WorldWideScience

Sample records for suppress intergranular fracture

  1. Overview of Intergranular Fracture of Neutron Irradiated Austenitic Stainless Steels

    Directory of Open Access Journals (Sweden)

    Anna Hojná

    2017-09-01

    Full Text Available Austenitic stainless steels are normally ductile and exhibit deep dimples on fracture surfaces. These steels can, however, exhibit brittle intergranular fracture under some circumstances. The occurrence of intergranular fracture in the irradiated steels is briefly reviewed based on limited literature data. The data are sorted according to the irradiation temperature. Intergranular fracture may occur in association with a high irradiation temperature and void swelling. At low irradiation temperature, the steels can exhibit intergranular fracture at low or even at room temperatures during loading in air and in high temperature water (~300 °C. This paper deals with the similarities and differences for IG fractures and discusses the mechanisms involved. The intergranular fracture occurrence at low temperatures might be correlated with decohesion or twinning and strain martensite transformation in local narrow areas around grain boundaries. The possibility of a ductile-to-brittle transition is also discussed. In case of void swelling higher than 3%, quasi-cleavage at low temperature might be expected as a consequence of ductile-to-brittle fracture changes with temperature. Any existence of the change in fracture behavior in the steels of present thermal reactor internals with increasing irradiation dose should be clearly proven or disproven. Further studies to clarify the mechanism are recommended.

  2. A fractal model for intergranular fractures in nanocrystals

    International Nuclear Information System (INIS)

    Lung, C.W.; Xiong, L.Y.; Zhou, X.Z.

    1993-09-01

    A fractal model for intergranular fractures in nanocrystals is proposed to explain the dependence of fracture toughness with grain size in this range of scale. Based on positron annihilation and internal friction experimental results, we point out that the assumption of a constant grain boundary thickness in previous models is too simplified to be true. (author). 7 refs, 6 figs

  3. Grain Boundary Segregation and Intergranular Fracture in Molybdenum

    Science.gov (United States)

    Kumar, A.; Eyre, B. L.

    1980-04-01

    The refractory group VIA metals generally exhibit intergranular brittleness when they are in the recrystallized condition. This causes severe problems in their fabrication and places major limitations on their practical application. The phenomenon, generally referred to as recrystallization embrittlement, results in large increases in the ductile-to-brittle transition temperature and a change in fracture mode in the lower shelf regime from cleavage to intergranular with a significant decrease in ductility. The embrittlement is widely considered to be associated with interstitial impurities but there have been few systematic studies to elucidate their effects. The present paper reports results from a systematic study of segregation and intergranular embrittlement in binary molybdenum-oxygen and ternary molybdenum-oxygen-carbon alloys. The experiments were carried out on 'bamboo' specimens containing a series of identical single grain boundaries traversing their cross-sections. Measurements have been made of the activation energy for oxygen segregation to grain boundaries in the binary molybdenum-oxygen alloys. The influence of carbon additions on the level of oxygen segregation has also been determined. In addition, the influence of oxygen segregation on the energy to fracture has been studied and this has involved quantitative measurements of the work of fracture and the contribution made by plastic deformation. Results from metallographic studies are also presented, showing the effects of segregation on fracture surface topography and dislocation structures immediately adjacent to the fracture surfaces. In discussing the results we consider the thermodynamics of oxygen segregation to grain boundaries and the role played by carbon in inhibiting segregation. It is proposed that carbon either increases the effective solubility of oxygen in molybdenum or acts as a trap for oxygen atoms. In either case the effect is to reduce the driving force for segregation. We also

  4. Fracture statistics of brittle materials with intergranular cracks

    International Nuclear Information System (INIS)

    Batdorf, S.B.

    1975-01-01

    When brittle materials are used for structural purposes, the initial design must take their relatively large dispersion in fracture stress properly into account. This is difficult when failure probabilities must be extremely low, because empirically based statistical theories of fracture, such as that of Weibull, cannot reliably predict the stresses corresponding to failure probabilities much lower than n -1 , where n is the number of specimens tested. Recently McClintock proposed a rational method of predicting the size distribution of intergranular cracks. The method assumed that large cracks are random aggregations of cracked grain boundaries. The present paper employs this method to find the size distribution of penny-shaped cracks, and also P(f), the probability of failure of a specimen of volume V subjected to a tensile stress sigma. The present paper is a pioneering effort, which should be applicable to ceramics and related materials

  5. Microstructural features of intergranular brittle fracture and cold cracking in high strength aluminum alloys

    NARCIS (Netherlands)

    Lalpoor, M.; Eskin, D. G.; ten Brink, Gert; Katgerman, L.

    2010-01-01

    Intergranular brittle fracture has been mainly observed and reported in steel alloys and precipitation hardened At-alloys where intergranular precipitates cover a major fraction of the grain boundary area. 7xxx series aluminum alloys suffer from this problem in the as-cast condition when brittle

  6. Conversion of transgranular to intergranular fracture in NiCr steels

    Czech Academy of Sciences Publication Activity Database

    Hadraba, Hynek; Němec, O.; Dlouhý, Ivo

    2008-01-01

    Roč. 75, č. 12 (2008), s. 3677-3691 ISSN 0013-7944 R&D Projects: GA AV ČR IAA200410502 Institutional research plan: CEZ:AV0Z20410507 Keywords : intergranular fracture * cleavage * fracture toughness * fracture stress * micromechanics * micromechanism * fractal dimension Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.713, year: 2008

  7. Micromechanics of creep fracture : Simulation of intergranular crack growth

    NARCIS (Netherlands)

    Onck, Patrick; Giessen, Erik van der

    1998-01-01

    A computational model is presented to analyze intergranular creep crack growth in a polycrystalline aggregate in a discrete manner and based directly on the underlying physical micromechanisms. A crack tip process zone is used in which grains and their grain boundaries are represented discretely,

  8. Atomistic simulations on intergranular fracture toughness of copper bicrystals with symmetric tilt grain boundaries

    Science.gov (United States)

    Cui, Cheng Bin; Beom, Hyeon Gyu

    2018-01-01

    The intergranular fracture toughness of Cu bicrystals with symmetric tilt grain boundaries was investigated using atomistic simulations. Mode I fracture of Cu bicrystals with an intergranular crack was considered. The boundary conditions were specified by the near-tip displacement fields obtained based on linear elastic fracture mechanics (LEFM). Based on the energy interpretation of the energy release rate, a two-specimen method was adopted to determine the fracture toughness. The simulation results of the fracture toughness matched well with those determined using LEFM. In contrast to the toughness obtained using the Griffith energy criterion, the atomistic simulation results for the same bicrystal were not constants, but dependent on the crack-tip circumstances. This behavior was mainly associated with the different local stress conditions and fracture patterns observed for the different models.

  9. Multi-scale modeling of inter-granular fracture in UO2

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Pritam [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, Yongfeng [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tonks, Michael R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Biner, S. Bulent [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    A hierarchical multi-scale approach is pursued in this work to investigate the influence of porosity, pore and grain size on the intergranular brittle fracture in UO2. In this approach, molecular dynamics simulations are performed to obtain the fracture properties for different grain boundary types. A phase-field model is then utilized to perform intergranular fracture simulations of representative microstructures with different porosities, pore and grain sizes. In these simulations the grain boundary fracture properties obtained from molecular dynamics simulations are used. The responses from the phase-field fracture simulations are then fitted with a stress-based brittle fracture model usable at the engineering scale. This approach encapsulates three different length and time scales, and allows the development of microstructurally informed engineering scale model from properties evaluated at the atomistic scale.

  10. First-principles computational tensile test on a Na-segregated Al grain boundary with an Si additive and an intergranular embrittlement suppression mechanism

    International Nuclear Information System (INIS)

    Zhang Ying; Lu Guanghong; Hu Xuelan; Wang Tianmin; Kohyama, Masanori; Yamamoto, Ryoichi

    2007-01-01

    We have performed a first-principles computational tensile test (FPCTT) on an Na-segregated Al grain boundary (GB) with an Si additive. We show that the Si additive in the GB greatly increases both the tensile strength and the toughness of the Na-segregated Al GB. We demonstrate that the final GB fracture is dominated by the breaking of interfacial stronger Al-Si bonds according to the bond evolution with increasing strain. Based on the Na-induced Al intergranular embrittlement mechanism explored before and the present calculation results, we propose a GB-strengthening mechanism by adding a strengthening element such as Si for Al alloy to suppress the intergranular embrittlement by an Na impurity. Such an intergranular embrittlement suppression mechanism can explain the experimental observations

  11. Microstructural Modeling of Dynamic Intergranular and Transgranular Fracture Modes in Zircaloys

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, I. [North Carolina State Univ., Raleigh, NC (United States); Zikry, M.A. [North Carolina State Univ., Raleigh, NC (United States); Ziaei, S. [North Carolina State Univ., Raleigh, NC (United States)

    2017-04-01

    In this time period, we have continued to focus on (i) refining the thermo-mechanical fracture model for zirconium (Zr) alloys subjected to large deformations and high temperatures that accounts for the cracking of ZrH and ZrH2 hydrides, (ii) formulating a framework to account intergranular fracture due to iodine diffusion and pit formation in grain-boundaries (GBs). Our future objectives are focused on extending to a combined population of ZrH and ZrH2 populations and understanding how thermo-mechanical behavior affects hydride reorientation and cracking. We will also refine the intergranular failure mechanisms for grain boundaries with pits.

  12. Method of Evaluating Hydrogen Embrittlement Susceptibility of Tempered Martensitic Steel Showing Intergranular Fracture

    Science.gov (United States)

    Matsumoto, Yu; Takai, Kenichi

    2018-02-01

    A stress application method in delayed fracture susceptibility tests was investigated using 1450 MPa class tempered martensitic steel. Its fracture mode under hydrogen charging was mainly intergranular because of its relatively small Si content of 0.21 mass pct. The conditions for consistency in fracture strength between tensile tests and constant load tests (CLTs) were clarified: first, to conduct hydrogen precharging before stress application; and second, to choose a sufficiently low crosshead speed in tensile tests. When hydrogen precharging was not conducted before CLTs, the fracture strength was higher than the values in CLTs with hydrogen charging and in tensile tests. If the crosshead speed was too high, the fracture strength obtained was higher than the values in CLTs. The dependence of the fracture strength on crosshead speed was seen for both notched and smooth bar specimens. These results suggested that plastic deformation, i.e., dislocation motion, was related to intergranular fracture with a tear pattern as well as to quasi-cleavage fracture. In addition, cathodic electrolysis in an alkaline solution containing NaOH should be used as the hydrogen charging method to avoid the effects of corrosion.

  13. Intergranular fracture in UO2: derivation of traction-separation law from atomistic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Yongfeng Zhang; Paul C Millett; Michael R Tonks; Xian-Ming Bai; S Bulent Biner

    2013-10-01

    In this study, the intergranular fracture behavior of UO2 was studied by molecular dynamics simulations using the Basak potential. In addition, the constitutive traction-separation law was derived from atomistic data using the cohesive-zone model. In the simulations a bicrystal model with the (100) symmetric tilt E5 grain boundaries was utilized. Uniaxial tension along the grain boundary normal was applied to simulate Mode-I fracture. The fracture was observed to propagate along the grain boundary by micro-pore nucleation and coalescence, giving an overall intergranular fracture behavior. Phase transformations from the Fluorite to the Rutile and Scrutinyite phases were identified at the propagating crack tips. These new phases are metastable and they transformed back to the Fluorite phase at the wake of crack tips as the local stress concentration was relieved by complete cracking. Such transient behavior observed at atomistic scale was found to substantially increase the energy release rate for fracture. Insertion of Xe gas into the initial notch showed minor effect on the overall fracture behavior.

  14. Intergranular fracture stress and phosphorus grain boundary segregation of a Mn-Ni-Mo steel

    International Nuclear Information System (INIS)

    Naudin, C.; Frund, J.M.; Pineau, A.

    1999-01-01

    Nuclear Reactor Pressure Vessel (RPV) steel A508 class 3 which is a low alloyed steel is not usually sensitive to reversible temper embrittlement when properly heat treated. However heterogeneous zones may be present in particular near the inner side of the vessel. These zones result from the segregation of the alloying elements (C, Mn, Ni, Mo) and impurities (S, P) taking place during solidification of the material. They are called segregated zones (or ghost lines). They can reach 2 mm thick along the radius and 30 mm long through the circumferential direction. Their susceptibility to reversible temper embrittlement is mainly due to grain boundary phosphorus segregation triggering brittle intergranular fracture when the material is tested at low temperature. In this material like in other steels the influence of some other alloying elements (Mo, Mn...) is clearly significant and should also be taken into account. But phosphorus effect has proved to be predominant. The aim of the present study is therefore to find out a quantitative relationship between grain boundary phosphorus segregation and critical intergranular fracture stress. A synthetic steel with a chemical composition representative of an average segregated zone was prepared for the present study. A number of heat treatments were applied to reach different embrittlement conditions. Then brittle fracture properties were obtained by performing cryogenic fracture tests on notched tensile specimens while the corresponding grain boundary phosphorus levels were measured by Auger electron spectroscopy. Systematic fractographic observations were carried out. Moreover an attempt to determine the influence of temperature on the critical intergranular fracture stress was made

  15. Intergranular fracture stress and phosphorus grain boundary segregation of a Mn-Ni-Mo steel

    Energy Technology Data Exchange (ETDEWEB)

    Naudin, C.; Frund, J.M. [EDF, Moret sur Loing (France). Direction des Etudes et Recherches; Pineau, A. [Ecole des Mines de Paris, Evry (France). Centre des Materiaux

    1999-04-09

    Nuclear Reactor Pressure Vessel (RPV) steel A508 class 3 which is a low alloyed steel is not usually sensitive to reversible temper embrittlement when properly heat treated. However heterogeneous zones may be present in particular near the inner side of the vessel. These zones result from the segregation of the alloying elements (C, Mn, Ni, Mo) and impurities (S, P) taking place during solidification of the material. They are called segregated zones (or ghost lines). They can reach 2 mm thick along the radius and 30 mm long through the circumferential direction. Their susceptibility to reversible temper embrittlement is mainly due to grain boundary phosphorus segregation triggering brittle intergranular fracture when the material is tested at low temperature. In this material like in other steels the influence of some other alloying elements (Mo, Mn...) is clearly significant and should also be taken into account. But phosphorus effect has proved to be predominant. The aim of the present study is therefore to find out a quantitative relationship between grain boundary phosphorus segregation and critical intergranular fracture stress. A synthetic steel with a chemical composition representative of an average segregated zone was prepared for the present study. A number of heat treatments were applied to reach different embrittlement conditions. Then brittle fracture properties were obtained by performing cryogenic fracture tests on notched tensile specimens while the corresponding grain boundary phosphorus levels were measured by Auger electron spectroscopy. Systematic fractographic observations were carried out. Moreover an attempt to determine the influence of temperature on the critical intergranular fracture stress was made.

  16. On the toughening of brittle materials by grain bridging:promoting intergranular fracture through grain angle, strength, andtoughness

    Energy Technology Data Exchange (ETDEWEB)

    Foulk III, J.W.; Johnson, G.C.; Klein, P.A.; Ritchie, R.O.

    2007-11-15

    The structural reliability of many brittle materials such asstructural ceramics relies on the occurrence of intergranular, as opposedto transgranular, fracture in order to induce toughening by grainbridging. For a constant grain boundary strength and grain boundarytoughness, the current work examines the role of grain strength, graintoughness, and grain angle in promoting intergranular fracture in orderto maintain such toughening. Previous studies have illustrated that anintergranular path and the consequent grain bridging process can bepartitioned into five distinct regimes, namely: propagate, kink, arrest,stall and bridge. To determine the validity of the assumed intergranularpath, the classical penentration/deflection problem of a crack impingingon an interface is reexamined within a cohesive zone framework forintergranular and transgranular fracture. Results considering both modesof propagation, i.e., a transgranular and intergranular path, reveal thatcrack-tip shielding is a natural outcome of the cohesive zone approach tofracture. Cohesive zone growth in one mode shields the opposing mode fromthe stresses required for cohesive zone initiation. Although stablepropagation occurs when the required driving force is equivalent to thetoughness for either transgranular or intergranular fracture, the mode ofpropagation depends on the normalized grain strength, normalized graintoughness, and grain angle. For each grain angle, the intersection ofsingle path and multiple path solutions demarcates "strong" grains thatincrease the macroscopic toughness and "weak" grains that decrease it.The unstable transition to intergranular fracture reveals that anincreasinggrain toughness requires a growing region of the transgranularcohesive zone be at and near the peak cohesive strength. The inability ofthe body to provide the requisite stress field yields an overdriven andunstable configuration. The current results provide restrictions for theachievement of substantial toughening

  17. Effect of specimen size on intergranular mode fracture toughness of Cr-Mo-V steel in the transition temperature region

    International Nuclear Information System (INIS)

    Shimomura, Keiichi; Shoji, Tetsuo; Takahashi, Hideaki; Saito, Kiyoshi.

    1986-01-01

    A determination procedure of intergranular mode fracture toughness has been studied on the basis of elastic-plastic fracture mechanics and by use of AE technique to detect an onset of microscopic pop-in cracking at the crack front. Experiments were performed on a steam turbine rotor steel (Cr-Mo-V steel) at 150 deg C, and four different sizes of compact tension specimens having the thickness of 10 mm(0.4TCT), 25 mm(1TCT), 50 mm(2TCT), and 100 mm(4TCT) were used. In combination with the fractographic observation on fractured surfaces, the fracture toughness determined by AE technique, J iAE , was proposed as the critical J-integral value characterizing an onset of a microscopic intergranular mode pop-in fracture, and its size effects was discussed. Each lower value of K JAE (= √(E · J iAE /(1 - ν 2 ))) obtained from smaller specimens such as 0.4TCT and 1TCT specimens was coincident with that from the large specimens. Furthermore, the toughness values of 2TCT and 4TCT specimens, K IC(AE) , met the size requirement for the plane-strain fracture toughness, and were about 76 percent of the valid K IC . This evidence suggests that the fracture toughness by AE technique proposed here is a suitable parameter to the toughness value of the brittle fracture initiation more conservative than the plane-strain fracture toughness value. (author)

  18. Stress corrosion of Zircaloy-4. Fracture mechanics study of the intergranular - transgranular transition

    International Nuclear Information System (INIS)

    Farina, Silvia B.; Duffo, Gustavo S.

    2003-01-01

    Stress corrosion cracking susceptibility of Zircaloy-4 wires was studied in 1M NaCl, 1M KBr and 1M KI aqueous solutions, and in iodine alcoholic solutions. In all cases, intergranular attack preceded transgranular propagation. It is generally accepted that the intergranular-transgranular transition occurs when a critical value of the stress intensity factor is reached. In the present work it was confirmed that the transition from intergranular to transgranular propagation cracking in Zircaloy-4 wires also occurs when a critical value of the stress intensity factor is reached. This critical stress intensity factor in wire samples is independent of the solution tested and close to 10 MPa.m-1/2. This value is in good agreement with those reported in the literature measured by different techniques. (author)

  19. Hydrogen-enhanced-plasticity mediated decohesion for hydrogen-induced intergranular and ``quasi-cleavage'' fracture of lath martensitic steels

    Science.gov (United States)

    Nagao, Akihide; Dadfarnia, Mohsen; Somerday, Brian P.; Sofronis, Petros; Ritchie, Robert O.

    2018-03-01

    Hydrogen embrittlement of lath martenistic steels is characterized by intergranular and "quasi-cleavage" transgranular fracture. Recent transmission electron microscopy (TEM) analyses (Nagao et al., 2012a, 2014a, 2014b, 2014c) of samples lifted from beneath fracture surfaces through focused ion beam machining (FIB) revealed a failure mechanism that can be termed hydrogen-enhanced-plasticity mediated decohesion. Fracture occurs by the synergistic action of the hydrogen-enhanced localized plasticity and decohesion. In particular, intergranular cracking takes place by dislocation pile-ups impinging on prior austenite grain boundaries and "quasi-cleavage" is the case when dislocation pile-ups impinge on block boundaries. These high-angle boundaries, which have already weakened by the presence of hydrogen, debond by the pile-up stresses. The micromechanical model of Novak et al. (2010) is used to quantitatively describe and predict the hydrogen-induced failure of these steels. The model predictions verify that introduction of nanosized (Ti,Mo)C precipitates in the steel microstructure enhances the resistance to hydrogen embrittlement. The results are used to discuss microstructural designs that are less susceptible to hydrogen-induced failure in systems with fixed hydrogen content (closed systems).

  20. Intergranular brittle fracture of a low alloy steel induced by grain boundary segregation of impurities: influence of the microstructure; Rupture intergranulaire fragile d'un acier faiblement allie induite par la segregation d'impuretes aux joints de grains: influence de la microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Raoul, St

    1999-07-01

    The study contributes to improve the comprehension of intergranular embrittlement induced by the phosphorus segregation along prior austenitic grain boundaries of low alloy steels used in pressurized power reactor vessel. A part of this study was performed using a A533 steel which contains chemical fluctuations (ghost lines) with two intensities. Axi-symmetrically notched specimens were tested and intergranular brittle de-cohesions were observed in the ghost lines. The fracture initiation sites observed on fracture surfaces were identified as MnS inclusions. A bimodal statistic obtained in a probabilistic model of the fracture is explained by the double population of ghost lines' intensities. A metallurgical study was performed on the same class of steel by studying the influence of the microstructure on the susceptibility to temper embrittlement. Brittle fracture properties of such microstructures obtained by dilatometric experiments were tested on sub-sized specimens to measure the V-notched fracture toughness. Fraction areas of brittle fracture modes were determined on surface fractures. A transition of the fracture mode with the microstructure is observed. It is shown that tempered microstructures of martensite and lower bainite are more susceptible to intergranular embrittlement than tempered upper bainitic microstructure. The intergranular fracture is the most brittle mode. The analysis of crystalline mis-orientations shows a grain boundary structure appreciably more coherent for tempered microstructures of martensite and lower bainite. The higher density of randomgrain boundaries is susceptible to drag the phosphorus in the upper bainitic matrix and to make the quantity of free phosphorus decreasing. Microstructure observations show a difference in the size and the spatial distribution of carbides, essentially cementite, between tempered martensite and upper bainite. It can explain the bigger susceptibility of this last microstructure to cleavage mode

  1. Micromechanical Aspects of Transgranular and Intergranular Failure Competition

    Czech Academy of Sciences Publication Activity Database

    Dlouhý, Ivo; Tarafder, M.; Hadraba, Hynek

    2011-01-01

    Roč. 465, - (2011), s. 399-402 ISSN 1013-9826 R&D Projects: GA ČR(CZ) GAP107/10/0361 Institutional research plan: CEZ:AV0Z20410507 Keywords : intergranular fracture * cleavage * fracture toughness Subject RIV: JL - Materials Fatigue, Friction Mechanics

  2. Contribution of solution pH and buffer capacity to suppress intergranular stress corrosion cracking of sensitized type 304 stainless steel at 95 C

    International Nuclear Information System (INIS)

    Zhang, S.; Shibata, T.; Haruna, T.

    1999-01-01

    Controlling pH of high-temperature water to ∼pH 7 at 300 C by adding lithium hydroxide (LiOH) into the coolant system of a pressurized water reactor (PWR) successfully has been mitigating the corrosion of PWR component materials. The effects of solution pH and buffer capacity on intergranular stress corrosion cracking (IGSCC) of sensitized type 304 stainless steel ([SS] UNS S30400) was examined at 95 C by slow strain rate technique (SSRT) with an in-situ cracking observation system. It was found that an increase in solution pH or buffer capacity increased crack initiation time and decreased mean crack initiation frequency, but exerted almost no effect on crack propagation. This inhibition effect on IGSCC initiation was explained as resulting from a retarding effect of solution pH and buffer capacity on the decrease in pH at crack nuclei caused by the hydrolysis of metal ions dissolved when the passive film was ruptured by strain in SSRT

  3. Intergranular stresses in Incoloy-800

    International Nuclear Information System (INIS)

    Holden, T.M.; Holt, R.A.; Clarke, A.P.

    1997-01-01

    The generation of intergranular residual strains under uniaxial loading conditions in the plastic regime has been measured in detail by neutron diffraction in Incoloy-800. A relatively simple theory, based on the Taylor model, gives a good semiquantitative account of the magnitudes of the strains. The results clarify the interpretation of measurements made earlier on Incoloy-800 steam generator tubes. (author)

  4. Grain boundary segregation and intergranular failure

    International Nuclear Information System (INIS)

    White, C.L.

    1980-01-01

    Trace elements and impurities often segregate strongly to grain boundaries in metals and alloys. Concentrations of these elements at grain boundaries are often 10 3 to 10 5 times as great as their overall concentration in the alloy. Because of such segregation, certain trace elements can exert a disproportionate influence on material properties. One frequently observed consequence of trace element segregation to grain boundaries is the occurrence of grain boundary failure and low ductility. Less well known are incidences of improved ductility and inhibition of grain boundary fracture resulting from trace element segregation to grain boundaries in certain systems. An overview of trace element segregation and intergranular failure in a variety of alloy systems as well as preliminary results from studies on Al 3% Li will be presented

  5. Origin of intergranular embrittlement of Al alloys induced by Na and Ca segregation: Grain boundary weakening

    International Nuclear Information System (INIS)

    Lu Guanghong; Zhang Ying; Deng Shenghua; Wang Tianmin; Kohyama, Masanori; Yamamoto, Ryoichi; Liu Feng; Horikawa, Keitaro; Kanno, Motohiro

    2006-01-01

    Using a first-principles computational tensile test, we show that the ideal tensile strength of an Al grain boundary (GB) is reduced with both Na and Ca GB segregation. We demonstrate that the fracture occurs in the GB interface, dominated by the break of the interfacial bonds. Experimentally, we further show that the presence of Na or Ca impurity, which causes intergranular fracture, reduces the ultimate tensile strength when embrittlement occurs. These results suggest that the Na/Ca-induced intergranular embrittlement of an Al alloy originates mainly from the GB weakening due to the Na/Ca segregation

  6. Diffusion-coupled cohesive interface simulations of stress corrosion intergranular cracking in polycrystalline materials

    Energy Technology Data Exchange (ETDEWEB)

    Pu, Chao; Gao, Yanfei; Wang, Yanli; Sham, T. -L.

    2017-09-01

    To study the stress corrosion intergranular cracking mechanism, a diffusion-coupled cohesive zone model (CZM) is proposed for the simulation of the stress-assisted diffusional process along grain boundaries and the mechanical response of grain boundary sliding and separation. This simulation methodology considers the synergistic effects of impurity diffusion driven by pressure gradient and degradation of grain boundary strength by impurity concentration. The diffusion-coupled CZM is combined with crystal plasticity finite element model (CPFEM) to simulate intergranular fracture of polycrystalline material under corrosive environment. Significant heterogeneity of the stress field and extensive impurity accumulation is observed at grain boundaries and junction points. Deformation mechanism maps are constructed with respect to the grain boundary degradation factor and applied strain rate, which dictate the transition from internal to near-surface intergranular fracture modes under various strain amplitudes and grain sizes.

  7. Fat-suppressed T2-weighted MRI appearance of subchondral insufficiency fracture of the femoral head

    Energy Technology Data Exchange (ETDEWEB)

    Sonoda, Kazuhiko; Yamamoto, Takuaki; Motomura, Goro; Karasuyama, Kazuyuki; Kubo, Yusuke; Iwamoto, Yukihide [Kyushu University, Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Higashi-ku, Fukuoka (Japan)

    2016-11-15

    Our aims were to investigate the imaging appearance of subchondral insufficiency fracture (SIF) of the femoral head based on fat-suppressed T2-weighted MRI, and evaluate its correlation with the clinical outcomes following conservative treatment. We retrospectively evaluated 40 hips in 37 patients with SIF of the femoral head (12 males and 25 females; mean age 55.8 years, range 22-78 years). MRI examinations were performed within 3 months after the onset of hip pain. Using fat-suppressed T2-weighted imaging, we evaluated the hips for the intensity of the subchondral bone (corresponding to the area superior to the low intensity band on T1-weighted images) as well as bone marrow edema, joint effusion, and presence of the band lesion. We then correlated the intensity of the subchondral bone with clinical outcomes. The hips were classified into three types based on subchondral intensity on fat-suppressed T2-weighted images: type 1 (21 hips) showed high intensity, type 2 (eight hips) showed heterogeneous intensity, and type 3 (11 hips) showed low intensity. The mean period between pain onset and MRI examination was significantly longer for type 2 hips than for type 1. Healing rates were 86 % for type 1, 75 % for type 2, and 18 % for type 3. SIF cases were classified into three types based on subchondral intensity on fat-suppressed T2-weighted imaging performed within 3 months after pain onset. Type 3 SIF tended to be intractable to conservative treatment compared to type 1 and type 2. (orig.)

  8. Diffusion-controlled intergranular penetration and embrittlement of copper by liquid bismuth between 300 and 600 Celsius degrees

    International Nuclear Information System (INIS)

    Laporte, V.

    2005-02-01

    Hybrid reactors are a new concept for energy production and nuclear waste treatment. Among other requirements, structural materials have to withstand liquid metal embrittlement. This thesis aimed therefore to identify the controlling mechanism for the intergranular embrittlement of copper in contact with liquid bismuth. Scanning electron microscopy, Auger electron spectroscopy, X-ray photoelectron spectroscopy and Rutherford backscattering spectroscopy have been used to analyze fracture surfaces of both copper polycrystals and a copper bicrystal (symmetric tilt boundary 50 degrees ). These analyses reveal both parabolic intergranular penetration kinetics and a maximal intergranular bismuth concentration that is less than two monolayers equivalent. These two results allow us to identify grain boundary diffusion as the controlling mechanism for the intergranular penetration of copper by liquid bismuth between 300 and 600 Celsius degrees, showing the absence of perfect grain boundary wetting. (author)

  9. ON THE ORIGIN OF INTERGRANULAR JETS

    International Nuclear Information System (INIS)

    Yurchyshyn, V. B.; Goode, P. R.; Abramenko, V. I.; Steiner, O.

    2011-01-01

    We observe that intergranular jets, originating in the intergranular space surrounding individual granules, tend to be associated with granular fragmentation, in particular, with the formation and evolution of a bright granular lane (BGL) within individual granules. The BGLs have recently been identified as vortex tubes by Steiner et al. We further discover the development of a well-defined bright grain located between the BGL and the dark intergranular lane to which it is connected. Signatures of a BGL may reach the lower chromosphere and can be detected in off-band Hα images. Simulations also indicate that vortex tubes are frequently associated with small-scale magnetic fields. We speculate that the intergranular jets detected in the New Solar Telescope (NST) data may result from the interaction between the turbulent small-scale fields associated with the vortex tube and the larger-scale fields existing in the intergranular lanes. The intergranular jets are much smaller and weaker than all previously known jet-like events. At the same time, they appear much more numerous than the larger events, leading us to the speculation that the total energy release and mass transport by these tiny events may not be negligible in the energy and mass-flux balance near the temperature minimum atop the photosphere. The study is based on the photospheric TiO broadband (1.0 nm) filter data acquired with the 1.6 m NST operating at the Big Bear Solar Observatory. The data set also includes NST off-band Hα images collected through a Zeiss Lyot filter with a passband of 0.025 nm.

  10. Efectos intergranulares en perovskitas de manganeso nanocristalinas

    Directory of Open Access Journals (Sweden)

    Hueso, L. E.

    2000-06-01

    Full Text Available Intergranular magnetotransport effects are studied on polycrystalline manganites. Reducing grain size through sol-gel technology allows us to show new results on these materials. Intrinsic colossal magnetoresistance is destroyed in metalinsulator phase transition for grain size smaller than 150 nm. In low temperature region, that is, T < 30K, semiconductor resistivity behavior indicates Coulomb blockade between grains.

    En este artículo se examinan los efectos intergranulares sobre el transporte eléctrico en muestras cerámicas de perovskitas de manganeso que presentan magnetorresistencia colosal. La progresiva reducción del tamaño de partícula que nos permite la tecnología sol-gel hace que estos materiales muestren nuevas e inesperadas propiedades. Así, en la zona de la transición metal-aislante, se destruye la magnetorresistencia intrínseca del compuesto para tamaños de partícula D≤150 nm. A bajas temperaturas (T < 30K, la aparición de un comportamiento activado de la resistividad sugiere la presencia de Bloqueo de Coulomb entre granos.

  11. Intergranular corrosion mechanism of Alloy 400

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, W. [Univ. of Toronto, Dept. of Chemical Engineering and Applied Chemistry, Toronto, Ontario (Canada)

    2008-07-01

    The objective of this study is to find the reason for the intergranular corrosion (or intergranular attack, IGA) of Monel 400 (70Ni-30Cu) tubes that occurs occasionally in practice. Generally, the hypothesized factors of IGA for Monel 400 tubing could be crevices, dissolved oxygen, low pH, reduced sulfur species, and precipitation of impurities at grain boundaries. Electrochemical techniques including cyclic polarization and long-term potentiostatic polarization were used to test two heats of Monel 400 tubing that had behaved differently in practice. To simulate the situation within a crevice or under a deposit, cupric ions were added to the base solution, which was either neutral or acidic in pH. Artificial crevices without the addition of cupric ions in the base solution and a limiting current model were created which helped to elucidate the mechanism of IGA. The effect of thiourea as a representative reduced sulfur compound was investigated. The results show that in neutral solution IGA occurs with little sensitivity to metallurgy and does not require thiourea, but in acid solution it only occurs with thiourea addition, and particular grain boundary microstructures are more susceptible. (author)

  12. Disorder-induced melting in nickel: implication to intergranular sulfur embrittlement

    International Nuclear Information System (INIS)

    Heuer, J.K.; Okamoto, P.R.; Lam, N.Q.; Stubbins, J.F.

    2002-01-01

    Why and how sulfur segregation leads to intergranular embrittlement of nickel has been investigated by a combination of Auger electron spectroscopy, slow-strain-rate tensile tests, ion-implantation, and Rutherford backscattering spectrometry studies. Grain-boundary sulfur concentrations in dilute Ni-S alloys were systematically varied by time-controlled annealing of specimens at 625 deg. C. The critical sulfur concentration for 50% intergranular fracture of 15.5±3.4 at.% S was found to be, within experimental error, equal to the critical implant concentration of 14.2±3.3 at.% S required to induce 50% amorphization of single-crystal nickel during S + implantation at liquid nitrogen temperature. This suggests that segregation-induced intergranular embrittlement, like implantation-induced amorphization, may be a disorder-induced melting process, albeit one occurring locally at grain boundaries. In addition, a kinetic model for segregation-induced embrittlement based on Poisson statistics is introduced, and the synergistic effects of hydrogen-sulfur co-segregation on embrittlement are discussed

  13. A stereological approach for measuring the groove angles of intergranular corrosion

    International Nuclear Information System (INIS)

    Gwinner, B.; Borgard, J.-M.; Dumonteil, E.; Zoia, A.

    2017-01-01

    Highlights: • The ICG morphology has been characterized in 3D by X-ray μ-tomography. • The measurement of the angles of the IGC groove on 2D cross sections induces a bias. • A methodology is proposed to estimate the true value of the IGC groove angles in 3D. - Abstract: Non-sensitized austenitic stainless steels can be prone to intergranular corrosion when they are in contact with an oxidizing medium like nitric acid. Intergranular corrosion is characterized by the formation of grooves along the grain boundaries. The angle of these grooves is a key parameter, which directly informs of the intergranular corrosion kinetics. Most of the time, the angles of the grooves are experimentally measured on 2-dimensional cross sections of the corroded samples. This study discusses the relationship between the groove angle measured on 2-dimensional sections and the true groove angle in 3-dimensional space. This approach could also be easily extended to the study of crack angle in the domains of corrosion-fatigue, stress corrosion cracking or mechanical fracture.

  14. MAGNETIC FIELD TWISTING BY INTERGRANULAR DOWNDRAFTS

    Energy Technology Data Exchange (ETDEWEB)

    Taroyan, Youra; Williams, Thomas [Department of Physics, IMPACS, Aberystwyth University, Aberystwyth (United Kingdom)

    2016-10-01

    The interaction of an intergranular downdraft with an embedded vertical magnetic field is examined. It is demonstrated that the downdraft may couple to small magnetic twists leading to an instability. The descending plasma exponentially amplifies the magnetic twists when it decelerates with depth due to increasing density. Most efficient amplification is found in the vicinity of the level, where the kinetic energy density of the downdraft reaches equipartition with the magnetic energy density. Continual extraction of energy from the decelerating plasma and growth in the total azimuthal energy occurs as a consequence of the wave-flow coupling along the downdraft. The presented mechanism may drive vortices and torsional motions that have been detected between granules and in simulations of magnetoconvection.

  15. Physical fracture properties (fracture surfaces as information sources; crackgrowth and fracture mechanisms; exemples of cracks)

    International Nuclear Information System (INIS)

    Meny, Lucienne.

    1979-06-01

    Fracture surfaces are considered as a useful source of informations: an introduction to fractography is presented; the fracture surface may be observed through X ray microanalysis, and other physical methods such as Auger electron spectroscopy or secundary ion emission. The mechanisms of macroscopic and microscopic crackgrowth and fracture are described, in the case of unstable fracture (cleavage, ductile with shear, intergranular brittleness) and of progressive crack propagation (creep, fatigue). Exemples of cracks are presented in the last chapter [fr

  16. Grain boundary segregation of elements of groups 14 and 15 and its consequences for intergranular cohesion of ferritic iron

    Czech Academy of Sciences Publication Activity Database

    Lejček, Pavel; Šandera, P.; Horníková, J.; Řehák, Petr; Pokluda, J.

    2017-01-01

    Roč. 52, č. 10 (2017), s. 5822-5834 ISSN 0022-2461 R&D Projects: GA ČR GAP108/12/0144; GA MŠk(CZ) LQ1601 Institutional support: RVO:68378271 ; RVO:68081723 Keywords : grain boundary segregation * segregation enthalpy * intergranular fracture * strengthening/embrittling energy Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.599, year: 2016

  17. Intergranular attack evaluation from hideout return

    International Nuclear Information System (INIS)

    Nordmann, F.; Dupin, M.; Menet, O.; Fiquet, J.-M.

    1989-01-01

    Intergranular Attack (IGA) is the secondary side corrosion mechanism on PWR steam generator tubing, which can occur most frequently even with a good waterchemistry. It has moderately developed in a few French units. Consequently, several remedies have been implemented, such as sodium content decrease in makeup water and application of more stringent chemistry specifications. In order to evaluate the local chemistry in restricted areas where IGA may occur, a large hideout return programme has been carried out on many units. It shows that free alkalinity returning during shutdown is usually ranging from 0.5 to 5 g of sodium per steam generator, and that the required time to let it return is about 40 hours. However, high temperature pH calculations indicate that such an amount of alkalinity can correspond to a potentially corrosive solution in restricted areas, where a concentration factor of 10 5 to 10 7 can be reached, inducing a pH of 10 at 300 o C. Studies are still in progress in order to define when a shutdown should be required to allow hideout return and help to prevent IGA. (author)

  18. Study of twist boundaries in aluminium. Structure and intergranular diffusion

    International Nuclear Information System (INIS)

    Lemuet, Daniel

    1981-01-01

    This research thesis addresses the study of grain boundaries in oriented crystals, and more particularly the systematic calculation of intergranular structures and energies of twist boundaries of <001> axis in aluminium, the determination of intergranular diffusion coefficients of zinc in a set of twist bi-crystals of same axis encompassing a whole range of disorientations, and the search for a correlation between these experimental results and calculated structures

  19. Intergranular precipitation in aluminium-copper oriented bi-crystals

    International Nuclear Information System (INIS)

    Le Coze, Jean

    1972-01-01

    In the first part of this research thesis, the author addresses the fabrication of aluminium-copper oriented bi-crystals by discussing the specific problems raised by this fabrication, and by describing the aspect after a thermal treatment chosen to reach a defined objective: the visibility of precipitates in all grain boundaries, and a secondary role of kinetic parameters. The second part addresses the density of intergranular precipitates by reporting and commenting the results of precipitate numbering in symmetric and asymmetric boundaries performed by using optic microscopy. The third part addresses the dimensions and shapes of intergranular precipitates. The author there reports the study of the average dimensions of precipitates with respect to boundary nature. Some additional remarks are made regarding their shape and crystallographic nature. Numerical results are obtained from measurements performed on photographs of carbon replicates taken by using an electronic microscope. The author then reports the study of the width of the area of low precipitation density at the edge of boundaries. A copper assessment in the intergranular band is performed which shows the type of relationship which seems to exist between previously studied phenomena. Finally, the author reports the study of the relationship between boundary atomic structure and intergranular precipitation. A grain boundary model has been developed and allows a definition of intergranular germination sites to be obtained

  20. Intergranular area microalloyed aluminium-silicate ceramics fractal analysis

    Directory of Open Access Journals (Sweden)

    Purenović J.

    2013-01-01

    Full Text Available Porous aluminium-silicate ceramics, modified by alloying with magnesium and microalloying with alluminium belongs to a group of advanced multifunctional ceramics materials. This multiphase solid-solid system has predominantly amorphous microstructure and micro morphology. Intergranular and interphase areas are very complex, because they represent areas, where numbered processes and interactions take place, making new boundaries and regions with fractal nature. Fractal analysis of intergranular microstructure has included determination of ceramic grain fractal dimension by using Richardson method. Considering the fractal nature of intergranular contacts, it is possible to establish correlation between material electrical properties and fractal analysis, as a tool for future correlation with microstructure characterization. [Projekat Ministarstva nauke Republike Srbije, br. ON 172057 i br. III 45012

  1. Assessing resistance of stabilized corrosion resistant steels to intergranular corrosion

    International Nuclear Information System (INIS)

    Karas, A.; Cihal, V. Jr.; Vanek, V.; Herzan, J.; Protiva, K.; Cihal, V.

    1987-01-01

    Resistance to intergranular corrosion was determined for four types of titanium-stabilized steels from the coefficients of stabilization efficiency according to the degree the chemical composition was known. The ATA SUPER steel showed the highest resistance parameter value. The resistance of this type of steel of a specific composition, showing a relatively low value of mean nitrogen content was compared with steel of an optimized chemical composition and with low-carbon niobium stabilized, molybdenum modified steels. The comparison showed guarantees of a sufficient resistance of the steel to intergranular corrosion. The method of assessing the resistance to intergranular corrosion using the calculation of the minimum content of Cr', i.e., the effective chromium content, and the maximum effective carbon content C' giving the resistance parameter k seems to be prospective for practical use in the production of corrosion resistant steels. (author). 1 tab., 5 figs., 15 refs

  2. Mitigation of Intergranular Stress Corrosion Cracking in Al-Mg by Electrochemical Potential Control

    Science.gov (United States)

    McMahon, M. E.; Scully, J. R.; Burns, J. T.

    2017-08-01

    Intergranular stress corrosion cracking in the Al-Mg alloy AA5456-H116 is suppressed via cathodic polarization in 0.6 M NaCl, saturated (5.45 M) NaCl, 2 M MgCl2, and saturated (5 M) MgCl2. Three zones of intergranular stress corrosion cracking (IG-SCC) susceptibility correlate with pitting potentials of unsensitized AA5456-H116 and pure β phase (Al3Mg2) in each solution. These critical potentials reasonably describe the influence of α Al matrix and β phase dissolution rates on IG-SCC severity. Complete inhibition occurred at applied potentials of -1.0 V and -1.1 V versus saturated calomel electrode ( V SCE) in 0.6 M NaCl. Whereas only partial mitigation of IG-SCC was achieved at -0.9 V SCE in 0.6 M NaCl and at -0.9, -1.0, and -1.1 V SCE in the more aggressive environments. Correlation of pitting potentials in bulk environments with IG-SCC behavior suggests an effect of bulk environment [Cl-] and pH on the stabilized crack tip chemistry.

  3. Accelerated test for evaluation of intergranular stress corrosion cracking initiation characteristics of non-sensitized 316 austenitic stainless steel in simulated pressure water reactor environment

    International Nuclear Information System (INIS)

    Zhong, Xiangyu; Bali, Shirish Chandrakant; Shoji, Tetsuo

    2017-01-01

    Highlights: • Accelerated technique was developed for evaluation of stress corrosion cracking. • The effect of strain rate on stress corrosion cracking was investigated. • Typical intergranular crack feature was observed on the fracture surface. • The crack depth distribution shows two peaks feature. • The work hardened layer has a strong effect on stress corrosion cracking. - Abstract: Accelerated technique has been developed for evaluation of intergranular stress corrosion cracking (IGSCC) initiation behavior of non-sensitized materials in pressure water reactor environment by means of the implementation of hollowed cylindrical specimens under slow strain rate tensile. Typical IGSCC feature was observed on the fracture surface. The crack depth distribution showed two peaks feature which relates to the worked hardened layer on the inner surface. The specimens tested at lower strain rate showed higher fraction of IGSCC, larger number of cracks initiation, shorter elongation and smaller crack opening displacement, suggesting the transition behavior of IGSCC initiation and short crack growth.

  4. 3-D simulation of intergranular stress corrosion crack interactions

    International Nuclear Information System (INIS)

    Zhang, Y.; Marrow, T.J.; Sherry, A.H.

    2009-01-01

    Full text of publication follows: Intergranular stress corrosion cracking (IGSCC) in austenitic stainless steels is a potential failure mechanism, which is result of local grain boundary chromium depletion by carbide precipitation or irradiation-induced segregation. Reliable models of crack nucleation and growth, and their sensitivity to microstructure, are required to underpin lifetime prediction and develop more resistant materials. A model for 3-D IGSCC crack growth has been developed which reproduces the interactions between the microstructure, the mechanical driving force for cracking and the kinetics of crack growth. In this paper, this model is used to investigate the interaction between adjacent initiating cracks, to observe the growth of those cracks before/after coalescence, and examine the sensitivity of short crack behaviour to random variations in microstructure. The model predictions are assessed against experimental observations of short intergranular stress corrosion crack behaviour, obtained by in-situ digital image correlation techniques

  5. Low Serum Thyrotropin Level and Duration of Suppression as a Predictor of Major Osteoporotic Fractures-The OPENTHYRO Register Cohort

    DEFF Research Database (Denmark)

    Abrahamsen, Bo; Jørgensen, Henrik L; Laulund, Anne Sofie

    2014-01-01

    served all hospitals and General Practice (GP) practices in the region. Persons with raised TSH or a history of thyroid/pituitary disease or use of thyroid medications were excluded. The study population consisted of 222,138 (96%) persons with normal and 9217 (4%) with low TSH (... TSH at baseline was associated with increased risk of hip fractures (adj HR 1.16, 95% CI 1.07-1.26, p ... significance. We found a significant association between duration of thyrotoxicosis and fracture. For each 6 months in which the mean TSH value was decreased (hip fracture risk increased by a factor 1.07 (adj HR, 95% CI 1.04-1.10, p 

  6. Intergranular stress corrosion in soldered joints of stainless steel 304

    International Nuclear Information System (INIS)

    Zamora R, L.

    1994-01-01

    The intergranular stress cracking of welded joints of austenitic stainless steel, AISI 304, is a serious problem in BWR type reactors. It is associated with the simultaneous presence of three factors; stress, a critical media and sensibilization (DOS). EPR technique was used in order to verify the sensibilization degree in the base metal, and the zone affected by heat and welding material. The characterization of material was done. The objective of this work is the study of microstructure and the evaluation of EPR technique used for the determination of DOS in a welded plate of austenitic stainless steel AISI 304. (Author)

  7. Diffusion-controlled intergranular penetration and embrittlement of copper by liquid bismuth between 300 and 600 Celsius degrees; Penetration intergranulaire fragilisante du cuivre par le bismuth liquide: identification de la cinetique et du mecanisme de type diffusionnel entre 300 et 600 deg

    Energy Technology Data Exchange (ETDEWEB)

    Laporte, V

    2005-02-15

    Hybrid reactors are a new concept for energy production and nuclear waste treatment. Among other requirements, structural materials have to withstand liquid metal embrittlement. This thesis aimed therefore to identify the controlling mechanism for the intergranular embrittlement of copper in contact with liquid bismuth. Scanning electron microscopy, Auger electron spectroscopy, X-ray photoelectron spectroscopy and Rutherford backscattering spectroscopy have been used to analyze fracture surfaces of both copper polycrystals and a copper bicrystal (symmetric tilt boundary 50 degrees <100>). These analyses reveal both parabolic intergranular penetration kinetics and a maximal intergranular bismuth concentration that is less than two monolayers equivalent. These two results allow us to identify grain boundary diffusion as the controlling mechanism for the intergranular penetration of copper by liquid bismuth between 300 and 600 Celsius degrees, showing the absence of perfect grain boundary wetting. (author)

  8. Ten-year estimated risk of bone fracture in women with differentiated thyroid cancer under TSH-suppressive levothyroxine therapy.

    Science.gov (United States)

    Vera, Lara; Gay, Stefano; Campomenosi, Claudia; Paolino, Sabrina; Pera, Giorgia; Monti, Eleonora; Mortara, Lorenzo; Seriolo, Bruno; Giusti, Massimo

    2016-01-01

    After thyroidectomy and radioiodine therapy, patients with differentiated thyroid cancer (DTC) are indefinitely treated with levothyroxine (L-T4). Osteoporosis is a debated consequence of hypothyroxinaemia. The aim of this study was to evaluate bone mineral density (BMD) and fracture risk assessed by FRAX in a cohort of DTC women. Seventy-four women with DTC (aged 56.5 ± 9.9 years) treated at the mean age of 51.9 ± 12.0 years were studied. Baseline BMD and FRAX were evaluated after 3.0 years (median). BMD and FRAX were further evaluated 5.5 years (median) after the baseline evaluation. A cohort of 120 euthyroid women, matched for age, BMI, and menopausal status, were evaluated as controls. L-T4 dosages were 813.6 ± 208.8 μg/week and 782.1 ± 184.4 μg/week at the baseline and second evaluation, respectively. The risks of major osteoporotic fracture (MOF) and hip fracture (HF) were similar in DTC patients and in controls. In DTC women, significant changes in FRAX were found, with a higher increase in the probability of HF than of MOF. A similar change was found in controls. A significant inverse correlation (P < 0.001) between L-T4 dosage and HF/MOF probability on both first and second evaluations was found. A significant inverse correlation (P = 0.05) was found between fT4, TSH and duration of therapy and HF/MOF probability only on the second evaluation. FRAX increase is a multi-factorial, age-related phenomenon. The absence of correlations between L-T4 dosage, length of therapy or fT4 levels and FRAX does not enable us to attribute an increased fracture risk to DTC women with well-controlled disease on therapy. (Endokrynol Pol 2016; 67 (4): 350-358).

  9. Some aspects of the role of intergranular fluids in the compositional ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    the nature of element exchange between two minerals via the mediation of an intergranular fluid. It is shown that a coupling of thermodynamics and kinetics controls the evolution of the system and the concentration of an element in the intergranular fluid is a key parameter of interest. The results have important implications ...

  10. Grain-boundary microchemistry and intergranular cracking of irradiated austenitic stainless steels

    International Nuclear Information System (INIS)

    Chung, H.M.; Ruther, W.E.; Sanecki, J.E.; Kassner, T.F.

    1993-01-01

    Constant-extension-rate tensile tests and grain-boundary analysis by Auger electron spectroscopy were conducted on high and commercial-purity (HP and CP) Type 304 stainless steel (SS) specimens from irradiated boiling-water reactor (BWR) components to identify the mechanisms of irradiation-assisted stress corrosion cracking (IASCC). Contrary to previous beliefs, susceptibility to intergranular fracture could not be correlated with radiation-induced segregation of impurities such as Si, P, C, or S, but a correlation was obtained with grain-boundary Cr concentration, indicating a role for Cr depletion. Detailed analysis of grain-boundary chemistry was conducted on BWR neutron absorber tubes that were fabricated from two similar heats of HP Type 304 SS of virtually identical bulk chemical composition but exhibiting a significant difference in susceptibility to IASCC after irradiation to ∼2 x 10 21 n/cm 2 (E > 1 MeV). Grain-boundary concentrations of Cr Ni, Si, P, S, and C of the cracking-resistant and -susceptible HP heats were virtually identical. However, grain boundaries of the cracking-resistant material contained less N and more B and Li than those of the cracking-susceptible material. This observation indicates that, besides the deleterious effect of grain-boundary Cr depletion, a synergism between grain-boundary segregation of N and B and transmutation to H and Li plays an important role in IASCC

  11. Intergranular stress corrosion cracking of alloy 600 with dissolved oxygen content in primary water

    International Nuclear Information System (INIS)

    Kim, Y.S.; Maeng, W.Y.; Kim, S.S.

    2015-01-01

    Slow strain rate tests (SSRT) have been conducted using tensile specimens of Alloy 600 with a hump in simulated primary water of 360 Celsius degrees with dissolved oxygen (DO) of either 8 ppm or less than 10 ppb. At a strain rate of 2.5x10 -7 /s, Alloy 600 shows an elongation of 12.3% in water with 8 ppm DO but the lower elongation of 5.5% in water is obtained with below 10 ppb DO. Intergranular (IG) cracking was observed in Alloy 600 in water with below 10 ppb DO but not in water with 8 ppm DO especially along the outer regions of the fracture surface, which is in contrast with the internal oxidation mechanism. However, the inner regions of Alloy 600 showed IG cracking independent of the environment, indicating that IG cracking of Alloy 600 is an intrinsic phenomenon. Enhanced IG cracking of the Alloy 600 at DO below 10 ppb is found to be related to two times higher lattice contractions of the (200) planes in water with DO below 10 ppb, which results from a hydrogen-enhanced ordering transformation. (authors)

  12. A phenomenological variational multiscale constitutive model for intergranular failure in nanocrystalline materials

    KAUST Repository

    Siddiq, A.

    2013-09-01

    We present a variational multiscale constitutive model that accounts for intergranular failure in nanocrystalline fcc metals due to void growth and coalescence in the grain boundary region. Following previous work by the authors, a nanocrystalline material is modeled as a two-phase material consisting of a grain interior phase and a grain boundary affected zone (GBAZ). A crystal plasticity model that accounts for the transition from partial dislocation to full dislocation mediated plasticity is used for the grain interior. Isotropic porous plasticity model with further extension to account for failure due to the void coalescence was used for the GBAZ. The extended model contains all the deformation phases, i.e. elastic deformation, plastic deformation including deviatoric and volumetric plasticity (void growth) followed by damage initiation and evolution due to void coalescence. Parametric studies have been performed to assess the model\\'s dependence on the different input parameters. The model is then validated against uniaxial loading experiments for different materials. Lastly we show the model\\'s ability to predict the damage and fracture of a dog-bone shaped specimen as observed experimentally. © 2013 Elsevier B.V.

  13. Atomistic Structure, Strength, and Kinetic Properties of Intergranular Films in Ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Garofalini, Stephen H

    2015-01-08

    Intergranular films (IGFs) present in polycrystalline oxide and nitride ceramics provide an excellent example of nanoconfined glasses that occupy only a small volume percentage of the bulk ceramic, but can significantly influence various mechanical, thermal, chemical, and optical properties. By employing molecular dynamics computer simulations, we have been able to predict structures and the locations of atoms at the crystal/IGF interface that were subsequently verified with the newest electron microscopies. Modification of the chemistry of the crystal surface in the simulations provided the necessary mechanism for adsorption of specific rare earth ions from the IGF in the liquid state to the crystal surface. Such results had eluded other computational approaches such as ab-initio calculations because of the need to include not only the modified chemistry of the crystal surfaces but also an accurate description of the adjoining glassy IGF. This segregation of certain ions from the IGF to the crystal caused changes in the local chemistry of the IGF that affected fracture behavior in the simulations. Additional work with the rare earth ions La and Lu in the silicon oxynitride IGFs showed the mechanisms for their different affects on crystal growth, even though both types of ions are seen adhering to a bounding crystal surface that would normally imply equivalent affects on grain growth.

  14. Amorphous intergranular phases control the properties of rodent tooth enamel

    Science.gov (United States)

    Gordon, Lyle M.; Cohen, Michael J.; MacRenaris, Keith W.; Pasteris, Jill D.; Seda, Takele; Joester, Derk

    2015-02-01

    Dental enamel, a hierarchical material composed primarily of hydroxylapatite nanowires, is susceptible to degradation by plaque biofilm-derived acids. The solubility of enamel strongly depends on the presence of Mg2+, F-, and CO32-. However, determining the distribution of these minor ions is challenging. We show—using atom probe tomography, x-ray absorption spectroscopy, and correlative techniques—that in unpigmented rodent enamel, Mg2+ is predominantly present at grain boundaries as an intergranular phase of Mg-substituted amorphous calcium phosphate (Mg-ACP). In the pigmented enamel, a mixture of ferrihydrite and amorphous iron-calcium phosphate replaces the more soluble Mg-ACP, rendering it both harder and more resistant to acid attack. These results demonstrate the presence of enduring amorphous phases with a dramatic influence on the physical and chemical properties of the mature mineralized tissue.

  15. Mechanistic differences between transgranular and intergranular stress corrosion cracking

    International Nuclear Information System (INIS)

    Serebrinsky, Santiago A.; Galvele, Jose R.

    2000-01-01

    Constant extension rate tests (CERT or CSRT) with the strain rate (SR) covering a 7 orders of magnitude range were applied to the study of many systems. In particular, the kinetics of SCC were measured via the stress corrosion (SCC) crack propagation rate (CPR). The main experimental findings are: a) increasing SR produces a monotonic (logarithmic) increase in CPR; b) the slopes α in log CPR vs. log SR plots take distinct values depending on the morphology: intergranular (IG) cracks are more steeply accelerated by SR than transgranular (TG), with α lG =0.4 to 0.7 and α TG =0.2 to 0.3; c) an increase in SR only shifts the log CPR vs. potential curves to higher CPR values, without changing its shape. Quantitative evaluation shows that dislocations piled-up at grain boundaries may combine with the surface mobility mechanism to give the experimental results. (author)

  16. Weak Frictional Healing as Controlled by Intergranular Pressure Solution

    Science.gov (United States)

    He, C.

    2017-12-01

    Unstable fault slips due to velocity weakening requires a frictional healing effect that is stronger than the instantaneous rate effect. Based on a previous analytical result regarding the healing effect at spherical contacts by intergranular pressure solution (He et al., 2013), we extend the analysis to incorporate the full range of dilatancy angles from π/6 to -π/6, covering uphill and downhill situations of many contacts with different dilatancy angles. Assuming that both healing effect (parameter b) and instantaneous rate effect (parameter a) are controlled by intergranular pressure solution, and averaging over the whole range of dilatancy angle, our analysis derives each of the two effects as a function of temperature. The result shows velocity weakening for friction coefficient>0.274. As hydrothermal conditions are important for deep portion of actual fault zones, the strength of velocity weakening is of interest when the related faulting behavior is concerned. As a measure of the strength of velocity weakening, the derived ratio b/a fully controlled by pressure solution shows an upper bound of 1.22. Data analyses in previous studies on plagioclase (He et al., 2013) and oceanic basalt (Zhang and He, 2017) shows a range of b/a =1.05-1.2, consistent with the analytical result. The valuescontacts, especially under hydrothermal conditions in fault zones. For comparable ratios of system stiffness to the critical value, numerical simulations with a single-degree-of-freedom system show that a smaller b/a significantly reduces the peak slip velocity as a result of reduced period of free oscillation corresponding to the lower stiffness (Fig.1). This is an effect similar to that by reduced effective normal stress due to overpressure of pore fluid, which lowers the stiffness suitable for unstable slips, thus weakens the peak slip velocity.

  17. Martensitic transformation in an intergranular corrosion area of austenitic stainless steel during thermal cycling

    International Nuclear Information System (INIS)

    La Fontaine, Alexandre; Yen, Hung-Wei; Trimby, Patrick; Moody, Steven; Miller, Sarah; Chensee, Martin; Ringer, Simon; Cairney, Julie

    2014-01-01

    An oxidation-assisted martensitic phase transformation was observed in an austenitic stainless steel after thermal cycling up to 970 °C in air in a solar thermal steam reformer. The intergranular corrosion areas were investigated by electron backscatter diffraction (EBSD), transmission Kikuchi diffraction (TKD) and transmission electron microscopy (TEM). The structural-and-chemical maps revealed that within intergranular corrosion areas this martensitic transformation primarily occurs in oxidation-induced chromium-depleted zones, rather than due to only sensitization. This displacive transformation may also play a significant role in the rate at which intergranular corrosion takes place

  18. The Effect of Temperature on the Preferential Intergranular Oxidation Susceptibility of Alloy 600

    Science.gov (United States)

    Bertali, G.; Burke, M. G.; Scenini, F.; Huin, N.

    2018-02-01

    Oxidation studies were performed on solution-annealed Alloy 600 in high-temperature steam at 400 °C and in simulated pressurized water reactor primary water at 320 °C under environmental conditions where this alloy is known to be susceptible to intergranular stress corrosion cracking. Advanced analytical transmission electron microscopy characterization and detailed scanning electron microscopy analysis highlighted extensive preferential intergranular oxidation as well as enhanced Cr and O diffusivities associated with this oxidation. These findings, as well as the preferential intergranular oxidation susceptibility and diffusion-induced grain boundary migration, are discussed in terms of their roles as precursors to stress corrosion cracking.

  19. Imaging and thickness measurement of amorphous intergranular films using TEM

    International Nuclear Information System (INIS)

    MacLaren, I.

    2004-01-01

    Fresnel fringe analysis is shown to be unreliable for grain boundaries in yttrium-doped alumina: the determined thicknesses do not agree well with those measured from high resolution transmission electron microscopy (HRTEM), the asymmetry between under- and overfocus is very large, and Fresnel fringes are sometimes shown at boundaries which contain no amorphous film. An alternative approach to the analysis of HRTEM images of grain boundary films is demonstrated: Fourier filtering is used to remove the lattice fringes from the image thereby significantly enhancing the visibility of the intergranular films. The apparent film thickness shows a discrepancy between measurements from the original HRTEM image and the filtered image. It was shown that fringe delocalisation and diffuseness of the amorphous/crystalline interfaces will lead to a significant underestimate of the thickness in unprocessed HRTEM images. In contrast to this, the average thickness can be much more accurately measured from the Fourier-filtered image, provided the boundary is oriented accurately edge-on

  20. Electromigration of intergranular voids in metal films for microelectronic interconnects

    CERN Document Server

    Averbuch, A; Ravve, I

    2003-01-01

    Voids and cracks often occur in the interconnect lines of microelectronic devices. They increase the resistance of the circuits and may even lead to a fatal failure. Voids may occur inside a single grain, but often they appear on the boundary between two grains. In this work, we model and analyze numerically the migration and evolution of an intergranular void subjected to surface diffusion forces and external voltage applied to the interconnect. The grain-void interface is considered one-dimensional, and the physical formulation of the electromigration and diffusion model results in two coupled fourth-order one-dimensional time-dependent PDEs. The boundary conditions are specified at the triple points, which are common to both neighboring grains and the void. The solution of these equations uses a finite difference scheme in space and a Runge-Kutta integration scheme in time, and is also coupled to the solution of a static Laplace equation describing the voltage distribution throughout the grain. Since the v...

  1. Testing of intergranular and pitting corrosion in sensitized welded joints of austenitic stainless steel

    Directory of Open Access Journals (Sweden)

    Bore V. Jegdic

    2017-06-01

    Full Text Available Pitting corrosion resistance and intergranular corrosion of the austenitic stainless steel X5Cr Ni18-10 were tested on the base metal, heat affected zone and weld metal. Testing of pitting corrosion was performed by the potentiodynamic polarization method, while testing of intergranular corrosion was performed by the method of electrochemical potentiokinetic reactivation with double loop. The base metal was completely resistant to intergranular corrosion, while the heat affected zone showed a slight susceptibility to intergranular corrosion. Indicators of pitting corrosion resistance for the weld metal and the base metal were very similar, but their values are significantly higher than the values for the heat affected zone. This was caused by reduction of the chromium concentration in the grain boundary areas in the heat affected zone, even though the carbon content in the examined stainless steel is low (0.04 wt. % C.

