WorldWideScience

Sample records for suppress immune responses

  1. Perillyl alcohol suppresses antigen-induced immune responses in the lung

    International Nuclear Information System (INIS)

    Imamura, Mitsuru; Sasaki, Oh; Okunishi, Katsuhide; Nakagome, Kazuyuki; Harada, Hiroaki; Kawahata, Kimito; Tanaka, Ryoichi; Yamamoto, Kazuhiko; Dohi, Makoto

    2014-01-01

    Highlights: •Perillyl alcohol (POH) is an isoprenoid which inhibits the mevalonate pathway. •We examined whether POH suppresses immune responses with a mouse model of asthma. •POH treatment during sensitization suppressed Ag-induced priming of CD4 + T cells. •POH suppressed airway eosinophila and cytokine production in thoracic lymph nodes. -- Abstract: Perillyl alcohol (POH) is an isoprenoid which inhibits farnesyl transferase and geranylgeranyl transferase, key enzymes that induce conformational and functional changes in small G proteins to conduct signal production for cell proliferation. Thus, it has been tried for the treatment of cancers. However, although it affects the proliferation of immunocytes, its influence on immune responses has been examined in only a few studies. Notably, its effect on antigen-induced immune responses has not been studied. In this study, we examined whether POH suppresses Ag-induced immune responses with a mouse model of allergic airway inflammation. POH treatment of sensitized mice suppressed proliferation and cytokine production in Ag-stimulated spleen cells or CD4 + T cells. Further, sensitized mice received aerosolized OVA to induce allergic airway inflammation, and some mice received POH treatment. POH significantly suppressed indicators of allergic airway inflammation such as airway eosinophilia. Cytokine production in thoracic lymph nodes was also significantly suppressed. These results demonstrate that POH suppresses antigen-induced immune responses in the lung. Considering that it exists naturally, POH could be a novel preventive or therapeutic option for immunologic lung disorders such as asthma with minimal side effects

  2. Perillyl alcohol suppresses antigen-induced immune responses in the lung

    Energy Technology Data Exchange (ETDEWEB)

    Imamura, Mitsuru; Sasaki, Oh; Okunishi, Katsuhide; Nakagome, Kazuyuki; Harada, Hiroaki; Kawahata, Kimito; Tanaka, Ryoichi; Yamamoto, Kazuhiko [Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo (Japan); Dohi, Makoto, E-mail: mdohi-tky@umin.ac.jp [Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo (Japan); Institute of Respiratory Immunology, Shibuya Clinic for Respiratory Diseases and Allergology, Tokyo (Japan)

    2014-01-03

    Highlights: •Perillyl alcohol (POH) is an isoprenoid which inhibits the mevalonate pathway. •We examined whether POH suppresses immune responses with a mouse model of asthma. •POH treatment during sensitization suppressed Ag-induced priming of CD4{sup +} T cells. •POH suppressed airway eosinophila and cytokine production in thoracic lymph nodes. -- Abstract: Perillyl alcohol (POH) is an isoprenoid which inhibits farnesyl transferase and geranylgeranyl transferase, key enzymes that induce conformational and functional changes in small G proteins to conduct signal production for cell proliferation. Thus, it has been tried for the treatment of cancers. However, although it affects the proliferation of immunocytes, its influence on immune responses has been examined in only a few studies. Notably, its effect on antigen-induced immune responses has not been studied. In this study, we examined whether POH suppresses Ag-induced immune responses with a mouse model of allergic airway inflammation. POH treatment of sensitized mice suppressed proliferation and cytokine production in Ag-stimulated spleen cells or CD4{sup +} T cells. Further, sensitized mice received aerosolized OVA to induce allergic airway inflammation, and some mice received POH treatment. POH significantly suppressed indicators of allergic airway inflammation such as airway eosinophilia. Cytokine production in thoracic lymph nodes was also significantly suppressed. These results demonstrate that POH suppresses antigen-induced immune responses in the lung. Considering that it exists naturally, POH could be a novel preventive or therapeutic option for immunologic lung disorders such as asthma with minimal side effects.

  3. Induction of the immune response suppression in mice inoculated with Candida albicans.

    Science.gov (United States)

    Valdez, J C; Mesón, D E; Sirena, A; de Petrino, S F; Eugenia, M; de Jorrat, B B; de Valdex, M G

    1986-03-01

    There is a controversy in respect to the immunological response (humoral or cellular) concerning the defense against Candida albicans. Candidosis would induce sub-populations of suppressor cells in the host cell-immune response. This report tries to show the effect of different doses of C. albicans (alive or heat-killed) on the expression of cell-mediated and humoral immunity. The effect upon cell immunity was determined by inoculating different lots of singeneic mice, doses of varied concentration of C. albicans and checking for delayed-type hipersensitivity (D.T.H.). D.T.H. was also controlled in syngeneic normal mice which had previously been injected with inoculated mice spleen cells. Humoral immunity was assayed by measuring the induced blastogenesis by Pokeweed Mitogen on spleen mononuclear cells with different doses of C. albicans. Results obtained show that the different doses gave origin to: Suppression of humoral and cell response (10(8) alive); Suppression of only humoral response (10(6) alive); Suppression of cell response and increase of humoral response (10(9) dead); Increase of both responses (10(8) dead).

  4. Interleukin-4 Supports the Suppressive Immune Responses Elicited by Regulatory T Cells

    Directory of Open Access Journals (Sweden)

    Wei-Cheng Yang

    2017-11-01

    Full Text Available Interleukin-4 (IL-4 has been considered as one of the tolerogenic cytokines in many autoimmune animal models and clinical settings. Despite its role in antagonizing pathogenic Th1 responses, little is known about whether IL-4 possesses functions that affect regulatory T cells (Tregs. Tregs are specialized cells responsible for the maintenance of peripheral tolerance through their immune modulatory capabilities. Interestingly, it has been suggested that IL-4 supplement at a high concentration protects responder T cells (Tresps from Treg-mediated immune suppression. In addition, such supplement also impedes TGF-β-induced Treg differentiation in vitro. However, these phenomena may contradict the tolerogenic role of IL-4, and the effects of IL-4 on Tregs are therefore needed to be further elucidated. In this study, we utilized IL-4 knockout (KO mice to validate the role of IL-4 on Treg-mediated immune suppression. Although IL-4 KO and control animals harbor similar frequencies of Tregs, Tregs from IL-4 KO mice weakly suppressed autologous Tresp activation. In addition, IL-4 deprivation impaired the ability of Tregs to modulate immune response, whereas IL-4 supplementation reinforced IL-4 KO Tregs in their function in suppressing Tresps. Finally, the presence of IL-4 was associated with increased cell survival and granzyme expression of Tregs. These results suggest the essential role of IL-4 in supporting Treg-mediated immune suppression, which may benefit the development of therapeutic strategies for autoimmune diseases.

  5. Suppression of immune response to Lol pI by administration of idiotype.

    Science.gov (United States)

    Boutin, Y; Hébert, J

    1995-03-01

    Allergic diseases are characterized by an increased production of specific IgE antibodies. Suppression of IgE antibody production may be accomplished through idiotypic manipulation. Using an animal model, we explored the effects of anti-Lol pI monoclonal antibody administration on the subsequent IgE and IgG antibody response against Lol pI. Mice were treated with an anti-Lol pI monoclonal antibody (290A-167), which resulted in the production of anti-idiotypic antibodies as evidenced by their ability to bind to the Fab fraction of 290A-167 and to inhibit the binding of rabbit polyclonal anti-idiotypic antibodies to 290A-167. The animals were then immunized with Lol pI adsorbed onto alum, and the immune response to the protein was analyzed. Antigen-specific IgG1 and IgE responses were strongly suppressed as determined by immunoassay. Suppression of anti-Lol pI IgE antibodies was confirmed by a reduction of end-point titers measured by passive cutaneous anaphylaxis. The suppression of antigen-specific antibody was accompanied by a reduction of anti-Lol pI antibody-producing spleen cells. These data indicate that pretreatment with 290A-167 can strongly downregulate the IgE response to the main allergen of ryegrass pollen, which is associated with an increase in anti-idiotypic antibodies. This approach could provide rapid, long-term hyposensitization in patients with grass pollen allergy.

  6. Chronic exposure to dim light at night suppresses immune responses in Siberian hamsters.

    Science.gov (United States)

    Bedrosian, Tracy A; Fonken, Laura K; Walton, James C; Nelson, Randy J

    2011-06-23

    Species have been adapted to specific niches optimizing survival and reproduction; however, urbanization by humans has dramatically altered natural habitats. Artificial light at night (LAN), termed 'light pollution', is an often overlooked, yet increasing disruptor of habitats, which perturbs physiological processes that rely on precise light information. For example, LAN alters the timing of reproduction and activity in some species, which decreases the odds of successful breeding and increases the threat of predation for these individuals, leading to reduced fitness. LAN also suppresses immune function, an important proxy for survival. To investigate the impact of LAN in a species naive to light pollution in its native habitat, immune function was examined in Siberian hamsters derived from wild-caught stock. After four weeks exposure to dim LAN, immune responses to three different challenges were assessed: (i) delayed-type hypersensitivity (DTH), (ii) lipopolysaccharide-induced fever, and (iii) bactericide activity of blood. LAN suppressed DTH response and reduced bactericide activity of blood after lipopolysaccharide treatment, in addition to altering daily patterns of locomotor activity, suggesting that human encroachment on habitats via night-time lighting may inadvertently compromise immune function and ultimately fitness.

  7. Suppression of the cutaneous immune response following topical application of the prostaglandin PGE2

    International Nuclear Information System (INIS)

    Rheins, L.A.; Barnes, L.; Amornsiripanitch, S.; Collins, C.E.; Nordlund, J.J.

    1987-01-01

    UVB irradiation (290-320 nm) and topical applications of arachidonic acid (AA) in mice decrease the number of identifiable Langerhans cells and alter the cutaneous immune response. Application of contact allergens such as dinitrofluorobenzene (DNFB) to irradiated or AA-treated skin induces antigen-specific tolerance. Indomethacin (IM), a cyclooxygenase inhibitor, administered orally to mice prior to UVB irradiation or prior to the topical application of arachidonic acid, abrogates suppression of contact hypersensitivity (CHS) to DNFB. This suggests a byproduct of arachidonic acid generated through the cyclooxygenase pathway may be involved in the immune suppression. Topical application of various prostaglandins (PGE2, PGD2, PGF2 alpha, and CTXA2) did not cause alterations in the population density of the identifiable Ia+ dendritic Langerhans cells. PGE2, but no other tested agent, produced a suppression of the CHS response to DNFB. These observations suggests that of the various prostaglandins, PGE2 might be one of several biochemical signals which mediate the suppression of contact hypersensitivity reactions following ultraviolet radiation exposure. However, the mechanisms by which PGE2 produces its suppressive effects have not been identified

  8. Innate immune reconstitution with suppression of HIV-1.

    Science.gov (United States)

    Scully, Eileen P; Lockhart, Ainsley; Garcia-Beltran, Wilfredo; Palmer, Christine D; Musante, Chelsey; Rosenberg, Eric; Allen, Todd M; Chang, J Judy; Bosch, Ronald J; Altfeld, Marcus

    2016-03-17

    Progressive HIV-1 infection leads to both profound immune suppression and pathologic inflammation in the majority of infected individuals. While adaptive immune dysfunction, as evidenced by CD4 + T cell depletion and exhaustion, has been extensively studied, less is known about the functional capacity of innate immune cell populations in the context of HIV-1 infection. Given the broad susceptibility to opportunistic infections and the dysregulated inflammation observed in progressive disease, we hypothesized that there would be significant changes in the innate cellular responses. Using a cohort of patients with multiple samplings before and after antiretroviral therapy (ART) initiation, we demonstrated increased responses to innate immune stimuli following viral suppression, as measured by the production of inflammatory cytokines. Plasma viral load itself had the strongest association with this change in innate functional capacity. We further identified epigenetic modifications in the TNFA promoter locus in monocytes that are associated with viremia, suggesting a molecular mechanism for the observed changes in innate immune function following initiation of ART. These data indicate that suppression of HIV-1 viremia is associated with changes in innate cellular function that may in part determine the restoration of protective immune responses.

  9. Protein A Suppresses Immune Responses during Staphylococcus aureus Bloodstream Infection in Guinea Pigs

    Science.gov (United States)

    Kim, Hwan Keun; Falugi, Fabiana; Thomer, Lena; Missiakas, Dominique M.

    2015-01-01

    ABSTRACT   Staphylococcus aureus infection is not associated with the development of protective immunity, and disease relapses occur frequently. We hypothesize that protein A, a factor that binds immunoglobulin Fcγ and cross-links VH3 clan B cell receptors (IgM), is the staphylococcal determinant for host immune suppression. To test this, vertebrate IgM was examined for protein A cross-linking. High VH3 binding activity occurred with human and guinea immunoglobulin, whereas mouse and rabbit immunoglobulins displayed little and no binding, respectively. Establishing a guinea pig model of S. aureus bloodstream infection, we show that protein A functions as a virulence determinant and suppresses host B cell responses. Immunization with SpAKKAA, which cannot bind immunoglobulin, elicits neutralizing antibodies that enable guinea pigs to develop protective immunity. Importance  Staphylococcus aureus is the leading cause of soft tissue and bloodstream infections; however, a vaccine with clinical efficacy is not available. Using mice to model staphylococcal infection, earlier work identified protective antigens; however, corresponding human clinical trials did not reach their endpoints. We show that B cell receptor (IgM) cross-linking by protein A is an important immune evasion strategy of S. aureus that can be monitored in a guinea pig model of bloodstream infection. Further, immunization with nontoxigenic protein A enables infected guinea pigs to elicit antibody responses that are protective against S. aureus. Thus, the guinea pig model may support preclinical development of staphylococcal vaccines. PMID:25564466

  10. Measles immune suppression: lessons from the macaque model.

    Directory of Open Access Journals (Sweden)

    Rory D de Vries

    Full Text Available Measles remains a significant childhood disease, and is associated with a transient immune suppression. Paradoxically, measles virus (MV infection also induces robust MV-specific immune responses. Current hypotheses for the mechanism underlying measles immune suppression focus on functional impairment of lymphocytes or antigen-presenting cells, caused by infection with or exposure to MV. We have generated stable recombinant MVs that express enhanced green fluorescent protein, and remain virulent in non-human primates. By performing a comprehensive study of virological, immunological, hematological and histopathological observations made in animals euthanized at different time points after MV infection, we developed a model explaining measles immune suppression which fits with the "measles paradox". Here we show that MV preferentially infects CD45RA(- memory T-lymphocytes and follicular B-lymphocytes, resulting in high infection levels in these populations. After the peak of viremia MV-infected lymphocytes were cleared within days, followed by immune activation and lymph node enlargement. During this period tuberculin-specific T-lymphocyte responses disappeared, whilst strong MV-specific T-lymphocyte responses emerged. Histopathological analysis of lymphoid tissues showed lymphocyte depletion in the B- and T-cell areas in the absence of apoptotic cells, paralleled by infiltration of T-lymphocytes into B-cell follicles and reappearance of proliferating cells. Our findings indicate an immune-mediated clearance of MV-infected CD45RA(- memory T-lymphocytes and follicular B-lymphocytes, which causes temporary immunological amnesia. The rapid oligoclonal expansion of MV-specific lymphocytes and bystander cells masks this depletion, explaining the short duration of measles lymphopenia yet long duration of immune suppression.

  11. Suppression of Antitumor Immune Responses by Human Papillomavirus through Epigenetic Downregulation of CXCL14

    Directory of Open Access Journals (Sweden)

    Louis Cicchini

    2016-05-01

    Full Text Available High-risk human papillomaviruses (HPVs are causally associated with multiple human cancers. Previous studies have shown that the HPV oncoprotein E7 induces immune suppression; however, the underlying mechanisms remain unknown. To understand the mechanisms by which HPV deregulates host immune responses in the tumor microenvironment, we analyzed gene expression changes of all known chemokines and their receptors using our global gene expression data sets from human HPV-positive and -negative head/neck cancer and cervical tissue specimens in different disease stages. We report that, while many proinflammatory chemokines increase expression throughout cancer progression, CXCL14 is dramatically downregulated in HPV-positive cancers. HPV suppression of CXCL14 is dependent on E7 and associated with DNA hypermethylation in the CXCL14 promoter. Using in vivo mouse models, we revealed that restoration of Cxcl14 expression in HPV-positive mouse oropharyngeal carcinoma cells clears tumors in immunocompetent syngeneic mice, but not in Rag1-deficient mice. Further, Cxcl14 reexpression significantly increases natural killer (NK, CD4+ T, and CD8+ T cell infiltration into the tumor-draining lymph nodes in vivo. In vitro transwell migration assays show that Cxcl14 reexpression induces chemotaxis of NK, CD4+ T, and CD8+ T cells. These results suggest that CXCL14 downregulation by HPV plays an important role in suppression of antitumor immune responses. Our findings provide a new mechanistic understanding of virus-induced immune evasion that contributes to cancer progression.

  12. Vitamin K3 suppressed inflammatory and immune responses in a redox-dependent manner.

    Science.gov (United States)

    Checker, Rahul; Sharma, Deepak; Sandur, Santosh K; Khan, Nazir M; Patwardhan, Raghavendra S; Kohli, Vineet; Sainis, Krishna B

    2011-08-01

    Recent investigations suggest that cellular redox status may play a key role in the regulation of several immune functions. Treatment of lymphocytes with vitamin K3 (menadione) resulted in a significant decrease in cellular GSH/GSSG ratio and concomitant increase in the ROS levels. It also suppressed Concanavalin A (Con A)-induced proliferation and cytokine production in lymphocytes and CD4 + T cells in vitro. Immunosuppressive effects of menadione were abrogated only by thiol containing antioxidants. Mass spectrometric analysis showed that menadione directly interacted with thiol antioxidant GSH. Menadione completely suppressed Con A-induced activation of ERK, JNK and NF-κB in lymphocytes. It also significantly decreased the homeostasis driven proliferation of syngeneic CD4 + T cells. Further, menadione significantly delayed graft-vs-host disease morbidity and mortality in mice. Menadione suppressed phytohemagglutinin-induced cytokine production in human peripheral blood mononuclear cells. These results reveal that cellular redox perturbation by menadione is responsible for significant suppression of lymphocyte responses.

  13. The role of epidermal cytokines in the generation of cutaneous immune reactions and ultraviolet radiation-induced immune suppression

    International Nuclear Information System (INIS)

    Ullrich, S.E.

    1995-01-01

    The immune suppression generated by UV exposure is a major risk factor for skin cancer patients. This finding has fuelled efforts to understand the mechanisms involved in the immune suppression induced by exposure to UV radiation. This article reviews the recent findings on the role of epidermal cytokines in the generation of an immune response and their role in the induction of immune suppression induced by UV exposure. (UK)

  14. Identification of immune response-related genes in the Chinese oak silkworm, Antheraea pernyi by suppression subtractive hybridization.

    Science.gov (United States)

    Liu, Qiu-Ning; Zhu, Bao-Jian; Wang, Lei; Wei, Guo-Qing; Dai, Li-Shang; Lin, Kun-Zhang; Sun, Yu; Qiu, Jian-Feng; Fu, Wei-Wei; Liu, Chao-Liang

    2013-11-01

    Insects possess an innate immune system that responds to invading microorganisms. In this study, a subtractive cDNA library was constructed to screen for immune response-related genes in the fat bodies of Antheraea pernyi (Lepidoptera: Saturniidae) pupa challenged with Escherichia coli. Four hundred putative EST clones were identified by suppression subtractive hybridization (SSH), including 50 immune response-related genes, three cytoskeleton genes, eight cell cycle and apoptosis genes, five respiration and energy metabolism genes, five transport genes, 40 metabolism genes, ten stress response genes, four transcription and translation regulation genes and 77 unknown genes. To verify the reliability of the SSH data, the transcription of a set of randomly selected immune response-related genes were confirmed by semi-quantitative reverse transcription-PCR (RT-PCR) and real-time quantitative reverse transcription-PCR (qRT-PCR). These identified immune response-related genes provide insight into understanding the innate immunity in A. pernyi. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Permanence of suppression of the primary immune response in rainbow trout, Salmo gairdneri, sublethally exposed to tritiated water during embryognesis

    International Nuclear Information System (INIS)

    Strand, J.A.; Fujihara, M.P.; Poston, T.M.; Abernethy, C.S.

    1982-01-01

    Previous experiments demonstrated that antibody synthesis in response to a challenge from the bacterium, Flexibacter columnaris, was significantly suppressed in juvenile (5 month) rainbow trout following exposure to tritium at doses as low as 4.0 rads when administered during the first 20 days of embryogenesis. In continuing studies, a secondary challenge to columnaris cells delivered to yearling (17 month) trout was used to test the hypothesis that early embryonic exposure to tritium irradiation (0, 0.04, 0.4, 4.0, and 40.0 rads) resulted in permanent injury to the primary immune process. Results indicated that under the prescribed experimental conditions, suppression of the primary immune response was permanent; that is, the degree of injury in yearling fish (17 months) equaled or exceeded that found in juvenile fish (5 months). At levels in the range of the maximum permissible concentration (MPC), tritium produced measurable, dose dependent, and irreversible suppression of immune capacity in affected fish. The threshold-free and exponential nature of the dose-response curve suggests extrapolation of effects to even lower exposures. (author)

  16. Poppers: more evidence of suppressed immunity.

    Science.gov (United States)

    James, J S

    1999-08-20

    Evidence from studies in mice shows that exposure to isobutyl nitrite suppresses the immune system. This immune suppression allows for bacterial growth in the lungs and livers of infected mice and can inhibit the ability of mediastinal lymph nodes to respond to antigen-specific stimulation. The mechanism for immune suppression may be a reduction in CD4+ and CD8+ T cell populations in the mediastinal lymph nodes following pulmonary infection with Listeria monocytogenes.

  17. A bacterial cysteine protease effector protein interferes with photosynthesis to suppress plant innate immune responses.

    Science.gov (United States)

    Rodríguez-Herva, José J; González-Melendi, Pablo; Cuartas-Lanza, Raquel; Antúnez-Lamas, María; Río-Alvarez, Isabel; Li, Ziduo; López-Torrejón, Gema; Díaz, Isabel; Del Pozo, Juan C; Chakravarthy, Suma; Collmer, Alan; Rodríguez-Palenzuela, Pablo; López-Solanilla, Emilia

    2012-05-01

    The bacterial pathogen Pseudomonas syringae pv tomato DC3000 suppresses plant innate immunity with effector proteins injected by a type III secretion system (T3SS). The cysteine protease effector HopN1, which reduces the ability of DC3000 to elicit programmed cell death in non-host tobacco, was found to also suppress the production of defence-associated reactive oxygen species (ROS) and callose when delivered by Pseudomonas fluorescens heterologously expressing a P. syringae T3SS. Purified His(6) -tagged HopN1 was used to identify tomato PsbQ, a member of the oxygen evolving complex of photosystem II (PSII), as an interacting protein. HopN1 localized to chloroplasts and both degraded PsbQ and inhibited PSII activity in chloroplast preparations, whereas a HopN1(D299A) non-catalytic mutant lost these abilities. Gene silencing of NtPsbQ in tobacco compromised ROS production and programmed cell death by DC3000. Our data reveal PsbQ as a contributor to plant immunity responses and a target for pathogen suppression. © 2012 Blackwell Publishing Ltd.

  18. Adoptively transferred immune T cells eradicate established tumors in spite of cancer-induced immune suppression

    Science.gov (United States)

    Arina, Ainhoa; Schreiber, Karin; Binder, David C.; Karrison, Theodore; Liu, Rebecca B.; Schreiber, Hans

    2014-01-01

    Myeloid-derived CD11b+Gr1+ suppressor cells (MDSC) and tumor-associated macrophages (TAM) are considered a major obstacle for effective adoptive T cell therapy. Myeloid cells suppress naive T cell proliferation ex vivo and can prevent the generation of T cell responses in vivo. We find, however, that immune T cells adoptively transferred eradicate well-established tumors in the presence of MDSC and TAM which are strongly immunosuppressive ex vivo. These MDSC and TAM were comparable in levels and immunosuppression among different tumor models. Longitudinal microscopy of tumors in vivo revealed that after T cell transfer tumor vasculature and cancer cells disappeared simultaneously. During T-cell mediated tumor destruction, the tumor stroma contained abundant myeloid cells (mainly TAM) that retained their suppressive properties. Preimmunized but not naive mice resisted immune suppression caused by an unrelated tumor-burden supporting the idea that in vivo, myeloid immunosuppressive cells can suppress naive but not memory T cell responses. PMID:24367029

  19. Viral degradasome hijacks mitochondria to suppress innate immunity

    Science.gov (United States)

    Goswami, Ramansu; Majumdar, Tanmay; Dhar, Jayeeta; Chattopadhyay, Saurabh; Bandyopadhyay, Sudip K; Verbovetskaya, Valentina; Sen, Ganes C; Barik, Sailen

    2013-01-01

    The balance between the innate immunity of the host and the ability of a pathogen to evade it strongly influences pathogenesis and virulence. The two nonstructural (NS) proteins, NS1 and NS2, of respiratory syncytial virus (RSV) are critically required for RSV virulence. Together, they strongly suppress the type I interferon (IFN)-mediated innate immunity of the host cells by degrading or inhibiting multiple cellular factors required for either IFN induction or response pathways, including RIG-I, IRF3, IRF7, TBK1 and STAT2. Here, we provide evidence for the existence of a large and heterogeneous degradative complex assembled by the NS proteins, which we named “NS-degradasome” (NSD). The NSD is roughly ∼300-750 kD in size, and its degradative activity was enhanced by the addition of purified mitochondria in vitro. Inside the cell, the majority of the NS proteins and the substrates of the NSD translocated to the mitochondria upon RSV infection. Genetic and pharmacological evidence shows that optimal suppression of innate immunity requires mitochondrial MAVS and mitochondrial motility. Together, we propose a novel paradigm in which the mitochondria, known to be important for the innate immune activation of the host, are also important for viral suppression of the innate immunity. PMID:23877405

  20. Platelet activating factor receptor binding plays a critical role in jet fuel-induced immune suppression

    International Nuclear Information System (INIS)

    Ramos, Gerardo; Kazimi, Nasser; Nghiem, Dat X.; Walterscheid, Jeffrey P.; Ullrich, Stephen E.

    2004-01-01

    Applying military jet fuel (JP-8) or commercial jet fuel (Jet-A) to the skin of mice suppresses the immune response in a dose-dependant manner. The release of biological response modifiers, particularly prostaglandin E 2 (PGE 2 ), is a critical step in activating immune suppression. Previous studies have shown that injecting selective cyclooxygenase-2 inhibitors into jet fuel-treated mice blocks immune suppression. Because the inflammatory phospholipid mediator, platelet-activating factor (PAF), up-regulates cyclooxygenase-2 production and PGE 2 synthesis by keratinocytes, we tested the hypothesis that PAF-receptor binding plays a role in jet fuel-induced immune suppression. Treating keratinocyte cultures with PAF and/or jet fuel (JP-8 and Jet-A) stimulates PGE 2 secretion. Jet fuel-induced PGE 2 production was suppressed by treating the keratinocytes with specific PAF-receptor antagonists. Injecting mice with PAF, or treating the skin of the mice with JP-8, or Jet-A, induced immune suppression. Jet fuel-induced immune suppression was blocked when the jet fuel-treated mice were injected with PAF-receptor antagonists before treatment. Jet fuel treatment has been reported to activate oxidative stress and treating the mice with anti-oxidants (Vitamins C, or E or beta-hydroxy toluene), before jet fuel application, interfered with immune suppression. These findings confirm previous studies showing that PAF-receptor binding can modulate immune function. Furthermore, they suggest that PAF-receptor binding may be an early event in the induction of immune suppression by immunotoxic environmental agents that target the skin

  1. Suppressive influences in the immune response to cancer.

    Science.gov (United States)

    Bronte, Vincenzo; Mocellin, Simone

    2009-01-01

    Although much evidence has been gathered demonstrating that immune effectors can play a significant role in controlling tumor growth under natural conditions or in response to therapeutic manipulation, it is clear that malignant cells do evade immune surveillance in most cases. Considering that anticancer active specific immunotherapy seems to have reached a plateau of results and that currently no vaccination regimen is indicated as a standard anticancer therapy, the dissection of the molecular events underlying tumor immune escape is the necessary condition to make anticancer vaccines a therapeutic weapon effective enough to be implemented in the routine clinical setting. Recent years have witnessed significant advances in our understanding of the molecular mechanisms underlying tumor immune escape. These mechanistic insights are fostering the development of rationally designed therapeutics aimed to revert the immunosuppressive circuits that undermine an effective antitumor immune response. In this review, the best characterized mechanisms that allow cancer cells to evade immune surveillance are overviewed and the most debated controversies constellating this complex field are highlighted.

  2. Immunotherapy: Shifting the Balance of Cell-Mediated Immunity and Suppression in Human Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, Jo A.; Jochems, Caroline [Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Gulley, James L. [Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Schlom, Jeffrey, E-mail: js141c@nih.gov; Tsang, Kwong Y. [Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States)

    2012-12-11

    Active immunotherapy is dependent on the ability of the immune system to recognize and respond to tumors. Despite overwhelming evidence to support a cell-mediated immune response to prostate cancer, it is insufficient to eradicate the disease. This is likely due to a high level of suppression at the tumor site from a variety of sources, including immunosuppressive cells. Immune cells entering the tumor microenvironment may be inhibited directly by the tumor, stromal cells or other immune cells that have been induced to adopt a suppressive phenotype. The resurgence of interest in immunotherapy following the approval of sipuleucel-T and ipilimumab by the Food and Drug Administration has brought about new strategies for overcoming tumor-mediated suppression and bolstering anti-tumor responses. Improved understanding of the immune response to prostate cancer can lead to new combination therapies, such as the use of vaccine with small molecule and checkpoint inhibitors or other immunotherapies.

  3. Immunotherapy: Shifting the Balance of Cell-Mediated Immunity and Suppression in Human Prostate Cancer

    International Nuclear Information System (INIS)

    Tucker, Jo A.; Jochems, Caroline; Gulley, James L.; Schlom, Jeffrey; Tsang, Kwong Y.

    2012-01-01

    Active immunotherapy is dependent on the ability of the immune system to recognize and respond to tumors. Despite overwhelming evidence to support a cell-mediated immune response to prostate cancer, it is insufficient to eradicate the disease. This is likely due to a high level of suppression at the tumor site from a variety of sources, including immunosuppressive cells. Immune cells entering the tumor microenvironment may be inhibited directly by the tumor, stromal cells or other immune cells that have been induced to adopt a suppressive phenotype. The resurgence of interest in immunotherapy following the approval of sipuleucel-T and ipilimumab by the Food and Drug Administration has brought about new strategies for overcoming tumor-mediated suppression and bolstering anti-tumor responses. Improved understanding of the immune response to prostate cancer can lead to new combination therapies, such as the use of vaccine with small molecule and checkpoint inhibitors or other immunotherapies

  4. Radiation Therapy Induces Macrophages to Suppress Immune Responses Against Pancreatic Tumors in Mice

    Science.gov (United States)

    Seifert, Lena; Werba, Gregor; Tiwari, Shaun; Ly, Nancy Ngoc Giao; Nguy, Susanna; Alothman, Sara; Alqunaibit, Dalia; Avanzi, Antonina; Daley, Donnele; Barilla, Rocky; Tippens, Daniel; Torres-Hernandez, Alejandro; Hundeyin, Mautin; Mani, Vishnu R.; Hajdu, Cristina; Pellicciotta, Ilenia; Oh, Philmo; Du, Kevin; Miller, George

    2016-01-01

    Background & Aims The role of radiation therapy in the treatment of patients with pancreatic ductal adenocarcinoma (PDA) is controversial. Randomized controlled trials investigating the efficacy of radiation therapy in patients with locally advanced unresectable PDA have reported mixed results, with effects ranging from modest benefit to worse outcome, compared with control therapies. We investigated whether radiation causes inflammatory cells to acquire an immune-suppressive phenotype that limits the therapeutic effects of radiation on invasive PDAs and accelerates progression of pre-invasive foci. Methods We investigated the effects of radiation in p48Cre;LSL-KrasG12D (KC) and p48Cre;LSLKrasG12D;LSL-Trp53R172H (KPC) mice, as well as in C57BL/6 mice with orthotopic tumors grown from FC1242 cells derived from KPC mice. Some mice were given neutralizing antibodies against macrophage colony stimulating factor 1 (CSF1 or MCSF) or F4/80. Pancreata were exposed to doses of radiation ranging from 2–12 Gy and analyzed by flow cytometry. Results Pancreata of KC mice exposed to radiation had a higher frequency of advanced pancreatic intraepithelial lesions and more foci of invasive cancer than pancreata of unexposed mice (controls); radiation reduced survival time by more than 6 months. A greater proportion of macrophages from invasive and pre-invasive pancreatic tumors had an immune-suppressive, M2-like phenotype, compared with control mice. Pancreata from mice exposed to radiation had fewer CD8+ T cells than controls and greater numbers of CD4+ T cells of T-helper 2 and T-regulatory cell phenotypes. Adoptive transfer of T cells from irradiated PDA to tumors of control mice accelerated tumor growth. Radiation induced production of MCSF by PDA cells. An antibody against MCSF prevented radiation from altering the phenotype of macrophages in tumors, increasing the anti-tumor T-cell response and slowing tumor growth. Conclusions Radiation exposure causes macrophages in PDAs

  5. Suppression of the immune response to ovalbumin in vivo by anti-idiotypic antibodies

    International Nuclear Information System (INIS)

    Grinevich, A.S.; Pinegin, B.V.

    1986-01-01

    Conditions of suppression of the immune response to a food allergin (ovalbumin) were studied with the aid of anti-idiotypic (AID) antibodies. Hen ovalbumin was used and the experiments were performed on mice. Antibodies were isolated from the resulting protein fractions and tested for inhibitor activity by the method of direct radioimmunologic analysis. The test system consisted of the reaction of binding the globulin fraction to the total preparation of antibodies to ovalbumin from mice and a 125 I-labeled total preparation of antibodies to ovalbumin of the same animals

  6. E-cigarette use results in suppression of immune and inflammatory-response genes in nasal epithelial cells similar to cigarette smoke.

    Science.gov (United States)

    Martin, Elizabeth M; Clapp, Phillip W; Rebuli, Meghan E; Pawlak, Erica A; Glista-Baker, Ellen; Benowitz, Neal L; Fry, Rebecca C; Jaspers, Ilona

    2016-07-01

    Exposure to cigarette smoke is known to result in impaired host defense responses and immune suppressive effects. However, the effects of new and emerging tobacco products, such as e-cigarettes, on the immune status of the respiratory epithelium are largely unknown. We conducted a clinical study collecting superficial nasal scrape biopsies, nasal lavage, urine, and serum from nonsmokers, cigarette smokers, and e-cigarette users and assessed them for changes in immune gene expression profiles. Smoking status was determined based on a smoking history and a 3- to 4-wk smoking diary and confirmed using serum cotinine and urine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) levels. Total RNA from nasal scrape biopsies was analyzed using the nCounter Human Immunology v2 Expression panel. Smoking cigarettes or vaping e-cigarettes resulted in decreased expression of immune-related genes. All genes with decreased expression in cigarette smokers (n = 53) were also decreased in e-cigarette smokers. Additionally, vaping e-cigarettes was associated with suppression of a large number of unique genes (n = 305). Furthermore, the e-cigarette users showed a greater suppression of genes common with those changed in cigarette smokers. This was particularly apparent for suppressed expression of transcription factors, such as EGR1, which was functionally associated with decreased expression of 5 target genes in cigarette smokers and 18 target genes in e-cigarette users. Taken together, these data indicate that vaping e-cigarettes is associated with decreased expression of a large number of immune-related genes, which are consistent with immune suppression at the level of the nasal mucosa. Copyright © 2016 the American Physiological Society.

  7. Expression of immune-response genes in lepidopteran host is suppressed by venom from an endoparasitoid, Pteromalus puparum

    Directory of Open Access Journals (Sweden)

    Fang Qi

    2010-09-01

    Full Text Available Abstract Background The relationships between parasitoids and their insect hosts have attracted attention at two levels. First, the basic biology of host-parasitoid interactions is of fundamental interest. Second, parasitoids are widely used as biological control agents in sustainable agricultural programs. Females of the gregarious endoparasitoid Pteromalus puparum (Hymenoptera: Pteromalidae inject venom along with eggs into their hosts. P. puparum does not inject polydnaviruses during oviposition. For this reason, P. puparum and its pupal host, the small white butterfly Pieris rapae (Lepidoptera: Pieridae, comprise an excellent model system for studying the influence of an endoparasitoid venom on the biology of the pupal host. P. puparum venom suppresses the immunity of its host, although the suppressive mechanisms are not fully understood. In this study, we tested our hypothesis that P. puparum venom influences host gene expression in the two main immunity-conferring tissues, hemocytes and fat body. Results At 1 h post-venom injection, we recorded significant decreases in transcript levels of 217 EST clones (revealing 113 genes identified in silico, including 62 unknown contigs derived from forward subtractive libraries of host hemocytes and in transcript levels of 288 EST clones (221 genes identified in silico, including 123 unknown contigs from libraries of host fat body. These genes are related to insect immune response, cytoskeleton, cell cycle and apoptosis, metabolism, transport, stress response and transcriptional and translational regulation. We verified the reliability of the suppression subtractive hybridization (SSH data with semi-quantitative RT-PCR analysis of a set of randomly selected genes. This analysis showed that most of the selected genes were down-regulated after venom injection. Conclusions Our findings support our hypothesis that P. puparum venom influences gene expression in host hemocytes and fat body. Specifically

  8. Suppression of the primary immune response in rainbow trout, Salmo gairdneri, sublethally exposed to tritiated water during embryogenesis

    International Nuclear Information System (INIS)

    Strand, J.A.

    1975-01-01

    Antibody synthesis in response to vaccination with a 0.1 cc (1.8 x 10 8 cells/cc) intraperitoneally injected heat-killed strain of Flexibacter columnaris was employed to investigate the effect of tritium irradiation (0, 0.04, 0.4, 4.0 and 40.0 rads total dose for 20 days during embryogenesis) on development of the primary immune response in 5-month rainbow trout, Salmo gairdneri. Total serum protein measurements and electrophoretic separation of blood serum proteins followed by densitometric analyses were performed to assess the potential for qualitative and quantitative changes in blood serum components which conceivably accounted for suppressed immune responsiveness in tritium-irradiated fish. Data on the biological effects of tritium on early life stages in terms of hatchability, abnormality, latent mortality, and growth were also collected. A review of all experiments directed at determining the effects of early radiation exposure on the parameters of hatchability, incidence of abnormality, latent mortality and depressed growth, revealed considerable variation among similar treatments and indicated that significant effects at dose levels of 50 rads and below were not consistently demonstrated. While present experimental results demonstrated that the primary immune response in juvenile rainbow trout was significantly suppressed following embryonic exposure to tritium at essentially the 1.0 μCi/ml level, and perhaps at the 0.1 μCi/ml level, these concentrations are no less than 5 to 6 orders of magnitude above present levels for tritium in the aquatic environment

  9. Oral administration of type-II collagen peptide 250-270 suppresses specific cellular and humoral immune response in collagen-induced arthritis.

    Science.gov (United States)

    Zhu, Ping; Li, Xiao-Yan; Wang, Hong-Kun; Jia, Jun-Feng; Zheng, Zhao-Hui; Ding, Jin; Fan, Chun-Mei

    2007-01-01

    Oral antigen is an attractive approach for the treatment of autoimmune and inflammatory diseases. Establishment of immune markers and methods in evaluating the effects of antigen-specific cellular and humoral immune responses will help the application of oral tolerance in the treatment of human diseases. The present article observed the effects of chicken collagen II (CII), the recombinant polymerized human collagen II 250-270 (rhCII 250-270) peptide and synthesized human CII 250-270 (syCII 250-270) peptide on the induction of antigen-specific autoimmune response in rheumatoid arthritis (RA) peripheral blood mononuclear cells (PBMC) and on the specific cellular and humoral immune response in collagen-induced arthritis (CIA) and mice fed with CII (250-270) prior to immunization with CII. In the study, proliferation, activation and intracellular cytokine production of antigen-specific T lymphocytes were simultaneously analyzed by bromodeoxyuridine (BrdU) incorporation and flow cytometry at the single-cell level. The antigen-specific antibody and antibody-forming cells were detected by ELISA and ELISPOT, respectively. CII (250-270) was found to have stimulated the response of specific lymphocytes in PBMC from RA patients, including the increase expression of surface activation antigen marker CD69 and CD25, and DNA synthesis. Mice, fed with CII (250-270) before CII immunization, had significantly lower arthritic scores than the mice immunized with CII alone, and the body weight of the former increased during the study period. Furthermore, the specific T cell activity, proliferation and secretion of interferon (IFN)-gamma in spleen cells were actively suppressed in CII (250-270)-fed mice, and the serum anti-CII, anti-CII (250-270) antibody activities and the frequency of specific antibody-forming spleen cells were significantly lower in CII (250-270)-fed mice than in mice immunized with CII alone. These observations suggest that oral administration of CII (250-270) can

  10. Porphyromonas gingivalis suppresses adaptive immunity in periodontitis, atherosclerosis, and Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Ingar Olsen

    2016-11-01

    Full Text Available Porphyromonas gingivalis, a keystone pathogen in chronic periodontitis, has been found to associate with remote body organ inflammatory pathologies, including atherosclerosis and Alzheimer’s disease (AD. Although P. gingivalis has a plethora of virulence factors, much of its pathogenicity is surprisingly related to the overall immunosuppression of the host. This review focuses on P. gingivalis aiding suppression of the host’s adaptive immune system involving manipulation of cellular immunological responses, specifically T cells and B cells in periodontitis and related conditions. In periodontitis, this bacterium inhibits the synthesis of IL-2 and increases humoral responses. This reduces the inflammatory responses related to T- and B-cell activation, and subsequent IFN-γ secretion by a subset of T cells. The T cells further suppress upregulation of programmed cell death-1 (PD-1-receptor on CD+cells and its ligand PD-L1 on CD11b+-subset of T cells. IL-2 downregulates genes regulated by immune response and induces a cytokine pattern in which the Th17 lineage is favored, thereby modulating the Th17/T-regulatory cell (Treg imbalance. The suppression of IFN-γ-stimulated release of interferon-inducible protein-10 (IP-10 chemokine ligands [ITAC (CXCL11 and Mig (CXCL9] by P. gingivalis capsular serotypes triggers distinct T cell responses and contributes to local immune evasion by release of its outer membrane vesicles. In atherosclerosis, P. gingivalis reduces Tregs, transforms growth factor beta-1 (TGFβ-1, and causes imbalance in the Th17 lineage of the Treg population. In AD, P. gingivalis may affect the blood–brain barrier permeability and inhibit local IFN-γ response by preventing entry of immune cells into the brain. The scarcity of adaptive immune cells in AD neuropathology implies P. gingivalis infection of the brain likely causing impaired clearance of insoluble amyloid and inducing immunosuppression. By the effective manipulation of

  11. Activated T cells sustain myeloid-derived suppressor cell-mediated immune suppression

    Science.gov (United States)

    Damuzzo, Vera; Francescato, Samuela; Pozzuoli, Assunta; Berizzi, Antonio; Mocellin, Simone; Rossi, Carlo Riccardo; Bronte, Vincenzo; Mandruzzato, Susanna

    2016-01-01

    The expansion of myeloid derived suppressor cells (MDSCs), a suppressive population able to hamper the immune response against cancer, correlates with tumor progression and overall survival in several cancer types. We have previously shown that MDSCs can be induced in vitro from precursors present in the bone marrow and observed that these cells are able to actively proliferate in the presence of activated T cells, whose activation level is critical to drive the suppressive activity of MDSCs. Here we investigated at molecular level the mechanisms involved in the interplay between MDSCs and activated T cells. We found that activated T cells secrete IL-10 following interaction with MDSCs which, in turn, activates STAT3 phosphorylation on MDSCs then leading to B7-H1 expression. We also demonstrated that B7-H1+ MDSCs are responsible for immune suppression through a mechanism involving ARG-1 and IDO expression. Finally, we show that the expression of ligands B7-H1 and MHC class II both on in vitro-induced MDSCs and on MDSCs in the tumor microenvironment of cancer patients is paralleled by an increased expression of their respective receptors PD-1 and LAG-3 on T cells, two inhibitory molecules associated with T cell dysfunction. These findings highlight key molecules and interactions responsible for the extensive cross-talk between MDSCs and activated T cells that are at the basis of immune suppression. PMID:26700461

  12. Role of pathogen-derived cell wall carbohydrates and prostaglandin E2 in immune response and suppression of fish immunity by the oomycete Saprolegnia parasitica.

    Science.gov (United States)

    Belmonte, Rodrigo; Wang, Tiehui; Duncan, Gary J; Skaar, Ida; Mélida, Hugo; Bulone, Vincent; van West, Pieter; Secombes, Christopher J

    2014-11-01

    Saprolegnia parasitica is a freshwater oomycete that is capable of infecting several species of fin fish. Saprolegniosis, the disease caused by this microbe, has a substantial impact on Atlantic salmon aquaculture. No sustainable treatment against saprolegniosis is available, and little is known regarding the host response. In this study, we examined the immune response of Atlantic salmon to S. parasitica infection and to its cell wall carbohydrates. Saprolegnia triggers a strong inflammatory response in its host (i.e., induction of interleukin-1β1 [IL-1β1], IL-6, and tumor necrosis factor alpha), while severely suppressing the expression of genes associated with adaptive immunity in fish, through downregulation of T-helper cell cytokines, antigen presentation machinery, and immunoglobulins. Oomycete cell wall carbohydrates were recognized by fish leukocytes, triggering upregulation of genes involved in the inflammatory response, similar to what is observed during infection. Our data suggest that S. parasitica is capable of producing prostaglandin [corrected] E2 (PGE2) in vitro, a metabolite not previously shown to be produced by oomycetes, and two proteins with homology to vertebrate enzymes known to play a role in prostaglandin biosynthesis have been identified in the oomycete genome. Exogenous PGE2 was shown to increase the inflammatory response in fish leukocytes incubated with cell wall carbohydrates while suppressing genes involved in cellular immunity (gamma interferon [IFN-γ] and the IFN-γ-inducible protein [γ-IP]). Inhibition of S. parasitica zoospore germination and mycelial growth by two cyclooxygenase inhibitors (aspirin and indomethacin) also suggests that prostaglandins may be involved in oomycete development. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  13. Sulphonylurea usage in melioidosis is associated with severe disease and suppressed immune response.

    Directory of Open Access Journals (Sweden)

    Xiang Liu

    2014-04-01

    Full Text Available BACKGROUND: Melioidosis is a problem in the developing tropical regions of Southeast Asia and Northern Australia where the the Gram negative saprophytic bacillus Burkholderia pseudomallei is endemic with the risk of fulminant septicaemia. While diabetes mellitus is a well-established risk factor for melioidiosis, little is known if specific hypoglycemic agents may differentially influence the susceptibility and clinical course of infection with B. pseudomallei (Bp. METHODOLOGY/PRINCIPAL FINDINGS: In this cohort study, patients with pre-existing diabetes and melioidosis were retrospectively studied. OUTCOME MEASURES: mortality, length of stay and development of complications (namely hypotension, intubation, renal failure and septicaemia were studied in relation to prior diabetic treatment regimen. Peripheral blood mononuclear cells (PBMC from diabetic patients and healthy PBMC primed with metformin, glyburide and insulin were stimulated with purified Bp antigens in vitro. Immune response and specific immune pathway mediators were studied to relate to the clinical findings mechanistically. Of 74 subjects, 44 (57.9% had sulphonylurea-containing diabetic regimens. Patient receiving sulphonylureas had more severe septic complications (47.7% versus 16.7% p = 0.006, in particular, hypotension requiring intropes (p = 0.005. There was also a trend towards increased mortality in sulphonylurea-users (15.9% versus 3.3% p = 0.08. In-vitro, glyburide suppressed inflammatory cytokine production in a dose-dependent manner. An effect of the drug was the induction of IL-1R-associated kinase-M at the level of mRNA transcription. CONCLUSION/SIGNIFICANCE: Sulphonylurea treatment results in suppression of host inflammatory response and may put patients at higher risk for adverse outcomes in melioidosis.

  14. Id1 suppresses anti-tumour immune responses and promotes tumour progression by impairing myeloid cell maturation.

    Science.gov (United States)

    Papaspyridonos, Marianna; Matei, Irina; Huang, Yujie; do Rosario Andre, Maria; Brazier-Mitouart, Helene; Waite, Janelle C; Chan, April S; Kalter, Julie; Ramos, Ilyssa; Wu, Qi; Williams, Caitlin; Wolchok, Jedd D; Chapman, Paul B; Peinado, Hector; Anandasabapathy, Niroshana; Ocean, Allyson J; Kaplan, Rosandra N; Greenfield, Jeffrey P; Bromberg, Jacqueline; Skokos, Dimitris; Lyden, David

    2015-04-29

    A central mechanism of tumour progression and metastasis involves the generation of an immunosuppressive 'macroenvironment' mediated in part through tumour-secreted factors. Here we demonstrate that upregulation of the Inhibitor of Differentiation 1 (Id1), in response to tumour-derived factors, such as TGFβ, is responsible for the switch from dendritic cell (DC) differentiation to myeloid-derived suppressor cell expansion during tumour progression. Genetic inactivation of Id1 largely corrects the myeloid imbalance, whereas Id1 overexpression in the absence of tumour-derived factors re-creates it. Id1 overexpression leads to systemic immunosuppression by downregulation of key molecules involved in DC differentiation and suppression of CD8 T-cell proliferation, thus promoting primary tumour growth and metastatic progression. Furthermore, advanced melanoma patients have increased plasma TGFβ levels and express higher levels of ID1 in myeloid peripheral blood cells. This study reveals a critical role for Id1 in suppressing the anti-tumour immune response during tumour progression and metastasis.

  15. The Skin Microbiome: Is It Affected by UV-induced Immune Suppression?

    Science.gov (United States)

    Patra, VijayKumar; Byrne, Scott N.; Wolf, Peter

    2016-01-01

    Human skin apart from functioning as a physical barricade to stop the entry of pathogens, also hosts innumerable commensal organisms. The skin cells and the immune system constantly interact with microbes, to maintain cutaneous homeostasis, despite the challenges offered by various environmental factors. A major environmental factor affecting the skin is ultraviolet radiation (UV-R) from sunlight. UV-R is well known to modulate the immune system, which can be both beneficial and deleterious. By targeting the cells and molecules within skin, UV-R can trigger the production and release of antimicrobial peptides, affect the innate immune system and ultimately suppress the adaptive cellular immune response. This can contribute to skin carcinogenesis and the promotion of infectious agents such as herpes simplex virus and possibly others. On the other hand, a UV-established immunosuppressive environment may protect against the induction of immunologically mediated skin diseases including some of photodermatoses such as polymorphic light eruption. In this article, we share our perspective about the possibility that UV-induced immune suppression may alter the landscape of the skin’s microbiome and its components. Alternatively, or in concert with this, direct UV-induced DNA and membrane damage to the microbiome may result in pathogen associated molecular patterns (PAMPs) that interfere with UV-induced immune suppression. PMID:27559331

  16. The skin microbiome: Is it affected by UV-induced immune suppression?

    Directory of Open Access Journals (Sweden)

    Vijaykumar Patra

    2016-08-01

    Full Text Available Human skin apart from functioning as a physical barricade to stop the entry of pathogens, also hosts innumerable commensal organisms. The skin cells and the immune system constantly interact with microbes, to maintain cutaneous homeostasis, despite the challenges offered by various environmental factors. A major environmental factor affecting the skin is ultraviolet radiation UV-R from sunlight. UV-R is well known to modulate the immune system, which can be both beneficial and deleterious. By targeting the cells and molecules within skin, UV-R can trigger the production and release of antimicrobial peptides (AMPs, affect the innate immune system and ultimately suppress the adaptive cellular immune response. This can contribute to skin carcinogenesis and the promotion of infectious agents such as herpes simplex virus and possibly others. On the other hand, a UV-established immunosuppressive environment may protect against the induction of immunologically mediated skin diseases including some of photodermatoses such as polymorphic light eruption. In this article, we share our perspective about the possibility that UV-induced immune suppression may alter the landscape of the skin's microbiome and its components. Alternatively, or in concert with this, direct UV-induced DNA and membrane damage to the microbiome may result in pathogen associated molecular patterns (PAMPs that interfere with UV-induced immune suppression.

  17. Modulation of immune response by alloactivated suppressor T cells

    International Nuclear Information System (INIS)

    Bernstein, A.; Sopori, M.L.; Gose, J.E.; Sondel, P.M.

    1979-01-01

    These studies show that there may be several different kinds of suppressor cells, each activated by different pathways and able to suppress different parts of the immune response either specifically or nonspecifically. As such, the physiology of one type of suppressor cell need not necessarily apply to that of another type of suppressor. Thus we emphasize the trap that the suppressor cell option provides: that is, virtually any previously inexplicable in vitro and in vivo immune phenomenon can always be adequately accounted for by evoking a suppressor mechanism, either by suppressing the response or suppressing the suppressor

  18. Crimean-Congo Hemorrhagic Fever Virus Suppresses Innate Immune Responses via a Ubiquitin and ISG15 Specific Protease

    Directory of Open Access Journals (Sweden)

    Florine E.M. Scholte

    2017-09-01

    Full Text Available Antiviral responses are regulated by conjugation of ubiquitin (Ub and interferon-stimulated gene 15 (ISG15 to proteins. Certain classes of viruses encode Ub- or ISG15-specific proteases belonging to the ovarian tumor (OTU superfamily. Their activity is thought to suppress cellular immune responses, but studies demonstrating the function of viral OTU proteases during infection are lacking. Crimean-Congo hemorrhagic fever virus (CCHFV, family Nairoviridae is a highly pathogenic human virus that encodes an OTU with both deubiquitinase and deISGylase activity as part of the viral RNA polymerase. We investigated CCHFV OTU function by inactivating protease catalytic activity or by selectively disrupting its deubiquitinase and deISGylase activity using reverse genetics. CCHFV OTU inactivation blocked viral replication independently of its RNA polymerase activity, while deubiquitinase activity proved critical for suppressing the interferon responses. Our findings provide insights into viral OTU functions and support the development of therapeutics and vaccines.

  19. A stressful microenvironment: opposing effects of the endoplasmic reticulum stress response in the suppression and enhancement of adaptive tumor immunity.

    Science.gov (United States)

    Rausch, Matthew P; Sertil, Aparna Ranganathan

    2015-03-01

    The recent clinical success of immunotherapy in the treatment of certain types of cancer has demonstrated the powerful ability of the immune system to control tumor growth, leading to significantly improved patient survival. However, despite these promising results current immunotherapeutic strategies are still limited and have not yet achieved broad acceptance outside the context of metastatic melanoma. The limitations of current immunotherapeutic approaches can be attributed in part to suppressive mechanisms present in the tumor microenvironment that hamper the generation of robust antitumor immune responses thus allowing tumor cells to escape immune-mediated destruction. The endoplasmic reticulum (ER) stress response has recently emerged as a potent regulator of tumor immunity. The ER stress response is an adaptive mechanism that allows tumor cells to survive in the harsh growth conditions inherent to the tumor milieu such as low oxygen (hypoxia), low pH and low levels of glucose. Activation of ER stress can also alter the cancer cell response to therapies. In addition, the ER stress response promotes tumor immune evasion by inducing the production of protumorigenic inflammatory cytokines and impairing tumor antigen presentation. However, the ER stress response can boost antitumor immunity in some situations by enhancing the processing and presentation of tumor antigens and by inducing the release of immunogenic factors from stressed tumor cells. Here, we discuss the dualistic role of the ER stress response in the modulation of tumor immunity and highlight how strategies to either induce or block ER stress can be employed to improve the clinical efficacy of tumor immunotherapy.

  20. Gammaherpesvirus Co-infection with Malaria Suppresses Anti-parasitic Humoral Immunity.

    Directory of Open Access Journals (Sweden)

    Caline G Matar

    2015-05-01

    Full Text Available Immunity to non-cerebral severe malaria is estimated to occur within 1-2 infections in areas of endemic transmission for Plasmodium falciparum. Yet, nearly 20% of infected children die annually as a result of severe malaria. Multiple risk factors are postulated to exacerbate malarial disease, one being co-infections with other pathogens. Children living in Sub-Saharan Africa are seropositive for Epstein Barr Virus (EBV by the age of 6 months. This timing overlaps with the waning of protective maternal antibodies and susceptibility to primary Plasmodium infection. However, the impact of acute EBV infection on the generation of anti-malarial immunity is unknown. Using well established mouse models of infection, we show here that acute, but not latent murine gammaherpesvirus 68 (MHV68 infection suppresses the anti-malarial humoral response to a secondary malaria infection. Importantly, this resulted in the transformation of a non-lethal P. yoelii XNL infection into a lethal one; an outcome that is correlated with a defect in the maintenance of germinal center B cells and T follicular helper (Tfh cells in the spleen. Furthermore, we have identified the MHV68 M2 protein as an important virus encoded protein that can: (i suppress anti-MHV68 humoral responses during acute MHV68 infection; and (ii plays a critical role in the observed suppression of anti-malarial humoral responses in the setting of co-infection. Notably, co-infection with an M2-null mutant MHV68 eliminates lethality of P. yoelii XNL. Collectively, our data demonstrates that an acute gammaherpesvirus infection can negatively impact the development of an anti-malarial immune response. This suggests that acute infection with EBV should be investigated as a risk factor for non-cerebral severe malaria in young children living in areas endemic for Plasmodium transmission.

  1. Macrophage Immune Response Suppression by Recombinant Mycobacterium tuberculosis Antigens, the ESAT-6, CFP-10, and ESAT-6/CFP-10 Fusion Proteins

    Science.gov (United States)

    Seghatoleslam, Atefeh; Hemmati, Mina; Ebadat, Saeedeh; Movahedi, Bahram; Mostafavi-Pour, Zohreh

    2016-01-01

    Background: Macrophage immune responses are affected by the secretory proteins of Mycobacterium tuberculosis (Mtb). This study aimed to examine the immune responses of macrophages to Mtb secretory antigens, namely ESAT-6, CFP-10, and ESAT-6/CFP-10. Methods: THP-1 cells (a human monocytic cell line) were cultured and differentiated to macrophages by phorbol 12-myristate 13-acetate. The cytotoxicity of the recombinant Mtb proteins was assessed using the MTT assay. Two important immune responses of macrophages, namely NO and ROS production, were measured in response to the ESAT-6, CFP-10, and ESAT-6/CFP-10 antigens. The data were analyzed using one-way ANOVA with SPSS, version 16, and considered significant at Pproteins markedly reduced macrophage immune response. The treatment of the THP-1-differentiated cells with ESAT-6, CFP-10, and ESAT-6/CFP-10 reduced NO and ROS production. The treated THP-1-differentiated cells exhibited less inducible NO synthase activity than did the untreated cells. No toxic effect on macrophage viability was observed for the applied proteins at the different concentrations. Conclusion: It seems that the decline in macrophage immune response is due to the suppression of NO and ROS production pathways without any effect on cell viability. PMID:27365551

  2. Plum pox virus capsid protein suppresses plant pathogen-associated molecular pattern (PAMP)-triggered immunity.

    Science.gov (United States)

    Nicaise, Valerie; Candresse, Thierry

    2017-08-01

    The perception of pathogen-associated molecular patterns (PAMPs) by immune receptors launches defence mechanisms referred to as PAMP-triggered immunity (PTI). Successful pathogens must suppress PTI pathways via the action of effectors to efficiently colonize their hosts. So far, plant PTI has been reported to be active against most classes of pathogens, except viruses, although this defence layer has been hypothesized recently as an active part of antiviral immunity which needs to be suppressed by viruses for infection success. Here, we report that Arabidopsis PTI genes are regulated upon infection by viruses and contribute to plant resistance to Plum pox virus (PPV). Our experiments further show that PPV suppresses two early PTI responses, the oxidative burst and marker gene expression, during Arabidopsis infection. In planta expression of PPV capsid protein (CP) was found to strongly impair these responses in Nicotiana benthamiana and Arabidopsis, revealing its PTI suppressor activity. In summary, we provide the first clear evidence that plant viruses acquired the ability to suppress PTI mechanisms via the action of effectors, highlighting a novel strategy employed by viruses to escape plant defences. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  3. Indian Hedgehog Suppresses a Stromal Cell–Driven Intestinal Immune Response

    Directory of Open Access Journals (Sweden)

    B. Florien Westendorp

    2018-01-01

    Conclusions: We show that epithelium-derived Indian Hedgehog signals exclusively to fibroblasts in the intestine. Loss of Ihh leads to a rapid immune response with up-regulation of fibroblast-derived CXCL12, and migration of immune cells into the lamina propria.

  4. The Biodistribution and Immune Suppressive Effects of Breast Cancer-Derived Exosomes.

    Science.gov (United States)

    Wen, Shu Wen; Sceneay, Jaclyn; Lima, Luize Goncalves; Wong, Christina S F; Becker, Melanie; Krumeich, Sophie; Lobb, Richard J; Castillo, Vanessa; Wong, Ke Ni; Ellis, Sarah; Parker, Belinda S; Möller, Andreas

    2016-12-01

    Small membranous secretions from tumor cells, termed exosomes, contribute significantly to intercellular communication and subsequent reprogramming of the tumor microenvironment. Here, we use optical imaging to determine that exogenously administered fluorescently labeled exosomes derived from highly metastatic murine breast cancer cells distributed predominantly to the lung of syngeneic mice, a frequent site of breast cancer metastasis. At the sites of accumulation, exosomes were taken up by CD45 + bone marrow-derived cells. Subsequent long-term conditioning of naïve mice with exosomes from highly metastatic breast cancer cells revealed the accumulation of myeloid-derived suppressor cells in the lung and liver. This favorable immune suppressive microenvironment was capable of promoting metastatic colonization in the lung and liver, an effect not observed from exosomes derived from nonmetastatic cells and liposome control vesicles. Furthermore, we determined that breast cancer exosomes directly suppressed T-cell proliferation and inhibited NK cell cytotoxicity, and hence likely suppressed the anticancer immune response in premetastatic organs. Together, our findings provide novel insight into the tissue-specific outcomes of breast cancer-derived exosome accumulation and their contribution to immune suppression and promotion of metastases. Cancer Res; 76(23); 6816-27. ©2016 AACR. ©2016 American Association for Cancer Research.

  5. Manipulations of the immune response in the chicken

    International Nuclear Information System (INIS)

    Bixler, G.S. Jr.

    1978-01-01

    The chicken with its dissociation of immune responses in cell-mediated immunity, dependent on the thymus, and humoral immunity, dependent on the bursa of Fabricius, provides a unique model for studying the two components of the immune system. While there are methods of obtaining selective, profound deficiency of humoral immunity, in this species, methods for obtaining a consistent, profound selective deficiency of cell-mediated immunity have been lacking. Oxisuran, 2[(methylsulfinyl)acetal] pyridine, has been reported to have the unique ability to differentially suppress cell-mediated immunity in several species of mammals without a concomitant reduction in antibody forming capacity. The effect of this compound on two parameters of cell-mediated immune responses in chickens was investigated. In further attempts to create a deficiency of both cell-mediated and humoral immunity, the effects of a combination of cyclophosphamide treatment and x-irradiation early in life on immune responses were studied

  6. Skin immunization by microneedle patch overcomes statin-induced suppression of immune responses to influenza vaccine.

    Science.gov (United States)

    Vassilieva, Elena V; Wang, Shelly; Li, Song; Prausnitz, Mark R; Compans, Richard W

    2017-12-19

    Recent studies indicated that in elderly individuals, statin therapy is associated with a reduced response to influenza vaccination. The present study was designed to determine effects on the immune response to influenza vaccination induced by statin administration in a mouse model, and investigate potential approaches to improve the outcome of vaccination on the background of statin therapy. We fed middle aged BALB/c mice a high fat "western" diet (WD) alone or supplemented with atorvastatin (AT) for 14 weeks, and control mice were fed with the regular rodent diet. Mice were immunized with a single dose of subunit A/Brisbane/59/07 (H1N1) vaccine, either systemically or with dissolving microneedle patches (MNPs). We observed that a greater age-dependent decline in the hemagglutinin inhibition titers occurred in systemically-immunized mice than in MNP- immunized mice. AT dampened the antibody response in the animals vaccinated by either route of vaccine delivery. However, the MNP-vaccinated AT-treated animals had ~20 times higher total antibody levels to the influenza vaccine than the systemically vaccinated group one month postvaccination. We propose that microneedle vaccination against influenza provides an approach to ameliorate the immunosuppressive effect of statin therapy observed with systemic immunization.

