients to implement behavioral tasks may be written in any network-capable programming language. Applications to date have been in experimental psychology and behavioral and cognitive neuroscience, using rodents, humans, nonhuman primates, dogs, pigs, and birds. This system is flexible and reliable, although there are potential disadvantages in terms of complexity. Its design, features, and performance are described.

  4. Study on the mechanism of surface modification of magnesium oxysulfate whisker

    Energy Technology Data Exchange (ETDEWEB)

    Dang, Li [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Nai, Xueying; Zhu, Donghai [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008 (China); Jing, Yanwei [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Liu, Xin; Dong, Yaping [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008 (China); Li, Wu, E-mail: driverlaoli@163.com [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008 (China)

    2014-10-30

    Graphical abstract: - Highlights: • Physisorbed lauric acid was ruled out by FT-IR spectroscopy. • The inexistence of physisorbed magnesium laurate was proved by DSC analyses. • {sup 13}C NMR further verified the formation of COO–Mg< bonds on the surface of MOSw. • “Acid-base neutralization” was proved by the pH meter monitoring synchronously. • The type of surface modification of MOSw was proved to be chemical adsorption only. - Abstract: Hydrophobic-lipophilic magnesium oxysulfate whisker (MOSw) was prepared by surface modification with lauric acid and the surface morphology of MOSw was examined with field emission scanning electron microscope (FESEM). X-ray powder diffraction (XRD) was used to characterize the crystalline degree of MOSw and modified MOSw (MOSw-LA). Both FESEM and XRD suggested that modification occurred on the surface of MOSw exclusively. The inexistence of physisorbed lauric acid was proved by Fouier transform infrared (FT-IR) spectroscopy. Thermogravimetric analyses ruled out the possibility that magnesium laurate (LA-Mg) physisorbed on the surface of MOSw-LA. Solid state {sup 13}C nuclear magnetic resonance ({sup 13}C NMR) further verified the formation of COO–Mg< bonds based on the significant changes of chemical shift and decrease in intensity. Hence, we confirmed that the type of surface modification of MOSw with lauric acid was chemical adsorption taken place between lauric acid and Mg<. In order to study the dynamic state approach of this reaction, a pH meter was employed to monitor the reaction process synchronously, and then we proposed a reaction mechanism which was similar to the “acid-base neutralization”. This research provides a detailed explanation for a kind of surface modification, which may be further used in the performance of whisker/polymer matrix composites.

  5. Suppression chamber

    International Nuclear Information System (INIS)

    Goto, Hiroshi; Tsuji, Akio.

    1976-01-01

    Purpose: To miniaturize the storage tank of condensated water in BWR reactor. Constitution: A diaphragm is provided in a suppression chamber thereby to partition the same into an inner compartment and an outer compartment. In one of said compartments there is stored clean water to be used for feeding at the time of separating the reactor and for the core spray system, and in another compartment there is stored water necessary for accomplishing the depressurization effect at the time of coolant loss accident. To the compartment in which clean water is stored there is connected a water cleaning device for constantly maintaining water in clean state. As this cleaning device an already used fuel pool cleaning device can be utilized. Further, downcomers for accomplishing the depressurization function are provided in both inner compartment and outer compartment. The capacity of the storage tank can be reduced by the capacity of clean water within the suppression chamber. (Ikeda, J.)

  6. Numerical calculation of strain-N+-Ge1- x Sn x /P+-δGe1- x Sn x /N--Ge1- y - z Si y Sn z /P+-Ge1- y - z Si y Sn z heterojunction tunnel field-effect transistor

    Science.gov (United States)

    Wang, Suyuan; Zheng, Jun; Xue, Chunlai; Li, Chuanbo; Zuo, Yuhua; Cheng, Buwen; Wang, Qiming

    2017-05-01

    In this work, we present a theoretical calculation of the insertion of a δ-doping layer in double gate N+-Ge1- x Sn x /N-Ge1- y - z Si y Sn z /P+-Ge1- y - z Si y Sn z heterojunction p-type tunnel field-effect transistors (PTFETs) by semiconductor device simulation. The compositions of Ge1- x Sn x and Ge1- y - z Si y Sn z and the optimization of the δ-layer are analyzed in detail. It is shown that the use of narrow-bandgap Ge1- x Sn x in the source region and large-bandgap Ge1- y - z Si y Sn z in the drain region is favorable for increasing the on-state current (I ON) and suppressing the ambipolar effect. The P+ δ-layer in the Ge1- x Sn x considerably improves the PTFET performance compared with other structures. The best I ON of 69.56 µA/µm and the subthreshold swing (SS) of 22 mV/dec were achieved at a low applied voltage of -0.5 V.

  7. The effect of phosphoric acid concentration on the synthesis of nano-whiskers of calcium metaphosphate by chemical precipitation Method

    Science.gov (United States)

    Yao, Nengjian; Zhang, Yin; Kong, Deshuang; Zhu, Jianping; Tao, Yaqiu; Qiu, Tai

    2011-10-01

    Calcium metaphosphate (CMP) nano-whiskers were produced by a chemical precipitation method. In order to produce nano-powders, CMP was prepared by the mixing of two precursors, calcium oxide (CaO) and phosphate acid (H3PO4). Sparingly soluble chemicals, the Ca/P ratio of the mixture was set to be 0.50 to produce stoichiometric CMP, were chemical agitated in phosphate acid solution. At least 3 hours of pre-hydrolysis of phosphorus precursor were required to obtain CMP phase. The CMP powders were dried in a drying oven at 60 °C for 7 days and then followed by a heat treatment at 390 °C for 8hours. The obtained powder was analyzed using XRD, XRF, FT-IR, SEM, TG-DTA, Zeta Potential Meter, Specific Surface Area, and Particle Size Analyzer. The results showed that obtained CMP nano-whiskers have a significantly powder characteristics.

  8. Room-temperature ferromagnetism with high magnetic moment in Cu-doped AlN single crystal whiskers

    Science.gov (United States)

    Jiang, Liang-Bao; Liu, Yu; Zuo, Si-Bin; Wang, Wen-Jun

    2015-02-01

    Ferromagnetism is investigated in high-quality Cu-doped AlN single crystal whiskers. The whiskers exhibit room-temperature ferromagnetism with a magnetic moment close to the results from first-principles calculations. High crystallinity and low Cu concentrations are found to be indispensable for high magnetic moments. The difference between the experimental and theoretical moment values is explored in terms of the influence of nitrogen vacancies. The calculated results demonstrate that nitrogen vacancies can reduce the magnetic moments of Cu atom. Project supported by the National Basic Research Program of China (Grant No. 2013CB932901), the National Natural Science Foundation of China (Grant Nos. 51372267, 51210105026, and 51172270), the Funds from the Chinese Academy of Sciences, the International Centre for Diffraction Data, USA (2013 Ludo Frevel Crystallography Scholarship Award), and the Funds from the Ministry of Education of China (2012 Academic Scholarship Award for Doctoral Candidates).

  9. Structures of tin cluster cations Sn3(+) to Sn15(+).

    Science.gov (United States)

    Drebov, Nedko; Oger, Esther; Rapps, Thomas; Kelting, Rebecca; Schooss, Detlef; Weis, Patrick; Kappes, Manfred M; Ahlrichs, Reinhart

    2010-12-14

    We employ a combination of ion mobility measurements and an unbiased systematic structure search with density functional theory methods to study structure and energetics of gas phase tin cluster cations, Sn(n)(+), in the range of n = 3-15. For Sn(13)(+) we also carry out trapped ion electron diffraction measurements to ascertain the results obtained by the other procedures. The structures for the smaller systems are most easily described by idealized point group symmetries, although they are all Jahn-Teller distorted: D(3h) (trigonal bipyramid), D(4h) (octahedron), D(5h) (pentagonal bipyramid) for n = 5, 6, and 7. For the larger systems we find capped D(5h) for Sn(8)(+) and Sn(9)(+), D(3h) (tricapped trigonal prism) and D(4d) (bicapped squared antiprism) plus adatoms for n = 10, 11, 14, and 15. A centered icosahedron with a peripheral atom removed is the dominant motif in Sn(12)(+). For Sn(13)(+) the calculations predict a family of virtually isoenergetic isomers, an icosahedron and slightly distorted icosahedra, which are about 0.25 eV below two C(1) structures. The experiments indicate the presence of two structures, one from the I(h) family and a prolate C(1) isomer based on fused deltahedral moieties.

  10. Calcium sulfate whisker reinforced non-fired ceramic tiles prepared from phosphogypsum

    Directory of Open Access Journals (Sweden)

    Zimo Sheng

    2018-03-01

    Full Text Available Phosphogypsum (PG, an industrial by-product from the manufacture of phosphoric acid, can be processed into non-fired ceramic tiles by an intermittent pressing hydration process. In order to promote the practical application of the technology, calcium sulfate whisker (CSW was used as reinforcing agent to increase the mechanical strength of PG tiles in this research. The bending strength of the resulted PG tiles with 1 wt.% CSW reached 27.2 MPa, a resulting increase of 80% compared to the specimen without CSW. The reinforcement of the mechanical strength is mainly attributed to the fact that, the dispersed CSW in the tile body act as “bridges” and strongly bond with gypsum crystals, thus forming a complete tighter-linked tile network. Resumen: Los fosfoyesos (PG, un residuo industrial obtenido en la fabricación de ácido fosfórico, pueden ser reutilizados en forma de baldosas cerámicas crudas, sin necesidad de una etapa de cocción, mediante un proceso intermitente de prensado e hidratación. Para poder llevar a cabo una aplicación práctica de esta tecnología, en este trabajo se propone utilizar sulfato cálcico en forma de fibras (CSW, por sus siglas en inglés como agente de refuerzo, para incrementar la resistencia mecánica de las baldosas finalmente obtenidas. Con la adición de un 1% (en peso de CSW se incrementó la resistencia mecánica a la flexión de las baldosas hasta un valor de 27,2 MPa, lo que representa una mejora del 80% con respecto a las baldosas de PG obtenidas sin adición de CSW. Este incremento en la resistencia mecánica a la flexión se atribuye a que el CSW actúa formando puentes que se enlazan fuertemente con los cristales de yeso, creando una red fuertemente unida. Keywords: Calcium sulfate whisker, Non-fired ceramic tile, Phosphogypsum, Palabras clave: Sulfato cálcico en forma de fibras, Baldosas cerámicas crudas, Fosfoyesos

  11. A yield-optimized access to double-helical SnIP via a Sn/SnI2 approach

    Science.gov (United States)

    Utrap, André; Xiang, Ng Yan; Nilges, Tom

    2017-10-01

    Herein we report on the optimized synthesis process of SnIP, the first inorganic double helix compound which shows high mechanical flexibility, a strong tendency for cleavage or delamination and intriguing electronic properties. In this work we analyzed the influence of SnI2 as a reaction promotor or mineralizer compound for the synthesis of SnIP. In previous studies Sn/SnI4 was used as a precursor and chemical transport agent for the SnIP synthesis but significant amounts of non-reacted tin halide (SnI2 and SnI4) remained after the formation of the target compound reducing its quality and yield. Significantly less tin halide residue can be observed which suggests a reduction of side-reactions. While the Sn/SnI4 couple works perfectly for the synthesis of the two-dimensional material phosphorene precursor black phosphorus the Sn/SnI2 couple is beneficial for the one-dimensional ternary polyphosphide SnIP. These results strongly encourage the theory of SnI2 as the important reaction intermediate in the synthesis of covalently-bonded polyphosphide substructures and element allotropes at elevated temperatures.

  12. Whisker Deprivation Drives Two Phases of Inhibitory Synapse Weakening in Layer 4 of Rat Somatosensory Cortex.

    Directory of Open Access Journals (Sweden)

    Melanie A Gainey

    Full Text Available Inhibitory synapse development in sensory neocortex is experience-dependent, with sustained sensory deprivation yielding fewer and weaker inhibitory synapses. Whether this represents arrest of synapse maturation, or a more complex set of processes, is unclear. To test this, we measured the dynamics of inhibitory synapse development in layer 4 of rat somatosensory cortex (S1 during continuous whisker deprivation from postnatal day 7, and in age-matched controls. In deprived columns, spontaneous miniature inhibitory postsynaptic currents (mIPSCs and evoked IPSCs developed normally until P15, when IPSC amplitude transiently decreased, recovering by P16 despite ongoing deprivation. IPSCs remained normal until P22, when a second, sustained phase of weakening began. Delaying deprivation onset by 5 days prevented the P15 weakening. Both early and late phase weakening involved measurable reduction in IPSC amplitude relative to prior time points. Thus, deprivation appears to drive two distinct phases of active IPSC weakening, rather than simple arrest of synapse maturation.

  13. Hydroxyapatite-hybridized chitosan/chitin whisker bionanocomposite fibers for bone tissue engineering applications.

    Science.gov (United States)

    Pangon, Autchara; Saesoo, Somsak; Saengkrit, Nattika; Ruktanonchai, Uracha; Intasanta, Varol

    2016-06-25

    Biomimetic nanofibrous scaffolds derived from natural biopolymers for bone tissue engineering applications require good mechanical and biological performances including biomineralization. The present work proposes the utility of chitin whisker (CTWK) to enhance mechanical properties of chitosan/poly(vinyl alcohol) (CS/PVA) nanofibers and to offer osteoblast cell growth with hydroxyapatite (HA) mineralization. By using diacid as a solvent, electrospun CS/PVA nanofibrous membranes containing CTWK can be easily obtained. The dimension stability of nanofibrous CS/PVA/CTWK bionanocomposite is further controlled by exposing to glutaraldehyde vapor. The nanofibrous membranes obtained allow mineralization of HA in concentrated simulated body fluid resulting in an improvement of Young's modulus and tensile strength. The CTWK combined with HA in bionanocomposite is a key to promote osteoblast cell adhesion and proliferation. The present work, for the first time, demonstrates the use of CTWKs for bionanocomposite fibers of chitosan and its hydroxyapatite biomineralization with the function in osteoblast cell culture. These hydroxyapatite-hybridized CS/PVA/CTWK bionanocomposite fibers (CS/PVA/CTWK-HA) offer a great potential for bone tissue engineering applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Al doping influence on crystal growth, structure and superconducting properties of Y(Ca)Ba2Cu3O7−y whiskers

    International Nuclear Information System (INIS)

    Calore, L.; Rahman Khan, M.M.; Cagliero, S.; Agostino, A.; Truccato, M.; Operti, L.

    2013-01-01

    Highlights: ► Optimization of YBCO whiskers synthesis by Al 2 O 3 addition. ► First complete crystal cell characterization of undoped YBCO whiskers. ► Characterization of the doped whiskers structural and electrical properties. ► New important evidences for the bottom-up growth mechanisms. - Abstract: We synthesized Al doped Y(Ca)Ba 2 Cu 3 O 7−y (YBCO) whiskers via the solid state reaction method. Al doping was systematically varied in the nominal cationic stoichiometry of YBa 2 Cu 3 CaTe 0.5 Al x O 7−y , with 0 ⩽ x ⩽ 0.5. The amount of the grown whiskers increases for nominal Al addition up to x = 0.05, decreasing for larger concentrations. The concentration of Al incorporated in the crystals (x′) is always higher with respect to the starting stoichiometry and shows a gradient along its length, with a higher amount at the tip regions. The single crystal diffraction analyses show an increasing tetragonal character with increasing x′, with a transition from the orthorhombic to the tetragonal system for x′ = 0.13, which is in agreement with the worsening of electrical transport properties and disappearing of superconductivity for x′ = 0.19.

  15. Ethanolic extract of Astragali radix and Salviae radix prohibits oxidative brain injury by psycho-emotional stress in whisker removal rat model.

    Directory of Open Access Journals (Sweden)

    Hyeong-Geug Kim

    Full Text Available Myelophil, an ethanolic extract of Astragali Radix and Salviae Radix, has been clinically used to treat chronic fatigue and stress related disorders in South Korea. In this study, we investigated the protective effects of Myelophil on a whisker removal-induced psycho-emotional stress model. SD rats were subjected to whisker removal after oral administration of Myelophil or ascorbic acid for consecutive 4 days. Whisker removal considerably increased total reactive oxygen species in serum levels as well as cerebral cortex and hippocampal regions in brain tissues. Lipidperoxidation levels were also increased in the cerebral cortex, hippocampus regions, and brain tissue injuries as shown in histopathology and immunohistochemistry. However, Myelophil significantly ameliorated these alterations, and depletion of glutathione contents in both cerebral cortex and hippocampus regions respectively. Serum levels of corticosterone and adrenaline were notably altered after whisker removal stress, whereas these abnormalities were significantly normalized by pre-treatment with Myelophil. The NF-κB was notably activated in both cerebral cortex and hippocampus after whisker removal stress, while it was efficiently blocked by pre-treatment with Myelophil. Myelophil also significantly normalizes alterations of tumor necrosis factor-α, interleukin (IL-1β, IL-6 and interferon-γ in both gene expressions and protein levels. These results suggest that Myelophil has protective effects on brain damages in psycho-emotional stress, and the underlying mechanisms involve regulation of inflammatory proteins, especially NF-κB modulation.

  16. Neurons in the barrel cortex turn into processing whisker and odor signals: a cellular mechanism for the storage and retrieval of associative signals.

    Science.gov (United States)

    Wang, Dangui; Zhao, Jun; Gao, Zilong; Chen, Na; Wen, Bo; Lu, Wei; Lei, Zhuofan; Chen, Changfeng; Liu, Yahui; Feng, Jing; Wang, Jin-Hui

    2015-01-01

    Associative learning and memory are essential to logical thinking and cognition. How the neurons are recruited as associative memory cells to encode multiple input signals for their associated storage and distinguishable retrieval remains unclear. We studied this issue in the barrel cortex by in vivo two-photon calcium imaging, electrophysiology, and neural tracing in our mouse model that the simultaneous whisker and olfaction stimulations led to odorant-induced whisker motion. After this cross-modal reflex arose, the barrel and piriform cortices connected. More than 40% of barrel cortical neurons became to encode odor signal alongside whisker signal. Some of these neurons expressed distinct activity patterns in response to acquired odor signal and innate whisker signal, and others encoded similar pattern in response to these signals. In the meantime, certain barrel cortical astrocytes encoded odorant and whisker signals. After associative learning, the neurons and astrocytes in the sensory cortices are able to store the newly learnt signal (cross-modal memory) besides the innate signal (native-modal memory). Such associative memory cells distinguish the differences of these signals by programming different codes and signify the historical associations of these signals by similar codes in information retrievals.

  17. Microstructure, Tensile Properties, and Corrosion Behavior of Die-Cast Mg-7Al-1Ca- xSn Alloys

    Science.gov (United States)

    Wang, Feng; Dong, Haikuo; Sun, Shijie; Wang, Zhi; Mao, Pingli; Liu, Zheng

    2018-02-01

    The microstructure, tensile properties, and corrosion behavior of die-cast Mg-7Al-1Ca- xSn ( x = 0, 0.5, 1.0, and 2.0 wt.%) alloys were studied using OM, SEM/EDS, tensile test, weight loss test, and electrochemical test. The experimental results showed that Sn addition effectively refined grains and intermetallic phases and increased the amount of intermetallic phases. Meanwhile, Sn addition to the alloys suppressed the formation of the (Mg,Al)2Ca phase and resulted in the formation of the ternary CaMgSn phase and the binary Mg2Sn phase. The Mg-7Al-1Ca-0.5Sn alloy exhibited best tensile properties at room temperature, while Mg-7Al-1Ca-1.0Sn alloy exhibited best tensile properties at elevated temperature. The corrosion resistance of studied alloys was improved by the Sn addition, and the Mg-7Al-1Ca-0.5Sn alloy presented the best corrosion resistance.

  18. Electrodeposition and corrosion resistance of nanocrystalline white bronze (CuSn) coatings

    NARCIS (Netherlands)

    Hovestad, A.; Lekka, M.; Willemsen, R.M.R.; Tacken, R.A.; Bonora, P.L.

    2008-01-01

    For jewellery applications electroplated white bronze (CuSn) was investigated as undercoating for noble metal finishes as alternative to nickel. A strongly acidic plating bath was developed with an organic additive to suppress hydrogen evolution and obtain bright coatings. An electrochemical study

  19. Selective growth of Ge1‑ x Sn x epitaxial layer on patterned SiO2/Si substrate by metal–organic chemical vapor deposition

    Science.gov (United States)

    Takeuchi, Wakana; Washizu, Tomoya; Ike, Shinichi; Nakatsuka, Osamu; Zaima, Shigeaki

    2018-01-01

    We have investigated the selective growth of a Ge1‑ x Sn x epitaxial layer on a line/space-patterned SiO2/Si substrate by metal–organic chemical vapor deposition. We examined the behavior of a Sn precursor of tributyl(vinyl)tin (TBVSn) during the growth on Si and SiO2 substrates and investigated the effect of the Sn precursor on the selective growth. The selective growth of the Ge1‑ x Sn x epitaxial layer was performed under various total pressures and growth temperatures of 300 and 350 °C. The selective growth of the Ge1‑ x Sn x epitaxial layer on the patterned Si region is achieved at a low total pressure without Ge1‑ x Sn x growth on the SiO2 region. In addition, we found that the Sn content in the Ge1‑ x Sn x epitaxial layer increases with width of the SiO2 region for a fixed Si width even with low total pressure. To control the Sn content in the selective growth of the Ge1‑ x Sn x epitaxial layer, it is important to suppress the decomposition and migration of Sn and Ge precursors.

  20. PROTEUS-SN User Manual

    Energy Technology Data Exchange (ETDEWEB)

    Shemon, Emily R. [Argonne National Lab. (ANL), Argonne, IL (United States); Smith, Micheal A. [Argonne National Lab. (ANL), Argonne, IL (United States); Lee, Changho [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-02-16

    PROTEUS-SN is a three-dimensional, highly scalable, high-fidelity neutron transport code developed at Argonne National Laboratory. The code is applicable to all spectrum reactor transport calculations, particularly those in which a high degree of fidelity is needed either to represent spatial detail or to resolve solution gradients. PROTEUS-SN solves the second order formulation of the transport equation using the continuous Galerkin finite element method in space, the discrete ordinates approximation in angle, and the multigroup approximation in energy. PROTEUS-SN’s parallel methodology permits the efficient decomposition of the problem by both space and angle, permitting large problems to run efficiently on hundreds of thousands of cores. PROTEUS-SN can also be used in serial or on smaller compute clusters (10’s to 100’s of cores) for smaller homogenized problems, although it is generally more computationally expensive than traditional homogenized methodology codes. PROTEUS-SN has been used to model partially homogenized systems, where regions of interest are represented explicitly and other regions are homogenized to reduce the problem size and required computational resources. PROTEUS-SN solves forward and adjoint eigenvalue problems and permits both neutron upscattering and downscattering. An adiabatic kinetics option has recently been included for performing simple time-dependent calculations in addition to standard steady state calculations. PROTEUS-SN handles void and reflective boundary conditions. Multigroup cross sections can be generated externally using the MC2-3 fast reactor multigroup cross section generation code or internally using the cross section application programming interface (API) which can treat the subgroup or resonance table libraries. PROTEUS-SN is written in Fortran 90 and also includes C preprocessor definitions. The code links against the PETSc, METIS, HDF5, and MPICH libraries. It optionally links against the MOAB library and

  1. Conversion of wood flour/SiO2/phenolic composite to porous SiC ceramic containing SiC whiskers

    Directory of Open Access Journals (Sweden)

    Li Zhong

    2013-01-01

    Full Text Available A novel wood flour/SiO2/phenolic composite was chosen to be converted into porous SiC ceramic containing SiC whiskers via carbothermal reduction. At 1550°C the composite is converted into porous SiC ceramic with pore diameters of 10~40μm, and consisting of β-SiC located at the position of former wood cell walls. β-SiC wire-like whiskers of less than 50 nm in diameter and several tens to over 100 μm in length form within the pores. The surface of the resulting ceramic is coated with β-SiC necklace-like whiskers with diameters of 1~2μm.

  2. Temperature-dependent transformation from whisker- to nanoparticle-strengthened composite interface in the Al{sub 2}O{sub 3}/Ag-based alloy system and mechanical properties of the joints

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yifeng; Cao, Jian, E-mail: cao_jian@hit.edu.cn; Wang, Zhijie; Chen, Zhe; Song, Xiaoguo; Feng, Jicai

    2015-11-15

    Al{sub 4}B{sub 2}O{sub 9}-whisker-coated Al{sub 2}O{sub 3} ceramics were bonded by AgCu–4.5 wt.%Ti alloy in vacuum. The microstructure of the whisker-coated Al{sub 2}O{sub 3} joints was investigated by scanning electron microscopy, transmission electron microscopy and X-ray diffraction. A continuous (Cu,Al){sub 3}Ti{sub 3}O layer formed against the alloy at lower bonding temperatures, and a complex transition zone bordering the whiskers was observed, which consisted of Ag nanoparticles, titanium oxides, TiB{sub 2}, (Cu,Al){sub 3}Ti{sub 3}O nanoparticles and possible Ag{sub 3}Al. As the bonding temperature increased, the Al{sub 2}O{sub 3}/AgCuTi interface was found to transform from whisker- to nanoparticle-strengthened composite region. Bend test results revealed that both the whiskers grown on Al{sub 2}O{sub 3} and the dispersive nanoscale products in the alloy played positive roles in improving the joint properties. The maximum bend strength of the whisker-coated Al{sub 2}O{sub 3} joints was 313 MPa at the bonding temperature of 820 °C. - Highlights: • Al{sub 4}B{sub 2}O{sub 9}-whisker-coated Al{sub 2}O{sub 3} ceramics were bonded by AgCu–4.5 wt.%Ti alloy in vacuum. • Microstructures of whisker-coated Al{sub 2}O{sub 3} joints were investigated in detail. • Both whiskers and the dispersive nanoscale products can improve the joint properties. • The maximum bend strength of the whisker-coated Al{sub 2}O{sub 3} joints was 313 MPa.

  3. Synthesis, characterization, antimicrobial activity and mechanism of a novel hydroxyapatite whisker/nano zinc oxide biomaterial

    International Nuclear Information System (INIS)

    Yu, Jian; Zhang, Wenyun; Li, Yang; Wang, Gang; Yang, Lidou; Jin, Jianfeng; Chen, Qinghua; Huang, Minghua

    2015-01-01

    Postoperative infections remain a risk factor that leads to failures in oral and maxillofacial artificial bone transplantation. This study aimed to synthesize and evaluate a novel hydroxyapatite whisker (HAPw) / nano zinc oxide (n-ZnO) antimicrobial bone restorative biomaterial. A scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and x-ray diffraction (XRD) were employed to characterize and analyze the material. Antibacterial capabilities against Staphylococcus aureus, Escherichia coli, Candida albicans and Streptococcus mutans were determined by minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), and kinetic growth inhibition assays were performed under darkness and simulated solar irradiation. The mode of antibiotic action was observed by transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM). The MIC and MBC were 0.078–1.250 mg ml −1 and 0.156–2.500 mg ml −1 , respectively. The inhibitory function on the growth of the microorganisms was achieved even under darkness, with gram-positive bacteria found to be more sensitive than gram-negative, and enhanced antimicrobial activity was exhibited under simulated solar excitation compared to darkness. TEM and CLSM images revealed a certain level of bacterial cell membrane destruction after treatment with 1 mg ml −1 of the material for 12 h, causing the leakage of intracellular contents and bacteria death. These results suggest favorable antibiotic properties and a probable mechanism of the biomaterial for the first time, and further studies are needed to determine its potential application as a postoperative anti-inflammation method in bone transplantation. (paper)

  4. Whisker spot patterns: a noninvasive method of individual identification of Australian sea lions (Neophoca cinerea)

    Science.gov (United States)

    Osterrieder, Sylvia K.; Salgado Kent, Chandra; Anderson, Carlos J. R.; Parnum, Iain M.; Robinson, Randall W.

    2015-01-01

    Reliable methods for identification of individual animals are advantageous for ecological studies of population demographics and movement patterns. Photographic identification, based on distinguishable patterns, unique shapes, or scars, is an effective technique already used for many species. We tested whether photographs of whisker spot patterns could be used to discriminate among individual Australian sea lion (Neophoca cinerea). Based on images of 53 sea lions, we simulated 5,000 patterns before calculating the probability of duplication in a study population. A total of 99% (± 1.5 SD) of patterns were considered reliable for a population of 50, 98% (± 1.7 SD) for 100, 92% (± 4.7 SD) for 500, and 88% (± 5.7 SD) for 1,000. We tested a semiautomatic approach by matching 16 known individuals at 3 different angles (70°, 90°, and 110°), 2 distances (1 and 2 m), and 6 separate times over a 1-year period. A point-pattern matching algorithm for pairwise comparisons produced 90% correct matches of photographs taken on the same day at 90°. Images of individuals at 1 and 2 m resulted in 89% correct matches, those photographed at different angles and different times (at 90°) resulted in 48% and 73% correct matches, respectively. Our results show that the Chamfer distance transform can effectively be used for individual identification, but only if there is very little variation in photograph angle. This point-pattern recognition application may also work for other otariid species. PMID:26937048

  5. Tribo-performance of epoxy hybrid composites reinforced with carbon fibers and potassium titanate whiskers

    Science.gov (United States)

    Suresha, B.; Harshavardhan, B.; Ravishankar, R.

    2018-04-01

    The present investigation deals with the fabrication and characterization of epoxy reinforced with bidirectional carbon fiber mat (CF/Ep) and filled with 2.5, 5 and 7.5 wt% potassium titanate whiskers (PTw) composites. The effect of PTw loading on hardness, tensile properties and dry sliding wear behaviour of CF/Ep composite were carefully investigated in expectation of providing valuable information for the application of hybrid CF/Ep composites. Results indicated that the incorporation of PTw actually improved the hardness, tensile strength and tensile modulus of CF/Ep composites. Meanwhile, the specific wear rate of CF/Ep filled by 5 wt % PTw reached to 6.3× 10-14 m3/N-m, which is 41% lower than that of CF/Ep composite at the same dry sliding condition. It also seen that the fiber and filler worked synergistically to enhance the wear resistance. Further, for all composites the friction coefficient increases with increase in load and sliding velocity. However, PTw reinforced CF/Ep exhibited considerably higher coefficient of friction compared to unfilled ones, while PTw filler loading of 5 wt% was effective in reducing the specific wear rate of CF/Ep composite. The carbon fiber carried the applied load between the contact surfaces and protected the epoxy from severe abrasion of the counterface. At the same time, the exposed PTw out of the epoxy matrix around the fiber inhibited the direct scraping between the fiber and counterface so that the fibers could be less directly impacted during the subsequent wear process and they were protected from severe damage.

  6. Convergence of primary sensory cortex and cerebellar nuclei pathways in the whisker system.

    Science.gov (United States)

    Schäfer, Carmen B; Hoebeek, Freek E

    2018-01-01

    To safely maneuver through the environment the brain needs to compare active sensory information with ongoing motor programs. This process occurs at various levels in the brain: at the lower level, i.e., in the spinal cord, reflexes are generated for the most primitive motor responses; at the intermediate level, i.e., in the brainstem, various nuclei co-process sensory- and motor-related inputs; and, at the higher level cerebellum and thalamo-cortical networks individually compute suitable commands for fine-tuned motor output. For sensorimotor processes the integrative capacities of the cerebral cortex and the cerebellum have been the topic of detailed analysis. Here, we use higher order sensorimotor integration in the whisker system as a model to evaluate the convergence pattern of primary sensory cortex projections and the cerebellar output nuclei throughout several brain nuclei. This prospective review focuses not only on the thalamus, but also incorporates extra-thalamic structures that could function as comparators of cerebellar output and sensory cortex output. Based on the literature on anatomical and physiological studies in the rodent brain and our qualitative data on the convergence of cerebellar sensory cortical projections we identify the superior colliculus as well as the zona incerta and the anterior pretectal nucleus as suitable candidates for cerebello-cortical convergence. Including these putative comparators we discuss the potential routes for sensorimotor information flow between the cerebellum and cerebral sensory cortex with a focus on the modulation of thalamic activity by extra-thalamic structures. Copyright © 2017. Published by Elsevier Ltd.

  7. A new strategy for TiO2 whiskers mediated multi-mode cancer treatment

    Science.gov (United States)

    Xu, Peipei; Wang, Ruju; Ouyang, Jian; Chen, Bing

    2015-02-01

    Traditional Chinese medicine (TCM) which functions as chemotherapeutic or adjuvantly chemotherapeutic agents has been drawing a great many eyeballs for its easy obtain and significant antitumor effects accompanied with less toxic and side effects. PDT (photodynamic therapy) utilizes the fact that certain compounds coined as photosensitizers, when exposed to light of a specific wavelength, are capable of generating cytotoxic reactive oxygen species (ROS) such as hydroxyl radical, hydrogen peroxide, and superoxide to kill cancer cells. Combinations of cancer therapeutic modalities are studied to improve the efficacy of treatment. This study aimed to explore a new strategy of coupling of titanium dioxide whiskers (TiO2 Ws) with the anticancer drug gambogic acid (GA) in photodynamic therapy. The nanocomposites were coined as GA-TiO2. The combination of TiO2 Ws with GA induced a remarkable enhancement in antitumor activity estimated by MTT assay, nuclear DAPI staining, and flow cytometry. Furthermore, the possible signaling pathway was explored by reverse transcription polymerase chain reaction (RT-PCR) and Western blot assay. These results identify TiO2 Ws of good biocompatibility and photocatalytic activity. In human leukemia cells (K562 cells), TiO2 Ws could obviously increase the intracellular concentration of GA and enhance its potential antitumor efficiency, suggesting that TiO2 Ws could act as an efficient drug delivery carrier targeting GA to carcinoma cells. Moreover, photodynamic GA-TiO2 nanocomposites could induce an evident reinforcement in antitumor activity with UV illumination. These results reveal that such modality combinations put forward a promising proposal in cancer therapy.

  8. In vitro corrosion and cytocompatibility properties of nano-whisker hydroxyapatite coating on magnesium alloy for bone tissue engineering applications.

    Science.gov (United States)

    Yang, Huawei; Yan, Xueyu; Ling, Min; Xiong, Zuquan; Ou, Caiwen; Lu, Wei

    2015-03-17

    We report here the successful fabrication of nano-whisker hydroxyapatite (nHA) coatings on Mg alloy by using a simple one-step hydrothermal process in aqueous solution. The nHA coating shows uniform structure and high crystallinity. Results indicate that nHA coating is promising for improving the in vitro corrosion and cytocompatibility properties of Mg-based implants and devices for bone tissue engineering. In addition, the simple hydrothermal deposition method used in the current study is also applicable to substrates with complex shapes or surface geometries.

  9. In Vitro Corrosion and Cytocompatibility Properties of Nano-Whisker Hydroxyapatite Coating on Magnesium Alloy for Bone Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    Huawei Yang

    2015-03-01

    Full Text Available We report here the successful fabrication of nano-whisker hydroxyapatite (nHA coatings on Mg alloy by using a simple one-step hydrothermal process in aqueous solution. The nHA coating shows uniform structure and high crystallinity. Results indicate that nHA coating is promising for improving the in vitro corrosion and cytocompatibility properties of Mg-based implants and devices for bone tissue engineering. In addition, the simple hydrothermal deposition method used in the current study is also applicable to substrates with complex shapes or surface geometries.

  10. Schottky barrier tuning via dopant segregation in NiGeSn-GeSn contacts

    Science.gov (United States)

    Schulte-Braucks, Christian; Hofmann, Emily; Glass, Stefan; von den Driesch, Nils; Mussler, Gregor; Breuer, Uwe; Hartmann, Jean-Michel; Zaumseil, Peter; Schröder, Thomas; Zhao, Qing-Tai; Mantl, Siegfried; Buca, Dan

    2017-05-01

    We present a comprehensive study on the formation and tuning of the Schottky barrier of NiGeSn metallic alloys on Ge1-xSnx semiconductors. First, the Ni metallization of GeSn is investigated for a wide range of Sn contents (x = 0-0.125). Structural analysis reveals the existence of different poly-crystalline NiGeSn and Ni3(GeSn)5 phases depending on the Sn content. Electrical measurements confirm a low NiGeSn sheet resistance of 12 Ω/□ almost independent of the Sn content. We extracted from Schottky barrier height measurements in NiGeSn/GeSn/NiGeSn metal-semiconductor-metal diodes Schottky barriers for the holes below 0.15 eV. They decrease with the Sn content, thereby confirming NiGeSn as an ideal metal alloy for p-type contacts. Dopant segregation for both p- and n-type dopants is investigated as a technique to effectively modify the Schottky barrier of NiGeSn/GeSn contacts. Secondary ion mass spectroscopy is employed to analyze dopant segregation and reveal its dependence on both the Sn content and biaxial layer strain.

  11. SN 2009E: a faint clone of SN 1987A

    DEFF Research Database (Denmark)

    Pastorello, A.; Pumo, M. L.; Navasardyan, H.

    2012-01-01

    Context.1987A-like events form a rare sub-group of hydrogen-rich core-collapse supernovae that are thought to originate from the explosion of blue supergiant stars. Although SN 1987A is the best known supernova, very few objects of this group have been discovered and, hence, studied. Aims. In thi...

  12. Geochemistry of tin (Sn) in Chinese coals.

    Science.gov (United States)

    Qu, Qinyuan; Liu, Guijian; Sun, Ruoyu; Kang, Yu

    2016-02-01

    Based on 1625 data collected from the published literature, the geochemistry of tin (Sn) in Chinese coals, including the abundance, distribution, modes of occurrence, genetic types and combustion behavior, was discussed to make a better understanding. Our statistic showed the average Sn of Chinese coal was 3.38 mg/kg, almost two times higher than the world. Among all the samples collected, Guangxi coals occupied an extremely high Sn enrichment (10.46 mg/kg), making sharp contrast to Xinjiang coals (0.49 mg/kg). Two modes of occurrence of Sn in Chinese coals were found, including sulfide-bounded Sn and clay-bounded Sn. In some coalfields, such as Liupanshui, Huayingshan and Haerwusu, a response between REEs distribution and Sn content was found which may caused by the transportation of Sn including clay minerals between coal seams. According to the responses reflecting on REEs patterns of each coalfield, several genetic types of Sn in coalfields were discussed. The enrichment of Sn in Guangxi coals probably caused by Sn-rich source rocks and multiple-stage hydrothermal fluids. The enriched Sn in western Guizhou coals was probably caused by volcanic ashes and sulfide-fixing mechanism. The depletion of Sn in Shengli coalfield, Inner Mongolia, may attribute to hardly terrigenous input and fluids erosion. As a relative easily volatilized element, the Sn-containing combustion by-products tended to be absorbed on the fine particles of fly ash. In 2012, the emission flux of Sn by Chinese coal combustion was estimated to be 0.90 × 10(9) g.

  13. A Preliminary Evaluation of Lyophilized Gelatin Sponges, Enhanced with Platelet-Rich Plasma, Hydroxyapatite and Chitin Whiskers for Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Andrew J. Spence

    2013-04-01

    Full Text Available The purpose of this study was to perform a number of preliminary in vitro evaluations on an array of modified gelatin gel sponge scaffolds for use in a bone graft application. The gelatin gels were modified through the addition of a number of components which each possess unique properties conducive to the creation and regeneration of bone: a preparation rich in growth factors (PRGF, a bioactive, lyophilized form of platelet-rich plasma, hydroxyapatite, and chitin whiskers. Platelet-rich plasma therapy is an emerging practice that has proven effective in a number of clinical applications, including enhancing bone repair through improved deposition of new bony matrix and angiogenesis. As such, the inclusion of PRGF in our gelatin scaffolds was intended to significantly enhance scaffold bioactivity, while the addition of hydroxyapatite and chitin whiskers were anticipated to increase scaffold strength. Additionally, the gelatin sponges, which readily dissolve in aqueous solutions, were subjected to 1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC cross-linking, either during or post-gelation, to control their rate of degradation. Scaffolds were evaluated in vitro with respect to compressive strength, mass loss/degradation, protein release, and cellular interaction, with results demonstrating the potential of the gelatin gel sponge scaffold for use in the regeneration of bone.

  14. Analysis of fatigue crack propagation behaviour in SiC particulate Al2O3 whisker reinforced hybrid MMC

    International Nuclear Information System (INIS)

    Iqbal, AKM Asif; Arai, Yoshio

    2016-01-01

    The fatigue crack propagation behaviour of a cast hybrid metal matrix composite (MMC) was investigated and compared with the crack propagation behaviour of MMC with Al 2 O 3 and Al alloy in this article. Three dimensional (3D) surface analysis is carried out to analyze the crack propagation mechanism. All three materials clearly show near threshold and stable crack growth regions, but the rapid crack growth region is not clearly understood. The crack propagation resistance is found higher in hybrid MMC than that of MMC with Al 2 O 3 whisker and the Al alloy in the low ΔK region. The crack propagation in the hybrid MMC in the near-threshold region is directed by the debonding of reinforcement-matrix followed by void nucleation in the Al alloy matrix. Besides, the crack propagation in the stable- or midcrack-growth region is controlled by the debonding of particle-matrix and whisker-matrix interface caused by the cycle-by-cycle crack growth along the interface. The transgranular fracture of the reinforcement and void formation are also observed. Due to presence of large volume of inclusions and the microstructural inhomogeneity, the area of striation formation is reduced in the hybrid MMC, caused the unstable fracture. (paper)

  15. [Effect of amount of silane coupling agent on flexural strength of dental composite resins reinforced with aluminium borate whisker].

    Science.gov (United States)

    Zhu, Ming-yi; Zhang, Xiu-yin

    2015-06-01

    To evaluate the effect of amount of silane coupling agent on flexural strength of dental composite resins reinforced with aluminium borate whisker (ABW). ABW was surface-treated with 0%, 1%, 2%, 3% and 4% silan coupling agent (γ-MPS), and mixed with resin matrix to synthesize 5 groups of composite resins. After heat-cured at 120 degrees centigrade for 1 h, specimens were tested in three-point flexure to measure strength according to ISO-4049. One specimen was selected randomly from each group and observed under scanning electron microscope (SEM). The data was analyzed with SAS 9.2 software package. The flexural strength (117.93±11.9 Mpa) of the group treated with 2% silane coupling agent was the highest, and significantly different from that of the other 4 groups (α=0.01). The amount of silane coupling agent has impact on the flexural strength of dental composite resins reinforced with whiskers; The flexual strength will be reduced whenever the amount is higher or lower than the threshold. Supported by Research Fund of Science and Technology Committee of Shanghai Municipality (08DZ2271100).

  16. Electrospun composite nanofiber membrane of poly(l-lactide) and surface grafted chitin whiskers: Fabrication, mechanical properties and cytocompatibility.

    Science.gov (United States)

    Liu, Hua; Liu, Wenjun; Luo, Binghong; Wen, Wei; Liu, Mingxian; Wang, Xiaoying; Zhou, Changren

    2016-08-20

    To improve both the mechanical properties and cytocompatibility of poly(l-lactide) (PLLA), rod-like chitin whiskers (CHWs) were prepared, and subsequently surface modified with l-lactide to obtain grafted CHWs (g-CHWs). Then, CHWs and g-CHWs were further introduced into PLLA matrix to fabricate CHWs/PLLA and g-CHWs/PLLA nanofiber membranes by electrospinning technique. Morphologies and properties of the CHWs and g-CHWs were characterized. The surface-grafted PLLA chains played an important role in improving interfacial interaction between the whiskers and PLLA matrix. The g-CHWs dispersed more uniformly in matrix than CHWs, and the as-prepared g-CHWs/PLLA nanofiber membrane showed relative smooth and uniform fiber. As a result, the tensile strength and modulus of the g-CHWs/PLLA nanofiber membrane were obviously superior to those of the pure PLLA and CHWs/PLLA nanofiber membranes. Cells culture results indicated that g-CHWs/PLLA nanofiber membrane is more effectively in promoting MC3T3-E1 cells adhesion, spreading and proliferation than pure PLLA and CHWs/PLLA nanofiber membrane. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. MOCVD growth and ultrafast photoluminescence in GaAs and InAs freestanding quantum whiskers: A review

    Science.gov (United States)

    Viswanath, A. Kasi; Hiruma, K.; Yazawa, M.; Ogawa, K.; Katsuyama, T.

    1994-02-01

    Nanometer-size quantum whiskers of InAs and GaAs were fabricated by low-pressure MOCVD. Time-integrated and time-resolved photoluminescence of GaAs wires of diameters 200, 100, 70, and 50 nm were studied. The temperature dependence of PL peak energy was found to follow the same variation as the bandgap of GaAs, and Varshni's theory was used to explain the temperature dependence. The main channel of radiative recombination was found to be due to free excitons. The nonuniformity in diameter and lattice phonon interactions were considered to understand the origin of the linewidth. From the time-resolved PL, the surface recombination lifetimes were measured directly. Surface recombination velocities were evaluated and were correlated to wire diameter. The quantum-size-dependent spatial part of the electronic wave function was thought to be responsible for the variation of surface recombination velocity with diameter. Surface treatment with sulphur reduced the surface depletion layer, as evidenced from the time-resolved and time-integrated spectra. The carrier lifetime was in picosecond time scales at 7 K and increased with temperature, thus confirming the quantum confinement effects. The polarization experiments revealed the one-dimensional nature of quantum whiskers.

  18. The functional upregulation of piriform cortex is associated with cross-modal plasticity in loss of whisker tactile inputs.

    Directory of Open Access Journals (Sweden)

    Bing Ye

    Full Text Available Cross-modal plasticity is characterized as the hypersensitivity of remaining modalities after a sensory function is lost in rodents, which ensures their awareness to environmental changes. Cellular and molecular mechanisms underlying cross-modal sensory plasticity remain unclear. We aim to study the role of different types of neurons in cross-modal plasticity.In addition to behavioral tasks in mice, whole-cell recordings at the excitatory and inhibitory neurons, and their two-photon imaging, were conducted in piriform cortex. We produced a mouse model of cross-modal sensory plasticity that olfactory function was upregulated by trimming whiskers to deprive their sensory inputs. In the meantime of olfactory hypersensitivity, pyramidal neurons and excitatory synapses were functionally upregulated, as well as GABAergic cells and inhibitory synapses were downregulated in piriform cortex from the mice of cross-modal sensory plasticity, compared with controls. A crosswire connection between barrel cortex and piriform cortex was established in cross-modal plasticity.An upregulation of pyramidal neurons and a downregulation of GABAergic neurons strengthen the activities of neuronal networks in piriform cortex, which may be responsible for olfactory hypersensitivity after a loss of whisker tactile input. This finding provides the clues for developing therapeutic strategies to promote sensory recovery and substitution.

  19. Complete suppression of in vivo growth of human leukemia cells by specific immunotoxins: nude mouse models

    International Nuclear Information System (INIS)

    Hara, H.; Seon, B.K.

    1987-01-01

    In this study, immunotoxins containing monoclonal anti-human T-cell leukemia antibodies are shown to be capable of completely suppressing the tumor growth of human T-cell leukemia cells in vivo without any overt undersirable toxicity. These immunotoxins were prepared by conjugating ricin A chain (RA) with our monoclonal antibodies, SN1 and SN2, directed specifically to the human T-cell leukemia cell surface antigens TALLA and GP37, respectively. The authors have shown that these monoclonal antibodies are highly specific for human T-cell leukemia cells and do not react with various normal cells including normal T and B cells, thymocytes, and bone marrow cells. Ascitic and solid human T-cell leukemia cell tumors were generated in nude mice. The ascitic tumor was generated by transplanting Ichikawa cells (a human T-cell leukemia cell) i.p. into nude mice, whereas the solid tumor was generated by transplanting s.c. MOLT-4 cells (a human T-cell leukemia cell line) and x-irradiated human fibrosarcoma cells into x-irradiated nude mice. To investigate the efficacy of specific immunotoxins in suppression the in vivo growth of the ascitic tumor, they divided 40 nude mice that were injected with Ichikawa cells into four groups. None of the mice in group 4 that were treated with SN1-RA and SN2-RA showed any signs of a tumor or undesirable toxic effects for the 20 weeks that they were followed after the transplantation. Treatment with SN1-RA plus SN2-RA completely suppressed solid tumor growth in 4 of 10 nude mice carrying solid tumors and partially suppressed the tumor growth in the remaining 6 nude mice. These results strongly suggest that SN1-RA and SN2-RA may be useful for clinical treatment

  20. Spontaneous growth of whiskers from an interlayer of Mo sub 2 C beneath a diamond particle deposited in a combustion-flame

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Katsuyuki; Komatsu, Shojiro; Ishigaki, Takamasa; Matsumoto, Seiichiro; Moriyoshi, Yusuke (National Inst. for Research in Inorganic Materials, Tsukuba, Ibaraki (Japan))

    1992-02-01

    When diamond particles deposited on a molybdenum substrate in a C{sub 2}H{sub -}O{sub 2} combustion-flame were kept for one year in the ambient atmosphere at room temperature, spontaneous whisker growth from an interlayer of Mo{sub 2}C beneath the diamond particles took place. The whiskers were clarified by electron probe micro-analysis (EPMA) and transmission electron microscopy (TEM) in a polycrystal composed of MoO{sub 2}, MoOC, and Mo{sub 2}C. The growth mechanism of them is discussed from two different points of view as follows: One is that the oxidation of an interlayer of Mo{sub 2}C beneath a diamond particle effectively reduces the surface free energy between the interlayer and diamond particle; consequently, the whisker can grow by using a screw dislocation. The other is that the internal stress existing between a diamond particle and an Mo{sub 2}C interlayer provides a very reactive zone where the growth of whisker takes place through the oxidation of Mo{sub 2}C. (orig.).