  2. Double coating protection of Nd–Fe–B magnets: Intergranular phosphating treatment and copper plating

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jingwu; Chen, Haibo; Qiao, Liang [College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014 (China); Lin, Min [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering Chinese Academy of Science, Ningbo 315201 (China); Jiang, Liqiang; Che, Shenglei [College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014 (China); Hu, Yangwu, E-mail: 346648086@qq.com [College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014 (China); Wenzhou Institute of Industry and Science, Wenzhou 325000 (China)

    2014-12-15

    In this work, a double coating protection technique of phosphating treatment and copper plating was made to improve the corrosion resistance of sintered Nd–Fe–B magnets. In other words, the intergranular region of sintered Nd–Fe–B is allowed to generate passive phosphate conversion coating through phosphating treatment, followed by the copper coating on the surface of sintered Nd–Fe–B. The morphology and corrosion resistance of the phosphated sintered Nd–Fe–B were observed using SEM and electrochemical method respectively. The phosphate conversion coating was formed more preferably on the intergranular region of sintered Nd–Fe–B than on the main crystal region; just after a short time of phosphating treatment, the intergranular region of sintered Nd–Fe–B has been covered by the phosphate conversion coating and the corrosion resistance is significantly improved. With the synergistic protection of the intergranular phosphorization and the followed copper electrodeposition, the corrosion resistance of the sintered Nd–Fe–B is significantly better than that with a single phosphate film or single plating protection. - Highlights: • We combined intergranular phosphating and copper plating to protect Nd–Fe–B. • The phosphate conversion coating was formed preferably on the intergranular region. • The phosphating coating can obviously improve the corrosion resistance of Nd–Fe–B. • The corrosion resistance of Nd–Fe–B was improved by double coating protection.

  3. The effect of water quality on the intergranular attack of inconel alloy 600 in deaerated water at 350 deg C

    International Nuclear Information System (INIS)

    Hirano, Hideo; Takaku, Hiroshi

    1987-01-01

    Intergranular Attack (IGA) tests were conducted to examine the effect of water quality on the IGA of Inconel alloy 600 in deaerated water at 350 deg C. The main test results are as follows. (1) The inhibitory effect of boric acid on IGA has been studied. IGA and SCC propagation rates in NaOH 20 wt%-Na 2 CO 3 4 wt% apueous solution were extremely suppressed by the addition of boric acid, and the numbers of SCC cracks also extremely decreased. IGA and SCC did not occure in 10 4 ppm boric acid apueous solution, and IGA initiated in NaOH 20 wt%-Na 2 CO 3 4 wt% solution did not propagate in 10 4 ppm boric acid solution. (2) The Effect of HCI and H 2 SO 4 on IGA has been studied. In 10 ppm HCl solution, SCC occures but IGA did not occure. On the other hand, IGA and SCC occurred in HCI 40 ppm-H 2 SO 4 60 ppm solution. The addition of boric acid into HCI 40 ppm-H 2 SO 4 60 ppm solution did not suppressed IGA. (3) The inhibitory effect of some chemical species on IGA was examined. CH 3 COOH, NaNO 3 , Ca(NO 3 ) 2 and GeCl 4 suppressed IGA and SCC. (author)

  4. Ultrasonic inspection reliability for intergranular stress corrosion cracks

    Energy Technology Data Exchange (ETDEWEB)

    Heasler, P G; Taylor, T T; Spanner, J C; Doctor, S R; Deffenbaugh, J D [Pacific Northwest Lab., Richland, WA (USA)

    1990-07-01

    A pipe inspection round robin entitled Mini-Round Robin'' was conducted at Pacific Northwest Laboratory from May 1985 through October 1985. The research was sponsored by the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research under a program entitled Evaluation and Improvement of NDE Reliability for Inservice Inspection of Light Water Reactors.'' The Mini-Round Robin (MRR) measured the intergranular stress corrosion (GSC) crack detection and sizing capabilities of inservice inspection (ISI) inspectors that had passed the requirements of IEB 83-02 and the Electric Power Research Institute (EPRI) sizing training course. The MRR data base was compared with an earlier Pipe Inspection Round Robin (PIRR) that had measured the performance of inservice inspection prior to 1982. Comparison of the MRR and PIRR data bases indicates no significant change in the inspection capability for detecting IGSCC. Also, when comparing detection of long and short cracks, no difference in detection capability was measured. An improvement in the ability to differentiate between shallow and deeper IGSCC was found when the MRR sizing capability was compared with an earlier sizing round robin conducted by the EPRI. In addition to the pipe inspection round robin, a human factors study was conducted in conjunction with the Mini-Round Robin. The most important result of the human factors study is that the Relative Operating Characteristics (ROC) curves provide a better methodology for describing inspector performance than only probability of detection (POD) or single-point crack/no crack data. 6 refs., 55 figs., 18 tabs.

  5. Fracture performance of high strength steels, aluminium and magnesium alloys during plastic deformation

    Directory of Open Access Journals (Sweden)

    Yu Haiyan

    2015-01-01

    Full Text Available A series of uniaxial tension tests were performed for 5052 and 6061 aluminum alloys, AZ31B magnesium alloy, TRIP600 and DP600 steels, to obtain a better understanding of their fracture performance. Scanning electron microscope (SEM observation of the microstructure evolution was conducted. The dimple structure, orientation relationship between the fracture surface and tensile direction, necking behavior were analyzed. The fracture mechanism and fracture mode of each material was discussed in detail. The results show that TRIP600 steel is subject to a typical inter-granular ductile fracture combined by shear fracture. DP600 steel belongs to mainly ductility mixed with normal fracture. Both 5052 and 6061 aluminum alloys are subject to a mixed ductility fracture and brittle fracture. AA5052 and AA6061 belong to a typical shear fracture and a normal fracture, respectively. Magnesium AZ31B is typical of a brittle fracture combined with normal fracture.

  6. Nose fracture

    Science.gov (United States)

    Fracture of the nose; Broken nose; Nasal fracture; Nasal bone fracture; Nasal septal fracture ... A fractured nose is the most common fracture of the face. It most ... occurs with other fractures of the face. Nose injuries and neck ...

  7. Microstructure and temperature dependence of intergranular strains on diffractometric macroscopic residual stress analysis

    International Nuclear Information System (INIS)

    Wagner, J.N.; Hofmann, M.; Wimpory, R.; Krempaszky, C.; Stockinger, M.

    2014-01-01

    Knowledge of the macroscopic residual stresses in components of complex high performance alloys is crucial when it comes to considering the safety and manufacturing aspects of components. Diffraction experiments are one of the key methods for studying residual stresses. However a component of the residual strain determined by diffraction experiments, known as microstrain or intergranular residual strain, occurs over the length scale of the grains and thus plays only a minor role for the life time of such components. For the reliable determination of macroscopic strains (with the minimum influence of these intergranular residual strains), the ISO standard recommends the use of particular Bragg reflections. Here we compare the build-up of intergranular strain of two different precipitation hardened IN 718 (INCONEL 718) samples, with identical chemical composition. Since intergranular strains are also affected by temperature, results from room temperature measurement are compared to results at T=550 °C. It turned out that microstructural parameters, such as grain size or type of precipitates, have a larger effect on the intergranular strain evolution than the influence of temperature at the measurement temperature of T=550 °C. The results also show that the choice of Bragg reflections for the diffractometric residual stress analysis is dependent not only on its chemical composition, but also on the microstructure of the sample. In addition diffraction elastic constants (DECs) for all measured Bragg reflections are given

  8. Identification of modes of fracture in a 2618-T6 aluminum alloy using stereophotogrammetry

    Energy Technology Data Exchange (ETDEWEB)

    Salas Zamarripa, A., E-mail: a.salaszamarripa@gmail.com [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon. Av. Universidad S/N, Ciudad Universitaria, C.P. 66451, Apartado Postal 076 Suc. ' F' San Nicolas de los Garza, N.L. (Mexico); Pinna, C.; Brown, M.W. [Department of Mechanical Engineering, University of Sheffield. Sir Frederick Mappin Building, Mappin Street, Sheffield, S1 3JD (United Kingdom); Mata, M.P. Guerrero; Morales, M. Castillo; Beber-Solano, T.P. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon. Av. Universidad S/N, Ciudad Universitaria, C.P. 66451, Apartado Postal 076 Suc. ' F' San Nicolas de los Garza, N.L. (Mexico)

    2011-12-15

    The identification and the development of a quantification technique of the modes of fracture in fatigue fracture surfaces of a 2618-T6 aluminum alloy were developed during this research. Fatigue tests at room and high temperature (230 Degree-Sign C) were carried out to be able to compare the microscopic fractographic features developed by this material under these testing conditions. The overall observations by scanning electron microscopy (SEM) of the fracture surfaces showed a mixture of transgranular and ductile intergranular fracture. The ductile intergranular fracture contribution appears to be more significant at room temperature than at 230 Degree-Sign C. A quantitative methodology was developed to identify and to measure the contribution of these microscopic fractographic features. The technique consisted of a combination of stereophotogrammetry and image analysis. Stereo-pairs were randomly taken along the crack paths and were then analyzed using the profile module of MeX software. The analysis involved the 3-D surface reconstruction, the trace of primary profile lines in both vertical and horizontal directions within the stereo-pair area, the measurements of the contribution of the modes of fracture in each profile, and finally, the calculation of the average contribution in each stereo-pair. The technique results confirmed a higher contribution of ductile intergranular fracture at room temperature than at 230 Degree-Sign C. Moreover, there was no indication of a direct relationship between this contribution and the strain amplitudes range applied during the fatigue testing. - Highlights: Black-Right-Pointing-Pointer Stereophotogrammetry and image analysis as a measuring tool of modes of fracture in fatigue fracture surfaces. Black-Right-Pointing-Pointer A mixture of ductile intergranular and transgranular fracture was identified at room temperature and 230 Degree-Sign C testing. Black-Right-Pointing-Pointer Development of a quantitative methodology to

  9. Fracture Mechanics

    International Nuclear Information System (INIS)

    Jang, Dong Il; Jeong, Gyeong Seop; Han, Min Gu

    1992-08-01

    This book introduces basic theory and analytical solution of fracture mechanics, linear fracture mechanics, non-linear fracture mechanics, dynamic fracture mechanics, environmental fracture and fatigue fracture, application on design fracture mechanics, application on analysis of structural safety, engineering approach method on fracture mechanics, stochastic fracture mechanics, numerical analysis code and fracture toughness test and fracture toughness data. It gives descriptions of fracture mechanics to theory and analysis from application of engineering.

  10. Microtomography-based Inter-Granular Network for the simulation of radionuclide diffusion and sorption in a granitic rock

    Science.gov (United States)

    Iraola, Aitor; Trinchero, Paolo; Voutilainen, Mikko; Gylling, Björn; Selroos, Jan-Olof; Molinero, Jorge; Svensson, Urban; Bosbach, Dirk; Deissmann, Guido

    2017-12-01

    Field investigation studies, conducted in the context of safety analyses of deep geological repositories for nuclear waste, have pointed out that in fractured crystalline rocks sorbing radionuclides can diffuse surprisingly long distances deep into the intact rock matrix; i.e. much longer distances than those predicted by reactive transport models based on a homogeneous description of the properties of the rock matrix. Here, we focus on cesium diffusion and use detailed micro characterisation data, based on micro computed tomography, along with a grain-scale Inter-Granular Network model, to offer a plausible explanation for the anomalously long cesium penetration profiles observed in these in-situ experiments. The sparse distribution of chemically reactive grains (i.e. grains belonging to sorbing mineral phases) is shown to have a strong control on the diffusive patterns of sorbing radionuclides. The computed penetration profiles of cesium agree well with an analytical model based on two parallel diffusive pathways. This agreement, along with visual inspection of the spatial distribution of cesium concentration, indicates that for sorbing radionuclides the medium indeed behaves as a composite system, with most of the mass being retained close to the injection boundary and a non-negligible part diffusing faster along preferential diffusive pathways.

  11. Intergranular pressure solution in halite aggregates and quartz sands : an experimental investigation

    NARCIS (Netherlands)

    Schutjens, P.M.T.M.

    1991-01-01

    This thesis reports an experimental investigation into intergranular pressure solution (IPS) as a compaction mechanism in wet (i.e. brine-saturated) halite aggregates and wet quartz sands. The aims were to determine the compaction behaviour under conditions favouring IPS, to clarify the

  12. Intergranular pressure solution in halite aggregates and quartz sands : an experimental investigation

    NARCIS (Netherlands)

    Schutjens, P.M.T.M.

    1991-01-01

    This thesis reports an experimental investigation into intergranular pressure solution (IPS) as a compaction mechanism in wet (i.e. brine-saturated) halite aggregates and wet quartz sands. The aims were to determine the compaction behaviour under conditions favouring IPS, to clarify the underlying

  13. Height-dependent Velocity Structure of Photospheric Convection in Granules and Intergranular Lanes with Hinode /SOT

    Energy Technology Data Exchange (ETDEWEB)

    Oba, T. [Department of Space and Astronautical Science/SOKENDAI (The Graduate University for Advanced Studies), 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Iida, Y. [Department of Science and Technology/Kwansei Gakuin University, Gakuen 2-1, Sanda, Hyogo 669-1337 (Japan); Shimizu, T., E-mail: oba.takayoshi@ac.jaxa.jp [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan)

    2017-02-10

    The solar photosphere is the visible surface of the Sun, where many bright granules, surrounded by narrow dark intergranular lanes, are observed everywhere. The granular pattern is a manifestation of convective motion at the photospheric level, but its velocity structure in the height direction is poorly understood observationally. Applying bisector analysis to a photospheric spectral line recorded by the Hinode Solar Optical Telescope, we derived the velocity structure of the convective motion in granular regions and intergranular lanes separately. The amplitude of motion of the convective material decreases from 0.65 to 0.40 km s{sup −1} as the material rises in granules, whereas the amplitude of motion increases from 0.30 to 0.50 km s{sup −1} as it descends in intergranular lanes. These values are significantly larger than those obtained in previous studies using bisector analysis. The acceleration of descending materials with depth is not predicted from the convectively stable condition in a stratified atmosphere. Such convective instability can be developed more efficiently by radiative cooling and/or a gas pressure gradient, which can control the dynamical behavior of convective material in intergranular lanes. Our analysis demonstrated that bisector analysis is a useful method for investigating the long-term dynamic behavior of convective material when a large number of pixels is available. In addition, one example is the temporal evolution of granular fragmentation, in which downflowing material develops gradually from a higher layer downward.

  14. Fracture in Soft Materials

    DEFF Research Database (Denmark)

    Hassager, Ole

    Fracture is a phenomenon that is generally associated with solids. A key element in fracture theory is the so-called weakest link idea that fracture initiates from the largest pre-existing material imperfection. However, recent work has demonstrated that fracture can also happen in liquids, where...... surface tension will act to suppress such imperfections. Therefore, the weakest link idea does not seem immediately applicable to fracture in liquids. This presentation will review fracture in liquids and argue that fracture in soft liquids is a material property independent of pre-existing imperfections....... The following questions then emerge: What is the material description needed to predict crack initiation, crack speed and crack shape in soft materials and liquids....

  15. Intergranular stress corrosion cracking of ion irradiated 304L stainless steel in PWR environment

    International Nuclear Information System (INIS)

    Gupta, Jyoti

    2016-01-01

    IASCC is irradiation - assisted enhancement of intergranular stress corrosion cracking susceptibility of austenitic stainless steel. It is a complex degrading phenomenon which can have a significant influence on maintenance time and cost of PWRs' core internals and hence, is an issue of concern. Recent studies have proposed using ion irradiation (to be specific, proton irradiation) as an alternative of neutron irradiation to improve the current understanding of the mechanism. The objective of this study was to investigate the cracking susceptibility of irradiated SA 304L and factors contributing to cracking, using two different ion irradiations; iron and proton irradiations. Both resulted in generation of point defects in the microstructure and thereby causing hardening of the SA 304L. Material (unirradiated and iron irradiated) showed no susceptibility to intergranular cracking on subjection to SSRT with a strain rate of 5 * 10 -8 s -1 up to 4 % plastic strain in inert environment. But, irradiation (iron and proton) was found to increase intergranular cracking severity of material on subjection to SSRT in simulated PWR primary water environment at 340 C. Correlation between the cracking susceptibility and degree of localization was studied. Impact of iron irradiation on bulk oxidation of SA 304L was studied as well by conducting an oxidation test for 360 h in simulated PWR environment at 340 C. The findings of this study indicate that the intergranular cracking of 304L stainless steel in PWR environment can be studied using Fe irradiation despite its small penetration depth in material. Furthermore, it has been shown that the cracking was similar in both iron and proton irradiated samples despite different degrees of localization. Lastly, on establishing iron irradiation as a successful tool, it was used to study the impact of surface finish and strain paths on intergranular cracking susceptibility of the material. (author) [fr

  16. The probability distribution of intergranular stress corrosion cracking life for sensitized 304 stainless steels in high temperature, high purity water

    International Nuclear Information System (INIS)

    Akashi, Masatsune; Kenjyo, Takao; Matsukura, Shinji; Kawamoto, Teruaki

    1984-01-01

    In order to discuss the probability distribution of intergranular stress corrsion carcking life for sensitized 304 stainless steels, a series of the creviced bent beem (CBB) and the uni-axial constant load tests were carried out in oxygenated high temperature, high purity water. The following concludions were resulted; (1) The initiation process of intergranular stress corrosion cracking has been assumed to be approximated by the Poisson stochastic process, based on the CBB test results. (2) The probability distribution of intergranular stress corrosion cracking life may consequently be approximated by the exponential probability distribution. (3) The experimental data could be fitted to the exponential probability distribution. (author)

  17. Reheat cracking of austenitic stainless steels - pre-strain effect on intergranular damage

    International Nuclear Information System (INIS)

    Auzoux, Q.

    2004-01-01

    Welding process induces strain in 316 stainless steel affected zones. Their microstructure was reproduce by rolling of three different steels (316L, 316L(N) et 316H). Traction, creep and relaxation tests were performed at 550 deg C and 600 deg C on smooth, notched and pre-cracked specimens. Pre-strain by rolling increases the hardness and the creep resistance because of the high dislocation density but decreases ductility because of the fast development of intergranular damage. This embrittlement leads to crack propagation during relaxation tests on pre-strained steels without distinction in respect to their carbon or nitrogen content. A new intergranular damage model was built using local micro-cracks measurements and finite elements analysis. Pre-strain effect and stress triaxiality ratio effect are reproduced by the modelling so that the reheat cracking risk near welds can now be estimated. (author)

  18. Intergranular Strain Evolution During Biaxial Loading: A Multiscale FE-FFT Approach

    Science.gov (United States)

    Upadhyay, M. V.; Capek, J.; Van Petegem, S.; Lebensohn, R. A.; Van Swygenhoven, H.

    2017-05-01

    Predicting the macroscopic and microscopic mechanical response of metals and alloys subjected to complex loading conditions necessarily requires a synergistic combination of multiscale material models and characterization techniques. This article focuses on the use of a multiscale approach to study the difference between intergranular lattice strain evolution for various grain families measured during in situ neutron diffraction on dog bone and cruciform 316L samples. At the macroscale, finite element simulations capture the complex coupling between applied forces and gauge stresses in cruciform geometries. The predicted gauge stresses are used as macroscopic boundary conditions to drive a mesoscale full-field elasto-viscoplastic fast Fourier transform crystal plasticity model. The results highlight the role of grain neighborhood on the intergranular strain evolution under uniaxial and equibiaxial loading.

  19. Characterization of acoustic emission signals generated by water flow through intergranular stress corrosion cracks

    International Nuclear Information System (INIS)

    Claytor, T.N.; Kupperman, D.S.

    1985-05-01

    A program is under way at Argonne National Laboratory (ANL) to develop an independent capability to assess the effectiveness of current and proposed techniques for acoustic leak detection (ALD) in reactor coolant systems. The program will establish whether meaningful quantitative data on flow rates and leak location can be obtained from acoustic signatures of leaks due to intergranular stress corrosion cracks (TGSCCs) and fatigue cracks, and whether these can be distinguished from other types of leaks. 5 refs., 3 figs

  20. Intergranular stress corrosion cracking of ion irradiated 304L stainless steel in PWR environment

    OpenAIRE

    Gupta, Jyoti

    2016-01-01

    IASCC is irradiation – assisted enhancement of intergranular stress corrosion cracking susceptibility of austenitic stainless steel. It is a complex degrading phenomenon which can have a significant influence on maintenance time and cost of PWRs’ core internals and hence, is an issue of concern. Recent studies have proposed using ion irradiation (to be specific, proton irradiation) as an alternative of neutron irradiation to improve the current understanding of the mechanism. The objective of...

  1. Thresholds of time dependent intergranular crack growth in a nickel disc alloy Alloy 720Li

    Directory of Open Access Journals (Sweden)

    Li Hangyue

    2014-01-01

    Full Text Available At high temperatures in air, introducing a dwell period at the peak stress of fatigue cycles promotes time dependent intergranular crack growth which can increase crack growth rates by upto a few orders of magnitude from the rates of transgranular fatigue crack growth in superalloys. It is expected that time dependent intergranular crack growth in nickel-based superalloys may not occur below a critical mechanical driving force, ΔKth−IG, analogous to a fatigue threshold (ΔKth and a critical temperature, Tth. In this study, dwell fatigue crack growth tests have been carefully designed and conducted on Alloy 720Li to examine such thresholds. Unlike a fatigue threshold, the threshold stress intensity factor range for intergranular crack growth is observed to be highly sensitive to microstructure, dwell time and test procedure. The near threshold crack growth behaviour is made complex by the interactions between grain boundary oxidation embrittlement and crack tip stress relaxation. In general, lower ΔKth−IG values are associated with finer grain size and/or shorter dwell times. Often a load increasing procedure promotes stress relaxation and tends to lead to higher ΔKth−IG. When there is limited stress relaxation at the crack tip, similar ΔKth−IG values are measured with load increasing and load shedding procedures. They are generally higher than the fatigue threshold (ΔKth despite faster crack growth rates (da/dN in the stable crack growth regime. Time dependent intergranular crack growth cannot be activated below a temperature of 500 ∘C.

  2. Microstructural Evidences of Intergranular Pressure Solution during Frictional Sliding at Hydrothermal Conditions

    Science.gov (United States)

    Ma, X.; Yao, S.; He, C.

    2017-12-01

    In the framework of rate- and state-dependent friction, velocity weakening is the result of a healing effect at intergranular contacts that is stronger than the instantaneous rate effect. Intergranular pressure solution has been proposed to be a feasible mechanism for the frictional healing effect (He et al., 2013), but to date no substantial evidences have been reported in related microstructures. In this study we report our reanalyses on samples of plagioclase gouge deformed at hydrothermal conditions with effective normal stresses of 100 MPa, 200 MPa, and 300 MPa, pore pressures of 30 MPa and 100 MPa, and temperatures from 100oC to 600oC. With an Inlens image detector in a scanning electron microscope, our focus is to find the evidences of the pressure solution processes during frictional sliding. As it has been difficult to observe the signatures of pressure solution during frictional sliding at the solution sites due to the short contact time of frequently-switching contact pairs, now we focus on the results of precipitation instead, which is the final process of pressure solution. With high magnification, we find the following evidences of intergranular pressure solution: 1) crystal growth as a result of precipitation is ubiquitously observed in deformed samples at temperatures above 200oC; 2) very fine-grained precipitated particles with flaky morphologies typically appear in intensely sheared regions and between relatively large particles in moderately sheared regions; 3) the precipitated grains are concentrated periodically in zones orientated at 45-50 degrees to the fault strike. These observations indicate that intergranular pressure solution is the dominant process responsible for the frictional healing effect.

  3. Intergranular oxidation of alloy 600 exposed to simulated PWR primary water

    International Nuclear Information System (INIS)

    Giovanna Caballero Hinostroza, J.; Duhamel, C.; Crepin, J.; Couvant, T.

    2015-01-01

    Intergranular stress corrosion cracking (IGSCC) of Alloy 600 in PWR environment is a phenomenon that involves several factors related to the material, the environment and the mechanical loading. Previous studies suggest that the intrusion of oxide along grain boundaries is the key step in the initiation of IGSCC. This work focuses on the effect of dissolved hydrogen content and the role of chromium carbides on the intergranular oxidation kinetics. Oxidation tests are carried out on non-stressed specimens in autoclave with hydrogen contents ranging between 3 and 60 mLH 2 /kg H 2 O. The surface and intergranular oxides formed are characterized by analytical transmission electron microscopy (ATEM). Results of short oxidation tests (100 h) show that chromium carbides have a high reactivity compared to the matrix. For grain boundaries with emerging chromium carbide at the surface, regardless of the dissolved hydrogen content, an enhanced oxidation at the top of carbides is observed followed by a preferential oxide growth at the matrix carbide/interface. On the contrary, grain boundaries without chromium carbides at the surface may be slightly oxidized. Longer oxidation tests (1000 h) show that if chromium carbides are buried in the matrix, oxidation ingress along the grain boundaries is delayed. (authors)

  4. Discontinuous Inter-Granular Separations (DIGS) in the Gas Nitride Layer of ISS Race Rings

    Science.gov (United States)

    Figert, John; Dasgupta, Rajib; Martinez, James

    2010-01-01

    The starboard solar alpha rotary joint (SARJ) race ring on the International space station (ISS) failed due to severe spalling of the outer diameter, 45 degree (outer canted) nitrided surface. Subsequent analysis at NASA-KSC revealed that almost all of the debris generated due to the failure was nitrided 15-5 stainless steel. Subsequent analysis of the nitride control coupons (NCC) at NASA-JSC revealed the presence of discontinuous inter-granular separations (DIGS) in the gas nitride layer. These DIGS were present in the inter-granular networking located in the top 2 mils of the nitride layer. The manufacturer's specification requires the maximum white structure to be 0.0003 inches and intergranular networking below the allowable white structure depth to be cause for rejection; a requirement that the NCCs did not meet. Subsequent testing and analysis revealed that lower DIGS content significantly lowered the probability of nitride spalling in simulated, dry condition runs. One batch of nitride samples with DIGS content similar to the port SARJ (did not fail on orbit) which exhibited almost no nitride spalling after being run on one test rig. Another batch of nitride samples with DIGS content levels similar to the starboard SARJ exhibited significant nitride spalling on the same test rig with the same load under dry conditions. Although DIGS were not the root cause of starboard race ring failure, testing indicates that increased DIGS reduced the robustness of the gas nitride layer under dry operating conditions.

  5. Effect of intergranular stress on yielding of 316H during room temperature cyclic loading

    International Nuclear Information System (INIS)

    Assessment of cyclic deformation is an integral part of nuclear power plant life assessment code, as many of the components in plant go through scheduled and unscheduled cyclic deformation owing to varying thermal and mechanical stresses. In polycrystalline material like 316H, a type of micro stress known as intergranular stress is generated due to elastic and plastic anisotropies during such cyclic loading. In tension-compression loading cycles, these stresses remain in the material as a residual stress upon unloading to zero stress from the tensile/compressive peak or intermediates stresses. The magnitude of these stresses vary depending on the point in the cycle from which it was unloaded from. When the material is re-loaded either in the same or reverse loading direction these residual stresses increase or decrease the effective stress acting in the material and as such the macroscopic yield stress of the material in subsequent cycle is changed significantly. The magnitude of intergranular stresses in many differently oriented grain families can be measured simultaneously using time of flight (ToF) neutron diffraction technique. In this paper, we have used this technique to experimentally study, how these intergranular stresses affect the yield (proof) stress of 316H at room temperature. (author)

  6. Structural analysis and intergranular corrosion tests of AISI 316L steel.

    Science.gov (United States)

    Stonawská, Z; Svoboda, M; Sozańska, M; Krístková, M; Sojka, J; Dagbert, C; Hyspecká, L

    2006-10-01

    Pure AISI 316L steel is investigated after solution heat treatment (1050 degrees C/H(2)O) and structural sensitization (650 degrees C). Two quite different intergranular corrosion tests are used to determine the degree of structural sensitization due to the precipitation of secondary phases along the grain boundaries (mainly the M(23)C(6) and sigma-phase): the oxalic acid etch test and the electrochemical potentio-kinetic reactivation test. Generally, the dissolution of chromium-rich carbides (M(23)C(6)) is provoked by oxalic acid etch tests, whereas the chromium-depleted zones, in the vicinity of chromium-rich carbides (M(23)C(6)), are attacked by electrochemical potentio-kinetic reactivation tests. Both intergranular corrosion tests are used to determine the maximum degree of structural sensitization. Thus structural analysis by carbon replicas reveals the Laves phase, and both the M(23)C(6) and (Cr,Mo)(x)(Fe,Ni)(y) phases. The results of intergranular corrosion tests are related to the findings of the structural analysis.

  7. Correlation between low-temperature creep and intergranular diffusion of Kh16N15M3B type steel

    International Nuclear Information System (INIS)

    Solonin, M.I.; Kondrat'ev, V.P.; Krasina, T.A.; Voejkov, V.P.; Tarasyuk, V.B.; Fedorov, G.B.; Ryabenko, A.V.

    1990-01-01

    The results are presented for Kh16N15M3B type steel containing different amounts of carbon, molybdenum and niobium that was tested the diffusion mobility of iron-59 species. It is shown that at 400-500 deg C the diffusion of iron-59 is only intergranular. The correlation established between creep and diffusion. It is shwn that the activation energies for creep and intergranular diffusion correlate. 5 refs.; 4 figs.; 3 tabs

  8. Intergranular corrosion on the secondary coolant side of french PWR steam generators tubes

    International Nuclear Information System (INIS)

    Nordmann, F.; Cattant, F.; Comby, R.

    1990-01-01

    Intergranular corrosion on the OD of steam generator tubes in French units, led only to a very few plugged tubes, contrarily to most of the countries. Non destructive and destructive examinations have shown that corrosion at tube support plate level increases moderately and is likely initiated by sodium hydroxide; in addition, above tubesheet, significant and sometimes high contents of lead have been noted. Up to now, selected remedies include chemistry specifications with low sodium concentrations obtained by additional mixed bed on makeup water and power decreases for hideout return, when necessary [fr

  9. Observations of intergranular stress corrosion cracking in a grain-mapped polycrystal.

    Science.gov (United States)

    King, A; Johnson, G; Engelberg, D; Ludwig, W; Marrow, J

    2008-07-18

    Nondestructive three-dimensional mapping of grain shape, crystallographic orientation, and grain boundary geometry by diffraction contrast tomography (DCT) provides opportunities for the study of the interaction between intergranular stress corrosion cracking and microstructure. A stress corrosion crack was grown through a volume of sensitized austenitic stainless steel mapped with DCT and observed in situ by synchrotron tomography. Several sensitization-resistant crack-bridging boundaries were identified, and although they have special geometric properties, they are not the twin variant boundaries usually maximized during grain boundary engineering.

  10. Meso-microstructural computational simulation of the hydrogen permeation test to calculate intergranular, grain boundary and effective diffusivities

    International Nuclear Information System (INIS)

    Jothi, S.; Winzer, N.; Croft, T.N.; Brown, S.G.R.

    2015-01-01

    Highlights: • Characterized polycrystalline nickel microstructure using EBSD analysis. • Development meso-microstructural model based on real microstructure. • Calculated effective diffusivity using experimental electrochemical permeation test. • Calculated intergranular diffusivity of hydrogen using computational FE simulation. • Validated the calculated computation simulation results with experimental results. - Abstract: Hydrogen induced intergranular embrittlement has been identified as a cause of failure of aerospace components such as combustion chambers made from electrodeposited polycrystalline nickel. Accurate computational analysis of this process requires knowledge of the differential in hydrogen transport in the intergranular and intragranular regions. The effective diffusion coefficient of hydrogen may be measured experimentally, though experimental measurement of the intergranular grain boundary diffusion coefficient of hydrogen requires significant effort. Therefore an approach to calculate the intergranular GB hydrogen diffusivity using finite element analysis was developed. The effective diffusivity of hydrogen in polycrystalline nickel was measured using electrochemical permeation tests. Data from electron backscatter diffraction measurements were used to construct microstructural representative volume elements including details of grain size and shape and volume fraction of grains and grain boundaries. A Python optimization code has been developed for the ABAQUS environment to calculate the unknown grain boundary diffusivity

  11. Meso-microstructural computational simulation of the hydrogen permeation test to calculate intergranular, grain boundary and effective diffusivities

    Energy Technology Data Exchange (ETDEWEB)

    Jothi, S., E-mail: s.jothi@swansea.ac.uk [College of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP (United Kingdom); Winzer, N. [Fraunhofer Institute for Mechanics of Materials IWM, Wöhlerstraße 11, 79108 Freiburg (Germany); Croft, T.N.; Brown, S.G.R. [College of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP (United Kingdom)

    2015-10-05

    Highlights: • Characterized polycrystalline nickel microstructure using EBSD analysis. • Development meso-microstructural model based on real microstructure. • Calculated effective diffusivity using experimental electrochemical permeation test. • Calculated intergranular diffusivity of hydrogen using computational FE simulation. • Validated the calculated computation simulation results with experimental results. - Abstract: Hydrogen induced intergranular embrittlement has been identified as a cause of failure of aerospace components such as combustion chambers made from electrodeposited polycrystalline nickel. Accurate computational analysis of this process requires knowledge of the differential in hydrogen transport in the intergranular and intragranular regions. The effective diffusion coefficient of hydrogen may be measured experimentally, though experimental measurement of the intergranular grain boundary diffusion coefficient of hydrogen requires significant effort. Therefore an approach to calculate the intergranular GB hydrogen diffusivity using finite element analysis was developed. The effective diffusivity of hydrogen in polycrystalline nickel was measured using electrochemical permeation tests. Data from electron backscatter diffraction measurements were used to construct microstructural representative volume elements including details of grain size and shape and volume fraction of grains and grain boundaries. A Python optimization code has been developed for the ABAQUS environment to calculate the unknown grain boundary diffusivity.

  12. Fission-induced recrystallization effect on intergranular bubble-driven swelling in U-Mo fuel

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Linyun; Mei, Zhi-Gang; Yacout, Abdellatif M.

    2017-10-01

    We have developed a mesoscale phase-field model for studying the effect of recrystallization on the gas-bubble-driven swelling in irradiated U-Mo alloy fuel. The model can simulate the microstructural evolution of the intergranular gas bubbles on the grain boundaries as well as the recrystallization process. Our simulation results show that the intergranular gas-bubble-induced fuel swelling exhibits two stages: slow swelling kinetics before recrystallization and rapid swelling kinetics with recrystallization. We observe that the recrystallization can significantly expedite the formation and growth of gas bubbles at high fission densities. The reason is that the recrystallization process increases the nucleation probability of gas bubbles and reduces the diffusion time of fission gases from grain interior to grain boundaries by increasing the grain boundary area and decreasing the diffusion distance. The simulated gas bubble shape, size distribution, and density on the grain boundaries are consistent with experimental measurements. We investigate the effect of the recrystallization on the gas-bubble-driven fuel swelling in UMo through varying the initial grain size and grain aspect ratio. We conclude that the initial microstructure of fuel, such as grain size and grain aspect ratio, can be used to effectively control the recrystallization and therefore reduce the swelling in U-Mo fuel.

  13. Fatigue fracture of a cemented Omnifit CoCr femoral stem: implant and failure analysis

    Directory of Open Access Journals (Sweden)

    Noah Bonnheim, MS

    2017-12-01

    Full Text Available A cemented, cast CoCr alloy, Omnifit Plus femoral stem was retrieved following mid-stem fracture after 24 years in vivo. The patient was an active 55-year-old male with a high body mass index (31.3 and no traumatic incidents before stem fracture. Fractographic and fatigue-based failure analyses were performed to illuminate the etiology of fracture and retrospectively predict the device lifetime. The fracture surfaces show evidence of a coarse grain microstructure, intergranular fracture, and regions of porosity. The failure analysis suggests that stems with similar metallurgical characteristics, biomechanical environments, and in vivo durations may be abutting their functioning lifetimes, raising the possibility of an increased revision burden. Keywords: Fatigue fracture, Total hip arthroplasty, Stem fracture

  14. Numerical Analysis on the Formation of Fracture Network during the Hydraulic Fracturing of Shale with Pre-Existing Fractures

    Directory of Open Access Journals (Sweden)

    Jianming He

    2017-05-01

    Full Text Available In this paper, configurations of pre-existing fractures in cubic rock blocks were investigated and reconstructed for the modeling of experimental hydraulic fracturing. The fluid-rock coupling process of hydraulic fracturing was simulated based on the displacement discontinuities method. The numerical model was validated against the related laboratory experiments. The stimulated fracture configurations under different conditions can be clearly shown using the validated numerical model. First, a dominated fracture along the maximum principle stress direction is always formed when the stress difference is large enough. Second, there are less reopened pre-existing fractures, more newly formed fractures and less shear fractures with the increase of the cohesion value of pre-existing fractures. Third, the length of the stimulated shear fracture decreases rapidly with the increase of the friction coefficient, while the length of the tensile fracture has no correlation to the fiction coefficient. Finally, the increase of the fluid injection rate is favorable to the formation of a fracture network. The unfavorable effects of the large stress difference and the large cohesion of pre-existing fractures can be partly suppressed by an increase of the injection rate in the hydraulic fracturing treatment. The results of this paper are useful for understanding fracture propagation behaviors during the hydraulic fracturing of shale reservoirs with pre-existing fractures.

  15. Dental materials. Amorphous intergranular phases control the properties of rodent tooth enamel.

    Science.gov (United States)

    Gordon, Lyle M; Cohen, Michael J; MacRenaris, Keith W; Pasteris, Jill D; Seda, Takele; Joester, Derk

    2015-02-13

    Dental enamel, a hierarchical material composed primarily of hydroxylapatite nanowires, is susceptible to degradation by plaque biofilm-derived acids. The solubility of enamel strongly depends on the presence of Mg(2+), F(-), and CO3(2-). However, determining the distribution of these minor ions is challenging. We show—using atom probe tomography, x-ray absorption spectroscopy, and correlative techniques—that in unpigmented rodent enamel, Mg(2+) is predominantly present at grain boundaries as an intergranular phase of Mg-substituted amorphous calcium phosphate (Mg-ACP). In the pigmented enamel, a mixture of ferrihydrite and amorphous iron-calcium phosphate replaces the more soluble Mg-ACP, rendering it both harder and more resistant to acid attack. These results demonstrate the presence of enduring amorphous phases with a dramatic influence on the physical and chemical properties of the mature mineralized tissue. Copyright © 2015, American Association for the Advancement of Science.

  16. Mitigating Intergranular Stress Corrosion Cracking in Age-Hardenable Al-Zn-Mg-Cu Alloys

    Science.gov (United States)

    Ajay Krishnan, M.; Raja, V. S.; Shukla, Shweta; Vaidya, S. M.

    2018-04-01

    This article reports an attempt to develop high-strength aluminum alloys of 7xxx series resistant to intergranular stress corrosion cracking (SCC). A novel aging technique reported in this work exhibited improved strength levels (as high as 100 MPa to that of conventional overaged temper for AA 7050) with significant resistance to SCC measured even at a low strain rate (10-7 s-1) in 3.5 wt pct NaCl. The novel aging heat treatment produced a microstructure that is finer and dense enough in the matrix to impart strength, whereas it is enriched with Cu on the grain boundaries to impart SCC resistance. A detailed explanation for the enhanced strength and SCC resistance is discussed.

  17. Analysis of intergranular crack propagation in brittle polycrystals with a generalized finite element method and network algorithm

    NARCIS (Netherlands)

    Shabir, Z.; Van der Giessen, E.; Duarte, C.A.; Simone, A.

    2009-01-01

    Two different approaches to intergranular crack propagation in brittle polycrystals are contrasted. Crack paths resulting from a method that allows a detailed description of the stress field within a polycrystal are compared to cracks dictated by topological considerations. In the first approach, a

  18. Evaluation of intergranular corrosion techniques to determine phosphorus segregation in NiCrMoV rotor steel

    International Nuclear Information System (INIS)

    Bruemmer, S.M.; Thomas, M.T.; Arey, B.W.

    1985-01-01

    Several chemical and electrochemical etching techniques have been evaluated for the indirect measurement of grain boundary phosphorus segregation. A picric acid based solution was found to promote intergranular attack proportional to the grain boundary phosphorus composition measured by Auger Electron Spectroscopy. Preliminary results indicate this solution may enable the nondestructive evaluation of a rotor steel's susceptibility to temper embrittlement and IGSCC

  19. Kinetics of the intergranular stress corrosion of AlCu alloys

    International Nuclear Information System (INIS)

    Rota, A.; Boehni, H.

    1989-01-01

    A new experimental method for the investigation of stress corrosion cracking mechanisms in thin sheets is presented: Using the foil penetration technique, the growth kinetics of the intergranular corrosion of age-hardened Al-Cu alloys have been measured in the unstressed condition and under various constant uniaxial tensile stresses. A pure binary Al-4wt%Cu alloy and a commercial AA 2024 alloy, both tempered to maximum susceptibility to intergranular corrosion, have been tested in aqueous chloride solutions under potentiostatic control. All measurements have been carried out on various sheet thicknesses between 0.2 and 1.0 mm under tensile stresses ranging from 0 to 88% of the 0.2% proof stress. A significant reduction of the penetration times by factors between 2 and 10, compared to the results for unstressed specimens, has been observed for all applied stress levels in systems where only small numbers of cracks are growing simultaneously. In systems with large numbers of cracks or complete crack networks, no influence of stress on the crack growth kinetics was found. The discussion of these results shows that all, even the highest observed mean crack growth rates can be explained by pure anodic dissolution of the grain boundary regions at the crack tips. The increase of the dissolution current density at the crack tips by tensile stresses is due to the widening of the crack, which reduces the integral ohmic resistance of the system and improves the mass transport conditions between the crack and the bulk electrolyte. The widening of the cracks depends on the stress distribution in the whole specimen cross section and not on the stress intensity at the crack tips. 23 refs., 14 figs., 1 tab

  20. Hip Fracture

    Science.gov (United States)

    ... hip fractures in people of all ages. In older adults, a hip fracture is most often a result of a fall from a standing height. In people with very weak bones, a hip fracture can occur simply by standing on the leg and twisting. Risk factors The rate of hip fractures increases substantially with ...

  1. The influence of He on the high temperature fracture of an austenitic stainless steel

    International Nuclear Information System (INIS)

    Saguees, A.A.

    1976-01-01

    The Ti-stabilised DIN 1.4970 austenitic stainless steel is an important candidate for high temperature - high neutron fluence applications which will create appreciable amounts of He within the matrix. In order to determine the mechanical effects associated with the presence of He alone a set of tensile specimens was cyclotron implanted to uniform He concentrations in the 10 -6 to 10 -4 at. range and later creep tested at 700 0 C and 800 0 C. The elongation to fracture values of the implanted specimens were reduced with respect to those of unimplanted controls. Scanning Electron Microscope (SEM) examination revealed that fracture starts as intergranular and subsequently propagates in a transgranular fashion, the intergranular part being much more extended in the implanted material. Transmission Electron Microscope (TEM) examination revealed He segregation at the grain boundary precipitates. A mechanism of He embrittlement is discussed in terms of the present results

  2. Pattern recognition model to estimate intergranular stress corrosion cracking (IGSCC) at crevices and pit sites of 304 SS in BWR environments

    International Nuclear Information System (INIS)

    Urquidi-Macdonald, Mirna

    2004-01-01

    Many publications have shown that crack growth rates (CGR) due to intergranular stress corrosion cracking (IGSCC) of metals is dependent on many parameters related to the manufacturing process of the steel and the environment to which the steel is exposed. Those parameters include, but are not restricted to, the concentration of chloride, fluoride, nitrates, and sulfates, pH, fluid velocity, electrochemical potential (ECP), electrolyte conductivity, stress and sensitization applied to the steel during its production and use. It is not well established how combinations of each of these parameters impact the CGR. Many different models and beliefs have been published, resulting in predictions that sometimes disagree with experimental observations. To some extent, the models are the closest to the nature of IGSCC, however, there is not a model that fully describes the entire range of observations, due to the difficulty of the problem. Among the models, the Fracture Environment Model, developed by Macdonald et al., is the most physico-chemical model, accounting for experimental observations in a wide range of environments or ECPs. In this work, we collected experimental data on BWR environments and designed a data mining pattern recognition model to learn from that data. The model was used to generate CGR estimations as a function of ECP on a BWR environment. The results of the predictive model were compared to the Fracture Environment Model predictions. The results from those two models are very close to the experimental observations of the area corresponding to creep and IGSCC controlled by diffusion. At more negative ECPs than the potential corresponding to creep, the pattern recognition predicts an increase of CGR with decreasing ECP, while the Fracture Environment Model predicts the opposite. The results of this comparison confirm that the pattern recognition model covers 3 phenomena: hydrogen embrittlement at very negative ECP, creep at intermediate ECP, and IGSCC

  3. Study on the relation between structural parameters and fracture strength of WC-Co cemented carbides

    Energy Technology Data Exchange (ETDEWEB)

    Liu, B. [East China Univ. of Sci. and Technol., Shanghai (China). Inst. of Tech. Chem. and Phys.; Zhang, Y. [Materials Physics Department of Beijing University of Science and Technology, Beijing (China); Ouyang, S. [State Key Laboratory For Synthesis and Processing of Advanced Materials of China, Wuhan University of Technology, Wuhan (China)

    2000-01-14

    In this article, a directly proportional relation between average free path (M) and ductile deformation energy ({gamma}) was proposed, and on the basis of it, a quantitative analysis was conducted for studying the effects of the structural parameters on fracture strength of WC-Co cemented carbides. The results show that, for different WC-Co cemented carbides with different cobalt contents, there exist different critical WC grain size R{sub c} and critical free path of binder M{sub c}. R{sub c} and M{sub c} act as the criteria that determine the growth behavior of crackles. When average free path of cobalt binder M < M{sub c}, or WC grain size R < R{sub c}, crackles will expand mainly across cobalt binder, which will result in intergranular fracture; when M M{sub c} or R R{sub c}, transgranular fracture will happen; when M = M{sub c} or R = R{sub c}, concurrence of intergranular fracture and transgranular fracture will take place. R{sub c} and M{sub c} will decrease with increasing of cobalt content, followed by increasing of fracture strength. The dimension of crackles in the circular fissure-breeding district is also a determinative factor to affect fracture strength of cemented carbides. (orig.)

  4. Ultra high vacuum fracture and transfer device for AES analysis of irradiated austenitic stainless steel

    International Nuclear Information System (INIS)

    Urie, M.W.; Panayotou, N.F.; Robinson, J.E.

    1980-01-01

    An ultrahigh vacuum fracture and transfer device for analysis of irradiated and non-irradiated SS 316 fuel cladding is described. Mechanical property tests used to study the behavior of cladding during reactor transient over-power conditions are reported. The stress vs temperature curves show minimal differences between unirradiated cladding and unfueled cladding. The fueled cladding fails at a lower temperature. All fueled specimens failed in an intergranular mode

  5. Microstructural-Scale Model for Surfaces Spreading of Intergranular Corrosion in Sensitized Stainless Steels and Aluminum-Magnesium (AA5XXX) Alloys

    Science.gov (United States)

    Jain, Swati

    Components from AA5XXX (Al-Mg alloys with more than 3 wt% Mg) alloys are X attractive due to availability of low cost, high strength to weight ratio and good weldability. Therefore, these alloys have potential applications in Naval ships. However, these alloys become susceptible to IGC (intergranular corrosion) due to beta-phase precipitation due to improper heat treatment or inadvertent thermal exposure. Stainless steels may also become susceptible due to carbide precipitation and chromium depletion on grain boundaries. IGC susceptibility depends on the interplay between the metallurgical conditions, electrochemical conditions, and chemical conditions. Specific combinations cause IGC while others do not. The objective of this study is to investigate the conditions which bring about surface spreading of IGC in these alloy classes. To accomplish this goal, a microstructure scale model was developed with experimental inputs to understand the 2-D IGC spreading in stainless steels and AA5XXX alloys. The conditions strongly affecting IGC spreading were elucidated. Upon natural and artificial aging, the stainless steels become susceptible to intergranular corrosion because of chromium depletion in the grain boundaries. After aging Al-Mg (AA5XXX) alloys show susceptibility due to the precipitation of the beta-phase (Al3Mg7) in the grain boundaries. Chromium depleted grain boundaries in stainless steels are anodically more active as compared to the interior of the grains. (3-phase rich grain boundaries have lower OCP (open circuit potential) and pitting potentials as compared to the Al-Mg solid solutions. A new approach to modeling the IGC surface spreading in polycrystalline materials that is presented. This model is the first to couple several factors into one granular scale model that illustrates the way in which they interact and IGC occurs. It sheds new information on conditions which cause IGC spreading in two alloy classes and describes a new theory for the critical

  6. Suppressed Belief

    Directory of Open Access Journals (Sweden)

    Komarine Romdenh-Romluc

    2009-12-01

    Full Text Available Moran’s revised conception of conscious belief requires us to reconceptualise suppressed belief. The work of Merleau-Ponty offers a way to do this. His account of motor-skills allows us to understand suppressed beliefs as pre-reflective ways of dealing with the world.

  7. Evolution of interphase and intergranular strain in zirconium-niobium alloys during deformation at room temperature

    Science.gov (United States)

    Cai, Song

    Zr-2.5Nb is currently used for pressure tubes in the CANDU (CANada Deuterium Uranium) reactor. A complete understanding of the deformation mechanism of Zr-2.5Nb is important if we are to accurately predict the in-reactor performance of pressure tubes and guarantee normal operation of the reactors. This thesis is a first step in gaining such an understanding; the deformation mechanism of ZrNb alloys at room temperature has been evaluated through studying the effect of texture and microstructure on deformation. In-situ neutron diffraction was used to monitor the evolution of the lattice strain of individual grain families along both the loading and Poisson's directions and to track the development of interphase and intergranular strains during deformation. The following experiments were carried out with data interpreted using elasto-plastic modeling techniques: (1) Compression tests of a 100%betaZr material at room temperature. (2) Tension and compression tests of hot rolled Zr-2.5Nb plate material. (3) Compression of annealed Zr-2.5Nb. (4) Cyclic loading of the hot rolled Zr-2.5Nb. (5) Compression tests of ZrNb alloys with different Nb and oxygen contents. The experimental results were interpreted using a combination of finite element (FE) and elasto-plastic self-consistent (EPSC) models. The phase properties and phase interactions well represented by the FE model, the EPSC model successfully captured the evolution of intergranular constraint during deformation and provided reasonable estimates of the critical resolved shear stress and hardening parameters of different slip systems under different conditions. The consistency of the material parameters obtained by the EPSC model allows the deformation mechanism at room temperature and the effect of textures and microstructures of ZrNb alloys to be understood. This work provides useful information towards manufacturing of Zr-2.5Nb components and helps in producing ideal microstructures and material properties for

  8. fracture criterion

    Indian Academy of Sciences (India)

    Fracture in metallic glasses. What are the connections between nano- and micro- mechanisms and toughness? Metallic glasses are schizophrenic in the fracture sense. PDF Create! 5 Trial www.nuance.com ...

  9. Hand Fractures

    Science.gov (United States)

    ... Thumb Arthritis Thumb Sprains Trigger Finger Tumors Wrist Fracture Hand Safety Fireworks Safety Lawnmower Safety Snowblower safety ... Tunnel Ganglion Cysts Thumb Arthritis Trigger Finger Wrist Fracture Hand Safety Fireworks Safety Lawnmower Safety Snowblower safety ...

  10. Wrist Fractures

    Science.gov (United States)

    ... a Hand Therapist? Media Find a Hand Surgeon Home Anatomy Wrist Fractures Email to a friend * required fields From * To * DESCRIPTION A wrist fracture is a medical term for a broken wrist. The wrist is made up of eight ...

  11. The fracture of ordered (Fe, Co)3V

    International Nuclear Information System (INIS)

    Liu, C.T.; Schulson, E.M.

    1984-01-01

    Observations have been made of fracture surfaces deformed at low strain rates (3.3 and 42 X 10 -3 S -1 ) in tension at temperatures from 20 to 1000 0 C, that is, above and below the order/disorder transformation temperature of 950 + or - 10 0 C. From 20 to 700 0 C, transgranular fracture occurs via the nucleation, growth, and coalescence of microvoids; high ductilities are obtained (34 to 44 pct). From 700 to 960 0 C, the fracture mode changes from transgranular to intergranular and ductility falls to a minimum of 4 pct. At 1000 0 C a third mode operates consisting of localized dynamic recrystallization followed by boundary sliding of recrystallized grains; ductility rises sharply. The underlying mechanisms are supported through additional experiments performed at higher strain rates

  12. Root fractures

    DEFF Research Database (Denmark)

    Andreasen, Jens Ove; Christensen, Søren Steno Ahrensburg; Tsilingaridis, Georgios

    2012-01-01

    The purpose of this study was to analyze tooth loss after root fractures and to assess the influence of the type of healing and the location of the root fracture. Furthermore, the actual cause of tooth loss was analyzed.......The purpose of this study was to analyze tooth loss after root fractures and to assess the influence of the type of healing and the location of the root fracture. Furthermore, the actual cause of tooth loss was analyzed....

  13. Intergranular Corrosion of 316L Stainless Steel by Aging and UNSM (Ultrasonic Nano-crystal Surface Modification) treatment

    International Nuclear Information System (INIS)

    Lee, J. H.; Kim, Y. S.

    2015-01-01

    Austenitic stainless steels have been widely used in many engineering fields because of their high corrosion resistance and good mechanical properties. However, welding or aging treatment may induce intergranular corrosion, stress corrosion cracking, pitting, etc. Since these types of corrosion are closely related to the formation of chromium carbide in grain boundaries, the alloys are controlled using methods such as lowering the carbon content, solution heat treatment, alloying of stabilization elements, and grain boundary engineering. This work focused on the effects of aging and UNSM (Ultrasonic Nano-crystal Surface Modification) on the intergranular corrosion of commercial 316L stainless steel and the results are discussed on the basis of the sensitization by chromium carbide formation and carbon segregation, residual stress, grain refinement, and grain boundary engineering

  14. Demonstration through EPR tests of the sensitivity of austeno-ferritic steels to intergranular corrosion and stress corrosion cracking

    International Nuclear Information System (INIS)

    Lopez, Nathalie

    1997-01-01

    Duplex stainless steels can be sensitised to intergranular corrosion and stress corrosion cracking (SCC) under some conditions (heat treatments, welding). The aim of this work is to contribute to the validation of the EPR (Electrochemical Potentiodynamic Reactivation) test in order to determine conditions for normalisation. This method, based on the dissolution of chromium depleted areas due to precipitation of σ-phase, provides a degree of sensitisation to intergranular corrosion. The test is broaden considering the mechanical stress by the way of slow strain rate tests, performed in chloride magnesium and in a solution similar to the EPR solution. A metallurgical study puts on the precipitates and the structural modifications due to welding and heat treatments, in order to make a critical analysis of the EPR test. (author) [fr

  15. Shoulder Fractures

    Science.gov (United States)

    ... as shown on an x-ray. Selection of treatment depends upon the patient’s activity level, the location of the fracture and the severity of the fracture. Recovery Shoulder fractures may leave a patient with permanent shoulder stiffness, regardless of ...

  16. Stress Fractures

    Science.gov (United States)

    Stress fractures Overview Stress fractures are tiny cracks in a bone. They're caused by repetitive force, often from overuse — such as repeatedly jumping up and down or running long distances. Stress fractures can also arise from normal use of ...

  17. Skull fracture

    Science.gov (United States)

    ... follow bicycle safety recommendations. Do not drink and drive. Do not allow yourself to be driven by someone who may have been drinking alcohol or is otherwise impaired. Alternative Names Basilar skull fracture; Depressed skull fracture; Linear skull fracture Images Skull of an adult Skull ...

  18. Mechanism of intergranular stress corrosion cracking in HAZ for super-martensitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Yukio; Kimura, Mitsuo [Tubular Products and Casting Research Dept., JFE Steel Corporation, 1-1, Kawasaki-cho, Handa (Japan); Nakamichi, Haruo; Sato, Kaoru [Analysis and Characterization Research Dept., JFE Steel Corporation, 1-1, Minamiwatarida-cho, Kawasaki-ku, Kawasaki (Japan); Itakura, Noritsugu [Products Service and Development Dept., Chita Works, JFE Steel Corporation. 1-1, Kawasaki-cho, Handa (Japan); Masamura, Katsumi [Tubular Products Business Planning Dept., JFE Steel Corporation, 2-2-3, Uchisaiwai-sho, Chiyoda-ku, Tokyo (Japan)

    2004-07-01

    Mechanism of intergranular stress corrosion cracking (IGSCC) for heat affected zone (HAZ) of super-martensitic stainless steel was studied using two types of the steel. One was a lean grade, which was Mo free and low Ni, and the other was a high grade, which was Mo added and high Ni. Specimens received heat treatments simulating welding thermal cycles were applied to SCC tests. Cracks were observed in some specimens after U-bend SCC test under low pH environments. Thermal cycle conditions with sensitization were verified from the results. No crack was observed in the specimen with the thermal cycle simulating post welding heat treatment (PWHT) after sensitizing conditions. Therefore, PWHT was clarified to be effective to prevent the cracking. Cr carbides were observed along prior austenite grain boundary intermittently, and Cr depleted zone was confirmed on the grain boundary adjacent to carbides that precipitated on the grain boundary. It is, therefore, concluded that the cracking results from Cr depletion on prior austenite grain boundary accompanied by precipitation of Cr carbides under specific welding conditions. (authors)

  19. Surprising intergranular ''non-corrosion'' of a 304 L stainless steel

    International Nuclear Information System (INIS)

    Le Thi Quynh Anh; Le Coze, J.

    1995-01-01

    A low chloride content solution, representative of an artificial saliva, was used to study the pitting and crevice resistance of a 304L wire used to fix teeth against each other in the mouth. On an industrial 304L alloy, corrosion inside deep pits showed a special character in which grain boundaries were not attacked : a honeycomb-like structure of the corroded surface was observed in which grain boundaries were the walls of the cells. This result was reproduced in a 1. 66 NaCl g/l solution, pH=7, on polished sections of ultra high purity base alloys, covered with a varnish layer in order to create a crevice-like situation. The electrochemical potential was imposed at values near passivity breakdown. The exposure times were 40 to 90 h at room temperature. UHP-alloys, representative of 304L steels, with subsequent additions of C, P and Mo were prepared and tested to determine the possible role of intergranular segregation or precipitation on honeycomb corrosion, in the as-quenched condition and after annealing (600 C, 30h). As a function of exposure time, different corrosion stages under the varnish layer were observed : crystallographic pitting, honeycomb corrosion and general dissolution. (orig.)

  20. The intergranular segregation of boron in substoichiometric Ni/sub 3/Al

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, A.

    1987-12-01

    The intermetallic compound Ni/sub 3/Al offers promise as a material for high temperature applications. In addition to its unusual property of increasing strength with temperature (until approx.700/sup 0/C), it has excellent corrosion and oxidation resistance. Microalloying the alloy with boron has been shown to be dramatically effective in improving its inherent intergranular brittleness. This improvement results from the strong tendency of boron to segregate to the grain boundaries of Ni/sub 3/Al. This research deals with the study of the segregation behavior of boron. Auger electron spectroscopy was chosen as the technique adopted to study this segregation. The strong effect of segregant level on the grain boundary strength level can be controlled by thermal history variations and by variations in the level of solute in the bulk. Cathodic hydrogen charging was shown to be a potent tool in opening up other wise cohesive boundaries for analysis. The effective binding energy of boron at the grain boundaries of Ni/sub 3/Al was calculated from experimental data; it was found to vary between 0.2 and 0.45 eV. Kinetics of segregation have been investigated; the present set of kinetic studies were shown to be inadequate to find a diffusion coefficient and that temperatures lower than those studied here need to be used. As an associated investigation, a set of elemental standards were developed for the particular scanning Auger microprobe used in this study. 141 refs., 94 figs., 26 tabs.

  1. Evaluation of intergranular cracks on the ring header cross at Grand Gulf Unit No. 1

    International Nuclear Information System (INIS)

    Czajkowski, C.J.

    1987-01-01

    A metallurgical investigation was performed on a sample of cracked ring header cross material from the Grand Gulf Unit No. 1 Nuclear Power Station. The cracks were located in a 6-7 in (15-17.5 cm) width band running circumferentially below the cross to cap weld with a similar band above the cross to discharger pipe weld. The indications were up to 19 mm in length and 6.0 mm in depth. This particular sample was cut from a cross which had not seen actual service but which had been used to qualify the induction heating stress improvement (IHSI) technique for the Grand Gulf units. The base material was SA 182 material manufactured to SA 403-type WP 304 stainless steel. The investigation consisted of visual/dye penetrant examination, chemical analysis, hardness testing, optical microscopy, scanning electron microscopy and energy dispersive spectroscopy. The evaluated cracks were intergranular and initiated on the forging's exterior surface. The grain size of the material was larger than ASTM 00 and no definitive corrosive species were found by Energy Dispersive Spectroscopy (EDS). The cracking is considered to be the result of the forging having been overheated/burned during manufacture. (author)

  2. Theoretical studies on the mechanical behavior of granular materials under very low intergranular stresses

    Science.gov (United States)

    French, Kenneth W., Jr.

    1986-01-01

    The salient aspects of the theoretical modeling of a conventional triaxial test (CTC) of a cohesionless granular medium with stress and strain rate loading are described. Included are a controllable gravitational body force and provision for low confining pressure and/or very low intergranular stress. The modeling includes rational, analytic, and numerical phases, all in various stages of development. The numerical evolutions of theoretical models will be used in final design stages and in the analysis of the experimental data. In this the experimental design stage, it is of special interest to include in the candidate considerations every anomaly found in preliminary terrestrial experimentation. Most of the anomalies will be eliminated by design or enhanced for measurement as the project progresses. The main aspect of design being not the physical apparatus but the type and trajectories of loading elected. The major considerations that have been treated are: appearance and growth of local surface aberrations, stress-power coefficients, strain types, optical strain, radial bead migration, and measures of rotation for the proper stress flux.

  3. Electrochemical Methods for the Intergranular Corrosion Property Evaluation of Stainless Steels

    International Nuclear Information System (INIS)

    Lee, Jung Bok

    1987-01-01

    For the last fifteen years, the Electrochemical Potentiokinetic Reactivation (EPR) method, an electrochemical method, has been actively investigated for use in determining the degree of sensitization (DOS) in stainless steels (a metallurgical structure susceptible to intergranular corrosion). One of the reasons for this active investigation was due to the fact that the technique may be usable for field nondestructive measurements of DOS in stainless steels. In this paper, a brief overview of the technique, including the advantages and limitations, is discussed. Then, a new test method which is able to detect the sensitized metallurgical structures nondestructively after field welding is introduced. This new nondestructive method is a modification of the ASTM A262-A (the oxalic acid etch test). The improved test method employs a 30 second etching in a 10% oxalic acid solution under an anodic current density of 1 ampere per square centimeter at the temperatures above 60 .deg. C. Between 50 and 60 .deg. C the thirty second etching test should be used first. When the thirty second etching shows an under etched grain boundary, the etching time should be increased to ninety seconds. At temperatures below 50 .deg. C the ninety second etching, as described in ASTM A 262-A, should be employed. This improved test method can be used in the temperature range of 0 and 100 .deg. C

  4. Quantitative assessment of intergranular damage due to PWR primary water exposure in structural Ni-based alloys

    International Nuclear Information System (INIS)

    Ter-Ovanessian, Benoît; Deleume, Julien; Cloué, Jean-Marc; Andrieu, Eric

    2013-01-01

    Highlights: ► IG damage occurred on Ni-base alloys during exposure at high temperature water. ► Two characterization methods yield a tomographic analysis of this IG damage. ► Connected or isolated intergranular oxygen/oxide penetrations are quantified. ► Such quantitative description provides information on IGSCC susceptibility. - Abstract: Two nickel-based alloys, alloy 718 and alloy 600, known to have different resistances to IGSCC, were exposed to a simulated PWR primary water environment at 360 °C for 1000 h. The intergranular oxidation damage was analyzed in detail using an original approach involving two characterization methods (Incremental Mechanical Polishing/Microcopy procedure and SIMS imaging) which yielded a tomographic analysis of the damage. Intergranular oxygen/oxide penetrations occurred either as connected or isolated penetrations deep under the external oxide/substrate interface as far as 10 μm for alloy 600 and only 4 μm for alloy 718. Therefore, assessing this damage precisely is essential to interpret IGSCC susceptibility.