  7. Mechanisms underlying UV-induced immune suppression

    International Nuclear Information System (INIS)

    Ullrich, Stephen E.

    2005-01-01

    Skin cancer is the most prevalent form of human neoplasia. Estimates suggest that in excess of one million new cases of skin cancer will be diagnosed this year alone in the United States (www.cancer.org/statistics). Fortunately, because of their highly visible location, skin cancers are more rapidly diagnosed and more easily treated than other types of cancer. Be that as it may, approximately 10,000 Americans a year die from skin cancer. The cost of treating non-melanoma skin cancer is estimated to be in excess of US$ 650 million a year [J.G. Chen, A.B. Fleischer, E.D. Smith, C. Kancler, N.D. Goldman, P.M. Williford, S.R. Feldman, Cost of non-melanoma skin cancer treatment in the United States, Dermatol. Surg. 27 (2001) 1035-1038], and when melanoma is included, the estimated cost of treating skin cancer in the United States is estimated to rise to US$ 2.9 billion annually (www.cancer.org/statistics). Because the morbidity and mortality associated with skin cancer is a major public health problem, it is important to understand the mechanisms underlying skin cancer development. The primary cause of skin cancer is the ultraviolet (UV) radiation found in sunlight. In addition to its carcinogenic potential, UV radiation is also immune suppressive. In fact, data from studies with both experimental animals and biopsy proven skin cancer patients suggest that there is an association between the immune suppressive effects of UV radiation and its carcinogenic potential. The focus of this manuscript will be to review the mechanisms underlying the induction of immune suppression following UV exposure. Particular attention will be directed to the role of soluble mediators in activating immune suppression

  8. Indian Hedgehog Suppresses a Stromal Cell-Driven Intestinal Immune Response.

    Science.gov (United States)

    Westendorp, B Florien; Büller, Nikè V J A; Karpus, Olga N; van Dop, Willemijn A; Koster, Jan; Versteeg, Rogier; Koelink, Pim J; Snel, Clinton Y; Meisner, Sander; Roelofs, Joris J T H; Uhmann, Anja; Ver Loren van Themaat, Emiel; Heijmans, Jarom; Hahn, Heidi; Muncan, Vanesa; Wildenberg, Manon E; van den Brink, Gijs R

    2018-01-01

    Upon intestinal epithelial damage a complex wound healing response is initiated to restore epithelial integrity and defend against pathogenic invasion. Epithelium-derived Indian Hedgehog (Ihh) functions as a critical sensor in this process. Signaling occurs in a paracrine manner because the receptor for Ihh is expressed only in the mesenchyme, but the exact Hedgehog target cell has remained elusive. The aim of this study was to elucidate further the nature of this target cell in the context of intestinal inflammation. Hedgehog activity was modulated genetically in both cell type-specific and body-wide models and the resulting animals were analyzed for gene expression profiles and sensitivity for dextran sodium sulfate (DSS) colitis. To characterize the Hedgehog target cell, Gli1-CreERT2-Rosa26-ZsGreen animals were generated, which express ZsGreen in all Hedgehog-responsive cells. These cells were characterized using flow cytometry and immunofluorescence. Loss of Indian Hedgehog from the intestinal epithelium resulted in a rapid increase in expression of inflammation-related genes, accompanied by increased influx of immune cells. Animals with epithelium-specific deletion of Ihh or lacking the Hedgehog receptor Smoothened from Hedgehog target cells were more sensitive to DSS colitis. In contrast, specific deletion of Smoothened in the myeloid compartment did not alter the response to DSS. This suggests that Hedgehog signaling does not repress intestinal immunity through an effect on myeloid cells. Indeed, we found that Hedgehog-responsive cells expressed gp38, smooth muscle actin, and desmin, indicating a fibroblastic nature. Ihh signaling inhibited expression of C-X-C motif chemokine ligand 12 (CXCL12) in fibroblasts in vitro and in vivo, thereby impairing the recruitment of immune cells. We show that epithelium-derived Indian Hedgehog signals exclusively to fibroblasts in the intestine. Loss of Ihh leads to a rapid immune response with up-regulation of fibroblast

  9. Evidence that shock-induced immune suppression is mediated by adrenal hormones and peripheral beta-adrenergic receptors.

    Science.gov (United States)

    Cunnick, J E; Lysle, D T; Kucinski, B J; Rabin, B S

    1990-07-01

    Our previous work has demonstrated that presentations of mild foot-shock to Lewis rats induces a suppression of splenic and peripheral blood lymphocyte responses to nonspecific T-cell mitogens. The present study demonstrated that adrenalectomy prevented the shock-induced suppression of the mitogenic response of peripheral blood T-cells but did not attenuate the suppression of splenic T-cells. Conversely, the beta-adrenergic receptor antagonists, propranolol and nadolol, attenuated the shock-induced suppression of splenic T-cells in a dose-dependent manner but did not attenuate suppression of the blood mitogen response. These data indicate that distinct mechanisms mediate the shock-induced suppression of T-cell responsiveness to mitogens in the spleen and the peripheral blood. The results indicate that the peripheral release of catecholamines is responsible for splenic immune suppression and that adrenal hormones, which do not interact with beta-adrenergic receptors, are responsible for shock-induced suppression of blood mitogenic responses.

  10. Anterior Chamber-Associated Immune Deviation (ACAID: An Acute Response to Ocular Insult Protects from Future Immune-Mediated Damage?

    Directory of Open Access Journals (Sweden)

    Robert E. Cone

    2009-01-01

    Full Text Available The “immune privilege” that inhibits immune defense mechanisms that could lead to damage to sensitive ocular tissue is based on the expression of immunosuppressive factors on ocular tissue and in ocular fluids. In addition to this environmental protection, the injection of antigen into the anterior chamber or infection in the anterior chamber induces a systemic suppression of potentially damaging cell-mediated and humoral responses to the antigen. Here we discuss evidence that suggests that Anterior Chamber-Associated Immune Deviation (ACAID a is initiated by an ocular response to moderate inflammation that leads to a systemic immunoregulatory response. Injection into the anterior chamber induces a rise in TNF-α and MCP-1 in aqueous humor and an infiltration of circulating F4/80 + monocytes that home to the iris. The induction of ACAID is dependent on this infiltration of circulating monocytes that eventually emigrate to the thymus and spleen where they induce regulatory T cells that inhibit the inductive or effector phases of a cell-mediated immune response. ACAID therefore protects the eye from the collateral damage of an immune response to infection by suppressing a future potentially damaging response to infection.

  11. Sex differences in immune responses: Hormonal effects, antagonistic selection, and evolutionary consequences.

    Science.gov (United States)

    Roved, Jacob; Westerdahl, Helena; Hasselquist, Dennis

    2017-02-01

    Males and females differ in both parasite load and the strength of immune responses and these effects have been verified in humans and other vertebrates. Sex hormones act as important modulators of immune responses; the male sex hormone testosterone is generally immunosuppressive while the female sex hormone estrogen tends to be immunoenhancing. Different sets of T-helper cells (Th) have important roles in adaptive immunity, e.g. Th1 cells trigger type 1 responses which are primarily cell-mediated, and Th2 cells trigger type 2 responses which are primarily humoral responses. In our review of the literature, we find that estrogen and progesterone enhance type 2 and suppress type 1 responses in females, whereas testosterone suppresses type 2 responses and shows an inconsistent pattern for type 1 responses in males. When we combine these patterns of generally immunosuppressive and immunoenhancing effects of the sex hormones, our results imply that the sex differences in immune responses should be particularly strong in immune functions associated with type 2 responses, and less pronounced with type 1 responses. In general the hormone-mediated sex differences in immune responses may lead to genetic sexual conflicts on immunity. Thus, we propose the novel hypothesis that sexually antagonistic selection may act on immune genes shared by the sexes, and that the strength of this sexually antagonistic selection should be stronger for type 2- as compared with type 1-associated immune genes. Finally, we put the consequences of sex hormone-induced effects on immune responses into behavioral and ecological contexts, considering social mating system, sexual selection, geographical distribution of hosts, and parasite abundance. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Tumor-Derived Exosomes and Their Role in Tumor-Induced Immune Suppression

    Directory of Open Access Journals (Sweden)

    Theresa L. Whiteside

    2016-10-01

    Full Text Available Tumor-derived exosomes (TEX are emerging as critical components of an intercellular information network between the tumor and the host. The tumor escapes from the host immune system by using a variety of mechanisms designed to impair or eliminate anti-tumor immunity. TEX carrying a cargo of immunoinhibitory molecules and factors represent one such mechanism. TEX, which are present in all body fluids of cancer patients, deliver negative molecular or genetic signals to immune cells re-programming their functions. Although TEX can also stimulate immune activity, in the microenvironments dominated by the tumor, TEX tend to mediate immune suppression thus promoting tumor progression. The TEX content, in part resembling that of the parent cell, may serve as a source of cancer biomarkers. TEX also interfere with immune therapies. A better understanding of TEX and their contribution to cancer progression and cancer patients’ response to immune therapies represents a challenging new field of investigation.

  13. Suppression of immune-mediated liver injury after vaccination with attenuated pathogenic cells.

    Science.gov (United States)

    Mei, Yunhua; Wang, Ying; Xu, Lingyun

    2007-05-15

    Cell vaccination via immunization with attenuated pathogenic cells is an effective preventive method that has been successfully applied in several animal models of inflammatory or autoimmune diseases. Concanavalin A (Con A)-induced hepatitis (CIH) is a commonly used experimental model to study immune-mediated liver injury. Multiple cell types including T lymphocytes, macrophages and neutrophils have been found to be involved in the pathogenesis of CIH. In this study, we used attenuated spleen lymphocytes or peripheral blood lymphocytes as vaccines to investigate whether they could induce protective immune responses to prevent mice from developing CIH. We found that mice receiving such vaccination before CIH induction developed much milder diseases, exhibited a lower level of alanine aminotransferase (ALT) released into their plasma and had less inflammatory lesions in their livers. Such CIH-suppression is dose- and frequency-dependent. The suppressive effect was associated with inhibition of several major inflammatory mediators, pro-inflammatory cytokines and chemokines.

  14. Cigarette smoke-exposed saliva suppresses cellular and humoral immune responses in an animal model

    International Nuclear Information System (INIS)

    Jafarzadeh, A.; Bakhshi, H.; Rezayati, M.T.; Nemati, M.

    2009-01-01

    To evaluate the effects of cigarette smoke (CS)-exposed saliva on cellular and antibody responses in an animal model. The stimulatory and non-stimulatory saliva samples were collected from 10 healthy subjects and were then exposed to CS for 20 or 80 minutes. The CS-exposed saliva samples were administrated intraperitoneally (i.p) to male Balb/c mice. Then the delayed type hypersensitivity (DTH) and antibody responses to sheep red blood cell (SRBC) was assessed. Moreover, the total white blood cells (WBC) counts and the blood lymphocytes counts were determined. The mean of DTH responses of animal groups received 20 minutes or 80 minutes CS-exposed saliva samples was significantly lower than that observed in control group. Moreover, The mean titer of anti-SRBC antibody was significantly lower in animal groups who received 80 minutes CS-exposed stimulatory or non-stimulatory saliva as compared to control group (P<0.04 and P<0.002, respectively). The mean counts of blood lymphocytes in 80 minutes CS exposed-stimulatory saliva group was also significantly lower as compared to control group (P<0.05). These results show that the CS-exposed saliva samples have profound suppressive effects on both cellular and humoral immune response in a mouse animal model (JPMA 59:760; 2009). (author)

  15. BTB-BACK Domain Protein POB1 Suppresses Immune Cell Death by Targeting Ubiquitin E3 ligase PUB17 for Degradation.

    Directory of Open Access Journals (Sweden)

    Beatriz Orosa

    2017-01-01

    Full Text Available Hypersensitive response programmed cell death (HR-PCD is a critical feature in plant immunity required for pathogen restriction and prevention of disease development. The precise control of this process is paramount to cell survival and an effective immune response. The discovery of new components that function to suppress HR-PCD will be instrumental in understanding the regulation of this fundamental mechanism. Here we report the identification and characterisation of a BTB domain E3 ligase protein, POB1, that functions to suppress HR-PCD triggered by evolutionarily diverse pathogens. Nicotiana benthamiana and tobacco plants with reduced POB1 activity show accelerated HR-PCD whilst those with increased POB1 levels show attenuated HR-PCD. We demonstrate that POB1 dimerization and nuclear localization are vital for its function in HR-PCD suppression. Using protein-protein interaction assays, we identify the Plant U-Box E3 ligase PUB17, a well established positive regulator of plant innate immunity, as a target for POB1-mediated proteasomal degradation. Using confocal imaging and in planta immunoprecipitation assays we show that POB1 interacts with PUB17 in the nucleus and stimulates its degradation. Mutated versions of POB1 that show reduced interaction with PUB17 fail to suppress HR-PCD, indicating that POB1-mediated degradation of PUB17 U-box E3 ligase is an important step for negative regulation of specific immune pathways in plants. Our data reveals a new mechanism for BTB domain proteins in suppressing HR-PCD in plant innate immune responses.

  16. Novel "Elements" of Immune Suppression within the Tumor Microenvironment.

    Science.gov (United States)

    Gurusamy, Devikala; Clever, David; Eil, Robert; Restifo, Nicholas P

    2017-06-01

    Adaptive evolution has prompted immune cells to use a wide variety of inhibitory signals, many of which are usurped by tumor cells to evade immune surveillance. Although tumor immunologists often focus on genes and proteins as mediators of immune function, here we highlight two elements from the periodic table-oxygen and potassium-that suppress the immune system in previously unappreciated ways. While both are key to the maintenance of T-cell function and tissue homeostasis, they are exploited by tumors to suppress immuno-surveillance and promote metastatic spread. We discuss the temporal and spatial roles of these elements within the tumor microenvironment and explore possible therapeutic interventions for effective and promising anticancer therapies. Cancer Immunol Res; 5(6); 426-33. ©2017 AACR . ©2017 American Association for Cancer Research.

  17. Effects of inhaled insoluble 239PuO2 on immune responses following lung immunization

    International Nuclear Information System (INIS)

    Bice, D.E.; Harris, D.L.; Brooks, A.L.; Mewhinney, J.A.

    1978-01-01

    To determine if inhaled 239 PuO 2 suppresses immunity in lung-associated lymph nodes, Chinese hamsters were exposed to a polydisperse aerosol of 239 PuO 2 produced at 1150 0 C. The mean lung burden of these animals was estimated to be 10 nCi at 8 days after exposure. At 128, 256 and 400 days after exposure, sham exposed controls and experimental animals were immunized by intratracheal instillation of 1 x 10 8 sheep red blood cells (SRBC). Six days later, they were sacrificed and the number of antibody forming cells (AFC) in lung-associated lymph nodes, spleen and cervical lymph nodes was evaluated. Results of these studies indicated that the number of AFC in lung-associated lymph modes was significantly lower in animals exposed to 239 PuO 2 . Only a few AFC were found in spleen and cervical lymph nodes after intratracheal immunization and the number in exposed animals was not significantly different than in the controls. These data indicate that even though the 239 PuO 2 exposure had suppressed immune responses in lung-associated lymph nodes, their filtering capacity was unaffected and antigen did not translocate to the spleen. We conclude that, at the sacrifice intervals evaluated, the immune function of lung-associated lymph nodes was suppressed and that distant lymphoid tissue (e.g., spleen and cervical lymph nodes) did not replace the immune function of the lung-associated lymph nodes

  18. Pretreatment antigen-specific immunity and regulation - association with subsequent immune response to anti-tumor DNA vaccination.

    Science.gov (United States)

    Johnson, Laura E; Olson, Brian M; McNeel, Douglas G

    2017-07-18

    Immunotherapies have demonstrated clinical benefit for many types of cancers, however many patients do not respond, and treatment-related adverse effects can be severe. Hence many efforts are underway to identify treatment predictive biomarkers. We have reported the results of two phase I trials using a DNA vaccine encoding prostatic acid phosphatase (PAP) in patients with biochemically recurrent prostate cancer. In both trials, persistent PAP-specific Th1 immunity developed in some patients, and this was associated with favorable changes in serum PSA kinetics. In the current study, we sought to determine if measures of antigen-specific or antigen non-specific immunity were present prior to treatment, and associated with subsequent immune response, to identify possible predictive immune biomarkers. Patients who developed persistent PAP-specific, IFNγ-secreting immune responses were defined as immune "responders." The frequency of peripheral T cell and B cell lymphocytes, natural killer cells, monocytes, dendritic cells, myeloid derived suppressor cells, and regulatory T cells were assessed by flow cytometry and clinical laboratory values. PAP-specific immune responses were evaluated by cytokine secretion in vitro, and by antigen-specific suppression of delayed-type hypersensitivity to a recall antigen in an in vivo SCID mouse model. The frequency of peripheral blood cell types did not differ between the immune responder and non-responder groups. Non-responder patients tended to have higher PAP-specific IL-10 production pre-vaccination (p = 0.09). Responder patients had greater preexisting PAP-specific bystander regulatory responses that suppressed DTH to a recall antigen (p = 0.016). While our study population was small (n = 38), these results suggest that different measures of antigen-specific tolerance or regulation might help predict immunological outcome from DNA vaccination. These will be prospectively evaluated in an ongoing randomized, phase II trial.

  19. Suppression of immune surveillance in melanoma [Immunotherapy of metastatic melanoma by reversal of immune suppression

    Energy Technology Data Exchange (ETDEWEB)

    Biggs, M. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Eiselein, J. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2001-06-01

    In this paper we develop the hypothesis that a significant fraction of patients with advanced melanoma can be successfully treated with immunotherapy. Reversal of antigen-specific immune suppression to melanoma polypeptide antigens is an essential, first step. We postulate the key regulation of CTL responses resides within the CD4+ T-lymphocytes and macrophage/dendritic cells. There is a pluri-potential cell within this regulatory arm that functions either as a Th1 cell or as a suppressor T-cell, Ths, depending on how antigen is presented. We have shown that poliovirus 1 Sabin will lyse human melanoma cells in tissue culture, and a special "vaccine" prepared from this lysis actively stimulates Ths cell function. The Ths arm of the regulatory system can be down-regulated with cyclophosphamide given 24 hours after the vaccine. The capacity to generate a CTL response is retained. The summary conclusion is that a phase 1 clinical trial in advanced melanoma using the special viral-tumor-lysate followed by cyclophosphamide, plus expanded autologous dendritic cells sensitized with the polypeptide epitopes captained in the viral-lysate will produce beneficial results.

  20. Rapamycin delays growth of Wnt-1 tumors in spite of suppression of host immunity

    International Nuclear Information System (INIS)

    Svirshchevskaya, Elena V; Mariotti, Jacopo; Wright, Mollie H; Viskova, Natalia Y; Telford, William; Fowler, Daniel H; Varticovski, Lyuba

    2008-01-01

    Rapamycin, an inhibitor of mammalian target of Rapamycin (mTOR), is an immunosuppressive agent that has anti-proliferative effects on some tumors. However, the role of Rapamycin-induced immune suppression on tumor progression has not been examined. We developed a transplantation model for generation of mammary tumors in syngeneic recipients that can be used to address the role of the immune system on tumor progression. We examined the effect of Rapamycin on the immune system and growth of MMTV-driven Wnt-1 mammary tumors which were transplanted into irradiated and bone marrow-reconstituted, or naïve mice. Rapamycin induced severe immunosuppression and significantly delayed the growth of Wnt-1 tumors. T cell depletion in spleen and thymus and reduction in T cell cytokine secretion were evident within 7 days of therapy. By day 20, splenic but not thymic T cell counts, and cytokine secretion recovered. We determined whether adoptive T cell therapy enhances the anti-cancer effect using ex vivo generated Rapamycin-resistant T cells. However, T cell transfer during Rapamycin therapy did not improve the outcome relative to drug therapy alone. Thus, we could not confirm that suppression of T cell immunity contributes to tumor growth in this model. Consistent with suppression of the mTOR pathway, decreased 4E-BP1, p70 S6-kinase, and S6 protein phosphorylation correlated with a decrease in Wnt-1 tumor cell proliferation. Rapamycin has a direct anti-tumor effect on Wnt-1 breast cancer in vivo that involves inhibition of the mTOR pathway at doses that also suppress host immune responses

  1. Suppression of adoptive antituberculosis immunity by normal recipient animals

    International Nuclear Information System (INIS)

    Lefford, M.J.

    1983-01-01

    Adoptive immunity is poorly expressed in normal syngeneic mice. This phenomenon was studied by using experimental antituberculosis immunity as a model system representing pure cell-mediated immunity. Expression of adoptive immunity was facilitated by pretreating recipients with sublethal ionizing radiation (500 rads) or high doses (200 mg/kg) of cyclophosphamide or by using adult thymectomized, lethally irradiated, bone-marrow-reconstituted (TXB) mice. Adult thymectomy was less effective, and a low dose of cyclophosphamide (20 mg/kg) was completely ineffective. The beneficial effect of sublethal irradiation was reduced over time; it persisted for 4 weeks and was absent after 8 weeks. Attempts to restore the suppressed state of normal mice to sublethally irradiated mice by using normal spleen or thymus cells did not succeed. Even in rats, which express adoptive antituberculosis immunity without immunosuppressive treatment, the use of sublethally irradiated or TXB recipients potentiated adoptive immunity. It was concluded that suppression of adoptive immunization in normal recipient mice is mediated predominantly, if not exclusively, by T lymphocytes that are sensitive to a number of immunosuppressive agents. The suppressor cells are long-lived and can be regenerated from precursors that are resistant to 500 but not to 900 rads of ionizing radiation

  2. Suppression of inflammatory immune responses in celiac disease by experimental hookworm infection.

    Directory of Open Access Journals (Sweden)

    Henry J McSorley

    Full Text Available We present immunological data from two clinical trials where the effect of experimental human hookworm (Necator americanus infection on the pathology of celiac disease was evaluated. We found that basal production of Interferon- (IFN-γ and Interleukin- (IL-17A from duodenal biopsy culture was suppressed in hookworm-infected participants compared to uninfected controls. Increased levels of CD4+CD25+Foxp3+ cells in the circulation and mucosa are associated with active celiac disease. We show that this accumulation also occurs during a short-term (1 week oral gluten challenge, and that hookworm infection suppressed the increase of circulating CD4+CD25+Foxp3+ cells during this challenge period. When duodenal biopsies from hookworm-infected participants were restimulated with the immunodominant gliadin peptide QE65, robust production of IL-2, IFN-γ and IL-17A was detected, even prior to gluten challenge while participants were strictly adhering to a gluten-free diet. Intriguingly, IL-5 was produced only after hookworm infection in response to QE65. Thus we hypothesise that hookworm-induced TH2 and IL-10 cross-regulation of the TH1/TH17 inflammatory response may be responsible for the suppression of these responses during experimental hookworm infection.

  3. Heavy metal pollution disturbs immune response in wild ant populations

    International Nuclear Information System (INIS)

    Sorvari, Jouni; Rantala, Liisa M.; Rantala, Markus J.; Hakkarainen, Harri; Eeva, Tapio

    2007-01-01

    Concern about the effects of environmental contaminants on immune function in both humans and wildlife is growing and practically nothing is known about this impact on terrestrial invertebrates, even though they are known to easily accumulate pollutants. We studied the effect of industrial heavy metal contamination on immune defense of a free-living wood ant (Formica aquilonia). To find out whether ants show an adapted immune function in a polluted environment, we compared encapsulation responses between local and translocated colonies. Local colonies showed higher heavy metal levels than the translocated ones but the encapsulation response was similar between the two groups, indicating that the immune system of local ants has not adapted to high contamination level. The encapsulation response was elevated in moderate whereas suppressed in high heavy metal levels suggesting higher risk for infections in heavily polluted areas. - Heavy metal pollution affects immune function in ants

  4. Physiologic Doses of Bilirubin Contribute to Tolerance of Islet Transplants by Suppressing the Innate Immune Response.

    Science.gov (United States)

    Adin, Christopher A; VanGundy, Zachary C; Papenfuss, Tracey L; Xu, Feng; Ghanem, Mostafa; Lakey, Jonathan; Hadley, Gregg A

    2017-01-24

    Bilirubin has been recognized as a powerful cytoprotectant when used at physiologic doses and was recently shown to have immunomodulatory effects in islet allograft transplantation, conveying donor-specific tolerance in a murine model. We hypothesized that bilirubin, an antioxidant, acts to suppress the innate immune response to islet allografts through two mechanisms: 1) by suppressing graft release of damage-associated molecular patterns (DAMPs) and inflammatory cytokines, and 2) by producing a tolerogenic phenotype in antigen-presenting cells. Bilirubin was administered intraperitoneally before pancreatic procurement or was added to culture media after islet isolation in AJ mice. Islets were exposed to transplant-associated nutrient deprivation and hypoxia. Bilirubin significantly decreased islet cell death after isolation and hypoxic stress. Bilirubin supplementation of islet media also decreased the release of DAMPs (HMGB1), inflammatory cytokines (IL-1β and IL-6), and chemokines (MCP-1). Cytoprotection was mediated by the antioxidant effects of bilirubin. Treatment of macrophages with bilirubin induced a regulatory phenotype, with increased expression of PD-L1. Coculture of these macrophages with splenocytes led to expansion of Foxp3+ Tregs. In conclusion, exogenous bilirubin supplementation showed cytoprotective and antioxidant effects in a relevant model of islet isolation and hypoxic stress. Suppression of DAMP release, alterations in cytokine profiles, and tolerogenic effects on macrophages suggest that the use of this natural antioxidant may provide a method of preconditioning to improve outcomes after allograft transplantation.

  5. Adrenaline influence on the immune response. I

    International Nuclear Information System (INIS)

    Depelchin, A.; Letesson, J.J.

    1981-01-01

    The intervention of adrenaline in the immunoregulation was investigated through the modification of the anti-SRBC PFC response of mice after its i.p. administration (4 μg) at various intervals before SRBC antigen. When the interval was less than 24 h, adrenaline accelerated the immune kinetics. This modification was apparent on both direct and indirect PFC, as well as on naive and immune mice. However, mice treated from 2 days showed a suppression of the response. The adrenaline affect subsisted on the adoptive response of spleen cells drug-treated either in vivo or in vitro. The mitogenic response after in vitro PHA or LPS stimulation of spleen cells from adrenaline-treated mice indicated that the T-cells were the drug target. The physiological role of the adrenaline and immunological influences of acute stress are discussed in the paper. The stress was provided by gamma irradiation. (Auth.)

  6. Endoplasmic Reticulum Stress Caused by Lipoprotein Accumulation Suppresses Immunity against Bacterial Pathogens and Contributes to Immunosenescence

    Directory of Open Access Journals (Sweden)

    Jogender Singh

    2017-05-01

    Full Text Available The unfolded protein response (UPR is a stress response pathway that is activated upon increased unfolded and/or misfolded proteins in the endoplasmic reticulum (ER, and enhanced ER stress response prolongs life span and improves immunity. However, the mechanism by which ER stress affects immunity remains poorly understood. Using the nematode Caenorhabditis elegans, we show that mutations in the lipoproteins vitellogenins, which are homologs of human apolipoprotein B-100, resulted in upregulation of the UPR. Lipoprotein accumulation in the intestine adversely affects the immune response and the life span of the organism, suggesting that it could be a contributing factor to immunosenescence. We show that lipoprotein accumulation inhibited the expression of several immune genes encoding proteins secreted by the intestinal cells in an IRE-1-independent manner. Our studies provide a mechanistic explanation for adverse effects caused by protein aggregation and ER stress on immunity and highlight the role of an IRE-1-independent pathway in the suppression of the expression of genes encoding secreted proteins.

  7. The Role of the Immune Response in Merkel Cell Carcinoma

    International Nuclear Information System (INIS)

    Triozzi, Pierre L.; Fernandez, Anthony P.

    2013-01-01

    Merkel cell carcinoma (MCC) is an aggressive neuroendocrine skin cancer. The Merkel cell polyomavirus (MCPyV) is implicated in its pathogenesis. Immune mechanisms are also implicated. Patients who are immunosuppressed have an increased risk. There is evidence that high intratumoral T-cell counts and immune transcripts are associated with favorable survival. Spontaneous regressions implicate immune effector mechanisms. Immunogenicity is also supported by observation of autoimmune paraneoplastic syndromes. Case reports suggest that immune modulation, including reduction of immune suppression, can result in tumor regression. The relationships between MCPyV infection, the immune response, and clinical outcome, however, remain poorly understood. Circulating antibodies against MCPyV antigens are present in most individuals. MCPyV-reactive T cells have been detected in both MCC patients and control subjects. High intratumoral T-cell counts are also associated with favorable survival in MCPyV-negative MCC. That the immune system plays a central role in preventing and controlling MCC is supported by several observations. MCCs often develop, however, despite the presence of humoral and cellular immune responses. A better understanding on how MCPyV and MCC evade the immune response will be necessary to develop effective immunotherapies

  8. The Role of the Immune Response in Merkel Cell Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Triozzi, Pierre L., E-mail: triozzp@ccf.org [Taussig Cancer Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195 (United States); Fernandez, Anthony P. [Departments of Dermatology and Anatomic Pathology, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195 (United States)

    2013-02-28

    Merkel cell carcinoma (MCC) is an aggressive neuroendocrine skin cancer. The Merkel cell polyomavirus (MCPyV) is implicated in its pathogenesis. Immune mechanisms are also implicated. Patients who are immunosuppressed have an increased risk. There is evidence that high intratumoral T-cell counts and immune transcripts are associated with favorable survival. Spontaneous regressions implicate immune effector mechanisms. Immunogenicity is also supported by observation of autoimmune paraneoplastic syndromes. Case reports suggest that immune modulation, including reduction of immune suppression, can result in tumor regression. The relationships between MCPyV infection, the immune response, and clinical outcome, however, remain poorly understood. Circulating antibodies against MCPyV antigens are present in most individuals. MCPyV-reactive T cells have been detected in both MCC patients and control subjects. High intratumoral T-cell counts are also associated with favorable survival in MCPyV-negative MCC. That the immune system plays a central role in preventing and controlling MCC is supported by several observations. MCCs often develop, however, despite the presence of humoral and cellular immune responses. A better understanding on how MCPyV and MCC evade the immune response will be necessary to develop effective immunotherapies.

  9. Interferon-Mediated Innate Immune Responses against Malaria Parasite Liver Stages

    Directory of Open Access Journals (Sweden)

    Jessica L. Miller

    2014-04-01

    Full Text Available Mosquito-transmitted malaria parasites infect hepatocytes and asymptomatically replicate as liver stages. Using RNA sequencing, we show that a rodent malaria liver-stage infection stimulates a robust innate immune response including type I interferon (IFN and IFNγ pathways. Liver-stage infection is suppressed by these infection-engendered innate responses. This suppression was abrogated in mice deficient in IFNγ, the type I IFN α/β receptor (IFNAR, and interferon regulatory factor 3. Natural killer and CD49b+CD3+ natural killer T (NKT cells increased in the liver after a primary infection, and CD1d-restricted NKT cells, which secrete IFNγ, were critical in reducing liver-stage burden of a secondary infection. Lack of IFNAR signaling abrogated the increase in NKT cell numbers in the liver, showing a link between type I IFN signaling, cell recruitment, and subsequent parasite elimination. Our findings demonstrate innate immune sensing of malaria parasite liver-stage infection and that the ensuing innate responses can eliminate the parasite.

  10. Myeloid-derived suppressor cells mediate immune suppression in spinal cord injury.

    Science.gov (United States)

    Wang, Lei; Yu, Wei-bo; Tao, Lian-yuan; Xu, Qing

    2016-01-15

    Spinal cord injury (SCI) is characterized by the loss of motor and sensory functions in areas below the level of the lesion and numerous accompanying deficits. Previous studies have suggested that myeloid-derived suppressor cell (MDSC)-induced immune depression may play a pivotal role in the course of SCI. However, the concrete mechanism of these changes regarding immune suppression remains unknown. Here, we created an SCI mouse model to gain further evidence regarding the relationship between MDSCs following SCI and T lymphocyte suppression. We showed that in the SCI mouse model, the expanding MDSCs have the capacity to suppress T cell proliferation, and this suppression could be reversed by blocking the arginase. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Antiretroviral therapy, immune suppression and renal impairment in HIV-positive persons

    DEFF Research Database (Denmark)

    Nielsen, Lene Ryom; Mocroft, Amanda; Lundgren, Jens D

    2014-01-01

    The purpose of this article is to review recent literature on antiretroviral treatment (ART) and immune suppression as risk factors for renal impairment in HIV-positive persons, and to discuss pending research questions within this field.......The purpose of this article is to review recent literature on antiretroviral treatment (ART) and immune suppression as risk factors for renal impairment in HIV-positive persons, and to discuss pending research questions within this field....

  12. Retnla (relmalpha/fizz1 suppresses helminth-induced Th2-type immunity.

    Directory of Open Access Journals (Sweden)

    John T Pesce

    2009-04-01

    Full Text Available Retnla (Resistin-like molecule alpha/FIZZ1 is induced during Th2 cytokine immune responses. However, the role of Retnla in Th2-type immunity is unknown. Here, using Retnla(-/- mice and three distinct helminth models, we show that Retnla functions as a negative regulator of Th2 responses. Pulmonary granuloma formation induced by the eggs of the helminth parasite Schistosoma mansoni is dependent on IL-4 and IL-13 and associated with marked increases in Retnla expression. We found that both primary and secondary pulmonary granuloma formation were exacerbated in the absence of Retlna. The number of granuloma-associated eosinophils and serum IgE titers were also enhanced. Moreover, when chronically infected with S. mansoni cercariae, Retnla(-/- mice displayed significant increases in granulomatous inflammation in the liver and the development of fibrosis and progression to hepatosplenic disease was markedly augmented. Finally, Retnla(-/- mice infected with the gastrointestinal (GI parasite Nippostrongylus brasiliensis had intensified lung pathology to migrating larvae, reduced fecundity, and accelerated expulsion of adult worms from the intestine, suggesting Th2 immunity was enhanced. When their immune responses were compared, helminth infected Retnla(-/- mice developed stronger Th2 responses, which could be reversed by exogenous rRelmalpha treatment. Studies with several cytokine knockout mice showed that expression of Retnla was dependent on IL-4 and IL-13 and inhibited by IFN-gamma, while tissue localization and cell isolation experiments indicated that eosinophils and epithelial cells were the primary producers of Retnla in the liver and lung, respectively. Thus, the Th2-inducible gene Retnla suppresses resistance to GI nematode infection, pulmonary granulomatous inflammation, and fibrosis by negatively regulating Th2-dependent responses.

  13. Primary immune system responders to nucleus pulposus cells: evidence for immune response in disc herniation

    Directory of Open Access Journals (Sweden)

    K Murai

    2010-01-01

    Full Text Available Although intervertebral disc herniation and associated sciatica is a common disease, its molecular pathogenesis is not well understood. Immune responses are thought to be involved. This study provides direct evidence that even non-degenerated nucleus pulposus (NP cells elicit immune responses. An in vitro colony forming inhibition assay demonstrated the suppressive effects of autologous spleen cells on NP cells and an in vitro cytotoxicity assay showed the positive cytotoxic effects of natural killer (NK cells and macrophages on NP cells. Non-degenerated rat NP tissues transplanted into wild type rats and immune-deficient mice demonstrated a significantly higher NP cell survival rate in immune-deficient mice. Immunohistochemical staining showed the presence of macrophages and NK cells in the transplanted NP tissues. These results suggest that even non-degenerated autologous NP cells are recognized by macrophages and NK cells, which may have an immunological function in the early phase of disc herniation. These findings contribute to understanding resorption and the inflammatory reaction to disc herniation.

  14. Suppression of Adaptive Immune Cell Activation Does Not Alter Innate Immune Adipose Inflammation or Insulin Resistance in Obesity.

    Directory of Open Access Journals (Sweden)

    Manikandan Subramanian

    Full Text Available Obesity-induced inflammation in visceral adipose tissue (VAT is a major contributor to insulin resistance and type 2 diabetes. Whereas innate immune cells, notably macrophages, contribute to visceral adipose tissue (VAT inflammation and insulin resistance, the role of adaptive immunity is less well defined. To address this critical gap, we used a model in which endogenous activation of T cells was suppressed in obese mice by blocking MyD88-mediated maturation of CD11c+ antigen-presenting cells. VAT CD11c+ cells from Cd11cCre+Myd88fl/fl vs. control Myd88fl/fl mice were defective in activating T cells in vitro, and VAT T and B cell activation was markedly reduced in Cd11cCre+Myd88fl/fl obese mice. However, neither macrophage-mediated VAT inflammation nor systemic inflammation were altered in Cd11cCre+Myd88fl/fl mice, thereby enabling a focused analysis on adaptive immunity. Unexpectedly, fasting blood glucose, plasma insulin, and the glucose response to glucose and insulin were completely unaltered in Cd11cCre+Myd88fl/fl vs. control obese mice. Thus, CD11c+ cells activate VAT T and B cells in obese mice, but suppression of this process does not have a discernible effect on macrophage-mediated VAT inflammation or systemic glucose homeostasis.

  15. Regulation of IgE antibody production by serum molecules. I. Serum from complete Freund's adjuvant-immune donors suppresses irradiation-enhanced IgE production in low responder mouse strains

    International Nuclear Information System (INIS)

    Tung, A.S.; Chiorazzi, N.; Katz, D.H.

    1978-01-01

    Exposure of mice to low doses of x irradiation at or near the time of primary immunization with 2,4-dinitrophenyl (DNP)-Ascaris suum extract (ASC) results in substantial enhancement of IgE anti-DNP antibody responses; the IgG antibody responses of such mice do not increase after such manipulations. This selective enhancement of IgE antibody production occurs in mice of both high and low IgE responder phenotype, although the extent of enhancement compared to unmanipulated control animals is more striking in low IgE responder mice. The studies presented here demonstrate that the irradiation-enhanced IgE antibody responses of low responder SJL and C57BL/6 mice as well as of intermediate responder AKR mice can be effectively suppressed by passive transfer of CFA-immune serum obtained from isologous donor mice. Moreover, adoptive secondary IgE antibody responses in SJL recipients of primed syngeneic spleen cells can be totally abolished by passive transfer of CFA-immune serum or ascitic fluid from CFA-immune mice. The suppressive activity of CFA-immune serum can be diminished or eliminated by exposure of CFA-primed donor mice to low dose x irradiation at an appropriate point during the priming regimen, after a single inoculation of CFA, and before collection of serum. Low dose x irradiation was not effective in eliminating suppressive activity of CFA-induced ascites fluid obtained from donor mice inoculated repeatedly with CFA. In contrast to the capacity of CFA-immune serum from isologous donors to suppress irradiation-enhanced IgE responses of low responder mice, similar sera or ascites fluids were ineffective in suppressing irradiation-enhanced responses of high responder BALB/c or (SJL x BALB/c)F 1 hybrid mice

  16. Arabidopsis ZED1-related kinases mediate the temperature-sensitive intersection of immune response and growth homeostasis.

    Science.gov (United States)

    Wang, Zhicai; Cui, Dayong; Liu, Jing; Zhao, Jingbo; Liu, Cheng; Xin, Wei; Li, Yuan; Liu, Na; Ren, Dongtao; Tang, Dingzhong; Hu, Yuxin

    2017-07-01

    Activation of the immune response in plants antagonizes growth and development in the absence of pathogens, and such an autoimmune phenotype is often suppressed by the elevation of ambient temperature. However, molecular regulation of the ambient temperature-sensitive intersection of immune response and growth is largely elusive. A genetic screen identified an Arabidopsis mutant, zed1-D, by its high temperature-dependent growth retardation. A combination of molecular, cytological and genetic approaches was used to investigate the molecular basis behind the temperature-sensitive growth and immune response in zed1-D. A dominant mutation in HOPZ-ETI-DEFICIENT 1 (ZED1) is responsible for a high temperature-dependent autoimmunity and growth retardation in zed1-D. The autoimmune phenotype in zed1-D is dependent on the HOPZ-ACTIVATED RESISTANCE 1 (ZAR1). ZED1 and some ZED1-related kinases (ZRKs) are induced by elevated temperature and function cooperatively to suppress the immune response by modulating the transcription of SUPPRESSOR OF NPR1-1 CONSTITUTIVE 1 (SNC1) in the absence of pathogens. Our data reveal a previously unidentified role of ZRKs in the ambient temperature-sensitive immune response in the absence of pathogens, and thus reveals a possible molecular mechanism underlying the temperature-mediated intersection of immune response and growth in plants. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  17. The Impact of Ultraviolet Radiation on Immune Responses (invited paper)

    International Nuclear Information System (INIS)

    Norval, M.

    2000-01-01

    In addition to its genotoxic and mutagenic effects, UV has the capacity to suppress immune responses. The mechanism involved is complex, beginning with chromophores located in the skin which absorb UV, this leading in turn to changes in the production of a range of immune mediators locally and systemically which then induce phenotypic and functional alterations in antigen presentation. The cascade ends with the promotion of a subset of T-cells downregulating cell-mediated immunity. The possible consequences of this immunomodulation for the control of tumours and infectious diseases require careful evaluation from laboratory and human studies. (author)

  18. Immune response to Sarcocystis neurona infection in naturally infected horses with equine protozoal myeloencephalitis.

    Science.gov (United States)

    Yang, Jibing; Ellison, Siobhan; Gogal, Robert; Norton, Heather; Lindsay, David S; Andrews, Frank; Ward, Daniel; Witonsky, Sharon

    2006-06-15

    Equine protozoal myeloencephalitis (EPM) is one of the most common neurologic diseases of horses in the United States. The primary etiologic agent is Sarcocystis neurona. Currently, there is limited knowledge regarding the protective or pathophysiologic immune response to S. neurona infection or the subsequent development of EPM. The objectives of this study were to determine whether S. neurona infected horses with clinical signs of EPM had altered or suppressed immune responses compared to neurologically normal horses and if blood sample storage would influence these findings. Twenty clinically normal horses and 22 horses with EPM, diagnosed by the presence of S. neurona specific antibodies in the serum and/or cerebrospinal (CSF) and clinical signs, were evaluated for differences in the immune cell subsets and function. Our results demonstrated that naturally infected horses had significantly (Pneurona in horses, as well as to determine the mechanism associated with suppressed in vitro proliferation responses. Finally, overnight storage of blood samples appears to alter T lymphocyte phenotypes and viability among leukocytes.

  19. Immune-suppressive activity of punicalagin via inhibition of NFAT activation

    International Nuclear Information System (INIS)

    Lee, Sang-Ik; Kim, Byoung-Soo; Kim, Kyoung-Shin; Lee, Samkeun; Shin, Kwang-Soo; Lim, Jong-Soon

    2008-01-01

    Since T cell activation is central to the development of autoimmune diseases, we screened a natural product library comprising 1400 samples of medicinal herbal extracts, to identify compounds that suppress T cell activity. Punicalagin (PCG) isolated from the fruit of Punica granatum was identified as a potent immune suppressant, based on its inhibitory action on the activation of the nuclear factor of activated T cells (NFAT). PCG downregulated the mRNA and soluble protein expression of interleukin-2 from anti-CD3/anti-CD28-stimulated murine splenic CD4+ T cells and suppressed mixed leukocytes reaction (MLR) without exhibiting cytotoxicity to the cells. In vivo, the PCG treatment inhibited phorbol 12-myristate 13-acetate (PMA)-induced chronic ear edema in mice and decreased CD3+ T cell infiltration of the inflamed tissue. These results suggest that PCG could be a potential candidate for the therapeutics of various immune pathologies

  20. immune response can measuring immunity to hiv during ...

    African Journals Online (AJOL)

    2005-11-01

    Nov 1, 2005 ... inhibitors (PIs), have resulted in significant suppression of viral replication. ... thymus, with the potential for immune reconstitution when ..... HIV-exposed but uninfected Gambian women [published erratum appears in. Nat Med ...

  1. The immune system strikes back: cellular immune responses against indoleamine 2,3-dioxygenase

    DEFF Research Database (Denmark)

    Sørensen, Rikke Baek; Berge-Hansen, Linda; Junker, Niels

    2009-01-01

    BACKGROUND: The enzyme indoleamine 2,3-dioxygenase (IDO) exerts an well established immunosuppressive function in cancer. IDO is expressed within the tumor itself as well as in antigen-presenting cells in tumor-draining lymph nodes, where it promotes the establishment of peripheral immune tolerance...... to tumor antigens. In the present study, we tested the notion whether IDO itself may be subject to immune responses. METHODS AND FINDINGS: The presence of naturally occurring IDO-specific CD8 T cells in cancer patients was determined by MHC/peptide stainings as well as ELISPOT. Antigen specific cytotoxic T...... of the major immune suppressive cell populations. CONCLUSION: IDO may serve as an important and widely applicable target for anti-cancer immunotherapeutic strategies. Furthermore, as emerging evidence suggests that IDO constitutes a significant counter-regulatory mechanism induced by pro-inflammatory signals...

  2. Role of Oxidative Stress in the Suppression of Immune Responses in Peripheral Blood Mononuclear Cells Exposed to Combustible Tobacco Product Preparation.

    Science.gov (United States)

    Arimilli, Subhashini; Schmidt, Eckhardt; Damratoski, Brad E; Prasad, G L

    2017-10-01

    Cigarette smoking is a major risk factor for several human diseases. Chronic inflammation, resulting from increased oxidative stress, has been suggested as a mechanism that contributes to the increased susceptibility of smokers to cancer and microbial infections. We have previously shown that whole-smoke conditioned medium (WS-CM) and total particulate matter (TPM) prepared from Kentucky 3R4F reference cigarettes [collectively called as combustible tobacco product preparations (TPPs)] potently suppressed agonist-stimulated cytokine secretion and target cell killing in peripheral blood mononuclear cells (PBMCs). Here we have investigated the role of oxidative stress from TPPs, which alters inflammatory responses in vitro. Particularly, we investigated the mechanisms of WS-CM-induced suppression of select cytokine secretions in Toll-like receptor (TLR) agonist-stimulated cells and target cell killing by effector cells in PBMCs. Pretreatment with N-acetyl cysteine (NAC), a precursor of reduced glutathione and an established anti-oxidant, protected against DNA damage and cytotoxicity caused by exposure to WS-CM. Similarly, secretion of tumor necrosis factor (TNF), interleukin (IL)-6, and IL-8 in response to TLR-4 stimulation was restored by pretreatment with NAC. Target cell killing, a functional measure of cytolytic cells in PBMCs, is suppressed by WS-CM. Pretreatment with NAC restored the target cell killing in WS-CM treated PBMCs. This was accompanied by higher perforin levels in the effector cell populations. Collectively, these data suggest that reducing oxidative stress caused by cigarette smoke components restores select immune responses in this ex vivo model.

  3. Cis-urocanic acid, a sunlight-induced immunosuppressive factor, activates immune suppression via the 5-HT2A receptor

    Science.gov (United States)

    Walterscheid, Jeffrey P.; Nghiem, Dat X.; Kazimi, Nasser; Nutt, Leta K.; McConkey, David J.; Norval, Mary; Ullrich, Stephen E.

    2006-01-01

    Exposure to UV radiation induces skin cancer and suppresses the immune response. To induce immune suppression, the electromagnetic energy of UV radiation must be absorbed by an epidermal photoreceptor and converted into a biologically recognizable signal. Two photoreceptors have been recognized: DNA and trans-urocanic acid (UCA). Trans-UCA is normally found in the outermost layer of skin and isomerizes to the cis isomer upon exposure to UV radiation. Although UCA was identified as a UV photoreceptor years ago, and many have documented its ability to induce immune suppression, its exact mode of action remains elusive. Particularly vexing has been the identity of the molecular pathway by which cis-UCA mediates immune suppression. Here we provide evidence that cis-UCA binds to the serotonin [5-hydroxytryptamine (5-HT)] receptor with relatively high affinity (Kd = 4.6 nM). Anti-cis-UCA antibody precipitates radiolabeled 5-HT, and the binding is inhibited by excess 5-HT and/or excess cis-UCA. Similarly, anti-5-HT antibody precipitates radiolabeled cis-UCA, and the binding is inhibited by excess 5-HT or excess cis-UCA. Calcium mobilization was activated when a mouse fibroblast line, stably transfected with the human 5-HT2A receptor, was treated with cis-UCA. Cis-UCA-induced calcium mobilization was blocked with a selective 5-HT2A receptor antagonist. UV- and cis-UCA-induced immune suppression was blocked by antiserotonin antibodies or by treating the mice with 5-HT2A receptor antagonists. Our findings identify cis-UCA as a serotonin receptor ligand and indicate that the immunosuppressive effects of cis-UCA and UV radiation are mediated by activation of the 5-HT2A receptor. PMID:17085585

  4. CD8(+)NKT-like cells regulate the immune response by killing antigen-bearing DCs.

    Science.gov (United States)

    Wang, Chao; Liu, Xi; Li, Zhengyuan; Chai, Yijie; Jiang, Yunfeng; Wang, Qian; Ji, Yewei; Zhu, Zhongli; Wan, Ying; Yuan, Zhenglong; Chang, Zhijie; Zhang, Minghui

    2015-09-15

    CD1d-dependent NKT cells have been extensively studied; however, the function of CD8(+)NKT-like cells, which are CD1d-independent T cells with NK markers, remains unknown. Here, we report that CD1d-independent CD8(+)NKT-like cells, which express both T cell markers (TCRβ and CD3) and NK cell receptors (NK1.1, CD49b and NKG2D), are activated and significantly expanded in mice immunized with GFP-expressing dendritic cells. Distinct from CD1d-dependent NKT cells, CD8(+)NKT-like cells possess a diverse repertoire of TCRs and secrete high levels of IFN-gamma but not IL-4. CD8(+)NKT-like cell development is normal in CD1d(-/-) mice, which suggests that CD8(+)NKT-like cells undergo a unique development pathway that differs from iNKT cells. Further functional analyses show that CD8(+)NKT-like cells suppress T-cell responses through elimination of dendritic cells in an antigen-specific manner. Adoptive transfer of antigen-specific CD8(+)NKT-like cells into RIP-OVA mice prevented subsequent development of diabetes in the animals induced by activated OT-I CD8 T cells. Our study suggests that CD8(+)NKT-like cells can function as antigen-specific suppressive cells to regulate the immune response through killing antigen-bearing DCs. Antigen-specific down regulation may provide an active and precise method for constraining an excessive immune response and avoiding bypass suppression of necessary immune responses to other antigens.

  5. CD8+NKT-like cells regulate the immune response by killing antigen-bearing DCs

    Science.gov (United States)

    Wang, Chao; Liu, Xi; Li, Zhengyuan; Chai, Yijie; Jiang, Yunfeng; Wang, Qian; Ji, Yewei; Zhu, Zhongli; Wan, Ying; Yuan, Zhenglong; Chang, Zhijie; Zhang, Minghui

    2015-01-01

    CD1d-dependent NKT cells have been extensively studied; however, the function of CD8+NKT-like cells, which are CD1d-independent T cells with NK markers, remains unknown. Here, we report that CD1d-independent CD8+NKT-like cells, which express both T cell markers (TCRβ and CD3) and NK cell receptors (NK1.1, CD49b and NKG2D), are activated and significantly expanded in mice immunized with GFP-expressing dendritic cells. Distinct from CD1d-dependent NKT cells, CD8+NKT-like cells possess a diverse repertoire of TCRs and secrete high levels of IFN-gamma but not IL-4. CD8+NKT-like cell development is normal in CD1d−/− mice, which suggests that CD8+NKT-like cells undergo a unique development pathway that differs from iNKT cells. Further functional analyses show that CD8+NKT-like cells suppress T-cell responses through elimination of dendritic cells in an antigen-specific manner. Adoptive transfer of antigen-specific CD8+NKT-like cells into RIP-OVA mice prevented subsequent development of diabetes in the animals induced by activated OT-I CD8 T cells. Our study suggests that CD8+NKT-like cells can function as antigen-specific suppressive cells to regulate the immune response through killing antigen-bearing DCs. Antigen-specific down regulation may provide an active and precise method for constraining an excessive immune response and avoiding bypass suppression of necessary immune responses to other antigens. PMID:26369936

  6. Virulent Type A Francisella tularensis actively suppresses cytokine responses in human monocytes

    Directory of Open Access Journals (Sweden)

    Devyn D Gilette

    2014-04-01

    Full Text Available Francisella tularensis is a Gram-negative facultative bacterium that can cause the disease tularemia, even upon exposure to low numbers of bacteria. One critical characteristic of Francisella is its ability to dampen or subvert the host immune response. Previous work has shown that monocytes infected with highly virulent F. tularensis subsp. tularensis strain Schu S4 responded with a general pattern of quantitatively reduced pro-inflammatory signaling pathway genes and cytokine production in comparison to those infected with the less virulent related F. novicida. However, it has been unclear whether the virulent Schu S4 was merely evading or actively suppressing monocyte responses. By using mixed infection assays with F. tularensis and F. novicida, we show that F. tularensis actively suppresses monocyte pro-inflammatory responses. Additional experiments show that this suppression occurs in a dose-dependent manner and is dependent upon the viability of F. tularensis. Importantly, F. tularensis was able to suppress pro-inflammatory responses to earlier infections with F. novicida. These results lend support that F. tularensis actively dampens human monocyte responses and this likely contributes to its enhanced pathogenicity.

  7. Bacterial effector HopF2 interacts with AvrPto and suppresses Arabidopsis innate immunity at the plasma membrane

    Science.gov (United States)

    Plant pathogenic bacteria inject a cocktail of effector proteins into host plant cells to modulate the host immune response, thereby promoting pathogenicity. How or whether these effectors work cooperatively is largely unknown. The Pseudomonas syringae DC3000 effector HopF2 suppresses the host plan...

  8. Blocking Indolamine-2,3-Dioxygenase Rebound Immune Suppression Boosts Antitumor Effects of Radio-Immunotherapy in Murine Models and Spontaneous Canine Malignancies.

    Science.gov (United States)

    Monjazeb, Arta M; Kent, Michael S; Grossenbacher, Steven K; Mall, Christine; Zamora, Anthony E; Mirsoian, Annie; Chen, Mingyi; Kol, Amir; Shiao, Stephen L; Reddy, Abhinav; Perks, Julian R; T N Culp, William; Sparger, Ellen E; Canter, Robert J; Sckisel, Gail D; Murphy, William J

    2016-09-01

    Previous studies demonstrate that intratumoral CpG immunotherapy in combination with radiotherapy acts as an in-situ vaccine inducing antitumor immune responses capable of eradicating systemic disease. Unfortunately, most patients fail to respond. We hypothesized that immunotherapy can paradoxically upregulate immunosuppressive pathways, a phenomenon we term "rebound immune suppression," limiting clinical responses. We further hypothesized that the immunosuppressive enzyme indolamine-2,3-dioxygenase (IDO) is a mechanism of rebound immune suppression and that IDO blockade would improve immunotherapy efficacy. We examined the efficacy and immunologic effects of a novel triple therapy consisting of local radiotherapy, intratumoral CpG, and systemic IDO blockade in murine models and a pilot canine clinical trial. In murine models, we observed marked increase in intratumoral IDO expression after treatment with radiotherapy, CpG, or other immunotherapies. The addition of IDO blockade to radiotherapy + CpG decreased IDO activity, reduced tumor growth, and reduced immunosuppressive factors, such as regulatory T cells in the tumor microenvironment. This triple combination induced systemic antitumor effects, decreasing metastases, and improving survival in a CD8(+) T-cell-dependent manner. We evaluated this novel triple therapy in a canine clinical trial, because spontaneous canine malignancies closely reflect human cancer. Mirroring our mouse studies, the therapy was well tolerated, reduced intratumoral immunosuppression, and induced robust systemic antitumor effects. These results suggest that IDO maintains immune suppression in the tumor after therapy, and IDO blockade promotes a local antitumor immune response with systemic consequences. The efficacy and limited toxicity of this strategy are attractive for clinical translation. Clin Cancer Res; 22(17); 4328-40. ©2016 AACR. ©2016 American Association for Cancer Research.

  9. Virus-like particle vaccine primes immune responses preventing inactivated-virus vaccine-enhanced disease against respiratory syncytial virus.

    Science.gov (United States)

    Hwang, Hye Suk; Lee, Young-Tae; Kim, Ki-Hye; Ko, Eun-Ju; Lee, Youri; Kwon, Young-Man; Kang, Sang-Moo

    2017-11-01

    Formalin inactivated respiratory syncytial virus (FI-RSV) vaccination caused vaccine-enhanced respiratory disease (ERD) upon exposure to RSV in children. Virus-like particles presenting RSV F fusion protein (F VLP) are known to increase T helper type-1 (Th1) immune responses and avoid ERD in animal models. We hypothesized that F VLP would prime immune responses preventing ERD upon subsequent exposure to ERD-prone FI-RSV. Here, we demonstrated that heterologous F VLP priming and FI-RSV boosting of mice prevented FI-RSV vaccine-enhanced lung inflammation and eosinophilia upon RSV challenge. F VLP priming redirected pulmonary T cells toward effector CD8 T cells producing Th1 cytokines and significantly suppressed pulmonary Th2 cytokines. This study suggests that RSV F VLP priming would modulate and shift immune responses to subsequent exposure to ERD-prone FI-RSV vaccine and RSV infection, suppressing Th2 immune-mediated pulmonary histopathology and eosinophilia. Copyright © 2017. Published by Elsevier Inc.

  10. Virulent Type A Francisella tularensis actively suppresses cytokine responses in human monocytes

    Science.gov (United States)

    Gillette, Devyn D.; Curry, Heather M.; Cremer, Thomas; Ravneberg, David; Fatehchand, Kavin; Shah, Prexy A.; Wewers, Mark D.; Schlesinger, Larry S.; Butchar, Jonathan P.; Tridandapani, Susheela; Gavrilin, Mikhail A.

    2014-01-01

    Background: Human monocyte inflammatory responses differ between virulent and attenuated Francisella infection. Results: A mixed infection model showed that the virulent F. tularensis Schu S4 can attenuate inflammatory cytokine responses to the less virulent F. novicida in human monocytes. Conclusion: F. tularensis dampens inflammatory response by an active process. Significance: This suppression may contribute to enhanced pathogenicity of F. tularensis. Francisella tularensis is a Gram-negative facultative bacterium that can cause the disease tularemia, even upon exposure to low numbers of bacteria. One critical characteristic of Francisella is its ability to dampen or subvert the host immune response. Previous work has shown that monocytes infected with highly virulent F. tularensis subsp. tularensis strain Schu S4 responded with a general pattern of quantitatively reduced pro-inflammatory signaling pathway genes and cytokine production in comparison to those infected with the less virulent related F. novicida. However, it has been unclear whether the virulent Schu S4 was merely evading or actively suppressing monocyte responses. By using mixed infection assays with F. tularensis and F. novicida, we show that F. tularensis actively suppresses monocyte pro-inflammatory responses. Additional experiments show that this suppression occurs in a dose-dependent manner and is dependent upon the viability of F. tularensis. Importantly, F. tularensis was able to suppress pro-inflammatory responses to earlier infections with F. novicida. These results lend support that F. tularensis actively dampens human monocyte responses and this likely contributes to its enhanced pathogenicity. PMID:24783062

  11. Purulent pericarditis in a dog administered immune-suppressing drugs

    International Nuclear Information System (INIS)

    Mohri, T.; Takashima, K.; Yamane, T.; Sato, H.; Yamane, Y.

    2009-01-01

    A 5-year-old castrated mongrel dog was brought to our hospital with anorexia and vomiting. Laboratory testing revealed immune-mediated hemolytic anemia (IMHA), and so treatment was initiated with multiple immune-suppressing drugs, achieving partial remission from IMHA. However, cardiac tamponade due to purulent pericarditis was identified as a secondary disease. Culture of pericardial fluid yielded numerous Candida albicans and multidrug-resistant Acinetobacter sp. Pericardiocentesis was performed, and the condition of the dog improved. However, the dog died the next day

  12. Suppression of humoral response during the course of Candida albicans infection in mice.

    Science.gov (United States)

    Valdez, J C; Meson, O E; de Valdez, G A; Sirena, A

    1984-10-30

    This paper aims at demonstrating the non-specific immunosuppression as regards thyme-dependent antigens sheep erythrocytes (SRBC) during the course of Candida albicans systemic infection. Three lots of syngeneic/BALB/c mice, 8-12 weeks of age, were used. The first normal lot was inoculated via the intraperitoneal route with a (SRBC) suspension (4 X 10(8) cells ml) in a Hank's balanced saline solution. The primary response of antibodies formed by splenic cells was measured from 4 to 8 days after inoculation using the direct plaque forming cells technique. The second lot was infected by the same route with a suspension of Candida albicans (1 X 10(7) cells). Positive retrocultures from the blood and kidneys of these infected mice were obtained. These yeasts cultivated in a Sabouraud medium were harvested after 20 h at 37 degrees C. Following the same methodology the immune response to SRBC was determined. The serum obtained from infected mice was transferred to a third lot of mice at different intervals during the course of the infection. The immune response to SRBC was done by the direct plaque-forming cells technique. Controls were carried out using normal donors and recipients. A suppression of the immune response was obtained as from the 2nd day of inoculation up to the 28th day. It was not possible to transfer such suppression passively by means of the serum. These results suggest that the systemic infection by Candida albicans induce a non-specific immunosuppression in the organism, already demonstrated in viral infections, bacteria, protozoaria and metazoaria in mammals. In some way, this will contribute to explain the mechanisms of immune response to Candida albicans.

  13. PERIPHERAL IMMUNE SYSTEM SUPPRESSION IN EARLY ABSTINENT ALCOHOL DEPENDENT INDIVIDUALS: LINKS TO STRESS AND CUE-RELATED CRAVING

    Science.gov (United States)

    Fox, Helen C; Milivojevic, Verica; Angarita, Gustavo A; Stowe, Raymond; Sinha, Rajita

    2017-01-01

    Background Peripheral immune system cytokines may play an integral role in underlying sensitized stress response and alcohol craving during early withdrawal. To date, the nature of these immune changes during early abstinence have not been examined. Methods Thirty-nine early abstinent, treatment-seeking alcohol dependent individuals and 46 socially drinking controls were exposed to three guided imageries: stress, alcohol cue and neutral. These were presented randomly across consecutive days. Plasma measures of tumor necrosis factor alpha (TNFα), tumor necrosis factor receptor 1 (TNFR1), interleukin-6 (IL-6), and interleukin-10 (IL-10), were collected at baseline, immediately after imagery and at various recovery time-points. Ratings of alcohol craving, negative mood and anxiety were also obtained at the same time-points. Results The alcohol group demonstrated decreased basal IL-10 compared with controls particularly following exposure to alcohol cue. They also showed a dampened TNFα and TNFR1 response to stress and cue, respectively, and a generalized suppression of IL-6. In the alcohol group, these immune system adaptations occurred alongside significant elevations in anxiety, negative mood and alcohol craving. Conclusions Findings demonstrate that broad immuno-suppression is still observed in alcohol dependent individuals after three weeks of abstinence and may be linked to motivation for alcohol. PMID:28675117

  14. GM-CSF: An Immune Modulatory Cytokine that can Suppress Autoimmunity

    Science.gov (United States)

    Bhattacharya, Palash; Thiruppathi, Muthusamy; Elshabrawy, Hatem A.; Alharshawi, Khaled; Kumar, Prabhakaran; Prabhakar, Bellur S.