  1. Microstructure, mechanical, and thermal properties of the Sn-1Ag-0.5Cu solder alloy bearing Fe for electronics applications

    Energy Technology Data Exchange (ETDEWEB)

    Shnawah, Dhafer Abdul-Ameer, E-mail: dhafer_eng@yahoo.com [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Said, Suhana Binti Mohd [Department of Electrical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Sabri, Mohd Faizul Mohd; Badruddin, Irfan Anjum [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Che Faxing [Institute of Microelectronics, A-STAR (Agency for Science, Technology and Research), 11 Science Park Road, Singapore Science Park II, Singapore 117685 (Singapore)

    2012-08-15

    This work investigates the effect of Fe addition on the microstructural, mechanical, and thermal properties of the Sn-1Ag-0.5Cu (SAC105) solder alloy. The addition of Fe leads to the formation of large circular FeSn{sub 2} intermetallic compound (IMC) particles, which produce a weak interface with the {beta}-Sn matrix. The addition of Fe also leads to the inclusion of Fe in the Ag{sub 3}Sn and Cu{sub 6}Sn{sub 5} IMC particles. Moreover, Fe-bearing solders have been shown to form large primary {beta}-Sn grains. The weak interface between the large FeSn{sub 2} IMC particles and the {beta}-Sn matrix together with the presence of the large primary {beta}-Sn grains results in a significant reduction on the elastic modulus and yield strength of the Fe-bearing solders. Moreover, the improved plasticity of the large primary {beta}-Sn grains causes the Fe-bearing solders to exhibit large total elongation. The addition of Fe also significantly reduces the effect of aging. After aging at 100 Degree-Sign C and 180 Degree-Sign C, it has been observed that the Fe-bearing solders significantly suppress the coarsening of the Ag{sub 3}Sn IMC particles; consequently, they exhibit stable mechanical properties. This effect can be attributed to the inclusion of Fe in the Ag{sub 3}Sn IMC particles. In addition, fracture surface analysis indicates that the addition of Fe to the SAC105 solder alloy does not affect the mode of fracture, and all tested solders exhibited large ductile-dimples on the fracture surface. Moreover, the addition of Fe did not produce any significant effect on the melting behavior. As a result, the use conditions of the Fe-bearing solders are consistent with the conditions for conventional Sn-Ag-Cu solder alloys.

  2. Catalytic growth of vertically aligned SnS/SnS2 p-n heterojunctions

    Science.gov (United States)

    Degrauw, Aaron; Armstrong, Rebekka; Rahman, Ajara A.; Ogle, Jonathan; Whittaker-Brooks, Luisa

    2017-09-01

    Nanowire arrays of SnS/SnS2 p-n heterojunctions are grown on transparent indium tin oxide (ITO) coated-glass and Si/SiO2 substrates via chemical vapor transport (CVT). The nanowire arrays are comprised of individual SnS/SnS2 heterostructures that are highly oriented with their lengths and morphologies controlled by the CVT conditions (i.e. reaction temperature, flow rate, and reaction time). The growth and optoelectronic characterization of these well-defined SnS/SnS2 p-n heterostructures pave the way for the fabrication of highly efficient solar cell devices.

  3. Pseudomorphic GeSiSn, SiSn and Ge layers in strained heterostructures

    Science.gov (United States)

    Timofeev, V. A.; Nikiforov, A. I.; Tuktamyshev, A. R.; Mashanov, V. I.; Loshkarev, I. D.; Bloshkin, A. A.; Gutakovskii, A. K.

    2018-04-01

    The GeSiSn, SiSn layer growth mechanisms on Si(100) were investigated and the kinetic diagrams of the morphological GeSiSn, SiSn film states in the temperature range of 150 °C-450 °C at the tin content from 0% to 35% were built. The phase diagram of the superstructural change on the surface of Sn grown on Si(100) in the annealing temperature range of 0 °C-850 °C was established. The specular beam oscillations were first obtained during the SiSn film growth from 150 °C to 300 °C at the Sn content up to 35%. The transmission electron microscopy and x-ray diffractometry data confirm the crystal perfection and the pseudomorphic GeSiSn, SiSn film state, and also the presence of smooth heterointerfaces between GeSiSn or SiSn and Si. The photoluminescence for the multilayer periodic GeSiSn/Si structures in the range of 0.6-0.8 eV was detected. The blue shift with the excitation power increase is observed suggesting the presence of a type II heterostructure. The creation of tensile strained Ge films, which are pseudomorphic to the underlying GeSn layer, is confirmed by the results of the formation and analysis of the reciprocal space map in the x-ray diffractometry. The tensile strain in the Ge films reached the value in the range of 0.86%-1.5%. The GeSn buffer layer growth in the Sn content range from 8% to 12% was studied. The band structure of heterosystems based on pseudomorphic GeSiSn, SiSn and Ge layers was calculated and the valence and conduction band subband position dependences on the Sn content were built. Based on the calculation, the Sn content range in the GeSiSn, SiSn, and GeSn layers, which corresponds to the direct bandgap GeSiSn, SiSn, and Ge material, was obtained.

  4. Application of regular associated solution model to the liquidus curves of the Sn-Te and Sn-SnS systems

    Science.gov (United States)

    Eric, H.

    1982-12-01

    The liquidus curves of the Sn-Te and Sn-SnS systems were evaluated by the regular associated solution model (RAS). The main assumption of this theory is the existence of species A, B and associated complexes AB in the liquid phase. Thermodynamic properties of the binary A-B system are derived by ternary regular solution equations. Calculations based on this model for the Sn-Te and Sn-SnS systems are in agreement with published data.

  5. Controlling the antibacterial activity of CuSn thin films by varying the contents of Sn

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yujin; Park, Juyun; Kim, Dong-Woo; Kim, Hakjun; Kang, Yong-Cheol, E-mail: yckang@pknu.ac.kr

    2016-12-15

    Highlights: • We deposit CuSn thin films on a Si substrate with various Cu/Sn ratio. • Antibacterial activities of CuSn thin films increased as the ratio of Cu and the contact time increased. • XPS was utilized to assign the chemical environment of CuSn thin films before and after antibacterial test. - Abstract: We investigated antibacterial activity of CuSn thin films against Gram positive Staphylococcus aureus (S. aureus). CuSn thin films with different Cu to Sn ratios were deposited on Si(100) by radio frequency (RF) magnetron sputtering method using Cu and Sn metal anodes. The film thickness was fixed at 200 nm by varying the sputtering time and RF power on the metal targets. The antibacterial test was conducted in various conditions such as different contact times and Cu to Sn ratios in the CuSn films. The antibacterial activities of CuSn thin films increased as the ratio of Cu and the contact time between the film and bacteria suspension increased execpt in the case of CuSn-83. The oxidation states of Cu and Sn and the chemical composition of CuSn thin films before and after the antibacterial test were investigated by X-ray photoelectron spectroscopy (XPS). When the contact time was fixed, the Cu species was further oxidized as the RF power on Cu target increased. The intensity of Sn 3d decreased with increasing Cu ratio. When the sample was fixed, the peak intensity of Sn 3d decreased as the contact time increased due to the permeation of Sn into the cell.

  6. SN1987A's Twentieth Anniversary

    Science.gov (United States)

    2007-02-01

    Looking back at 20 Years of Observations of this Supernova with ESO telescopes The unique supernova SN 1987A has been a bonanza for astrophysicists. It provided several observational 'firsts,' like the detection of neutrinos from an exploding star, the observation of the progenitor star on archival photographic plates, the signatures of a non-spherical explosion, the direct observation of the radioactive elements produced during the blast, observation of the formation of dust in the supernova, as well as the detection of circumstellar and interstellar material. ESO PR Photo 08a/07 ESO PR Photo 08a/07 SN1987A in the Large Magellanic Cloud Today, it is exactly twenty years since the explosion of Supernova 1987A in the Large Magellanic Cloud was first observed, at a distance of 163,000 light-years. It was the first naked-eye supernova to be seen for 383 years. Few events in modern astronomy have met with such an enthusiastic response by the scientists and now, after 20 years, it continues to be an extremely exciting object that is further studied by astronomers around the world, in particular using ESO's telescopes. When the first signs of Supernova 1987A, the first supernova of the year 1987, were noticed early on 24 February of that year, it was clear that this would be an unusual event. It was discovered by naked-eye and on a panoramic photographic plate taken with a 10-inch astrograph on Las Campanas in Chile by Oscar Duhalde and Ian Shelton, respectively. A few hours earlier, still on 23 February, two large underground detectors - in Japan and the USA - had registered the passage of high-energy neutrinos. Since SN 1987A exploded in the Large Magellanic Cloud (LMC), it was only accessible to telescopes in the Southern Hemisphere, more particularly in Australia, South Africa, and South America. In Chile, ESO's observatory at La Silla with its armada of telescopes with sizes between 0.5 and 3.6-m, played an important role. ESO PR Photo 08c/07 ESO PR Photo 08c/07 The

  7. Die-Bonding of LED Chips on Ag/Cu Substrate Using Sn/Zn/Bi/Sn and Sn/Bi/Zn/Bi/Sn Bonding Systems

    Science.gov (United States)

    Tang, Y. K.; Lin, E. J.; Wang, J. Y.; Lin, Y. S.; Hu, Y. J.; Hsu, Y. C.; Liu, C. Y.

    2018-01-01

    Two multilayer bonding structures have been designed to die-bond light-emitting diode (LED) chips on Ag/Cu thermal substrate, viz. Sn/ZnBi/Sn bilayer solder structure and Sn/BiZnBi/Sn sandwich solder structure. Both multilayer bonding structures successfully achieved LED chip die-attachment on Ag/Cu thermal substrate at relatively low temperature of 150°C. However, voids formed more seriously at the bonding interface for the Sn/ZnBi/Sn bilayer structure. On the other hand, little voiding was seen at the bonding interface for the Sn/BiZnBi/Sn sandwich structure. The average shear strength of the Sn/ZnBi/Sn bilayer solder structure and Sn/BiZnBi/Sn sandwich solder structure was 25 MPa and 40 MPa, respectively. We believe that the improved shear strength results for the sandwich solder structure compared with the bilayer solder structure are mainly due to less voiding at the bonding interface, which weakens the interface joint shear strength. Also, the intermetallic compounds (IMCs) jointing region at the joint interface of the sandwich solder structure was larger than at the joint interface of the bilayer solder structure. We believe that the IMC jointing at the interface could improve the die-bonding strength, while the Zn content in the bonding structure promoted voiding at the bonding interface for both solder structures. Moreover, the Zn content in the bonding structure slightly reduced the IMC joint region at the bonding interface for both solder structures.

  8. Suppression of nighttime sap flux with lower stem photosynthesis in Eucalyptus trees

    Science.gov (United States)

    Gao, Jianguo; Zhou, Juan; Sun, Zhenwei; Niu, Junfeng; Zhou, Cuiming; Gu, Daxing; Huang, Yuqing; Zhao, Ping

    2016-04-01

    It is widely accepted that substantial nighttime sap flux ( J s,n) or transpiration ( E) occurs in most plants, but the physiological implications are poorly known. It has been hypothesized that J s,n or E serves to enhance nitrogen uptake or deliver oxygen; however, no clear evidence is currently available. In this study, sap flux ( J s) in Eucalyptus grandis × urophylla with apparent stem photosynthesis was measured, including control trees which were covered by aluminum foil (approximately 1/3 of tree height) to block stem photosynthesis. We hypothesized that the nighttime water flux would be suppressed in trees with lower stem photosynthesis. The results showed that the green tissue degraded after 3 months, demonstrating a decrease in stem photosynthesis. The daytime J s decreased by 21.47 %, while J s,n decreased by 12.03 % in covered trees as compared to that of control, and the difference was statistically significant ( P < 0.01). The linear quantile regression model showed that J s,n decreased for a given daytime transpiration water loss, indicating that J s,n was suppressed by lower stem photosynthesis in covered trees. Predawn ( ψ pd) of covered trees was marginally higher than that of control while lower at predawn stomatal conductance ( g s), indicating a suppressed water flux in covered trees. There was no difference in leaf carbon content and δ13C between the two groups, while leaf nitrogen content and δ15N were significantly higher in covered trees than that of the control ( P < 0.05), indicating that J s,n was not used for nitrogen uptake. These results suggest that J s,n may act as an oxygen pathway since green tissue has a higher respiration or oxygen demand than non-green tissue. Thus, this study demonstrated the physiological implications of J s,n and the possible benefits of nighttime water use or E by the tree.

  9. Growth hormone suppression test

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003376.htm Growth hormone suppression test To use the sharing features on this page, please enable JavaScript. The growth hormone suppression test determines whether growth hormone production is ...

  10. Competitive Adsorption of Substrate and Solvent in Sn-Beta Zeolite During Sugar Isomerization.

    Science.gov (United States)

    van der Graaff, William N P; Tempelman, Christiaan H L; Li, Guanna; Mezari, Brahim; Kosinov, Nikolay; Pidko, Evgeny A; Hensen, Emiel J M

    2016-11-23

    The isomerization of 1,3-dihydroxyactone and d-glucose over Sn-Beta zeolite was investigated by in situ 13 C NMR spectroscopy. The conversion rate at room temperature is higher when the zeolite is dehydrated before exposure to the aqueous sugar solution. Mass transfer limitations in the zeolite micropores were excluded by comparing Sn-Beta samples with different crystal sizes. Periodic density functional theory (DFT) calculations show that sugar and water molecules compete for adsorption on the active framework Sn centers. Careful solvent selection may thus increase the rate of sugar isomerization. Consistent with this prediction, batch catalytic experiments show that the use of a co-solvent, such as tetrahydrofuran, that strongly interacts with the Sn centers suppresses glucose isomerization. On the other hand, the use of ethanol as cosolvent results in significantly higher isomerization activity in comparison with pure water because of decreased competition with glucose adsorption on zeolitic Sn sites. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The Nature of SN 1961V

    Science.gov (United States)

    Chu, You-Hua; Gruendl, Robert A.; Stockdale, Christopher J.; Rupen, Michael P.; Cowan, John J.; Teare, Scott W.

    2004-05-01

    The nature of SN 1961V has been uncertain. Its peculiar optical light curve and slow expansion velocity are similar to those of superoutbursts of luminous blue variables (LBVs), but its nonthermal radio spectral index and declining radio luminosity are consistent with decades-old supernovae (SNe). We have obtained Hubble Space Telescope STIS images and spectra of the stars in the vicinity of SN 1961V and find object 7 identified by Filippenko and coworkers to be closest to the optical and radio positions of SN 1961V. Object 7 is the only point source detected in our STIS spectra, and only its Hα emission is detected; it cannot be the SN or its remnant because of the absence of forbidden lines. While the Hα line profile of object 7 is remarkably similar to that of η Carinae, the blue color (similar to an A2 Ib supergiant) and lack of appreciable variability are unlike known postoutburst LBVs. We have also obtained Very Long Baseline Array observations of SN 1961V at 18 cm. The nondetection of SN 1961V places a lower limit on the size of the radio-emitting region, 7.6 mas or 0.34 pc, which implies an average expansion velocity in excess of 4400 km s-1, much higher than the optical expansion velocity measured in 1961. We conclude the following: (1) An SN occurred in the vicinity of SN 1961V a few decades ago. (2) If the SN 1961V light maximum originates from a giant eruption of a massive star, object 7 is the most probable candidate for the survivor, but its blue color and lack of significant variability are different from a postoutburst η Car. (3) The radio SN and object 7 could be physically associated with each other through a binary system. (4) Object 7 needs to be monitored to determine its nature and relationship to SN 1961V.

  12. Pipe-Wire TiO2-Sn@Carbon Nanofibers Paper Anodes for Lithium and Sodium Ion Batteries.

    Science.gov (United States)

    Mao, Minglei; Yan, Feilong; Cui, Chunyu; Ma, Jianmin; Zhang, Ming; Wang, Taihong; Wang, Chunsheng

    2017-06-14

    Metallic tin has been considered as one of the most promising anode materials both for lithium (LIBs) and sodium ion battery (NIBs) because of a high theoretical capacity and an appropriate low discharge potential. However, Sn anodes suffer from a rapid capacity fading during cycling due to pulverization induced by severe volume changes. Here we innovatively synthesized pipe-wire TiO 2 -Sn@carbon nanofibers (TiO 2 -Sn@CNFs) via electrospinning and atomic layer deposition to suppress pulverization-induced capacity decay. In pipe-wire TiO 2 -Sn@CNFs paper, nano-Sn is uniformly dispersed in carbon nanofibers, which not only act as a buffer material to prevent pulverization, but also serve as a conductive matrix. In addition, TiO 2 pipe as the protection shell outside of Sn@carbon nanofibers can restrain the volume variation to prevent Sn from aggregation and pulverization during cycling, thus increasing the Coulombic efficiency. The pipe-wire TiO 2 -Sn@CNFs show excellent electrochemical performance as anodes for both LIBs and NIBs. It exhibits a high and stable capacity of 643 mA h/g at 200 mA/g after 1100 cycles in LIBs and 413 mA h/g at 100 mA/g after 400 cycles in NIBs. These results would shed light on the practical application of Sn-based materials as a high capacity electrode with good cycling stability for next-generation LIBs and NIBs.

  13. Rod-like hierarchical Sn/SnOx@C nanostructures with enhanced lithium storage properties

    Science.gov (United States)

    Yang, Juan; Chen, Sanmei; Tang, Jingjing; Tian, Hangyu; Bai, Tao; Zhou, Xiangyang

    2018-03-01

    Rod-like hierarchical Sn/SnOx@C nanostructures have been designed and synthesized via calcining resorcinol-formaldehyde (RF) resin coated Sn-based metal-organic frameworks. The rod-like hierarchical Sn/SnOx@C nanostructures are made of a great number of carbon-wrapped primary Sn/SnOx nanospheres of 100-200 nm in diameter. The as-prepared hierarchical Sn/SnOx@C nanocomposite manifests a high initial reversible capacity of 1177 mAh g-1 and remains 1001 mAh g-1 after 240 cycles at a current density of 200 mA g-1. It delivers outstanding high-rate performance with a reversible capacity of 823 mAh g-1 even at a high current density of 1000 mA g-1. The enhanced electrochemical performances of the Sn/SnOx@C electrode are mainly attributed to the synergistic effect of the unique hierarchical micro/nanostructures and the protective carbon layer.

  14. Studying superconducting Nb$_{3}$Sn wire

    CERN Multimedia

    AUTHOR|(CDS)2099575

    2015-01-01

    Studying superconducting Nb$_{3}$Sn wire. From the current experience from LHC and HL-LHC we know that the performance requirements for Nb$_{3}$Sn conductor for future circular collider are challenging and should exceed that of present state-of-the-art materials.

  15. Anomalous temperature behavior of Sn impurities

    International Nuclear Information System (INIS)

    Haskel, D.; Shechter, H.; Stern, E.A.; Newville, M.; Yacoby, Y.

    1993-01-01

    Sn impurities in Pb and Ag hosts have been investigated by Moessbauer effect and in Pb by x-ray-absorption fine-structure (XAFS) studies. The Sn atoms are dissolved up to at least 2 at. % in Pb and up to at least 8 at. % in Ag for the temperature ranges investigated. The concentration limit for Sn-Sn interactions is 1 at. % for Pb and 2 at. % for Ag as determined experimentally by lowering the Sn concentration until no appreciable change occurs in the Moessbauer effect. XAFS measurements verify that the Sn impurities in Pb are dissolved and predominantly at substitutional sites. For both hosts the temperature dependence of the spectral intensities of isolated Sn impurities below a temperature T 0 is as expected for vibrating about a lattice site. Above T 0 the Moessbauer spectral intensity exhibits a greatly increased rate of drop-off with temperature without appreciable broadening. This drop-off is too steep to be explained by ordinary anharmonic effects and can be explained by a liquidlike rapid hopping of the Sn, localized about a lattice site. Higher-entropy-density regions of radii somewhat more than an atomic spacing surround such impurities, and can act as nucleation sites for three-dimensional melting

  16. Studying superconducting Nb3Sn wire

    CERN Multimedia

    AUTHOR|(CDS)2099575

    2015-01-01

    Studying superconducting Nb3Sn wire. From the current experience from LHC and HL-LHC we know that the performance requirements for Nb3Sn conductor for future circular collider are challenging and should exceed that of present state-of-the-art materials.

  17. SN 1991T: Reflections of past glory

    Science.gov (United States)

    Schmidt, Brian P.; Kirshner, Robert P.; Leibundgut, Bruno; Wells, Lisa A.; Porter, Alain C.; Ruiz-Lapuente, Pilar; Challis, Peter; Filippenko, Alexei V.

    1994-01-01

    We have obtained photometry and spectra of SN 1991T which extend more than 1000 days past maximum light, by far the longest of SN Ia has been followed. Although SN 1991T exhibited nearly photometric behavior in the first 400 days following maximum, by 600 days its decline had slowed, and by 950 days the supernova brightness was consistent with a constant apparent magnitude of m(sub B) = 21.30. Spectra near maximum showed minor variations on the SN Ia theme which grew less conspicuous during the exponential decline. At 270 days the nebular spectrum was composed of Fe and Co lines common to SN Ia. However, by 750 days past maximum light, these lines had shifted in wavelength, and were superposed on a strong blue continuum. The luminosity of SN 1991T at 950 days is more than (9.0 x 10(exp 38)(D/13 Mpc)(2) ergs/s with a rate of decline of less than 0.04 mag per 100 days. We show that this emission is likely to be light that was emitted by SN 1991T near maximum light which has reflected from foreground dust, much like the light echos observed around SN 1987A.

  18. Fabrication of SiC Composites with Synergistic Toughening of Carbon Whisker and In Situ 3C-SiC Nanowire

    Directory of Open Access Journals (Sweden)

    Zhang Yunlong

    2016-01-01

    Full Text Available The SiC composites with synergistic toughening of carbon whisker and in situ 3C-SiC nanowire have been fabricated by hot press sinter technology and annealed treatment technology. Effect of annealed time on the morphology of SiC nanowires and mechanical properties of the Cw/SiC composites was surveyed in detail. The appropriate annealed time improved mechanical properties of the Cw/SiC composites. The synergistic effect of carbon whisker and SiC nanowire can improve the fracture toughness for Cw/SiC composites. The vapor-liquid-solid growth (VLS mechanism was proposed. TEM photo showed that 3C-SiC nanowire can be obtained with preferential growth plane ({111}, which corresponded to interplanar spacing about 0.25 nm.

  19. Polymer-SnO2 composite membranes

    DEFF Research Database (Denmark)

    Nørgaard, Casper Frydendal; Skou, Eivind Morten

    When designing sulfonic acid based ionomers, high ion exchange capacity (IEC) comes at the expense of the mechanical properties. With too high IEC, the membrane will excessively swell or even dissolve in water. Therefore a suitable compromise must be found between high charge carrier concentration...... and adequate mechanical properties. It has been demonstrated that this compromise can be found at higher IEC when the mechanical properties are improved by increasing crystallinity, increasing molecular weight, crosslinking or reinforcement of the membrane by dispersion of interacting particles therein....... This work utilizes the latter approach and makes use of particles of tin dioxide (SnO2). Polymer-SnO2 composite membranes were successfully prepared using an ion-exchange method. SnO2 was incorporated into membranes by ion-exchange in solutions of SnCl2 ∙ 2 H2O in methanol, followed by oxidation to SnO2...

  20. Laser spectroscopy of neutron deficient Sn isotopes

    CERN Multimedia

    We propose to study the ground state properties of neutron-deficient Sn isotopes towards the doubly-magic nucleus $^{100}$Sn. Nuclear spins, changes in the rms charge radii and electromagnetic moments of $^{101-121}$Sn will be measured by laser spectroscopy using the CRIS experimental beam line. These ground-state properties will help to clarify the evolution of nuclear structure properties approaching the $\\textit{N = Z =}$ 50 shell closures. The Sn isotopic chain is currently the frontier for the application of state-of-the-art ab-initio calculations. Our knowledge of the nuclear structure of the Sn isotopes will set a benchmark for the advances of many-body methods, and will provide an important test for modern descriptions of the nuclear force.

  1. Real-time observation of growth and orientation of Sm-Ba-Cu-O phases on a Sm-211 whisker substrate by high-temperature optical microscopy

    Czech Academy of Sciences Publication Activity Database

    Sun, J.L.; Huang, Y.B.; Cheng, L.; Yao, X.; Lai, Y.J.; Jirsa, Miloš

    2009-01-01

    Roč. 9, č. 2 (2009), 898-902 ISSN 1528-7483 R&D Projects: GA ČR GA202/08/0722 Institutional research plan: CEZ:AV0Z10100520 Keywords : high-temperature optical microscopy * growth and orientation of Sm-Ba-Cu-O phases * Sm-211 whisker substrate Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.162, year: 2009

  2. The pattern of thalamocortical and brain stem projections to the vibrissae-related sensory and motor cortices in de-whiskered congenital hypothyroid rats.

    Science.gov (United States)

    Afarinesh, Mohammad Reza; Behzadi, Gila

    2017-08-01

    The present study is designed to investigate the plastic organization of the thalamo-cortical (TC) and brain stem afferents of whisker primary sensory (wS1) and motor (wM1) cortical areas in congenital hypothyroid (CH) pups following whisker deprivation (WD) from neonatal to adolescence period. Maternal hypothyroidism was induced by adding propylthiouracil (PTU) to the drinking water from early embryonic day 16 to postnatal day (PND) 60. Pregnant rats were divided into intact and CH groups (n = 8). In each group, the total whiskers of pups (4 of 8) were trimmed continuously from PND 1 to PND 60. Retrograde tracing technique with WGA-HRP was performed in the present study. Retrogradely labeled neurons were observed in the specific thalamic nuclei (VPM and VL) following separately WGA-HRP injections into wS1/M1 cortical areas. The number of labeled cells in the VPM, VL, VM and PO nuclei of the thalamus significantly decreased in CH offsprings rats (P < 0.05). Neonatal WD did not show any significant effects on the number of VPM, VL, VM and PO labeled projection neurons to wS1 and wM1 cortical areas. In addition, retrogradely labeled neurons in dorsal raphe (DR) and locus coeruleus (LC) nuclei were observed in all experimental groups. The number of DR and LC labeled neurons were higher in the CH and whisker deprived groups compared to their matching controls (P < 0.05). Upon our results, CH and WD had no synergic or additive effects on the TC and brain stem afferent patterns of barrel sensory and motor cortices.

  3. Application of 119Sn CPMG MAS NMR for Fast Characterization of Sn Sites in Zeolites with Natural 119Sn Isotope Abundance

    DEFF Research Database (Denmark)

    G. Kolyagin, Yury; V. Yakimo, Alexander; Tolborg, Søren

    2016-01-01

    119Sn CPMG MAS NMR is demonstrated to be a fast and efficient method for characterization of Sn-sites in Sn-containing zeolites. Tuning of the CPMG echo-train sequence decreases the experimental time by a factor of 5–40 in the case of as-synthesized and hydrated Sn-BEA samples and by 3 orders......-BEA zeolites with natural 119Sn isotope abundance using conventional MAS NMR equipment....

  4. Associations of unilateral whisker and olfactory signals induce synapse formation and memory cell recruitment in bilateral barrel cortices: cellular mechanism for unilateral training toward bilateral memory

    Directory of Open Access Journals (Sweden)

    Zilong Gao

    2016-12-01

    Full Text Available Somatosensory signals and operative skills learned by unilateral limbs can be retrieved bilaterally. In terms of cellular mechanism underlying this unilateral learning toward bilateral memory, we hypothesized that associative memory cells in bilateral cortices and synapse innervations between them were produced. In the examination of this hypothesis, we have observed that paired unilateral whisker and odor stimulations led to odorant-induced whisker motions in bilateral sides, which were attenuated by inhibiting the activity of barrel cortices. In the mice that showed bilateral cross-modal responses, the neurons in both sides of barrel cortices became to encode this new odor signal alongside the innate whisker signal. Axon projections and synapse formations from the barrel cortex, which was co-activated with the piriform cortex, toward its contralateral barrel cortex were upregulated. Glutamatergic synaptic transmission in bilateral barrel cortices was upregulated and GABAergic synaptic transmission was downregulated. The associative activations of the sensory cortices facilitate new axon projection, glutamatergic synapse formation and GABAergic synapse downregulation, which drive the neurons to be recruited as associative memory cells in the bilateral cortices. Our data reveals the productions of associative memory cells and synapse innervations in bilateral sensory cortices for unilateral training toward bilateral memory.

  5. The role of hair follicle nestin-expressing stem cells during whisker sensory-nerve growth in long-term 3D culture.

    Science.gov (United States)

    Mii, Sumiyuki; Duong, Jennifer; Tome, Yasunori; Uchugonova, Aisada; Liu, Fang; Amoh, Yasuyuki; Saito, Norimitsu; Katsuoka, Kensei; Hoffman, Robert M

    2013-07-01

    We have previously reported that nestin-expressing hair follicle stem cells can differentiate into neurons, Schwann cells, and other cell types. In the present study, vibrissa hair follicles, including their sensory nerve stump, were excised from transgenic mice in which the nestin promoter drives green fluorescent protein (ND-GFP mice), and were placed in 3D histoculture supported by Gelfoam®. β-III tubulin-positive fibers, consisting of ND-GFP-expressing cells, extended up to 500 µm from the whisker nerve stump in histoculture. The growing fibers had growth cones on their tips expressing F-actin. These findings indicate that β-III tubulin-positive fibers elongating from the whisker follicle sensory nerve stump were growing axons. The growing whisker sensory nerve was highly enriched in ND-GFP cells which appeared to play a major role in its elongation and interaction with other nerves in 3D culture, including the sciatic nerve, the trigeminal nerve, and the trigeminal nerve ganglion. The results of the present report suggest a major function of the nestin-expressing stem cells in the hair follicle is for growth of the follicle sensory nerve. Copyright © 2013 Wiley Periodicals, Inc.

  6. Dynamic viscosities of pure tin and Sn-Ag, Sn-Cu, and Sn-Ag-Cu eutectic melts

    Science.gov (United States)

    Rozhitsina, E. V.; Gruner, S.; Kaban, I.; Hoyer, W.; Sidorov, V. E.; Popel', P. S.

    2011-02-01

    The dynamic viscosities of the melts of pure tin and eutectic Sn-Ag, Sn-Cu, and Sn-Ag-Cu alloys are studied in heating followed by cooling, and the maximum heating temperature was 1200°C. An irreversible decrease in the viscosity is found in the temperature range 800-1000°C in the polytherms of all melts. This finding is related to the loss of a local order in a melt and can be used to develop temperature regimes for the production of lead-free solders.

  7. Sn/SnO_2@C composite nanofibers as advanced anode for lithium-ion batteries

    International Nuclear Information System (INIS)

    Hu, Yemin; Yang, Qiu-Ran; Ma, Jianmin; Chou, Shu-Lei; Zhu, Mingyuan; Li, Ying

    2015-01-01

    Sn/SnO_2@C composite nanofibers were successfully fabricated by a facile annealing strategy. The composite consists of an amorphous carbon matrix encapsulating carbon nanotubes decorated by ultrafine (<10 nm) SnO_2 nanoparticles, with submicron Sn particles incorporated in the entangled networks of the composite nanofibers. When used as anode material for lithium ion batteries, the Sn/SnO_2@C composite nanofibers exhibited high initial charge capacity of 756 mAh g"−"1 at 100 mA g"−"1, excellent high-rate capacity of 190 mAh g"−"1 at 5 A g"−"1, and excellent capacity retention of 591 mAh g"−"1 after 100 cycles at 100 mA g"−"1. High-resolution transmission electron microscopy, energy dispersive spectroscopy mapping, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy were applied to investigate the origins of the excellent electrochemical Li"+ storage properties of Sn/SnO_2@C. It could be deduced that the ductile carbon matrix and free spaces in the composite nanofiber networks can effectively accommodate the strain of volume change during cycling, prevent the aggregation and pulverization of Sn/SnO_2 particles, keep the whole structure stable, and facilitate electron and ion transport through the electrode.

  8. Preparation of porous SnO2 helical nanotubes and SnO2 sheets

    International Nuclear Information System (INIS)

    Fei, Ling; Xu, Yun; Chen, Zheng; Yuan, Bin; Wu, Xiaofei; Hill, Joshua; Lin, Qianglu; Deng, Shuguang; Andersen, Paul; Lu, Yunfeng; Luo, Hongmei

    2013-01-01

    We report a surfactant-free chemical solution route for synthesizing one-dimensional porous SnO 2 helical nanotubes templated by helical carbon nanotubes and two-dimensional SnO 2 sheets templated by graphite sheets. Transmission electron microscopy, X-ray diffraction, cyclic voltammetry, and galvanostatic discharge–charge analysis are used to characterize the SnO 2 samples. The unique nanostructure and morphology make them promising anode materials for lithium-ion batteries. Both the SnO 2 with the tubular structure and the sheet structure shows small initial irreversible capacity loss of 3.2% and 2.2%, respectively. The SnO 2 helical nanotubes show a specific discharge capacity of above 800 mAh g −1 after 10 charge and discharge cycles, exceeding the theoretical capacity of 781 mAh g −1 for SnO 2 . The nanotubes remain a specific discharge capacity of 439 mAh g −1 after 30 cycles, which is better than that of SnO 2 sheets (323 mAh g −1 ). - Highlights: • Synthesized porous SnO 2 helical nanotubes with diameters of 100–120 nm. • Synthesized porous SnO 2 sheets template by graphite sheets. • The tubular and sheet SnO 2 have small initial irreversible capacity loss of 3.2 and 2.2%. • The tubular structure shows better discharge capacity than the sheet structure

  9. Sn-In-Ag phase equilibria and Sn-In-(Ag)/Ag interfacial reactions

    International Nuclear Information System (INIS)

    Chen Sinnwen; Lee Wanyu; Hsu Chiaming; Yang Chingfeng; Hsu Hsinyun; Wu Hsinjay

    2011-01-01

    Research highlights: → Thermodynamic models of Sn-In and Sn-In-Ag are developed using the CALPHAD approach. → Reaction layer in the Sn-In-(Ag)/Ag couples at 100 deg. C is thinner than those at 25 deg. C, 50 deg. C, and 75 deg. C. → Reactions in the Sn-20 wt%In-2.8 wt%Ag/Ag couples are faster than those in the Sn-20 wt%In/Ag couples. - Abstract: Experimental verifications of the Sn-In and Sn-In-Ag phase equilibria have been conducted. The experimental measurements of phase equilibria and thermodynamic properties are used for thermodynamic modeling by the CALPHAD approach. The calculated results are in good agreement with experimental results. Interfacial reactions in the Sn-In-(Ag)/Ag couples have been examined. Both Ag 2 In and AgIn 2 phases are formed in the Sn-51.0 wt%In/Ag couples reacted at 100 and 150 deg. C, and only the Ag 2 In phase is formed when reacted at 25, 50 and 75 deg. C. Due to the different growth rates of different reaction phases, the reaction layer at 100 deg. C is thinner than those at 25 deg. C, 50 deg. C, and 75 deg. C. In the Sn-20.0 wt%In/Ag couples, the ζ phase is formed at 250 deg. C and ζ/AgIn 2 phases are formed at 125 deg. C. Compared with the Sn-20 wt%In/Ag couples, faster interfacial reactions are observed in the Sn-20.0 wt%In-2.8 wt%Ag/Ag couples, and minor Ag addition to Sn-20 wt%In solder increases the growth rates of the reaction phases.

  10. Soldering Characteristics and Mechanical Properties of Sn-1.0Ag-0.5Cu Solder with Minor Aluminum Addition

    Directory of Open Access Journals (Sweden)

    Yee Mei Leong

    2016-06-01

    Full Text Available Driven by the trends towards miniaturization in lead free electronic products, researchers are putting immense efforts to improve the properties and reliabilities of Sn based solders. Recently, much interest has been shown on low silver (Ag content solder SAC105 (Sn-1.0Ag-0.5Cu because of economic reasons and improvement of impact resistance as compared to SAC305 (Sn-3.0Ag-0.5Cu. The present work investigates the effect of minor aluminum (Al addition (0.1–0.5 wt.% to SAC105 on the interfacial structure between solder and copper substrate during reflow. The addition of minor Al promoted formation of small, equiaxed Cu-Al particle, which are identified as Cu3Al2. Cu3Al2 resided at the near surface/edges of the solder and exhibited higher hardness and modulus. Results show that the minor addition of Al does not alter the morphology of the interfacial intermetallic compounds, but they substantially suppress the growth of the interfacial Cu6Sn5 intermetallic compound (IMC after reflow. During isothermal aging, minor alloying Al has reduced the thickness of interfacial Cu6Sn5 IMC but has no significant effect on the thickness of Cu3Sn. It is suggested that of atoms of Al exert their influence by hindering the flow of reacting species at the interface.

  11. Soldering Characteristics and Mechanical Properties of Sn-1.0Ag-0.5Cu Solder with Minor Aluminum Addition

    Science.gov (United States)

    Leong, Yee Mei; Haseeb, A.S.M.A.

    2016-01-01

    Driven by the trends towards miniaturization in lead free electronic products, researchers are putting immense efforts to improve the properties and reliabilities of Sn based solders. Recently, much interest has been shown on low silver (Ag) content solder SAC105 (Sn-1.0Ag-0.5Cu) because of economic reasons and improvement of impact resistance as compared to SAC305 (Sn-3.0Ag-0.5Cu. The present work investigates the effect of minor aluminum (Al) addition (0.1–0.5 wt.%) to SAC105 on the interfacial structure between solder and copper substrate during reflow. The addition of minor Al promoted formation of small, equiaxed Cu-Al particle, which are identified as Cu3Al2. Cu3Al2 resided at the near surface/edges of the solder and exhibited higher hardness and modulus. Results show that the minor addition of Al does not alter the morphology of the interfacial intermetallic compounds, but they substantially suppress the growth of the interfacial Cu6Sn5 intermetallic compound (IMC) after reflow. During isothermal aging, minor alloying Al has reduced the thickness of interfacial Cu6Sn5 IMC but has no significant effect on the thickness of Cu3Sn. It is suggested that of atoms of Al exert their influence by hindering the flow of reacting species at the interface. PMID:28773645

  12. Tribological behavior of the kinetic sprayed Ni59Ti16Zr20Si2Sn3 bulk metallic glass

    International Nuclear Information System (INIS)

    Choi, Hanshin; Jo, Hyungho; An, Kyoungjun; Yoon, Sanghoon; Lee, Changhee

    2007-01-01

    Gas atomized amorphous Ni 59 Ti 16 Zr 20 Si 2 Sn 3 feedstock particles were fed into warm gas dynamics and they were successfully overlaid onto the mild steel substrate. Through the X-ray diffractometry and differential scanning calorimetry, it could be confirmed that thermally activated processes such as crystallization and in-flight particle oxidation were effectively suppressed during the modified kinetic spraying process. In order to evaluate the tribological behavior of the kinetic sprayed Ni 59 Ti 16 Zr 20 Si 2 Sn 3 BMG coating, a partially crystallized coating and a fully crystallized coating were prepared by isothermal heat treatments

  13. Single-Particle States in $^{133}$Sn

    CERN Multimedia

    Huck, A

    2002-01-01

    % IS338 \\\\ \\\\ It is suggested to investigate the $\\beta^- $-decay of $^{133}$In and $^{134}$In in order to determine the single-particle states in $^{133}$Sn, which are so far unknown and needed for the shell-model description of the region close to $^{132}$Sn. Large hyper-pure Ge-detectors will be used for the $\\gamma$-ray spectroscopy. In the experiments with $^{134}$In, delayed neutrons in coincidence with $\\gamma$-rays from excited states in $^{133}$Sn provide the opportunity for a very selective detection of the states in question.

  14. Lattice location study of ion implanted Sn and Sn-related defects in Ge

    CERN Document Server

    Decoster, S; Wahl, U; Correia, J G; Vantomme, A

    2010-01-01

    In this work, we present a lattice location study of Sn in Ge. From emission channeling experiments, we determined the exact lattice location of ion implanted $^{121}$Sn atoms and compared the results to predictions from density-functional calculations. The majority of the Sn atoms are positioned on the substitutional site, as can be expected for an isovalent impurity, while a second significant fraction occupies the sixfold coordinated bond-centered site, which is stable up to at least 400 °C. Corroborated by ab initio calculations, we attribute this fraction of bond-centered Sn atoms to the Sn-vacancy defect complex in the split-vacancy configuration. Furthermore, we are able to assign specific defect complex geometries to resonances from earlier Mössbauer spectroscopy studies of Sn in Ge.

  15. Electrical and optical properties of SnEuTe and SnSrTe films

    Science.gov (United States)

    Ishida, Akihiro; Tsuchiya, Takuro; Yamada, Tomohiro; Cao, Daoshe; Takaoka, Sadao; Rahim, Mohamed; Felder, Ferdinand; Zogg, Hans

    2010-06-01

    The SnTe, Sn1-xEuxTe and Sn1-xSrxTe (x<0.06) films were prepared by hot wall epitaxy. The ternary alloy films prepared in cation rich condition had hole concentration around 1×1019 cm-3 with high mobility exceeding 2000 cm2/V s at room temperature. Optical transmission spectra were also measured in the temperature range from 100 to 400 K and compared with theoretical calculations. Optical transmission spectra of the SnTe were simulated successfully assuming bumped band edge structures. A band inversion model was proposed for the Sn1-xEuxTe and Sn1-xSrxTe systems, and the optical transmission spectra were also simulated successfully assuming the band inversion model.

  16. Product technology and market assessment for silicon carbide whisker reinforced alumina heat-exchanger tubes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Loutfy, R.O.; Withers, J.C. [Materials and Electrochemical Research Corp., Tucson, AZ (United States); Chakravarti, D. [Arizona Univ., Tucson, AZ (United States)

    1993-10-01

    This report describes a study designed to develop an assessment of key performance features, desirable technical specifications and market potential for silicon carbide whisker-reinforced alumina (henceforth SCWRA) tubes for heat exchanger applications in a number of industries. The results of the first stage of a Delphi study conducted in the US market are presented. The second phase of the study is in progress. The first stage results suggest that there is a small market for SCWRA tubes in heat exchanger applications. The market is expected to grow steadily during the 1990`s. With appropriate performance specifications and competitive pricing, growth should come from (a) new applications that permit recovery in cases that were previously infeasible and (b) selective, partial substitution and replacement of current ceramics and metal/ceramic composites in existing applications. We identify key performance factors and detailed specifications needed in six designated industries (primary metals, fabricated metals, chemicals, glass, utility and incinerators). Reliability, durability and low maintenance costs emerge as critical performance factors across these industries. The data show that although ceramics are recognized as having better properties, enhancing reliability and durability and thus improving maintenance cost performance is a key priority. Such improvements, reflected in the objectives for SCWRA tubes, should facilitate adoption in both new and existing applications. At this time, we are unable to assess market size directly. However, expert judgment provided indices tracking the projected market for heat exchanger tubes from 1990 to 2005.

  17. Oxidation of Pb-Sn and Pb-Sn-In alloys

    International Nuclear Information System (INIS)

    Sluzewski, D.A.; Chang, Y.A.; Marcotte, V.C.

    1990-01-01

    Air oxidized Pb-Sn and Pb-Sn-In single phase alloys have been studied with scanning Auger microscopy. Line scans across grain boundaries combined with argon ion sputter etching revealed grain boundary oxidation. In the Pb-Sn samples, tin is preferentially oxidized with the grain boundary regions having a much higher percentage of tin oxide than the bulk surface oxide. In the Pb-Sn-In alloys, both tin and indium are preferentially oxidized with the grain boundary regions being enriched with tin and indium oxides

  18. Generalized seniority scheme in light Sn isotopes

    International Nuclear Information System (INIS)

    Sandulescu, N.; Sandulescu, N.; Blomqvist, J.; Liotta, R.J.; Engeland, T.; Holt, A.; Osnes, E.; Hjorth-Jensen, M.

    1997-01-01

    In search of a possible truncation scheme for shell model calculations, the yrast generalized seniority states are compared with the corresponding shell model states for the case of the Sn isotopes 104-112 Sn. For most of the cases the energies agree within a few hundred keV. For the 0 + (2 + ) states the overlaps decrease from 97% (93%) in 104 Sn to 91% (78%) in 112 Sn when the coefficients of the pairs in the S and D boson operators are allowed to vary with the number of particles. For constant pairing coefficients throughout the entire isotope range, the overlaps are considerably smaller. It is concluded, with the realistic effective interaction applied here, that a truncation scheme based on seniority zero and two states is inadequate when the number of valence particles gets large and that configurations of higher seniority should be included. copyright 1997 The American Physical Society

  19. Coulomb excitation of {sup 107}Sn

    Energy Technology Data Exchange (ETDEWEB)

    DiJulio, D.D.; Cederkall, J.; Fahlander, C. [Lund University, Physics Department, 118, Lund (Sweden); Ekstroem, A. [University of Oslo, Department of Physics and Center of Mathematics for Applications, Oslo (Norway); Hjorth-Jensen, M. [University of Oslo, Department of Physics and Center of Mathematics for Applications, Oslo (Norway); Michigan State University, National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, East Lansing, MI (United States); Albers, M.; Blazhev, A.; Fransen, C.; Geibel, K.; Hess, H.; Reiter, P.; Seidlitz, M.; Taprogge, J.; Warr, N. [University of Cologne, Institute of Nuclear Physics, Cologne (Germany); Bildstein, V.; Gernhaeuser, R.; Wimmer, K. [Technische Universitaet Muenchen, Physik Department E12, Garching (Germany); Darby, I.; Witte, H. de [Instituut voor Kern- en Stralingsfysica, Leuven (Belgium); Davinson, T. [University of Edinburgh, Department of Physics and Astronomy, Edinburgh (United Kingdom); Diriken, J. [Instituut voor Kern- en Stralingsfysica, Leuven (Belgium); Studiecentrum voor Kernenergie/Centre d' Etude de l' energie Nucleaire (SCK CEN), Mol (Belgium); Goergen, A.; Siem, S.; Tveten, G.M. [University of Oslo, Department of Physics, Oslo (Norway); Iwanicki, J. [University of Warsaw, Heavy Ion Laboratory, Warsaw (Poland); Lutter, R. [Ludwig-Maximilians-Universitaet Muenchen, Fakultaet fuer Physik, Garching (Germany); Scheck, M. [University of Liverpool, Oliver Lodge Laboratory, Liverpool (United Kingdom); Walle, J.V. de [PH Department, Geneva 23 (Switzerland); Voulot, D.; Wenander, F. [AB Department, Geneva 23 (Switzerland)

    2012-07-15

    The radioactive isotope {sup 107}Sn was studied using Coulomb excitation at the REX-ISOLDE facility at CERN. This is the lightest odd-Sn nucleus examined using this technique. The reduced transition probability of the lowest-lying 3/2{sup +} state was measured and is compared to shell-model predictions based on several sets of single-neutron energies relative to {sup 100}Sn. Similar to the transition probabilities for the 2{sup +} states in the neutron-deficient even-even Sn nuclei, the measured value is underestimated by shell-model calculations. Part of the strength may be recovered by considering the ordering of the d{sub 5/2} and g{sub 7/2} single-neutron states. (orig.)

  20. Pressure suppression device

    International Nuclear Information System (INIS)

    Ichiki, Tadaharu; Funahashi, Toshihiro.

    1976-01-01

    Purpose: To provide a structure which permits the absorption of shocks and vibratory load produced on the floor of a pressure suppression chamber due to nitrogen gas or the like discharged into pool water in the pressure suppression chamber at the time of a loss-of-coolant accident. Constitution: A pressure suppression chamber accommodating pool water is comprised of a bottom wall and side walls constructed of concrete on the inner side of a liner. By providing concrete on the bottom surface and side wall surfaces of a pressure suppression chamber, it is possible to prevent non-condensing gas and steam exhausted from the vent duct and exhaust duct of a main vapor escapement safety valve exhaust duct from exerting impact forces and vibratory forces upon the bottom and side surfaces of the pressure suppression chamber. (Horiuchi, T.)

  1. Synthesis, characterization and photocatalytic performance of SnS nanofibers and SnSe nanofibers derived from the electrospinning-made SnO{sub 2} nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Li; Li, Dan; Dong, Xiangting; Ma, Qianli; Yu, Wensheng; Wang, Xinlu; Yu, Hui; Wang, Jinxian; Liu, Guixia, E-mail: dongxiangting888@163.com [Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun (China)

    2017-11-15

    SnO{sub 2} nanofibers were fabricated by calcination of the electrospun PVP/SnCl{sub 4} composite nanofibers. For the first time, SnS nanofibers and SnSe nanofibers were successfully synthesized by double crucible sulfurization and selenidation methods via inheriting the morphology of SnO{sub 2} nanofibers used as precursors, respectively. X-ray diffraction (XRD) analysis shows SnS nanofibers and SnSe nanofibers are respectively pure orthorhombic phase with space group of Pbnm and Cmcm. Scanning electron microscope (SEM) observation indicates that the diameters of SnS nanofibers and SnSe nanofibers are respectively 140.54±12.80 nm and 96.52±14.17 nm under the 95 % confidence level. The photocatalytic activities of samples were studied by using rhodamine B (Rh B) as degradation agent. When SnS or SnSe nanofibers are employed as the photocatalysts, the respective degradation rates of Rh B solution under the ultraviolet light irradiation after 200 min irradiation are 92.55 % and 92.86 %. The photocatalytic mechanism and formation process of SnS and SnSe nanofibers are also provided. More importantly, this preparation technique is of universal significance to prepare other metal chalcogenides nanofibers. (author)

  2. Optical and microstructural characterisation of Au–Sn and Cu–Sn diffusive layers

    Energy Technology Data Exchange (ETDEWEB)

    Wronkowska, A.A., E-mail: aleksandra.wronkowska@utp.edu.pl [Institute of Mathematics and Physics, University of Technology and Life Sciences, S. Kaliskiego 7, PL-85789 Bydgoszcz (Poland); Czerniak, G.; Wronkowski, A.; Skowroński, Ł. [Institute of Mathematics and Physics, University of Technology and Life Sciences, S. Kaliskiego 7, PL-85789 Bydgoszcz (Poland)

    2013-09-15

    Phase composition, crystallinity, optical and electrical properties were determined for Au–Sn and Cu–Sn ultra-thin films produced by sequential evaporating and co-depositing of metals on glass plates in a vacuum. Thickness of Sn films grown on top of Au(Cu) nanolayers (d{sub Au(Cu)} = 20 nm) was varied to obtain different atomic concentration ratios of Au(Cu)-rich diffusive samples up to 1:1. The samples were characterised using the XRD, SEM, spectroscopic ellipsometry and transmittance measurements. The XRD patterns indicated creation of AuSn and AuSn{sub 2} intermetallic phases at room temperature in both types of Au–Sn samples, formation of Cu{sub 6}Sn{sub 5} compound in bilayer Sn/Cu samples and Cu{sub 10}Sn{sub 3} intermetallic in the co-deposited Sn–Cu film. There was observed a substantial influence of morphology and phase composition on the effective complex dielectric functions and optical conductivity of the multiphase films, determined using the transmittance and variable angle spectroscopic ellipsometry measurements in the photon energy range of 0.6–6.5 eV. Adopting the Drude–Lorentz parameterisation approach to optical spectra enabled to extract contributions related to the free-carriers, interband transitions and plasmonic effects. The optical resistivity agreed reasonably with the dc-resistivity results, which changed approximately from 17.5 μΩ cm to 26 μΩ cm and from 24 μΩ cm to 96 μΩ cm for investigated Au–Sn and Cu–Sn systems, respectively.