  5. Influence of C, N and Ti concentration on the intergranular corrosion resistance of AISI 316 Ti stainless steel

    International Nuclear Information System (INIS)

    Pardo, A.; Merino, M.C.; Carboneras, M.; Coy, A.E.; Viejo, F.; Arrabal, R.; Munoz, J.A.

    2004-01-01

    The influence of Ti, C, and N concentration on the intergranular corrosion resistance of AISI 316 Ti stainless steel has been studied. A kinetic study of the corrosion process has been carried out using gravimetric tests according to ASTM A-262 practices B and C (Streicher and Huey, respectively). The TTS diagrams were drawn as a function of alloying elements concentration (C, N and Ti). Materials characterization under several test conditions was carried out using Scanning Electron Microscopy (SEM) analysing microstructural characteristics and the attack microstructure. The chemical resistance of these steels to intergranular test was function of N, C and Ti concentration. High Ti and N concentration favoured the precipitation of TiN during the material manufacture process. N forms TiN very stable, causing the removal of Ti from the matrix and, indirectly, favouring the Cr 23 C 6 precipitation during the sensitization process and increasing the corrosion rate. In order to inhibit the intergranular corrosion in these materials the N and Ti concentrations must be optimised. (authors)

  6. Determination of the equivalent intergranular void ratio - Application to the instability and the critical state of silty sand

    Directory of Open Access Journals (Sweden)

    Nguyen Trung-Kien

    2017-01-01

    Full Text Available This paper presents an experimental study of mechanical response of natural Camargue silty sand. The analysis of test results used the equivalent intergranular void ratio instead of the global void ratio. The calculation of equivalent intergranular void ratio requires the determination of parameter b which represents, physically, the fraction of active fines participating on the chain forces network, hence the strength of the soil. A new formula for determining the parameter b by using an approach based on the coordination number distribution and probability calculation is proposed. The validation of the developed relationship was done through back-analysis of published datasets in literature on the effect of fines content on silty sand behavior. It is shown that the equivalent intergranular void ratio calculated with the b value obtained by the new formula is able to provide strong correlation to not only the critical state of but also the onset of instability of various silty sands, in different terms as peak deviator stress, peak stress ratio or cyclic resistance. Therefore, it is suggested that the use of the equivalent void ratio concept and the new b calculating formula is highly desirable in predicting of the silty sand behavior.

  7. Determination of susceptibility to intergranular corrosion of stainless steels type X5CrNi18-10 in field

    Directory of Open Access Journals (Sweden)

    Bore V. Jegdic

    2016-12-01

    Full Text Available In this paper, the DL EPR method (electrochemical potentiokinetic reactivation with double loop was modified and used to study the susceptibility to intergranular corrosion and stress corrosion cracking of a stainless steel type X5CrNi18-10. The tests were performed in a special electrochemical cell, with the electrolyte in the gel form. Modified DL EPR method is characterized by simple and high accuracy measurements as well as repeatability of the test results. The indicator of susceptibility to intergranular corrosion (Qr/QpGBA obtained by modified DL EPR method is in a very good agreement with the same indicator obtained by standard DL EPR method. The modified DL EPR method is quantitative and highly selective method. Small differences in the susceptibility of the stainless steel type CrNi18-10 to intergranular corrosion and stress corrosion cracking can be determined. Test results can be obtained in a short time. The cost of tests performed by modified DL EPR method is much lower than the cost of tests by conventional chemical methods. Modified DL EPR method can be applied in the field on the stainless steels constructions.

  8. Tensile properties and fracture mechanism of IN-100 superalloy in high temperature range

    Directory of Open Access Journals (Sweden)

    Milan T. Jovanović

    2017-06-01

    Full Text Available Tensile properties and fracture mechanism of a polycrystalline IN-100 superalloy have been investigated in the range from room temperature to 900°C. Optical microscopy (OM and transmission electron microscopy (TEM applying replica technique were used for microstructural investigation, whereas scanning electron microscopy (SEM was utilized for fracture study. High temperature tensile tests were carried out in vacuumed chamber. Results show that strength increases up to 700°C, and then sharply decreases with further increase in temperature. Elongation increases very slowly (6-7.5% till 500°C, then decreases to 4.5% at 900°C. Change in elongation may be ascribed to a change of fracture mechanism. Appearance of a great number of microvoids prevails up to 500°C resulting in a slow increase of elongation, whereas above this temperature elongation decrease is correlated with intergranular crystallographic fracture and fracture of carbides.

  9. Influence of the selected structural parameter on a depth of intergranular corrosion of Al-Si7-Mg0,3 aluminum alloy

    Directory of Open Access Journals (Sweden)

    L. Bernat

    2015-10-01

    Full Text Available The paper presents an influence of the Dendrite Arm Spacing (DAS microstructure parameter on the intergranular corrosion of AlSi7Mg aluminum alloy. The samples were subjected to the corrosion process for: 2,5; 12; 24; 48 and 96 hours in NaCl + HCl + H2O solution. It was noted that the DAS parameter significantly influenced on a distribution and depth of the intergranular corrosion of the hypoeutectic Al - Si - Mg silumin.

  10. [Hip fractures].

    Science.gov (United States)

    Weisová, Drahomíra; Salášek, Martin; Pavelka, Tomáš

    2013-01-01

    Hip fractures are ranked among the frequent injuries. These fractures have been often coupled with high energy trauma in children and in patients with normal bone structure, low energy trauma and osteoporotic fracture (fragility fracture) is typical in elder patients. Hip fractures are divided into five groups: femoral head fracture, femoral neck fracture, pertrochanteric, intertrochateric and subtrochanteric fracture. Surgical treatment is indicated in all patients unless contraindications are present. Long bed rest has been accompanied by a high risk of development of thromboembolic disease, pneumonia and bed sore. Healing in the wrong position and nonunions are often the result of conservative treatment. Screw osteosynthesis is performed in isolated femoral head factures. Three cannulated screws or a DHS plate (dynamic hip screw) are used in fractures of the femoral neck with normal femoral head perfusion, total hip replacement is recommended in elder patients and in case of loss of blood supply of the femoral head. Pertrochanteric and intertrochanteric fractures can be stabilized by the femoral nails (PFN, PFN A, PFH - proximal femoral nail), nails are suitable for minimally invasive insertion and provide higher stability in the shaft, or plates (DHS) designed for stable pertronchanteric and intertrochanteric fractures. Subtrochanteric fractures can be fixed also intramedullary (nails - PFN long, PFN A long) and extramedullary (plates - DCS dynamic condylar screw, proximal femoral LCP - locking compression plate). Open reduction with internal plate fixation is advantageous for pathological fractures, as biopsy sampling can be performed. Hip fracture rehabilitation is integral part of the treatment, including walking on crutches or with a walker with partial weight bearing for at least six weeks.

  11. Fracture toughness measurements on a glass bonded sodalite high-level waste form

    International Nuclear Information System (INIS)

    DiSanto, T.; Goff, K. M.; Johnson, S. G.; O'Holleran, T. P.

    1999-01-01

    The electrometallurgical treatment of metallic spent nuclear fuel produces two high-level waste streams; cladding hulls and chloride salt. Argonne National Laboratory is developing a glass bonded sodalite waste form to immobilize the salt waste stream. The waste form consists of 75 Vol.% crystalline sodalite (containing the salt) with 25 Vol.% of an ''intergranular'' glassy phase. Microindentation fracture toughness measurements were performed on representative samples of this material using a Vickers indenter. Palmqvist cracking was confirmed by post-indentation polishing of a test sample. Young's modulus was measured by an acoustic technique. Fracture toughness, microhardness, and Young's modulus values are reported, along with results from scanning electron microscopy studies

  12. Acetabular Fracture

    Directory of Open Access Journals (Sweden)

    Chad Correa

    2017-09-01

    Full Text Available History of present illness: A 77-year-old female presented to her primary care physician (PCP with right hip pain after a mechanical fall. She did not lose consciousness or have any other traumatic injuries. She was unable to ambulate post-fall, so X-rays were ordered by her PCP. Her X-rays were concerning for a right acetabular fracture (see purple arrows, so the patient was referred to the emergency department where a computed tomography (CT scan was ordered. Significant findings: The non-contrast CT images show a minimally displaced comminuted fracture of the right acetabulum involving the acetabular roof, medial and anterior walls (red arrows, with associated obturator muscle hematoma (blue oval. Discussion: Acetabular fractures are quite rare. There are 37 pelvic fractures per 100,000 people in the United States annually, and only 10% of these involve the acetabulum. They occur more frequently in the elderly totaling an estimated 4,000 per year. High-energy trauma is the primary cause of acetabular fractures in younger individuals and these fractures are commonly associated with other fractures and pelvic ring disruptions. Fractures secondary to moderate or minimal trauma are increasingly of concern in patients of advanced age.1 Classification of acetabular fractures can be challenging. However, the approach can be simplified by remembering the three basic types of acetabular fractures (column, transverse, and wall and their corresponding radiologic views. First, column fractures should be evaluated with coronally oriented CT images. This type of fracture demonstrates a coronal fracture line running caudad to craniad, essentially breaking the acetabulum into two halves: a front half and a back half. Secondly, transverse fractures should be evaluated by sagittally oriented CT images. By definition, a transverse fracture separates the acetabulum into superior and inferior halves with the fracture line extending from anterior to posterior

  13. Intergranular corrosion testing of austenitic stainless steels in nitric acid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Whillock, G.O.H.; Dunnett, B. F. [British Nuclear Fuels plc, BNFL, B170, Sellafield, Seascale, Cumbria CA20 1PG (United Kingdom)

    2004-07-01

    In hot strong nitric acid solutions, stainless steels exhibit intergranular corrosion. Corrosion rates are often measured from immersion testing of specimens manufactured from the relevant material (e.g. plate or pipe). The corrosion rates, measured from weight loss, are found to increase with time prior to reaching steady state, which can take thousands of hours to achieve. The apparent increase in corrosion rate as a function of time was found to be an artefact due to the surface area of the specimen's being used in the corrosion rate calculations, rather than that of the true area undergoing active corrosion i.e. the grain boundaries. The steady state corrosion rate coincided with the onset of stable grain dropping, where the use of the surface area of the specimen to convert the weight loss measurements to corrosion rates was found to be appropriate. This was confirmed by sectioning of the specimens and measuring the penetration depths. The rate of penetration was found to be independent of time and no induction period was observed. A method was developed to shorten considerably the testing time to reach the steady state corrosion rate by use of a pre-treatment that induces grain dropping. The long-term corrosion rates from specimens which were pre-treated was similar to that achieved after prolonged testing of untreated (i.e. initially ground) specimens. The presence of cut surfaces is generally unavoidable in the simple immersion testing of specimens in test solutions. However, inaccuracy in the results may occur as the measured corrosion rate is often influenced by the orientation of the microstructure, the highest rates typically being observed on the cut surfaces. Two methods are presented which allow deconvolution of the corrosion rates from immersion testing of specimens containing cut surfaces, thus allowing reliable prediction of the long-term corrosion rate of plate surfaces. (authors)

  14. Intergranular crack propagation rates in sensitized Type 304 stainless steel in an oxygenated water environment

    International Nuclear Information System (INIS)

    Park, J.Y.; Shack, W.J.

    1983-01-01

    Intergranular stress-corrosion crack (IGSCC) propagation rates were measured in three heats of sensitized Type 304 stainless steel (SS) as a function of applied load and sensitization in high-purity water with 8 ppM. Active-loading tests yielded IGSCC propagation rates ranging from approx. 2 x 10 -10 to 1 x 10 -9 m/s (approx. 2 x 10 -5 to 2 x 10 -4 in./h) over the range of stress intensities from 25 to 46 MPa√m (22 to 41 ksi√in.). If the dependence of propagation rate on stress intensity is assumed to follow a power law, a least-squares fit of data yields (da/dt) = 1.23 x 10 -8 K 2 42 (in./h) for K in ksi√in. Deflection-controlled tests on standard 12.7-mm-thick compact tension specimens yielded IGSCC propagation rates from 7 x 10 -12 to 2 x 10 -10 m/s (10 -6 to 2 x 10 -5 in./h) at effective average stress intensities in the range 21 to 26 MPa√m (19 to 24 ksi√in.). Crack lengths were determined by compilance measurements using in-situ high-temperature clip gage or LVDT methods, optical metallography on the side faces of the specimen, and fractography of the cracked surface after completion of the tests. The optical metallography measurements did not provide useful estimates of crack lengths, because large variations in IGSCC propagation across the thickness of the specimens occurred. The effects of the degree of sensitization on the IGSCC propagation rate are obscured by the data scatter. However, it seems clear that these variables do not lead to order-of-magnitude changes in the crack propagation rate

  15. Numerical modelling in non linear fracture mechanics

    Directory of Open Access Journals (Sweden)

    Viggo Tvergaard

    2007-07-01

    Full Text Available Some numerical studies of crack propagation are based on using constitutive models that accountfor damage evolution in the material. When a critical damage value has been reached in a materialpoint, it is natural to assume that this point has no more carrying capacity, as is done numerically in the elementvanish technique. In the present review this procedure is illustrated for micromechanically based materialmodels, such as a ductile failure model that accounts for the nucleation and growth of voids to coalescence, and a model for intergranular creep failure with diffusive growth of grain boundary cavities leading to micro-crack formation. The procedure is also illustrated for low cycle fatigue, based on continuum damage mechanics. In addition, the possibility of crack growth predictions for elastic-plastic solids using cohesive zone models to represent the fracture process is discussed.

  16. Local approach: fracture at high temperature in an austenitic stainless steel submitted to thermomechanical loadings. Calculations and experimental validations

    International Nuclear Information System (INIS)

    Poquillon, D.

    1997-10-01

    Usually, for the integrity assessment of defective components, well established rules are used: global approach to fracture. A more fundamental way to deal with these problems is based on the local approach to fracture. In this study, we choose this way and we perform numerical simulations of intergranular crack initiation and intergranular crack propagation. This type of damage can be find in components of fast breeder reactors in 316 L austenitic stainless steel which operate at high temperatures. This study deals with methods coupling partly the behaviour and the damage for crack growth in specimens submitted to various thermomechanical loadings. A new numerical method based on finite element computations and a damage model relying on quantitative observations of grain boundary damage is proposed. Numerical results of crack initiation and growth are compared with a number of experimental data obtained in previous studies. Creep and creep-fatigue crack growth are studied. Various specimen geometries are considered: compact Tension Specimens and axisymmetric notched bars tested under isothermal (600 deg C) conditions and tubular structures containing a circumferential notch tested under thermal shock. Adaptative re-meshing technique and/or node release technique are used and compared. In order to broaden our knowledge on stress triaxiality effects on creep intergranular damage, new experiments are defined and conducted on sharply notched tubular specimens in torsion. These isothermal (600 deg C) Mode II creep tests reveal severe intergranular damage and creep crack initiation. Calculated damage fields at the crack tip are compared with the experimental observations. The good agreement between calculations and experimental data shows the damage criterion used can improve the accuracy of life prediction of components submitted to intergranular creep damage. (author)

  17. Fracture characteristic in creep of a 5 Cr-1/2 Mo steel at 600 and 6500C

    International Nuclear Information System (INIS)

    Paiva, R.L.C. de; Monteiro, S.N.; Silveira, T.L.

    The creep behavior of a 5 Cr-1/2 Mo steel was studied at 600 and 650 0 C. The caracteristics of fracture, observed by optical and scanning metallography, displayed a transition from intergranular to transgranular mode of rupture in the range of temperatures and stresses studied. This behavior was dicussed based upon the possible mechanisms for creep deformation taking place in this material [pt

  18. Low-temperature fracture of high purity iron and its relationship to the grain boundary character

    Energy Technology Data Exchange (ETDEWEB)

    Ofuji, T. (Tohoku Univ., Sendai (Japan). Graduate School of Engineering Daido Special Steel Co. Ltd., Nagoya (Japan)); Suzuki, S. (Tohoku Univ., Sendai (Japan). Inst. of Materials Research Nippon Steel Corp., Tokyo (Japan)); Takai, S. (Tohoku Univ., Sendai (Japan). Inst. of Materials Research); Kimura, H. (Tohoku Univ., Sendai (Japan). Inst. of Materials Research)

    1992-02-01

    Mode of fracture and ductile-brittle transition temperature (DBTT) of high purity iron( 99.999% or higher ) was investigated by using two sets of specimens of different grain boundary character. The specimens having bamboo-type grain structure with high angle boundaries have fractured in the intergranular mode and their DBTT is between 110 and 125 K. Specimens with coarse grain structure have shown fractures in transgranular mode at and below 50 K. DBTT for intergranular fracture(IGF), if any, has been below 4.2 K and this has been in contrast with the the occurance of IGF even at 77K for less pure iron specimens(99.99 % or below). It has been concluded that DBTT for IGF, which has been the common fracture mode in pure iron depends strongly on the purity and grain boundary character of iron spocimens. DBTT has ranged from 125 to 4.2 K or below. Also, specimens of 99.99 % purity have been more susceptible to IGF than the specimens with 99.999 % purity. 8 refs., 6 figs.

  19. Colles Fracture

    OpenAIRE

    Sánchez León, Belisario

    2014-01-01

    Our expertise is the study of more than 2,000 cases of Colles' fractures. Colles name should in this case to synthesize the type of fractures of the lower end of the radius. There have been various proposed classifications according to the different fracture lines can be demonstrated radiologically in the region of the wrist. We believe that these ratings should only be retained if the concept of the articular fracture or not in the classical sense, since it has great value in the functional ...

  20. [Calcaneus fractures].

    Science.gov (United States)

    Clare, M P; Sanders, R W

    2011-10-01

    Fractures of the calcaneus generally occur in the setting of high-energy trauma, resulting in complex, three-dimensionally oriented fracture patterns. Surgical treatment is typically indicated for displaced intra-articular fractures, permitting restoration of calcaneal height, width and overall morphology, in addition to the posterior facet articular surface where possible, and enabling late in situ arthrodesis as a means of salvage in the event of post-traumatic arthritis. The present article briefly discusses our preferred methods for the management of calcaneal fractures. An English full text version of this article is available at SpringerLink as supplemental.

  1. Facial Fractures.

    Science.gov (United States)

    Ghosh, Rajarshi; Gopalkrishnan, Kulandaswamy

    2018-01-29

    The aim of this study is to retrospectively analyze the incidence of facial fractures along with age, gender predilection, etiology, commonest site, associated dental injuries, and any complications of patients operated in Craniofacial Unit of SDM College of Dental Sciences and Hospital. This retrospective study was conducted at the Department of OMFS, SDM College of Dental Sciences, Dharwad from January 2003 to December 2013. Data were recorded for the cause of injury, age and gender distribution, frequency and type of injury, localization and frequency of soft tissue injuries, dentoalveolar trauma, facial bone fractures, complications, concomitant injuries, and different treatment protocols.All the data were analyzed using statistical analysis that is chi-squared test. A total of 1146 patients reported at our unit with facial fractures during these 10 years. Males accounted for a higher frequency of facial fractures (88.8%). Mandible was the commonest bone to be fractured among all the facial bones (71.2%). Maxillary central incisors were the most common teeth to be injured (33.8%) and avulsion was the most common type of injury (44.6%). Commonest postoperative complication was plate infection (11%) leading to plate removal. Other injuries associated with facial fractures were rib fractures, head injuries, upper and lower limb fractures, etc., among these rib fractures were seen most frequently (21.6%). This study was performed to compare the different etiologic factors leading to diverse facial fracture patterns. By statistical analysis of this record the authors come to know about the relationship of facial fractures with gender, age, associated comorbidities, etc.

  2. Influence of Bone Remodeling Inhibition on the Development of Experimental Stress Fractures

    National Research Council Canada - National Science Library

    Schaffler, Mitchell B

    2005-01-01

    .... Using a bisphosphonate (BIS) to suppress remodeling in the rabbit tibial stress fracture model, we found that antiresorptive therapy reduced the intensity of the stress fracture response in this model...

  3. Fracture sacrum.

    Directory of Open Access Journals (Sweden)

    Dogra A

    1995-04-01

    Full Text Available An extremely rare case of combined transverse and vertical fracture of sacrum with neurological deficit is reported here with a six month follow-up. The patient also had an L1 compression fracture. The patient has recovered significantly with conservative management.

  4. Elbow Fractures

    Science.gov (United States)

    ... occur commonly in children and in the elderly. Nerve and/or artery injuries can be associated with these types of fractures and must be carefully evaluated by your doctor. These fractures usually require surgical repair with plates and/or screw, unless they are ...

  5. Intergranular corrosion in AA5XXX aluminum alloys with discontinuous precipitation at the grain boundaries

    Science.gov (United States)

    Bumiller, Elissa

    The US Navy currently uses AA5xxx aluminum alloys for structures exposed to a marine environment. These alloys demonstrate excellent corrosion resistance over other aluminum alloys (e.g., AA2xxx or AA7xxx) in this environment, filling a niche in the marine structures market when requiring a light-weight alternative to steel. However, these alloys are susceptible to localized corrosion; more specifically, intergranular corrosion (IGC) is of concern. IGC of AA5xxx alloys due to the precipitation of beta phase on the grain boundaries is a well-established phenomenon referred to as sensitization. At high degrees of sensitization, the IGC path is a continuous anodic path of beta phase particles. At lower degrees of sensitization, the beta phase coverage at the grain boundaries is not continuous. The traditional ranges of susceptibility to IGC as defined by ASTM B928 are in question due to recent studies. These studies showed that even at mid range degrees of sensitization where the beta phase is no longer continuous, IGC may still occur. Previous thoughts on IGC of these alloy systems were founded on the idea that once the grain boundary precipitate became discontinuous the susceptibility to IGC was greatly reduced. Additionally, IGC susceptibility has been defined metallurgically by compositional gradients at the grain boundaries. However, AA5xxx alloys show no compositional gradients at the grain boundaries, yet are still susceptible to IGC. The goal of this work is to establish criteria necessary for IGC to occur given no continuous beta phase path and no compositional gradient at the grain boundaries. IGC performance of the bulk alloy system AA5083 has been studied along with the primary phases present in the IGC system: alpha and beta phases using electrochemistry and modeling as the primary tools. Numerical modeling supports that at steady-state the fissure tip is likely saturated with Mg in excess of the 4% dissolved in the matrix. By combining these results

  6. Magnetic Barkhausen Noise and Neutron Diffraction Techniques for the Study of Intergranular Residual Strains in Mild Steel

    International Nuclear Information System (INIS)

    Hutanu, Roxana; Clapham, Lynann; Rogge, Ronald

    2004-01-01

    Intergranular residual stresses (IS) are microscopic residual stresses which have been found to accumulate along the direction in steels. The direction is also the magnetic easy axis direction in steel. This work involved Magnetic Barkhausen Noise (MBN) studies on steel samples, deformed uniaxially to increasing levels of strain. The MBN results indicated that a bulk magnetic easy axis was produced by the deformation process, and neutron diffraction experiments showed that this easy axis was correlated with the tensile strain in grains oriented in the direction

  7. Fracture Mechanics

    CERN Document Server

    Zehnder, Alan T

    2012-01-01

    Fracture mechanics is a vast and growing field. This book develops the basic elements needed for both fracture research and engineering practice. The emphasis is on continuum mechanics models for energy flows and crack-tip stress- and deformation fields in elastic and elastic-plastic materials. In addition to a brief discussion of computational fracture methods, the text includes practical sections on fracture criteria, fracture toughness testing, and methods for measuring stress intensity factors and energy release rates. Class-tested at Cornell, this book is designed for students, researchers and practitioners interested in understanding and contributing to a diverse and vital field of knowledge. Alan Zehnder joined the faculty at Cornell University in 1988. Since then he has served in a number of leadership roles including Chair of the Department of Theoretical and Applied Mechanics, and Director of the Sibley School of Mechanical and Aerospace Engineering.  He teaches applied mechanics and his research t...

  8. Suppression chamber

    International Nuclear Information System (INIS)

    Goto, Hiroshi; Tsuji, Akio.

    1976-01-01

    Purpose: To miniaturize the storage tank of condensated water in BWR reactor. Constitution: A diaphragm is provided in a suppression chamber thereby to partition the same into an inner compartment and an outer compartment. In one of said compartments there is stored clean water to be used for feeding at the time of separating the reactor and for the core spray system, and in another compartment there is stored water necessary for accomplishing the depressurization effect at the time of coolant loss accident. To the compartment in which clean water is stored there is connected a water cleaning device for constantly maintaining water in clean state. As this cleaning device an already used fuel pool cleaning device can be utilized. Further, downcomers for accomplishing the depressurization function are provided in both inner compartment and outer compartment. The capacity of the storage tank can be reduced by the capacity of clean water within the suppression chamber. (Ikeda, J.)

  9. Standard Test Methods for Detecting Susceptibility to Intergranular Corrosion in Wrought, Nickel-Rich, Chromium-Bearing Alloys

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 These test methods cover two tests as follows: 1.1.1 Method A, Ferric Sulfate-Sulfuric Acid Test (Sections 3-10, inclusive)—This test method describes the procedure for conducting the boiling ferric sulfate—50 % sulfuric acid test which measures the susceptibility of certain nickel-rich, chromium-bearing alloys to intergranular corrosion (see Terminology G 15), which may be encountered in certain service environments. The uniform corrosion rate obtained by this test method, which is a function of minor variations in alloy composition, may easily mask the intergranular corrosion components of the overall corrosion rate on alloys N10276, N06022, N06059, and N06455. 1.1.2 Method B, Mixed Acid-Oxidizing Salt Test (Sections 11-18, inclusive)—This test method describes the procedure for conducting a boiling 23 % sulfuric + 1.2 % hydrochloric + 1 % ferric chloride + 1 % cupric chloride test which measures the susceptibility of certain nickel-rich, chromium-bearing alloys to display a step function increa...

  10. Influence of Ti, C and N concentration on the intergranular corrosion behaviour of AISI 316Ti and 321 stainless steels

    International Nuclear Information System (INIS)

    Pardo, A.; Merino, M.C.; Coy, A.E.; Viejo, F.; Carboneras, M.; Arrabal, R.

    2007-01-01

    Intergranular corrosion behaviour of 316Ti and 321 austenitic stainless steels has been evaluated in relation to the influence exerted by modification of Ti, C and N concentrations. For this evaluation, electrochemical measurements - double loop electrochemical potentiokinetic reactivation (DL-EPR) - were performed to produce time-temperature-sensitization (TTS) diagrams for tested materials. Transmission (TEM) and scanning electron microscopy (SEM) were used to determine the composition and nature of precipitates. The addition of Ti promotes better intergranular corrosion resistance in stainless steels. The precipitation of titanium carbides reduces the formation of chromium-rich carbides, which occurs at lower concentrations. Also, the reduction of carbon content to below 0.03 wt.% improves sensitization resistance more than does Ti content. The presence of Mo in AISI 316Ti stainless steel reduces chromium-rich carbide precipitation; the reason is that Mo increases the stability of titanium carbides and tends to replace chromium in the formation of carbides and intermetallic compounds, thus reducing the risks of chromium-depletion

  11. Fracture mechanics

    CERN Document Server

    Perez, Nestor

    2017-01-01

    The second edition of this textbook includes a refined presentation of concepts in each chapter, additional examples; new problems and sections, such as conformal mapping and mechanical behavior of wood; while retaining all the features of the original book. The material included in this book is based upon the development of analytical and numerical procedures pertinent to particular fields of linear elastic fracture mechanics (LEFM) and plastic fracture mechanics (PFM), including mixed-mode-loading interaction. The mathematical approach undertaken herein is coupled with a brief review of several fracture theories available in cited references, along with many color images and figures. Dynamic fracture mechanics is included through the field of fatigue and Charpy impact testing. Explains computational and engineering approaches for solving crack-related problems using straightforward mathematics that facilitate comprehension of the physical meaning of crack growth processes; Expands computational understandin...

  12. Supracondylar Fracture

    Directory of Open Access Journals (Sweden)

    Jessica Andrusaitis

    2017-07-01

    Full Text Available History of present illness: A 15-year-old male presented to the emergency department with right elbow pain after falling off a skateboard. The patient denied a decrease in strength or sensation but did endorse paresthesias to his hand. On exam, the patient had an obvious deformity of his right elbow with tenderness to palpation and decreased range of motion at the elbow. Sensation, motor function, and pulses were intact. Radiographic imaging was obtained. Significant findings: The pre-reduction films show a type III supracondylar fracture. There is complete displacement of the distal humerus anteriorly. Specific findings for supracondylar fracture include: a posterior fat pad (red arrow and a displaced anterior humeral line (yellow line.1 When no fracture is present, the anterior humeral line should intersect the middle third of the capitellum; in this X-ray, it does not intersect the capitellum at all. This X-ray demonstrates a normal radiocapitellar line (blue line that intersects the capitellum. The presence of a narrow anterior fat pad aka “sail sign” can be normal. Discussion: Supracondylar fractures of the humerus occur at the distal portion of the humerus without involving the growth plate.2 This is the second most common fracture in children overall. In children, it is the most common fracture of the elbow.3 This injury has a high risk of neurovascular compromise, such as compartment syndrome or ischemic contracture, and thus the clinician must perform immediate and frequent neurovascular assessments focusing on the distributions of the brachial artery in addition to the median, ulnar, and radial nerves.4 Hyperextension injuries that typically occur following a fall onto an outstretched arm are responsible for 95% of supracondylar fractures.1 A type I supracondylar fracture is non-displaced and can be treated with immobilization through a posterior splint and sling5 with close follow-up, type II is angulated but with an intact

  13. An Electrochemical Framework to Explain Intergranular Stress Corrosion Cracking in an Al-5.4%Cu-0.5%Mg-0.5%Ag Alloy

    Science.gov (United States)

    Little, D. A.; Connolly, B. J.; Scully, J. R.

    2001-01-01

    A modified version of the Cu-depletion electrochemical framework was used to explain the metallurgical factor creating intergranular stress corrosion cracking susceptibility in an aged Al-Cu-Mg-Ag alloy, C416. This framework was also used to explain the increased resistance to intergranular stress corrosion cracking in the overaged temper. Susceptibility in the under aged and T8 condition is consistent with the grain boundary Cu-depletion mechanism. Improvements in resistance of the T8+ thermal exposure of 5000 h at 225 F (T8+) compared to the T8 condition can be explained by depletion of Cu from solid solution.

  14. Study of intergranular precipitation in Al 6.8 pc at. Zn and Al 12.1 pc at. Zn

    International Nuclear Information System (INIS)

    Bouzaher, Abdallah

    1981-01-01

    As the homogeneous decomposition of alloys with structural hardening is generally accompanied by an heterogeneous precipitation on defects such as dislocations, grain boundaries, and so on, this research thesis reports the study of intergranular precipitation in a Al Zn alloy (Al 15 pc wt.Zn and Al 25 oc wt.Zn) by using transmission electronic microscopy for a local and direct observation of precipitation at grain boundaries. Moreover, possibilities of diffraction of present phases allow their structures and possible epitaxies to be determined. This technique also allows grain boundaries to be analysed and their parameters to be determined. In order to study bare areas and boundary migration, scanning electronic microscopy has been used on massive samples, and X ray analysis has been used on thin ones

  15. Galeazzi fracture.

    Science.gov (United States)

    Atesok, Kivanc I; Jupiter, Jesse B; Weiss, Arnold-Peter C

    2011-10-01

    Galeazzi fracture is a fracture of the radial diaphysis with disruption at the distal radioulnar joint (DRUJ). Typically, the mechanism of injury is forceful axial loading and torsion of the forearm. Diagnosis is established on radiographic evaluation. Underdiagnosis is common because disruption of the ligamentous restraints of the DRUJ may be overlooked. Nonsurgical management with anatomic reduction and immobilization in a long-arm cast has been successful in children. In adults, nonsurgical treatment typically fails because of deforming forces acting on the distal radius and DRUJ. Open reduction and internal fixation is the preferred surgical option. Anatomic reduction and rigid fixation should be followed by intraoperative assessment of the DRUJ. Further intraoperative interventions are based on the reducibility and postreduction stability of the DRUJ. Misdiagnosis or inadequate management of Galeazzi fracture may result in disabling complications, such as DRUJ instability, malunion, limited forearm range of motion, chronic wrist pain, and osteoarthritis.

  16. Effects of microstructure and local mechanical fields on intergranular stress corrosion cracking of a friction stir welded aluminum–copper–lithium 2050 nugget

    International Nuclear Information System (INIS)

    Dhondt, Matthieu; Aubert, Isabelle; Saintier, Nicolas; Olive, Jean Marc

    2014-01-01

    Highlights: • Applied stress changes the corrosion mode from pitting to intergranular cracking. • Residual stresses are sufficient to induce intergranular stress corrosion cracking. • Effect of crystallographic texture on the development of IGSCC evidenced by EBSD. • Cubic elasticity drives the local orientation of the intergranular cracking. • Tomography observations show the 3D nature of the corrosion development. - Abstract: The effects of the microstructure and mechanical fields on intergranular stress corrosion cracking (IGSCC) of the nugget zone of heat treated welds obtained by friction stir welding in the AA2050 aluminum alloy have been investigated at different scales. At low strain rate, in 1.0 NaCl aqueous solution, IGSCC develops in the microstructure, whereas only pitting corrosion is observed without any mechanical stress. Based on surface observations, EBSD analysis and X-ray tomography, the key role of sub-millimetric textured bands (induced by the welding process) on the IGSCC is demonstrated. Analyses at a more local scale show the grain boundary (low angle boundary, special coincident site lattice boundary or high angle boundary) do not have a significant effect on crack initiation. Crystal plasticity finite element calculations show that the threshold normal stress at grain boundaries for IGSCC development is about 80% of the macroscopic stress. It is also highlighted by crystal plasticity calculations that there is a drastic effect of the local stress field on the shape of cracks. Finally, it is shown that plasticity induced residual stresses are sufficient for the formation of IGSCC

  17. Evaluation of austenitic stainless steels for transpassive corrosion by metal purification technology. Synergistic effect of Si and P on intergranular corrosion of Fe-18Cr-14Ni alloys

    International Nuclear Information System (INIS)

    Mayuzumi, Masami; Ohta, Joji; Kako, Kenji; Kawakami, Eishi

    2001-01-01

    The synergistic effect of Si, Mn, C, P, and S on the transpassive corrosion of HP18Cr-14Ni alloys was studied in 13N nitric acid. The specimens were fabricated using a cold crucible method in a high-vacuum chamber to reduce contamination. The additions of Si<1% and Mn<2% had no effect on the corrosion behavior of HP18Cr-14Ni alloys, and the addition of Si<1% also had no effect on the corrosion behavior of HP18Cr-14Ni-1Mn alloys, although 1% Si induced intergranular corrosion in both the alloys. Thus, HP18Cr-14Ni-1Mn-0.5Si alloys were selected to evaluate the effects of C, P and S (100 ppm each). The addition of P, and the co-addition of C, P, and S to HP18Cr-14Ni-1Mn-0.5Si induced intergranular corrosion of the same degree in the solution annealed condition. This result suggests the synergistic effect of Si and P to induce intergranular corrosion, since the single addition of Si or P to this level did not lead to intergranular corrosion of HP18Cr-14Ni alloys. HP18Cr-14Ni-1Mn-0.5Si alloys containing C, P, and S at the 100 ppm level each showed superior corrosion resistance compared to a commercial Type 304L in 13N nitric acid. (author)

  18. Three-dimensional study of grain boundary engineering effects on intergranular stress corrosion cracking of 316 stainless steel in high temperature water

    Science.gov (United States)

    Liu, Tingguang; Xia, Shuang; Bai, Qin; Zhou, Bangxin; Zhang, Lefu; Lu, Yonghao; Shoji, Tetsuo

    2018-01-01

    The intergranular cracks and grain boundary (GB) network of a GB-engineered 316 stainless steel after stress corrosion cracking (SCC) test in high temperature high pressure water of reactor environment were investigated by two-dimensional and three-dimensional (3D) characterization in order to expose the mechanism that GB-engineering mitigates intergranular SCC. The 3D microstructure shown that the essential characteristic of the GB-engineered microstructure is formation of many large twin-boundaries as a result of multiple-twinning, which results in the formation of large grain-clusters. The large grain-clusters played a key role to the improvement of intergranular SCC resistance by GB-engineering. The main intergranular cracks propagated in a zigzag along the outer boundaries of these large grain-clusters because all inner boundaries of the grain-clusters were twin-boundaries (∑3) or twin-related boundaries (∑3n) which had much lower susceptibility to SCC than random boundaries. These large grain-clusters had tree-ring-shaped topology structure and very complex morphology. They got tangled so that difficult to be separated during SCC, resulting in some large crack-bridges retained in the crack surface.

  19. Ultrasonic pattern recognition study of intergranular stress corrosion cracks vs. weld crown reflectors in SS piping. Interim report

    International Nuclear Information System (INIS)

    Rose, J.L.; Singh, G.P.

    1978-09-01

    Pattern recognition techniques for discriminating between geometrical and crack reflector signals obtained during ultrasonic inspection of weld zone in Type 304 austenitic stainless steel piping have been applied to one set of data. Seven welds from four different 4-in diameter pipe specimens containing intergranular stress corrosion cracking (supplied by the GE pipe laboratory through SwRI) were examined ultrasonically. Geometrical reflectors considered in this feasibility study were crown type reflectors only, since they were readily available in the pipe specimens. The ultrasonic inspection was conducted in a pulse-echo mode using a 1.5 MHz nominal center frequency, 3/8-in diameter transducer mounted on a plexiglass shoe with a 45 0 refracted transverse wave. A version of the Southwest Research Institute pipe weld examination code was used for recording data. Ultrasonic signals were digitized and stored for further analysis. One hundred fifty-five indications were recorded from seven different welds, four of which were examined from both sides, and three from only one side. The ultrasonic data were correlated with dye penetration tests and ultrasonic examination conducted by SwRI in order to obtain correct training information. The data naturally fell into two categories, cracks and crowns (geometric reflectors). A total of 107 crown indications and 40 intergranular stress corrosion cracking (IGSCC) indications were further analyzed. The pattern recognition analysis indicated that an IGSCC indication was discriminated from a crown indication in about 98% of the cases. The success of the pattern recognition algorithm employed in this study demonstrates the applicability of this technique for solving such important problems as discrimination between IGSCC and geometric reflectors in 304 stainless steel pipe welds. Additional work on other kinds of geometric reflectors is required to establish an overall confidence level in reflector classification analysis

  20. Trochanteric fractures

    International Nuclear Information System (INIS)

    Herrlin, K.; Stroemberg, T.; Lidgren, L.; Walloee, A.; Pettersson, H.; Lund Univ.

    1988-01-01

    Four hundred and thirty trochanteric factures operated upon with McLaughlin, Ender or Richard's osteosynthesis were divided into 6 different types based on their radiographic appearance before and immediately after reposition with special reference to the medial cortical support. A significant correlation was found between the fracture type and subsequent mechanical complications where types 1 and 2 gave less, and types 4 and 5 more complications. A comparison of the various osteosyntheses showed that Richard's had significantly fewer complications than either the Ender or McLaughlin types. For Richard's osteosynthesis alone no correlation to fracture type could be made because of the small number of complications in this group. (orig.)

  1. Sensitization to Corrosion as Initiator of Fatigue Fracture in Compressor Blades

    Directory of Open Access Journals (Sweden)

    Vladimír CIHAL

    2011-06-01

    Full Text Available Certain failures of stainless steels interpreted purely in terms of fracture mechanisms may in fact be closely associated with previous damage caused by localized corrosion. The closeness of the link between fatigue and corrosion is documented by the case history of compressor blades made of grade 14Cr17Ni2 (X14CrNi17-2 stainless steel. Fatigue fracturing observed in areas near the blade root tended to follow intergranular pathways, indicating that some additional mechanism other than fatigue might be involved. This suspicion was confirmed by electrochemical potentiokinetic reactivation (EPR measurements in situ, which revealed sensitization to intergranular corrosion. It has been found that at the transition between the blade root and the blade proper the surfaces had been ground and polished too vigorously, heating the subcutaneous layers to within the danger zone of 400-600°C. Preferential integranular attack in these locations was the initiation mechanism that provoked a subsequent failure of the blades by fatigue fracture.

  2. Inhibition of intergranular stress corrosion cracking of sensitized type 304 stainless steel. Annual report

    International Nuclear Information System (INIS)

    Brown, B.F.

    1977-01-01

    The effectiveness of various inhibitors in mitigating stress corrosion cracking of stainless steel in hot aqueous environment was evaluated. The inhibitors studied were of three types: poly-oxy-anions, organic competitive absorbers, and simple cations; the corrosive medium was 4M NaCl acidified with H 2 SO 4 to ph of about 2.3. The following conclusions were reached: pH does not affect cracking kinetics in a sensitive way; cracking time is highly dependent on chloride concentrations; poly-oxy-anions do not perform well; organics offer some possibilities as inhibitors; cationic additives can have effects varying from trivial to total suppression of cracking--behavior is both cation and concentration dependent. 2 figures, 5 tables

  3. Study of Aging-Induced Degradation of Fracture Resistance of Alloy 617 Toward High-Temperature Applications

    Science.gov (United States)

    Singh, Aditya Narayan; Moitra, A.; Bhaskar, Pragna; Sasikala, G.; Dasgupta, Arup; Bhaduri, A. K.

    2017-07-01

    For the Alloy 617, the effect of aging on the fracture energy degradation has been investigated after aging for different time periods at 1023 K (750 °C). A sharp reduction in impact energy (by 55 pct vis-à-vis the as-received material) after 1000 hours of aging, as evaluated from room-temperature Charpy impact tests, has been observed. Further aging up to 10,000 hours has led to a degradation of fracture energy up to 78 pct. Fractographic examinations using scanning electron microscopy (SEM) have revealed a change in fracture mode from fibrous-ductile for the un-aged material to intergranular mode for the aged one. The extent of intergranular fracture increases with the increasing aging time, indicating a tendency of the material to undergo grain boundary embrittlement over long-term aging. Analysis of the transmission electron microscopy (TEM) micrographs along with selected area diffraction (SAD) patterns for the samples aged at 10,000 hours revealed finely dispersed γ' precipitates of size 30 to 40 nm, rich in Al and Ti, along with extensive precipitation of M23C6 at the grain boundaries. In addition, the presence of Ni3Si of size in the range of 110 to 120 nm also has been noticed. The extensive precipitation of M23C6 at the grain boundaries have been considered as a major reason for aging-induced embrittlement of this material.

  4. Identification of crack path of inter- and transgranular fractures in sintered silicon nitride by in situ TEM.

    Science.gov (United States)

    Ii, Seiichiro; Iwamoto, Chihiro; Matsunaga, Katsuyuki; Yamamoto, Takahisa; Ikuhara, Yuichi

    2004-01-01

    Inter- and/or transgranular crack paths in sintered silicon nitride (Si3N4) during fracture were investigated by in situ straining experiments in a transmission electron microscope at room temperature, using a high-precision micro-indenter. By this technique, cracks introduced in an in situ manner were observed to propagate in the grain interior and along grain boundaries. High-resolution electron microscopy (HREM) observation revealed that the crack propagation takes place at an interface between Si3N4 grains and an intergranular glassy film (IGF) in the case of intergranular fractures. According to the results by previous molecular dynamics simulations, a number of dangling bonds are present at the Si3N4/IGF interface, which should result in the observed fracture behavior at the interface. On the other hand, the crack path introduced during transgranular fracture of Si3N4 grains was found to be sharp and straight. The observed crack propagated towards [1120] inside the Si3N4 grain with the crack surface parallel to the (1100) plane. The HREM observations of crack walls revealed them to be atomically flat. The atomic termination of the crack walls was identified in combination with image simulations based on atomic models of the cleaved crack walls.

  5. Pseudoarthrosis in atypical femoral fracture: case report.

    Science.gov (United States)

    Giannotti, S; Bottai, V; Dell'Osso, G; De Paola, G; Ghilardi, M; Guido, G

    2013-11-01

    Atypical femoral fractures can be subsequent to a long-term biphosphonates treatment; they have a high frequency of delayed healing. The authors describe a femoral pseudoarthrosis of an atypical fracture treated with intramedullary nailing in a female after prolonged alendronate therapy. Atypical femoral fractures can be subsequent to a long-term biphosphonates treatment even if, in the literature, there is no clarity on the exact pathogenetic mechanism. The Task Force of the American Society for Bone and Mineral Research described the major and minor features to define atypical fractures and recommends that all the five major features must be present while minor features are not necessary. Another controversial aspect regarding the atypical femoral fractures is the higher frequency of the delayed healing that can be probably related to a suppressed bone turnover caused by a prolonged period of bisphosphonates treatment. This concept could be corroborated by the Spet Tc exam. In the case of a pseudoarthrosis, there is not a standardization of the treatment. In this report, the authors describe a femoral pseudoarthrosis of an atypical fracture treated with intramedullary nailing in a female after prolonged alendronate therapy; the patient was studied with clinical, bioumoral end SPECT-Tc exam of both femurs. Many studies show the relationship between bisphosphonates and the presence of atypical fractures. These fractures should be monitored more closely due to the risk of nonunion and they require considering an initial treatment with pharmacological augmentation to reduce the complications for the patient and the health care costs.

  6. Local approach: fracture at high temperature in an austenitic stainless steel submitted to thermomechanical loadings. Calculations and experimental validations; Approche locale: fissuration a haute temperature dans un acier inoxydable austenitique sous chargements thermomecaniques. Simulations numeriques et validations experimentales

    Energy Technology Data Exchange (ETDEWEB)

    Poquillon, D

    1997-10-01

    Usually, for the integrity assessment of defective components, well established rules are used: global approach to fracture. A more fundamental way to deal with these problems is based on the local approach to fracture. In this study, we choose this way and we perform numerical simulations of intergranular crack initiation and intergranular crack propagation. This type of damage can be find in components of fast breeder reactors in 316 L austenitic stainless steel which operate at high temperatures. This study deals with methods coupling partly the behaviour and the damage for crack growth in specimens submitted to various thermomechanical loadings. A new numerical method based on finite element computations and a damage model relying on quantitative observations of grain boundary damage is proposed. Numerical results of crack initiation and growth are compared with a number of experimental data obtained in previous studies. Creep and creep-fatigue crack growth are studied. Various specimen geometries are considered: compact Tension Specimens and axisymmetric notched bars tested under isothermal (600 deg C) conditions and tubular structures containing a circumferential notch tested under thermal shock. Adaptative re-meshing technique and/or node release technique are used and compared. In order to broaden our knowledge on stress triaxiality effects on creep intergranular damage, new experiments are defined and conducted on sharply notched tubular specimens in torsion. These isothermal (600 deg C) Mode II creep tests reveal severe intergranular damage and creep crack initiation. Calculated damage fields at the crack tip are compared with the experimental observations. The good agreement between calculations and experimental data shows the damage criterion used can improve the accuracy of life prediction of components submitted to intergranular creep damage. (author) 200 refs.

  7. Fracture mechanisms of aluminium alloy AA7075-T651 under various loading conditions

    International Nuclear Information System (INIS)

    Pedersen, Ketill O.; Borvik, Tore; Hopperstad, Odd Sture

    2011-01-01

    The fracture behaviour of the aluminium alloy AA7075-T651 is investigated for quasi-static and dynamic loading conditions and different stress states. The fracture surfaces obtained in tensile tests on smooth and notched axisymmetric specimens and compression tests on cylindrical specimens are compared to the fracture surfaces that occur when a projectile, having either a blunt or an ogival nose shape, strikes a 20 mm thick plate of the aluminium alloy. The stress state in the impact tests is much more complex and the strain rate significantly higher than in the tensile and compression tests. Optical and scanning electron microscopes are used in the investigation. The fracture surface obtained in tests with smooth axisymmetric specimens indicates that the crack growth is partly intergranular along the grain boundaries or precipitation free zones and partly transgranular by void formation around fine and coarse intermetallic particles. When the stress triaxiality is increased through the introduction of a notch in the tensile specimen, delamination along the grain boundaries in the rolling plane is observed perpendicular to the primary crack. In through-thickness compression tests, the crack propagates within an intense shear band that has orientation about 45 o with respect to the load axis. The primary failure modes of the target plate during impact were adiabatic shear banding when struck by a blunt projectile and ductile hole-enlargement when struck by an ogival projectile. Delamination and fragmentation of the plates occurred for both loading cases, but was stronger for the ogival projectile. The delamination in the rolling plane was attributed to intergranular fracture caused by tensile stresses occurring during the penetration event.

  8. Magnetic properties and phase evolution of sintered Nd-Fe-B magnets with intergranular addition of Pr–Co alloy

    International Nuclear Information System (INIS)

    Jin, Chaoxiang; Chen, Renjie; Yin, Wenzong; Tang, Xu; Wang, Zexuan; Ju, Jinyun; Lee, Don; Yan, Aru

    2016-01-01

    The magnetic properties, thermal stability and phase evolution of sintered Nd-Fe-B magnets with intergranular addition of Pr–Co were investigated. The thermal stabilities of coercivity and remanence were simultaneously enhanced without heavy rare earth elements, resulting from the partial substitution of Pr for Nd and Co for Fe in matrix phase, respectively. After Pr–Co addition, RE-rich phase reduced and new phases containing Pr and Co, such as (NdPr) (FeCo) 2 (NdPr) 3 (FeCo) and (NdPr) 2 (FeCo) 17 phases, were formed. With the increase of Pr–Co addition amount, intrinsic coercivity firstly decreased sharply which was mainly caused by the formation of soft ferromagnetic (NdPr) (FeCo) 2 phase, and subsequently presented a remarkable recovery induced by the formation of non-magnetic (NdPr) 3 (FeCo) phase and transformation of (NdPr) (FeCo) 2 phase from ferromagnetic to non-magnetic. Due to the reduction of matrix phase proportion, the remanence decreased monotonously after the addition of Pr–Co for more than 10 wt. %. - Highlights: • The improved thermal stabilities of coercivity and remanence were obtained. • An abnormal remarkable recovery of coercivity was found. • The evolution of Co-containing phases was clarified.

  9. A comparative EBSD and micro-XRD study of the intergranular grain structure in CP-Ti

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, P.A., E-mail: Peter.Lynch@csiro.a [CSIRO Materials Science and Engineering, Gate 5 Normanby Road, Clayton, Victoria 3168 (Australia); Tomus, D.; Bettles, C.J. [Monash University, ARC Centre of Excellence for Design in Light Metals, Materials Engineering, Clayton, Victoria 3800 (Australia); Gibson, M.A.; Stevenson, A.W. [CSIRO Materials Science and Engineering, Gate 5 Normanby Road, Clayton, Victoria 3168 (Australia)

    2010-07-21

    Electron Backscatter Diffraction (EBSD) and scanning polychromatic X-ray micro-diffraction (micro-XRD) have been applied to study the intergranular grain structure in CP-Ti strip. Prior to synchrotron experimentation, a polycrystalline CP-Ti sample was electrochemically polished and a series of fiducial markers were placed on the surface to define a 500 {mu}mx500 {mu}m region of interest. Within this area EBSD was used to obtain an orientation map of the grains at the sample surface. Synchrotron polychromatic X-ray micro-diffraction data, collected on beamline 12.3.2 at the Advanced Light Source, was then used to map an area of 200x60 {mu}m{sup 2} within the region of interest. Comparison of the respective grain maps indicated an average grain size of {approx}50 {mu}m. Micro-XRD data was initially used to locate the same surface grains determined by EBSD. Based on comparison of the Euler angles, grain orientation maps from the two data sets were found to be in close agreement. The typical rolling texture found in CP-Ti was identified with the basal pole maxima tilted slightly toward the transverse direction. Subsequent 3D analysis of the Laue pattern intensity distribution of the surface grains revealed that some of the large grains identified by EBSD formed sub-cell structures below the sample surface.

  10. A comparative EBSD and micro-XRD study of the intergranular grain structure in CP-Ti

    Science.gov (United States)

    Lynch, P. A.; Tomus, D.; Bettles, C. J.; Gibson, M. A.; Stevenson, A. W.

    2010-07-01

    Electron Backscatter Diffraction (EBSD) and scanning polychromatic X-ray micro-diffraction (micro-XRD) have been applied to study the intergranular grain structure in CP-Ti strip. Prior to synchrotron experimentation, a polycrystalline CP-Ti sample was electrochemically polished and a series of fiducial markers were placed on the surface to define a 500 μm×500 μm region of interest. Within this area EBSD was used to obtain an orientation map of the grains at the sample surface. Synchrotron polychromatic X-ray micro-diffraction data, collected on beamline 12.3.2 at the Advanced Light Source, was then used to map an area of 200×60 μm 2 within the region of interest. Comparison of the respective grain maps indicated an average grain size of ˜50 μm. Micro-XRD data was initially used to locate the same surface grains determined by EBSD. Based on comparison of the Euler angles, grain orientation maps from the two data sets were found to be in close agreement. The typical rolling texture found in CP-Ti was identified with the basal pole maxima tilted slightly toward the transverse direction. Subsequent 3D analysis of the Laue pattern intensity distribution of the surface grains revealed that some of the large grains identified by EBSD formed sub-cell structures below the sample surface.

  11. Intergranular attack and stress corrosion cracking propagation behavior of alloy 600 in high-temperature caustic solution

    International Nuclear Information System (INIS)

    Kawamura, H.; Hirano, H.

    1999-01-01

    The effect of stress intensity factors (K) at the intergranular attack and stress corrosion crack (IGA/SCC) tips on the IGA/SCC propagation behavior of steam generator (SG) tubing was studied under accelerated test conditions. Values of K at the IGA/SCC crack tips were calculated using the statically indeterminate model. Based upon analysis of those factors, the double-cantilever beam (DCB) and SG model boiler tests were carried out to evaluate the effect of stress intensity on IGA/SCC crack propagation. K at the crack tips increased with increasing crack length. For a long crack, K decreased with an increasing number of cracks. However, for a short crack, K decreased slightly with an increasing number of cracks. DCB test results showed the IGA/SCC crack velocity of alloy 600 (UNS N06600) increased gradually with increasing K in the range from 15 MPa√m to ∼60 MPa√m. This is the range relevant to IGA/SCC crack tips of typical SG tubes under operating conditions of Pressurized-water reactors. Metallographic examination of tubes removed from the SG model boiler, fouled with 10 ppm sodium hydroxide (NaOH), showed IGA/SCC propagation rates were almost constant in the tested range of K

  12. Magnetic properties and phase evolution of sintered Nd-Fe-B magnets with intergranular addition of Pr–Co alloy

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Chaoxiang [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Enginnering, Chinese Academy of Sciences, Ningbo 315201 (China); Rare Earth Magnetic Materials Laboratory, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Chen, Renjie, E-mail: chenrj@nimte.ac.cn [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Enginnering, Chinese Academy of Sciences, Ningbo 315201 (China); Rare Earth Magnetic Materials Laboratory, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Yin, Wenzong; Tang, Xu; Wang, Zexuan; Ju, Jinyun [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Enginnering, Chinese Academy of Sciences, Ningbo 315201 (China); Rare Earth Magnetic Materials Laboratory, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Lee, Don [University of Dayton, Dayton OH (United States); Yan, Aru, E-mail: aruyan@nimte.ac.cn [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Enginnering, Chinese Academy of Sciences, Ningbo 315201 (China); Rare Earth Magnetic Materials Laboratory, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2016-06-15

    The magnetic properties, thermal stability and phase evolution of sintered Nd-Fe-B magnets with intergranular addition of Pr–Co were investigated. The thermal stabilities of coercivity and remanence were simultaneously enhanced without heavy rare earth elements, resulting from the partial substitution of Pr for Nd and Co for Fe in matrix phase, respectively. After Pr–Co addition, RE-rich phase reduced and new phases containing Pr and Co, such as (NdPr) (FeCo){sub 2} (NdPr){sub 3}(FeCo) and (NdPr){sub 2}(FeCo){sub 17} phases, were formed. With the increase of Pr–Co addition amount, intrinsic coercivity firstly decreased sharply which was mainly caused by the formation of soft ferromagnetic (NdPr) (FeCo){sub 2} phase, and subsequently presented a remarkable recovery induced by the formation of non-magnetic (NdPr){sub 3}(FeCo) phase and transformation of (NdPr) (FeCo){sub 2} phase from ferromagnetic to non-magnetic. Due to the reduction of matrix phase proportion, the remanence decreased monotonously after the addition of Pr–Co for more than 10 wt. %. - Highlights: • The improved thermal stabilities of coercivity and remanence were obtained. • An abnormal remarkable recovery of coercivity was found. • The evolution of Co-containing phases was clarified.

  13. Effect of Y2O3-Al2O3 ratio on inter-granular phases and films in tape-casting α-SiC with high toughness

    International Nuclear Information System (INIS)

    Huang Rong; Gu Hui; Zhang Jingxian; Jiang Dongliang

    2005-01-01

    Silicon carbide (SiC) ceramics prepared from liquid phase sintering after aqueous-tape-casting can yield high toughness when appropriate amount of Y 2 O 3 -Al 2 O 3 are added, even though no elongated grains are present. Grain boundaries (GB), second-phases and hetero-phase boundaries (HB) in 2 samples with additive mole ratios of 3:5 and 3:7 are investigated using high-resolution and analytical electron microscopy (HREM and AEM). The meta-stable YAlO 3 (YAP) was nucleated from SiC surfaces in the sample with Y/Al = 3:5 as revealed by crystallographic relations across the HB, whilst relatively thick amorphous films were found at GB. In contrary, the higher level of Al 2 O 3 additives decreases the GB film thickness in the sample with Y/Al = 3:7, and the homogeneous nucleation of Y 3 Al 5 O 12 (YAG) occurs at triple pockets accompanying with thick HB films. The strong variation of GB widths is a result of GB wetting in the sample with Y/Al = 3:5 and HB wetting in the sample of Y/Al = 3:7, both by liquid Al 2 O 3 . The energy of GB in the former sample is higher than the energy of HB as exhibited by the preferential nucleation of meta-stable YAP on SiC surfaces, which results in wetting of GB by the liquid; the situation is opposite in the latter sample as the wetting of HB occurs, leading to de-wetting of GB. The thermal mismatch between SiC and YAP or YAG as well as the presence of amorphous films facilitate the creation of micro-crack to promote inter-granular fracture and result in high toughness in both SiC ceramics

  14. Fracture toughness of WWER Uranium dioxide fuel pellets with various grain size

    International Nuclear Information System (INIS)

    Sivov, R.; Novikov, V.; Mikheev, E.; Fedotov, A.

    2015-01-01

    Uranium dioxide fuel pellets with grain sizes 13, 26, and 33 μm for WWER were investigated in the present work in order to determine crack formation and the fracture toughness.The investigation of crack formation in uranium oxide fuel pellets of the WWER-types showed that Young’s modulus and the microhardness of polycrystalline samples increase with increasing grain size, while the fracture toughness decreases. Characteristically, radial Palmqvist cracks form on the surface of uranium dioxide pellets for loads up to 1 kg. Transgranular propagation of cracks over distances several-fold larger than the length of the imprint diagonal is observed in pellets with large grains and small intragrain pores. Intergranular propagation of cracks along grain boundaries with branching occurs in pellets with small grains and low pore concentration on the grain boundaries. Blunting on large pores and at breaks in direction does not permit the cracks to reach a significant length

  15. The size effect of crystalline inclusions on the fracture modes in glass-ceramic materials

    Energy Technology Data Exchange (ETDEWEB)

    Charitidis, C A [School of Chemical Engineering, National Technical University of Athens, 9 Heroon, Polytechniou street, Zografos, GR-157 80 Athens (Greece); Karakasidis, T E [Department of Civil Engineering, University of Thessaly, Pedion Areos, GR-38834 Volos (Greece); Kavouras, P [Department of Physics, Solid State Section, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece); Karakostas, Th [Department of Physics, Solid State Section, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece)

    2007-07-04

    The main parameters influencing the mechanical performance of glass-ceramic materials are the shape and mean size of the ceramic phase, i.e. the crystalline inclusions. The aim of the present work is twofold: first, to study the effect of the above parameters on the modes of fracture in two kinds of glass-ceramic materials by the use of the static microindentation technique; second, to interpret the experimental results by the application of a simple physical model. It was found that reduction in the size of granularly shaped crystallite inclusions or reduction of the width of needle-like crystalline inclusions results in an increase of the extent of crack propagation, while the fracture mode shifts from intergranular to transgranular. These observations were successfully interpreted in terms of energetic arguments related to the size of the crystalline inclusions with respect to the width of a disordered zone acting as an interface between them and the amorphous matrix.

  16. Numerical Analysis on the Optimization of Hydraulic Fracture Networks

    Directory of Open Access Journals (Sweden)

    Zhaobin Zhang

    2015-10-01

    Full Text Available The clear understanding of hydraulic fracture network complexity and the optimization of fracture network configuration are important to the hydraulic fracturing treatment of shale gas reservoirs. For the prediction of hydraulic fracture network configuration, one of the problems is the accurate representation of natural fractures. In this work, a real natural fracture network is reconstructed from shale samples. Moreover, a virtual fracture system is proposed to simulate the large number of small fractures that are difficult to identify. A numerical model based on the displacement discontinuity method is developed to simulate the fluid-rock coupling system. A dimensionless stress difference that is normalized by rock strength is proposed to quantify the anisotropy of crustal stress. The hydraulic fracturing processes under different stress conditions are simulated. The most complex fracture configurations are obtained when the maximum principle stress direction is perpendicular to the principle natural fracture direction. In contrast, the worst results are obtained when these two directions are parallel to each other. Moreover, the side effects of the unfavorable geological conditions caused by crustal stress anisotropy can be partly suppressed by increasing the viscous effect of the fluid.

  17. Improvement of hydrogen sorption properties of compounds based on Vanadium “bcc” alloys by mean of intergranular phase development

    International Nuclear Information System (INIS)

    Planté, D.; Raufast, C.; Miraglia, S.; Rango, P. de; Fruchart, D.

    2013-01-01

    Highlights: •Decrease of “bcc” pseudo cell with the increase of amount of additive. •Additive phase improve activation kinetics. •Chromium in the “bcc” matrix decreases the lattice parameter and destabilizes hydride formation/dissociation. •Lower working temperatures could be obtain. -- Abstract: Body centered cubic structure (“bcc”) type alloys based on Vanadium [1] reveal promising characteristics for mobile applications. These disordered solid solutions have particular metal/hydride equilibrium and some regulation aspects have leaded us to pay special attention to this type of material [2]. Compounds based on Vanadium-rich solid solution have been elaborated in order to destabilize γ hydride phase (corresponding to the face centered cubic (“fcc”) structure of VH 2 ). Addition of Ni and Zr-rich Laves phase as a secondary phase results in the development of a particular microstructure composed of a principal “bcc” matrix rounded by intergranular activating phase. This results in a facilitated and faster activation of these compounds. The present study shows that some constituting species of the secondary phase have diffused in the main matrix and therefore have modified the thermodynamic of hydride. In fact, chromium diffusion into the “bcc” matrix destabilizes hydride. It is correlated to the lower stability of chromium hydride compared to Vanadium hydride. The enthalpic terms of each sample have been measured (assuming standard entropy of 130 J mol −1 K −1 ). The equilibrium metal/hydride can be easily switched in order to adapt it to a mobile hydride tank and obtain low working temperature in regard to the potential use

  18. The role of time-dependent deformation in intergranular crack initiation of alloy 600 steam generator tubing material

    International Nuclear Information System (INIS)

    Was, G.S.; Lian, K.