    2015-01-01

    GM-CSF was originally identified as a colony stimulating factor (CSF) because of its ability to induce granulocyte and macrophage populations from precursor cells. Multiple studies have demonstrated that GM-CSF is also an immune-modulatory cytokine, capable of affecting not only the phenotype of myeloid lineage cells, but also T-cell activation through various myeloid intermediaries. This property has been implicated in the sustenance of several autoimmune diseases like arthritis and multiple sclerosis. In contrast, several studies using animal models have shown that GM-CSF is also capable of suppressing many autoimmune diseases like Crohn's disease, Type-1 diabetes, Myasthenia gravis and experimental autoimmune thyroiditis. Knockout mouse studies have suggested that the role of GM-CSF in maintaining granulocyte and macrophage populations in the physiological steady state is largely redundant. Instead, its immune-modulatory role plays a significant role in the development or resolution of autoimmune diseases. This is mediated either through the differentiation of precursor cells into specialized non-steady state granulocytes, macrophages and dendritic cells, or through the modulation of the phenotype of mature myeloid cells. Thus, outside of myelopoiesis, GM-CSF has a profound role in regulating the immune response and maintaining immunological tolerance. PMID:26113402

  15. Leptin, immune responses and autoimmune disease. Perspectives on the use of leptin antagonists.

    Science.gov (United States)

    Peelman, F; Iserentant, H; Eyckerman, S; Zabeau, L; Tavernier, J

    2005-01-01

    The pivotal role of leptin in regulating body weight and energy homeostasis is very well established. More recently, leptin also emerged as an important regulator of T-cell-dependent immunity. Reduced leptin levels, as observed during periods of starvation, correlate with an impaired cellular immune response, whereby especially the T(H)1 pro-inflammatory immune response appears to be affected. Physiologically, this could reflect the high energy demand of such processes, which are suppressed in animals or people with nutrient shortage. Several autoimmune diseases are T(H)1 T-cell dependent. In line with a pro-inflammatory role for leptin, animal models of leptin deficiency are markedly resistant to a variety of T-cell dependent autoimmune diseases. Here, we review the role of leptin in immune responses, with emphasis on autoimmune diseases. The design and potential use of leptin antagonists is also discussed.

  16. Insecticidal activity of the metalloprotease AprA occurs through suppression of host cellular and humoral immunity.

    Science.gov (United States)

    Lee, Seung Ah; Jang, Seong Han; Kim, Byung Hyun; Shibata, Toshio; Yoo, Jinwook; Jung, Yunjin; Kawabata, Shun-Ichiro; Lee, Bok Luel

    2018-04-01

    The biochemical characterization of virulence factors from entomopathogenic bacteria is important to understand entomopathogen-insect molecular interactions. Pseudomonas entomophila is a typical entomopathogenic bacterium that harbors virulence factors against several insects. However, the molecular actions of these factors against host innate immune responses are not clearly elucidated. In this study, we observed that bean bugs (Riptortus pedestris) that were injected with P. entomophila were highly susceptible to this bacterium. To determine how P. entomophila counteracts the host innate immunity to survive within the insect, we purified a highly enriched protein with potential host insect-killing activity from the culture supernatant of P. entomophila. Then, a 45-kDa protein was purified to homogeneity and identified as AprA which is an alkaline zinc metalloprotease of the genus Pseudomonas by liquid chromatography mass spectrometry (LC-MS). Purified AprA showed a pronounced killing effect against host insects and suppressed both host cellular and humoral innate immunity. Furthermore, to show that AprA is an important insecticidal protein of P. entomophila, we used an aprA-deficient P. entomophila mutant strain (ΔaprA). When ΔaprA mutant cells were injected to host insects, this mutant exhibited extremely attenuated virulence. In addition, the cytotoxicity against host hemocytes and the antimicrobial peptide-degrading ability of the ΔaprA mutant were greatly decreased. These findings suggest that AprA functions as an important insecticidal protein of P. entomophila via suppression of host cellular and humoral innate immune responses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. The Ustilago maydis effector Pep1 suppresses plant immunity by inhibition of host peroxidase activity.

    Directory of Open Access Journals (Sweden)

    Christoph Hemetsberger

    Full Text Available The corn smut Ustilago maydis establishes a biotrophic interaction with its host plant maize. This interaction requires efficient suppression of plant immune responses, which is attributed to secreted effector proteins. Previously we identified Pep1 (Protein essential during penetration-1 as a secreted effector with an essential role for U. maydis virulence. pep1 deletion mutants induce strong defense responses leading to an early block in pathogenic development of the fungus. Using cytological and functional assays we show that Pep1 functions as an inhibitor of plant peroxidases. At sites of Δpep1 mutant penetrations, H₂O₂ strongly accumulated in the cell walls, coinciding with a transcriptional induction of the secreted maize peroxidase POX12. Pep1 protein effectively inhibited the peroxidase driven oxidative burst and thereby suppresses the early immune responses of maize. Moreover, Pep1 directly inhibits peroxidases in vitro in a concentration-dependent manner. Using fluorescence complementation assays, we observed a direct interaction of Pep1 and the maize peroxidase POX12 in vivo. Functional relevance of this interaction was demonstrated by partial complementation of the Δpep1 mutant defect by virus induced gene silencing of maize POX12. We conclude that Pep1 acts as a potent suppressor of early plant defenses by inhibition of peroxidase activity. Thus, it represents a novel strategy for establishing a biotrophic interaction.

  18. Zymosan-induced immune challenge modifies the stress response of hypoxic air-breathing fish (Anabas testudineus Bloch): Evidence for reversed patterns of cortisol and thyroid hormone interaction, differential ion transporter functions and non-specific immune response.

    Science.gov (United States)

    Simi, S; Peter, Valsa S; Peter, M C Subhash

    2017-09-15

    Fishes have evolved physiological mechanisms to exhibit stress response, where hormonal signals interact with an array of ion transporters and regulate homeostasis. As major ion transport regulators in fish, cortisol and thyroid hormones have been shown to interact and fine-tune the stress response. Likewise, in fishes many interactions have been identified between stress and immune components, but the physiological basis of such interaction has not yet delineated particularly in air-breathing fish. We, therefore, investigated the responses of thyroid hormones and cortisol, ion transporter functions and non-specific immune response of an obligate air-breathing fish Anabas testudineus Bloch to zymosan treatment or hypoxia stress or both, to understand how immune challenge modifies the pattern of stress response in this fish. Induction of experimental peritonitis in these fish by zymosan treatment (200ngg -1 ) for 24h produced rise in respiratory burst and lysozomal activities in head kidney phagocytes. In contrast, hypoxia stress for 30min in immune-challenged fish reversed these non-specific responses of head kidney phagocytes. The decline in plasma cortisol in zymosan-treated fish and its further suppression by hypoxia stress indicate that immune challenge suppresses the cortisol-driven stress response of this fish. Likewise, the decline in plasma T 3 and T 4 after zymosan-treatment and the rise in plasma T 4 after hypoxia stress in immune-challenged fish indicate a critical role for thyroid hormone in immune-stress response due to its differential sensitivity to both immune and stress challenges. Further, analysis of the activity pattern of ion-dependent ATPases viz. Na + /K + -ATPase, H + /K + -ATPase and Na + /NH 4 + -ATPase indicates a functional interaction of ion transport system with the immune response as evident in its differential and spatial modifications after hypoxia stress in immune-challenged fish. The immune-challenge that produced differential

  19. The early stages of the immune response of the European abalone Haliotis tuberculata to a Vibrio harveyi infection.

    Science.gov (United States)

    Cardinaud, Marion; Dheilly, Nolwenn M; Huchette, Sylvain; Moraga, Dario; Paillard, Christine

    2015-08-01

    Vibrio harveyi is a marine bacterial pathogen responsible for episodic abalone mortalities in France, Japan and Australia. In the European abalone, V. harveyi invades the circulatory system in a few hours after exposure and is lethal after 2 days of infection. In this study, we investigated the responses of European abalone immune cells over the first 24 h of infection. Results revealed an initial induction of immune gene expression including Rel/NF-kB, Mpeg and Clathrin. It is rapidly followed by a significant immuno-suppression characterized by reduced cellular hemocyte parameters, immune response gene expressions and enzymatic activities. Interestingly, Ferritin was overexpressed after 24 h of infection suggesting that abalone attempt to counter V. harveyi infection using soluble effectors. Immune function alteration was positively correlated with V. harveyi concentration. This study provides the evidence that V. harveyi has a hemolytic activity and an immuno-suppressive effect in the European abalone. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Heat dissipation does not suppress an immune response in laboratory mice divergently selected for basal metabolic rate (BMR).

    Science.gov (United States)

    Książek, Aneta; Konarzewski, Marek

    2016-05-15

    The capacity for heat dissipation is considered to be one of the most important constraints on rates of energy expenditure in mammals. To date, the significance of this constraint has been tested exclusively under peak metabolic demands, such as during lactation. Here, we used a different set of metabolic stressors, which do not induce maximum energy expenditures and yet are likely to expose the potential constraining effect of heat dissipation. We compared the physiological responses of mice divergently selected for high (H-BMR) and low basal metabolic rate (L-BMR) to simultaneous exposure to the keyhole limpet haemocyanin (KLH) antigen and high ambient temperature (Ta). At 34°C (and at 23°C, used as a control), KLH challenge resulted in a transient increase in core body temperature (Tb) in mice of both line types (by approximately 0.4°C). Warm exposure did not produce line-type-dependent differences in Tb (which was consistently higher by ca. 0.6°C in H-BMR mice across both Ta values), nor did it result in the suppression of antibody synthesis. These findings were also supported by the lack of between-line-type differences in the mass of the thymus, spleen or lymph nodes. Warm exposure induced the downsizing of heat-generating internal organs (small intestine, liver and kidneys) and an increase in intrascapular brown adipose tissue mass. However, these changes were similar in scope in both line types. Mounting a humoral immune response in selected mice was therefore not affected by ambient temperature. Thus, a combined metabolic challenge of high Ta and an immune response did not appreciably compromise the capacity to dissipate heat, even in the H-BMR mice. © 2016. Published by The Company of Biologists Ltd.

  1. Mycobacterium tuberculosis co-operonic PE32/PPE65 proteins alter host immune responses by hampering Th1 response

    Directory of Open Access Journals (Sweden)

    Mohd eKhubaib

    2016-05-01

    Full Text Available PE/PPE genes, present in cluster with ESAT-6 like genes, are suspected to have a role in antigenic variation and virulence of Mycobacterium tuberculosis. Their roles in immune evasion and immune modulation of host are also well documented. We present evidence that PE32/PPE65 present within the RD8 region are co-operonic, co-transcribed and co-translated, and play role in modulating host immune responses. Experiments with macrophage cell lines revealed that this protein complex suppresses pro-inflammatory cytokines such as TNF-α and IL-6 whereas also inducing high expression of anti-inflammatory IL-10. Immunization of mice with these recombinant proteins dampens an effective Th1 response as evident from reduced frequency of IFN-g and IL-2 producing CD4+ and CD8+ T cells. IgG sub-typing from serum of immunized mice revealed high levels of IgG1 when compared with IgG2a and IgG2b. Further IgG1/IgG2a ratio clearly demonstrated that the protein complex manipulates the host immune response favourable to the pathogen. Our results demonstrate that the co-transcribed and co-translated PE32 and PPE65 antigens are involved specifically in modulating anti-mycobacterial host immune response by hampering Th1 response.

  2. Serotonergic Chemosensory Neurons Modify the C. elegans Immune Response by Regulating G-Protein Signaling in Epithelial Cells

    Science.gov (United States)

    Anderson, Alexandra; Laurenson-Schafer, Henry; Partridge, Frederick A.; Hodgkin, Jonathan; McMullan, Rachel

    2013-01-01

    The nervous and immune systems influence each other, allowing animals to rapidly protect themselves from changes in their internal and external environment. However, the complex nature of these systems in mammals makes it difficult to determine how neuronal signaling influences the immune response. Here we show that serotonin, synthesized in Caenorhabditis elegans chemosensory neurons, modulates the immune response. Serotonin released from these cells acts, directly or indirectly, to regulate G-protein signaling in epithelial cells. Signaling in these cells is required for the immune response to infection by the natural pathogen Microbacterium nematophilum. Here we show that serotonin signaling suppresses the innate immune response and limits the rate of pathogen clearance. We show that C. elegans uses classical neurotransmitters to alter the immune response. Serotonin released from sensory neurons may function to modify the immune system in response to changes in the animal's external environment such as the availability, or quality, of food. PMID:24348250

  3. Pathogenesis of herpes simplex virus in B cell-suppressed mice: the relative roles of cell-mediated and humoral immunity.

    Science.gov (United States)

    Kapoor, A K; Nash, A A; Wildy, P

    1982-07-01

    B cell responses of Balb/c mice were suppressed using sheep anti-mouse IgM serum. At 4 weeks, both B cell-suppressed and normal littermates were infected in the ear pinna with herpes simplex virus type 1 (HSV-1). The B cell-suppressed mice failed to produce neutralizing herpes antibodies in their sera but had a normal cell-mediated immunity (CMI) response as measured by a delayed hypersensitivity skin test. Although the infection was eliminated from the ear in both B cell-suppressed and normal mice by day 10 after infection, there was an indication that B cell-suppressed mice had a more florid primary infection of the peripheral and central nervous system and also a higher incidence of a latent infection. These results support the hypothesis that antibody is important in restricting the spread of virus to the central nervous system, whereas CMI is important in clearing the primary infection in the ear pinna.

  4. Analysis of Globodera rostochiensis effectors reveals conserved functions of SPRYSEC proteins in suppressing and eliciting plant immune responses

    Directory of Open Access Journals (Sweden)

    Peter eMoffett

    2015-08-01

    Full Text Available Potato cyst nematodes (PCNs, including Globodera rostochiensis (Woll., are important pests of potato. Plant parasitic nematodes produce multiple effector proteins, secreted from their stylets, to successfully infect their hosts. These include proteins delivered to the apoplast and to the host cytoplasm. A number of effectors from G. rostochiensis predicted to be delivered to the host cytoplasm have been identified, including several belonging to the secreted SPRY domain (SPRYSEC family. SPRYSEC proteins are unique to members of the genera Globodera and have been implicated in both the induction and the repression of host defense responses. We have tested the properties of six different G. rostochiensis SPRYSEC proteins by expressing them in Nicotiana benthamiana and N. tabacum. We have found that all SPRYSEC proteins tested are able to suppress defense responses induced by NB-LRR proteins as well as cell death induced by elicitors, suggesting that defense repression is a common characteristic of members of this effector protein family. At the same time, GrSPRYSEC-15 elicited a defense response in N. tabacum, and tobacco was found to be resistant to a virus expressing GrSPRYSEC-15. These results suggest that SPRYSEC proteins may possess characteristics that allow them to be recognized by the plant immune system.

  5. Analysis of Globodera rostochiensis effectors reveals conserved functions of SPRYSEC proteins in suppressing and eliciting plant immune responses

    KAUST Repository

    Ali, Shawkat

    2015-08-11

    Potato cyst nematodes (PCNs), including Globodera rostochiensis (Woll.), are important pests of potato. Plant parasitic nematodes produce multiple effector proteins, secreted from their stylets, to successfully infect their hosts. These include proteins delivered to the apoplast and to the host cytoplasm. A number of effectors from G. rostochiensis predicted to be delivered to the host cytoplasm have been identified, including several belonging to the secreted SPRY domain (SPRYSEC) family. SPRYSEC proteins are unique to members of the genus Globodera and have been implicated in both the induction and the repression of host defense responses. We have tested the properties of six different G. rostochiensis SPRYSEC proteins by expressing them in Nicotiana benthamiana and N. tabacum. We have found that all SPRYSEC proteins tested are able to suppress defense responses induced by NB-LRR proteins as well as cell death induced by elicitors, suggesting that defense repression is a common characteristic of members of this effector protein family. At the same time, GrSPRYSEC-15 elicited a defense responses in N. tabacum, which was found to be resistant to a virus expressing GrSPRYSEC-15. These results suggest that SPRYSEC proteins may possess characteristics that allow them to be recognized by the plant immune system.

  6. The Yin and Yang of Invariant Natural Killer T Cells in Tumor Immunity—Suppression of Tumor Immunity in the Intestine

    Directory of Open Access Journals (Sweden)

    Ying Wang

    2018-01-01

    Full Text Available CD1d-restricted invariant natural killer T (iNKT cells are known as early responding, potent regulatory cells of immune responses. Besides their established role in the regulation of inflammation and autoimmune disease, numerous studies have shown that iNKT cells have important functions in tumor immunosurveillance and control of tumor metastasis. Tumor-infiltrating T helper 1 (TH1/cytotoxic T lymphocytes have been associated with a positive prognosis. However, inflammation has a dual role in cancer and chronic inflammation is believed to be a driving force in many cancers as exemplified in patients with inflammatory bowel disease that have an increased risk of colorectal cancer. Indeed, NKT cells promote intestinal inflammation in human ulcerative colitis, and the associated animal model, indicating that NKT cells may favor tumor development in intestinal tissue. In contrast to other cancers, recent data from animal models suggest that iNKT cells promote tumor formation in the intestine by supporting an immunoregulatory tumor microenvironment and suppressing TH1 antitumor immunity. Here, we review the role of iNKT cells in suppression of tumor immunity in light of iNKT-cell regulation of intestinal inflammation. We also discuss suppression of immunity in other situations as well as factors that may influence whether iNKT cells have a protective or an immunosuppressive and tumor-promoting role in tumor immunity.

  7. Regulation of IgE antibody production by serum molecules. II. Strain-specificity of the suppressive activity of serum from complete Freund's adjuvant-immune low responder mouse donors

    International Nuclear Information System (INIS)

    Katz, D.H.; Tung, A.S.

    1978-01-01

    IgE antibody production in mice of high and low IgE responder phenotypes, respectively, can be appreciably enhanced in magnitude after low-dose whole-body x irradiation. Such enhanced responses, as well as adoptive secondary IgE responses, can be markedly suppressed by passive transfer of CFA-immune serum in low responder strains, but not in high responder strains. The studies presented here demonstrate that the suppressive activity of CFA-immune serum on IgE antibody production is strain specific. This is true even in reciprocal combinations of low IgE responder SJL and C57BL/6 mice, in which it was shown that serum capable of suppressing mice of the isologous strain was ineffective in diminishing IgE antibody production in the other low responder strain. Absence of suppressive activity in CFA-immune sera obtained from H-2 haplotypes while sharing many similarities in the background genome and, conversely, effective suppressive activity of H-2 congenic donor sera when H-2-identities between donor and recipient mice existed, strongly suggested a role, at least in part, of H-2 genes in dictating the strain specificity of such suppressive activity. Additional experiments provided evidence for a possible role of macrophages in catabolism of the active molecules in CFA-immune sera. These observations, together with those presented in the preceding paper, may provide valuable insight toward successful development of appropriate manipulations that could ultimately convert high IgE responder individuals into low responders

  8. Suppression of in vitro primary immune response by L1210 cells and their culture supernatant: evidence for cytotoxic effects

    International Nuclear Information System (INIS)

    Huget, R.P.; Flad, H.D.; Opitz, H.G.

    1977-01-01

    L1210 cells and their culture supernatants were found to inhibit the generation of PFC in the in vitro primary immune response of spleen cells to SRBC. As few as 1 percent of L1210 cells and 1 percent of culture fluid were inhibitory. Inhibition of DNA or protein synthesis of L1210 cells did not abolish their immunosuppressive activity, excluding exhaustion of culture medium as a possible mechanism of inhibition of PFC. Heating of the supernatant completely abrogated the suppressive effect and resulted in a marked increase of PFC. Daily evaluation of cell viability in the cultures revealed that, in the presence of L1210 and supernatants, the fraction of surviving cells is markedly reduced. We conclude that a direct cytotoxic effect on splenic lymphocytes and macrophages is the predominant immunosuppressive mechanism of L1210 cells and their culture supernatants

  9. The Pig as a Large Animal Model for Studying Anti-Tumor Immune Responses

    DEFF Research Database (Denmark)

    Overgaard, Nana Haahr

    but also generates a selective pressure, which may lead to selection of tumor cell variants with reduced immunogenicity; thereby, increasing the risk of tumor escape. Cancer immunotherapy includes treatment strategies aimed at activating anti-tumor immune responses or inhibiting suppressive and tumor......-favorable immune mechanisms. One of the promising arms of cancer immunotherapy is peptide-based therapeutic vaccines; yet, no such vaccine has been approved for use in human oncology. For many years, mouse models have provided invaluable understanding of complex immunological pathways; however, the majority...... tolerance towards IDO and the establishment of an antigen-specific cell-mediated immune (CMI) response. When comparing the different CAF09-formulated antigen doses, we demonstrate the induction of a CMI-dominant response upon exposure to a low endogenous peptide dose. In contrast, a mixed CMI and humoral...

  10. Plasmodium berghei: immunosuppression of the cell-mediated immune response induced by nonviable antigenic preparations

    International Nuclear Information System (INIS)

    Gross, A.; Frankenburg, S.

    1989-01-01

    In this work, plasmodial antigens were examined for their ability to suppress the cellular immune response during lethal Plasmodium berghei infection. Splenic enlargement and the number and function of white spleen cells were assessed after injection of normal mice with irradiated parasitized erythrocytes (IPE) or with parasitized erythrocytes (PE) membranes. Both IPE and PE membranes caused splenomegaly and an increase in the number of splenic white cells with concurrent alteration of the relative proportions of T cells and macrophages. The percentage of T lymphocytes was fractionally diminished, but there was a marked increase in Lyt 2.2 positive (suppressor and cytotoxic) T subsets and in the number of splenic macrophage precursors. The pathological enlargement of the spleen was induced by various plasma membrane-derived antigens containing both proteins and carbohydrates. Splenocytes of mice injected with liposomes containing deoxycholate-treated PE or PE fractions showed both diminished interleukin 2 production and a decreased response to mitogen. It appears that some of the changes in the cellular immune response during P. berghei infection are a consequence of the massive provision of a wide spectrum of antigens, capable of suppressing the immune response. Thus, it may be appropriate to evaluate the possible negative effect of parasite epitopes that are candidates for vaccine

  11. Serratia marcescens Suppresses Host Cellular Immunity via the Production of an Adhesion-inhibitory Factor against Immunosurveillance Cells*

    Science.gov (United States)

    Ishii, Kenichi; Adachi, Tatsuo; Hamamoto, Hiroshi; Sekimizu, Kazuhisa

    2014-01-01

    Injection of a culture supernatant of Serratia marcescens into the bloodstream of the silkworm Bombyx mori increased the number of freely circulating immunosurveillance cells (hemocytes). Using a bioassay with live silkworms, serralysin metalloprotease was purified from the culture supernatant and identified as the factor responsible for this activity. Serralysin inhibited the in vitro attachment of both silkworm hemocytes and murine peritoneal macrophages. Incubation of silkworm hemocytes or murine macrophages with serralysin resulted in degradation of the cellular immune factor BmSPH-1 or calreticulin, respectively. Furthermore, serralysin suppressed in vitro phagocytosis of bacteria by hemocytes and in vivo bacterial clearance in silkworms. Disruption of the ser gene in S. marcescens attenuated its host killing ability in silkworms and mice. These findings suggest that serralysin metalloprotease secreted by S. marcescens suppresses cellular immunity by decreasing the adhesive properties of immunosurveillance cells, thereby contributing to bacterial pathogenesis. PMID:24398686

  12. Serratia marcescens suppresses host cellular immunity via the production of an adhesion-inhibitory factor against immunosurveillance cells.

    Science.gov (United States)

    Ishii, Kenichi; Adachi, Tatsuo; Hamamoto, Hiroshi; Sekimizu, Kazuhisa

    2014-02-28

    Injection of a culture supernatant of Serratia marcescens into the bloodstream of the silkworm Bombyx mori increased the number of freely circulating immunosurveillance cells (hemocytes). Using a bioassay with live silkworms, serralysin metalloprotease was purified from the culture supernatant and identified as the factor responsible for this activity. Serralysin inhibited the in vitro attachment of both silkworm hemocytes and murine peritoneal macrophages. Incubation of silkworm hemocytes or murine macrophages with serralysin resulted in degradation of the cellular immune factor BmSPH-1 or calreticulin, respectively. Furthermore, serralysin suppressed in vitro phagocytosis of bacteria by hemocytes and in vivo bacterial clearance in silkworms. Disruption of the ser gene in S. marcescens attenuated its host killing ability in silkworms and mice. These findings suggest that serralysin metalloprotease secreted by S. marcescens suppresses cellular immunity by decreasing the adhesive properties of immunosurveillance cells, thereby contributing to bacterial pathogenesis.

  13. Randomized controlled trial of oral omega-3 PUFA in solar-simulated radiation-induced suppression of human cutaneous immune responses1-3

    OpenAIRE

    Pilkington, Suzanne M.; Massey, Karen A.; Bennett, Susan P.; Al-Aasswad, Naser M I; Roshdy, Khaled; Gibbs, Neil K.; Friedmann, Peter S.; Nicolaou, Anna; Rhodes, Lesley E.

    2013-01-01

    BACKGROUND: Skin cancer is a major public health concern, and the majority of cases are caused by solar ultraviolet radiation (UVR) exposure, which suppresses skin immunity. Omega-3 (n-3) PUFAs protect against photoimmunosuppression and skin cancer in mice, but the impact in humans is unknown.OBJECTIVES: We hypothesized that EPA-rich n-3 PUFA would abrogate photoimmunosuppression in humans. Therefore, a nutritional study was performed to assess the effect on UVR suppression of cutaneous cell-...

  14. Ah receptor mediated suppression of the antibody response in mice is primarily dependent on the Ah phenotype of lymphoid tissue

    International Nuclear Information System (INIS)

    Silkworth, J.B.; Antrim, L.A.; Sack, G.

    1986-01-01

    Halogenated aromatic hydrocarbons act through the aromatic hydrocarbon (Ah) receptor in mice to produce a series of toxic effects of the immune system. The receptor protein is a product of the Ah gene locus. Ah responsive (Ahb/Ahb) mice express a high affinity receptor in both lymphoid and nonlymphoid tissues whereas nonresponsive Ahd/Ahd mice express a poor affinity receptor. To determine the role of the Ah receptor of lymphoid tissue relative to that of nonlymphoid tissue in the induction of immune impairment, bone marrow was used to reconstitute lethally irradiated mice of the same or opposite Ah phenotype. All mice were given 3,3',4,4'-tetrachlorobiphenyl (35 and 350 mumol/kg) ip 2 days before immunization with sheep erythrocytes (SRBC). The immune response to this T dependent antigen and organ weights were determined 5 or 7 days later in normal or chimeric mice, respectively. Monoclonal Lyt 1.1 and Lyt 1.2 antibodies were used to establish the origin of the cells which repopulated the chimeric thymuses. The immune responses of both BALB/cBy (Ahb/Ahb) and the BALB/cBy X DBA/2 hybrid, CByD2F1 (Ahb/Ahd), were significantly suppressed but DBA/2 mice were unaffected. The immune responses of chimeric BALB/cBy----BALB/cBy and BALB/cBy----DBA/2 (donor----recipient) mice were also significantly suppressed and thymic atrophy was observed in both cases. The serum anti-SRBC antibody titers of DBA/2----BALB/cBy chimeras were also significantly decreased although not to the same extent as in BALB/cBy----DBA/2 mice. Chimeric DBA/2----DBA/2 mice were not affected. These results indicate that the sensitivity to Ah receptor mediated suppression of the antibody response is primarily determined by the Ah phenotype of the lymphoid tissue

  15. Acyclovir Therapy Reduces the CD4+ T Cell Response against the Immunodominant pp65 Protein from Cytomegalovirus in Immune Competent Individuals.

    Directory of Open Access Journals (Sweden)

    Annette Pachnio

    Full Text Available Cytomegalovirus (CMV infects the majority of the global population and leads to the development of a strong virus-specific immune response. The CMV-specific CD4+ and CD8+ T cell immune response can comprise between 10 and 50% of the T cell pool within peripheral blood and there is concern that this may impair immunity to other pathogens. Elderly individuals with the highest magnitude of CMV-specific immune response have been demonstrated to be at increased risk of mortality and there is increasing interest in interventions that may serve to moderate this. Acyclovir is an anti-viral drug with activity against a range of herpes viruses and is used as long term treatment to suppress reactivation of herpes simplex virus. We studied the immune response to CMV in patients who were taking acyclovir to assess if therapy could be used to suppress the CMV-specific immune response. The T cell reactivity against the immunodominant late viral protein pp65 was reduced by 53% in people who were taking acyclovir. This effect was seen within one year of therapy and was observed primarily within the CD4+ response. Acyclovir treatment only modestly influenced the immune response to the IE-1 target protein. These data show that low dose acyclovir treatment has the potential to modulate components of the T cell response to CMV antigen proteins and indicate that anti-viral drugs should be further investigated as a means to reduce the magnitude of CMV-specific immune response and potentially improve overall immune function.

  16. Suppressing epidemics with a limited amount of immunization units.

    Science.gov (United States)

    Schneider, Christian M; Mihaljev, Tamara; Havlin, Shlomo; Herrmann, Hans J

    2011-12-01

    The way diseases spread through schools, epidemics through countries, and viruses through the internet is crucial in determining their risk. Although each of these threats has its own characteristics, its underlying network determines the spreading. To restrain the spreading, a widely used approach is the fragmentation of these networks through immunization, so that epidemics cannot spread. Here we develop an immunization approach based on optimizing the susceptible size, which outperforms the best known strategy based on immunizing the highest-betweenness links or nodes. We find that the network's vulnerability can be significantly reduced, demonstrating this on three different real networks: the global flight network, a school friendship network, and the internet. In all cases, we find that not only is the average infection probability significantly suppressed, but also for the most relevant case of a small and limited number of immunization units the infection probability can be reduced by up to 55%.

  17. Risk factors for discordant immune response among HIV-infected patients initiating antiretroviral therapy: A retrospective cohort study

    Directory of Open Access Journals (Sweden)

    B P Muzah

    2012-10-01

    Full Text Available Background. The therapeutic goal of antiretroviral therapy (ART is sustained immune recovery and viral suppression. However, some patients experience poor CD4 cell count responses despite achieving viral suppression. Such discordant immune responses have been associated with poor clinical outcomes. Objective. We aimed to determine the prevalence of discordant immune response and explore associated factors in a retrospective cohort of patients attending 2 large public sector clinics, during the 6 months following ART initiation. Methods. Data were analysed from 810 HIV-infected adults initiated on first-line ART at 2 clinics in Johannesburg, between 1 November 2008 and 31 December 2009. Multivariate logistic regression models were used to estimate adjusted odds ratios (AORs to determine associations between discordant immune response and clinical and demographic factors. Results. At ART initiation, 65% (n=592 of participants were female, with a mean age of 38.5 years. Median baseline CD4 cell count was 155 cells/mm3, 70% (n=645 of patients had a haemoglobin level >11 g/dl and 88% (n=803 were initiated on stavudine-lamivudine-efavirenz/nevirapine (D4T-3TC-EFV/NVP. Six months after ART initiation, 24% (n=220 of patients had a discordant immune response and 7% (n=67 a discordant virological response. On multivariate analysis, baseline CD cell count ≥200 cells/mm3 (AOR 3.02; 95% confidence interval (CI 2.08 - 4.38; p

  18. Horses experimentally infected with Sarcocystis neurona develop altered immune responses in vitro.

    Science.gov (United States)

    Witonsky, Sharon G; Ellison, Siobhan; Yang, Jibing; Gogal, Robert M; Lawler, Heather; Suzuki, Yasuhiro; Sriranganathan, Namalwar; Andrews, Frank; Ward, Daniel; Lindsay, David S

    2008-10-01

    Equine protozoal myeloencephalitis (EPM) due to Sarcocystis neurona infection is 1 of the most common neurologic diseases in horses in the United States. The mechanisms by which most horses resist disease, as well as the possible mechanisms by which the immune system may be suppressed in horses that develop EPM, are not known. Therefore, the objectives of this study were to determine whether horses experimentally infected with S. neurona developed suppressed immune responses. Thirteen horses that were negative for S. neurona antibodies in serum and cerebrospinal fluid (CSF) were randomly assigned to control (n = 5) or infected (n = 8) treatment groups. Neurologic exams and cerebrospinal fluid analyses were performed prior to, and following, S. neurona infection. Prior to, and at multiple time points following infection, immune parameters were determined. All 8 S. neurona-infected horses developed clinical signs consistent with EPM, and had S. neurona antibodies in the serum and CSF. Both infected and control horses had increased percentages (P < 0.05) of B cells at 28 days postinfection. Infected horses had significantly decreased (P < 0.05) proliferation responses as measured by thymidine incorporation to nonspecific mitogens phorbol myristate acetate (PMA) and ionomycin (I) as soon as 2 days postinfection.

  19. Curcumin prevents human dendritic cell response to immune stimulants

    International Nuclear Information System (INIS)

    Shirley, Shawna A.; Montpetit, Alison J.; Lockey, R.F.; Mohapatra, Shyam S.

    2008-01-01

    Curcumin, a compound found in the Indian spice turmeric, has anti-inflammatory and immunomodulatory properties, though the mechanism remains unclear. Dendritic cells (DCs) are important to generating an immune response and the effect of curcumin on human DCs has not been explored. The role curcumin in the DC response to bacterial and viral infection was investigated in vitro using LPS and Poly I:C as models of infection. CD14 + monocytes, isolated from human peripheral blood, were cultured in GM-CSF- and IL-4-supplemented medium to generate immature DCs. Cultures were incubated with curcumin, stimulated with LPS or Poly I:C and functional assays were performed. Curcumin prevents DCs from responding to immunostimulants and inducing CD4 + T cell proliferation by blocking maturation marker, cytokine and chemokine expression and reducing both migration and endocytosis. These data suggest a therapeutic role for curcumin as an immune suppressant

  20. Induction of regulatory T cells by high-dose gp96 suppresses murine liver immune hyperactivation.

    Directory of Open Access Journals (Sweden)

    Xinghui Li

    Full Text Available Immunization with high-dose heat shock protein gp96, an endoplasmic reticulum counterpart of the Hsp90 family, significantly enhances regulatory T cell (Treg frequency and suppressive function. Here, we examined the potential role and mechanism of gp96 in regulating immune-mediated hepatic injury in mice. High-dose gp96 immunization elicited rapid and long-lasting protection of mice against concanavalin A (Con A-and anti-CD137-induced liver injury, as evidenced by decreased alanine aminotransaminase (ALT levels, hepatic necrosis, serum pro-inflammatory cytokines (IFN-γ, TNF-α, and IL-6, and number of IFN-γ (+ CD4(+ and IFN-γ (+ CD8(+ T cells in the spleen and liver. In contrast, CD4(+CD25(+Foxp3(+ Treg frequency and suppressive function were both increased, and the protective effect of gp96 could be generated by adoptive transfer of Treg cells from gp96-immunized mice. In vitro co-culture experiments demonstrated that gp96 stimulation enhanced Treg proliferation and suppressive function, and up-regulation of Foxp3, IL-10, and TGF-β1 induced by gp96 was dependent on TLR2- and TLR4-mediated NF-κB activation. Our work shows that activation of Tregs by high-dose gp96 immunization protects against Con A- and anti-CD137-induced T cell-hepatitis and provides therapeutic potential for the development of a gp96-based anti-immune hyperactivation vaccine against immune-mediated liver destruction.

  1. Sensitivity to Sunburn Is Associated with Susceptibility to Ultraviolet Radiation–Induced Suppression of Cutaneous Cell–Mediated Immunity

    Science.gov (United States)

    Kelly, Deirdre A.; Young, Antony R.; McGregor, Jane M.; Seed, Paul T.; Potten, Christopher S.; Walker, Susan L.

    2000-01-01

    Skin cancer incidence is highest in white-skinned people. Within this group, skin types I/II (sun sensitive/tan poorly) are at greater risk than skin types III/IV (sun tolerant/tan well). Studies in mice demonstrate that ultraviolet radiation (UVR)-induced suppression of cell-mediated immune function plays an important role in the development of skin cancer and induces a susceptibility to infectious disease. A similar role is suspected in humans, but we lack quantitative human data to make risk assessments of ambient solar exposure on human health. This study demonstrates that ambient levels of solar UVR, typically experienced within 1 h of exposure to noonday summer sunlight, can suppress contact hypersensitivity (CHS) responses in healthy white-skinned humans in vivo (n = 93). There was a linear relationship between increase in erythema and suppression of CHS (P sunburn (two minimal erythema doses [2 MED]) was sufficient to suppress CHS in all volunteers by 93%. However, a single suberythemal exposure of either 0.25 or 0.5 MED suppressed CHS responses by 50 and 80%, respectively, in skin types I/II, whereas 1 MED only suppressed CHS by 40% in skin types III/IV. The two- to threefold greater sensitivity of skin types I/II for a given level of sunburn may play a role in their greater sensitivity to skin cancer. PMID:10662801

  2. Immune responses to metastases

    International Nuclear Information System (INIS)

    Herberman, R.B.; Wiltrout, R.H.; Gorelik, E.

    1987-01-01

    The authors present the changes in the immune system in tumor-bearing hosts that may influence the development of progression of metastases. Included are mononuclear cell infiltration of metastases; alterations in natural resistance mediated by natural killer cells and macrophages; development of specific immunity mediated by T-lymphocytes or antibodies; modulation of tumor-associated antigen expression; and the down-regulation of the immune response to the tumor by several suppressor mechanisms; the augmentation of the immune response and its potential for therapeutic application; includes the prophylaxis of metastases formation by NK cells; the therapy of metastases by augmentation NK-, macrophage-, or T-lymphocyte-mediated responses by biological response modifiers; and the transfer of anticancer activity by cytoxic T-lymphocytes or immunoconjugates of monoclonal antibodies with specificity for tumors

  3. Haloperidol Suppresses NF-kappaB to Inhibit Lipopolysaccharide-Induced Pro-Inflammatory Response in RAW 264 Cells.

    Science.gov (United States)

    Yamamoto, Shunsuke; Ohta, Noriyuki; Matsumoto, Atsuhiro; Horiguchi, Yu; Koide, Moe; Fujino, Yuji

    2016-02-04

    BACKGROUND Haloperidol, a tranquilizing agent, is administered both to treat symptoms of psychotic disorders and to sedate agitated and delirious patients. Notably, haloperidol has been suggested to inhibit the immune response through unknown mechanisms. We hypothesized that the sedative modulates the immune response via NF-κB. MATERIAL AND METHODS Using flow cytometry, we analyzed the effects of haloperidol on expression CD80 and CD86 in RAW 264 cells and in primary macrophages derived from bone marrow. Secretion of interleukin (IL)-1β, IL-6, and IL-12 p40 was measured by enzyme-linked immunosorbent assay. In addition, NF-κB activation was evaluated using a reporter assay based on secretory embryonic alkaline phosphatase. Finally, synthetic antagonists were used to identify the dopamine receptor that mediates the effects of haloperidol. RESULTS Haloperidol inhibited NF-κB activation, and thereby suppressed expression of CD80, as well as secretion of IL-1β, IL-6, and IL-12 p40. CD80 and IL-6 levels were similarly attenuated by a D2-like receptor antagonist, but not by a D1-like receptor antagonist. CONCLUSIONS The data strongly suggest that haloperidol inhibits the immune response by suppressing NF-kB signaling via the dopamine D2 receptor.

  4. The Entomopathogenic Fungi Isaria fumosorosea Plays a Vital Role in Suppressing the Immune System of Plutella xylostella: RNA-Seq and DGE Analysis of Immunity-Related Genes.

    Science.gov (United States)

    Xu, Jin; Xu, Xiaoxia; Shakeel, Muhammad; Li, Shuzhong; Wang, Shuang; Zhou, Xianqiang; Yu, Jialin; Xu, Xiaojing; Yu, Xiaoqiang; Jin, Fengliang

    2017-01-01

    Most, if not all, entomopathogenic fungi have been used as alternative control agents to decrease the insect resistance and harmful effects of the insecticides on the environment. Among them, Isaria fumosorosea has also shown great potential to control different insect pests. In the present study, we explored the immune response of P. xylostella to the infection of I. fumosorosea at different time points by using RNA-Sequencing and differential gene expression technology at the genomic level. To gain insight into the host-pathogen interaction at the genomic level, five libraries of P. xylostella larvae at 12, 18, 24, and 36 h post-infection and a control were constructed. In total, 161 immunity-related genes were identified and grouped into four categories; immune recognition families, toll and Imd pathway, melanization, and antimicrobial peptides (AMPs). The results of differentially expressed immunity-related genes depicted that 15, 13, 53, and 14 up-regulated and 38, 51, 56, and 49 were down-regulated in P. xylostella at 12, 18, 24, and 36 h post-treatment, respectively. RNA-Seq results of immunity-related genes revealed that the expression of AMPs was reduced after treatment with I. fumosorosea . To validate RNA-Seq results by RT-qPCR, 22 immunity-related genes were randomly selected. In conclusion, our results demonstrate that I. fumosorosea has the potential to suppress the immune response of P. xylostella and can become a potential biopesticide for controlling P. xylostella .

  5. The Entomopathogenic Fungi Isaria fumosorosea Plays a Vital Role in Suppressing the Immune System of Plutella xylostella: RNA-Seq and DGE Analysis of Immunity-Related Genes

    Directory of Open Access Journals (Sweden)

    Jin Xu

    2017-07-01

    Full Text Available Most, if not all, entomopathogenic fungi have been used as alternative control agents to decrease the insect resistance and harmful effects of the insecticides on the environment. Among them, Isaria fumosorosea has also shown great potential to control different insect pests. In the present study, we explored the immune response of P. xylostella to the infection of I. fumosorosea at different time points by using RNA-Sequencing and differential gene expression technology at the genomic level. To gain insight into the host-pathogen interaction at the genomic level, five libraries of P. xylostella larvae at 12, 18, 24, and 36 h post-infection and a control were constructed. In total, 161 immunity-related genes were identified and grouped into four categories; immune recognition families, toll and Imd pathway, melanization, and antimicrobial peptides (AMPs. The results of differentially expressed immunity-related genes depicted that 15, 13, 53, and 14 up-regulated and 38, 51, 56, and 49 were down-regulated in P. xylostella at 12, 18, 24, and 36 h post-treatment, respectively. RNA-Seq results of immunity-related genes revealed that the expression of AMPs was reduced after treatment with I. fumosorosea. To validate RNA-Seq results by RT-qPCR, 22 immunity-related genes were randomly selected. In conclusion, our results demonstrate that I. fumosorosea has the potential to suppress the immune response of P. xylostella and can become a potential biopesticide for controlling P. xylostella.

  6. Perturbations in immune responses induced by concurrent subchronic exposure to arsenic and endosulfan

    International Nuclear Information System (INIS)

    Aggarwal, Manoj; Naraharisetti, Suresh Babu; Dandapat, S.; Degen, G.H.; Malik, J.K.

    2008-01-01

    The metalloid arsenic and the chlorinated insecticide endosulfan are common environmental contaminants. Humans, animals, and birds are exposed to these chemicals through water and food. Although health effects due to either arsenic or endosulfan exposure are documented, the toxicological impact of co-exposure to these environmental pollutants is unpredictable and unknown. The present study was undertaken to assess whether concurrent exposure to arsenic and endosulfan induces significant alterations in immunological functions. Day-old chicks were exposed to 3.7 ppm of arsenic via drinking water and to 30 ppm of endosulfan-mixed feed either individually or concurrently for up to 60 days. All the chicks were vaccinated with Ranikhet disease virus (F-strain; RD-F) on days 1 and 30. During the course of study and at term, parameters of cellular and humoral immunity were determined. None of the treatments altered the absolute body weight or body weight gain, except arsenic significantly reduced weight gain on day 60. Absolute, but not the relative, weights of spleen, thymus and bursa of Fabricius were significantly reduced in all the treatment groups. The metalloid and insecticide combination significantly depressed the ability of peripheral blood and splenic lymphocytes to proliferate in response to antigen RD-F and mitogen Con A. The delayed type hypersensitivity response to 2,4-dinitro-1-chlorobenzene or to PHA-P was also significantly decreased. Nitric oxide production by RD-F or lipopolysaccharide-stimulated peripheral blood and splenic mononuclear cells was significantly suppressed following concurrent exposure to arsenic and endosulfan. Furthermore, the combined exposure also decreased the antibody response to RD-F. The suppression of cellular and humoral immune responses was also evident following administration of individual compounds, and it was not exacerbated following concurrent exposure. To our knowledge, this is the first report describing the suppression

  7. A Negative Feedback Loop Between Autophagy and Immune Responses in Mycobacterium leprae Infection.

    Science.gov (United States)

    Ma, Yuelong; Zhang, Li; Lu, Jie; Shui, Tiejun; Chen, Jia; Yang, Jun; Yuan, Joanna; Liu, Yeqiang; Yang, Degang

    2017-01-01

    The obligate intracellular bacterium Mycobacterium leprae is the causative agent of leprosy and primarily infects macrophages, leading to irreversible nerve damage and deformities. So far, the underlying reasons allowing M. leprae to persist and propagate in macrophages, despite the presence of cellular immunity, are still a mystery. Here, we investigated the role of autophagy, a cellular process that degrades cytosolic materials and intracellular pathogens, in M. leprae infection. We found that live M. leprae infection of macrophages resulted in significantly elevated autophagy level. However, macrophages with high autophagy levels preferentially expressed lower levels of proinflammatory cytokines, including interleukin (IL)-1β, IL-6, IL-12, and tumor necrosis factor-α, and preferentially primed anti-inflammatory T cells responses, characterized by high IL-10 and low interferon-γ, granzyme B, and perforin responses. These anti-inflammatory T cells could suppress further induction of autophagy, leading to improved survival of intracellular M. leprae in infected macrophages. Therefore, these data demonstrated that although autophagy had a role in eliminating intracellular pathogens, the induction of autophagy resulted in anti-inflammatory immune responses, which suppressed autophagy in a negative feedback loop and allowed the persistence of M. leprae.

  8. Maternal immunity enhances systemic recall immune responses upon oral immunization of piglets with F4 fimbriae.

    Science.gov (United States)

    Nguyen, Ut V; Melkebeek, Vesna; Devriendt, Bert; Goetstouwers, Tiphanie; Van Poucke, Mario; Peelman, Luc; Goddeeris, Bruno M; Cox, Eric

    2015-06-23

    F4 enterotoxigenic Escherichia coli (ETEC) cause diarrhoea and mortality in piglets leading to severe economic losses. Oral immunization of piglets with F4 fimbriae induces a protective intestinal immune response evidenced by an F4-specific serum and intestinal IgA response. However, successful oral immunization of pigs with F4 fimbriae in the presence of maternal immunity has not been demonstrated yet. In the present study we aimed to evaluate the effect of maternal immunity on the induction of a systemic immune response upon oral immunization of piglets. Whereas F4-specific IgG and IgA could be induced by oral immunization of pigs without maternal antibodies and by intramuscular immunization of pigs with maternal antibodies, no such response was seen in the orally immunized animals with maternal antibodies. Since maternal antibodies can mask an antibody response, we also looked by ELIspot assays for circulating F4-specific antibody secreting cells (ASCs). Enumerating the F4-specific ASCs within the circulating peripheral blood mononuclear cells, and the number of F4-specific IgA ASCs within the circulating IgA(+) B-cells revealed an F4-specific immune response in the orally immunized animals with maternal antibodies. Interestingly, results suggest a more robust IgA booster response by oral immunization of pigs with than without maternal antibodies. These results demonstrate that oral immunization of piglets with F4-specific maternal antibodies is feasible and that these maternal antibodies seem to enhance the secondary systemic immune response. Furthermore, our ELIspot assay on enriched IgA(+) B-cells could be used as a screening procedure to optimize mucosal immunization protocols in pigs with maternal immunity.

  9. Transcriptomic immune response of Tenebrio molitor pupae to parasitization by Scleroderma guani.

    Directory of Open Access Journals (Sweden)

    Jia-Ying Zhu

    Full Text Available BACKGROUND: Host and parasitoid interaction is one of the most fascinating relationships of insects, which is currently receiving an increasing interest. Understanding the mechanisms evolved by the parasitoids to evade or suppress the host immune system is important for dissecting this interaction, while it was still poorly known. In order to gain insight into the immune response of Tenebrio molitor to parasitization by Scleroderma guani, the transcriptome of T. molitor pupae was sequenced with focus on immune-related gene, and the non-parasitized and parasitized T. molitor pupae were analyzed by digital gene expression (DGE analysis with special emphasis on parasitoid-induced immune-related genes using Illumina sequencing. METHODOLOGY/PRINCIPAL FINDINGS: In a single run, 264,698 raw reads were obtained. De novo assembly generated 71,514 unigenes with mean length of 424 bp. Of those unigenes, 37,373 (52.26% showed similarity to the known proteins in the NCBI nr database. Via analysis of the transcriptome data in depth, 430 unigenes related to immunity were identified. DGE analysis revealed that parasitization by S. guani had considerable impacts on the transcriptome profile of T. molitor pupae, as indicated by the significant up- or down-regulation of 3,431 parasitism-responsive transcripts. The expression of a total of 74 unigenes involved in immune response of T. molitor was significantly altered after parasitization. CONCLUSIONS/SIGNIFICANCE: obtained T. molitor transcriptome, in addition to establishing a fundamental resource for further research on functional genomics, has allowed the discovery of a large group of immune genes that might provide a meaningful framework to better understand the immune response in this species and other beetles. The DGE profiling data provides comprehensive T. molitor immune gene expression information at the transcriptional level following parasitization, and sheds valuable light on the molecular

  10. Transcriptomic immune response of Tenebrio molitor pupae to parasitization by Scleroderma guani.

    Science.gov (United States)

    Zhu, Jia-Ying; Yang, Pu; Zhang, Zhong; Wu, Guo-Xing; Yang, Bin

    2013-01-01

    Host and parasitoid interaction is one of the most fascinating relationships of insects, which is currently receiving an increasing interest. Understanding the mechanisms evolved by the parasitoids to evade or suppress the host immune system is important for dissecting this interaction, while it was still poorly known. In order to gain insight into the immune response of Tenebrio molitor to parasitization by Scleroderma guani, the transcriptome of T. molitor pupae was sequenced with focus on immune-related gene, and the non-parasitized and parasitized T. molitor pupae were analyzed by digital gene expression (DGE) analysis with special emphasis on parasitoid-induced immune-related genes using Illumina sequencing. In a single run, 264,698 raw reads were obtained. De novo assembly generated 71,514 unigenes with mean length of 424 bp. Of those unigenes, 37,373 (52.26%) showed similarity to the known proteins in the NCBI nr database. Via analysis of the transcriptome data in depth, 430 unigenes related to immunity were identified. DGE analysis revealed that parasitization by S. guani had considerable impacts on the transcriptome profile of T. molitor pupae, as indicated by the significant up- or down-regulation of 3,431 parasitism-responsive transcripts. The expression of a total of 74 unigenes involved in immune response of T. molitor was significantly altered after parasitization. obtained T. molitor transcriptome, in addition to establishing a fundamental resource for further research on functional genomics, has allowed the discovery of a large group of immune genes that might provide a meaningful framework to better understand the immune response in this species and other beetles. The DGE profiling data provides comprehensive T. molitor immune gene expression information at the transcriptional level following parasitization, and sheds valuable light on the molecular understanding of the host-parasitoid interaction.

  11. Transcriptomic Immune Response of Tenebrio molitor Pupae to Parasitization by Scleroderma guani

    Science.gov (United States)

    Zhu, Jia-Ying; Yang, Pu; Zhang, Zhong; Wu, Guo-Xing; Yang, Bin

    2013-01-01

    Background Host and parasitoid interaction is one of the most fascinating relationships of insects, which is currently receiving an increasing interest. Understanding the mechanisms evolved by the parasitoids to evade or suppress the host immune system is important for dissecting this interaction, while it was still poorly known. In order to gain insight into the immune response of Tenebrio molitor to parasitization by Scleroderma guani, the transcriptome of T. molitor pupae was sequenced with focus on immune-related gene, and the non-parasitized and parasitized T. molitor pupae were analyzed by digital gene expression (DGE) analysis with special emphasis on parasitoid-induced immune-related genes using Illumina sequencing. Methodology/Principal Findings In a single run, 264,698 raw reads were obtained. De novo assembly generated 71,514 unigenes with mean length of 424 bp. Of those unigenes, 37,373 (52.26%) showed similarity to the known proteins in the NCBI nr database. Via analysis of the transcriptome data in depth, 430 unigenes related to immunity were identified. DGE analysis revealed that parasitization by S. guani had considerable impacts on the transcriptome profile of T. molitor pupae, as indicated by the significant up- or down-regulation of 3,431 parasitism-responsive transcripts. The expression of a total of 74 unigenes involved in immune response of T. molitor was significantly altered after parasitization. Conclusions/Significance obtained T. molitor transcriptome, in addition to establishing a fundamental resource for further research on functional genomics, has allowed the discovery of a large group of immune genes that might provide a meaningful framework to better understand the immune response in this species and other beetles. The DGE profiling data provides comprehensive T. molitor immune gene expression information at the transcriptional level following parasitization, and sheds valuable light on the molecular understanding of the host

  12. Diagnostic value of FDG-PET/(CT) in children with fever of unknown origin and unexplained fever during immune suppression

    Energy Technology Data Exchange (ETDEWEB)

    Blokhuis, Gijsbert J.; Diender, Marije G.; Oyen, Wim J.G. [Radboud University Medical Center, Department of Nuclear Medicine, Nijmegen (Netherlands); Bleeker-Rovers, Chantal P. [Radboud University Medical Center, Division of Infectious Diseases, Department of Internal Medicine, Nijmegen (Netherlands); Draaisma, Jos M.T. [Radboud University Medical Center, Department of Paediatrics, Nijmegen (Netherlands); Geus-Oei, Lioe-Fee de [Radboud University Medical Center, Department of Nuclear Medicine, Nijmegen (Netherlands); University of Twente, MIRA Institute for Biomedical Technology and Technical Medicine, Biomedical Photonic Imaging Group, Enschede (Netherlands)

    2014-10-15

    Fever of unknown origin (FUO) and unexplained fever during immune suppression in children are challenging medical problems. The aim of this study is to investigate the diagnostic value of fluorine-18 fluorodeoxyglucose positron emission tomography (FDG-PET) and FDG-PET combined with computed tomography (FDG-PET/CT) in children with FUO and in children with unexplained fever during immune suppression. All FDG-PET/(CT) scans performed in the Radboud university medical center for the evaluation of FUO or unexplained fever during immune suppression in the last 10 years were reviewed. Results were compared with the final clinical diagnosis. FDG-PET/(CT) scans were performed in 31 children with FUO. A final diagnosis was established in 16 cases (52 %). Of the total number of scans, 32 % were clinically helpful. The sensitivity and specificity of FDG-PET/CT in these patients was 80 % and 78 %, respectively. FDG-PET/(CT) scans were performed in 12 children with unexplained fever during immune suppression. A final diagnosis was established in nine patients (75 %). Of the total number of these scans, 58 % were clinically helpful. The sensitivity and specificity of FDG-PET/CT in children with unexplained fever during immune suppression was 78 % and 67 %, respectively. FDG-PET/CT appears a valuable imaging technique in the evaluation of children with FUO and in the diagnostic process of children with unexplained fever during immune suppression. Prospective studies of FDG-PET/CT as part of a structured diagnostic protocol are warranted to assess the additional diagnostic value. (orig.)

  13. Diagnostic value of FDG-PET/(CT) in children with fever of unknown origin and unexplained fever during immune suppression

    International Nuclear Information System (INIS)

    Blokhuis, Gijsbert J.; Diender, Marije G.; Oyen, Wim J.G.; Bleeker-Rovers, Chantal P.; Draaisma, Jos M.T.; Geus-Oei, Lioe-Fee de

    2014-01-01

    Fever of unknown origin (FUO) and unexplained fever during immune suppression in children are challenging medical problems. The aim of this study is to investigate the diagnostic value of fluorine-18 fluorodeoxyglucose positron emission tomography (FDG-PET) and FDG-PET combined with computed tomography (FDG-PET/CT) in children with FUO and in children with unexplained fever during immune suppression. All FDG-PET/(CT) scans performed in the Radboud university medical center for the evaluation of FUO or unexplained fever during immune suppression in the last 10 years were reviewed. Results were compared with the final clinical diagnosis. FDG-PET/(CT) scans were performed in 31 children with FUO. A final diagnosis was established in 16 cases (52 %). Of the total number of scans, 32 % were clinically helpful. The sensitivity and specificity of FDG-PET/CT in these patients was 80 % and 78 %, respectively. FDG-PET/(CT) scans were performed in 12 children with unexplained fever during immune suppression. A final diagnosis was established in nine patients (75 %). Of the total number of these scans, 58 % were clinically helpful. The sensitivity and specificity of FDG-PET/CT in children with unexplained fever during immune suppression was 78 % and 67 %, respectively. FDG-PET/CT appears a valuable imaging technique in the evaluation of children with FUO and in the diagnostic process of children with unexplained fever during immune suppression. Prospective studies of FDG-PET/CT as part of a structured diagnostic protocol are warranted to assess the additional diagnostic value. (orig.)

  14. Hypocretin/orexin loss changes the hypothalamic immune response.

    Science.gov (United States)

    Tanaka, Susumu; Takizawa, Nae; Honda, Yoshiko; Koike, Taro; Oe, Souichi; Toyoda, Hiromi; Kodama, Tohru; Yamada, Hisao

    2016-10-01

    Hypocretin, also known as orexin, maintains the vigilance state and regulates various physiological processes, such as arousal, sleep, food intake, energy expenditure, and reward. Previously, we found that when wild-type mice and hypocretin/ataxin-3 littermates (which are depleted of hypothalamic hypocretin-expressing neurons postnatally) were administered lipopolysaccharide (LPS), the two genotypes exhibited significant differences in their sleep/wake cycle, including differences in the degree of increase in sleep periods and in recovery from sickness behaviour. In the present study, we examined changes in the hypothalamic vigilance system and in the hypothalamic expression of inflammatory factors in response to LPS in hypocretin/ataxin-3 mice. Peripheral immune challenge with LPS affected the hypothalamic immune response and vigilance states. This response was altered by the loss of hypocretin. Hypocretin expression was inhibited after LPS injection in both hypocretin/ataxin-3 mice and their wild-type littermates, but expression was completely abolished only in hypocretin/ataxin-3 mice. Increases in the number of histidine decarboxylase (HDC)-positive cells and in Hdc mRNA expression were found in hypocretin/ataxin-3 mice, and this increase was suppressed by LPS. Hypocretin loss did not impact the change in expression of hypothalamic inflammatory factors in response to LPS, except for interferon gamma and colony stimulating factor 3. The number of c-Fos-positive/HDC-positive cells in hypocretin/ataxin-3 mice administered LPS injections was elevated, even during the rest period, in all areas, suggesting that there is an increase in the activity of histaminergic neurons in hypocretin/ataxin-3 mice following LPS injection. Taken together, our results suggest a novel role for hypocretin in the hypothalamic response to peripheral immune challenge. Our findings contribute to the understanding of the pathophysiology of narcolepsy. Copyright © 2016 Elsevier Inc. All

  15. Effects of effluent from electoplating industry on the immune response in the freshwater fish, Cyprinus carpio.

    Science.gov (United States)

    Borgia, V J Florence; Thatheyus, A J; Murugesan, A G; Alexander, S Catherine P; Geetha, I

    2018-08-01

    The present study was designed to assess the effect of sublethal concentrations of electoplating industry effluent (EIE) on the non-specific and specific immune responses in the freshwater fish, Cyprinus carpio. Sublethal concentrations of electroplating industry effluent such as 0.004, 0.007, 0.010 and 0.013% were chosen based on the LC 50 values. Experimental fish were exposed to these sublethal concentrations of EIE for 28 days. After 7, 14, 21 and 28 days of treatment, non-specific immune response by serum lysozyme activity, myeloperoxidase activity and antiprotease activity and specific immune response by antibody response to Aeromonas hydrophila using bacterial agglutination assay and ELISA were assessed. The results showed that chronic exposure of fish to 0.004, 0.007, 0.010 and 0.013% EIE, dose-dependently decreased the non-specific and specific immune responses on all the days tested compared to control fish whereas statistically significant suppressive effects were observed in fish exposed to 0.013% of EIE on all activities tested. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Regulatory T cells: immune suppression and beyond

    OpenAIRE

    Wan, Yisong Y

    2010-01-01

    Foxp3-expressing regulatory T cells (Tregs) were originally identified as critical in maintaining self-tolerance and immune homeostasis. The immunosuppressive functions of Tregs are widely acknowledged and have been extensively studied. Recent studies have revealed many diverse roles of Tregs in shaping the immune system and the inflammatory response. This review will discuss our efforts as well as the efforts of others towards understanding the multifaceted function of Treg...

  17. Immune oncology, immune responsiveness and the theory of everything.

    Science.gov (United States)

    Turan, Tolga; Kannan, Deepti; Patel, Maulik; Matthew Barnes, J; Tanlimco, Sonia G; Lu, Rongze; Halliwill, Kyle; Kongpachith, Sarah; Kline, Douglas E; Hendrickx, Wouter; Cesano, Alessandra; Butterfield, Lisa H; Kaufman, Howard L; Hudson, Thomas J; Bedognetti, Davide; Marincola, Francesco; Samayoa, Josue

    2018-06-05

    Anti-cancer immunotherapy is encountering its own checkpoint. Responses are dramatic and long lasting but occur in a subset of tumors and are largely dependent upon the pre-existing immune contexture of individual cancers. Available data suggest that three landscapes best define the cancer microenvironment: immune-active, immune-deserted and immune-excluded. This trichotomy is observable across most solid tumors (although the frequency of each landscape varies depending on tumor tissue of origin) and is associated with cancer prognosis and response to checkpoint inhibitor therapy (CIT). Various gene signatures (e.g. Immunological Constant of Rejection - ICR and Tumor Inflammation Signature - TIS) that delineate these landscapes have been described by different groups. In an effort to explain the mechanisms of cancer immune responsiveness or resistance to CIT, several models have been proposed that are loosely associated with the three landscapes. Here, we propose a strategy to integrate compelling data from various paradigms into a "Theory of Everything". Founded upon this unified theory, we also propose the creation of a task force led by the Society for Immunotherapy of Cancer (SITC) aimed at systematically addressing salient questions relevant to cancer immune responsiveness and immune evasion. This multidisciplinary effort will encompass aspects of genetics, tumor cell biology, and immunology that are pertinent to the understanding of this multifaceted problem.

  18. Oral immune therapy: targeting the systemic immune system via the gut immune system for the treatment of inflammatory bowel disease.

    Science.gov (United States)

    Ilan, Yaron

    2016-01-01

    Inflammatory bowel diseases (IBD) are associated with an altered systemic immune response leading to inflammation-mediated damage to the gut and other organs. Oral immune therapy is a method of systemic immune modulation via alteration of the gut immune system. It uses the inherit ability of the innate system of the gut to redirect the systemic innate and adaptive immune responses. Oral immune therapy is an attractive clinical approach to treat autoimmune and inflammatory disorders. It can induce immune modulation without immune suppression, has minimal toxicity and is easily administered. Targeting the systemic immune system via the gut immune system can serve as an attractive novel therapeutic method for IBD. This review summarizes the current data and discusses several examples of oral immune therapeutic methods for using the gut immune system to generate signals to reset systemic immunity as a treatment for IBD.

  19. Polysaccharide isolated from Aloe vera gel suppresses ovalbumin-induced food allergy through inhibition of Th2 immunity in mice.