  3. Hyperfine field distributions in disordered Mn2CoSn and Mn2NiSn ...

    Indian Academy of Sciences (India)

    Unknown

    behaviour of hyperfine fields in Mn rich Heusler alloys. We have, therefore, prepared and studied Mn2CoSn and Mn2NiSn and also tested the applicability of the. Campbell–Blandin model in these alloys. Further, these alloys are known to exhibit a good amount of chemical disorder (Surikov et al 1990) and it is, therefore, ...

  4. Cluster radioactivity leading to doubly magic 100Sn and 132Sn ...

    Indian Academy of Sciences (India)

    Cluster radioactivity leading to doubly magic 100Sn and 132Sn daughters. K P SANTHOSH. School of Pure and Applied Physics, Kannur University, Payyanur Campus,. Payyanur 670 327, India. E-mail: drkpsanthosh@gmail.com. MS received 1 June 2010; revised 13 August 2010; accepted 8 September 2010. Abstract.

  5. Thermodynamic and surface properties of Sb–Sn and In–Sn liquid ...

    Indian Academy of Sciences (India)

    ϵbb] ,. (16) where the prime on P denotes the first derivative with respect to x. .... asymmetric about equiatomic concentration while that of In–Sn is very symmetric. This deviation from ideal behaviour of the thermodynamic properties of Sb–Sn is.

  6. Ordered CoSn-type ternary phases in Co3Sn3-xGex

    DEFF Research Database (Denmark)

    Allred, Jared M.; Jia, Shuang; Bremholm, Martin

    2012-01-01

    CoSn is the prototype compound of the B35 structure, which has long been of interest due to its rarity and unusually low packing density. We report the synthesis and properties of the solid solution Co3Sn3-xGex for 0 ⩽ x ⩽ 2, in order to clarify the conditions necessary to stabilize such a phase....

  7. The effect of Sn addition on phase stability and phase evolution during aging heat treatment in Ti–Mo alloys employed as biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Mello, Mariana G. de, E-mail: marianagm@fem.unicamp.br; Salvador, Camilo F., E-mail: csalvador@fem.unicamp.br; Cremasco, Alessandra, E-mail: alessandra@fem.unicamp.br; Caram, Rubens, E-mail: caram@fem.unicamp.br

    2015-12-15

    Increases in life expectancy and improvements in necessary healthcare attach great importance to the development of biomaterials. Ti alloys containing β stabilizing elements are often used as biomaterials due to their high specific strength, high corrosion resistance, unusual biocompatibility and low elastic moduli, which benefit bone tissues close to an implant. This study deals with phase stability in β Ti–Mo–Sn alloys processed under different conditions and was performed according to the following steps: a study of the effect of Sn content (a) on phase stability in Ti–Mo alloys, (b) on the suppression of α″ and ω phase precipitation; (c) on α-phase precipitation during aging heat treatments and (d) on mechanical properties, including the elastic modulus, as measured using tensile tests and acoustic techniques. The alloys were prepared by arc melting under a controlled atmosphere followed by homogenization heat treatment and hot rolling. Optical microscopy, scanning and transmission electron microscopy, X-ray diffraction and differential scanning calorimetry were employed for characterization purposes. Samples were also submitted to solution treatment above the β transus temperature and aging heat treatments under a controlled atmosphere. The results suggest that Sn suppresses the formation of the ω and α″ phases in Ti–Mo system. - Highlights: • Sn addition to Ti alloys decreases elastic modulus by suppressing ω phase precipitation. • Sn addition decreases the temperature of martensite decomposition. • Sn addition decreases the temperature of α phase precipitation and β transus. • Mechanical strength decreases with increasing Sn content.

  8. Menstrual suppression for adolescents.

    Science.gov (United States)

    Altshuler, Anna Lea; Hillard, Paula J Adams

    2014-10-01

    The purpose of this review is to highlight the recent literature and emerging data describing clinical situations in which menstrual suppression may improve symptoms and quality of life for adolescents. A variety of conditions occurring frequently in adolescents and young adults, including heavy menstrual bleeding, and dysmenorrhea as well as gynecologic conditions such as endometriosis and pelvic pain, can safely be improved or alleviated with appropriate menstrual management. Recent publications have highlighted the efficacy and benefit of extended cycle or continuous combined oral contraceptives, the levonorgestrel intrauterine device, and progestin therapies for a variety of medical conditions. This review places menstrual suppression in an historical context, summarizes methods of hormonal therapy that can suppress menses, and reviews clinical conditions for which menstrual suppression may be helpful.

  9. Cryogenic Acoustic Suppression Testing

    Data.gov (United States)

    National Aeronautics and Space Administration — A proof-of-concept method utilizing a cryogenic fluid for acoustic suppression in rocket engine testing environments will be demonstrated. It is hypothesized that...

  10. Sodium fire suppression

    International Nuclear Information System (INIS)

    Malet, J.C.

    1979-01-01

    Ignition and combustion studies have provided valuable data and guidelines for sodium fire suppression research. The primary necessity is to isolate the oxidant from the fuel, rather than to attempt to cool the sodium below its ignition temperature. Work along these lines has led to the development of smothering tank systems and a dry extinguishing powder. Based on the results obtained, the implementation of these techniques is discussed with regard to sodium fire suppression in the Super-Phenix reactor. (author)

  11. Liquidus Projection and Isothermal Section of the Sb-Se-Sn System

    Science.gov (United States)

    Chang, Jui-shen; Chen, Sinn-wen

    2017-12-01

    Sb-Se-Sn ternary alloys are promising chalcogenide materials. The liquidus projection and 673.2 K (400 °C) isothermal section of the Sb-Se-Sn ternary system are determined. Numerous Sb-Se-Sn alloys are prepared, and their primary solidification phases are examined. In addition to the three terminal phases, (Sb), (Se) and (Sn), there are Sb2Sn3, SbSn, SnSe, SnSe2, Sb2Se3, Sn2Sb9Se9, and SnSb2Se4 phases. In addition, there are two miscibility gaps along the Sb-Se and Se-Sn and sides. There are ten invariant reactions in the Sb-Se-Sn ternary system, and seven of them are experimentally determined in this study. The lowest reaction temperature of determined invariant reaction is L + SbSn = (Sn) + SnSe at 515.4 K ± 5 K (242.2 °C ± 5 °C). There are nine tie-triangles, which are Liquid + SbSn + SnSe, SbSn + SnSe + (Sb), SnSe + (Sb) + Sn2Sb9Se9, (Sb) + Sb2Se3 + Sn2Sb9Se9, SnSe + Sn2Sb9Se9 + SnSb2Se4, Sb2Se3 + Sn2Sb9Se9 + SnSb2Se4, SnSe + SnSe2 + SnSb2Se4, SnSe2 + SnSb2Se4 + Sb2Se3, and SnSe2 + Sb2Se3 + Liquid in the 673.2 K (400 °C) isothermal section of the Sb-Se-Sn ternary system.

  12. Fatigue and thermal fatigue of Pb-Sn solder joints

    International Nuclear Information System (INIS)

    Frear, D.; Grivas, D.; McCormack, M.; Tribula, D.; Morris, J.W. Jr.

    1987-01-01

    This paper presents a fundamental investigation of the fatigue and thermal fatigue characteristics, with an emphasis on the microstructural development during fatigue, of Sn-Pb solder joints. Fatigue tests were performed in simple shear on both 60Sn-40Pb and 5Sn-95Pb solder joints. Isothermal fatigue tests show increasing fatigue life of 60Sn-40Pb solder joints with decreasing strain and temperature. In contrast, such behavior was not observed in the isothermal fatigue of 5Sn-95Pb solder joints. Thermal fatigue results on 60Sn-40Pb solder cycled between -55 0 C and 125 0 C show that a coarsened region develops in the center of the joint. Both Pb-rich and Sn-rich phases coarsen, and cracks form within these coarsened regions. The failure mode 60Sn-40Pb solder joints in thermal and isothermal fatigue is similar: cracks form intergranularly through the Sn-rich phase or along Sn/Pb interphase boundaries. Extensive cracking is found throughout the 5Sn-95Pb joint for both thermal and isothermal fatigue. In thermal fatigue the 5Sn-95Pb solder joints failed after fewer cycles than 60Sn-40Pb

  13. A novel S-sulfhydrated human serum albumin preparation suppresses melanin synthesis

    Directory of Open Access Journals (Sweden)

    Mayumi Ikeda

    2018-04-01

    Full Text Available Products of ultraviolet (UV irradiation such as reactive oxygen species (ROS and nitric oxide (NO stimulate melanin synthesis. Reactive sulfur species (RSS have been shown to have strong ROS and NO scavenging effects. However, the instability and low retention of RSS limit their use as inhibitors of melanin synthesis. The free thiol at Cys34 on human serum albumin (HSA is highly stable, has a long retention and possess a high reactivity for RSS. We report herein on the development of an HSA based RSS delivery system. Sulfane sulfur derivatives released from sodium polysulfides (Na2Sn react readily with HSA. An assay for estimating the elimination of sulfide from polysulfide showed that almost all of the sulfur released from Na2Sn bound to HSA. The Na2Sn-treated HSA was found to efficiently scavenge ROS and NO produced from chemical reagents. The Na2Sn-treated HSA was also found to inhibit melanin synthesis in B16 melanoma cells and this inhibition was independent of the number of added sulfur atoms. In B16 melanoma cells, the Na2Sn-treated HSA also inhibited the levels of ROS and NO induced by UV radiation. Finally, the Na2Sn-treated HSA inhibited melanin synthesis from L-DOPA and mushroom tyrosinase and suppressed the extent of aggregation of melanin pigments. These data suggest that Na2Sn-treated HSA inhibits tyrosinase activity for melanin synthesis via two pathways; by directly inhibiting ROS signaling and by scavenging NO. These findings indicate that Na2Sn-treated HSA has potential to be an attractive and effective candidate for use as a skin whitening agent. Keywords: Ultraviolet irradiation, Human serum albumin, Reactive sulfur species, Whitening agent, Oxidative stress

  14. Effects of Sn on defect structures in high-speed deformed Ni-Sn alloy

    Science.gov (United States)

    Sato, Koichi; Xu, Qiu; Yoshiie, Toshimasa

    2013-10-01

    Defect structures in compressed and fractured pure Ni and Ni-2 at.%Sn alloy were investigated. The dislocation cell size of high-speed compressed Ni was smaller than that of low-speed compressed Ni. In Ni-Sn, the cell structure was small and independent of compression speed. The effect of solute Sn was very strong, and Sn trapped a high density of dislocations. At the saw-tooth-like fracture tips formed by high-speed elongation, the observed dislocation density was low in both metals, but was lower in Ni than in Ni-Sn. The number of stacking fault tetrahedra (SFTs) formed at the tips was almost the same in Ni as in Ni-Sn. Because the density of the dislocations was very low despite the strong effect of solute Sn, and because the density of formed SFTs was almost the same in both metals at the saw-tooth-like fracture tips, the formation of SFTs likely involves a dislocation-free mechanism during high-speed deformation.

  15. SN REFSDAL: CLASSIFICATION AS A LUMINOUS AND BLUE SN 1987A-LIKE TYPE II SUPERNOVA

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, P. L.; Filippenko, A. V.; Graham, M. L. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Brammer, G.; Strolger, L.-G.; Riess, A. G. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Selsing, J.; Hjorth, J.; Christensen, L. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Foley, R. J. [Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green Street, Urbana, IL 61801 (United States); Rodney, S. A. [Department of Physics and Astronomy, University of South Carolina, 712 Main St., Columbia, SC 29208 (United States); Treu, T. [University of California, Los Angeles, CA 90095 (United States); Steidel, C. C.; Strom, A.; Zitrin, A. [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Schmidt, K. B.; McCully, C. [Department of Physics, University of California, Santa Barbara, CA 93106-9530 (United States); Bradač, M. [University of California, Davis, 1 Shields Avenue, Davis, CA 95616 (United States); Jha, S. W. [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States); Graur, O., E-mail: pkelly@astro.berkeley.edu [Center for Cosmology and Particle Physics, New York University, New York, NY 10003 (United States); and others

    2016-11-10

    We have acquired Hubble Space Telescope (HST) and Very Large Telescope near-infrared spectra and images of supernova (SN) Refsdal after its discovery as an Einstein cross in fall 2014. The HST light curve of SN Refsdal has a shape consistent with the distinctive, slowly rising light curves of SN 1987A-like SNe, and we find strong evidence for a broad H α P-Cygni profile and Na I D absorption in the HST grism spectrum at the redshift ( z = 1.49) of the spiral host galaxy. SNe IIn, largely powered by circumstellar interaction, could provide a good match to the light curve of SN Refsdal, but the spectrum of a SN IIn would not show broad and strong H α and Na I D absorption. From the grism spectrum, we measure an H α expansion velocity consistent with those of SN 1987A-like SNe at a similar phase. The luminosity, evolution, and Gaussian profile of the H α emission of the WFC3 and X-shooter spectra, separated by ∼2.5 months in the rest frame, provide additional evidence that supports the SN 1987A-like classification. In comparison with other examples of SN 1987A-like SNe, photometry of SN Refsdal favors bluer B - V and V - R colors and one of the largest luminosities for the assumed range of potential magnifications. The evolution of the light curve at late times will provide additional evidence about the potential existence of any substantial circumstellar material. Using MOSFIRE and X-shooter spectra, we estimate a subsolar host-galaxy metallicity (8.3 ± 0.1 dex and <8.4 dex, respectively) near the explosion site.

  16. Rational design of Sn/SnO{sub 2}/porous carbon nanocomposites as anode materials for sodium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaojia [Tianjin International Joint Research Centre of Surface Technology for Energy Storage Materials, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); Li, Xifei, E-mail: xfli2011@hotmail.com [Tianjin International Joint Research Centre of Surface Technology for Energy Storage Materials, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); Center for Advanced Energy Materials and Devices, Xi’an University of Technology, Xi’an 710048 (China); Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071 (China); Fan, Linlin; Yu, Zhuxin; Yan, Bo; Xiong, Dongbin; Song, Xiaosheng; Li, Shiyu [Tianjin International Joint Research Centre of Surface Technology for Energy Storage Materials, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); Adair, Keegan R. [Nanomaterials and Energy Lab., Department of Mechanical and Materials Engineering, Western University, London, Ontario N6A 5B9 (Canada); Li, Dejun, E-mail: dejunli@mail.tjnu.edu.cn [Tianjin International Joint Research Centre of Surface Technology for Energy Storage Materials, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); Sun, Xueliang, E-mail: xsun9@uwo.ca [Nanomaterials and Energy Lab., Department of Mechanical and Materials Engineering, Western University, London, Ontario N6A 5B9 (Canada); Tianjin International Joint Research Centre of Surface Technology for Energy Storage Materials, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China)

    2017-08-01

    Highlights: • Sn/SnO{sub 2}/porous carbon nanocomposites are rationally designed via a facile strategy. • The porous carbon mitigates the volume change and poor conductivity of Sn/SnO{sub 2}. • The nanocomposites exhibit the enhanced sodium storage performance. - Abstract: Sodium-ion batteries (SIBs) have successfully attracted considerable attention for application in energy storage, and have been proposed as an alternative to lithium ion batteries (LIBs) due to the abundance of sodium resources and low price. Sn has been deemed as a promising anode material in SIBs which holds high theoretical specific capacity of 845 mAh g{sup −1}. In this work we design nanocomposite materials consisting of porous carbon (PC) with SnO{sub 2} and Sn (Sn/SnO{sub 2}/PC) via a facile reflux method. Served as an anode material for SIBs, the Sn/SnO{sub 2}/PC nanocomposite delivers the primary discharge and charge capacities of 1148.1 and 303.0 mAh g{sup −1}, respectively. Meanwhile, it can preserve the discharge capacity approximately of 265.4 mAh g{sup −1} after 50 cycles, which is much higher than those of SnO{sub 2}/PC (138.5 mAh g{sup −1}) and PC (92.2 mAh g{sup −1}). Furthermore, the Sn/SnO{sub 2}/PC nanocomposite possesses better cycling stability with 77.8% capacity retention compared to that of SnO{sub 2}/PC (61.88%) over 50 cycles. Obviously, the Sn/SnO{sub 2}/PC composite with excellent electrochemical performance shows the great possibility of application in SIBs.

  17. Rational design of Sn/SnO2/porous carbon nanocomposites as anode materials for sodium-ion batteries

    Science.gov (United States)

    Li, Xiaojia; Li, Xifei; Fan, Linlin; Yu, Zhuxin; Yan, Bo; Xiong, Dongbin; Song, Xiaosheng; Li, Shiyu; Adair, Keegan R.; Li, Dejun; Sun, Xueliang

    2017-08-01

    Sodium-ion batteries (SIBs) have successfully attracted considerable attention for application in energy storage, and have been proposed as an alternative to lithium ion batteries (LIBs) due to the abundance of sodium resources and low price. Sn has been deemed as a promising anode material in SIBs which holds high theoretical specific capacity of 845 mAh g-1. In this work we design nanocomposite materials consisting of porous carbon (PC) with SnO2 and Sn (Sn/SnO2/PC) via a facile reflux method. Served as an anode material for SIBs, the Sn/SnO2/PC nanocomposite delivers the primary discharge and charge capacities of 1148.1 and 303.0 mAh g-1, respectively. Meanwhile, it can preserve the discharge capacity approximately of 265.4 mAh g-1 after 50 cycles, which is much higher than those of SnO2/PC (138.5 mAh g-1) and PC (92.2 mAh g-1). Furthermore, the Sn/SnO2/PC nanocomposite possesses better cycling stability with 77.8% capacity retention compared to that of SnO2/PC (61.88%) over 50 cycles. Obviously, the Sn/SnO2/PC composite with excellent electrochemical performance shows the great possibility of application in SIBs.

  18. Electronic structure and optical property of p-type Zn-doped SnO2 with Sn vacancy

    Science.gov (United States)

    Guipeng, Sun; Jinliang, Yan; Peijiang, Niu; Delan, Meng

    2016-02-01

    The electronic structures and optical properties of intrinsic SnO2, Zn-doped SnO2, SnO2 with Sn vacancy (VSn) and Zn-doped SnO2 with Sn vacancy are explored by using first-principles calculations. Zn-doped SnO2 is a p-type semiconductor material, whose Fermi level shifts into the valence band when Zn atoms substitute Sn atoms, and the unoccupied states on the top of the valence band come from Zn 3d and O 2p states. Sn vacancies increase the relative hole number of Zn-doped SnO2, which results in a possible increase in the conductivity of Zn-doped SnO2. The Zn-doped SnO2 shows distinct visible light absorption, the increased absorption can be seen apparently with the presence of Sn vacancies in the crystal, and the blue-shift of optical spectra can be observed. Project supported by the National Natural Science Foundation of China (No. 10974077) and the Innovation Project of Shandong Graduate Education, China (No. SDYY13093).

  19. Aluminum-stabilized NB3SN superconductor

    Science.gov (United States)

    Scanlan, Ronald M.

    1988-01-01

    An aluminum-stabilized Nb.sub.3 Sn superconductor and process for producing same, utilizing ultrapure aluminum. Ductile components are co-drawn with aluminum to produce a conductor suitable for winding magnets. After winding, the conductor is heated to convert it to the brittle Nb.sub.3 Sn superconductor phase, using a temperature high enough to perform the transformation but still below the melting point of the aluminum. This results in reaction of substantially all of the niobium, while providing stabilization and react-in-place features which are beneficial in the fabrication of magnets utilizing superconducting materials.

  20. Aluminium stabilized Nb$-3$/Sn superconductors

    International Nuclear Information System (INIS)

    Thoener, M.; Krauth, H.; Rudolph, J.; Szulczyk, A.

    1988-01-01

    Composite superconductors made of reacted Nb 3 Sn stabilized with high purity Al were produced. Two methods were tested. The first involved soft soldering a Cu clad aluminum tape to the Nb 3 Sn conductor. In the second method the conductor, cable or monolith, was coextruded with the aluminum. Results obtained from using both methods indicated that mechanically reinforcing materials can be easily introduced into superconductors. Tests were conducted to determine magnetoresistance, electric contact resistance, yield strength, Young modulus, critical current, and other properties of the composites. Strengthening with Duratherm during coextrusion was also evaluated

  1. PbSnTe injection lasers

    International Nuclear Information System (INIS)

    Oron, M.

    1982-03-01

    Carrier confined homostructure PbSnTe lasers were developed and investigated. In this laser structure good electrical and optical confinement can be achieved by a suitable carrier concentration profile. The advantage of these lasers over PbSnTe heterostructure lasers is the perfect lattice matching between the various layers of the structure. The desired carrier concentration profile was achieved by the growth of several epitaxial layers by the LPE method on a suitable substrate. The performance of these lasers was compared with that of previous homostructure and double heterostructure lasers. (H.K.)

  2. Shell model calculation for Te and Sn isotopes in the vicinity of {sup 100}Sn

    Energy Technology Data Exchange (ETDEWEB)

    Yakhelef, A.; Bouldjedri, A. [Physics Department, Farhat abbas University, Setif (Algeria); Physics Department, Hadj Lakhdar University, Batna (Algeria)

    2012-06-27

    New Shell Model calculations for even-even isotopes {sup 104-108}Sn and {sup 106,108}Te, in the vicinity of {sup 100}Sn have been performed. The calculations have been carried out using the windows version of NuShell-MSU. The two body matrix elements TBMEs of the effective interaction between valence nucleons are obtained from the renormalized two body effective interaction based on G-matrix derived from the CD-bonn nucleon-nucleon potential. The single particle energies of the proton and neutron valence spaces orbitals are defined from the available spectra of lightest odd isotopes of Sb and Sn respectively.

  3. Preparation, in vitro degradability, cytotoxicity, and in vivo biocompatibility of porous hydroxyapatite whisker-reinforced poly(L-lactide) biocomposite scaffolds.

    Science.gov (United States)

    Xie, Lu; Yu, Haiyang; Yang, Weizhong; Zhu, Zhuoli; Yue, Li

    2016-01-01

    Biodegradable and bioactive scaffolds with interconnected macroporous structures, suitable biodegradability, adequate mechanical property, and excellent biocompatibility have drawn increasing attention in bone tissue engineering. Hence, in this work, porous hydroxyapatite whisker-reinforced poly(L-lactide) (HA-w/PLLA) composite scaffolds with different ratios of HA and PLLA were successfully developed through compression molding and particle leaching. The microstructure, in vitro mineralization, cytocompatibility, hemocompatibility, and in vivo biocompatibility of the porous HA-w/PLLA were investigated for the first time. The SEM results revealed that these HA-w/PLLA scaffolds possessed interconnected pore structures. Compared with porous HA powder-reinforced PLLA (HA-p/PLLA) scaffolds, HA-w/PLLA scaffolds exhibited better mechanical property and in vitro bioactivity, as more formation of bone-like apatite layers were induced on these scaffolds after mineralization in SBF. Importantly, in vitro cytotoxicity displayed that porous HA-w/PLLA scaffold with HA/PLLA ratio of 1:1 (HA-w1/PLLA1) produced no deleterious effect on human mesenchymal stem cells (hMSCs), and cells performed elevated cell proliferation, indicating a good cytocompatibility. Simultaneously, well-behaved hemocompatibility and favorable in vivo biocompatibility determined from acute toxicity test and histological evaluation were also found in the porous HA-w1/PLLA1 scaffold. These findings may provide new prospects for utilizing the porous HA whisker-based biodegradable scaffolds in bone repair, replacement, and augmentation applications.

  4. Pressure suppression device

    International Nuclear Information System (INIS)

    Mizumachi, Wataru; Fukuda, Akira; Kitaguchi, Hidemi; Shimizu, Toshiaki.

    1976-01-01

    Object: To relieve and absorb impact wave vibrations caused by steam and non-condensed gases releasing into the pressure suppression chamber at the time of an accident. Structure: The reactor container is filled with inert gases. A safety valve attached main steam pipe is provided to permit the excessive steam to escape, the valve being communicated with the pressure suppression chamber through an exhaust pipe. In the pressure suppression chamber, a doughnut-like cylindrical outer wall is filled at its bottom with pool water to condense the high temperature vapor released through the exhaust pipe. A head portion of a vent tube which leads the exhaust pipe is positioned at the top, and a down comer and an exhaust vent tube are locked by means of steady rests. At the bottom is mounted a pressure adsorber device which adsorbs a pressure from the pool water. (Kamimura, M.)

  5. Tin (Sn) for enhancing performance in silicon CMOS

    KAUST Repository

    Hussain, Aftab M.

    2013-10-01

    We study a group IV element: tin (Sn) by integrating it into silicon lattice, to enhance the performance of silicon CMOS. We have evaluated the electrical properties of the SiSn lattice by performing simulations using First-principle studies, followed by experimental device fabrication and characterization. We fabricated high-κ/metal gate based Metal-Oxide-Semiconductor capacitors (MOSCAPs) using SiSn as channel material to study the impact of Sn integration into silicon. © 2013 IEEE.

  6. Thyroxin hormone suppression treatment

    International Nuclear Information System (INIS)

    Samuel, A.M.

    1999-01-01

    One of the important modalities of treatment of thyroid cancer (TC) after surgery is the administration of thyroxin as an adjuvant treatment. The analysis supports the theory that thyroid suppression plays an important role in patient management. 300 μg of thyroxin, as this is an adequate dose for suppression is given. Ideally the dose should be tailored by testing s-TSH levels. However, since a large number of the patients come from out station cities and villages this is impractical. We therefore depend on clinical criteria of hyperthyroid symptoms and adjust the dose. Very few patients need such adjustment

  7. Spliceosomal small nuclear RNAs of Tetrahymena thermophila and some possible snRNA-snRNA base-pairing interactions

    DEFF Research Database (Denmark)

    Orum, H; Nielsen, Henrik; Engberg, J

    1991-01-01

    organisms. Furthermore, secondary structures closely similar to phylogenetically proven models can be inferred from the T. thermophila data. Analysis of the snRNA sequences identifies three potential snRNA-snRNA base-pairing interactions, all of which are consistent with available phylogenetic data. Two......We have identified and characterized the full set of spliceosomal small nuclear RNAs (snRNAs; U1, U2, U4, U5 and U6) from the ciliated protozoan Tetrahymena thermophila. With the exception of U4 snRNA, the sizes of the T. thermophila snRNAs are closely similar to their metazoan homologues. The T....... thermophila snRNAs all have unique 5' ends, which start with an adenine residue. In contrast, with the exception of U6, their 3' ends show some size heterogeneity. The primary sequences of the T. thermophila snRNAs contain the sequence motifs shown, or proposed, to be of functional importance in other...

  8. Sn Concentration Gradients in Powder-in-tube Superconductors

    CERN Document Server

    Cantoni, M; Pfirter, P Y; de Borman, F; Rossen, J; Arnau, G; Oberli, L; Lee, P

    2010-01-01

    The Sn concentration gradients across the A15 phase have been studied by Energy Dispersive X-ray Spectroscopy (EDS) measurements. High spatial resolution EDS measurements in the Transmission Electron Microscope reveal a comparatively strong Sn concentration gradient from the periphery towards the centre of individual (Nb Ta)3Sn grains.

  9. Prediction of microwave absorption properties of tetrapod-needle zinc oxide whisker radar absorbing material without prior knowledge

    Science.gov (United States)

    Zhao, Yu-Chen; Wang, Jie; Liu, Jiang-Fan; Song, Zhong-Guo; Xi, Xiao-Li

    2017-07-01

    The radar absorbing material (RAM) containing a tetrapod-needle zinc oxide whisker (T-ZnOw) has been proved to have good efficiency of microwave absorption. However, the available theoretical models, which are intended to predict the microwave absorbing properties of such an interesting composite, still cannot work well without some prior knowledge, like the measured effective electromagnetic parameters of the prepared T-ZnOw composite. Hence, we propose a novel predictive method here to calculate the reflectivity of T-ZnOw RAM without prior knowledge. In this method, the absorbing ability of this kind of material is divided into three main aspects: the unstructured background, the conductive network, and the nanostructured particle. Then, the attenuation properties of these three parts are represented, respectively, by three different approaches: the equivalent spherical particle and the static strong fluctuation theory, the equivalent circuit model obtained from the complex impedance spectra technology, and the combination of four different microscopic electromagnetic responses. The operational calculation scheme can be obtained by integrating these three absorption effects into the existing theoretical attenuation model. The reasonable agreement between the theoretical and experimental data of a T-ZnON/SiO2 composite in the range of 8-14 GHz shows that the proposed scheme can predict the microwave absorption properties of the T-ZnOw RAM. Furthermore, a detailed analysis of these three mechanisms indicates that, on the one hand, the background plays a dominant role in determining the real part of the effective permittivity of the T-ZnOw composite while the network and the particle are the decisive factors of its material loss; on the other hand, an zero-phase impedance, i.e., a pure resistance, with appropriate resonance characteristic might be a rational physical description of the attenuation property of the conductive network, but it is difficult to realize

  10. Thermodynamic and surface properties of Sb–Sn and In–Sn liquid ...

    Indian Academy of Sciences (India)

    Sn liquid alloys. B C ANUSIONWU. Abdus Salam International Centre for ... is known to be toxic to the human body and causes serious environmental prob- ..... To determine the level of complex activities in the bulk of these alloys throughout.

  11. Discovery of Ten ASAS-SN Supernovae

    Science.gov (United States)

    Nicholls, B.; Brimacombe, J.; Kiyota, S.; Stone, G.; Cruz, I.; Trappett, D.; Vallely, P.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Holoien, T. W.-S.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Stritzinger, M.; Holmbo, S.

    2018-03-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, the "Leavitt" telescope in Fort Davis, Texas, the "Payne-Gaposchkin" telescope in Sutherland, South Africa, and the "Cassius" and "Paczynski" telescopes in Cerro Tololo, Chile, we discovered several new transient sources.

  12. On Mossbauer dynamics in Nb3Sn

    Indian Academy of Sciences (India)

    2015-11-27

    Nov 27, 2015 ... We compare the anharmonic Lamb Mossbauer factor and the -Lamb Mossbauer factor by studying the anharmonicity observed in the -factor data of Nb3Sn. We also show that this anharmonicity does not arise due to the presence of potential.

  13. Multiepoch Spectropolarimetry of SN 2011fe

    Energy Technology Data Exchange (ETDEWEB)

    Milne, Peter A.; Williams, G. Grant; Smith, Paul S.; Smith, Nathan; Jannuzi, Buell T.; Green, E. M. [University of Arizona, Steward Observatory, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Porter, Amber; Leising, Mark D. [118 Kinard Laboratory, Clemson University, Clemson, SC 29634 (United States)

    2017-01-20

    We present multiple spectropolarimetric observations of the nearby Type Ia supernova (SN) 2011fe in M101, obtained before, during, and after the time of maximum apparent visual brightness. The excellent time coverage of our spectropolarimetry has allowed better monitoring of the evolution of polarization features than is typical, which has allowed us new insight into the nature of normal SNe Ia. SN 2011fe exhibits time-dependent polarization in both the continuum and strong absorption lines. At early epochs, red wavelengths exhibit a degree of continuum polarization of up to 0.4%, likely indicative of a mild asymmetry in the electron-scattering photosphere. This behavior is more common in subluminous SNe Ia than in normal events, such as SN 2011fe. The degree of polarization across a collection of absorption lines varies dramatically from epoch to epoch. During the earliest epoch, a λ 4600–5000 Å complex of absorption lines shows enhanced polarization at a different position angle than the continuum. We explore the origin of these features, presenting a few possible interpretations, without arriving at a single favored ion. During two epochs near maximum, the dominant polarization feature is associated with the Si ii λ 6355 Å absorption line. This is common for SNe Ia, but for SN 2011fe the polarization of this feature increases after maximum light, whereas for other SNe Ia, that polarization feature was strongest before maximum light.

  14. Study of Sn100-xMnx amorphous system by 119Sn Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Drago, V.

    1986-01-01

    Thin films of Sn 100-x Mn x amorphous alloys with large range of concentrations were procedure by vapor condensation technique on substrates at temperatures near to liquid helium. The magnetic and paramagnetic hyperfine spectra, and the ordering temperatures were measured by 119 Sn Moessbauer effect. The electrical resistivity was used for characterizing the amorphous state. All the measurements were done 'in situ'. A magnetic phase diagram is proposed. (M.C.K.) [pt

  15. Polarographic determination of Sn (II) and total Sn in PYRO and MDP radiopharmaceutical kits

    International Nuclear Information System (INIS)

    Sebastian, Maria V.A.; Lugon, Marcelo Di M.V.; Silva, Jose L. da; Fukumori, Neuza T.O.; Pereira, Nilda P.S. de; Silva, Constancia P.G. da; Matsuda, Margareth M.N.

    2007-01-01

    A sensitive, alternative method to atom absorption spectrometry, fluorimetry or potentiometry for the evaluation of tin(II) ions (0.1- 10 mg) and total tin in radiopharmaceutical kits was investigated. Differential pulse polarography was chosen. The supporting electrolyte was H 2 SO 4 3 mol L -1 and HCl 3 mol L -1 solution. The potential was swept from -250 to -800 mV vs Ag/AgCl/saturated KCl, using a dropping mercury electrode with 1 s drop time, 50 mV s -1 scan rate, -50 mV pulse amplitude, 40 ms pulse time and 10 mV step amplitude. Pure nitrogen was used to deaerate the polarographic cell solution for 5 min, before and after each sample introduction. Oxidation of Sn(II) was made in the same sample vial by adding H 2 O 2 (hydrogen peroxide) 10 mol L -1 , at 37 deg C, in order to quantify the total Sn. The calibration curve for Sn(II) and Sn(IV) was obtained in the concentration range of 0-10 ppm from a 1000 ppm standard solution. The detection limit of Sn(II) is 0.5 ppm and for Sn(IV) is 0.6 ppm. Differential pulse polarography was performed in the pyrophosphate (PYRO) and methylenediphosphonic acid (MDP) radiopharmaceutical kits, containing 2 mg and 1 mg of SnCl 2 .2H 2 O per vial, respectively. The described method for determination of stannous ion (Sn(II)), is selective, reproducible and adequate to be used in the quality control of lyophilized reagents and it shall be performed for other cold kits produced at IPEN. (author)

  16. Massive stars dying alone: Extremely remote environments of SN2009ip and SN2010jp

    Science.gov (United States)

    Smith, Nathan

    2014-10-01

    We propose an imaging study of the astonishingly remote environments of two recent supernovae (SNe): SN2009ip and SN2010jp. Both were unusual Type IIn explosions that crashed into dense circumstellar material (CSM) ejected by the star shortly before explosion. The favored progenitors of these SNe are very massive luminous blue variable (LBV) stars. In fact, SN2009ip presents an extraordinay case where the LBV-like progenitor was actually detected directly in archival HST data, and where we obtained spectra and photometry for numerous pre-SN eruptions. No other SN has this treasure trove of detailed information about the progenitor (not even SN1987A). SN2010jp represents a possible collapsar-powered event, since it showed evidence of a fast bipolar jet in spectra and a low 56Ni mass; this would be an analog of the black-hole forming explosions that cause gamma ray bursts, but where the relativistic jet is damped by a residual H envelope on the star. In both cases, the only viable models for these SNe involve extremely massive (initial masses of 40-100 Msun) progenitor stars. This seems at odds with their extremely remote environments in the far outskirts of their host galaxies, with no detected evidence for an underlying massive star population in ground-based data (nor in the single shallow WFPC2/F606W image of SN2009ip). Here we propose deep UV HST images to search for any mid/late O-type stars nearby, deep red images to detect any red supergiants, and an H-alpha image to search for any evidence of ongoing star formation in the vicinity. These observations will place important and demanding constraints on the initial masses and ages of these progenitors.

  17. Plasma suppression of beamstrahlung

    International Nuclear Information System (INIS)

    Whittum, D.H.; Sessler, A.M.; Stewart, J.J.; Yu, S.S.

    1988-06-01

    We investigate the use of a plasma at the interaction point of two colliding beams to suppress beamsstrahlung and related phenomena. We derive conditions for good current cancellation via plasma return currents and report on numerical simulations conducted to confirm our analytic results. 10 refs., 5 figs., 4 tabs

  18. Suppression of nighttime sap flux with lower stem photosynthesis in Eucalyptus trees.

    Science.gov (United States)

    Gao, Jianguo; Zhou, Juan; Sun, Zhenwei; Niu, Junfeng; Zhou, Cuiming; Gu, Daxing; Huang, Yuqing; Zhao, Ping

    2016-04-01

    It is widely accepted that substantial nighttime sap flux (J s,n) or transpiration (E) occurs in most plants, but the physiological implications are poorly known. It has been hypothesized that J s,n or E serves to enhance nitrogen uptake or deliver oxygen; however, no clear evidence is currently available. In this study, sap flux (J s) in Eucalyptus grandis × urophylla with apparent stem photosynthesis was measured, including control trees which were covered by aluminum foil (approximately 1/3 of tree height) to block stem photosynthesis. We hypothesized that the nighttime water flux would be suppressed in trees with lower stem photosynthesis. The results showed that the green tissue degraded after 3 months, demonstrating a decrease in stem photosynthesis. The daytime J s decreased by 21.47%, while J s,n decreased by 12.03% in covered trees as compared to that of control, and the difference was statistically significant (P photosynthesis in covered trees. Predawn (ψ pd) of covered trees was marginally higher than that of control while lower at predawn stomatal conductance (g s), indicating a suppressed water flux in covered trees. There was no difference in leaf carbon content and δ(13)C between the two groups, while leaf nitrogen content and δ(15)N were significantly higher in covered trees than that of the control (P < 0.05), indicating that J s,n was not used for nitrogen uptake. These results suggest that J s,n may act as an oxygen pathway since green tissue has a higher respiration or oxygen demand than non-green tissue. Thus, this study demonstrated the physiological implications of J s,n and the possible benefits of nighttime water use or E by the tree.

  19. Neutron scattering on molten Ge-Sn-Te alloys

    Science.gov (United States)

    Halm, Th; Hinz, W.; Hoyer, W.

    1995-01-01

    Three molten ternary Ge-Sn-Te alloys lying on the quasibinary line Ge-SnTe, and the binary equiatomic alloys SnTe and GeTe have been investigated by neutron "time-of-flight" experiments. Published thermodynamic results are interpreted in terms of the coexistence of SnTe and Ge microgroupings in the melt. Using the experimental obtained data of the binary liquid alloy Sn50Te50 and of liquid Ge the structure factors of the ternary melts are calculated on the base of a microheterogeneous model.

  20. Structure and magnetism of Fe-doped BaSnO3 thin films

    Science.gov (United States)

    Alaan, Urusa S.; N'Diaye, Alpha T.; Shafer, Padraic; Arenholz, Elke; Suzuki, Yuri

    2017-05-01

    BaSnO3 is an excellent candidate system for developing a new class of perovskite-based dilute magnetic semiconductors. In this study, we show that BaSn0.95Fe0.05O3 can be grown from a background pressure of ˜2×10-3 mTorr to oxygen pressures of 300 mTorr with high crystallinity and excellent structural quality. When grown in vacuum, the films may be weakly ferromagnetic with a nonzero x-ray magnetic circular dichroism signal on the Fe L3 edge. Growth with oxygen flow appears to suppress magnetic ordering. Even for very thick films grown in 100 mTorr O2, the films are paramagnetic. The existence of ferromagnetism in vacuum-grown BaSnO3 may be attributed to the F-center exchange mechanism, which relies on the presence of oxygen vacancies to facilitate the ferromagnetism. However, other possible extrinsic contributions to the magnetic ordering, such as clusters of Fe3O4 and FeO or contamination can also explain the observed behavior.

  1. Structure and magnetism of Fe-doped BaSnO3 thin films

    Directory of Open Access Journals (Sweden)

    Urusa S. Alaan

    2017-05-01

    Full Text Available BaSnO3 is an excellent candidate system for developing a new class of perovskite-based dilute magnetic semiconductors. In this study, we show that BaSn0.95Fe0.05O3 can be grown from a background pressure of ∼2×10−3 mTorr to oxygen pressures of 300 mTorr with high crystallinity and excellent structural quality. When grown in vacuum, the films may be weakly ferromagnetic with a nonzero x-ray magnetic circular dichroism signal on the Fe L3 edge. Growth with oxygen flow appears to suppress magnetic ordering. Even for very thick films grown in 100 mTorr O2, the films are paramagnetic. The existence of ferromagnetism in vacuum-grown BaSnO3 may be attributed to the F-center exchange mechanism, which relies on the presence of oxygen vacancies to facilitate the ferromagnetism. However, other possible extrinsic contributions to the magnetic ordering, such as clusters of Fe3O4 and FeO or contamination can also explain the observed behavior.

  2. Diffusion couple studies of the Ni-Bi-Sn system

    Directory of Open Access Journals (Sweden)

    Vassilev G.

    2012-01-01

    Full Text Available Investigations of Ni-Bi-Sn system were performed in order to inquire the phase diagram and to assess some diffusion kinetic parameters. For this purpose diffusion couples consisting of solid nickel (preliminary electroplated with tin and liquid Bi-Sn phase were annealed at 370 °C. Three compositions (0.8, 0.6 and 0.4 mole fractions Sn of the Bi-Sn melts were chosen. Annealing times from 24 to 216 h were applied. The phase and chemical compositions of the contact zone were determined by means of electron scanning microscope. It was confirmed that the diffusion layers consist mainly of Ni3Sn4 but other intermetallic phases grow as well. For the first time metastable Ni-Sn phases as NiSn and NiSn8 (NiSn9 were observed in metallurgical alloys (i.e. not in electroplated samples. The existence of a ternary compound previously reported in the literature was confirmed. More than one ternary Ni-Bi-Sn compounds might possibly be admitted. A growth coefficient of (2.29 ± 0.02 x 10-15 m2 s-1 was obtained. It was found that the apparent activation energy for diffusion layers growth (18 ± 8 kJ mol-1 is inferior to that one assessed at growth from solid state Bi-Sn mixtures (88 ± 12 kJ mol-1.

  3. Dissolution of Sn, SnO, and SnS in a Thiol-Amine Solvent Mixture: Insights into the Identity of the Molecular Solutes for Solution-Processed SnS.

    Science.gov (United States)

    Buckley, Jannise J; McCarthy, Carrie L; Del Pilar-Albaladejo, Joselyn; Rasul, Golam; Brutchey, Richard L

    2016-03-21

    Binary solvent mixtures of alkanethiols and 1,2-ethylenediamine have the ability to readily dissolve metals, metal chalcogenides, and metal oxides under ambient conditions to enable the facile solution processing of semiconductor inks; however, there is little information regarding the chemical identity of the resulting solutes. Herein, we examine the molecular solute formed after dissolution of Sn, SnO, and SnS in a binary solvent mixture comprised of 1,2-ethanedithiol (EDT) and 1,2-ethylenediamine (en). Using a combination of solution (119)Sn NMR and Raman spectroscopies, bis(1,2-ethanedithiolate)tin(II) was identified as the likely molecular solute present after the dissolution of Sn, SnO, and SnS in EDT-en, despite the different bulk material compositions and oxidation states (Sn(0) and Sn(2+)). All three semiconductor inks can be converted to phase-pure, orthorhombic SnS after a mild annealing step (∼350 °C). This highlights the ability of the EDT-en solvent mixture to dissolve and convert a variety of low-cost precursors to SnS semiconductor material.

  4. J/Ψ suppression

    International Nuclear Information System (INIS)

    Giubellino, P.; Abreu, M.C.; Alessandro, B.; Alexa, C.; Arnaldi, R.; Astruc, J.; Atayan, M.; Baglin, C.; Baldit, A.; Bedjidian, M.; Bellaiche, F.; Beole, S.; Boldea, V.; Bordalo, P.; Bussiere, A.; Capony, V.; Casagrande, L.; Castor, J.; Chambon, T.; Chaurand, B.; Chevrot, I.; Cheynis, B.; Chiavassa, E.; Cicalo, C.; Comets, M.P.; Constantinescu, S.; Cruz, J.; De Falco, A.; De Marco, N.; Dellacasa, G.; Devaux, A.; Dita, S.; Drapier, O.; Espagnon, B.; Fargeix, J.; Filippov, S.N.; Fleuret, F.; Force, P.; Gallio, M.; Gavrilov, Y.K.; Gerschel, C.; Giubellino, P.; Golubeva, M.B.; Gonin, M.; Grigorian, A.A.; Grossiord, J.Y.; Guber, F.F.; Guichard, A.; Gulkaninan, H.; Hakobyan, R.; Haroutunian, R.; Idzik, M.; Jouan, D.; Karavitcheva, T.L.; Kluberg, L.; Kurepin, A.B.; Le Bornec, Y.; Lourenco, C.; Mac Cormick, M.; Macciotta, P.; Marzari-Chiesa, A.; Masera, M.; Masoni, A.; Mehrabyan, S.; Mourgues, S.; Musso, A.; Ohlsson-Malek, F.; Petiau, P.; Piccotti, A.; Pizzi, J.R.; Prado da Silva, W.L.; Puddu, G.; Quintans, C.; Racca, C.; Ramello, L.; Ramos, S.; Rato-Mendes, P.; Riccati, L.; Romana, A.; Sartori, S.; Saturnini, P.; Scomparin, E.; Serci, S.; Shahoyan, R.; Silva, S.; Soave, C.; Sonderegger, P.; Tarrago, X.; Temnikov, P.; Topilskaya, N.S.; Usai, G.; Vale, C.; Vercellin, E.; Willis, N.

    1999-01-01

    The cross section for J/Ψ production in Pb-Pb interactions at 158 GeV per nucleon is measured at the CERN SPS by the NA50 experiment. The final results from the 1995 run are presented here together with preliminary ones from the high-statistics 1996 run. An anomalous J/Ψ suppression is observed in Pb-Pb collisions as compared to extrapolations of the previous results obtained by the NA38 experiment with proton and lighter ion beams. The results of the two runs are in good agreement. The results from the 1996 run allow the study of the onset of the anomalous suppression within the same set of data, showing evidence of a sharp change of behaviour around a value of neutral transverse energy, as measured by our electromagnetic calorimeter, of about 50 GeV

  5. Effects of Electromigration on the Creep and Thermal Fatigue Behavior of Sn58Bi Solder Joints

    Science.gov (United States)

    Zuo, Yong; Ma, Limin; Guo, Fu; Qiao, Lei; Shu, Yutian; Lee, Andree; Subramanian, K. N.

    2014-12-01

    Electromigration (EM), creep, and thermal fatigue (TF) are the most important aspects of the reliability of electronic solder joints, the failure mechanisms of which used to be investigated separately. However, current, mechanical loading, and temperature fluctuation usually co-exist under real service conditions, especially as the magnitude of current density is increasing with joint miniaturization. The importance of EM can no longer be simply ignored when analyzing the creep and TF behavior of a solder joint. The published literature reports that current density substantially changes creep rate, but the intrinsic mechanism is still unclear. Hence, the purpose of this study was to investigate the effects of EM on the creep and TF behavior of Sn58Bi solder joints by analyzing the evolution of electrical resistance and microstructure. The results indicated that EM shortens the lifetime of creep or TF of Sn58Bi solder joints. During creep, EM delays or suppresses the cracking and deforming process, so fracture occurs at the cathode interface. During TF, EM suppresses the cracking process and changes the interfacial structure.