    1998-03-01

    Intergranular stress corrosion cracking (IGSCC) of two commercial alloy 600 conditions (600LT, 600HT) and controlled- purity Ni-18Cr-9Fe alloys (CDMA, CDTT) were investigated using constant extension rate tensile (CERT) tests in primary water (0.01M LiOH+0.01M H 3 BO 3 ) with 1 bar hydrogen overpressure at 360 degrees C and 320 degrees C. Heat treatments produced two types of microstructures in both commercial and controlled-purity alloys: one dominated by grain boundary carbides (600HT and CDTT) and one dominated by intragranular carbides (600LT and CDMA). CERT tests were conducted over a range of strain rates and at two temperatures with interruptions at specific strains to determine the crack depth distributions. Results show that in all samples, IGSCC was the dominant failure mode. For both the commercial alloy and the controlled-purity alloys, the microstructure with grain boundary carbides showed delayed crack initiation and shallower crack depths than did the intragranular carbide microstructure under all experimental conditions. This data indicates that a grain boundary carbide microstructure is more resistant to IGSCC than an intragranular carbide microstructure. Observations support both the film rupture/slip dissolution mechanism and enhanced localized plasticity. The advantage of these results over previous studies is that the different carbide distributions were obtained in the same commercial alloy using different heat treatments, and in the other case, in nearly identical controlled-purity alloys. Therefore, observations of the effects of carbide distribution on IGSCC can more confidently be attributed to the carbide distribution alone rather than other potentially significant differences in microstructure or composition

  19. The role of time-dependent deformation in intergranular crack initiation of alloy 600 steam generator tubing material

    Energy Technology Data Exchange (ETDEWEB)

    Was, G.S.; Lian, K.

    1998-03-01

    Intergranular stress corrosion cracking (IGSCC) of two commercial alloy 600 conditions (600LT, 600HT) and controlled- purity Ni-18Cr-9Fe alloys (CDMA, CDTT) were investigated using constant extension rate tensile (CERT) tests in primary water (0.01M LiOH+0.01M H{sub 3}BO{sub 3}) with 1 bar hydrogen overpressure at 360{degrees}C and 320{degrees}C. Heat treatments produced two types of microstructures in both commercial and controlled-purity alloys: one dominated by grain boundary carbides (600HT and CDTT) and one dominated by intragranular carbides (600LT and CDMA). CERT tests were conducted over a range of strain rates and at two temperatures with interruptions at specific strains to determine the crack depth distributions. Results show that in all samples, IGSCC was the dominant failure mode. For both the commercial alloy and the controlled-purity alloys, the microstructure with grain boundary carbides showed delayed crack initiation and shallower crack depths than did the intragranular carbide microstructure under all experimental conditions. This data indicates that a grain boundary carbide microstructure is more resistant to IGSCC than an intragranular carbide microstructure. Observations support both the film rupture/slip dissolution mechanism and enhanced localized plasticity. The advantage of these results over previous studies is that the different carbide distributions were obtained in the same commercial alloy using different heat treatments, and in the other case, in nearly identical controlled-purity alloys. Therefore, observations of the effects of carbide distribution on IGSCC can more confidently be attributed to the carbide distribution alone rather than other potentially significant differences in microstructure or composition.

  20. Intergranular stress corrosion cracking of type 304 stainless steels treated with inhibitive chemicals in high temperature pure water

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, T.K. [Nuclear Science and Technology Development Center, National Tsing-Hua Univ. Taiwan (China); Lee, M.Y.; Tsai, C.H. [Department of Engineering and System Science, National Tsing-Hua Univ. Taiwan (China)

    2002-07-01

    Electrochemical potentiodynamic polarizations, electrochemical corrosion potential (ECP) measurements and slow strain rate tensile (SSRT) tests were conducted to investigate the intergranular stress corrosion cracking (IGSCC) characteristics of Type 304 stainless steels treated with inhibitive chemicals in simulated boiling water reactor (BWR) environments. A number of thermally sensitized specimens were prepared and were pre-oxidized in a 288 C environment with the presence of 300 ppb dissolved oxygen for 360 hours. Most of the specimens were then treated with various chemicals including powdered zirconium oxide (ZrO{sub 2}), powdered titanium oxide (TiO{sub 2}), and zirconyl nitrate [ZrO(NO{sub 3}){sub 2}] via static immersion at 90 C, 150 C, and 200 C. Test environments were specifically designed in a circulation loop to create a dissolved oxygen concentration of 300 ppb. Test results showed that the corrosion current densities of all treated specimens were lower than that of the untreated, pre-oxidized specimen at ambient temperature in a solution mixed with 1 mM K{sub 3}Fe(CN){sub 6} and 1 mM K{sub 4}Fe(CN){sub 6}. The ECPs of the treated specimens could be lower or higher than that of the pre-oxidized one at 288 C, depending upon the type of treating chemical and the treating temperature. In addition, IGSCC was observed on all specimens (treated or untreated) in the same environment. However, the untreated specimen exhibited lower elongation, shorter failure time, and more secondary cracks on the side surfaces. It was therefore suggested that inhibitive chemicals such as ZrO{sub 2}, TiO{sub 2}, and ZrO(NO{sub 3}){sub 2} did provide a certain degree of enhancement in improving the mechanical behavior of the treated specimens and in prolonging the IGSCC initiation time. (authors)

  1. Assessment of susceptibility of Type 304 stainless steel to intergranular stress corrosion cracking in simulated Savannah River Reactor environments

    International Nuclear Information System (INIS)

    Ondrejcin, R.S.; Caskey, C.R. Jr.

    1989-01-01

    Intergranular stress corrosion cracking (IGSCC) of Type 304 stainless steel rate tests (CERT) of specimens machined was evaluated by constant extension from Savannah River Plant (SRP) decontaminated process water piping. Results from 12 preliminary CERT tests verified that IGSCC occurred over a wide range of simulated SRP envirorments. 73 specimens were tested in two statistical experimental designs of the central composite class. In one design, testing was done in environments containing hydrogen peroxide; in the other design, hydrogen peroxide was omitted but oxygen was added to the environment. Prediction equations relating IGSCC to temperature and environmental variables were formulated. Temperature was the most important independent variable. IGSCC was severe at 100 to 120C and a threshold temperature between 40C and 55C was identified below which IGSCC did not occur. In environments containing hydrogen peroxide, as in SRP operation, a reduction in chloride concentration from 30 to 2 ppB also significantly reduced IGSCC. Reduction in sulfate concentration from 50 to 7 ppB was effective in reducing IGSCC provided the chloride concentration was 30 ppB or less and temperature was 95C or higher. Presence of hydrogen peroxide in the environment increased IGSCC except when chloride concentration was 11 ppB or less. Actual concentrations of hydrogen peroxide, oxygen and carbon dioxide did not affect IGSCC. Large positive ECP values (+450 to +750 mV Standard Hydrogen Electrode (SHE)) in simulated SRP environments containing hydrogen peroxide and were good agreement with ECP measurements made in SRP reactors, indicating that the simulated environments are representative of SRP reactor environments. Overall CERT results suggest that the most effective method to reduce IGSCC is to reduce chloride and sulfate concentrations

  2. Intergranular tellurium cracking of nickel-based alloys in molten Li, Be, Th, U/F salt mixture

    Science.gov (United States)

    Ignatiev, Victor; Surenkov, Alexander; Gnidoy, Ivan; Kulakov, Alexander; Uglov, Vadim; Vasiliev, Alexander; Presniakov, Mikhail

    2013-09-01

    In Russia, R&D on Molten Salt Reactor (MSR) are concentrated now on fast/intermediate spectrum concepts which were recognized as long term alternative to solid fueled fast reactors due to their attractive features: strong negative feedback coefficients, easy in-service inspection, and simplified fuel cycle. For high-temperature MSR corrosion of the metallic container alloy in primary circuit is the primary concern. Key problem receiving current attention include surface fissures in Ni-based alloys probably arising from fission product tellurium attack. This paper summarizes results of corrosion tests conducted recently to study effect of oxidation state in selected fuel salt on tellurium attack and to develop means of controlling tellurium cracking in the special Ni-based alloys recently developed for molten salt actinide recycler and tranforming (MOSART) system. Tellurium corrosion of Ni-based alloys was tested at temperatures up to 750 °C in stressed and unloaded conditions in molten LiF-BeF2 salt mixture fueled by about 20 mol% of ThF4 and 2 mol% of UF4 at different [U(IV)]/[U(III)] ratios: 0.7, 4, 20, 100 and 500. Following Ni-based alloys (in mass%): HN80М-VI (Mo—12, Cr—7.6, Nb—1.5), HN80МТY (Mo—13, Cr—6.8, Al—1.1, Ti—0.9), HN80МТW (Mo—9.4, Cr—7.0, Ti—1.7, W—5.5) and ЕМ-721 (W—25.2, Cr—5.7, Ti—0.17) were used for the study in the corrosion facility. If the redox state the fuel salt is characterized by uranium ratio [U(IV)]/[U(III)] uranium intermetallic compounds and alloys with nickel and molybdenum. This leads to spontaneous behavior of alloy formation processes on the specimens' surface and further diffusion of uranium deep into the metallic phase. As consequence of this films of intermetallic compounds and alloys of nickel, molybdenum, tungsten with uranium are formed on the alloys specimens' surface, and intergranular corrosion does not take place. In the fuel salt with [U(IV)]/[U(III)] = 4-20 the potentials of uranium

  3. Slip, twinning, and fracture at a grain boundary in the L1/sub 2/ ordered structure: A. sigma. = 9 tilt boundary

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, M.H.; King, A.H.

    1988-09-01

    The role of interaction between slip dislocations and a ..sigma.. = 9 tilt boundary in localized microplastic deformation, cleavage, or intergranular fracture in the L1/sub 2/ ordered structure has been analyzed by using the anisotropic elasticity theory of dislocations and fracture. Screw superpartials cross slip easily at the boundary onto the (11-bar1) and the (001) planes at low and high temperatures, respectively. Transmission of primary slip dislocations onto the conjugate slip system occurs with a certain degree of difficulty, which is eased by localized disordering. When the transmission is impeded, cleavage fracture on the (1-bar11) plane is predicted to occur, not intergranular fracture, unless a symmetric double pileup occurs simultaneously. Absorption (or emission) of superpartials occurs only when the boundary region is disordered. Slip initiation from pre-existing sources near the boundary can occur under the local stress concentration. Implications of the present result on the inherent brittleness of grain boundaries in Ni/sub 3/ Al and its improvement by boron segregation are discussed.

  4. Growth hormone suppression test

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003376.htm Growth hormone suppression test To use the sharing features on this page, please enable JavaScript. The growth hormone suppression test determines whether growth hormone production is ...

  5. Fractures in multiple sclerosis

    DEFF Research Database (Denmark)

    Stenager, E; Jensen, K

    1991-01-01

    In a cross-sectional study of 299 MS patients 22 have had fractures and of these 17 after onset of MS. The fractures most frequently involved the femoral neck and trochanter (41%). Three patients had had more than one fracture. Only 1 patient had osteoporosis. The percentage of fractures increase...

  6. Assessment of fracture risk

    International Nuclear Information System (INIS)

    Kanis, John A.; Johansson, Helena; Oden, Anders; McCloskey, Eugene V.

    2009-01-01

    Fractures are a common complication of osteoporosis. Although osteoporosis is defined by bone mineral density at the femoral neck, other sites and validated techniques can be used for fracture prediction. Several clinical risk factors contribute to fracture risk independently of BMD. These include age, prior fragility fracture, smoking, excess alcohol, family history of hip fracture, rheumatoid arthritis and the use of oral glucocorticoids. These risk factors in conjunction with BMD can be integrated to provide estimates of fracture probability using the FRAX tool. Fracture probability rather than BMD alone can be used to fashion strategies for the assessment and treatment of osteoporosis.

  7. Assessment of fracture risk

    Energy Technology Data Exchange (ETDEWEB)

    Kanis, John A. [WHO Collaborating Centre for Metabolic Bone Diseases, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX (United Kingdom)], E-mail: w.j.pontefract@sheffield.ac.uk; Johansson, Helena; Oden, Anders [WHO Collaborating Centre for Metabolic Bone Diseases, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX (United Kingdom); McCloskey, Eugene V. [WHO Collaborating Centre for Metabolic Bone Diseases, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX (United Kingdom); Osteoporosis Centre, Northern General Hospital, Sheffield (United Kingdom)

    2009-09-15

    Fractures are a common complication of osteoporosis. Although osteoporosis is defined by bone mineral density at the femoral neck, other sites and validated techniques can be used for fracture prediction. Several clinical risk factors contribute to fracture risk independently of BMD. These include age, prior fragility fracture, smoking, excess alcohol, family history of hip fracture, rheumatoid arthritis and the use of oral glucocorticoids. These risk factors in conjunction with BMD can be integrated to provide estimates of fracture probability using the FRAX tool. Fracture probability rather than BMD alone can be used to fashion strategies for the assessment and treatment of osteoporosis.

  8. Effect of hot extrusion, other constituents, and temperature on the strength and fracture of polycrystalline MgO

    Energy Technology Data Exchange (ETDEWEB)

    Rice, R.W. (W.R. Grace and Co.-Conn, Columbia, MD (United States))

    1993-12-01

    Improved agreement was confirmed between the Petch intercept and single-crystal yield stresses at 22 C. Hot-extruded MgO crystal specimens stressed parallel with the resultant axial texture (1) gave the highest and least-scattered strength-grain size results at 22 C, (2) showed direct fractographic evidence of microplastic initiated fracture at 22 C and showed macroscopic yield at 1,315 and especially 1,540 C, and (3) fractured entirely via transgranular cleavage, except for intergranular failure initiation from one or a few grain boundary surfaces exposed on the subsequent fracture surface, mainly at 1,540 C. Hot-extruded, hot-pressed MgO billets gave comparable strength when fracture initiated transgranularly, but lower strength when fracture initiated from one or especially a few grain boundary surfaces exposed on the fracture. The extent and frequency of such boundary fracture increased with test temperature. While oxide additions of [<=] 5% or impurities in hot-pressed or hot-extruded MgO can make limited strength increases at larger grain sizes, those having limited solubility can limit strength at finer grain sizes, as can coarser surface finish. Overall, MgO strength is seen as a balance between flaw and microplastic controlled failure, with several parameters shifting the balance.

  9. Identifying osteoporotic vertebral fracture

    Science.gov (United States)

    2015-01-01

    Osteoporosis per se is not a harmful disease. It is the sequela of osteoporosis and most particularly the occurrence of osteoporotic fracture that makes osteoporosis a serious medical condition. All of the preventative measures, investigations, treatment and research into osteoporosis have one primary goal and that is to prevent the occurrence of osteoporotic fracture. Vertebral fracture is by far and away the most prevalent osteoporotic fracture. The significance and diagnosis of vertebral fracture are discussed in this article. PMID:26435923

  10. Relationship between microstructure and fracture types in a UNS S32205 duplex stainless steel

    Directory of Open Access Journals (Sweden)

    Maria Victoria Biezma

    2013-01-01

    Full Text Available Duplex stainless steels are susceptible to the formation of sigma phase at high temperature which could potentially be responsible for catastrophic service failure of components. Thermal treatments were applied to duplex stainless steels in order to promote the precipitation of different fractions of sigma phase into a ferrite-austenite microstructure. Quantitative image analysis was employed to characterize the microstructure and Charpy impact tests were used in order to evaluate the mechanical degradation caused by sigma phase presence. The fracture morphology of the Charpy test specimens were thoroughly observed in SEM, looking for a correlation between the microstructure and the fracture types in UNS S32205 duplex stainless steel. The main conclusion is the strong embrittlement effect of sigma phase since it is possible to observe a transition from transgranular fracture to intergranular fracture as increases the percentage of sigma phase. Thus, the mixed modes of fracture are predominant in the present study with high dependence on sigma phase percentages obtained by different thermal treatments.

  11. Imaging of vertebral fractures

    Directory of Open Access Journals (Sweden)

    Ananya Panda

    2014-01-01

    Full Text Available Vertebral fracture is a common clinical problem. Osteoporosis is the leading cause of non-traumatic vertebral fracture. Often, vertebral fractures are not clinically suspected due to nonspecific presentation and are overlooked during routine interpretation of radiologic investigations. Moreover, once detected, many a times the radiologist fails to convey to the clinician in a meaningful way. Hence, vertebral fractures are a constant cause of morbidity and mortality. Presence of vertebral fracture increases the chance of fracture in another vertebra and also increases the risk of subsequent hip fracture. Early detection can lead to immediate therapeutic intervention improving further the quality of life. So, in this review, we wish to present a comprehensive overview of vertebral fracture imaging along with an algorithm of evaluation of vertebral fractures.

  12. Grain boundary selective oxidation and intergranular stress corrosion crack growth of high-purity nickel binary alloys in high-temperature hydrogenated water

    Energy Technology Data Exchange (ETDEWEB)

    Bruemmer, S. M.; Olszta, M. J.; Toloczko, M. B.; Schreiber, D. K.

    2018-02-01

    The effects of alloying elements in Ni-5at%X binary alloys on intergranular (IG) corrosion and stress corrosion cracking (SCC) have been assessed in 300-360°C hydrogenated water at the Ni/NiO stability line. Alloys with Cr or Al additions exhibited grain boundary oxidation and IGSCC, while localized degradation was not observed for pure Ni, Ni-Cu or Ni-Fe alloys. Environment-enhanced crack growth was determined by comparing the response in water and N2 gas. Results demonstrate that selective grain boundary oxidation of Cr and Al promoted IGSCC of these Ni alloys in hydrogenated water.

  13. RETRACTED: Granular and intergranular conduction in La1.32Sr1.68Mn2O7 layered manganite system

    Science.gov (United States)

    Narjis, A.; El kaaouachi, A.; Dlimi, S.; Biskupski, G.; Daoudi, E.; Errai, M.; Sybous, A.; Limouny, L.

    2013-06-01

    We report a comprehensive study of the electrical and magneto-transport properties of La1.32Sr1.68Mn2O7 layered manganite system under different pressures and in the temperature range of 4.2 K to 300 K. An increase in the resistivity at low temperature has been observed and explained in terms of Coulomb Blockade effect. Magnetoresistance data are explained by assuming that the transport occurs through the mechanism of intergranular as well as granular paths with a pronounced manifestation of Spin Polarization Tunneling phenomenon. By qualitatively comparing the relative fractions of these channels, we explain the resistivity behavior in each temperature range.

  14. Fracture-toughness variations in Alloy 718

    International Nuclear Information System (INIS)

    Mills, W.J.; Blackburn, L.D.

    1983-04-01

    The effect of product-form variations within a single heat on the J Ic fracture toughness behavior of Alloy 718 was examined at 24, 427 and 538 degree C using the multiple-specimen J R -curve method. Three product forms (plate, round bar and upset forging) were tested in both the conventional and modified heat-treatment (CHT and MHT) conditions. In CHT material, the fracture toughness response was different for the three product forms -- plate having the highest toughness, bar the lowest. The MHT was found to improve the overall fracture resistance for each product form. In this condition, plate and forging had very similar toughness values, but J Ic levels for the bar were considerably lower. These results and WHC data previously reported for four other Alloy 718 heats were unalloyed statistically to establish minimum-expected J Ic values based on tolerance limits bracketing 90% of a total population at a 95% confidence level. Metallographic and fractographic examinations of the seven material lots were performed to relate key microstructural features and operative fracture mechanisms to macroscopic properties. Generally, coarse δ precipitates controlled fracture properties in CHT material by initiating secondary dimples that pre-empted growth of the primary dimples nucleated by broken carbide inclusions. The MHT dissolved the coarse δ particles and thereby suppressed secondary microvoid coalescence. This generally enhanced the fracture resistance of Alloy 718, except when alternate secondary fracture mechanism, such as channel fracture and dimple rupture at δ-phase remnants, prematurely interrupted primary microvoid growth. 25 refs., 12 figs., 12 tabs

  15. Fracture behavior of nickel-based alloys in water

    Energy Technology Data Exchange (ETDEWEB)

    Mills, W.J.; Brown, C.M.

    1999-08-01

    The cracking resistance of Alloy 600, Alloy 690 and their welds, EN82H and EN52, was characterized by conducting J{sub IC} tests in air and hydrogenated water. All test materials displayed excellent toughness in air and high temperature water, but Alloy 690 and the two welds were severely embrittled in low temperature water. In 54 C water with 150 cc H{sub 2}/kg H{sub 2}O, J{sub IC} values were typically 70% to 95% lower than their air counterparts. The toughness degradation was associated with a fracture mechanism transition from microvoid coalescence to intergranular fracture. Comparison of the cracking response in water with that for hydrogen-precharged specimens tested in air demonstrated that susceptibility to low temperature cracking is due to hydrogen embrittlement of grain boundaries. The effects of water temperature, hydrogen content and loading rate on low temperature crack propagation were studied. In addition, testing of specimens containing natural weld defects and as-machined notches was performed to determine if low temperature cracking can initiate at these features. Unlike the other materials, Alloy 600 is not susceptible to low temperature cracking as the toughness in 54 C water remained high and a microvoid coalescence mechanism was operative in both air and water.

  16. Fractures (Broken Bones): First Aid

    Science.gov (United States)

    First aid Fractures (broken bones) Fractures (broken bones): First aid By Mayo Clinic Staff A fracture is a ... 10, 2018 Original article: http://www.mayoclinic.org/first-aid/first-aid-fractures/basics/ART-20056641 . Mayo Clinic ...

  17. Ankle fracture - aftercare

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000548.htm Ankle fracture - aftercare To use the sharing features on this page, please enable JavaScript. An ankle fracture is a break in 1 or more ...

  18. Localized deformation as a key precursor to initiation of intergranular stress corrosion cracking of austenitic stainless steels employed in nuclear power plants

    Science.gov (United States)

    Karlsen, Wade; Diego, Gonzalo; Devrient, Bastian

    2010-11-01

    Cold-work has been associated with the occurrence of intergranular cracking of stainless steels employed in light water reactors. This study examined the deformation behavior of AISI 304, AISI 347 and a higher stacking fault energy model alloy subjected to bulk cold-work and (for 347) surface deformation. Deformation microstructures of the materials were examined and correlated with their particular mechanical response under different conditions of temperature, strain rate and degree of prior cold-work. Select slow-strain rate tensile tests in autoclaves enabled the role of local strain heterogeneity in crack initiation in pressurized water reactor environments to be considered. The high stacking fault energy material exhibited uniform strain hardening, even at sub-zero temperatures, while the commercial stainless steels showed significant heterogeneity in their strain response. Surface treatments introduced local cold-work, which had a clear effect on the surface roughness and hardness, and on near-surface residual stress profiles. Autoclave tests led to transgranular surface cracking for a circumferentially ground surface, and intergranular crack initiation for a polished surface.

  19. Reduction of intergranular exchange coupling and grain size for high Ku CoPt-based granular media: Metal-oxide buffer layer and multiple oxide boundary materials

    Science.gov (United States)

    Tham, Kim Kong; Kushibiki, Ryosuke; Kamada, Tomonari; Hinata, Shintaro; Saito, Shin

    2018-05-01

    Investigation of magnetic properties and microstructure of granular media with various multiple oxides as the grain boundary material is reported. Saturation magnetization (Ms), uniaxial magnetocrystalline anisotropy (Ku), and magnetic grain diameter (GD) of the granular media show linear correlation with volume weighted average for melting point (Tm) of each oxides (Tmave). Ku of magnetic grains (Kugrain) shows a trade-off relation with GD that it is a big challenge to satisfy both high Kugrain and small GD by only controlling Tmave. To obtain a granular medium with appropriate Kugrain, GD, and low degree of intergranular exchange coupling, the combination of Tmave control of grain boundary material by mixing oxides and employment of a buffer layer are required. Here the degree of intergranular exchange coupling is estimated from the slope of M-H loop at around coercivity (α). By applying this technique, a typical granular medium with Kugrain of 1.0×107 erg/cm3, GD of 5.1 nm, and α of 1.2 is realized.

  20. Fracture prevention in men

    NARCIS (Netherlands)

    Geusens, PP; Sambrook, P.N.; Lems, W.F.

    2009-01-01

    The lifetime risk of experiencing a fracture in 50-year-old men is lower (20%) than the risk in women (50%). Consequently, much less research has been carried out on osteoporosis and fracture risk in men. Differences in the risk and incidence of fractures between men and women are related to

  1. Imaging of insufficiency fractures

    Energy Technology Data Exchange (ETDEWEB)

    Krestan, Christian [Department of Radiology, Medical University of Vienna, Vienna General Hospital, Waehringerstr. 18-20, 1090 Vienna (Austria)], E-mail: christian.krestan@meduniwien.ac.at; Hojreh, Azadeh [Department of Radiology, Medical University of Vienna, Vienna General Hospital, Waehringerstr. 18-20, 1090 Vienna (Austria)

    2009-09-15

    This review focuses on the occurrence, imaging and differential diagnosis of insufficiency fractures. Prevalence, the most common sites of insufficiency fractures and their clinical implications are discussed. Insufficiency fractures occur with normal stress exerted on weakened bone. Postmenopausal osteoporosis is the most common cause of insufficiency fractures. Other conditions which affect bone turnover include osteomalacia, hyperparathyroidism, chronic renal failure and high-dose glucocorticoid therapy. It is a challenge for the radiologist to detect and diagnose insufficiency fractures, and to differentiate them from other bone lesions. Radiographs are still the most widely used imaging method for identification of insufficiency fractures, but sensitivity is limited, depending on the location of the fractures. Magnetic resonance imaging (MRI) is a very sensitive tool to visualize bone marrow abnormalities associated with insufficiency fractures. Thin section, multi-detector computed tomography (MDCT) depicts subtle fracture lines allowing direct visualization of cortical and trabecular bone. Bone scintigraphy still plays a role in detecting fractures, with good sensitivity but limited specificity. The most important differential diagnosis is underlying malignant disease leading to pathologic fractures. Bone densitometry and clinical history may also be helpful in confirming the diagnosis of insufficiency fractures.

  2. Hydrogen assisted fracture of sensitized Type 304L austenitic stainless steel

    International Nuclear Information System (INIS)

    Caskey, G.R. Jr.

    1980-01-01

    Sensitized specimens of Type 304L stainless steel were tensile tested in atmospheres of hydrogen and helium at high pressure, and in air at ambient pressure. Comparison tensile tests were made with solution-annealed specimens of Type 304L stainless steel in the same atmosphere. When both specimens were tested in high-pressure hydrogen, the sensitized specimens had greater loss in ductility and increased tendency to intergranular fracture. For the sensitized specimens, plastic strain to failure (epsilon/sub p/ = 1n A 0 /A/sub f/) in hydrogen at 69 MPa was reduced by 60 to 70% in comparison to similar tests in helium. In addition, a notch with a stress concentration factor of about 3 reduced plastic strain an additional 50 to 60%. In all cases, the nominal tensile strength of Type 304L stainless steel was increased by the notch. There was no evidence of intergranular failure in notched specimens of solution-annealed Type 304L stainless steel tested in high-pressure hydrogen environments

  3. Pressure suppression device

    International Nuclear Information System (INIS)

    Ichiki, Tadaharu; Funahashi, Toshihiro.

    1976-01-01

    Purpose: To provide a structure which permits the absorption of shocks and vibratory load produced on the floor of a pressure suppression chamber due to nitrogen gas or the like discharged into pool water in the pressure suppression chamber at the time of a loss-of-coolant accident. Constitution: A pressure suppression chamber accommodating pool water is comprised of a bottom wall and side walls constructed of concrete on the inner side of a liner. By providing concrete on the bottom surface and side wall surfaces of a pressure suppression chamber, it is possible to prevent non-condensing gas and steam exhausted from the vent duct and exhaust duct of a main vapor escapement safety valve exhaust duct from exerting impact forces and vibratory forces upon the bottom and side surfaces of the pressure suppression chamber. (Horiuchi, T.)

  4. Effect of Random Natural Fractures on Hydraulic Fracture Propagation Geometry in Fractured Carbonate Rocks

    Science.gov (United States)

    Liu, Zhiyuan; Wang, Shijie; Zhao, Haiyang; Wang, Lei; Li, Wei; Geng, Yudi; Tao, Shan; Zhang, Guangqing; Chen, Mian

    2018-02-01

    Natural fractures have a significant influence on the propagation geometry of hydraulic fractures in fractured reservoirs. True triaxial volumetric fracturing experiments, in which random natural fractures are created by placing cement blocks of different dimensions in a cuboid mold and filling the mold with additional cement to create the final test specimen, were used to study the factors that influence the hydraulic fracture propagation geometry. These factors include the presence of natural fractures around the wellbore, the dimension and volumetric density of random natural fractures and the horizontal differential stress. The results show that volumetric fractures preferentially formed when natural fractures occurred around the wellbore, the natural fractures are medium to long and have a volumetric density of 6-9%, and the stress difference is less than 11 MPa. The volumetric fracture geometries are mainly major multi-branch fractures with fracture networks or major multi-branch fractures (2-4 fractures). The angles between the major fractures and the maximum horizontal in situ stress are 30°-45°, and fracture networks are located at the intersections of major multi-branch fractures. Short natural fractures rarely led to the formation of fracture networks. Thus, the interaction between hydraulic fractures and short natural fractures has little engineering significance. The conclusions are important for field applications and for gaining a deeper understanding of the formation process of volumetric fractures.

  5. Role of MRI in hip fractures, including stress fractures, occult fractures, avulsion fractures

    International Nuclear Information System (INIS)

    Nachtrab, O.; Cassar-Pullicino, V.N.; Lalam, R.; Tins, B.; Tyrrell, P.N.M.; Singh, J.

    2012-01-01

    MR imaging plays a vital role in the diagnosis and management of hip fractures in all age groups, in a large spectrum of patient groups spanning the elderly and sporting population. It allows a confident exclusion of fracture, differentiation of bony from soft tissue injury and an early confident detection of fractures. There is a spectrum of MR findings which in part is dictated by the type and cause of the fracture which the radiologist needs to be familiar with. Judicious but prompt utilisation of MR in patients with suspected hip fractures has a positive therapeutic impact with healthcare cost benefits as well as social care benefits.

  6. Fractures in multiple sclerosis

    DEFF Research Database (Denmark)

    Stenager, E; Jensen, K

    1991-01-01

    In a cross-sectional study of 299 MS patients 22 have had fractures and of these 17 after onset of MS. The fractures most frequently involved the femoral neck and trochanter (41%). Three patients had had more than one fracture. Only 1 patient had osteoporosis. The percentage of fractures increased...... with increasing age and disease duration. Among 34 deceased MS patients 4 had had fractures. These findings are discussed in relation to physical and cognitive impairment in MS. A case-control study is recommended....

  7. Effect of He implantation on fracture behavior and microstructural evolution in F82H

    Science.gov (United States)

    Yabuuchi, Kiyohiro; Sato, Kiminori; Nogami, Shuhei; Hasegawa, Akira; Ando, Masami; Tanigawa, Hiroyasu

    2014-12-01

    Reduced-activation ferritic/martensitic steels (RAFMs) are the primary candidate structural materials for fusion reactor blanket components. He bubbles, which formed under 14 MeV neutron irradiation, is considered to cause some mechanical property changes. In a previous study, Hasegawa et al. investigated the fracture behavior using Charpy impact test of He implanted F82H by 50 MeV α-particles with cyclotron accelerator, and the ductile brittle transition temperature (DBTT) was increased and intergranular fracture (IGF) was observed. However, the cause of the IGF was not shown in the previous study. To clarify the cause of the IGF of the He implanted F82H by 50 MeV α-particles with cyclotron accelerator, the microstructure of the He implanted F82H was investigated. After Charpy impact test at 233 K, the brittle fracture surface of the He implanted specimen was observed by SEM and TEM. By SEM observation, grain boundary surface was clearly observed from the bottom of the notch to a depth of about 400 μm. This area correspond to the He implanted region. On the other hand, at unimplanted region, river pattern was observed and transgranular fracture occurred. TEM observation revealed the He bubbles agglomeration at dislocations, lath boundaries, and grain boundaries, and the coarsening of precipitates on grain boundaries. IGF of the He implanted F82H was caused by both He bubbles and coarsening precipitates.

  8. Effect of He implantation on fracture behavior and microstructural evolution in F82H

    Energy Technology Data Exchange (ETDEWEB)

    Yabuuchi, Kiyohiro, E-mail: kiyohiro.yabuuchi@qse.tohoku.ac.jp [Department of Quantum Science and Energy Engineering, Tohoku University, 6-6-01-2, Aramaki-Aza-Aoba, Aobaku, Sendai, Miyagi 980-8579 (Japan); Sato, Kiminori; Nogami, Shuhei; Hasegawa, Akira [Department of Quantum Science and Energy Engineering, Tohoku University, 6-6-01-2, Aramaki-Aza-Aoba, Aobaku, Sendai, Miyagi 980-8579 (Japan); Ando, Masami; Tanigawa, Hiroyasu [Japan Atomic Energy Agency, 2-166, Oaza-Obuchi-Aza-Omotedate, Rokkasho-mura, Kamikita-gun, Aomori 039-3212 (Japan)

    2014-12-15

    Reduced-activation ferritic/martensitic steels (RAFMs) are the primary candidate structural materials for fusion reactor blanket components. He bubbles, which formed under 14 MeV neutron irradiation, is considered to cause some mechanical property changes. In a previous study, Hasegawa et al. investigated the fracture behavior using Charpy impact test of He implanted F82H by 50 MeV α-particles with cyclotron accelerator, and the ductile brittle transition temperature (DBTT) was increased and intergranular fracture (IGF) was observed. However, the cause of the IGF was not shown in the previous study. To clarify the cause of the IGF of the He implanted F82H by 50 MeV α-particles with cyclotron accelerator, the microstructure of the He implanted F82H was investigated. After Charpy impact test at 233 K, the brittle fracture surface of the He implanted specimen was observed by SEM and TEM. By SEM observation, grain boundary surface was clearly observed from the bottom of the notch to a depth of about 400 μm. This area correspond to the He implanted region. On the other hand, at unimplanted region, river pattern was observed and transgranular fracture occurred. TEM observation revealed the He bubbles agglomeration at dislocations, lath boundaries, and grain boundaries, and the coarsening of precipitates on grain boundaries. IGF of the He implanted F82H was caused by both He bubbles and coarsening precipitates.

  9. Medial fracture line significance in calcaneus fracture.

    Science.gov (United States)

    Ogut, Tahir; Ayhan, Egemen; Kantarci, Fatih; Unlu, Mehmet C; Salih, Muhammet

    2011-01-01

    In Sanders' classification of calcaneus fractures, the medial fracture line (subtype C) is close to the tarsal canal, which contains an artery for the talus and calcaneus. We hypothesized that because of this brittle vascular localization, patients with C line fracture patterns might describe radiologic subtalar arthritis more often and have more complaints. The purpose of the present study was to compare the results of C line fracture patterns with other types of calcaneus fractures. A total of 25 surgically treated feet were involved. Regarding Sanders' classification, group 1 included fractures involving the C line (11 feet), and group 2 included fractures not involving the C line (14 feet). Patient age at admission, trauma date, and interval until surgery were obtained from the patients' medical records. The Bohler angles were determined from the radiographs. At the last follow-up visit, the radiologist graded subtalar arthritis using computed tomography. For clinical follow-up, the American Orthopaedic Foot and Ankle Society and Maryland scores were assessed. No significant differences were found in mean age, follow-up period, delay to surgery, or postoperative Bohler angle between the 2 groups. The mean preoperative Bohler angle was significantly low for group 1. Although not significantly different, the mean American Orthopaedic Foot and Ankle Society and Maryland scores were lower for group 1 (81.9 and 84.3) than group 2 (87.8 and 92.0), and the median subtalar arthritis grade was greater for group 1 (score 2) than for group 2 (score 1.5). The worse results with C line fracture patterns despite satisfactory reduction might result from sinus tarsi artery damage. Angiographic investigations could clarify this theory in the future. Consequently, surgeons must inform and should hesitate to operate on patients with these highly comminuted C line calcaneus fractures. Copyright © 2011 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All

  10. Odontoid Fracture: Computed Tomography

    Directory of Open Access Journals (Sweden)

    Jonathan Peña

    2016-09-01

    Full Text Available History of present illness: An 84-year-old male presented with left-sided posterior head, neck, and back pain after a ground level fall. Exam was notable for left parietal scalp laceration and midline cervical spine tenderness with no obvious deformities. He was neurovascularly intact, and placed in an Aspen Collar with strict spine precautions. Significant findings: Computed Tomography (CT of the cervical spine showed a stable, acute, non-displaced fracture of the odontoid process extending into the body of C2, consistent with a Type III Odontoid Fracture. He was evaluated by orthopedic spine service who recommended conservative, non-operative management. Discussion: The cervical spine is composed of seven vertebrae, with C1 and C2 commonly referred to as the Atlas and Axis, respectively. Unique to C2 is a bony prominence, the Odontoid Process (Dens. Hyperextension or hyperflexion injuries can induce significant stress causing fractures. Odontoid fractures comprise approximately 10% of vertebral fractures, and there are three types with varying stability.1 Type 1 is the rarest and is a fracture involving the superior segment of the Dens. It is considered a stable fracture. Type 2 is the most common and is a fracture involving the base of the odontoid process, below the transverse component of the cruciform ligament. This fracture is unstable and requires operative stabilization. 2 Type 3 odontoid fractures are classified by a fracture of the Odontoid process, as well as the lateral masses of the C2. Determining the stability of a Type III Odontoid fracture requires radiographic evaluation. Strict cervical spine precautions must be adhered to until adequate imaging and surgical consultation is obtained. CT of the of cervical spine fractures poses several advantages to plain film radiography due to the ability to view the anatomy in three planes. 3 However, if there is concern for ligamentous injury, MRI is the preferred modality.3

  11. Menstrual suppression for adolescents.

    Science.gov (United States)

    Altshuler, Anna Lea; Hillard, Paula J Adams

    2014-10-01

    The purpose of this review is to highlight the recent literature and emerging data describing clinical situations in which menstrual suppression may improve symptoms and quality of life for adolescents. A variety of conditions occurring frequently in adolescents and young adults, including heavy menstrual bleeding, and dysmenorrhea as well as gynecologic conditions such as endometriosis and pelvic pain, can safely be improved or alleviated with appropriate menstrual management. Recent publications have highlighted the efficacy and benefit of extended cycle or continuous combined oral contraceptives, the levonorgestrel intrauterine device, and progestin therapies for a variety of medical conditions. This review places menstrual suppression in an historical context, summarizes methods of hormonal therapy that can suppress menses, and reviews clinical conditions for which menstrual suppression may be helpful.

  12. Cryogenic Acoustic Suppression Testing

    Data.gov (United States)

    National Aeronautics and Space Administration — A proof-of-concept method utilizing a cryogenic fluid for acoustic suppression in rocket engine testing environments will be demonstrated. It is hypothesized that...

  13. The effect of inter-granular constraints on the response of polycrystalline piezoelectric ceramics at the surface and in the bulk

    DEFF Research Database (Denmark)

    Hossain, Mohammad J.; Wang, Zhiyang; Khansur, Neamul H.

    2016-01-01

    The electro-mechanical coupling mechanisms in polycrystalline ferroelectric materials, including a soft PbZrxTi1−xO3 (PZT) and lead-free 0.9375(Bi1/2Na1/2)TiO3-0.0625BaTiO3 (BNT-6.25BT), have been studied using a surface sensitive low-energy (12.4 keV) and bulk sensitive high-energy (73 ke...... methods demonstrates that the intergranular constraints have a significant influence on the electric-field-induced electro-mechanical responses in polycrystalline ferroelectrics. These results have implications for the design of higher performance polycrystalline piezoelectrics....

  14. Standard test method for determining the susceptibility to intergranular corrosion of 5XXX series Aluminum alloys by mass loss after exposure to nitric acid (NAMLT Test)

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2004-01-01

    1.1 This test method describes a procedure for constant immersion intergranular corrosion testing of 5XXX series aluminum alloys. 1.2 This test method is applicable only to wrought products. 1.3 This test method covers type of specimen, specimen preparation, test environment, and method of exposure. 1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  15. Effect of the microstructure on the sensibilization to intergranular corrosion of a 24. 7 Cr7. 4Ni duplex stainless steel. Efecto de la microestructura en la sensibilizacion a la corrosion inoxidable duplex 24, 7Cr7,Ni

    Energy Technology Data Exchange (ETDEWEB)

    Otero, E.; Pardo, A.; Merino, C.; Hierro, P.; Perez, F.J.

    1993-01-01

    The influence of microstructure on the resistance to intergranular corrosion of a 24.4Cr7.4Ni is studied. The results are discussed both in terms of the Huey experiment as well as of the sweeping corresponding to the experimental conditions under which the experiments have been performed. Author (11 refs.)

  16. Interfacial reactions in Ti-6Al-4V with laser-embedded SiC particles and the origin of intergranular corrosion susceptibility of an Al-Mg alloy

    NARCIS (Netherlands)

    Kooi, BJ; De Hosson, JTM; Carter, CB; Hall, EL; Nutt,; Briant, CL

    2000-01-01

    In the first part of the paper the microstructure of Ti-6Al-4V with laser embedded SiC particle is explained. The interfacial reaction between Ti and SiC is responsible for the largely improved wear resistance of the Ti alloy. In the second part the phase responsible for the intergranular corrosion

  17. Sodium fire suppression

    International Nuclear Information System (INIS)

    Malet, J.C.

    1979-01-01

    Ignition and combustion studies have provided valuable data and guidelines for sodium fire suppression research. The primary necessity is to isolate the oxidant from the fuel, rather than to attempt to cool the sodium below its ignition temperature. Work along these lines has led to the development of smothering tank systems and a dry extinguishing powder. Based on the results obtained, the implementation of these techniques is discussed with regard to sodium fire suppression in the Super-Phenix reactor. (author)

  18. Mitigation strategies of intergranular corrosion in systems of reactors of water boiling (BWR). Combined action of the chemistry of the hydrogen and the oxygen; Estrategias de mitigacion de la corrosion intergranular en sistemas de reactores de agua en ebullicion (BWR). Accion combinada de la quimica del hidrogeno y del oxigeno

    Energy Technology Data Exchange (ETDEWEB)

    Verdugo, M.

    2015-07-01

    Inter-Granular Stress Corrosion cracking (IGSCC) in austenitic stainless steel and in austenitic nickel-based alloys has been the subject of many studies the aim of which was to resolve one of the main problems faced by BWR nuclear power plants since the 1960s. This corrosion phenomenon is the result of the combined action of three factors: sensitization of the material, high local stresses and an aggressive medium. This paper deals with these factors separately and analyzes the oxidative chemistry of BWR reactors (aggressivity of the medium) as one the main causes if IGSCC. (Author)

  19. Coercivity enhancement of Dy-free Nd–Fe–B sintered magnets by intergranular adding Ho{sub 63.4}Fe{sub 36.6} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Liping; Ma, Tianyu, E-mail: maty@zju.edu.cn; Wu, Chen; Zhang, Pei; Liu, Xiaolian; Yan, Mi, E-mail: mse_yanmi@zju.edu.cn

    2016-01-01

    High coercivity Nd–Fe–B sintered magnets serving in high-temperature environments always consume expensive and scarce heavy rare-earth Dy, which has simulated considerable interest to reduce Dy usage. In this work, coercivity of Dy-free magnets was investigated through intergranular adding eutectic Ho{sub 63.4}Fe{sub 36.6} powders. The coercivity increases gradually up to 4 wt% Ho{sub 63.4}Fe{sub 36.6} addition, however the remanence starts to deteriorate drastically as the addition is over 2.5 wt%. Coercivity above 18.0 kOe is obtained at the expense of a slight reduction in remanence through optimizing the addition amount and sintering conditions. The coercivity enhancement is explained through microstructural observations and elemental distribution analysis. (i) (Nd, Ho){sub 2}Fe{sub 14}B shell forms in the outer region of 2:14:1 phase grains, strengthening the local magnetic anisotropy filed, (ii) RE-rich grain boundary phase with low Fe content is thickened, weakening the magnetic coupling between adjacent 2:14:1 phase grains, and (iii) 2:14:1 phase grains are refined upon lowering sintering temperature, reducing the microstructural defects and the stray fields aroused from neighboring grains. - Highlights: • Eutectic Ho{sub 63.4}Fe{sub 36.6} powders were intergranular added to NdFeB sintered magnets. • The doped Dy-free magnet possessed coercivity of 18.0 kOe, remanence of 13.15 kGs. • (Nd, Ho){sub 2}Fe{sub 14}B shell formed in the surface of the matrix grains, increasing the H{sub A}. • Thick grain boundaries with low Fe content formed, decoupling the matrix grains. • By sintered at lower temperature, the matrix phase grains were refined.

  20. -Lesser known stress fractures-.

    Science.gov (United States)

    Wybier, M; Hamze, B; Champsaur, P; Parlier, C

    1997-01-01

    Stress fractures of the tibia may disclose a longitudinal orientation which is obvious at bone scanning; a mild periostosis may appear on plain films; CT demonstrates a radially-oriented fracture in one aspect of the diaphyseal cortex. A cortical dissection-like vertically oriented insufficiency fracture may involve the medial aspect of the femoral shaft underlying the lesser trochanter; the fracture is concentric to the femoral cortex at CT. Insufficiency fractures of the sacrum may be misdiagnosed on plain films; bone scanning displays a typical H-shaped increased uptake which is a specific pattern. Insufficiency fractures of the pubis may appear as tumoral bone destruction; however no soft tissue mass is present at CT which in addition demonstrates normal fat tissue abutting the osseous lesion.

  1. TIBIAL SHAFT FRACTURES

    OpenAIRE

    Kojima, Kodi Edson; Ferreira, Ramon Venzon

    2015-01-01

    The long-bone fractures occur most frequently in the tibial shaft. Adequate treatment of such fractures avoids consolidation failure, skewed consolidation and reoperation. To classify these fractures, the AO/OTA classification method is still used, but it is worthwhile getting to know the Ellis classification method, which also includes assessment of soft-tissue injuries. There is often an association with compartmental syndrome, and early diagnosis can be achieved through evaluating clinical...

  2. Discrete Fracture Network Characterization of Fractured Shale Reservoirs with Implications to Hydraulic Fracturing Optimization

    Science.gov (United States)

    Jin, G.

    2016-12-01

    Shales are important petroleum source rocks and reservoir seals. Recent developments in hydraulic fracturing technology have facilitated high gas production rates from shale and have had a strong impact on the U.S. gas supply and markets. Modeling of effective permeability for fractured shale reservoirs has been challenging because the presence of a fracture network significantly alters the reservoir hydrologic properties. Due to the frequent occurrence of fracture networks, it is of vital importance to characterize fracture networks and to investigate how these networks can be used to optimize the hydraulic fracturing. We have conducted basic research on 3-D fracture permeability characterization and compartmentization analyses for fractured shale formations, which takes the advantages of the discrete fracture networks (DFN). The DFN modeling is a stochastic modeling approach using the probabilistic density functions of fractures. Three common scenarios of DFN models have been studied for fracture permeability mapping using our previously proposed techniques. In DFN models with moderately to highly concentrated fractures, there exists a representative element volume (REV) for fracture permeability characterization, which indicates that the fractured reservoirs can be treated as anisotropic homogeneous media. Hydraulic fracturing will be most effective if the orientation of the hydraulic fracture is perpendicular to the mean direction of the fractures. A DFN model with randomized fracture orientations, on the other hand, lacks an REV for fracture characterization. Therefore, a fracture permeability tensor has to be computed from each element. Modeling of fracture interconnectivity indicates that there exists no preferred direction for hydraulic fracturing to be most effective oweing to the interconnected pathways of the fracture network. 3-D fracture permeability mapping has been applied to the Devonian Chattanooga Shale in Alabama and the results suggest that an

  3. Pediatric pelvic fractures.

    Science.gov (United States)

    Holden, Candice P; Holman, Joel; Herman, Martin J

    2007-03-01

    Pediatric pelvic fractures account for only 1% to 2% of fractures seen by orthopaedic surgeons who treat children. They are typically associated with high-energy trauma, requiring a comprehensive workup for concomitant life-threatening injuries. Anteroposterior radiographs and rapid-sequence computed tomography are the standards of diagnostic testing to identify the fracture and recognize associated injuries. Treatment is individualized based on patient age, fracture classification, stability of the pelvic ring, extent of concomitant injuries, and hemodynamic stability of the patient. Most pelvic injuries in children are treated nonsurgically, with protected weight bearing and gradual return to activity. Open reduction and internal fixation is required for acetabular fractures with >2 mm of fracture displacement and for any intra-articular or triradiate cartilage fracture displacement >2 mm. To prevent limb-length discrepancies, external fixation is necessary for pelvic ring displacement >2 cm. Fractures involving immature triradiate cartilage may lead to growth disturbance of the acetabulum, resulting in acetabular dysplasia, hip subluxation, or hip joint incongruity. Osteonecrosis of the femoral head may develop after acetabular fractures associated with hip dislocation. Other complications include myositis ossificans and neurologic deficits secondary to sciatic, femoral, and/or lumbosacral plexus nerve injuries.

  4. Scaphoid fractures in children

    Directory of Open Access Journals (Sweden)

    Gajdobranski Đorđe

    2014-01-01

    Full Text Available Introduction. Scaphoid fractures are rare in childhood. Diagnosis is very difficult to establish because carpal bones are not fully ossified. In suspected cases comparative or delayed radiography is used, as well as computerized tomography, magnetic resonance imaging, ultrasound and bone scintigraphy. Majority of scaphoid fractures are treated conservatively with good results. In case of delayed fracture healing various types of treatment are available. Objective. To determine the mechanism of injury, clinical healing process, types and outcome of treatment of scaphoid fractures in children. Methods. We retrospectively analyzed patients with traumatic closed fracture of the scaphoid bone over a ten-year period (2002-2011. The outcome of the treatment of “acute” scaphoid fracture was evaluated using the Mayo Wrist Score. Results. There were in total 34 patients, of mean age 13.8 years, with traumatic closed fracture of the scaphoid bone, whose bone growth was not finished yet. Most common injury mechanism was fall on outstretched arm - 76% of patients. During the examined period 31 children with “acute” fracture underwent conservative treatment, with average immobilization period of 51 days. Six patients were lost to follow-up. In the remaining 25 patients, after completed rehabilitation, functional results determined by the Mayo Wrist Score were excellent. Conclusion. Conservative therapy of “acute” scaphoid fractures is an acceptable treatment option for pediatric patients with excellent functional results.

  5. Fracture of the styloid process associated with the mandible fracture

    Directory of Open Access Journals (Sweden)

    K N Dubey

    2013-01-01

    Full Text Available Fracture of the styloid process (SP of temporal bone is an uncommon injuries. Fracture of the SP can be associated with the facial injuries including mandible fracture. However, injury to the SP may be concealed and missed diagnosis may lead to the improper or various unnecessary treatments. A rare case of SP fracture associated with the ipsilateral mandibular fracture and also the diagnostic and management considerations of the SP fracture are discussed.

  6. The Process of Hydraulic Fracturing

    Science.gov (United States)

    Hydraulic fracturing, know as fracking or hydrofracking, produces fractures in a rock formation by pumping fluids (water, proppant, and chemical additives) at high pressure down a wellbore. These fractures stimulate the flow of natural gas or oil.

  7. [Trochanteric femoral fractures].

    Science.gov (United States)

    Douša, P; Čech, O; Weissinger, M; Džupa, V

    2013-01-01

    At the present time proximal femoral fractures account for 30% of all fractures referred to hospitals for treatment. Our population is ageing, the proportion of patients with post-menopausal or senile osteoporosis is increasing and therefore the number of proximal femoral fractures requiring urgent treatment is growing too. In the age category of 50 years and older, the incidence of these fractures has increased exponentially. Our department serves as a trauma centre for half of Prague and part of the Central Bohemia Region with a population of 1 150 000. Prague in particular has a high number of elderly citizens. Our experience is based on extensive clinical data obtained from the Register of Proximal Femoral Fractures established in 1997. During 14 years, 4280 patients, 3112 women and 1168 men, were admitted to our department for treatment of proximal femoral fractures. All patients were followed up until healing or development of complications. In the group under study, 82% were patients older than 70 years; 72% of those requiring surgery were in their seventies and eighties. Men were significantly younger than women (pfractures were 2.3-times more frequent in women than in men. In the category under 60 years, men significantly outnumbered women (pfractures were, on the average, eight years older than the patients with intertrochanteric fractures, which is a significant difference (pTrochanteric fractures accounted for 54.7% and femoral neck fractures for 45.3% of all fractures. The inter-annual increase was 5.9%, with more trochanteric than femoral neck fractures. There was a non-significant decrease in intertrochanteric (AO 31-A3) fractures. On the other hand, the number of pertrochanteric (AO 31-A1+2) fractures increased significantly (pfractures were treated with a proximal femoral nail; a short nail was used in 1260 and a long nail in 134 of them. A dynamic hip screw (DHS) was employed to treat 947 fractures. Distinguishing between pertrochanteric (21-A1

  8. Pressure suppression device

    International Nuclear Information System (INIS)

    Mizumachi, Wataru; Fukuda, Akira; Kitaguchi, Hidemi; Shimizu, Toshiaki.

    1976-01-01

    Object: To relieve and absorb impact wave vibrations caused by steam and non-condensed gases releasing into the pressure suppression chamber at the time of an accident. Structure: The reactor container is filled with inert gases. A safety valve attached main steam pipe is provided to permit the excessive steam to escape, the valve being communicated with the pressure suppression chamber through an exhaust pipe. In the pressure suppression chamber, a doughnut-like cylindrical outer wall is filled at its bottom with pool water to condense the high temperature vapor released through the exhaust pipe. A head portion of a vent tube which leads the exhaust pipe is positioned at the top, and a down comer and an exhaust vent tube are locked by means of steady rests. At the bottom is mounted a pressure adsorber device which adsorbs a pressure from the pool water. (Kamimura, M.)

  9. TIBIAL SHAFT FRACTURES.

    Science.gov (United States)

    Kojima, Kodi Edson; Ferreira, Ramon Venzon

    2011-01-01

    The long-bone fractures occur most frequently in the tibial shaft. Adequate treatment of such fractures avoids consolidation failure, skewed consolidation and reoperation. To classify these fractures, the AO/OTA classification method is still used, but it is worthwhile getting to know the Ellis classification method, which also includes assessment of soft-tissue injuries. There is often an association with compartmental syndrome, and early diagnosis can be achieved through evaluating clinical parameters and constant clinical monitoring. Once the diagnosis has been made, fasciotomy should be performed. It is always difficult to assess consolidation, but the RUST method may help in this. Radiography is assessed in two projections, and points are scored for the presence of the fracture line and a visible bone callus. Today, the dogma of six hours for cleaning the exposed fracture is under discussion. It is considered that an early start to intravenous antibiotic therapy and the lesion severity are very important. The question of early or late closure of the lesion in an exposed fracture has gone through several phases: sometimes early closure has been indicated and sometimes late closure. Currently, whenever possible, early closure of the lesion is recommended, since this diminishes the risk of infection. Milling of the canal when the intramedullary nail is introduced is still a controversial subject. Despite strong personal positions in favor of milling, studies have shown that there may be some advantage in relation to closed fractures, but not in exposed fractures.

  10. Vertebral Fracture Prediction

    DEFF Research Database (Denmark)

    2008-01-01

    Vertebral Fracture Prediction A method of processing data derived from an image of at least part of a spine is provided for estimating the risk of a future fracture in vertebraeof the spine. Position data relating to at least four neighbouring vertebrae of the spine is processed. The curvature...

  11. Dislocation model of fracture

    International Nuclear Information System (INIS)

    Kull', L.M.

    1987-01-01

    Papers dealing with study on mechanisms of submicricrack formation and propagation using dislocation representations are analyzed. Cases of brittle and ductile fracture of materials as well as models of dislocationless (amorphous) zone at the growing crack tip are considered. Dislocation models of fracture may be used when studying the processes of deformation and accumulation of damages in elements of nuclear facilities

  12. Physeal Fractures in Foals.

    Science.gov (United States)

    Levine, David G; Aitken, Maia R

    2017-08-01

    Physeal fractures are common musculoskeletal injuries in foals and should be included as a differential diagnosis for the lame or nonweightbearing foal. Careful evaluation of the patient, including precise radiographic assessment, is paramount in determining the options for treatment. Prognosis mostly depends on the patient's age, weight, and fracture location and configuration. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Fracture Mechanics of Concrete

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    This special issue of S¯adhan¯a is rightly dedicated to the fracture mechanics of concrete. In particular, the size effect is highlighted. As appropriately pointed out in the first inter- national conference on fracture mechanics of concrete structures, FraMCos-I, organized by Z P Ba˘zant, at Breckenridge, Colorado in 1992, ...

  14. Displaced patella fractures.

    Science.gov (United States)

    Della Rocca, Gregory J

    2013-10-01

    Displaced patella fractures often result in disruption of the extensor mechanism of the knee. An intact extensor mechanism is a requirement for unassisted gait. Therefore, operative treatment of the displaced patella fracture is generally recommended. The evaluation of the patella fracture patient includes examination of extensor mechanism integrity. Operative management of patella fractures normally includes open reduction with internal fixation, although partial patellectomy is occasionally performed, with advancement of quadriceps tendon or patellar ligament to the fracture bed. Open reduction with internal fixation has historically been performed utilizing anterior tension band wiring, although comminution of the fracture occasionally makes this fixation construct inadequate. Supplementation or replacement of the tension band wire construct with interfragmentary screws, cerclage wire or suture, and/or plate-and-screw constructs may add to the stability of the fixation construct. Arthrosis of the patellofemoral joint is very common after healing of patella fractures, and substantial functional deficits may persist long after fracture healing has occurred. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  15. Hand fracture - aftercare

    Science.gov (United States)

    ... an orthopedic surgeon if: Your metacarpal bones are broken and shifted out of place Your fingers do not line up correctly Your fracture nearly went through the skin Your fracture went through the skin Your pain is severe or becoming worse Self-care at Home You may have pain and swelling for 1 ...

  16. Use of additives to improve microstructures and fracture resistance of silicon nitride ceramics

    Science.gov (United States)

    Becher, Paul F [Oak Ridge, TN; Lin, Hua-Tay [Oak Ridge, TN

    2011-06-28

    A high-strength, fracture-resistant silicon nitride ceramic material that includes about 5 to about 75 wt-% of elongated reinforcing grains of beta-silicon nitride, about 20 to about 95 wt-% of fine grains of beta-silicon nitride, wherein the fine grains have a major axis of less than about 1 micron; and about 1 to about 15 wt-% of an amorphous intergranular phase comprising Si, N, O, a rare earth element and a secondary densification element. The elongated reinforcing grains have an aspect ratio of 2:1 or greater and a major axis measuring about 1 micron or greater. The elongated reinforcing grains are essentially isotropically oriented within the ceramic microstructure. The silicon nitride ceramic exhibits a room temperature flexure strength of 1,000 MPa or greater and a fracture toughness of 9 MPa-m.sup.(1/2) or greater. The silicon nitride ceramic exhibits a peak strength of 800 MPa or greater at 1200 degrees C. Also included are methods of making silicon nitride ceramic materials which exhibit the described high flexure strength and fracture-resistant values.

  17. Fracture toughness of Alloy 690 and EN52 weld in air and water

    Energy Technology Data Exchange (ETDEWEB)

    Brown, C.M.; Mills, W.J.

    1999-06-01

    The effect of low and high temperature water with high hydrogen on the fracture toughness of Alloy 690 and its weld, EN52, was characterized using elastic-plastic J{sub IC} methodology. While both materials display excellent fracture resistance in air and elevated temperature (>93 C) water, a dramatic degradation in toughness is observed in 54 C water. The loss of toughness is associated with a hydrogen-induced intergranular cracking mechanism where hydrogen is picked up from the water. Comparison of the cracking behavior in low temperature water with that for hydrogen-precharged specimens tested in air indicates that the critical local hydrogen content required to cause low temperature embrittlement is on the order of 120 to 160 ppm. Loading rate studies show that the cracking resistance is significantly improved at rates above ca. 1000 MPa{radical}m/h because there is insufficient time to produce grain boundary embrittlement. Electron fractographic examinations were performed to correlate cracking behavior with microstructural features and operative fracture mechanics.

  18. Thyroxin hormone suppression treatment

    International Nuclear Information System (INIS)

    Samuel, A.M.

    1999-01-01

    One of the important modalities of treatment of thyroid cancer (TC) after surgery is the administration of thyroxin as an adjuvant treatment. The analysis supports the theory that thyroid suppression plays an important role in patient management. 300 μg of thyroxin, as this is an adequate dose for suppression is given. Ideally the dose should be tailored by testing s-TSH levels. However, since a large number of the patients come from out station cities and villages this is impractical. We therefore depend on clinical criteria of hyperthyroid symptoms and adjust the dose. Very few patients need such adjustment

  19. Management of Open Fractures

    Directory of Open Access Journals (Sweden)

    Robert Blease

    2005-11-01

    Full Text Available The large spectrum of open fractures is an amalgamation of injuries with the single variable in common of communication of the fractured bone with the outside environment, and thus an increased risk for infection. Contributing to the presence of bacteria within the fracture site is devascularized soft tissue, the degree of which can be directly attributed to the amount of energy imparted to the tissues. The currently used classification system aids in defining the degree of severity of these injuries and their subsequent risk for infection. The basic management principal for all of these injury patterns remains essentially the same, however: prevention of infection through debridement, wound management, antibiotic usage, and fracture stabilization. Frequently multiple surgical procedures will be required in order to obtain an infection free, united fracture with adequate soft tissue coverage (1.

  20. Formation fracturing with foam

    Energy Technology Data Exchange (ETDEWEB)

    Blauer, R.E.; Kohlhaas, C.A.

    1974-01-01

    Over 60 wells have been treated with hydraulic fracturing techniques, with foam as the fracturing fluid. These foams contained as much as 95% gaseous phase; most treatments used foams with gas contents in the 65% to 85% range. Foam has several desirable properties for use as a fracturing fluid: high sand-carrying and sand-suspending capability, low fluid loss, low hydrostatic head, low pressure drops due to friction, quick fluid recovery, low formation damage, and no reduction of fracture conductivity due to fluid ingredients. Most applications of foam as a fracturing fluid have been in low permeability gas reservoirs. However, several oil reservoirs also have been successfully treated. Cost of the treatment is approx. the same or slightly less than a treatment with conventional fluids of comparable volume and rate. (25 refs.)