    Science.gov (United States)

    Lee, Dajeong; Kim, Hyuk Soon; Shin, Eunju; Do, Seon-Gil; Lee, Chong-Kil; Kim, Young Mi; Lee, Min Bum; Min, Keun Young; Koo, Jimo; Kim, Su Jeong; Nam, Seung Taek; Kim, Hyun Woo; Park, Young Hwan; Choi, Wahn Soo

    2018-05-01

    An allergic reaction occurs when the immune system overreacts to harmless substance called allergen that gains access to the body. Food allergy is a hypersensitive immune reaction to food proteins and the number of patients with food allergy has recently increased. Aloe Vera is used for wellness and medicinal purposes. In particular, Aloe vera has been reported to enhance immunity. However, the effect of Aloe vera on food allergy is not yet known. In this study, we investigated the effects of processed Aloe vera gel (PAG) containing low molecular weight Aloe polysaccharide (AP) on ovalbumin (OVA)-induced food allergy in mice. Allergic symptoms, rectal temperature, and diarrhea were measured in OVA-induced food allergy mice. Other allergic parameters were also analyzed by RT-PCR, ELISA, flow cytometry, and other biochemical methods. As the results, PAG suppressed the decrease of body temperature, diarrhea, and allergic symptoms in OVA-induced food allergy mice. PAG also reduced serum concentrations of type 2 helper T cell (Th2) cytokines (Interleukin-(IL)-4, IL-5, and IL-13) as well as histamine, mast cell protease-1 (MCP-1), and immunoglobulin (Ig)E. PAG blocked the degranulation of mast cells and infiltration of eosinophils in intestine. Furthermore, PAG suppressed the population of Th2 cells in spleen and mesenteric lymph nodes. PAG also increased the production of IL-10 and population of type 1 regulatory T (Tr1) cells in mice with food allergy. Taken together, our findings suggest that PAG suppressed Th2 immune responses through, at least partially, stimulating the secretion of IL-10 in food allergy mice. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  20. Predicting the Role of IL-10 in the Regulation of the Adaptive Immune Responses in Mycobacterium avium Subsp. paratuberculosis Infections Using Mathematical Models

    Science.gov (United States)

    Magombedze, Gesham; Eda, Shigetoshi; Stabel, Judy

    2015-01-01

    Mycobacterium avium subsp. paratuberculosis (MAP) is an intracellular bacterial pathogen that causes Johne’s disease (JD) in cattle and other animals. The hallmark of MAP infection in the early stages is a strong protective cell-mediated immune response (Th1-type), characterized by antigen-specific γ-interferon (IFN-γ). The Th1 response wanes with disease progression and is supplanted by a non-protective humoral immune response (Th2-type). Interleukin-10 (IL-10) is believed to play a critical role in the regulation of host immune responses to MAP infection and potentially orchestrate the reversal of Th1/Th2 immune dominance during disease progression. However, how its role correlates with MAP infection remains to be completely deciphered. We developed mathematical models to explain probable mechanisms for IL-10 involvement in MAP infection. We tested our models with IL-4, IL-10, IFN-γ, and MAP fecal shedding data collected from calves that were experimentally infected and followed over a period of 360 days in the study of Stabel and Robbe-Austerman (2011). Our models predicted that IL-10 can have different roles during MAP infection, (i) it can suppress the Th1 expression, (ii) can enhance Th2 (IL-4) expression, and (iii) can suppress the Th1 expression in synergy with IL-4. In these predicted roles, suppression of Th1 responses was correlated with increased number of MAP. We also predicted that Th1-mediated responses (IFN-γ) can lead to high expression of IL-10 and that infection burden regulates Th2 suppression by the Th1 response. Our models highlight areas where more experimental data is required to refine our model assumptions, and further test and investigate the role of IL-10 in MAP infection. PMID:26619346

  1. Predicting the Role of IL-10 in the Regulation of the Adaptive Immune Responses in Mycobacterium avium Subsp. paratuberculosis Infections Using Mathematical Models.

    Directory of Open Access Journals (Sweden)

    Gesham Magombedze

    Full Text Available Mycobacterium avium subsp. paratuberculosis (MAP is an intracellular bacterial pathogen that causes Johne's disease (JD in cattle and other animals. The hallmark of MAP infection in the early stages is a strong protective cell-mediated immune response (Th1-type, characterized by antigen-specific γ-interferon (IFN-γ. The Th1 response wanes with disease progression and is supplanted by a non-protective humoral immune response (Th2-type. Interleukin-10 (IL-10 is believed to play a critical role in the regulation of host immune responses to MAP infection and potentially orchestrate the reversal of Th1/Th2 immune dominance during disease progression. However, how its role correlates with MAP infection remains to be completely deciphered. We developed mathematical models to explain probable mechanisms for IL-10 involvement in MAP infection. We tested our models with IL-4, IL-10, IFN-γ, and MAP fecal shedding data collected from calves that were experimentally infected and followed over a period of 360 days in the study of Stabel and Robbe-Austerman (2011. Our models predicted that IL-10 can have different roles during MAP infection, (i it can suppress the Th1 expression, (ii can enhance Th2 (IL-4 expression, and (iii can suppress the Th1 expression in synergy with IL-4. In these predicted roles, suppression of Th1 responses was correlated with increased number of MAP. We also predicted that Th1-mediated responses (IFN-γ can lead to high expression of IL-10 and that infection burden regulates Th2 suppression by the Th1 response. Our models highlight areas where more experimental data is required to refine our model assumptions, and further test and investigate the role of IL-10 in MAP infection.

  2. Arsenic-induced dose-dependent modulation of the NF-κB/IL-6 axis in thymocytes triggers differential immune responses

    International Nuclear Information System (INIS)

    Choudhury, Sreetama; Gupta, Payal; Ghosh, Sayan; Mukherjee, Sudeshna; Chakraborty, Priyanka; Chatterji, Urmi; Chattopadhyay, Sreya

    2016-01-01

    Highlights: • We for the first time explicitly show that arsenic exposure causes morphological damage to the thymus and results in heightened death of thymocytes. • Our data suggests that arsenic-induced apoptosis occurs due to increase in cellular oxidative and nitrosative stress. • We have for the first time established a non-classical role of NF-κB, correlating it with increase in FoxP3 expression. • The % of CD4+ CD25+ T cells were high and expression of FoxP3 has also increased at higher doses of arsenic indicating an nTreg bias. - Abstract: Arsenic contamination of drinking water is a matter of global concern. Arsenic intake impairs immune responses and leads to a variety of pathological conditions including cancer. In order to understand the intricate tuning of immune responses elicited by chronic exposure to arsenic, a mouse model was established by subjecting mice to different environmentally relevant concentrations of arsenic in drinking water for 30 days. Detailed study of the thymus, a primary immune organ, revealed arsenic-mediated tissue damage in both histological specimens and scanning electron micrographs. Analysis of molecular markers of apoptosis by Western blot revealed a dose-dependent activation of the apoptotic cascade. Enzymatic assays supported oxidative stress as an instigator of cell death. Interestingly, assessment of inflammatory responses revealed disparity in the NF-κB/IL-6/STAT3 axis, where it was found that in animals consuming higher amounts of arsenic NF-κB activation did not lead to the classical IL-6 upregulation response. This deviation from the canonical pathway was accompanied with a significant rise in numbers of CD4+ CD25+ FoxP3 expressing cells in the thymus. The cytokine profile of the animals exposed to higher doses of arsenic also indicated an immune-suppressed milieu, thus validating that arsenic shapes the immune environment in context to its dose of exposure and that at higher doses it leads to immune-suppression

  3. Association of Neisseria gonorrhoeae Opa(CEA with dendritic cells suppresses their ability to elicit an HIV-1-specific T cell memory response.

    Directory of Open Access Journals (Sweden)

    Qigui Yu

    Full Text Available Infection with Neisseria gonorrhoeae (N. gonorrhoeae can trigger an intense local inflammatory response at the site of infection, yet there is little specific immune response or development of immune memory. Gonococcal surface epitopes are known to undergo antigenic variation; however, this is unlikely to explain the weak immune response to infection since individuals can be re-infected by the same serotype. Previous studies have demonstrated that the colony opacity-associated (Opa proteins on the N. gonorrhoeae surface can bind human carcinoembryonic antigen-related cellular adhesion molecule 1 (CEACAM1 on CD4⁺ T cells to suppress T cell activation and proliferation. Interesting in this regard, N. gonorrhoeae infection is associated with impaired HIV-1 (human immunodeficiency virus type 1-specific cytotoxic T-lymphocyte (CTL responses and with transient increases in plasma viremia in HIV-1-infected patients, suggesting that N. gonorrhoeae may also subvert immune responses to co-pathogens. Since dendritic cells (DCs are professional antigen presenting cells (APCs that play a key role in the induction of an adaptive immune response, we investigated the effects of N. gonorrhoeae Opa proteins on human DC activation and function. While morphological changes reminiscent of DC maturation were evident upon N. gonorrhoeae infection, we observed a marked downregulation of DC maturation marker CD83 when the gonococci expressing CEACAM1-specific Opa(CEA, but not other Opa variants. Consistent with a gonococcal-induced defect in maturation, Opa(CEA binding to CEACAM1 reduced the DCs' capacity to stimulate an allogeneic T cell proliferative response. Moreover, Opa(CEA-expressing N. gonorrhoeae showed the potential to impair DC-dependent development of specific adaptive immunity, since infection with Opa(CEA-positive gonococci suppressed the ability of DCs to stimulate HIV-1-specific memory CTL responses. These results reveal a novel mechanism to explain

  4. Low-dose oral tolerance due to antigen in the diet suppresses differentially the cholera toxin-adjuvantized IgE, IgA and IgG response

    DEFF Research Database (Denmark)

    Christensen, Hanne Risager; Kjær, Tanja; Frøkiær, Hanne

    2003-01-01

    Background: Cholera toxin (CT) is used as a mucosal adjuvant amongst other applications for studying food allergy because oral administration of antigen with CT induces an antigen-specific type 2 response, including IgE and IgA production. Priorly established oral tolerance due to antigen...... soy-trypsin inhibitor (KSTI) (F0 mice) and mice fed a soy-free diet (F2 mice) were orally immunized with KSTI and CT. KSTI-specific serum IgG1, IgG2a, IgA and IgE and fecal IgA were monitored. KSTI-stimulated cell proliferation and interleukin (IL)-6 production were determined. Results: The anti...... immunizations. However, cell proliferation and IL-6 production were clearly suppressed even after five immunizations. Conclusions: Priorly established low-dose oral tolerance considerably suppressed the CT-adjuvantized KSTI-specific IgE, IgA and cellular immune response but only weakly and transiently the Ig...

  5. Morphologic changes in the placentas of HIV-positive women and their association with degree of immune suppression.

    Science.gov (United States)

    Vermaak, Anine; Theron, Gerhard B; Schubert, Pawel T; Kidd, Martin; Rabie, Ursula; Adjiba, Benedict M; Wright, Colleen A

    2012-12-01

    To provide baseline information regarding a possible association between specific histopathologic features of the placentas of HIV-positive women and the degree of immune suppression. A prospective single-blinded laboratory-based pilot study was conducted at Tygerberg Hospital, South Africa. The macroscopic and microscopic features of placentas from HIV-positive (n=91) and HIV-negative women (n=89) were compared and recorded using a standard template. Investigators were blinded to the participants' HIV status and CD4-positive cell count. Placentas from the HIV-positive group were characterized by decreased weight and increased number of marginal infarcts relative to the HIV-negative group. The most important microscopic finding was the increased presence of villitis of unknown etiology (VUE) among the group of untreated HIV-positive women with CD4 cell counts of 200 cells/mm(3) or below. Both macroscopic and microscopic differences relating to the degree of immune suppression were identified, which seemingly contradicts previous reports. Larger studies are warranted to define the function of antiretroviral therapy and VUE in the mechanism of mother-to-fetus transmission of HIV. Furthermore, the potential role of VUE in the pathophysiology of the compromised immune response observed among HIV-exposed but uninfected infants should be investigated. Copyright © 2012 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.

  6. Interaction Between 2 Nutraceutical Treatments and Host Immune Status in the Pediatric Critical Illness Stress-Induced Immune Suppression Comparative Effectiveness Trial.

    Science.gov (United States)

    Carcillo, Joseph A; Dean, J Michael; Holubkov, Richard; Berger, John; Meert, Kathleen L; Anand, Kanwaljeet J S; Zimmerman, Jerry J; Newth, Christopher J L; Harrison, Rick; Burr, Jeri; Willson, Douglas F; Nicholson, Carol; Bell, Michael J; Berg, Robert A; Shanley, Thomas P; Heidemann, Sabrina M; Dalton, Heidi; Jenkins, Tammara L; Doctor, Allan; Webster, Angie; Tamburro, Robert F

    2017-11-01

    The pediatric Critical Illness Stress-induced Immune Suppression (CRISIS) trial compared the effectiveness of 2 nutraceutical supplementation strategies and found no difference in the development of nosocomial infection and sepsis in the overall population. We performed an exploratory post hoc analysis of interaction between nutraceutical treatments and host immune status related to the development of nosocomial infection/sepsis. Children from the CRISIS trial were analyzed according to 3 admission immune status categories marked by decreasing immune competence: immune competent without lymphopenia, immune competent with lymphopenia, and previously immunocompromised. The comparative effectiveness of the 2 treatments was analyzed for interaction with immune status category. There were 134 immune-competent children without lymphopenia, 79 previously immune-competent children with lymphopenia, and 27 immunocompromised children who received 1 of the 2 treatments. A significant interaction was found between treatment arms and immune status on the time to development of nosocomial infection and sepsis ( P patient characteristic.

  7. Thiol dependent NF-κB suppression and inhibition of T-cell mediated adaptive immune responses by a naturally occurring steroidal lactone Withaferin A

    Energy Technology Data Exchange (ETDEWEB)

    Gambhir, Lokesh; Checker, Rahul; Sharma, Deepak; Thoh, M. [Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai (India); Patil, Anand [Advanced Centre for Treatment Research and Education in Cancer, Kharghar, Navi Mumbai (India); Degani, M. [Institute of Chemical Technology, Matunga, Mumbai (India); Gota, Vikram [Advanced Centre for Treatment Research and Education in Cancer, Kharghar, Navi Mumbai (India); Sandur, Santosh K., E-mail: sskumar@barc.gov.in [Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai (India)

    2015-12-01

    Withaferin A (WA), a steroidal lactone isolated from ayurvedic medicinal plant Withania somnifera, was shown to inhibit tumor growth by inducing oxidative stress and suppressing NF-κB pathway. However, its effect on T-cell mediated adaptive immune responses and the underlying mechanism has not been investigated. Since both T-cell responses and NF-κB pathway are known to be redox sensitive, the present study was undertaken to elucidate the effect of WA on adaptive immune responses in vitro and in vivo. WA inhibited mitogen induced T-cell and B-cell proliferation in vitro without inducing any cell death. It inhibited upregulation of T-cell (CD25, CD69, CD71 and CD54) and B-cell (CD80, CD86 and MHC-II) activation markers and secretion of Th1 and Th2 cytokines. WA induced oxidative stress by increasing the basal ROS levels and the immunosuppressive effects of WA were abrogated only by thiol anti-oxidants. The redox modulatory effects of WA in T-cells were attributed to its ability to directly interact with free thiols. WA inhibited NF-κB nuclear translocation in lymphocytes and prevented the direct binding of nuclear NF-κB to its consensus sequence. MALDI-TOF analysis using a synthetic NF-κB-p50 peptide containing Cys-62 residue suggested that WA can modify the cysteine residue of NF-κB. The pharmacokinetic studies for WA were also carried out and in vivo efficacy of WA was studied using mouse model of Graft-versus-host disease. In conclusion, WA is a potent inhibitor of T-cell responses and acts via a novel thiol dependent mechanism and inhibition of NF-κB pathway. - Highlights:: • Withaferin A (WA) inhibited T-cell and B-cell mediated immune responses. • WA increased basal ROS levels in lymphocytes. • WA directly interacted with GSH as studied using spectrophotometry and HPLC. • WA inhibited NF-κB nuclear translocation and binding of nuclear NF-κB to DNA. • WA inhibited induction of the graft-versus-host disease in mice.

  8. Adrenergic Signaling: A Targetable Checkpoint Limiting Development of the Antitumor Immune Response

    Science.gov (United States)

    Qiao, Guanxi; Chen, Minhui; Bucsek, Mark J.; Repasky, Elizabeth A.; Hylander, Bonnie L.

    2018-01-01

    An immune response must be tightly controlled so that it will be commensurate with the level of response needed to protect the organism without damaging normal tissue. The roles of cytokines and chemokines in orchestrating these processes are well known, but although stress has long been thought to also affect immune responses, the underlying mechanisms were not as well understood. Recently, the role of nerves and, specifically, the sympathetic nervous system, in regulating immune responses is being revealed. Generally, an acute stress response is beneficial but chronic stress is detrimental because it suppresses the activities of effector immune cells while increasing the activities of immunosuppressive cells. In this review, we first discuss the underlying biology of adrenergic signaling in cells of both the innate and adaptive immune system. We then focus on the effects of chronic adrenergic stress in promoting tumor growth, giving examples of effects on tumor cells and immune cells, explaining the methods commonly used to induce stress in preclinical mouse models. We highlight how this relates to our observations that mandated housing conditions impose baseline chronic stress on mouse models, which is sufficient to cause chronic immunosuppression. This problem is not commonly recognized, but it has been shown to impact conclusions of several studies of mouse physiology and mouse models of disease. Moreover, the fact that preclinical mouse models are chronically immunosuppressed has critical ramifications for analysis of any experiments with an immune component. Our group has found that reducing adrenergic stress by housing mice at thermoneutrality or treating mice housed at cooler temperatures with β-blockers reverses immunosuppression and significantly improves responses to checkpoint inhibitor immunotherapy. These observations are clinically relevant because there are numerous retrospective epidemiological studies concluding that cancer patients who were

  9. Characterising the mucosal and systemic immune responses to experimental human hookworm infection.

    Directory of Open Access Journals (Sweden)

    Soraya Gaze

    2012-02-01

    Full Text Available The mucosal cytokine response of healthy humans to parasitic helminths has never been reported. We investigated the systemic and mucosal cytokine responses to hookworm infection in experimentally infected, previously hookworm naive individuals from non-endemic areas. We collected both peripheral blood and duodenal biopsies to assess the systemic immune response, as well as the response at the site of adult worm establishment. Our results show that experimental hookworm infection leads to a strong systemic and mucosal Th2 (IL-4, IL-5, IL-9 and IL-13 and regulatory (IL-10 and TGF-β response, with some evidence of a Th1 (IFN-γ and IL-2 response. Despite upregulation after patency of both IL-15 and ALDH1A2, a known Th17-inducing combination in inflammatory diseases, we saw no evidence of a Th17 (IL-17 response. Moreover, we observed strong suppression of mucosal IL-23 and upregulation of IL-22 during established hookworm infection, suggesting a potential mechanism by which Th17 responses are suppressed, and highlighting the potential that hookworms and their secreted proteins offer as therapeutics for human inflammatory diseases.

  10. Activation of antitumor immune responses by Ganoderma formosanum polysaccharides in tumor-bearing mice.

    Science.gov (United States)

    Wang, Cheng-Li; Lu, Chiu-Ying; Hsueh, Ying-Chao; Liu, Wen-Hsiung; Chen, Chun-Jen

    2014-11-01

    Fungi of the genus Ganoderma are basidiomycetes that have been used as traditional medicine in Asia and have been shown to exhibit various pharmacological activities. We recently found that PS-F2, a polysaccharide fraction purified from the submerged culture broth of Ganoderma formosanum, stimulates the maturation of dendritic cells and primes a T helper 1 (Th1)-polarized adaptive immune response in vivo. In this study, we investigated whether the immune adjuvant function of PS-F2 can stimulate antitumor immune responses in tumor-bearing mice. Continuous intraperitoneal or oral administration of PS-F2 effectively suppressed the growth of colon 26 (C26) adenocarcinoma, B16 melanoma, and sarcoma 180 (S180) tumor cells in mice without adverse effects on the animals' health. PS-F2 did not cause direct cytotoxicity on tumor cells, and it lost the antitumor effect in mice with severe combined immunodeficiency (SCID). CD4(+) T cells, CD8(+) T cells, and serum from PS-F2-treated tumor-bearing mice all exhibited antitumor activities when adoptively transferred to naïve animals, indicating that PS-F2 treatment stimulates tumor-specific cellular and humoral immune responses. These data demonstrate that continuous administration of G. formosanum polysaccharide PS-F2 can activate host immune responses against ongoing tumor growth, suggesting that PS-F2 can potentially be developed into a preventive/therapeutic agent for cancer immunotherapy.

  11. The effect of doxycycline treatment on the postvaccinal immune response in pigs

    International Nuclear Information System (INIS)

    Pomorska-Mól, Małgorzata; Kwit, Krzysztof; Markowska-Daniel, Iwona; Pejsak, Zygmunt

    2014-01-01

    The effect of a seven-day antibiotic therapy with doxycycline was investigated on the postvaccinal humoral and cellular immune response in pigs. The selected parameters of non-specific immunity were also studied. Fifty pigs were used (control not vaccinated (C, n = 10), control vaccinated (CV, n = 20), and experimental — received doxycycline (DOXY, n = 20)). For vaccination live-attenuated vaccine against pseudorabies (PR) was used. From day − 1 to day 5 pigs from DOXY group received doxycycline orally with drinking water, at the recommended dose. Pigs from DOXY and CV groups were vaccinated at 8 and 10 weeks of age. The results of the present study showed that cell-mediated postvaccinal immune response can be modulated by oral treatment with doxycycline. Significantly lower values of stimulation index were observed after PRV restimulation in doxycycline-treated pigs. Moreover, in the DOXY group a significant decrease in IFN-γ production after PRV restimulation was noted. The significantly lower number of CD4+CD8 + cells was also observed in doxy-treated, vaccinated pigs, 2 weeks after final vaccination. Simultaneously, specific humoral response was not disturbed. This study demonstrated the importance of defining the immune modulatory activity of doxycycline because it may alter the immune responses to vaccines. The exact mechanism of T-cell response suppression by doxycycline remains to be elucidated, however the influence of doxycycline on the secretion of various cytokines, including IFN-γ, may be considered as a possible cause. The present observations should prompt further studies on the practical significance of such phenomena in terms of clinical implications. - Highlights: • We examine the postvaccinal immune response in pigs treated with doxycycline. • Doxycycline negatively influenced the specific proliferation after recall stimulation. • Doxycycline negatively influenced secretion of IFN-γ after recall stimulation. • The lower number of

  12. The effect of doxycycline treatment on the postvaccinal immune response in pigs

    Energy Technology Data Exchange (ETDEWEB)

    Pomorska-Mól, Małgorzata, E-mail: mpomorska@piwet.pulawy.pl; Kwit, Krzysztof; Markowska-Daniel, Iwona; Pejsak, Zygmunt

    2014-07-01

    The effect of a seven-day antibiotic therapy with doxycycline was investigated on the postvaccinal humoral and cellular immune response in pigs. The selected parameters of non-specific immunity were also studied. Fifty pigs were used (control not vaccinated (C, n = 10), control vaccinated (CV, n = 20), and experimental — received doxycycline (DOXY, n = 20)). For vaccination live-attenuated vaccine against pseudorabies (PR) was used. From day − 1 to day 5 pigs from DOXY group received doxycycline orally with drinking water, at the recommended dose. Pigs from DOXY and CV groups were vaccinated at 8 and 10 weeks of age. The results of the present study showed that cell-mediated postvaccinal immune response can be modulated by oral treatment with doxycycline. Significantly lower values of stimulation index were observed after PRV restimulation in doxycycline-treated pigs. Moreover, in the DOXY group a significant decrease in IFN-γ production after PRV restimulation was noted. The significantly lower number of CD4+CD8 + cells was also observed in doxy-treated, vaccinated pigs, 2 weeks after final vaccination. Simultaneously, specific humoral response was not disturbed. This study demonstrated the importance of defining the immune modulatory activity of doxycycline because it may alter the immune responses to vaccines. The exact mechanism of T-cell response suppression by doxycycline remains to be elucidated, however the influence of doxycycline on the secretion of various cytokines, including IFN-γ, may be considered as a possible cause. The present observations should prompt further studies on the practical significance of such phenomena in terms of clinical implications. - Highlights: • We examine the postvaccinal immune response in pigs treated with doxycycline. • Doxycycline negatively influenced the specific proliferation after recall stimulation. • Doxycycline negatively influenced secretion of IFN-γ after recall stimulation. • The lower number of

  13. Immune markers and correlates of protection for vaccine induced immune responses

    DEFF Research Database (Denmark)

    Thakur, Aneesh; Pedersen, Lasse Eggers; Jungersen, Gregers

    2012-01-01

    of an appropriate humoral response currently remain the best validated correlates of protective immunity after vaccination. Despite advancements in the field of immunology over the past few decades currently there are, however, no sufficiently validated immune correlates of vaccine induced protection against......-specific production of interferon-gamma (IFN-γ) has been promoted as a quantitative marker of protective cell-mediated immune responses over the past couple of decades. More recently, however, evidence from several infections has pointed towards the quality of the immune response, measured through increased levels...... of antigen-specific polyfunctional T cells capable of producing a triad of relevant cytokines, as a better correlate of sustained protective immunity against this type of infections. Also the possibilities to measure antigen-specific cytotoxic T cells (CTL) during infection or in response to vaccination...

  14. Effects of ultraviolet radiation on the immune system in humans

    International Nuclear Information System (INIS)

    Morison, W.L.

    1989-01-01

    In experimental animals, exposure to UV-B radiation produces selective alterations of immune function which are mainly in the form of suppression of normal immune responses. This immune suppression is important in the development of nonmelanoma skin cancer, may influence the development and course of infectious disease and possibly protects against autoimmune reactions. The evidence that this form of immune suppression occurs in humans is less compelling and very incomplete. The wavelengths of radiation most affected by a depletion of the stratospheric ozone layer are those known to be most immunosuppressive in animals and it is likely that such depletion will increase any suppressive effect of sunlight on immunity in humans. In addition to establishing whether or not UV-B radiation can cause suppression of immune function in humans, studies are required to determine if melanin can provide protection against such suppression, the role of this suppression in the pathogenesis of skin cancer, the development of infectious disease and vaccine effectiveness, and the capacity for humans to develop adaptive, protective mechanisms which may limit damage from continued exposure to UV-B radiation. (author)

  15. Exosome RNA Released by Hepatocytes Regulates Innate Immune Responses to Hepatitis B Virus Infection

    Directory of Open Access Journals (Sweden)

    Takahisa Kouwaki

    2016-08-01

    Full Text Available The innate immune system is essential for controlling viral infection. Hepatitis B virus (HBV persistently infects human hepatocytes and causes hepatocellular carcinoma. However, the innate immune response to HBV infection in vivo remains unclear. Using a tree shrew animal model, we showed that HBV infection induced hepatic interferon (IFN-γ expression during early infection. Our in vitro study demonstrated that hepatic NK cells produced IFN-γ in response to HBV only in the presence of hepatic F4/80+ cells. Moreover, extracellular vesicles released from HBV-infected hepatocytes contained viral nucleic acids and induced NKG2D ligand expression in macrophages by stimulating MyD88, TICAM-1, and MAVS-dependent pathways. In addition, depletion of exosomes from extracellular vesicles markedly reduced NKG2D ligand expression, suggesting the importance of exosomes for NK cell activation. In contrast, infection of hepatocytes with HBV increased immunoregulatory microRNA levels in extracellular vesicles and exosomes, which were transferred to macrophages, thereby suppressing IL-12p35 mRNA expression in macrophages to counteract the host innate immune response. IFN-γ increased the hepatic expression of DDX60 and augmented the DDX60-dependent degradation of cytoplasmic HBV RNA. Our results elucidated the crucial role of exosomes in antiviral innate immune response against HBV.

  16. Immune Responses following Stereotactic Body Radiotherapy for Stage I Primary Lung Cancer

    Directory of Open Access Journals (Sweden)

    Yoshiyasu Maehata

    2013-01-01

    Full Text Available Purpose. Immune responses following stereotactic body radiotherapy (SBRT for stage I non-small cell lung cancer (NSCLC were examined from the point of view of lymphocyte subset counts and natural killer cell activity (NKA. Patients and Methods. Peripheral blood samples were collected from 62 patients at 4 time points between pretreatment and 4 weeks post-treatment for analysis of the change of total lymphocyte counts (TLC and lymphocyte subset counts of CD3+, CD4+, CD8+, CD19+, CD56+, and NKA. In addition, the changes of lymphocyte subset counts were compared between patients with or without relapse. Further, the correlations between SBRT-related parameters and immune response were analyzed for the purpose of revealing the mechanisms of the immune response. Results. All lymphocyte subset counts and NKA at post-treatment and 1 week post-treatment were significantly lower than pre-treatment (P<0.01. No significant differences in the changes of lymphocyte subset counts were observed among patients with or without relapse. The volume of the vertebral body receiving radiation doses of 3 Gy or more (VV3 significantly correlated with the changes of nearly all lymphocyte subset counts. Conclusions. SBRT for stage I NSCLC induced significant immune suppression, and the decrease of lymphocyte subset counts may be associated with exposure of the vertebral bone marrow.

  17. Cellular immune responses to respiratory viruses

    NARCIS (Netherlands)

    van Helden, M.J.G.

    2011-01-01

    When a respiratory virus successfully infects the lungs, cascades of immune responses are initiated aimed to remove the pathogen. Immediate non-specific protection is provided by the innate immune system and this reduces the viral load during the first days of infection. The adaptive immune response

  18. Cancer Immunotherapy and the Immune Response in Hodgkin Lymphoma

    Directory of Open Access Journals (Sweden)

    Christoph Renner

    2018-06-01

    Full Text Available Patients with classical Hodgkin lymphoma (cHL have an impaired cellular immune response as indicated by an anergic reaction against standard recall antigens and a diminished rejection reaction of allogeneic skin transplant. This clinical observation can be linked to the histopathological feature of cHL since the typical pattern of a cHL manifestation is characterized by sparse large CD30+ tumor-infiltrating Hodgkin–Reed–Sternberg (HRS cells that are surrounded by a dense inflammatory immune microenvironment with mixed cellularity. Despite this extensive polymorphous inflammatory infiltrate, there is only a poor antitumor immune response seen to the neoplastic HRS cells. This is primarily mediated by a high expression of PD-L1 and PD-L2 ligands on the HRS cell surface which in turn antagonizes the activity of programmed death-1 (PD-1 antigen-positive T cells. PD-L1/L2 overexpression is caused by gene amplification at the 9p24.1 locus and/or latent Epstein–Barr virus infection present in around 40% of cHL cases. The blockade of the PD-L1/L2–PD-1 pathway by monoclonal antibodies can restore local T cell activity and leads to impressive tumor responses, some of which are long lasting and eventually curative. Another feature of HRS cells is the high CD30 antigen expression. Monoclonal antibody technology allowed for the successful development of CD30-specific immunotoxins, bispecific antibodies, and reprogrammed autologous T cells with the first one already approved for the treatment of high risk or relapsed cHL. Altogether, the discovery of the described pathomechanism of immune suppression and the identification of preferential target antigens has rendered cHL to be a prime subject for the successful development of new immunotherapeutic approaches.

  19. Sex-dimorphic adverse drug reactions to immune suppressive agents in inflammatory bowel disease

    NARCIS (Netherlands)

    Z. Zelinkova (Zuzana); E. Bultman (Evelien); L. Vogelaar (Lauran); C. Bouziane (Cheima); E.J. Kuipers (Ernst); C.J. van der Woude (Janneke)

    2012-01-01

    textabstractAIM: To analyze sex differences in adverse drug reactions (ADR) to the immune suppressive medication in inflammatory bowel disease (IBD) patients. METHODS: All IBD patients attending the IBD outpatient clinic of a referral hospital were identifed through the electronic diagnosis

  20. In vivo Ebola virus infection leads to a strong innate response in circulating immune cells.

    Science.gov (United States)

    Caballero, Ignacio S; Honko, Anna N; Gire, Stephen K; Winnicki, Sarah M; Melé, Marta; Gerhardinger, Chiara; Lin, Aaron E; Rinn, John L; Sabeti, Pardis C; Hensley, Lisa E; Connor, John H

    2016-09-05

    Ebola virus is the causative agent of a severe syndrome in humans with a fatality rate that can approach 90 %. During infection, the host immune response is thought to become dysregulated, but the mechanisms through which this happens are not entirely understood. In this study, we analyze RNA sequencing data to determine the host response to Ebola virus infection in circulating immune cells. Approximately half of the 100 genes with the strongest early increases in expression were interferon-stimulated genes, such as ISG15, OAS1, IFIT2, HERC5, MX1 and DHX58. Other highly upregulated genes included cytokines CXCL11, CCL7, IL2RA, IL2R1, IL15RA, and CSF2RB, which have not been previously reported to change during Ebola virus infection. Comparing this response in two different models of exposure (intramuscular and aerosol) revealed a similar signature of infection. The strong innate response in the aerosol model was seen not only in circulating cells, but also in primary and secondary target tissues. Conversely, the innate immune response of vaccinated macaques was almost non-existent. This suggests that the innate response is a major aspect of the cellular response to Ebola virus infection in multiple tissues. Ebola virus causes a severe infection in humans that is associated with high mortality. The host immune response to virus infection is thought to be an important aspect leading to severe pathology, but the components of this overactive response are not well characterized. Here, we analyzed how circulating immune cells respond to the virus and found that there is a strong innate response dependent on active virus replication. This finding is in stark contrast to in vitro evidence showing a suppression of innate immune signaling, and it suggests that the strong innate response we observe in infected animals may be an important contributor to pathogenesis.

  1. Duox2-induced innate immune responses in the respiratory epithelium and intranasal delivery of Duox2 DNA using polymer that mediates immunization.

    Science.gov (United States)

    Jeon, Yung Jin; Kim, Hyun Jik

    2018-05-01

    Respiratory mucosa especially nasal epithelium is well known as the first-line barrier of air-borne pathogens. High levels of reactive oxygen species (ROS) are detected in in vitro cultured human epithelial cells and in vivo lung. With identification of NADPH oxidase (Nox) system of respiratory epithelium, the antimicrobial role of ROS has been studied. Duox2 is the most abundant Nox isoform and produces the regulated amount of ROS in respiratory epithelium. Duox2-derived ROS are involved in antiviral innate immune responses but more studies are needed to verify the mechanism. In respiratory epithelium, Duox2-derived ROS is critical for recognition of virus through families retinoic acid-inducible gene-I (RIG-I) and melanoma differentiation-associated protein 5 (MDA5) at the early stage of antiviral innate immune responses. Various secreted interferons (IFNs) play essential roles for antiviral host defense by downstream cell signaling, and transcription of IFN-stimulated genes is started to suppress viral replication. Type I and type III IFNs are verified more responsible for influenza A virus (IAV) infection in respiratory epithelium and Duox2 is required to regulate IFN-related immune responses. Transient overexpression of Duox2 using cationic polymer polyethylenimine (PEI) induces secretion of type I and type III IFNs and significantly attenuated IAV replication in respiratory epithelium. Here, we discuss Duox2-mediated antiviral innate immune responses and the role of Duox2 as a mucosal vaccine to resist respiratory viral infection.

  2. Regulation of immune responses in SJL and F1 hybrid mice by gamma-irradiated syngeneic lymphoma cells

    International Nuclear Information System (INIS)

    Katz, I.R.; Nagase, F.; Bell, M.K.; Ponzio, N.M.; Thorbecke, G.J.

    1984-01-01

    Syngeneic mixed lymphocyte-stimulating la+ lymphomas of SJL mice [reticulum cell sarcoma(s) (RCS)] were found to modulate immune responses in vivo. Simultaneous injection of 2 X 10(7) gamma-irradiated or glutaraldehyde-fixed RCS cells with the antigen sheep red blood cells (SRBC) or 2,4,6-trinitrophenol (TNP)-Ficoll markedly suppressed the subsequent plaque-forming cell response in the spleen. The suppression of the anti-SRBC response was prevented by pretreatment of the mice with cyclophosphamide, whereas the suppression of the anti-TNP-Ficoll response was not affected. RCS injection induced high interferon serum titers within 24 hours after injection, which were not prevented by pretreatment with cyclophosphamide. Injection of gamma-irradiated RCS cells (gamma-RCS) or RCS cell extract 2 days prior to antigen enhanced the anti-SRBC but markedly suppressed the anti- TNP-Ficoll response. Injection of RCS both on day -2 and day 0 enhanced the anti-SRBC response. SJL mice 8-9 months of age showed much less or no suppression when gamma-RCS cells were injected on day 0. Certain F1 hybrids of SJL also showed the gamma-RCS-induced suppression of the anti-SRBC response. Suppression was seen in SJL X BALB.B but not in SJL X BALB/c mice and in SJL X A.TH but not in SJL X A.TL mice, suggesting an I-region effect. F1 hybrids of SJL by B10 background mice showed no significant suppression. Enhancement of the anti-SRBC response by prior injection of gamma-RCS was seen in all F1 hybrid mice examined

  3. Innate Immune Responses of Bat and Human Cells to Filoviruses: Commonalities and Distinctions.

    Science.gov (United States)

    Kuzmin, Ivan V; Schwarz, Toni M; Ilinykh, Philipp A; Jordan, Ingo; Ksiazek, Thomas G; Sachidanandam, Ravi; Basler, Christopher F; Bukreyev, Alexander

    2017-04-15

    Marburg (MARV) and Ebola (EBOV) viruses are zoonotic pathogens that cause severe hemorrhagic fever in humans. The natural reservoir of MARV is the Egyptian rousette bat ( Rousettus aegyptiacus ); that of EBOV is unknown but believed to be another bat species. The Egyptian rousette develops subclinical productive infection with MARV but is refractory to EBOV. Interaction of filoviruses with hosts is greatly affected by the viral interferon (IFN)-inhibiting domains (IID). Our study was aimed at characterization of innate immune responses to filoviruses and the role of filovirus IID in bat and human cells. The study demonstrated that EBOV and MARV replicate to similar levels in all tested cell lines, indicating that permissiveness for EBOV at cell and organism levels do not necessarily correlate. Filoviruses, particularly MARV, induced a potent innate immune response in rousette cells, which was generally stronger than that in human cells. Both EBOV VP35 and VP24 IID were found to suppress the innate immune response in rousette cells, but only VP35 IID appeared to promote virus replication. Along with IFN-α and IFN-β, IFN-γ was demonstrated to control filovirus infection in bat cells but not in human cells, suggesting host species specificity of the antiviral effect. The antiviral effects of bat IFNs appeared not to correlate with induction of IFN-stimulated genes 54 and 56, which were detected in human cells ectopically expressing bat IFN-α and IFN-β. As bat IFN-γ induced the type I IFN pathway, its antiviral effect is likely to be partially induced via cross talk. IMPORTANCE Bats serve as reservoirs for multiple emerging viruses, including filoviruses, henipaviruses, lyssaviruses, and zoonotic coronaviruses. Although there is no evidence for symptomatic disease caused by either Marburg or Ebola viruses in bats, spillover of these viruses into human populations causes deadly outbreaks. The reason for the lack of symptomatic disease in bats infected with

  4. Vaccine platforms combining circumsporozoite protein and potent immune modulators, rEA or EAT-2, paradoxically result in opposing immune responses.

    Directory of Open Access Journals (Sweden)

    Nathaniel J Schuldt

    Full Text Available Malaria greatly impacts the health and wellbeing of over half of the world's population. Promising malaria vaccine candidates have attempted to induce adaptive immune responses to Circumsporozoite (CS protein. Despite the inclusion of potent adjuvants, these vaccines have limited protective efficacy. Conventional recombinant adenovirus (rAd based vaccines expressing CS protein can induce CS protein specific immune responses, but these are essentially equivalent to those generated after use of the CS protein subunit based vaccines. In this study we combined the use of rAds expressing CS protein along with rAds expressing novel innate immune response modulating proteins in an attempt to significantly improve the induction of CS protein specific cell mediated immune (CMI responses.BALB/cJ mice were co-vaccinated with a rAd vectors expressing CS protein simultaneous with a rAd expressing either TLR agonist (rEA or SLAM receptors adaptor protein (EAT-2. Paradoxically, expression of the TLR agonist uncovered a potent immunosuppressive activity inherent to the combined expression of the CS protein and rEA. Fortunately, use of the rAd vaccine expressing EAT-2 circumvented CS protein's suppressive activity, and generated a fivefold increase in the number of CS protein responsive, IFNγ secreting splenocytes, as well as increased the breadth of T cells responsive to peptides present in the CS protein. These improvements were positively correlated with the induction of a fourfold improvement in CS protein specific CTL functional activity in vivo.Our results emphasize the need for caution when incorporating CS protein into malaria vaccine platforms expressing or containing other immunostimulatory compounds, as the immunological outcomes may be unanticipated and/or counter-productive. However, expressing the SLAM receptors derived signaling adaptor EAT-2 at the same time of vaccination with CS protein can overcome these concerns, as well as significantly

  5. TYPES OF IMMUNE RESPONSE FOR VARIOUS ESTHTEIN-BARR FORMS OF VIRAL INFECTION

    Directory of Open Access Journals (Sweden)

    Lyadova T. I.

    2017-12-01

    Full Text Available In 321 patients with different forms of EBV infection in the age range from 19 to 57 years (mean age 33,1 ± 11,7 years different types of immune response were isolated and studied. All participants in the study were divided into groups of comparable sex and age: patients with infectious mononucleosis (n = 138; patients with various forms of chronic EBV infection (n = 183; clinically healthy volunteers (n = 20. During the study all ethical norms were observed in accordance with international and Ukrainian protocols. Clinical examination of patients and healthy volunteers included examining complaints, an epidemiological history, a history of illness and life, an objective examination, instrumental and laboratory studies in dynamics. Statistical processing of the results of the study was carried out by parametric and nonparametric methods using the program Statistika 6.0, for each variational series, the absolute values (n, the arithmetic mean (M, the mean error of the arithmetic mean (m were calculated. It was found that patients with different forms of EBV infection have a reliable cytokine imbalance. Four main types of immune response were identified: normoreactive, dissociative, hyporeactive and hyperreactive. The revealed types of immune response testify to inadequate cellular-humoral reactivity of the organism in conditions of prolonged persistence of EBV, which is manifested by a tendency to suppress cell-mediated and enhancing humoral mechanisms of the immune response and is reflected in the clinical and biochemical manifestations of the disease and leads to a protracted undulating course of the disease.

  6. Effects of intestinal bacteria-derived p-cresyl sulfate on Th1-type immune response in vivo and in vitro

    International Nuclear Information System (INIS)

    Shiba, Takahiro; Kawakami, Koji; Sasaki, Takashi; Makino, Ikuyo; Kato, Ikuo; Kobayashi, Toshihide; Uchida, Kazumi; Kaneko, Kimiyuki

    2014-01-01

    Protein fermentation by intestinal bacteria generates various compounds that are not synthesized by their hosts. An example is p-cresol, which is produced from tyrosine. Patients with chronic kidney disease (CKD) accumulate high concentrations of intestinal bacteria-derived p-cresyl sulfate (pCS), which is the major metabolite of p-cresol, in their blood, and this accumulation contributes to certain CKD-associated disorders. Immune dysfunction is a CKD-associated disorder that frequently contributes to infectious diseases among CKD patients. Although some studies imply pCS as an etiological factor, the relation between pCS and immune systems is poorly understood. In the present study, we investigated the immunological effects of pCS derived from intestinal bacteria in mice. For this purpose, we fed mice a tyrosine-rich diet that causes the accumulation of pCS in their blood. The mice were shown to exhibit decreased Th1-driven 2, 4-dinitrofluorobenzene-induced contact hypersensitivity response. The concentration of pCS in blood was negatively correlated with the degree of the contact hypersensitivity response. In contrast, the T cell-dependent antibody response was not influenced by the accumulated pCS. We also examined the in vitro cytokine responses by T cells in the presence of pCS. The production of IFN-γ was suppressed by pCS. Further, pCS decreased the percentage of IFN-γ-producing Th1 cells. Our results suggest that intestinal bacteria-derived pCS suppressesTh1-type cellular immune responses. - Highlights: • Mice fed a tyrosine-rich diet accumulated p-cresyl sulfate in their blood. • p-Cresyl sulfate negatively correlated with contact hypersensitivity response. • The in vitro production of IFN-γ was suppressed by p-cresyl sulfate. • p-Cresyl sulfate decreased the percentage of IFN-γ-producing Th1 cells in vitro

  7. Effects of intestinal bacteria-derived p-cresyl sulfate on Th1-type immune response in vivo and in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Shiba, Takahiro, E-mail: takahiro-shiba@yakult.co.jp; Kawakami, Koji; Sasaki, Takashi; Makino, Ikuyo; Kato, Ikuo; Kobayashi, Toshihide; Uchida, Kazumi; Kaneko, Kimiyuki

    2014-01-15

    Protein fermentation by intestinal bacteria generates various compounds that are not synthesized by their hosts. An example is p-cresol, which is produced from tyrosine. Patients with chronic kidney disease (CKD) accumulate high concentrations of intestinal bacteria-derived p-cresyl sulfate (pCS), which is the major metabolite of p-cresol, in their blood, and this accumulation contributes to certain CKD-associated disorders. Immune dysfunction is a CKD-associated disorder that frequently contributes to infectious diseases among CKD patients. Although some studies imply pCS as an etiological factor, the relation between pCS and immune systems is poorly understood. In the present study, we investigated the immunological effects of pCS derived from intestinal bacteria in mice. For this purpose, we fed mice a tyrosine-rich diet that causes the accumulation of pCS in their blood. The mice were shown to exhibit decreased Th1-driven 2, 4-dinitrofluorobenzene-induced contact hypersensitivity response. The concentration of pCS in blood was negatively correlated with the degree of the contact hypersensitivity response. In contrast, the T cell-dependent antibody response was not influenced by the accumulated pCS. We also examined the in vitro cytokine responses by T cells in the presence of pCS. The production of IFN-γ was suppressed by pCS. Further, pCS decreased the percentage of IFN-γ-producing Th1 cells. Our results suggest that intestinal bacteria-derived pCS suppressesTh1-type cellular immune responses. - Highlights: • Mice fed a tyrosine-rich diet accumulated p-cresyl sulfate in their blood. • p-Cresyl sulfate negatively correlated with contact hypersensitivity response. • The in vitro production of IFN-γ was suppressed by p-cresyl sulfate. • p-Cresyl sulfate decreased the percentage of IFN-γ-producing Th1 cells in vitro.

  8. Therapeutic immunization with HIV-1 Tat reduces immune activation and loss of regulatory T-cells and improves immune function in subjects on HAART.

    Directory of Open Access Journals (Sweden)

    Barbara Ensoli

    2010-11-01

    Full Text Available Although HAART suppresses HIV replication, it is often unable to restore immune homeostasis. Consequently, non-AIDS-defining diseases are increasingly seen in treated individuals. This is attributed to persistent virus expression in reservoirs and to cell activation. Of note, in CD4(+ T cells and monocyte-macrophages of virologically-suppressed individuals, there is continued expression of multi-spliced transcripts encoding HIV regulatory proteins. Among them, Tat is essential for virus gene expression and replication, either in primary infection or for virus reactivation during HAART, when Tat is expressed, released extracellularly and exerts, on both the virus and the immune system, effects that contribute to disease maintenance. Here we report results of an ad hoc exploratory interim analysis (up to 48 weeks on 87 virologically-suppressed HAART-treated individuals enrolled in a phase II randomized open-label multicentric clinical trial of therapeutic immunization with Tat (ISS T-002. Eighty-eight virologically-suppressed HAART-treated individuals, enrolled in a parallel prospective observational study at the same sites (ISS OBS T-002, served for intergroup comparison. Immunization with Tat was safe, induced durable immune responses, and modified the pattern of CD4(+ and CD8(+ cellular activation (CD38 and HLA-DR together with reduction of biochemical activation markers and persistent increases of regulatory T cells. This was accompanied by a progressive increment of CD4(+ T cells and B cells with reduction of CD8(+ T cells and NK cells, which were independent from the type of antiretroviral regimen. Increase in central and effector memory and reduction in terminally-differentiated effector memory CD4(+ and CD8(+ T cells were accompanied by increases of CD4(+ and CD8(+ T cell responses against Env and recall antigens. Of note, more immune-compromised individuals experienced greater therapeutic effects. In contrast, these changes were opposite

  9. Spitting Image: Tick Saliva Assists the Causative Agent of Lyme Disease in Evading Host Skin's Innate Immune Response

    NARCIS (Netherlands)

    Hovius, Joppe W. R.

    2009-01-01

    Lyme disease is caused by the spirochete Borrelia burgdorferi and is transmitted through ticks. Inhibition of host skin's innate immune response might be instrumental to both tick feeding and B. burgdorferi transmission. The article by Marchal et al. describes how tick saliva suppresses B.

  10. Therapeutic potential of helminths in autoimmune diseases: helminth-derived immune-regulators and immune balance.

    Science.gov (United States)

    Wang, Meng; Wu, Linxiang; Weng, Rennan; Zheng, Weihong; Wu, Zhongdao; Lv, Zhiyue

    2017-08-01

    Helminths have accompanied human throughout history by releasing immune-evasion molecules that could counteract an aberrant immune response within the host. In the past decades, helminth infections are becoming less prevalent possibly due to the developed sanitation. Meanwhile, the incidence of autoimmune diseases is increasing, which cannot be exclusively explained by the changes of susceptibility genes. While the hygiene hypothesis casts light on the problem. The infections of helminths are believed to interact with and regulate human immunity with the byproduct of suppressing the autoimmune diseases. Thus, helminths are potential to treat or cure the autoimmune diseases. The therapeutic progresses and possible immune suppression mechanisms are illustrated in the review. The helminths that are studied most intensively include Heligmosomoides polygyrus, Hymenolepis diminuta, Schistosoma mansoni, Trichinella spiralis, and Trichuris suis. Special attentions are paid on the booming animal models and clinical trials that are to detect the efficiency of immune-modulating helminth-derived molecules on autoimmune diseases. These trials provide us with a prosperous clinical perspective, but the precise mechanism of the down-regulatory immune response remains to be clarified. More efforts are needed to be dedicated until these parasite-derived immune modulators could be used in clinic to treat or cure the autoimmune diseases under a standard management.

  11. Visible light induced changes in the immune response through an eye-brain mechanism (photoneuroimmunology).

    Science.gov (United States)

    Roberts, J E

    1995-07-01

    The immune system is susceptible to a variety of stresses. Recent work in neuroimmunology has begun to define how mood alteration, stress, the seasons, and daily rhythms can have a profound effect on immune response through hormonal modifications. Central to these factors may be light through an eye-brain hormonal modulation. In adult primates, only visible light (400-700 nm) is received by the retina. This photic energy is then transduced and delivered to the visual cortex and by an alternative pathway to the suprachiasmatic nucleus (SCN). The SCN is a part of the hypothalamic region in the brain believed to direct circadian rhythm. Visible light exposure also modulates the pituitary and pineal gland which leads to neuroendocrine changes. Melatonin, norepinephrine and acetylcholine decrease with light activation, while cortisol, serotonin, gaba and dopamine levels increase. The synthesis of vasoactive intestinal polypeptide (VIP), gastrin releasing peptide (GRP) and neuropeptide Y (NPY) in rat SCN has been shown to be modified by light. These induced neuroendocrine changes can lead to alterations in mood and circadian rhythm. All of these neuroendocrine changes can lead to immune modulation. An alternative pathway for immune modulation by light is through the skin. Visible light (400-700 nm) can penetrate epidermal and dermal layers of the skin and may directly interact with circulating lymphocytes to modulate immune function. However, even in the presence of phototoxic agents such as eosin and rose bengal, visible light did not produce suppression of contact hypersensitivity with suppresser cells. In contrast to visible light, in vivo exposure to UV-B (280-320 nm) and UV-A (320-400 nm) radiation can only alter normal human immune function by a skin mediated response. Each UV subgroup (B, A) induces an immunosuppressive response but by differing mechanisms involving the regulation of differing interleukins and growth factors. Some effects observed in humans are

  12. Increased Plasma Levels of Danger-Associated Molecular Patterns Are Associated With Immune Suppression and Postoperative Infections in Patients Undergoing Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy

    Directory of Open Access Journals (Sweden)

    Guus P. Leijte

    2018-04-01

    Full Text Available IntroductionDanger-associated molecular patterns (DAMPs can elicit immune responses and may subsequently induce an immune-suppressed state. Previous work showed that increased plasma levels of DAMPs are associated with immune suppression and increased susceptibility toward infections in trauma patients. Like trauma, major surgical procedures, such as cytoreductive surgery (CRS combined with hyperthermic intraperitoneal chemotherapy (HIPEC, are also thought to cause profound DAMP release. Furthermore, the incidence of postoperative infections in these patients, ranging from 10 to 36%, is very high compared to that observed in patients undergoing other major surgical procedures. We hypothesized that the double hit of surgical trauma (CRS in combination with HIPEC causes excessive DAMP release, which in turn contributes to the development of immune suppression. To investigate this, we assessed DAMP release in patients undergoing CRS-HIPEC, and investigated its relationship with immune suppression and postoperative infections.MethodsIn 20 patients undergoing CRS-HIPEC, blood was obtained at five time points: just before surgery (baseline, after CRS, after HIPEC, at ICU admission, and 1 day after surgery. Circulating levels of DAMPs [heat shock protein (HSP70, high mobility group box (HMGB1, S100A12, S100A8/S100A9, nuclear (nDNA, mitochondrial (mtDNA, lactate dehydrogenase (LDH, a marker of unscheduled cell death], and cytokines [tumor necrosis factor (TNFα, IL-6, IL-8, IL-10, macrophage inflammatory protein (MIP-1α, MIP-1β, and MCP-1] were measured. The extent of immune suppression was determined by measuring HLA-DR gene expression and ex vivo leukocytic cytokine production capacity.ResultsPlasma levels of DAMPs (maximum fold increases of HSP70: 2.1 [1.5–2.8], HMGB1: 5.9 [3.2–9.8], S100A8/S100A9: 3.6 [1.8–5.6], S100A12: 2.6 [1.8–4.3], nDNA 3.9 [1.0–10.8], LDH 1.7 [1.2–2.5], and all measured cytokines increased profoundly following

  13. Immune-Neuroendocrine Interactions and Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    Luis J. Jara

    2006-01-01

    Full Text Available The relationship between immune-neuroendocrine system is firmly established. The messengers of this connection are hormones, neuropeptides, neurotransmitters and cytokines. The immune-neuroendocrine system have the capacity to synthesize and release these molecules, which, in turn, can stimulate or suppress the activity of immune or neuroendocrine cells by binding to receptors. In fact, hormones, neuropeptides and neurotransmitters participate in innate and adaptive immune response.

  14. The microRNA miR-29 controls innate and adaptive immune responses to intracellular bacterial infection by targeting interferon-γ.

    Science.gov (United States)

    Ma, Feng; Xu, Sheng; Liu, Xingguang; Zhang, Qian; Xu, Xiongfei; Liu, Mofang; Hua, Minmin; Li, Nan; Yao, Hangping; Cao, Xuetao

    2011-07-24

    Interferon-γ (IFN-γ) has a critical role in immune responses to intracellular bacterial infection. MicroRNAs (miRNAs) are important in the regulation of innate and adaptive immunity. However, whether miRNAs can directly target IFN-γ and regulate IFN-γ production post-transcriptionally remains unknown. Here we show that infection of mice with Listeria monocytogenes or Mycobacterium bovis bacillus Calmette-Guérin (BCG) downregulated miR-29 expression in IFN-γ-producing natural killer cells, CD4(+) T cells and CD8(+) T cells. Moreover, miR-29 suppressed IFN-γ production by directly targeting IFN-γ mRNA. We developed mice with transgenic expression of a 'sponge' target to compete with endogenous miR-29 targets (GS29 mice). We found higher serum concentrations of IFN-γ and lower L. monocytogenes burdens in L. monocytogenes-infected GS29 mice than in their littermates. GS29 mice had enhanced T helper type 1 (T(H)1) responses and greater resistance to infection with BCG or Mycobacterium tuberculosis. Therefore, miR-29 suppresses immune responses to intracellular pathogens by targeting IFN-γ.

  15. How Does Optimism Suppress Immunity? Evaluation of Three Affective Pathways

    OpenAIRE

    Segerstrom, Suzanne C.

    2006-01-01

    Studies have linked optimism to poorer immunity during difficult stressors. In the present report, when first-year law students (N = 46) relocated to attend law school, reducing conflict among curricular and extracurricular goals, optimism predicted larger delayed type hypersensitivity responses, indicating more robust in vivo cellular immunity. However, when students did not relocate, increasing goal conflict, optimism predicted smaller responses. Although this effect has been attributed to ...

  16. Functionally redundant RXLR effectors from Phytophthora infestans act at different steps to suppress early flg22-triggered immunity.

    Directory of Open Access Journals (Sweden)

    Xiangzi Zheng

    2014-04-01

    Full Text Available Genome sequences of several economically important phytopathogenic oomycetes have revealed the presence of large families of so-called RXLR effectors. Functional screens have identified RXLR effector repertoires that either compromise or induce plant defense responses. However, limited information is available about the molecular mechanisms underlying the modes of action of these effectors in planta. The perception of highly conserved pathogen- or microbe-associated molecular patterns (PAMPs/MAMPs, such as flg22, triggers converging signaling pathways recruiting MAP kinase cascades and inducing transcriptional re-programming, yielding a generic anti-microbial response. We used a highly synchronizable, pathogen-free protoplast-based assay to identify a set of RXLR effectors from Phytophthora infestans (PiRXLRs, the causal agent of potato and tomato light blight that manipulate early stages of flg22-triggered signaling. Of thirty-three tested PiRXLR effector candidates, eight, called Suppressor of early Flg22-induced Immune response (SFI, significantly suppressed flg22-dependent activation of a reporter gene under control of a typical MAMP-inducible promoter (pFRK1-Luc in tomato protoplasts. We extended our analysis to Arabidopsis thaliana, a non-host plant species of P. infestans. From the aforementioned eight SFI effectors, three appeared to share similar functions in both Arabidopsis and tomato by suppressing transcriptional activation of flg22-induced marker genes downstream of post-translational MAP kinase activation. A further three effectors interfere with MAMP signaling at, or upstream of, the MAP kinase cascade in tomato, but not in Arabidopsis. Transient expression of the SFI effectors in Nicotiana benthamiana enhances susceptibility to P. infestans and, for the most potent effector, SFI1, nuclear localization is required for both suppression of MAMP signaling and virulence function. The present study provides a framework to decipher the

  17. Helminth-induced regulatory T cells and suppression of allergic responses.

    Science.gov (United States)

    Logan, Jayden; Navarro, Severine; Loukas, Alex; Giacomin, Paul

    2018-05-28

    Infection with helminths has been associated with lower rates of asthma and other allergic diseases. This has been attributed, in part, to the ability of helminths to induce regulatory T cells that suppress inappropriate immune responses to allergens. Recent compelling evidence suggests that helminths may promote regulatory T cell expansion or effector functions through either direct (secretion of excretory/secretory molecules) or indirect mechanisms (regulation of the microbiome). This review will discuss key findings from human immunoepidemiological observations, studies using animal models of disease, and clinical trials with live worm infections, discussing the therapeutic potential for worms and their secreted products for treating allergic inflammation. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  18. Immune response in mice to ingested soya protein: antibody production, oral tolerance and maternal transfer

    DEFF Research Database (Denmark)

    Christensen, Hanne Risager; Pedersen, Susanne Brix; Frøkiær, Hanne

    2004-01-01

    antibody response in the offspring, bat in this case in the absence of oral tolerance. This indicates that, under certain conditions, factors involved in spontaneous antibody production can be transmitted from mother to offspring. Understanding the immune response to soya protein ingested under healthy...... by ELISA, and to the presence of oral tolerance detected as a suppressed antibody and cell-proliferation response upon immunisation with soya protein. F0 mice generated soya-specific antibodies, while oral tolerance to the same soya proteins was also clearly induced. When F0 dams were transferred to soya...

  19. Inmunoterapia del cáncer: Importancia de controlar la inmunosupresión Cancer immunotherapy: Importance of overcoming immune suppression

    Directory of Open Access Journals (Sweden)

    Mariana Malvicini

    2010-12-01

    Full Text Available Es cada vez mayor la evidencia experimental y clínica de que el sistema inmunitario interviene activamente en la patogénesis y el control de la progresión tumoral. Una respuesta antitumoral efectiva depende de la correcta interacción de varios componentes del sistema inmunitario, como las células presentadoras de antígeno y diferentes sub-poblaciones de linfocitos T. Sin embargo, los tumores malignos desarrollan numerosos mecanismos para evadir el reconocimiento y su eliminación por parte del sistema inmunitario. En esta revisión discutiremos algunos de esos mecanismos y posibles estrategias terapéuticas para contrarrestarlos.Increasing evidence indicates that the immune system is involved in the control of tumor progression. Effective antitumor immune response depends on the interaction between several components of the immune system, including antigen-presenting cells and different T cell subsets. However, tumor cells develop a number of mechanisms to escape recognition and elimination by the immune system. In this review we discuss these mechanisms and address possible therapeutic approaches to overcome the immune suppression generated by tumors.

  20. The Necrosome Promotes Pancreas Oncogenesis via CXCL1 and Mincle Induced Immune Suppression

    Science.gov (United States)

    Seifert, Lena; Werba, Gregor; Tiwari, Shaun; Giao Ly, Nancy Ngoc; Alothman, Sara; Alqunaibit, Dalia; Avanzi, Antonina; Barilla, Rocky; Daley, Donnele; Greco, Stephanie H.; Torres-Hernandez, Alejandro; Pergamo, Matthew; Ochi, Atsuo; Zambirinis, Constantinos P.; Pansari, Mridul; Rendon, Mauricio; Tippens, Daniel; Hundeyin, Mautin; Mani, Vishnu R.; Hajdu, Cristina; Engle, Dannielle; Miller, George

    2016-01-01

    Neoplastic pancreatic epithelial cells are widely believed to die via Caspase 8-dependant apoptotic cell death and chemotherapy is thought to further promote tumor apoptosis1. Conversely, disruption of apoptosis is a basic modality cancer cells exploit for survival2,3. However, the role of necroptosis, or programmed necrosis, in pancreatic ductal adenocarcinoma (PDA) is uncertain. There are a multitude of potential inducers of necroptosis in PDA including ligation of TNFR1, CD95, TRAIL receptors, Toll-like receptors, ROS, and Chemotherapeutics4,5. Here we report that the principal components of the necrosome, RIP1 and RIP3, are highly expressed in PDA and are further upregulated by chemotherapy. Blockade of the necrosome in vitro promoted cancer cell proliferation and induced an aggressive oncogenic phenotype. By contrast, in vivo RIP3 deletion or RIP1 inhibition was protective against oncogenic progression and was associated with the development of a highly immunogenic myeloid and T cell infiltrate. The immune-suppressive tumor microenvironment (TME) associated with intact RIP1/RIP3 signaling was in-part contingent on necroptosis-induced CXCL1 expression whereas CXCL1 blockade was protective against PDA. Moreover, we found that cytoplasmic SAP130 was expressed in PDA in a RIP1/RIP3-dependent manner, and Mincle – its cognate receptor – was upregulated in tumor-infiltrating myeloid cells. Mincle ligation by SAP130 promoted oncogenesis whereas Mincle deletion was protective and phenocopied the immunogenic reprogramming of the TME characteristic of RIP3 deletion. Cellular depletion experiments suggested that whereas inhibitory macrophages promote tumorigenesis in PDA, they lose their immune-suppressive effects in the context of RIP3 or Mincle deletion. As such, T cells which are dispensable to PDA progression in hosts with intact RIP3 or Mincle signaling become reprogrammed into indispensable mediators of anti-tumor immunity in absence of RIP3 or Mincle. Our work

  1. Time-course investigation of infection with a low virulent Pasteurella multocida strain in normal and immune-suppressed 12-week-old free-range chickens

    DEFF Research Database (Denmark)

    Mbuthia, P.G.; Njagi, L.W.; Nyaga, P.N.

    2011-01-01

    Twelve-week-old indigenous chickens, either immune-suppressed using dexamethasone (IS) or non-immune-suppressed (NIS), were challenged with a low virulent strain, Pasteurella multocida strain NCTC 10322(T), and developed clinical signs and pathological lesions typical of chronic fowl cholera. NIS...

  2. [Immune system and tumors].

    Science.gov (United States)

    Terme, Magali; Tanchot, Corinne

    2017-02-01

    Despite having been much debated, it is now well established that the immune system plays an essential role in the fight against cancer. In this article, we will highlight the implication of the immune system in the control of tumor growth and describe the major components of the immune system involved in the antitumoral immune response. The immune system, while exerting pressure on tumor cells, also will play a pro-tumoral role by sculpting the immunogenicity of tumors cells as they develop. Finally, we will illustrate the numerous mechanisms of immune suppression that take place within the tumoral microenvironment which allow tumor cells to escape control from the immune system. The increasingly precise knowledge of the brakes to an effective antitumor immune response allows the development of immunotherapy strategies more and more innovating and promising of hope. Copyright © 2016. Published by Elsevier Masson SAS.

  3. Antimicrobial peptides in innate immune responses

    DEFF Research Database (Denmark)

    Sorensen, O.E.; Borregaard, N.; Cole, A.M.

    2008-01-01

    Antimicrobial peptides (AMPs) are ancient effector molecules in the innate immune response of eukaryotes. These peptides are important for the antimicrobial efficacy of phagocytes and for the innate immune response mounted by epithelia of humans and other mammals. AMPs are generated either by de...... novo synthesis or by proteolytic cleavage from antimicrobially inactive proproteins. Studies of human diseases and animal studies have given important clues to the in vivo role of AMPs. It is now evident that dysregulation of the generation of AMPs in innate immune responses plays a role in certain...