  6. SnO{sub 2} thin films grown by atomic layer deposition using a novel Sn precursor

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Min-Jung [Electronic Materials Research Center, Korea Institute of Science and Technology, Seoul, 136-791 (Korea, Republic of); Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749 (Korea, Republic of); Cho, Cheol Jin [Electronic Materials Research Center, Korea Institute of Science and Technology, Seoul, 136-791 (Korea, Republic of); Department of Materials Science and Engineering, Seoul National University, Seoul, 151-744 (Korea, Republic of); Kim, Kwang-Chon; Pyeon, Jung Joon [Electronic Materials Research Center, Korea Institute of Science and Technology, Seoul, 136-791 (Korea, Republic of); Park, Hyung-Ho [Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749 (Korea, Republic of); Kim, Hyo-Suk; Han, Jeong Hwan; Kim, Chang Gyoun; Chung, Taek-Mo [Division of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 305-600 (Korea, Republic of); Park, Tae Joo [Department of Materials Science and Engineering, Hanyang University, Ansan, 426-791 (Korea, Republic of); Kwon, Beomjin [Electronic Materials Research Center, Korea Institute of Science and Technology, Seoul, 136-791 (Korea, Republic of); Jeong, Doo Seok; Baek, Seung-Hyub [Electronic Materials Research Center, Korea Institute of Science and Technology, Seoul, 136-791 (Korea, Republic of); Department of Nanomaterials, Korea University of Science and Technology, Daejeon, 305-333 (Korea, Republic of); Kang, Chong-Yun; Kim, Jin-Sang [Electronic Materials Research Center, Korea Institute of Science and Technology, Seoul, 136-791 (Korea, Republic of); Kim, Seong Keun, E-mail: s.k.kim@kist.re.kr [Electronic Materials Research Center, Korea Institute of Science and Technology, Seoul, 136-791 (Korea, Republic of); Department of Nanomaterials, Korea University of Science and Technology, Daejeon, 305-333 (Korea, Republic of)

    2014-11-30

    Highlights: • We developed a new ALD process for SnO{sub 2} films using dimethylamino-2-methyl-2-propoxy-tin(II) as a novel Sn precursor. • The SnO{sub 2} films grown from Sn(dmamp){sub 2} has negligible impurity contents. • Sn ions in the films had a single binding state corresponding to Sn{sup 4+} in SnO{sub 2}. - Abstract: SnO{sub 2} thin films were grown by atomic layer deposition (ALD) with dimethylamino-2-methyl-2-propoxy-tin(II) (Sn(dmamp){sub 2}) and O{sub 3} in a temperature range of 100–230 °C. The ALD window was found to be in the range of 100–200 °C. The growth per cycle of the films in the ALD window increased with temperature in the range from 0.018 to 0.042 nm/cycle. Above 230 °C, the self-limiting behavior which is a unique characteristic of ALD, was not observed in the growth because of the thermal decomposition of the Sn(dmamp){sub 2} precursor. The SnO{sub 2} films were amorphous in the ALD window and exhibited quite a smooth surface. Sn ions in all films had a single binding state corresponding to Sn{sup 4+} in SnO{sub 2}. The concentration of carbon and nitrogen in the all SnO{sub 2} films was below the detection limit of the auger electron spectroscopy technique and a very small amount of carbon, nitrogen, and hydrogen was detected by secondary ions mass spectroscopy only. The impurity contents decreased with increasing the growth temperature. This is consistent with the increase in the density of the SnO{sub 2} films with respect to the growth temperature. The ALD process with Sn(dmamp){sub 2} and O{sub 3} shows excellent conformality on a hole structure with an aspect ratio of ∼9. This demonstrates that the ALD process with Sn(dmamp){sub 2} and O{sub 3} is promising for growth of robust and highly pure SnO{sub 2} films.

  7. Cryogenic in situ microcompression testing of Sn

    International Nuclear Information System (INIS)

    Lupinacci, A.; Kacher, J.; Eilenberg, A.; Shapiro, A.A.; Hosemann, P.; Minor, A.M.

    2014-01-01

    Characterizing plasticity mechanisms below the ductile-to-brittle transition temperature is traditionally difficult to accomplish in a systematic fashion. Here, we use a new experimental setup to perform in situ cryogenic mechanical testing of pure Sn micropillars at room temperature and at −142 °C. Subsequent electron microscopy characterization of the micropillars shows a clear difference in the deformation mechanisms at room temperature and at cryogenic temperatures. At room temperature, the Sn micropillars deformed through dislocation plasticity, while at −142 °C they exhibited both higher strength and deformation twinning. Two different orientations were tested, a symmetric (1 0 0) orientation and a non-symmetric (4 5 ¯ 1) orientation. The deformation mechanisms were found to be the same for both orientations

  8. SnET2: clinical update

    Science.gov (United States)

    Razum, Nicholas J.; Snyder, Albert B.; Doiron, Daniel R.

    1996-04-01

    Tin Ethyl Etiopurpurin, SnET2, is a synthetic chlorin analog presently in Phase-II/III clinical trials for the treatment of cutaneous cancers. Trials to date include the treatment of basal cell carcinomas, squamous cell carcinomas, breast adenocarcinomas metastatic to the chest wall and cutaneous Kaposi's sarcomas in AIDS patients. Results to date have shown significant clinical responses for drug doses between 1.0 mg/kg and 1.6 mg/kg, with the threshold for Kaposi's sarcoma being slightly higher than in other indications. Light doses from 100 J/cm2 to 300 J/cm2 were delivered from 24 to 72 hours post SnET2 infusion. Induced transient skin photosensitivity at the lower therapeutic doses has been mild, lasting approximately a week. Results of the Phase I and II trials are presented.

  9. Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites.

    Science.gov (United States)

    Siqueira, Gilberto; Bras, Julien; Dufresne, Alain

    2009-02-09

    In the present work, nanowhiskers and microfibrillated cellulose (MFC) both extracted from sisal were used to reinforce polycaprolactone (PCL). We report the influence of the nanoparticle's nature on the mechanical and thermal properties of the ensuing nanocomposites. The surface of both the nanoparticles was chemically modified to improve their compatibilization with the polymeric matrix. N-Octadecyl isocyanate (C18H37NCO) was used as the grafting agent. PCL nanocomposite films reinforced with sisal whiskers or MFC (raw or chemically modified) were prepared by film casting. The thermal behavior (Tg, Tm, Tc, and degree of crystallinity) and the mechanical properties of the nanocomposites in both the linear and the nonlinear range were determined using differential scanning calorimetry (DSC), dynamical mechanical analysis (DMA), and tensile tests, respectively. Significant differences were reported according to the nature of the nanoparticle and amount of nanofillers used as reinforcement. It was also proved that the chemical treatment clearly improves the ultimate properties of the nanocomposites.

  10. Cerebral blood flow modulation by Basal forebrain or whisker stimulation can occur independently of large cytosolic Ca2+ signaling in astrocytes.

    Science.gov (United States)

    Takata, Norio; Nagai, Terumi; Ozawa, Katsuya; Oe, Yuki; Mikoshiba, Katsuhiko; Hirase, Hajime

    2013-01-01

    We report that a brief electrical stimulation of the nucleus basalis of Meynert (NBM), the primary source of cholinergic projection to the cerebral cortex, induces a biphasic cerebral cortical blood flow (CBF) response in the somatosensory cortex of C57BL/6J mice. This CBF response, measured by laser Doppler flowmetry, was attenuated by the muscarinic type acetylcholine receptor antagonist atropine, suggesting a possible involvement of astrocytes in this type of CBF modulation. However, we find that IP3R2 knockout mice, which lack cytosolic Ca2+ surges in astrocytes, show similar CBF changes. Moreover, whisker stimulation resulted in similar degrees of CBF increase in IP3R2 knockout mice and the background strain C57BL/6J. Our results show that neural activity-driven CBF modulation could occur without large cytosolic increases of Ca2+ in astrocytes.

  11. Preparation of 117Snm(113Sn) (IV)-TPPS4

    International Nuclear Information System (INIS)

    Pu Manfei; Luo Shunzhong; Yang Yuqing; Liu Guoping; Li Yougen; Wang Xiaokun

    2006-01-01

    Development of 117 Sn m radiopharmaceuticals with radiosensitization ability to the treatment of tumors is valuable since such agents may increase therapeutic effects. In this paper, 117 Sn m ( 113 Sn) was prepared by irradiation of spectrally pure natural metallic tin grain with reactor thermal neutrons (neutron fluence rate 4 x 10 13 cm -2 ·s -1 ) for a period up to 90 h, yielding 117 Sn m and 113 Sn with specific activity of 0.13 GBq/B and 6.16 MBq/g respectively, and meso-tetrakis (4-sulfonatophenyl) porphyrin (TPPS 4 ) was labeled with 117 Sn m ( 113 Sn) in aqueous solution. The optimized preparation conditions are as follows: pH=2-4, reaction temperature about 100 degree C, reaction time 30 min. Under the recommended experimental conditions, the yield of 117 Sn m -TPPS 4 is higher than 95%. No significant decomposition of the 117 Sn m -TPPS 4 complex solution is observed either during the standing period of 48 h after its preparation, or after the dilution of it with physiological saline to 5-15 times at room temperature. A 1:1 stoichiometry of the 117 Sn m -TPPS 4 complex is obtained by the job's method. (authors)

  12. Sn(II), −Sm(II)

    African Journals Online (AJOL)

    Preferred Customer

    VCl3, SnCl2⋅2H2O, Sm(NO3)2⋅6H2O and SmCl3⋅6H2O) with slightly excess amounts of nitrilotriacetic acid in DMF resulted in the ... and Sm(III) ions through its three oxygen atoms and the nitrogen atom. The same tetra-dentate coordination ...

  13. Discovery of 7 ASAS-SN Supernovae

    Science.gov (United States)

    Brimacombe, J.; Nicholls, B.; Trappett, D.; Vallely, P.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Holoien, T. W.-S.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Stritzinger, M.; Holmbo, S.; Stone, G.; Kiyota, S.

    2018-03-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, the quadruple 14-cm "Leavitt" telescope in Fort Davis, Texas, the quadruple 14-cm "Payne-Gaposchkin" telescope in Sutherland, South Africa, and the quadruple 14-cm "Cassius" and "Paczynski" telescopes in Cerro Tololo, Chile, we discovered several new transient sources.

  14. Photoluminescence properties of polymethyl methacrylate-coated Zn{sub 2}SnO{sub 4} nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sunghoon; Kim, Soohyun [Department of Materials Science and Engineering, Inha University, 253 Yonghyun-dong, Nam-gu, Incheon 402-751 (Korea, Republic of); Choi, Seungbok [Department of Mechanical Engineering, Inha University, 253 Yonghyun-dong, Nam-gu, Incheon 402-751 (Korea, Republic of); Lee, Sangmin [Department of Electrical Engineering, Inha University, 253 Yonghyun-dong, Nam-gu, Incheon 402-751 (Korea, Republic of); Lee, Chongmu, E-mail: cmlee@inha.ac.kr [Department of Materials Science and Engineering, Inha University, 253 Yonghyun-dong, Nam-gu, Incheon 402-751 (Korea, Republic of)

    2015-09-30

    Polymethyl methacrylate (PMMA)-coated Zn{sub 2}SnO{sub 4} nanowires were synthesized by a two-step process: thermal evaporation of a mixture of Zn and Sn powders at 700 °C in an oxidizing atmosphere followed by spin coating of PMMA solution. The nanowires were 30–80 nm in diameter and up to a few hundred of micrometers in length. Photoluminescence showed that the near-band edge (NBE) emission-to-visible emission ratio of Zn{sub 2}SnO{sub 4} was enhanced significantly by PMMA coating. The highest NBE emission-to-visible emission ratio was obtained at a PMMA concentration of 0.25 mM. I{sub NBE}/I{sub DL} was increased almost 10 times by coating the nanowires with 0.25-mM PMMA. The enhanced NBE emission and suppressed visible emission might be due to enhanced excitonic emission efficiency. - Highlights: • Polymethyl methacrylate (PMMA)-coating of ZnO and Zn{sub 2}SnO{sub 4} nanowires • PMMA-coated nanowires prepared in a two-step process. • PMMA-coating of nanowires significantly increased the I{sub NBE}/I{sub DL} ratio. • Highest near-band-edge (NBE) emission-to-visible emission ratio obtained for 0.25 mM PMMA • The enhanced NBE emission might be due to enhanced excitonic emission efficiency.

  15. A neuronal MCT2 knockdown in the rat somatosensory cortex reduces both the NMR lactate signal and the BOLD response during whisker stimulation.

    Science.gov (United States)

    Mazuel, Leslie; Blanc, Jordy; Repond, Cendrine; Bouchaud, Véronique; Raffard, Gérard; Déglon, Nicole; Bonvento, Gilles; Pellerin, Luc; Bouzier-Sore, Anne-Karine

    2017-01-01

    Although several in vitro and ex vivo evidence support the existence of lactate exchange between astrocytes and neurons, a direct demonstration in vivo is still lacking. In the present study, a lentiviral vector carrying a short hairpin RNA (shRNA) was used to downregulate the expression of the monocarboxylate transporter type 2 (MCT2) in neurons of the rat somatosensory cortex (called S1BF) by ~ 25%. After one hour of whisker stimulation, HRMAS 1H-NMR spectroscopy analysis of S1BF perchloric acid extracts showed that while an increase in lactate content is observed in both uninjected and shRNA-control injected extracts, such an effect was abrogated in shMCT2 injected rats. A 13C-incorporation analysis following [1-13C]glucose infusion during the stimulation confirmed that the elevated lactate observed during activation originates from newly synthesized [3-13C]lactate, with blood-derived [1-13C]glucose being the precursor. Moreover, the analysis of the 13C-labeling of glutamate in position C3 and C4 indicates that upon activation, there is an increase in TCA cycle velocity for control rats while a decrease is observed for MCT2 knockdown animals. Using in vivo localized 1H-NMR spectroscopy, an increase in lactate levels is observed in the S1BF area upon whisker stimulation for shRNA-control injected rats but not for MCT2 knockdown animals. Finally, while a robust BOLD fMRI response was evidenced in control rats, it was absent in MCT2 knockdown rats. These data not only demonstrate that glucose-derived lactate is locally produced following neuronal activation but also suggest that its use by neurons via MCT2 is probably essential to maintain synaptic activity within the barrel cortex.

  16. VERY LATE PHOTOMETRY OF SN 2011fe

    Energy Technology Data Exchange (ETDEWEB)

    Kerzendorf, W. E. [Department of Astronomy and Astrophysics, University of Toronto, 50 Saint George Street, Toronto, ON M5S 3H4 (Canada); Taubenberger, S.; Seitenzahl, I. R.; Ruiter, A. J., E-mail: wkerzendorf@gmail.com [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Straße 1, D-85748 Garching (Germany)

    2014-12-01

    The Type Ia supernova SN 2011fe is one of the closest supernovae of the past decades. Due to its proximity and low dust extinction, this object provides a very rare opportunity to study the extremely late time evolution (>900 days) of thermonuclear supernovae. In this Letter, we present our photometric data of SN 2011fe taken at an unprecedented late epoch of ≈930 days with GMOS-N mounted on the Gemini North telescope (g = 23.43 ± 0.28, r = 24.14 ± 0.14, i = 23.91 ± 0.18, and z = 23.90 ± 0.17) to study the energy production and retention in the ejecta of SN 2011fe. Together with previous measurements by other groups, our result suggests that the optical supernova light curve can still be explained by the full thermalization of the decay positrons of {sup 56}Co. This is in spite of theoretical predicted effects (e.g., infrared catastrophe, positron escape, and dust) that advocate a substantial energy redistribution and/or loss via various processes that result in a more rapid dimming at these very late epochs.

  17. Sins: the Supernova Intensive Study - SN1992

    Science.gov (United States)

    Kirshner, Robert

    1991-07-01

    Supernovae are stars at the end of stellar evolution. They mark the moment of stellar destruction, act as the key process in the chemical evolution of the universe, serve as agitators and probes of the interstellar medium, and provide sharp and useful tools for cosmological investigations. As SN 1987A demonstrated, the best progress in this field comes from detailed study of the brightest objects. Many central problems of supernova research can be attacked by intensive and extensive observations of a handful of moderately bright supernovae using the HST cameras and spectrographs. SN 1987A provides a unique opportunity to connect the evolution of a supernova with the development of a supernova remnant and will be intensively studied in this program. Because supernovae touch on so many fields of astronomy, the results of this Supernova Intensive Study (SINS) will affect a broad range of areas from stellar interiors to cosmology so a diverse team of investigators has been assembled which includes experts on all these aspects of astronomy. While the first cycle observations concentrate on SN 1987A and on a fresh supernova to be studied at intermediate age, the second and third cycle will include target-of-opportunity observations of freshly-discovered supernovae which will strive for good UV coverage at early phases of the outburst.

  18. VERY LATE PHOTOMETRY OF SN 2011fe

    International Nuclear Information System (INIS)

    Kerzendorf, W. E.; Taubenberger, S.; Seitenzahl, I. R.; Ruiter, A. J.

    2014-01-01

    The Type Ia supernova SN 2011fe is one of the closest supernovae of the past decades. Due to its proximity and low dust extinction, this object provides a very rare opportunity to study the extremely late time evolution (>900 days) of thermonuclear supernovae. In this Letter, we present our photometric data of SN 2011fe taken at an unprecedented late epoch of ≈930 days with GMOS-N mounted on the Gemini North telescope (g = 23.43 ± 0.28, r = 24.14 ± 0.14, i = 23.91 ± 0.18, and z = 23.90 ± 0.17) to study the energy production and retention in the ejecta of SN 2011fe. Together with previous measurements by other groups, our result suggests that the optical supernova light curve can still be explained by the full thermalization of the decay positrons of 56 Co. This is in spite of theoretical predicted effects (e.g., infrared catastrophe, positron escape, and dust) that advocate a substantial energy redistribution and/or loss via various processes that result in a more rapid dimming at these very late epochs

  19. A facile inexpensive route for SnS thin film solar cells with SnS{sub 2} buffer

    Energy Technology Data Exchange (ETDEWEB)

    Gedi, Sreedevi [School of Chemical Engineering, Yeungnam University, 280Daehak-ro, Gyeongsan 712-749, Republic of Korea (Korea, Republic of); Solar Photovoltaic Laboratory, Department of Physics, Sri Venkateswasra University, Tirupati 517 502 (India); Minna Reddy, Vasudeva Reddy, E-mail: drmvasudr9@gmail.com [School of Chemical Engineering, Yeungnam University, 280Daehak-ro, Gyeongsan 712-749, Republic of Korea (Korea, Republic of); Solar Photovoltaic Laboratory, Department of Physics, Sri Venkateswasra University, Tirupati 517 502 (India); Pejjai, Babu [School of Chemical Engineering, Yeungnam University, 280Daehak-ro, Gyeongsan 712-749, Republic of Korea (Korea, Republic of); Solar Photovoltaic Laboratory, Department of Physics, Sri Venkateswasra University, Tirupati 517 502 (India); Jeon, Chan-Wook [School of Chemical Engineering, Yeungnam University, 280Daehak-ro, Gyeongsan 712-749, Republic of Korea (Korea, Republic of); Park, Chinho, E-mail: chpark@ynu.ac.kr [School of Chemical Engineering, Yeungnam University, 280Daehak-ro, Gyeongsan 712-749, Republic of Korea (Korea, Republic of); Ramakrishna Reddy, K.T., E-mail: ktrkreddy@gmail.com [Solar Photovoltaic Laboratory, Department of Physics, Sri Venkateswasra University, Tirupati 517 502 (India)

    2016-05-30

    Graphical abstract: PYS spectra of SnS/SnS{sub 2} interface and the related band diagram. - Highlights: • A low cost SnS solar cell is developed using chemical bath deposition. • We found E{sub I} & χ of SnS (5.3 eV & 4.0 eV) and SnS{sub 2} (6.9 eV & 4.1 eV) films from PYS. • Band offsets of 0.1 eV (E{sub c}) and 1.6 eV (E{sub v}) are estimated for SnS/SnS{sub 2} junction. • SnS based solar cell showed a conversion efficiency of 0.51%. - Abstract: Environment-friendly SnS based thin film solar cells with SnS{sub 2} as buffer layer were successfully fabricated from a facile inexpensive route, chemical bath deposition (CBD). Layer studies revealed that as-grown SnS and SnS{sub 2} films were polycrystalline; (1 1 1)/(0 0 1) peaks as the preferred orientation; 1.3 eV/2.8 eV as optical band gaps; and showed homogeneous microstructure with densely packed grains respectively. Ionization energy and electron affinity values were found by applying photoemission yield spectroscopy (PYS) to the CBD deposited SnS and SnS{sub 2} films for the first time. These values obtained as 5.3 eV and 4.0 eV for SnS films; 6.9 eV and 4.1 eV for SnS{sub 2} films. The band alignment of SnS/SnS{sub 2} junction showed TYPE-II heterostructure. The estimated conduction and valance band offsets were 0.1 eV and 1.6 eV respectively. The current density–voltage (J–V) measurements of the cell showed open circuit voltage (V{sub oc}) of 0.12 V, short circuit current density (J{sub sc}) of 10.87 mA cm{sup −2}, fill factor (FF) of 39% and conversion efficiency of 0.51%.

  20. 0(gs)+ -->2(1)+ transition strengths in 106Sn and 108Sn.

    Science.gov (United States)

    Ekström, A; Cederkäll, J; Fahlander, C; Hjorth-Jensen, M; Ames, F; Butler, P A; Davinson, T; Eberth, J; Fincke, F; Görgen, A; Górska, M; Habs, D; Hurst, A M; Huyse, M; Ivanov, O; Iwanicki, J; Kester, O; Köster, U; Marsh, B A; Mierzejewski, J; Reiter, P; Scheit, H; Schwalm, D; Siem, S; Sletten, G; Stefanescu, I; Tveten, G M; Van de Walle, J; Van Duppen, P; Voulot, D; Warr, N; Weisshaar, D; Wenander, F; Zielińska, M

    2008-07-04

    The reduced transition probabilities, B(E2; 0(gs)+ -->2(1)+), have been measured in the radioactive isotopes (108,106)Sn using subbarrier Coulomb excitation at the REX-ISOLDE facility at CERN. Deexcitation gamma rays were detected by the highly segmented MINIBALL Ge-detector array. The results, B(E2;0(gs)+ -->2(1)+)=0.222(19)e2b2 for 108Sn and B(E2; 0(gs)+-->2(1)+)=0.195(39)e2b2 for 106Sn were determined relative to a stable 58Ni target. The resulting B(E2) values are approximately 30% larger than shell-model predictions and deviate from the generalized seniority model. This experimental result may point towards a weakening of the N=Z=50 shell closure.

  1. Laser soldering of Sn-Ag-Cu and Sn-Zn-Bi lead-free solder pastes

    Science.gov (United States)

    Takahashi, Junichi; Nakahara, Sumio; Hisada, Shigeyoshi; Fujita, Takeyoshi

    2004-10-01

    It has reported that a waste of an electronics substrate including lead and its compound such as 63Sn-37Pb has polluted the environment with acid rain. For that environment problem the development of lead-free solder alloys has been promoted in order to find out the substitute for Sn-Pb solders in the United States, Europe, and Japan. In a present electronics industry, typical alloys have narrowed down to Sn-Ag-Cu and Sn-Zn lead-free solder. In this study, solderability of Pb-free solder that are Sn-Ag-Cu and Sn-Zn-Bi alloy was studied on soldering using YAG (yttrium aluminum garnet) laser and diode laser. Experiments were peformed in order to determine the range of soldering parameters for obtaining an appropriate wettability based on a visual inspection. Joining strength of surface mounting chip components soldered on PCB (printed circuit board) was tested on application thickness of solder paste (0.2, 0.3, and 0.4 mm). In addition, joining strength characteristics of eutectic Sn-Pb alloy and under different power density were examined. As a result, solderability of Sn-Ag-Cu (Pb-free) solder paste are equivalent to that of coventional Sn-Pb solder paste, and are superior to that of Sn-Zn-Bi solder paste in the laser soldering method.

  2. Contact resistance characteristics of Ag–SnO2 contact materials with high SnO2 content

    International Nuclear Information System (INIS)

    Wang, Jun; Tie, Shengnian; Kang, Yongqiang; Wang, Yaping

    2015-01-01

    Highlights: • Surface morphologies of arc eroded Ag–SnO 2 samples were stable and uniform. • Contact resistance of Ag–30SnO 2 samples increased by 33% and stabilize in 5 mΩ. • Contact resistance can be reduced significantly by increasing the contact force. • The present results provide an effective way to low and stable contact resistance. - Abstract: The contact resistance and surface morphologies characteristics of Ag–SnO 2 contact materials with high SnO 2 content was investigated in make-and-break operations. The microstructure and arc eroded surface morphologies of Ag–SnO 2 samples were researched by Scanning Electron Microscopy (SEM). The surface profiles and average surface roughness S a of arc eroded Ag–SnO 2 samples were also analyzed by Scanning Laser Microscope (SLM) 3D surface technique. With the SnO 2 content increase from 15 wt.% to 30 wt.%, it was found that contact resistance of Ag–SnO 2 materials increased by 33% and stabilize in 5 mΩ when contact force over than 70 N. The surface morphologies of arc eroded Ag–SnO 2 samples were stable and uniform compared with the original samples. The theoretical analysis and experimental results of contact resistance characteristic indicated that contact force is the predominant factor for the contact resistances of Ag–SnO 2 materials with high SnO 2 content and contact resistance of high SnO 2 content Ag–SnO 2 materials can be reduced significantly by increasing the contact force

  3. How to suppress obsessive thoughts.

    Science.gov (United States)

    Rassin, Eric; Diepstraten, Philip

    2003-01-01

    Thought suppression (i.e. consciously trying to avoid certain thoughts from entering consciousness) has been argued to be an inadequate strategy in case of unwanted intrusions. That is, thought suppression seems to result in more rather than less intrusions. Although this experimental finding has been explained in terms of failing attempts to distract oneself from the target thought, the White Bear Suppression Inventory (WBSI; a scale that measures chronic thought suppression tendencies) does not address the means by which respondents try to suppress unwanted thoughts. To examine which strategies of mental control people use to suppress unwanted thoughts, obsessive-compulsive disorder patients (N=47) completed the WBSI, the Thought Control Questionnaire, and two measures of psychopathology. Results suggest that the crucial mechanism in thought suppression may not be distraction, but self-punishment.

  4. Tunneling spectroscopy on superconducting Nb3Sn with artioficial barriers

    International Nuclear Information System (INIS)

    Schneider, U.

    1984-03-01

    Tunneling diodes on Nb 3 Sn were prepared by magnetron sputtering. The superconducting transition temperatures of the Nb 3 Sn films were in the range of 5 to 18 K. An energetically low-lying structure in the tunneling density of states has been localized by detailed studies of the second derivative of the current-voltage characteristics of the diodes. This structure was found near 5.5 meV for stoichiometric Nb 3 Sn (Tsub(c) approx.= 18 K) and at 6.7 meV for understoichiometric Nb 3 Sn (Tsub(c) approx.= 5 K). The minimum in the conductance at zero energy found in the normal state could be identified to be mainly due to inelastic phonon processes of barrier phonons and Nb 3 Sn phonons. Deformations were found in the tunneling density of states of stoichiometric Nb 3 Sn diodes which lead to contradiction when explained by proximity effects. (orig./GSCH)

  5. A new analysis procedure to extract fusion excitation function with large beam energy dispersions: application to the 6Li+120Sn and 7Li+119Sn

    Directory of Open Access Journals (Sweden)

    Di Pietro Alessia

    2017-01-01

    Full Text Available In the present paper it is described an analysis procedure suited for experiments where cross-sections strongly varying with energy are measured using beams having large energy dispersion. These cross-sections are typically the sub-barrier fusion excitation function of reactions induced by radioactive beams. The large beam energy dispersion, typical of these experiments, can lead to ambiguities in the association of the effective beam energy to the reaction product yields and consequently to an error in the determination of the excitation function. As a test case, the approach is applied to the experiments 6Li+120Sn and 7Li+119Sn measured in the energy range 14 MeV ≤ Ec.m. ≤28 MeV. The complete fusion cross sections are deduced from activation measurements using the stacked target technique. The results of these experiments, that employ the two weakly-bound stable Li isotopes, show that the complete fusion cross sections above the barrier are suppressed of about 70% and 85% with respect to the Universal Fusion Function, used as a standard reference, in the 6Li and 7Li induced reactions respectively. Moreover, the excitation functions of the two systems at energies below the barrier, do not show significant differences, despite the two systems have different n-transfer Qvalue.

  6. Structural properties and hyperfine characterization of Sn-substituted goethites

    Energy Technology Data Exchange (ETDEWEB)

    Larralde, A.L. [INQUIMAE, Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina); Ramos, C.P. [Departamento de Fisica de la Materia Condensada, GIyA - CAC - CNEA, Av. Gral. Paz 1499 (1650), San Martin, Bs. As. (Argentina); Arcondo, B. [Departamento de Fisica, Facultad de Ingenieria, Universidad de Buenos Aires, Av. Paseo Colon 850 (C1063ACV), Bs. As. (Argentina); Tufo, A.E. [INQUIMAE, Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina); Saragovi, C. [Departamento de Fisica de la Materia Condensada, GIyA - CAC - CNEA, Av. Gral. Paz 1499 (1650), San Martin, Bs. As. (Argentina); Sileo, E.E., E-mail: sileo@qi.fcen.uba.ar [INQUIMAE, Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina)

    2012-04-16

    Highlights: Black-Right-Pointing-Pointer Pure and tin-doped goethites were synthesized from Sn(II) solutions at ambient pressure and 70 Degree-Sign C. Black-Right-Pointing-Pointer The Rietveld refinement of PXRD data indicated that Sn partially substituted the Fe(III) ions. Black-Right-Pointing-Pointer The substitution provoked unit cell expansion, and a distortion of the coordination polyhedron. Black-Right-Pointing-Pointer {sup 119}Sn Moessbauer spectroscopy revealed that Sn(II) is incorporated as Sn(IV). Black-Right-Pointing-Pointer {sup 57}Fe Moessbauer spectroscopy showed a lower magnetic coupling as tin concentration increased. - Abstract: Tin-doped goethites obtained by a simple method at ambient pressure and 70 Degree-Sign C were characterized by inductively coupled plasma atomic emission spectrometry, scanning electron microscopy, Rietveld refinement of powder X-ray diffraction data, and {sup 57}Fe and {sup 119}Sn Moessbauer spectroscopy. The particles size and the length to width ratios decreased with tin-doping. Sn partially substituted the Fe(III) ions provoking unit cell expansion and increasing the crystallinity of the particles with enlarged domains that grow in the perpendicular and parallel directions to the anisotropic broadening (1 1 1) axis. Intermetallic E, E Prime and DC distances also change although the variations are not monotonous, indicating different variations in the coordination polyhedron. In general, the Sn-substituted samples present larger intermetallic distances than pure goethite, and the greatest change is shown in the E Prime distance which coincides with the c-parameter. {sup 119}Sn Moessbauer spectroscopy revealed that Sn(II) is incorporated as Sn(IV) in the samples. On the other hand, Fe(II) presence was not detected by {sup 57}Fe Moessbauer spectroscopy, suggesting the existence of vacancies in the Sn-doped samples. A lower magnetic coupling is also evidenced from the average magnetic hyperfine field values obtained as tin

  7. Unihemispheric burst suppression

    Directory of Open Access Journals (Sweden)

    Edward C. Mader Jr.

    2014-08-01

    Full Text Available Burst suppression (BS consists of bursts of high-voltage slow and sharp wave activity alternating with periods of background suppression in the electroencephalogram (EEG. When induced by deep anesthesia or encephalopathy, BS is bihemispheric and is often viewed as a non-epileptic phenomenon. In contrast, unihemispheric BS is rare and its clinical significance is poorly understood. We describe here two cases of unihemispheric BS. The first patient is a 56-year-old woman with a left temporoparietal tumor who presented in convulsive status epilepticus. EEG showed left hemispheric BS after clinical seizure termination with lorazepam and propofol. The second patient is a 39-year-old woman with multiple medical problems and a vague history of seizures. After abdominal surgery, she experienced a convulsive seizure prompting treatment with propofol. Her EEG also showed left hemispheric BS. In both cases, increasing the propofol infusion rate resulted in disappearance of unihemispheric BS and clinical improvement. The prevailing view that typical bihemispheric BS is non-epileptic should not be extrapolated automatically to unihemispheric BS. The fact that unihemispheric BS was associated with clinical seizure and resolved with propofol suggests that, in both cases, an epileptic mechanism was responsible for unihemispheric BS.

  8. Fabrication of high crystalline SnS and SnS2 thin films, and their switching device characteristics

    Science.gov (United States)

    Choi, Hyeongsu; Lee, Jeongsu; Shin, Seokyoon; Lee, Juhyun; Lee, Seungjin; Park, Hyunwoo; Kwon, Sejin; Lee, Namgue; Bang, Minwook; Lee, Seung-Beck; Jeon, Hyeongtag

    2018-05-01

    Representative tin sulfide compounds, tin monosulfide (SnS) and tin disulfide (SnS2) are strong candidates for future nanoelectronic devices, based on non-toxicity, low cost, unique structures and optoelectronic properties. However, it is insufficient for synthesizing of tin sulfide thin films using vapor phase deposition method which is capable of fabricating reproducible device and securing high quality films, and their device characteristics. In this study, we obtained highly crystalline SnS thin films by atomic layer deposition and obtained highly crystalline SnS2 thin films by phase transition of the SnS thin films. The SnS thin film was transformed into SnS2 thin film by annealing at 450 °C for 1 h in H2S atmosphere. This phase transition was confirmed by x-ray diffractometer and x-ray photoelectron spectroscopy, and we studied the cause of the phase transition. We then compared the film characteristics of these two tin sulfide thin films and their switching device characteristics. SnS and SnS2 thin films had optical bandgaps of 1.35 and 2.70 eV, and absorption coefficients of about 105 and 104 cm‑1 in the visible region, respectively. In addition, SnS and SnS2 thin films exhibited p-type and n-type semiconductor characteristics. In the images of high resolution-transmission electron microscopy, SnS and SnS2 directly showed a highly crystalline orthorhombic and hexagonal layered structure. The field effect transistors of SnS and SnS2 thin films exhibited on–off drain current ratios of 8.8 and 2.1 × 103 and mobilities of 0.21 and 0.014 cm2 V‑1 s‑1, respectively. This difference in switching device characteristics mainly depends on the carrier concentration because it contributes to off-state conductance and mobility. The major carrier concentrations of the SnS and SnS2 thin films were 6.0 × 1016 and 8.7 × 1013 cm‑3, respectively, in this experiment.

  9. Synthesis of mesoporous SnO{sub 2} spheres via self-assembly and superior lithium storage properties

    Energy Technology Data Exchange (ETDEWEB)

    Yin Xiaoming; Chen Libao; Li Chengchao; Hao Quanyi; Liu Shuang; Li Qiuhong [Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education and State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China); Zhang Endi, E-mail: endi_zhang@163.co [Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education and State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China); Wang Taihong, E-mail: thwang@aphy.iphy.ac.c [Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education and State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China)

    2011-02-01

    This paper firstly reported a simple route to prepare SnO{sub 2} mesoporous spheres for lithium ion battery. Mesoporous SnO{sub 2} spheres in range of 100-300 nm were prepared by primary reaction at 353 K for 30 min, and calcination process at 773 K, which could be scaled up for manufacturing. The nano-size effect of the small particle and the 3D mesoporous structure promoted the electrolyte and lithium ion transfer and suppressed the volume changes, which greatly enhanced the cycle performances. As the anode material, it could deliver 761 mAh g{sup -1} capacity after 50 cycles at the current density of 200 mA g{sup -1}. Even at 2 A g{sup -1}, it retained 480 mAh g{sup -1} after 50 cycles. Furthermore, we suggested that the high stability of the structure was responsible for the improved cycle properties.

  10. Synthesis of mesoporous SnO2 spheres via self-assembly and superior lithium storage properties

    International Nuclear Information System (INIS)

    Yin Xiaoming; Chen Libao; Li Chengchao; Hao Quanyi; Liu Shuang; Li Qiuhong; Zhang Endi; Wang Taihong

    2011-01-01

    This paper firstly reported a simple route to prepare SnO 2 mesoporous spheres for lithium ion battery. Mesoporous SnO 2 spheres in range of 100-300 nm were prepared by primary reaction at 353 K for 30 min, and calcination process at 773 K, which could be scaled up for manufacturing. The nano-size effect of the small particle and the 3D mesoporous structure promoted the electrolyte and lithium ion transfer and suppressed the volume changes, which greatly enhanced the cycle performances. As the anode material, it could deliver 761 mAh g -1 capacity after 50 cycles at the current density of 200 mA g -1 . Even at 2 A g -1 , it retained 480 mAh g -1 after 50 cycles. Furthermore, we suggested that the high stability of the structure was responsible for the improved cycle properties.

  11. Elastic anisotropy in multifilament Nb$_3$Sn superconducting wires

    CERN Document Server

    Scheuerlein, C; Alknes, P; Arnau, G; Bjoerstad, R; Bordini, B

    2015-01-01

    The elastic anisotropy caused by the texture in the Nb3Sn filaments of PIT and RRP wires has been calculated by averaging the estimates of Voigt and Reuss, using published Nb3Sn single crystal elastic constants and the Nb3Sn grain orientation distribution determined in both wire types by Electron Backscatter Diffraction. At ambient temperature the calculated Nb3Sn E-moduli in axial direction in the PIT and the RRP wire are 130 GPa and 140 GPa, respectively. The calculated E-moduli are compared with tensile test results obtained for the corresponding wires and extracted filament bundles.

  12. Phase diagram of the ternary Zr-Ti-Sn system

    International Nuclear Information System (INIS)

    Arias, D.; Gonzalez Camus, M.

    1987-01-01

    It is well known that Ti stabilizes the high temperature cubic phase of Zr and that Sn stabilizes the low temperature hexagonal phase of Zr. The effect of Sn on the Zr-Ti diagram has been studied in the present paper. Using high purity metals, nine different alloys have been prepared, with 4-32 at % Ti, 0.7-2.2 at % Sn and Zr till 100%. Resistivity and optical and SEM metallography techniques have been employed. Effect of some impurities have been analyzed. The results are discussed and different isothermic sections of the ternary Zr-Ti-Sn diagram are presented. (Author) [es

  13. Thermodynamic, Kinetic, Structural, and Computational Studies of the Ph3Sn-H, Ph3Sn-SnPh3, and Ph3Sn-Cr(CO)3C5Me5 Bond Dissociation Enthalpies.

    Science.gov (United States)

    Cai, Xiaochen; Majumdar, Subhojit; Fortman, George C; Koppaka, Anjaneyulu; Serafim, Leonardo; Captain, Burjor; Temprado, Manuel; Hoff, Carl D

    2016-10-05

    The kinetics of the reaction of Ph 3 SnH with excess •Cr(CO) 3 C 5 Me 5 = •Cr, producing HCr and Ph 3 Sn-Cr, was studied in toluene solution under 2-3 atm CO pressure in the temperature range of 17-43.5 °C. It was found to obey the rate equation d[Ph 3 Sn-Cr]/dt = k[Ph 3 SnH][•Cr] and exhibit a normal kinetic isotope effect (k H /k D = 1.12 ± 0.04). Variable-temperature studies yielded ΔH ‡ = 15.7 ± 1.5 kcal/mol and ΔS ‡ = -11 ± 5 cal/(mol·K) for the reaction. These data are interpreted in terms of a two-step mechanism involving a thermodynamically uphill hydrogen atom transfer (HAT) producing Ph 3 Sn• and HCr, followed by rapid trapping of Ph 3 Sn• by excess •Cr to produce Ph 3 Sn-Cr. Assuming an overbarrier of 2 ± 1 kcal/mol in the HAT step leads to a derived value of 76.0 ± 3.0 kcal/mol for the Ph 3 Sn-H bond dissociation enthalpy (BDE) in toluene solution. The reaction enthalpy of Ph 3 SnH with excess •Cr was measured by reaction calorimetry in toluene solution, and a value of the Sn-Cr BDE in Ph 3 Sn-Cr of 50.4 ± 3.5 kcal/mol was derived. Qualitative studies of the reactions of other R 3 SnH compounds with •Cr are described for R = n Bu, t Bu, and Cy. The dehydrogenation reaction of 2Ph 3 SnH → H 2 + Ph 3 SnSnPh 3 was found to be rapid and quantitative in the presence of catalytic amounts of the complex Pd(IPr)(P(p-tolyl) 3 ). The thermochemistry of this process was also studied in toluene solution using varying amounts of the Pd(0) catalyst. The value of ΔH = -15.8 ± 2.2 kcal/mol yields a value of the Sn-Sn BDE in Ph 3 SnSnPh 3 of 63.8 ± 3.7 kcal/mol. Computational studies of the Sn-H, Sn-Sn, and Sn-Cr BDEs are in good agreement with experimental data and provide additional insight into factors controlling reactivity in these systems. The structures of Ph 3 Sn-Cr and Cy 3 Sn-Cr were determined by X-ray crystallography and are reported. Mechanistic aspects of oxidative addition reactions in this system are discussed.

  14. Enhanced electron mobility at the two-dimensional metallic surface of BaSnO3 electric-double-layer transistor at low temperatures

    Science.gov (United States)

    Fujiwara, Kohei; Nishihara, Kazuki; Shiogai, Junichi; Tsukazaki, Atsushi

    2017-05-01

    Wide-bandgap oxides exhibiting high electron mobility hold promise for the development of useful electronic and optoelectronic devices as well as for basic research on two-dimensional electron transport phenomena. A perovskite-type tin oxide, BaSnO3, is currently one of such targets owing to distinctly high mobility at room temperature. The challenge to overcome towards the use of BaSnO3 thin films in applications is suppression of dislocation scattering, which is one of the dominant scattering origins for electron transport. Here, we show that the mobility of the BaSnO3 electric-double-layer transistor reaches 300 cm2 V-1 s-1 at 50 K. The improved mobility indicates that charged dislocation scattering is effectively screened by electrostatically doped high-density charge carriers. We also observed metallic conduction persisting down to 2 K, which is attributed to the transition to the degenerate semiconductor. The experimental verification of bulk-level mobility at the densely accumulated surface sheds more light on the importance of suppression of dislocation scattering by interface engineering in doped BaSnO3 thin films for transparent electrode applications.

  15. Interfacial Bonding Energy on the Interface between ZChSnSb/Sn Alloy Layer and Steel Body at Microscale

    Directory of Open Access Journals (Sweden)

    Jianmei Wang

    2017-09-01

    Full Text Available To investigate the performance of bonding on the interface between ZChSnSb/Sn and steel body, the interfacial bonding energy on the interface of a ZChSnSb/Sn alloy layer and the steel body with or without Sn as an intermediate layer was calculated under the same loadcase using the molecular dynamics simulation software Materials Studio by ACCELRYS, and the interfacial bonding energy under different Babbitt thicknesses was compared. The results show that the bonding energy of the interface with Sn as an intermediate layer is 10% larger than that of the interface without a Sn layer. The interfacial bonding performances of Babbitt and the steel body with Sn as an intermediate layer are better than those of an interface without a Sn layer. When the thickness of the Babbitt layer of bushing is 17.143 Å, the interfacial bonding energy reaches the maximum, and the interfacial bonding performance is optimum. These findings illustrate the bonding mechanism of the interfacial structure from the molecular level so as to ensure the good bonding properties of the interface, which provides a reference for the improvement of the bush manufacturing process from the microscopic point of view.

  16. Pulse number controlled laser annealing for GeSn on insulator structure with high substitutional Sn concentration

    Energy Technology Data Exchange (ETDEWEB)

    Moto, Kenta; Sadoh, Taizoh; Miyao, Masanobu, E-mail: miyao@ed.kyushu-u.ac.jp [Department of Electronics, Kyushu University, 744 Motooka, Fukuoka 819-0395 (Japan); Matsumura, Ryo [Department of Electronics, Kyushu University, 744 Motooka, Fukuoka 819-0395 (Japan); JSPS, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083 (Japan); Ikenoue, Hiroshi [Department of Gigaphoton Next GLP, Kyushu University, 744 Motooka, Fukuoka 819-0395 (Japan)

    2016-06-27

    Crystalline GeSn-on-insulator structures with high Sn concentration (>8%), which exceeds thermal equilibrium solid-solubility (∼2%) of Sn in Ge, are essential to achieve high-speed thin film transistors and high-efficiency optical devices. We investigate non-thermal equilibrium growth of Ge{sub 1−x}Sn{sub x} (0 ≤ x ≤ 0.2) on quartz substrates by using pulsed laser annealing (PLA). The window of laser fluence enabling complete crystallization without film ablation is drastically expanded (∼5 times) by Sn doping above 5% into Ge. Substitutional Sn concentration in grown layers is found to be increased with decreasing irradiation pulse number. This phenomenon can be explained on the basis of significant thermal non-equilibrium growth achieved by higher cooling rate after PLA with a lower pulse number. As a result, GeSn crystals with substitutional Sn concentration of ∼12% are realized at pulse irradiation of single shot for the samples with the initial Sn concentration of 15%. Raman spectroscopy and electron microscopy measurements reveal the high quality of the grown layer. This technique will be useful to fabricate high-speed thin film transistors and high-efficiency optical devices on insulating substrates.

  17. Temperature varying photoconductivity of GeSn alloys grown by chemical vapor deposition with Sn concentrations from 4% to 11%

    Science.gov (United States)

    Hart, John; Adam, Thomas; Kim, Yihwan; Huang, Yi-Chiau; Reznicek, Alexander; Hazbun, Ramsey; Gupta, Jay; Kolodzey, James

    2016-03-01

    Pseudomorphic GeSn layers with Sn atomic percentages between 4.5% and 11.3% were grown by chemical vapor deposition using digermane and SnCl4 precursors on Ge virtual substrates grown on Si. The layers were characterized by x-ray diffraction rocking curves and reciprocal space maps. Photoconductive devices were fabricated, and the dark current was found to increase with Sn concentration. The responsivity of the photoconductors was measured at a wavelength of 1.55 μm using calibrated laser illumination at room temperature and a maximum value of 2.7 mA/W was measured for a 4.5% Sn device. Moreover, the responsivity for higher Sn concentration was found to increase with decreasing temperature. Spectral photoconductivity was measured using Fourier transform infrared spectroscopy. The photoconductive absorption edge continually increased in wavelength with increasing tin percentage, out to approximately 2.4 μm for an 11.3% Sn device. The direct band gap was extracted using Tauc plots and was fit to a bandgap model accounting for layer strain and Sn concentration. This direct bandgap was attributed to absorption from the heavy-hole band to the conduction band. Higher energy absorption was also observed, which was thought to be likely from absorption in the light-hole band. The band gaps for these alloys were plotted as a function of temperature. These experiments show the promise of GeSn alloys for CMOS compatible short wave infrared detectors.

  18. Structural and Morphological Description of Sn/SnOxCore-Shell Nanoparticles Synthesized and Isolated from Ionic Liquid.

    Science.gov (United States)

    Soulmi, Nadia; Dambournet, Damien; Rizzi, Cécile; Sirieix-Plénet, Juliette; Duttine, Mathieu; Wattiaux, Alain; Swiatowska, Jolanta; Borkiewicz, Olaf J; Groult, Henri; Gaillon, Laurent

    2017-08-21

    The potential application of high capacity Sn-based electrode materials for energy storage, particularly in rechargeable batteries, has led to extensive research activities. In this scope, the development of an innovative synthesis route allowing to downsize particles to the nanoscale is of particular interest owing to the ability of such nanomaterial to better accommodate volume changes upon electrochemical reactions. Here, we report on the use of room temperature ionic liquid (i.e., [EMIm + ][TFSI - ]) as solvent, template, and stabilizer for Sn-based nanoparticles. In such a media, we observed, using Cryo-TEM, that pure Sn nanoparticles can be stabilized. Further washing steps are, however, mandatory to remove residual ionic liquid. It is shown that the washing steps are accompanied by the partial oxidation of the surface, leading to a core-shell structured Sn/SnO x composite. To understand the structural features of such a complex architecture, HRTEM, Mössbauer spectroscopy, and the pair distribution function were employed to reveal a crystallized β-Sn core and a SnO and SnO 2 amorphous shell. The proportion of oxidized phases increases with the final washing step with water, which appeared necessary to remove not only salts but also the final surface impurities made of the cationic moieties of the ionic liquid. This work highlights the strong oxidation reactivity of Sn-based nanoparticles, which needs to be taken into account when evaluating their electrochemical properties.

  19. Cluster radioactivity leading to doubly magic 100Sn and 132Sn ...

    Indian Academy of Sciences (India)

    The lowest 1/2 value for 28Si emission from 128Gd indicates the role of doubly magic 100Sn daughter in cluster decay process. It is also found that neutron excess in the parent nuclei slows down the cluster decay process. Geiger–Nuttal plots for all clusters are found to be linear with different slopes and intercepts.

  20. Phase Equilibria in the Sn-Rich Corner of the Ni-Sb-Sn System

    Czech Academy of Sciences Publication Activity Database

    Mishra, R.; Kroupa, Aleš; Zemanová, Adéla; Ipser, H.

    2013-01-01

    Roč. 42, č. 4 (2013), s. 646-653 ISSN 0361-5235 Institutional support: RVO:68081723 Keywords : lead-free solder * high-temperature solder * Ni-Sb-Sn system Subject RIV: BJ - Thermodynamics Impact factor: 1.675, year: 2013

  1. Hydrothermal synthesis, characterization and enhanced visible-light photocatalytic activity of Co-doped Zn2SnO4 nanoparticles

    Science.gov (United States)

    Hu, Xiaofei; Hao, Hongshun; Guo, Weihua; Jin, Shanshan; Li, Hong; Hou, Hongman; Zhang, Gongliang; Yan, Shuang; Gao, Wenyuan; Liu, Guishan

    2017-06-01

    Various molar concentrations of Co-doped Zn2SnO4 nanoparticles were synthesized by hydrothermal method. The as-prepared samples were characterized by XRD, XPS, FESEM, TEM, UV-Vis and PL. The result of XPS revealed that the Co dopant displayed a chemical state of Co2+ in Zn2SnO4 lattice. UV-Vis results revealed that the absorption edge of samples shifted towards visible light region gradually with the increase of Co doping content. The PL intensity weakened significantly for the Co-doped Zn2SnO4, which indicates that the recombination of photo-generated electrons and holes was suppressed strongly. The photocatalytic activity of Zn2SnO4 was observed by photodegradation of RhB under visible light irradiation. The influences of Co doping content on photocatalytic activity of Zn2SnO4 were investigated. The experiment results indicated that the maximum degradation rate of RhB was 93% in 120 min when Co2+ molar concentration was 2 mol%. Furthermore, a possible mechanism of photocatalytic degradation of RhB was discussed.

  2. Catalytic enantioselective allyl- and crotylboration of aldehydes using chiral diol x SnCl4 complexes. optimization, substrate scope and mechanistic investigations.