  1. Dating fractures in infants

    Energy Technology Data Exchange (ETDEWEB)

    Halliday, K.E., E-mail: kath.halliday@nuh.nhs.uk [Department of Radiology, Nottingham University Hospitals, Queen' s Medical Centre, Nottingham (United Kingdom); Broderick, N.J.; Somers, J.M. [Department of Radiology, Nottingham University Hospitals, Queen' s Medical Centre, Nottingham (United Kingdom); Hawkes, R. [Department of Radiology, Paul O' Gorman Building, Bristol (United Kingdom)

    2011-11-15

    Aim: To document the timing of the appearance of the radiological features of fracture healing in a group of infants in which the date of injury was known and to assess the degree of interobserver agreement. Materials and methods: Three paediatric radiologists independently assessed 161 images of 37 long bone fractures in 31 patients aged 0-44 months. The following features were assessed: soft-tissue swelling, subperiosteal new bone formation (SPNBF), definition of fracture line, presence or absence of callus, whether callus was well or ill defined, and the presence of endosteal callus. Results: Agreement between observers was only moderate for all discriminators except SPNBF. SPNBF was invariably seen after 11 days but was uncommon before this time even in the very young. In one case SPNBF was seen at 4 days. Conclusion: With the exception of SPNBF, the criteria relied on to date fractures are either not reproducible or are poor discriminators of fracture age.

  2. Proximal femoral fractures

    DEFF Research Database (Denmark)

    Palm, Henrik; Teixidor, Jordi

    2015-01-01

    BACKGROUND: In hip fracture surgery, the exact choice of implant often remains somewhat unclear for the individual surgeon, but the growing literature consensus has enabled publication of evidence-based surgical treatment pathways. The aim of this article was to review author pathways and national...... guidelines for hip fracture surgery and discuss a method for future pathway/guideline implementation and evaluation. METHODS: By a PubMed search in March 2015 six studies of surgical treatment pathways covering all types of proximal femoral fractures with publication after 1995 were identified. Also we......-displaced femoral neck fractures and prosthesis for displaced among the elderly; and sliding hip screw for stabile- and intramedullary nails for unstable- and sub-trochanteric fractures) but they are based on a variety of criteria and definitions - and often leave wide space for the individual surgeons' subjective...

  3. Femoral Neck Fracture

    Directory of Open Access Journals (Sweden)

    Jonathan Lee

    2016-09-01

    Full Text Available History of present illness: A 74-year-old male presented to the emergency department with left hip pain after falling off his bicycle. Pain is 3/10 in severity and exacerbated by movement. Patient denied head trauma. Exam showed left hip tenderness, 3/5 left lower extremity strength secondary to pain, and 5/5 right lower extremity strength. Sensation and pulses were intact in bilateral lower extremities. Left hip X-ray and pelvic CT revealed comminuted, impacted transcervical and subcapital fracture of the left femoral neck. Significant findings: In the anteroposterior view bilateral hip x-ray, there is an evident loss of Shenton’s line on the left (red line when compared to the normal right (white line, indicative of a fracture in the left femoral neck. This correlates with findings seen on pelvic CT, which reveals both a subcapital fracture (blue arrow and transcervical fracture (yellow arrow. The neck of the femur is displaced superiorly relative to the head of the femur while the head of the femur remains in its anatomical position within the acetabulum. Discussion: Femoral neck fractures are one of the most common types of hip fractures, accounting for 49.4% of all hip fractures.1 Diagnosing a femoral neck fracture can be made with plain x-ray, CT, or MRI. Plain film radiographs have been found to be at least 90% sensitive for hip fractures CT’s have been found to be 87%-100% sensitive and 100% specific for occult hip fractures in which plain radiographs were read as negative, but the patient still complained of hip pain Although MRI is currently the gold standard for detecting occult hip fractures (sensitivity and specificity = 100%, given MRI’s limited accessibility in the ED as well as the high sensitivity and specificity of CT scans for occult hip fractures, it is generally recommended to obtain CT scans for patients with suspected occult hip fractures as a first-line investigation

  4. Plasma suppression of beamstrahlung

    International Nuclear Information System (INIS)

    Whittum, D.H.; Sessler, A.M.; Stewart, J.J.; Yu, S.S.

    1988-06-01

    We investigate the use of a plasma at the interaction point of two colliding beams to suppress beamsstrahlung and related phenomena. We derive conditions for good current cancellation via plasma return currents and report on numerical simulations conducted to confirm our analytic results. 10 refs., 5 figs., 4 tabs

  5. Chance Fracture Secondary to a Healed Kyphotic Compression Osteoporotic Fracture

    Directory of Open Access Journals (Sweden)

    Teh KK

    2009-11-01

    Full Text Available Chance fracture is an unstable vertebral fracture, which usually results from a high velocity injury. An elderly lady with a previously healed osteoporotic fracture of the T12 and L1 vertebra which resulted in a severe kyphotic deformity subsequently sustained a Chance fracture of the adjacent L2 vertebrae after a minor fall. The previously fracture left her with a deformity which resulted in significant sagittal imbalance therefore predisposing her to this fracture. This case highlights the importance of aggressive treatment of osteoporotic fractures in order to prevent significant sagittal imbalance from resultant (i.e. kyphotic deformity.

  6. Modeling the Evolution of the Fracture Permeability in Granite due to Free-face Dissolution and Pressure Solution

    Science.gov (United States)

    Lu, R.; Watanabe, N.; Shao, H.; Kolditz, O.

    2015-12-01

    This paper focuses on the evolution of the fracture permeability due to water-granite long-term interactions when deionized water flows through the fracture surface. Laboratory-scale batch experiments have been conducted by Yasuhara et al (2011), wherein artificial fractures are subject to a mechanical confining pressure, variable differential hydraulic pressures and different applied temperatures. The aqueous geochemical system involved in the chemical weathering of granite is investigated in the first place which is a mixture of several kinetic reactions corresponding to mineral dissolution and a series of equilibrium reactions corresponding to potential derivatives in the aqueous solution. As fracture surfaces are in contact under confining stress, mineral dissolution rates may be different at hydrostatically stressed open pore and at asperity contacts under non-hydrostatic stress. Especially at asperity contacts, intergranular pressure solution may accelerate mineral dissolution rates whose driving force is represented as the chemical potential difference between a stressed contact and a hydrostatically stressed open pore (Taron and Elsworth (2010)). To better understand dominant mechanisms in the system, a reactive transport model including both the free-face reactions and the pressure solution is developed in the open-source simulator OpenGeoSys. Fracture aperture is updated as a result of the mass removal from the open-pore walls and the contacting asperities. The study presents impacts of mineral composition and their spatial distribution on the permeability evolution. ReferencesYasuhara, H., Kinoshita, N., Ohfuji, H., Lee, D.S., Nakashima, S., and Kishida, K. (2011), Temporal alteration of fracture permeability in granite under hydrothermal conditions and its interpretation by coupled chemo-mechanical model. Applied Geochemistry 26: 2074-2088. Taron, J., and Elsworth, D. (2010). Constraints on compaction rate and equilibrium in the pressure solution creep

  7. Coercivity and thermal stability improvement in sintered Nd–Fe–B permanent magnets by intergranular addition of Dy–Mn alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiangbin; Liu, Shuo [School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Cao, Xuejing [School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Zhou, Beibei [School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Chen, Ling; Yan, Aru [Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Yan, Gaolin, E-mail: gaolinyan@whu.edu.cn [School of Physics and Technology, Wuhan University, Wuhan 430072 (China)

    2016-06-01

    To increase coercivity and thermal stability of sintered Nd–Fe–B magnets for high temperature applications, Dy{sub 88}Mn{sub 12} (wt%) alloy powders were intergranular added into (Pr{sub 0.25}Nd{sub 0.75}){sub 30.6}Cu{sub 0.15}Fe{sub bal}B{sub 1} (wt%) starting magnet. The magnetic properties, microstructure and thermal stability of the sintered magnets with different amounts of Dy{sub 88}Mn{sub 12} were investigated. By adding a small amount of Dy{sub 88}Mn{sub 12}, the coercivity was significantly increased from 12.56 kOe to 17.49 kOe. Microstructure analysis showed that a optimized microstructure, i.e. continuous, uniform grain boundary phase was achieved with Dy{sub 88}Mn{sub 12} alloy addition, and Dy was enriched in the outer region of the Nd{sub 2}Fe{sub 14}B matrix grains during the sintering process, which favored to substitute for Nd in matrix grains to form the (Nd,Dy){sub 2}Fe{sub 14}B core–shell phase. The greatly increased magnetocrystalline anisotropy of the core–shell phase and the improved decoupling by the continuous grain boundary phase accounted for the coercivity enhancement. Furthermore, by adding 0–4 wt% Dy{sub 88}Mn{sub 12}, the reversible temperature coefficients of remanence (α) and coercivity (β) of the magnet were improved from −0.115%/ºC to −0.107%/ºC and −0.744%/ºC to −0.696%/ºC in the range of 20–100 °C, respectively. In addition, the irreversible flux loss of magnetic flow (h{sub irr}) decreased sharply as Dy{sub 88}Mn{sub 12} addition. The temperature-dependent magnetic properties results indicated that with intergranular addition of Dy{sub 88}Mn{sub 12} alloy, the thermal stability of the magnets was effectively improved. - Highlights: • Addition of Dy–Mn enhanced coercivity of sintered Nd–Fe–B magnets. • Addition of Dy–Mn optimized grain boundary and formed a (Nd,Dy){sub 2}Fe{sub 14}B shell. • Addition of Dy–Mn improved the thermal stability of the magnets.

  8. A Rare Nasal Bone Fracture: Anterior Nasal Spine Fracture

    Directory of Open Access Journals (Sweden)

    Egemen Kucuk

    2014-04-01

    Full Text Available Anterior nasal spine fractures are a quite rare type of nasal bone fractures. Associated cervical spine injuries are more dangerous than the nasal bone fracture. A case of the anterior nasal spine fracture, in a 18-year-old male was presented. Fracture of the anterior nasal spine, should be considered in the differential diagnosis of the midface injuries and also accompanying cervical spine injury should not be ignored.

  9. Fracture characteristics in Japanese rock

    International Nuclear Information System (INIS)

    Ijiri, Yuji; Sawada, Atsushi; Akahori, Kuniaki

    1999-11-01

    It is crucial for the performance assessment of geosphere to evaluate the characteristics of fractures that can be dominant radionuclide migration pathways from a repository to biosphere. This report summarizes the characteristics of fractures obtained from broad literature surveys and the fields surveys at the Kamaishi mine in northern Japan and at outcrops and galleries throughout the country. The characteristics of fractures described in this report are fracture orientation, fracture shape, fracture frequency, fracture distribution in space, transmissivity of fracture, fracture aperture, fracture fillings, alteration halo along fracture, flow-wetted surface area in fracture, and the correlation among these characteristics. Since granitic rock is considered the archetype fractured media, a large amount of fracture data is available in literature. In addition, granitic rock has been treated as a potential host rock in many overseas programs, and has JNC performed a number of field observations and experiments in granodiorite at the Kamaishi mine. Therefore, the characteristics of fractures in granitic rock are qualitatively and quantitatively clarified to some extent in this report, while the characteristics of fractures in another rock types are not clarified. (author)

  10. Fracture Phenomena in Amorphous Selenium

    DEFF Research Database (Denmark)

    Lindegaard-Andersen, Asger; Dahle, Birgit

    1966-01-01

    Fracture surfaces of amorphous selenium broken in flexure at room temperature have been studied. The fracture velocity was found to vary in different regions of the fracture surface. Peculiar features were observed in a transition zone between fast and slower fracture. In this zone cleavage steps...

  11. Hydraulic Fracture Containment in Sand

    NARCIS (Netherlands)

    Dong, Y.

    2010-01-01

    The mechanism of hydraulic fracturing in soft, high permeability material is considered fundamentally different from that in hard, low permeability rock, where a tensile fracture is created and conventional linear elastic fracture mechanics (LEFM) applies. The fracturing and associated modeling work

  12. Management of Penile Fracture and its Outcome

    International Nuclear Information System (INIS)

    Khan, Z. I.

    2013-01-01

    Objective: To describe the management and outcome of patients with penile fracture. Study Design: Case series. Place and Duration of Study: Department of Urology and Renal Transplantation, Jinnah Hospital, Lahore, from March 2008 to March 2011. Methodology: Sixteen patients presenting with clinical findings / history of penile fracture were included in this study. Diagnosis was made on the basis of history and clinical findings. Surgical exploration and repair was done on the same day. In all patients, a subcoronal circumferential degloving incision was made. Rent location and dimensions management and postoperative complication were noted. Postoperatively, erection was suppressed for 4 - 5 days. All patients were discharged with advice of avoidance of sex for about 8 weeks. Patients were followed-upto 6 months. Results: Majority of the patients (87.5%) were married and 13 (81.25%) were aged 18 - 45 years. The typical findings recorded in 100.0% patients were erection at time of fracture, detumescence, swelling and ecchymosis. Audible crackling sound and pain was present in 13 (81.25%) patients. Ten (62.5%) patients had rent in the proximal part of penile shaft and right lateral tear was present in 11 (68.75%) patients. Blood clots were evacuated and closure of rent was done with vicryl 2/0 (interrupted stitches). 100.0% patients had uneventful recovery with only 3 (18.75%) patients developed right chordae of erect penis after treatment. All (100.0%) patients were potent and without any problem of erection. Conclusion: Penile fracture is under-reported. A trauma to erect penis is essential to cause fracture. Surgical exploration and repair is the treatment of choice. (author)

  13. Fracture and Healing of Rock Salt Related to Salt Caverns

    International Nuclear Information System (INIS)

    Chan, K.S.; Fossum, A.F.; Munson, D.E.

    1999-01-01

    In recent years, serious investigations of potential extension of the useful life of older caverns or of the use of abandoned caverns for waste disposal have been of interest to the technical community. All of the potential applications depend upon understanding the reamer in which older caverns and sealing systems can fail. Such an understanding will require a more detailed knowledge of the fracture of salt than has been necessary to date. Fortunately, the knowledge of the fracture and healing of salt has made significant advances in the last decade, and is in a position to yield meaningful insights to older cavern behavior. In particular, micromechanical mechanisms of fracture and the concept of a fracture mechanism map have been essential guides, as has the utilization of continuum damage mechanics. The Multimechanism Deformation Coupled Fracture (MDCF) model, which is summarized extensively in this work was developed specifically to treat both the creep and fracture of salt, and was later extended to incorporate the fracture healing process known to occur in rock salt. Fracture in salt is based on the formation and evolution of microfractures, which may take the form of wing tip cracks, either in the body or the boundary of the grain. This type of crack deforms under shear to produce a strain, and furthermore, the opening of the wing cracks produce volume strain or dilatancy. In the presence of a confining pressure, microcrack formation may be suppressed, as is often the case for triaxial compression tests or natural underground stress situations. However, if the confining pressure is insufficient to suppress fracture, then the fractures will evolve with time to give the characteristic tertiary creep response. Two first order kinetics processes, closure of cracks and healing of cracks, control the healing process. Significantly, volume strain produced by microfractures may lead to changes in the permeability of the salt, which can become a major concern in

  14. SPECTRO-POLARIMETRIC SIMULATIONS OF THE SOLAR LIMB: ABSORPTION-EMISSION Fe I 6301.5 Å AND 6302.5 Å LINE PROFILES AND TORSIONAL FLOWS IN THE INTERGRANULAR MAGNETIC FLUX CONCENTRATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Shelyag, S. [School of Mathematical Sciences, Monash University, Clayton, Victoria 3800 (Australia)

    2015-03-01

    Using radiative magnetohydrodynamic simulations of the magnetized solar photosphere and detailed spectro-polarimetric diagnostics with the Fe I 6301.5 Å and 6302.5 Å photospheric lines in the local thermodynamic equilibrium approximation, we model active solar granulation as if it was observed at the solar limb. We analyze general properties of the radiation across the solar limb, such as the continuum and the line core limb darkening and the granulation contrast. We demonstrate the presence of profiles with both emission and absorption features at the simulated solar limb, and pure emission profiles above the limb. These profiles are associated with the regions of strong linear polarization of the emergent radiation, indicating the influence of the intergranular magnetic fields on the line formation. We analyze physical origins of the emission wings in the Stokes profiles at the limb, and demonstrate that these features are produced by localized heating and torsional motions in the intergranular magnetic flux concentrations.

  15. Reheat cracking of austenitic stainless steels - pre-strain effect on intergranular damage; Fissuration en relaxation des aciers inoxydables austenitiques - influence de l'ecrouissage sur l'endommagement intergranulaire

    Energy Technology Data Exchange (ETDEWEB)

    Auzoux, Q

    2004-01-01

    Welding process induces strain in 316 stainless steel affected zones. Their microstructure was reproduce by rolling of three different steels (316L, 316L(N) et 316H). Traction, creep and relaxation tests were performed at 550 deg C and 600 deg C on smooth, notched and pre-cracked specimens. Pre-strain by rolling increases the hardness and the creep resistance because of the high dislocation density but decreases ductility because of the fast development of intergranular damage. This embrittlement leads to crack propagation during relaxation tests on pre-strained steels without distinction in respect to their carbon or nitrogen content. A new intergranular damage model was built using local micro-cracks measurements and finite elements analysis. Pre-strain effect and stress triaxiality ratio effect are reproduced by the modelling so that the reheat cracking risk near welds can now be estimated. (author)

  16. J/Ψ suppression

    International Nuclear Information System (INIS)

    Giubellino, P.; Abreu, M.C.; Alessandro, B.; Alexa, C.; Arnaldi, R.; Astruc, J.; Atayan, M.; Baglin, C.; Baldit, A.; Bedjidian, M.; Bellaiche, F.; Beole, S.; Boldea, V.; Bordalo, P.; Bussiere, A.; Capony, V.; Casagrande, L.; Castor, J.; Chambon, T.; Chaurand, B.; Chevrot, I.; Cheynis, B.; Chiavassa, E.; Cicalo, C.; Comets, M.P.; Constantinescu, S.; Cruz, J.; De Falco, A.; De Marco, N.; Dellacasa, G.; Devaux, A.; Dita, S.; Drapier, O.; Espagnon, B.; Fargeix, J.; Filippov, S.N.; Fleuret, F.; Force, P.; Gallio, M.; Gavrilov, Y.K.; Gerschel, C.; Giubellino, P.; Golubeva, M.B.; Gonin, M.; Grigorian, A.A.; Grossiord, J.Y.; Guber, F.F.; Guichard, A.; Gulkaninan, H.; Hakobyan, R.; Haroutunian, R.; Idzik, M.; Jouan, D.; Karavitcheva, T.L.; Kluberg, L.; Kurepin, A.B.; Le Bornec, Y.; Lourenco, C.; Mac Cormick, M.; Macciotta, P.; Marzari-Chiesa, A.; Masera, M.; Masoni, A.; Mehrabyan, S.; Mourgues, S.; Musso, A.; Ohlsson-Malek, F.; Petiau, P.; Piccotti, A.; Pizzi, J.R.; Prado da Silva, W.L.; Puddu, G.; Quintans, C.; Racca, C.; Ramello, L.; Ramos, S.; Rato-Mendes, P.; Riccati, L.; Romana, A.; Sartori, S.; Saturnini, P.; Scomparin, E.; Serci, S.; Shahoyan, R.; Silva, S.; Soave, C.; Sonderegger, P.; Tarrago, X.; Temnikov, P.; Topilskaya, N.S.; Usai, G.; Vale, C.; Vercellin, E.; Willis, N.

    1999-01-01

    The cross section for J/Ψ production in Pb-Pb interactions at 158 GeV per nucleon is measured at the CERN SPS by the NA50 experiment. The final results from the 1995 run are presented here together with preliminary ones from the high-statistics 1996 run. An anomalous J/Ψ suppression is observed in Pb-Pb collisions as compared to extrapolations of the previous results obtained by the NA38 experiment with proton and lighter ion beams. The results of the two runs are in good agreement. The results from the 1996 run allow the study of the onset of the anomalous suppression within the same set of data, showing evidence of a sharp change of behaviour around a value of neutral transverse energy, as measured by our electromagnetic calorimeter, of about 50 GeV

  17. Femur fracture repair - discharge

    Science.gov (United States)

    ... McCormack RG, Lopez CA. Commonly encountered fractures in sports medicine. In: Miller MD, Thompson SR, eds. DeLee and Drez's Orthopaedic Sports Medicine . 4th ed. Philadelphia, PA: Elsevier Saunders; 2015:chap ...

  18. Geothermal Ultrasonic Fracture Imager

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, Doug [Baker-Hughes Oilfield Operation Inc., Houston, TX (United States); Leggett, Jim [Baker-Hughes Oilfield Operation Inc., Houston, TX (United States)

    2013-07-29

    The Geothermal Ultrasonic Fracture Imager project has a goal to develop a wireline ultrasonic imager that is capable of operating in temperatures up to 300°C (572°F) and depths up to 10 km (32,808 ft). This will address one of the critical needs in any EGS development of understanding the hydraulic flow paths in the reservoir. The ultrasonic imaging is well known in the oil and gas industry as one of the best methods for fracture evaluation; providing both high resolution and complete azimuthal coverage of the borehole. This enables fracture detection and characterization, both natural and induced, providing information as to their location, dip direction and dip magnitude. All of these factors are critical to fully understand the fracture system to enable the optimization of the thermal drainage through injectors and producers in a geothermal resource.

  19. Ontology of fractures

    Science.gov (United States)

    Zhong, Jian; Aydina, Atilla; McGuinness, Deborah L.

    2009-03-01

    Fractures are fundamental structures in the Earth's crust and they can impact many societal and industrial activities including oil and gas exploration and production, aquifer management, CO 2 sequestration, waste isolation, the stabilization of engineering structures, and assessing natural hazards (earthquakes, volcanoes, and landslides). Therefore, an ontology which organizes the concepts of fractures could help facilitate a sound education within, and communication among, the highly diverse professional and academic community interested in the problems cited above. We developed a process-based ontology that makes explicit specifications about fractures, their properties, and the deformation mechanisms which lead to their formation and evolution. Our ontology emphasizes the relationships among concepts such as the factors that influence the mechanism(s) responsible for the formation and evolution of specific fracture types. Our ontology is a valuable resource with a potential to applications in a number of fields utilizing recent advances in Information Technology, specifically for digital data and information in computers, grids, and Web services.

  20. Fractures - Multiple Languages

    Science.gov (United States)

    ... Expand Section Bone Fractures - 简体中文 (Chinese, Simplified (Mandarin dialect)) Bilingual PDF Health Information Translations Cast Care - 简体中文 (Chinese, Simplified (Mandarin dialect)) Bilingual ...

  1. Metatarsal stress fractures - aftercare

    Science.gov (United States)

    ... MD, Thompson SR, eds. DeLee and Drez's Orthopaedic Sports Medicine . 4th ed. Philadelphia, PA: Elsevier Saunders; 2015:chap 13. Safran MR, Zachazewski J, Stone DA. Metatarsal stress fracture. In: Safran MR, Zachazewski J, Stone DA, ...

  2. Stress fractures in athletes

    International Nuclear Information System (INIS)

    Kirschberger, R.; Henning, A.; Graff, K.H.

    1984-01-01

    The early exclusion of the presence of a stress fracture may be decisive for the success of an athlete. Scintigraphy with a bone-seeking radiopharmaceutical is suitable for the early detection of stress lesions. Of 30 athletes, fractures were demonstrated in 17 whereas in 6 they were excluded. We found most fractures in the tarsal bones such as os naviculare pedis, ossa cuneiformia and talus. The type of sport engaged in appears to be an important factor in determining the location of the fracture. Scintiphotos were taken in several views using region of interest techniques and two phase-scintigraphy. This method is considered to be useful for localization and follow-up of skeletal stress lesions as well as for differential diagnosis. (orig.) [de

  3. Calcaneal stress fractures.

    Science.gov (United States)

    Weber, Jason M; Vidt, Louis G; Gehl, Richard S; Montgomery, Travis

    2005-01-01

    The majority of plantar heel pain is diagnosed as plantar fasciitis or heel spur syndrome. When historic or physical findings are unusual or when routine treatment proves ineffective, one should consider an atypical cause of heel pain. Stress fractures of the calcaneus are a frequently unrecognized source of heel pain. In some cases they can continue to go unrecognized because the symptoms of calcaneal stress fractures sometimes improves with treatments aimed at plantar fasciitis. Calcaneal stress fractures can occur in any population of adults and even children and are common among active people, such as athletes, sports enthusiasts, and military personnel. It is likely that the number of diagnosed calcaneal stress fractures will rise among practitioners with an increased recognition of their possibility.

  4. Stress fractures in athletes

    Energy Technology Data Exchange (ETDEWEB)

    Kirschberger, R.; Henning, A.; Graff, K.H.

    1984-12-01

    The early exclusion of the presence of a stress fracture may be decisive for the success of an athlete. Scintigraphy with a bone-seeking radiopharmaceutical is suitable for the early detection of stress lesions. Of 30 athletes, fractures were demonstrated in 17 whereas in 6 they were excluded. We found most fractures in the tarsal bones such as os naviculare pedis, ossa cuneiformia and talus. The type of sport engaged in appears to be an important factor in determining the location of the fracture. Scintiphotos were taken in several views using region of interest techniques and two phase-scintigraphy. This method is considered to be useful for localization and follow-up of skeletal stress lesions as well as for differential diagnosis.

  5. Fatigue and insufficiency fractures

    International Nuclear Information System (INIS)

    Lodwick, G.S.; Rosenthal, D.I.; Kattapuram, S.V.; Hudson, T.M.

    1987-01-01

    The incidence of stress fracture is increasing. In our younger society this is due largely to a preocupation with physical conditioning, but in our elderly population it is due to improved recognition and better methods of detection and diagnosis. Stress fracture of the elderly is an insufficiency fracture which occurs in the spine, the pelvis, the sacrum and other bones afflicted with disorders which cause osteopenia. Stress fracture is frequently misdiagnosed as a malignant lesion of bone resulting in biopsy. Scintiscanning provides the greatest frequency of detection, while computed tomography often provides the definitive diagnosis. With increased interest and experience a better insight into the disease has been achieved, and what was once thought of as a simple manifestation of mechanical stress is now known to be an orderly, complex pattern of physiological changes in bone which conform to a model by Frost. The diffuse nature of these changes can be recognized by scintigraphy, radiography and magnetic resonance imaging. 27 refs.; 8 figs

  6. Paediatric talus fracture.

    LENUS (Irish Health Repository)

    Byrne, Ann-Maria

    2012-01-01

    Paediatric talus fractures are rare injuries resulting from axial loading of the talus against the anterior tibia with the foot in dorsiflexion. Skeletally immature bone is less brittle, with higher elastic resistance than adult bone, thus the paediatric talus can sustain higher forces before fractures occur. However, displaced paediatric talus fractures and those associated with high-energy trauma have been associated with complications including avascular necrosis, arthrosis, delayed union, neurapraxia and the need for revision surgery. The authors present the rare case of a talar neck fracture in a skeletally immature young girl, initially missed on radiological review. However, clinical suspicion on the part of the emergency physician, repeat examination and further radiographic imaging revealed this rare paediatric injury.

  7. Hip fracture - discharge

    Science.gov (United States)

    ... Philadelphia, PA: Elsevier; 2017:chap 55. Read More Broken bone Hip fracture surgery Hip pain Leg MRI scan Osteoporosis - overview Patient Instructions Getting your home ready - knee or hip surgery Osteomyelitis - discharge Review ...

  8. Upscaling on Fracture Flow Models

    OpenAIRE

    Dugstad, Martin Sandanger

    2017-01-01

    Fractures have a great impact on the quality of a porous media. The understanding of the fractures is important to describe the challenges linked to flow of geothermal heat, the transport of groundwater or transport of hydrocarbons in a porous media. The understanding of fracture can help to increase the energy production, or the extraction of clean drinkable groundwater. In this study we will investigate the effects of fractures in a porous medium by incorporate fractures as a...

  9. Impact of Annealing Prior to Solution Treatment on Aging Precipitates and Intergranular Corrosion Behavior of Al-Cu-Li Alloy 2050

    Science.gov (United States)

    Ye, Zhi-hao; Cai, Wen-xin; Li, Jin-feng; Chen, Xiang-rong; Zhang, Rui-feng; Birbilis, Nick; Chen, Yong-lai; Zhang, Xu-hu; Ma, Peng-cheng; Zheng, Zi-qiao

    2018-04-01

    The influences of annealing prior to solution treatment on the grain structure, subsequent aging precipitates, and intergranular corrosion (IGC) of Al-Cu-Li alloy (AA2050) sheet with T6 aging at 448 K (175 °C) were investigated. Annealing impedes the full recrystallization during solution treatment, increasing the population density of T1 (Al2CuLi) precipitates, but decreasing that of θ' (Al2Cu) precipitates, of the aged alloy. Meanwhile, annealing leads to the heterogeneous distribution of T1 precipitates, increasing the alloy hardness, and decreasing the open-circuit potential of the aged alloy. With prolonged aging time, the corrosion mode of the aged AA2050 samples with and without annealing evolved in a similar manner. The corrosion mode as a function of aging may be summarized as local IGC with pitting and general IGC with pitting (following initial aging and under the underaged condition), pitting corrosion (later in the under-aging stage), pitting with slight IGC (near the peak-aged condition), and pitting with local IGC (under the overaging condition). The annealing treatment hinders IGC propagation on the rolling surface while accelerating the IGC on transverse surfaces.

  10. Evaluation of the IGSCC(Intergranular Stress Corrosion Cracking) resistance of inconel alloys by static potential method in high temperature and high pressure environment

    International Nuclear Information System (INIS)

    Maeng, Wan Young; Nam, Tae Woon

    1997-01-01

    Inconel alloys which have good high temperature mechanical properties and corrosion resistance have been used extensively as steam generator tube of nuclear power plants. There have been some reports on the intergranular stress corrosion cracking (IGSCC) failure problems in steam generator tubes of nuclear reactors. In order to evaluate the effects of heat treatment and composition on the IGSCC behavior of inconel alloys in simulated nuclear reactor environment, four different specimens (inconel 600 MA, 600 TT, 690 MA and 690 TT) were prepared and tested by eletrochemical method. Static potential tests for stressed C-ring type inconel specimens were carried out in 10% NaOH solution at 300 deg C (75 atm). It was found that IGSCC was initiated in inconel 600 MA specimen, but the other three specimens were not cracked. Based on the gradients of corrosion current density of the four specimens as a function of test time, thermally treated alloys show better IGSCC resistance than mull-annealed alloys, and inconel 690 TT has better passivation characteristic than inconel 600 MA. Inconel 690 TT shows clear periodic passivation that indicates good SCC resistance. The good IGSCC resistance of inconel 690 TT is due to periodic passivation characteristics of surface layer. (author)

  11. Analysis of Intergranular Precipitation in Isothermally Aged Nitrogen-Containing Austenitic Stainless Steels by an Electrochemical Method and Its Relation to Cryogenic Toughness

    Directory of Open Access Journals (Sweden)

    Maribel L. Saucedo-Muñoz

    2011-01-01

    Full Text Available The precipitation process in two N-containing austenitic stainless steels, aged at temperatures between 873 and 1173 K for times from 10 to 1000 min, was analyzed by an electrochemical method based on the anodic polarization test with an electrolyte of 1 N KOH solution. The anodic polarization curves showed the following intergranular precipitation sequence: austenite → austenite + Cr23C6→ austenite + Cr23C6 + Cr2N. Besides, the fastest precipitation kinetics was detected in the aged steel with the highest content of nitrogen and carbon due to its higher driving force for precipitation. The higher the aging temperature, the higher volume fraction of precipitates. The precipitation fraction can be associated with the current density of the dissolution peaks of each phase. The Charpy-V-Notch impact energy of the aged specimens decreased with the increase in the volume fraction of precipitates.

  12. Investigation of thermally sensitised stainless steels as analogues for spent AGR fuel cladding to test a corrosion inhibitor for intergranular stress corrosion cracking

    Science.gov (United States)

    Whillock, Guy O. H.; Hands, Brian J.; Majchrowski, Tom P.; Hambley, David I.

    2018-01-01

    A small proportion of irradiated Advanced Gas-cooled Reactor (AGR) fuel cladding can be susceptible to intergranular stress corrosion cracking (IGSCC) when stored in pond water containing low chloride concentrations, but corrosion is known to be prevented by an inhibitor at the storage temperatures that have applied so far. It may be necessary in the future to increase the storage temperature by up to ∼20 °C and to demonstrate the impact of higher temperatures for safety case purposes. Accordingly, corrosion testing is needed to establish the effect of temperature increases on the efficacy of the inhibitor. This paper presents the results of studies carried out on thermally sensitised 304 and 20Cr-25Ni-Nb stainless steels, investigating their grain boundary compositions and their IGSCC behaviour over a range of test temperatures (30-60 °C) and chloride concentrations (0.3-10 mg/L). Monitoring of crack initiation and propagation is presented along with preliminary results as to the effect of the corrosion inhibitor. 304 stainless steel aged for 72 h at 600 °C provided a close match to the known pond storage corrosion behaviour of spent AGR fuel cladding.

  13. Modelling of Specimen Fracture

    Science.gov (United States)

    2013-09-23

    cleavage fracture initiation (such as displacement at fracture initiation for Charpy V-notch tests ) is first selected. Normally, tests are selected... Testing and Materials. 2006. ASTM E 1921-05: Standard Test Method for Determination of Reference Temperature, T0 for Ferritic Steels in the...work includes the continuing testing and improvement of the post-processor. TABLE OF CONTENTS 1.0 INTRODUCTION

  14. Brittle fracture properties

    International Nuclear Information System (INIS)

    Bui, H.D.

    1978-01-01

    In this manual, the following topics are discussed: introduction to the fracture mechanics; theories of brittle fractures; solutions of the boundary value problems of cracks; conservation laws in elastostatics; methods to derive stress-intensity factors; three-dimensional problems; dynamic problems; thermo-elasticity; theories of cracked plates; rock mechanics; crack parameters in elastodynamics; formulae for stress-intensity factors and a programme using the finite element method [fr

  15. Classical fracture mechanics methods

    International Nuclear Information System (INIS)

    Schwalbe, K.H.; Heerens, J.; Landes, J.D.

    2007-01-01

    Comprehensive Structural Integrity is a reference work which covers all activities involved in the assurance of structural integrity. It provides engineers and scientists with an unparalleled depth of knowledge in the disciplines involved. The new online Volume 11 is dedicated to the mechanical characteristics of materials. This paper contains the chapter 11.02 of this volume and is structured as follows: Test techniques; Analysis; Fracture behavior; Fracture toughness tests for nonmetals

  16. Dynamic fracture toughness

    Science.gov (United States)

    Kobayashi, A. S.; Ramulu, M.; Dadkhah, M. S.; Yang, K.-H.; Kang, B. S. J.

    1986-01-01

    Dynamic fracture toughness versus crack velocity relations of Homalite-100, polycarbonate, hardened 4340 steel and reaction bonded silicon nitride are reviewed and discrepancies with published data and their probable causes are discussed. Data scatter in published data are attributed in part to the observed fluctuations in crack velocities. The results reaffirmed our previous conclusion that the dynamic fracture toughness versus crack velocity relation is specimen dependent and that the dynamic arrest stress intensity factor is not a unique material property.

  17. FRACTURING FLUID CHARACTERIZATION FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Subhash Shah

    2000-08-01

    Hydraulic fracturing technology has been successfully applied for well stimulation of low and high permeability reservoirs for numerous years. Treatment optimization and improved economics have always been the key to the success and it is more so when the reservoirs under consideration are marginal. Fluids are widely used for the stimulation of wells. The Fracturing Fluid Characterization Facility (FFCF) has been established to provide the accurate prediction of the behavior of complex fracturing fluids under downhole conditions. The primary focus of the facility is to provide valuable insight into the various mechanisms that govern the flow of fracturing fluids and slurries through hydraulically created fractures. During the time between September 30, 1992, and March 31, 2000, the research efforts were devoted to the areas of fluid rheology, proppant transport, proppant flowback, dynamic fluid loss, perforation pressure losses, and frictional pressure losses. In this regard, a unique above-the-ground fracture simulator was designed and constructed at the FFCF, labeled ''The High Pressure Simulator'' (HPS). The FFCF is now available to industry for characterizing and understanding the behavior of complex fluid systems. To better reflect and encompass the broad spectrum of the petroleum industry, the FFCF now operates under a new name of ''The Well Construction Technology Center'' (WCTC). This report documents the summary of the activities performed during 1992-2000 at the FFCF.

  18. Occult fracture of the calcaneus - another Toddler's fracture

    International Nuclear Information System (INIS)

    Starshak, R.J.; Simons, G.W.; Sty, J.R.

    1984-01-01

    Fractures of the calcaneus have been considered rare among children. We feel this may be erroneous since in the last 12 months we have seen 10 such fractures among children, 19 and 41 months of age, who presented with acute limping. The fractures were detected with bone imaging which was performed when initial radiographs were noncontributory. Subsequent radiographs of the calcaneus were positive for fracture in 4 to 10 while follow up radiographs confirmed healing fractures in the two children so evaluated. The sensitivity of bone imaging for the detection of occult fractures in toddlers is emphasized. (orig.)

  19. Genetics of osteoporotic fracture

    Directory of Open Access Journals (Sweden)

    Chuan Qiu

    2011-03-01

    Full Text Available Chuan Qiu1,2, Christopher J Papasian2, Hong-Wen Deng1,2,3,4, Hui Shen1,21Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA; 2Department of Basic Medical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA; 3Center of System Biomedical Sciences, University of Shanghai for Science and Technology, Shanghai, China; 4Molecular and Statistical Genetics Lab, College of Life Sciences, Hunan Normal University, Changsha, ChinaAbstract: Osteoporosis is a major public health problem that results in a massive burden to patients and society through associated low-trauma, osteoporotic fractures. Previous studies have shown that osteoporosis-associated traits, such as low bone mineral density, as well as the probability of actually experiencing an osteoporotic fracture, are under strong genetic control. Susceptibility to osteoporosis and osteoporotic fractures is likely to be controlled by multiple genetic and environmental factors, and by interactions between them. Although numerous genetic studies, mainly candidate gene association studies, have attempted to decipher the genetic basis for osteoporosis and osteoporotic fractures, little success has been achieved. Recent advances in high-throughput genotyping technology and knowledge of common human genetic variants have shifted the approach for studying human complex disorders from candidate gene studies to large-scale genome-wide association studies. In the past three years, more than 10 genome-wide association studies have been carried out for osteoporosis. A number of genes that are associated with osteoporosis-related traits, and/or with the probability of actually experiencing an osteoporotic fracture, have been successfully identified and replicated through these studies. In this article, we review the recent progress in the genetics

  20. Effects of Dy{sub 71.5}Fe{sub 28.5} intergranular addition on the microstructure and the corrosion resistance of Nd–Fe–B sintered magnets

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Liping; Ma, Tianyu, E-mail: maty@zju.edu.cn; Zhang, Pei; Yan, Mi, E-mail: mse_yanmi@zju.edu.cn

    2015-06-15

    To satisfy high-temperature applications, heavy rare-earth (RE) Dy is commonly introduced into the Nd–Fe–B sintered magnets to improve the coercivity. In addition to forming (Nd, Dy){sub 2}Fe{sub 14}B, Dy also exists in the intergranular RE-rich phase. Hence, understanding the effect of Dy on the electrochemical characteristics of the RE-rich phase and corrosion resistance of the magnet is of importance. In this work, eutectic alloy Dy{sub 71.5}Fe{sub 28.5} powders were added into the (Pr{sub 0.2}Nd{sub 0.8}){sub 12.3}Fe{sub bal}B{sub 6.1} magnet through binary-alloy approach to investigate the corrosion resistance of the magnet in electrochemical and hot/humid environments. The results demonstrate that Dy is enriched in the intergranular phase, improving its electrode potential and stability due to the higher electrode potential of Dy than Nd or Pr. As a consequence, the electrode potential difference between the 2:14:1 phase and the RE-rich phase is reduced, improving the corrosion resistance. Furthermore, formation of (Pr, Nd, Dy){sub 2}Fe{sub 14}B shell with stronger local anisotropy surrounding the 2:14:1 phase grains improves the coercivity with a slight remanence loss. Therefore, intergranular adding Dy–Fe alloy powders can obtain both high magnetic properties and good corrosion resistance simultaneously. - Highlights: • Eutectic Dy{sub 71.5}Fe{sub 28.5} powders were intergranular added to NdFeB sintered magnets. • The doped magnet showed improved corrosion resistance compared to Dy-free magnet. • Dy enrichment in RE-rich intergranular phase improved its electrode potential. • (Nd, Dy){sub 2}Fe{sub 14}B shell was expected to form in the surface of Nd{sub 2}Fe{sub 14}B grains. • Both corrosion resistance and coercivity were improved in Dy–Fe doped magnet.

  1. Mechanical behavior and fracture characterization of the T91 martensitic steel in liquid sodium environment

    International Nuclear Information System (INIS)

    Hamdane, Ouadie

    2012-01-01

    The T91 martensitic steel is designed to constitute structural material of future sodium fast reactors of fourth generation, where it will be subjected to stresses in presence of liquid sodium. This study presents a qualitative and quantitative estimate of the sensitivity of T91 steel towards the phenomenon of liquid metal embrittlement. The effect of liquid sodium on T91 steel was studied and quantified according to the temperature and the cross head rate displacement, by using a set-up of Small Punch Test, three and four bending test, developed in laboratory. Mechanical tests in sodium environment are carried out inside a Plexiglas cell, conceived and developed at the laboratory. The atmosphere inside this cell is severely purified and controlled, in order to avoid on the one hand an explosive reaction of sodium with moisture, or an ignition with oxygen, and on the other hand to minimize the presence of impurities in liquid sodium used. The presence of sodium accelerates T91 steel fracture at low temperature, without modifying its ductile character. The T91 pre-immersion in sodium makes it possible to dissolve the protective layer of chromium oxide, and to obtain an intimate contact with the molten metal. However, pre-immersion generates a surface defects which cause a partial embrittlement by sodium. The hardening of T91 steel by heat treatment with a tempering temperature of 550 C (T91-TR550) causes a total embrittlement of steel in presence of sodium, with and without pre-immersion. The rupture of the T91-TR550 steel takes then place by intergranular de-cohesion, corresponding to the crack initiation phase, followed by laths de-cohesion, corresponding to the phase of propagation of these cracks. The mechanism suggested in this study is based on the intergranular penetration of sodium, supported by the presence of segregated impurities such phosphorus, and by the plastic deformation [fr

  2. Radiological classification of mandibular fractures

    International Nuclear Information System (INIS)

    Mihailova, H.

    2009-01-01

    Mandibular fractures present the biggest part (up to 97%) of the facial bone fractures. Method of choice for diagnosing of mandibular fractures is conventional radiography. The aim of the issue is to present an unified radiological classification of mandibular fractures for the clinical practice. This classification includes only those clinical symptoms of mandibular fracture which could be radiologically objectified: exact anatomical localization (F1-F6), teeth in fracture line (Ta,Tb), grade of dislocation (D I, D II), occlusal disturbances (O(+), O(-)). Radiological symptoms expressed by letter and number symbols are systematized in a formula - FTDO of mandibular fractures similar to TNM formula for tumours. FTDO formula expresses radiological diagnose of each mandibular fracture but it doesn't include neither the site (left or right) of the fracture, nor the kind and number of fractures. In order to express topography and number of fractures the radiological formula is transformed into a decimal fraction. The symbols (FTD) of right mandible fracture are written in the numerator and those of the left site - in the denominator. For double and multiple fractures between the symbols for each fracture we put '+'. Symbols for occlusal disturbances are put down opposite, the fractional line. So topographo-anatomical formula (FTD/FTD)xO is formed. In this way the whole radiological information for unilateral, bilateral, single or multiple fractures of the mandible is expressed. The information in the radiological topography anatomic formula, resp. from the unified topography-anatomic classification ensures a quick and exact X-ray diagnose of mandibular fracture. In this way contributes to get better, make easier and faster X-ray diagnostic process concerning mandibular fractures. And all these is a precondition for prevention of retardation of the diagnosis mandibular fracture. (author)

  3. Delayed Fracture Healing in Diabetics with Distal Radius Fractures.

    Science.gov (United States)

    Pscherer, S; Sandmann, G H; Ehnert, S; Nussler, A K; Stöckle, U; Freude, T

    2017-01-01

    PURPOSE OF THE STUDY Diabetics may have an increased fracture risk, depending on disease duration, quality of metabolic adjustment and extent of comorbidities, and on an increased tendency to fall. The aim of this retrospective one-centre study consisted in detecting differences in fracture healing between patients with and without diabetes mellitus. Data of patients with the most common fracture among older patients were analyzed. MATERIAL AND METHODS Classification of distal radius fractures was established according to the AO classification. Inital assessment and followup were made by conventional x-rays with radiological default settings. To evaluate fracture healing, formation of callus and sclerotic border, assessment of the fracture gap, and evidence of consolidation signs were used. RESULTS The authors demonstrated that fracture morphology does not influence fracture healing regarding time span, neither concerning consolidation signs nor in fracture gap behavior. However, tendency for bone remodeling is around 70% lower in investigated diabetics than in non-diabetics, while probability for a successful fracture consolidation is 60% lower. CONCLUSIONS To corroborate the authors hypothesis of delayed fracture healing in patients with diabetes mellitus, prospective studies incorporating influencing factors like duration of metabolic disease, quality of diabetes control, medical diabetes treatment, comorbidities and secondary diseaseas, like chronic nephropathy and osteoporosis, have to be carried out. Key words: diabetes, delayed fracture healing, distal radius fractures, callus formation, blood glucose level, osteoblasts.

  4. How to suppress obsessive thoughts.

    Science.gov (United States)

    Rassin, Eric; Diepstraten, Philip

    2003-01-01

    Thought suppression (i.e. consciously trying to avoid certain thoughts from entering consciousness) has been argued to be an inadequate strategy in case of unwanted intrusions. That is, thought suppression seems to result in more rather than less intrusions. Although this experimental finding has been explained in terms of failing attempts to distract oneself from the target thought, the White Bear Suppression Inventory (WBSI; a scale that measures chronic thought suppression tendencies) does not address the means by which respondents try to suppress unwanted thoughts. To examine which strategies of mental control people use to suppress unwanted thoughts, obsessive-compulsive disorder patients (N=47) completed the WBSI, the Thought Control Questionnaire, and two measures of psychopathology. Results suggest that the crucial mechanism in thought suppression may not be distraction, but self-punishment.

  5. Polymer liquids fracture like solids

    DEFF Research Database (Denmark)

    Huang, Qian; Hassager, Ole

    2017-01-01

    While fracture in brittle solids has been studied for centuries until today, there are few studies on fracture in polymer liquids. Recent developments in experimental techniques, especially the combination of controlled filament stretching rheometry and high speed imaging, have opened new windows...... into the detailed study of fracture processes for polymer liquids. High speed imaging shows that polymer liquids fracture like solids with initiation and propagation of an edge fracture. However, remarkable features such as highly reproducible critical stress, independent appearance of multiple fractures...

  6. CT classification of acetabular fractures

    Energy Technology Data Exchange (ETDEWEB)

    Marincek, B.; Porcellini, B.; Robotti, G.

    1984-05-01

    The contribution of computed tomography (CT) in classifying acetabular fractures was analysed retrospectively in 33 cases. CT and plain radiography classification agreed in 27 cases (82%). CT revealed more extensive fractures in 6 patients (thereof 5 patients with associated fractures). In 10 patients (thereof 9 patients with associated fractures) CT showed intraarticular fragments; radiographically intraarticular fragments were seen only in 2 patients and suspected in 4. CT is of considerable aid in defining the fracture pattern. It should be used mainly in patients with radiographically difficult interpretable associated fractures in order to assess preoperatively the weight-bearing part of the acetabulum, the degree of displacement and the presence of intraarticular fragments.

  7. Pediatric calcaneal fractures

    Directory of Open Access Journals (Sweden)

    Hobie Summers

    2009-07-01

    Full Text Available Although operative treatment of displaced, intra-articular fractures of the calcaneus in adults is generally accepted as standard practice, operative treatment for the same fractures in the skeletally immature remains controversial, potentially because the outcome for fracture types (intra- vs. extra-articular and severity (displaced vs. nondisplaced have been confounded in studies of children. We review herein the results of 21 displaced, intra-articular fractures in 18 skeletally immature patients, who were treated with open reduction and internal fixation using a standard surgical approach and protocol developed for adults. The average pre-operative Böhler's angle on the injured side was -5° (range: -35 - +35 compared to 31° (range: +22 - +47 on the uninjured side, indicating substantial displacement. There were no post-operative infections or wound healing problems, and all but one patient was followed to union (average follow-up: 1.5 years; range: 0.30-4.3 years. Maintenance of reduction was confirmed on follow-up radiographs with an average Böhler's angle of 31° (range: +22 - +49. We demonstrate that results for operative fixation of displaced, intra-articular calcaneal fractures in the skeletally immature are comparable to those in adults when the treatment protocol is the same.

  8. Management of penile fractures

    International Nuclear Information System (INIS)

    Ghilan, Abdulelah M. M.; Al-Asbahi, Waleed A.; Alwan, Mohammed A.; Al-Khanbashi, Omar M.; Ghafour, Mohammed A.

    2008-01-01

    Objective was to present our experience with surgical and conservative management of penile fracture. This prospective study was carried out in the Urology and Nephrology Center, at Al-Thawra General and Teaching Hospital, Sana'a, Yemen from June 2003 to September 2007 and included 30 patients presenting with penile fracture. Diagnosis was made clinically in all our patients. Six patients with simple fracture were treated conservatively while 24 patients with more severe injuries were operated upon. Patient's age ranged from 24-52 years (mean 31.3 years) 46.7% of patients were under the age of 30 years and 56.7% were unmarried. Hard manipulation of the erect penis for example during masturbation was the most frequent mechanism of fracture in 53.3% of patients. Solitary tear was found in 22 patients and bilateral corporal tears associated with urethral injury were found in 2 patients. Corporal tears were saturated with synthetic absorbable sutures and urethral injury was repaired primarily. All operated patients described full erection with straight penis except 3 of the 8 patients who were managed by direct longitudinal incision, in whom mild curvature during erection was observed. The conservatively treated patients described satisfactory penile straightness and erection. The optimal functional and cosmetic results are achieved following immediate surgical repair of penis fracture. Good results can also be obtained in some selected patients with conservative management. (author)

  9. Risk of fracture and the concomitant use of bisphosphonates with osteoporosis-inducing medications.

    Science.gov (United States)

    Nyandege, Abner N; Slattum, Patricia W; Harpe, Spencer E

    2015-04-01

    To review the literature on the concomitant use of bisphosphonates and medications that can influence bone metabolism and potentially attenuate bisphosphonate antifracture efficacy. MEDLINE and CINAHL were searched for articles published in English through December 2014 using the following terms: bisphosphonates, bone density conservation agents, acid-suppressive therapy, levothyroxine, thiazolidinediones (TZDs), selective serotonin reuptake inhibitors (SSRIs), bone fractures. Studies were included if they reported results of concomitant use of any listed medications with bisphosphonates and risk of fractures and focused on women. Articles that focused generally on the use of one of the listed medications and fractures without explicitly examining the potential antifracture efficacy or attenuation of bisphosphonates were excluded. A total of 6 relevant studies were identified. Four epidemiological studies reported a statistically significant dose-dependent increase in the risk of fractures when bisphosphonates and acid-suppressive drugs were used together. One post hoc analysis of clinical trial data suggested no attenuation of the antifracture effects of bisphosphonates when used concomitantly with acid-suppressive therapy. One study involving bisphosphonates and SSRIs noted a statistically significant association between fracture risk and SSRI use. No study examining TZDs or levothyroxine with bisphosphonates was identified. Existing research suggests potential attenuation of bisphosphonate antifracture efficacy among patients taking acid-suppressive medications. Based on their pharmacological actions, TZDs, SSRIs, and levothyroxine have similar implications. The paucity of evidence in the literature associating the attenuation of bisphosphonate antifracture efficacy when combined with other medications suggests that further investigation is needed. © The Author(s) 2015.

  10. Unihemispheric burst suppression

    Directory of Open Access Journals (Sweden)

    Edward C. Mader Jr.

    2014-08-01

    Full Text Available Burst suppression (BS consists of bursts of high-voltage slow and sharp wave activity alternating with periods of background suppression in the electroencephalogram (EEG. When induced by deep anesthesia or encephalopathy, BS is bihemispheric and is often viewed as a non-epileptic phenomenon. In contrast, unihemispheric BS is rare and its clinical significance is poorly understood. We describe here two cases of unihemispheric BS. The first patient is a 56-year-old woman with a left temporoparietal tumor who presented in convulsive status epilepticus. EEG showed left hemispheric BS after clinical seizure termination with lorazepam and propofol. The second patient is a 39-year-old woman with multiple medical problems and a vague history of seizures. After abdominal surgery, she experienced a convulsive seizure prompting treatment with propofol. Her EEG also showed left hemispheric BS. In both cases, increasing the propofol infusion rate resulted in disappearance of unihemispheric BS and clinical improvement. The prevailing view that typical bihemispheric BS is non-epileptic should not be extrapolated automatically to unihemispheric BS. The fact that unihemispheric BS was associated with clinical seizure and resolved with propofol suggests that, in both cases, an epileptic mechanism was responsible for unihemispheric BS.

  11. Transstyloid, transscaphoid, transcapitate fracture: a variant of scaphocapitate fractures.

    LENUS (Irish Health Repository)

    Burke, Neil G

    2014-01-01

    Transstyloid, transscaphoid, transcapitate fractures are uncommon. We report the case of a 28-year-old man who sustained this fracture following direct trauma. The patient was successfully treated by open reduction internal fixation of the scaphoid and proximal capitate fragment, with a good clinical outcome at 1-year follow-up. This pattern is a new variant of scaphocapitate fracture as involves a fracture of the radial styloid as well.

  12. Influences of process parameters and microstructure on the fracture mechanisms of ODS steels

    Energy Technology Data Exchange (ETDEWEB)

    Rouffié, A.L., E-mail: anne-laure.rouffie@cea.fr [CEA, DEN, DANS, DMN, SRMA, Bât 453, F-91191 Gif-sur-Yvette (France); Wident, P.; Ziolek, L. [CEA, DEN, DANS, DMN, SRMA, Bât 453, F-91191 Gif-sur-Yvette (France); Delabrouille, F. [EDF – EDF R and D, Département MMC groupe Métallurgie, 77818 Moret sur Loing (France); Tanguy, B. [CEA, DEN, DANS, DMN, SEMI, Bât 625, F-91191 Gif-sur-Yvette (France); Crépin, J.; Pineau, A. [Mines ParisTech, Centre des Matériaux PM Fourt, UMR CNRS 7633, BP 87, 91003 Evry (France); Garat, V. [AREVA NP, 10 rue J. Récamier, 69006 Lyon (France); Fournier, B. [Manoir Industries, Metallurgy Dept., 12 rue des Ardennes, BP 8401 Pîtres, 27108 Val de Reuil Cedex (France)

    2013-02-15

    The present work investigates the impact response of three ODS steels containing 9%Cr and 14%Cr. These steels were produced by hot extrusion in the shapes of a rod and a plate. The 9%Cr ODS steel has a quasi-isotropic microstructure and is given as a reference material. In comparison, the 14%Cr ODS steel has a strong morphological and crystallographic texture given by the process route. The impact behaviour is anisotropic and the fracture energies are higher when the material is tested in the longitudinal direction compared to the transverse direction. Moreover, the 14%Cr ODS steel has a better impact behaviour when it is extruded in the shape of a rod rather than in the shape of a plate. This work focuses on the fracture mechanisms involved in the ductile to brittle transition regime and in the brittle regime of these materials. In the case of the 14%Cr ODS steel, the cleavage facets observed at very low temperature are much larger than the actual size of the grains. Packets of grains with less than 15° of internal misorientation were defined as effective grains for cleavage. In the transition range, the texture enhances intergranular delamination on the 14%Cr rod material. The occurrence of delamination consumes a lot of energy and tends to enhance scattering in impact energies.

  13. Differential equilibration and intergranular diffusion of trace elements during rapid regional metamorphism: constraints from LA-ICP-MS mapping of a garnet population

    Science.gov (United States)

    George, F. R.; Gaidies, F.

    2017-12-01

    Trace element zoning contained within a metapelitic garnet population yields information pertaining to a more complex prograde reaction history than is evident in major element zoning patterns and other conventional analyses. In particular, while trace elements may not act as a rate-limiting component for garnet crystallization, their incorporation into garnet growth surfaces provides a nuanced insight into the crystallization history of the population, and the extent of equilibration of trace elements in the matrix. In this study, we present LA-ICP-MS raster maps of trace element concentrations from several population-representative, centrally sectioned garnets from a garnet-grade metapelite of the Sikkim Himalaya, India. Equilibrium forward modeling of garnet crystallization and simulation of diffusional modification indicates that the garnet population crystallized rapidly over <1 Myr between 515 °C/4.5 kbar and 565 °C/5.5 kbar, as a consequence of high heating rates during regional amphibolite-facies metamorphism. While the rate of diffusional homogenization of major divalent cations is interpreted to have exceeded the rate of interfacial advance (yielding simple prograde growth zoning), trace element distributions record a more complex transport history. In particular, yttrium and the heavy rare earth elements (HREE) document a transition from an overprinted sigmoidal core to concentric repeated HREE and yttrium annuli in all crystals. This suggests that there was a discrete increase in the length scale of equilibration along the advancing garnet interface at some point in the growth history. However, there is no evidence for a coeval change in HREE transport thorough the intergranular network. Conversely, spiral core-to-rim zoning of chromium indicates the element remains almost completely immobile in the matrix over the duration of garnet growth.

  14. Differences between groundwater fauna in shallow and in deep intergranular aquifers as an indication of different characteristics of habitats and hydraulic connections

    Directory of Open Access Journals (Sweden)

    Anton Brancelj

    2016-03-01

    Full Text Available The fauna in the hyporheic zones of rivers has been relatively well studied but that from the phreatic zone remains comparatively unknown and there are few investigations into deeper intergranular aquifers (over 30 m in depth due to technical difficulties. Two shallow boreholes of 29 m depth and two deep boreholes of 100 m depth, both near Ljubljana (Slovenia, were sampled more than 30 times between 14 January 2008 and 3 March 2009.  On each occasion 14.4 to 18.0 m3 of water were abstracted using a high-capacity pump, then filtered by means of a plankton net with a mesh size of 60 µm. Organisms larger than 2 mm were damaged by the pump rotors, but their identification was still possible, while smaller representatives of the Copepoda (Crustacea passed the rotors without  damage. A near-by artesian borehole was sampled on 6 occasions. Water chemistry, physical properties and faunal composition analyses were carried out for each borehole. A total of 32 taxa, 24 of which were stygobites, were identified. Copepoda alone were represented by 16 species, 15 of which were stygobites. The shallow boreholes differ from the deep boreholes in their higher temperatures and higher concentrations of K+, Na+, Ca2+, Mg2+ and SO42- ions. The copepod communities in samples from the shallow boreholes differ sharply from those from the deep boreholes. There were also clear differences between shallow boreholes in two aquifers located a few kilometres apart, in physical and chemical characteristics as well as in fauna composition. Taxa with different ecological affinities, collected from groundwater, are indicators of hydraulic connections between different parts of an aquifer as well as of communication between surface and subsurface water bodies. The present study suggests that subterranean fauna, as well as epigean fauna, can provide effective support for classical dye/salt tracing experiments.

  15. Talar neck fractures.

    Science.gov (United States)

    Berlet, G C; Lee, T H; Massa, E G

    2001-01-01

    Clinical management of talar neck fractures is complex and fraught with complications. As Gaius Julius Caesar stated: "The die is cast"; often the outcome of a talar neck fracture is determined at the time of injury. The authors believe, however, that better results can be achieved by following some simple guidelines. The authors advocate prompt and precise anatomic surgical reduction, preferring the medial approach with secondary anterolateral approach. Preservation of blood supply can be achieved by a thorough understanding of vascular pathways and efforts to stay within appropriate surgical intervals. The authors advocate bone grafting of medial neck comminution (if present) to prevent varus malalignment and rigid internal fixation to allow for joint mobilization postoperatively. These guidelines may seem simple, but when dealing with the complexity of talar neck fractures, the foot and ankle surgeon needs to focus and rely on easily grasped concepts to reduce poor outcomes.

  16. Tibial Plateau Fractures

    DEFF Research Database (Denmark)

    Elsøe, Rasmus

    This PhD thesis reported an incidence of tibial plateau fractures of 10.3/100,000/year in a complete Danish regional population. The results reported that patients treated for a lateral tibial plateau fracture with bone tamp reduction and percutaneous screw fixation achieved a satisfactory level...... of radiological outcomes and a level of health related quality of life (Eq5d) below but not significantly different from the Danish reference population at a mean of 5.2 years follow-up. Furthermore, a knee injury-specific questionnaire (KOOS) reported a level of disability close to a reference population...... with only the subgroup Sport significantly below the age matched reference population. The thesis reports a level of health related quality of life (Eq5d) and disability (KOOS) significantly below established reference populations for patients with bicondylar tibial plateau fracture treated with a ring...

  17. DEM Particle Fracture Model

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Boning [Univ. of Colorado, Boulder, CO (United States); Herbold, Eric B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Homel, Michael A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Regueiro, Richard A. [Univ. of Colorado, Boulder, CO (United States)

    2015-12-01

    An adaptive particle fracture model in poly-ellipsoidal Discrete Element Method is developed. The poly-ellipsoidal particle will break into several sub-poly-ellipsoids by Hoek-Brown fracture criterion based on continuum stress and the maximum tensile stress in contacts. Also Weibull theory is introduced to consider the statistics and size effects on particle strength. Finally, high strain-rate split Hopkinson pressure bar experiment of silica sand is simulated using this newly developed model. Comparisons with experiments show that our particle fracture model can capture the mechanical behavior of this experiment very well, both in stress-strain response and particle size redistribution. The effects of density and packings o the samples are also studied in numerical examples.

  18. Foal Fractures: Osteochondral Fragmentation, Proximal Sesamoid Bone Fractures/Sesamoiditis, and Distal Phalanx Fractures.

    Science.gov (United States)

    Reesink, Heidi L

    2017-08-01

    Foals are susceptible to many of the same types of fractures as adult horses, often secondary to external sources of trauma. In addition, some types of fractures are specific to foals and occur routinely in horses under 1 year of age. These foal-specific fractures may be due to the unique musculoskeletal properties of the developing animal and may present with distinct clinical signs. Treatment plans and prognoses are tailored specifically to young animals. Common fractures not affecting the long bones in foals are discussed in this article, including osteochondral fragmentation, proximal sesamoid bone fractures/sesamoiditis, and distal phalanx fractures. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Fractured Petroleum Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Firoozabadi, Dr. Abbas

    2000-01-18

    In this report the results of experiments of water injection in fractured porous media comprising a number of water-wet matrix blocks are reported for the first time. The blocks experience an advancing fracture-water level (FWL). Immersion-type experiments are performed for comparison; the dominant recovery mechanism changed from co-current to counter-current imbibition when the boundary conditions changed from advancing FWL to immersion-type. Single block experiments of co-current and counter-current imbibition was performed and co-current imbibition leads to more efficient recovery was found.

  20. Elastic plastic fracture mechanics

    International Nuclear Information System (INIS)

    Simpson, L.A.

    1978-07-01

    The application of linear elastic fracture mechanics (LEFM) to crack stability in brittle structures is now well understood and widely applied. However, in many structural materials, crack propagation is accompanied by considerable crack-tip plasticity which invalidates the use of LEFM. Thus, present day research in fracture mechanics is aimed at developing parameters for predicting crack propagation under elastic-plastic conditions. These include critical crack-opening-displacement methods, the J integral and R-curve techniques. This report provides an introduction to these concepts and gives some examples of their applications. (author)

  1. Social inequality and hip fracture

    DEFF Research Database (Denmark)

    Harvey, N. C.; Hansen, L.; Judge, A.