  4. The effects of testosterone on immune function in quail selected for divergent plasma corticosterone response.

    Science.gov (United States)

    Roberts, Mark L; Buchanan, Katherine L; Evans, Matthew R; Marin, Raul H; Satterlee, Daniel G

    2009-10-01

    The immunocompetence handicap hypothesis (ICHH) suggests that the male sex hormone testosterone has a dual effect; it controls the development and expression of male sexually selected signals, and it suppresses the immune system. Therefore only high quality males are able to fully express secondary sexual traits because only they can tolerate the immunosuppressive qualities of testosterone. A modified version of the ICHH suggests that testosterone causes immunosuppression indirectly by increasing the stress hormone corticosterone (CORT). Lines of Japanese quail (Coturnix japonica) selected for divergent responses in levels of plasma CORT were used to test these hypotheses. Within each CORT response line (as well as in a control stock) we manipulated levels of testosterone in castrated quail by treatment with zero (sham), low or high testosterone implants, before testing the birds' humoral immunity and phytohaemagglutinin (PHA)-induced immune response, as well as body condition. The PHA-induced response was not significantly affected by CORT selected line, testosterone treatment or their interaction. There was, however, a significant effect of CORT line on humoral immunity in that the control birds exhibited the greatest antibody production, but there was no significant effect of testosterone manipulation on humoral immunity. The males in the sham implant treatment group had significantly greater mass than the males in the high testosterone group, suggesting a negative effect of high testosterone on general body condition. We discuss these results in the context of current hypotheses in the field of sexual selection.

  5. Poppers: large cancer increase and immune suppression in animal tests.

    Science.gov (United States)

    James, J S

    1999-04-16

    A study on mice injected with cancer cells and then exposed to isobutyl nitrite (poppers) revealed that inhalant-treated mice developed tumors more readily and rapidly than control mice. The control mice were also injected with cancer cells, but only breathed air. Related studies found that poppers suppress certain immune functions involved in killing tumor cells. These studies suggest that further research of persons with HIV/AIDS who use poppers is needed to determine if they are at a high risk for developing malignancies.

  6. Immune response to H pylori

    Science.gov (United States)

    Suarez, Giovanni; Reyes, Victor E; Beswick, Ellen J

    2006-01-01

    The gastric mucosa separates the underlying tissue from the vast array of antigens that traffic through the stomach lumen. While the extreme pH of this environment is essential in aiding the activation of enzymes and food digestion, it also renders the gastric epithelium free from bacterial colonization, with the exception of one important human pathogen, H pylori. This bacterium has developed mechanisms to survive the harsh environment of the stomach, actively move through the mucosal layer, attach to the epithelium, evade immune responses, and achieve persistent colonization. While a hallmark of this infection is a marked inflammatory response with the infiltration of various immune cells into the infected gastric mucosa, the host immune response is unable to clear the infection and may actually contribute to the associated pathogenesis. Here, we review the host responses involved during infection with H pylori and how they are influenced by this bacterium. PMID:17007009

  7. Vaccine-mediated immune responses to experimental pulmonary Cryptococcus gattii infection in mice.

    Directory of Open Access Journals (Sweden)

    Ashok K Chaturvedi

    Full Text Available Cryptococcus gattii is a fungal pathogen that can cause life-threatening respiratory and disseminated infections in immune-competent and immune-suppressed individuals. Currently, there are no standardized vaccines against cryptococcosis in humans, underlying an urgent need for effective therapies and/or vaccines. In this study, we evaluated the efficacy of intranasal immunization with C. gattii cell wall associated (CW and/or cytoplasmic (CP protein preparations to induce protection against experimental pulmonary C. gattii infection in mice. BALB/c mice immunized with C. gattii CW and/or CP protein preparations exhibited a significant reduction in pulmonary fungal burden and prolonged survival following pulmonary challenge with C. gattii. Protection was associated with significantly increased pro-inflammatory and Th1-type cytokine recall responses, in vitro and increased C. gattii-specific antibody production in immunized mice challenged with C. gattii. A number of immunodominant proteins were identified following immunoblot analysis of C. gattii CW and CP protein preparations using sera from immunized mice. Immunization with a combined CW and CP protein preparation resulted in an early increase in pulmonary T cell infiltrates following challenge with C. gattii. Overall, our studies show that C. gattii CW and CP protein preparations contain antigens that may be included in a subunit vaccine to induce prolonged protection against pulmonary C. gattii infection.

  8. Immune response is required for the control of in vivo translocation and chronic toxicity of graphene oxide

    Science.gov (United States)

    Wu, Qiuli; Zhao, Yunli; Fang, Jianpeng; Wang, Dayong

    2014-05-01

    Graphene oxide (GO) shows great promise as a nanomaterial for medical applications; however, the mechanism for its long-term adverse effects is still largely unclear. Here, we show that chronic GO exposure not only caused damage on the function of both primary and secondary targeted organs but also induced severe accumulation of pathogenic microbial food (OP50) in the intestine of Caenorhabditis elegans, a non-mammalian alternative toxicity assay system. GO accumulated in the intestine could be largely co-localized with OP50 and induced decreased immune response of animals. In contrast, feeding with UV-treated OP50 suppressed GO toxicity and accumulation in the intestine and maintained the relatively normal immune response of animals. The severe accumulation of OP50 in the intestine might be partially due to the damage by GO on the development and function of AVL and DVB neurons controlling defecation behavior. Reduction of chronic GO toxicity by PEG surface modification largely resulted from the inhibition of OP50 accumulation in the intestine and the maintenance of normal immune response. Our results highlight the key role of innate immunity in regulating in vivo chronic GO toxicity, which will be helpful for our understanding of the interactions between nanomaterials and biological systems during the long-term development of animals.Graphene oxide (GO) shows great promise as a nanomaterial for medical applications; however, the mechanism for its long-term adverse effects is still largely unclear. Here, we show that chronic GO exposure not only caused damage on the function of both primary and secondary targeted organs but also induced severe accumulation of pathogenic microbial food (OP50) in the intestine of Caenorhabditis elegans, a non-mammalian alternative toxicity assay system. GO accumulated in the intestine could be largely co-localized with OP50 and induced decreased immune response of animals. In contrast, feeding with UV-treated OP50 suppressed GO

  9. Manganese induced immune suppression of the lobster, Nephrops norvegicus

    International Nuclear Information System (INIS)

    Hernroth, Bodil; Baden, Susanne P.; Holm, Kristina; Andre, Tove; Soederhaell, Irene

    2004-01-01

    Manganese (Mn) is one of the most abundant elements on earth, particularly in the soft bottom sediments of the oceans. As a micronutrient Mn is essential in the metabolic processes of organisms. However, at high concentrations the metal becomes a neurotoxin with well-documented effects. As a consequence of euthrophication, manganese is released from bottom sediments of coastal areas and the Norway lobsters, Nephrops norvegicus, can experience high levels of bioavailable Mn 2+ . Here, we present the first report showing that Mn also affects several fundamental processes in the mobilisation and activation of immunoactive haemocytes. When N. norvegicus was exposed to a realistic [Mn 2+ ] of 20 mg l -1 for 10 days 24.1 μg ml -1 was recorded in the haemolymph. At this concentration the total haemocyte count was reduced by ca. 60%. By using BrdU as a tracer for cell division, it was shown that the proliferation rate in the haematopoietic tissue did not increase, despite the haemocytepenia. A gene coding for a Runt-domain protein, known to be involved in maturation of immune active haemocytes in a variety of organisms, was identified also in haemocytes of N. norvegicus. The expression of this gene was >40% lower in the Mn-exposed lobsters as judged by using a cDNA probe and the in situ hybridisation technique. In response to non-self molecules, like lipopolysaccharide (LPS), the granular haemocytes of arthropods are known to degranulate and thereby release and activate the prophenoloxidase system, necessary for their immune defence. A degranulation assay, tested on isolated granular haemocytes, showed about 75% lower activity in the Mn-exposed lobsters than that for the unexposed. Furthermore, using an enzymatic assay, the activation per se of prophenoloxidase by LPS was found blocked in the Mn-exposed lobsters. Taken together, these results show that Mn exposure suppressed fundamental immune mechanisms of Norway lobsters. This identifies a potential harm that also

  10. Manganese induced immune suppression of the lobster, Nephrops norvegicus

    Energy Technology Data Exchange (ETDEWEB)

    Hernroth, Bodil [Department of Marine Ecology, Goeteborg University, Kristineberg Marine Research Station, SE-450 34 Fiskebaeckskil (Sweden)]. E-mail: bodil.hernroth@kmf.gu.se; Baden, Susanne P. [Department of Marine Ecology, Goeteborg University, Kristineberg Marine Research Station, SE-450 34 Fiskebaeckskil (Sweden); Holm, Kristina [Department of Marine Ecology, Goeteborg University, Kristineberg Marine Research Station, SE-450 34 Fiskebaeckskil (Sweden); Andre, Tove [Department of Comparative Physiology, Evolutionary Biology Centre, Uppsala University, Norbyvaegen 18A, SE-752 36 Uppsala (Sweden); Soederhaell, Irene [Department of Comparative Physiology, Evolutionary Biology Centre, Uppsala University, Norbyvaegen 18A, SE-752 36 Uppsala (Sweden)

    2004-12-10

    Manganese (Mn) is one of the most abundant elements on earth, particularly in the soft bottom sediments of the oceans. As a micronutrient Mn is essential in the metabolic processes of organisms. However, at high concentrations the metal becomes a neurotoxin with well-documented effects. As a consequence of euthrophication, manganese is released from bottom sediments of coastal areas and the Norway lobsters, Nephrops norvegicus, can experience high levels of bioavailable Mn{sup 2+}. Here, we present the first report showing that Mn also affects several fundamental processes in the mobilisation and activation of immunoactive haemocytes. When N. norvegicus was exposed to a realistic [Mn{sup 2+}] of 20 mg l{sup -1} for 10 days 24.1 {mu}g ml{sup -1} was recorded in the haemolymph. At this concentration the total haemocyte count was reduced by ca. 60%. By using BrdU as a tracer for cell division, it was shown that the proliferation rate in the haematopoietic tissue did not increase, despite the haemocytepenia. A gene coding for a Runt-domain protein, known to be involved in maturation of immune active haemocytes in a variety of organisms, was identified also in haemocytes of N. norvegicus. The expression of this gene was >40% lower in the Mn-exposed lobsters as judged by using a cDNA probe and the in situ hybridisation technique. In response to non-self molecules, like lipopolysaccharide (LPS), the granular haemocytes of arthropods are known to degranulate and thereby release and activate the prophenoloxidase system, necessary for their immune defence. A degranulation assay, tested on isolated granular haemocytes, showed about 75% lower activity in the Mn-exposed lobsters than that for the unexposed. Furthermore, using an enzymatic assay, the activation per se of prophenoloxidase by LPS was found blocked in the Mn-exposed lobsters. Taken together, these results show that Mn exposure suppressed fundamental immune mechanisms of Norway lobsters. This identifies a potential

  11. Induction of Interleukin-10 Producing Dendritic Cells As a Tool to Suppress Allergen-Specific T Helper 2 Responses

    Directory of Open Access Journals (Sweden)

    Stefan Schülke

    2018-03-01

    Full Text Available Dendritic cells (DCs are gatekeepers of the immune system that control induction and polarization of primary, antigen-specific immune responses. Depending on their maturation/activation status, the molecules expressed on their surface, and the cytokines produced DCs have been shown to either elicit immune responses through activation of effector T cells or induce tolerance through induction of either T cell anergy, regulatory T cells, or production of regulatory cytokines. Among the cytokines produced by tolerogenic DCs, interleukin 10 (IL-10 is a key regulatory cytokine limiting und ultimately terminating excessive T-cell responses to microbial pathogens to prevent chronic inflammation and tissue damage. Because of their important role in preventing autoimmune diseases, transplant rejection, allergic reactions, or in controlling chronic inflammation DCs have become an interesting tool to modulate antigen-specific immune responses. For the treatment of allergic inflammation, the aim is to downregulate allergen-specific T helper 2 (Th2 responses and the associated clinical symptoms [allergen-driven Th2 activation, Th2-driven immunoglobulin E (IgE production, IgE-mediated mast cell and basophil activation, allergic inflammation]. Here, combining the presentation of allergens by DCs with a pro-tolerogenic, IL-10-producing phenotype is of special interest to modulate allergen-specific immune responses in the treatment of allergic diseases. This review discusses the reported strategies to induce DC-derived IL-10 secretion for the suppression of allergen-specific Th2-responses with a focus on IL-10 treatment, IL-10 transduction, and the usage of both whole bacteria and bacteria-derived components. Interestingly, while IL-10-producing DCs induced either by IL-10 treatment or IL-10 transduction are arrested in an immature/semi-mature state, treatment of DCs with live or killed bacteria as well as isolated bacterial components results in the induction of

  12. Malaria in immuno-suppressed individuals on antiretroviral therapy ...

    African Journals Online (AJOL)

    Malaria in immuno-suppressed individuals on antiretroviral therapy (ART) in north-central Nigeria. C.R. Pam, B.T. Abubakar, G.O. Inwang, G.A. Amuga. Abstract. The immune deficiency caused by HIV infection reduces the immune response to malaria parasitaemia and therefore leads to an increased frequency of clinical ...

  13. Nonstructural 5A Protein of Hepatitis C Virus Interferes with Toll-Like Receptor Signaling and Suppresses the Interferon Response in Mouse Liver.

    Directory of Open Access Journals (Sweden)

    Takeya Tsutsumi

    Full Text Available The hepatitis C virus nonstructural protein NS5A is involved in resistance to the host immune response, as well as the viral lifecycle such as replication and maturation. Here, we established transgenic mice expressing NS5A protein in the liver and examined innate immune responses against lipopolysaccharide (LPS in vivo. Intrahepatic gene expression levels of cytokines such as interleukin-6, tumor necrosis factor-α, and interferon-γ were significantly suppressed after LPS injection in the transgenic mouse liver. Induction of the C-C motif chemokine ligand 2, 4, and 5 was also suppressed. Phosphorylation of the signal transducer and activator of transcription 3, which is activated by cytokines, was also reduced, and expression levels of interferon-stimulated genes, 2'-5' oligoadenylate synthase, interferon-inducible double-stranded RNA-activated protein kinase, and myxovirus resistance 1 were similarly suppressed. Since LPS binds to toll-like receptor 4 and stimulates the downstream pathway leading to induction of these genes, we examined the extracellular signal-regulated kinase and IκB-α. The phosphorylation levels of these molecules were reduced in transgenic mouse liver, indicating that the pathway upstream of the molecules was disrupted by NS5A. Further analyses revealed that the interaction between interleukin-1 receptor-associated kinase-1 and tumor necrosis factor receptor associated factor-6 was dispersed in transgenic mice, suggesting that NS5A may interfere with this interaction via myeloid differentiation primary response gene 88, which was shown to interact with NS5A. Since the gut microbiota, a source of LPS, is known to be associated with pathological conditions in liver diseases, our results suggest the involvement of NS5A in the pathogenesis of HCV infected-liver via the suppression of innate immunity.

  14. Monitoring Immune Responses in Organ Recipients by Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Al-Mukhalafi Zuha

    2001-01-01

    Full Text Available Allograft rejection remains a major barrier to successful organ transplan-tation. Cellular and humoral immune responses play a critical role in mediating graft rejection. During the last few years, monoclonal antibodies have been used as a new specific therapeutic approach in the prevention of allograft rejection. Recently, the technology of flow cytometry has become a useful tool for monitoring immunological responses in transplant recipients. The application of this valuable tool in clinical transplantation at the present time is aimed at, i determining the extent of immuno-suppressive therapy through T-cell receptor analysis of cellular components, ii monitoring levels of alloreactive antibodies to identify high-risk recipients (sensitized patients in the pre-operative period and iii to predict rejection by monitoring their development post-operatively. In future, further development of this technology may demonstrate greater benefit to the field of organ transplantation.

  15. Autologous Stem Cell Transplantation Disrupts Adaptive Immune Responses during Rebound Simian/Human Immunodeficiency Virus Viremia.

    Science.gov (United States)

    Reeves, Daniel B; Peterson, Christopher W; Kiem, Hans-Peter; Schiffer, Joshua T

    2017-07-01

    Primary HIV-1 infection induces a virus-specific adaptive/cytolytic immune response that impacts the plasma viral load set point and the rate of progression to AIDS. Combination antiretroviral therapy (cART) suppresses plasma viremia to undetectable levels that rebound upon cART treatment interruption. Following cART withdrawal, the memory component of the virus-specific adaptive immune response may improve viral control compared to primary infection. Here, using primary infection and treatment interruption data from macaques infected with simian/human immunodeficiency virus (SHIV), we observe a lower peak viral load but an unchanged viral set point during viral rebound. The addition of an autologous stem cell transplant before cART withdrawal alters viral dynamics: we found a higher rebound set point but similar peak viral loads compared to the primary infection. Mathematical modeling of the data that accounts for fundamental immune parameters achieves excellent fit to heterogeneous viral loads. Analysis of model output suggests that the rapid memory immune response following treatment interruption does not ultimately lead to better viral containment. Transplantation decreases the durability of the adaptive immune response following cART withdrawal and viral rebound. Our model's results highlight the impact of the endogenous adaptive immune response during primary SHIV infection. Moreover, because we capture adaptive immune memory and the impact of transplantation, this model will provide insight into further studies of cure strategies inspired by the Berlin patient. IMPORTANCE HIV patients who interrupt combination antiretroviral therapy (cART) eventually experience viral rebound, the return of viral loads to pretreatment levels. However, the "Berlin patient" remained free of HIV rebound over a decade after stopping cART. His cure is attributed to leukemia treatment that included an HIV-resistant stem cell transplant. Inspired by this case, we studied the impact

  16. Mesenchymal Stromal Cells Can Regulate the Immune Response in the Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Alessandro Poggi

    2016-11-01

    Full Text Available The tumor microenvironment is a good target for therapy in solid tumors and hematological malignancies. Indeed, solid tumor cells’ growth and expansion can influence neighboring cells’ behavior, leading to a modulation of mesenchymal stromal cell (MSC activities and remodeling of extracellular matrix components. This leads to an altered microenvironment, where reparative mechanisms, in the presence of sub-acute inflammation, are not able to reconstitute healthy tissue. Carcinoma cells can undergo epithelial mesenchymal transition (EMT, a key step to generate metastasis; these mesenchymal-like cells display the functional behavior of MSC. Furthermore, MSC can support the survival and growth of leukemic cells within bone marrow participating in the leukemic cell niche. Notably, MSC can inhibit the anti-tumor immune response through either carcinoma-associated fibroblasts or bone marrow stromal cells. Experimental data have indicated their relevance in regulating cytolytic effector lymphocytes of the innate and adaptive arms of the immune system. Herein, we will discuss some of the evidence in hematological malignancies and solid tumors. In particular, we will focus our attention on the means by which it is conceivable to inhibit MSC-mediated immune suppression and trigger anti-tumor innate immunity.

  17. Dynamics of immune system vulnerabilities

    Science.gov (United States)

    Stromberg, Sean P.

    The adaptive immune system can be viewed as a complex system, which adapts, over time, to reflect the history of infections experienced by the organism. Understanding its operation requires viewing it in terms of tradeoffs under constraints and evolutionary history. It typically displays "robust, yet fragile" behavior, meaning common tasks are robust to small changes but novel threats or changes in environment can have dire consequences. In this dissertation we use mechanistic models to study several biological processes: the immune response, the homeostasis of cells in the lymphatic system, and the process that normally prevents autoreactive cells from entering the lymphatic system. Using these models we then study the effects of these processes interacting. We show that the mechanisms that regulate the numbers of cells in the immune system, in conjunction with the immune response, can act to suppress autoreactive cells from proliferating, thus showing quantitatively how pathogenic infections can suppress autoimmune disease. We also show that over long periods of time this same effect can thin the repertoire of cells that defend against novel threats, leading to an age correlated vulnerability. This vulnerability is shown to be a consequence of system dynamics, not due to degradation of immune system components with age. Finally, modeling a specific tolerance mechanism that normally prevents autoimmune disease, in conjunction with models of the immune response and homeostasis we look at the consequences of the immune system mistakenly incorporating pathogenic molecules into its tolerizing mechanisms. The signature of this dynamic matches closely that of the dengue virus system.

  18. Relationships between maternal malaria and malarial immune responses in mothers and neonates

    DEFF Research Database (Denmark)

    Rasheed, F N; Bulmer, J N; De Francisco, A

    1995-01-01

    and schizonts (190L and 190N) were higher in neonates than mothers. There was no clear relationship between maternal malaria and neonatal mean lymphoproliferation to malarial antigens, although fewer neonates responded when mothers were actively infected. Matched maternal and neonatal lymphoproliferation...... responses did not correlate. However, first born neonatal lymphoproliferation to PPD and malarial antigens appeared lower than other neonates, in agreement with lower lymphoproliferation in primigravidae compared with multigravidae. Also in common with mothers, autologous plasma suppressed neonatal...... lymphoproliferation to PPD and malarial antigens, suggesting common immunoregulation. Higher cortisol or other circulating factors in first pregnancies may be implicated. The relevance of cell-mediated malarial immune responses detected at birth remains to be established....

  19. The Immune Response of Maternally Immune Chicks to Vaccination ...

    African Journals Online (AJOL)

    The Immune Response of Maternally Immune Chicks to Vaccination with Newcastle Disease Virus. ... G A El-Tayeb, M Y El-Ttegani, I E Hajer, M A Mohammed ... This study was conducted to determine the persistence of maternally derived antibodies (MDA) to Newcastle disease virus (NDV) in newly hatched chicks and the ...

  20. Analysis of Globodera rostochiensis effectors reveals conserved functions of SPRYSEC proteins in suppressing and eliciting plant immune responses

    KAUST Repository

    Ali, Shawkat; Magne, Maxime; Chen, Shiyan; Obradovic, Natasa; Jamshaid, Lubna; Wang, Xiaohong; Bé lair, Guy; Moffett, Peter

    2015-01-01

    in Nicotiana benthamiana and N. tabacum. We have found that all SPRYSEC proteins tested are able to suppress defense responses induced by NB-LRR proteins as well as cell death induced by elicitors, suggesting that defense repression is a common characteristic

  1. ITE Suppresses Angiogenic Responses in Human Artery and Vein Endothelial Cells: Differential Roles of AhR.

    Science.gov (United States)

    Li, Yan; Wang, Kai; Zou, Qing-Yun; Jiang, Yi-Zhou; Zhou, Chi; Zheng, Jing

    2017-12-01

    Aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor is involved in regulation of many essential biological processes including vascular development and angiogenesis. 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) is an AhR ligand, which regulates immune responses and cancer cell growth. However, the roles of the ITE/AhR pathway in mediating placental angiogenesis remains elusive. Here, we determined if ITE affected placental angiogenic responses via AhR in human umbilical vein (HUVECs) and artery endothelial (HUAECs) cells in vitro. We observed that ITE dose- and time-dependently inhibited proliferation and viability of HUAECs and HUVECs, whereas it inhibited migration of HUAECs, but not HUVECs. While AhR siRNA significantly suppressed AhR protein expression in HUVECs and HUAECs, it attenuated the ITE-inhibited angiogenic responses of HUAECs, but not HUVECs. Collectively, ITE suppressed angiogenic responses of HUAECs and HUVECs, dependent and independent of AhR, respectively. These data suggest that ITE may regulate placental angiogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Filoviral Immune Evasion Mechanisms

    Directory of Open Access Journals (Sweden)

    Christopher F. Basler

    2011-09-01

    Full Text Available The Filoviridae family of viruses, which includes the genera Ebolavirus (EBOV and Marburgvirus (MARV, causes severe and often times lethal hemorrhagic fever in humans. Filoviral infections are associated with ineffective innate antiviral responses as a result of virally encoded immune antagonists, which render the host incapable of mounting effective innate or adaptive immune responses. The Type I interferon (IFN response is critical for establishing an antiviral state in the host cell and subsequent activation of the adaptive immune responses. Several filoviral encoded components target Type I IFN responses, and this innate immune suppression is important for viral replication and pathogenesis. For example, EBOV VP35 inhibits the phosphorylation of IRF-3/7 by the TBK-1/IKKε kinases in addition to sequestering viral RNA from detection by RIG-I like receptors. MARV VP40 inhibits STAT1/2 phosphorylation by inhibiting the JAK family kinases. EBOV VP24 inhibits nuclear translocation of activated STAT1 by karyopherin-α. The examples also represent distinct mechanisms utilized by filoviral proteins in order to counter immune responses, which results in limited IFN-α/β production and downstream signaling.

  3. Gastrointestinal immune responses in HIV infected subjects

    Directory of Open Access Journals (Sweden)

    LRR Castello-Branco

    1996-06-01

    Full Text Available The gut associated lymphoid tissue is responsible for specific responses to intestinal antigens. During HIV infection, mucosal immune deficiency may account for the gastrointestinal infections. In this review we describe the humoral and cellular mucosal immune responses in normal and HIV-infected subjects.

  4. Immune responses of eastern fence lizards (Sceloporus undulatus) to repeated acute elevation of corticosterone.

    Science.gov (United States)

    McCormick, Gail L; Langkilde, Tracy

    2014-08-01

    Prolonged elevations of glucocorticoids due to long-duration (chronic) stress can suppress immune function. It is unclear, however, how natural stressors that result in repeated short-duration (acute) stress, such as frequent agonistic social encounters or predator attacks, fit into our current understanding of the immune consequences of stress. Since these types of stressors may activate the immune system due to increased risk of injury, immune suppression may be reduced at sites where individuals are repeatedly exposed to potentially damaging stressors. We tested whether repeated acute elevation of corticosterone (CORT, a glucocorticoid) suppresses immune function in eastern fence lizards (Sceloporus undulatus), and whether this effect varies between lizards from high-stress (high baseline CORT, invaded by predatory fire ants) and low-stress (low baseline CORT, uninvaded) sites. Lizards treated daily with exogenous CORT showed higher hemagglutination of novel proteins by their plasma (a test of constitutive humoral immunity) than control lizards, a pattern that was consistent across sites. There was no significant effect of CORT treatment on bacterial killing ability of plasma. These results suggest that repeated elevations of CORT, which are common in nature, produce immune effects more typical of those expected at the acute end of the acute-chronic spectrum and provide no evidence of modulated consequences of elevated CORT in animals from high-stress sites. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression.

    Science.gov (United States)

    Seifert, Lena; Werba, Gregor; Tiwari, Shaun; Giao Ly, Nancy Ngoc; Alothman, Sara; Alqunaibit, Dalia; Avanzi, Antonina; Barilla, Rocky; Daley, Donnele; Greco, Stephanie H; Torres-Hernandez, Alejandro; Pergamo, Matthew; Ochi, Atsuo; Zambirinis, Constantinos P; Pansari, Mridul; Rendon, Mauricio; Tippens, Daniel; Hundeyin, Mautin; Mani, Vishnu R; Hajdu, Cristina; Engle, Dannielle; Miller, George

    2016-04-14

    Neoplastic pancreatic epithelial cells are believed to die through caspase 8-dependent apoptotic cell death, and chemotherapy is thought to promote tumour apoptosis. Conversely, cancer cells often disrupt apoptosis to survive. Another type of programmed cell death is necroptosis (programmed necrosis), but its role in pancreatic ductal adenocarcinoma (PDA) is unclear. There are many potential inducers of necroptosis in PDA, including ligation of tumour necrosis factor receptor 1 (TNFR1), CD95, TNF-related apoptosis-inducing ligand (TRAIL) receptors, Toll-like receptors, reactive oxygen species, and chemotherapeutic drugs. Here we report that the principal components of the necrosome, receptor-interacting protein (RIP)1 and RIP3, are highly expressed in PDA and are further upregulated by the chemotherapy drug gemcitabine. Blockade of the necrosome in vitro promoted cancer cell proliferation and induced an aggressive oncogenic phenotype. By contrast, in vivo deletion of RIP3 or inhibition of RIP1 protected against oncogenic progression in mice and was associated with the development of a highly immunogenic myeloid and T cell infiltrate. The immune-suppressive tumour microenvironment associated with intact RIP1/RIP3 signalling depended in part on necroptosis-induced expression of the chemokine attractant CXCL1, and CXCL1 blockade protected against PDA. Moreover, cytoplasmic SAP130 (a subunit of the histone deacetylase complex) was expressed in PDA in a RIP1/RIP3-dependent manner, and Mincle--its cognate receptor--was upregulated in tumour-infiltrating myeloid cells. Ligation of Mincle by SAP130 promoted oncogenesis, whereas deletion of Mincle protected against oncogenesis and phenocopied the immunogenic reprogramming of the tumour microenvironment that was induced by RIP3 deletion. Cellular depletion suggested that whereas inhibitory macrophages promote tumorigenesis in PDA, they lose their immune-suppressive effects when RIP3 or Mincle is deleted. Accordingly, T cells

  6. Radiation Therapy Induces Macrophages to Suppress T-Cell Responses Against Pancreatic Tumors in Mice.

    Science.gov (United States)

    Seifert, Lena; Werba, Gregor; Tiwari, Shaun; Giao Ly, Nancy Ngoc; Nguy, Susanna; Alothman, Sara; Alqunaibit, Dalia; Avanzi, Antonina; Daley, Donnele; Barilla, Rocky; Tippens, Daniel; Torres-Hernandez, Alejandro; Hundeyin, Mautin; Mani, Vishnu R; Hajdu, Cristina; Pellicciotta, Ilenia; Oh, Philmo; Du, Kevin; Miller, George

    2016-06-01

    The role of radiation therapy in the treatment of patients with pancreatic ductal adenocarcinoma (PDA) is controversial. Randomized controlled trials investigating the efficacy of radiation therapy in patients with locally advanced unresectable PDA have reported mixed results, with effects ranging from modest benefit to worse outcomes compared with control therapies. We investigated whether radiation causes inflammatory cells to acquire an immune-suppressive phenotype that limits the therapeutic effects of radiation on invasive PDAs and accelerates progression of preinvasive foci. We investigated the effects of radiation therapy in p48(Cre);LSL-Kras(G12D) (KC) and p48(Cre);LSLKras(G12D);LSL-Trp53(R172H) (KPC) mice, as well as in C57BL/6 mice with orthotopic tumors grown from FC1242 cells derived from KPC mice. Some mice were given neutralizing antibodies against macrophage colony-stimulating factor 1 (CSF1 or MCSF) or F4/80. Pancreata were exposed to doses of radiation ranging from 2 to 12 Gy and analyzed by flow cytometry. Pancreata of KC mice exposed to radiation had a higher frequency of advanced pancreatic intraepithelial lesions and more foci of invasive cancer than pancreata of unexposed mice (controls); radiation reduced survival time by more than 6 months. A greater proportion of macrophages from radiation treated invasive and preinvasive pancreatic tumors had an immune-suppressive, M2-like phenotype compared with control mice. Pancreata from mice exposed to radiation had fewer CD8(+) T cells than controls, and greater numbers of CD4(+) T cells of T-helper 2 and T-regulatory cell phenotypes. Adoptive transfer of T cells from irradiated PDA to tumors of control mice accelerated tumor growth. Radiation induced production of MCSF by PDA cells. A neutralizing antibody against MCSF prevented radiation from altering the phenotype of macrophages in tumors, increasing the anti-tumor T-cell response and slowing tumor growth. Radiation treatment causes macrophages

  7. Periparturient stress and immune suppression as a potential cause of retained placenta in highly productive dairy cows: examples of prevention.

    Science.gov (United States)

    Mordak, Ryszard; Stewart, Peter Anthony; Anthony, Stewart Peter

    2015-12-02

    The immune system during the periparturient period is impaired. At this time the most important factor causing immune-suppression in highly productive cows is metabolic stress resulting from hormonal and metabolic fluctuations, a negative energy balance, shortage of proteins, minerals and vitamins which are required to meet the demands of the fetus as well as the onset of lactation. This stress can activate the hypothalamic-pituitary-adrenocortical axis (HPA), which results in increase plasma corticosteroids. As a result, the cortisol concentration during the periparturient period increases by several folds particularly on the day of calving. Cortisol is a powerful immune-suppressive agent. During stress, this hormone causes depression of the leukocyte proliferation and their functions. Decreased phagocytosis of neutrophils, decreased cytotoxic ability of lymphocytes, as well as depressed activity of their cytokines, make it impossible for the normal, efficient maternal immune recognition and rejection of fetal membranes (as a foreign, allogeneic tissue expressed fetal antigens-MHC class I proteins by trophoblast cells) and finally results in their retention in cows. The metabolic periparturient stress also activates production of catecholamines, especially adrenalin. Adrenalin activates adrenoreceptors of the myometrium and then causes hypotony or atony of the uterus. Thus, cortisol and adrenalin inhibit rejection and expulsion of fetal membranes and cause their retention. These mechanisms of retained placenta (RP) often have a metabolic etiology and occur in herds, where important infectious diseases causing placentitis are absent or prevented. The aim of this article is to show the fundamental mechanisms occurring during periparturient stress and the accompanied immune-suppression in cows, as well as their consequences in relation to RP. The paper also gives examples of the symptomatic prevention of RP in cows caused by metabolic and immune suppressive factors

  8. Enhancement of Immune Memory Responses to Respiratory Infection

    Science.gov (United States)

    2017-08-01

    AWARD NUMBER: W81XWH-16-1-0360 TITLE: Enhancement of Immune Memory Responses to Respiratory Infection PRINCIPAL INVESTIGATORs: Dr Min Chen PhD...5a. CONTRACT NUMBER Enhancement of Immune Memory Responses to Respiratory Infection 5b. GRANT NUMBER W81XWH-16-1-0360 5c. PROGRAM ELEMENT NUMBER...entitled “ENHANCEMENT OF IMMUNE MEMORY RESPONSES TO RESPIRATORY INFECTION: AUTOPHAGY IN MEMORY B-CELLS RESPONSE TO INFLUENZA VACCINE (AMBRIV

  9. Suppression of Long-Lived Humoral Immunity Following Borrelia burgdorferi Infection.

    Directory of Open Access Journals (Sweden)

    Rebecca A Elsner

    2015-07-01

    Full Text Available Lyme Disease caused by infection with Borrelia burgdorferi is an emerging infectious disease and already by far the most common vector-borne disease in the U.S. Similar to many other infections, infection with B. burgdorferi results in strong antibody response induction, which can be used clinically as a diagnostic measure of prior exposure. However, clinical studies have shown a sometimes-precipitous decline of such antibodies shortly following antibiotic treatment, revealing a potential deficit in the host's ability to induce and/or maintain long-term protective antibodies. This is further supported by reports of frequent repeat infections with B. burgdorferi in endemic areas. The mechanisms underlying such a lack of long-term humoral immunity, however, remain unknown. We show here that B. burgdorferi infected mice show a similar rapid disappearance of Borrelia-specific antibodies after infection and subsequent antibiotic treatment. This failure was associated with development of only short-lived germinal centers, micro-anatomical locations from which long-lived immunity originates. These showed structural abnormalities and failed to induce memory B cells and long-lived plasma cells for months after the infection, rendering the mice susceptible to reinfection with the same strain of B. burgdorferi. The inability to induce long-lived immune responses was not due to the particular nature of the immunogenic antigens of B. burgdorferi, as antibodies to both T-dependent and T-independent Borrelia antigens lacked longevity and B cell memory induction. Furthermore, influenza immunization administered at the time of Borrelia infection also failed to induce robust antibody responses, dramatically reducing the protective antiviral capacity of the humoral response. Collectively, these studies show that B. burgdorferi-infection results in targeted and temporary immunosuppression of the host and bring new insight into the mechanisms underlying the failure

  10. Beryllium-specific immune response in primary cells from healthy individuals

    International Nuclear Information System (INIS)

    Chaudhary, Anu; Sauer, Nancy N.; Gupta, Goutam

    2004-01-01

    The effect of beryllium (Be) exposure has been extensively studied in patients with chronic beryllium disease (CBD). CBD patients carry mutated MHC class II alleles and show a hyperproliferation of T cells upon Be exposure. The exact mechanism of Be-induced T-cell proliferation in these patients is not clearly understood. It is also not known how the inflammatory and suppressive cytokines maintain a balance in healthy individuals and how this balance is lost in CBD patients. To address these issues, we have initiated cellular and biochemical studies to identify Be-responsive cytokines and other cellular markers that help maintain a balance in healthy individuals. We have established an immune cell model derived from a mixture of peripheral blood mononuclear cells (PBMCs) and dendritic cells (DCs). In this article, we demonstrate that pro-inflammatory cytokine IL6 shows decreased release whereas suppressive cytokine IL10 shows enhanced release after 5-10 h of Be treatment. Furthermore, the Be-specific pattern of IL6 and IL10 release is dependent upon induction of threonine phosphorylation of a 45 kDa cytosolic protein (p45), as early as 90 min after Be treatment. Pharmacological inhibition of phosphatidylinositol 3' kinase (PI3'K) by wortmannin and p38 mitogen-activated protein kinase (MAPK) by SB203580 reveal that PI3'K mediates Be-specific p45 phosphorylation and IL6 release, whereas p38 MAPK regulates the release of IL6 and IL10 and the phosphorylation of p45 independent of metal-salt treatment. While the IL10 and IL6 release pathways are uncoupled in these cells, they are linked to phosphorylation of p45. These findings suggest that the balance between IL10 and IL6 release and the correlated p45 phosphorylation are important components of the Be-mediated immune response in healthy individuals

  11. Global gene expression profiling reveals a suppressed immune response pathway associated with 3q amplification in squamous carcinoma of the lung

    Directory of Open Access Journals (Sweden)

    Jun Qian

    2015-09-01

    Full Text Available Chromosome 3q26–28 is a critical region of genomic amplification in non-small cell lung cancer (NSCLC, particularly lung squamous cell carcinomas (SCCs. No molecular therapeutic target has shown clinical utility for SCC, in contrast with adenocarcinomas of the lung. To identify novel candidate drivers in this region, we performed both Array Comparative Genomic Hybridization (array CGH, Agilent Human Genome CGH 244A oligo-microarrays and Gene Expression Microarray (Agilent Human Gene Expression 4 × 44 K microarray on 24 untreated lung SCC specimens. Using our previously published integrative genomics approach, we identified 12 top amplified driver genes within this region that are highly correlated and overexpressed in lung SCC. We further demonstrated one of the 12 top amplified driver Fragile X mental retardation-related protein 1 (FXR1 as a novel cancer gene in NSCLC and FXR1 executes its regulatory function by forming a novel complex with two other oncogenes, protein kinase C, iota ( PRKCI and epithelial cell transforming 2 (ECT2 within the same amplicon in lung cancer cell. Here we report that immune response pathways are significantly suppressed in lung SCC and negatively associated with 3q driver gene expression, implying a potential role of 3q drivers in cancer immune-surveillance. In light of the attractive immunotherapy strategy using blockade of negative regulators of T cell function for multiple human cancer including lung SCC, our findings may provide a rationale for targeting 3q drivers in combination of immunotherapies for human tumors harboring the 3q amplicon. The data have been deposited in NCBI's Gene Expression Omnibus and are accessible through GEO Series accession number GSE40089.

  12. Experimental murine fascioliasis derives early immune suppression with increased levels of TGF-β and IL-4.

    Science.gov (United States)

    Chung, Joon-Yong; Bae, Young-An; Yun, Doo-Hee; Yang, Hyun-Jong; Kong, Yoon

    2012-12-01

    In fascioliasis, T-helper 2 (Th2) responses predominate, while little is known regarding early immune phenomenon. We herein analyzed early immunophenotype changes of BALB/c, C57BL/6, and C3H/He mice experimentally infected with 5 Fasciola hepatica metacercariae. A remarkable expansion of CD19(+) B cells was observed as early as week 1 post-infection while CD4(+)/CD8(+) T cells were down-regulated. Accumulation of Mac1(+) cells with time after infection correlated well with splenomegaly of all mice strains tested. The expression of tumor necrosis factor (TNF)-α mRNA in splenocytes significantly decreased while that of IL-4 up-regulated. IL-1β expression was down-modulated in BALB/c and C57BL/6 mice, but not in C3H/He. Serum levels of transforming growth factor (TGF)-β were considerably elevated in all mice during 3 weeks of infection period. These collective results suggest that experimental murine fascioliasis might derive immune suppression with elevated levels of TGF-β and IL-4 during the early stages of infection.

  13. Poliovirus intrahost evolution is required to overcome tissue-specific innate immune responses.

    Science.gov (United States)

    Xiao, Yinghong; Dolan, Patrick Timothy; Goldstein, Elizabeth Faul; Li, Min; Farkov, Mikhail; Brodsky, Leonid; Andino, Raul

    2017-08-29

    RNA viruses, such as poliovirus, have a great evolutionary capacity, allowing them to quickly adapt and overcome challenges encountered during infection. Here we show that poliovirus infection in immune-competent mice requires adaptation to tissue-specific innate immune microenvironments. The ability of the virus to establish robust infection and virulence correlates with its evolutionary capacity. We further identify a region in the multi-functional poliovirus protein 2B as a hotspot for the accumulation of minor alleles that facilitate a more effective suppression of the interferon response. We propose that population genetic dynamics enables poliovirus spread between tissues through optimization of the genetic composition of low frequency variants, which together cooperate to circumvent tissue-specific challenges. Thus, intrahost virus evolution determines pathogenesis, allowing a dynamic regulation of viral functions required to overcome barriers to infection.RNA viruses, such as polioviruses, have a great evolutionary capacity and can adapt quickly during infection. Here, the authors show that poliovirus infection in mice requires adaptation to innate immune microenvironments encountered in different tissues.

  14. A zebrafish larval model reveals early tissue-specific innate immune responses to Mucor circinelloides.

    Science.gov (United States)

    Voelz, Kerstin; Gratacap, Remi L; Wheeler, Robert T

    2015-11-01

    Mucormycosis is an emerging fungal infection that is clinically difficult to manage, with increasing incidence and extremely high mortality rates. Individuals with diabetes, suppressed immunity or traumatic injury are at increased risk of developing disease. These individuals often present with defects in phagocytic effector cell function. Research using mammalian models and phagocytic effector cell lines has attempted to decipher the importance of the innate immune system in host defence against mucormycosis. However, these model systems have not been satisfactory for direct analysis of the interaction between innate immune effector cells and infectious sporangiospores in vivo. Here, we report the first real-time in vivo analysis of the early innate immune response to mucormycete infection using a whole-animal zebrafish larval model system. We identified differential host susceptibility, dependent on the site of infection (hindbrain ventricle and swim bladder), as well as differential functions of the two major phagocyte effector cell types in response to viable and non-viable spores. Larval susceptibility to mucormycete spore infection was increased upon immunosuppressant treatment. We showed for the first time that macrophages and neutrophils were readily recruited in vivo to the site of infection in an intact host and that spore phagocytosis can be observed in real-time in vivo. While exploring innate immune effector recruitment dynamics, we discovered the formation of phagocyte clusters in response to fungal spores that potentially play a role in fungal spore dissemination. Spores failed to activate pro-inflammatory gene expression by 6 h post-infection in both infection models. After 24 h, induction of a pro-inflammatory response was observed only in hindbrain ventricle infections. Only a weak pro-inflammatory response was initiated after spore injection into the swim bladder during the same time frame. In the future, the zebrafish larva as a live whole

  15. Assessing the Role of ETHYLENE RESPONSE FACTOR Transcriptional Repressors in Salicylic Acid-Mediated Suppression of Jasmonic Acid-Responsive Genes.

    Science.gov (United States)

    Caarls, Lotte; Van der Does, Dieuwertje; Hickman, Richard; Jansen, Wouter; Verk, Marcel C Van; Proietti, Silvia; Lorenzo, Oscar; Solano, Roberto; Pieterse, Corné M J; Van Wees, Saskia C M

    2017-02-01

    Salicylic acid (SA) and jasmonic acid (JA) cross-communicate in the plant immune signaling network to finely regulate induced defenses. In Arabidopsis, SA antagonizes many JA-responsive genes, partly by targeting the ETHYLENE RESPONSE FACTOR (ERF)-type transcriptional activator ORA59. Members of the ERF transcription factor family typically bind to GCC-box motifs in the promoters of JA- and ethylene-responsive genes, thereby positively or negatively regulating their expression. The GCC-box motif is sufficient for SA-mediated suppression of JA-responsive gene expression. Here, we investigated whether SA-induced ERF-type transcriptional repressors, which may compete with JA-induced ERF-type activators for binding at the GCC-box, play a role in SA/JA antagonism. We selected ERFs that are transcriptionally induced by SA and/or possess an EAR transcriptional repressor motif. Several of the 16 ERFs tested suppressed JA-dependent gene expression, as revealed by enhanced JA-induced PDF1.2 or VSP2 expression levels in the corresponding erf mutants, while others were involved in activation of these genes. However, SA could antagonize JA-induced PDF1.2 or VSP2 in all erf mutants, suggesting that the tested ERF transcriptional repressors are not required for SA/JA cross-talk. Moreover, a mutant in the co-repressor TOPLESS, that showed reduction in repression of JA signaling, still displayed SA-mediated antagonism of PDF1.2 and VSP2. Collectively, these results suggest that SA-regulated ERF transcriptional repressors are not essential for antagonism of JA-responsive gene expression by SA. We further show that de novo SA-induced protein synthesis is required for suppression of JA-induced PDF1.2, pointing to SA-stimulated production of an as yet unknown protein that suppresses JA-induced transcription. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. Immune Response to Lipoproteins in Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Sonia Samson

    2012-01-01

    Full Text Available Atherosclerosis, the underlying cause of cardiovascular disease, is characterized by chronic inflammation and altered immune response. Cholesterol is a well-known risk factor associated with the development of cardiovascular diseases. Elevated serum cholesterol is unique because it can lead to development of atherosclerosis in animals and humans even in the absence of other risk factors. Modifications of low-density lipoproteins mediated by oxidation, enzymatic degradation, and aggregation result in changes in their function and activate both innate and adaptive immune system. Oxidized low-density lipoprotein (LDL has been identified as one of the most important autoantigens in atherosclerosis. This escape from self-tolerance is dependent on the formation of oxidized phospholipids. The emerging understanding of the importance of immune responses against oxidized LDL in atherosclerosis has focused attention on the possibility of development of novel therapy for atherosclerosis. This review provides an overview of immune response to lipoproteins and the fascinating possibility of developing an immunomodulatory therapy for atherosclerosis.

  17. Cholinergic Modulation of Type 2 Immune Responses

    Directory of Open Access Journals (Sweden)

    Goele Bosmans

    2017-12-01

    Full Text Available In recent years, the bidirectional relationship between the nervous and immune system has become increasingly clear, and its role in both homeostasis and inflammation has been well documented over the years. Since the introduction of the cholinergic anti-inflammatory pathway, there has been an increased interest in parasympathetic regulation of both innate and adaptive immune responses, including T helper 2 responses. Increasing evidence has been emerging suggesting a role for the parasympathetic nervous system in the pathophysiology of allergic diseases, including allergic rhinitis, asthma, food allergy, and atopic dermatitis. In this review, we will highlight the role of cholinergic modulation by both nicotinic and muscarinic receptors in several key aspects of the allergic inflammatory response, including barrier function, innate and adaptive immune responses, and effector cells responses. A better understanding of these cholinergic processes mediating key aspects of type 2 immune disorders might lead to novel therapeutic approaches to treat allergic diseases.

  18. HBV Bypasses the Innate Immune Response and Does Not Protect HCV From Antiviral Activity of Interferon.

    Science.gov (United States)

    Mutz, Pascal; Metz, Philippe; Lempp, Florian A; Bender, Silke; Qu, Bingqian; Schöneweis, Katrin; Seitz, Stefan; Tu, Thomas; Restuccia, Agnese; Frankish, Jamie; Dächert, Christopher; Schusser, Benjamin; Koschny, Ronald; Polychronidis, Georgios; Schemmer, Peter; Hoffmann, Katrin; Baumert, Thomas F; Binder, Marco; Urban, Stephan; Bartenschlager, Ralf

    2018-05-01

    Hepatitis C virus (HCV) infection is sensitive to interferon (IFN)-based therapy, whereas hepatitis B virus (HBV) infection is not. It is unclear whether HBV escapes detection by the IFN-mediated immune response or actively suppresses it. Moreover, little is known on how HBV and HCV influence each other in coinfected cells. We investigated interactions between HBV and the IFN-mediated immune response using HepaRG cells and primary human hepatocytes (PHHs). We analyzed the effects of HBV on HCV replication, and vice versa, at the single-cell level. PHHs were isolated from liver resection tissues from HBV-, HCV-, and human immunodeficiency virus-negative patients. Differentiated HepaRG cells overexpressing the HBV receptor sodium taurocholate cotransporting polypeptide (dHepaRGNTCP) and PHHs were infected with HBV. Huh7.5 cells were transfected with circular HBV DNA genomes resembling viral covalently closed circular DNA (cccDNA), and subsequently infected with HCV; this served as a model of HBV and HCV coinfection. Cells were incubated with IFN inducers, or IFNs, and antiviral response and viral replication were analyzed by immune fluorescence, reverse-transcription quantitative polymerase chain reaction, enzyme-linked immunosorbent assays, and flow cytometry. HBV infection of dHepaRGNTCP cells and PHHs neither activated nor inhibited signaling via pattern recognition receptors. Incubation of dHepaRGNTCP cells and PHHs with IFN had little effect on HBV replication or levels of cccDNA. HBV infection of these cells did not inhibit JAK-STAT signaling or up-regulation of IFN-stimulated genes. In coinfected cells, HBV did not prevent IFN-induced suppression of HCV replication. In dHepaRGNTCP cells and PHHs, HBV evades the induction of IFN and IFN-induced antiviral effects. HBV infection does not rescue HCV from the IFN-mediated response. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.

  19. Forced expression of stabilized c-Fos in dendritic cells reduces cytokine production and immune responses in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Ryoko; Suzuki, Mayu; Sakaguchi, Ryota; Hasegawa, Eiichi; Kimura, Akihiro; Shichita, Takashi; Sekiya, Takashi [Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo 160-8582 (Japan); Japan Science and Technology Agency, CREST, Chiyoda-ku 102-0075 (Japan); Shiraishi, Hiroshi [Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga (Japan); Shimoda, Kouji [Department of Laboratory Animal Center, Keio University School of Medicine, Tokyo (Japan); Yoshimura, Akihiko, E-mail: yoshimura@a6.keio.jp [Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo 160-8582 (Japan); Japan Science and Technology Agency, CREST, Chiyoda-ku 102-0075 (Japan)

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer Dendritic cells expressing stabilized c-Fos produced less inflammatory cytokines. Black-Right-Pointing-Pointer Dendritic cells expressing stabilized c-Fos activated T cells less efficiently. Black-Right-Pointing-Pointer Transgenic mice expressing stabilized c-Fos were resistant to EAE model. -- Abstract: Intracellular cyclic adenosine monophosphate (cAMP) suppresses innate immunity by inhibiting proinflammatory cytokine production by monocytic cells. We have shown that the transcription factor c-Fos is responsible for cAMP-mediated suppression of inflammatory cytokine production, and that c-Fos protein is stabilized by IKK{beta}-mediated phosphorylation. We found that S308 is one of the major phosphorylation sites, and that the S308D mutation prolongs c-Fos halflife. To investigate the role of stabilized c-Fos protein in dendritic cells (DCs) in vivo, we generated CD11c-promoter-deriven c-FosS308D transgenic mice. As expected, bone marrow-derived DCs (BMDCs) from these Tg mice produced smaller amounts of inflammatory cytokines, including TNF-{alpha}, IL-12, and IL-23, but higher levels of IL-10, in response to LPS, than those from wild-type (Wt) mice. When T cells were co-cultured with BMDCs from Tg mice, production of Th1 and Th17 cytokines was reduced, although T cell proliferation was not affected. Tg mice demonstrated more resistance to experimental autoimmune encephalomyelitis (EAE) than did Wt mice. These data suggest that c-Fos in DCs plays a suppressive role in certain innate and adaptive immune responses.

  20. Effects of stress on immune function: the good, the bad, and the beautiful.

    Science.gov (United States)

    Dhabhar, Firdaus S

    2014-05-01

    Although the concept of stress has earned a bad reputation, it is important to recognize that the adaptive purpose of a physiological stress response is to promote survival during fight or flight. While long-term stress is generally harmful, short-term stress can be protective as it prepares the organism to deal with challenges. This review discusses the immune effects of biological stress responses that can be induced by psychological, physiological, or physical (including exercise) stressors. We have proposed that short-term stress is one of the nature's fundamental but under-appreciated survival mechanisms that could be clinically harnessed to enhance immunoprotection. Short-term (i.e., lasting for minutes to hours) stress experienced during immune activation enhances innate/primary and adaptive/secondary immune responses. Mechanisms of immuno-enhancement include changes in dendritic cell, neutrophil, macrophage, and lymphocyte trafficking, maturation, and function as well as local and systemic production of cytokines. In contrast, long-term stress suppresses or dysregulates innate and adaptive immune responses by altering the Type 1-Type 2 cytokine balance, inducing low-grade chronic inflammation, and suppressing numbers, trafficking, and function of immunoprotective cells. Chronic stress may also increase susceptibility to some types of cancer by suppressing Type 1 cytokines and protective T cells and increasing regulatory/suppressor T cell function. Here, we classify immune responses as being protective, pathological, or regulatory, and discuss "good" versus "bad" effects of stress on health. Thus, short-term stress can enhance the acquisition and/or expression of immunoprotective (wound healing, vaccination, anti-infectious agent, anti-tumor) or immuno-pathological (pro-inflammatory, autoimmune) responses. In contrast, chronic stress can suppress protective immune responses and/or exacerbate pathological immune responses. Studies such as the ones discussed

  1. Treatment of silymarin, a plant flavonoid, prevents ultraviolet light-induced immune suppression and oxidative stress in mouse skin.

    Science.gov (United States)

    Katiyar, Santosh K

    2002-12-01

    It is well documented that ultraviolet (UV) light-induced immune suppression and oxidative stress play an important role in the induction of skin cancers. Earlier, we have shown that topical treatment of silymarin, a plant flavonoid from milk thistle (Silybum marianum L. Gaertn.), to mouse skin prevents photocarcinogenesis, but the preventive mechanism of photocarcinogenesis in vivo animal system by silymarin is not well defined and understood. To define the mechanism of prevention, we employed immunostaining, analytical assays and ELISA which revealed that topical treatment of silymarin (1 mg/cm2 skin area) to C3H/HeN mice inhibits UVB (90 mJ/cm2)-induced suppression of contact hypersensitivity (CHS) response to contact sensitizer dinitrofluorobenzene. Prevention of UVB-induced suppression of CHS by silymarin was found to be associated with the inhibition of infiltrating leukocytes, particularly CD11b+ cell type, and myeloperoxidase activity (50-71%). Silymarin treatment also resulted in significant reduction of UVB-induced immunosuppressive cytokine interleukin-10 producing cells and its production (58-72%, pskin cancer risk human population and ii) development of sunscreen containing silymarin as an antioxidant (chemopreventive agent) or silymarin can be supplemented in skin care products.

  2. Mechanism of immune suppression by ultraviolet irradiation in vivo. I. Evidence for the existence of a unique photoreceptor in skin and its role in photoimmunology

    International Nuclear Information System (INIS)

    De Fabo, E.C.; Noonan, F.P.

    1983-01-01

    UV irradiation of mice causes a systemic immune alteration that can be detected either by suppression of the immunologic rejection of UV-induced tumors, or by suppression of contact hypersensitivity (CHS). Suppression of these two immunologic responses has similar photobiologic characteristics and in both cases is associated with the generation of antigen-specific suppressor T cells. To identify whether a specific photoreceptor for this effect exists, the relative wavelength effectiveness (action spectrum) was determined for the UV-induced suppression of CHS. Narrow bands of UV (half bandwidth 3 nm) were used at 10 wavelengths from 250 to 320 nm to obtain dose-response curves. The action spectrum derived from the dose-response curves has a maximum between 260 and 270 nm, a shoulder at 280-290 nm, and declines steadily to approximately 3% of maximum at 320 nm. The finding of such a clearly defined wavelength dependence implies the presence of a specific photoreceptor for this effect. Removing the stratum corneum by tape stripping before UV irradiation prevented the suppression of CHS using 254-nm radiation, suggesting the photoreceptor is superficially located in the skin. The hypothesis is advanced that the photoreceptor for systemic UV-induced immunosuppression of contact hypersensitivity may be urocanic acid. As such, it may also play a role in UV-induced carcinogenesis via the production of tumor-specific suppressor cells

  3. Tumor suppressor maspin as a modulator of host immune response to cancer

    Directory of Open Access Journals (Sweden)

    Sijana H. Dzinic

    2015-10-01

    Full Text Available Despite the promising clinical outcome, the primary challenge of the curative cancer immunotherapy is to overcome the dichotomy of the immune response: tumor-evoked immunostimulatory versus tumor-induced immunosuppressive. The goal needs to be two-fold, to re-establish sustainable antitumor-cancer immunity and to eliminate immunosuppression. The successful elimination of cancer cells by immunosurveillance requires the antigenic presentation of the tumor cells or tumor-associated antigens and the expression of immunostimulatory cytokines and chemokines by cancer and immune cells. Tumors are heterogeneous and as such, some of the tumor cells are thought to have stem cell characteristics that enable them to suppress or desensitize the host immunity due to acquired epigenetic changes. A central mechanism underlying tumor epigenetic instability is the increased histone deacetylase (HDAC-mediated repression of HDAC-target genes regulating homeostasis and differentiation. It was noted that pharmacological HDAC inhibitors are not effective in eliminating tumor cells partly because they may induce immunosuppression. We have shown that epithelial-specific tumor suppressor maspin, an ovalbumin-like non-inhibitory serine protease inhibitor, reprograms tumor cells toward better differentiated phenotypes by inhibiting HDAC1. Recently, we uncovered a novel function of maspin in directing host immunity towards tumor elimination. In this review, we discuss the maspin and maspin/HDAC1 interplay in tumor biology and immunology. We propose that maspin based therapies may eradicate cancer.

  4. Virological response without CD4 recovery | Madide | Southern ...

    African Journals Online (AJOL)

    The objective of antiretroviral therapy (ART) is to suppress viral replication so that immune restoration can occur. Failure of immune restoration is usually associated with poor virological suppression. In children a good immunological and clinical response to ART is often achieved despite incomplete viral suppression.

  5. Critical role of heme oxygenase-1 in Foxp3-mediated immune suppression

    International Nuclear Information System (INIS)

    Choi, Byung-Min; Pae, Hyun-Ock; Jeong, Young-Ran; Kim, Young-Myeong; Chung, Hun-Taeg

    2005-01-01

    Foxp3, which encodes the transcription factor scurfin, is indispensable for the development and function of CD4 + CD25 + regulatory T cells (Treg). Recent data suggest conversion of peripheral CD4 + CD25 - naive T cells to CD4 + CD25 + Treg by acquisition of Foxp3 through costimulation with TCR and TGF-β or forced expression of the gene. One critical question is how Foxp3 causes T cells to become regulatory. In the present work, we demonstrate that Foxp3 can induce heme oxygenase-1 (HO-1) expression and subsequently such regulatory phenotypes as the suppression of nontransfected cells in a cell-cell contact-dependent manner as well as impaired proliferation and production of cytokines upon stimulation in Jurkat T cells. Moreover, we confirm the expression of both Foxp3 and HO-1 in peripheral CD4 + CD25 + Treg and suppressive function of the cells are relieved by the inhibition of HO-1 activity. In summary, we demonstrate that Foxp3 induces HO-1 expression and HO-1 engages in Foxp3-mediated immune suppression

  6. Fexofenadine Suppresses Delayed-Type Hypersensitivity in the Murine Model of Palladium Allergy

    Directory of Open Access Journals (Sweden)

    Ryota Matsubara

    2017-06-01

    Full Text Available Palladium is frequently used in dental materials, and sometimes causes metal allergy. It has been suggested that the immune response by palladium-specific T cells may be responsible for the pathogenesis of delayed-type hypersensitivity in study of palladium allergic model mice. In the clinical setting, glucocorticoids and antihistamine drugs are commonly used for treatment of contact dermatitis. However, the precise mechanism of immune suppression in palladium allergy remains unknown. We investigated inhibition of the immune response in palladium allergic mice by administration of prednisolone as a glucocorticoid and fexofenadine hydrochloride as an antihistamine. Compared with glucocorticoids, fexofenadine hydrochloride significantly suppressed the number of T cells by interfering with the development of antigen-presenting cells from the sensitization phase. Our results suggest that antihistamine has a beneficial effect on the treatment of palladium allergy compared to glucocorticoids.

  7. Betahistine attenuates murine collagen-induced arthritis by suppressing both inflammatory and Th17 cell responses.

    Science.gov (United States)

    Tang, Kuo-Tung; Chao, Ya-Hsuan; Chen, Der-Yuan; Lim, Yun-Ping; Chen, Yi-Ming; Li, Yi-Rong; Yang, Deng-Ho; Lin, Chi-Chen

    2016-10-01

    The objective of this study was to evaluate the potential therapeutic effects of betahistine dihydrochloride (betahistine) in a collagen-induced arthritis (CIA) mouse model. CIA was induced in DBA/1 male mice by primary immunization with 100μl of emulsion containing 2mg/ml chicken type II collagen (CII) mixed with complete Freund's adjuvant (CFA) in an 1:1 ratio, and booster immunization with 100μl of emulsion containing 2mg/ml CII mixed with incomplete Freund's adjuvant (IFA) in an 1:1 ratio. Immunization was performed subcutaneously at the base of the tail. After being boosted on day 21, betahistine (1 and 5mg/kg) was orally administered daily for 2weeks. The severity of CIA was determined by arthritic scores and assessment of histopathological joint destruction. Expression of cytokines in the paw and anti-CII antibodies in the serum was evaluated by ELISA. The proliferative response against CII in the lymph node cells was measured by (3)H-thymidine incorporation assay. The frequencies of different CII specific CD4(+) T cell subsets in the lymph node were determined by flow-cytometric analysis. Betahistine treatment attenuated the severity of arthritis and reduced the levels of pro-inflammatory cytokines, including TNF-α, IL-6, IL-23 and IL-17A, in the paw tissues of CIA mice. Lymph node cells from betahistine-treated mice showed a decrease in proliferation, as well as a lower frequency of Th17 cells. In vitro, betahistine suppressed CD4(+) T cell differentiation into Th17 cells. These results indicate that betahistine is effective in suppressing both inflammatory and Th17 responses in mouse CIA and that it may have therapeutic value as an adjunct treatment for rheumatoid arthritis. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Multifunctional roles of leader protein of foot-and-mouth disease viruses in suppressing host antiviral responses.

    Science.gov (United States)

    Liu, Yingqi; Zhu, Zixiang; Zhang, Miaotao; Zheng, Haixue

    2015-10-28

    Foot-and-mouth disease virus (FMDV) leader protein (L(pro)) is a papain-like proteinase, which plays an important role in FMDV pathogenesis. L(pro) exists as two forms, Lab and Lb, due to translation being initiated from two different start codons separated by 84 nucleotides. L(pro) self-cleaves from the nascent viral polyprotein precursor as the first mature viral protein. In addition to its role as a viral proteinase, L(pro) also has the ability to antagonize host antiviral effects. To promote FMDV replication, L(pro) can suppress host antiviral responses by three different mechanisms: (1) cleavage of eukaryotic translation initiation factor 4 γ (eIF4G) to shut off host protein synthesis; (2) inhibition of host innate immune responses through restriction of interferon-α/β production; and (3) L(pro) can also act as a deubiquitinase and catalyze deubiquitination of innate immune signaling molecules. In the light of recent functional and biochemical findings regarding L(pro), this review introduces the basic properties of L(pro) and the mechanisms by which it antagonizes host antiviral responses.

  9. Pavlovian conditioning of shock-induced suppression of lymphocyte reactivity: acquisition, extinction, and preexposure effects.