    Science.gov (United States)

    Rauniyar, Vivek; Zhai, Huimin; Hall, Dennis G

    2008-07-02

    We report a novel class of C2-symmetric chiral diols derived from the hydrobenzoin skeleton. The combination of these diols with SnCl4 under Yamamoto's concept of Lewis acid assisted Brønsted acidity (LBA catalysis) leads to high levels of asymmetric induction in the allylboration of aldehydes by commercially available allylboronic acid pinacol ester 1a. The corresponding homoallylic alcohol products of synthetically useful aliphatic aldehydes are obtained in excellent yields with up to 98:2 er. This combined acid manifold is also efficient in catalyzing the diastereo- and enantioselective crotylboration of aldehydes, thus providing the propionate units in >95:5 dr and up to 98:2 er. The X-ray crystal structure of the optimal diol x SnCl4 complex, Vivol (4m) x SnCl4, unambiguously shows the Brønsted acidic character of this LBA catalyst and its highly dissymmetrical environment. Further controls have ruled out a possible boron trans-esterification mechanism with the chiral diol and point to LBA catalyst-derived activation of the pinacol allylic boronates 1. Due to slow dissociation of the diol x SnCl4 complex, a small excess of diol is required in order to suppress a competing racemic cycle catalyzed by free SnCl4.

  3. Suppression of sympathetic detonation

    Science.gov (United States)

    Foster, J. C., Jr.; Gunger, M. E.; Craig, B. G.; Parsons, G. H.

    1984-08-01

    There are two basic approaches to suppression of sympathetic detonation. Minimizing the shock sensitivity of the explosive to long duration pressure will obviously reduce interround separation distances. However, given that the explosive sensitivity is fixed, then much can be gained through the use of simple barriers placed between the rounds. Researchers devised calculational methods for predicting shock transmission; experimental methods have been developed to characterize explosive shock sensitivity and observe the response of acceptors to barriers. It was shown that both EAK and tritonal can be initiated to detonation with relatively low pressure shocks of long durations. It was also shown that to be an effective barrier between the donor and acceptor, the material must attenuate shock and defect fragments. Future actions will concentrate on refining the design of barriers to minimize weight, volume, and cost.

  4. Development of Sn-Ag-Cu-X Solders for Electronic Assembly by Micro-Alloying with Al

    Science.gov (United States)

    Boesenberg, Adam J.; Anderson, Iver E.; Harringa, Joel L.

    2012-07-01

    Of Pb-free solder choices, an array of solder alloys based on the Sn-Ag-Cu (SAC) ternary eutectic ( T eut = 217°C) composition have emerged with potential for broad use, including ball grid array (BGA) joints that cool slowly. This work investigated minor substitutional additions of Al (0.05Al), but the suppression effect faded for >0.20Al. Undercooling suppression did not correlate specifically with blade suppression since it became significant at 0.10Al and increased continuously with greater Al to 0.25Al. Surprisingly, an intermediate range of Al content (0.10 wt.% to 0.20 wt.% Al) promoted formation of significant populations of 2- μm to 5- μm faceted Cu-Al particles, identified as Cu33Al17, that clustered at the top of the solder joint matrix and exhibited extraordinary hardness. Clustering of Cu33Al17 was attributed to its buoyancy, from a lower density than Sn liquid, and its early position in the nucleation sequence within the solder matrix, permitting unrestricted migration to the top interface. Joint microstructures and implications for the full nucleation sequence for these SAC + Al solder joints are discussed, along with possible benefits from the clustered particles for improved thermal cycling resistance.

  5. Significantly Enhanced Dielectric Performances and High Thermal Conductivity in Poly(vinylidene fluoride)-Based Composites Enabled by SiC@SiO2 Core-Shell Whiskers Alignment.

    Science.gov (United States)

    He, Dalong; Wang, Yao; Song, Silong; Liu, Song; Deng, Yuan

    2017-12-27

    Design of composites with ordered fillers arrangement results in anisotropic performances with greatly enhanced properties along a specific direction, which is a powerful tool to optimize physical properties of composites. Well-aligned core-shell SiC@SiO 2 whiskers in poly(vinylidene fluoride) (PVDF) matrix has been achieved via a modified spinning approach. Because of the high aspect ratio of SiC whiskers, strong anisotropy and significant enhancement in dielectric constant were observed with permittivity 854 along the parallel direction versus 71 along the perpendicular direction at 20 vol % SiC@SiO 2 loading, while little increase in dielectric loss was found due to the highly insulating SiO 2 shell. The anisotropic dielectric behavior of the composite is perfectly understood macroscopically to have originated from anisotropic intensity of interfacial polarization based on an equivalent circuit model of two parallel RC circuits connected in series. Furthermore, finite element simulations on the three-dimensional distribution of local electric field, polarization, and leakage current density in oriented SiC@SiO 2 /PVDF composites under different applied electrical field directions unambiguously revealed that aligned core-shell SiC@SiO 2 whiskers with a high aspect ratio significantly improved dielectric performances. Importantly, the thermal conductivity of the composite was synchronously enhanced over 7 times as compared to that of PVDF matrix along the parallel direction at 20 vol % SiC@SiO 2 whiskers loading. This study highlights an effective strategy to achieve excellent comprehensive properties for high-k dielectrics.

  6. Asymmetry of the SN 1987A envelope

    International Nuclear Information System (INIS)

    Chugaj, N.N.

    1991-01-01

    The origin of the peculiar structure in the profiles of the emission lines observed in the spectrum of SN 1987A, namely, (1) redshift of maxima, and (2) fine structure of hydrogen lines, is considered. Among the three proposed hypothesis for the redshift, at least two (electron scattering in the spherically-symmetric envelope, and geometrical effects in the fragmented envelope) have serious drawbacks. More favorable is the third hypothesis which invokes asymmetric distribution of 56 Ni and of the iron-peak elements

  7. Seismic Attenuation of Sn phase beneath the Ordos Plateau

    Science.gov (United States)

    Pan, J.; Chen, Y.; Chen, Y. J.; Sandvol, E. A.

    2015-12-01

    We have used attenuation tomography of the regional seismic phase Sn to characterize the uppermost mantle shear wave Q (Qs) over a large part of northern China. The Sn phase is often a difficult phase to identify for continental paths since it usually has a relatively small amplitude compared to the regional phase Lg. Also Sn is often a high frequency phase and thus it is often blocked for paths that cross tectonically active regions. We have used the unprecedented amount of national network and temporary stations that were deployed across China over the last five years to be able to successfully identify Sn phases and use them to measure Sn Q using a reverse two station method. The initial waveforms was filtered with the frequency band of 0.5-3 Hz, and Sn time window was computed using velocities range of 4.3-4.7 km/s. Sn waveforms from 43 earthquakes recorded by 63 stations were manually picked out in order to obtain the ratio of Sn amplitude from each two-station pair. Those ratios describe Sn attenuation along each inter-station path. We have used to approaches: the two-station method was used to isolate factors, such as source, and earth response, and calculate inter-station Q value. And LSQR algorithm was used to obtain tomographically map lateral variations in Sn Q. We find relatively low uppermost mantle Q anomaly is consistent with the Weihe graben, a young active rifting system with hot uppermantle. Low Q value also appears in the southern part of the Ordos plateau, which shows the opposite result to the characteristics of lithospheric mantle in a craton. This may be a result of scattering attenuation of Sn or possible thermal erosion of the lithospheric root beneath the southern Ordos.

  8. Oxidation and reduction kinetics of eutectic SnPb, InSn, and AuSn: a knowledge base for fluxless solder bonding applications

    DEFF Research Database (Denmark)

    Kuhmann, Jochen Friedrich; Preuss, A.; Adolphi, B.

    1998-01-01

    : (1) SnPb; (2) InSn; (3) AuSn. The studies of the oxidation kinetics show that the growth of the native oxide, which covers the solder surfaces from the start of all soldering operations is self-limiting. The rate of oxidation on the molten, metallic solder surfaces is significantly reduced...... and reduction kinetics, are applied to flip-chip (FC) bonding experiments in vacuum with and without the injection of H2. Wetting in vacuum is excellent but the self-alignment during flip-chip soldering is restricted. The desired, perfectly self-aligned FC-bonds have been only achieved, using evaporated...

  9. Microstructural evolution of eutectic Au-Sn solder joints

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ho Geon [Univ. of California, Berkeley, CA (United States)

    2002-05-01

    Current trends toward miniaturization and the use of lead(Pb)-free solder in electronic packaging present new problems in the reliability of solder joints. This study was performed in order to understand the microstructure and microstructural evolution of small volumes of nominally eutectic Au-Sn solder joints (80Au-20Sn by weight), which gives insight into properties and reliability.

  10. Low temperature current transport of Sn-GaAs contacts

    NARCIS (Netherlands)

    Heida, J; Wees, B.J. van; Bakker, Siemon; Klapwijk, T.M.; Alphenaar, B.W.

    1993-01-01

    We measure low temperature current transport properties of superconducting Sn contacts to p+-GaAs. For contacts alloyed at 450-degrees-C, the current-voltage characteristics show a strong dependence on alloying time. The critical temperature of Sn near the superconductor-semiconductor interface

  11. Do π-conjugative effects facilitate SN2 reactions?

    Science.gov (United States)

    Wu, Chia-Hua; Galabov, Boris; Wu, Judy I-Chia; Ilieva, Sonia; Schleyer, Paul von R; Allen, Wesley D

    2014-02-26

    Rigorous quantum chemical investigations of the SN2 identity exchange reactions of methyl, ethyl, propyl, allyl, benzyl, propargyl, and acetonitrile halides (X = F(-), Cl(-)) refute the traditional view that the acceleration of SN2 reactions for substrates with a multiple bond at Cβ (carbon adjacent to the reacting Cα center) is primarily due to π-conjugation in the SN2 transition state (TS). Instead, substrate-nucleophile electrostatic interactions dictate SN2 reaction rate trends. Regardless of the presence or absence of a Cβ multiple bond in the SN2 reactant in a series of analogues, attractive Cβ(δ(+))···X(δ(-)) interactions in the SN2 TS lower net activation barriers (E(b)) and enhance reaction rates, whereas repulsive Cβ(δ(-))···X(δ(-)) interactions increase E(b) barriers and retard SN2 rates. Block-localized wave function (BLW) computations confirm that π-conjugation lowers the net activation barriers of SN2 allyl (1t, coplanar), benzyl, propargyl, and acetonitrile halide identity exchange reactions, but does so to nearly the same extent. Therefore, such orbital interactions cannot account for the large range of E(b) values in these systems.

  12. Neutron emission spectra of excited 126–140Sn nuclei

    International Nuclear Information System (INIS)

    Aggarwal, Mamta; Rajasekaran, M.

    2004-01-01

    We investigate one-neutron and two-neutron emission from 132 Sn and its neighboring isotopes due to thermal excitation. The rotational states of 132 Sn at different temperatures are investigated. The effects of separation energy and thermal excitation energy on neutron emission probability are studied. (author)

  13. High temperature magnetic properties of nanocrystalline Sn0 ...

    Indian Academy of Sciences (India)

    Administrator

    High temperature magnetic properties of nanocrystalline Sn0⋅95Co0⋅05O2. O MOUNKACHI1, E SALMANI2, ... exchange interaction between the magnetic ions and the band electrons. Tin dioxide (SnO2) is an n-type ... rate must be well controlled for the chemical homogene- ity. The reactants were constantly stirred using ...

  14. The ASAS-SN bright supernova catalogue - III. 2016

    DEFF Research Database (Denmark)

    Holoien, T. W. -S.; Brown, J. S.; Stanek, K. Z.

    2017-01-01

    This catalogue summarizes information for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) and all other bright (m(peak)d......This catalogue summarizes information for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) and all other bright (m(peak)d...

  15. Vibrational dynamics of the host framework in Sn clathrates

    Science.gov (United States)

    Leu, Bogdan M.; Sturza, Mihai; Hu, Michael Y.; Gosztola, David; Baran, Volodymyr; Fässler, Thomas F.; Alp, E. Ercan

    2014-09-01

    We use nuclear resonance inelastic x-ray scattering (NRIXS), a relatively new, synchrotron-based, isotope-specific technique in combination with a more traditional one, Raman spectroscopy, to probe the vibrational dynamics of the host frameworks in two Zintl clathrates: K8Zn4Sn42 (KZS) and Ba8Ga16Sn30 (BGS). From the normalized Sn vibrational density of states obtained from NRIXS, we calculate the stiffness, a mean force constant of the Sn environment, the resilience, a compact way of expressing the temperature dependence of the Sn mean square displacement, and several thermodynamic properties. The stiffness and the resilience are approximately 7% lower in KZS, reflecting its larger unit cell compared to BGS. We emphasize the complementariness between NRIXS and Raman spectroscopy and establish a series of benchmarks for a more quantitative evaluation of the Raman spectra for the numerous clathrates that are still not suitable for NRIXS studies.

  16. SiSn diodes: Theoretical analysis and experimental verification

    KAUST Repository

    Hussain, Aftab M.

    2015-08-24

    We report a theoretical analysis and experimental verification of change in band gap of silicon lattice due to the incorporation of tin (Sn). We formed SiSn ultra-thin film on the top surface of a 4 in. silicon wafer using thermal diffusion of Sn. We report a reduction of 0.1 V in the average built-in potential, and a reduction of 0.2 V in the average reverse bias breakdown voltage, as measured across the substrate. These reductions indicate that the band gap of the silicon lattice has been reduced due to the incorporation of Sn, as expected from the theoretical analysis. We report the experimentally calculated band gap of SiSn to be 1.11 ± 0.09 eV. This low-cost, CMOS compatible, and scalable process offers a unique opportunity to tune the band gap of silicon for specific applications.

  17. A Review of SnSe: Growth and Thermoelectric Properties

    Science.gov (United States)

    Nguyen, Van Quang; Kim, Jungdae; Cho, Sunglae

    2018-04-01

    SnSe is a 2D semiconductor with an indirect energy gap of 0.86 - 1 eV; it is widely used in solar cell, optoelectronics, and electronic device applications. Recently, SnSe has been considered as a robust candidate for energy conversion applications due to its high thermoelectric performance ( ZT = 2.6 in p-type and 2.2 in n-type), which is assigned mainly to its anhamornic bonding leading to an ultralow thermal conductivity. In this review, we first discuss the crystalline and electronic structures of SnSe and the source of its p-type characteristic. Then, some typical single crystal and polycrystal growth techniques, as well as an epitaxial thin film growth technique, are outlined. The reported thermoelectric properties of SnSe grown by using each technique are also reviewed. Finally, we will describe some remaining issues concerning the use of SnSe for thermoelectric applications.

  18. Influence of Activated Carbon Particles on Intermetallic Compound Growth Mechanism in Sn-Cu-Ni Composite Solder

    Directory of Open Access Journals (Sweden)

    Ramli M.I.I.

    2016-01-01

    Full Text Available The influence of Activated Carbon (AC particles on mechanical properties of Sn-Cu-Ni-xAC solder joint was investigated. Five different Activated Carbon (AC percentage addition (0 wt. %, 0.25 wt. %, 0.5 wt. %, 0.75 wt. %, and 1.0 wt. % were prepared via powder metallurgy (PM technique. Interfacial IMC thickness measurement and shear strength results showed that with thinner IMC layer (by increasing amount of wt.% of AC, the higher the shear strength of the joint. It is believed that the AC particles suppresses the interfacial IMC growth and thus improves the shear strength.

  19. An Alternative to Thought Suppression?

    Science.gov (United States)

    Boice, Robert

    2012-01-01

    Comments on the original article, "Setting free the bears: Escape from thought suppression," by D. M. Wegner (see record 2011-25622-008). While Wegner supposed that we might have to learn to live with bad thoughts, the present author discusses the use of imagination and guided imagery as an alternative to forced thought suppression.

  20. 99mTc bone scanning agents preparation and chemical analysis of Tc(Sn)pyrophosphate, Tc(Sn)MDP and Tc(Sn)HMDP

    International Nuclear Information System (INIS)

    Kroesbergen, J.

    1986-01-01

    This thesis describes a comparison of the preparation, composition and properties of three bone scanning agents: 99m Tc(Sn)pyrophosphate, 99m Tc(Sn)MDP and 99m Tc(Sn)HMDP. This study has been performed for two reasons: First to investigate the preparation and composition of the radiopharmaceuticals as a function of experimental conditions. Together with previously reported results for 99m Tc(Sn)EHDP, obtained in a similar way, this enables to use well-defined preparations of the bone scanning agents. Secondly to gain an insight in the mechanism in which the agents behave 'in vivo'. Because the 'in vivo' process is too complicated to study directly, it seemed more appropriate to perform 'in vitro' investigations as simplifications of the 'in vivo' situation. 304 refs.; 26 figs.; 31 tabs

  1. Carbon supported Pd-Sn and Pd-Ru-Sn nanocatalysts for ethanol electro-oxidation in alkaline medium

    CSIR Research Space (South Africa)

    Modibedi, RM

    2011-04-01

    Full Text Available Carbon supported Pd-Sn and Pd-Ru-Sn nanocatalysts were prepared by the chemical reduction method, using sodium borohydride and ethylene glycol mixture as the reducing agent. The catalytic activity towards ethanol electro-oxidation in alkaline medium...

  2. Unexpected, spontaneous and selective formation of colloidal Pt 3Sn nanoparticles using organometallic Pt and Sn complexes

    KAUST Repository

    Boualleg, Malika

    2010-01-01

    The facile and selective synthesis of small crystalline Pt3Sn alloy nanoparticles was performed at room temperature under H2, using a colloidal approach without the use of extra-stabilizing ligands. The Pt 3Sn alloy was found to be obtained spontaneously as the unique phase regardless of the number of tin equivalents introduced. © 2010 The Royal Society of Chemistry.

  3. Thermoelectric SnS and SnS-SnSe solid solutions prepared by mechanical alloying and spark plasma sintering: Anisotropic thermoelectric properties.

    Science.gov (United States)

    Asfandiyar; Wei, Tian-Ran; Li, Zhiliang; Sun, Fu-Hua; Pan, Yu; Wu, Chao-Feng; Farooq, Muhammad Umer; Tang, Huaichao; Li, Fu; Li, Bo; Li, Jing-Feng

    2017-02-27

    P-type SnS compound and SnS 1-x Se x solid solutions were prepared by mechanical alloying followed by spark plasma sintering (SPS) and their thermoelectric properties were then studied in different compositions (x = 0.0, 0.2, 0.5, 0.8) along the directions parallel (//) and perpendicular (⊥) to the SPS-pressurizing direction in the temperature range 323-823 Κ. SnS compound and SnS 1-x Se x solid solutions exhibited anisotropic thermoelectric performance and showed higher power factor and thermal conductivity along the direction ⊥ than the // one. The thermal conductivity decreased with increasing contents of Se and fell to 0.36 W m -1  K -1 at 823 K for the composition SnS 0.5 Se 0.5 . With increasing selenium content (x) the formation of solid solutions substantially improved the electrical conductivity due to the increased carrier concentration. Hence, the optimized power factor and reduced thermal conductivity resulted in a maximum ZT value of 0.64 at 823 K for SnS 0.2 Se 0.8 along the parallel direction.

  4. Sn powder as reducing agents and SnO2 precursors for the synthesis of SnO2-reduced graphene oxide hybrid nanoparticles.

    Science.gov (United States)

    Chen, Mingxi; Zhang, Congcong; Li, Lingzhi; Liu, Yu; Li, Xichuan; Xu, Xiaoyang; Xia, Fengling; Wang, Wei; Gao, Jianping

    2013-12-26

    A facile approach to prepare SnO2/rGO (reduced graphene oxide) hybrid nanoparticles by a direct redox reaction between graphene oxide (GO) and tin powder was developed. Since no acid was used, it is an environmentally friendly green method. The SnO2/rGO hybrid nanoparticles were characterized by ultraviolet-visible spectroscopy, Raman spectroscopy, thermogravimetric analysis, X-ray diffraction analysis, and X-ray photoelectron spectroscopy. The microstructure of the SnO2/rGO was observed with scanning electron microscopy and transmission electron microscopy. The tin powder efficiently reduced GO to rGO, and the Sn was transformed to SnO2 nanoparticles (∼45 nm) that were evenly distributed on the rGO sheets. The SnO2/rGO hybrid nanoparticles were then coated on an interdigital electrode to fabricate a humidity sensor, which have an especially good linear impedance response from 11% to 85% relative humidity.

  5. The interfacial free energy of solid Sn on the boundary interface with liquid Cd-Sn eutectic solution

    International Nuclear Information System (INIS)

    Saatci, B; Cimen, S; Pamuk, H; Guenduez, M

    2007-01-01

    Equilibrated grain boundary groove shapes for solid Sn in equilibrium with Cd-Sn liquid were directly observed after annealing a sample at the eutectic temperature for about 8 days. The thermal conductivities of the solid phase, K S , and the liquid phase, K L , for the groove shapes were measured. From the observed groove shapes, the Gibbs-Thomson coefficients were obtained with a numerical method, using the measured G, K S and K L values. The solid-liquid interfacial energy of solid Sn in equilibrium with Cd-Sn liquid was determined from the Gibbs-Thomson equation. The grain boundary energy for solid Sn was also calculated from the observed groove shapes

  6. High field-effect mobility at the (Sr,Ba)SnO3/BaSnO3 interface

    Science.gov (United States)

    Fujiwara, Kohei; Nishihara, Kazuki; Shiogai, Junichi; Tsukazaki, Atsushi

    2016-08-01

    A perovskite oxide, BaSnO3, has been classified as one of transparent conducting materials with high electron mobility, and its application for field-effect transistors has been the focus of recent research. Here we report transistor operation in BaSnO3-based heterostructures with atomically smooth surfaces, fabricated on SrTiO3 substrates by the (Sr,Ba)SnO3 buffer technique. Indeed, modulation of band profiles at the channel interfaces with the insertion of wide bandgap (Sr,Ba)SnO3 as a barrier layer results in a significant improvement of field-effect mobility, implying effective carrier doping at the regulated heterointerface. These results provide an important step towards realization of high-performance BaSnO3-based field-effect transistors.

  7. High field-effect mobility at the (Sr,BaSnO3/BaSnO3 interface

    Directory of Open Access Journals (Sweden)

    Kohei Fujiwara

    2016-08-01

    Full Text Available A perovskite oxide, BaSnO3, has been classified as one of transparent conducting materials with high electron mobility, and its application for field-effect transistors has been the focus of recent research. Here we report transistor operation in BaSnO3-based heterostructures with atomically smooth surfaces, fabricated on SrTiO3 substrates by the (Sr,BaSnO3 buffer technique. Indeed, modulation of band profiles at the channel interfaces with the insertion of wide bandgap (Sr,BaSnO3 as a barrier layer results in a significant improvement of field-effect mobility, implying effective carrier doping at the regulated heterointerface. These results provide an important step towards realization of high-performance BaSnO3-based field-effect transistors.

  8. Stable and metastable equilibria in PbSe + SnI2=SnSe + PbI2

    International Nuclear Information System (INIS)

    Odin, I.N.; Grin'ko, V.V.; Kozlovskij, V.F.; Demidova, E.D.

    2003-01-01

    T-x-y phase diagrams of the PbSe + SnI 2 =SnSe + PbI 2 mutual system (stable states) are plotted for the first time. It is shown that melt, solid solutions on the base of components of the mutual system and phase on the base of Sn 2 SeI 4 take part in phase equilibria. Transformations in the PbSe + SnI 2 =SnSe + PbI 2 mutual system leading to crystallization of metastable polytype modifications of lead iodides and metastable ternary compound forming in PbSe-PbI 2 system are investigated for the first time [ru

  9. Experimental determination of band offsets at the SnS/CdS and SnS/InSxOy heterojunctions

    International Nuclear Information System (INIS)

    Abdel Haleem, A. M.; Ichimura, M.

    2010-01-01

    The semidirect x-ray photoelectron spectroscopy technique was used to measure the band alignments at the interface of heterostructures based on SnS. The layers were deposited by electrochemical deposition (ECD), chemical bath deposition (CBD), or photochemical deposition (PCD). The following four kinds of heterojunctions were characterized. (1) ECD-SnS/PCD-CdS. (2) CBD-SnS/PCD-CdS. (3) ECD-SnS/ECD-InS x O y . (4) CBD-SnS/ECD-InS x O y . The valence band offsets ΔE V of those four heterojunctions are determined to be 1.34, 1.59, 0.77, and 0.74±0.3 eV, respectively.

  10. Sn surface-enriched Pt-Sn bimetallic nanoparticles as a selective and stable catalyst for propane dehydrogenation

    KAUST Repository

    Zhu, Haibo

    2014-12-01

    A new one pot, surfactant-free, synthetic route based on the surface organometallic chemistry (SOMC) concept has been developed for the synthesis of Sn surface-enriched Pt-Sn nanoparticles. Bu3SnH selectively reacts with [Pt]-H formed in situ at the surface of Pt nanoparticles, Pt NPs, obtained by reduction of K2PtCl4 by LiB(C2H5)3H. Chemical analysis, 1H MAS and 13C CP/MAS solid-state NMR as well as two-dimensional double-quantum (DQ) and triple-quantum (TQ) experiments show that organo-tin moieties Sn(n-C4H9) are chemically linked to the surface of Pt NPs to produce, in fine, after removal of most of the n-butyl fragment, bimetallic Pt-Sn nanoparticles. The Sn(n-CH2CH2CH2CH3) groups remaining at the surface are believed to stabilize the as-synthesized Pt-Sn NPs, enabling the bimetallic NPs to be well dispersed in THF. Additionally, the Pt-Sn nanoparticles can be supported on MgAl2O4 during the synthesis of the nanoparticles. Some of the Pt-Sn/MgAl2O4 catalyst thus prepared exhibits high activity in PROX of CO and an extremely high selectivity and stability in propane dehydrogenation to propylene. The enhanced activity in propane dehydrogenation is associated with the high concentration of inactive Sn at the surface of Pt nanoparticles which ”isolates” the active Pt atoms. This conclusion is confirmed by XRD, NMR, TEM, and XPS analysis.

  11. Preparation of porous SnO{sub 2} helical nanotubes and SnO{sub 2} sheets

    Energy Technology Data Exchange (ETDEWEB)

    Fei, Ling; Xu, Yun [Department of Chemical Engineering, New Mexico State University, Las Cruces, NM 88003 (United States); Chen, Zheng [Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095 (United States); Yuan, Bin; Wu, Xiaofei; Hill, Joshua; Lin, Qianglu; Deng, Shuguang; Andersen, Paul [Department of Chemical Engineering, New Mexico State University, Las Cruces, NM 88003 (United States); Lu, Yunfeng [Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095 (United States); Luo, Hongmei, E-mail: hluo@nmsu.edu [Department of Chemical Engineering, New Mexico State University, Las Cruces, NM 88003 (United States)

    2013-06-15

    We report a surfactant-free chemical solution route for synthesizing one-dimensional porous SnO{sub 2} helical nanotubes templated by helical carbon nanotubes and two-dimensional SnO{sub 2} sheets templated by graphite sheets. Transmission electron microscopy, X-ray diffraction, cyclic voltammetry, and galvanostatic discharge–charge analysis are used to characterize the SnO{sub 2} samples. The unique nanostructure and morphology make them promising anode materials for lithium-ion batteries. Both the SnO{sub 2} with the tubular structure and the sheet structure shows small initial irreversible capacity loss of 3.2% and 2.2%, respectively. The SnO{sub 2} helical nanotubes show a specific discharge capacity of above 800 mAh g{sup −1} after 10 charge and discharge cycles, exceeding the theoretical capacity of 781 mAh g{sup −1} for SnO{sub 2}. The nanotubes remain a specific discharge capacity of 439 mAh g{sup −1} after 30 cycles, which is better than that of SnO{sub 2} sheets (323 mAh g{sup −1}). - Highlights: • Synthesized porous SnO{sub 2} helical nanotubes with diameters of 100–120 nm. • Synthesized porous SnO{sub 2} sheets template by graphite sheets. • The tubular and sheet SnO{sub 2} have small initial irreversible capacity loss of 3.2 and 2.2%. • The tubular structure shows better discharge capacity than the sheet structure.

  12. Noncollinear magnetism in Mn{sub 2}RhSn Heusler compound

    Energy Technology Data Exchange (ETDEWEB)

    Meshcheriakova, Olga

    2014-09-15

    Heusler compounds is a large class of materials, which exhibits diverse fundamental phenomena, together with the possibility of their specific tailoring for various engineering demands. Present work discusses the magnetic noncollinearity in the family of noncentrosymmetric ferrimagnetic Mn{sub 2}-based Heusler compounds. Based on the obtained experimental and theoretical results, Mn{sub 2}YZ Heusler family is suspected to provide promising candidates for the formation of the skyrmion lattice. The work is focused on Mn{sub 2}RhSn bulk polycrystalline sample, which serves as a prototype. It crystallizes in the tetragonal noncentrosymmetric structure (No. 119, I anti 4m2), which enables the anisotropic Dzyaloshinskii-Moriya (DM) exchange coupling. Additional short-range modulation, induced by the competing nearest and next-nearest interplanes Heisenberg exchange, is suppressed above the 80 K. This allows to develop the long-range modulations in the ideal ferrimagnetic structure within the ab crystallographic planes, and thus, favors to the occurrence of the skyrmion lattice within the temperature range of (80≤T≤ 270) K. The studies of Mn{sub 2}RhSn were expanded to the broad composition range and continued on thin film samples.

  13. Host Galaxy Spectra and Consequences for SN Typing from the SDSS SN Survey

    Energy Technology Data Exchange (ETDEWEB)

    Olmstead, Matthew D.; Brown, Peter J.; Sako, Masao; Bassett, Bruce; Bizyaev, Dmitry; Brinkmann, J.; Brownstein, Joel R.; Brewington, Howard; Campbell, Heather; D’Andrea, Chris B.; Dawson, Kyle S.; Ebelke, Garrett L.; Frieman, Joshua A.; Galbany, Lluís; Garnavich, Peter; Gupta, Ravi R.; Hlozek, Renee; Jha, Saurabh W.; Kunz, Martin; Lampeitl, Hubert; Malanushenko, Elena; Malanushenko, Viktor; Marriner, John; Miquel, Ramon; Montero-Dorta, Antonio D.; Nichol, Robert C.; Oravetz, Daniel J.; Pan, Kaike; Schneider, Donald P.; Simmons, Audrey E.; Smith, Mathew; Snedden, Stephanie A.

    2014-03-06

    We present the spectroscopy from 5254 galaxies that hosted supernovae (SNe) or other transient events in the Sloan Digital Sky Survey II (SDSS-II). Obtained during SDSS-I, SDSS-II, and the Baryon Oscillation Spectroscopic Survey (BOSS), this sample represents the largest systematic, unbiased, magnitude limited spectroscopic survey of supernova (SN) host galaxies. Using the host galaxy redshifts, we test the impact of photometric SN classification based on SDSS imaging data with and without using spectroscopic redshifts of the host galaxies. Following our suggested scheme, there are a total of 1166 photometrically classified SNe Ia when using a flat redshift prior and 1126 SNe Ia when the host spectroscopic redshift is assumed. For 1024 (87.8%) candidates classified as likely SNe Ia without redshift information, we find that the classification is unchanged when adding the host galaxy redshift. Using photometry from SDSS imaging data and the host galaxy spectra, we also report host galaxy properties for use in future nalysis of SN astrophysics. Finally, we investigate the differences in the interpretation of the light curve properties with and without knowledge of the redshift. When using the SALT2 light curve fitter, we find a 21% increase in the number of fits that converge when using the spectroscopic redshift. Without host galaxy redshifts, we find that SALT2 light curve fits are systematically biased towards lower photometric redshift estimates and redder colors in the limit of low signal-to-noise data. The general improvements in performance of the light curve fitter and the increased diversity of the host galaxy sample highlights the importance of host galaxy spectroscopy for current photometric SN surveys such as the Dark Energy Survey and future surveys such as the Large Synoptic Survey Telescope.

  14. A sturdy self-cleaning and anti-corrosion superhydrophobic coating assembled by amino silicon oil modifying potassium titanate whisker-silica particles

    Science.gov (United States)

    Lv, Chongjiang; Wang, Huaiyuan; Liu, Zhanjian; Zhang, Wenbo; Wang, Chijia; Tao, Ruifeng; Li, Meiling; Zhu, Yanji

    2018-03-01

    A sturdy self-cleaning and anticorrosion superhydrophobic coating based on poly(phenylene sulfide) (PPS) matrix has been successfully fabricated by combination of sol-gel and spraying technology without using any fluorine materials. The prepared coating possessed excellent superhydrophobicity with the water contact angle (WCA) (161 ± 1.2)° and slide angle (SA) (2 ± 1.5)°, which was ascribed to the synergistic effect of low-surface energy material amino silicon oil (ASO) and the binary potassium titanate whisker-silica (PTW-SiO2) composite particles formed by in-situ growth of SiO2 on modified PTW via sol-gel. Moreover, The PPS/ASO/PTW-SiO2 superhydrophobic coating exhibited decent self-cleaning property with clean surface even after 100 times immersion in muddy solution. The abrasion test demonstrated that the mechanical stability of prepared coating was about 2 times of the pure PPS coating. Simultaneously, the potentiodynamic polarization and electrochemical impedance spectroscopy testified the excellent corrosion resistance of prepared coating with the performance of lower corrosion current (1.289 × 10-10 A/cm2) and high protection efficiency (99.999%) even after immersion in 3.5 wt.% NaCl solution for 28 days. It is believed that this sturdy self-cleaning and anti-corrosion superhydrophobic coating might have a promising application prospect in industry.

  15. Trypanosoma naviformis sp. nov. (Kinetoplastidae: Trypanosomatidae) from widespread African songbirds, the Olive sunbird (Cyanomitra olivacea) and Yellow-whiskered greenbul (Andropadus latirostris).

    Science.gov (United States)

    Sehgal, Ravinder N M; Iezhova, Tatjana A; Marzec, Timothy; Valkiūnas, Gediminas

    2015-10-29

    Trypanosoma naviformis n. sp. is described from the African olive sunbird Cyanomitra olivacea in Ghana based on the morphology of its hematozoic trypomastigotes and partial sequences of the small subunit ribosomal RNA gene. This parasite belongs to the group of small non-striated avian trypanosomes (< 30 µm in length in average) with the kinetoplast situated close to the posterior end of the body. Trypanosoma naviformis can be distinguished from other small avian trypanosomes due to its poorly visible flagellum, central position of its nucleus, and the symmetrically (in relation to the nucleus) narrowing of both ends of the hematozoic trypomastigotes, which are boat-like in shape. Illustrations of trypomastigotes of the new species are given, and SSU rDNA lineages associated with this parasite are documented. This parasite has been reported in Ghana and Cameroon and was also found in the yellow-whiskered greenbul, Andropadus latirostris in these countries. It appears to be widespread in its range given the distribution of these bird species in Africa.

  16. Cortical Local Field Potential Power Is Associated with Behavioral Detection of Near-threshold Stimuli in the Rat Whisker System: Dissociation between Orbitofrontal and Somatosensory Cortices.

    Science.gov (United States)

    Rickard, Rachel E; Young, Andrew M J; Gerdjikov, Todor V

    2018-01-01

    There is growing evidence that ongoing brain oscillations may represent a key regulator of attentional processes and as such may contribute to behavioral performance in psychophysical tasks. OFC appears to be involved in the top-down modulation of sensory processing; however, the specific contribution of ongoing OFC oscillations to perception has not been characterized. Here we used the rat whiskers as a model system to further characterize the relationship between cortical state and tactile detection. Head-fixed rats were trained to report the presence of a vibrotactile stimulus (frequency = 60 Hz, duration = 2 sec, deflection amplitude = 0.01-0.5 mm) applied to a single vibrissa. We calculated power spectra of local field potentials preceding the onset of near-threshold stimuli from microelectrodes chronically implanted in OFC and somatosensory cortex. We found a dissociation between slow oscillation power in the two regions in relation to detection probability: Higher OFC but not somatosensory delta power was associated with increased detection probability. Furthermore, coherence between OFC and barrel cortex was reduced preceding successful detection. Consistent with the role of OFC in attention, our results identify a cortical network whose activity is differentially modulated before successful tactile detection.

  17. Carbon-Modified Mesoporous Anatase/TiO2(B Whisker for Enhanced Activity in Direct Synthesis of Hydrogen Peroxide by Palladium

    Directory of Open Access Journals (Sweden)

    Rui Tu

    2017-06-01

    Full Text Available The regulation of the interaction between H2O2 and its catalysts is a promising route to achieve high productivity and selectivity towards H2O2. Herein, mesoporous anatase/TiO2(B whisker (mb-TiO2 modified with heterogeneous carbon was prepared as the support of Pd-based catalysts for the direct synthesis of H2O2. The morphology and structure of the catalyst were investigated by transmission electron microscopy, X-ray diffraction, Raman spectroscopy, Brunner-Emmet-Teller measurements, and X-ray photoelectron spectroscopy. The interaction between H2O2 and the support was studied by isothermal calorimeter. The carbon heterogeneous modification can weaken the interaction between H2O2 and the support, then accelerate the desorption of H2O2 and reduce the re-adsorption of H2O2 in the reaction medium. Meanwhile, the synergistic effects between TiO2 and Pd nanoparticles are not influenced by the heterogeneous carbon distribution. The catalyst exhibits better performance for the synthesis of H2O2 compared with the corresponding unmodified catalyst; the productivity of H2O2 increases more than 40%, which can be ascribed to the decrease of further H2O2 conversion under the weakened interaction.

  18. XPS and STEM study of the interface formation between ultra-thin Ru and Ir OER catalyst layers and perylene red support whiskers

    Directory of Open Access Journals (Sweden)

    Atanasoska Ljiljana L.

    2013-01-01

    Full Text Available The interface formation between nano-structured perylene red (PR whiskers and oxygen evolution reaction (OER catalysts ruthenium and iridium has been studied systematically by XPS and STEM. The OER catalyst over-layers with thicknesses ranging from ~0.1 to ~50 nm were vapor deposited onto PR ex-situ. STEM images demonstrate that, with increasing thickness, Ru and Ir transform from amorphous clusters to crystalline nanoparticles, which agglomerate with increased over-layer thickness. XPS data show a strong interaction between Ru and PR. Ir also interacts with PR although not to the extent seen for Ru. At low coverages, the entire Ru deposit is in the reacted state while a small portion of the deposited Ir remains metallic. Ru and Ir bonding occur at the PR carbonyl sites as evidenced by the attenuation of carbonyl photoemission and the emergence of new peak assigned to C-O single bond. The curve fitting analysis and the derived stoichiometry indicates the formation of metallo-organic bonds. The co-existence of oxide bonds is also apparent.

  19. Carbon induced magnetism of SnO2 surfaces

    International Nuclear Information System (INIS)

    Lu, Ying-Bo; Ling, Z.C.; Cong, Wei-Yan; Zhang, Peng; Dai, Ying

    2015-01-01

    The magnetism induced by Carbon (C) in SnO 2 surfaces are investigated by first principle calculations. The results show that C substitution at the outmost surface oxygen sites can induce magnetism in (110), (001) and (101) surfaces of SnO 2 . (110) surface is the most stable surface and the magnetism in which is stronger than that in other two surfaces, indicating that it is (110), but not other surfaces provides the main contribution to the surface magnetism of C-doped SnO 2 (SnO 2 :C). The magnetic moments predominantly come from C-2p orbitals, which arise from the crystal field transformation induced by the loss of coordinated atoms and the destroy of the local symmetry, and is enhanced by the local lattice distortion due to the Jahn–Teller effect. In all three surface slabs, the magnetism decays when C dopants are deeper from the outmost surfaces and disappears eventually. This work provides more rational understanding to the observed magnetism in SnO 2 :C materials than ever. - Highlights: • We investigate surface magnetism in (110), (001) and (101) surfaces of SnO 2 :C. • (110) surface provides the main contribution to the surface magnetism of SnO 2 :C. • Magnetism predominantly come from C-2p orbitals and crystal field transformation

  20. Fluxless Sn-Ag bonding in vacuum using electroplated layers

    International Nuclear Information System (INIS)

    Kim, Jongsung; Lee, Chin C.

    2007-01-01

    A fluxless bonding process in vacuum environment using newly developed electroplated Sn-Ag multilayer structure at eutectic composition is presented. The new bonding process is entirely fluxless, or flux-free. It is performed in vacuum (100 mTorr), in which the oxygen content is reduced by a factor of 7600 comparing to air, to inhibit solder oxidation. In the design, Cr/Au dual layer is employed as the UBM as well as the plating seed layer. This UBM design, seldom used in the electronic industry, is explained in some details. To realize the fluxless possibility, a proper layer design of the solder structure is needed. In this connection, we wish to point out that it is hard to achieve fluxless bonding using Sn-rich alloys because these alloys have numerous Sn atoms on the surface that are easily oxidized. To prevent Sn oxidation, a thin Ag layer is plated immediately over Sn layer. XRD results confirm that this thin Ag layer does act as a barrier to prevent oxidation of the inner Sn layer. The resulting solder joints are void free as examined by a scanning acoustic microscope (SAM). SEM and EDX studies on the cross section of the joint indicate a homogeneous Sn-rich phase. The melting temperature is measured to be between 219 and 226 deg. C. This new fluxless bonding process is valuable in many applications where the use of flux is prohibited

  1. GeSn growth kinetics in reduced pressure chemical vapor deposition from Ge2H6 and SnCl4

    Science.gov (United States)

    Aubin, J.; Hartmann, J. M.

    2018-01-01

    We have investigated the low temperature epitaxy of high Sn content GeSn alloys in a 200 mm industrial Reduced Pressure - Chemical Vapor Deposition tool from Applied Materials. Gaseous digermane (Ge2H6) and liquid tin tetrachloride (SnCl4) were used as the Ge and Sn precursors, respectively. The impact of temperature (in the 300-350 °C range), Ge2H6 and SnCl4 mass-flows on the GeSn growth kinetics at 100 Torr has been thoroughly explored. Be it at 300 °C or 325 °C, a linear GeSn growth rate increase together with a sub-linear Sn concentration increase occurred as the SnCl4 mass-flow increased, irrespective of the Ge2H6 mass flow (fixed or varying). The Sn atoms seemed to catalyze H desorption from the surface, resulting in higher GeSn growth rates for high SnCl4 mass-flows (in the 4-21 nm min-1 range). The evolution of the Sn content x with the F (SnCl4) 2 ·/F (Ge2H6) mass-flow ratio was fitted by x2/(1 - x) = n ·F (SnCl4) 2 ·/F (Ge2H6), with n = 0.25 (325 °C) and 0.60 (300 °C). We have otherwise studied the impact of temperature, in the 300-350 °C range, on the GeSn growth kinetics. The GeSn growth rate exponentially increased with the temperature, from 15 up to 32 nm min-1. The associated activation energy was low, i.e. Ea = 10 kcal mol-1. Meanwhile, the Sn content decreased linearly as the growth temperature increased, from 15% at 300 °C down to 6% at 350 °C.

  2. Menstrual suppression in the adolescent.

    Science.gov (United States)

    Kantartzis, Kelly L; Sucato, Gina S

    2013-06-01

    Menstrual suppression, the use of contraceptive methods to eliminate or decrease the frequency of menses, is often prescribed for adolescents to treat menstrual disorders or to accommodate patient preference. For young women using hormonal contraceptives, there is no medical indication for menstruation to occur monthly, and various hormonal contraceptives can be used to decrease the frequency of menstruation with different side effect profiles and rates of amenorrhea. This article reviews the different modalities for menstrual suppression, common conditions in adolescents which may improve with menstrual suppression, and strategies for managing common side effects. Copyright © 2013 North American Society for Pediatric and Adolescent Gynecology. Published by Elsevier Inc. All rights reserved.

  3. Synthesis of [119mSn]-mesoporphyrin IX dichloride

    International Nuclear Information System (INIS)

    Denissen, J.F.

    1990-01-01

    Tin mesoporphyrin IX dichloride (Sn-MPCl 2 ) is a heme oxygenase inhibitor of current clinical interest for the treatment of neonatal hyperbilirubinemia. The synthesis of [ 119m Sn]-MPCl 2 for drug metabolism and disposition studies is reported. [ 119m Sn]-MPCl 2 was prepared in 60% radiochemical yield by metalation of the porphyrin nucleus of mesoporphyrin IX dihydrochloride with tin(II)-119m acetate. The product had a specific activity of 43.4 mCi/mmol and a radiochemical purity of 99%, as determined by radio-HPLC analysis. (author)

  4. OGLE-2014-SN-073 as a fallback accretion powered supernova

    Science.gov (United States)

    Moriya, Takashi J.; Terreran, Giacomo; Blinnikov, Sergei I.

    2018-03-01

    We investigate the possibility that the energetic Type II supernova OGLE-2014-SN-073 is powered by a fallback accretion following the failed explosion of a massive star. Taking massive hydrogen-rich supernova progenitor models, we estimate the fallback accretion rate and calculate the light-curve evolution of supernovae powered by the fallback accretion. We find that such fallback accretion powered models can reproduce the overall observational properties of OGLE-2014-SN-073. It may imply that some failed explosions could be observed as energetic supernovae like OGLE-2014-SN-073 instead of faint supernovae as previously proposed.

  5. Decays of 116Sb isomers to levels in 116Sn

    International Nuclear Information System (INIS)

    Gacsi, Z.; Raman, S.

    1994-01-01

    The excited states of 116 Sn were studied by means of the decays of the 15.8-min, 3 + 116 Sb ground state, and the 60.3-min, 8 - 116 Sb isomer. Over 50 γ rays were observed; these were incorporated into a level scheme consisting of 32 excited states. Except for one new level proposed at 3.986 MeV, the current study fully supports an exhaustive study of levels in 116 Sn reported earlier. The previous study was an attempt to develop a nearly ''complete'' level scheme of 116 Sn up to an excitation energy of 4.3 MeV

  6. Characteristics and heat treatment of cold-sprayed Al-Sn binary alloy coatings

    International Nuclear Information System (INIS)

    Ning, Xian-Jin; Kim, Jin-Hong; Kim, Hyung-Jun; Lee, Changhee

    2009-01-01

    In this study, Al-Sn binary alloy coatings were prepared with Al-5 wt.% Sn (Al-5Sn) and Al-10 wt.% Sn (Al-10Sn) gas atomized powders by low pressure and high pressure cold spray process. The microstructure and microhardness of the coatings were characterized. To understand the coarsening of tin in the coating, the as-sprayed coatings were annealed at 150, 200, 250 and 300 o C for 1 h, respectively. The effect of annealing on microstructure and the bond strength of the coatings were investigated. The results show that Al-5Sn coating can be deposited by high pressure cold spray with nitrogen while Al-10Sn can only be deposited by low pressure cold spray with helium gas. Both Al-5Sn and Al-10Sn coatings present dense structures. The fraction of Sn in as-sprayed coatings is consistent with that in feed stock powders. The coarsening and/or migration of Sn phase in the coatings were observed when the annealing temperature exceeds 200 deg. C. Furthermore, the microhardness of the coatings decreased significantly at the annealing temperature of 250 deg. C. EDXA analysis shows that the heat treatment has no significant effect on fraction of Sn phase in Al-5Sn coatings. Bonding strength of as-sprayed Al-10Sn coating is slightly higher than that of Al-5Sn coating. Annealing at 200 o C can increase the bonding strength of Al-5Sn coatings.

  7. Highly Active, Carbon-supported, PdSn Nano-core, Partially ...

    African Journals Online (AJOL)

    Carbon-supported, Pt partially covered, PdSn alloy nanoparticles (Pt-PdSn/C) were synthesized via a metathetical reaction of PdSn alloy nanoparticles, and a platinum precursor. The electrochemical activity was evaluated by methanol oxidation. The Pt-PdSn/C catalysts were characterized by transmission electron ...

  8. Spark plasma-sintered Sn-based intermetallic alloys and their Li-storage studies

    CSIR Research Space (South Africa)

    Nithyadharseni, P

    2016-06-01

    Full Text Available In the present study, SnSb, SnSb/Fe, SnSb/Co, and SnSb/Ni alloy powders processed by co-precipitation were subjected to spark plasma-sintering (SPS) at 400 °C for 5 min. The compacts were structurally and morphologically characterized by X...

  9. Realization of an atomically flat BaSnO3(001) substrate with SnO2 termination

    Science.gov (United States)

    Lee, Woong-Jhae; Lee, Hwangho; Ko, Kyung-Tae; Kang, Jeonghun; Kim, Hyung Joon; Lee, Takhee; Park, Jae-Hoon; Kim, Kee Hoon

    2017-12-01

    Atomically flat terraces terminated by mostly single layer SnO2 are realized on the surface of a BaSnO3(001) substrate with a lateral dimension of about 3 × 3 mm2 by deionized water leaching and thermal annealing. Surface topography studies reveal that by controlling the annealing time and temperature, the topmost surface evolves from having chemically mixed termination to atomically flat terraces with a step height of one unit cell. The step bunching and kinked steps also depend sensitively on the out-of-plane and in-plane miscut angles. X-ray photoemission spectroscopy near the Ba3d5/2 and Sn3d5/2 states with variation in the electron emission angle confirmed that the topmost atomic layer of the BaSnO3-δ(001) surface mostly consisted of SnO2 rather than BaO. The present findings will facilitate the preparation of atomically flat BaSnO3(001) substrates, which will be useful in the studies of exploring possible two-dimensional electron gases at the interface between BaSnO3(001) and other oxides.