    2015-01-01

    fracture (ICD10: S720, S721, S722 and S729) were identified from 1 January 1995 to 31 December 2011. Hip fracture patients were matched 1:1 on age, gender and year of fracture to a non-hip fracture control. An individual's education attainment was defined as basic, secondary or higher, and their income...... and year of fracture, and education and year of fracture, to describe whether the association of income or education with rates of hip fracture changed over time. Results: There were 69,774 hip fracture patients and 69,709 controls (both mean age 81.2 years) with complete data on income and education. Both...

  2. Statistics and thermodynamics of fracture

    Science.gov (United States)

    Chudnovsky, A.

    1984-01-01

    A probabilistic model of the fracture processes unifying the phenomenological study of long term strength of materials, fracture mechanics and statistical approaches to fracture is briefly outlined. The general framework of irreversible thermodynamics is employed to model the deterministic side of the failure phenomenon. The stochastic calculus is used to account for thg failure mechanisms controlled by chance; particularly, the random roughness of fracture surfaces.

  3. Suppression of sympathetic detonation

    Science.gov (United States)

    Foster, J. C., Jr.; Gunger, M. E.; Craig, B. G.; Parsons, G. H.

    1984-08-01

    There are two basic approaches to suppression of sympathetic detonation. Minimizing the shock sensitivity of the explosive to long duration pressure will obviously reduce interround separation distances. However, given that the explosive sensitivity is fixed, then much can be gained through the use of simple barriers placed between the rounds. Researchers devised calculational methods for predicting shock transmission; experimental methods have been developed to characterize explosive shock sensitivity and observe the response of acceptors to barriers. It was shown that both EAK and tritonal can be initiated to detonation with relatively low pressure shocks of long durations. It was also shown that to be an effective barrier between the donor and acceptor, the material must attenuate shock and defect fragments. Future actions will concentrate on refining the design of barriers to minimize weight, volume, and cost.

  4. Oblique Axis Body Fracture

    DEFF Research Database (Denmark)

    Takai, Hirokazu; Konstantinidis, Lukas; Schmal, Hagen

    2016-01-01

    type" fracture pattern. The first patient was treated conservatively with cervical spine immobilization in a semirigid collar. However, gross displacement was noted at the 6-week follow-up visit. The second patient was therefore treated operatively by C1-C3/4 posterior fusion and the course...... for this injury and suggest early operative stabilization....

  5. Fracture mechanics and parapsychology

    Science.gov (United States)

    Cherepanov, G. P.

    2010-08-01

    The problem of postcritical deformation of materials beyond the ultimate strength is considered a division of fracture mechanics. A simple example is used to show the relationship between this problem and parapsychology, which studies phenomena and processes where the causality principle fails. It is shown that the concept of postcritical deformation leads to problems with no solution

  6. Fracture mechanics and microstructures

    International Nuclear Information System (INIS)

    Gee, M.G.; Morrell, R.

    1986-01-01

    The influence of microstructure on defects in ceramics, and the consequences of their presence for the application of fracture mechanics theories are reviewed. The complexities of microstructures, especially the multiphase nature, the crystallographic anisotropy and the resultant anisotropic physical properties, and the variation of microstructure and surface finish from point to point in real components, all lead to considerable uncertainties in the actual performance of any particular component. It is concluded that although the concepts of fracture mechanics have been and will continue to be most useful for the qualitative explanation of fracture phenomena, the usefulness as a predictive tool with respect to most existing types of material is limited by the interrelation between material microstructure and mechanical properties. At present, the only method of eliminating components with unsatisfactory mechanical properties is to proof-test them, despite the fact that proof-testing itself is limited in ability to cope with changes to the component in service. The aim of the manufacturer must be to improve quality and consistency within individual components, from component to component, and from batch to batch. The aim of the fracture specialist must be to study longer-term properties to improve the accuracy of behaviour predictions with a stronger data base. Materials development needs to concentrate on obtaining defect-free materials that can be translated into more-reliable products, using our present understanding of the influence of microstructure on strength and toughness

  7. Fractal description of fractures

    International Nuclear Information System (INIS)

    Lung, C.W.

    1991-06-01

    Recent studies on the fractal description of fractures are reviewed. Some problems on this subject are discussed. It seems hopeful to use the fractal dimension as a parameter for quantitative fractography and to apply fractal structures to the development of high toughness materials. (author). 28 refs, 7 figs

  8. Neglected hangman fracture

    Directory of Open Access Journals (Sweden)

    Sudhir Kumar Srivastava

    2015-01-01

    Full Text Available Acute management of hangman fracture is well described; however the surgical management of neglected hangman fracture has not been described in literature. We report the surgical management of an untreated hangman′s fracture. A 30-year-old male had fallen from a tree 12 weeks back. Patient presented with cervical myelopathy and restricted neck movements. Radiographs and computed tomography (CT scan revealed fracture of pars interarticularis of axis with Grade III C2-C3 spondylolisthesis with localized kyphosis of 33°. Gentle reduction under general anesthesia (GA failed to improve the alignment. Patient was operated in three stages in a single setting. In Stage I, release of contracted anterior structures and C2-C3 discectomy was done in supine position followed by C2-C3 posterior fixation and fusion in Stage II. C2-C3 interbody bone grafting and anterior plating completed the third stage. C2-C3 interbody fusion was seen at 5 months and a CT scan at 18 months postoperative confirmed fusion and maintenance of alignment. The satisfactory outcome in our patient leads us to believe that anterior-posterior-anterior is the appropriate surgical approach for treatment of such patients.

  9. Fracture Mechanics of Concrete

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Going back in the memory pipeline, it was M F Kaplan1 (in 1961) who tried to obtain the fracture toughness of concrete. It was observed ... of cracks. The next question is how to bring the size effect into codes of practice on the design of reinforced concrete structures, since large structures like dams, nuclear reactors, very tall.

  10. Posthydraulic fracture report

    Energy Technology Data Exchange (ETDEWEB)

    Hecht-Nielsen, R.

    1978-10-04

    A series of four, parallel, hydraulically induced hydrofractures were created. The hydrofractures will be used later in Phase I as the loading fractures for slurried explosives. An evaluation of the aerial extent, thickness, and resistance to air flow of each of these four fractures is reported. Downhole pressure, well-head pressure, surface resistivity, tiltmeter, hydrophone response, and crack opening measurements were used as dynamic tests to monitor and to later describe the hydrofracture. Downhole television, high-resolution seismic reflection survey (HRSRS), cross-hole seismic survey (CHSS), pressurized air-flow, tracer-gas flows, gamma-ray logging, and hydrogeologic monitoring were all used as posthydrofracture tests. Of all of these tests, tiltmeter, wellhead pressure, downhole television, pressurized air flows, and hydrogeologic monitoring were the most useful. Downhole pressure, crack opening, hydrophone response, tracer gas flow, and gamma-ray logging were less useful and provided only supportive data. HRSRS and CHSS provided no useful evaluation data. These evaluation tests showed the four hydrofractures to be narrow (less than or equal to 0.01 inches) and horizontal; to extend out at least to the outer ring of production wells in a southeasterly direction; to extend beyond the outer ring of production wells in a northwesterly direction; to have some degree of vertical communication; to have had a minor impact upon the naturally fractured aquifer lying above the desired production zone; and to have had no impact on the naturally fractured aquifer lying below the desired production zone.

  11. Infiltration into Fractured Bedrock

    Energy Technology Data Exchange (ETDEWEB)

    Salve, Rohit; Ghezzehei, Teamrat A.; Jones, Robert

    2007-09-01

    One potential consequence of global climate change and rapid changes in land use is an increased risk of flooding. Proper understanding of floodwater infiltration thus becomes a crucial component of our preparedness to meet the environmental challenges of projected climate change. In this paper, we present the results of a long-term infiltration experiment performed on fractured ash flow tuff. Water was released from a 3 x 4 m{sup 2} infiltration plot (divided into 12 square subplots) with a head of {approx}0.04 m, over a period of {approx}800 days. This experiment revealed peculiar infiltration patterns not amenable to current infiltration models, which were originally developed for infiltration into soils over a short duration. In particular, we observed that in part of the infiltration plot, the infiltration rate abruptly increased a few weeks into the infiltration tests. We suggest that these anomalies result from increases in fracture permeability during infiltration, which may be caused by swelling of clay fillings and/or erosion of infill debris. Interaction of the infiltration water with subsurface natural cavities (lithophysal cavities) could also contribute to such anomalies. This paper provides a conceptual model that partly describes the observed infiltration patterns in fractured rock and highlights some of the pitfalls associated with direct extension of soil infiltration models to fractured rock over a long period.

  12. Distinguishing stress fractures from pathologic fractures: a multimodality approach

    International Nuclear Information System (INIS)

    Fayad, Laura M.; Kamel, Ihab R.; Kawamoto, Satomi; Bluemke, David A.; Fishman, Elliot K.; Frassica, Frank J.

    2005-01-01

    Whereas stress fractures occur in normal or metabolically weakened bones, pathologic fractures occur at the site of a bone tumor. Unfortunately, stress fractures may share imaging features with pathologic fractures on plain radiography, and therefore other modalities are commonly utilized to distinguish these entities. Additional cross-sectional imaging with CT or MRI as well as scintigraphy and PET scanning is often performed for further evaluation. For the detailed assessment of a fracture site, CT offers a high-resolution view of the bone cortex and periosteum which aids the diagnosis of a pathologic fracture. The character of underlying bone marrow patterns of destruction can also be ascertained along with evidence of a soft tissue mass. MRI, however, is a more sensitive technique for the detection of underlying bone marrow lesions at a fracture site. In addition, the surrounding soft tissues, including possible involvement of adjacent muscle, can be well evaluated with MRI. While bone scintigraphy and FDG-PET are not specific, they offer a whole-body screen for metastases in the case of a suspected malignant pathologic fracture. In this review, we present select examples of fractures that underscore imaging features that help distinguish stress fractures from pathologic fractures, since accurate differentiation of these entities is paramount. (orig.)

  13. Sealing of rock fractures

    International Nuclear Information System (INIS)

    Pusch, R.; Erlstroem, M.; Boergesson, L.

    1985-12-01

    The major water-bearing fractures in granite usually from fairly regular sets but the extension and degree of connectivity is varying. This means that only a few fractures that are interconnected with the deposition holes and larger water-bearing structures in a HLW repository are expected and if they can be identified and cut off through sealing it would be possible to improve the isolation of waste packages very effectively. Nature's own fracture sealing mechanisms may be simulated and a survey of the involved processes actually suggests a number of possible filling methods and substances. Most of them require high temperature and pressure and correspondingly sophisticated techniques, but some are of potential interest for immediate application with rather moderate effort. Such a technique is to fill the fractures with clayey substances which stay flexible and low-permeable provided that they remain physically and chemically intact. It is demonstrated in the report that effective grouting requires a very low viscosity and shear strength of the substance and this can be achieved by mechanical agitation as demonstrated in this report. Thus, by superimposing static pressure and shear waves induced by percussion hammering at a suitable frequency, clays and fine-grained silts as well as cement can be driven into fractures with an average aperture as small as 0.1 mm. Experiments were made in the laboratory using concrete and steel plates, and a field pilot test was also conducted under realistic conditions on site in Stripa. They all demonstrated the practicality of the 'dynamic injection technique' and that the fluid condition of the grouts yielded complete filling of the injected space to a considerable distance from the injection point. The field test indicated a good sealing ability as well as a surprisingly high resistance to erosion and piping. (author)

  14. STRESS FRACTURES IN SPORT

    Directory of Open Access Journals (Sweden)

    Đivo Ban

    2009-11-01

    Full Text Available Children and adolescents today, all before starting with regular sports activities and involvement in semi-professional and top professional sport, so it increases the num- ber of discovered stress fractures in this age. This type of injury can occur as a consequence of action one strong force, or the many repeated small force strength, to be exact, when the load (stress transcend ability reparations bones. Stress fractures are recorded and described up to the lower limbs. Research has been confirmed that the bones of lower leg are mostly made in injury, and with the el- derly and with the population of children and young adolescents. Occur in many sports, something to them is greater when the frequency of running and often are present in the female population. According to the results of numerous investigations, mistakes in the training are the most common cause of the emergence of stress fracture. In a direct comparison with complemented these injuries is the condition of muscles, so it is important that at the sa- me time carry out exercises strengthen muscles and stretching. Typical clinical signs of stress fractures are localized painful sensitivity to palpa- tion and runoff in a small number of cases. The basic diagnostic procedure is a medical check, it is the small, radiology and scintigraphyc diagnostics (most accurate and mag- netic resonance imaging. Treatment is usually without surgery and conservative, with rest and reducing stress, and its activity athlete breaks mainly between four and eight weeks. Only the very need surgical treatment The most important thing is that attention is focused on the proper prevention and to take all that it ever occurred to stress fractures that athletes ramble of the courts and the competition (better education of sports workers, separation of groups with increa- sed risk of the formation of an injury, adaptation activities age and abilities of athletes, adequate sports equipment, high-quality sports

  15. Insufficiency fractures in rheumatoid arthritis

    International Nuclear Information System (INIS)

    Vidal, L.; Ausejo de Pomar, E.; Cruzalegui, L.; Cano, R.; Morales, R.; Ara, P.

    1992-01-01

    The occurrence of insufficiency fractures in patients with long-standing rheumatoid arthritis has not been sufficiently emphasized. Osteoporosis due to rheumatoid arthritis, corticosteroid therapy, contracture and angular deformity of the extremity, combine to predispose to the occurrence of the insufficiency fractures in these patients. Additionally, the pain and disability caused by the fracture is often attributed to rheumatoid joint involvement, masking the diagnosis of insufficiency fracture. The fracture may not be visible on radiographs near the onset of symptoms and the bone scanning can help in making an early diagnosis. (Author). 18 refs., 2 fig

  16. Managing Complications of Calcaneus Fractures.

    Science.gov (United States)

    Clare, Michael P; Crawford, William S

    2017-03-01

    Calcaneus fractures remain among the most complicated fractures for orthopedic surgeons to manage because of the complexity of various fracture patterns, the limited surrounding soft tissue envelope, and the prolonged rehabilitation issues impacting function after successful treatment. Despite this, appropriate management of complications associated with calcaneus fractures is critical for the complete care of this injury, whether treated operatively or nonoperatively. The authors present the common complications encountered with fractures of the calcaneus and management thereof. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Determination of cryogenic fracture characteristics of austenitic stainless steel JN1 welded joint and heat-treated materials by means of small punch testing method

    International Nuclear Information System (INIS)

    Kwon, Il-Hyun; Hashida, Toshiyuki; Takahashi, Hideaki; Liu, Shi-Cheng; Saucedo, M.L.

    1997-01-01

    Fracture characteristics of a TIG welded joint and heat-treated materials of JN1, which is an austenitic stainless steel recently developed for use as a cryogenic structural material, were evaluated by the small punch (SP) testing method using miniaturized specimens at 77 K and 4 K. The area under the load-displacement curve up to the maximum load was defined as the SP energy to evaluate the fracture characteristics of the materials in SP tests. Fracture surfaces were also observed using a scanning electron microscope. Solution-treated JN1 steel showed ductile fracture behavior with a high SP energy value even at 4 K, and serrations were observed in the load-displacement curve at 4 K. In the weld metal and fusion line specimens of the TIG welded joint, serrations also occurred at 4 K, but the fusion line specimens showed lower SP energy values than weld metal and solution-treated JN1 steel at 77 K and 4 K. In addition, the fusion line specimens showed pop-in behavior at 4 K, that is, cracks approximately 0.1-1mm long were induced by pop-in in the vicinity of the fusion line at the early stage of loading. JN1 materials heat-treated under the conditions of 650degC-5h and 700degC-1h showed similar fracture characteristics to those of the fusion line specimens at 77 K and 4 K except for the cracks induced by pop-in. With increasing temperature and time of heat treatment, SP energy decreased significantly, and the fracture surface showed a transition from ductile dimple to brittle intergranular cracking. It is shown that the SP testing method is useful for evaluating the fracture behaviors of microscopic regions such as the fusion lines of welds at cryogenic temperatures. (author)

  18. Correlation between small punch and CVN impact tests for evaluation of cryogenic fracture characteristics of isothermally-aged nitrogen-containing austenitic stainless steels

    Directory of Open Access Journals (Sweden)

    Maribel Leticia Saucedo-Muñoz

    2012-04-01

    Full Text Available The Charpy-V-notch impact test has been used routinely to evaluate the ductile-brittle behavior in steels. Likewise, the Small-Punch test has been applied to evaluate toughness properties in different materials. In this work, both tests were conducted at -196 °C on three types of austenitic stainless steels JN1, JJ1 and JK2, which were solution treated and then aged at temperatures between 700 and 900 °C for 10 and 1000 minutes. The solution treated steels exhibited a ductile fracture with high fracture energy, after testing with both tests. The brittle intergranular fracture was induced by the aging process of specimens and thus the fracture energy of tested specimens decreased dramatically. The highest and lowest decreases in energy with both tests occurred in the aged JN1 and JK2 steels, respectively. The Charpy-v-notch, CVN, test energy and small-punch, SP, test energy at -196 °C was found to follow a linear correlationship equation, CVN Test Energy = 89.7 SP Test Energy -63.0.

  19. Characterization by notched and precracked Charpy tests of the in-service degradation of RPV steel fracture toughness

    Energy Technology Data Exchange (ETDEWEB)

    Fabry, A.

    1997-01-01

    provides substantial information used for the modelling of in-service steel strenthening, intergranular fracture susceptibility and other irradiation-induced and ageing effects.

  20. Pubic insufficiency fracture: MRI findings

    International Nuclear Information System (INIS)

    Min, Tae Kyu; Lee, Yeon Soo; Park, Jeong Mi; Kim, Jee Young; Chung, Hong Jun; Lee, Eun Hee; Lee, Eun Ja; Kang, So Won; Han Tae Il

    2000-01-01

    To evaluate the characteristic MRI findings of pubic insufficiency fracture. In nine cases of pubic insufficiency fracture, the findings of plain radiography (n=9), MRI (n=9), and bone scintigraphy (n=8) were reviewed. We retrospectively analyzed, with regard to fracture site, the destructive pattern revealed by plain radiography, and uptake by other pelvic bones, as demonstrated by RI bone scanning. The MR findings evaluated were the fracture gap and its signal intensity, the site and signal intensity of the soft tissue mass, and other pelvic bone fractures. Plain radiography revealed osteolysis and sclerosis of pubic bone in eight of nine cases (89%), and parasymphyseal fractures in seven (78%). RI indicated uptake by the sacrum in six cases (66%), and by the ilium in three (33%). MR findings of fracture gap (seven cases, 78%) were hypo to isointensity on T1WI, hyper intensity on T2WI and the absence of contrast enhancement. Soft tissue masses were found in seven cases (78%); in four of these the location was parasymphyseal, and in three, surrounding muscle was involved. Hypo to isointensity was revealed by T1WI, hyperintensity by T2WI, and there was peripheral enhancement. Other associated pelvic bone fractures involved the sacrum in seven cases and the ilium in four. The characteristic MR findings of pubic insufficiency fracture were parasymphyseal location, fracture gap, peripherally enhanced soft tissue mass formation, and fractures of other pelvic bones, namely the sacrum and ilium

  1. Collagen turnover after tibial fractures

    DEFF Research Database (Denmark)

    Joerring, S; Krogsgaard, M; Wilbek, H

    1994-01-01

    Collagen turnover after tibial fractures was examined in 16 patients with fracture of the tibial diaphysis and in 8 patients with fracture in the tibial condyle area by measuring sequential changes in serological markers of turnover of types I and III collagen for up to 26 weeks after fracture...... collagen. A group comparison showed characteristic sequential changes in the turnover of types I and III collagen in fractures of the tibial diaphysis and tibial condyles. The turnover of type III collagen reached a maximum after 2 weeks in both groups. The synthesis of type I collagen reached a maximum...... after 2 weeks in the diaphyseal fractures and after 6 weeks in the condylar fractures. The degradation of type I collagen increased after 4 days and reached a maximum at 2 weeks in both groups. The interindividual variation was wide. On a group basis, the turnover of types I and III collagen had...

  2. HEMIARTHROPLASTY FOR INTERTROCHANTERIC FRACTURES

    Directory of Open Access Journals (Sweden)

    Mahesh

    2016-06-01

    Full Text Available BACKGROUND Intertrochanteric fractures in the generic population are a common injury and are associated with the poor bone quality and hence management of unstable osteoporotic intertrochanteric fractures in elderly is challenging because of difficult anatomical reduction, poor bone quality, and sometimes a need to protect the fracture from stresses of weight bearing. Internal fixation in these cases usually involves prolonged bed rest or limited ambulation, to prevent implant failure secondary to osteoporosis. This might result in higher chances of complications like pulmonary embolism, deep vein thrombosis, pneumonia, and decubitus ulcer. The purpose of this study is to analyse the role of primary hemiarthroplasty in cases of unstable osteoporotic intertrochanteric femur fractures. AIMS AND OBJECTIVES Find out the results of Hemiarthroplasty for intertrochanteric fracture in elderly patients from the population of Bihar. METHODS AND MATERIALS Study Area: Departments of Orthopaedics, Nalanda Medical College and Hospital. All these patients with hip injury reporting in Emergency and OPD were clinically examined, those satisfying for the inclusion and exclusion criteria were taken for study and the total number of patients was 37 for the study. INCLUSION CRITERIA 1. Boyd Griffin type 3 and 4, 2. Evans and Jensen type 1c and type 2, 3. AO/OTA type a21 to a33, 4. Age > 60 years. EXCLUSION CRITERIA Patient 1. ASA Grade – 1. 2. BG Grade – 1. 3. Less than 60 years. 4. With previous ipsilateral hip fracture. 5. With stable fracture and intact lesser trochanter. 6. With neurologic problem. 7. Psychiatric patient. 8. With multiple fractures. 9. Cataract. 10. Any severe cardiac disorder. 11. Medically unfit for surgery and patient unwillingness for surgery were excluded for study. RESULTS Total mortality was two patients due to unrelated cause (myocardial infarction within 6 months of surgery and study period and remaining 35 patients were followed up

  3. An Alternative to Thought Suppression?

    Science.gov (United States)

    Boice, Robert

    2012-01-01

    Comments on the original article, "Setting free the bears: Escape from thought suppression," by D. M. Wegner (see record 2011-25622-008). While Wegner supposed that we might have to learn to live with bad thoughts, the present author discusses the use of imagination and guided imagery as an alternative to forced thought suppression.

  4. Hydraulic fracture propagation modeling and data-based fracture identification

    Science.gov (United States)

    Zhou, Jing

    Successful shale gas and tight oil production is enabled by the engineering innovation of horizontal drilling and hydraulic fracturing. Hydraulically induced fractures will most likely deviate from the bi-wing planar pattern and generate complex fracture networks due to mechanical interactions and reservoir heterogeneity, both of which render the conventional fracture simulators insufficient to characterize the fractured reservoir. Moreover, in reservoirs with ultra-low permeability, the natural fractures are widely distributed, which will result in hydraulic fractures branching and merging at the interface and consequently lead to the creation of more complex fracture networks. Thus, developing a reliable hydraulic fracturing simulator, including both mechanical interaction and fluid flow, is critical in maximizing hydrocarbon recovery and optimizing fracture/well design and completion strategy in multistage horizontal wells. A novel fully coupled reservoir flow and geomechanics model based on the dual-lattice system is developed to simulate multiple nonplanar fractures' propagation in both homogeneous and heterogeneous reservoirs with or without pre-existing natural fractures. Initiation, growth, and coalescence of the microcracks will lead to the generation of macroscopic fractures, which is explicitly mimicked by failure and removal of bonds between particles from the discrete element network. This physics-based modeling approach leads to realistic fracture patterns without using the empirical rock failure and fracture propagation criteria required in conventional continuum methods. Based on this model, a sensitivity study is performed to investigate the effects of perforation spacing, in-situ stress anisotropy, rock properties (Young's modulus, Poisson's ratio, and compressive strength), fluid properties, and natural fracture properties on hydraulic fracture propagation. In addition, since reservoirs are buried thousands of feet below the surface, the

  5. Fracture Mechanics of Concrete

    DEFF Research Database (Denmark)

    Ulfkjær, Jens Peder

    Since analytical methods are very time consuming different analytical models have been developed. Three methods for plain concrete are presented, where one of the methods is developed by the author. The method is based on three different fracture models. Also two models applicable for lightly reinforced...... with a description of the different types of size effects. Three examples which discuss the two terms 'size effect' and 'brittleness' and the importance of a stiff test rig. Finally some brittleness numbers are defined. Chapter 3 In chapter 3 the most well-known numerical methods which use the fictitious crack...... to describe fracture in concrete are presented. Two of the methods are combined into a power method which is stable for all brittleness numbers and which is able of calculating the entire load-displacement curve even for very ductile beams. This method is used extensively in the rest of the thesis. Chapter 4...

  6. Fracture of brittle solids

    CERN Document Server

    Lawn, Brian

    1993-01-01

    This is an advanced text for higher degree materials science students and researchers concerned with the strength of highly brittle covalent-ionic solids, principally ceramics. It is a reconstructed and greatly expanded edition of a book first published in 1975. The book presents a unified continuum, microstructural and atomistic treatment of modern day fracture mechanics from a materials perspective. Particular attention is directed to the basic elements of bonding and microstructure that govern the intrinsic toughness of ceramics. These elements hold the key to the future of ceramics as high-technology materials--to make brittle solids strong, we must first understand what makes them weak. The underlying theme of the book is the fundamental Griffith energy-balance concept of crack propagation. The early chapters develop fracture mechanics from the traditional continuum perspective, with attention to linear and nonlinear crack-tip fields, equilibrium and non-equilibrium crack states. It then describes the at...

  7. FRACTURE SHAFT HUMERUS: INTERLOCKING

    Directory of Open Access Journals (Sweden)

    Deepak Kaladagi

    2014-12-01

    Full Text Available BACKGROUND: The incidence of humeral fracture has significantly increased during the present years due to the population growth and road traffic, domestic, industrial, automobile accidents & disasters like tsunami, earthquakes, head-on collisions, polytrauma etc. In order to achieve a stable fixation followed by early mobilization, numerous surgical implants have been devised. PURPOSE: The purpose of this study is to analyze the results of intramedullary fixation of proximal 2/3rd humeral shaft fractures using an unreamed interlocking intramedullary nail. INTRODUCTION: In 40 skeletally matured patients with fracture shaft of humerus admitted in our hospital, we used unreamed antegrade interlocking nails. MATERIAL: We carried out a prospective analysis of 40 patients randomly selected between 2001 to 2014 who were operated at JNMC Belgaum, MMC Mysore & Navodaya Medical College, Raichur. All cases were either RTAs, Domestic, Industrial, automobile accidents & also other modes of injury. METHOD: Routine investigations with pre-anaesthetic check-up & good quality X-rays of both sides of humerus was taken. Time of surgery ranged from 5-10 days from the time of admission. Only upper 1/3rd & middle 1/3rd humeral shaft fractures were included in the study. In all the cases antegrade locked unreamed humeral nails were inserted under C-arm. Patient was placed in supine position & the shoulder was kept elevated by placing a sandbag under the scapula. In all patients incision taken from tip of acromion to 3cm over deltoid longitudinally. Postoperatively sling applied with wrist & shoulder movements started after 24 hours. All the patients ranged between the age of 21-50 years. RESULTS: Total 40 patients were operated. Maximum fracture site were in the middle third- 76%, 14% upper 1/3rd. All 40 patients achieved union. The average time of union was 8-10 weeks. All patients regained full range of movements except in few cases, where there was shoulder

  8. Phase Field Fracture Mechanics.

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Brett Anthony [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    For this assignment, a newer technique of fracture mechanics using a phase field approach, will be examined and compared with experimental data for a bend test and a tension test. The software being used is Sierra Solid Mechanics, an implicit/explicit finite element code developed at Sandia National Labs in Albuquerque, New Mexico. The bend test experimental data was also obtained at Sandia Labs while the tension test data was found in a report online from Purdue University.

  9. Melt fracture revisited

    Energy Technology Data Exchange (ETDEWEB)

    Greenberg, J. M.

    2003-07-16

    In a previous paper the author and Demay advanced a model to explain the melt fracture instability observed when molten linear polymer melts are extruded in a capillary rheometer operating under the controlled condition that the inlet flow rate was held constant. The model postulated that the melts were a slightly compressible viscous fluid and allowed for slipping of the melt at the wall. The novel feature of that model was the use of an empirical switch law which governed the amount of wall slip. The model successfully accounted for the oscillatory behavior of the exit flow rate, typically referred to as the melt fracture instability, but did not simultaneously yield the fine scale spatial oscillations in the melt typically referred to as shark skin. In this note a new model is advanced which simultaneously explains the melt fracture instability and shark skin phenomena. The model postulates that the polymer is a slightly compressible linearly viscous fluid but assumes no slip boundary conditions at the capillary wall. In simple shear the shear stress {tau}and strain rate d are assumed to be related by d = F{tau} where F ranges between F{sub 2} and F{sub 1} > F{sub 2}. A strain rate dependent yield function is introduced and this function governs whether F evolves towards F{sub 2} or F{sub 1}. This model accounts for the empirical observation that at high shears polymers align and slide more easily than at low shears and explains both the melt fracture and shark skin phenomena.

  10. Fracture Behavior under Impact.

    Science.gov (United States)

    1983-01-01

    value still is ." the Charpy energy, i.e. the energy to break a Charpy V-notch specimen in a pendulum type impact tester. This material property...Most of the dynamic fracture toughness 3ata have been obtained in the lower impact velocity range with Charpy - and drop weight tests. An overview of...A .-..- ..- -6- =.., lyses (e.g. with Charpy tests [3]), theoretical analyses which some- times are based on nonrealistic assumptions (e.g. infinite

  11. Double segmental tibial fractures - an unusual fracture pattern

    Directory of Open Access Journals (Sweden)

    Bali Kamal

    2012-02-01

    Full Text Available 【Abstract】A case of a 50-year-old pedestrian who was hit by a bike and suffered fractures of both bones of his right leg was presented. Complete clinical and radiographic assessment showed double segmental fractures of the tibia and multisegmental fractures of the fibula. Review of the literature revealed that this fracture pattern was unique and only a single case was reported so far. Moreover, we discussed the possible mechanisms which can lead to such an injury. We also discussed the management of segmental tibial fracture and the difficulties encountered with them. This case was managed by modern osteosynthesis tech- nique with a pleasing outcome. Key words: Fracture, bone; Tibia; Fibula; Nails

  12. Diagnosing vertebral fractures: missed opportunities.

    Science.gov (United States)

    Borges, João Lindolfo Cunha; Maia, Julianne Lira; Silva, Renata Faria; Lewiecki, Edward Michael

    2015-01-01

    Vertebral fractures are the single most common type of osteoporotic fracture. Postmenopausal women are at increased risk for osteoporotic vertebral fractures compared with women of childbearing age. Vertebral fractures are associated with an increase in morbidity, mortality, and high risk of a subsequent vertebral fracture, regardless of bone mineral density. Despite the common occurrence and serious consequences of vertebral fractures, they are often unrecognized or misdiagnosed by radiologists. Moreover, vertebral fractures may be described by variable terminology that can confuse rather than enlighten referring physicians. We conducted a survey of spine X-ray reports from a group of postmenopausal women screened for participation in a study of osteoporosis at Centro de Pesquisa Clínica do Brasil. A descriptive analysis evaluated the variability of reports in 7 patients. Four independent general radiologists issued reports assessing vertebral fractures through a blinded analysis. The objective of this study was to evaluate for consistency in these reports. The analysis found marked variability in the diagnosis of vertebral fractures and the terminology used to describe them. In community medical practices, such variability could lead to differences in the management of patients with osteoporosis, with the potential for undertreatment or overtreatment depending on clinical circumstances. Accurate and unambiguous reporting of vertebral fractures is likely to be associated with improved clinical outcomes. Copyright © 2015 Elsevier Editora Ltda. All rights reserved.

  13. Fracture Mechanisms in Steel Castings

    Directory of Open Access Journals (Sweden)

    Stradomski Z.

    2013-09-01

    Full Text Available The investigations were inspired with the problem of cracking of steel castings during the production process. A single mechanism of decohesion - the intergranular one - occurs in the case of hot cracking, while a variety of structural factors is decisive for hot cracking initiation, depending on chemical composition of the cast steel. The low-carbon and low-alloyed steel castings crack due to the presence of the type II sulphides, the cause of cracking of the high-carbon tool cast steels is the net of secondary cementite and/or ledeburite precipitated along the boundaries of solidified grains. Also the brittle phosphor and carbide eutectics precipitated in the final stage solidification are responsible for cracking of castings made of Hadfield steel. The examination of mechanical properties at 1050°C revealed low or very low strength of high-carbon cast steels.

  14. Fractures in the growing foal. Part 1: Epiphyseal fractures

    International Nuclear Information System (INIS)

    Auer, J.A.

    1986-01-01

    This paper discusses general considerations for epiphyseal fractures and the anatomical differences which led to the Salter-Harris-classification are explained. The various locations and fracture configurations in the different bones are mentioned, and suggestions for their treatment are made. Epiphyseal fractures in growing foals have generally a favourable prognosis for healing, if treated properly. However, the prognosis for future use as an athlete has to be judged as guarded. The limb with an epiphyseal fracture should under any circumstances be splinted or cast for the transport to hospital. Epiphyseal fractures of the distal portions of the limb may be treated by cast application in some cases. More frequently, however, surgical reduction followed by some form of internal fixation is preferred. It is important to follow the basic principles of internal fixation. The implants should be removed at the earliest convenience, to prevent undue growth disturbances. Epiphyseal fractures should be treated as soon as possible to avoid further destruction of the growth plate through continuous movement at the fracture site. Growth disturbances are the most frequently encountered complications with epiphyseal fractures. Other complications include infection, osteomyelitis, degenerative joint disease and breakdown of the fracture fixation

  15. Menstrual suppression in the adolescent.

    Science.gov (United States)

    Kantartzis, Kelly L; Sucato, Gina S

    2013-06-01

    Menstrual suppression, the use of contraceptive methods to eliminate or decrease the frequency of menses, is often prescribed for adolescents to treat menstrual disorders or to accommodate patient preference. For young women using hormonal contraceptives, there is no medical indication for menstruation to occur monthly, and various hormonal contraceptives can be used to decrease the frequency of menstruation with different side effect profiles and rates of amenorrhea. This article reviews the different modalities for menstrual suppression, common conditions in adolescents which may improve with menstrual suppression, and strategies for managing common side effects. Copyright © 2013 North American Society for Pediatric and Adolescent Gynecology. Published by Elsevier Inc. All rights reserved.

  16. FRACTURED PETROLEUM RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Abbas Firoozabadi

    1999-06-11

    The four chapters that are described in this report cover a variety of subjects that not only give insight into the understanding of multiphase flow in fractured porous media, but they provide also major contribution towards the understanding of flow processes with in-situ phase formation. In the following, a summary of all the chapters will be provided. Chapter I addresses issues related to water injection in water-wet fractured porous media. There are two parts in this chapter. Part I covers extensive set of measurements for water injection in water-wet fractured porous media. Both single matrix block and multiple matrix blocks tests are covered. There are two major findings from these experiments: (1) co-current imbibition can be more efficient than counter-current imbibition due to lower residual oil saturation and higher oil mobility, and (2) tight fractured porous media can be more efficient than a permeable porous media when subjected to water injection. These findings are directly related to the type of tests one can perform in the laboratory and to decide on the fate of water injection in fractured reservoirs. Part II of Chapter I presents modeling of water injection in water-wet fractured media by modifying the Buckley-Leverett Theory. A major element of the new model is the multiplication of the transfer flux by the fractured saturation with a power of 1/2. This simple model can account for both co-current and counter-current imbibition and computationally it is very efficient. It can be orders of magnitude faster than a conventional dual-porosity model. Part II also presents the results of water injection tests in very tight rocks of some 0.01 md permeability. Oil recovery from water imbibition tests from such at tight rock can be as high as 25 percent. Chapter II discusses solution gas-drive for cold production from heavy-oil reservoirs. The impetus for this work is the study of new gas phase formation from in-situ process which can be significantly

  17. Atomistic simulations of nanotube fracture

    Science.gov (United States)

    Belytschko, T.; Xiao, S. P.; Schatz, G. C.; Ruoff, R. S.

    2002-06-01

    The fracture of carbon nanotubes is studied by molecular mechanics simulations. The fracture behavior is found to be almost independent of the separation energy and to depend primarily on the inflection point in the interatomic potential. The fracture strain of a zigzag nanotube is predicted to be between 10% and 15%, which compares reasonably well with experimental results. The predicted range of fracture stresses is 65-93 GPa and is markedly higher than observed. The computed fracture strengths of chiral and armchair nanotubes are above these values. Various plausible small-scale defects do not suffice to bring the failure stresses into agreement with available experimental results. As in the experiments, the fracture of carbon nanotubes is predicted to be brittle.

  18. Characterisation of fracture network and groundwater preferential ...

    African Journals Online (AJOL)

    Characterisation of fractured rocks and evaluation of fracture connectivity are essential for the study of subsurface flow and transport in fractured rock aquifers. In this study, we use a new method to present fracture networks and analyse the connectivity of the fractures, based on the technique of randomly-generated ...

  19. Characterisation of fracture network and groundwater preferential ...

    African Journals Online (AJOL)

    2014-03-18

    Mar 18, 2014 ... Characterisation of fractured rocks and evaluation of fracture connectivity are essential for the study of subsurface flow and transport in fractured rock aquifers. In this study, we use a new method to present fracture networks and analyse the connectivity of the fractures, based on the technique of ...

  20. A NEW HIGH RESOLUTION OPTICAL METHOD FOR OBTAINING THE TOPOGRAPHY OF FRACTURE SURFACES IN ROCKS

    Directory of Open Access Journals (Sweden)

    Steven Ogilvie

    2011-05-01

    Full Text Available Surface roughness plays a major role in the movement of fluids through fracture systems. Fracture surface profiling is necessary to tune the properties of numerical fractures required in fluid flow modelling to those of real rock fractures. This is achieved using a variety of (i mechanical and (ii optical techniques. Stylus profilometry is a popularly used mechanical method and can measure surface heights with high precision, but only gives a good horizontal resolution in one direction on the fracture plane. This method is also expensive and simultaneous coverage of the surface is not possible. Here, we describe the development of an optical method which images cast copies of rough rock fractures using in-house developed hardware and image analysis software (OptiProf™ that incorporates image improvement and noise suppression features. This technique images at high resolutions, 15-200 μm for imaged areas of 10 × 7.5 mm and 100 × 133 mm, respectively and a similar vertical resolution (15 μm for a maximum topography of 4 mm. It uses in-house developed hardware and image analysis (OptiProf™ software and is cheap and non-destructive, providing continuous coverage of the fracture surface. The fracture models are covered with dye and fluid thicknesses above the rough surfaces converted into topographies using the Lambert-Beer Law. The dye is calibrated using 2 devices with accurately known thickness; (i a polycarbonate tile with wells of different depths and (ii a wedge-shaped vial made from silica glass. The data from each of the two surfaces can be combined to provide an aperture map of the fracture for the scenario where the surfaces touch at a single point or any greater mean aperture. The topography and aperture maps are used to provide data for the generation of synthetic fractures, tuned to the original fracture and used in numerical flow modelling.

  1. Golfer's fracture of the ribs

    International Nuclear Information System (INIS)

    Lim, J. H.

    1980-01-01

    Golfer's fracture is stress fracture of the posterior portion of left 3, 4, 5, 6 or 7th ribs of golfer's, usually beginners,and it is considered due to exposure to unaccustomed severe exercise of this fascinating sport. Healing is usually uneventful, but possible complication may occur, because symptom is mild and golfers continue the exercise with physical therapy such as massage. Author report 4 cases of golfer's fracture, including 1 case complicated by platelike at electasis of lung.

  2. Wormhole formation in dissolving fractures

    OpenAIRE

    Szymczak, P.; Ladd, A. J. C.

    2009-01-01

    We investigate the dissolution of artificial fractures with three-dimensional, pore-scale numerical simulations. The fluid velocity in the fracture space was determined from a lattice-Boltzmann method, and a stochastic solver was used for the transport of dissolved species. Numerical simulations were used to study conditions under which long conduits (wormholes) form in an initially rough but spatially homogeneous fracture. The effects of flow rate, mineral dissolution rate and geometrical pr...

  3. Fracture mechanics in pavement design

    CSIR Research Space (South Africa)

    Denneman, E

    2009-07-01

    Full Text Available MODELLING FRACTURE IN PAVEMENT MATERIALS The cohesive crack approach can be incorporated in finite element method (FEM) to simulate fracture in pavement materials. In this paper an embedded discontinuity method (EDM) based on the work by Sancho et al... through elements, in other words, independent of nodal positions and element boundaries. The EDM was used for the numerical simulation of two examples of fracture tests on road materials from the literature. The model is applied to reproduce...

  4. Compton suppression gamma ray spectrometry

    International Nuclear Information System (INIS)

    Landsberger, S.; Iskander, F.Y.; Niset, M.; Heydorn, K.

    2002-01-01

    In the past decade there have been many studies to use Compton suppression methods in routine neutron activation analysis as well as in the traditional role of low level gamma ray counting of environmental samples. On a separate path there have been many new PC based software packages that have been developed to enhance photopeak fitting. Although the newer PC based algorithms have had significant improvements, they still suffer from being effectively used in weak gamma ray lines in natural samples or in neutron activated samples that have very high Compton backgrounds. We have completed a series of experiments to show the usefulness of Compton suppression. As well we have shown the pitfalls when using Compton suppression methods for high counting deadtimes as in the case of neutron activated samples. We have also investigated if counting statistics are the same both suppressed and normal modes. Results are presented in four separate experiments. (author)

  5. Hydraulic properties of fracture networks

    International Nuclear Information System (INIS)

    Dreuzy, J.R. de

    1999-12-01

    Fractured medium are studied in the general framework of oil and water supply and more recently for the underground storage of high level nuclear wastes. As fractures are generally far more permeable than the embedding medium, flow is highly channeled in a complex network of fractures. The complexity of the network comes from the broad distributions of fracture length and permeability at the fracture scale and appears through the increase of the equivalent permeability at the network scale. The goal of this thesis is to develop models of fracture networks consistent with both local-scale and global-scale observations. Bidimensional models of fracture networks display a wide variety of flow structures ranging from the sole permeable fracture to the equivalent homogeneous medium. The type of the relevant structure depends not only on the density and the length and aperture distributions but also on the observation scale. In several models, a crossover scale separates complex structures highly channeled from more distributed and homogeneous-like flow patterns at larger scales. These models, built on local characteristics and validated by global properties, have been settled in steady state. They have also been compared to natural well test data obtained in Ploemeur (Morbihan) in transient state. The good agreement between models and data reinforces the relevance of the models. Once validated and calibrated, the models are used to estimate the global tendencies of the main flow properties and the risk associated with the relative lack of data on natural fractures media. (author)

  6. Radionuclide migration through fractured granite

    International Nuclear Information System (INIS)

    Grondin, D.M.; Vandergraaf, T.T.; Drew, D.J.

    1988-01-01

    Radionuclide migration has been studied in natural fractures in granite blocks of up to 30 cm in length. Results are reported for four migration experiments involving synthetic groundwaters containing tritiated water, 95m Tc, 75 Se, 137 Cs, or 60 Co-labelled natural colloids, which were injected into the fractures at flow rates of 0.4-0.45 mL/h, giving residence times in the fractures of up to 15 h. Also presented are the results of the post-experiment analyses, including an autoradiograph of one of the fracture surfaces, and the spatial distribution of the sorbed radionuclides determined by γ-scanning and selective chemical extractions

  7. Wormhole formation in dissolving fractures

    Science.gov (United States)

    Szymczak, P.; Ladd, A. J. C.

    2009-06-01

    We investigate the dissolution of artificial fractures with three-dimensional, pore-scale numerical simulations. The fluid velocity in the fracture space was determined from a lattice Boltzmann method, and a stochastic solver was used for the transport of dissolved species. Numerical simulations were used to study conditions under which long conduits (wormholes) form in an initially rough but spatially homogeneous fracture. The effects of flow rate, mineral dissolution rate, and geometrical properties of the fracture were investigated, and the optimal conditions for wormhole formation were determined.

  8. Management of femoral shaft fractures.

    Science.gov (United States)

    Neumann, M V; Südkamp, N P; Strohm, P C

    2015-01-01

    Femoral shaft fractures are severe injuries and are often associated with a high impact trauma mechanism, frequently seen in multiple injured patients. In contrast an indirect trauma mechanism can lead to a complex femoral shaft fracture especially in elderly patients with minor bone stock quality. Hence management of femoral shaft fractures is often directed by co-morbidities, additional injuries and the medical condition of the patient. Timing of fracture stabilization is depended on the overall medical condition of the patient, but definite fracture fixation can often be implemented in the early total care concept in management of multiple injured patients. The treatment of choice is intramedullary fracture fixation. Further development of existing intramedullary nailing systems now offer comfortable handling and different locking options. Ipsilateral fractures of the neck and shaft are therefore facilitated in management. Then again increasing numbers of obese patient are representing a new patient group with challenging co-factors in fracture management. Sufficient preoperative planning is helpful to choose the most adequate fixation device. Correct reduction of the fracture and perioperative control of the axis and rotation is mandatory to avoid postoperative malrotation, which still represents the most frequent complication.

  9. Excess mortality following hip fracture

    DEFF Research Database (Denmark)

    Abrahamsen, B; van Staa, T; Ariely, R

    2009-01-01

    Summary This systematic literature review has shown that patients experiencing hip fracture after low-impact trauma are at considerable excess risk for death compared with nonhip fracture/community control populations. The increased mortality risk may persist for several years thereafter, highlig......Summary This systematic literature review has shown that patients experiencing hip fracture after low-impact trauma are at considerable excess risk for death compared with nonhip fracture/community control populations. The increased mortality risk may persist for several years thereafter...... and excess mortality rates for hip fracture. Although a lack of consistent study design precluded any formal meta-analysis or pooled analysis of the data, we have shown that hip fracture is associated with excess mortality (over and above mortality rates in nonhip fracture/community control populations......) during the first year after fracture ranging from 8.4% to 36%. In the identified studies, individuals experienced an increased relative risk for mortality following hip fracture that was at least double that for the age-matched control population, became less pronounced with advancing age, was higher...

  10. Fracture network growth for prediction of fracture characteristics and connectivity in tight reservoir rocks

    NARCIS (Netherlands)

    Barnhoorn, A.; Cox, S.F.

    2012-01-01

    Fracturing experiments on very low-porosity dolomite rocks shows a difference in growth of fracture networks by stress-driven fracturing and fluid-driven fracturing. Stress-driven fracture growth, in the absence of fluid pressure, initially forms fractures randomly throughout the rocks followed by

  11. Thyroid suppression test with dextrothyroxine

    International Nuclear Information System (INIS)

    Rosenthal, D.; Fridman, J.; Ribeiro, H.B.

    1978-01-01

    The classic thyroid suppression test with triiodothyronine (l-T 3 ) has been shown to be efficient as an auxiliary method in the diagnosis of thyroid diseases, but should not be performed on elderly patients or on those with heart disease or a tendency to tachycardia. Since these subjects seem able to support a short period of dextro-thyronine (d-T 4 ) feeding, we compared the effect of d-T 4 and l-T 3 on the 24 hours thyroid uptake in euthyroid and hyperthyroid subjects. After basal radio-iodine uptake determination, 99 patients without hyperthyroidism and 27 with Graves' disease were randomly divided in 2 groups; one received 100μg of l-T 3 per day and the other 4 mg of d-T 4 per day, both groups being treated for a period of 10 days. At the end of this suppression period the 24 hours radio-iodine uptake was measured again and the percentual suppression index (S.I.) calculated. Since the comparison of the two groups showed no difference between the suppressive effect of l-T 3 and d-T 4 in euthyroid subjects, while dextro-thyronine, as levo-triiodothyronine, did not suppress the 24 hours uptake of hyperthyroid patients, l-T 3 or d-T 4 can be used interchangeably to test thyroid suppressibility. In the euthyroid subjects the normal range for the post-suppression uptake was 0-17.1% and for the suppression index 54,7.100% [pt

  12. In vivo Treg suppression assays.

    Science.gov (United States)

    Workman, Creg J; Collison, Lauren W; Bettini, Maria; Pillai, Meenu R; Rehg, Jerold E; Vignali, Dario A A

    2011-01-01

    To fully examine the functionality of a regulatory T cell (T(reg)) population, one needs to assess their ability to suppress in a variety of in vivo models. We describe five in vivo models that examine the suppressive capacity of T(regs) upon different target cell types. The advantages and disadvantages of each model including resources, time, and technical expertise required to execute each model are also described.

  13. In Vivo Treg Suppression Assays

    OpenAIRE

    Workman, Creg J.; Collison, Lauren W.; Bettini, Maria; Pillai, Meenu R.; Rehg, Jerold E.; Vignali, Dario A.A.

    2011-01-01

    To fully examine the functionality of a regulatory T cell (Treg) population, one needs to assess their ability to suppress in a variety of in vivo models. We describe five in vivo models that examine the suppressive capacity of Tregs upon different target cell types. The advantages and disadvantages of each model includ ing resources, time, and technical expertise required to execute each model are also described.

  14. Burst Suppression for ICP Control.

    Science.gov (United States)

    Zeiler, Frederick A; Akoth, Eva; Gillman, Lawrence M; West, Michael

    2017-02-01

    The goal of our study was to perform a systematic review of the literature to determine the effect that burst suppression has on intracranial pressure (ICP) control. All articles from MEDLINE, BIOSIS, EMBASE, Global Health, Scopus, Cochrane Library, the International Clinical Trials Registry Platform (inception to January 2015), reference lists of relevant articles, and gray literature were searched. The strength of evidence was adjudicated using both the Oxford and the Grading of Recommendation Assessment Development and Education (GRADE) methodology. Seven articles were considered for review. A total of 108 patients were studied, all receiving burst suppression therapy. Two studies failed to document a decrease in ICP with burst suppression therapy. There were reports of severe hypotension and increased infection rates with barbiturate-based therapy. Etomidate-based suppressive therapy was linked to severe renal dysfunction. There currently exists both Oxford level 2b and GRADE C evidence to support that achieving burst suppression reduces ICP, and also has no effect on ICP, in severe traumatic brain injury. The literature suggests burst suppression therapy may be useful for ICP reduction in certain cases, although these situations are currently unclear. In addition, the impact on patient functional outcome is unclear. Further prospective study is warranted.

  15. Suppressed Charmed B Decay

    Energy Technology Data Exchange (ETDEWEB)

    Snoek, Hella Leonie [Vrije Univ., Amsterdam (Netherlands)

    2009-06-02

    This thesis describes the measurement of the branching fractions of the suppressed charmed B0 → D*- a0+ decays and the non-resonant B0 → D*- ηπ+ decays in approximately 230 million Υ(4S) → B$\\bar{B}$ events. The data have been collected with the BABAR detector at the PEP-II B factory at the Stanford Linear Accelerator Center in California. Theoretical predictions of the branching fraction of the B0 → D*- a{sub 0}+ decays show large QCD model dependent uncertainties. Non-factorizing terms, in the naive factorization model, that can be calculated by QCD factorizing models have a large impact on the branching fraction of these decay modes. The predictions of the branching fractions are of the order of 10-6. The measurement of the branching fraction gives more insight into the theoretical models. In general a better understanding of QCD models will be necessary to conduct weak interaction physics at the next level. The presence of CP violation in electroweak interactions allows the differentiation between matter and antimatter in the laws of physics. In the Standard Model, CP violation is incorporated in the CKM matrix that describes the weak interaction between quarks. Relations amongst the CKM matrix elements are used to present the two relevant parameters as the apex of a triangle (Unitarity Triangle) in a complex plane. The over-constraining of the CKM triangle by experimental measurements is an important test of the Standard Model. At this moment no stringent direct measurements of the CKM angle γ, one of the interior angles of the Unitarity Triangle, are available. The measurement of the angle γ can be performed using the decays of neutral B mesons. The B0 → D*- a0+ decay is sensitive to the angle γ and, in comparison to the current decays that are being employed, could significantly

  16. Enhancement of Upper Shelf Energy through Delamination Fracture in 0.05 pct P Doped High-Strength Steel

    Science.gov (United States)

    Jafari, Meysam; Kimura, Yuuji; Tsuzaki, Kaneaki

    2012-07-01

    An ultrafine elongated grain (UFEG) structure with strong //rolling direction (RD) fiber deformation texture was produced by warm-caliber rolling at 773 K (500 °C) and final tempering at 823 K (550 °C), namely tempforming in the 1200 MPa-class, medium-carbon, low-alloy steel with phosphorus (P) content of 0.053 wt pct. Charpy impact tests and tensile tests were performed at a temperature range of 77 K (-196 °C) to 623 K (350 °C) on the tempformed (TF) samples along with a conventional quenched and tempered (QT) samples. The QT structure showed a low upper shelf energy of 70 J and a high ductile-to-brittle transition temperature (DBTT) of 373 K (100 °C) as a result of P segregation and intergranular fracture. A remarkable increase in the upper shelf energy to 150 J from 70 J and a low DBTT of approximately 103 K (-170 °C) were obtained in the UFEG structure. P segregation embrittlement disappeared completely in the UFEG structure, and ductile fracture on the planes normal to RD along with delamination fracture on the planes along RD were observed at a temperature range of 123 K (-150 °C) to 423 K (150 °C). The enhanced delamination occurred because of the microstructural anisotropy of the UFEG structure, a strong //RD fiber deformation texture, and interfaces ( i.e. ferrite grain boundaries and cementite particles-ferrite matrix interfaces) weakened by P segregation as feasible crack propagation paths. We studied the delamination (crack-arrester-type) fracture in 0.053 pct P doped high-strength steel along with upper shelf energy and DBTT obtained from the UFEG structure.

  17. Origin of unusual fracture in stirred zone for friction stir welded 2198-T8 Al-Li alloy joints

    International Nuclear Information System (INIS)

    Tao, Y.; Ni, D.R.; Xiao, B.L.; Ma, Z.Y.; Wu, W.; Zhang, R.X.; Zeng, Y.S.

    2017-01-01

    Friction stir welded (FSW) joints of conventional precipitation-hardened aluminum alloys usually fracture in the lowest hardness zone (LHZ) during tension testing. However, all of the FSW joints of a 2198-T8 Al-Li alloy fractured in the stirred zone (SZ) instead of the LHZ with the welding parameters of 800 rpm-200 mm/min and 1600 rpm-200 mm/min under the condition that no welding defects existed in the SZ. The experiment results revealed that lazy S was not the dominant factor resulting in the unusual fracture. The SZ consisted of three subzones, i.e., the shoulder-affected zone, the pin-affected zone, and the transition zone between them. While the former two zones were characterized by fine and equiaxed recrystallized grains, incompletely dynamically recrystallized microstructure containing coarse elongated non-recrystallized grains was observed in the transition zone. The transition zone exhibited the lowest average Taylor factor in the SZ, resulting in a region that was crystallographically weak. Furthermore, obvious lithium segregation at grain boundaries was observed in the transition zone via time-of-flight secondary ion mass spectroscopy analysis, but not in the shoulder-affected zone or the pin-affected zone. The combined actions of both the two factors resulted in the appearance of preferential intergranular fracture in the transition zone and eventually caused the failure in the SZ. The lithium segregation at grain boundaries in the transition zone was closely associated with both the segregation in the base material and the partially dynamically recrystallized microstructure resulting from the inhomogeneous plastic deformation in the SZ.

  18. Femoral shaft fractures

    International Nuclear Information System (INIS)

    Bender, C.E.; Campbell, D.C. II

    1985-01-01

    The femur is the longest, largest, and strongest bone in the body. Because of its length, width, and role as primary weight-bearing bone, it must tolerate the extremes of axial loading and angulatory stresses. Massive musculature envelopes the femur. This masculature provides abundant blood supply to the bone, which also allows great potential for healing. Thus, the most significant problem relating to femoral shaft fractures is not healing, but restoration of bone length and alignment so that the femoral shaft will tolerate the functional stresses demanded of it

  19. Image diagnosis of nasal bone fracture

    International Nuclear Information System (INIS)

    Hirota, Yoshiharu; Shimizu, Yayoi; Iinuma, Toshitaka.

    1988-01-01

    Twenty cases of nasal bone fractures were evaluated as to the types of fractures based upon HRCT findings. Conventional X-Ray films for nasal bones were analyzed and compared with HRCT findings. Nasal bone fractures were classified into lateral and frontal fractures. HRCT images were evaluated in three planes including upper, middle and lower portions of the nasal bone. Fractures favored males of teens. Lateral fracture gave rise to the fractures of the nasal bone opposite to the external force, loosening of the ipsilateral nasomaxillary sutures and fractures of the frontal process of the maxilla. Conventional X-Ray films were reevaluated after HRCT evaluation and indications of nasal bone fractures were determined. In addition to the discontinuity of the nasal dorsum, fracture lines parallel to and beneath the nasal dorsum and indistinct fracture lines along the nasomaxillary sutures are the indication of nasal bone fractures by conventional X-Ray films. (author)

  20. Toe and Metatarsal Fractures (Broken Toes)

    Science.gov (United States)

    ... enable Javascript in your browser. Toe and Metatarsal Fractures (Broken Toes) The structure of the foot is ... received in an emergency room. What Is a Fracture? A fracture is a break in the bone. ...

  1. Hydrologic behavior of fracture networks

    International Nuclear Information System (INIS)

    Long, J.C.S.; Endo, H.K.; Karasaki, K.; Pyrak, L.; MacLean, P.; Witherspoon, P.A.

    1984-10-01

    This paper reviews recent research on the nature of flow and transport in discontinuous fracture networks. The hydrologic behavior of these networks has been examined using two- and three-dimensional numerical models. The numerical models represent random realizations of fracture networks based on statistical field measurements of fracture geometry and equivalent hydraulic aperture. We have compared the flux and mechanical transport behavior of these networks to the behavior of equivalent continua. In this way we are able to determine whether a given fracture network can be modeled as an equivalent porous media in both flux and advective transport studies. We have examined departures from porous media behavior both as a function of interconnectivity and heterogeneity. Parameter studies have revealed behavior patterns such as: given a fracture frequency that can be measured in the field, porous media like behavior and the magnitude of permeability are both enhanced if the fractures are longer and the standard deviation of fracture permeabilities is smaller. Transport studies have shown that the ratio between flux and velocity is not necessarily constant when the direction of flow is changed in systems which do behave like a porous media for flux. Thus the conditions under which porous media analysis can be used in transport studies are more restrictive than the condition for flux studies. We have examined systems which do not behave like porous media and have shown how the in situ behavior varies as a function of scale of observation. The behavior of well tests in fractured networks has been modeled and compared to a new analytical well test solution which accounts for the early time dominance of the fractures intersecting the well. Finally, a three-dimensional fracture flow model has been constructed which assumes fractures are randomly located discs. 13 references, 12 figures

  2. Mandibular ramus fractures: a rarity.

    Science.gov (United States)

    Kale, Tejraj Pundalik; Kotrashetti, S M; Louis, Archana; Lingaraj, J B; Sarvesh, B U

    2013-01-01

    To determine the incidence of mandibular ramus fractures in KLE's PK Hospital and to analyze the outcome of open reduction and internal fixation of these fractures. Using a retrospective study design, records of all trauma patients who reported to the Department of Oral and Maxillofacial Surgery, KLE's PK Hospital Belgaum, between the years January 2006 to October 2011 was obtained from the medical records office. The data variables that were analyzed were the name, age, sex, cause of injury, pretreatment occlusion, treatment given, period of MMF and post-treatment occlusion. Total number of mandibular fracture cases was 298. Ramus fractures were 10 in number which accounted for 3.3% of fractures. The age range of these 10 patients was seen to be between 20 to 80 years with the average age being 35.6 years. Of these 10 patients, 9 were male and 1 was female and 7 patients were treated by open reduction and internal fixation and the remaining 3 by closed reduction. The average period of MMF was 3 days for the patients who underwent open reduction and internal fixation. There was improvement in occlusion in all 10 patients post-treatment and there was no complication reported in any of the cases. Ramus fractures accounted for 3.3% of all mandibular fractures. Open reduction and internal fixation of ramus fractures ensures adequate functional and anatomic reduction. This study makes an attempt to throw a light on the increasing incidence of ramus fractures and a successful management of these fractures by open reduction and internal fixation. How to cite this article: Kale TP, Kotrashetti SM, Louis A, Lingaraj JB, Sarvesh BU. Mandibular Ramus Fractures: A Rarity. J Contemp Dent Pract 2013;14(1):39-42. Source of support: Nil Conflict of interest: None declared.

  3. Associations of early premenopausal fractures with subsequent fractures vary by sites and mechanisms of fractures.

    Science.gov (United States)

    Honkanen, R; Tuppurainen, M; Kroger, H; Alhava, E; Puntila, E

    1997-04-01

    In a retrospective population-based study we assessed whether and how self-reported former fractures sustained at the ages of 20-34 are associated with subsequent fractures sustained at the ages of 35-57. The 12,162 women who responded to fracture questions of the baseline postal enquiry (in 1989) of the Kuopio Osteoporosis Study, Finland formed the study population. They reported 589 former and 2092 subsequent fractures. The hazard ratio (HR), with 95% confidence interval (CI), of a subsequent fracture was 1.9 (1.6-2.3) in women with the history of a former fracture compared with women without such a history. A former low-energy wrist fracture was related to subsequent low-energy wrist [HR = 3.7 (2.0-6.8)] and high-energy nonwrist [HR = 2.4 (1.3-4.4)] fractures, whereas former high-energy nonwrist fractures were related only to subsequent high-energy nonwrist [HR = 2.8 (1.9-4.1)] but not to low-energy wrist [HR = 0.7 (0.3-1.8)] fractures. The analysis of bone mineral density (BMD) data of a subsample of premenopausal women who underwent dual x-ray absorptiometry (DXA) during 1989-91 revealed that those with a wrist fracture due to a fall on the same level at the age of 20-34 recorded 6.5% lower spinal (P = 0.140) and 10.5% lower femoral (P = 0.026) BMD than nonfractured women, whereas the corresponding differences for women with a former nonwrist fracture due to high-energy trauma were -1.8% (P = 0.721) and -2.4% (P = 0. 616), respectively. Our results suggest that an early premenopausal, low-energy wrist fracture is an indicator of low peak BMD which predisposes to subsequent fractures in general, whereas early high-energy fractures are mainly indicators of other and more specific extraskeletal factors which mainly predispose to same types of subsequent fractures only.

  4. Noise suppression in surface microseismic data by τ-p transform

    Science.gov (United States)

    Forghani-Arani, Farnoush; Batzle, Mike; Behura, Jyoti; Willis, Mark; Haines, Seth; Davidson, Michael

    2013-01-01

    Surface passive seismic methods are receiving increased attention for monitoring changes in reservoirs during the production of unconventional oil and gas. However, in passive seismic data the strong cultural and ambient noise (mainly surface-waves) decreases the effectiveness of these techniques. Hence, suppression of surface-waves is a critical step in surface microseismic monitoring. We apply a noise suppression technique, based on the τ — p transform, to a surface passive seismic dataset recorded over a Barnett Shale reservoir undergoing a hydraulic fracturing process. This technique not only improves the signal-to-noise ratios of added synthetic microseismic events, but it also preserves the event waveforms.