    Science.gov (United States)

    Lysle, D T; Cunnick, J E; Fowler, H; Rabin, B S

    1988-01-01

    Recent research has indicated that physical stressors, such as electric shock, can suppress immune function in rats. The present study investigated whether a nonaversive stimulus that had been associated with electric shock would also impair immune function. Presentation of that conditioned stimulus (CS) by itself produced a pronounced suppression of lymphocyte proliferation in response to the nonspecific mitogens, Concanavalin-A (ConA) and Phytohemagglutinin (PHA). In further evidence of a conditioning effect, the suppression was attenuated by extinction and preexposure manipulations that degraded the associative value of the CS. These results indicate that a psychological or learned stressor can suppress immune reactivity independently of the direct effect of physically aversive stimulation or of ancillary changes in dietary and health-related habits.

  10. E6D25E, HPV16 Asian variant shows specific proteomic pattern correlating in cells transformation and suppressive innate immune response

    International Nuclear Information System (INIS)

    Chopjitt, Peechanika; Pientong, Chamsai; Sunthamala, Nuchsupha; Kongyingyoes, Bunkerd; Haonon, Ornuma; Boonmars, Thidarut; Kikawa, Satomi; Nakahara, Tomomi; Kiyono, Tohru; Ekalaksananan, Tipaya

    2016-01-01

    HPV16 Asian variant (HPV16As) containing E6D25E oncogene, is commonly associated with cervical cancers of Asian populations. To explore a mechanism of E6D25E oncoprotein in carcinogenesis, we compared protein profiles in human keratinocytes expressing E6D25E with E6 of HPV16 prototype (E6Pro). A human cervical keratinocyte cell line, HCK1T, was transduced with retroviruses containing E6D25E or E6Pro genes. Biological properties of E6D25E or E6Pro transduced HCK1T cells were characterized. Protein profiles of the transduced HCK1T cells were analyzed using 2D-PAGE and characterized by mass spectrometry and western blotting. Reactomes of modulated proteins were analyzed by using the Reactome Knowledgebase. The E6D25E and E6Pro oncoproteins were comparable for their abilities to degrade p53 and suppress the induction of p21, and induce cell proliferation. Interestingly, the protein profiles of the HCK1T cells transduced with E6D25E showed specific proteomic patterns different from those with E6Pro. Among altered proteins, more than 1.5-fold up- or down- regulation was observed in E6D25E-expressing cells for gp96 and keratin7 which involved in activation of TLR signaling and transformation of squamocolumnar junction cells, respectively. This report describes new cellular proteins specifically targeted by E6D25E oncoprotein that may contribute to impair immune response against viral infection and cell transformation associated with oncogenic property of HPV16As variant. - Highlights: • E6D25E HPV16 specifically modulates protein profile of human keratinocytes. • E6D25E HPV16 modulates protein profile which involves in TLR signalling and transformation of squamocolumnar junction cells. • E6D25E oncoprotein may correlate to impair of immune response against viral infection and cells transformation.

  11. E6D25E, HPV16 Asian variant shows specific proteomic pattern correlating in cells transformation and suppressive innate immune response

    Energy Technology Data Exchange (ETDEWEB)

    Chopjitt, Peechanika; Pientong, Chamsai; Sunthamala, Nuchsupha [Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002 (Thailand); HPV & EBV and Carcinogenesis Research Group, Khon Kaen University (Thailand); Kongyingyoes, Bunkerd [Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002 (Thailand); Haonon, Ornuma; Boonmars, Thidarut [Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002 (Thailand); Kikawa, Satomi; Nakahara, Tomomi [Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 (Japan); Kiyono, Tohru, E-mail: tkiyono@ncc.go.jp [Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 (Japan); Ekalaksananan, Tipaya, E-mail: tipeka@kku.ac.th [Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002 (Thailand); HPV & EBV and Carcinogenesis Research Group, Khon Kaen University (Thailand)

    2016-09-09

    HPV16 Asian variant (HPV16As) containing E6D25E oncogene, is commonly associated with cervical cancers of Asian populations. To explore a mechanism of E6D25E oncoprotein in carcinogenesis, we compared protein profiles in human keratinocytes expressing E6D25E with E6 of HPV16 prototype (E6Pro). A human cervical keratinocyte cell line, HCK1T, was transduced with retroviruses containing E6D25E or E6Pro genes. Biological properties of E6D25E or E6Pro transduced HCK1T cells were characterized. Protein profiles of the transduced HCK1T cells were analyzed using 2D-PAGE and characterized by mass spectrometry and western blotting. Reactomes of modulated proteins were analyzed by using the Reactome Knowledgebase. The E6D25E and E6Pro oncoproteins were comparable for their abilities to degrade p53 and suppress the induction of p21, and induce cell proliferation. Interestingly, the protein profiles of the HCK1T cells transduced with E6D25E showed specific proteomic patterns different from those with E6Pro. Among altered proteins, more than 1.5-fold up- or down- regulation was observed in E6D25E-expressing cells for gp96 and keratin7 which involved in activation of TLR signaling and transformation of squamocolumnar junction cells, respectively. This report describes new cellular proteins specifically targeted by E6D25E oncoprotein that may contribute to impair immune response against viral infection and cell transformation associated with oncogenic property of HPV16As variant. - Highlights: • E6D25E HPV16 specifically modulates protein profile of human keratinocytes. • E6D25E HPV16 modulates protein profile which involves in TLR signalling and transformation of squamocolumnar junction cells. • E6D25E oncoprotein may correlate to impair of immune response against viral infection and cells transformation.

  12. Persistent Low-Level Replication of SIVΔnef Drives Maturation of Antibody and CD8 T Cell Responses to Induce Protective Immunity against Vaginal SIV Infection.

    Science.gov (United States)

    Adnan, Sama; Reeves, R Keith; Gillis, Jacqueline; Wong, Fay E; Yu, Yi; Camp, Jeremy V; Li, Qingsheng; Connole, Michelle; Li, Yuan; Piatak, Michael; Lifson, Jeffrey D; Li, Wenjun; Keele, Brandon F; Kozlowski, Pamela A; Desrosiers, Ronald C; Haase, Ashley T; Johnson, R Paul

    2016-12-01

    Defining the correlates of immune protection conferred by SIVΔnef, the most effective vaccine against SIV challenge, could enable the design of a protective vaccine against HIV infection. Here we provide a comprehensive assessment of immune responses that protect against SIV infection through detailed analyses of cellular and humoral immune responses in the blood and tissues of rhesus macaques vaccinated with SIVΔnef and then vaginally challenged with wild-type SIV. Despite the presence of robust cellular immune responses, animals at 5 weeks after vaccination displayed only transient viral suppression of challenge virus, whereas all macaques challenged at weeks 20 and 40 post-SIVΔnef vaccination were protected, as defined by either apparent sterile protection or significant suppression of viremia in infected animals. Multiple parameters of CD8 T cell function temporally correlated with maturation of protection, including polyfunctionality, phenotypic differentiation, and redistribution to gut and lymphoid tissues. Importantly, we also demonstrate the induction of a tissue-resident memory population of SIV-specific CD8 T cells in the vaginal mucosa, which was dependent on ongoing low-level antigenic stimulation. Moreover, we show that vaginal and serum antibody titers inversely correlated with post-challenge peak viral load, and we correlate the accumulation and affinity maturation of the antibody response to the duration of the vaccination period as well as to the SIVΔnef antigenic load. In conclusion, maturation of SIVΔnef-induced CD8 T cell and antibody responses, both propelled by viral persistence in the gut mucosa and secondary lymphoid tissues, results in protective immune responses that are able to interrupt viral transmission at mucosal portals of entry as well as potential sites of viral dissemination.

  13. Immunomodulator-based enhancement of anti smallpox immune responses.

    Directory of Open Access Journals (Sweden)

    Osmarie Martínez

    Full Text Available The current live vaccinia virus vaccine used in the prevention of smallpox is contraindicated for millions of immune-compromised individuals. Although vaccination with the current smallpox vaccine produces protective immunity, it might result in mild to serious health complications for some vaccinees. Thus, there is a critical need for the production of a safe virus-free vaccine against smallpox that is available to everyone. For that reason, we investigated the impact of imiquimod and resiquimod (Toll-like receptors agonists, and the codon-usage optimization of the vaccinia virus A27L gene in the enhancement of the immune response, with intent of producing a safe, virus-free DNA vaccine coding for the A27 vaccinia virus protein.We analyzed the cellular-immune response by measuring the IFN-γ production of splenocytes by ELISPOT, the humoral-immune responses measuring total IgG and IgG2a/IgG1 ratios by ELISA, and the TH1 and TH2 cytokine profiles by ELISA, in mice immunized with our vaccine formulation.The proposed vaccine formulation enhanced the A27L vaccine-mediated production of IFN-γ on mouse spleens, and increased the humoral immunity with a TH1-biased response. Also, our vaccine induced a TH1 cytokine milieu, which is important against viral infections.These results support the efforts to find a new mechanism to enhance an immune response against smallpox, through the implementation of a safe, virus-free DNA vaccination platform.

  14. Immunomodulator-based enhancement of anti smallpox immune responses.

    Science.gov (United States)

    Martínez, Osmarie; Miranda, Eric; Ramírez, Maite; Santos, Saritza; Rivera, Carlos; Vázquez, Luis; Sánchez, Tomás; Tremblay, Raymond L; Ríos-Olivares, Eddy; Otero, Miguel

    2015-01-01

    The current live vaccinia virus vaccine used in the prevention of smallpox is contraindicated for millions of immune-compromised individuals. Although vaccination with the current smallpox vaccine produces protective immunity, it might result in mild to serious health complications for some vaccinees. Thus, there is a critical need for the production of a safe virus-free vaccine against smallpox that is available to everyone. For that reason, we investigated the impact of imiquimod and resiquimod (Toll-like receptors agonists), and the codon-usage optimization of the vaccinia virus A27L gene in the enhancement of the immune response, with intent of producing a safe, virus-free DNA vaccine coding for the A27 vaccinia virus protein. We analyzed the cellular-immune response by measuring the IFN-γ production of splenocytes by ELISPOT, the humoral-immune responses measuring total IgG and IgG2a/IgG1 ratios by ELISA, and the TH1 and TH2 cytokine profiles by ELISA, in mice immunized with our vaccine formulation. The proposed vaccine formulation enhanced the A27L vaccine-mediated production of IFN-γ on mouse spleens, and increased the humoral immunity with a TH1-biased response. Also, our vaccine induced a TH1 cytokine milieu, which is important against viral infections. These results support the efforts to find a new mechanism to enhance an immune response against smallpox, through the implementation of a safe, virus-free DNA vaccination platform.

  15. Stress proteins and the immune response.

    Science.gov (United States)

    Moseley, P

    2000-07-25

    The heat shock or stress response is one of the most highly conserved adaptive responses in nature. In single cell organisms, the stress response confers tolerance to a variety of stresses including hyperthermia, hyperoxia, hypoxia, and other perturbations, which alter protein synthesis. This tolerance phenomenon is also extremely important in the multicellular organism, resulting in not only thermal tolerance, but also resistance to stresses of the whole organism such as ischemia-reperfusion injury. Moreover, recent data indicates that these stress proteins have the ability to modulate the cellular immune response. Although the terms heat shock proteins (HSPs) and stress proteins are often used interchangeably, the term stress proteins includes the HSPs, the glucose-regulated proteins (GRPs) and ubiquitin. The stress proteins may be grouped by molecular weight ranging from the large 110 kDa HSP110 to ubiquitin at 8 kDa. These proteins serve as cellular chaperones, participating in protein synthesis and transport through the various cellular compartments. Because these proteins have unique cellular localizations, the chaperone function of the stress proteins often involves a transfer of peptides between stress proteins as the peptide is moved between cellular compartments. For example, HSP70 is a cytosolic and nuclear chaperone, which is critical for the transfer of cellular peptides in the mitochondrion through a hand-off that involves mitochondrial HSP60 at the inner mitochondrial membrane. Similarly, cytosolic proteins are transferred from HSP70 to gp96 as they move into the endoplasmic reticulum. The central role of the stress proteins in the transfer of peptides through the cell may be responsible for the recently recognized importance of the stress proteins in the modulation of the immune system [Feder, M.E., Hofmann, G.E., 1999. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu. Rev. Physiol. 61

  16. Maternal immunity enhances Mycoplasma hyopneumoniae vaccination induced cell-mediated immune responses in piglets.

    Science.gov (United States)

    Bandrick, Meggan; Theis, Kara; Molitor, Thomas W

    2014-06-05

    Passively acquired maternal derived immunity (MDI) is a double-edged sword. Maternal derived antibody-mediated immunity (AMI) and cell-mediated immunity (CMI) are critical immediate defenses for the neonate; however, MDI may interfere with the induction of active immunity in the neonate, i.e. passive interference. The effect of antigen-specific MDI on vaccine-induced AMI and CMI responses to Mycoplasma hyopneumoniae (M. hyopneumoniae) was assessed in neonatal piglets. To determine whether CMI and AMI responses could be induced in piglets with MDI, piglets with high and low levels of maternal M. hyopneumoniae-specific immunity were vaccinated against M. hyopneumoniae at 7 d of age. Piglet M. hyopneumoniae-specific antibody, lymphoproliferation, and delayed type hypersensitivity (DTH) responses were measured 7 d and 14 d post vaccination. Piglets with M. hyopneumoniae-specific MDI failed to show vaccine-induced AMI responses; there was no rise in M. hyopneumoniae antibody levels following vaccination of piglets in the presence of M. hyopneumoniae-specific MDI. However, piglets with M. hyopneumoniae-specific MDI had primary (antigen-specific lymphoproliferation) and secondary (DTH) M. hyopneumoniae-specific CMI responses following vaccination. In this study neonatal M. hyopneumoniae-specific CMI was not subject to passive interference by MDI. Further, it appears that both maternal derived and endogenous CMI contribute to M. hyopneumoniae-specific CMI responses in piglets vaccinated in the face of MDI.

  17. Evaluation of immunomodulation by lactobacillus casei shirota: immune function, autoimmunity and gene expression

    NARCIS (Netherlands)

    Baken, A.; Ezendam, J.; Gremmer, E.R.; Klerk, de A.; Pennings, J.L.A.; Matthee, B.; Peijnenburg, A.A.C.M.; Loveren, van H.

    2006-01-01

    Lactic acid bacteria are claimed to have immunomodulating effects. Stimulation as well as suppression of T helper (Th)1 mediated immune responses, have been described for various strains. Experiments involving Lactobacillus casei Shirota (LcS) detected mainly enhancement of innate immune responses

  18. Generation of cytotoxic T lymphocytes in vitro. VII. Suppressive effect of irradiated MLC cells on CTL response

    International Nuclear Information System (INIS)

    Fitch, F.W.; Engers, H.D.; Cerottini, J.C.; Bruner, K.T.

    1976-01-01

    Irradiated cells obtained from MLC at the peak of the CTL response caused profound suppression of generation of CTL when added in small numbers at the initiation of primary MLC prepared with normal spleen cells. The inhibitory activity of the MLC cells was not affected by irradiation (1000 rads) but was abolished by treatment with anti-theta serum and complement. The suppression was immunologically specific. The response of A (H-2/sup a/) spleen cells toward C3H (H-2/sup k/) alloantigens was suppressed by irradiated MLC cells obtained from MLC prepared with A spleen cells and irradiated C3H-stimulating cells, whereas the response of A spleen cells toward DBA/2 (H-2/sup d/) alloantigens was affected relatively little. However, if irradiated C3H x DBA/2F1 hybrid spleen cells were used to stimulate A spleen cells in MLC, addition of irradiated MLC cells having cytotoxic activity toward C3H antigens abolished the response to both C3H and DBA/2 antigens. The response to DBA/2 antigens was much less affected when a mixture of irradiated C3H and DBA/2 spleen cells was used as stimulating cells. Thus, the presence of MLC cells having cytotoxic activity toward one alloantigen abolished the response to another non-cross-reacting antigen only when both antigens were present on the same F1 hybrid-stimulating cells. This suppression of generation of CTL by irradiated MLC cells apparently involves inactivation of alloantigen-bearing stimulating cells as a result of residual cytotoxic activity of the irradiated MLC cells. This mechanism may be active during the decline in CTL activity noted in the normal immune response in vivo and in vitro

  19. Immunomodulator-Based Enhancement of Anti Smallpox Immune Responses

    Science.gov (United States)

    Martínez, Osmarie; Miranda, Eric; Ramírez, Maite; Santos, Saritza; Rivera, Carlos; Vázquez, Luis; Sánchez, Tomás; Tremblay, Raymond L.; Ríos-Olivares, Eddy; Otero, Miguel

    2015-01-01

    Background The current live vaccinia virus vaccine used in the prevention of smallpox is contraindicated for millions of immune-compromised individuals. Although vaccination with the current smallpox vaccine produces protective immunity, it might result in mild to serious health complications for some vaccinees. Thus, there is a critical need for the production of a safe virus-free vaccine against smallpox that is available to everyone. For that reason, we investigated the impact of imiquimod and resiquimod (Toll-like receptors agonists), and the codon-usage optimization of the vaccinia virus A27L gene in the enhancement of the immune response, with intent of producing a safe, virus-free DNA vaccine coding for the A27 vaccinia virus protein. Methods We analyzed the cellular-immune response by measuring the IFN-γ production of splenocytes by ELISPOT, the humoral-immune responses measuring total IgG and IgG2a/IgG1 ratios by ELISA, and the TH1 and TH2 cytokine profiles by ELISA, in mice immunized with our vaccine formulation. Results The proposed vaccine formulation enhanced the A27L vaccine-mediated production of IFN-γ on mouse spleens, and increased the humoral immunity with a TH1-biased response. Also, our vaccine induced a TH1 cytokine milieu, which is important against viral infections. Conclusion These results support the efforts to find a new mechanism to enhance an immune response against smallpox, through the implementation of a safe, virus-free DNA vaccination platform. PMID:25875833

  20. Desensitization of delayed-type hypersensitivity in mice: suppressive environment

    Directory of Open Access Journals (Sweden)

    Takashi Katsura

    1993-01-01

    Full Text Available The systemic injection of high doses of antigen into a preimmunized animal results in transient unresponsiveness of cell-mediated immune responses. This phenomenon is known as desensitization. Serum interleukin 2 (IL-2 activity was found transiently in desensitized mice at 3 h after the antigen challenge. These mice could not reveal antigen nonspecific delayed-type hypersensitivity (DTH 1 d after the challenge. Specific suppression of DTH was observed at later stages. Sera from 3 h desensitized mice showed suppressive effects on DTH in preo immunized mice. Administration of recombinant IL-2 into preimmunized mice led to the failure of development of DTH to antigens. These observations suggest that IL-2 plays an important role in the suppressive environment.

  1. Evaluation of mucosal and systemic immune responses elicited by GPI-0100- adjuvanted influenza vaccine delivered by different immunization strategies.

    Directory of Open Access Journals (Sweden)

    Heng Liu

    Full Text Available Vaccines for protection against respiratory infections should optimally induce a mucosal immune response in the respiratory tract in addition to a systemic immune response. However, current parenteral immunization modalities generally fail to induce mucosal immunity, while mucosal vaccine delivery often results in poor systemic immunity. In order to find an immunization strategy which satisfies the need for induction of both mucosal and systemic immunity, we compared local and systemic immune responses elicited by two mucosal immunizations, given either by the intranasal (IN or the intrapulmonary (IPL route, with responses elicited by a mucosal prime followed by a systemic boost immunization. The study was conducted in BALB/c mice and the vaccine formulation was an influenza subunit vaccine supplemented with GPI-0100, a saponin-derived adjuvant. While optimal mucosal antibody titers were obtained after two intrapulmonary vaccinations, optimal systemic antibody responses were achieved by intranasal prime followed by intramuscular boost. The latter strategy also resulted in the best T cell response, yet, it was ineffective in inducing nose or lung IgA. Successful induction of secretory IgA, IgG and T cell responses was only achieved with prime-boost strategies involving intrapulmonary immunization and was optimal when both immunizations were given via the intrapulmonary route. Our results underline that immunization via the lungs is particularly effective for priming as well as boosting of local and systemic immune responses.

  2. Evaluation of Mucosal and Systemic Immune Responses Elicited by GPI-0100- Adjuvanted Influenza Vaccine Delivered by Different Immunization Strategies

    Science.gov (United States)

    Liu, Heng; Patil, Harshad P.; de Vries-Idema, Jacqueline; Wilschut, Jan; Huckriede, Anke

    2013-01-01

    Vaccines for protection against respiratory infections should optimally induce a mucosal immune response in the respiratory tract in addition to a systemic immune response. However, current parenteral immunization modalities generally fail to induce mucosal immunity, while mucosal vaccine delivery often results in poor systemic immunity. In order to find an immunization strategy which satisfies the need for induction of both mucosal and systemic immunity, we compared local and systemic immune responses elicited by two mucosal immunizations, given either by the intranasal (IN) or the intrapulmonary (IPL) route, with responses elicited by a mucosal prime followed by a systemic boost immunization. The study was conducted in BALB/c mice and the vaccine formulation was an influenza subunit vaccine supplemented with GPI-0100, a saponin-derived adjuvant. While optimal mucosal antibody titers were obtained after two intrapulmonary vaccinations, optimal systemic antibody responses were achieved by intranasal prime followed by intramuscular boost. The latter strategy also resulted in the best T cell response, yet, it was ineffective in inducing nose or lung IgA. Successful induction of secretory IgA, IgG and T cell responses was only achieved with prime-boost strategies involving intrapulmonary immunization and was optimal when both immunizations were given via the intrapulmonary route. Our results underline that immunization via the lungs is particularly effective for priming as well as boosting of local and systemic immune responses. PMID:23936066

  3. Suppression of a thymus dependent humoral response in mice by Concanavalin A in vivo

    International Nuclear Information System (INIS)

    Egan, H.S.; Ekstedt, R.D.

    1975-01-01

    Mice treated with Concanavalin A prior to immunization with sheep erthyrocytes exhibit a markedly reduced plaque forming spleen cell response. This immunosuppressive effect could be reversed by using higher doses of antigen or priming the animals with nonimmunizing doses of antigen prior to Concanavalin A injection designed to either by-pass or enhance thymus derived lymphocyte functions. It was also demonstrated that Concanavalin A in vivo activated the thymus derived lymphocyte subpopulation in the spleen, and this activation was dose dependent and correlated with the immunosuppression observed. Animals injected with Concanavalin A at various times prior to whole body lethal irradiation would not support the plaque forming cell response of adoptively transferred normal syngeneic spleen cells. This effect was shown to be time and dose of Concanavalin A dependent. It was also shown that the route of injection of Concanavalin A prior to irradiation determined the results observed, in that the intravenous route resulted in the suppression of transferred cells, while the intraperitoneal route showed no effect. It is suggested that Concanavalin A induced immunosuppression of the humoral, thymus dependent immune response in mice results for the activation of a subpopulation of thymus derived suppressors cells, and that the effect is short lived, radiation resistant, and dose of Concanavalin A and antigen dependent

  4. Does exposure to UV radiation induce a shift to a Th-2-like immune reaction?

    International Nuclear Information System (INIS)

    Ullrich, S.E.

    1996-01-01

    In addition to being the primary cause of skin cancer, UV radiation is immune suppressive and there appears to be a link between the ability of UV to suppress the immune response and induce skin cancer. Cytokines made by UV-irradiated keratinocytes play an essential role in activating immune suppression. In particular, we have found that keratinocyte-derived interleukin (IL)-10 is responsible for the systemic impairment of antigen presenting cell function and the UV-induced suppression of delayed-type hypersenstivity (DTH). Antigen presentation by splenic adherent cells isolated from UV-irradiated mice to T helper-1 type T (Th1) cells is suppressed, whereas antigen presentation to T helper-2 type T (Th2) cells is enhanced. The enhanced antigen presentation to Th2 cells and the impaired presentation to Th1 cells can be reversed in vivo by injecting the UV-irradiated mice with monoclonal anti-IL-10 antibody. Furthermore, immune suppression can be transferred from UV-irradiated mice to normal recipients by adoptive transfer of T cells. Injecting the recipient mice with anti-IL-4 or anti-IL-10 prevents the transfer of immune suppression, suggesting the suppressor cells are Th2 cells. In addition, injecting UV-irradiated mice with IL-12, a cytokine that has been shown to be the primary inducer of Th1 cells, and one that prevents the differentiation of Th2 cells in vivo, reverses UV-induced immune suppression. These findings support the hypothesis that UV exposure activates IL-10 secretion, which depresses the function of Th1 cells, while enhancing the activity of Th2 cells. (Author)

  5. Pulmonary exposure to single-walled carbon nanotubes does not affect the early immune response against Toxoplasma gondii

    Directory of Open Access Journals (Sweden)

    Swedin Linda

    2012-05-01

    Full Text Available Abstract Background Single-walled carbon nanotubes (SWCNT trigger pronounced inflammation and fibrosis in the lungs of mice following administration via pharyngeal aspiration or inhalation. Human exposure to SWCNT in an occupational setting may occur in conjunction with infections and this could yield enhanced or suppressed responses to the offending agent. Here, we studied whether the sequential exposure to SWCNT via pharyngeal aspiration and infection of mice with the ubiquitous intracellular parasite Toxoplasma gondii would impact on the immune response of the host against the parasite. Methods C57BL/6 mice were pre-exposed by pharyngeal administration of SWCNT (80 + 80 μg/mouse for two consecutive days followed by intravenous injection with either 1x103 or 1x104 green fluorescence protein and luciferase-expressing T. gondii tachyzoites. The dissemination of T. gondii was monitored by in vivo bioluminescence imaging in real time for 7 days and by plaque formation. The inflammatory response was analysed in bronchoalveolar lavage (BAL fluid, and by assessment of morphological changes and immune responses in lung and spleen. Results There were no differences in parasite distribution between mice only inoculated with T. gondii or those mice pre-exposed for 2 days to SWCNT before parasite inoculum. Lung and spleen histology and inflammation markers in BAL fluid reflected the effects of SWCNT exposure and T. gondii injection, respectively. We also noted that CD11c positive dendritic cells but not F4/80 positive macrophages retained SWCNT in the lungs 9 days after pharyngeal aspiration. However, co-localization of T. gondii with CD11c or F4/80 positive cells could not be observed in lungs or spleen. Pre-exposure to SWCNT did not affect the splenocyte response to T. gondii. Conclusions Taken together, our data indicate that pre-exposure to SWCNT does not enhance or suppress the early immune response to T. gondii in mice.

  6. IFNG-mediated immune responses enhance autophagy against Mycobacterium tuberculosis antigens in patients with active tuberculosis

    Science.gov (United States)

    Rovetta, Ana I; Peña, Delfina; Hernández Del Pino, Rodrigo E; Recalde, Gabriela M; Pellegrini, Joaquín; Bigi, Fabiana; Musella, Rosa M; Palmero, Domingo J; Gutierrez, Marisa; Colombo, María I; García, Verónica E

    2015-01-01

    Protective immunity against Mycobacterium tuberculosis (Mtb) requires IFNG. Besides, IFNG-mediated induction of autophagy suppresses survival of virulent Mtb in macrophage cell lines. We investigated the contribution of autophagy to the defense against Mtb antigen (Mtb-Ag) in cells from tuberculosis patients and healthy donors (HD). Patients were classified as high responders (HR) if their T cells produced significant IFNG against Mtb-Ag; and low responders (LR) when patients showed weak or no T cell responses to Mtb-Ag. The highest autophagy levels were detected in HD cells whereas the lowest quantities were observed in LR patients. Interestingly, upon Mtb-Ag stimulation, we detected a positive correlation between IFNG and MAP1LC3B-II/LC3-II levels. Actually, blockage of Mtb-Ag-induced IFNG markedly reduced autophagy in HR patients whereas addition of limited amounts of IFNG significantly increased autophagy in LR patients. Therefore, autophagy collaborates with human immune responses against Mtb in close association with specific IFNG secreted against the pathogen. PMID:25426782

  7. Carbohydrate Mimetic Peptides Augment Carbohydrate-Reactive Immune Responses in the Absence of Immune Pathology

    International Nuclear Information System (INIS)

    Hennings, Leah; Artaud, Cecile; Jousheghany, Fariba; Monzavi-Karbassi, Behjatolah; Pashov, Anastas; Kieber-Emmons, Thomas

    2011-01-01

    Among the most challenging of clinical targets for cancer immunotherapy are Tumor Associated Carbohydrate Antigens (TACAs). To augment immune responses to TACA we are developing carbohydrate mimetic peptides (CMPs) that are sufficiently potent to activate broad-spectrum anti-tumor reactivity. However, the activation of immune responses against terminal mono- and disaccharide constituents of TACA raises concerns regarding the balance between “tumor destruction” and “tissue damage”, as mono- and disaccharides are also expressed on normal tissue. To support the development of CMPs for clinical trial testing, we demonstrate in preclinical safety assessment studies in mice that vaccination with CMPs can enhance responses to TACAs without mediating tissue damage to normal cells expressing TACA. BALB/c mice were immunized with CMPs that mimic TACAs reactive with Griffonia simplicifolia lectin 1 (GS-I), and tissue reactivity of serum antibodies were compared with the tissue staining profile of GS-I. Tissues from CMP immunized mice were analyzed using hematoxylin and eosin stain, and Luxol-fast blue staining for myelination. Western blots of membranes from murine mammary 4T1 cells, syngeneic with BALB/c mice, were also compared using GS-I, immunized serum antibodies, and naive serum antibodies. CMP immunization enhanced glycan reactivities with no evidence of pathological autoimmunity in any immunized mice demonstrating that tissue damage is not an inevitable consequence of TACA reactive responses

  8. Carbohydrate Mimetic Peptides Augment Carbohydrate-Reactive Immune Responses in the Absence of Immune Pathology

    Energy Technology Data Exchange (ETDEWEB)

    Hennings, Leah; Artaud, Cecile; Jousheghany, Fariba; Monzavi-Karbassi, Behjatolah; Pashov, Anastas; Kieber-Emmons, Thomas, E-mail: tke@uams.edu [Winthrop P. Rockefeller Cancer Institute and Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States)

    2011-11-11

    Among the most challenging of clinical targets for cancer immunotherapy are Tumor Associated Carbohydrate Antigens (TACAs). To augment immune responses to TACA we are developing carbohydrate mimetic peptides (CMPs) that are sufficiently potent to activate broad-spectrum anti-tumor reactivity. However, the activation of immune responses against terminal mono- and disaccharide constituents of TACA raises concerns regarding the balance between “tumor destruction” and “tissue damage”, as mono- and disaccharides are also expressed on normal tissue. To support the development of CMPs for clinical trial testing, we demonstrate in preclinical safety assessment studies in mice that vaccination with CMPs can enhance responses to TACAs without mediating tissue damage to normal cells expressing TACA. BALB/c mice were immunized with CMPs that mimic TACAs reactive with Griffonia simplicifolia lectin 1 (GS-I), and tissue reactivity of serum antibodies were compared with the tissue staining profile of GS-I. Tissues from CMP immunized mice were analyzed using hematoxylin and eosin stain, and Luxol-fast blue staining for myelination. Western blots of membranes from murine mammary 4T1 cells, syngeneic with BALB/c mice, were also compared using GS-I, immunized serum antibodies, and naive serum antibodies. CMP immunization enhanced glycan reactivities with no evidence of pathological autoimmunity in any immunized mice demonstrating that tissue damage is not an inevitable consequence of TACA reactive responses.

  9. Pleurodeles Waltl Humoral Immune Response under Spaceflight Conditions

    Science.gov (United States)

    Bascove, Matthieu; Touche, Nadege; Frippiat, Jean-Pol

    2008-06-01

    The immune system is an important regulatory mechanism affected by spaceflights. In a previous work, we performed a first study of the humoral immune response induced by the immunization of Pleurodeles waltl during a 5 months stay onboard the Mir space station. This analysis indicated that heavy-chain variable domains of specific IgM are encoded by genes of the VHII and VHVI families. However, the contributions of these two families to IgM heavy-chains are different in flown animals [1]. To better understand this immune response modification, we have now determined how individual VH genes have been used to build specific IgM binding sites in animals immunized on earth or in space. This new study revealed quantitative and qualitative modifications in VH genes expression. These data confirm that a spaceflight might affect the humoral response.

  10. HpARI Protein Secreted by a Helminth Parasite Suppresses Interleukin-33.

    Science.gov (United States)

    Osbourn, Megan; Soares, Dinesh C; Vacca, Francesco; Cohen, E Suzanne; Scott, Ian C; Gregory, William F; Smyth, Danielle J; Toivakka, Matilda; Kemter, Andrea M; le Bihan, Thierry; Wear, Martin; Hoving, Dennis; Filbey, Kara J; Hewitson, James P; Henderson, Holly; Gonzàlez-Cìscar, Andrea; Errington, Claire; Vermeren, Sonja; Astier, Anne L; Wallace, William A; Schwarze, Jürgen; Ivens, Alasdair C; Maizels, Rick M; McSorley, Henry J

    2017-10-17

    Infection by helminth parasites is associated with amelioration of allergic reactivity, but mechanistic insights into this association are lacking. Products secreted by the mouse parasite Heligmosomoides polygyrus suppress type 2 (allergic) immune responses through interference in the interleukin-33 (IL-33) pathway. Here, we identified H. polygyrus Alarmin Release Inhibitor (HpARI), an IL-33-suppressive 26-kDa protein, containing three predicted complement control protein (CCP) modules. In vivo, recombinant HpARI abrogated IL-33, group 2 innate lymphoid cell (ILC2) and eosinophilic responses to Alternaria allergen administration, and diminished eosinophilic responses to Nippostrongylus brasiliensis, increasing parasite burden. HpARI bound directly to both mouse and human IL-33 (in the cytokine's activated state) and also to nuclear DNA via its N-terminal CCP module pair (CCP1/2), tethering active IL-33 within necrotic cells, preventing its release, and forestalling initiation of type 2 allergic responses. Thus, HpARI employs a novel molecular strategy to suppress type 2 immunity in both infection and allergy. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. Innate and Adaptive Immunity to Mucorales.

    Science.gov (United States)

    Ghuman, Harlene; Voelz, Kerstin

    2017-09-05

    Mucormycosis is an invasive fungal infection characterised by rapid filamentous growth, which leads to angioinvasion, thrombosis, and tissue necrosis. The high mortality rates (50-100%) associated with mucormycosis are reflective of not only the aggressive nature of the infection and the poor therapeutics currently employed, but also the failure of the human immune system to successfully clear the infection. Immune effector interaction with Mucorales is influenced by the developmental stage of the mucormycete spore. In a healthy immune environment, resting spores are resistant to phagocytic killing. Contrarily, swollen spores and hyphae are susceptible to damage and degradation by macrophages and neutrophils. Under the effects of immune suppression, the recruitment and efficacy of macrophage and neutrophil activity against mucormycetes is considerably reduced. Following penetration of the endothelial lining, Mucorales encounter platelets. Platelets adhere to both mucormycete spores and hyphae, and exhibit germination suppression and hyphal damage capacity in vitro. Dendritic cells are activated in response to Mucorales hyphae only, and induce adaptive immunity. It is crucial to further knowledge regarding our immune system's failure to eradicate resting spores under intact immunity and inhibit fungal growth under immunocompromised conditions, in order to understand mucormycosis pathogenicity and enhance therapeutic strategies for mucormycosis.

  12. Possible Therapeutic Application of Targeting Type II Natural Killer T Cell-Mediated Suppression of Tumor Immunity

    Science.gov (United States)

    Kato, Shingo; Berzofsky, Jay A.; Terabe, Masaki

    2018-01-01

    Natural killer T (NKT) cells are a unique T cell subset that exhibits characteristics from both the innate immune cells and T cells. There are at least two subsets of NKT cells, type I and type II. These two subsets of NKT cells have opposite functions in antitumor immunity. Type I NKT cells usually enhance and type II NKT cells suppress antitumor immunity. In addition, these two subsets of NKT cells cross-regulate each other. In this review, we mainly focus on immunosuppressive NKT cells, type II NKT cells. After summarizing their definition, experimental tools to study them, and subsets of them, we will discuss possible therapeutic applications of type II NKT cell pathway targeted therapies. PMID:29520281

  13. The development of a fully-integrated immune response model (FIRM) simulator of the immune response through integration of multiple subset models.

    Science.gov (United States)

    Palsson, Sirus; Hickling, Timothy P; Bradshaw-Pierce, Erica L; Zager, Michael; Jooss, Karin; O'Brien, Peter J; Spilker, Mary E; Palsson, Bernhard O; Vicini, Paolo

    2013-09-28

    The complexity and multiscale nature of the mammalian immune response provides an excellent test bed for the potential of mathematical modeling and simulation to facilitate mechanistic understanding. Historically, mathematical models of the immune response focused on subsets of the immune system and/or specific aspects of the response. Mathematical models have been developed for the humoral side of the immune response, or for the cellular side, or for cytokine kinetics, but rarely have they been proposed to encompass the overall system complexity. We propose here a framework for integration of subset models, based on a system biology approach. A dynamic simulator, the Fully-integrated Immune Response Model (FIRM), was built in a stepwise fashion by integrating published subset models and adding novel features. The approach used to build the model includes the formulation of the network of interacting species and the subsequent introduction of rate laws to describe each biological process. The resulting model represents a multi-organ structure, comprised of the target organ where the immune response takes place, circulating blood, lymphoid T, and lymphoid B tissue. The cell types accounted for include macrophages, a few T-cell lineages (cytotoxic, regulatory, helper 1, and helper 2), and B-cell activation to plasma cells. Four different cytokines were accounted for: IFN-γ, IL-4, IL-10 and IL-12. In addition, generic inflammatory signals are used to represent the kinetics of IL-1, IL-2, and TGF-β. Cell recruitment, differentiation, replication, apoptosis and migration are described as appropriate for the different cell types. The model is a hybrid structure containing information from several mammalian species. The structure of the network was built to be physiologically and biochemically consistent. Rate laws for all the cellular fate processes, growth factor production rates and half-lives, together with antibody production rates and half-lives, are provided. The

  14. Effects of engineered nanoparticles on the innate immune system.

    Science.gov (United States)

    Liu, Yuanchang; Hardie, Joseph; Zhang, Xianzhi; Rotello, Vincent M

    2017-12-01

    Engineered nanoparticles (NPs) have broad applications in industry and nanomedicine. When NPs enter the body, interactions with the immune system are unavoidable. The innate immune system, a non-specific first line of defense against potential threats to the host, immediately interacts with introduced NPs and generates complicated immune responses. Depending on their physicochemical properties, NPs can interact with cells and proteins to stimulate or suppress the innate immune response, and similarly activate or avoid the complement system. NPs size, shape, hydrophobicity and surface modification are the main factors that influence the interactions between NPs and the innate immune system. In this review, we will focus on recent reports about the relationship between the physicochemical properties of NPs and their innate immune response, and their applications in immunotherapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Corticosterone suppresses immune activity in territorial Galápagos marine iguanas during reproduction.

    Science.gov (United States)

    Berger, Silke; Martin, Lynn B; Wikelski, Martin; Romero, L Michael; Kalko, Elisabeth K V; Vitousek, Maren N; Rödl, Thomas

    2005-04-01

    Individuals that display elaborate sexually selected characters often show reduced immune function. According to the immunocompetence handicap hypothesis, testosterone (T) is responsible for this result as it drives the development and maintenance of sexual characters and causes immunosuppression. But glucocorticoids also have strong influences on immune function and may also be elevated in reproductively active males. Here, we compared immune activity using the phytohemagglutinin (PHA) skin test in three discrete groups of male marine iguanas (Amblyrhynchus cristatus): territorials, satellites, and bachelors. Males of these three reproductive phenotypes had indistinguishable T concentrations during the height of the breeding season, but their corticosterone (cort) concentrations, body condition and hematocrit were significantly different. Territorial males, the animals with the most elaborate sexual ornaments and behaviors, had lower immune responses and body condition but higher cort concentrations and hematocrit than satellites or bachelors. To test directly cort's immunosuppressive role, we elevated cort by either restraining animals or additionally injecting cort and compared their PHA swelling response with the response of free-roaming animals. Such experimental elevation of cort significantly decreased immune activity in both restrained and cort-injected animals. Our data show that cort can induce immunosuppression, but they do not support the immunocompetence handicap hypothesis in its narrow sense because T concentrations were not related to immunosuppression.

  16. Modulation of the innate immune responses in the striped ...

    African Journals Online (AJOL)

    Thus, most of the innate non-specific immune responses are inducible though they are constitutive of fish immune system exhibiting a basal level of activity even in the absence of pathogen challenge. Keywords: Aeromonas hydrophila, Experimental challenge, Innate immune response, Striped snakehead murrel ...

  17. Adenovirus Vector-Derived VA-RNA-Mediated Innate Immune Responses

    Directory of Open Access Journals (Sweden)

    Hiroyuki Mizuguchi

    2011-07-01

    Full Text Available The major limitation of the clinical use of replication-incompetent adenovirus (Ad vectors is the interference by innate immune responses, including induction of inflammatory cytokines and interferons (IFN, following in vivo application of Ad vectors. Ad vector-induced production of inflammatory cytokines and IFNs also results in severe organ damage and efficient induction of acquired immune responses against Ad proteins and transgene products. Ad vector-induced innate immune responses are triggered by the recognition of Ad components by pattern recognition receptors (PRRs. In order to reduce the side effects by Ad vector-induced innate immune responses and to develop safer Ad vectors, it is crucial to clarify which PRRs and which Ad components are involved in Ad vector-induced innate immune responses. Our group previously demonstrated that myeloid differentiating factor 88 (MyD88 and toll-like receptor 9 (TLR9 play crucial roles in the Ad vector-induced inflammatory cytokine production in mouse bone marrow-derived dendritic cells. Furthermore, our group recently found that virus associated-RNAs (VA-RNAs, which are about 160 nucleotide-long non-coding small RNAs encoded in the Ad genome, are involved in IFN production through the IFN-β promoter stimulator-1 (IPS-1-mediated signaling pathway following Ad vector transduction. The aim of this review is to highlight the Ad vector-induced innate immune responses following transduction, especially VA-RNA-mediated innate immune responses. Our findings on the mechanism of Ad vector-induced innate immune responses should make an important contribution to the development of safer Ad vectors, such as an Ad vector lacking expression of VA-RNAs.

  18. Immune response induction in the central nervous system

    DEFF Research Database (Denmark)

    Owens, Trevor; Babcock, Alicia

    2002-01-01

    The primary function of the immune response is protection of the host against infection with pathogens, including viruses. Since viruses can infect any tissue of the body, including the central nervous system (CNS), it is logical that cells of the immune system should equally have access to all...... tissues. Nevertheless, the brain and spinal cord are noted for their lack of immune presence. Relative to other organ systems, the CNS appears immunologically privileged. Furthermore, when immune responses do occur in the CNS, they are frequently associated with deleterious effects such as inflammatory...

  19. Persistent Low-Level Replication of SIVΔnef Drives Maturation of Antibody and CD8 T Cell Responses to Induce Protective Immunity against Vaginal SIV Infection.

    Directory of Open Access Journals (Sweden)

    Sama Adnan

    2016-12-01

    Full Text Available Defining the correlates of immune protection conferred by SIVΔnef, the most effective vaccine against SIV challenge, could enable the design of a protective vaccine against HIV infection. Here we provide a comprehensive assessment of immune responses that protect against SIV infection through detailed analyses of cellular and humoral immune responses in the blood and tissues of rhesus macaques vaccinated with SIVΔnef and then vaginally challenged with wild-type SIV. Despite the presence of robust cellular immune responses, animals at 5 weeks after vaccination displayed only transient viral suppression of challenge virus, whereas all macaques challenged at weeks 20 and 40 post-SIVΔnef vaccination were protected, as defined by either apparent sterile protection or significant suppression of viremia in infected animals. Multiple parameters of CD8 T cell function temporally correlated with maturation of protection, including polyfunctionality, phenotypic differentiation, and redistribution to gut and lymphoid tissues. Importantly, we also demonstrate the induction of a tissue-resident memory population of SIV-specific CD8 T cells in the vaginal mucosa, which was dependent on ongoing low-level antigenic stimulation. Moreover, we show that vaginal and serum antibody titers inversely correlated with post-challenge peak viral load, and we correlate the accumulation and affinity maturation of the antibody response to the duration of the vaccination period as well as to the SIVΔnef antigenic load. In conclusion, maturation of SIVΔnef-induced CD8 T cell and antibody responses, both propelled by viral persistence in the gut mucosa and secondary lymphoid tissues, results in protective immune responses that are able to interrupt viral transmission at mucosal portals of entry as well as potential sites of viral dissemination.

  20. The entomopathogenic fungus Nomuraea rileyi impairs cellular immunity of its host Helicoverpa armigera.

    Science.gov (United States)

    Zhong, Ke; Liu, Zhan-Chi; Wang, Jia-Lin; Liu, Xu-Sheng

    2017-09-01

    In this study, we investigated the effect of the entomopathogenic fungus Nomuraea rileyi on Helicoverpa armigera cellular immune responses. Nomuraea rileyi infection had no effect on total hemocyte count (THC), but impaired hemocyte-mediated phagocytosis, nodulation, and encapsulation responses. Nomuraea rileyi infection led to a significant reduction in hemocyte spreading. An in vitro assay revealed that plasma from N. rileyi infected H. armigera larvae suppressed the spreading ability of hemocytes from naïve larvae. We infer that N. rileyi suppresses the cellular immune response of its host, possibly by secreting exogenous, cytotoxic compounds into the host's hemolymph. © 2017 Wiley Periodicals, Inc.

  1. Interplay between behavioural thermoregulation and immune response in mealworms.

    Science.gov (United States)

    Catalán, Tamara P; Niemeyer, Hermann M; Kalergis, Alexis M; Bozinovic, Francisco

    2012-11-01

    Since the preferential body temperature should positively correlate with physiological performance, behavioural fever should enhance an organism's immune response under an immune challenge. Here we have studied the preferential body temperature (T(p)) and its consequences on immune response performance after an immune challenge in larvae of Tenebrio molitor. We evaluated T(p) and immune responses of larvae following a challenge with various concentrations of lipopolysaccharide (LPS), and we studied the correlation between T(p) and two immune traits, namely antibacterial and phenoloxidase (PO) activities. Larvae that were immune challenged with higher LPS concentrations (C(50) and C(100)) preferred in average, warmer temperatures than did larvae challenged with lower concentrations (C(0) and C(25)). T(p) of C(25)-C(100) (challenged)-mealworms was 2.3°C higher than of C(0) (control) larvae. At lower LPS concentration immune challenge (C(0) and C(25)) antibacterial activity correlated positively with T(p), but at C(50) and C(100) correlation was lose. PO activity was higher at higher LPS concentration, but its magnitude of response did not correlate with T(p) Our data suggest that behavioural fever may have a positive effect on host performance by enhancing antibacterial response under a low pathogen load situation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Immunization with Brucella VirB proteins reduces organ colonization in mice through a Th1-type immune response and elicits a similar immune response in dogs.

    Science.gov (United States)

    Pollak, Cora N; Wanke, María Magdalena; Estein, Silvia M; Delpino, M Victoria; Monachesi, Norma E; Comercio, Elida A; Fossati, Carlos A; Baldi, Pablo C

    2015-03-01

    VirB proteins from Brucella spp. constitute the type IV secretion system, a key virulence factor mediating the intracellular survival of these bacteria. Here, we assessed whether a Th1-type immune response against VirB proteins may protect mice from Brucella infection and whether this response can be induced in the dog, a natural host for Brucella. Splenocytes from mice immunized with VirB7 or VirB9 responded to their respective antigens with significant and specific production of gamma interferon (IFN-γ), whereas interleukin-4 (IL-4) was not detected. Thirty days after an intraperitoneal challenge with live Brucella abortus, the spleen load of bacteria was almost 1 log lower in mice immunized with VirB proteins than in unvaccinated animals. As colonization reduction seemed to correlate with a Th1-type immune response against VirB proteins, we decided to assess whether such a response could be elicited in the dog. Peripheral blood mononuclear cells (PBMCs) from dogs immunized with VirB proteins (three subcutaneous doses in QuilA adjuvant) produced significantly higher levels of IFN-γ than cells from control animals upon in vitro stimulation with VirB proteins. A skin test to assess specific delayed-type hypersensitivity was positive in 4 out of 5 dogs immunized with either VirB7 or VirB9. As both proteins are predicted to locate in the outer membrane of Brucella organisms, the ability of anti-VirB antibodies to mediate complement-dependent bacteriolysis of B. canis was assessed in vitro. Sera from dogs immunized with either VirB7 or VirB9, but not from those receiving phosphate-buffered saline (PBS), produced significant bacteriolysis. These results suggest that VirB-specific responses that reduce organ colonization by Brucella in mice can be also elicited in dogs. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. Pathology in euthermic bats with white nose syndrome suggests a natural manifestation of immune reconstitution inflammatory syndrome.

    Science.gov (United States)

    Meteyer, Carol U; Barber, Daniel; Mandl, Judith N

    2012-11-15

    White nose syndrome, caused by Geomyces destructans, has killed more than 5 million cave hibernating bats in eastern North America. During hibernation, the lack of inflammatory cell recruitment at the site of fungal infection and erosion is consistent with a temperature-induced inhibition of immune cell trafficking. This immune suppression allows G. destructans to colonize and erode the skin of wings, ears and muzzle of bat hosts unchecked. Yet, paradoxically, within weeks of emergence from hibernation an intense neutrophilic inflammatory response to G. destructans is generated, causing severe pathology that can contribute to death. We hypothesize that the sudden reversal of immune suppression in bats upon the return to euthermia leads to a form of immune reconstitution inflammatory syndrome (IRIS). IRIS was first described in HIV-infected humans with low helper T lymphocyte counts and bacterial or fungal opportunistic infections. IRIS is a paradoxical and rapid worsening of symptoms in immune compromised humans upon restoration of immunity in the face of an ongoing infectious process. In humans with HIV, the restoration of adaptive immunity following suppression of HIV replication with anti-retroviral therapy (ART) can trigger severe immune-mediated tissue damage that can result in death. We propose that the sudden restoration of immune responses in bats infected with G. destructans results in an IRIS-like dysregulated immune response that causes the post-emergent pathology.

  4. Pathology in euthermic bats with white nose syndrome suggests a natural manifestation of immune reconstitution inflammatory syndrome

    Science.gov (United States)

    Meteyer, Carol U.; Barber, Daniel; Mandl, Judith N.

    2012-01-01

    White nose syndrome, caused by Geomyces destructans, has killed more than 5 million cave hibernating bats in eastern North America. During hibernation, the lack of inflammatory cell recruitment at the site of fungal infection and erosion is consistent with a temperature-induced inhibition of immune cell trafficking. This immune suppression allows G. destructans to colonize and erode the skin of wings, ears and muzzle of bat hosts unchecked. Yet, paradoxically, within weeks of emergence from hibernation an intense neutrophilic inflammatory response to G. destructans is generated, causing severe pathology that can contribute to death. We hypothesize that the sudden reversal of immune suppression in bats upon the return to euthermia leads to a form of immune reconstitution inflammatory syndrome (IRIS), which was first described in HIV-infected humans with low helper T lymphocyte counts and bacterial or fungal opportunistic infections. IRIS is a paradoxical and rapid worsening of symptoms in immune compromised humans upon restoration of immunity in the face of an ongoing infectious process. In humans with HIV, the restoration of adaptive immunity following suppression of HIV replication with anti-retroviral therapy (ART) can trigger severe immune-mediated tissue damage that can result in death. We propose that the sudden restoration of immune responses in bats infected with G. destructans results in an IRIS-like dysregulated immune response that causes the post-emergent pathology.

  5. Immunity to fish rhabdoviruses

    Science.gov (United States)

    Purcell, Maureen K.; Laing, Kerry J.; Winton, James R.

    2012-01-01

    Members of the family Rhabdoviridae are single-stranded RNA viruses and globally important pathogens of wild and cultured fish and thus relatively well studied in their respective hosts or other model systems. Here, we review the protective immune mechanisms that fish mount in response to rhabdovirus infections. Teleost fish possess the principal components of innate and adaptive immunity found in other vertebrates. Neutralizing antibodies are critical for long-term protection from fish rhabdoviruses, but several studies also indicate a role for cell-mediated immunity. Survival of acute rhabdoviral infection is also dependent on innate immunity, particularly the interferon (IFN) system that is rapidly induced in response to infection. Paradoxically, rhabdoviruses are sensitive to the effects of IFN but virulent rhabdoviruses can continue to replicate owing to the abilities of the matrix (M) protein to mediate host-cell shutoff and the non-virion (NV) protein to subvert programmed cell death and suppress functional IFN. While many basic features of the fish immune response to rhabdovirus infections are becoming better understood, much less is known about how factors in the environment affect the ecology of rhabdovirus infections in natural populations of aquatic animals.

  6. Immunity to fish rhabdoviruses.

    Science.gov (United States)

    Purcell, Maureen K; Laing, Kerry J; Winton, James R

    2012-01-01

    Members of the family Rhabdoviridae are single-stranded RNA viruses and globally important pathogens of wild and cultured fish and thus relatively well studied in their respective hosts or other model systems. Here, we review the protective immune mechanisms that fish mount in response to rhabdovirus infections. Teleost fish possess the principal components of innate and adaptive immunity found in other vertebrates. Neutralizing antibodies are critical for long-term protection from fish rhabdoviruses, but several studies also indicate a role for cell-mediated immunity. Survival of acute rhabdoviral infection is also dependent on innate immunity, particularly the interferon (IFN) system that is rapidly induced in response to infection. Paradoxically, rhabdoviruses are sensitive to the effects of IFN but virulent rhabdoviruses can continue to replicate owing to the abilities of the matrix (M) protein to mediate host-cell shutoff and the non‑virion (NV) protein to subvert programmed cell death and suppress functional IFN. While many basic features of the fish immune response to rhabdovirus infections are becoming better understood, much less is known about how factors in the environment affect the ecology of rhabdovirus infections in natural populations of aquatic animals.

  7. Immunity to Fish Rhabdoviruses

    Directory of Open Access Journals (Sweden)

    Maureen K. Purcell

    2012-01-01

    Full Text Available Members of the family Rhabdoviridae are single-stranded RNA viruses and globally important pathogens of wild and cultured fish and thus relatively well studied in their respective hosts or other model systems. Here, we review the protective immune mechanisms that fish mount in response to rhabdovirus infections. Teleost fish possess the principal components of innate and adaptive immunity found in other vertebrates. Neutralizing antibodies are critical for long-term protection from fish rhabdoviruses, but several studies also indicate a role for cell-mediated immunity. Survival of acute rhabdoviral infection is also dependent on innate immunity, particularly the interferon (IFN system that is rapidly induced in response to infection. Paradoxically, rhabdoviruses are sensitive to the effects of IFN but virulent rhabdoviruses can continue to replicate owing to the abilities of the matrix (M protein to mediate host-cell shutoff and the non‑virion (NV protein to subvert programmed cell death and suppress functional IFN. While many basic features of the fish immune response to rhabdovirus infections are becoming better understood, much less is known about how factors in the environment affect the ecology of rhabdovirus infections in natural populations of aquatic animals.

  8. Immune response and anamnestic immune response in children after a 3-dose primary hepatitis b vaccination

    International Nuclear Information System (INIS)

    Afzal, M.F.; Sultan, M.A.; Saleemi, A.I.

    2017-01-01

    Diseases caused by Hepatitis B virus (HBV) have a worldwide distribution. Pakistan adopted the recommendations of World Health Organization (WHO) for routine universal infant vaccination against hepatitis B in 2002, currently being administered at 6, 10, and 14 weeks of age in a combination vaccine. This study was conducted to determine the immune response and anamnestic immune response in children, 9 months-10 years of age, after a 3-dose primary Hepatitis B vaccination. Methods: This cross sectional study was conducted in the Department of Paediatrics, King Edward Medical University/Mayo Hospital, Lahore, Pakistan, from January to June, 2014. A total of 200 children of either sex between the ages of 9 months to 10 years, docu mented to have received 3 doses of hepatitis B vaccines according to Expanded Program of Immunization (6,10,14 weeks) schedule in infancy, were recruited by consecutive sampling. The level of serum anti-HBsAb by ELIZA was measured. Children with anti-HBs titers =10 mIU/mL were considered to be immune. Those with anti-HBsAb levels <10 mIU/mL were offered a booster dose of infant recombinant hepatitis B vaccine. The second serum sample was obtained 21-28 days following the administration of the booster dose and the anamnestic immune response was measured. Data was analysed using SPSS 17 to determine the relation between time interval since last vaccination and antibody titer. Chi square test was applied. Results: Of the 200 children, protective antibody response was found in 58 percent. Median serological response was 18.60 (range 2.82-65.15). Antibody levels were found to have a statistically significant (p-value 0.019) negative correlation with the time since last administration of vaccine. A booster dose of Hepatitis B vaccine was administered to all non-responders, with each registering a statistically significant (p-value 0.00) anamnestic response. Conclusion: The vaccination schedule with short dosage interval was unable to provide

  9. Inhibition of Langerhans cell maturation by human papillomavirus type 16: a novel role for the annexin A2 heterotetramer in immune suppression.

    Science.gov (United States)

    Woodham, Andrew W; Raff, Adam B; Raff, Laura M; Da Silva, Diane M; Yan, Lisa; Skeate, Joseph G; Wong, Michael K; Lin, Yvonne G; Kast, W Martin

    2014-05-15

    High-risk human papillomaviruses (HPVs) are sexually transmitted viruses causally associated with several cancers. During its natural life cycle, HPV16, the most common high-risk genotype, infects the epithelial basal cells in a process facilitated through a recently identified receptor, the annexin A2 heterotetramer (A2t). During infection, HPV16 also interacts with Langerhans cells (LC), the APC of the epithelium, inducing immune suppression, which is mediated by the HPV16 L2 minor capsid protein. Despite the importance of these virus-immune cell interactions, the specific mechanisms of HPV16 entry into LC and HPV16-induced immune suppression remain undefined. An N-terminal peptide of HPV16 L2 (aa 108-126) has been shown to specifically interact with A2t. In this study, we show that incubation of human LC with this peptide blocks binding of HPV16. Inhibiting this interaction with an A2t ligand or by small interfering RNA downregulation of A2t significantly decreases HPV16 internalization into LC in an L2-dependent manner. A2t is associated with suppression of LC maturation as demonstrated through attenuated secretion of Th1-associated cytokines and decreased surface expression of MHC class II on LC exposed to A2t. Conversely, small molecule inhibition of A2t prevents HPV16-induced suppression of LC immune function as indicated by significantly increased secretion of inflammatory cytokines and surface expression of CD86 in HPV16 treated LC pre-exposed to A2t inhibitors. These results demonstrate that HPV16 suppresses LC maturation through an interaction with A2t, revealing a novel role for this protein.

  10. Maternal antibody transfer can lead to suppression of humoral immunity in developing zebra finches (Taeniopygia guttata).

    Science.gov (United States)

    Merrill, Loren; Grindstaff, Jennifer L

    2014-01-01

    Maternally transferred antibodies have been documented in a wide range of taxa and are thought to adaptively provide protection against parasites and pathogens while the offspring immune system is developing. In most birds, transfer occurs when females deposit immunoglobulin Y into the egg yolk, and it is proportional to the amount in the female's plasma. Maternal antibodies can provide short-term passive protection as well as specific and nonspecific immunological priming, but high levels of maternal antibody can result in suppression of the offspring's humoral immune response. We injected adult female zebra finches (Taeniopygia guttata) with one of two antigens (lipopolysaccharide [LPS] or keyhole limpet hemocyanin [KLH]) or a control and then injected offspring with LPS, KLH, or a control on days 5 and 28 posthatch to examine the impact of maternally transferred antibodies on the ontogeny of the offspring's humoral immune system. We found that offspring of females exposed to KLH had elevated levels of KLH-reactive antibody over the first 17-28 days posthatch but reduced KLH-specific antibody production between days 28 and 36. We also found that offspring exposed to either LPS or KLH exhibited reduced total antibody levels, compared to offspring that received a control injection. These results indicate that high levels of maternal antibodies or antigen exposure during development can have negative repercussions on short-term antibody production and may have long-term fitness repercussions for the offspring.

  11. T-2 toxin impairment of enteric reovirus clearance in the mouse associated with suppressed immunoglobulin and IFN-γ responses

    International Nuclear Information System (INIS)

    Li Maoxiang; Cuff, Christopher F.; Pestka, James J.

    2006-01-01

    Trichothecenes are exquisitely toxic to the gastrointestinal (GI) tract and leukocytes and thus are likely to impair gut immunity. The purpose of this research was to test the hypothesis that the Type A trichothecene T-2 toxin interferes with the gut mucosal immune response to enteric reovirus infection. Mice were exposed i.p. first to 1.75 mg/kg bw T-2 and then 2 h later with 3 x 10 7 plaque-forming units of reovirus serotype 1, strain Lang (T1/L). As compared to vehicle-treated control, T-2-treated mice had dramatically elevated intestinal plaque-forming viral titers after 5 days and failed to completely clear the virus from intestine by 10 days. Levels of reovirus λ2 core spike (L2 gene) RNA in feces in T-2-treated mice were significantly higher at 1, 3, 5, and 7 days than controls. T-2 potentiated L2 mRNA expression in a dose-dependent manner with as little as 50 μg/kg of the toxin having a potentiative effect. T-2 exposure transiently suppressed induction of reovirus-specific IgA in feces (6 and 8 days) as well as specific IgA and IgG 2a in serum (5 days). This suppression corresponded to decreased secretion of reovirus-specific IgA and IgG 2a in Peyer's patch (PP) and lamina propria fragment cultures prepared 5 days after infection. T-2 suppressed IFN-γ responses in PP to reovirus at 3 and 7 days as compared to infected controls whereas IL-2 mRNA concentrations were unaffected. PP IL-6 mRNA levels were increased 2-fold 2 h after T-2 treatment, but no differences between infected T-2-exposed and infected vehicle-treated mice were detectable over the next 7 days. Overall, the results suggest that T-2 toxin increased both the extent of GI tract reovirus infection and fecal shedding which corresponded to both suppressed immunoglobulin and IFN-γ responses

  12. Variety of immune responses to chronic stress in rats male

    Directory of Open Access Journals (Sweden)

    Іlona S Polovynko

    2016-12-01

    Full Text Available Background. Previously we have been carry out integrated quantitative estimation of neuroendocrine and immune responses to chronic restraint stress in male rats. Revealed that the value of canonical discriminant roots rats subjected to chronic stress different not only on the values of intact animals (by definition, but also among themselves. So we set a goal retrospectively divided stressed rats into three homogeneous groups. Material and methods. The experiment is at 50 white male rats. Of these 10 animals not subjected to any influences and 40 within 7 days subjected to moderate stress by daily 30-minute immobilization. The day after the completion of stressing in portion of the blood immunological parameters were determined by tests I and II levels of WHO. The spleen and thymus did smears for counting spleno- and thymocytograms. Results. The method of cluster analysis (k-means clustering formed three groups-clusters. For further analysis selected 18 parameters that members of each cluster differing minimum and maximum are different from members of other clusters (η2=0,73÷0,15; F=49,0÷3,26; p=10-6÷0,05. We stated that in 16 rats from cluster III the deviation 16 parameters in either side of the average norm almost identical and are in an acceptable range of ±0,5σ. Thus, the immune status of 40% of the rats subjected to moderate chronic stress was resistant to its factors. For the immune status of the 15 (37,5% rats cluster II typical moderate inhibition microphage, killer and T-cellular links in combination with a strong activation macrophage link. Poststressory changes in immunity in 9 rats (22,5% from cluster I differ from those in cluster II both qualitatively and quantitatively. In particular, the rats in this cluster were found no deviations from the norm or reaction blast transformation T-cells nor NK-lymphocytes levels. However, other parameters of T-link and microhage link suppressed more and settings macrophage link appeared

  13. DNA Tumor Virus Regulation of Host DNA Methylation and Its Implications for Immune Evasion and Oncogenesis.

    Science.gov (United States)

    Kuss-Duerkop, Sharon K; Westrich, Joseph A; Pyeon, Dohun

    2018-02-13

    Viruses have evolved various mechanisms to evade host immunity and ensure efficient viral replication and persistence. Several DNA tumor viruses modulate host DNA methyltransferases for epigenetic dysregulation of immune-related gene expression in host cells. The host immune responses suppressed by virus-induced aberrant DNA methylation are also frequently involved in antitumor immune responses. Here, we describe viral mechanisms and virus-host interactions by which DNA tumor viruses regulate host DNA methylation to evade antiviral immunity, which may contribute to the generation of an immunosuppressive microenvironment during cancer development. Recent trials of immunotherapies have shown promising results to treat multiple cancers; however, a significant number of non-responders necessitate identifying additional targets for cancer immunotherapies. Thus, understanding immune evasion mechanisms of cancer-causing viruses may provide great insights for reversing immune suppression to prevent and treat associated cancers.