  10. Insight into the Effect of Sn on CO and Formic Acid Oxidation at PtSn Catalysts

    DEFF Research Database (Denmark)

    Stevanović, S.; Tripković, D.; Tripkovic, Vladimir

    2014-01-01

    adsorbed tin, Snirr. The presence of Sn in any form (oxide, alloyed, or Snirr) on the surface shifts the onset potential for the CO oxidation negatively by more than 0.4 V in comparison to equivalently treated Pt/C catalysts. For the CO-annealed PtSn/C catalyst, a so-called skeleton structure, Sn...... is present only in the subsurface layers. The subsurface Sn has a mild effect on the CO activity, and hence the onset potential is only marginally shifted to cathodic potentials by ∼50 mV compared to that on Pt/C. The formic acid oxidation is enhanced at any of the PtSn/C surfaces with Sn in the surface...... layer. The activity enhancement is explained by a reduced CO poisoning of the surface Pt sites. As a consequence, the current is not entering plateau as on the Pt/C catalysts. Furthermore, the skeleton PtSn/C is ∼2 times more active than similarly treated Pt/C. The results have been substantiated...

  11. Compton suppression gamma ray spectrometry

    International Nuclear Information System (INIS)

    Landsberger, S.; Iskander, F.Y.; Niset, M.; Heydorn, K.

    2002-01-01

    In the past decade there have been many studies to use Compton suppression methods in routine neutron activation analysis as well as in the traditional role of low level gamma ray counting of environmental samples. On a separate path there have been many new PC based software packages that have been developed to enhance photopeak fitting. Although the newer PC based algorithms have had significant improvements, they still suffer from being effectively used in weak gamma ray lines in natural samples or in neutron activated samples that have very high Compton backgrounds. We have completed a series of experiments to show the usefulness of Compton suppression. As well we have shown the pitfalls when using Compton suppression methods for high counting deadtimes as in the case of neutron activated samples. We have also investigated if counting statistics are the same both suppressed and normal modes. Results are presented in four separate experiments. (author)

  12. Activities in Cu2S-FeS-SnS melts at 1200 °C

    Science.gov (United States)

    Eric, R. Hurman

    1993-04-01

    The dew-point technique was used to measure the vapor pressures of SnS over liquid sulfides of the system Cu2S-FeS-SnS at 1200 °C. Activities of SnS were generated from the measured vapor pressures of SnS. Activities of Cu2S and FeS were evaluated both in binary and ternary melts by Gibbs-Duhem calculations from the known SnS activity data. The systems Cu2S-SnS and Cu2S-FeS exhibit negative departures from ideal behavior, while FeS-SnS melts exhibit positive deviations.

  13. Effects of Sn addition on the microstructure, mechanical properties and corrosion behavior of Ti–Nb–Sn alloys

    International Nuclear Information System (INIS)

    Moraes, Paulo E.L.; Contieri, Rodrigo J.; Lopes, Eder S.N.; Robin, Alain; Caram, Rubens

    2014-01-01

    Ti and Ti alloys are widely used in restorative surgery because of their good biocompatibility, enhanced mechanical behavior and high corrosion resistance in physiological media. The corrosion resistance of Ti-based materials is due to the spontaneous formation of the TiO 2 oxide film on their surface, which exhibits elevated stability in biological fluids. Ti–Nb alloys, depending on the composition and the processing routes to which the alloys are subjected, have high mechanical strength combined with low elastic modulus. The addition of Sn to Ti–Nb alloys allows the phase transformations to be controlled, particularly the precipitation of ω phase. The aim of this study is to discuss the microstructure, mechanical properties and corrosion behavior of cast Ti–Nb alloys to which Sn has been added. Samples were centrifugally cast in a copper mold, and the microstructure was characterized using optical microscopy, scanning electron microscopy and X-ray diffractometry. Mechanical behavior evaluation was performed using Berkovich nanoindentation, Vickers hardness and compression tests. The corrosion behavior was evaluated in Ringer's solution at room temperature using electrochemical techniques. The results obtained suggested that the physical, mechanical and chemical behaviors of the Ti–Nb–Sn alloys are directly dependent on the Sn content. - Graphical abstract: Effects of Sn addition to the Ti–30Nb alloy on the elastic modulus. - Highlights: • Sn addition causes reduction of the ω phase precipitation. • Minimum Vickers hardness and elastic modulus occurred for 6 wt.% Sn content. • Addition of 6 wt.% Sn resulted in maximum ductility and minimum compression strength. • All Ti–30Nb–XSn (X = 0, 2, 4, 6, 8 and 10%) alloys are passive in Ringer's solution. • Highest corrosion resistance was observed for 6 wt.% Sn content

  14. Temperature varying photoconductivity of GeSn alloys grown by chemical vapor deposition with Sn concentrations from 4% to 11%

    International Nuclear Information System (INIS)

    Hart, John; Hazbun, Ramsey; Gupta, Jay; Kolodzey, James; Adam, Thomas; Kim, Yihwan; Huang, Yi-Chiau; Reznicek, Alexander

    2016-01-01

    Pseudomorphic GeSn layers with Sn atomic percentages between 4.5% and 11.3% were grown by chemical vapor deposition using digermane and SnCl 4 precursors on Ge virtual substrates grown on Si. The layers were characterized by x-ray diffraction rocking curves and reciprocal space maps. Photoconductive devices were fabricated, and the dark current was found to increase with Sn concentration. The responsivity of the photoconductors was measured at a wavelength of 1.55 μm using calibrated laser illumination at room temperature and a maximum value of 2.7 mA/W was measured for a 4.5% Sn device. Moreover, the responsivity for higher Sn concentration was found to increase with decreasing temperature. Spectral photoconductivity was measured using Fourier transform infrared spectroscopy. The photoconductive absorption edge continually increased in wavelength with increasing tin percentage, out to approximately 2.4 μm for an 11.3% Sn device. The direct band gap was extracted using Tauc plots and was fit to a bandgap model accounting for layer strain and Sn concentration. This direct bandgap was attributed to absorption from the heavy-hole band to the conduction band. Higher energy absorption was also observed, which was thought to be likely from absorption in the light-hole band. The band gaps for these alloys were plotted as a function of temperature. These experiments show the promise of GeSn alloys for CMOS compatible short wave infrared detectors.

  15. Temperature varying photoconductivity of GeSn alloys grown by chemical vapor deposition with Sn concentrations from 4% to 11%

    Energy Technology Data Exchange (ETDEWEB)

    Hart, John; Hazbun, Ramsey; Gupta, Jay; Kolodzey, James [Department of Electrical Engineering, University of Delaware, 140 Evans Hall, Newark, Delaware 19716 (United States); Adam, Thomas [College of Nanoscale Science and Engineering, SUNY, Albany, New York 12203 (United States); Kim, Yihwan; Huang, Yi-Chiau [Applied Materials, Sunnyvale, California 94085 (United States); Reznicek, Alexander [IBM Research at Albany Nanotech, Albany, New York 12203 (United States)

    2016-03-07

    Pseudomorphic GeSn layers with Sn atomic percentages between 4.5% and 11.3% were grown by chemical vapor deposition using digermane and SnCl{sub 4} precursors on Ge virtual substrates grown on Si. The layers were characterized by x-ray diffraction rocking curves and reciprocal space maps. Photoconductive devices were fabricated, and the dark current was found to increase with Sn concentration. The responsivity of the photoconductors was measured at a wavelength of 1.55 μm using calibrated laser illumination at room temperature and a maximum value of 2.7 mA/W was measured for a 4.5% Sn device. Moreover, the responsivity for higher Sn concentration was found to increase with decreasing temperature. Spectral photoconductivity was measured using Fourier transform infrared spectroscopy. The photoconductive absorption edge continually increased in wavelength with increasing tin percentage, out to approximately 2.4 μm for an 11.3% Sn device. The direct band gap was extracted using Tauc plots and was fit to a bandgap model accounting for layer strain and Sn concentration. This direct bandgap was attributed to absorption from the heavy-hole band to the conduction band. Higher energy absorption was also observed, which was thought to be likely from absorption in the light-hole band. The band gaps for these alloys were plotted as a function of temperature. These experiments show the promise of GeSn alloys for CMOS compatible short wave infrared detectors.

  16. Direct ethanol fuel cells based on PtSn anodes: the effect of Sn content on the fuel cell performance

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, W.J.; Song, S.Q.; Li, W.Z.; Zhou, Z.H.; Sun, G.Q.; Xin, Q. [Direct alcohol fuel cell lab, Dalian Institute of Chemical Physics, CAS, P.O. Box 110, Dalian 116023 (China); Douvartzides, S.; Tsiakaras, P. [Department of Mechanical and Industrial Engineering, School of Engineering, University of Thessaly, Pedion Areos, 38334 Volos (Greece)

    2005-01-10

    In the present work, several carbon supported PtSn catalysts with different Pt/Sn atomic ratios were synthesized and characterized by X-ray diffraction (XRD), Transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Both the results of TEM and XRD showed that all in-house prepared carbon supported Pt and PtSn catalysts had nanosized particles with narrow size distribution. According to the primary analysis of XPS results, it was confirmed that the main part of Pt of the as-prepared catalysts is in metallic state while the main part of Sn is in oxidized state. The performances of single direct ethanol fuel cells were different from each other with different anode catalysts and at different temperatures. It was found that, the single DEFC employing Pt{sub 3}Sn{sub 2}/C showed better performance at 60{sup o}C while the direct ethanol fuel cells with Pt{sub 2}Sn{sub 1}/C and Pt{sub 3}Sn{sub 2}/C exhibited similar performances at 75{sup o}C. Furthermore, at 90{sup o}C, Pt{sub 2}Sn{sub 1}/C was identified as a more suitable anode catalyst for direct ethanol fuel cells in terms of the fuel cell maximum power density. Surface oxygen-containing species, lattice parameters and ohmic effects, which are related to the Sn content, are thought as the main factors influencing the catalyst activity and consequently the performance of single direct ethanol fuel cells. (author)

  17. Effects of Sn addition on the microstructure, mechanical properties and corrosion behavior of Ti–Nb–Sn alloys

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, Paulo E.L., E-mail: pauloeduardo.leitedemoraes@gmail.com [University of Campinas, School of Mechanical Engineering, Rua Mendeleiev, 200, Campinas, SP 13083-860 (Brazil); Contieri, Rodrigo J., E-mail: contieri@fem.unicamp.br [University of Campinas, School of Mechanical Engineering, Rua Mendeleiev, 200, Campinas, SP 13083-860 (Brazil); Lopes, Eder S.N., E-mail: ederlopes@fem.unicamp.br [University of Campinas, School of Mechanical Engineering, Rua Mendeleiev, 200, Campinas, SP 13083-860 (Brazil); Robin, Alain, E-mail: alain@demar.eel.usp.br [University of São Paulo, School of Engineering of Lorena, Polo Urbo-Industrial Gleba AI-6, Lorena, SP 12600-00 (Brazil); Caram, Rubens, E-mail: caram@fem.unicamp.br [University of Campinas, School of Mechanical Engineering, Rua Mendeleiev, 200, Campinas, SP 13083-860 (Brazil)

    2014-10-15

    Ti and Ti alloys are widely used in restorative surgery because of their good biocompatibility, enhanced mechanical behavior and high corrosion resistance in physiological media. The corrosion resistance of Ti-based materials is due to the spontaneous formation of the TiO{sub 2} oxide film on their surface, which exhibits elevated stability in biological fluids. Ti–Nb alloys, depending on the composition and the processing routes to which the alloys are subjected, have high mechanical strength combined with low elastic modulus. The addition of Sn to Ti–Nb alloys allows the phase transformations to be controlled, particularly the precipitation of ω phase. The aim of this study is to discuss the microstructure, mechanical properties and corrosion behavior of cast Ti–Nb alloys to which Sn has been added. Samples were centrifugally cast in a copper mold, and the microstructure was characterized using optical microscopy, scanning electron microscopy and X-ray diffractometry. Mechanical behavior evaluation was performed using Berkovich nanoindentation, Vickers hardness and compression tests. The corrosion behavior was evaluated in Ringer's solution at room temperature using electrochemical techniques. The results obtained suggested that the physical, mechanical and chemical behaviors of the Ti–Nb–Sn alloys are directly dependent on the Sn content. - Graphical abstract: Effects of Sn addition to the Ti–30Nb alloy on the elastic modulus. - Highlights: • Sn addition causes reduction of the ω phase precipitation. • Minimum Vickers hardness and elastic modulus occurred for 6 wt.% Sn content. • Addition of 6 wt.% Sn resulted in maximum ductility and minimum compression strength. • All Ti–30Nb–XSn (X = 0, 2, 4, 6, 8 and 10%) alloys are passive in Ringer's solution. • Highest corrosion resistance was observed for 6 wt.% Sn content.

  18. Thyroid suppression test with dextrothyroxine

    International Nuclear Information System (INIS)

    Rosenthal, D.; Fridman, J.; Ribeiro, H.B.

    1978-01-01

    The classic thyroid suppression test with triiodothyronine (l-T 3 ) has been shown to be efficient as an auxiliary method in the diagnosis of thyroid diseases, but should not be performed on elderly patients or on those with heart disease or a tendency to tachycardia. Since these subjects seem able to support a short period of dextro-thyronine (d-T 4 ) feeding, we compared the effect of d-T 4 and l-T 3 on the 24 hours thyroid uptake in euthyroid and hyperthyroid subjects. After basal radio-iodine uptake determination, 99 patients without hyperthyroidism and 27 with Graves' disease were randomly divided in 2 groups; one received 100μg of l-T 3 per day and the other 4 mg of d-T 4 per day, both groups being treated for a period of 10 days. At the end of this suppression period the 24 hours radio-iodine uptake was measured again and the percentual suppression index (S.I.) calculated. Since the comparison of the two groups showed no difference between the suppressive effect of l-T 3 and d-T 4 in euthyroid subjects, while dextro-thyronine, as levo-triiodothyronine, did not suppress the 24 hours uptake of hyperthyroid patients, l-T 3 or d-T 4 can be used interchangeably to test thyroid suppressibility. In the euthyroid subjects the normal range for the post-suppression uptake was 0-17.1% and for the suppression index 54,7.100% [pt

  19. In vivo Treg suppression assays.

    Science.gov (United States)

    Workman, Creg J; Collison, Lauren W; Bettini, Maria; Pillai, Meenu R; Rehg, Jerold E; Vignali, Dario A A

    2011-01-01

    To fully examine the functionality of a regulatory T cell (T(reg)) population, one needs to assess their ability to suppress in a variety of in vivo models. We describe five in vivo models that examine the suppressive capacity of T(regs) upon different target cell types. The advantages and disadvantages of each model including resources, time, and technical expertise required to execute each model are also described.

  20. In Vivo Treg Suppression Assays

    OpenAIRE

    Workman, Creg J.; Collison, Lauren W.; Bettini, Maria; Pillai, Meenu R.; Rehg, Jerold E.; Vignali, Dario A.A.

    2011-01-01

    To fully examine the functionality of a regulatory T cell (Treg) population, one needs to assess their ability to suppress in a variety of in vivo models. We describe five in vivo models that examine the suppressive capacity of Tregs upon different target cell types. The advantages and disadvantages of each model includ ing resources, time, and technical expertise required to execute each model are also described.

  1. Comparative study of SnS recrystallization in molten CdI{sub 2}, SnCl{sub 2}and KI

    Energy Technology Data Exchange (ETDEWEB)

    Timmo, Kristi; Kauk-Kuusik, Marit; Pilvet, Maris; Mikli, Valdek; Kaerber, Erki; Raadik, Taavi; Leinemann, Inga; Altosaar, Mare; Raudoja, Jaan [Department of Materials Science, Tallinn University of Technology, Tallinn (Estonia)

    2016-01-15

    In the present study, the recrystallization of polycrystalline SnS in different molten salts CdI{sub 2}, SnCl{sub 2} and KI as flux materials are presented. The recrystallization and growth of polycrystalline material in molten salts produces unique SnS monograin powders usable in monograin layer solar cells. XRD and Raman analysis revealed that single phase SnS powder can be obtained in KI at 740 C and in SnCl{sub 2} at 500 C. Long time heating of SnS in molten CdI{sub 2} was accompanied by chemical interaction between SnS and CdI{sub 2} that resulted in a mixture of CdS and Sn{sub 2}S{sub 3} crystals. SEM images showed that morphology of crystals can be controlled by the nature of the flux materials: needle-like Sn{sub 2}S{sub 3} together with round edged crystals of CdS in CdI{sub 2}, flat crystals of SnS with smooth surfaces in SnCl{sub 2} and well-formed SnS crystals with rounded edges in KI had been formed. The temperatures of phase transitions and/or the interactions of SnS and flux materials were determined by differential thermal analysis. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Burst Suppression for ICP Control.

    Science.gov (United States)

    Zeiler, Frederick A; Akoth, Eva; Gillman, Lawrence M; West, Michael

    2017-02-01

    The goal of our study was to perform a systematic review of the literature to determine the effect that burst suppression has on intracranial pressure (ICP) control. All articles from MEDLINE, BIOSIS, EMBASE, Global Health, Scopus, Cochrane Library, the International Clinical Trials Registry Platform (inception to January 2015), reference lists of relevant articles, and gray literature were searched. The strength of evidence was adjudicated using both the Oxford and the Grading of Recommendation Assessment Development and Education (GRADE) methodology. Seven articles were considered for review. A total of 108 patients were studied, all receiving burst suppression therapy. Two studies failed to document a decrease in ICP with burst suppression therapy. There were reports of severe hypotension and increased infection rates with barbiturate-based therapy. Etomidate-based suppressive therapy was linked to severe renal dysfunction. There currently exists both Oxford level 2b and GRADE C evidence to support that achieving burst suppression reduces ICP, and also has no effect on ICP, in severe traumatic brain injury. The literature suggests burst suppression therapy may be useful for ICP reduction in certain cases, although these situations are currently unclear. In addition, the impact on patient functional outcome is unclear. Further prospective study is warranted.

  3. Suppressed Charmed B Decay

    Energy Technology Data Exchange (ETDEWEB)

    Snoek, Hella Leonie [Vrije Univ., Amsterdam (Netherlands)

    2009-06-02

    This thesis describes the measurement of the branching fractions of the suppressed charmed B0 → D*- a0+ decays and the non-resonant B0 → D*- ηπ+ decays in approximately 230 million Υ(4S) → B$\\bar{B}$ events. The data have been collected with the BABAR detector at the PEP-II B factory at the Stanford Linear Accelerator Center in California. Theoretical predictions of the branching fraction of the B0 → D*- a{sub 0}+ decays show large QCD model dependent uncertainties. Non-factorizing terms, in the naive factorization model, that can be calculated by QCD factorizing models have a large impact on the branching fraction of these decay modes. The predictions of the branching fractions are of the order of 10-6. The measurement of the branching fraction gives more insight into the theoretical models. In general a better understanding of QCD models will be necessary to conduct weak interaction physics at the next level. The presence of CP violation in electroweak interactions allows the differentiation between matter and antimatter in the laws of physics. In the Standard Model, CP violation is incorporated in the CKM matrix that describes the weak interaction between quarks. Relations amongst the CKM matrix elements are used to present the two relevant parameters as the apex of a triangle (Unitarity Triangle) in a complex plane. The over-constraining of the CKM triangle by experimental measurements is an important test of the Standard Model. At this moment no stringent direct measurements of the CKM angle γ, one of the interior angles of the Unitarity Triangle, are available. The measurement of the angle γ can be performed using the decays of neutral B mesons. The B0 → D*- a0+ decay is sensitive to the angle γ and, in comparison to the current decays that are being employed, could significantly

  4. Structural reconstruction: a milestone in the hydrothermal synthesis of highly active Sn-Beta zeolites.

    Science.gov (United States)

    Zhu, Zhiguo; Xu, Hao; Jiang, Jingang; Wu, Haihong; Wu, Peng

    2017-11-21

    A novel structural reconstruction strategy is proposed to prepare an active Sn-Beta catalyst with high Sn contents and a hydrophobic nature. Compared with post-synthesized Sn-Beta and state-of-the-art classic fluoride-mediated Sn-Beta-F, this Sn-Beta zeolite exhibits unparalleled active site-based turnover frequency for desirable products and in particular catalyst weight-based space-time-yields in various redox reactions of ketones.

  5. TDPAC study of Cd-doped SnO

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, E. L., E-mail: munoz@fisica.unlp.edu.ar [Universidad Nacional de La Plata, Departamento de Fisica-IFLP (CCT-La Plata, CONICET-UNLP), Facultad de Ciencias Exactas (Argentina); Carbonari, A. W. [Instituto de Pesquisas Energeticas y Nucleares-IPEN-CNEN/SP (Brazil); Errico, L. A. [Universidad Nacional de La Plata, Departamento de Fisica-IFLP (CCT-La Plata, CONICET-UNLP), Facultad de Ciencias Exactas (Argentina); Bibiloni, A. G. [Universidad Nacional de La Plata, Departamento de Fisica, Facultad de Ciencias Exactas (Argentina); Petrilli, H. M. [Universidade de Sao Paulo, Instituto de Fisica (Brazil); Renteria, M. [Universidad Nacional de La Plata, Departamento de Fisica-IFLP (CCT-La Plata, CONICET-UNLP), Facultad de Ciencias Exactas (Argentina)

    2007-07-15

    The combination of hyperfine techniques and ab initio calculations has been shown to be a powerful tool to unravel structural and electronic characterizations of impurities in solids. A recent example has been the study of Cd-doped SnO, where ab initio calculations questioned previous TDPAC assignments of the electric-field gradient (EFG) in {sup 111}In-implanted Sn-O thin films. Here we present new TDPAC experiments at {sup 111}In-diffused polycrystalline SnO. A reversible temperature dependence of the EFG was observed in the range 295-900 K. The TDPAC results were compared with theoretical calculations performed with the full-potential linearized augmented plane wave (FP-LAPW) method, in the framework of the density functional theory. Through the comparison with the theoretical results, we infer that different electronic surroundings around Cd impurities can coexist in the SnO sample.

  6. TDPAC study of Cd-doped SnO

    International Nuclear Information System (INIS)

    Munoz, E. L.; Carbonari, A. W.; Errico, L. A.; Bibiloni, A. G.; Petrilli, H. M.; Renteria, M.

    2007-01-01

    The combination of hyperfine techniques and ab initio calculations has been shown to be a powerful tool to unravel structural and electronic characterizations of impurities in solids. A recent example has been the study of Cd-doped SnO, where ab initio calculations questioned previous TDPAC assignments of the electric-field gradient (EFG) in 111 In-implanted Sn-O thin films. Here we present new TDPAC experiments at 111 In-diffused polycrystalline SnO. A reversible temperature dependence of the EFG was observed in the range 295-900 K. The TDPAC results were compared with theoretical calculations performed with the full-potential linearized augmented plane wave (FP-LAPW) method, in the framework of the density functional theory. Through the comparison with the theoretical results, we infer that different electronic surroundings around Cd impurities can coexist in the SnO sample.

  7. Quality control for a group of pyrophosphate-Sn kits

    International Nuclear Information System (INIS)

    Isaac, M.; Gamboa, R.; Hernandez, I.; Leyva, R.; Turino, D.

    1994-01-01

    The quality control for a group of Pyrophosphate-Sn kits for labeling with 99 m Tc is carry out at the Isotope Center. A general discussion takes place about the instrumental techniques for the determination of the kit constituent such as ligands, Sn(II), water, etc, as well as the control table for the evaluation of the warranty time. (author). 5 refs, 4 figs

  8. Electrochemical fabrication of Sn nanowires on titania nanotube guide layers

    International Nuclear Information System (INIS)

    Djenizian, Thierry; Hanzu, Ilie; Premchand, Yesudas D; Vacandio, Florence; Knauth, Philippe

    2008-01-01

    We describe a novel approach for the fabrication of tailored nanowires using a two-step electrochemical process. It is demonstrated that self-organized TiO 2 nanotubes can be used to activate and guide the electrochemical growth of Sn crystallites, leading to the formation of vertical features with a high aspect ratio. We show that the dimensions and the density of Sn crystallites depend on the electrodeposition parameters

  9. Ag-Sn Alloys and dental amalgams: A119Sn Mössbauer, x-ray diffraction and scanning electron microscopy study

    Science.gov (United States)

    Allen, W. J.; Pollard, R. J.; Cashion, J. D.

    1989-03-01

    Examination has been made on aged and fresh Ag-Sn alloys and on commercial Cu-Ag-Sn dental alloys. Although x-ray diffractograms of aged Ag-Sn showed only λ Ag-Sn and free silver,119Sn Mössbauer spectra exhibited Sn(IV) oxide also. A low Debye temperature showed the oxide to be in intimate dynamical contact with the metallic matrix. Upon adding mercury, the phases λ1 Ag-Hg and η' Cu-Sn were observed in a commercial specimen. Conversion-electron spectra of a mercury-coated disk showed the presence of λ2 Sn-Hg and a distribution of line positions smaller than that for particulate amalgams. Internal oxidation was found to prevent amalgamation.

  10. Stabilization of organometal halide perovskite films by SnO2 coating with inactive surface hydroxyl groups on ZnO nanorods

    Science.gov (United States)

    Wang, Peng; Zhao, Jinjin; Liu, Jinxi; Wei, Liyu; Liu, Zhenghao; Guan, Lihao; Cao, Guozhong

    2017-01-01

    Perovskite solar cells have advanced rapid in the last few years, however the thermal instability of perovskite film on ZnO nanorods (NRs) remains a big challenge limiting its commercialization. The present work demonstrated effective suppression of the decomposition of CH3NH3PbI3 perovskite through inserting a thin tin oxide (SnO2) passivation layer between ZnO NRs and perovskite films. Although X-ray photoelectron spectroscopy (XPS) results showed no distinct difference in the amount of hydroxyl groups and oxygen vacancies on the surface of ZnO NRs and ZnO@SnO2 NRs, Raman spectra suggested the hydroxyl groups might be trapped in oxygen vacancies on SnO2 surface, preventing the decomposition of CH3NH3PbI3 perovskite through reacting with the hydroxyl groups. The power conversion efficiency of perovskite solar cells was significantly increased from 6.92% to 12.17% and became hysteresis-free by applying SnO2 passivating layer between perovskite and ZnO layers.

  11. Study of low-defect and strain-relaxed GeSn growth via reduced pressure CVD in H2 and N2 carrier gas

    Science.gov (United States)

    Margetis, J.; Mosleh, A.; Al-Kabi, S.; Ghetmiri, S. A.; Du, W.; Dou, W.; Benamara, M.; Li, B.; Mortazavi, M.; Naseem, H. A.; Yu, S.-Q.; Tolle, J.

    2017-04-01

    High quality, thick (up to 1.1 μm), strain relaxed GeSn alloys were grown on Ge-buffered Si (1 0 0) in an ASM Epsilon® chemical vapor deposition system using SnCl4 and low-cost commercial GeH4 precursors. The significance of surface chemistry in regards to growth rate and Sn-incorporation is discussed by comparing growth kinetics data in H2 and N2 carrier gas. The role of carrier gas is also explored in the suppression of Sn surface segregation and evolution of layer composition and strain profiles via secondary ion mass spectrometry and X-ray diffraction. Transmission electron microscopy revealed the spontaneous compositional splitting and formation of a thin intermediate layer in which dislocations are pinned. This intermediate layer enables the growth of a thick, strain relaxed, and defect-free epitaxial layer on its top. Last, we present photoluminescence results which indicate that both N2 and H2 growth methods produce optoelectronic device quality material.

  12. Grain-boundary migration in Zr-Sn alloys

    International Nuclear Information System (INIS)

    Snowden, K.U.; Stathers, P.A.; Hughes, D.S.

    1979-01-01

    Measurements are reported of grain-boundary migration in a series of Zr-Sn alloys containing from 0.75 to 5.1 wt% Sn (0.58 to 4.0 at% Sn) fatigued under vacuum at temperatures between 600 and 775 0 C. At these temperatures, the condition of the alloys correspond to either the single phase (α) or the double phase (α + Zr 4 Sn) regions of the phase diagram. The amount and rate of grain-boundary migration increased with temperature and decreased with tin addition. The dependence of grain-boundary migration on tin content was a minimum at tin compositions which corresponded to the reported region of the α/(α + Zr 4 Sn) boundary. In the α-region, the reciprocal of the rate of grain-boundary migration was approximately linear with tin content. The temperature dependence for grain-boundary migration exhibited a kinetic transition temperature which divided the dependence into two ranges characterised by different apparent activation energies. The effect of tin additions on both activation energies was to first reduce and then to increase their value. This latter increase is possibly associated with the precipitation of Zr 4 Sn at grain boundaries. (orig.)

  13. Enthalpy of mixing of liquid Co–Sn alloys

    International Nuclear Information System (INIS)

    Yakymovych, A.; Fürtauer, S.; Elmahfoudi, A.; Ipser, H.; Flandorfer, H.

    2014-01-01

    Highlights: • The enthalpies of mixing of liquid Co–Sn alloys between T = (673 and 1773) K. • The temperature dependence of the enthalpies of mixing was described. • Full report of measured values including polynomial coefficients. - Abstract: A literature overview of enthalpy of mixing data for liquid Co–Sn alloys shows large scattering but no clear temperature dependence. Therefore drop calorimetry was performed in the Co–Sn system at twelve different temperatures in 100 K steps in the temperature range (673 to 1773) K. The integral enthalpy of mixing was determined starting from 1173 K and fitted to a standard Redlich–Kister polynomial. In addition, the limiting partial molar enthalpy of Co in Sn was investigated by small additions of Co to liquid Sn at temperatures (673 to 1773) K. The integral and partial molar enthalpies of the Co–Sn system generally show an exothermic mixing behavior. Significant temperature dependence was detected for the enthalpies of mixing. The minimum integral enthalpy values vary with rising temperature from approx. −7820 J/mol at T = 1173 K to −1350 J/mol at T = 1773 K; the position of the minimum is between (59 and 61) at.% Co. The results are discussed and compared with literature data available for this system. X-ray studies and scanning electron microscopy of selected alloys obtained from the calorimetric measurements were carried out in order to check the completeness of the solution process

  14. Portuguese granites associated with Sn-W and Au mineralizations

    Directory of Open Access Journals (Sweden)

    Ana M.R. Neiva

    2002-01-01

    Full Text Available In northern and central Portugal, there are different tin-bearing granites. Most of them are of S-type, others have mixed characteristics of I-type and S-type granites and a few are of I-type. Tin-tungsten deposits are commonly associated with Hercynian tin-bearing S-type granites. Some quartz veins with wolframite are associated with an I-type granite, which has a low Sn content. In suites of tin-bearing S-type granitic rocks, Sn content increases as a function of the degree of fractional crystallization. Greisenizations of two-mica S-type granites associated with tin-tungsten mineralizations are accompanied by an increase in SiO2, H2O+, Sn, W, Nb, Ta, Rb, Zn, and Pb and decrease in MgO, Na2O, V, Sc,Zr, and Sr. The granite associated with the Jales gold deposit is of S-type and strongly differentiated like the tin-bearing S-type granites, but it has a very low Sn content. During fractional crystallization, Si, Rb, Sn, Pb, Au, As, Sb, and S increase. During increasing degree of hydrothermal alteration of this granite at the gold-quartz vein walls, there are progressive increases in K2O, H2O+, Sn, Cs, Cu, Pb, Au, Sb, As, and S.

  15. 51Cr diffusion in Zr-Sn alloys

    International Nuclear Information System (INIS)

    Nicolai, L.I.; Migoni, R.L.; Hojvat de Tendler, Ruth

    1982-01-01

    The 51 Cr volume diffusion in Zr-Sn alloys is measured in polycrystals with big grains by the thin-film method. The Sn content in the alloys ranges from 0.39% at to 6.66 % at. In the beta-phase the analysed temperature range is 982 deg C-1240 deg C. The Sn dehances the 51 Cr diffusion in beta-Zr, the effect being small but well defined. Assuming the formation of Sn-Cr dimers, the linear dehancement coefficient b and the parameters for the variation of b with temperature were calculated. The parameters Q and D o were calculated for the more diluted alloys and, upon application of the Zener theory for D o , a negative contribution to the activation entropy is found. Three experiments at different temperatures were performed in the alpha-phase. 51 Cr diffuses very fast in alpha-Zr-Sn. No definite correlation is found between the 51 Cr diffusivity and the increasing Sn concentration, probably due to the anisotropy of the alfa-phase. (M.E.L.) [es

  16. Optical and electronic properties of semiconducting Sn2S3

    Science.gov (United States)

    Singh, David J.

    2016-07-01

    We report the electronic and optical properties of Sn2S3 as obtained from first principles calculations with the modified Becke-Johnson potential. The electronic structure shows that Sn occurs in both divalent and tetravalent forms. The fundamental band gap of 0.82 eV is indirect. The direct gap is 0.97 eV, but the onset of strong optical absorption is much higher at ˜1.75 eV. This is as a consequence of the Sn2+ s and Sn4+ s characters of the valence and conduction band extrema, respectively. We also find strong and different anisotropies for conduction in p- and n-type Sn2S3. This should be taken into account in device structures in order to obtain efficient charge collection. The thermopowers are reasonably high for both p- and n-type materials. p-type Sn2S3 shows complex corrugated isosurface sections, while the n-type material shows multiple band extrema.

  17. Calculation of effective electromagnetic parameters of multi-needle zinc oxide whisker based on equivalent spherical particle and strong fluctuation theory

    Science.gov (United States)

    Zhao, Yu-Chen; Liu, Jiang-Fan; Song, Zhong-Guo; Xi, Xiao-Li

    2014-12-01

    Multi-needle zinc oxide whisker (M-ZnOw) includes tetrapod-needle ZnOw (T-ZnOw), flower-shaped ZnOw, and other similar ZnOw architectures. The unique three-dimensional (3D) and multi-needle-shaped structures give the special performance of M-ZnOw, but make it difficult to calculate the effective electromagnetic parameters of M-ZnOw composites. In this paper, based on the equivalent spherical particle and the strong fluctuation theory, three different closed-form expressions are presented to calculate the effective electromagnetic parameters of M-ZnOw composites. To start with, because of the macroscopic isotropic nature of M-ZnOw composites and lossy properties of M-ZnOw itself, an equivalent spherical particle is introduced in the scheme to simplify the unique microscopic structures of M-ZnOw, and the possible limitations of the presented equivalent spherical particle are discussed qualitatively. In addition, different closed-form expressions to calculate the effective electromagnetic parameter are obtained by means of representing the physical situations of conductive network as different correlation functions in the strong fluctuation theory. Finally, the effective permeability of a T-ZnOw/Fe - paraffin composite is calculated by these three expressions in 2-18 GHz frequency range. Very good agreement between the calculated and experimental results on one hand verifies the rationality of presented expressions, and on the other hand indicates that the correlation function plays an important role in improving the performance of the presented expression.

  18. Territorial defense of the red-whiskered bulbul, Pycnonotus jocosus (Pycnonotidae, in a semi-wild habitat of the bird farm

    Directory of Open Access Journals (Sweden)

    Sunthorn Sotthibandhu

    2003-09-01

    Full Text Available The territorial behavior of the red-whiskered bulbul, Pycnonotus jocosus, was studied in the semiwild habitat of a bird farm compound in the District of Chana, Songkhla Province, the south of Thailand. The male and female birds were bred and reared in the farm till they reached maturity following which they were released to the wild. A mating pair was later formed and their territory established in the farm area. A decoy was used to simulate a natural intruder to the defended area. Ten test stations were sited in the four cardinal points of the compass and with reference to the farmhouse. The experiments were conducted during the pre-nesting and nesting periods. It was found that territorial boundary was marked by the resident male’s aggressive calls and threat displays to the decoy. The territory covered an area of approximately 0.3 hectare in which it was used for foraging and nesting. The size remained the same in both pre-nesting and nesting periods, but the territorial behavior during the nesting period was evidently more vigorous than that in the pre-nesting period. The intensities of territorial behavior had been hypothesized to be associated with diurnal foraging rhythms. But the finding was contradictory to this prediction. There was no significant difference in the intensity of territorial behavior (P > 0.05 at the three time regimes in the morning, at noon, and in the afternoon. It was suggested that the resident bird’s aggressive behavior might be associated with the degree of hunger pang.

  19. VAMAS Nb3Sn test conductor

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    A bronze-process Nb 3 Sn conductor was measured as part of the second VAMAS (Versailles Project on Advanced Materials and Standards) international critical-current round robin. The conductor specifications are given in Table 15. The critical current was measured as a function of magnetic field and axial tensile strain. The measured data are presented in Table 16 and in Figs. 23 and 24. The I c and J c values are based on an electric field criterion (E c ) of 1 μV/cm. In the first VAMAS round robin tests, differences in the test specimens' axial strain, caused by variations in the thermal contraction of different test fixtures, was a major source of interlaboratory variation in the critical-current data. Consequently, electromechanical characterization of the test specimen is important for data interpretation and error analysis. In the second round robin, the test apparatus and procedure were more rigidly specified. This increased experimental control reduced the critical-current variation by a factor of 3.5. The results of our measurements will be published in the final VAMAS report

  20. Thermoelectric Properties of Cu2HgSnSe4-Cu2HgSnTe4 Solid Solution

    Czech Academy of Sciences Publication Activity Database

    Navrátil, Jiří; Kucek, V.; Plecháček, T.; Černošková, E.; Laufek, František; Drašar, Č.; Knotek, P.

    2014-01-01

    Roč. 43, č. 10 (2014), s. 3719-3725 ISSN 0361-5235 R&D Projects: GA ČR GA13-33056S Institutional support: RVO:61389013 ; RVO:68378271 Keywords : quaternary diamond-like compounds * Cu2HgSnSe4 * Cu2HgSnTe4 Subject RIV: CA - Inorganic Chemistry Impact factor: 1.798, year: 2014

  1. Reactividad entre whiskers de α-SiC y aluminio durante el procesado por vía líquida de materiales compuestos de matriz metálica

    Directory of Open Access Journals (Sweden)

    Ureña, A.

    1999-06-01

    Full Text Available The reactivity between α-SiC whiskers and an aluminium alloy (Al-Cu-Mg, both present in a metal matrix composite, has been studied when such matrix is in molten state. Using mainly transmission electron microscopy (TEM and electron microdiffraction (ED, the nature and morphology of the reaction products generated at the α-SiC/aluminium interface, when this last melts under different condition which simulate casting and welding procedures for metal matrix composites, have been characterised. Both the formation of Al4C3 aggregates with platelet morphology generated by dissolution-reaction mechanisms, and aciculate crystals of the same carbide form by complete dissolution of the α-SiC whiskers and later Al4C3 precipitation into the molten aluminium. Ternary Al-Si carbides with high chemical stability have been also identified by TEMED (β-Al4SiC4, being its formation related with higher energetic conditions than for the Al4C3.

    Se realiza un estudio de la reactividad entre whiskers de α-SiC y una aleación de aluminio en estado líquido (Al-Cu-Mg, que forman parte de un material compuesto de matriz metálica. Empleando fundamentalmente técnicas de microscopía electrónica de barrido (MEB y de transmisión (MET, junto con difracción de electrones (DE, se ha caracterizado la naturaleza y morfología de los productos de reacción que se generan en la intercara α-SiC/aluminio, cuando éste funde en diferentes condiciones que simulan procesos de fabricación y soldadura del material compuesto. Se ha observado tanto la formación de agregados de Al4C3 con morfología tabular producidos por mecanismos de disolución-reacción de los whiskers, como de cristales aciculares del mismo tipo de carburo formados por disolución total de α-SiC y precipitación en el aluminio fundido. Se ha determinado también que, en condiciones suficientemente energéticas, pueden llegar a formarse carburos ternarios de aluminio y silicio (β-Al4SiC4 que

  2. Surface oxidation of tin chalcogenide nanocrystals revealed by 119Sn-Mössbauer spectroscopy.

    Science.gov (United States)

    de Kergommeaux, Antoine; Faure-Vincent, Jérôme; Pron, Adam; de Bettignies, Rémi; Malaman, Bernard; Reiss, Peter

    2012-07-18

    Narrow band gap tin(II) chalcogenide (SnS, SnSe, SnTe) nanocrystals are of high interest for optoelectronic applications such as thin film solar cells or photodetectors. However, charge transfer and charge transport processes strongly depend on nanocrystals' surface quality. Using (119)Sn-Mössbauer spectroscopy, which is the most sensitive tool for probing the Sn oxidation state, we show that SnS nanocrystals exhibit a Sn((IV))/Sn((II)) ratio of around 20:80 before and 40:60 after five minutes exposure to air. Regardless of the tin or sulfur precursors used, similar results are obtained using six different synthesis protocols. The Sn((IV)) content before air exposure arises from surface related SnS(2) and Sn(2)S(3) species as well as from surface Sn atoms bound to oleic acid ligands. The increase of the Sn((IV)) content upon air exposure results from surface oxidation. Full oxidation of the SnS nanocrystals without size change is achieved by annealing at 500 °C in air. With the goal to prevent surface oxidation, SnS nanocrystals are capped with a cadmium-phosphonate complex. A broad photoluminescence signal centered at 600 nm indicates successful capping, which however does not reduce the air sensitivity. Finally we demonstrate that SnSe nanocrystals exhibit a very similar behavior with a Sn((IV))/Sn((II)) ratio of 43:57 after air exposure. In the case of SnTe nanocrystals, the ratio of 55:45 is evidence of a more pronounced tendency for oxidation. These results demonstrate that prior to their use in optoelectronics further surface engineering of tin chalcogenide nanocrystals is required, which otherwise have to be stored and processed under inert atmosphere.

  3. Sandwich-like C@SnO2/Sn/void@C hollow spheres as improved anode materials for lithium ion batteries

    Science.gov (United States)

    Wang, Huijun; Jiang, Xinya; Chai, Yaqin; Yang, Xia; Yuan, Ruo

    2018-03-01

    As lithium ion batteries (LIBs) anode, SnO2 suffers fast capacity fading due to its large volume expansion during discharge/charge process. To overcome the problem, sandwich-like C@SnO2/Sn/void@C hollow spheres (referred as C@SnO2/Sn/void@C HSs) are prepared by in-situ polymerization and carbonization, using hollow SnO2 as self-template and dopamine as carbon source. The C@SnO2/Sn/void@C HSs possesses the merits of hollow and core/void/shell structure, so that they can accommodate the volume change under discharge/charge process, shorten the transmission distance of Li ions, own more contact area for the electrolyte. Thanks to these advantages, C@SnO2/Sn/void@C HSs display excellent electrochemical performance as anode materials for LIBs, which deliver a high capacity of 786.7 mAh g-1 at the current density of 0.5 A g-1 after 60 cycles. The simple synthesis method for C@SnO2/Sn/void@C HSs with special structure will provide a promising method for preparing other anode materials for LIBs.

  4. Electrochemical energy storage behavior of Sn/SnO2 double phase nanocomposite anodes produced on the multiwalled carbon nanotube buckypapers for lithium-ion batteries

    Science.gov (United States)

    Alaf, Mirac; Akbulut, Hatem

    2014-02-01

    Recent development of electrode materials for Li-ion batteries is driven mainly by hybrid nanocomposite structures consisting of Li storage compounds and CNTs. In this study, tin/tinoxide (Sn/SnO2) films and tin/tinoxide/multi walled carbon nanotube (Sn/SnO2/MWCNT) nanocomposites are produced by a two steps process; thermal evaporation and subsequent plasma oxidation as anode materials for Li-ion batteries. The physical, structural, and electrochemical behaviors of the nanocomposite electrodes containing MWCNTs are discussed. The ratio between metallic tin (Sn) and tinoxide (SnO2) is controlled with plasma oxidation time and effects of the ratio are investigated on the structural and electrochemical properties. The greatly enhanced electrochemical performance is mainly due to the morphological stability and reduced diffusion resistance, which are induced by MWCNT core and deposited Sn/SnO2 double phase shell. The outstanding long-term cycling stability is a result of the two layers Sn and SnO2 phases on MWCNTs. The nanoscale Sn/SnO2/MWCNT network provides good electrical conductivity, and the creation of open spaces that buffer a large volume change during the Li-alloying/de-alloying reaction.

  5. Fabrication of GeSn-multiple quantum wells by overgrowth of Sn on Ge by using molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, F. [Institute for Semiconductor Engineering, University of Stuttgart, 70569 Stuttgart (Germany); Centre of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Fischer, I. A.; Schulze, J. [Institute for Semiconductor Engineering, University of Stuttgart, 70569 Stuttgart (Germany); Benedetti, A. [CACTI, Univ. de Vigo, Campus Universitario Lagoas Marcosende 15, Vigo (Spain); Zaumseil, P. [IHP GmbH, Innovations for High Performance Microelectronics, Leibniz-Institut für innovative Mikroelektronik, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Cerqueira, M. F.; Vasilevskiy, M. I. [Centre of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Stefanov, S.; Chiussi, S. [Dpto. Fisica Aplicada, Univ. de Vigo, Rua Maxwell s/n, Campus Universitario Lagoas Marcosende, Vigo (Spain)

    2015-12-28

    We report on the fabrication and structural characterization of epitaxially grown ultra-thin layers of Sn on Ge virtual substrates (Si buffer layer overgrown by a 50 nm thick Ge epilayer followed by an annealing step). Samples with 1 to 5 monolayers of Sn on Ge virtual substrates were grown using solid source molecular beam epitaxy and characterized by atomic force microscopy. We determined the critical thickness at which the transition from two-dimensional to three-dimensional growth occurs. This transition is due to the large lattice mismatch between Ge and Sn (≈14.7%). By depositing Ge on top of Sn layers, which have thicknesses at or just below the critical thickness, we were able to fabricate ultra-narrow GeSn multi-quantum-well structures that are fully embedded in Ge. We report results on samples with one and ten GeSn wells separated by 5 and 10 nm thick Ge spacer layers that were characterized by high resolution transmission electron microscopy and X-ray diffraction. We discuss the structure and material intermixing observed in the samples.

  6. A simple procedure for estimating SN-lines for crack initiation from SN-lines for total failure

    Energy Technology Data Exchange (ETDEWEB)

    Sonsino, Cetin Morris [Fraunhofer Institute for Structural Durability and System Reliability (LBF), Darmstadt (Germany)

    2015-02-01

    A simple procedure is proposed for estimating the SN-line for the failure criterion of fatigue life to crack initiation of components not subjected to a surface treatment. The prerequisite is the availability of a SN-line for total failure, i.e. rupture, with the scatter-band T{sub σ} between the probabilities of survival P{sub s} = 10 and 90 %, the knee point N{sub k} and the slopes k{sub f} and k* before and after the knee point. The SN-line for crack initiation with P{sub s} = 50 % is positioned at the knee point N{sub k} of the SN-line with P{sub s} = 90 % for total failure. The slope kcr for N < N{sub k} cycles results from the exponent of the elastic portion of the strain controlled SN-line for crack initiation, obtained with unnotched specimens, and the slope k* after the knee point remains the same as that for the line for total failure. The SN-line for crack initiation possesses the same scatter-band T{sub σ} as the line for total failure.

  7. Identify and Quantify the Mechanistic Sources of Sensor Performance Variation Between Individual Sensors SN1 and SN2

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Aaron A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Baldwin, David L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cinson, Anthony D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jones, Anthony M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Larche, Michael R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mathews, Royce [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mullen, Crystal A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pardini, Allan F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Posakony, Gerald J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Prowant, Matthew S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hartman, Trenton S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Edwards, Matthew K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-08-06

    This Technical Letter Report satisfies the M3AR-14PN2301022 milestone, and is focused on identifying and quantifying the mechanistic sources of sensor performance variation between individual 22-element, linear phased-array sensor prototypes, SN1 and SN2. This effort constitutes an iterative evolution that supports the longer term goal of producing and demonstrating a pre-manufacturing prototype ultrasonic probe that possesses the fundamental performance characteristics necessary to enable the development of a high-temperature sodium-cooled fast reactor inspection system. The scope of the work for this portion of the PNNL effort conducted in FY14 includes performing a comparative evaluation and assessment of the performance characteristics of the SN1 and SN2 22 element PA-UT probes manufactured at PNNL. Key transducer performance parameters, such as sound field dimensions, resolution capabilities, frequency response, and bandwidth are used as a metric for the comparative evaluation and assessment of the SN1 and SN2 engineering test units.

  8. Thermoelectric properties of single-layered SnSe sheet

    Science.gov (United States)

    Wang, Fancy Qian; Zhang, Shunhong; Yu, Jiabing; Wang, Qian

    2015-09-01

    Motivated by the recent study of inspiring thermoelectric properties in bulk SnSe [Zhao et al., Nature, 2014, 508, 373] and the experimental synthesis of SnSe sheets [Chen et al., J. Am. Chem. Soc., 2013, 135, 1213], we have carried out systematic calculations for a single-layered SnSe sheet focusing on its stability, electronic structure and thermoelectric properties by using density functional theory combined with Boltzmann transport theory. We have found that the sheet is dynamically and thermally stable with a band gap of 1.28 eV, and the figure of merit (ZT) reaches 3.27 (2.76) along the armchair (zigzag) direction with optimal n-type carrier concentration, which is enhanced nearly 7 times compared to its bulk counterpart at 700 K due to quantum confinement effect. Furthermore, we designed four types of thermoelectric couples by assembling single-layered SnSe sheets with different transport directions and doping types, and found that their efficiencies are all above 13%, which are higher than those of thermoelectric couples made of commercial bulk Bi2Te3 (7%-8%), suggesting the great potential of single-layered SnSe sheets for heat-electricity conversion.Motivated by the recent study of inspiring thermoelectric properties in bulk SnSe [Zhao et al., Nature, 2014, 508, 373] and the experimental synthesis of SnSe sheets [Chen et al., J. Am. Chem. Soc., 2013, 135, 1213], we have carried out systematic calculations for a single-layered SnSe sheet focusing on its stability, electronic structure and thermoelectric properties by using density functional theory combined with Boltzmann transport theory. We have found that the sheet is dynamically and thermally stable with a band gap of 1.28 eV, and the figure of merit (ZT) reaches 3.27 (2.76) along the armchair (zigzag) direction with optimal n-type carrier concentration, which is enhanced nearly 7 times compared to its bulk counterpart at 700 K due to quantum confinement effect. Furthermore, we designed four types of

  9. Synthesis and lithium storage properties of Zn, Co and Mg doped SnO2 Nano materials

    CSIR Research Space (South Africa)

    Palaniyandy, Nithyadharseni

    2017-09-01

    Full Text Available In this paper, we show that magnesium and cobalt doped SnO2 (Mg-SnO2 and Co-SnO2) nanostructures have profound influence on the discharge capacity and coulombic efficiency of lithium ion batteries (LIBs) employing pure SnO2 and zinc doped SnO2 (Zn...