  5. Hydraulic fracturing proppants

    Directory of Open Access Journals (Sweden)

    V. P. P. de Campos

    Full Text Available Abstract Hydrocarbon reservoirs can be classified as unconventional or conventional depending on the oil and gas extraction difficulty, such as the need for high-cost technology and techniques. The hydrocarbon extraction from bituminous shale, commonly known as shale gas/oil, is performed by using the hydraulic fracturing technique in unconventional reservoirs where 95% water, 0.5% of additives and 4.5% of proppants are used. Environmental problems related to hydraulic fracturing technique and better performance/development of proppants are the current challenge faced by companies, researchers, regulatory agencies, environmentalists, governments and society. Shale gas is expected to increase USA fuel production, which triggers the development of new proppants and technologies of exploration. This paper presents a review of the definition of proppants, their types, characteristics and situation in the world market and information about manufacturers. The production of nanoscale materials such as anticorrosive and intelligent proppants besides proppants with carbon nanotubes is already carried out on a scale of tonnes per year in Belgium, Germany and Asia countries.

  6. Pediatric tibia fractures: current concepts.

    Science.gov (United States)

    Setter, Kevin J; Palomino, Kathryn E

    2006-02-01

    Fracture of the tibia is a common occurrence in children. The operative treatment of pediatric tibia fractures has undergone a recent change. However, there is no clear consensus regarding the superiority of one treatment option. The literature clearly supports the fact that the vast majority of pediatric tibia fractures can and should be managed nonoperatively. This is secondary to their inherent stability. A variety of factors including fracture type, location, severity and patient age determine the best treatment options for a particular fracture. A thorough understanding of these factors and how they affect outcome, help the clinician formulate the proper plan of treatment. A randomized prospective controlled trial will be necessary to establish which surgical options are superior for which type of pediatric tibia fracture. Until then, recent studies have indicated that flexible intramedullary nails may lead to a shorter time to union and a decreased rate of refracture when compared with external fixation of unstable tibial shaft fractures. What remains unclear are the specific indications and contraindication for the use of flexible nails. External fixation still remains a successful treatment option for unstable tibial shaft fractures.

  7. Ankle Fractures: The Operative Outcome

    Directory of Open Access Journals (Sweden)

    Ahmad Hafiz Z

    2011-03-01

    Full Text Available Ankle fractures are commonly seen in orthopaedic practice. This retrospective study of patients with ankle fractures who underwent surgical treatment in our institution from January 2000 to December 2003 was undertaken to analyze the common causes and patterns of ankle fractures; and the functional outcome of operative treatment for these fractures. Eighty patients were identified and reviewed. There were 65 male (81.3% and 15 female patients (18.7% with age ranging from 13 to 71 years old (mean, 32.3y. Common causes of ankle fractures were trauma (especially motor vehicle accidents, sports injuries and the osteoporotic bones in the elderly. Weber C (64.0% was the most common pattern of fracture at presentation. The most common operative treatment for ankle fractures was open reduction and internal fixation (73 patients, 91.2%. Excellent and good outcomes were achieved in 93.8% of cases when measured using the Olerud and Molander scoring system for foot and ankle. In conclusion, operative treatment for ankle fractures restores sufficient stability and allowed mobility of the ankle joint.

  8. Management of pediatric mandible fractures.

    Science.gov (United States)

    Goth, Stephen; Sawatari, Yoh; Peleg, Michael

    2012-01-01

    The pediatric mandible fracture is a rare occurrence when compared with the number of mandible fractures that occur within the adult population. Although the clinician who manages facial fractures may never encounter a pediatric mandible fracture, it is a unique injury that warrants a comprehensive discussion. Because of the unique anatomy, dentition, and growth of the pediatric patient, the management of a pediatric mandible fracture requires true diligence with a variance in treatment ranging from soft diet to open reduction and internal fixation. In addition to the variability in treatment, any trauma to the face of a child requires additional management factors including child abuse issues and long-term sequelae involving skeletal growth, which may affect facial symmetry and occlusion. The following is a review of the incidence, relevant anatomy, clinical and radiographic examination, and treatment modalities for specific fracture types of the pediatric mandible based on the clinical experience at the University of Miami/Jackson Memorial Hospital Oral and Maxillofacial Surgery program. In addition, a review of the literature regarding the management of the pediatric mandible fracture was performed to offer a more comprehensive overview of this unique subset of facial fractures.

  9. Diplopia and Orbital Wall Fractures

    NARCIS (Netherlands)

    Boffano, P.; Roccia, F.; Gallesio, C.; Karagozoglu, K.H.; Forouzanfar, T.

    2014-01-01

    Diplopia is a symptom that is frequently associated with orbital wall fractures. The aim of this article was to present the incidence and patterns of diplopia after orbital wall blow-out fractures in 2 European centers, Turin and Amsterdam, and to identify any correlation between this symptom and

  10. Diplopia and orbital wall fractures

    NARCIS (Netherlands)

    Boffano, P.; Roccia, F.; Gallesio, C.; Karagozoglu, K.H.; Forouzanfar, T.

    2014-01-01

    Diplopia is a symptom that is frequently associated with orbital wall fractures. The aim of this article was to present the incidence and patterns of diplopia after orbital wall blow-out fractures in 2 European centers, Turin and Amsterdam, and to identify any correlation between this symptom and

  11. Bilateral acetabular fracture without trauma

    OpenAIRE

    Rosa, M. A.; Maccauro, G.; D’Arienzo, M.

    1999-01-01

     In the absence of trauma fracture of the acetabulum is an extremely rare injury. We describe a 70 year old man who spontaneously developed fractures in both acetabulae due to bony insufficiency. It was successfully treated by bilateral total hip replacement.

  12. Fracture of the anterior colliculus.

    Science.gov (United States)

    Skie, M C; Ebraheim, N A; Woldenberg, L; Randall, K

    1995-04-01

    The authors retrospectively reviewed 33 cases of fracture involving the anterior colliculus of the medial malleolus to examine clinical results of operative treatment for these fractures. Although this injury appears innocuous, it can be difficult to obtain stable fixation of the fragment intraoperatively, and painful nonunion can result. A simple reduction maneuver and method of tension band fixation are described.

  13. [Surgical treatment of unstable pelvic fractures combined with acetabular fractures].

    Science.gov (United States)

    Wang, Tao; Wang, Jun; Li, Zong-yuan; Liu, Gang

    2015-05-01

    To discuss the treatment strategy of acetabular fractures and unstable pelvic fracture of the hip and to evaluate its outcome. Retrospective analysis of clinical data in 32 patients with unstable pelvic fracture and acetabular fractures from January 2007 to June 2013 were collected. There were 18 males and 14 females aged from 18 to 62 years old (means 38 years old). According to Tile classification of pelvic fracture, 11 cases were type B1, 8 were type B2.1, 7 were type B2.2, 3 were type C1.1, 2 were type C1.2, 1 was type C3. According to Judet-Letournel classification, anterior column fracture was in 1 case, transverse fracture in 8, transverse plus posterior wall fracture in 6, T-type fracture in 1, anterior column plus half transverse fractures in 5, double column fracture in 11. Other combined injuries were treated early, the surgical operation were performed after stable condition. The hip joint function and the fracture reduction were assessed during follow-up. The operative time was from 1.8 to 6.5 hours (averaged 3 hours). Two fat patients' incision occurred in fat liquefaction and healed after dressing, no incision infection happened. Only 1 case was lost to follow-up, 31 patients were followed up with a mean time of 23 months (6 to 42 months). The healing time of pelvic fracture was from 8 to 18 weeks (averaged in 10.6 weeks). The hip function was evaluated according to the Matta and Tornetta standard postoperatively, the result was excellent in 15 cases, good in 14 cases, fair and poor in 1 case respectively. The Majeed score of the hip function was 83.65? 7.67, the result was excellent in 15 cases, good in 12 cases and fair in 4 cases. The healing time of acetabular fractures was from 8 to 16 weeks (averaged in 10.2 weeks). The fracture reduction was assessed by Matta standard, the result was excellent in 15 cases, good in 12 cases and fair in 4 cases. The heterotopic ossification was evaluated by Brooker standard, 4 cases were grade I, 1 case was

  14. Collagen turnover after tibial fractures

    DEFF Research Database (Denmark)

    Joerring, S; Krogsgaard, M; Wilbek, H

    1994-01-01

    Collagen turnover after tibial fractures was examined in 16 patients with fracture of the tibial diaphysis and in 8 patients with fracture in the tibial condyle area by measuring sequential changes in serological markers of turnover of types I and III collagen for up to 26 weeks after fracture....... The markers were the carboxy-terminal extension peptide of type I procollagen (PICP), the amino-terminal extension peptide of type III procollagen (PIIINP), and the pyridinoline cross-linked carboxy-terminal telopeptide of type I collagen (ICTP). The latter is a new serum marker of degradation of type I...... collagen. A group comparison showed characteristic sequential changes in the turnover of types I and III collagen in fractures of the tibial diaphysis and tibial condyles. The turnover of type III collagen reached a maximum after 2 weeks in both groups. The synthesis of type I collagen reached a maximum...

  15. Computer simulation of ductile fracture

    International Nuclear Information System (INIS)

    Wilkins, M.L.; Streit, R.D.

    1979-01-01

    Finite difference computer simulation programs are capable of very accurate solutions to problems in plasticity with large deformations and rotation. This opens the possibility of developing models of ductile fracture by correlating experiments with equivalent computer simulations. Selected experiments were done to emphasize different aspects of the model. A difficult problem is the establishment of a fracture-size effect. This paper is a study of the strain field around notched tensile specimens of aluminum 6061-T651. A series of geometrically scaled specimens are tested to fracture. The scaled experiments are conducted for different notch radius-to-diameter ratios. The strains at fracture are determined from computer simulations. An estimate is made of the fracture-size effect

  16. [Femoral shaft fractures in children].

    Science.gov (United States)

    Dietz, H-G; Schlickewei, W

    2011-05-01

    Femoral shaft fractures in children represent 1.5% of all fractures in childhood. Up to the age of 4 years, conservative treatment in a hip spica or short-term overhead traction is the therapy of choice. Femoral shaft fractures between the age of 5 and 16 years should be treated surgically. In over 90% of these cases elastic stable intramedullary nailing (ESIN) is the premier treatment option. Additional end caps can be used for unstable fractures and in length discrepancy. The external fixator and the locking plate are reserved for fractures with severe soft tissue injuries, vascular problems and some specific situations mentioned later on. By adhering to these standards good results can be achieved with a low complication rate.

  17. Suitability of ground penetrating radar for locating large fractures

    International Nuclear Information System (INIS)

    Heikkinen, E.; Kantia, P.

    2011-12-01

    Posiva Oy is responsible for preparation of final disposal of spent nuclear fuel in Olkiluoto. The knowledge about existing network of fractures is important for the safety and feasibility of the final repository. The bedrock properties essential for safety case are analysed in investigations of Rock Suitability Criteria (RSC). One subtask in RSC is avoidance of large (long) fractures adjacent to disposal holes. The long fractures have been defined in tunnel mapping to indicate tunnel cross-cutting features (TCF) or full perimeter intersections (FPI). Suitability of ground penetrating radar (GPR) method for locating large fractures was assessed. The assessment used data measured with 100 MHz and 270 MHz radar tool on ONKALO access tunnel right-hand wall, chainage 3344 - 3578 and on TKU-3 niche floor chainage 15 - 55 and 25 - 67 m. GPR images were processed to enhance reflections and suppress interference and diffractions. Images were placed on measurement position in 3D presentation software. The tunnel wall and floor mapping data was presented along with GPR images. A review of observed GPR reflections, and assessment of visibility of large fractures, was drawn on basis of 3D view examination. The GPR tool can detect reflections from cleaned and dry rock floor and wall. Depth of penetration is 8-12 m for 270 MHz antenna. The antenna has high resolution. Coupling on rock surface is good, which suppresses ringing and interference. Penetration is 20-24 m for 100 MHz antenna, which has a trade off of higher interference due to weaker contact to surface caused by large antenna. There are observed many kind of reflecting surfaces and diffractors in the images, like for example lithological contacts and high grade shearing, and also fractures. Proper manner to apply the method is to use raw and processed images during geological mapping to confirm the origin of reflections. Reflections deemed to be caused by fractures are useful to be compiled to 3D model objects. The

  18. A Rare Entity: Bilateral First Rib Fractures Accompanying Bilateral Scapular Fractures

    Directory of Open Access Journals (Sweden)

    Gultekin Gulbahar

    2015-01-01

    Full Text Available First rib fractures are scarce due to their well-protected anatomic locations. Bilateral first rib fractures accompanying bilateral scapular fractures are very rare, although they may be together with scapular and clavicular fractures. According to our knowledge, no case of bilateral first rib fractures accompanying bilateral scapular fractures has been reported, so we herein discussed the diagnosis, treatment, and complications of bone fractures due to thoracic trauma in bias of this rare entity.

  19. Beyond viral suppression of HIV

    DEFF Research Database (Denmark)

    Lazarus, Jeffrey V.; Safreed-Harmon, Kelly; Barton, Simon E

    2016-01-01

    BACKGROUND: In 2016, the World Health Organization (WHO) adopted a new Global Health Sector Strategy on HIV for 2016-2021. It establishes 15 ambitious targets, including the '90-90-90' target calling on health systems to reduce under-diagnosis of HIV, treat a greater number of those diagnosed......, and ensure that those being treated achieve viral suppression. DISCUSSION: The WHO strategy calls for person-centered chronic care for people living with HIV (PLHIV), implicitly acknowledging that viral suppression is not the ultimate goal of treatment. However, it stops short of providing an explicit target...... for health-related quality of life. It thus fails to take into account the needs of PLHIV who have achieved viral suppression but still must contend with other intense challenges such as serious non-communicable diseases, depression, anxiety, financial stress, and experiences of or apprehension about HIV...

  20. Resonance suppression from color reconnection

    Science.gov (United States)

    Acconcia, R.; Chinellato, D. D.; de Souza, R. Derradi; Takahashi, J.; Torrieri, G.; Markert, C.

    2018-02-01

    We present studies that show how multi-parton interaction and color reconnection affect the hadro-chemistry in proton-proton (pp) collisions with special focus on the production of resonances using the pythia8 event generator. We find that color reconnection suppresses the relative production of meson resonances such as ρ0 and K* , providing an alternative explanation for the K*/K decrease observed in proton-proton collisions as a function of multiplicity by the ALICE collaboration. Detailed studies of the underlying mechanism causing meson resonance suppression indicate that color reconnection leads to shorter, less energetic strings whose fragmentation is less likely to produce more massive hadrons for a given quark content, therefore reducing ratios such as K*/K and ρ0/π in high-multiplicity pp collisions. In addition, we have also studied the effects of allowing string junctions to form and found that these may also contribute to resonance suppression.

  1. Third metacarpal condylar fatigue fractures in equine athletes occur within previously modelled subchondral bone.

    Science.gov (United States)

    Whitton, R Christopher; Trope, Gareth D; Ghasem-Zadeh, Ali; Anderson, Garry A; Parkin, Timothy D H; Mackie, Eleanor J; Seeman, Ego

    2010-10-01

    Bone modelling and remodelling reduce the risk of fatigue fractures; the former by adapting bone to its loading circumstances, the latter by replacing fatigued bone. Remodelling transiently increases porosity because of the normal delay in onset of the formation phase of the remodelling sequence. Protracted intense loading suppresses remodelling leaving modelling as the only means of maintaining bone strength. We therefore hypothesized that race horses with fatigue fractures of the distal third metacarpal bone (MC3) will have reduced porosity associated with suppressed remodelling while continued adaptive modelling will result in higher volume fraction (BV/TV) at this site. Using high resolution peripheral quantitative computed tomography (HR-pQCT), we measured the distal aspect of the MC3 obtained at postmortem from 13 thoroughbred race horses with condylar fractures of the MC3 (cases), 8 horses without fractures (training controls), 14 horses with a fracture at another site (fractured controls) and 9 horses resting from training (resting controls). Porosity of the subchondral bone of MC3 was lower in cases than resting controls (12±1.4% vs. 18±1.6%, P=0.017) although areas of focal porosity were observed adjacent to fractures in 6/13 horses. BV/TV of the distal metacarpal epiphysis tended to be higher in horses with condylar fractures (0.79±0.015) than training controls (0.74±0.019, P=0.070), but also higher in controls with a fracture elsewhere (0.79±0.014) than the training controls (0.74±0.019, P=0.040). BV/TV was higher in horses over three years of age than those aged two or three years (0.79±0.01 vs. 0.74±0.01, P=0.016). All metacarpal condylar fractures occurred within focal areas of high BV/TV. We infer that intense training in equine athletes suppresses remodelling of third metacarpal subchondral bone limiting damage repair while modelling increases regional bone volume in an attempt to minimise local stresses but may fail to offset bone

  2. Fractures of the sustentaculum tali.

    Science.gov (United States)

    Dürr, C; Zwipp, H; Rammelt, S

    2013-12-01

    Anatomical reconstruction of displaced sustentaculum tali fractures via a direct medial approach. Displaced fractures of the sustentaculum tali with incongruity or depression of the medial facet of the subtalar joint, entrapment of the flexor hallucis longus or flexor digitorum longus tendons, fracture line extending into the posterior facet of the subtalar joint. Infected or grossly contaminated soft tissue, severely restricted vascular supply to the foot, high perioperative risk. Direct medial approach over the sustentaculum tali, retraction of the tendons, joint exploration, fracture reduction using the medial facet and cortical outline as guidelines, fracture fixation with two small fragment screws from medial to lateral directed slightly plantarly and posteriorly. Fractures with depression of the medial facet as a whole can alternatively be reduced and fixed percutaneously. Lower leg splint for 5-7 days, partial weight-bearing with 20 kg for 6-8 weeks (until radiographic signs of consolidation) in the patient's own shoewear, early range of motion exercises of the ankle, subtalar and mid-tarsal joints. Over a course of 15 years, 31 patients were treated operatively for sustentacular fractures. In all, 27 patients (87%) had additional fractures to the same foot and ankle. Eighteen patients with a mean age of 41 years treated at our institution with screw fixation for a unilateral fracture of the sustentaculum tali could be followed for a mean of 80 months (range 15-151 months). No wound healing problems or infections were seen with the medial approach. At the time of follow-up, 15 sustentaculum tali fractures had an average Foot Function Index of 21.6 and an average AOFAS Ankle-Hindfoot Score of 83.6. Patients with isolated fractures of the sustentaculum tali had significantly better scores than those with additional injuries. In 1 patient, an additional lateral process fracture of the talus required subtalar fusion due to persistent pain. Care must be taken not

  3. Teaching to suppress Polglish processes

    OpenAIRE

    Dziubalska-Kołaczyk, Katarzyna; Balas, Anna; Schwartz, Geoffrey; Rojczyk, Arkadiusz; Wrembel, Magdalena

    2015-01-01

    Advanced second language (henceforth L2) learners in a formal setting can suppress many first language (henceforth L1) processes in L2 pronunciation when provided with sufficient exposure to L2 and meta competence (see Sect. 4 for a definition of this term). This paper shows how imitation in L2 teaching can be enhanced on the basis of current phonetic research and how complex allophonic processes such as nasal vocalization and glottal stop insertion can be suppressed using “repair”—a method o...

  4. Fracture flow code

    International Nuclear Information System (INIS)

    Dershowitz, W; Herbert, A.; Long, J.

    1989-03-01

    The hydrology of the SCV site will be modelled utilizing discrete fracture flow models. These models are complex, and can not be fully cerified by comparison to analytical solutions. The best approach for verification of these codes is therefore cross-verification between different codes. This is complicated by the variation in assumptions and solution techniques utilized in different codes. Cross-verification procedures are defined which allow comparison of the codes developed by Harwell Laboratory, Lawrence Berkeley Laboratory, and Golder Associates Inc. Six cross-verification datasets are defined for deterministic and stochastic verification of geometric and flow features of the codes. Additional datasets for verification of transport features will be documented in a future report. (13 figs., 7 tabs., 10 refs.) (authors)

  5. Dresden 1 Radiation Level Reduction Program. Intergranular corrosion tests of sensitized Type-304 stainless steel in Dow NS-1, and stress corrosion cracking tests of Type-304 stainless steel and carbon and low alloy steels in Dow copper rinse solution

    International Nuclear Information System (INIS)

    Walker, W.L.

    1978-09-01

    Corrosion tests were performed to evaluate the extent of intergranular attack on sensitized Type-304 stainless steel by a proprietary Dow Chemical solvent, NS-1, which is to be used in the chemical cleaning of the Dresden 1 primary system. In addition, tests were performed to evaluate stress corrosion cracking of sensitized Type-304 stainless steel and post-weld heat-treated ASTM A336-F1, A302-B, and A106-B carbon and low alloy steels in a solution to be used to remove residual metallic copper from the Dresden 1 primary system surfaces following the chemical cleaning. No evidence of deleterious corrosion was observed in either set of tests

  6. Estimación de la corrosión intergranular en la aleación de magnesio AZ31B soldada por fricción - agitación

    Directory of Open Access Journals (Sweden)

    Willian Aperador Chaparro

    2013-12-01

    Full Text Available En este trabajo se evalúa la corrosión intergranular, que se presenta en las soldaduras de la aleación de magnesio AZ31B unidas por los procesos de fricción-agitación y comparada con la soldadura con arco de tungsteno y gas, con el fin de evaluar y comparar el comportamiento a la corrosión de ambas soldaduras por medio la técnica de Espectroscopia de Impedancias Electroquímica. Adicionalmente se realizaron análisis microestructurales de los límites de grano por medio del microscopio. Los resultados obtenidos en esta investigación muestran una mayor resistencia a la corrosión de las muestras obtenidas con el proceso de fricción-agitación.

  7. Early history of scapular fractures.

    Science.gov (United States)

    Bartoníček, Jan; Kozánek, Michal; Jupiter, Jesse B

    2016-01-01

    The first to use the term Scapula was Vesalius (1514-1564) and thus it has remained ever since. Probably the oldest injured scapula, from 250 million years ago, was described by Chinese authors of a skeletal examination of a fossilised remains of a dinosaur Yangchuanosaurus hepingensis. In humans, the oldest known scapular fractures date back to the prehistoric and early historic times. In ancient times, a fracture of acromion was described in the treatises of Hippocrates. Early modern history of the treatment of scapular fractures is closely interlinked with the history of the French surgery. The first to point out the existence of these fractures were Petit, Du Verney and Desault in the 18th century. The first study devoted solely to scapular fractures was published by Traugott Karl August Vogt in 1799. Thomas Callaway published in 1849 an extensive dissertation on injuries to the shoulder girdle, in which he discussed a number of cases known at that time. The first radiograph of a scapular fracture was published by Petty in 1907. Mayo Robson (1884), Lambotte (1913) and Lane (1914) were pioneers in the surgical treatment of these fractures, followed in 1923 by the French surgeons Lenormat, Dujarrier and Basset. The first internal fixation of the glenoid fossa, including a radiograph, was published by Fischer in 1939.

  8. Tracer transport in fractured rocks

    International Nuclear Information System (INIS)

    Tsang, C.F.; Tsang, Y.W.; Hale, F.V.

    1988-07-01

    Recent interest in the safety of toxic waste underground disposal and nuclear waste geologic repositories has motivated many studies of tracer transport in fractured media. Fractures occur in most geologic formations and introduce a high degree of heterogeneity. Within each fracture, the aperture is not constant in value but strongly varying. Thus for such media, tracer tends to flow through preferred flowpaths or channels within the fractures. Along each of these channels, the aperture is also strongly varying. A detailed analysis is carried out on a 2D single fracture with variable apertures and the flow through channels is demonstrated. The channels defined this way are not rigidly set pathways for tracer transport, but are the preferred flow paths in the sense of stream-tubes in the potential theory. It is shown that such variable-aperture channels can be characterized by an aperture probability distribution function, and not by the exact deterministic geometric locations. We also demonstrate that the 2D tracer transport in a fracture can be calculated by a model of a system of 1D channels characterized by this distribution function only. Due to the channeling character of tracer transport in fractured rock, random point measurements of tracer breakthrough curves may give results with a wide spread in value due to statistical fluctuations. The present paper suggests that such a wide spread can probably be greatly reduced by making line/areal (or multiple) measurements covering a few spatial correlation lengths. 13 refs., 11 figs., 1 tab

  9. Stress fractures and bone pain

    International Nuclear Information System (INIS)

    Groshar, D.; Even-Sapir, E.; Lam, M.; Israel, O.; Front, D.

    1984-01-01

    Stress fractures result from an unusual repetitive physical activity causing absorption of bone in excess of repair and bone formation. This leads to the weakening of the bone and subsequently to a fracture. It is a benign condition that if recognized in time does not need any treatment besides rest. However, if diagnosis is not made and physical activity continues it may result in severe injury to the bone and a frank fracture may result. Pain is the typical clinical feature and bone scintigraphy, being more sensitive than radiography, is done to establish early diagnosis. The presence of asymptomatic sites of abnormal bone uptake typical of stress fracture in which pain appeared only about 2 weeks after scintigraphy, drew the authors' attention to the question of how close is the relationship between stress fractures and bone pain. Sixty-four military recruits diagnosed as suffering from stress fracture were investigated in order to correlate sites with abnormal uptake of Tc-99m MDP on bone scintigraphy with sites of local pain. In 37 (58%) subjects multiple sites of abnormal uptake were recognised. Of 123 sites of abnormal uptake, 31 (25%) were asymptomatic. In three patients bone pain appeared at the site of the abnormal uptake two weeks after scintigraphy. Bone scintigraphy appears to be more sensitive than bone pain in the diagnosis of stress fractures. The osteoblastic activity which manifests itself by abnormal uptake appears in some cases earlier than the pain caused by the fracture. Present findings may suggest that under certain circumstances, in a population prone to stress fracture, bone scan should be considered as a screening method

  10. Fracture healing in osteoporotic bone.

    Science.gov (United States)

    Cheung, Wing Hoi; Miclau, Theodore; Chow, Simon Kwoon-Ho; Yang, Frank F; Alt, Volker

    2016-06-01

    As the world population rises, osteoporotic fracture is an emerging global threat to the well-being of elderly patients. The process of fracture healing by intramembranous ossification or/and endochondral ossification involve many well-orchestrated events including the signaling, recruitment and differentiation of mesenchymal stem cells (MSCs) during the early phase; formation of a hard callus and extracellular matrix, angiogenesis and revascularization during the mid-phase; and finally callus remodeling at the late phase of fracture healing. Through clinical and animal research, many of these factors are shown to be impaired in osteoporotic bone. Animal studies related to post-menopausal estrogen deficient osteoporosis (type I) have shown healing to be prolonged with decreased levels of MSCs and decreased levels of angiogenesis. Moreover, the expression of estrogen receptor (ER) was shown to be delayed in ovariectomy-induced osteoporotic fracture. This might be related to the observed difference in mechanical sensitivity between normal and osteoporotic bones, which requires further experiments to elucidate. In mice fracture models related to senile osteoporosis (type II), it was observed that chondrocyte and osteoblast differentiation were impaired; and that transplantation of juvenile bone marrow would result in enhanced callus formation. Other factors related to angiogenesis and vasculogenesis have also been noted to be impaired in aged models, affecting the degradation of cartilaginous matrixes and vascular invasion; the result is changes in matrix composition and growth factors concentrations that ultimately impairs healing during age-related osteoporosis. Most osteoporotic related fractures occur at metaphyseal sites clinically, and reports have indicated that differences exist between diaphyseal and metaphyseal fractures. An animal model that satisfies three main criteria (metaphyseal region, plate fixation, osteoporosis) is suggested for future research for

  11. Possible factors for ankle fractures

    Directory of Open Access Journals (Sweden)

    Tabaković Dejan

    2010-01-01

    Full Text Available Background/Aim. Classification of ankle fractures is commonly used for selecting an appropriate treatment and prognosing an outcome of definite management. One of the most used classifications is the Danis-Weber classification. To the best of our knowledge, in the available literature, there are no parameters affecting specific types of ankle fractures according to the Danis-Weber classification. The aim of this study was to analyze the correlation of the following parameters: age, body weight, body mass index (BMI, height, osteoporosis, osteopenia and physical exercises with specific types of ankle fractures using the Danis-Weber classification. Methods. A total of 85 patients grouped by the Danis-Weber classification fracture types were analyzed and the significance of certain parameters for specific types of ankle fractures was established. Results. The proportion of females was significantly higher (p < 0.001 with a significantly higher age (59.9 years, SD ± 14.2 in relation to males (45.1 years, SD ± 12.8 (p < 0.0001. Type A fracture was most frequent in the younger patients (34.2 years, SD ± 8.6, and those with increased physical exercises (p = 0.020. In type B fracture, the risk factor was osteoporosis (p = 0.0180, while in type C fracture, body weight (p = 0.017 and osteoporosis (p = 0.004 were significant parameters. Conclusion. Statistical analysis using the Danis-Weber classification reveals that there are certain parameters suggesting significant risk factors for specific types of ankle fractures.

  12. Cinética de rehidratación y deterioro biológico en Zea mays almacenado a una Humedad Relativa del Aire Intergranular (HRAI del 92%

    Directory of Open Access Journals (Sweden)

    Eguiazu, G. M.

    1993-12-01

    Full Text Available Maize grains (Zea mays var indurata «Plata» tipe destined to commercialization were submitted to a relative humidity of the intergranular air of 92% during 120 days to 25 °C. The kinetics of rehydration, humidity and biological damage («mouldy» «blue eye» and «spoiled» was determined. After 14 to 17 days, the sample rehydrates on the basis of commercialization of 14,5% of humidity and in the same period a degree of standard of commercial quality is lost. It is established that the basis of commercialization of 14,5% is very near the limit which favours the biological damage.Granos de maíz (Zea mays var. indurata tipo «Plata», destinado a comercialización, fueron sometidos a una Humedad Relativa del Aire Intergranular del 92% a 25 °C durante 120 días. Se determinó la cinética de rehidratación, humedad y el deterioro biológico («Verdín» y «Dañado». Se observó que luego de 14 a 17 días la muestra se rehidrató por sobre la base de comercialización del 14,5% de humedad y en el mismo periodo se pierde un grado en el estandard de calidad comercial. Se plantea que la base de comercialización del 14,5% se halla muy cercana al límite que favorece el deterioro biológico.

  13. Fracture Union in Closed Interlocking Nail in Humeral Shaft Fractures

    Directory of Open Access Journals (Sweden)

    Ramji Lal Sahu

    2015-01-01

    Conclusions: The results of the present study indicates that in the presence of proper indications, reamed antegrade intramedullary interlocked nailing appears to be a method of choice for internal fixation of osteoporotic and pathologic fractures.

  14. fracture ouverte de la jambe

    OpenAIRE

    DJALT HOUARI, BADREDDINE; KHODJA, BOCHRA BAKHTA

    2015-01-01

    Les fractures de jambes ouvertes sont les plus fréquentes des fractures ouvertes des os longs. Elles sont en général graves et surviennent le plus souvent après un accident de la voie publique. La classification de Cauchoix modifiée par Gustilo a une valeur pronostique, mais elle nécessite une réévaluation au cours du temps. La contamination initiale de la plaie peut être considérée comme une constante lors de fractures ouvertes. La prise en charge initiale comporte une a...

  15. Computed tomography of stress fracture

    International Nuclear Information System (INIS)

    Murcia, M.; Brennan, R.E.; Edeiken, J.

    1982-01-01

    An athletic young female developed gradual onset of pain in the right leg. Plain radiographs demonstrated solid periosteal reaction in the tibia compatible with stress fracture. She stopped sport activites but her pain continued. Follow-up radiographs of the tibia revealed changes suspicious for osteoid osteoma. Computed tomography (CT) scan demonstrated periosteal reaction, but in addition, lucent fracture lines in the tibial cortex were evident. CT obviated the need for more invasive diagnostic procedures in this patient. In selected cases CT may be useful to confirm the diagnosis of stress fracture when plain radiographic or routine tomographic studies are not diagnostic. (orig.)

  16. Arthroscopic Management of Bennett Fracture.

    Science.gov (United States)

    Solomon, Jason; Culp, Randall W

    2017-11-01

    Bennett fracture is the most common fracture of the thumb. Choosing the appropriate approach to fracture fixation requires a thorough knowledge of the anatomy surrounding the first carpometacarpal joint, which is necessary to prevent injury to local sensory nerves and tendons. Although no study has shown superior outcomes compared with open reduction internal fixation and fluoroscopically guided closed reduction and percutaneous pinning, arthroscopic-assisted fixation allows for debridement of the carpometacarpal joint, direct visualization of the articular surface during reduction, and has minimal morbidity and associated complications. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Elastic fracture in driven media

    International Nuclear Information System (INIS)

    Lung Chiwei; Wang Shenggang; Long Qiyi

    1999-08-01

    Fracture as one of the mechanical properties of materials is structurally dependent. Defects, defect assemblies, grain boundaries and sub-boundaries materials, modify the local stress intensity factors intensively. Brittle fracture prefers to confine to the grain boundary where the specific surface energy is lower than that in the grain. Again, transgranular cracking may occur on the crystal cleavage plane or planes where the local toughness is lowered by dislocation interaction and motion. This paper shows the complexity of the fractal dimension or roughness index of fractured surfaces in materials with metallographic structures or in inhomogeneous media. (author)

  18. Contemporary management of subtrochanteric fractures.

    Science.gov (United States)

    Joglekar, Siddharth B; Lindvall, Eric M; Martirosian, Armen

    2015-01-01

    Cephalomedullary interlocking nails that allow for trochanteric entry and minimally invasive fixation have revolutionized the contemporary management of subtrochanteric fractures with improved union rates and decreased incidence of fixation failure. The most successful alternative to intramedullary fixation remains the angled blade plate. Despite biomechanical superiority of contemporary intramedullary implants to previous intramedullary devices, the importance of achieving and maintaining satisfactory fracture reduction prior to and during hardware insertion cannot be overemphasized. In comminuted and more challenging fractures, additional techniques, such as limited open reduction with clamps and/or cables, can allow for canal restoration and more anatomic reductions prior to and/or during nail insertion. Published by Elsevier Inc.

  19. Use of proton pump inhibitors is associated with fractures in young adults: a population-based study.

    Science.gov (United States)

    Freedberg, D E; Haynes, K; Denburg, M R; Zemel, B S; Leonard, M B; Abrams, J A; Yang, Y-X

    2015-10-01

    Proton pump inhibitors (PPIs) are associated with risk for fracture in osteoporotic adults. In this population-based study, we found a significant association between PPIs and fracture in young adults, with evidence of a dose-response effect. Young adults who use PPIs should be cautioned regarding risk for fracture. Proton pump inhibitors (PPIs) are associated with fracture in adults with osteoporosis. Because PPI therapy may interfere with bone accrual and attainment of peak bone mineral density, we studied the association between use of PPIs and fracture in children and young adults. We conducted a population-based, case-control study nested within records from general medical practices from 1994 to 2013. Participants were 4-29 years old with ≥ 1 year of follow-up who lacked chronic conditions associated with use of long-term acid suppression. Cases of fracture were defined as the first incident fracture at any site. Using incidence density sampling, cases were matched with up to five controls by age, sex, medical practice, and start of follow-up. PPI exposure was defined as 180 or more cumulative doses of PPIs. Conditional logistic regression was used to estimate the odds ratio and confidence interval for use of PPIs and fracture. We identified 124,799 cases and 605,643 controls. The adjusted odds ratio for the risk of fracture associated with PPI exposure was 1.13 (95% CI 0.92 to 1.39) among children aged young adults aged 18-29 years old. In young adults but not children, we observed a dose-response effect with increased total exposure to PPIs (p for trend young adults, but overall evidence did not support a PPI-fracture relationship in children. Young adults who use PPIs should be cautioned regarding potentially increased risk for fracture, even if they lack traditional fracture risk factors.

  20. Atypical fractures on long term bisphosphonates therapy.

    LENUS (Irish Health Repository)

    Hussein, W

    2011-01-01

    Bisphosphonates reduce fractures risk in patients with osteoporosis. A new pattern of fractures is now being noted in patients on prolonged bisphosphonate therapy. We report a case of an atypical femoral fracture with preceding pain and highlight the characteristics of these fractures.

  1. Evaluation of regional fracture properties for groundwater ...

    Indian Academy of Sciences (India)

    Fracture networks have the potentiality to significantly influence local and regional scale fluid movement. Fracture induced permeability depends on density of fractures, size of apertures and connectivities (Singhal and Gupta. 1999). It is assumed that closely spaced fractures with higher frequency represent better possibility.

  2. Humerus shaft fractures - where are we today?

    DEFF Research Database (Denmark)

    Strohm, P C; Reising, K; Hammer, T

    2011-01-01

    Humeral shaft fractures account for about 1-3% of all fractures. These fractures are regarded as the domain of non-surgical management. This is certainly still the contemporary view but there is an obvious trend towards surgical stabilization. Surgical treatment of humeral shaft fractures has...

  3. Conditioned suppression, punishment, and aversion

    Science.gov (United States)

    Orme-Johnson, D. W.; Yarczower, M.

    1974-01-01

    The aversive action of visual stimuli was studied in two groups of pigeons which received response-contingent or noncontingent electric shocks in cages with translucent response keys. Presentation of grain for 3 sec, contingent on key pecking, was the visual stimulus associated with conditioned punishment or suppression. The responses of the pigeons in three different experiments are compared.

  4. Plasma suppression of beamstrahlung: Revision

    International Nuclear Information System (INIS)

    Whittum, D.H.; Sessler, A.M.; Stewart, J.J.; Yu, S.S.

    1988-06-01

    We investigate the use of a plasma at the interaction point of two colliding beams to suppress beamstrahlung and related phenomena. We derive conditions for good current cancellation via plasma return currents and report on numerical simulations conducted to confirm our analytic results. 17 refs., 5 figs., 5 tabs

  5. Ambient Seismic Imaging of Hydraulically Active Fractures at km Depths

    Science.gov (United States)

    Malin, P. E.; Sicking, C.

    2017-12-01

    Streaming Depth Images of ambient seismic signals using numerous, densely-distributed, receivers have revealed their connection to hydraulically active fractures at 0.5 to 5 km depths. Key for this type of imaging is very high-fold stacking over both multiple receives and periods of a few hours. Also important is suppression of waveforms from fixed, repeating sources such as pumps, generators, and traffic. A typical surface-based ambient SDI survey would use a 3D seismic receiver grid. It would have 1,000 to 4,000 uniformly distributed receivers at a density of 50/km2over the target. If acquired by borehole receivers buried 100 m deep, the density can be dropped by an order of magnitude. We show examples of the acquisition and signal processing scenarios used to produce the ambient images. (Sicking et al., SEG Interpretation, Nov 2017.) While the fracture-fluid source connection of SDI has been verified by drilling and various types of hydraulic tests, the precise nature of the signal's origin is not clear. At the current level of observation, the signals do not have identifiable phases, but can be focused using P wave velocities. Suggested sources are resonances of pressures fluctuations in the fractures, or small, continuous, slips on fractures surfaces. In either case, it appears that the driving mechanism is tectonic strain in an inherently unstable crust. Solid earth tides may enhance these strains. We illustrate the value of the ambient SDI method in its industrial application by showing case histories from energy industry and carbon-capture-sequestration projects. These include ambient images taken before, during, and after hydraulic treatments in un-conventional reservoirs. The results show not only locations of active fractures, but also their time responses to stimulation and production. Time-lapse ambient imaging can forecast and track events such as well interferences and production changes that can result from nearby treatments.

  6. Intramedullary nailing in segmental tibial fractures.

    Science.gov (United States)

    Melis, G C; Sotgiu, F; Lepori, M; Guido, P

    1981-10-01

    Thirty-eight consecutive segmental fractures of the tibia were treated by intramedullary nailing with the Küntscher-Herzog nail. Twenty-two fractures were closed and sixteen were open. Reaming of the medullary cavity was performed and adequate fixation was ensured by use of a plaster cast. Weight-bearing was allowed after thirty-days for closed fractures and sixty days for open fractures. All of the closed fractures healed without malunion or infection. Of the patients with open fractures, one had an infection; one, non-union; and one, malunion. In all cases but one, union was slower at the distal fracture.

  7. Transverse posterior element fractures associated with torsion

    International Nuclear Information System (INIS)

    Abel, M.S.

    1989-01-01

    Six examples of a previously undescribed class of transverse vertebral element fractures are presented. These fractures differ from Chance and Smith fractures and their variants in the following respects: (1) the etiology is torsion and not flexion; (2) there is neither distraction of posterior ring fragments nor posterior ligament tears; (3) in contrast to Chance and Smith fractures, extension of the fracture into the vertebral body is absent or minimal; (4) the transverse process of the lumbar vertebra is avulsed at its base with a vertical fracture, not split horizontally. These fractures occur in cervical, lumbar, and sacral vertebrae in normal or compromised areas of the spine. (orig.)

  8. Detection of fractures in borehole image

    Science.gov (United States)

    Zhang, Xiang; Xiao, Xiaoling

    2009-10-01

    Fractures in borehole images are currently handpicked by geologists, which is a tedious and expensive task. Automatically detecting fractures in these images is not an easy task. We present a scheme for automatic fracture detection in borehole images. First, an adaptive histogram equalization method is applied to enhance borehole images which enhances the visibility of fractures in the images. Then, a direction filtering method is proposed to extract traces of fractures in borehole images. Finally, the fast Hough transform is taken to detect fractures from the results of direction filtering. Experiment results show that the scheme achieves the good results for automatic fracture detection in borehole images.

  9. [Management of facial bone fractures].

    Science.gov (United States)

    Oikarinen, Kyösti; Korpi, Jarkko

    2010-01-01

    Although the number of patients suffering from facial bone fractures has decreased more resources due to complexity of the fractures are needed. The initial treatment and reconstruction phase require hospitalisation and close collaboration between several medical and dental specialists. Fractures cause alterations in occlusion and masticatory functions and are frequently associated with soft tissue injuries. The primary radiographic examination is panoramic radiography in mandibular and computed tomography in maxillary and mid face fractures. The treatment principles have changed during the last three decades. Long-term maxillomandibular immobilisation has given way to internal fixation and direct osteosynthesis. The greatest innovations of the treatment have taken place in materials. Steel has been replaced by Titanium or resorbable plates, screws and meshes.

  10. Hip Fractures among Older Adults

    Science.gov (United States)

    ... this page: About CDC.gov . Home & Recreational Safety Older Adult Falls Important Facts about Falls Costs of Falls Hip Fractures Among Older Adults Older Adult Falls Programs Compendium of Effective Fall Interventions, 3rd Edition ...

  11. Ankle Fractures Often Not Diagnosed

    Science.gov (United States)

    ... especially in the cold-weather months when most ankle injuries occur. An ankle fracture involves a crack or ... Weak ankles may be a result of previous ankle injuries, but in some cases, they are a congenital ( ...

  12. The treatment of subtrochanteric fractures

    Directory of Open Access Journals (Sweden)

    Vučetić Čedomir S.

    2011-01-01

    Full Text Available Subtrochanteric fractures of the femur have a special place because of a significant number of complications following treatment. Powerful loading forces asymmetrically acting to this bone segment, as well as poor vascularization interfere with bone union. There are basically two current approaches in the fixation of subtrochanteric fractures; the first involves a plate with a compression screw and another one is intramedullary (IM nail, with two options: centromedullary (standard interlocking femoral nail and cephalomedullary femoral nail with two modifications, reconstructive and trochanteric. All IM nails may be used by open technique or closed minimal invasive method. IM nailing is favoured in view of a shorter operative time, shorter hospitalisation and complications. Indirect fracture reduction and knowledge of biology of bone fracture may result in full success without any bone graft.

  13. Treatment of Temporal Bone Fractures

    Science.gov (United States)

    Diaz, Rodney C.; Cervenka, Brian; Brodie, Hilary A.

    2016-01-01

    Traumatic injury to the temporal bone can lead to significant morbidity or mortality and knowledge of the pertinent anatomy, pathophysiology of injury, and appropriate management strategies is critical for successful recovery and rehabilitation of such injured patients. Most temporal bone fractures are caused by motor vehicle accidents. Temporal bone fractures are best classified as either otic capsule sparing or otic capsule disrupting-type fractures, as such classification correlates well with risk of concomitant functional complications. The most common complications of temporal bone fractures are facial nerve injury, cerebrospinal fluid (CSF) leak, and hearing loss. Assessment of facial nerve function as soon as possible following injury greatly facilitates clinical decision making. Use of prophylactic antibiotics in the setting of CSF leak is controversial; however, following critical analysis and interpretation of the existing classic and contemporary literature, we believe its use is absolutely warranted. PMID:27648399

  14. Computed tomography of calcaneal fractures

    International Nuclear Information System (INIS)

    Heger, L.; Wulff, K.; Seddiqi, M.S.A.

    1985-01-01

    Computed tomography (CT) of 25 fractured calcanei was performed to investigate the potential of CT in evaluating the pattern and biomechanics of these fractures. The characteristic findings of typical fractures are presented, including the number and type of principal fragments, size and dislocation of the sustentacular fragment, and involvement of the anterior and posterior facets of the subtalar joint. In 17 cases, the calcaneus consisted of four or more fragments. Furthermore, in 17 cases the sustentacular fragment included all or part of the posterior facet joint. In 18 of the 25 cases, the sustentacular fragment was displaced. It is concluded that well performed CT is an invaluable adjunct in understanding the fracture mechanism and in detecting pain-provoking impingement between the fibular malleolus and the tuberosity fragment

  15. Computed tomography of calcaneal fractures

    Energy Technology Data Exchange (ETDEWEB)

    Heger, L.; Wulff, K.; Seddiqi, M.S.A.

    1985-07-01

    Computed tomography (CT) of 25 fractured calcanei was performed to investigate the potential of CT in evaluating the pattern and biomechanics of these fractures. The characteristic findings of typical fractures are presented, including the number and type of principal fragments, size and dislocation of the sustentacular fragment, and involvement of the anterior and posterior facets of the subtalar joint. In 17 cases, the calcaneus consisted of four or more fragments. Furthermore, in 17 cases the sustentacular fragment included all or part of the posterior facet joint. In 18 of the 25 cases, the sustentacular fragment was displaced. It is concluded that well performed CT is an invaluable adjunct in understanding the fracture mechanism and in detecting pain-provoking impingement between the fibular malleolus and the tuberosity fragment.

  16. [Humeral shaft fracture in childhood].

    Science.gov (United States)

    Machan, F G; Vinz, H

    1993-06-01

    In a collective study of twelve surgical clinics 222 diaphyseal fractures of the humerus in children were examined. 159 children were checked up two to 14 years after the accident. Priority was given to conservative treatment: Désault or Gilchrist dressing (24%), arm cast (34%), extension (29%), change from primary extension to secondary dressing or cast (27%), osteosynthesis (10%). Late results were excellent in 85%, whereas in 15% minor anatomical lesions persisted, such as axial deviations, but without functional impairment. There were eight transitory primary nerve lesions (3.6%), seven concerning the radial nerve, one the ulnar nerve. The individual therapeutic procedure depends on the age of the child and on the pattern of the fracture. Operative treatment is indicated in open fractures, in cases of polytraumatism, and in fractures with uncontrolled major axial deviation.

  17. New C2 synchondrosal fracture classification system

    Energy Technology Data Exchange (ETDEWEB)

    Rusin, Jerome A.; Ruess, Lynne [Department of Radiology, Nationwide Children' s Hospital, Columbus, OH (United States); The Ohio State University College of Medicine and Public Health, Columbus, OH (United States); Daulton, Robert S. [Department of Radiology, Nationwide Children' s Hospital, Columbus, OH (United States)

    2015-06-15

    Excessive cervical flexion-extension accompanying mild to severe impact injuries can lead to C2 synchondrosal fractures in young children. To characterize and classify C2 synchondrosal fracture patterns. We retrospectively reviewed imaging and medical records of children who were treated for cervical spine fractures at our institution between 1995 and 2014. We reviewed all fractures involving the five central C2 synchondroses with regard to patient demographics, mechanism of injury, fracture pattern, associated fractures and other injuries, treatment plans and outcome. Fourteen children had fractures involving the central C2 synchondroses. There were nine boys and five girls, all younger than 6 years. We found four distinct fracture patterns. Eleven complete fractures were further divided into four subtypes (a, b, c and d) based on degree of anterior displacement of the odontoid segment and presence of distraction. Nine of these 11 children had fractures through both odontoneural synchondroses and the odontocentral synchondrosis; one had fractures involving both neurocentral synchondroses and the odontoneural synchondrosis; one had fractures through bilateral odontoneural and bilateral neurocentral synchondroses. Three children had incomplete fractures, defined as a fracture through a single odontoneural synchondrosis with or without partial extension into either the odontocentral or the adjacent neurocentral synchondroses. All complete fractures were displaced or angulated. Four had associated spinal cord injury, including two contusions (subtype c fractures) and two fatal transections (subtype d fractures). Most children were treated with primary halo stabilization. Subtype c fractures required surgical fixation. We describe four patterns of central C2 synchondrosal fractures, including two unique patterns that have not been reported. We propose a classification system to distinguish these fractures and aid in treatment planning. (orig.)

  18. Estimation method of the fracture resistance curve

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sung Keun; Lee, Kwang Hyeon; Koo, Jae Mean; Seok, Chang Sung [Sungkyunkwan Univ., Suwon (Korea, Republic of); Park, Jae Sil [Samsung Electric Company, Suwon (Korea, Republic of)

    2008-07-01

    Fracture resistance curves for concerned materials are required in order to perform elastic-plastic fracture mechanical analysis. Fracture resistance curve is built with J-integral values and crack extension values. The objective of this paper is to propose the estimation method of the fracture resistance curve. The estimation method of the fracture resistance curve for the pipe specimen was proposed by the load ratio method from load - displacement data for the standard specimen.

  19. A DFN-based High Performance Computing Approach to the Simulation of Radionuclide Transport in Mineralogically Heterogeneous Fractured Rocks

    Science.gov (United States)

    Gylling, B.; Trinchero, P.; Molinero, J.; Deissmann, G.; Svensson, U.; Ebrahimi, H.; Hammond, G. E.; Bosbach, D.; Puigdomenech, I.

    2016-12-01

    Geological repositories for nuclear waste are based multi-barrier concepts using engineered and natural barriers. In fractured crystalline rocks, the efficiency of the host rock as transport barrier is related to the processes: advection along fractures, diffusion into the rock matrix and retention onto the available sorption sites. Anomalous matrix penetration profiles were observed in experiments (i.e. REPRO carried out by Posiva at the ONKALO underground facility in Finland and the Long Term Sorption Diffusion Experiment, LTDE-SD, carried out by SKB at the Äspö Hard Rock Laboratory in Sweden). The textural and mineralogical heterogeneity of the rock matrix was offered as plausible explanation for these anomalous penetration profiles. The heterogeneous structure of the rock matrix was characterised at the grain-scale using a micron-scale Discrete Fracture Network (DFN), which is then represented onto a micron-scale structured grid. Matrix fracture free volumes are identified as reactive biotite-bearing grains whereas the rest of the matrix domain constitutes the inter-granular regions. The reactive transport problem mimics the ingress of cesium along a single transmissive fracture. Part of the injected mass diffuses into the matrix where it might eventually sorb onto the surface of reactive grains. The reactive transport calculations are carried out using iDP (interface between DarcyTools and PFLOTRAN). The generation of the DFN is done by DarcyTools, which also takes care of solving the groundwater flow problem. Computed Darcy velocities are extracted and used as input for PFLOTRAN. All the simulation runs are carried out on the supercomputer JUQUEEN at the Jülich Supercomputing Centre. The results are compared with those derived with an alternative model, where biotite abundance is averaged over the whole matrix volume. The analysis of the cesium breakthrough computed at the fracture outlet shows that the averaged model provides later first-arrival time

  20. Irreducible Galeazzi Fracture-Dislocations.

    Science.gov (United States)

    Yohe, Nicholas J; De Tolla, Jadie; Kaye, Marc B; Edelstein, David M; Choueka, Jack

    2017-11-01

    Fractures of the radial shaft with disruption of the distal radial ulnar joint (DRUJ) or Galeazzi fractures are treated with reduction of the radius followed by stability assessment of the DRUJ. In rare instances, the reduction of the DRUJ is blocked by interposed structures requiring open reduction of this joint. The purpose of this study is to review all cases of irreducible Galeazzi fracture-dislocations reported in the literature to offer guidelines in the diagnosis and management of this rare injury. A search of the MEDLINE database, OVID database, and PubMed database was employed using the terms "Galeazzi" and "fracture." Of the 124 articles the search produced, a total of 12 articles and 17 cases of irreducible Galeazzi fracture-dislocations were found. The age range was 16 to 64 years (mean = 25 years). A high-energy mechanism of injury was the root cause in all cases. More than half of the irreducible DRUJ dislocations were not identified intraoperatively. In a dorsally dislocated DRUJ, a block to reduction in most cases (92.3%) was secondary to entrapment of one or more extensor tendons including the extensor carpi ulnaris, extensor digiti minimi, and extensor digitorum communis, with the remaining cases blocked by fracture fragments. Irreducible volar dislocations due to entrapment of the ulnar head occurred in 17.6% of cases with no tendon entrapment noted. In the presence of a Galeazzi fracture, a reduced/stable DRUJ needs to be critically assessed as more than half of irreducible DRUJs in a Galeazzi fracture-dislocation were missed either pre- or intraoperatively.

  1. Gene Therapy for Fracture Repair

    Science.gov (United States)

    2007-05-01

    the periosteal tissues of healing fractures in small animals , and allow more accurate evaluation of the effects of the fracture therapy (Rundle et...X-ray fluoroscopy (Figure 7). Individual animals receiving the MLV-BMP-2/4 gene therapy by either the percutaneous injection or the intramedullary... animal subjects to understand gene expression in the healing response to bone injury and identify novel genes that might accelerate or delay the

  2. Treatment of Unstable Ankle Fractures

    OpenAIRE

    Yaniel Truffín Rodríguez; Gerardo Águila Tejeda

    2015-01-01

    Patients with unstable ankle fractures frequently attend the emergency rooms. It is estimated that there are 122 ankle fractures per 100 000 people a year. Surgical treatment of those that are unstable is inevitable since they can not be corrected in a conservative way. Several surgical procedures for repair of such lesions have been described and all of them constitute important tools for the orthopedic surgeon. Therefore, we conducted a literature review to discuss the current management of...

  3. Dimensional threshold for fracture linkage and hooking

    Science.gov (United States)

    Lamarche, Juliette; Chabani, Arezki; Gauthier, Bertrand D. M.

    2018-03-01

    Fracture connectivity in rocks depends on spatial properties of the pattern including length, abundance and orientation. When fractures form a single-strike set, they hardly cross-cut each other and the connectivity is limited. Linkage probability increases with increasing fracture abundance and length as small fractures connect to each other to form longer ones. A process for parallel fracture linkage is the "hooking", where two converging fracture tips mutually deviate and then converge to connect due to the interaction of their crack-tip stresses. Quantifying the processes and conditions for fracture linkage in single-strike fracture sets is crucial to better predicting fluid flow in Naturally Fractured Reservoirs. For 1734 fractures in Permian shales of the Lodève Basin, SE France, we measured geometrical parameters in 2D, characterizing three stages of the hooking process: underlapping, overlapping and linkage. We deciphered the threshold values, shape ratios and limiting conditions to switch from one stage to another one. The hook set up depends on the spacing (S) and fracture length (Lh) with the relation S ≈ 0.15 Lh. Once the hooking is initiated, with the fracture deviation length (L) L ≈ 0.4 Lh, the fractures reaches the linkage stage only when the spacing is reduced to S ≈ 0.02 Lh and the convergence (C) is < 0.1 L. These conditions apply to multi-scale fractures with a shape ratio L/S = 10 and for fracture curvature of 10°-20°.

  4. Avulsion fractures of the scapula

    International Nuclear Information System (INIS)

    Heyse-Moore, G.H.; Stoker, D.J.

    1982-01-01

    Fractures of the scapula due to direct violence are relatively common. Wilber and Evans [18] reported 40 scapular fractures and reviewed the literature. All those injured has received direct trauma to the shoulder and they were able to divide their cases into two groups, based on anatomical location and functional results. Scapular fractures due to avulsion of the muscular attachments are uncommon and, as reports of these injuries in the literature are usually confined to single cases, no classification has been established which takes account of the anatomical sites at which these fractures occur and the mechanism of injury involved. In this paper the more common sites of avulsion injury of the scapula are described and illustrated by case reports. In several of these the skeletal injury resulted from muscle contraction against a resisted force on the upper limb during the course of an accident. This mechanism has been implicated in fractures of the coracoid and acromion, but is shown in this paper to contribute to other avulsion fractures. (orig.)

  5. Bilateral Monteggia fracture in adults

    Directory of Open Access Journals (Sweden)

    Ristić Dejan

    2011-01-01

    Full Text Available Introduction. In 1814 Giovanni Monteggia first described two cases of fractures of the proximal third of ulna with dislocation of the radial head. These fractures are more common in children than in adults, and mutual Monteggia fracture is a rare complication. This study presents a treatment course of a patient with bilateral Monteggia fracture. Case report. A 55- year-old patient was injured by falling in the yard. Radiography showed bilateral Monteggia fracture type II (by the Badon classification. Operative treatment of fracture was done by a compression plate on the right side and by the zuggurtung technique on the left one. Closed repositioning of the radial head was done on both sides. The patient was wearing a plaster splint for the upper arm for 21 days. After removing the fixation, the function of the elbow was determined by the Broberg Morrey score (BM which was on the right side 45.5 and on the left side 47.5. After the proper physical therapy, four months after the surgery, BM score was 100 on the right side, and 93 on the left one. Conclusion. Surgical treatment and early rehabilitation is the key for the return of good function of both elbows.

  6. Avulsion fractures of the scapula

    Energy Technology Data Exchange (ETDEWEB)

    Heyse-Moore, G.H.; Stoker, D.J.

    1982-11-01

    Fractures of the scapula due to direct violence are relatively common. Wilber and Evans (18) reported 40 scapular fractures and reviewed the literature. All those injured has received direct trauma to the shoulder and they were able to divide their cases into two groups, based on anatomical location and functional results. Scapular fractures due to avulsion of the muscular attachments are uncommon and, as reports of these injuries in the literature are usually confined to single cases, no classification has been established which takes account of the anatomical sites at which these fractures occur and the mechanism of injury involved. In this paper the more common sites of avulsion injury of the scapula are described and illustrated by case reports. In several of these the skeletal injury resulted from muscle contraction against a resisted force on the upper limb during the course of an accident. This mechanism has been implicated in fractures of the coracoid and acromion, but is shown in this paper to contribute to other avulsion fractures.

  7. MR imaging of scaphoid fractures

    DEFF Research Database (Denmark)

    Meincke, Louise; Radev, Dimitar; Eriksen, Rie Østbjerg

    2017-01-01

    the importance of early MRI and hereby predict bone bruise with the help of fat suppression sequence; however, only a limited selection articles compares various fat suppression techniques. The purpose of this prospective study was to compare the short tau inversion recovery (STIR) and T2 fat saturation (FAT SAT...

  8. Sarcopenia and fragility fractures.

    Science.gov (United States)

    Cederholm, T; Cruz-Jentoft, A J; Maggi, S

    2013-02-01

    Sarcopenia, a reduction in muscle mass and muscle function, is considered one of the hallmarks of the aging process. Current views consider sarcopenia as the consequence of multiple medical, behavioural and environmental factors that characterize aged individuals. Likewise bone fragility is known to depend on several pathogenetic mechanisms leading to bone mass loss and reduction of bone strength. Muscle weakness, fear of falls, falls and subsequent fractures are associated to concurrent sarcopenia and osteoporosis and lead to restricted mobility, loss of autonomy and reduced life expectancy. The skeletal and the muscular organ systems are tightly intertwined: the strongest mechanical forces applied to bones are, indeed, those created by muscle contractions that condition bone density, strength, and microarchitecture. Not surprising, therefore, the decrease in muscle strength leads to lower bone strength. The degenerative processes leading to osteoporosis and sarcopenia show many common pathogenic pathways, like the sensitivity to reduced anabolic hormone secretion, increased inflammatory cytokine activity and reduced physical activity. Thus they may also respond to the same kind of treatments. Basic is life-style interventions related to exercise and nutrition. Sufficient vitamin D levels are of importance for both bone and muscle, primarily provided by sun exposure at younger age, and by supplementation at older age. Resistance training several times per week is crucial, and to be effective adequate access to energy and proteins is necessary.

  9. Radiological study of the mandibular fractures

    International Nuclear Information System (INIS)

    Kim, Ju Won; Kim, Kyoung A; Koh, Kwang Jun

    2009-01-01

    To classify and evaluate mandibular fractures. The author classified mandibular fractures of 284 patients who were referred to the Chonbuk National University Dental Hospital during the period from March 2004 to June 2007. This study was based on the conventional radiographs as well as computed tomographs which were pertained to the 284 patients who have had the mandibular fractures including the facial bone fractures. And mandibular fractures were classified with respect to gender, age, site and type of the fractures. More frequently affected gender with mandibular fracture was male with the ratio of 3.3 : 1. The most frequently affected age with mandibular fracture was third decade (38%), followed by fourth decade (16%), second decade (15%), fifth decade (11%), sixth decade (7%), seventh decade (5%), eighth decade (4%), first decade (4%), and ninth decade (0.3%). The most frequent type of mandibular fracture was single fracture (58%), followed by double fracture (39%), triple fracture (3%). The most common site of mandibular fracture was mandibular condyle as 113 cases (27.7%) and the next was mandibular symphysis as 109 cases (26.7%), mandibular angle as 103 cases (25.3%), mandibular body as 83 cases (20.3%) in order. The sum of fracture sites were 408 sites and there were 1.4 fracture sites per one patient. The number of mandible fractures accompanied with facial bone fractures were 41 cases (14.4%). The results showed the most frequent type and common site of mandibular fracture was single fracture and mandibular condyle respectively.

  10. Concomitant and previous osteoporotic vertebral fractures.

    Science.gov (United States)

    Lenski, Markus; Büser, Natalie; Scherer, Michael

    2017-04-01

    Background and purpose - Patients with osteoporosis who present with an acute onset of back pain often have multiple fractures on plain radiographs. Differentiation of an acute osteoporotic vertebral fracture (AOVF) from previous fractures is difficult. The aim of this study was to investigate the incidence of concomitant AOVFs and previous OVFs in patients with symptomatic AOVFs, and to identify risk factors for concomitant AOVFs. Patients and methods - This was a prospective epidemiological study based on the Registry of Pathological Osteoporotic Vertebral Fractures (REPAPORA) with 1,005 patients and 2,874 osteoporotic vertebral fractures, which has been running since February 1, 2006. Concomitant fractures are defined as at least 2 acute short-tau inversion recovery (STIR-) positive vertebral fractures that happen concomitantly. A previous fracture is a STIR-negative fracture at the time of initial diagnostics. Logistic regression was used to examine the influence of various variables on the incidence of concomitant fractures. Results - More than 99% of osteoporotic vertebral fractures occurred in the thoracic and lumbar spine. The incidence of concomitant fractures at the time of first patient contact was 26% and that of previous fractures was 60%. The odds ratio (OR) for concomitant fractures decreased with a higher number of previous fractures (OR =0.86; p = 0.03) and higher dual-energy X-ray absorptiometry T-score (OR =0.72; p = 0.003). Interpretation - Concomitant and previous osteoporotic vertebral fractures are common. Risk factors for concomitant fractures are a low T-score and a low number of previous vertebral fractures in cases of osteoporotic vertebral fracture. An MRI scan of the the complete thoracic and lumbar spine with STIR sequence reduces the risk of under-diagnosis and under-treatment.