  14. DNA Tumor Virus Regulation of Host DNA Methylation and Its Implications for Immune Evasion and Oncogenesis

    Directory of Open Access Journals (Sweden)

    Sharon K. Kuss-Duerkop

    2018-02-01

    Full Text Available Viruses have evolved various mechanisms to evade host immunity and ensure efficient viral replication and persistence. Several DNA tumor viruses modulate host DNA methyltransferases for epigenetic dysregulation of immune-related gene expression in host cells. The host immune responses suppressed by virus-induced aberrant DNA methylation are also frequently involved in antitumor immune responses. Here, we describe viral mechanisms and virus–host interactions by which DNA tumor viruses regulate host DNA methylation to evade antiviral immunity, which may contribute to the generation of an immunosuppressive microenvironment during cancer development. Recent trials of immunotherapies have shown promising results to treat multiple cancers; however, a significant number of non-responders necessitate identifying additional targets for cancer immunotherapies. Thus, understanding immune evasion mechanisms of cancer-causing viruses may provide great insights for reversing immune suppression to prevent and treat associated cancers.

  15. Dynamic Nature of Noncoding RNA Regulation of Adaptive Immune Response

    Directory of Open Access Journals (Sweden)

    Franca Citarella

    2013-08-01

    Full Text Available Immune response plays a fundamental role in protecting the organism from infections; however, dysregulation often occurs and can be detrimental for the organism, leading to a variety of immune-mediated diseases. Recently our understanding of the molecular and cellular networks regulating the immune response, and, in particular, adaptive immunity, has improved dramatically. For many years, much of the focus has been on the study of protein regulators; nevertheless, recent evidence points to a fundamental role for specific classes of noncoding RNAs (ncRNAs in regulating development, activation and homeostasis of the immune system. Although microRNAs (miRNAs are the most comprehensive and well-studied, a number of reports suggest the exciting possibility that long ncRNAs (lncRNAs could mediate host response and immune function. Finally, evidence is also accumulating that suggests a role for miRNAs and other small ncRNAs in autocrine, paracrine and exocrine signaling events, thus highlighting an elaborate network of regulatory interactions mediated by different classes of ncRNAs during immune response. This review will explore the multifaceted roles of ncRNAs in the adaptive immune response. In particular, we will focus on the well-established role of miRNAs and on the emerging role of lncRNAs and circulating ncRNAs, which all make indispensable contributions to the understanding of the multilayered modulation of the adaptive immune response.

  16. Innate immune response development in nestling tree swallows

    Science.gov (United States)

    Stambaugh, T.; Houdek, B.J.; Lombardo, M.P.; Thorpe, P.A.; Caldwell, Hahn D.

    2011-01-01

    We tracked the development of innate immunity in nestling Tree Swallows (Tachycineta bicolor) and compared it to that of adults using blood drawn from nestlings during days 6, 12, and 18 of the ???20-day nestling period and from adults. Innate immunity was characterized using an in vitro assay of the ability of whole blood to kill Escherichia coli. The ability of whole blood to kill E. coli increased as nestlings matured. Neither this component of innate immunity nor right wing chord length on day18 were as developed as in adults indicating that development of the innate immune system and growth both continued after fledging. Narrow sense heritability analyses suggest that females with strong immune responses produced nestlings with strong immune responses. These data suggest nestling Tree Swallows allocated sufficient energy to support rapid growth to enable fledging by day 18, but that further development of innate immunity occurred post-fledging. ?? 2011 by the Wilson Ornithological Society.

  17. Long-chain inulin for stimulating an immune response

    NARCIS (Netherlands)

    de Vos, Paulus; Vogt, Leonie

    2017-01-01

    The invention relates to a long chain inulin for influencing the immune response against a pathogen. The invention also relates to a combination comprising a long chain inulin and a vaccine for influencing the immune response against a pathogen, wherein the long chain inulin is orally administrated.

  18. Cell-mediated immune suppression effect of rocket kerosene through dermal exposure in mice

    Directory of Open Access Journals (Sweden)

    Bing-xin XU

    2015-10-01

    Full Text Available Objective To study the effect of cell-mediated immune suppression effect of rocket kerosene (RK through dermal application in mice. Methods Skin delayed type hypersensitivity (DTH was used to observe the relation of the RK amount the skin exposed and the cellular immune inhibitory function. Different amount of the undiluted fuel was smeared directly onto the dorsal skin of mice. Mice in negative and positive control groups were treated with acetone. After the last exposure, all the mice except those in negative control group were allergized by evenly smearing with 1% dinitrofluorobenzene (DNFB solution on their dorsum. Five days after allergy, 1% DNFB solution was smeared onto right ear of all mice to stimulate the allergic reaction. Twenty-four hours after attack, the auricle swelling, spleen index and thymus index in corresponding mice were determined. In the first series of experiments, different dosages of RK were applied once, and the ICR mice were randomly divided into negative control group, positive control group and experimental group (0.5ml/kg.BW×1, 1ml/kg.BW×1 and 2ml/kg.BW×1 group. In the second series of experiments, the certain and same dosage of RK was applied for different times, and the ICR mice were randomly divided into negative control group, positive control group and experimental group (0.5ml/kg.BW×1, 0.5mL/kg.BW×2, 0.5ml/kg.BW×3, 0.5ml/kg.BW×4 and 0.5mL/kg.BW×5 group. In the third series of experiments, the different dosages of RK were applied more than once, and the ICR mice were randomly divided into negative control group, positive control group and experimental group (0.5ml/kg.BW×5, 1ml/kg.BW×5 and 2ml/kg.BW×5 group. Lymphocyte proliferation experiment in vitrowas conducted to observe the persistent time of the cell-mediated immune suppression in mice by RK dermal exposure. The lymphocyte proliferation induced by concanavalin A (Con A was analyzed by MTT assay, and T lymphocyte subsets (CD3+, CD4+ and CD

  19. Immune Responses Involved in Mycobacterium Tuberculosis Infection

    Directory of Open Access Journals (Sweden)

    Roghayeh Teimourpour

    2016-09-01

    Full Text Available Background and Objectives: Mycobacterium tuberculosis is the causative agent of tuberculosis (TB. Approximately one-third of the world's population is infected with M. tuberculosis. Despite the availability of drug and vaccine, it remains one of the leading causes of death in humans especially in developing countries. Epidemiological studies have indicated that only 10-30% of people exposed to tubercle bacillus are infected with M. tuberculosis, and at least 90% of the infected people finally do not acquire TB. The studies have indicated that the host efficient immune system has essential roles in the control of TB infection such that the highest rate of mortality and morbidity is seen in immunocompromised patients such as people infected with HIV. M. tuberculosis is an obligatory intracellular bacterium. It enters the body mainly through the respiratory tract and alveolar macrophages combat this pathogen most commonly. In addition to alveolar macrophages, various T-cell subpopulations need to be activated to overcome this bacterium's resistance to the host defense systems. CD4+ T cells, through production of several cytokines such as IFN-γ and TNF-α, and CD8+ T cells, through cytotoxic activities and induction of apoptosis in infected cells, play critical roles in inducing appropriate immune responses against M. tuberculosis. Although cell-mediated immunity is the cornerstone of host responses against TB and the recent studies have provided evidence for the importance of humoral and innate immune system in the control of TB, a profound understanding of the immune responses would provide a basis for development of new generations of vaccines and drugs. The present study addresses immune responses involved in M. tuberculosis infection.

  20. Agouron and immune response to commercialize remune immune-based treatment.

    Science.gov (United States)

    James, J S

    1998-06-19

    Agouron Pharmaceuticals agreed in June to collaborate with The Immune Response Corporation on the final development and marketing of an immune-based treatment for HIV. Remune, the vaccine developed by Dr. Jonas Salk, is currently in Phase III randomized trials with 2,500 patients, and the trials are expected to be completed in April 1999. Immune-based treatments have been difficult to test, as there is no surrogate marker, like viral load, to determine if the drug is working. Agouron agreed to participate in the joint venture after reviewing encouraging results from preliminary trials in which remune was taken in combination with highly active antiretroviral drugs.

  1. Modulation of immune responses in stress by Yoga

    Directory of Open Access Journals (Sweden)

    Arora Sarika

    2008-01-01

    Full Text Available Stress is a constant factor in today′s fastpaced life that can jeopardize our health if left unchecked. It is only in the last half century that the role of stress in every ailment from the common cold to AIDS has been emphasized, and the mechanisms involved in this process have been studied. Stress influences the immune response presumably through the activation of the hypothalamic-pituitary adrenal axis, hypothalamic pituitary-gonadal axis, and the sympathetic-adrenal-medullary system. Various neurotransmitters, neuropeptides, hormones, and cytokines mediate these complex bidirectional interactions between the central nervous system (CNS and the immune system. The effects of stress on the immune responses result in alterations in the number of immune cells and cytokine dysregulation. Various stress management strategies such as meditation, yoga, hypnosis, and muscle relaxation have been shown to reduce the psychological and physiological effects of stress in cancers and HIV infection. This review aims to discuss the effect of stress on the immune system and examine how relaxation techniques such as Yoga and meditation could regulate the cytokine levels and hence, the immune responses during stress.

  2. FEATURES OF THE IMMUNE RESPONSE DURING INFECTION AND PROSPECTS FOR THE VACCINES CREATION

    Directory of Open Access Journals (Sweden)

    Davidova T.V.

    2015-12-01

    Full Text Available The influenza virus belongs to the family Orthomyxoviridae and is a major cause of respiratory infections in humans. Each year, influenza viruses cause, according to experts, 3-5 million severe course of the disease and 250 000-500 000 deaths. Influenza A viruses are divided into serotypes based on their surface glycoproteins - known currently 17 subtypes of HA and NA subtypes ten. Upon infection with an influenza virus, both innate and adaptive immune responses are inducing. In recent years the annual seasonal epidemics were causing strains of the virus A (H1N1 and H3N2 and virus B. This may be due to their ability to be unrecognizable virus specific antibodies due to antigenic drift (Figure 1. Seasonal flu vaccine, to be effective, must be updated almost annually, according to new epidemic strains. In this work will discuss various strategies used by influenza viruses to evade innate immune responses and recognition by components of the humoral and cellular immune response, which consequently may result in reduced clearing of the virus and virus-infected cells.The primary targets for influenza viruses are the epithelial cells that line the respiratory tract and which initiate an antiviral immune response upon detection of the virus. The first line of defense is formed by the innate immune system, which is quick but lacks specificity and memory. Innate immunity is formed by physical barriers and innate cellular immune responses. Here, we outline several of the innate defense mechanisms directed against influenza infections. During homeostasis, alveolar macrophages exhibit a relatively quiescent state, producing only low levels of cytokines, and suppress the induction of innate and adaptive immunity. Activated macrophages enhance their pro-inflammatory cytokine response, including IL-6 and TNF-α. Alveolar macrophages have a direct role in limiting viral spread by phagocytosis of apoptotic infected cells and by phagocyte

  3. Stress, Nutrition, and Intestinal Immune Responses in Pigs — A Review

    Directory of Open Access Journals (Sweden)

    In Kyu Lee

    2016-08-01

    Full Text Available Modern livestock production became highly intensive and large scaled to increase production efficiency. This production environment could add stressors affecting the health and growth of animals. Major stressors can include environment (air quality and temperature, nutrition, and infection. These stressors can reduce growth performance and alter immune systems at systemic and local levels including the gastrointestinal tract. Heat stress increases the permeability, oxidative stress, and inflammatory responses in the gut. Nutritional stress from fasting, antinutritional compounds, and toxins induces the leakage and destruction of the tight junction proteins in the gut. Fasting is shown to suppress pro-inflammatory cytokines, whereas deoxynivalenol increases the recruitment of intestinal pro-inflammatory cytokines and the level of lymphocytes in the gut. Pathogenic and viral infections such as Enterotoxigenic E. coli (ETEC and porcine epidemic diarrhea virus can lead to loosening the intestinal epithelial barrier. On the other hand, supplementation of Lactobacillus or Saccharaomyces reduced infectious stress by ETEC. It was noted that major stressors altered the permeability of intestinal barriers and profiles of genes and proteins of pro-inflammatory cytokines and chemokines in mucosal system in pigs. However, it is not sufficient to fully explain the mechanism of the gut immune system in pigs under stress conditions. Correlation and interaction of gut and systemic immune system under major stressors should be better defined to overcome aforementioned obstacles.

  4. Report 10. Cooperative immune responses of different generations of mice

    International Nuclear Information System (INIS)

    Savtsova, Z.D.; Kovbasyuk, S.A.; Yudina, O.Yu.; Zaritskaya, M.Yu.; Voejkova, I.M.; Orlovskij, A.A.; Indyk, V.M.; Serkiz, Ya.I.

    1991-01-01

    The immune status of mice has been assessed by the whole complex of data. The permanent action of low-level radiation has been shown to suppress considerably the rate of reactions of the delayed-type hypersensitivity and graft-versus host disease, as well as NK and specific cytolytic T-lymphocyte activity. The dynamics of accumulation and the levels of antibodies in the serum, lung and trachea extracts are virtually invariable. The resistance of experimental animals to influenza is lower than that of non-irradiated mice of the same line and age. The data obtained indicate that the immune disturbances revealed are connected not only with the alteration of lymphoid cell populations, but also with the alteration of the immune regulation mechanisms

  5. Modulation of immune response by bacterial lipopolysaccharides

    Directory of Open Access Journals (Sweden)

    Gustavo Aldapa-Vega

    2016-08-01

    Full Text Available Lipopolysaccharide (LPS is a molecule that is profusely found on the outer membrane of Gram-negative bacteria and is also a potent stimulator of the immune response. As the main molecule on the bacterial surface, is also the most biologically active. The immune response of the host is activated by the recognition of LPS through Toll-like receptor 4 (TLR4 and this receptor-ligand interaction is closely linked to LPS structure. Microorganisms have evolved systems to control the expression and structure of LPS, producing structural variants that are used for modulating the host immune responses during infection. Examples of this include Helicobacter pylori, Francisella tularensis, Chlamydia trachomatis and Salmonella spp. High concentrations of LPS can cause fever, increased heart rate and lead to septic shock and death. However, at relatively low concentrations some LPS are highly active immunomodulators, which can induce non-specific resistance to invading microorganisms. The elucidation of the molecular and cellular mechanisms involved in the recognition of LPS and its structural variants has been fundamental to understand inflammation and is currently a pivotal field of research to understand the innate immune response, inflammation, the complex host-pathogen relationship and has important implications for the rational development of new immunomodulators and adjuvants.

  6. The immune response to sand fly salivary proteins and its influence on Leishmania immunity

    Directory of Open Access Journals (Sweden)

    Regis eGomes

    2012-05-01

    Full Text Available Leishmaniasis is a vector-borne disease transmitted by bites of phlebotomine sand flies. During Leishmania transmission, sand fly saliva is co-inoculated with parasites into the skin of the mammalian host. Sand fly saliva consists of roughly thirty different salivary proteins, many with known roles linked to blood feeding facilitation. Apart from the anti-hemostatic capacity of saliva, several sand fly salivary proteins have been shown to be immunogenic upon multiple contacts with a mammalian host. Immunization with single immunogenic salivary proteins or exposure to uninfected bites can produce protective immune responses against leishmaniasis. These sand fly salivary proteins induce cellular immune responses and/or antibodies. Antibodies to saliva are not required for protection in a mouse model against leishmaniasis. A strong body of evidence points to the role for saliva-specific T cells producing IFN-γ in the form of a delayed-type hypersensitivity reaction at the bite site as the main protective response. Herein, we review immunity to sand fly salivary proteins in the context of its vector-parasite-host combinations and vaccine potential, as well as some recent advances to shed light on the mechanism of how an immune response to sand fly saliva protects against leishmaniasis.

  7. Modulation of systemic immune responses through commensal gastrointestinal microbiota.

    Directory of Open Access Journals (Sweden)

    Kyle M Schachtschneider

    Full Text Available Colonization of the gastrointestinal (GI tract is initiated during birth and continually seeded from the individual's environment. Gastrointestinal microorganisms play a central role in developing and modulating host immune responses and have been the subject of investigation over the last decades. Animal studies have demonstrated the impact of GI tract microbiota on local gastrointestinal immune responses; however, the full spectrum of action of early gastrointestinal tract stimulation and subsequent modulation of systemic immune responses is poorly understood. This study explored the utility of an oral microbial inoculum as a therapeutic tool to affect porcine systemic immune responses. For this study a litter of 12 pigs was split into two groups. One group of pigs was inoculated with a non-pathogenic oral inoculum (modulated, while another group (control was not. DNA extracted from nasal swabs and fecal samples collected throughout the study was sequenced to determine the effects of the oral inoculation on GI and respiratory microbial communities. The effects of GI microbial modulation on systemic immune responses were evaluated by experimentally infecting with the pathogen Mycoplasma hyopneumoniae. Coughing levels, pathology, toll-like receptors 2 and 6, and cytokine production were measured throughout the study. Sequencing results show a successful modulation of the GI and respiratory microbiomes through oral inoculation. Delayed type hypersensitivity responses were stronger (p = 0.07, and the average coughing levels and respiratory TNF-α variance were significantly lower in the modulated group (p<0.0001 and p = 0.0153, respectively. The M. hyopneumoniae infection study showed beneficial effects of the oral inoculum on systemic immune responses including antibody production, severity of infection and cytokine levels. These results suggest that an oral microbial inoculation can be used to modulate microbial communities, as well as

  8. Sex hormones and the immune response in humans

    NARCIS (Netherlands)

    Bouman, Annechien; Heineman, Maas Jan; Faas, Marijke M.

    2005-01-01

    In addition to their effects on sexual differentiation and reproduction, sex hormones appear to influence the immune system. This results in a sexual dimorphism in the immune response in humans: for instance, females produce more vigorous cellular and more vigorous humoral immune reactions, are more

  9. CpG in Combination with an Inhibitor of Notch Signaling Suppresses Formalin-Inactivated Respiratory Syncytial Virus-Enhanced Airway Hyperresponsiveness and Inflammation by Inhibiting Th17 Memory Responses and Promoting Tissue-Resident Memory Cells in Lungs.

    Science.gov (United States)

    Zhang, Lei; Li, Hongyong; Hai, Yan; Yin, Wei; Li, Wenjian; Zheng, Boyang; Du, Xiaomin; Li, Na; Zhang, Zhengzheng; Deng, Yuqing; Zeng, Ruihong; Wei, Lin

    2017-05-15

    Respiratory syncytial virus (RSV) is the leading cause of childhood hospitalizations. The formalin-inactivated RSV (FI-RSV) vaccine-enhanced respiratory disease (ERD) has been an obstacle to the development of a safe and effective killed RSV vaccine. Agonists of Toll-like receptor (TLR) have been shown to regulate immune responses induced by FI-RSV. Notch signaling plays critical roles during the differentiation and effector function phases of innate and adaptive immune responses. Cross talk between TLR and Notch signaling pathways results in fine-tuning of TLR-triggered innate inflammatory responses. We evaluated the impact of TLR and Notch signaling on ERD in a murine model by administering CpG, an agonist of TLR9, in combination with L685,458, an inhibitor of Notch signaling during FI-RSV immunization. Activation with CpG or deficiency of MyD88-dependent TLR signaling did not alleviate airway inflammation in FI-RSV-immunized mice. Activation or inhibition of Notch signaling with Dll4, one of the Notch ligands, or L685,458 did not suppress FI-RSV-enhanced airway inflammation either. However, the CpG together with L685,458 markedly inhibited FI-RSV-enhanced airway hyperresponsiveness, weight loss, and lung inflammation. Interestingly, CpG plus L685,458 completely inhibited FI-RSV-associated Th17 and Th17-associated proinflammatory chemokine responses in lungs following RSV challenge but not Th1 or Th2, memory responses. In addition, FI-RSV plus CpG plus L685,458 promoted protective CD8 + lung tissue-resident memory (TRM) cells. These results indicate that activation of TLR signaling combined with inhibition of Notch signaling prevent FI-RSV ERD, and the mechanism appears to involve suppressing proinflammatory Th17 memory responses and promoting protective TRM in lungs. IMPORTANCE RSV is the most important cause of lower respiratory tract infections in infants. The FI-RSV-enhanced respiratory disease (ERD) is a major impediment to the development of a safe and

  10. Bovine immune response to inoculation with Neospora caninum surface antigen SRS2 lipopeptides mimics immune response to infection with live parasites.

    Science.gov (United States)

    Baszler, Timothy V; Shkap, Varda; Mwangi, Waithaka; Davies, Christopher J; Mathison, Bruce A; Mazuz, Monica; Resnikov, Dror; Fish, Lea; Leibovitch, Benjamin; Staska, Lauren M; Savitsky, Igor

    2008-04-01

    Infection of cattle with Neospora caninum protozoa, the causative agent of bovine protozoal abortion, results in robust cellular and humoral immune responses, particularly CD4(+) T-lymphocyte activation and gamma interferon (IFN-gamma) secretion. In the present study, N. caninum SRS2 (NcSRS2) T-lymphocyte-epitope-bearing subunits were incorporated into DNA and peptide preparations to assess CD4(+) cell proliferation and IFN-gamma T-lymphocyte-secretion immune responses in cattle with predetermined major histocompatibility complex (MHC) genotypes. In order to optimize dendritic-cell processing, NcSRS2 DNA vaccine was delivered with granulocyte macrophage-colony-stimulating factor and Flt3 ligand adjuvant. The synthesized NcSRS2 peptides were coupled with a palmitic acid molecule (lipopeptide) and delivered with Freund's adjuvant. Cattle vaccinated with NcSRS2 DNA vaccine alone did not induce T-lymphocyte activation or IFN-gamma secretion, whereas subsequent booster inoculation with NcSRS2-lipopeptides induced robust NcSRS2-specific immune responses. Compared to the response in control animals, NcSRS2-lipopeptide-immunized cattle had significantly increased NcSRS2-specific T-lymphocyte proliferation, numbers of IFN-gamma-secreting peripheral blood mononuclear cells, and immunoglobulin G1 (IgG1) and IgG2a antibody levels. The findings show that N. caninum NcSRS2 subunits bearing T-lymphocyte epitopes induced cell-mediated immune responses similar to the protective immune responses previously described against live parasite infection, namely T-lymphocyte activation and IFN-gamma secretion. The findings support the investigation of NcSRS2 immunogens for protection against N. caninum-induced fetal infection and abortion in cattle.

  11. The innate immune response during urinary tract infection and pyelonephritis.

    Science.gov (United States)

    Spencer, John David; Schwaderer, Andrew L; Becknell, Brian; Watson, Joshua; Hains, David S

    2014-07-01

    Despite its proximity to the fecal flora, the urinary tract is considered sterile. The precise mechanisms by which the urinary tract maintains sterility are not well understood. Host immune responses are critically important in the antimicrobial defense of the urinary tract. During recent years, considerable advances have been made in our understanding of the mechanisms underlying immune homeostasis of the kidney and urinary tract. Dysfunctions in these immune mechanisms may result in acute disease, tissue destruction and overwhelming infection. The objective of this review is to provide an overview of the innate immune response in the urinary tract in response to microbial assault. In doing so, we focus on the role of antimicrobial peptides-a ubiquitous component of the innate immune response.

  12. Inhibition of Langerhans cell maturation by human papillomavirus type 16: a novel role for the annexin A2 heterotetramer in immune suppression1

    Science.gov (United States)

    Woodham, Andrew W.; Raff, Adam B.; Raff, Laura M.; Da Silva, Diane M.; Yan, Lisa; Skeate, Joseph G.; Wong, Michael K.; Lin, Yvonne G.; Kast, W. Martin

    2014-01-01

    High-risk human papillomaviruses (HPV) are sexually transmitted viruses causally associated with several cancers. During its natural life cycle, HPV16, the most common high-risk genotype, infects the epithelial basal cellsin a process facilitated through a recently identified receptor, the annexin A2 heterotetramer (A2t). During infection, HPV16 also interacts with Langerhans cells (LC), the antigen presenting cells of the epithelium, inducing immune suppression, which is mediated by the HPV16 L2 minor capsid protein. Despite the importance of these virus-immune cell interactions, the specific mechanisms of HPV16 entry into LC and HPV16-induced immune suppression remain undefined. An N-terminal peptide of HPV16 L2 (aa 108-126) has been shown to specifically interact with A2t. Here, we show that incubation of human LC with this peptide blocks binding of HPV16. Inhibiting this interaction with an A2t ligand or by siRNA downregulation of A2t, significantly decreases HPV16 internalization into LC in an L2-dependent manner. A2t is associated with suppression of LC maturation as demonstrated through attenuated secretion of Th1-associated cytokines and decreased surface expression of MHC II on LC exposed to A2t. Conversely, small molecule inhibition of A2t prevents HPV16-induced suppression of LC immune function as indicated by significantly increased secretion of inflammatory cytokines and surface expression of CD86 in HPV16 treated LC pre-exposed to A2t inhibitors. These results demonstrate that HPV16 suppresses LC maturation through an interaction with A2t, revealing a novel role for this protein. PMID:24719459

  13. Models for Immune Response and Immune Evasion in MSI Cancer and Lynch Syndrome

    OpenAIRE

    Özcan, Mine

    2017-01-01

    Microsatellite-unstable (MSI) cancers occurring in the context of the hereditary Lynch syndrome or as sporadic cancers elicit pronounced tumor-specific immune responses. The pronounced immune response was shown to be closely associated with frameshift peptides (FSP) that are generated as a result of deficiency in DNA mismatch repair system leading to insertion/deletion mutations in coding microsatellites (cMS). FSP neoantigens are long antigenic amino acid stretches that bear m...

  14. Immune and stress responses in oysters with insights on adaptation.

    Science.gov (United States)

    Guo, Ximing; He, Yan; Zhang, Linlin; Lelong, Christophe; Jouaux, Aude

    2015-09-01

    Oysters are representative bivalve molluscs that are widely distributed in world oceans. As successful colonizers of estuaries and intertidal zones, oysters are remarkably resilient against harsh environmental conditions including wide fluctuations in temperature and salinity as well as prolonged air exposure. Oysters have no adaptive immunity but can thrive in microbe-rich estuaries as filter-feeders. These unique adaptations make oysters interesting models to study the evolution of host-defense systems. Recent advances in genomic studies including sequencing of the oyster genome have provided insights into oyster's immune and stress responses underlying their amazing resilience. Studies show that the oyster genomes are highly polymorphic and complex, which may be key to their resilience. The oyster genome has a large gene repertoire that is enriched for immune and stress response genes. Thousands of genes are involved in oyster's immune and stress responses, through complex interactions, with many gene families expanded showing high sequence, structural and functional diversity. The high diversity of immune receptors and effectors may provide oysters with enhanced specificity in immune recognition and response to cope with diverse pathogens in the absence of adaptive immunity. Some members of expanded immune gene families have diverged to function at different temperatures and salinities or assumed new roles in abiotic stress response. Most canonical innate immunity pathways are conserved in oysters and supported by a large number of diverse and often novel genes. The great diversity in immune and stress response genes exhibited by expanded gene families as well as high sequence and structural polymorphisms may be central to oyster's adaptation to highly stressful and widely changing environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. The Tobacco Smoke Component, Acrolein, Suppresses Innate Macrophage Responses by Direct Alkylation of c-Jun N-Terminal Kinase

    Science.gov (United States)

    Hristova, Milena; Spiess, Page C.; Kasahara, David I.; Randall, Matthew J.; Deng, Bin

    2012-01-01

    The respiratory innate immune system is often compromised by tobacco smoke exposure, and previous studies have indicated that acrolein, a reactive electrophile in tobacco smoke, may contribute to the immunosuppressive effects of smoking. Exposure of mice to acrolein at concentrations similar to those in cigarette smoke (5 ppm, 4 h) significantly suppressed alveolar macrophage responses to bacterial LPS, indicated by reduced induction of nitric oxide synthase 2, TNF-α, and IL-12p40. Mechanistic studies with bone marrow–derived macrophages or MH-S macrophages demonstrated that acrolein (1–30 μM) attenuated these LPS-mediated innate responses in association with depletion of cellular glutathione, although glutathione depletion itself was not fully responsible for these immunosuppressive effects. Inhibitory actions of acrolein were most prominent after acute exposure (acrolein with critical signaling pathways. Among the key signaling pathways involved in innate macrophage responses, acrolein marginally affected LPS-mediated activation of nuclear factor (NF)-κB, and significantly suppressed phosphorylation of c-Jun N-terminal kinase (JNK) and activation of c-Jun. Using biotin hydrazide labeling, NF-κB RelA and p50, as well as JNK2, a critical mediator of innate macrophage responses, were revealed as direct targets for alkylation by acrolein. Mass spectrometry analysis of acrolein-modified recombinant JNK2 indicated adduction to Cys41 and Cys177, putative important sites involved in mitogen-activated protein kinase (MAPK) kinase (MEK) binding and JNK2 phosphorylation. Our findings indicate that direct alkylation of JNK2 by electrophiles, such as acrolein, may be a prominent and hitherto unrecognized mechanism in their immunosuppressive effects, and may be a major factor in smoking-induced effects on the immune system. PMID:21778411

  16. Glycan gimmickry by parasitic helminths: a strategy for modulating the host immune response?

    Science.gov (United States)

    van Die, Irma; Cummings, Richard D

    2010-01-01

    Parasitic helminths (worms) co-evolved with vertebrate immune systems to enable long-term survival of worms in infected hosts. Among their survival strategies, worms use their glycans within glycoproteins and glycolipids, which are abundant on helminth surfaces and in their excretory/ secretory products, to regulate and suppress host immune responses. Many helminths express unusual and antigenic (nonhost-like) glycans, including those containing polyfucose, tyvelose, terminal GalNAc, phosphorylcholine, methyl groups, and sugars in unusual linkages. In addition, some glycan antigens are expressed that share structural features with those in their intermediate and vertebrate hosts (host-like glycans), including Le(X) (Galbeta1-4[Fucalpha1-3]GlcNAc-), LDNF (GalNAcbeta1-4[Fucalpha1-3]GlcNAc-), LDN (GalNAcbeta1-4GlcNAc-), and Tn (GalNAcalpha1-O-Thr/Ser) antigens. The expression of host-like glycan determinants is remarkable and suggests that helminths may gain advantages by synthesizing such glycans. The expression of host-like glycans by parasites previously led to the concept of "molecular mimicry," in which molecules are either derived from the pathogen or acquired from the host to evade recognition by the host immune system. However, recent discoveries into the potential of host glycan-binding proteins (GBPs), such as C-type lectin receptors and galectins, to functionally interact with various host-like helminth glycans provide new insights. Host GBPs through their interactions with worm-derived glycans participate in shaping innate and adaptive immune responses upon infection. We thus propose an alternative concept termed "glycan gimmickry," which is defined as an active strategy of parasites to use their glycans to target GBPs within the host to promote their survival.

  17. Immunization with avian metapneumovirus harboring chicken Fc induces higher immune responses.

    Science.gov (United States)

    Paudel, Sarita; Easwaran, Maheswaran; Jang, Hyun; Jung, Ho-Kyoung; Kim, Joo-Hun; Shin, Hyun-Jin

    2016-07-15

    In this study, we evaluated the immune responses of avian metapneumovirus harboring chicken Fc molecule. Stable Vero cells expressing chicken Fc chimera on its surface (Vero-cFc) were established, and we confirmed that aMPV grown in Vero-cFc incorporated host derived chimera Fc into the aMPV virions. Immunization of chicken with aMPV-cFc induced higher level of antibodies and inflammatory cytokines; (Interferon (IFN)-γ and Interleukin (IL)-1β) compared to those of aMPV. The increased levels of antibodies and inflammatory cytokines in chicken immunized with aMPV-cFc were statistically significantly (p<0.05) to that of aMPV and control. The aMPV-cFc group also generated the highest neutralizing antibody response. After challenges, chickens immunized with aMPV-cFc showed much less pathological signs in nasal turbinates and trachea so that we could confirm aMPV-cFc induced higher protection than that of aMPV. The greater ability of aMPV harboring chicken Fc to that of aMPV presented it as a possible vaccine candidate. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Probiotics, antibiotics and the immune responses to vaccines.

    Science.gov (United States)

    Praharaj, Ira; John, Sushil M; Bandyopadhyay, Rini; Kang, Gagandeep

    2015-06-19

    Orally delivered vaccines have been shown to perform poorly in developing countries. There are marked differences in the structure and the luminal environment of the gut in developing countries resulting in changes in immune and barrier function. Recent studies using newly developed technology and analytic methods have made it increasingly clear that the intestinal microbiota activate a multitude of pathways that control innate and adaptive immunity in the gut. Several hypotheses have been proposed for the underperformance of oral vaccines in developing countries, and modulation of the intestinal microbiota is now being tested in human clinical trials. Supplementation with specific strains of probiotics has been shown to have modulatory effects on intestinal and systemic immune responses in animal models and forms the basis for human studies with vaccines. However, most studies published so far that have evaluated the immune response to vaccines in children and adults have been small and results have varied by age, antigen, type of antibody response and probiotic strain. Use of anthelminthic drugs in children has been shown to possibly increase immunogenicity following oral cholera vaccination, lending further support to the rationale for modulation of the immune response to oral vaccination through the intestinal microbiome. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  19. Evaluation of Mucosal and Systemic Immune Responses Elicited by GPI-0100-Adjuvanted Influenza Vaccine Delivered by Different Immunization Strategies

    NARCIS (Netherlands)

    Liu, Heng; Patil, Harshad P.; de Vries-Idema, Jacqueline; Wilschut, Jan; Huckriede, Anke

    2013-01-01

    Vaccines for protection against respiratory infections should optimally induce a mucosal immune response in the respiratory tract in addition to a systemic immune response. However, current parenteral immunization modalities generally fail to induce mucosal immunity, while mucosal vaccine delivery

  20. Characterization of host immune responses in Ebola virus infections.

    Science.gov (United States)

    Wong, Gary; Kobinger, Gary P; Qiu, Xiangguo

    2014-06-01

    Ebola causes highly lethal hemorrhagic fever in humans with no licensed countermeasures. Its virulence can be attributed to several immunoevasion mechanisms: an early inhibition of innate immunity started by the downregulation of type I interferon, epitope masking and subversion of the adaptive humoural immunity by secreting a truncated form of the viral glycoprotein. Deficiencies in specific and non-specific antiviral responses result in unrestricted viral replication and dissemination in the host, causing death typically within 10 days after the appearance of symptoms. This review summarizes the host immune response to Ebola infection, and highlights the short- and long-term immune responses crucial for protection, which holds implications for the design of future vaccines and therapeutics.

  1. Evasion of host immune defenses by human papillomavirus.

    Science.gov (United States)

    Westrich, Joseph A; Warren, Cody J; Pyeon, Dohun

    2017-03-02

    A majority of human papillomavirus (HPV) infections are asymptomatic and self-resolving in the absence of medical interventions. Various innate and adaptive immune responses, as well as physical barriers, have been implicated in controlling early HPV infections. However, if HPV overcomes these host immune defenses and establishes persistence in basal keratinocytes, it becomes very difficult for the host to eliminate the infection. The HPV oncoproteins E5, E6, and E7 are important in regulating host immune responses. These oncoproteins dysregulate gene expression, protein-protein interactions, posttranslational modifications, and cellular trafficking of critical host immune modulators. In addition to the HPV oncoproteins, sequence variation and dinucleotide depletion in papillomavirus genomes has been suggested as an alternative strategy for evasion of host immune defenses. Since anti-HPV host immune responses are also considered to be important for antitumor immunity, immune dysregulation by HPV during virus persistence may contribute to immune suppression essential for HPV-associated cancer progression. Here, we discuss cellular pathways dysregulated by HPV that allow the virus to evade various host immune defenses. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  2. The role of type III effectors from Xanthomonas axonopodis pv. manihotis in virulence and suppression of plant immunity.

    Science.gov (United States)

    Medina, Cesar Augusto; Reyes, Paola Andrea; Trujillo, Cesar Augusto; Gonzalez, Juan Luis; Bejarano, David Alejandro; Montenegro, Nathaly Andrea; Jacobs, Jonathan M; Joe, Anna; Restrepo, Silvia; Alfano, James R; Bernal, Adriana

    2018-03-01

    Xanthomonas axonopodis pv. manihotis (Xam) causes cassava bacterial blight, the most important bacterial disease of cassava. Xam, like other Xanthomonas species, requires type III effectors (T3Es) for maximal virulence. Xam strain CIO151 possesses 17 predicted T3Es belonging to the Xanthomonas outer protein (Xop) class. This work aimed to characterize nine Xop effectors present in Xam CIO151 for their role in virulence and modulation of plant immunity. Our findings demonstrate the importance of XopZ, XopX, XopAO1 and AvrBs2 for full virulence, as well as a redundant function in virulence between XopN and XopQ in susceptible cassava plants. We tested their role in pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI) using heterologous systems. AvrBs2, XopR and XopAO1 are capable of suppressing PTI. ETI suppression activity was only detected for XopE4 and XopAO1. These results demonstrate the overall importance and diversity in functions of major virulence effectors AvrBs2 and XopAO1 in Xam during cassava infection. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  3. Initiation of innate immune responses by surveillance of homeostasis perturbations.

    Science.gov (United States)

    Colaço, Henrique G; Moita, Luis F

    2016-07-01

    Pathogen recognition, signaling transduction pathways, and effector mechanisms are necessary steps of innate immune responses that play key roles in the early phase of defense and in the stimulation of the later specific response of adaptive immunity. Here, we argue that in addition to the direct recognition of conserved common structural and functional molecular signatures of microorganisms using pattern recognition receptors, hosts can mount an immune response following the sensing of disruption in homeostasis as proximal reporters for infections. Surveillance of disruption of core cellular activities leading to defense responses is a flexible strategy that requires few additional components and that can effectively detect relevant threats. It is likely to be evolutionarily very conserved and ancient because it is operational in organisms that lack pattern recognition triggered immunity. A homeostasis disruption model of immune response initiation and modulation has broad implications for pathophysiology and treatment of disease and might constitute an often overlooked but central component of a comprehensive conceptual framework for innate immunity. © 2016 Federation of European Biochemical Societies.

  4. Respons imun humoral pada pulpitis (Humoral immune response on pulpitis

    Directory of Open Access Journals (Sweden)

    Trijoedani Widodo

    2005-06-01

    Full Text Available Pulpitis is an inflammation process on dental pulp tissue, and usually as the continuous of caries. The microorganism in the caries is a potential immunogenic triggering the immune respons, both humoral and celluler immune responses. The aim of this research is to explain the humoral immune response changes in the dental pulp tissues of pulpitis. This research was done on three group samples: Irreversible pulpitis, Reversible pulpitis and sound teeth as the control group. The result showed that there were three pulpitis immunopathologic patterns: the sound teeth immunopathologic pattern showing a low humoral immune response, in a low level of IgG, IgA and IgM, the reversible pulpitis pattern showing that in a higher humoral immune response, IgG and IgA decreased but IgM increased, the irreversible pulpitis pattern showing that IgG and IgM increased, but it couldn't be repaired although it has highly immunity, and it showed an unusually low level of IgA. This low level of IgA meant that irreversible pulpitis had a low mucosal immunity.

  5. Regulation of immune responses and tolerance: the microRNA perspective

    Science.gov (United States)

    Chen, Chang-Zheng; Schaffert, Steven; Fragoso, Rita; Loh, Christina

    2013-01-01

    Summary Much has been learned about the molecular and cellular components critical for the control of immune responses and tolerance. It remains a challenge, however, to control the immune response and tolerance at the system level without causing significant toxicity to normal tissues. Recent studies suggest that microRNA (miRNA) genes, an abundant class of non-coding RNA genes that produce characteristic approximately 22 nucleotides small RNAs, play important roles in immune cells. In this article, we discuss emerging knowledge regarding the functions of miRNA genes in the immune system. We delve into the roles of miRNAs in regulating signaling strength and threshold, homeostasis, and the dynamics of the immune response and tolerance during normal and pathogenic immunological conditions. We also present observations based on analyzes of miR-181 family genes that indicate the potential functions of primary and/ or precursor miRNAs in target recognition and explore the impact of these findings on target identification. Finally, we illustrate that despite the subtle effects of miRNAs on gene expression, miRNAs have the potential to influence the outcomes of normal and pathogenic immune responses by controlling the quantitative and dynamic aspects of immune responses. Tuning miRNA functions in immune cells, through gain- and loss-of-function approaches in mice, may reveal novel approach to restore immune equilibrium from pathogenic conditions, such as autoimmune disease and leukemia, without significant toxicity. PMID:23550642

  6. Regulation of immune responses and tolerance: the microRNA perspective.

    Science.gov (United States)

    Chen, Chang-Zheng; Schaffert, Steven; Fragoso, Rita; Loh, Christina

    2013-05-01

    Much has been learned about the molecular and cellular components critical for the control of immune responses and tolerance. It remains a challenge, however, to control the immune response and tolerance at the system level without causing significant toxicity to normal tissues. Recent studies suggest that microRNA (miRNA) genes, an abundant class of non-coding RNA genes that produce characteristic approximately 22 nucleotides small RNAs, play important roles in immune cells. In this article, we discuss emerging knowledge regarding the functions of miRNA genes in the immune system. We delve into the roles of miRNAs in regulating signaling strength and threshold, homeostasis, and the dynamics of the immune response and tolerance during normal and pathogenic immunological conditions. We also present observations based on analyzes of miR-181 family genes that indicate the potential functions of primary and/or precursor miRNAs in target recognition and explore the impact of these findings on target identification. Finally, we illustrate that despite the subtle effects of miRNAs on gene expression, miRNAs have the potential to influence the outcomes of normal and pathogenic immune responses by controlling the quantitative and dynamic aspects of immune responses. Tuning miRNA functions in immune cells, through gain- and loss-of-function approaches in mice, may reveal novel approach to restore immune equilibrium from pathogenic conditions, such as autoimmune disease and leukemia, without significant toxicity. © 2013 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  7. Colorectal cancer cells suppress CD4+ T cells immunity through canonical Wnt signaling.

    Science.gov (United States)

    Sun, Xuan; Liu, Suoning; Wang, Daguang; Zhang, Yang; Li, Wei; Guo, Yuchen; Zhang, Hua; Suo, Jian

    2017-02-28

    Understanding how colorectal cancer escapes from immunosurveillance and immune attack is important for developing novel immunotherapies for colorectal cancer. In this study we evaluated the role of canonical Wnt signaling in the regulation of T cell function in a mouse colorectal cancer model. We found that colorectal cancer cells expressed abundant Wnt ligands, and intratumoral T cells expressed various Frizzled proteins. Meanwhile, both active β-catenin and total β-catenin were elevated in intratumoral T cells. In vitro study indicated that colorectal cancer cells suppressed IFN-γ expression and increased IL-17a expression in activated CD4+ T cells. However, the cytotoxic activity of CD8+ T cells was not altered by colorectal cancer cells. To further evaluate the importance of Wnt signaling for CD4+ T cell-mediated cancer immunity, β-catenin expression was enforced in CD4+ T cells using lentiviral transduction. In an adoptive transfer model, enforced expression of β-catenin in intratumoral CD4+ T cells increased IL-17a expression, enhanced proliferation and inhibited apoptosis of colorectal cancer cells. Taken together, our study disclosed a new mechanism by which colorectal cancer impairs T cell immunity.

  8. Seasonal changes in cell mediated immune responses to soluble Plasmodium falciparum antigens in children with haemoglobin AA and haemoglobin AS

    DEFF Research Database (Denmark)

    Abu-Zeid, Y A; Abdulhadi, N H; Theander, T G

    1992-01-01

    of tuberculin (PPD). The lymphoproliferative responses to SPAg of the paired PBMC samples showed 2 distinct seasonal changes in relation to the haemoglobin phenotype. In HbAA children, the lymphoproliferative responses to SPAg were suppressed during the malaria season. In contrast, they were enhanced in Hb......AS children during the malaria season. No distinct seasonal change in the response to PPD was found in relation to the haemoglobin phenotype. The study points to the role of the sickle cell trait in modulating the cellular immune responses to falciparum malaria....

  9. Chemokine-mediated immune responses in the female genital tract mucosa.

    Science.gov (United States)

    Deruaz, Maud; Luster, Andrew D

    2015-04-01

    The genital tract mucosa is the site where sexually transmitted infections gain entry to the host. The immune response at this site is thus critical to provide innate protection against pathogens that are seen for the very first time as well as provide long-term pathogen-specific immunity, which would be required for an effective vaccine against sexually transmitted infection. A finely regulated immune response is therefore required to provide an effective barrier against pathogens without compromising the capacity of the genital tract to allow for successful conception and fetal development. We review recent developments in our understanding of the immune response in the female genital tract to infectious pathogens, using herpes simplex virus-2, human immunodeficiency virus-1 and Chlamydia trachomatis as examples, with a particular focus on the role of chemokines in orchestrating immune cell migration necessary to achieve effective innate and adaptive immune responses in the female genital tract.

  10. Risk factors for discordant immune response among HIV-infected ...

    African Journals Online (AJOL)

    Risk factors for discordant immune response among HIV-infected patients initiating antiretroviral therapy: A retrospective cohort study. ... Multivariate logistic regression models were used to estimate adjusted odds ratios (AORs) to determine associations between discordant immune response and clinical and demographic ...

  11. Phase Ib Study of Immune Biomarker Modulation with Neoadjuvant Cetuximab and TLR8 Stimulation in Head and Neck Cancer to Overcome Suppressive Myeloid Signals.

    Science.gov (United States)

    Shayan, Gulidanna; Kansy, Benjamin A; Gibson, Sandra P; Srivastava, Raghvendra M; Bryan, James Kyle; Bauman, Julie E; Ohr, James; Kim, Seungwon; Duvvuri, Umamaheswar; Clump, David A; Heron, Dwight E; Johnson, Jonas T; Hershberg, Robert M; Ferris, Robert L

    2018-01-01

    Purpose: The response rate of patients with head and neck squamous cell carcinoma (HNSCC) to cetuximab therapy is only 15% to 20%, despite frequent EGFR overexpression. Because immunosuppression is common in HNSCC, we hypothesized that adding a proinflammatory TLR8 agonist to cetuximab therapy might result in enhanced T-lymphocyte stimulation and anti-EGFR-specific priming. Experimental Design: Fourteen patients with previously untreated HNSCC were enrolled in this neoadjuvant trial and treated preoperatively with 3 to 4 weekly doses of motolimod (2.5 mg/m 2 ) and cetuximab. Correlative tumor and peripheral blood specimens were obtained at baseline and at the time of surgical resection and analyzed for immune biomarker changes. Preclinical in vitro studies were also performed to assess the effect of cetuximab plus motolimod on myeloid cells. Results: TLR8 stimulation skewed monocytes toward an M1 phenotype and reversed myeloid-derived suppressor cell (MDSC) suppression of T-cell proliferation in vitro These data were validated in a prospective phase Ib neoadjuvant trial, in which fewer MDSC and increased M1 monocyte infiltration were found in tumor-infiltrating lymphocytes. Motolimod plus cetuximab also decreased induction of Treg and reduced markers of suppression, including CTLA-4, CD73, and membrane-bound TGFβ. Significantly increased circulating EGFR-specific T cells were observed, concomitant with enhanced CD8 + T-cell infiltration into tumors. These T cells manifested increased T-cell receptor (TCR) clonality, upregulation of the costimulatory receptor CD27, and downregulation of inhibitory receptor TIGIT. Conclusions: Enhanced inflammatory stimulation in the tumor microenvironment using a TLR agonist overcomes suppressive myeloid and regulatory cells, enhancing the cellular antitumor immune response by therapeutic mAb in HNSCC. Clin Cancer Res; 24(1); 62-72. ©2017 AACR . ©2017 American Association for Cancer Research.

  12. ATP Release from Chemotherapy-Treated Dying Leukemia Cells Elicits an Immune Suppressive Effect by Increasing Regulatory T Cells and Tolerogenic Dendritic Cells.

    Science.gov (United States)

    Lecciso, Mariangela; Ocadlikova, Darina; Sangaletti, Sabina; Trabanelli, Sara; De Marchi, Elena; Orioli, Elisa; Pegoraro, Anna; Portararo, Paola; Jandus, Camilla; Bontadini, Andrea; Redavid, Annarita; Salvestrini, Valentina; Romero, Pedro; Colombo, Mario P; Di Virgilio, Francesco; Cavo, Michele; Adinolfi, Elena; Curti, Antonio

    2017-01-01

    Chemotherapy-induced immunogenic cell death can favor dendritic cell (DC) cross-priming of tumor-associated antigens for T cell activation thanks to the release of damage-associated molecular patterns, including ATP. Here, we tested the hypothesis that in acute myeloid leukemia (AML), ATP release, along with its well-known immune stimulatory effect, may also contribute to the generation of an immune suppressive microenvironment. In a cohort of AML patients, undergoing combined daunorubicin and cytarabine chemotherapy, a population of T regulatory cells (Tregs) with suppressive phenotype, expressing the immune checkpoint programmed cell death protein 1 (PD-1), was significantly increased. Moving from these results, initial in vitro data showed that daunorubicin was more effective than cytarabine in modulating DC function toward Tregs induction and such difference was correlated with the higher capacity of daunorubicin to induce ATP release from treated AML cells. DCs cultured with daunorubicin-treated AML cells upregulated indoleamine 2,3-dioxygenase 1 (IDO1), which induced anti-leukemia Tregs. These data were confirmed in vivo as daunorubicin-treated mice show an increase in extracellular ATP levels with increased number of Tregs, expressing PD-1 and IDO1 + CD39 + DCs. Notably, daunorubicin failed to induce Tregs and tolerogenic DCs in mice lacking the ATP receptor P2X7. Our data indicate that ATP release from chemotherapy-treated dying cells contributes to create an immune suppressive microenvironment in AML.

  13. Role of Polyamines in Immune Cell Functions

    Directory of Open Access Journals (Sweden)

    Rebecca S. Hesterberg

    2018-03-01

    Full Text Available The immune system is remarkably responsive to a myriad of invading microorganisms and provides continuous surveillance against tissue damage and developing tumor cells. To achieve these diverse functions, multiple soluble and cellular components must react in an orchestrated cascade of events to control the specificity, magnitude and persistence of the immune response. Numerous catabolic and anabolic processes are involved in this process, and prominent roles for l-arginine and l-glutamine catabolism have been described, as these amino acids serve as precursors of nitric oxide, creatine, agmatine, tricarboxylic acid cycle intermediates, nucleotides and other amino acids, as well as for ornithine, which is used to synthesize putrescine and the polyamines spermidine and spermine. Polyamines have several purported roles and high levels of polyamines are manifest in tumor cells as well in autoreactive B- and T-cells in autoimmune diseases. In the tumor microenvironment, l-arginine catabolism by both tumor cells and suppressive myeloid cells is known to dampen cytotoxic T-cell functions suggesting there might be links between polyamines and T-cell suppression. Here, we review studies suggesting roles of polyamines in normal immune cell function and highlight their connections to autoimmunity and anti-tumor immune cell function.

  14. A simple non-linear model of immune response

    International Nuclear Information System (INIS)

    Gutnikov, Sergei; Melnikov, Yuri

    2003-01-01

    It is still unknown why the adaptive immune response in the natural immune system based on clonal proliferation of lymphocytes requires interaction of at least two different cell types with the same antigen. We present a simple mathematical model illustrating that the system with separate types of cells for antigen recognition and patogen destruction provides more robust adaptive immunity than the system where just one cell type is responsible for both recognition and destruction. The model is over-simplified as we did not have an intention of describing the natural immune system. However, our model provides a tool for testing the proposed approach through qualitative analysis of the immune system dynamics in order to construct more sophisticated models of the immune systems that exist in the living nature. It also opens a possibility to explore specific features of highly non-linear dynamics in nature-inspired computational paradigms like artificial immune systems and immunocomputing . We expect this paper to be of interest not only for mathematicians but also for biologists; therefore we made effort to explain mathematics in sufficient detail for readers without professional mathematical background

  15. Systems biology of neutrophil differentiation and immune response

    DEFF Research Database (Denmark)

    Theilgaard-Mönch, Kim; Porse, Bo T; Borregaard, Niels

    2005-01-01

    Systems biology has emerged as a new scientific field, which aims at investigating biological processes at the genomic and proteomic levels. Recent studies have unravelled aspects of neutrophil differentiation and immune responses at the systems level using high-throughput technologies. These stu......Systems biology has emerged as a new scientific field, which aims at investigating biological processes at the genomic and proteomic levels. Recent studies have unravelled aspects of neutrophil differentiation and immune responses at the systems level using high-throughput technologies....... These studies have identified a plethora of novel effector proteins stored in the granules of neutrophils. In addition, these studies provide evidence that neutrophil differentiation and immune response are governed by a highly coordinated transcriptional programme that regulates cellular fate and function...

  16. A Drosophila immune response against Ras-induced overgrowth

    Directory of Open Access Journals (Sweden)

    Thomas Hauling

    2014-03-01

    Full Text Available Our goal is to characterize the innate immune response against the early stage of tumor development. For this, animal models where genetic changes in specific cells and tissues can be performed in a controlled way have become increasingly important, including the fruitfly Drosophila melanogaster. Many tumor mutants in Drosophila affect the germline and, as a consequence, also the immune system itself, making it difficult to ascribe their phenotype to a specific tissue. Only during the past decade, mutations have been induced systematically in somatic cells to study the control of tumorous growth by neighboring cells and by immune cells. Here we show that upon ectopic expression of a dominant-active form of the Ras oncogene (RasV12, both imaginal discs and salivary glands are affected. Particularly, the glands increase in size, express metalloproteinases and display apoptotic markers. This leads to a strong cellular response, which has many hallmarks of the granuloma-like encapsulation reaction, usually mounted by the insect against larger foreign objects. RNA sequencing of the fat body reveals a characteristic humoral immune response. In addition we also identify genes that are specifically induced upon expression of RasV12. As a proof-of-principle, we show that one of the induced genes (santa-maria, which encodes a scavenger receptor, modulates damage to the salivary glands. The list of genes we have identified provides a rich source for further functional characterization. Our hope is that this will lead to a better understanding of the earliest stage of innate immune responses against tumors with implications for mammalian immunity.

  17. Induction of antitumor immunity through xenoplacental immunization

    Directory of Open Access Journals (Sweden)

    Agadjanyan Michael G

    2006-05-01

    Full Text Available Abstract Historically cancer vaccines have yielded suboptimal clinical results. We have developed a novel strategy for eliciting antitumor immunity based upon homology between neoplastic tissue and the developing placenta. Placenta formation shares several key processes with neoplasia, namely: angiogenesis, activation of matrix metalloproteases, and active suppression of immune function. Immune responses against xenoantigens are well known to break self-tolerance. Utilizing xenogeneic placental protein extracts as a vaccine, we have successfully induced anti-tumor immunity against B16 melanoma in C57/BL6 mice, whereas control xenogeneic extracts and B16 tumor extracts where ineffective, or actually promoted tumor growth, respectively. Furthermore, dendritic cells were able to prime tumor immunity when pulsed with the placental xenoantigens. While vaccination-induced tumor regression was abolished in mice depleted of CD4 T cells, both CD4 and CD8 cells were needed to adoptively transfer immunity to naïve mice. Supporting the role of CD8 cells in controlling tumor growth are findings that only freshly isolated CD8 cells from immunized mice were capable of inducing tumor cell caspases-3 activation ex vivo. These data suggest feasibility of using xenogeneic placental preparations as a multivalent vaccine potently targeting not just tumor antigens, but processes that are essential for tumor maintenance of malignant potential.

  18. Costs of mounting an immune response during pregnancy in a lizard.

    Science.gov (United States)

    Meylan, Sandrine; Richard, Murielle; Bauer, Sophie; Haussy, Claudy; Miles, Donald

    2013-01-01

    Immune defenses are of great benefit to hosts, but reducing the impact of infection by mounting an immune response also entails costs. However, the physiological mechanisms that generate the costs of an immune response remain poorly understood. Moreover, the majority of studies investigating the consequences of an immune challenge in vertebrates have been conducted on mammals and birds. The aim of this study is to investigate the physiological costs of mounting an immune response during gestation in an ectothermic species. Indeed, because ectothermic species are unable to internally regulate their body temperature, the apportionment of resources to homeostatic activities in ectothermic species can differ from that in endothermic species. We conducted this study on the common lizard Zootoca vivipara. We investigated the costs of mounting an immune response by injecting females with sheep red blood cells and quantified the consequences to reproductive performance (litter mass and success) and physiological performance (standard metabolic rate, endurance, and phytohemagglutinin response). In addition, we measured basking behavior. Our analyses revealed that mounting an immune response affected litter mass, physiological performance, and basking behavior. Moreover, we demonstrated that the modulation of an immune challenge is impacted by intrinsic factors, such as body size and condition.

  19. Wallerian degeneration: the innate-immune response to traumatic nerve injury

    Directory of Open Access Journals (Sweden)

    Rotshenker Shlomo

    2011-08-01

    Full Text Available Abstract Traumatic injury to peripheral nerves results in the loss of neural functions. Recovery by regeneration depends on the cellular and molecular events of Wallerian degeneration that injury induces distal to the lesion site, the domain through which severed axons regenerate back to their target tissues. Innate-immunity is central to Wallerian degeneration since innate-immune cells, functions and molecules that are produced by immune and non-immune cells are involved. The innate-immune response helps to turn the peripheral nerve tissue into an environment that supports regeneration by removing inhibitory myelin and by upregulating neurotrophic properties. The characteristics of an efficient innate-immune response are rapid onset and conclusion, and the orchestrated interplay between Schwann cells, fibroblasts, macrophages, endothelial cells, and molecules they produce. Wallerian degeneration serves as a prelude for successful repair when these requirements are met. In contrast, functional recovery is poor when injury fails to produce the efficient innate-immune response of Wallerian degeneration.

  20. Multiscale modeling of mucosal immune responses

    Science.gov (United States)

    2015-01-01

    Computational modeling techniques are playing increasingly important roles in advancing a systems-level mechanistic understanding of biological processes. Computer simulations guide and underpin experimental and clinical efforts. This study presents ENteric Immune Simulator (ENISI), a multiscale modeling tool for modeling the mucosal immune responses. ENISI's modeling environment can simulate in silico experiments from molecular signaling pathways to tissue level events such as tissue lesion formation. ENISI's architecture integrates multiple modeling technologies including ABM (agent-based modeling), ODE (ordinary differential equations), SDE (stochastic modeling equations), and PDE (partial differential equations). This paper focuses on the implementation and developmental challenges of ENISI. A multiscale model of mucosal immune responses during colonic inflammation, including CD4+ T cell differentiation and tissue level cell-cell interactions was developed to illustrate the capabilities, power and scope of ENISI MSM. Background Computational techniques are becoming increasingly powerful and modeling tools for biological systems are of greater needs. Biological systems are inherently multiscale, from molecules to tissues and from nano-seconds to a lifespan of several years or decades. ENISI MSM integrates multiple modeling technologies to understand immunological processes from signaling pathways within cells to lesion formation at the tissue level. This paper examines and summarizes the technical details of ENISI, from its initial version to its latest cutting-edge implementation. Implementation Object-oriented programming approach is adopted to develop a suite of tools based on ENISI. Multiple modeling technologies are integrated to visualize tissues, cells as well as proteins; furthermore, performance matching between the scales is addressed. Conclusion We used ENISI MSM for developing predictive multiscale models of the mucosal immune system during gut

  1. Multiscale modeling of mucosal immune responses.

    Science.gov (United States)

    Mei, Yongguo; Abedi, Vida; Carbo, Adria; Zhang, Xiaoying; Lu, Pinyi; Philipson, Casandra; Hontecillas, Raquel; Hoops, Stefan; Liles, Nathan; Bassaganya-Riera, Josep

    2015-01-01

    Computational techniques are becoming increasingly powerful and modeling tools for biological systems are of greater needs. Biological systems are inherently multiscale, from molecules to tissues and from nano-seconds to a lifespan of several years or decades. ENISI MSM integrates multiple modeling technologies to understand immunological processes from signaling pathways within cells to lesion formation at the tissue level. This paper examines and summarizes the technical details of ENISI, from its initial version to its latest cutting-edge implementation. Object-oriented programming approach is adopted to develop a suite of tools based on ENISI. Multiple modeling technologies are integrated to visualize tissues, cells as well as proteins; furthermore, performance matching between the scales is addressed. We used ENISI MSM for developing predictive multiscale models of the mucosal immune system during gut inflammation. Our modeling predictions dissect the mechanisms by which effector CD4+ T cell responses contribute to tissue damage in the gut mucosa following immune dysregulation.Computational modeling techniques are playing increasingly important roles in advancing a systems-level mechanistic understanding of biological processes. Computer simulations guide and underpin experimental and clinical efforts. This study presents ENteric Immune Simulator (ENISI), a multiscale modeling tool for modeling the mucosal immune responses. ENISI's modeling environment can simulate in silico experiments from molecular signaling pathways to tissue level events such as tissue lesion formation. ENISI's architecture integrates multiple modeling technologies including ABM (agent-based modeling), ODE (ordinary differential equations), SDE (stochastic modeling equations), and PDE (partial differential equations). This paper focuses on the implementation and developmental challenges of ENISI. A multiscale model of mucosal immune responses during colonic inflammation, including CD4+ T

  2. GYF-21, an Epoxide 2-(2-Phenethyl-Chromone Derivative, Suppresses Innate and Adaptive Immunity via Inhibiting STAT1/3 and NF-κB Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Ran Guo

    2017-05-01

    Full Text Available Multiple sclerosis is a chronic inflammatory autoimmune disease of the central nervous system characterized by demyelinating plaques and axonal loss. Inhibition on over activation of innate and adaptive immunity provides a rationale strategy for treatment of multiple sclerosis. In the present study, we investigated the inhibitory effects of GYF-21, an epoxide 2-(2-phenethyl-chromone derivative isolated from Chinese agarwood, on innate and adaptive immunity for revealing its potential to treat multiple sclerosis. The results showed that GYF-21 markedly inhibited the activation of microglia, and dendritic cells as well as neutrophils, all of which play important roles in innate immunity. Furthermore, GYF-21 significantly suppressed adaptive immunity via inhibiting the differentiation of naive CD4+ T cells into T helper 1 (Th1 and T helper 17 (Th17 cells, and suppressing the activation, proliferation, and IFN-γ secretion of CD8+ T cells. The mechanism study showed that GYF-21 evidently inhibited the activation of STAT1/3 and NF-κB signaling pathways in microglia. In conclusion, we demonstrated that GYF-21 can significantly inhibit innate and adaptive immunity via suppressing STAT1/3 and NF-κB signaling pathways, and has potential to be developed into therapeutic drug for multiple sclerosis.

  3. Lessons Learned from Protective Immune Responses to Optimize Vaccines against Cryptosporidiosis.

    Science.gov (United States)

    Lemieux, Maxime W; Sonzogni-Desautels, Karine; Ndao, Momar

    2017-12-24

    In developing countries, cryptosporidiosis causes moderate-to-severe diarrhea and kills thousands of infants and toddlers annually. Drinking and recreational water contaminated with Cryptosporidium spp. oocysts has led to waterborne outbreaks in developed countries. A competent immune system is necessary to clear this parasitic infection. A better understanding of the immune responses required to prevent or limit infection by this protozoan parasite is the cornerstone of development of an effective vaccine. In this light, lessons learned from previously developed vaccines against Cryptosporidium spp. are at the foundation for development of better next-generation vaccines. In this review, we summarize the immune responses elicited by naturally and experimentally-induced Cryptosporidium spp. infection and by several experimental vaccines in various animal models. Our aim is to increase awareness about the immune responses that underlie protection against cryptosporidiosis and to encourage promotion of these immune responses as a key strategy for vaccine development. Innate and mucosal immunity will be addressed as well as adaptive immunity, with an emphasis on the balance between T H 1/T H 2 immune responses. Development of more effective vaccines against cryptosporidiosis is needed to prevent Cryptosporidium spp.-related deaths in infants and toddlers in developing countries.

  4. Regulatory T Cells and Host Anti-CML Responses

    National Research Council Canada - National Science Library

    Wong, Jr, K. K

    2008-01-01

    CD4+CD25+FoxP-3+ regulatory T-cells (Tregs) suppress immune responses to "self" antigens, but also have been shown to suppress host anti-tumor responses in several human malignancies, including breast, gastrointestinal, and ovarian cancer...