  10. Beyond viral suppression of HIV

    DEFF Research Database (Denmark)

    Lazarus, Jeffrey V.; Safreed-Harmon, Kelly; Barton, Simon E

    2016-01-01

    BACKGROUND: In 2016, the World Health Organization (WHO) adopted a new Global Health Sector Strategy on HIV for 2016-2021. It establishes 15 ambitious targets, including the '90-90-90' target calling on health systems to reduce under-diagnosis of HIV, treat a greater number of those diagnosed......, and ensure that those being treated achieve viral suppression. DISCUSSION: The WHO strategy calls for person-centered chronic care for people living with HIV (PLHIV), implicitly acknowledging that viral suppression is not the ultimate goal of treatment. However, it stops short of providing an explicit target...... for health-related quality of life. It thus fails to take into account the needs of PLHIV who have achieved viral suppression but still must contend with other intense challenges such as serious non-communicable diseases, depression, anxiety, financial stress, and experiences of or apprehension about HIV...

  11. Resonance suppression from color reconnection

    Science.gov (United States)

    Acconcia, R.; Chinellato, D. D.; de Souza, R. Derradi; Takahashi, J.; Torrieri, G.; Markert, C.

    2018-02-01

    We present studies that show how multi-parton interaction and color reconnection affect the hadro-chemistry in proton-proton (pp) collisions with special focus on the production of resonances using the pythia8 event generator. We find that color reconnection suppresses the relative production of meson resonances such as ρ0 and K* , providing an alternative explanation for the K*/K decrease observed in proton-proton collisions as a function of multiplicity by the ALICE collaboration. Detailed studies of the underlying mechanism causing meson resonance suppression indicate that color reconnection leads to shorter, less energetic strings whose fragmentation is less likely to produce more massive hadrons for a given quark content, therefore reducing ratios such as K*/K and ρ0/π in high-multiplicity pp collisions. In addition, we have also studied the effects of allowing string junctions to form and found that these may also contribute to resonance suppression.

  12. Hydrothermal preparation of BaSnO3 and Au-BaSnO3 nanorods.

    Science.gov (United States)

    Athawale, A A; Bapat, M S; Desai, P A

    2008-08-01

    Barium stannate nanorods have been synthesized using chloride precursors, which were activated to form composite complexes and subjected to hydrothermal treatment in a teflon lined reactor. The reaction time was varied between 0.5 to 6.0 h. The reaction conditions included alkaline pH, pressure of 75 kg/cm2 and temperature below 200 degrees C. The sample powders were further calcined at 200, 400 and 600 degrees C for 4 h each. The phase formation was confirmed by IR and XRD. The cubic phase of BaSnO3 powder obtained at 600 degrees C was observed under electron microscope and revealed the formation of long rods of length 2-5 microm with a diameter of 50-60 nm. The use of TMAOH as a mineralizer resulted in the formation of shorter and finer nanofibres. The nanorods were sonicated in presence of auric chloride solution in alkaline medium and the formation of Au-BaSnO3 composite powder was confirmed by UV-visible spectroscopy and X-ray diffraction technique.

  13. Surface tension and density of binary lead and lead-free Sn-based solders

    Science.gov (United States)

    Kaban, I.; Mhiaoui, S.; Hoyer, W.; Gasser, J.-G.

    2005-12-01

    The surface tension and density of the liquid Sn60Pb40, Sn90Pb10, Sn96.5Ag3.5 and Sn97Cu3 solder alloys (wt%) have been determined experimentally over a wide temperature interval. It is established that the surface tension of liquid Sn90Pb10 is about 7% higher than that of a traditional Sn60Pb40 solder and that the surface tension of Sn96.5Ag3.5 and Sn97Cu3 alloys is about 12% higher than that of Sn60Pb40. The analytical expressions for the temperature dependences of the surface tension and density are given.

  14. Enhanced hydrogen storage capacity of Ni/Sn-coated MWCNT nanocomposites

    Science.gov (United States)

    Varshoy, Shokufeh; Khoshnevisan, Bahram; Behpour, Mohsen

    2018-02-01

    The hydrogen storage capacity of Ni-Sn, Ni-Sn/multi-walled carbon nanotube (MWCNT) and Ni/Sn-coated MWCNT electrodes was investigated by using a chronopotentiometry method. The Sn layer was electrochemically deposited inside pores of nanoscale Ni foam. The MWCNTs were put on the Ni-Sn foam with nanoscale porosities using an electrophoretic deposition method and coated with Sn nanoparticles by an electroplating process. X-ray diffraction and energy dispersive spectroscopy results indicated that the Sn layer and MWCNTs are successfully deposited on the surface of Ni substrate. On the other hand, a field-emission scanning electron microscopy technique revealed the morphology of resulting Ni foam, Ni-Sn and Ni-Sn/MWCNT electrodes. In order to measure the hydrogen adsorption performed in a three electrode cell, the Ni-Sn, Ni-Sn/MWCNT and Ni/Sn-coated MWCNT electrodes were used as working electrodes whereas Pt and Ag/AgCl electrodes were employed as counter and reference electrodes, respectively. Our results on the discharge capacity in different electrodes represent that the Ni/Sn-coated MWCNT has a maximum discharge capacity of ˜30 000 mAh g-1 for 20 cycles compared to that of Ni-Sn/MWCNT electrodes for 15 cycles (˜9500 mAh g-1). By increasing the number of cycles in a constant current, the corresponding capacity increases, thereby reaching a constant amount for 20 cycles.

  15. Syntheses, structural variants and characterization of AInM′S4 (A=alkali metals, Tl; M′ = Ge, Sn) compounds; facile ion-exchange reactions of layered NaInSnS4 and KInSnS4 compounds

    International Nuclear Information System (INIS)

    Yohannan, Jinu P.; Vidyasagar, Kanamaluru

    2016-01-01

    Ten AInM′S 4 (A=alkali metals, Tl; M′= Ge, Sn) compounds with diverse structure types have been synthesized and characterized by single crystal and powder X-ray diffraction and a variety of spectroscopic methods. They are wide band gap semiconductors. KInGeS 4 (1-β), RbInGeS 4 (2), CsInGeS 4 (3-β), TlInGeS 4 (4-β), RbInSnS 4 (8-β) and CsInSnS 4 (9) compounds with three-dimensional BaGa 2 S 4 structure and CsInGeS 4 (3-α) and TlInGeS 4 (4-α) compounds with a layered TlInSiS 4 structure have tetrahedral [InM′S 4 ] − frameworks. On the other hand, LiInSnS 4 (5) with spinel structure and NaInSnS 4 (6), KInSnS 4 (7), RbInSnS 4 (8-α) and TlInSnS 4 (10) compounds with layered structure have octahedral [InM′S 4 ] − frameworks. NaInSnS 4 (6) and KInSnS 4 (7) compounds undergo facile topotactic ion-exchange, at room temperature, with various mono-, di- and tri-valent cations in aqueous medium to give rise to metastable layered phases. - Graphical abstract: NaInSnS 4 and KInSnS 4 compounds undergo, in aqueous medium at room temperature, facile topotactic ion-exchange with mono, di and trivalent cations. Display Omitted - Highlights: • Ten AInM′S 4 compounds with diverse structure types were synthesized. • They are wide band gap semiconductors. • NaInSnS 4 and KInSnS 4 compounds undergo facile topotactic ion-exchange at room temperature.

  16. Teaching to suppress Polglish processes

    OpenAIRE

    Dziubalska-Kołaczyk, Katarzyna; Balas, Anna; Schwartz, Geoffrey; Rojczyk, Arkadiusz; Wrembel, Magdalena

    2015-01-01

    Advanced second language (henceforth L2) learners in a formal setting can suppress many first language (henceforth L1) processes in L2 pronunciation when provided with sufficient exposure to L2 and meta competence (see Sect. 4 for a definition of this term). This paper shows how imitation in L2 teaching can be enhanced on the basis of current phonetic research and how complex allophonic processes such as nasal vocalization and glottal stop insertion can be suppressed using “repair”—a method o...

  17. Numerical analysis of InxGa1−xN/SnS and AlxGa1−xN/SnS heterojunction solar cells

    International Nuclear Information System (INIS)

    Lin, Shuo; Li, Xirong; Pan, Huaqing; Chen, Huanting; Li, Xiuyan; Li, Yan; Zhou, Jinrong

    2016-01-01

    Highlights: • In x Ga 1−x N/SnS and Al x Ga 1−x N/SnS solar cells are studied by numerical analysis. • Performances of In x Ga 1−x N/SnS solar cells enhanced with decreasing In content. • The electron barrier leads to the degraded efficiency of Al x Ga 1−x N/SnS solar cells. • GaN/SnS solar cell exhibits the highest efficiency 26.34%. - Abstract: In this work the photovoltaic properties of In x Ga 1−x N/SnS and Al x Ga 1−x N/SnS heterojunction solar cells are studied by numerical analysis. The photovoltaic performances of In x Ga 1−x N/SnS solar cells are enhanced with the decreasing In content and the GaN/SnS solar cell exhibits the highest efficiency. The efficiencies of GaN/SnS solar cell improve with the increased SnS thickness and the reduced GaN thickness. For the Al x Ga 1−x N/SnS solar cells, there is electron barrier in the Al x Ga 1−x N/SnS interface. The electron barrier becomes larger with increasing Al content and lead to the degraded efficiency of Al x Ga 1−x N/SnS solar cells. The simulation contributes to designing and fabricating SnS solar cells.

  18. Development and evaluation of the LiSN & learn auditory training software for deficit-specific remediation of binaural processing deficits in children: preliminary findings.

    Science.gov (United States)

    Cameron, Sharon; Dillon, Harvey

    2011-01-01

    The LiSN & Learn auditory training software was developed specifically to improve binaural processing skills in children with suspected central auditory processing disorder who were diagnosed as having a spatial processing disorder (SPD). SPD is defined here as a condition whereby individuals are deficient in their ability to use binaural cues to selectively attend to sounds arriving from one direction while simultaneously suppressing sounds arriving from another. As a result, children with SPD have difficulty understanding speech in noisy environments, such as in the classroom. To develop and evaluate the LiSN & Learn auditory training software for children diagnosed with the Listening in Spatialized Noise-Sentences Test (LiSN-S) as having an SPD. The LiSN-S is an adaptive speech-in-noise test designed to differentially diagnose spatial and pitch-processing deficits in children with suspected central auditory processing disorder. Participants were nine children (aged between 6 yr, 9 mo, and 11 yr, 4 mo) who performed outside normal limits on the LiSN-S. In a pre-post study of treatment outcomes, participants trained on the LiSN & Learn for 15 min per day for 12 weeks. Participants acted as their own control. Participants were assessed on the LiSN-S, as well as tests of attention and memory and a self-report questionnaire of listening ability. Performance on all tasks was reassessed after 3 mo where no further training occurred. The LiSN & Learn produces a three-dimensional auditory environment under headphones on the user's home computer. The child's task was to identify a word from a target sentence presented in background noise. A weighted up-down adaptive procedure was used to adjust the signal level of the target based on the participant's response. On average, speech reception thresholds on the LiSN & Learn improved by 10 dB over the course of training. As hypothesized, there were significant improvements in posttraining performance on the LiSN-S conditions

  19. Lattice positions of Sn in Cu2ZnSnS4 nanoparticles and thin films studied by synchrotron X-ray absorption near edge structure analysis

    Science.gov (United States)

    Zillner, E.; Paul, A.; Jutimoosik, J.; Chandarak, S.; Monnor, T.; Rujirawat, S.; Yimnirun, R.; Lin, X. Z.; Ennaoui, A.; Dittrich, Th.; Lux-Steiner, M.

    2013-06-01

    Lattice positions of Sn in kesterite Cu2ZnSnS4 and Cu2SnS3 nanoparticles and thin films were investigated by XANES (x-ray absorption near edge structure) analysis at the S K-edge. XANES spectra were analyzed by comparison with simulations taking into account anti-site defects and vacancies. Annealing of Cu2ZnSnS4 nanoparticle thin films led to a decrease of Sn at its native and defect sites. The results show that XANES analysis at the S K-edge is a sensitive tool for the investigation of defect sites, being critical in kesterite thin film solar cells.

  20. Influence of Sn Doping on Phase Transformation and Crystallite Growth of TiO2 Nanocrystals

    Directory of Open Access Journals (Sweden)

    Guozhu Fu

    2014-01-01

    Full Text Available Sn doped TiO2 nanocrystals were synthesized via a single-step hydrothermal method and the influences of Sn doping on TiO2 have been investigated. It is found that Sn doping not only facilitates the crystal transfer from anatase to rutile but also facilitates the morphology change from sphere to rod. The states of Sn were studied by XPS and the creation of oxygen vacancies by Sn doping is confirmed. Moreover, the HRTEM results suggest that Sn facilitates preferential growth of resulting nanocrystals along (110 axis, which results in the formation of rod-like rutile nanocrystals.

  1. Stress induced growth of Sn nanowires in a single step by sputtering method

    Science.gov (United States)

    Yadav, A.; Patel, N.; Miotello, A.; Kothari, D. C.

    2015-06-01

    Sn nanowires in aluminum film have been synthesized in a single step by co-sputtering of Al and Sn targets. Due to immiscibility of Sn and Al, co-sputtering leads to generation of stress in the composite film. In order to attain thermodynamic equilibrium, Sn separates from Al and diffuses towards the grain boundaries. External perturbation due to ambient atmosphere leads to corrosion at the grain boundaries forming pits which provide path for Sn to evolve. Owing to this, extrusion of Sn nanowires from Al film occurs to release the residual stress in the film.

  2. Impact of stoichiometry on the linear and nonlinear optical response of SnOx thin films

    Science.gov (United States)

    Li, Zhong-guo; Liang, Ling-yan; Cao, Hong-tao; Song, Ying-lin

    2017-06-01

    SnO is a promising p-type oxide semiconductor materials for applications such as transparent electronics and solar cells. However, further improvement of its performance is hindered by its diverse stoichiometry. We investigated the nonlinear and saturable absorption characteristics of pristine SnO and O-rich SnOx films by femtosecond degenerate pump-probe measurements at 515 nm. UV-Vis absorption data indicate bandgap blueshift with increasing oxygen concentration. Pristine SnO film exhibit saturable absorption while nonlinear absorption is observed in O-rich SnOx films. Our results shed light on the utilization of SnO in future device applications.

  3. Thin films of preparation SnOx by evaporation and pulverization reactive in vapor phase

    International Nuclear Information System (INIS)

    Solis, J.; Estrada, W.; Soares, M.; Schreiner, W.

    1993-01-01

    In this work we obtained SnO x thin films by reactive evaporation. The structure and composition of the films were characterized by x-ray diffraction and Moessbauer spectroscopy. The samples as deposited present different kind of microstructures depending on the parameters deposition, such as substrate temperature and oxygen pressure. In general the samples present three pushes: Sn, SnO and SnO 2 . When the samples are subjected to heat treatment, the as deposited SnO x finally converts to SnO 2 . (authors) 10 refs., 4 figs

  4. Studies of Nuclei Close to 132Sn Using Single-Neutron Transfer Reactions

    International Nuclear Information System (INIS)

    Jones, K.L.; Pain, S.D.; Kozub, R.L.; Adekola, Aderemi S.; Bardayan, Daniel W.; Blackmon, Jeff C.; Catford, Wilton N.; Chae, K.Y.; Chipps, K.; Cizewski, J.A.; Erikson, Luke; Gaddis, A.L.; Greife, U.; Grzywacz, R.K.; Harlin, Christopher W.; Hatarik, Robert; Howard, Joshua A.; James, J.; Kapler, R.; Krolas, W.; Liang, J. Felix; Ma, Zhanwen; Matei, Catalin; Moazen, Brian; Nesaraja, Caroline D.; O'Malley, Patrick; Patterson, N.P.; Paulauskas, Stanley; Shapira, Dan; Shriner, J.F. Jr.; Sikora, M.; Sissom, D.J.; Smith, Michael Scott; Swan, T.P.; Thomas, J.S.; Wilson, Gemma L.

    2009-01-01

    Neutron transfer reactions were performed in inverse kinematics using radioactive ion beams of 132Sn, 130Sn, and 134Te and deuterated polyethylene targets. Preliminary results are presented. The Q-value spectra for 133Sn, 131Sn and 135Te reveal a number of previously unobserved peaks. The angular distributions are compatible with the expected lf7/2 nature of the ground state of 133Sn, and 2p3/2 for the 3.4 MeV state in 131Sn.

  5. Conditioned suppression, punishment, and aversion

    Science.gov (United States)

    Orme-Johnson, D. W.; Yarczower, M.

    1974-01-01

    The aversive action of visual stimuli was studied in two groups of pigeons which received response-contingent or noncontingent electric shocks in cages with translucent response keys. Presentation of grain for 3 sec, contingent on key pecking, was the visual stimulus associated with conditioned punishment or suppression. The responses of the pigeons in three different experiments are compared.

  6. Plasma suppression of beamstrahlung: Revision

    International Nuclear Information System (INIS)

    Whittum, D.H.; Sessler, A.M.; Stewart, J.J.; Yu, S.S.

    1988-06-01

    We investigate the use of a plasma at the interaction point of two colliding beams to suppress beamstrahlung and related phenomena. We derive conditions for good current cancellation via plasma return currents and report on numerical simulations conducted to confirm our analytic results. 17 refs., 5 figs., 5 tabs

  7. Activation of a σ-SnSn bond at copper, followed by double addition to an alkyne.

    Science.gov (United States)

    Lassauque, Nicolas; Gualco, Pauline; Mallet-Ladeira, Sonia; Miqueu, Karinne; Amgoune, Abderrahmane; Bourissou, Didier

    2013-09-18

    Many synthetically useful copper-catalyzed transformations involve the activation of apolar or weakly polar σ-bonds (E-H and E-E' bonds, with E = C, B, Si, Sn, etc.). Yet, little is known so far about the associated elementary steps, and it is highly desirable to gain better knowledge regarding the way σ-bonds can be activated by copper to help further development in this area. To this end, we became interested in investigating the coordination and activation of apolar or weakly polar σ-bonds at copper using chelating assistance. Here we report investigations of gold and copper complexes deriving from the diphosphine-stannane [Ph2P(o-C6H4)Me2Sn-SnMe2(o-C6H4)PPh2] 1. The σ-SnSn bond of 1 readily undergoes oxidative addition at both gold and copper, giving bis(stannyl) Au(+) and Cu(+) complexes 2 and 3. Coordination of 1 to CuBr leads to the neutral complex 4 which features more σ-SnSn complex character. The ability of complex 3 to undergo insertion reactions with alkynes was then examined. With methyl propiolate, a clean reaction occurred, and the bis-stannylated alkene copper complex 5 was isolated. The structures of ligand 1 and complexes 2-5 have been unambiguously determined by multinuclear NMR spectroscopy and crystallography. These results substantiate the ability of copper to promote the addition of apolar σ-bonds to CC multiple bonds via a 2e redox sequence and draw thereby an unprecedented parallel with the group 10 metals.

  8. Nuclear structure near the doubly-magic 100Sn

    International Nuclear Information System (INIS)

    Grawe, H.; Hu, Z.; Roeckl, E.; Gorska, M.; Nyberg, J.; Gadea, A.; Angelis, G. de

    1998-09-01

    The single particle (hole) energies in 100 Sn, as extrapolated by a shell model analysis of the neighbouring nuclei, show a remarkable similarity to those in 36 Ni, one major shell lower. This is borne out in nearly identical I π =2 + excitation energies, implying E(2 + )≅3 MeV in 100 Sn, and a large neutron effective E2 charge ε≥1.6ε. In contrast a small proton polarisation charge δε≤0.3ε is found, pointing to a large isovector charge. Mean field predictions for single particle energies show substantial deviations from the experimental extrapolation. From the experimental two-proton hole spectrum in 98 Cd an improved empirical interaction is extracted for the π(p 1/2 ,g 9/2 ) model space yielding a good description of the N=50 isotones 95 Rh to 98 Cd. In 104 Sn, for the first time in this region, strong E3 transitions with B(E3)≥17 W.u. were identified, indicating E(3 - )≅3 MeV in 100 Sn. New experimental devices, as the Ge-cluster cube and total absorption spectrometers, applied in a pioneering experiment to the β + /EC decay of 97 Ag, have led to a consistent picture of the Gamow-Teller quenching around 100 Sn. The experimental results are discussed in the framework of various shell model approaches by using both empirical and realistic interactions. (orig.)

  9. Interfacial microstructures and kinetics of Au/SnAgCu

    International Nuclear Information System (INIS)

    Lee, Teck Kheng; Zhang, Sam; Wong, C.C.; Tan, A.C.; Hadikusuma, Davin

    2006-01-01

    The gold/lead-free solder system, or Au/SnAgCu is a potential flip chip interconnect solutions for fine-pitch applications. This paper studies the interfacial microstructures and initial isothermal solid-liquid interdiffusion kinetics during the first 3 s of bonding at 230-290 deg. C. As revealed by Scanning Electron Microscopy (SEM), different morphologies of AuSn, AuSn 2 and AuSn 4 are observed under different bonding conditions. The initial Au-Sn solid/liquid interdiffusion kinetics is discussed with respect to its microstructures. The rate of Au consumption is used as a measure of the rate of intermetallic compound (IMC) formation. The fitted power law relationship reveals kinetically that Au consumption follows the Arrhenius relationship with a time exponent of 0.5. Isothermal aging at temperatures between 125 deg. C and 165 deg. C gives rise to activation energies and the rate of Au consumption in solid-liquid interdiffusion to be two orders of magnitude faster than solid interdiffusion

  10. Laser Spectroscopy Studies in the Neutron-Rich Sn Region

    CERN Multimedia

    Obert, J

    2002-01-01

    We propose to use the powerful laser spectroscopy method to determine the magnetic moment $\\mu$ and the variation of the mean square charge radius ($\\delta\\,\\langle$r$_{c}^{2}\\,\\rangle$) for ground and long-lived isomeric states of the Sn isotopes from A=125 to the doubly-magic $^{132}$Sn isotope and beyond. For these neutron-rich Sn nuclei, numerous $\\delta\\,\\langle$r$^{2}_{c}\\,\\rangle$ curves have already been calculated and the predictions depend upon the effective interactions used. Therefore, a study of the effect of the shell closure N=82 on the $\\delta\\,\\langle$r$^{2}_{c}\\,\\rangle$ values in the Z=50 magic nuclei is of great interest, especially because $^{132}$Sn is located far from the stability valley. It will help to improve the parameters of the effective interactions and make them more suitable to predict the properties of exotic nuclei. \\\\ \\\\The neutron-rich Sn isotopes produced with an uranium carbide target, are ionized using either a hot plasma ion source or the resonant ionization laser ion ...

  11. Enthalpy of mixing of liquid Co–Sn alloys

    Science.gov (United States)

    Yakymovych, A.; Fürtauer, S.; Elmahfoudi, A.; Ipser, H.; Flandorfer, H.

    2014-01-01

    A literature overview of enthalpy of mixing data for liquid Co–Sn alloys shows large scattering but no clear temperature dependence. Therefore drop calorimetry was performed in the Co–Sn system at twelve different temperatures in 100 K steps in the temperature range (673 to 1773) K. The integral enthalpy of mixing was determined starting from 1173 K and fitted to a standard Redlich–Kister polynomial. In addition, the limiting partial molar enthalpy of Co in Sn was investigated by small additions of Co to liquid Sn at temperatures (673 to 1773) K. The integral and partial molar enthalpies of the Co–Sn system generally show an exothermic mixing behavior. Significant temperature dependence was detected for the enthalpies of mixing. The minimum integral enthalpy values vary with rising temperature from approx. −7820 J/mol at T = 1173 K to −1350 J/mol at T = 1773 K; the position of the minimum is between (59 and 61) at.% Co. The results are discussed and compared with literature data available for this system. X-ray studies and scanning electron microscopy of selected alloys obtained from the calorimetric measurements were carried out in order to check the completeness of the solution process. PMID:24994940

  12. Enthalpy of mixing of liquid Co-Sn alloys.

    Science.gov (United States)

    Yakymovych, A; Fürtauer, S; Elmahfoudi, A; Ipser, H; Flandorfer, H

    2014-07-01

    A literature overview of enthalpy of mixing data for liquid Co-Sn alloys shows large scattering but no clear temperature dependence. Therefore drop calorimetry was performed in the Co-Sn system at twelve different temperatures in 100 K steps in the temperature range (673 to 1773) K. The integral enthalpy of mixing was determined starting from 1173 K and fitted to a standard Redlich-Kister polynomial. In addition, the limiting partial molar enthalpy of Co in Sn was investigated by small additions of Co to liquid Sn at temperatures (673 to 1773) K. The integral and partial molar enthalpies of the Co-Sn system generally show an exothermic mixing behavior. Significant temperature dependence was detected for the enthalpies of mixing. The minimum integral enthalpy values vary with rising temperature from approx. -7820 J/mol at T  = 1173 K to -1350 J/mol at T  = 1773 K; the position of the minimum is between (59 and 61) at.% Co. The results are discussed and compared with literature data available for this system. X-ray studies and scanning electron microscopy of selected alloys obtained from the calorimetric measurements were carried out in order to check the completeness of the solution process.

  13. Experimental study of the Ag-Sn-In phase diagram

    International Nuclear Information System (INIS)

    Vassilev, Gueorgui P.; Dobrev, Evgueni S.; Tedenac, Jean-Claude

    2005-01-01

    Combined metallographic, differential scanning calorimetry, X-ray and scanning electron microscopy studies have been performed using 27 ternary alloys. The microhardness of the α(Ag), ε(Ag 3 Sn) and ζ(Ag 4 Sn,Ag 3 In) phases has been measured. The ternary extension of the phase φ(Ag x In y Sn z , where x ∼ 0.36, y ∼ 0.61, z ∼ 0.03) has been revealed in some specimens, although the binary compound (AgIn 2 ) melts at 166 deg. C. This finding is attributed to the limited cooling rate. The solubility ranges of the solid solution and the intermetallic phases have been determined. The tin and the indium show approximately equal mutual solubility (around 2 at.%) in the ternary extensions of their Ag-Sn or Ag-In phases. The experimental data have been compared with a calculated isothermal section at 280 deg. C and with a vertical section at 2.5 at.% Ag. The thermal analyses have confirmed, in general, the temperatures of the invariant reactions in the Ag-Sn-In system as calculated by literature data

  14. Characterizing the Supernova Host Galaxy Population with ASAS-SN

    Science.gov (United States)

    Brown, Jonathan; ASAS-SN Team

    2018-01-01

    The goal of the All-Sky Automated Survey for Supernovae (ASAS-SN) is to provide the astronomical community with a complete record of the optically accessible night sky. ASAS-SN uses a global array of telescopes to monitor the entire sky on a nightly cadence. Due to the nearby volume probed by ASAS-SN, our survey excels at discovering bright transient events. The events we discover can be studied in great detail and monitored well into the late phases of evolution with only modest observational resources. ASAS-SN has discovered a plethora of interesting transient events, and has also amassed a large sample of supernovae (SNe). Not only are the statistical properties of these SNe interesting in their own right, but the galaxies that host these events are also of great scientific interest. I will present the initial results of our SNe host galaxy census, and highlight some systems that would have been missed by traditional SN surveys. Finally I will discuss how this dataset will be used to improve our understanding of the SNe-host galaxy connection.

  15. Comparative proteomic analysis of early salt stress-responsive proteins in roots of SnRK2 transgenic rice

    Directory of Open Access Journals (Sweden)

    Nam Myung Hee

    2012-03-01

    Full Text Available Abstract Background The rice roots are highly salt-sensitive organ and primary root growth is rapidly suppressed by salt stress. Sucrose nonfermenting 1-related protein kinase2 (SnRK2 family is one of the key regulator of hyper-osmotic stress signalling in various plant cells. To understand early salt response of rice roots and identify SnRK2 signaling components, proteome changes of transgenic rice roots over-expressing OSRK1, a rice SnRK2 kinase were investigated. Results Proteomes were analyzed by two-dimensional electrophoresis and protein spots were identified by LC-MS/MS from wild type and OSRK1 transgenic rice roots exposed to 150 mM NaCl for either 3 h or 7 h. Fifty two early salt -responsive protein spots were identified from wild type rice roots. The major up-regulated proteins were enzymes related to energy regulation, amino acid metabolism, methylglyoxal detoxification, redox regulation and protein turnover. It is noted that enzymes known to be involved in GA-induced root growth such as fructose bisphosphate aldolase and methylmalonate semialdehyde dehydrogenase were clearly down-regulated. In contrast to wild type rice roots, only a few proteins were changed by salt stress in OSRK1 transgenic rice roots. A comparative quantitative analysis of the proteome level indicated that forty three early salt-responsive proteins were magnified in transgenic rice roots at unstressed condition. These proteins contain single or multiple potential SnRK2 recognition motives. In vitro kinase assay revealed that one of the identified proteome, calreticulin is a good substrate of OSRK1. Conclusions Our present data implicate that rice roots rapidly changed broad spectrum of energy metabolism upon challenging salt stress, and suppression of GA signaling by salt stress may be responsible for the rapid arrest of root growth and development. The broad spectrum of functional categories of proteins affected by over-expression of OSRK1 indicates that OSRK1

  16. 119Sn Mössbauer characterization of self assembled organotin(IV) complexes with Schiff bases containing amino acetate skeletons

    Science.gov (United States)

    Basu, Smita; Mizar, Archana; Baul, Tushar S. Basu; Rivarola, Eleonora

    2008-07-01

    Several organotin(IV) compounds, viz., diorganotin(IV) compounds of the types Ph2SnLH (monomer), nBu2SnLH·OH2 (monomer), [Me2SnLH·OH2]2 (centrosymmetric dimer), [nBu2SnLH]3 (cyclic trinuclear), [Ph2SnLH] n (polymer), {[nBu2Sn(LH)]2O}2 (centrosymmetric tetranuclear), dinuclear di-/tri-mixed organotin(IV) compounds Ph2SnLH·Ph3SnCl (monomer) and triorganotin(IV) compounds of the types [Bz3SnLH]2 (centrosymmetric dimer) and [Me3SnL1H] n (Polymer) (LH = Schiff base carboxylate) have been studied in the solid state at liquid nitrogen temperature using 119Sn Mössbauer spectroscopy. The tin coordination geometry of the compounds determined from crystallography was correlated with the 119Sn Mössbauer results.

  17. 119Sn Moessbauer characterization of self assembled organotin(IV) complexes with Schiff bases containing amino acetate skeletons

    International Nuclear Information System (INIS)

    Basu, Smita; Mizar, Archana; Baul, Tushar S. Basu; Rivarola, Eleonora

    2008-01-01

    Several organotin(IV) compounds, viz., diorganotin(IV) compounds of the types Ph 2 SnLH (monomer), n Bu 2 SnLH.OH 2 (monomer), [Me 2 SnLH.OH 2 ] 2 (centrosymmetric dimer), [ n Bu 2 SnLH] 3 (cyclic trinuclear), [Ph 2 SnLH] n (polymer), {[ n Bu 2 Sn(LH)] 2 O} 2 (centrosymmetric tetranuclear), dinuclear di-/tri-mixed organotin(IV) compounds Ph 2 SnLH.Ph 3 SnCl (monomer) and triorganotin(IV) compounds of the types [Bz 3 SnLH] 2 (centrosymmetric dimer) and [Me 3 SnL 1 H] n (Polymer) (LH Schiff base carboxylate) have been studied in the solid state at liquid nitrogen temperature using 119 Sn Moessbauer spectroscopy. The tin coordination geometry of the compounds determined from crystallography was correlated with the 119 Sn Moessbauer results.

  18. The crystallisation of Cu2ZnSnS4 thin film solar cell absorbers from co-electroplated Cu-Zn-Sn precursors

    International Nuclear Information System (INIS)

    Schurr, R.; Hoelzing, A.; Jost, S.; Hock, R.; Voss, T.; Schulze, J.; Kirbs, A.; Ennaoui, A.; Lux-Steiner, M.; Weber, A.; Koetschau, I.; Schock, H.-W.

    2009-01-01

    The best CZTS solar cell so far was produced by co-sputtering continued with vapour phase sulfurization method. Efficiencies of up to 5.74% were reached by Katagiri et al. The one step electrochemical deposition of copper, zinc, tin and subsequent sulfurization is an alternative fabrication technique for the production of Cu 2 ZnSnS 4 based thin film solar cells. A kesterite based solar cell (size 0.5 cm 2 ) with a conversion efficiency of 3.4% (AM1.5) was produced by vapour phase sulfurization of co-electroplated Cu-Zn-Sn films. We report on results of in-situ X-ray diffraction (XRD) experiments during crystallisation of kesterite thin films from electrochemically co-deposited metal films. The kesterite crystallisation is completed by the solid state reaction of Cu 2 SnS 3 and ZnS. The measurements show two different reaction paths depending on the metal ratios in the as deposited films. In copper-rich metal films Cu 3 Sn and CuZn were found after electrodeposition. In copper-poor or near stoichiometric precursors additional Cu 6 Sn 5 and Sn phases were detected. The formation mechanism of Cu 2 SnS 3 involves the binary sulphides Cu 2-x S and SnS 2 in the absence of the binary precursor phase Cu 6 Sn 5 . The presence of Cu 6 Sn 5 leads to a preferred formation of Cu 2 SnS 3 via the reaction educts Cu 2-x S and SnS 2 in the presence of a SnS 2 (Cu 4 SnS 6 ) melt. The melt phase may be advantageous in crystallising the kesterite, leading to enhanced grain growth in the presence of a liquid phase

  19. Synthesis and enhanced acetone gas-sensing performance of ZnSnO3/SnO2 hollow urchin nanostructures

    Science.gov (United States)

    Lian, Dandan; Shi, Bing; Dai, Rongrong; Jia, Xiaohua; Wu, Xiangyang

    2017-12-01

    A kind of novel ZnSnO3/SnO2 hollow urchin nanostructure was synthesized by a facile, eco-friendly two-step liquid-phase process. The structure, morphology, and composition of samples were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption-desorption techniques. The results revealed that many tiny needle-like SnO2 nanowires with the average diameter of 5 nm uniformly grew on the surface of the ZnSnO3 hollow microspheres and the ZnSnO3/SnO2 hollow urchin nanostructures with different SnO2 content also were successfully prepared. In order to comprehend the evolution process of the ZnSnO3/SnO2 hollow urchin nanostructures, the possible growth mechanism of samples was illustrated via several experiments in different reaction conditions. Moreover, the gas-sensing performance of as-prepared samples was investigated. The results showed that ZnSnO3/SnO2 hollow urchin nanostructures with high response to various concentration levels of acetone enhanced selectivity, satisfying repeatability, and good long-term stability for acetone detection. Specially, the 10 wt% ZnSnO3/SnO2 hollow urchin nanostructure exhibited the best gas sensitivity (17.03 for 50 ppm acetone) may be a reliable biomarker for the diabetes patients, which could be ascribed to its large specific surface area, complete pore permeability, and increase of chemisorbed oxygen due to the doping of SnO2.

  20. Dominant effect of high anisotropy in β-Sn grain on electromigration-induced failure mechanism in Sn-3.0Ag-0.5Cu interconnect

    Energy Technology Data Exchange (ETDEWEB)

    Huang, M.L., E-mail: huang@dlut.edu.cn; Zhao, J.F.; Zhang, Z.J.; Zhao, N.

    2016-09-05

    The effect of high diffusivity anisotropy in β-Sn grain on electromigration behavior of micro-bumps was clearly demonstrated using Sn-3.0Ag-0.5Cu solder interconnects with only two β-Sn grains. The orientation of β-Sn grain (θ is defined as the angle between the c-axis of β-Sn grain and the electron flow direction) is becoming the most crucial factor to dominate the different electromigration-induced failure modes: 1) the excessive dissolution of the cathode Cu, blocking at the grain boundary and massive precipitation of columnar Cu{sub 6}Sn{sub 5} intermetallic compounds (IMCs) in the small angle θ β-Sn grain occur when electrons flow from a small angle θ β-Sn grain to a large one; 2) void formation and propagation occur at the cathode IMC/solder interface and no Cu{sub 6}Sn{sub 5} IMCs precipitate within the large angle θ β-Sn grain when electrons flow in the opposite direction. The EM-induced failure mechanism of the two β-Sn grain solder interconnects is well explained in viewpoint of atomic diffusion flux in β-Sn. - Highlights: • High anisotropy in β-Sn dominates different electromigration-induced failure mode. • Excessive dissolution of cathode Cu occurs if electrons flow in forward direction. • Voids initiate and propagate at cathode if electrons flow in reverse direction. • Failure modes are well explained in viewpoint of atomic diffusion flux in β-Sn.

  1. Effect of an Sb-Doped SnO2 Support on the CO-Tolerance of Pt2Ru3 Nanocatalysts for Residential Fuel Cells

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Ogihara

    2016-09-01

    Full Text Available We prepared monodisperse Pt2Ru3 nanoparticles supported on carbon black and Sb-doped SnO2 (denoted as Pt2Ru3/CB and Pt2Ru3/Sb-SnO2 with identical alloy composition and particle size distribution by the nanocapsule method. The activities for the hydrogen oxidation reaction (HOR of these anode catalysts were examined in H2-saturated 0.1 M HClO4 solution in both the presence and absence of carbon monoxide by use of a channel flow electrode at 70 °C. It was found that the CO-tolerant HOR mass activity at 0.02 V versus a reversible hydrogen electrode (RHE on the Pt2Ru3/Sb-SnO2 electrode was higher than that at the Pt2Ru3/CB electrode in 0.1 M HClO4 solution saturated with 1000 ppm CO (H2-balance. The CO tolerance mechanism of these catalysts was investigated by in situ attenuated total reflection Fourier transform infrared reflection-adsorption spectroscopy (ATR-FTIRAS in 1% CO/H2-saturated 0.1 M HClO4 solution at 60 °C. It was found, for the Pt2Ru3/Sb-SnO2 catalyst, that the band intensity of CO linearly adsorbed (COL at step/edge sites was suppressed, together with a blueshift of the COL peak at terrace sites. On this surface, the HOR active sites were concluded to be more available than those on the CB-supported catalyst surface. The observed changes in the adsorption states of CO can be ascribed to an electronic modification effect by the Sb-SnO2 support.

  2. Kinetics of plasma oxidation of germanium-tin (GeSn)

    Science.gov (United States)

    Wang, Wei; Lei, Dian; Dong, Yuan; Zhang, Zheng; Pan, Jisheng; Gong, Xiao; Tok, Eng-Soon; Yeo, Yee-Chia

    2017-12-01

    The kinetics of plasma oxidation of GeSn at low temperature is investigated. The oxidation process is described by a power-law model where the oxidation rate decreases rapidly from the initial oxidation rate with increasing time. The oxidation rate of GeSn is higher than that of pure Ge, which can be explained by the higher chemical reaction rate at the GeSn-oxide/GeSn interface. In addition, the Sn atoms at the interface region exchange positions with the underlying Ge atoms during oxidation, leading to a SnO2-rich oxide near the interface. The bandgap of GeSn oxide is extracted to be 5.1 ± 0.2 eV by XPS, and the valence band offset at the GeSn-oxide/GeSn heterojunction is found to be 3.7 ± 0.2 eV. Controlled annealing experiments demonstrate that the GeSn oxide is stable with respect to annealing temperatures up to 400 °C. However, after annealing at 450 °C, the GeO2 is converted to GeO, and desorbs from the GeSn-oxide/GeSn, leaving behind Sn oxide.

  3. Quasi-two-dimensional thermoelectricity in SnSe

    Science.gov (United States)

    Tayari, V.; Senkovskiy, B. V.; Rybkovskiy, D.; Ehlen, N.; Fedorov, A.; Chen, C.-Y.; Avila, J.; Asensio, M.; Perucchi, A.; di Pietro, P.; Yashina, L.; Fakih, I.; Hemsworth, N.; Petrescu, M.; Gervais, G.; Grüneis, A.; Szkopek, T.

    2018-01-01

    Stannous selenide is a layered semiconductor that is a polar analog of black phosphorus and of great interest as a thermoelectric material. Unusually, hole doped SnSe supports a large Seebeck coefficient at high conductivity, which has not been explained to date. Angle-resolved photoemission spectroscopy, optical reflection spectroscopy, and magnetotransport measurements reveal a multiple-valley valence-band structure and a quasi-two-dimensional dispersion, realizing a Hicks-Dresselhaus thermoelectric contributing to the high Seebeck coefficient at high carrier density. We further demonstrate that the hole accumulation layer in exfoliated SnSe transistors exhibits a field effect mobility of up to 250 cm2/V s at T =1.3 K . SnSe is thus found to be a high-quality quasi-two-dimensional semiconductor ideal for thermoelectric applications.

  4. Influence of Sn content on microstructural and mechanical properties of centrifugal cast Ti-Nb-Sn biomedical alloys; Efeitos da adicao de Sn na evolucao microestrutural e em propriedades mecanicas de ligas Ti-Nb-Sn biomedicas fundidas por centrifugacao

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, E.S.N.; Contieri, R.J.; Caram, R., E-mail: ederlopes@fem.unicamp.b [Universidade Estadual de Campinas (DEMA/FEM/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica. Dept. de Engenharia de Materiais; Moraes, P.E.L. [FATEC Artur Azevedo, Mogi Mirim, SP (Brazil); Costa, A.M.S. [Universidade de Sao Paulo (DEMAR/EEL/USP), Lorena, SP (Brazil). Escola de Engenharia. Dept. de Engenharia de Materiais

    2010-07-01

    The arc voltaic centrifugal casting is an interesting alternative in terms of economic and technological development in the production of components based on materials with high reactivity and high melting point, such as titanium alloys. In this work, Ti-30Nb (wt. %) with additions of Sn (2, 4, 6, 8 and 10 wt. %) were formed by casting process. Characterization of the samples included optical microscopy, scanning electron microscopy, X-ray diffraction, Vickers hardness and elastic modulus measures by acoustic techniques. It was observed that the microstructure of the samples investigated is composed by dendritic structures, with clear segregation of alloying elements. The Vickers hardness and the elastic modulus decreased with the addition of Sn. The results show that the mechanical behavior of Ti-Nb alloys can be controlled within certain limits, by adding Sn. (author)

  5. Identification of the doubly magic nucleus 100Sn at GANIL

    International Nuclear Information System (INIS)

    Saint-Laurent, M.G.

    1995-01-01

    The production of the doubly magic nucleus 100 Sn and other proton-rich nuclei in the A∼100 region in the reaction 112 Sn + nat Ni at 63 MeV/A is discussed. The high acceptance device SISSI, the magnetic spectrometers Alpha and LISE3 at GANIL were employed for the collection, separation and in flight identification of the different reaction products. The measurements of time-of-flight, energy-loss and kinetic energy at event by event mode allow the mass A, atomic number Z, and charge Q determinations of the reaction products. Over twenty events of 100 Sn 48+ were observed over a period of 44 hours with a primary beam intensity of ∼ 2.4 pnA. (author). 20 refs., 6 figs

  6. Identification of the doubly magic nucleus 100 Sn at GANIL

    International Nuclear Information System (INIS)

    Saint-Laurent, M.G.; Anne, R.; Auger, G.; Bazin, D.; Corre, J.M.; Hue, R.; Lewitowicz, M.; Borcea, C.; Borrel, V.; Guillemaud-Mueller, D.; Mueller, A.C.; Pougheon, F.; Sorlin, O.; Fomichov, A.; Lukyanov, S.; Penionzhkevich, Y.; Tarasov, O.; Grzywacz, R.; Pfuetzner, M.; Rykaczewski, K.; Zylicz, J.

    1994-01-01

    We report on the production of the doubly magic nucleus 100 Sn and other proton-rich nuclei in the A∼100 region in the reaction 112 Sn + nat Ni at 63 MeV/A. The high acceptance device SISSI, the magnetic spectrometers Alpha and LISE3 at GANIL were employed for the collection, separation and in flight identification of the different reaction products. The measurements of time-of-flight, energy-loss and kinetic energy at event by event mode allow the mass A, atomic number Z, and charge Q determinations of the reaction products. Over twenty events of 100 Sn 48+ were observed over a period of 44 hours with a primary beam intensity of ∼2.4 pnA. (authors). 20 refs., 6 figs

  7. Corrosion Behaviour of Sn-based Lead-Free Solders in Acidic Solution

    Science.gov (United States)

    Nordarina, J.; Mohd, H. Z.; Ahmad, A. M.; Muhammad, F. M. N.

    2018-03-01

    The corrosion properties of Sn-9(5Al-Zn), Sn-Cu and SAC305 were studied via potentiodynamic polarization method in an acidic solution of 1 M hydrochloric acid (HCl). Sn-9(5Al-Zn) produced different polarization profile compared with Sn-Cu and SAC305. The morphological analysis showed that small, deep grooves shaped of corrosion product formed on top of Sn-9(5Al-Zn) solder while two distinctive structures of closely packed and loosely packed corrosion product formed on top of Sn-Cu and SAC305 solder alloys. Phase analysis revealed the formations of various corrosion products such as SnO and SnO2 mainly dominant on surface of solder alloys after potentiodynamic polarization in 1 M hydrochloric acid (HCl).

  8. Negative heat capacities in central Xe+Sn reactions

    International Nuclear Information System (INIS)

    Le Neindre, N.; Bougault, R.; Gulminelli, F.

    2000-02-01

    In this study the fluctuation method is applied to the 32-50 A.MeV Xe + Sn central collisions detected with the INDRA multidetector. This method based on kinetic energy fluctuations allows the authors to provide information on the liquid gas phase transition in nuclear multifragmentation. In the case of Xe + Sn central reactions a divergence in the total heat capacity is observed. This divergence corresponds to large fluctuations on the detected fragment partitions. A negative heat capacity branch is measured and so tends to confirm the observation of a first order phase transition in heavy-ion collisions. (A.C.)

  9. Electric field gradient studies in SnSe

    Energy Technology Data Exchange (ETDEWEB)

    Pal, G. [IUC, DAE Facilities (India); Sebastian, K.C. [M.S. University, Physics Department (India); Chintalapudi, S.N. [IUC, DAE Facilities (India); Somayajulu, D.R.S. [M.S. University, Physics Department (India)

    1999-09-15

    The EFG in IV-VI compound semiconductor SnSe was studied using two hyperfine interaction techniques, namely, TDPAC and Moessbauer spectroscopy. The EFG in this material increases sharply up to 300 K and thereafter at higher temperatures it gets saturated. However, the conductivity increases steadily at all the temperatures. The conductivity curve has two slopes. The first portion is due to the population of shallow Cd acceptor levels. Thus, in SnSe also the variation of the EFG with temperature is complex, as in other medium-gap semiconductors.

  10. Electric field gradient studies in SnSe

    International Nuclear Information System (INIS)

    Pal, G.; Sebastian, K.C.; Chintalapudi, S.N.; Somayajulu, D.R.S.

    1999-01-01

    The EFG in IV-VI compound semiconductor SnSe was studied using two hyperfine interaction techniques, namely, TDPAC and Moessbauer spectroscopy. The EFG in this material increases sharply up to 300 K and thereafter at higher temperatures it gets saturated. However, the conductivity increases steadily at all the temperatures. The conductivity curve has two slopes. The first portion is due to the population of shallow Cd acceptor levels. Thus, in SnSe also the variation of the EFG with temperature is complex, as in other medium-gap semiconductors

  11. Aluminum-stabilized Nb/sub 3/Sn superconductor

    Science.gov (United States)

    Scanlan, R.M.

    1984-02-10

    This patent discloses an aluminum-stabilized Nb/sub 3/Sn superconductor and process for producing same, utilizing ultrapure aluminum. Ductile components are co-drawn with aluminum to produce a conductor suitable for winding magnets. After winding, the conductor is heated to convert it to the brittle Nb/sub 3/Sn superconductor phase, using a temperature high enough to perform the transformation but still below the melting point of the aluminum. This results in reaction of substantially all of the niobium, while providing stabilization and react-in-place features which are beneficial in the fabrication of magnets utilizing superconducting materials.

  12. Aluminum-stabilized Nb[sub 3]Sn superconductor

    Science.gov (United States)

    Scanlan, R.M.

    1988-05-10

    Disclosed are an aluminum-stabilized Nb[sub 3]Sn superconductor and process for producing same, utilizing ultrapure aluminum. Ductile components are co-drawn with aluminum to produce a conductor suitable for winding magnets. After winding, the conductor is heated to convert it to the brittle Nb[sub 3]Sn superconductor phase, using a temperature high enough to perform the transformation but still below the melting point of the aluminum. This results in reaction of substantially all of the niobium, while providing stabilization and react-in-place features which are beneficial in the fabrication of magnets utilizing superconducting materials. 4 figs.