  11. Effects of Pre-Fracture Depressive Illness and Post-Fracture Depressive Symptoms on Physical Performance Following Hip Fracture

    Science.gov (United States)

    Rathbun, Alan M.; Shardell, Michelle; Orwig, Denise; Gruber-Baldini, Ann L.; Ostir, Glenn; Hicks, Gregory E.; Miller, Ram R.; Hochberg, Marc C.; Magaziner, Jay

    2016-01-01

    Objectives To compare the impact of pre-fracture depressive illness and post-fracture depressive symptoms on changes in physical performance after hip fracture. Design Longitudinal observational cohort. Setting Baltimore metropolitan area. Participants Older adults (n=255) with hip fracture who underwent Short Physical Performance Battery (SPPB) assessments at two, six, or twelve months post fracture. Measurements Pre-fracture depressive illness (from medical records) at baseline and post-fracture depressive symptoms at two months (using the Center for Epidemiological Studies Depression Scale) were measured. Physical performance was measured using the SPPB, a composite metric of functional status with a score ranging from zero to twelve. Weighted estimating equations assessed mean SPPB over time comparing participants with and without pre-fracture depressive illness and subjects with and without post-fracture depressive symptoms. Results Participants with pre-fracture depressive illness had an SPPB increase of 0.4 units (95% confidence interval [CI]: −0.5, 1.3) from two to six months, smaller than the increase of 1.0 SPPB unit (95% CI: 0.4, 1.6) in those without pre-fracture depressive illness. Participants with post-fracture depressive symptoms had an SPPB increase of 0.2 units (95% CI: −1.0, 1.5) from two to twelve months, while subjects without post-fracture depressive symptoms had a larger increase of 1.2 units (95% CI: 0.6, 1.8) over the same time period. However, pre-fracture depressive illness and post-fracture depressive symptoms were not significantly associated with SPPB. Conclusions Neither pre-fracture depressive illness nor post-fracture depressive symptoms were significantly associated with changes in physical performance after hip fracture, but the magnitude of estimates suggested possible clinically meaningful effects on functional recovery. PMID:27673273

  12. Strangeness Suppression and Color Deconfinement

    Science.gov (United States)

    Satz, Helmut

    2018-02-01

    The relative multiplicities for hadron production in different high energy collisions are in general well described by an ideal gas of all hadronic resonances, except that under certain conditions, strange particle rates are systematically reduced. We show that the suppression factor γs, accounting for reduced strange particle rates in pp, pA and AA collisions at different collision energies, becomes a universal function when expressed in terms of the initial entropy density s0 or the initial temperature T of the produced thermal medium. It is found that γs increases from about 0.5 to 1.0 in a narrow temperature range around the quark-hadron transition temperature Tc ≃ 160 MeV. Strangeness suppression thus disappears with the onset of color deconfinement; subsequently, full equilibrium resonance gas behavior is attained.

  13. Suppression of stratified explosive interactions

    Energy Technology Data Exchange (ETDEWEB)

    Meeks, M.K.; Shamoun, B.I.; Bonazza, R.; Corradini, M.L. [Wisconsin Univ., Madison, WI (United States). Dept. of Nuclear Engineering and Engineering Physics

    1998-01-01

    Stratified Fuel-Coolant Interaction (FCI) experiments with Refrigerant-134a and water were performed in a large-scale system. Air was uniformly injected into the coolant pool to establish a pre-existing void which could suppress the explosion. Two competing effects due to the variation of the air flow rate seem to influence the intensity of the explosion in this geometrical configuration. At low flow rates, although the injected air increases the void fraction, the concurrent agitation and mixing increases the intensity of the interaction. At higher flow rates, the increase in void fraction tends to attenuate the propagated pressure wave generated by the explosion. Experimental results show a complete suppression of the vapor explosion at high rates of air injection, corresponding to an average void fraction of larger than 30%. (author)

  14. Suppressing Quantum Fluctuations in Classicalization

    CERN Document Server

    Vikman, Alexander

    2013-01-01

    We study vacuum quantum fluctuations of simple Nambu-Goldstone bosons - derivatively coupled single scalar-field theories possessing shift-symmetry in field space. We argue that quantum fluctuations of the interacting field can be drastically suppressed with respect to the free-field case. Moreover, the power-spectrum of these fluctuations can soften to become red for sufficiently small scales. In quasiclassical approximation, we demonstrate that this suppression can only occur for those theories that admit such classical static backgrounds around which small perturbations propagate faster than light. Thus a quasiclassical softening of quantum fluctuations is only possible for theories which classicalize instead of having a usual Lorentz invariant and local Wilsonian UV- completion. We illustrate our analysis by estimating the quantum fluctuations for the DBI-like theories.

  15. Radiographic anatomy of the proximal femur: femoral neck fracture vs. transtrochanteric fracture

    Directory of Open Access Journals (Sweden)

    Ana Lecia Carneiro Leão de Araújo Lima

    Full Text Available ABSTRACT OBJECTIVE: To evaluate the correlation between radiographic parameters of the proximal femur with femoral neck fractures or transtrochanteric fractures. METHODS: Cervicodiaphyseal angle (CDA, femoral neck width (FNW, hip axis length (HAL, and acetabular tear drop distance (ATD were analyzed in 30 pelvis anteroposterior view X-rays of patients with femoral neck fractures (n = 15 and transtrochanteric fractures (n = 15. The analysis was performed by comparing the results of the X-rays with femoral neck fractures and with transtrochanteric fractures. RESULTS: No statistically significant differences between samples were observed. CONCLUSION: There was no correlation between radiographic parameters evaluated and specific occurrence of femoral neck fractures or transtrochanteric fractures.

  16. Prevalence of Temporal Bone Fractures in Patients with Mandibular Fractures Using Multidetector-Row CT.

    Science.gov (United States)

    Ogura, I; Kaneda, T; Sasaki, Y; Buch, K; Sakai, O

    2015-06-01

    Temporal bone fracture after mandibular trauma is thought to be rare, and its prevalence has not been reported in the literature. The purpose of this study was to investigate the prevalence of temporal bone fractures in patients with mandibular fractures and the relationship between temporal bone fractures and the mandibular fracture location using multidetector-row computed tomography (MDCT). A prospective study was performed in 201 patients with mandibular fractures who underwent 64-MDCT scans. The mandibular fracture locations were classified as median, paramedian, angle, and condylar types. Statistical analysis for the relationship between prevalence of temporal bone fractures and mandibular fracture locations was performed using χ(2) test with Fisher's exact test. A P-value fracture was 3.0 % of all patients with mandibular fractures and 19.0 % of those with multiple mandibular fractures of paramedian and condylar type. There was a significant relationship between the incidence of temporal bone fracture and the paramedian- and condylar-type mandibular fracture (P = 0.001). Multiple mandibular fractures of paramedian and condylar type may be a stronger indicator for temporal bone fractures. This study suggests that patients with mandibular fracture, especially the paramedian and condylar type, should be examined for coexisting temporal bone fracture using MDCT.

  17. Subtrochanteric fractures in bisphosphonate-naive patients

    DEFF Research Database (Denmark)

    Adachi, Jonathan D; Lyles, Kenneth; Boonen, Steven

    2011-01-01

    Our purpose was to characterize the risks of osteoporosis-related subtrochanteric fractures in bisphosphonate-naive individuals. Baseline characteristics of patients enrolled in the HORIZON-Recurrent Fracture Trial with a study-qualifying hip fracture were examined, comparing those who sustained...... incident subtrochanteric fractures with those sustaining other hip fractures. Subjects were bisphosphonate-naive or had a bisphosphonate washout period of 6-24 months and subsequently received an annual infusion of zoledronic acid 5 mg or placebo after low-trauma hip-fracture repair. In total, 2,127 men...... with other qualifying hip fractures reported prior bisphosphonate use. Only one further subtrochanteric fracture occurred in each treatment group over an average 2-year patient follow-up. Subtrochanteric fractures are not uncommon in bisphosphonate-naive patients. Extreme difficulties with mobility may...

  18. Atypical femoral fractures related to bisphosphonate therapy

    Directory of Open Access Journals (Sweden)

    Tarun Pankaj Jain

    2012-01-01

    Full Text Available Bisphosphonates (BP are a commonly prescribed class of drugs for the prevention of osteoporosis-related fractures. Paradoxically, however, they have recently been linked to atypical fractures in the shaft of the femur. Since many physicians including radiologists, are not aware of this entity, the incidence is likely underreported. These fractures usually occur in the sub-trochanteric region of the femur in the setting of low-energy trauma. It starts as a fracture line involving the lateral cortex and then progresses medially to give rise to a complete fracture. The fracture line is usually transverse, and there is a medial spike associated with a complete fracture. These fractures can be bilateral. Awareness of these atypical fractures and their radiological appearance should enable their early and accurate detection and thus lead to specific treatment.

  19. Changes in Fracture Compliance Due to Roughness

    Science.gov (United States)

    Ahmadi, M.; Dahi Taleghani, A.; Sayers, C. M.

    2014-12-01

    Rock fractures are a source of extra compliance, and the effect of fractures on seismic wave propagation can be quantified in terms of the normal and shear fracture compliances. However, fractures are usually assumed to be smooth discontinuities with no preferential orientation for slippage. This assumption rarely matches with outcrop studies. Irregularities always exist on the fracture faces in the form of hackles, slickensides, or gouges. These features may facilitate movement in one direction while oppose shear deformation in the other direction due to the saw-tooth structure of irregularities. This direction dependence of the shear compliance of the fracture planes may affect the measured ratio of normal to shear fracture compliance for different locations along the fracture. Furthermore, these effects may contribute to the pressure dependence of fracture compliance, because fracture opening or shear sliding would change the number of asperities in contact and, consequently, affect the ratio of the normal to shear compliance. Here, we use numerical modeling to investigate the change in normal and shear compliance caused by the presence of slickensides. The effect of the hackles' geometry, the friction coefficient between the fracture surfaces, and the offset between the fracture faces will be discussed in this presentation. Our analysis shows that even in the case of low asperity angles or small offsets between the fracture faces, the fracture compliance ratio could be greater than one, in agreement with several field observations available in the literature.

  20. Mechanisms of shark skin suppression by novel polymer processing aids

    Science.gov (United States)

    Wagner, M. H.; Himmel, T.; Kulikov, O.; Hornung, K.

    2014-05-01

    The extrusion rate of polyethylene (PE) with narrow molar weight distribution, as e.g. metallocen catalysed polyethylene (m-PE), is limited by melt fracture. The first level of fracture is a surface defect called sharkskin. Common polymer processing aids based on fluorinated polymers shift the onset of sharkskin to higher extrusion rates by creating a "low energy surface" at the die wall and promoting wall slip. Alternatively, Kulikov et al. [1, 2] suggested thermoplastic elastomers (TPE) for sharkskin suppression, and Müller [3] showed the suitability of some TPEs as polymer processing aids. We investigated the slip velocity of several TPEs against steel, and the slip velocity in a polymeric interface between polyethylene (PE) and TPE by rotational plate-plate rheometry in the Newtonian flow regime. TPEs with lower viscosities showed higher slip velocities against steel. However, the interfacial slip velocities between PE and TPE were found to be viscosity independent. In both cases, the slip velocity was found to be proportional to the applied shear stress.

  1. In the suppression of regge cut contributions

    International Nuclear Information System (INIS)

    Chia, S.P.

    1975-07-01

    It is shown that contributions of reggeon-pomeron cuts are suppressed in amplitudes with opposite natural to the reggeon. This suppression grows logarithmically with energy. The suppression in the πP cut is, however, found to be weak. Consequence on conspiracy is discussed

  2. Secretoneurin suppresses cardiac hypertrophy through suppression of oxidant stress.

    Science.gov (United States)

    Chen, Hua-Li; Liu, Yan; Jiang, Wei; Wang, Xiao-Xiao; Yuan, Guo-Lin; Zhao, Yi-Lin; Yu, Chao

    2018-03-05

    The neuropeptide secretoneurin (SN) plays protective roles in myocardial ischemia. In the present study, the effect of SN in cardiac hypertrophy was investigated. We observed that, in isoproterenol (ISO) treatment induced cardiac or cardiomyocytes hypertrophy, a marked increase in the expression of endogenous SN in mouse plasma, myocardium and primary-cultured cardiomyocytes occurs. In hypertrophic mice, the heart size, heart weight/body weight (HW/BW) ratio, cardiomyocyte size, and atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) expression were significantly higher than those in controls but were effectively suppressed by SN gene therapy. Similarly, the protective effects of SN were also observed in cultured cardiomyocytes following ISO treatment. SN significantly increased the activity of catalase and superoxide dismutase (SOD) in parallel with the decrease in reactive oxygen species levels in cardiomyocytes. We observed that SN evoked the activation of all of the AMPK, P38/MAPK and ERK/MAPK pathways in cardiomyocytes, but pretreatment with only AMPK inhibitor (compound C) and ERK1/2/MAPK inhibitor (PD98059) counteracted the protective effects of SN against cardiomyocyte hypertrophy and the suppressive effects of SN on oxidant stress in cardiomyocytes. These results indicated that endogenous SN is induced in hypertrophic cardiomyocytes, and may play a protective role in the pathogenesis of cardiac hypertrophy. These results suggest that exogenous SN supplementation protects the cardiac hypertrophy induced by ISO treatment through the activation of AMPK and ERK/MAPK pathways, thus upregulating antioxidants and suppressing oxidative stress. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. The fibular reciprocal fracture in tibial shaft fractures caused by indirect violence.

    Science.gov (United States)

    Böstman, O; Hänninen, A

    1982-01-01

    A series of 200 consecutive junctional middle-distal third tibial shaft fractures caused by indirect violence was analysed with emphasis on the significance of the location of the fibular reciprocal fracture. The fibular fracture was eccentric, i.e. subcapital or malleolar, in 96 patients. This fracture pattern was encountered only in adults and showed significantly more severe initial displacement and with conservative treatment longer union time than fractures with intact fibula or the fibular fracture on the same level with the tibial fracture. Especially for fractures with an initial lateral displacement of more than one half of the diaphyseal diameter and with an eccentric fibular reciprocal fracture internal fixation with uncomplicated postoperative course shortened the union time and prevented residual deformity. A malleolar fibular fracture and the rare separate displaced posterior triangle fracture should in addition as such be regarded as indications for osteosynthesis.

  4. Occult posterior pelvic ring fractures in elderly patients with osteoporotic pubic rami fractures.

    Science.gov (United States)

    Lau, Tak-wing; Leung, Frankie

    2010-08-01

    To evaluate postoperative walking status of elderly patients with osteoporotic pubic rami fractures with or without posterior pelvic ring fractures. 33 women and 4 men aged 66 to 95 (mean, 85) years presented with osteoporotic pubic rami fractures after a fall. 22 (59%) of the patients had additional posterior pelvic ring fractures (9 had lateral compression type-II fractures involving the ilium and 13 had lateral compression type-I fractures involving the sacroalar region). Seven of the 9 patients with lateral compression type-II fractures underwent open reduction and internal fixation using plates and/ or screws. The remaining 30 patients were treated conservatively. Postoperative walking status was similar in elderly patients with osteoporotic pubic rami fractures with or without posterior pelvic ring fractures. Posterior pelvic ring fractures are easily missed in elderly patients with pubic rami fractures. Routine computed tomography of the pelvis is useful in making the diagnosis.

  5. Selective perceptions of hydraulic fracturing.

    Science.gov (United States)

    Sarge, Melanie A; VanDyke, Matthew S; King, Andy J; White, Shawna R

    2015-01-01

    Hydraulic fracturing (HF) is a focal topic in discussions about domestic energy production, yet the American public is largely unfamiliar and undecided about the practice. This study sheds light on how individuals may come to understand hydraulic fracturing as this unconventional production technology becomes more prominent in the United States. For the study, a thorough search of HF photographs was performed, and a systematic evaluation of 40 images using an online experimental design involving N = 250 participants was conducted. Key indicators of hydraulic fracturing support and beliefs were identified. Participants showed diversity in their support for the practice, with 47 percent expressing low support, 22 percent high support, and 31 percent undecided. Support for HF was positively associated with beliefs that hydraulic fracturing is primarily an economic issue and negatively associated with beliefs that it is an environmental issue. Level of support was also investigated as a perceptual filter that facilitates biased issue perceptions and affective evaluations of economic benefit and environmental cost frames presented in visual content of hydraulic fracturing. Results suggested an interactive relationship between visual framing and level of support, pointing to a substantial barrier to common understanding about the issue that strategic communicators should consider.

  6. Conservative management of fracture scaphoid

    Directory of Open Access Journals (Sweden)

    Mittal V

    2006-01-01

    Full Text Available Background : Conservative management of fracture scaphoid with cast is still the most common modality of management, but the results following this protocol are not always satisfactory. Methods : Twenty five patients with fracture scaphoid were treated with a below elbow scaphoid cast and were followed up for minimum duration of one year. On follow up patients were examined clinicoradiologically and functional results were evaluated using the modification of the Mayo wrist scoring chart. Results : Nineteen fractures showed union, two were malunited and five went for nonunion. Two fractures developed avascular necrosis and three patients had wrist arthritis on follow up. Nineteen patients had excellent functional results, one had good results and six patients had poor results. Patients with delayed diagnosis had nonunion and poor functional results. Patients with premature removal of cast had comparatively inferior results Conclusion : For displaced unstable fracture, open reduction and internal fixation should be the preferred modality of treatment as cast treatment gives unacceptably high rate of malunion and nonunion with poor functional results.

  7. Acetabular Fractures in the Elderly

    Directory of Open Access Journals (Sweden)

    Joshua L. Gary

    2015-01-01

    Full Text Available As the population ages, the incidence of osteoporotic fractures, including those of the pelvis and acetabulum, continues to rise. Treatment of the elder patients with an acetabular fracture is much more controversial than the treatment of younger patients with similar injuries, where prevention of posttraumatic arthritis and total hip replacement remains optimal to limit need for revision arthroplasty. Arthroplasty for fractures of the proximal femur is commonplace in an older population and is a mainstay of treatment to promote early mobilization and weight-bearing. However, even with acute total hip arthroplasty for a geriatric acetabular fracture, most surgeons do not permit immediate weight-bearing postoperatively. Therefore, controversy regarding optimal treatment of these challenging fractures persists. Four treatment options have emerged: nonoperative treatment with early mobilization, open reduction and internal fixation (ORIF, limited open reduction and percutaneous screw fixation, and acute total hip arthroplasty. The exact indications and benefits of each treatment remain unknown. This article serves as a review of these four treatments and the data existing to support them.

  8. Test-Free Fracture Toughness

    Science.gov (United States)

    Minnetyan, Levon; Chamis, Christos C. (Technical Monitor)

    2003-01-01

    Computational simulation results can give the prediction of damage growth and progression and fracture toughness of composite structures. The experimental data from literature provide environmental effects on the fracture behavior of metallic or fiber composite structures. However, the traditional experimental methods to analyze the influence of the imposed conditions are expensive and time consuming. This research used the CODSTRAN code to model the temperature effects, scaling effects and the loading effects of fiber/braided composite specimens with and without fiber-optic sensors on the damage initiation and energy release rates. The load-displacement relationship and fracture toughness assessment approach is compared with the test results from literature and it is verified that the computational simulation, with the use of established material modeling and finite element modules, adequately tracks the changes of fracture toughness and subsequent fracture propagation for any fiber/braided composite structure due to the change of fiber orientations, presence of large diameter optical fibers, and any loading conditions.

  9. CT of the acetabular fracture

    International Nuclear Information System (INIS)

    Magu, N.K.; Moda, S.K.; Magu, Sarita; Airon, R.K.

    1993-01-01

    Nine patients with 10 injured hips, in whom acetabular fractures with posterior dislocation of the femoral heads were demonstrated on initial radiography, underwent CT. CT was found superior in detecting the presence of intra-articular bony fragments in Group A patients (40%), where conventional radiography exhibited congruous manipulative reduction of the joint surfaces. The spatial position of the intra-articular fragments could not be ascertained on conventional radiography in 40% of the patients in Group B, in whom congruous manipulative reduction could not be achieved and subluxation of the femoral heads was observed. On conventional radiography, it was also difficult to appreciate the presence of intra-articular fragments in 60% of the patients in Group B, in whom either the dislocation could not be reduced (40%) or the femoral head redislocated after close manipulative reduction (20%). CT proved its superiority in detecting the extent of the fractures of the acetabular roof, posterior and anterior acetabular margins, the quadrilateral plate along with rotation of the acetabular columns and displacements of the major fractured fragments. Associated fractures of the sacrum (20%), and traumatic lesions of the sacro-iliac joint (20%), not apparent on conventional radiography were well demonstrated by CT. As a result of CT, the treatment was changed in 60% of the patients in Group A, and 40% in Group B. In addition, CT permitted a better choice of surgical technique in the management of acetabular fractures. (author). 9 refs., 3 figs., 2 tabs

  10. Fracture toughness of irradiated beryllium

    International Nuclear Information System (INIS)

    Beeston, J.M.

    1978-01-01

    The fracture toughness of nuclear grade hot-pressed beryllium upon irradiation to fluences of 3.5 to 5.0 x 10 21 n/cm 2 , E greater than 1 MeV, was determined. Procedures and data relating to a round-robin test contributing to a standard ASTM method for unirradiated beryllium are discussed in connection with the testing of irradiated specimens. A porous grade of beryllium was also irradiated and tested, thereby enabling some discrimination between the models for describing the fracture toughness behavior of porous beryllium. The fracture toughness of unirradiated 2 percent BeO nuclear grade beryllium was 12.0 MPa m/sup 1 / 2 /, which was reduced 60 percent upon irradiation at 339 K and testing at 295 K. The fracture toughness of a porous grade of beryllium was 13.1 MPa m/sup 1 / 2 /, which was reduced 68 percent upon irradiation and testing at the same conditions. Reasons for the reduction in fracture toughness upon irradiation are discussed

  11. Can long-term bisphosphonate use causes low-energy fractures? A case report.

    Science.gov (United States)

    Dandinoğlu, T; Akarsu, S; Karadeniz, M; Tekin, L; Arıbal, S; Kıralp, M Z

    2014-02-01

    Bisphosphonates are inorganic pyrophosphate analog which accumulate on the bone surface, cause osteoclast apoptosis, and inhibit bone resorption. The nitrogen-containing bisphosphonates continue to be the drug of choice for the treatment of osteoporosis in both men and women. Although histomorphometric studies including bone biopsies have not shown any evidence of microcracks, recent studies have revealed that potent bisphosphonates are responsible for the oversuppression of bone turnover leading to microdamages, reduced bone strength, and increased fracture risk. There are individual cases reporting atypical femoral fractures and severely suppressed bone turnover along with long-term (≥ 5 years) use of biphosphonates. In this study, we report on a 74-year-old woman with a history of continuous alendronate use for nearly 16 years who presented to the emergency department with right proximal humerus and left femur fracture.

  12. Multiscale Polymer Composites: A Review of the Interlaminar Fracture Toughness Improvement

    Directory of Open Access Journals (Sweden)

    Vishwesh Dikshit

    2017-10-01

    Full Text Available Composite materials are prone to delamination as they are weaker in the thickness direction. Carbon nanotubes (CNTs are introduced as a multiscale reinforcement into the fiber reinforced polymer composites to suppress the delamination phenomenon. This review paper presents the detailed progress made by the scientific and research community to-date in improving the Mode I and Mode II interlaminar fracture toughness (ILFT by various methodologies including the effect of multiscale reinforcement. Methods of measuring the Mode I and Mode II fracture toughness of the composites along with the solutions to improve them are presented. The use of different methodologies and approaches along with their performance in enhancing the fracture toughness of the composites is summarized. The current state of polymer-fiber-nanotube composites and their future perspective are also deliberated.

  13. The radiation swelling effect on fracture properties and fracture mechanisms of irradiated austenitic steels. Part I. Ductility and fracture toughness

    Energy Technology Data Exchange (ETDEWEB)

    Margolin, B., E-mail: mail@crism.ru; Sorokin, A.; Shvetsova, V.; Minkin, A.; Potapova, V.; Smirnov, V.

    2016-11-15

    The radiation swelling effect on the fracture properties of irradiated austenitic steels under static loading has been studied and analyzed from the mechanical and physical viewpoints. Experimental data on the stress-strain curves, fracture strain, fracture toughness and fracture mechanisms have been represented for austenitic steel of 18Cr-10Ni-Ti grade (Russian analog of AISI 321 steel) irradiated up to neutron dose of 150 dpa with various swelling. Some phenomena in mechanical behaviour of irradiated austenitic steels have been revealed and explained as follows: a sharp decrease of fracture toughness with swelling growth; untypical large increase of fracture toughness with decrease of the test temperature; some increase of fracture toughness after preliminary cyclic loading. Role of channel deformation and channel fracture has been clarified in the properties of irradiated austenitic steel and different tendencies to channel deformation have been shown and explained for the same austenitic steel irradiated at different temperatures and neutron doses.

  14. Background Suppression Effects on Signal Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Burr, Tom [Los Alamos National Laboratory

    2008-01-01

    Gamma detectors at border crossings are intended to detect illicit nuclear material. One performance challenge involves the fact that vehicles suppress the natural background, thus potentially reducing detection probability for threat items. Methods to adjust for background suppression have been considered in related but different settings. Here, methods to adjust for background suppression are tested in the context of signal estimation. Adjustment methods include several clustering options. We find that for the small-to-moderate suppression magnitudes exhibited in the analyzed data, suppression adjustment is only moderatel helpful in locating the signal peak, and in estimating its width or magnitude.

  15. Plain film analysis of acetabular fracture

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Soo; Han, Sang Suk; Yoon, Eu Giene; Cha, Seong Sook; Eun, Tchoong Kie; Chung, Duck Hwan [Inje Medical College Paik Hospital, Pusan (Korea, Republic of)

    1986-02-15

    Acetabular fracture can result in severe limitation of the motion of the hip joint, which supports total weight of human body. Because of different methods of surgical approach according to fracture type, precise interpretation of X-ray films of acetabular fracture is required. We reviewed 38 cases of simple X-ray films showing acetabular fracture. The results were as follows: 1. Almost 60% of the cases-were in their 2nd and 3rd decades. 2. Twenty cases were male, and 18 cases were female. 3. The most common cause of the injury was traffic accident (33 cases, 86.8%), followed by fall down (4 cases, 10.5%), and slip down (1 case, 2.7%). 4. Elementary fractures were 21 cases (55.3%), and associated fractures were 17 cases (44.7%). 5. Among elementary fractures, posterior wall fractures were 9 cases (23.7%), followed by anterior column fractures (8 cases, 21.1%), anterior wall fractures (4 cases, 10.5%). 6. Among associated fractures, T-shaped fractures were 8 cases (21.1%), followed by both column fractures (6 cases, 15.8%), anterior and hemitransverse fractures (3 cases, 7.8%). 7. Other pelvic bone fractures associated with the acetabular fracture were as follows: fractures of contralateral pubic rami (6 cases, 15.8%) contralateral iliac bone (1 case, 2.6%) and ipsilateral iliac bone (1 case, 2.6%). 8. Injuries of other organs adjacent to the acetabulum were as follows: rupture of the bladder (3 cases, 7.9%), urethra (2 cases, 5.3%) and uterus (1 cases, 2.6%)

  16. Plain film analysis of acetabular fracture

    International Nuclear Information System (INIS)

    Kim, Chang Soo; Han, Sang Suk; Yoon, Eu Giene; Cha, Seong Sook; Eun, Tchoong Kie; Chung, Duck Hwan

    1986-01-01

    Acetabular fracture can result in severe limitation of the motion of the hip joint, which supports total weight of human body. Because of different methods of surgical approach according to fracture type, precise interpretation of X-ray films of acetabular fracture is required. We reviewed 38 cases of simple X-ray films showing acetabular fracture. The results were as follows: 1. Almost 60% of the cases-were in their 2nd and 3rd decades. 2. Twenty cases were male, and 18 cases were female. 3. The most common cause of the injury was traffic accident (33 cases, 86.8%), followed by fall down (4 cases, 10.5%), and slip down (1 case, 2.7%). 4. Elementary fractures were 21 cases (55.3%), and associated fractures were 17 cases (44.7%). 5. Among elementary fractures, posterior wall fractures were 9 cases (23.7%), followed by anterior column fractures (8 cases, 21.1%), anterior wall fractures (4 cases, 10.5%). 6. Among associated fractures, T-shaped fractures were 8 cases (21.1%), followed by both column fractures (6 cases, 15.8%), anterior and hemitransverse fractures (3 cases, 7.8%). 7. Other pelvic bone fractures associated with the acetabular fracture were as follows: fractures of contralateral pubic rami (6 cases, 15.8%) contralateral iliac bone (1 case, 2.6%) and ipsilateral iliac bone (1 case, 2.6%). 8. Injuries of other organs adjacent to the acetabulum were as follows: rupture of the bladder (3 cases, 7.9%), urethra (2 cases, 5.3%) and uterus (1 cases, 2.6%).

  17. [BIOMECHANICS STUDY ON ACETABULAR POSTERIOR WALL FRACTURE].

    Science.gov (United States)

    Tang, Yang; Hu Xiaopeng; Lu, Xiongwei; Zhang, Yuntong; Zhang, Chuncai; Wang, Panfeng; Zhao, Xue

    2015-08-01

    To study the experimental biomechanics of acetabular posterior wall fractures so as to provide theoretical basis for its clinical treatment. Six formalin-preserved cadaveric pelvises were divided into groups A and B (n=3). The fracture models of superior-posterior wall and inferior-posterior wall of the acetabulum were created on both hips in group A; fractures were fixed with two interfragmentary screws and a locking reconstruction plate. The fracture models of superior-posterior wall of acetabulum were created on both hips in group B; fractures were fixed with two interfragmentary screws and a locking reconstruction plate at one side, and with acetabular tridimensional memory fixation system (ATMFS) at the other side. The biomechanical testing machine was used to load to 1 500 N at 10 mm/min speed for 30 seconds. The displacement of superior and inferior fracture sites was analyzed with the digital image correlation technology. No fracture or internal fixation breakage occurred during loading and measuring; the displacement valuess of the upper and lower fracture lines were below 2 mm (the clinically tolerable maximum value) in 2 groups. In group A, the displacement values of the upper and lower fracture lines at superior-posterior wall fracture site were significantly higher than those at inferior-posterior wall fracture site (P fracture line were significantly higher than those of lower fracture line (P fracture types. In group B, the displacement values of the upper and lower fracture lines at the side fixed with screws and a locking reconstruction plate were similar to the values at the side fixed with ATMFS, all being close to 2 mm; the displacement values of the upper fracture line were significantly higher than those of lower fracture line (P acetabulum is much greater than that of the inferior-posterior wall of acetabulum and they should be discriminated, which might be the reasons of reduction loss, femoral head subluxation, and traumatic arthritis

  18. Incidence and epidemiology of tibial shaft fractures

    DEFF Research Database (Denmark)

    Larsen, Peter; Elsøe, Rasmus; Hansen, Sandra Hope

    2015-01-01

    Introduction: The literature lacks recent population-based epidemiology studies of the incidence, trauma mechanism and fracture classification of tibial shaft fractures. The purpose of this study was to provide up-to-date information on the incidence of tibial shaft fractures in a large and compl......Introduction: The literature lacks recent population-based epidemiology studies of the incidence, trauma mechanism and fracture classification of tibial shaft fractures. The purpose of this study was to provide up-to-date information on the incidence of tibial shaft fractures in a large...... the highest frequency between the age of 30 and 40. AO-type 42-A1 was the most common fracture type, representing 34% of all tibial shaft fractures. The majority of tibial shaft fractures occur during walking, indoor activity and sports. The distribution among genders shows that males present a higher...... frequency of fractures while participating in sports activities and walking. Women present the highest frequency of fractures while walking and during indoor activities. Conclusion: This study shows an incidence of 16.9/100,000/year for tibial shaft fractures. AO-type 42-A1 was the most common fracture type...

  19. Corrective Septorhinoplasty in Acute Nasal Bone Fractures.

    Science.gov (United States)

    Kim, Jisung; Jung, Hahn Jin; Shim, Woo Sub

    2018-03-01

    Closed reduction is generally recommended for acute nasal bone fractures, and rhinoplasty is considered in cases with an unsatisfactory outcome. However, concomitant rhinoplasty with fracture reduction might achieve better surgical outcomes. This study investigated the surgical techniques and outcomes in patients who underwent rhinoplasty and fracture reduction concomitantly, during the acute stage of nasal bone fracture. Forty-five patients who underwent concomitant rhinoplasty and fracture reduction were enrolled. Nasal bone fractures were classified into three major types (type I, simple fracture; type II, fracture line that mimics nasal osteotomy; and type III, comminuted fracture) based on computed tomography images and preoperative facial images. Two independent otolaryngology-head and neck surgeons evaluated the surgical outcomes and telephone based survey were made to evaluate patients satisfaction. Among 45 patients, there were 39 males and 6 females. Type I was the commonest type of fracture with 18 patients (40%), while the most frequently used surgical technique for corrective surgery was dorsal augmentation with 44 patients (97.8%). The mean visual analogue scale satisfaction score of the surgeons and patients were 7.62 and 8, respectively, with no significant differences between fracture types. Concomitant rhinoplasty with fracture reduction can be performed for acute nasal bone fracture patients, and it might lead to better aesthetic outcomes.

  20. Characterization the microstructure of pulsed Nd:YAG welding method in low frequencies; correlation with tensile and fracture behavior in laser-welded nitinol joints

    Science.gov (United States)

    Shojaei Zoeram, Ali; Rahmani, Aida; Asghar Akbari Mousavi, Seyed Ali

    2017-05-01

    The precise controllability of heat input in pulsed Nd:YAG welding method provided by two additional parameters, frequency and pulse duration, has made this method very promising for welding of alloys sensitive to heat input. The poor weldability of Ti-rich nitinol as a result of the formation of Ti2Ni IMC has deprived us of the unique properties of this alloy. In this study, to intensify solidification rate during welding of Ti-rich nitinol, pulsed Nd:YAG laser beam in low frequency was employed in addition to the employment of a copper substrate. Specific microstructure produced in this condition was characterized and the effects of this microstructure on tensile and fracture behavior of samples welded by two different procedures, full penetration and double-sided method with halved penetration depth for each side were investigated. The investigations revealed although the combination of low frequencies, the use of a high thermal conductor substrate and double-sided method eliminated intergranular fracture and increased tensile strength, the particular microstructure, built in the pulsed welding method in low frequencies, results to the formation of the longitudinal cracks during the first stages of tensile test at weld centerline. This degrades tensile strength of welded samples compared to base metal. The results showed samples welded in double-sided method performed much better than samples welded in full penetration mode.

  1. Humeral Shaft Fracture: Intramedullary Nailing.

    Science.gov (United States)

    Konda, Sanjit R; Saleh, Hesham; Fisher, Nina; Egol, Kenneth A

    2017-08-01

    This video demonstrates the technique of intramedullary nailing for a humeral shaft fracture. The patient is a 30-year-old man who sustained a gunshot wound to his right arm. The patient was indicated for humeral nailing given the comminuted nature of the diaphysis and to allow for minimal skin incisions. Other relative indications include soft-tissue compromise about the arm precluding a large surgical exposure. This video presents a case of a comminuted humeral shaft fracture treated with an intramedullary nail. Anatomic reduction and stable fixation was obtained with this technique. This case demonstrates a soft-tissue sparing technique of humeral shaft fixation using a humeral intramedullary nail. The technique is easy to perform and has significant benefits in minimizing surgical exposure, decreasing operative time, and decreasing blood loss. In the correct clinical setting, humeral nailing provides an expeditious form of fixation that restores length, alignment, and rotation of the fracture humeral diaphysis.

  2. Fracture as a material sink

    Science.gov (United States)

    Volokh, K. Y.

    2017-12-01

    Cracks are created by massive breakage of molecular or atomic bonds. The latter, in its turn, leads to the highly localized loss of material, which is the reason why even closed cracks are visible by a naked eye. Thus, fracture can be interpreted as the local material sink. Mass conservation is violated locally in the area of material failure. We consider a theoretical formulation of the coupled mass and momenta balance equations for a description of fracture. Our focus is on brittle fracture and we propose a finite strain hyperelastic thermodynamic framework for the coupled mass-flow-elastic boundary value problem. The attractiveness of the proposed framework as compared to the traditional continuum damage theories is that no internal parameters (like damage variables, phase fields, etc.) are used while the regularization of the failure localization is provided by the physically sound law of mass balance.

  3. Rio Blanco massive hydraulic fracture

    Energy Technology Data Exchange (ETDEWEB)

    1973-01-01

    The Piceance Basin in Colorado contains an estimated 600 trillion cu ft of natural gas in place. Both the Rulison and Rio Blanco events have been detonated to determine the feasibility of nuclear fracturing to stimulate natural gas production in this basin. A demonstration program to test the relative effectiveness of massive hydraulic fracturing (MHF) to achieve natural gas production stimulation from the same gas reservoir is presented. Details are included on MHF design parameters, including surface and subsurface equipment, pumping requirements, evaluation of fracturing results, and all associated test programs; site characteristics and preparation; proposal for gas utilization program; environmental surveillance and comparative analysis of environmental aspects of MHF and nuclear stimulation; gas delivery estimates; project administration; and costs and scheduling.

  4. PRODUCTIVITY OF FRACTURED HORIZONTAL WELLS

    Directory of Open Access Journals (Sweden)

    Stjepan Antolović

    2009-12-01

    Full Text Available The interest and performance of horizontal drilling and completions has increased during the last two decades. Horizontal wells are advantageous compared to vertical wells in thin reservoirs, reservoirs with favorable vertical permeability and reservoirs with water and gas coning problems. In many reservoirs, the ratio of horizontal permeability to the vertical permeability is substantially larger than one and often is close to 10. Thus, these reservoirs are very good candidates for hydraulic fracturing. By hydraulic fracturing one or more fractures are created, which can be longitudinal or orthogonal. By that, flow is altered and it mostly conducts horizontally through reservoir toward horizontal wellbore. With this altered flow, fluid is produced faster, with less pressure loss by fluid unit of produced fluid. Some of the existing mathematical models to determine the productivity of multifractured horizontal wells are presented in this work (the paper is published in Croatian.

  5. Suppression effects on musical and verbal memory.

    Science.gov (United States)

    Schendel, Zachary A; Palmer, Caroline

    2007-06-01

    Three experiments contrasted the effects of articulatory suppression on recognition memory for musical and verbal sequences. In Experiment 1, a standard/comparison task was employed, with digit or note sequences presented visually or auditorily while participants remained silent or produced intermittent verbal suppression (saying "the") or musical suppression (singing "la"). Both suppression types decreased performance by equivalent amounts, as compared with no suppression. Recognition accuracy was lower during suppression for visually presented digits than during that for auditorily presented digits (consistent with phonological loop predictions), whereas accuracy was equivalent for visually presented notes and auditory tones. When visual interference filled the retention interval in Experiment 2, performance with visually presented notes but not digits was impaired. Experiment 3 forced participants to translate visually presented music sequences by presenting comparison sequences auditorily. Suppression effects for visually presented music resembled those for digits only when the recognition task required sensory translation of cues.

  6. [Ilizarov fixation of supramalleolar fractures].

    Science.gov (United States)

    Mseddi, M B E; Mseddi, M; Siala, A; Dahmene, J; Ben Hamida, R; Ben Ayeche, M

    2005-02-01

    Supramalleolar fractures are generally considered to be a difficult surgical challenge because they occur in a area where the tibia lies superficially with a precarious blood supply to the skin, exposing to the risk of infection and necrosis after internal fixation. These fractures are also situated close to the tibiotalar joint making centromedullary nailing difficult, even with distal locking. The Ilizarov external fixator could be an attractive alternative in this indication. We report a series of 17 supramalleolar fractures in 17 patients, 14 men and 3 women, treated with the Ilizarov external fixator between 1991 and 2001. Most were traffic accident victims and most had complex fractures resulting from high-energy trauma. There were many associated lesions. Fractures were open in ten patients. The Ilizarov fixator was used as the first intention treatment in seven patients and as a second line treatment in ten. The system allowed early weight bearing in all patients. Tolerance was generally good with a relatively low rate of superficial pin track infections (two cases). There was one case of osteitis which developed in a patient with an open fracture. There were no thromboembolic complications and no nerve involvement. Bone healing was achieved within three months in thirteen patients. There were three cases of late healing which were treated by the ascension technique using a cancellous graft and fibular osteotomy. The overall healing rate with this method was 94%. The one case of nonunion was successfully treated with an inter tibiofibular graft. The overall functional outcome was satisfactory in 76% of the patients, based on the Alho-Klemm criteria. Axial deformation predominated in the frontal plane: three patients had > 10 degrees varus in one case. These results could be improved by better operative technique. We advocate installing the patient in the supine position with transcalcaneal traction allowing good restitution of the leg axis. The assembly

  7. Hydrogen fracture toughness tester completion

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Michael J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-30

    The Hydrogen Fracture Toughness Tester (HFTT) is a mechanical testing machine designed for conducting fracture mechanics tests on materials in high-pressure hydrogen gas. The tester is needed for evaluating the effects of hydrogen on the cracking properties of tritium reservoir materials. It consists of an Instron Model 8862 Electromechanical Test Frame; an Autoclave Engineering Pressure Vessel, an Electric Potential Drop Crack Length Measurement System, associated computer control and data acquisition systems, and a high-pressure hydrogen gas manifold and handling system.

  8. Tibial tuberosity fractures in adolescents.

    Science.gov (United States)

    Frey, Steven; Hosalkar, Harish; Cameron, Danielle B; Heath, Aaron; David Horn, B; Ganley, Theodore J

    2008-12-01

    Tibial tuberosity fractures in adolescents are uncommon. We retrospectively reviewed all tibial tuberosity fractures in adolescents (10-19) who presented to our level 1 pediatric trauma center over a 7-year period to review fracture morphology, mechanism of injury, fracture management including return to play, as well as complications. Additionally, we present a review of the literature and treatment algorithm. We reviewed the clinical charts and radiographs of consecutive patients with tibial tuberosity fractures between 01 January 2000 and 01 January 2007. Data parameters included the following: patients age and gender, involved side, injury classification, co-morbidities, mechanism of injury, treatment, return to activity and complications. Data were extracted and reviewed, and a treatment algorithm is proposed with some additional insights into the epidemiology of the injury. Nineteen patients met the inclusion criteria. There were 19 patients with 20 tibial tuberosity fractures. The mean age was 13.7 years. There were 18 males and 1 female patient. There were nine left-sided injuries and eleven right-sided including one patient with bilateral fractures. Mechanism of injuries included basketball injury (8), running injury (5), football injury (3), fall from a scooter (2), high jump (1) and fall (1). Co-morbidities included three patients with concurrent Osgood-Schlatter disease and one with osteogenesis imperfecta. All were treated with ORIF, including arthroscopic-assisted techniques in two cases. Complications included four patients with pre-operative presentation of compartment syndrome all requiring fasciotomy, one post-operative stiffness and one painful hardware requiring removal. Range of motion was started an average of 4.3 weeks post-operatively and return to play was an average of 3.9 months post-operatively. Although uncommon, tibial tuberosity fractures in adolescents are clinically important injuries. Early recognition and treatment (closed or open

  9. Trapezoid fracture caused by assault

    Directory of Open Access Journals (Sweden)

    Malshikare V

    2007-01-01

    Full Text Available In this report we describe an open fracture of trapezoid and break in anterior cortex of capitate due to assault in a young adult male. Direct impact force of a sharp object to the first web space caused the above fractures. Open reduction and internal fixation of the trapezoid was carried out using Kirschner wires. Cut extensor tendons, extensor retaniculum, capsule, adductor pollicis muscle, first dorsal interosseous muscle, soft tissue and overlying skin were sutured primarily. Three months after the operation the patient has made a complete recovery. There is no similar case reported in the literature.

  10. Probabilistic application of fracture mechanics

    International Nuclear Information System (INIS)

    Dufresne, J.

    1981-04-01

    The different methods used to evaluate the rupture probability of a pressure vessel are reviewed. Data collection and processing of all parameters necessary for fracture mechanics evaluation are presented with particular attention to the size distribution of defects in actual vessels. Physical process is followed during crack growth and unstable propagation, using LEFM (Linear Elastic Fracture Mechanism) and plastic instability. Results show that the final failure probability for a PWR pressure vessel is 3.5 10 -8 , and is due essentially to LOCAs for any break size. The weakest point is the internal side of the belt line

  11. Dynamic fracture of heterogeneous materials

    Energy Technology Data Exchange (ETDEWEB)

    Stout, M.G.; Liu, C.; Addessio, F.L.; Williams, T.O.; Bennett, J.G.; Haberman, K.S.; Asay, B.W.

    1998-12-31

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project was to investigate the fundamental aspects of the process of dynamic fracture propagation in heterogeneous materials. The work focused on three important, but poorly understood, aspects of dynamic fracture for materials with a heterogeneous microstructure. These were: the appropriateness of using a single-parameter asymptotic analysis to describe dynamic crack-tip deformation fields, the temperature rises at the tip and on the flanks of a running crack, and the constitutive modeling of damage initiation and accumulation.

  12. A retrospective analysis of zygomatic fracture etiologies

    Directory of Open Access Journals (Sweden)

    Yoshiaki Sakamoto

    2017-12-01

    Conclusion: The severities of the zygomatic fractures, their causes, and the associated patient ages were closely related. Based on this study, possible prevention strategies for zygomatic fractures need to be considered.

  13. Oblique angled view for coracoid fractures.

    Science.gov (United States)

    Goldberg, R P; Vicks, B

    1983-01-01

    In cases of shoulder injury when clinical signs suggest a possible coracoid fracture, a 20 degree posterior oblique film with 20 degrees of cephalad angulation has been shown to demonstrate coracoid fractures when other views have been inconclusive.

  14. Oblique angled view for coracoid fractures

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, R.P.; Vicks, B.

    1983-02-01

    In cases of shoulder injury when clinical signs suggest a possible coracoid fracture, a 20 degree posterior oblique film with 20 degrees of cephalad angulation has been shown to demonstrate coracoid fractures when other views have been inconclusive.

  15. [Vertical fractures: apropos of 2 clinical cases].

    Science.gov (United States)

    Félix Mañes Ferrer, J; Micò Muñoz, P; Sánchez Cortés, J L; Paricio Martín, J J; Miñana Laliga, R

    1991-01-01

    The aim of the study is to present a clinical review of the vertical root fractures. Two clinical cases are presented to demonstrates the criteria for obtaining a correct diagnosis of vertical root fractures.

  16. Multiscale Multifunctional Progressive Fracture of Composite Structures

    Science.gov (United States)

    Chamis, C. C.; Minnetyan, L.

    2012-01-01

    A new approach is described for evaluating fracture in composite structures. This approach is independent of classical fracture mechanics parameters like fracture toughness. It relies on computational simulation and is programmed in a stand-alone integrated computer code. It is multiscale, multifunctional because it includes composite mechanics for the composite behavior and finite element analysis for predicting the structural response. It contains seven modules; layered composite mechanics (micro, macro, laminate), finite element, updating scheme, local fracture, global fracture, stress based failure modes, and fracture progression. The computer code is called CODSTRAN (Composite Durability Structural ANalysis). It is used in the present paper to evaluate the global fracture of four composite shell problems and one composite built-up structure. Results show that the composite shells. Global fracture is enhanced when internal pressure is combined with shear loads. The old reference denotes that nothing has been added to this comprehensive report since then.

  17. Fracture Rates and Fracture Sites in Patients With Osteogenesis Imperfecta

    DEFF Research Database (Denmark)

    Folkestad, Lars; Hald, Jannie Dahl; Ersbøll, Annette Kjær

    2017-01-01

    Osteogenesis imperfecta (OI) is a hereditary, clinically heterogeneous, connective tissue disorder. The population prevalence of OI in Denmark is 10.6 in 100,000. A hallmark of the disease is frequent fractures that are often precipitated by minimal trauma. The aim of the current study...

  18. Zoledronic acid and clinical fractures and mortality after hip fracture

    DEFF Research Database (Denmark)

    Lyles, Kenneth W; Colón-Emeric, Cathleen S; Magaziner, Jay S

    2007-01-01

    BACKGROUND: Mortality is increased after a hip fracture, and strategies that improve outcomes are needed. METHODS: In this randomized, double-blind, placebo-controlled trial, 1065 patients were assigned to receive yearly intravenous zoledronic acid (at a dose of 5 mg), and 1062 patients were assi...

  19. Characterisation of hydraulically-active fractures in a fractured ...

    African Journals Online (AJOL)

    Potentially permeable fractures intersecting a shallow, 10-m borehole were first identified using conventional geophysical methods such as acoustic borehole televiewer imaging and temperature, electrical conductivity and gamma-gamma logs. These results were then compared to results of analysis using the SP method.

  20. Fracture Union in Closed Interlocking Nail in Femoral Fracture

    Directory of Open Access Journals (Sweden)

    R L Sahu

    2010-09-01

    Full Text Available INTRODUCTION: Fractures shaft femur is a major cause of morbidity and mortality in patients with lower extremity injuries. The objective of this study was to find out the outcome of Interlocking nail in fracture femur. METHODS: This study was conducted in the Department of Orthopaedic surgery in M. M. Medical College from July 2006 to November 2008. Seventy eight patients were recruited from Emergency and out patient department having closed fracture of femoral shaft. All patients were operated under general or spinal anesthesia. All patients were followed for nine months. RESULTS: Out of seventy eight patients, sixty nine patients underwent union in 90 to 150 days with a mean of 110.68 days. Touch down weight bearing was started on 2nd post-operative day. Complications found in four patients who had non-union, and five patients had delayed union which was treated with dynamization and bone graft. The results were excellent in 88.46% and good in 6.41% patients. CONCLUSIONS: We concluded that this technique is advantageous because of early mobilization (early weight bearing, less complication with good results and is economical. Keywords: close reamed interlocking nail, dynamization, femoral shaft fractures, union

  1. Modified fracture brace for tibial fracture with varus angulation: a case report.

    Science.gov (United States)

    Tang, S F; Au, T L; Wong, A M; Lee, M Y

    1995-08-01

    Sarmiento introduced the functional fracture brace for the management of tibial shaft fracture in 1963. However, tibial angulation with varus deformity cannot be prevented or corrected by such a device. In this paper, a case of tibial shaft fracture with varus angulation treated with a modified below-knee fracture brace was reported.

  2. The incidence of associated fractures of the upper limb in fractures of the radial head

    NARCIS (Netherlands)

    Kaas, Laurens; van Riet, Roger P.; Vroemen, Jos P. A. M.; Eygendaal, Denise

    2008-01-01

    Radial head fractures are common injuries. In American publications, one-third of the patients with these fractures have been shown to have associated injuries. The aim of this retrospective study is to describe the epidemiology of radial head fractures and associated fractures of the ipsilateral

  3. Quantifying Fracture Heterogeneity in Different Domains of Folded Carbonate Rocks to Improve Fractured Reservoir Analog Fluid Flow Models

    NARCIS (Netherlands)

    Bisdom, K.; Bertotti, G.; Gauthier, B.D.M.; Hardebol, N.J.

    2013-01-01

    Fluid flow in carbonate reservoirs is largely controlled by multiscale fracture networks. Significant variations of fracture network porosity and permeability are caused by the 3D heterogeneity of the fracture network characteristics, such as intensity, orientation and size. Characterizing fracture

  4. Muscle-bone Interactions During Fracture Healing

    Science.gov (United States)

    2015-03-01

    fracture heal - ing. The rate of delayed union or non-union in tibial fractures with associated compartment syndrome was 55...complications of open tibial shaft fractures stratified as per the Gustilo–Ander- son classification. Injury 2011;42:1408-15. 121. Giannoudis PV, Harwood PJ...Kontakis G, et al. Long- term quality of life in trauma patients following the full spectrum of tibial injury (fasciotomy, closed fracture , grade

  5. High temperature fracture of ceramic materials

    International Nuclear Information System (INIS)

    Wiederhorn, S.M.

    1979-01-01

    A review is presented of fracture mechanisms and methods of lifetime prediction in ceramic materials. Techniques of lifetime prediction are based on the science of fracture mechanics. Application of these techniques to structural ceramics is limited by our incomplete understanding of fracture mechanisms in these materials, and by the occurrence of flaw generation in these materials at elevated temperatures. Research on flaw generation and fracture mechanisms is recommended as a way of improving the reliability of structural ceramics

  6. Case 24: Stress Fracture of the Tibia

    Science.gov (United States)

    2008-03-01

    Stress fractures in athletes . Int J Sports Med 1987;8: 221-226 2 Krause GR, Thompson JR. March Fracture of the Tibia. Radiology 1943;41:580-5 3 Bruce... stress fracture. Fig. 2: Axial CT showing the periosteal reaction. Female athletes have the greater tendency of acquiring tibial stress ...H Jones, Stephen B. Baker, Julie Gilchrist, Dexter Kimsey, Daniel M. Sosin: Prevention of Lower Extremity Stress Fractures in Athletes and Soldiers

  7. Fractures in childhood; Frakturen beim Kind

    Energy Technology Data Exchange (ETDEWEB)

    Moritz, Joerg D. [Universitaetsklinikum Schleswig-Holstein, Kiel (Germany). Klinik fuer diagnostische Radiologie, Paediatrische Radiologie und Sonografie

    2014-09-15

    Clinical diagnosis of fractures in childhood can be very difficult. Therefore imaging, not only x-rays but also ultrasound, computed tomography and magnetic resonance imaging are of special importance. There are typical pediatric types of fractures due to epiphyseal plates and high flexibility of the bone. Fractures heal faster and dislocations can be spontaneously corrected better but also growth disturbance can occur. The second part of the article describes the special types of fractures with special attention to the characteristics in childhood.

  8. Pedicular stress fracture in the lumbar spine

    International Nuclear Information System (INIS)

    Chong, V.F.H.; Htoo, M.M.

    1997-01-01

    Spondylolisthesis with or without spondylolysis is common in the lumbar spine. Associated fracture in the pedicle ('pediculolysis') is unusual. The margins of pedicular stress fractures, like spondylolysis, usually appear sclerotic. A patient with a pedicular stress fracture with minimal marginal sclerosis suggesting an injury of recent onset is presented here. There was associated bilateral spondylolysis. The findings in this patient suggest that established pediculolysis probably represents a stress fracture that has failed to heal. (authors)

  9. Pedicular stress fracture in the lumbar spine

    Energy Technology Data Exchange (ETDEWEB)

    Chong, V.F.H.; Htoo, M.M. [Singapore General Hospital, Singapore, (Singapore). Department of Diagnostic Radiology

    1997-08-01

    Spondylolisthesis with or without spondylolysis is common in the lumbar spine. Associated fracture in the pedicle (`pediculolysis`) is unusual. The margins of pedicular stress fractures, like spondylolysis, usually appear sclerotic. A patient with a pedicular stress fracture with minimal marginal sclerosis suggesting an injury of recent onset is presented here. There was associated bilateral spondylolysis. The findings in this patient suggest that established pediculolysis probably represents a stress fracture that has failed to heal. (authors). 10 refs., 2 figs.

  10. Triquetral fracture with associated pisiform subluxation

    OpenAIRE

    Gan, Lee Ping; Satkunanantham, Mala; Sreedharan, Sechachalam; Chew, Winston Yoon Chong

    2015-01-01

    We herein present a case of right triquetral fracture with associated pisiform and flexor carpi ulnaris subluxation in a 29-year-old man. Initial radiography showed a right triquetral fracture. Computed tomography and magnetic resonance imaging demonstrated a triquetral fracture with a subluxated pisiform. Open reduction and lag screw fixation of the right triquetrum was performed, with good subsequent recovery of function. Although triquetral fracture with subluxation of the pisotriquetral j...

  11. Nuclear reactor scram suppression device

    International Nuclear Information System (INIS)

    Koshi, Hiroshi; Ozawa, Hisamitsu.

    1993-01-01

    The device of the present invention suppresses reactor scram due to increase of neutrons caused by pressure elevation in the reactor even when a portion of main steam pipes is closed by some or other causes such as closure of a main steam isolation valve in a BWR type power plant. That is, when a flow channel is closed, such as upon closure of a main steam isolation valve, a flow rate signal sent from each of main steam flow rate detection means is inputted to a selective circuit of a pressure control device, from which a normal value is obtained. A deviation value for each of the main steam flow rate values is determined from the value described above and a flow rate average value obtained in an averaging circuit. Abnormality in the main steam pipelines is judged if a level for each of the deviation values is greater than a predetermined value. Further, the insertion of selective control rods and trip and run back instructions for recycling pumps are controlled by output signals of the deviation value detection circuit, to decrease the reactor power and prevent elevation in the reactor. As a result, reactor scram due to increase of neutron fluxes is suppressed. (I.S.)

  12. Recurrent Proximal Femur Fractures in a Teenager With Osteogenesis Imperfecta on Continuous Bisphosphonate Therapy: Are We Overtreating?

    Science.gov (United States)

    Vasanwala, Rashida F; Sanghrajka, Anish; Bishop, Nicholas J; Högler, Wolfgang

    2016-07-01

    Long-term bisphosphonate (BP) therapy in adults with osteoporosis is associated with atypical femoral fractures, caused by increased material bone density and prolonged suppression of bone remodeling which may reduce fracture toughness. In children with osteogenesis imperfecta (OI), long-term intravenous BP therapy improves bone structure and mass without further increasing the already hypermineralized bone matrix, and is generally regarded as safe. Here we report a teenage girl with OI type IV, who was started on cyclical intravenous pamidronate therapy at age 6 years because of recurrent fractures. Transiliac bone biopsy revealed classical structural features of OI but unusually low bone resorption surfaces. She made substantial improvements in functional ability, bone mass, and fracture rate. However, after 5 years of pamidronate therapy she started to develop recurrent, bilateral, nontraumatic, and proximal femur fractures, which satisfied the case definition for atypical femur fractures. Some fractures were preceded by periosteal reactions and prodromal pain. Pamidronate was discontinued after 7 years of therapy, following which she sustained two further nontraumatic femur fractures, and continued to show delayed tibial osteotomy healing. Despite rodding surgery, and very much in contrast to her affected, untreated, and normally mobile mother, she remains wheelchair-dependent. The case of this girl raises questions about the long-term safety of BP therapy in some children, in particular about the risk of oversuppressed bone remodeling with the potential for microcrack accumulation, delayed healing, and increased stiffness. The principal concern is whether there is point at which benefit from BP therapy could turn into harm, where fracture risk increases again. This case should stimulate debate whether current adult atypical femoral fracture guidance should apply to children, and whether low-frequency, low-dose cyclical, intermittent, or oral treatment

  13. Effect of laser-arc hybrid welding on fracture and corrosion behaviour of AA6061-T6 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Daquan, E-mail: zhdq@sh163.net [Department of Environmental Engineering, Shanghai University of Electric Power, Shanghai 200090 (China); Jin Xin; Gao Lixin [Department of Environmental Engineering, Shanghai University of Electric Power, Shanghai 200090 (China); Joo, Hyung Goun [Stress Analysis and Failure Design Laboratory, School of Mechanical Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Lee, Kang Yong, E-mail: KYL2813@yonsei.ac.kr [Stress Analysis and Failure Design Laboratory, School of Mechanical Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2011-03-15

    Research highlights: {yields} A dendritic cellular structure was formed in the weld fusion zone (WFZ) and caused alloying element segregation. {yields} The precipitation of intermetallic phases and the formation of galvanic corrosion couplings contribute to the improving pitting susceptibility in the WFZ. {yields} The intergranular corrosion nucleates on pit walls and spreads from them. - Abstract: The welding condition of the hybrid laser-gas metal arc (GMA) welding for AA6061-T6 alloy was optimized by tensile test. Formability performance was checked by the bend test. Fractographic analysis indicates a large number of fine ductile type voids in the fracture surface. The microstructure measurements exhibit a dendritic cellular structure in the weld fusion zone (WFZ) and a partially melted zone adjacent to the fusion boundaries. The corrosion behaviour of the weldment and the base alloy were investigated by weight-loss test in nitric acid solution. The WFZ suffers more severe pitting than the rest regions in the weldment. It shows that corrosion cracking is owing to the precipitation of intermetallic phases and the formation of galvanic corrosion couplings in the weldment of AA6061-T6 alloy.

  14. Fractures of the distal phalanx in the horse

    International Nuclear Information System (INIS)

    Yovich, J.V.

    1989-01-01

    Fractures of the distal phalanx are an important cause of lameness referable to the foot. Depending on the fracture configuration and articular involvement, conservative or surgical treatment may be required. Fractures of the distal phalanx have been divided into six categories based on fracture configuration. Discussion of clinical features, management, and prognosis for horses with distal phalangeal fractures is presented for each fracture type

  15. Subtrochanteric and Distal Femur Fractures in a Patient with ...

    African Journals Online (AJOL)

    There was an improvement of the preinjury function attributed to the osteotomy of the femoral diaphyseal, which alleviated the anterior thigh discomfort. Keywords: Amputation, Distal femur fracture, Femoral shaft fracture, Femur, Femur fractures, Fracture fixation, Fracture malunion, Fractures, Intramedullary nail, Knee ...

  16. Fractures in infants and toddlers with rickets

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Teresa; Done, Stephen [Seattle Children' s Hospital, Department of Radiology, Seattle, WA (United States); Sugar, Naomi; Feldman, Kenneth [Seattle Children' s Hospital, Children' s Protection Program, Seattle, WA (United States); Marasigan, Joanne; Wambold, Nicolle [University of Washington, College of Arts and Sciences, Seattle, WA (United States)

    2010-07-15

    Rickets affects young infants and toddlers. However, there is a paucity of literature regarding the types of fractures that occur in rachitic patients. To evaluate the age of patients at which radiographically evident rickets occurs, and to characterize the age incidence and fractures that are observed in infants and toddlers with radiographically evident rickets. A retrospective study of children younger than 24 months was performed. Clinical data and radiographs were reviewed. Radiographs obtained within 1 month of the diagnosis were evaluated for the presence or absence of osteopenia, presence or absence of fraying-cupping, and presence and characterization of fractures. After exclusion criteria were applied, 45 children were included in the study. Children with rickets evident by radiograph were in the age range of 2-24 months. Fractures were present in 17.5% of the study group, exclusively in mobile infants and toddlers. Fracture types included transverse long bone fractures, anterior and anterior-lateral rib fractures, and metaphyseal fractures. All fractures occurred exclusively in patients with severe, overtly evident rickets. Fractures occur in older infants and toddlers with overt rickets and can be seen by radiograph. Fractures do not resemble high-risk non-accidental trauma fractures. (orig.)

  17. Functional outcome after a spinal fracture

    NARCIS (Netherlands)

    Post, Richard Bernardus

    2008-01-01

    This thesis takes a closer look at the functional outcome after a spinal fracture. An introduction to different aspects regarding spinal fractures is presented in Chapter 1. The incidence of traumatic thoracolumbar spinal fractures without neurological deficit in the Netherlands is approximately 1.2

  18. Treatment of Medial Malleolar Stress Fractures

    NARCIS (Netherlands)

    van den Bekerom, Michel P. J.; Kerkhoffs, Gino M. M. J.; van Dijk, C. Niek

    2009-01-01

    The incidence of medial malleolar stress fractures varies from 0.6%-4.1% of all stress fractures. These fractures occur almost entirely in athletes and runners, and more frequently in skeletally mature patients aged 20-40 years. Treatment depends on the result of diagnostic imaging, displacement of

  19. Fracture and Fatigue: Some New Insights

    Indian Academy of Sciences (India)

    Fracture and Fatigue: Some New Insights. FOREWORD. It is over nine decades since fracture mechanics found its importance in the design of mechanical, aerospace and civil engineering structures. Its application started in naval structures during the early part of 20th century. The theory of fracture mechanics was initially ...

  20. Demographics and outcome of metatarsal fractures

    NARCIS (Netherlands)

    Cakir, H.; van Vliet-Koppert, S. T.; van Lieshout, E. M. M.; de Vries, M. R.; van der Elst, M.; Schepers, T.

    2011-01-01

    Although metatarsal fractures are amongst the most common injuries of the foot, this is the first study on outcome after metatarsal fractures. All consecutive patients with metatarsal fractures treated between January 2006 and September 2008 were re-evaluated. Patients aged 16 to 75 were sent a