  13. First SN Discoveries from the Dark Energy Survey

    Science.gov (United States)

    Abbott, T.; Abdalla, F.; Achitouv, I.; Ahn, E.; Aldering, G.; Allam, S.; Alonso, D.; Amara, A.; Annis, J.; Antonik, M.; Aragon-Salamanca, A.; Armstrong, R.; Ashall, C.; Asorey, J.; Bacon, D.; Balbinot, E.; Banerji, M.; Barbary, K.; Barkhouse, W.; Baruah, L.; Bauer, A.; Bechtol, K.; Becker, M.; Bender, R.; Benoist, C.; Benoit-Levy, A.; Bernardi, M.; Bernstein, G.; Bernstein, J. P.; Bernstein, R.; Bertin, E.; Beynon, E.; Bhattacharya, S.; Biesiadzinski, T.; Biswas, R.; Blake, C.; Bloom, J. S.; Bocquet, S.; Brandt, C.; Bridle, S.; Brooks, D.; Brown, P. J.; Brunner, R.; Buckley-Geer, E.; Burke, D.; Burkert, A.; Busha, M.; Campa, J.; Campbell, H.; Cane, R.; Capozzi, D.; Carlstrom, J.; Carnero Rosell, A.; Carollo, M.; Carrasco-Kind, M.; Carretero, J.; Carter, M.; Casas, R.; Castander, F. J.; Chen, Y.; Chiu, I.; Chue, C.; Clampitt, J.; Clerkin, L.; Cohn, J.; Colless, M.; Copeland, E.; Covarrubias, R. A.; Crittenden, R.; Crocce, M.; Cunha, C.; da Costa, L.; d'Andrea, C.; Das, S.; Das, R.; Davis, T. M.; Deb, S.; DePoy, D.; Derylo, G.; Desai, S.; de Simoni, F.; Devlin, M.; Diehl, H. T.; Dietrich, J.; Dodelson, S.; Doel, P.; Dolag, K.; Efstathiou, G.; Eifler, T.; Erickson, B.; Eriksen, M.; Estrada, J.; Etherington, J.; Evrard, A.; Farrens, S.; Fausti Neto, A.; Fernandez, E.; Ferreira, P. C.; Finley, D.; Fischer, J. A.; Flaugher, B.; Fosalba, P.; Frieman, J.; Furlanetto, C.; Garcia-Bellido, J.; Gaztanaga, E.; Gelman, M.; Gerdes, D.; Giannantonio, T.; Gilhool, S.; Gill, M.; Gladders, M.; Gladney, L.; Glazebrook, K.; Gray, M.; Gruen, D.; Gruendl, R.; Gupta, R.; Gutierrez, G.; Habib, S.; Hall, E.; Hansen, S.; Hao, J.; Heitmann, K.; Helsby, J.; Henderson, R.; Hennig, C.; High, W.; Hirsch, M.; Hoffmann, K.; Holhjem, K.; Honscheid, K.; Host, O.; Hoyle, B.; Hu, W.; Huff, E.; Huterer, D.; Jain, B.; James, D.; Jarvis, M.; Jarvis, M. J.; Jeltema, T.; Johnson, M.; Jouvel, S.; Kacprzak, T.; Karliner, I.; Katsaros, J.; Kent, S.; Kessler, R.; Kim, A.; Kim-Vy, T.; King, L.; Kirk, D.; Kochanek, C.; Kopp, M.; Koppenhoefer, J.; Kovacs, E.; Krause, E.; Kravtsov, A.; Kron, R.; Kuehn, K.; Kuemmel, M.; Kuhlmann, S.; Kunder, A.; Kuropatkin, N.; Kwan, J.; Lahav, O.; Leistedt, B.; Levi, M.; Lewis, P.; Liddle, A.; Lidman, C.; Lilly, S.; Lin, H.; Liu, J.; Lopez-Arenillas, C.; Lorenzon, W.; LoVerde, M.; Ma, Z.; Maartens, R.; Maccrann, N.; Macri, L.; Maia, M.; Makler, M.; Manera, M.; Maraston, C.; March, M.; Markovic, K.; Marriner, J.; Marshall, J.; Marshall, S.; Martini, P.; Marti Sanahuja, P.; Mayers, J.; McKay, T.; McMahon, R.; Melchior, P.; Merritt, K. W.; Merson, A.; Miller, C.; Miquel, R.; Mohr, J.; Moore, T.; Mortonson, M.; Mosher, J.; Mould, J.; Mukherjee, P.; Neilsen, E.; Ngeow, C.; Nichol, R.; Nidever, D.; Nord, B.; Nugent, P.; Ogando, R.; Old, L.; Olsen, J.; Ostrovski, F.; Paech, K.; Papadopoulos, A.; Papovich, C.; Patton, K.; Peacock, J.; Pellegrini, P. S. S.; Peoples, J.; Percival, W.; Perlmutter, S.; Petravick, D.; Plazas, A.; Ponce, R.; Poole, G.; Pope, A.; Refregier, A.; Reyes, R.; Ricker, P.; Roe, N.; Romer, K.; Roodman, A.; Rooney, P.; Ross, A.; Rowe, B.; Rozo, E.; Rykoff, E.; Sabiu, C.; Saglia, R.; Sako, M.; Sanchez, A.; Sanchez, C.; Sanchez, E.; Sanchez, J.; Santiago, B.; Saro, A.; Scarpine, V.; Schindler, R.; Schmidt, B. P.; Schmitt, R. L.; Schubnell, M.; Seitz, S.; Senger, R.; Sevilla, I.; Sharp, R.; Sheldon, E.; Sheth, R.; Smith, R. C.; Smith, M.; Snigula, J.; Soares-Santos, M.; Sobreira, F.; Song, J.; Soumagnac, M.; Spinka, H.; Stebbins, A.; Stoughton, C.; Suchyta, E.; Suhada, R.; Sullivan, M.; Sun, F.; Suntzeff, N.; Sutherland, W.; Swanson, M. E. C.; Sypniewski, A. J.; Szepietowski, R.; Talaga, R.; Tarle, G.; Tarrant, E.; Balan, S. Thaithara; Thaler, J.; Thomas, D.; Thomas, R. C.; Tucker, D.; Uddin, S. A.; Ural, S.; Vikram, V.; Voigt, L.; Walker, A. R.; Walker, T.; Wechsler, R.; Weinberg, D.; Weller, J.; Wester, W.; Wetzstein, M.; White, M.; Wilcox, H.; Wilman, D.; Yanny, B.; Young, J.; Zablocki, A.; Zenteno, A.; Zhang, Y.; Zuntz, J.

    2012-12-01

    The Dark Energy Survey (DES) report the discovery of the first set of supernovae (SN) from the project. Images were observed as part of the DES Science Verification phase using the newly-installed 570-Megapixel Dark Energy Camera on the CTIO Blanco 4-m telescope by observers J. Annis, E. Buckley-Geer, and H. Lin. SN observations are planned throughout the observing campaign on a regular cadence of 4-6 days in each of the ten 3-deg2 fields in the DES griz filters.

  14. Portuguese granites associated with Sn-W and Au mineralizations

    OpenAIRE

    Ana M.R. Neiva

    2002-01-01

    In northern and central Portugal, there are different tin-bearing granites. Most of them are of S-type, others have mixed characteristics of I-type and S-type granites and a few are of I-type. Tin-tungsten deposits are commonly associated with Hercynian tin-bearing S-type granites. Some quartz veins with wolframite are associated with an I-type granite, which has a low Sn content. In suites of tin-bearing S-type granitic rocks, Sn content increases as a function of the degree of fractional cr...

  15. Mechanosynthesis of Fe-doped SnO2 nanoparticles

    International Nuclear Information System (INIS)

    Cabrera, A.F.; Mudarra Navarro, A.M.; Rodriguez Torres, C.E.; Sanchez, F.H.

    2007-01-01

    Fe-doped nanosized SnO 2 powders were prepared by mechanosynthesis using rutile SnO 2 and hematite Fe 2 O 3 as starting materials. The estimated grain size of the obtained rutile structure was between 10 and 20 nm. Moessbauer spectroscopy shows the presence of two interactions corresponding to 3+ and 2+ iron oxidation states with similar relative fractions. The magnetic measurements exhibit ferromagnetic- (FML) and superparamagnetic-like (SML) behavior. Evidence of a system of strongly interacting particles was found

  16. ARPES measurements of SnAs electronic band structure

    Science.gov (United States)

    Bezotosnyi, P. I.; Dmitrieva, K. A.; Gavrilkin, S. Yu.; Pervakov, K. S.; Tsvetkov, A. Yu.; Martovitski, V. P.; Rybkin, A. G.; Vilkov, O. Yu.; Pudalov, V. M.

    2017-10-01

    We report experimental study of the electronic band structure of SnAs superconductor with the NaCl type lattice structure by angular resolved photoelectron spectroscopy (ARPES). The determined band structure, in general, is in a good agreement with the calculated one. However, at odd with the calculated band structure, the experimental data reveals splitting of one of the upper valence bands into three branches along the \\bar K - \\bar Γ - \\bar K and \\bar M - \\bar Γ - \\bar M' symmetry directions. We assume this splitting can be caused by the spin orbit coupling of electrons or a mixed valence of Sn atoms in the compound.

  17. Strangeness Suppression and Color Deconfinement

    Science.gov (United States)

    Satz, Helmut

    2018-02-01

    The relative multiplicities for hadron production in different high energy collisions are in general well described by an ideal gas of all hadronic resonances, except that under certain conditions, strange particle rates are systematically reduced. We show that the suppression factor γs, accounting for reduced strange particle rates in pp, pA and AA collisions at different collision energies, becomes a universal function when expressed in terms of the initial entropy density s0 or the initial temperature T of the produced thermal medium. It is found that γs increases from about 0.5 to 1.0 in a narrow temperature range around the quark-hadron transition temperature Tc ≃ 160 MeV. Strangeness suppression thus disappears with the onset of color deconfinement; subsequently, full equilibrium resonance gas behavior is attained.

  18. Suppression of stratified explosive interactions

    Energy Technology Data Exchange (ETDEWEB)

    Meeks, M.K.; Shamoun, B.I.; Bonazza, R.; Corradini, M.L. [Wisconsin Univ., Madison, WI (United States). Dept. of Nuclear Engineering and Engineering Physics

    1998-01-01

    Stratified Fuel-Coolant Interaction (FCI) experiments with Refrigerant-134a and water were performed in a large-scale system. Air was uniformly injected into the coolant pool to establish a pre-existing void which could suppress the explosion. Two competing effects due to the variation of the air flow rate seem to influence the intensity of the explosion in this geometrical configuration. At low flow rates, although the injected air increases the void fraction, the concurrent agitation and mixing increases the intensity of the interaction. At higher flow rates, the increase in void fraction tends to attenuate the propagated pressure wave generated by the explosion. Experimental results show a complete suppression of the vapor explosion at high rates of air injection, corresponding to an average void fraction of larger than 30%. (author)

  19. Suppressing Quantum Fluctuations in Classicalization

    CERN Document Server

    Vikman, Alexander

    2013-01-01

    We study vacuum quantum fluctuations of simple Nambu-Goldstone bosons - derivatively coupled single scalar-field theories possessing shift-symmetry in field space. We argue that quantum fluctuations of the interacting field can be drastically suppressed with respect to the free-field case. Moreover, the power-spectrum of these fluctuations can soften to become red for sufficiently small scales. In quasiclassical approximation, we demonstrate that this suppression can only occur for those theories that admit such classical static backgrounds around which small perturbations propagate faster than light. Thus a quasiclassical softening of quantum fluctuations is only possible for theories which classicalize instead of having a usual Lorentz invariant and local Wilsonian UV- completion. We illustrate our analysis by estimating the quantum fluctuations for the DBI-like theories.

  20. Influence of Sn content on microstructural and mechanical properties of centrifugal cast Ti-Nb-Sn biomedical alloys

    International Nuclear Information System (INIS)

    Lopes, E.S.N.; Contieri, R.J.; Caram, R.; Costa, A.M.S.

    2010-01-01

    The arc voltaic centrifugal casting is an interesting alternative in terms of economic and technological development in the production of components based on materials with high reactivity and high melting point, such as titanium alloys. In this work, Ti-30Nb (wt. %) with additions of Sn (2, 4, 6, 8 and 10 wt. %) were formed by casting process. Characterization of the samples included optical microscopy, scanning electron microscopy, X-ray diffraction, Vickers hardness and elastic modulus measures by acoustic techniques. It was observed that the microstructure of the samples investigated is composed by dendritic structures, with clear segregation of alloying elements. The Vickers hardness and the elastic modulus decreased with the addition of Sn. The results show that the mechanical behavior of Ti-Nb alloys can be controlled within certain limits, by adding Sn. (author)

  1. The Influence of Primary Cu6Sn5 Size on the Shear Impact Properties of Sn-Cu/Cu BGA Joints

    Science.gov (United States)

    Li, Z. Q.; Belyakov, S. A.; Xian, J. W.; Gourlay, C. M.

    2018-01-01

    A method is presented to control the size of primary Cu6Sn5 in ball grid array (BGA) joints while keeping all other microstructural features near-constant, enabling a direct study of the size of primary Cu6Sn5 on impact properties. For Sn-2Cu/Cu BGA joints, it is shown that larger primary Cu6Sn5 particles have a clear negative effect on the shear impact properties. Macroscopic fracture occurred by a combination of the brittle fracture of embedded primary Cu6Sn5 rods and ductile fracture of the matrix βSn. Cleavage of the Cu6Sn5 rods occurred mostly along (0001) or perpendicular to (0001) with some crack deflection between the two. The deterioration of shear impact properties with increasing Cu6Sn5 size is attributed to (1) the larger microcracks introduced by the brittle fracture of larger embedded Cu6Sn5 crystals, and (2) the less numerous and more widely spaced rods when the Cu6Sn5 crystals are larger, which makes them poor strengtheners.

  2. Investigation of Cu2SnSe3 preparation by simultaneous electrodeposition as precursor of Cu2ZnSnSe4 thin film solar cell

    Science.gov (United States)

    Gunawan, Haris, Abdul; Widodo, Didik Setiyo; Septina, Wilman; Ikeda, Shigeru

    2017-08-01

    Chalcogenide material of multinary metals are of interest in relation as optoelectronic devices such as laser and solar cell. Cu2SnSe3, ternary chalcogenide, is semiconductor with low bandgap. Beside that Cu2SnSe3 is important precursor for the growth of a promising Cu2ZnSnSe4 thin film solar cell since it contains elements that is abundance in the earth crust. The aim of this work is to synthesis Cu2SnSe3 thin film compound by using simultaneous electrodeposition. The product then was characterized using EDX, XRD, RAMAN and SEM. The result showed that Cu2SnSe3 can be prepared by electrodeposition at a potential of -0.6V vs. Ag/AgCl for 20 min. Annnealing can cause the increase of Cu2SnSe3 sample crystalinity. Annealing in argon atmosphere at 500 °C affected selenium evaporation in the film, therefore it improved Cu/Sn ratio. Further, annealing in selenium atmosphere at temperature of 500 °C can increase the intensity of Cu2SnSe3 crystal much better and also improve the Se/(Cu+Sn) ratio close to ideal value. Spectra of XRD and raman also proved the presence of Cu2SnSe3 in the prepared thin film.

  3. Controlling the Sn-C bonds content in SnO2@CNTs composite to form in situ pulverized structure for enhanced electrochemical kinetics.

    Science.gov (United States)

    Cheng, Yayi; Huang, Jianfeng; Qi, Hui; Cao, Liyun; Luo, Xiaomin; Li, Jiayin; Xu, Zhanwei; Yang, Jun

    2017-12-07

    The Sn-C bonding content between the SnO 2 and CNTs interface was controlled by the hydrothermal method and subsequent heat treatment. Electrochemical analysis found that the SnO 2 @CNTs with high Sn-C bonding content exhibited much higher capacity contribution from alloying and conversion reaction compared with the low content of Sn-C bonding even after 200 cycles. The high Sn-C bonding content enabled the SnO 2 nanoparticles to stabilize on the CNTs surface, realizing an in situ pulverization process of SnO 2 . The in situ pulverized structure was beneficial to maintain the close electrochemical contact of the working electrode during the long-term cycling and provide ultrafast transfer paths for lithium ions and electrons, which promoted the alloying and conversion reaction kinetics greatly. Therefore, the SnO 2 @CNTs composite with high Sn-C bonding content displayed highly reversible alloying and conversion reaction. It is believed that the composite could be used as a reference for design chemically bonded metal oxide/carbon composite anode materials in lithium-ion batteries.

  4. Dispersion of nonresonant third-order nonlinearities in GeSiSn ternary alloys

    OpenAIRE

    De Leonardis, Francesco; Troia, Benedetto; Soref, Richard A.; Passaro, Vittorio M. N.

    2016-01-01

    Silicon (Si), tin (Sn), and germanium (Ge) alloys have attracted research attention as direct band gap semiconductors with applications in electronics and optoelectronics. In particular, GeSn field effect transistors can exhibit very high performance in terms of power reduction and operating speed because of the high electron drift mobility, while the SiGeSn system can be constructed using CMOS-compatible techniques to realize lasers, LED, and photodetectors. The wide Si, Ge and Sn transparen...

  5. Constitutive Behavior of Mixed Sn-Pb/Sn-3.0Ag-0.5Cu Solder Alloys

    Science.gov (United States)

    Tucker, J. P.; Chan, D. K.; Subbarayan, G.; Handwerker, C. A.

    2012-03-01

    During the transition from Pb-containing solders to Pb-free solders, joints composed of a mixture of Sn-Pb and Sn-Ag-Cu often result from either mixed assemblies or rework. Comprehensive characterization of the mechanical behavior of these mixed solder alloys resulting in a deformationally complete constitutive description is necessary to predict failure of mixed alloy solder joints. Three alloys with 1 wt.%, 5 wt.%, and 20 wt.% Pb were selected so as to represent reasonable ranges of Pb contamination expected from different 63Sn-37Pb components mixed with Sn-3.0Ag-0.5Cu. Creep and displacement-controlled tests were performed on specially designed assemblies at temperatures of 25°C, 75°C, and 125°C using a double lap shear test setup that ensures a nearly homogeneous state of plastic strain at the joint interface. The observed changes in creep and tensile behavior with Pb additions were related to phase equilibria and microstructure differences observed through differential scanning calorimetric and scanning electron microscopic cross-sectional analysis. As Pb content increased, the steady-state creep strain rates increased, and primary creep decreased. Even 1 wt.% Pb addition was sufficient to induce substantially large creep strains relative to the Sn-3.0Ag-0.5Cu alloy. We describe rate-dependent constitutive models for Pb-contaminated Sn-Ag-Cu solder alloys, ranging from the traditional time-hardening creep model to the viscoplastic Anand model. We illustrate the utility of these constitutive models by examining the inelastic response of a chip-scale package (CSP) under thermomechanical loading through finite-element analysis. The models predict that, as Pb content increases, total inelastic dissipation decreases.

  6. Transport and NMR characteristics of the skutterudite-related compound Ca3Rh4Sn13

    Science.gov (United States)

    Tseng, C. W.; Kuo, C. N.; Li, B. S.; Wang, L. M.; Gippius, A. A.; Kuo, Y. K.; Lue, C. S.

    2018-02-01

    We report the electronic properties of the Yb3Rh4Sn13-type single crystalline Ca3Rh4Sn13 by means of the electrical resistivity, Hall coefficient, Seebeck coefficient, thermal conductivity, as well as 119Sn nuclear magnetic resonance (NMR) measurements. The negative sign of the Hall coefficient and Seebeck coefficient at low temperatures suggests that the n-type carriers dominate the electrical transport in Ca3Rh4Sn13, in contrast to the observations in Sr3Rh4Sn13 which has a p-type conduction. Such a finding indicates a significant difference in the electronic features between these two stannides. Furthermore, we analyzed the temperature-dependent 119Sn NMR spin-lattice relaxation rate for Ca3Rh4Sn13, (Sr0.7Ca0.3)3Rh4Sn13, and Sr3Rh4Sn13 to examine the change of the electronic Fermi-level density of states (DOS) in (Sr1-xCax)3Rh4Sn13. It indicates that the Sn 5s partial Fermi-level DOS enhances with increasing the Ca content, being consistent with the trend of the superconducting temperature. Since the total Fermi-level DOS usually obeys the same trend of the partial Fermi-level DOS, the NMR analysis provides microscopic evidence for the correlation between the electronic DOS and superconductivity of the (Sr1-xCax)3Rh4Sn13 system.

  7. Alloy Design and Property Evaluation of Ti-Mo-Nb-Sn Alloy for ...

    African Journals Online (AJOL)

    Ti-Mo alloy containing Nb and Sn were arc melted and composition analyzed by EDX. The XRD analysis indicates that the crystal structure and mechanical properties are sensitive to Sn concentration. A combination of Sn and Nb elements in synergy hindered formation athermal w phase and significantly enhanced b phase ...

  8. Adsorption study of Pb 2 ions on nanosized SnO2, synthesized by ...

    Indian Academy of Sciences (India)

    Adsorption of Pb2+ ions on combustion derived nanosized SnO2 is studied. The as synthesized SnO2 and lead ions adsorbed SnO2 are characterized by X-ray diffraction (XRD), scanning electron micrograph (SEM), and infrared spectroscopic (IR) techniques. The eluent is characterized by atomic absorption spectroscopy ...

  9. Highly Reproducible Sn-Based Hybrid Perovskite Solar Cells with 9% Efficiency

    NARCIS (Netherlands)

    Shao, Shuyan; Liu, Jian; Portale, Giuseppe; Fang, Hong-Hua; Blake, Graeme R.; ten Brink, Gert H.; Koster, L. Jan Anton; Loi, Maria Antonietta

    2018-01-01

    The low power conversion efficiency (PCE) of tin-based hybrid perovskite solar cells (HPSCs) is mainly attributed to the high background carrier density due to a high density of intrinsic defects such as Sn vacancies and oxidized species (Sn4+) that characterize Sn-based HPSCs. Herein, this study

  10. Cubic Crystal-Structured SnTe for Superior Li- and Na-Ion Battery Anodes.

    Science.gov (United States)

    Park, Ah-Ram; Park, Cheol-Min

    2017-06-27

    A cubic crystal-structured Sn-based compound, SnTe, was easily synthesized using a solid-state synthetic process to produce a better rechargeable battery, and its possible application as a Sn-based high-capacity anode material for Li-ion batteries (LIBs) and Na-ion batteries (NIBs) was investigated. The electrochemically driven phase change mechanisms of the SnTe electrodes during Li and Na insertion/extraction were thoroughly examined utilizing various ex situ analytical techniques. During Li insertion, SnTe was converted to Li 4.25 Sn and Li 2 Te; meanwhile, during Na insertion, SnTe experienced a sequential topotactic transition to Na x SnTe (x ≤ 1.5) and conversion to Na 3.75 Sn and Na 2 Te, which recombined into the original SnTe phase after full Li and Na extraction. The distinctive phase change mechanisms provided remarkable electrochemical Li- and Na-ion storage performances, such as large reversible capacities with high Coulombic efficiencies and stable cyclabilities with fast C-rate characteristics, by preparing amorphous-C-decorated nanostructured SnTe-based composites. Therefore, SnTe, with its interesting phase change mechanisms, will be a promising alternative for the oncoming generation of anode materials for LIBs and NIBs.

  11. Structures, energetics and magnetic properties of (NiSn) n clusters ...

    Indian Academy of Sciences (India)

    The preference for tetrahedron unit of Ni3 Sn is seen in the lowest-energy configuration of these clusters. The multi-centre bonding between Ni atoms play an important role in stabilizing the stoichiometric Ni–Sn clusters. Doping of Sn atoms enhances the binding energy and reduces the ionization potential of nickel clusters.

  12. Plant snRNP Biogenesis: A Perspective from the Nucleolus and Cajal Bodies

    Directory of Open Access Journals (Sweden)

    Misato Ohtani

    2018-01-01

    Full Text Available Small nuclear ribonucleoproteins (snRNPs are protein–RNA complexes composed of specific snRNP-associated proteins along with small nuclear RNAs (snRNAs, which are non-coding RNA molecules abundant in the nucleus. snRNPs mainly function as core components of the spliceosome, the molecular machinery for pre-mRNA splicing. Thus, snRNP biogenesis is a critical issue for plants, essential for the determination of a cell’s activity through the regulation of gene expression. The complex process of snRNP biogenesis is initiated by transcription of the snRNA in the nucleus, continues in the cytoplasm, and terminates back in the nucleus. Critical steps of snRNP biogenesis, such as chemical modification of the snRNA and snRNP maturation, occur in the nucleolus and its related sub-nuclear structures, Cajal bodies. In this review, I discuss roles for the nucleolus and Cajal bodies in snRNP biogenesis, and a possible linkage between the regulation of snRNP biogenesis and plant development and environmental responses.

  13. Liquidus Projection and Thermodynamic Modeling of a Sn-Ag-Zn System

    Science.gov (United States)

    Chen, Sinn-wen; Chiu, Wan-ting; Gierlotka, Wojciech; Chang, Jui-shen; Wang, Chao-hong

    2017-12-01

    Sn-Ag-Zn alloys are promising Pb-free solders. In this study, the Sn-Ag-Zn liquidus projection was determined, and the Sn-Ag-Zn thermodynamic modeling was developed. Various Sn-Ag-Zn alloys were prepared. Their as-cast microstructures and primary solidification phases were examined. The invariant reaction temperatures of the ternary Sn-Ag-Zn system were determined. The liquidus projection of the Sn-Ag-Zn ternary system was constructed. It was found that the Sn-Ag-Zn ternary system has eight primary solidification phases: ɛ2-AgZn3, γ-Ag5Zn8, β-AgZn, ζ-Ag4Sn, (Ag), ɛ1-Ag3Sn, β-(Sn) and (Zn) phases. There are eight ternary invariant reactions, and the liquid + (Ag) = β-AgZn + ζ-Ag4Sn reaction is of the highest temperature at 935.5 K. Thermodynamic modeling of the ternary Sn-Ag-Zn system was also carried out in this study based on the thermodynamic models of the three constituent binary systems and the experimentally determined liquidus projection. The liquidus projection and the isothermal sections are calculated. The calculated and experimentally determined liquidus projections are in good agreement.

  14. Electromigration in 3D-IC scale Cu/Sn/Cu solder joints

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Cheng-En, E-mail: ceho1975@hotmail.com; Lee, Pei-Tzu; Chen, Chih-Nan; Yang, Cheng-Hsien

    2016-08-15

    The electromigration effect on the three-dimensional integrated circuits (3D-IC) scale solder joints with a Cu/Sn(25–50 μm)/Cu configuration was investigated using a field-emission scanning electron microscope (FE–SEM) combined with electron backscatter diffraction (EBSD) analysis system. Electron current stressing for a few days caused the pronounced accumulation of Cu{sub 6}Sn{sub 5} in specific Sn grain boundaries (GBs). The EBSD analysis indicated that both the β-Sn crystallographic orientation and GB orientation play dominant roles in this accumulation. The dependencies of the Cu{sub 6}Sn{sub 5} accumulation on the two above factors (i.e., Sn grain orientation and GB orientation) can be well rationalized via a proposed mathematic model based on the Huntington and Grone's electromigration theory with the Cu anisotropic diffusion data in a β-Sn lattice. - Highlights: • Anisotropic Cu electromigration in the 3D-IC scale microelectronic solder joints. • Pronounced accumulation of Cu{sub 6}Sn{sub 5} intermetallic in specific Sn grain boundaries. • A linear dependence of Cu{sub 6}Sn{sub 5} accumulation over the current stressing time. • β-Sn and grain boundary orientations are the dominant factors in Cu{sub 6}Sn{sub 5} accumulation.

  15. Controlling intermetallic compound formation reaction between Sn and Ni-P by Zn addition

    International Nuclear Information System (INIS)

    Zhang, X.F.; Guo, J.D.; Shang, J.K.

    2009-01-01

    Effects of Zn addition on the interfacial reaction between Sn and Ni(P) were investigated by systematically varying the Zn concentration in the Sn solder. It was found that the typical Ni-Sn reaction product, Ni 3 Sn 4 phase, was changed substantially by adding small amounts of Zn to the Sn. With the Zn addition, the ternary Ni 4 (Sn 1-x ,Zn x ) phase formed at the interface during reflow and aging according to X-ray diffraction analysis. In the Ni 4 (Sn 1-x ,Zn x ) phase, the lattice parameters contracted with increasing Zn content, in agreement with the Vegard's law. Since diffusions of the reactive species through the denser ternary intermetallic compound were more unlikely than through the binary Ni 3 Sn 4 , the Zn-containing solder showed a much slower electroless Ni-P consumption rate than Sn. The decrease in Ni consumption rate increased with the increasing Zn content in Sn. The reason for the decrease was that the growth rate of Ni 4 (Sn 1-x ,Zn x ) phase was directly determined by substitution of Zn atoms into the Sn sublattice.

  16. The complex structure of liquid Cu{sub 6}Sn{sub 5} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Qin Jingyu; Gu Tingkun; Bian Xiufang [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Southern Campus, Jinan 250061 (China); Liu Hui [Shandong High Performance Computing Center, Shandong University, Southern Campus, Jinan 250061 (China)

    2009-04-15

    By applying ab initio molecular dynamics simulation to liquid Cu{sub 6}Sn{sub 5} alloy, the hetero-coordination tendency is discovered by Bathia-Thornton partial correlation functions and a chemical short-range parameter. However the local structural environment of Sn in l-Cu{sub 6}Sn{sub 5} alloy resembles that of liquid Sn by Voronoi analysis. A new feature, i.e. a subpeak in between the first and second peaks, is discovered by the present method which implies that topologically disordered {beta}-Sn-type structural units may exist in l-Cu{sub 6}Sn{sub 5} alloy. The local density states of electrons show that both Cu-Sn and Sn-Sn bonding exist in l-Cu{sub 6}Sn{sub 5} alloy. This work suggests that chemical short-range order between unlike atoms and self-coordination between Sn atoms coexists in l-Cu{sub 6}Sn{sub 5} alloy.

  17. Synthesis and characterization of Sn-doped CdZnS nanoparticles

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Tin (Sn)-doped cadmium zinc sulphide nanoparticles (CdZnS : Sn) were synthesized by the chemi- cal bath deposition method with two different concentrations of Sn (2 and 4 mol%). X-ray diffraction (XRD) pattern reveals the formation of CdZnS nanoparticles with cubic and hexagonal structure. It was observed ...

  18. Structures, energetics and magnetic properties of (NiSn)n clusters ...

    Indian Academy of Sciences (India)

    appears to be due to the antiferromagnetic alignment of atomic spins as revealed by the spin density plots. .... dron and bi-capped rhombus configuration, a strong localization region is identified at the centre of the three Ni ... The overall evolutionary trend for (NiSn)n series shows that, the Sn atom prefers to maximize Ni–Sn ...

  19. Synthesis and characterization of Sn-doped CdZnS nanoparticles

    Indian Academy of Sciences (India)

    Tin (Sn)-doped cadmium zinc sulphide nanoparticles (CdZnS : Sn) were synthesized by the chemical bath deposition method with two different concentrations of Sn (2 and 4 mol%). X-ray diffraction (XRD) pattern reveals the formation of CdZnS nanoparticles with cubic and hexagonal structure. It was observed that the ...

  20. Thermodynamic, electronic, and magnetic properties of intrinsic vacancy defects in antiperovskite Ca3SnO

    Science.gov (United States)

    Batool, Javaria; Alay-e-Abbas, Syed Muhammad; Amin, Nasir

    2018-04-01

    The density functional theory based total energy calculations are performed to examine the effect of charge neutral and fully charged intrinsic vacancy defects on the thermodynamic, electronic, and magnetic properties of Ca3SnO antiperovskite. The chemical stability of Ca3SnO is evaluated with respect to binary compounds CaO, CaSn, and Ca2Sn, and the limits of atomic chemical potentials of Ca, Sn, and O atoms for stable synthesis of Ca3SnO are determined within the generalized gradient approximation parametrization scheme. The electronic properties of the pristine and the non-stoichiometric forms of this compound have been explored and the influence of isolated intrinsic vacancy defects (Ca, Sn, and O) on the structural, bonding, and electronic properties of non-stoichiometric Ca3SnO are analyzed. We also predict the possibility of achieving stable ferromagnetism in non-stoichiometric Ca3SnO by means of charge neutral tin vacancies. From the calculated total energies and the valid ranges of atomic chemical potentials, the formation energetics of intrinsic vacancy defects in Ca3SnO are evaluated for various growth conditions. Our results indicate that the fully charged calcium vacancies are thermodynamically stable under the permissible Sn-rich condition of stable synthesis of Ca3SnO, while tin and oxygen vacancies are found to be stable under the extreme Ca-rich condition.

  1. Promotional effect of surface hydroxyls on electrochemical reduction of CO2 over SnOx/Sn electrode

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Chaonan; Han, Jinyu; Zhu, Xinli; Liu, Xiao; Wang, Hua; Mei, Donghai; Ge, Qingfeng

    2016-11-01

    Tin oxide (SnOx) formation on tin-based electrode surfaces during CO2 electrochemical reduction can have a significant impact on the activity and selectivity of the reaction. In the present study, density functional theory (DFT) calculations have been performed to understand the role of SnOx in CO2 reduction using a SnO monolayer on the Sn(112) surface as a model for SnOx. Water molecules have been treated explicitly and considered actively participating in the reaction. The results showed that H2O dissociates on the perfect SnO monolayer into two hydroxyl groups symmetrically on the surface. CO2 energetically prefers to react with the hydroxyl, forming a bicarbonate (HCO3(t)*) intermediate, which can then be reduced to either formate (HCOO*) by hydrogenating the carbon atom or carboxyl (COOH*) by protonating the oxygen atom. Both steps involve a simultaneous C-O bond breaking. Further reduction of HCOO* species leads to the formation of formic acid in the acidic solution at pH < 4, while the COOH* will decompose to CO and H2O via protonation. Whereas the oxygen vacancy (VO) in the monolayer maybe formed by the reduction of the monolayer, it can be recovered by H2O dissociation, resulting in two embedded hydroxyl groups. However, the hydroxylated surface with two symmetric hydroxyls is energetically more favorable for CO2 reduction than the hydroxylated VO surface with two embedded hydroxyls. The reduction potential for the former has a limiting-potential of -0.20 V (RHE), lower than that for the latter (-0.74 V (RHE)). Compared to the pure Sn electrode, the formation of SnOx monolayer on the electrode under the operating conditions promotes CO2 reduction more effectively by forming surface hydroxyls, thereby, providing a new channel via COOH* to the CO formation, although formic acid is still the major reduction product. The work was supported in part by National Natural Sciences Foundation of China (Grant #21373148 and #21206117). The High Performance Computing

  2. Identification of the Doubly Magic Nucleus 100Sn in the Reaction 112Sn (63 MeV/Nucleon) + nat Ni

    International Nuclear Information System (INIS)

    Lewitowicz, M.; Anne, R.; Auger, G.

    1994-01-01

    We report on the production of doubly magic nucleus 100 Sn and other proton-rich nuclei in the A = 100 region in the reaction 112 Sn + nat Ni at 63 MeV/nucleon. The experiment was carried out using the high acceptance device SISSI and the Alpha and LISE3 spectrometers at GANIL. The identification of the reaction products (A, Z and Q) was done using the measurements of time-of-flight, energy-loss and kinetic energy. (author).16 refs.; 2 figs

  3. XRD and 119Sn Moessbauer spectroscopy characterization of SnSe obtained from a simple chemical route

    International Nuclear Information System (INIS)

    Bernardes-Silva, Ana Claudia; Mesquita, A.F.; Moura de Neto, E.; Porto, A.O.; Ardisson, J.D.; Lima, G.M. de; Lameiras, F.S.

    2005-01-01

    Crystalline tin selenide semiconductor was synthesized by a chemical route. Selenium powder reacted with potassium boronhydride, giving a soluble selenium species potassium seleniumhydride. The reaction of potassium seleniumhydride with tin chloride produced crystalline tin selenide, which was characterized by X-ray diffraction, 119 Sn Moessbauer spectroscopy and scanning electronic microscopy. The material was thermally treated, in nitrogen flow, at 300 and 600 deg. C for 2 h and the particle size evolution was studied by X-ray diffraction. The X-ray diffraction and 119 Sn Moessbauer results showed that a mixture of tin oxides and orthorhombic tin selenide was obtained

  4. X-ray powder diffraction and EXAFS studies on SnAPO-5 and Cu : SnAPO-5

    DEFF Research Database (Denmark)

    Flavell, W. R.; Nicholson, D. G.; Nilsen, M. H.

    2001-01-01

    to the tetrahedral faces. Based on crystal chemical considerations it is suggested that tin is five-coordinate in a trigonal bipyramid with its second axial corner protruding into the extra-framework area. For the copper-incorporated material, Cu : SnAPO-5, EXAFS shows that the copper environment is tetragonally...... distorted octahedral. Powder diffraction confirms an extra-framework disordered square-planar copper-coordination connected to two framework oxygens by longer axial bonds. EXAFS results of calcined Cu : SnAPO-5 show that copper is sited near the tin sites in the framework....

  5. In the suppression of regge cut contributions

    International Nuclear Information System (INIS)

    Chia, S.P.

    1975-07-01

    It is shown that contributions of reggeon-pomeron cuts are suppressed in amplitudes with opposite natural to the reggeon. This suppression grows logarithmically with energy. The suppression in the πP cut is, however, found to be weak. Consequence on conspiracy is discussed

  6. Thermal behaviour of romarchite phase SnO in different atmospheres: a hypothesis about the phase transformation

    Directory of Open Access Journals (Sweden)

    Carlos M. Campo

    2016-05-01

    Full Text Available A study was conducted on the transformation of SnO to SnO2 using X-ray diffraction and subjecting the SnO to heat treatments between 300 °C < T < 600 °C in two different atmospheres, argon and air. The intermediary oxide that appears in the disproportionation process was identified as Sn2O3. In an argon atmosphere, decomposition occurs in three stages: (1 a direct transformation of SnO to SnO2, (2 the formation of some intermediary Sn2O3 from SnO, and (3 the conversion of the Sn2O3 to SnO2 with the formation of metallic tin, Sn (l. When an atmosphere of air is used, however, a reaction occurs, concurrent with the decomposition reactions, that relates to the specific oxidation of the metallic tin produced in the course of the three process stages.

  7. Heavy fermion Ce{sub 3}Co{sub 4}Sn{sub 13} compound under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Collave, J. R.; Borges, H. A. [Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro, 22453-900, Rio de Janeiro, RJ (Brazil); Ramos, S. M.; Hering, E. N. [Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, 22290-180, Rio de Janeiro, RJ (Brazil); SPSMS, UMR-E CEA/UJF-Grenoble 1, INAC, 38054, Grenoble (France); Fontes, M. B.; Baggio-Saitovitch, E.; Bittar, E. M., E-mail: bittar@cbpf.br [Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, 22290-180, Rio de Janeiro, RJ (Brazil); Mendonça-Ferreira, L. [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-170, Santo André, SP (Brazil); Pagliuso, P. G. [Instituto de Física “Gleb Wataghin,” UNICAMP, Campinas, SP 13083-859 (Brazil)

    2015-05-07

    The non-magnetic heavy fermion compound Ce{sub 3}Co{sub 4}Sn{sub 13} was studied under pressure. We report single crystalline measurements of electrical resistivity as a function of temperature ρ(T) under pressure. Some characteristic features related to a structural transition (T{sub S}), crystalline field effects (T{sub CEF}), and a low temperature maximum (T{sub max}), possibly connected simultaneously to the onset of Kondo lattice coherence and short range magnetic correlations, were identified in the ρ(T) data. A pressure-temperature phase diagram with T{sub S} and T{sub max} was constructed by mapping these features. Like for most Ce-based heavy fermion compounds, T{sub max} moves to higher temperatures with pressure, indicating that it is related to the Kondo energy scale, due to the increase of hybridization induced by pressure. On the other hand, T{sub S}, associated to a superlattice distortion and probably combined with a charge density wave transition, decreases as a function of pressure. However, differently from the Sr{sub 3−x}Ca{sub x}Ir{sub 4}Sn{sub 13} system, where a superlattice quantum phase transition is observed [L. E. Klintberg et al., Phys. Rev. Lett. 109, 237 008 (2012)], in Ce{sub 3}Co{sub 4}Sn{sub 13} T{sub S} ∼ 154 K, at ambient pressure (P = 0), seems to stabilize at around 143 K for P ≥ 19 kilobars. We also investigated ρ(T) in external magnetic fields, at P = 0. Negative magnetoresistance and increase of T{sub max} are observed, suggesting suppression of low temperature short range magnetic correlations.

  8. Ge 1-xSn x stressors for strained-Ge CMOS

    Science.gov (United States)

    Takeuchi, S.; Shimura, Y.; Nishimura, T.; Vincent, B.; Eneman, G.; Clarysse, T.; Demeulemeester, J.; Vantomme, A.; Dekoster, J.; Caymax, M.; Loo, R.; Sakai, A.; Nakatsuka, O.; Zaima, S.

    2011-06-01

    In this paper, we propose the fabrication of whole strained Ge complementary metal-oxide-semiconductor (CMOS) with Ge 1-xSn x materials as stressors to outperform the state-of-the-art uniaxial compressive strained Si CMOS. Ge 1-xSn x materials have larger lattice constant than that of Ge, which can apply the strain into Ge channel region. Firstly, we have demonstrated p-type doped Ge 1-xSn x growth by using either B implantation or in situ Ga doping technique. In the B-implanted Ge 1-xSn x formation case, fully strained B-doped Ge 1-xSn x layers with no Sn precipitation can be obtained even after solid phase epitaxial regrowth (SPER). However, the serious dislocation generation in the layer was occurred during SPER. This is caused by the point defects introduced by B implantation. In order to avoid this crystal damage, we have also demonstrated in situ Ga-doped Ge 1-xSn x growth. In this case, we can achieve fully strained Ga-doped Ge 1-xSn x growth without Sn precipitation and any defect generation. Secondary, we have demonstrated the formation of Ni(Ge 1-ySn y) layers for metal/semiconductor contact and investigated the crystalline qualities. The formation of polycrystalline Ni(Ge 1-ySn y) layers on Ge 1-xSn x layers with Sn contents ranging from 2.0% to 6.5% after annealing at from 350 °C to 550 °C can be achieved. Additionally, in the case of the Ni/Ge 1-xSn x/Ge sample with a Sn content of 3.5%, an epitaxial Ni 2(Ge 1-ySn y) layer on a Ge 1-xSn x layer was formed. However, the surface roughness due to the agglomeration of Ni(Ge 1-xSn x) increases with increasing the Sn content and the annealing temperature. Therefore, a low thermal budget must be required for the formation of Ni(Ge 1-xSn x) with high Sn content.

  9. seniority changing transitions in yrast states and systematics of Sn ...

    Indian Academy of Sciences (India)

    Bhoomika Maheshwari

    2017-10-26

    Oct 26, 2017 ... 1 states; Sn isotopes; generalized seniority; odd-tensor E3 transitions; shell model. PACS Nos 23.20.Js; 27.60.+j; 21.60.Cs. 1. Introduction. Symmetries in physics play a fundamental role in the theoretical description of a wide range of phenomena and are particularly useful in systematizing the prop-.

  10. Electrodeposited Cu2ZnSnS4 thin films

    CSIR Research Space (South Africa)

    Valdes, M

    2014-05-01

    Full Text Available Cu(sub2)ZnSnS(sub4)(CZTS) thin films have been prepared using Electrochemical Atomic Layer Deposition (EC-ALD)and also by one-step conventional constant potential electrodeposition. Optimal deposition conditionswere investigated using cyclic...

  11. Substoichiometric ribose methylations in spliceosomal snRNAs

    DEFF Research Database (Denmark)

    Krogh, Nicolai; Kongsbak-Wismann, Martin; Geisler, Carsten

    2017-01-01

    and demonstrated close to full methylation at almost all sites. Methylation changes were revealed in biological experimental settings, using T cell activation as an example, and in the T cell leukemia model, Jurkat cells. Such changes could impact the dynamics of snRNA interactions during the spliceosome cycle...

  12. High temperature magnetic properties of nanocrystalline Sn0 ...

    Indian Academy of Sciences (India)

    Administrator

    National School of Applied Sciences, Safi, Morocco. 5Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble Cedex 9, France. MS received 17 October 2012; revised 17 December 2012. Abstract. Structural and magnetic properties of Sn0⋅95Co0⋅05O2 nanocrystalline and diluted magnetic semicon-.

  13. Multi-Wavelength Light Curve of SN 2014G

    Science.gov (United States)

    Martin, John C.; Betzler, Alberto; Barrett, Douglas; Cason, Andy; Eenmäe, Tõnis; Kneip, Raymond; Martignoni, Massimiliano

    2014-06-01

    SN 2014G received an initial spectral classification of Type IIn (CBET 3787) as a blue continuum with some sharp emission. Later spectra (ATEL 5935) showed that it is more likely it is a Type II-L. We present multi-band photometry for this object from the peak until approximately 100 days after.

  14. Thermochemistry of liquid Ni–Sb–Sn alloys

    Czech Academy of Sciences Publication Activity Database

    Mishra, R.; Kroupa, Aleš; Terzieff, P.; Ipser, H.

    2012-01-01

    Roč. 536, MAY (2012), s. 68-73 ISSN 0040-6031 R&D Projects: GA MŠk(CZ) OC08053 Institutional support: RVO:68081723 Keywords : Ni-Sb-Sn alloys * thermochemistry * vapor pressure measurements Subject RIV: BJ - Thermodynamics Impact factor: 1.989, year: 2012

  15. SN 2010U: A LUMINOUS NOVA IN NGC 4214

    International Nuclear Information System (INIS)

    Humphreys, Roberta M.; Helton, L. Andrew; Prieto, Jose L.; Rosenfield, Philip; Williams, Benjamin; Murphy, Jeremiah; Dalcanton, Julianne; Gilbert, Karoline; Kochanek, Christopher S.; Stanek, K. Z.; Khan, Rubab; Szczygiel, Dorota; Mogren, Karen; Fesen, Robert A.; Milisavljevic, Dan

    2010-01-01

    The luminosity, light curve, post-maximum spectrum, and lack of a progenitor on deep pre-outburst images suggest that SN 2010U was a luminous, fast nova. Its outburst magnitude is consistent with that for a fast nova using the maximum magnitude-rate of decline relationship for classical novae.

  16. Strain sensitivity of band gaps of Sn-containing semiconductors

    DEFF Research Database (Denmark)

    Li, Hong; Castelli, Ivano Eligio; Thygesen, Kristian Sommer

    2015-01-01

    Tuning of band gaps of semiconductors is a way to optimize materials for applications within photovoltaics or as photocatalysts. One way to achieve this is through applying strain to the materials. We investigate the effect of strain on a range of Sn-containing semiconductors using density...

  17. Transport Properties Of Type-I Sn Clathrates

    Science.gov (United States)

    Egbele, Peter; Joubert, Daniel; Shoko, Elvis

    The conversion of 'waste' heat into useful energy can contribute to the efficient use of available energy. This includes converting heat energy from internal combustion engines, conventional power plants and solar cells into usable energy. Thermoelectric devices can convert heat into an electric current and have immense potential for utilizing heat energy. One of the desired features of an efficient thermoelectric material is a low lattice thermal conductivity. In this study thermal transport properties of type-I Sn clathrates are investigated. We study the dynamics of the guest atoms Cs and K in the compound A8 Sn44 (A = Cs, K). We find that the guest atom are responsible for scattering of the heat in these systems, and hence responsible for the low thermal conductivity in these materials. These compounds are formed in a cubic lattice. A low thermal conductivity value of 0.17 and 0.18 W m-1 K-1 at 300 K respectively, was calculated for Cs8 Sn44 and K8 Sn44 . These are low values which makes these and similar materials attractive for further study. NRF South Africa.

  18. Thermal stability of germanium-tin (GeSn) fins

    Science.gov (United States)

    Lei, Dian; Lee, Kwang Hong; Bao, Shuyu; Wang, Wei; Masudy-Panah, Saeid; Tan, Chuan Seng; Tok, Eng Soon; Gong, Xiao; Yeo, Yee-Chia

    2017-12-01

    We investigate the thermal stability of germanium-tin (Ge1-xSnx) fins under rapid thermal annealing in N2 ambient. The Ge1-xSnx fins were formed on a GeSn-on-insulator substrate and were found to be less thermally stable than blanket Ge1-xSnx films. The morphology change and material quality of the annealed Ge1-xSnx fin are investigated using scanning electron microscopy, Raman spectroscopy, high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy, and electron energy loss spectroscopy. Obvious degradation of crystalline quality of the Ge0.96Sn0.04 fin was observed, and a thin Ge layer was formed on the SiO2 surface near the Ge0.96Sn0.04 fin region after 500 °C anneal. A model was proposed to explain the morphology change of the Ge0.96Sn0.04 fin.

  19. Quality control for 12 batch of DTPA-Sn

    International Nuclear Information System (INIS)

    Isaac, M.; Gamboa, R.; Leyva, R.; Hernandez, I.; Turino, D.

    1994-01-01

    The quality control is carry out at 12 batch of DTPA-Sn for labeling with 99 m Tc. The instrumental methods of analysis and control charts were discussed in order to find a warranty time for the product. (author). 2 refs, 3 figs, 1 tab

  20. Coulomb excitation of $^{110}$Sn using REX-ISOLDE

    CERN Document Server

    Ekström, A; Hurst, A; Fahlander, C; Banu, A; Butler, P; Eberth, J; Górska, M; Habs, D; Huyse, M; Kester, O; Niedermayer, O; Nilsson, T; Pantea, M; Scheit, H; Schwalm, D; Sletten, G; Ushasi, D P; Van Duppen, P; Warr, N; Weisshaar, D

    2006-01-01

    In this paper, we report the preliminary result from the first Coulomb excitation experiment at REX-ISOLDE (Habs et al 1998 Nucl. Instrum. Methods B 139 128) using neutron-deficient Sn-beams. The motivation of the experiment is to deduce the reduced transition probability, B(E2 ; 2$^+\\rightarrow$ 0$^+$) , for the sequence of neutron deficient, unstable, even-even Sn-isotopes from using a radioactive beam opens up a new path to study the lifetime of the first excited 2$^+$ state in these isotopes. The de-excitation path following fusion-evaporation reactions will for the even-even Sn isotopes pass via an isomeric 6$^+$ state, located at higher energy, which thus hampers measurements of the lifetime of the first excited state using, e.g., recoil-distance methods. For this reason the reduced transition probability of the first excited 2$^+$ state has remained unknown in this chain of isotopes although the B(E2) value of the stable isotope $^{112}$Sn was measured approximately 30 years ago (see, e.g., Stelson et...