  5. Early-life inflammation, immune response and ageing.

    Science.gov (United States)

    Khan, Imroze; Agashe, Deepa; Rolff, Jens

    2017-03-15

    Age-related diseases are often attributed to immunopathology, which results in self-damage caused by an inappropriate inflammatory response. Immunopathology associated with early-life inflammation also appears to cause faster ageing, although we lack direct experimental evidence for this association. To understand the interactions between ageing, inflammation and immunopathology, we used the mealworm beetle Tenebrio molitor as a study organism. We hypothesized that phenoloxidase, an important immune effector in insect defence, may impose substantial immunopathological costs by causing tissue damage to Malpighian tubules (MTs; functionally equivalent to the human kidney), in turn accelerating ageing. In support of this hypothesis, we found that RNAi knockdown of phenoloxidase (PO) transcripts in young adults possibly reduced inflammation-induced autoreactive tissue damage to MTs, and increased adult lifespan. Our work thus suggests a causative link between immunopathological costs of early-life inflammation and faster ageing. We also reasoned that if natural selection weakens with age, older individuals should display increased immunopathological costs associated with an immune response. Indeed, we found that while old infected individuals cleared infection faster than young individuals, possibly they also displayed exacerbated immunopathological costs (larger decline in MT function) and higher post-infection mortality. RNAi-mediated knockdown of PO response partially rescued MTs function in older beetles and resulted in increased lifespan after infection. Taken together, our data are consistent with a direct role of immunopathological consequences of immune response during ageing in insects. Our work is also the first report that highlights the pervasive role of tissue damage under diverse contexts of ageing and immune response. © 2017 The Author(s).

  6. Cancer Stem Cell-Secreted Macrophage Migration Inhibitory Factor Stimulates Myeloid Derived Suppressor Cell Function and Facilitates Glioblastoma Immune Evasion

    DEFF Research Database (Denmark)

    Otvos, Balint; Silver, Daniel J; Mulkearns-Hubert, Erin E

    2016-01-01

    Shifting the balance away from tumor-mediated immune suppression toward tumor immune rejection is the conceptual foundation for a variety of immunotherapy efforts currently being tested. These efforts largely focus on activating antitumor immune responses but are confounded by multiple immune cel...

  7. 17D yellow fever vaccine elicits comparable long-term immune responses in healthy individuals and immune-compromised patients

    NARCIS (Netherlands)

    Wieten, R. W.; Goorhuis, A.; Jonker, E. F. F.; de Bree, G. J.; de Visser, A. W.; van Genderen, P. J. J.; Remmerswaal, E. B. M.; ten Berge, I. J. M.; Visser, L. G.; Grobusch, M. P.; van Leeuwen, E. M. M.

    2016-01-01

    The 17D live attenuated yellow fever (YF) vaccine is contra-indicated in immune-compromised individuals and may elicit a suboptimal immunologic response. The aim of this study is to assess whether long-term immune responses against the YF vaccine are impaired in immune-compromised patients. Fifteen

  8. The Adenovirus E1A C Terminus Suppresses a Delayed Antiviral Response and Modulates RAS Signaling.

    Science.gov (United States)

    Zemke, Nathan R; Berk, Arnold J

    2017-12-13

    The N-terminal half of adenovirus e1a assembles multimeric complexes with host proteins that repress innate immune responses and force host cells into S-phase. In contrast, the functions of e1a's C-terminal interactions with FOXK, DCAF7, and CtBP are unknown. We found that these interactions modulate RAS signaling, and that a single e1a molecule must bind all three of these host proteins to suppress activation of a subset of IFN-stimulated genes (ISGs). These ISGs were otherwise induced in primary respiratory epithelial cells at 12 hr p.i. This delayed activation of ISGs required IRF3 and coincided with an ∼10-fold increase in IRF3 from protein stabilization. The induced IRF3 bound to chromatin and localized to the promoters of activated ISGs. While IRF3, STAT1/2, and IRF9 all greatly increased in concentration, there were no corresponding mRNA increases, suggesting that e1a regulates the stabilities of these key activators of innate immune responses, as shown directly for IRF3. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Ovine model for studying pulmonary immune responses

    International Nuclear Information System (INIS)

    Joel, D.D.; Chanana, A.D.

    1984-01-01

    Anatomical features of the sheep lung make it an excellent model for studying pulmonary immunity. Four specific lung segments were identified which drain exclusively to three separate lymph nodes. One of these segments, the dorsal basal segment of the right lung, is drained by the caudal mediastinal lymph node (CMLN). Cannulation of the efferent lymph duct of the CMLN along with highly localized intrabronchial instillation of antigen provides a functional unit with which to study factors involved in development of pulmonary immune responses. Following intrabronchial immunization there was an increased output of lymphoblasts and specific antibody-forming cells in efferent CMLN lymph. Continuous divergence of efferent lymph eliminated the serum antibody response but did not totally eliminate the appearance of specific antibody in fluid obtained by bronchoalveolar lavage. In these studies localized immunization of the right cranial lobe served as a control. Efferent lymphoblasts produced in response to intrabronchial antigen were labeled with 125 I-iododeoxyuridine and their migrational patterns and tissue distribution compared to lymphoblasts obtained from the thoracic duct. The results indicated that pulmonary immunoblasts tend to relocate in lung tissue and reappear with a higher specific activity in pulmonary lymph than in thoracic duct lymph. The reverse was observed with labeled intestinal lymphoblasts. 35 references, 2 figures, 3 tables

  10. Ovine model for studying pulmonary immune responses

    Energy Technology Data Exchange (ETDEWEB)

    Joel, D.D.; Chanana, A.D.

    1984-11-25

    Anatomical features of the sheep lung make it an excellent model for studying pulmonary immunity. Four specific lung segments were identified which drain exclusively to three separate lymph nodes. One of these segments, the dorsal basal segment of the right lung, is drained by the caudal mediastinal lymph node (CMLN). Cannulation of the efferent lymph duct of the CMLN along with highly localized intrabronchial instillation of antigen provides a functional unit with which to study factors involved in development of pulmonary immune responses. Following intrabronchial immunization there was an increased output of lymphoblasts and specific antibody-forming cells in efferent CMLN lymph. Continuous divergence of efferent lymph eliminated the serum antibody response but did not totally eliminate the appearance of specific antibody in fluid obtained by bronchoalveolar lavage. In these studies localized immunization of the right cranial lobe served as a control. Efferent lymphoblasts produced in response to intrabronchial antigen were labeled with /sup 125/I-iododeoxyuridine and their migrational patterns and tissue distribution compared to lymphoblasts obtained from the thoracic duct. The results indicated that pulmonary immunoblasts tend to relocate in lung tissue and reappear with a higher specific activity in pulmonary lymph than in thoracic duct lymph. The reverse was observed with labeled intestinal lymphoblasts. 35 references, 2 figures, 3 tables.

  11. Common Features of Regulatory T Cell Specialization During Th1 Responses

    Directory of Open Access Journals (Sweden)

    Katharina Littringer

    2018-06-01

    Full Text Available CD4+Foxp3+ Treg cells are essential for maintaining self-tolerance and preventing excessive immune responses. In the context of Th1 immune responses, co-expression of the Th1 transcription factor T-bet with Foxp3 is essential for Treg cells to control Th1 responses. T-bet-dependent expression of CXCR3 directs Treg cells to the site of inflammation. However, the suppressive mediators enabling effective control of Th1 responses at this site are unknown. In this study, we determined the signature of CXCR3+ Treg cells arising in Th1 settings and defined universal features of Treg cells in this context using multiple Th1-dominated infection models. Our analysis defined a set of Th1-specific co-inhibitory receptors and cytotoxic molecules that are specifically expressed in Treg cells during Th1 immune responses in mice and humans. Among these, we identified the novel co-inhibitory receptor CD85k as a functional predictor for Treg-mediated suppression specifically of Th1 responses, which could be explored therapeutically for selective immune suppression in autoimmunity.

  12. Immune and genetic gardening of the intestinal microbiome

    Science.gov (United States)

    Jacobs, Jonathan P.; Braun, Jonathan

    2014-01-01

    The mucosal immune system – consisting of adaptive and innate immune cells as well as the epithelium – is profoundly influenced by its microbial environment. There is now growing evidence that the converse is also true, that the immune system shapes the composition of the intestinal microbiome. During conditions of health, this bidirectional interaction achieves a homeostasis in which inappropriate immune responses to nonpathogenic microbes are averted and immune activity suppresses blooms of potentially pathogenic microbes (pathobionts). Genetic alteration in immune/epithelial function can affect host gardening of the intestinal microbiome, contributing to the diversity of intestinal microbiota within a population and in some cases allowing for unfavorable microbial ecologies (dysbiosis) that confer disease susceptibility. PMID:24613921

  13. Immune response in the lungs following oral immunization with bacterial lysates of respiratory pathogens.

    OpenAIRE

    Ruedl, C; Frühwirth, M; Wick, G; Wolf, H

    1994-01-01

    We have investigated the local immune response of the BALB/c mouse respiratory tract after oral immunization with a bacterial lysate of seven common respiratory pathogens. After two immunization on five consecutive days, we examined the immunoglobulin (immunoglobulin G [IgG], IgM, and IgA) secretion rates of cells isolated from the lungs and compared them with those of spleen cells of orally immunized and nonimmunized animals by using a new test system based on time-resolved fluorescence. The...

  14. Innate Immune Responses in Leprosy

    Science.gov (United States)

    Pinheiro, Roberta Olmo; Schmitz, Veronica; Silva, Bruno Jorge de Andrade; Dias, André Alves; de Souza, Beatriz Junqueira; de Mattos Barbosa, Mayara Garcia; de Almeida Esquenazi, Danuza; Pessolani, Maria Cristina Vidal; Sarno, Euzenir Nunes

    2018-01-01

    Leprosy is an infectious disease that may present different clinical forms depending on host immune response to Mycobacterium leprae. Several studies have clarified the role of various T cell populations in leprosy; however, recent evidences suggest that local innate immune mechanisms are key determinants in driving the disease to its different clinical manifestations. Leprosy is an ideal model to study the immunoregulatory role of innate immune molecules and its interaction with nervous system, which can affect homeostasis and contribute to the development of inflammatory episodes during the course of the disease. Macrophages, dendritic cells, neutrophils, and keratinocytes are the major cell populations studied and the comprehension of the complex networking created by cytokine release, lipid and iron metabolism, as well as antimicrobial effector pathways might provide data that will help in the development of new strategies for leprosy management. PMID:29643852

  15. Exosomes and their roles in immune regulation and cancer.

    Science.gov (United States)

    Greening, David W; Gopal, Shashi K; Xu, Rong; Simpson, Richard J; Chen, Weisan

    2015-04-01

    Exosomes, a subset of extracellular vesicles (EVs), function as a mode of intercellular communication and molecular transfer. Exosomes facilitate the direct extracellular transfer of proteins, lipids, and miRNA/mRNA/DNAs between cells in vitro and in vivo. The immunological activities of exosomes affect immunoregulation mechanisms including modulating antigen presentation, immune activation, immune suppression, immune surveillance, and intercellular communication. Besides immune cells, cancer cells secrete immunologically active exosomes that influence both physiological and pathological processes. The observation that exosomes isolated from immune cells such as dendritic cells (DCs) modulate the immune response has enforced the way these membranous vesicles are being considered as potential immunotherapeutic reagents. Indeed, tumour- and immune cell-derived exosomes have been shown to carry tumour antigens and promote immunity, leading to eradication of established tumours by CD8(+) T cells and CD4(+) T cells, as well as directly suppressing tumour growth and resistance to malignant tumour development. Further understanding of these areas of exosome biology, and especially of molecular mechanisms involved in immune cell targeting, interaction and manipulation, is likely to provide significant insights into immunorecognition and therapeutic intervention. Here, we review the emerging roles of exosomes in immune regulation and the therapeutic potential in cancer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Preexisting Salmonella-specific immunity interferes with the subsequent development of immune responses against the Salmonella strains delivering H9N2 hemagglutinin.

    Science.gov (United States)

    Hajam, Irshad Ahmed; Lee, John Hwa

    2017-06-01

    Recombinant Salmonella strains expressing foreign heterologous antigens have been extensively studied as promising live vaccine delivery vehicles. In this study, we constructed attenuated smooth (S-HA) and rough (R-HA) Salmonella strains expressing hemagglutinin (HA) of H9N2, a low pathogenic avian influenza A virus. We then investigated the HA-specific immune responses following oral immunization with either S-HA or R-HA strain in chicken model. We further examined the effects of the preexisting anti-Salmonella immunity on the subsequent elicitation of the HA and the Salmonella ompA specific immune responses. Our results showed that primary immunization with either the S-HA or the R-HA strain elicited comparable HA-specific immune responses and the responses were significantly (pSalmonella vector control. When chickens were pre-immunized with the smooth Salmonella carrier alone and then vaccinated with either S-HA or R-HA strain 3, 6 and 9 weeks later, respectively, significant reductions were seen for HA-specific immune responses at week 6, a point which corresponded to the peak of the primary Salmonella-specific antibody responses. No reductions were seen at week 3 and 9, albeit, the HA-specific immune responses were boosted at week 9, a point which corresponded to the lowest primary Salmonella-specific antibody responses. The ompA recall responses remain refractory at week 3 and 6 following deliberate immunization with the carrier strain, but were significantly (pSalmonella immunity inhibits antigen-specific immune responses and this effect could be avoided by carefully selecting the time point when carrier-specific immune responses are relatively low. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Tofacitinib Suppresses Antibody Responses to Protein Therapeutics in Murine Hosts1

    Science.gov (United States)

    Onda, Masanori; Ghoreschi, Kamran; Steward-Tharp, Scott; Thomas, Craig; O’Shea, John J.; Pastan, Ira H.; FitzGerald, David J.

    2014-01-01

    Immunogenicity remains the ‘Achilles’ heel’ of protein-based therapeutics. Anti-drug antibodies produced in response to protein therapeutics can severely limit both the safety and efficacy of this expanding class of agent. Here we report that monotherapy of mice with tofacitinib (the Janus kinase inhibitor) quells antibody responses to an immunotoxin derived from the bacterial protein, Pseudomonas exotoxin A, as well as to the model antigen, keyhole limpet hemocyanin. Thousandfold reductions in IgG1 titers to both antigens were observed 21 days post-immunization. In fact, suppression was evident for all IgG isotypes and IgM. A reduction in IgG3 production was also noted with a thymus-independent type II antigen. Mechanistic investigations revealed that tofacitinib treatment led to reduced numbers of CD127+ pro-B cells. Furthermore, we observed fewer germinal center B cells and the impaired formation of germinal centers of mice treated with tofacitinib. Since normal immunoglobulin levels were still present during the tofacitinib treatment, this agent specifically reduced anti-drug antibodies, thus preserving the potential efficacy of biological therapeutics, including those that are used as cancer therapeutics. PMID:24890727

  18. Innate Immune Responses of Drosophila melanogaster Are Altered by Spaceflight

    Science.gov (United States)

    Marcu, Oana; Lera, Matthew P.; Sanchez, Max E.; Levic, Edina; Higgins, Laura A.; Shmygelska, Alena; Fahlen, Thomas F.; Nichol, Helen; Bhattacharya, Sharmila

    2011-01-01

    Alterations and impairment of immune responses in humans present a health risk for space exploration missions. The molecular mechanisms underpinning innate immune defense can be confounded by the complexity of the acquired immune system of humans. Drosophila (fruit fly) innate immunity is simpler, and shares many similarities with human innate immunity at the level of molecular and genetic pathways. The goals of this study were to elucidate fundamental immune processes in Drosophila affected by spaceflight and to measure host-pathogen responses post-flight. Five containers, each containing ten female and five male fruit flies, were housed and bred on the space shuttle (average orbit altitude of 330.35 km) for 12 days and 18.5 hours. A new generation of flies was reared in microgravity. In larvae, the immune system was examined by analyzing plasmatocyte number and activity in culture. In adults, the induced immune responses were analyzed by bacterial clearance and quantitative real-time polymerase chain reaction (qPCR) of selected genes following infection with E. coli. The RNA levels of relevant immune pathway genes were determined in both larvae and adults by microarray analysis. The ability of larval plasmatocytes to phagocytose E. coli in culture was attenuated following spaceflight, and in parallel, the expression of genes involved in cell maturation was downregulated. In addition, the level of constitutive expression of pattern recognition receptors and opsonins that specifically recognize bacteria, and of lysozymes, antimicrobial peptide (AMP) pathway and immune stress genes, hallmarks of humoral immunity, were also reduced in larvae. In adults, the efficiency of bacterial clearance measured in vivo following a systemic infection with E. coli post-flight, remained robust. We show that spaceflight altered both cellular and humoral immune responses in Drosophila and that the disruption occurs at multiple interacting pathways. PMID:21264297

  19. Innate immune responses of Drosophila melanogaster are altered by spaceflight.

    Directory of Open Access Journals (Sweden)

    Oana Marcu

    2011-01-01

    Full Text Available Alterations and impairment of immune responses in humans present a health risk for space exploration missions. The molecular mechanisms underpinning innate immune defense can be confounded by the complexity of the acquired immune system of humans. Drosophila (fruit fly innate immunity is simpler, and shares many similarities with human innate immunity at the level of molecular and genetic pathways. The goals of this study were to elucidate fundamental immune processes in Drosophila affected by spaceflight and to measure host-pathogen responses post-flight. Five containers, each containing ten female and five male fruit flies, were housed and bred on the space shuttle (average orbit altitude of 330.35 km for 12 days and 18.5 hours. A new generation of flies was reared in microgravity. In larvae, the immune system was examined by analyzing plasmatocyte number and activity in culture. In adults, the induced immune responses were analyzed by bacterial clearance and quantitative real-time polymerase chain reaction (qPCR of selected genes following infection with E. coli. The RNA levels of relevant immune pathway genes were determined in both larvae and adults by microarray analysis. The ability of larval plasmatocytes to phagocytose E. coli in culture was attenuated following spaceflight, and in parallel, the expression of genes involved in cell maturation was downregulated. In addition, the level of constitutive expression of pattern recognition receptors and opsonins that specifically recognize bacteria, and of lysozymes, antimicrobial peptide (AMP pathway and immune stress genes, hallmarks of humoral immunity, were also reduced in larvae. In adults, the efficiency of bacterial clearance measured in vivo following a systemic infection with E. coli post-flight, remained robust. We show that spaceflight altered both cellular and humoral immune responses in Drosophila and that the disruption occurs at multiple interacting pathways.

  20. Maternal immunization increases nestling energy expenditure, immune function, and fledging success in a passerine bird

    Directory of Open Access Journals (Sweden)

    Gary Burness

    2018-04-01

    Full Text Available Female birds transfer maternally derived antibodies (matAb to their nestlings, via the egg yolk. These antibodies are thought to provide passive protection, and allow nestlings to avoid the costs associated with mounting an innate immune response. To test whether there is an energetic benefit to nestlings from receiving matAb, we challenged adult female tree swallows (Tachycineta bicolor prior to clutch initiation with either lipopolysaccharide (LPS or saline (Control. Following hatching, one half of each female's nestlings were immunized on day 8 post-hatch with LPS or saline, and the 4-h post-immunization nestling metabolic rate (MR was measured. There was no difference in either LPS-reactive antibodies or total Ig levels between offspring of immunized and non-immunized mothers on day 6 or 14 post-hatch, possibly reflecting a relatively short half-life of matAbs in altricial birds. Additionally, we found no evidence that nestlings from LPS-immunized mothers could avoid the growth suppression that may result from activation of an inflammatory response. Unexpectedly, we found that control nestlings from LPS mothers had higher resting MR than control nestlings of control mothers. We attribute the increased MR to the costs associated with a general non-specific enhancement of immune function in nestlings from LPS-immunized mothers. Consistent with enhanced immune function, nestlings of immunized mothers had a more robust inflammatory response to phytohaemagglutinin and higher fledging success. Our results suggest that maternal antigen exposure pre-laying can result in increased fitness for both mothers and offspring, depending on food availability.

  1. Quantitating cellular immune responses to cancer vaccines.

    Science.gov (United States)

    Lyerly, H Kim

    2003-06-01

    While the future of immunotherapy in the treatment of cancer is promising, it is difficult to compare the various approaches because monitoring assays have not been standardized in approach or technique. Common assays for measuring the immune response need to be established so that these assays can one day serve as surrogate markers for clinical response. Assays that accurately detect and quantitate T-cell-mediated, antigen-specific immune responses are particularly desired. However, to date, increases in the number of cytotoxic T cells through immunization have not been correlated with clinical tumor regression. Ideally, then, a T-cell assay not only needs to be sensitive, specific, reliable, reproducible, simple, and quick to perform, it must also demonstrate close correlation with clinical outcome. Assays currently used to measure T-cell response are delayed-type hypersensitivity testing, flow cytometry using peptide major histocompatibility complex tetramers, lymphoproliferation assay, enzyme-linked immunosorbant assay, enzyme-linked immunospot assay, cytokine flow cytometry, direct cytotoxicity assay, measurement of cytokine mRNA by quantitative reverse transcriptase polymerase chain reaction, and limiting dilution analysis. The purpose of this review is to describe the attributes of each test and compare their advantages and disadvantages.

  2. Immune responses in cattle vaccinated with gamma-irradiated Anaplasma marginale

    International Nuclear Information System (INIS)

    Sharma, S.P.; Bansal, G.C.

    1986-01-01

    The infectivity and immunogenecity of gamma-irradiated Anaplasma marginale organisms were studied in bovine calves. The severity of Anaplasma infection based on per cent infected red blood cells, haematological values and mortality was more in animals immunized with blood exposed to 60 kR in comparison to those inoculated with blood irradiated at 70, 80 and 90 kR. The immunizing controls demonstrated a significantly high parasitaemia, marked anaemia and more deaths. Marked and prolonged cell-mediated and humoral immune responses detectable in the first 3 weeks of post-immunization may be responsible for conferring of protective immunity. (author)

  3. Interleukin 35: A Key Mediator of Suppression and the Propagation of Infectious Tolerance

    Directory of Open Access Journals (Sweden)

    Brian M Olson

    2013-10-01

    Full Text Available The importance of regulatory T cells in balancing the effector arm of the immune system is well documented, playing a central role in preventing autoimmunity, facilitating graft tolerance following organ transplantation, and having a detrimental impact on the development of anti-tumor immunity. These regulatory responses use a variety of mechanisms to mediate suppression, including soluble factors. While IL-10 and TGF-β are the most commonly studied immunosuppressive cytokines, the recently identified IL-35 has been shown to have potent suppressive function in vitro and in vivo. Furthermore, not only does IL-35 have the ability to directly suppress effector T cell responses, it is also able to expand regulatory responses by propagating infectious tolerance and generating a potent population of IL-35-expressing inducible regulatory T cells. In this review, we summarize research characterizing the structure and function of IL-35, examine its role in disease, and discuss how it can contribute to the induction of a distinct population of inducible regulatory T cells.

  4. Lessons Learned from Protective Immune Responses to Optimize Vaccines against Cryptosporidiosis

    Directory of Open Access Journals (Sweden)

    Maxime W. Lemieux

    2017-12-01

    Full Text Available In developing countries, cryptosporidiosis causes moderate-to-severe diarrhea and kills thousands of infants and toddlers annually. Drinking and recreational water contaminated with Cryptosporidium spp. oocysts has led to waterborne outbreaks in developed countries. A competent immune system is necessary to clear this parasitic infection. A better understanding of the immune responses required to prevent or limit infection by this protozoan parasite is the cornerstone of development of an effective vaccine. In this light, lessons learned from previously developed vaccines against Cryptosporidium spp. are at the foundation for development of better next-generation vaccines. In this review, we summarize the immune responses elicited by naturally and experimentally-induced Cryptosporidium spp. infection and by several experimental vaccines in various animal models. Our aim is to increase awareness about the immune responses that underlie protection against cryptosporidiosis and to encourage promotion of these immune responses as a key strategy for vaccine development. Innate and mucosal immunity will be addressed as well as adaptive immunity, with an emphasis on the balance between TH1/TH2 immune responses. Development of more effective vaccines against cryptosporidiosis is needed to prevent Cryptosporidium spp.-related deaths in infants and toddlers in developing countries.

  5. Plasma-mediated immune suppression : a neonatal perspective

    NARCIS (Netherlands)

    Belderbos, Mirjam E.; Levy, Ofer; Meyaard, Linde; Bont, Louis

    Plasma is a rich mixture of immune regulatory factors that shape immune cell function. This immunomodulatory role of plasma is especially important in neonates. To maintain in utero feto-maternal tolerance and to allow for microbial colonization after birth, the neonatal immune system is biased

  6. Infection of goose with genotype VIId Newcastle disease virus of goose origin elicits strong immune responses at early stage

    Directory of Open Access Journals (Sweden)

    Qianqian Xu

    2016-10-01

    Full Text Available Newcastle disease (ND, caused by virulent strains of Newcastle disease virus (NDV, is a highly contagious disease of birds that is responsible for heavy economic losses for the poultry industry worldwide. However, little is known about host-virus interactions in waterfowl, goose. In this study, we aim to characterize the host immune response in goose, based on the previous reports on the host response to NDV in chickens. Here, we evaluated viral replication and mRNA expression of 27 immune-related genes in 10 tissues of geese challenged with a genotype VIId NDV strain of goose origin (go/CH/LHLJ/1/06. The virus showed early replication, especially in digestive and immune tissues. The expression profiles showed up-regulation of Toll-like receptor (TLR1–3, 5, 7 and 15, avian β-defensin (AvBD 5–7, 10, 12 and 16, cytokines interleukin (IL-8, IL-18, IL-1β and interferon-γ, inducible NO synthase (iNOS, and MHC class I in some tissues of geese in response to NDV. In contrast, NDV infection suppressed expression of AvBD1 in cecal tonsil of geese. Moreover, we observed a highly positive correlation between viral replication and host mRNA expressions of TLR1-5 and 7, AvBD4-6, 10 and 12, all the cytokines measured, MHC class I, FAS ligand, and iNOS, mainly at 72 h post-infection. Taken together, these results demonstrated that NDV infection induces strong innate immune responses and intense inflammatory responses at early stage in goose which may associate with the viral pathogenesis.

  7. Optimal approximation of linear systems by artificial immune response

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper puts forward a novel artificial immune response algorithm for optimal approximation of linear systems. A quaternion model of artificial immune response is proposed for engineering computing. The model abstracts four elements, namely, antigen, antibody, reaction rules among antibodies, and driving algorithm describing how the rules are applied to antibodies, to simulate the process of immune response. Some reaction rules including clonal selection rules, immunological memory rules and immune regulation rules are introduced. Using the theorem of Markov chain, it is proofed that the new model is convergent. The experimental study on the optimal approximation of a stable linear system and an unstable one show that the approximate models searched by the new model have better performance indices than those obtained by some existing algorithms including the differential evolution algorithm and the multi-agent genetic algorithm.

  8. SUPPRESSION OF HUMORAL IMMUNE RESPONSES BY 2,3,7,8-TETRACHLORODIBENZO-p-DIOXIN INTERCALATED IN SMECTITE CLAY

    Science.gov (United States)

    Boyd, Stephen A.; Johnston, Cliff T.; Pinnavaia, Thomas J.; Kaminski, Norbert E.; Teppen, Brian J.; Li, Hui; Khan, Bushra; Crawford, Robert B.; Kovalova, Natalia; Kim, Seong-Su; Shao, Hua; Gu, Cheng; Kaplan, Barbara L.F.

    2018-01-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a highly toxic environmental contaminant found in soils and sediments. Because of its exceptionally low water solubility, this compound exists predominantly in the sorbed state in natural environments. Clay minerals, especially expandable smectite clays, are one of the major component geosorbents in soils and sediments that can function as an effective adsorbent for environmental dioxins, including TCDD. In this study, TCDD was intercalated in the smectite clay saponite by an incipient wetness method. The primary goal of this study was to intercalate TCDD in natural K-saponite clay and evaluate its immunotoxic effects in vivo. The relative bioavailability of TCDD was evaluated by comparing the metabolic activity of TCDD administered in the adsorbed state as an intercalate in saponite and freely dissolved in corn oil. This comparison revealed nearly identical TCDD-induced suppression of humoral immunity, a well-established and sensitive sequela, in a mammalian (mouse) model. This result suggests that TCDD adsorbed by clays is likely to be available for biouptake and biodistribution in mammals, consistent with previous observations of TCDD in livestock exposed to dioxin-contaminated ball clays that were used as feed additives. Adsorption of TCDD by clay minerals does not appear to mitigate risk associated with TCDD exposure substantially. PMID:21994089

  9. Voluntary activation of the sympathetic nervous system and attenuation of the innate immune response in humans.

    Science.gov (United States)

    Kox, Matthijs; van Eijk, Lucas T; Zwaag, Jelle; van den Wildenberg, Joanne; Sweep, Fred C G J; van der Hoeven, Johannes G; Pickkers, Peter

    2014-05-20

    Excessive or persistent proinflammatory cytokine production plays a central role in autoimmune diseases. Acute activation of the sympathetic nervous system attenuates the innate immune response. However, both the autonomic nervous system and innate immune system are regarded as systems that cannot be voluntarily influenced. Herein, we evaluated the effects of a training program on the autonomic nervous system and innate immune response. Healthy volunteers were randomized to either the intervention (n = 12) or control group (n = 12). Subjects in the intervention group were trained for 10 d in meditation (third eye meditation), breathing techniques (i.a., cyclic hyperventilation followed by breath retention), and exposure to cold (i.a., immersions in ice cold water). The control group was not trained. Subsequently, all subjects underwent experimental endotoxemia (i.v. administration of 2 ng/kg Escherichia coli endotoxin). In the intervention group, practicing the learned techniques resulted in intermittent respiratory alkalosis and hypoxia resulting in profoundly increased plasma epinephrine levels. In the intervention group, plasma levels of the anti-inflammatory cytokine IL-10 increased more rapidly after endotoxin administration, correlated strongly with preceding epinephrine levels, and were higher. Levels of proinflammatory mediators TNF-α, IL-6, and IL-8 were lower in the intervention group and correlated negatively with IL-10 levels. Finally, flu-like symptoms were lower in the intervention group. In conclusion, we demonstrate that voluntary activation of the sympathetic nervous system results in epinephrine release and subsequent suppression of the innate immune response in humans in vivo. These results could have important implications for the treatment of conditions associated with excessive or persistent inflammation, such as autoimmune diseases.

  10. The effect of cyclosporin A on the primary immune response to allogeneic red cells in rabbits.

    Science.gov (United States)

    Smith, G N

    1982-01-01

    Cyclosporin A (CSA) has been used in an attempt to suppress the primary immune response of HgA(A)-negative rabbits to A-positive red cells. The immune response was assessed by measuring the survival of a small intravenous (i.v.) dose of 51Cr-labelled A-positive cells and by testing the serum of the immunized rabbits for anti-A. In one experiment, eight A-negative rabbits were given a first i.v. injection of A-positive red cells, and CSA (25 mg/kg/day) in olive oil was given by mouth for 17-34 days. There was no evidence of impaired alloimmunization compared with the responses in control animals treated with olive oil alone. In a second experiment, eight A-negative rabbits were given a first injection of A-positive muscularly (i.m.), and CSA (25 mg/kg/day) in miglyol was given by im.m. injection for 10 days. Six of these rabbits were rendered unresponsive, and the remaining two, who showed impaired survival of the monitoring red cells, produced only low anit-A titres. Seven out of eight controls given i.m. miglyol without CSA responded with good anti-A production. Rabbits that were unresponsive to A-positive red cells responded normally to sheep red blood cells 15 weeks after CSA treatment. Higher serum levels of CSA were found following i.m. administration of the drug but treatment by this route as associated with severe toxicity in some rabbits. PMID:7056563

  11. Maturation of cognitive control: delineating response inhibition and interference suppression.

    Directory of Open Access Journals (Sweden)

    Christopher R Brydges

    Full Text Available Cognitive control is integral to the ability to attend to a relevant task whilst suppressing distracting information or inhibiting prepotent responses. The current study examined the development of these two subprocesses by examining electrophysiological indices elicited during each process. Thirteen 18 year-old adults and thirteen children aged 8-11 years (mean=9.77 years completed a hybrid Go/Nogo flanker task while continuous EEG data were recorded. The N2 topography for both response inhibition and interference suppression changed with increasing age. The neural activation associated with response inhibition became increasingly frontally distributed with age, and showed decreases of both amplitude and peak latency from childhood to adulthood, possibly due to reduced cognitive demands and myelination respectively occurring during this period. Interestingly, a significant N2 effect was apparent in adults, but not observed in children during trials requiring interference suppression. This could be due to more diffuse activation in children, which would require smaller levels of activation over a larger region of the brain than is reported in adults. Overall, these results provide evidence of distinct maturational processes occurring throughout late childhood and adolescence, highlighting the separability of response inhibition and interference suppression.

  12. ATP Release from Chemotherapy-Treated Dying Leukemia Cells Elicits an Immune Suppressive Effect by Increasing Regulatory T Cells and Tolerogenic Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Mariangela Lecciso

    2017-12-01

    Full Text Available Chemotherapy-induced immunogenic cell death can favor dendritic cell (DC cross-priming of tumor-associated antigens for T cell activation thanks to the release of damage-associated molecular patterns, including ATP. Here, we tested the hypothesis that in acute myeloid leukemia (AML, ATP release, along with its well-known immune stimulatory effect, may also contribute to the generation of an immune suppressive microenvironment. In a cohort of AML patients, undergoing combined daunorubicin and cytarabine chemotherapy, a population of T regulatory cells (Tregs with suppressive phenotype, expressing the immune checkpoint programmed cell death protein 1 (PD-1, was significantly increased. Moving from these results, initial in vitro data showed that daunorubicin was more effective than cytarabine in modulating DC function toward Tregs induction and such difference was correlated with the higher capacity of daunorubicin to induce ATP release from treated AML cells. DCs cultured with daunorubicin-treated AML cells upregulated indoleamine 2,3-dioxygenase 1 (IDO1, which induced anti-leukemia Tregs. These data were confirmed in vivo as daunorubicin-treated mice show an increase in extracellular ATP levels with increased number of Tregs, expressing PD-1 and IDO1+CD39+ DCs. Notably, daunorubicin failed to induce Tregs and tolerogenic DCs in mice lacking the ATP receptor P2X7. Our data indicate that ATP release from chemotherapy-treated dying cells contributes to create an immune suppressive microenvironment in AML.

  13. The role of radiotherapy for the induction of antitumor immune responses

    International Nuclear Information System (INIS)

    Multhoff, G.; Helmholtz-Zentrum Muenchen; Gaipl, U.S.; Niedermann, G.

    2012-01-01

    Effective radiotherapy is aimed to control the growth of the primary carcinoma and to induce a long-term specific antitumor immune response against the primary tumor, recurrence and metastases. The contribution covers the following issues: T cells and tumor specific immune responses, dendritic cells (DCs) start adaptive immune responses, NK (natural killer) cells for HLA independent tumor control, abscopal effects of radiotherapy, combination of radiotherapy and immune therapy, radiotherapy contribution to the induction of immunogenic cell death, combinability of radiotherapy and DC activation, combinability of radiotherapy and NK cell therapy. It turns out that the combination of radio-chemotherapy and immune therapy can change the microenvironment initiating antitumor immune reactions that inhibit the recurrence risk and the development of metastases.

  14. Human Gut-Derived Commensal Bacteria Suppress CNS Inflammatory and Demyelinating Disease.

    Science.gov (United States)

    Mangalam, Ashutosh; Shahi, Shailesh K; Luckey, David; Karau, Melissa; Marietta, Eric; Luo, Ningling; Choung, Rok Seon; Ju, Josephine; Sompallae, Ramakrishna; Gibson-Corley, Katherine; Patel, Robin; Rodriguez, Moses; David, Chella; Taneja, Veena; Murray, Joseph

    2017-08-08

    The human gut is colonized by a large number of microorganisms (∼10 13 bacteria) that support various physiologic functions. A perturbation in the healthy gut microbiome might lead to the development of inflammatory diseases, such as multiple sclerosis (MS). Therefore, gut commensals might provide promising therapeutic options for treating MS and other diseases. We report the identification of human gut-derived commensal bacteria, Prevotella histicola, which can suppress experimental autoimmune encephalomyelitis (EAE) in a human leukocyte antigen (HLA) class II transgenic mouse model. P. histicola suppresses disease through the modulation of systemic immune responses. P. histicola challenge led to a decrease in pro-inflammatory Th1 and Th17 cells and an increase in the frequencies of CD4 + FoxP3 + regulatory T cells, tolerogenic dendritic cells, and suppressive macrophages. Our study provides evidence that the administration of gut commensals may regulate a systemic immune response and may, therefore, have a possible role in treatment strategies for MS. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. Subnormal expression of cell-mediated and humoral immune responses in progeny disposed toward a high incidence of tumors after in utero exposure to benzo[a]pyrene

    International Nuclear Information System (INIS)

    Urso, P.; Gengozian, N.

    1984-01-01

    Pregnant mice were exposed to 150 μg benzol[a]pyrene (BaP) per gram of body weight during fetogenesis (d 11-17 of gestation) and the progeny were assayed for humoral and cell mediated immune responses at different time intervals after birth. Immature offspring (1-4 wk) were severely suppressed in their ability to produce antibody (plaque-) forming cells (PFC) against sheep red blood cells (SRBC) and in the ability of their lymphocytes to undergo a mixed lymphocyte response (MLR). Lymphocytes from these progeny showed a moderate to weak capacity to inhabit production of colony-forming units (CFU) in host spleens following transfer with semiallogeneic bone marrow (BM) cells into lethally x-irradiated recipients syngeneic to the BM (in vivo graft-versus-host response, GVHR). A severe and sustained suppression in the MLR and the PFC response occurred from the fifth month up to 18 mo. The in vivo GVHR, also subnormal later in life, was not as severely suppressed as the other two parameters. Tumor incidence in the BP-exposed progeny was 8- to 10-fold higher than in those encountering corn oil alone from 18 to 24 mo of age. These data show that in utero exposure to the chemical carcinogen BaP alters development of components needed for establishing competent hemoral and cell-mediated functions of the immune apparatus and leads to severe and sustained postnatal suppression of the defense mechanism. The immunodeficiency exhibited, particularly in the T-cell compartment (MLR, GVHR), before and during the increase in tumor frequency, may provide a favorable environment for the growth of nascent neoplasms induced by BaP. 30 references, 4 figures, 2 tables

  16. Immune responses to hair dyes containing toluene-2,5-diamine

    DEFF Research Database (Denmark)

    Schmidt, J D; Johansen, J D; Nielsen, M M

    2014-01-01

    BACKGROUND: Toluene-2,5-diamine (PTD) is the most frequently used dye in oxidative hair dyes on the Scandinavian market. However, little is known about immune responses to PTD-containing oxidative hair dyes. OBJECTIVES: To study immune responses induced by PTD-containing hair dyes in mice. METHODS......: Immune responses against two different permanent hair dye products containing 1·60% (w/w) and 0·48% (w/w) PTD within the colour gel, and various concentrations of pure PTD were studied. The local inflammatory response was measured by ear swelling and cell infiltration, and T- and B-cell infiltration...... and proliferation was determined in the draining lymph nodes. RESULTS: Concentration-dependent immune responses were seen to PTD both in the skin and draining lymph nodes. The hair dye containing 1·60% PTD induced strong local inflammation and caused T- and B-cell infiltration and proliferation as well...

  17. Leptin Suppresses Mouse Taste Cell Responses to Sweet Compounds.

    Science.gov (United States)

    Yoshida, Ryusuke; Noguchi, Kenshi; Shigemura, Noriatsu; Jyotaki, Masafumi; Takahashi, Ichiro; Margolskee, Robert F; Ninomiya, Yuzo

    2015-11-01

    Leptin is known to selectively suppress neural and behavioral responses to sweet-tasting compounds. However, the molecular basis for the effect of leptin on sweet taste is not known. Here, we report that leptin suppresses sweet taste via leptin receptors (Ob-Rb) and KATP channels expressed selectively in sweet-sensitive taste cells. Ob-Rb was more often expressed in taste cells that expressed T1R3 (a sweet receptor component) than in those that expressed glutamate-aspartate transporter (a marker for Type I taste cells) or GAD67 (a marker for Type III taste cells). Systemically administered leptin suppressed taste cell responses to sweet but not to bitter or sour compounds. This effect was blocked by a leptin antagonist and was absent in leptin receptor-deficient db/db mice and mice with diet-induced obesity. Blocking the KATP channel subunit sulfonylurea receptor 1, which was frequently coexpressed with Ob-Rb in T1R3-expressing taste cells, eliminated the effect of leptin on sweet taste. In contrast, activating the KATP channel with diazoxide mimicked the sweet-suppressing effect of leptin. These results indicate that leptin acts via Ob-Rb and KATP channels that are present in T1R3-expressing taste cells to selectively suppress their responses to sweet compounds. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  18. Experimental studies on possible regulatory role of nitric oxide on the differential effects of chronic predictable and unpredictable stress on adaptive immune responses.

    Science.gov (United States)

    Thakur, Tarun; Gulati, Kavita; Rai, Nishant; Ray, Arunabha

    2017-09-01

    The present study was designed to investigate the effects of chronic predictable stress (CPS) and chronic unpredictable stress (CUS) on immunological responses in KLH-sensitized rats and involvement of NOergic signaling pathways mediating such responses. Male Wistar rats (200-250g) were exposed to either CPS or CUS for 14days and IgG antibody levels and delayed type hypersensitivity (DTH) response was determined to assess changes in adaptive immunity. To evaluate the role of nitric oxide during such immunomodulation, biochemical estimation of stable metabolite of nitric oxide (NOx) and 3-nitrotyrosine (3-NT, a marker of peroxynitrite formation) were done in both blood and brain. Chronic stress exposure resulted in suppression of IgG and DTH response and elevated NOx and 3-NT levels, with a difference in magnitude of response in CPS vs CUS. Pretreatment with aminoguanidine (iNOS inhibitor) caused further reduction of adaptive immune responses and attenuated the increased NOx and 3-NT levels in CPS or CUS exposed rats. On the other hand 7-NI (nNOS inhibitor) did not significantly affect these estimated parameters. The results suggest involvement of iNOS and lesser/no role of nNOS during modulation of adaptive immunity to stress. Thus, the result showed that predictability of stressors results in differential degree of modulation of immune responses and complex NO-mediated signaling mechanisms may be involved during responses. Copyright © 2017. Published by Elsevier B.V.

  19. The Specificity of Innate Immune Responses Is Enforced by Repression of Interferon Response Elements by NF-κB p50

    Science.gov (United States)

    Cheng, Christine S.; Feldman, Kristyn E.; Lee, James; Verma, Shilpi; Huang, De-Bin; Huynh, Kim; Chang, Mikyoung; Ponomarenko, Julia V.; Sun, Shao-Cong; Benedict, Chris A.; Ghosh, Gourisankar; Hoffmann, Alexander

    2011-01-01

    The specific binding of transcription factors to cognate sequence elements is thought to be critical for the generation of specific gene expression programs. Members of the nuclear factor κB (NF-κB) and interferon (IFN) regulatory factor (IRF) transcription factor families bind to the κB site and the IFN response element (IRE), respectively, of target genes, and they are activated in macrophages after exposure to pathogens. However, how these factors produce pathogen-specific inflammatory and immune responses remains poorly understood. Combining top-down and bottom-up systems biology approaches, we have identified the NF-κB p50 homodimer as a regulator of IRF responses. Unbiased genome-wide expression and biochemical and structural analyses revealed that the p50 homodimer repressed a subset of IFN-inducible genes through a previously uncharacterized subclass of guanine-rich IRE (G-IRE) sequences. Mathematical modeling predicted that the p50 homodimer might enforce the stimulus specificity of composite promoters. Indeed, the production of the antiviral regulator IFN-β was rendered stimulus-specific by the binding of the p50 homodimer to the G-IRE–containing IFNβ enhancer to suppress cytotoxic IFN signaling. Specifically, a deficiency in p50 resulted in the inappropriate production of IFN-β in response to bacterial DNA sensed by Toll-like receptor 9. This role for the NF-κB p50 homodimer in enforcing the specificity of the cellular response to pathogens by binding to a subset of IRE sequences alters our understanding of how the NF-κB and IRF signaling systems cooperate to regulate antimicrobial immunity. PMID:21343618

  20. Trachoma: protective and pathogenic ocular immune responses to Chlamydia trachomatis.

    Directory of Open Access Journals (Sweden)

    Victor H Hu

    Full Text Available Trachoma, caused by Chlamydia trachomatis (Ct, is the leading infectious blinding disease worldwide. Chronic conjunctival inflammation develops in childhood and leads to eyelid scarring and blindness in adulthood. The immune response to Ct provides only partial protection against re-infection, which can be frequent. Moreover, the immune response is central to the development of scarring pathology, leading to loss of vision. Here we review the current literature on both protective and pathological immune responses in trachoma. The resolution of Ct infection in animal models is IFNγ-dependent, involving Th1 cells, but whether this is the case in human ocular infection still needs to be confirmed. An increasing number of studies indicate that innate immune responses arising from the epithelium and other innate immune cells, along with changes in matrix metalloproteinase activity, are important in the development of tissue damage and scarring. Current trachoma control measures, which are centred on repeated mass antibiotic treatment of populations, are logistically challenging and have the potential to drive antimicrobial resistance. A trachoma vaccine would offer significant advantages. However, limited understanding of the mechanisms of both protective immunity and immunopathology to Ct remain barriers to vaccine development.

  1. A cannabigerol derivative suppresses immune responses and protects mice from experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Carrillo-Salinas, Francisco J; Navarrete, Carmen; Mecha, Miriam; Feliú, Ana; Collado, Juan A; Cantarero, Irene; Bellido, María L; Muñoz, Eduardo; Guaza, Carmen

    2014-01-01

    Phytocannabinoids that do not produce psychotropic effects are considered of special interest as novel therapeutic agents in CNS diseases. A cannabigerol quinone, the compound VCE-003, has been shown to alleviate symptoms in a viral model of multiple sclerosis (MS). Hence, we studied T cells and macrophages as targets for VCE-003 and its efficacy in an autoimmune model of MS. Proliferation, cell cycle, expression of activation markers was assessed by FACs in human primary T cells, and cytokine and chemokine production was evaluated. Transcription was studied in Jurkat cells and RAW264.7 cells were used to study the effects of VCE-003 on IL-17-induced macrophage polarization to a M1 phenotype. Experimental autoimmune encephalomyelitis (EAE) was induced by myelin oligodendrocyte glycoprotein (MOG₃₅₋₅₅) immunization and spinal cord pathology was assessed by immunohistochemistry. Neurological impairment was evaluated using disease scores. We show here that VCE-003 inhibits CD3/CD28-induced proliferation, cell cycle progression and the expression of the IL-2Rα and ICAM-1 activation markers in human primary T cells. VCE-003 inhibits the secretion of Th1/Th17 cytokines and chemokines in primary murine T cells, and it reduces the transcriptional activity of the IL-2, IL-17 and TNFα promoters induced by CD3/CD28. In addition, VCE-003 and JWH-133, a selective CB2 agonist, dampened the IL-17-induced polarization of macrophages to a pro-inflammatory M1 profile. VCE-003 also prevented LPS-induced iNOS expression in microglia. VCE-003 ameliorates the neurological defects and the severity of MOG-induced EAE in mice through CB2 and PPARγ receptor activation. A reduction in cell infiltrates, mainly CD4+ T cells, was observed, and Th1 and Th17 responses were inhibited in the spinal cord of VCE-003-treated mice, accompanied by weaker microglial activation, structural preservation of myelin sheets and reduced axonal damage. This study highlights the therapeutic potential

  2. A cannabigerol derivative suppresses immune responses and protects mice from experimental autoimmune encephalomyelitis.

    Directory of Open Access Journals (Sweden)

    Francisco J Carrillo-Salinas

    Full Text Available Phytocannabinoids that do not produce psychotropic effects are considered of special interest as novel therapeutic agents in CNS diseases. A cannabigerol quinone, the compound VCE-003, has been shown to alleviate symptoms in a viral model of multiple sclerosis (MS. Hence, we studied T cells and macrophages as targets for VCE-003 and its efficacy in an autoimmune model of MS. Proliferation, cell cycle, expression of activation markers was assessed by FACs in human primary T cells, and cytokine and chemokine production was evaluated. Transcription was studied in Jurkat cells and RAW264.7 cells were used to study the effects of VCE-003 on IL-17-induced macrophage polarization to a M1 phenotype. Experimental autoimmune encephalomyelitis (EAE was induced by myelin oligodendrocyte glycoprotein (MOG₃₅₋₅₅ immunization and spinal cord pathology was assessed by immunohistochemistry. Neurological impairment was evaluated using disease scores. We show here that VCE-003 inhibits CD3/CD28-induced proliferation, cell cycle progression and the expression of the IL-2Rα and ICAM-1 activation markers in human primary T cells. VCE-003 inhibits the secretion of Th1/Th17 cytokines and chemokines in primary murine T cells, and it reduces the transcriptional activity of the IL-2, IL-17 and TNFα promoters induced by CD3/CD28. In addition, VCE-003 and JWH-133, a selective CB2 agonist, dampened the IL-17-induced polarization of macrophages to a pro-inflammatory M1 profile. VCE-003 also prevented LPS-induced iNOS expression in microglia. VCE-003 ameliorates the neurological defects and the severity of MOG-induced EAE in mice through CB2 and PPARγ receptor activation. A reduction in cell infiltrates, mainly CD4+ T cells, was observed, and Th1 and Th17 responses were inhibited in the spinal cord of VCE-003-treated mice, accompanied by weaker microglial activation, structural preservation of myelin sheets and reduced axonal damage. This study highlights the

  3. Bovine anaplasmosis with emphasis on immune responses and protection

    International Nuclear Information System (INIS)

    Ristic, M.

    1980-01-01

    Anaplasmosis is an infectious and transmissible disease manifested by progressive anaemia and the appearance of other characteristic disease symptoms. It is a world-wide tick-borne disease of cattle and some wild ruminants caused by the rickettsia Anaplasma marginale. By drawing on information obtained from studies of plasmodial cell cultures, a method has recently been developed for short-term in vitro cultivation of A. marginale. An attenuated Anaplasma organism capable of growth in both ovine and bovine erythrocytes was used to demonstrate that the in vitro system provided the necessary requirements for active transfer of the organism from cell to cell. Organismal antigens are found in the erythrocytes of infected animals, whereas soluble antigens are derived from their erythrocytes and serum. Serums from convalescing animals interact with these antigens in agglutination, complement fixation, fluorescent antibody and precipitation tests. Passive transfer of sera from immune to susceptible cattle, however, does not seem to confer protection against the infection and development of the disease. Studies that employed various tests for measuring cell-mediated immune (CMI) responses (leukocyte migration inhibition, blast transformation and cytotoxicity), in association with information collected simultaneously on antibody activity, have shown that both humoral and cellular immune responses are needed for the development of protective immunity in anaplasmosis. It was further shown that an active replication of Anaplasma is essential for induction of these two types of immune responses. Consequently, live virulent and attenuated immunogens fulfil requirements for induction of protective immunity. With the virulent agent, however, development of protective immunity is preceded by induction of auto-immune responses apparently associated with pathogenesis of anaemia in anaplasmosis. Inactivated immunogens derived from blood of infected cattle and used in combination with

  4. Foxp3(+) T cells regulate immunoglobulin a selection and facilitate diversification of bacterial species responsible for immune homeostasis.

    Science.gov (United States)

    Kawamoto, Shimpei; Maruya, Mikako; Kato, Lucia M; Suda, Wataru; Atarashi, Koji; Doi, Yasuko; Tsutsui, Yumi; Qin, Hongyan; Honda, Kenya; Okada, Takaharu; Hattori, Masahira; Fagarasan, Sidonia

    2014-07-17

    Foxp3(+) T cells play a critical role for the maintenance of immune tolerance. Here we show that in mice, Foxp3(+) T cells contributed to diversification of gut microbiota, particularly of species belonging to Firmicutes. The control of indigenous bacteria by Foxp3(+) T cells involved regulatory functions both outside and inside germinal centers (GCs), consisting of suppression of inflammation and regulation of immunoglobulin A (IgA) selection in Peyer's patches, respectively. Diversified and selected IgAs contributed to maintenance of diversified and balanced microbiota, which in turn facilitated the expansion of Foxp3(+) T cells, induction of GCs, and IgA responses in the gut through a symbiotic regulatory loop. Thus, the adaptive immune system, through cellular and molecular components that are required for immune tolerance and through the diversification as well as selection of antibody repertoire, mediates host-microbial symbiosis by controlling the richness and balance of bacterial communities required for homeostasis. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Arctigenin protects against liver injury from acute hepatitis by suppressing immune cells in mice.

    Science.gov (United States)

    Cheng, Xixi; Wang, Huafeng; Yang, Jinlai; Cheng, Yingnan; Wang, Dan; Yang, Fengrui; Li, Yan; Zhou, Dongmei; Wang, Yanxia; Xue, Zhenyi; Zhang, Lijuan; Zhang, Qi; Yang, Luhong; Zhang, Rongxin; Da, Yurong

    2018-06-01

    As a phenylpropanoid and dibenzylbutyrolactone lignan present in medical plants, such as those used in traditional Chinese herbal medicine, including Arctium lappa (Niubang), arctigenin exhibits antimicrobial, anti-inflammatory, and anticancer activities. In this study, we investigated the protective role of arctigenin in Concanavalin A (ConA)-induced acute hepatitis in mice. Arctigenin remarkably reduced the congestion and necroinflammation of livers, and improved hepatic function (ALT and AST) in ConA-induced acute hepatitis in vivo. The infiltration of CD4 T, NKT and macrophages into the livers was found to be reduced with arctigenin treatment. Arctigenin suppressed ConA-induced T lymphocyte proliferations that might have resulted from enhanced IL-10 production by macrophages and CD4 T cells. These results suggested that arctigenin could be a powerful drug candidate for acute hepatitis through immune suppression. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  6. Anopheles gambiae antiviral immune response to systemic O'nyong-nyong infection.

    Directory of Open Access Journals (Sweden)

    Joanna Waldock

    Full Text Available Mosquito-borne viral diseases cause significant burden in much of the developing world. Although host-virus interactions have been studied extensively in the vertebrate host, little is known about mosquito responses to viral infection. In contrast to mosquitoes of the Aedes and Culex genera, Anopheles gambiae, the principal vector of human malaria, naturally transmits very few arboviruses, the most important of which is O'nyong-nyong virus (ONNV. Here we have investigated the A. gambiae immune response to systemic ONNV infection using forward and reverse genetic approaches.We have used DNA microarrays to profile the transcriptional response of A. gambiae inoculated with ONNV and investigate the antiviral function of candidate genes through RNAi gene silencing assays. Our results demonstrate that A. gambiae responses to systemic viral infection involve genes covering all aspects of innate immunity including pathogen recognition, modulation of immune signalling, complement-mediated lysis/opsonisation and other immune effector mechanisms. Patterns of transcriptional regulation and co-infections of A. gambiae with ONNV and the rodent malaria parasite Plasmodium berghei suggest that hemolymph immune responses to viral infection are diverted away from melanisation. We show that four viral responsive genes encoding two putative recognition receptors, a galectin and an MD2-like receptor, and two effector lysozymes, function in limiting viral load.This study is the first step in elucidating the antiviral mechanisms of A. gambiae mosquitoes, and has revealed interesting differences between A. gambiae and other invertebrates. Our data suggest that mechanisms employed by A. gambiae are distinct from described invertebrate antiviral immunity to date, and involve the complement-like branch of the humoral immune response, supressing the melanisation response that is prominent in anti-parasitic immunity. The antiviral immune response in A. gambiae is thus

  7. Mechanisms Underlying the Immune Response Generated by an Oral Vibrio cholerae Vaccine

    Directory of Open Access Journals (Sweden)

    Danylo Sirskyj

    2016-07-01

    Full Text Available Mechanistic details underlying the resulting protective immune response generated by mucosal vaccines remain largely unknown. We investigated the involvement of Toll-like receptor signaling in the induction of humoral immune responses following oral immunization with Dukoral, comparing wild type mice with TLR-2-, TLR-4-, MyD88- and Trif-deficient mice. Although all groups generated similar levels of IgG antibodies, the proliferation of CD4+ T-cells in response to V. cholerae was shown to be mediated via MyD88/TLR signaling, and independently of Trif signaling. The results demonstrate differential requirements for generation of immune responses. These results also suggest that TLR pathways may be modulators of the quality of immune response elicited by the Dukoral vaccine. Determining the critical signaling pathways involved in the induction of immune response to this vaccine would be beneficial, and could contribute to more precisely-designed versions of other oral vaccines in the future.

  8. Reprogramming Antitumor Immune Responses with microRNAs

    Science.gov (United States)

    2013-10-01

    disease, including cancer etiology (4) and the generation and inhibition of antitumor immune responses (5–9). Biologically active miRNAs bind to MREs...breast, colorectal, lung, pancreatic , and thyroid carcinomas and in liquid tumors including lymphomas and some acute myeloid leukemias (9, 35). The...immunity [9], underscoring the potential of targeting this major microenvironmental compartment. Accumulating evidence suggests that chronic

  9. The aryl hydrocarbon receptor is a modulator of anti-viral immunity

    Science.gov (United States)

    Head, Jennifer L.; Lawrence, B. Paige

    2009-01-01

    Although immune modulation by AhR ligands has been studied for many years, the impact of AhR activation on host defenses against viral infection has not, until recently, garnered much attention. The development of novel reagents and model systems, new information regarding antiviral immunity, and a growing appreciation for the global health threat posed by viruses have invigorated interest in understanding how environmental signals affect susceptibility to and pathological consequences of viral infection. Using influenza A virus as a model of respiratory viral infection, recent studies show that AhR activation cues signaling events in both leukocytes and non-immune cells. Functional alterations include suppressed lymphocyte responses and increased inflammation in the infected lung. AhR-mediated events within and extrinsic to hematopoietic cells has been investigated using bone marrow chimeras, which show that AhR alters different elements of the immune response by affecting different tissue targets. In particular, suppressed CD8+ T cell responses are due to deregulated events within leukocytes themselves, whereas increased neutrophil recruitment to and IFN-γ levels in the lung result from AhR-regulated events extrinsic to bone marrow-derived cells. This latter discovery suggests that epithelial and endothelial cells are overlooked targets of AhR-mediated changes in immune function. Further support that AhR influences host cell responses to viral infection are provided by several studies demonstrating that AhR interacts directly with viral proteins and affects viral latency. While AhR clearly modulates host responses to viral infection, we still have much to understand about the complex interactions between immune cells, viruses, and the host environment. PMID:19027719

  10. Xanomeline suppresses excessive pro-inflammatory cytokine responses through neural signal-mediated pathways and improves survival in lethal inflammation

    Science.gov (United States)

    Rosas-Ballina, Mauricio; Ferrer, Sergio Valdés; Dancho, Meghan; Ochani, Mahendar; Katz, David; Cheng, Kai Fan; Olofsson, Peder S.; Chavan, Sangeeta S.; Al-Abed, Yousef; Tracey, Kevin J.; Pavlov, Valentin A.

    2014-01-01

    Inflammatory conditions characterized by excessive immune cell activation and cytokine release, are associated with bidirectional immune system-brain communication, underlying sickness behavior and other physiological responses. The vagus nerve has an important role in this communication by conveying sensory information to the brain, and brain-derived immunoregulatory signals that suppress peripheral cytokine levels and inflammation. Brain muscarinic acetylcholine receptor (mAChR)-mediated cholinergic signaling has been implicated in this regulation. However, the possibility of controlling inflammation by peripheral administration of centrally-acting mAChR agonists is unexplored. To provide insight we used the centrally-acting M1 mAChR agonist xanomeline, previously developed in the context of Alzheimer’s disease and schizophrenia. Intraperitoneal administration of xanomeline significantly suppressed serum and splenic TNF levels, alleviated sickness behavior, and increased survival during lethal murine endotoxemia. The anti-inflammatory effects of xanomeline were brain mAChR-mediated and required intact vagus nerve and splenic nerve signaling. The anti-inflammatory efficacy of xanomeline was retained for at least 20h, associated with alterations in splenic lymphocyte, and dendritic cell proportions, and decreased splenocyte responsiveness to endotoxin. These results highlight an important role of the M1 mAChR in a neural circuitry to spleen in which brain cholinergic activation lowers peripheral pro-inflammatory cytokines to levels favoring survival. The therapeutic efficacy of xanomeline was also manifested by significantly improved survival in preclinical settings of severe sepsis. These findings are of interest for strategizing novel therapeutic approaches in inflammatory diseases. PMID:25063706

  11. Humoral and cell-mediated immune responses in DNA immunized mink challenged with wild-type canine distemper virus.

    Science.gov (United States)

    Nielsen, Line; Søgaard, Mette; Karlskov-Mortensen, Peter; Jensen, Trine Hammer; Jensen, Tove Dannemann; Aasted, Bent; Blixenkrone-Møller, Merete

    2009-07-30

    The aim of the study was to investigate the different phases of the immune response after DNA immunization with the hemagglutinin and nucleoprotein genes from canine distemper virus (CDV). Although attenuated live CDV vaccines have effectively reduced the incidence of disease, canine distemper is still a problem worldwide. The broad host range of CDV creates a constant viral reservoir among wildlife animals. Our results demonstrated early humoral and cell-mediated immune responses (IFN-gamma) in DNA vaccinated mink compared to mock-vaccinated mink after challenge with a Danish wild-type CDV. The DNA vaccine-induced immunity protected the natural host against disease development.

  12. Oncolytic Viral Therapy and the Immune System: A Double-Edged Sword Against Cancer.

    Science.gov (United States)

    Marelli, Giulia; Howells, Anwen; Lemoine, Nicholas R; Wang, Yaohe

    2018-01-01

    Oncolytic viral therapy is a new promising strategy against cancer. Oncolytic viruses (OVs) can replicate in cancer cells but not in normal cells, leading to lysis of the tumor mass. Beside this primary effect, OVs can also stimulate the immune system. Tumors are an immuno-suppressive environment in which the immune system is silenced in order to avoid the immune response against cancer cells. The delivery of OVs into the tumor wakes up the immune system so that it can facilitate a strong and durable response against the tumor itself. Both innate and adaptive immune responses contribute to this process, producing an immune response against tumor antigens and facilitating immunological memory. However, viruses are recognized by the immune system as pathogens and the consequent anti-viral response could represent a big hurdle for OVs. Finding a balance between anti-tumor and anti-viral immunity is, under this new light, a priority for researchers. In this review, we provide an overview of the various ways in which different components of the immune system can be allied with OVs. We have analyzed the different immune responses in order to highlight the new and promising perspectives leading to increased anti-tumor response and decreased immune reaction to the OVs.

  13. Immune Response to Dengue and Zika.

    Science.gov (United States)

    Ngono, Annie Elong; Shresta, Sujan

    2018-04-26

    Flaviviruses such as dengue (DENV), yellow fever (YFV), West Nile (WNV), and Zika (ZIKV) are human pathogens of global significance. In particular, DENV causes the most prevalent mosquito-borne viral diseases in humans, and ZIKV emerged from obscurity into the spotlight in 2016 as the etiologic agent of congenital Zika syndrome. Owing to the recent emergence of ZIKV as a global pandemic threat, the roles of the immune system during ZIKV infections are as yet unclear. In contrast, decades of DENV research implicate a dual role for the immune system in protection against and pathogenesis of DENV infection. As DENV and ZIKV are closely related, knowledge based on DENV studies has been used to prioritize investigation of ZIKV immunity and pathogenesis, and to accelerate ZIKV diagnostic, therapeutic, and vaccine design. This review discusses the following topics related to innate and adaptive immune responses to DENV and ZIKV: the interferon system as the key mechanism of host defense and viral target for immune evasion, antibody-mediated protection versus antibody-dependent enhancement, and T cell-mediated protection versus original T cell antigenic sin. Understanding the mechanisms that regulate the balance between immune-mediated protection and pathogenesis during DENV and ZIKV infections is critical toward development of safe and effective DENV and ZIKV therapeutics and vaccines.

  14. Innate and Adaptive Immune Response to Pneumonia Virus of Mice in a Resistant and a Susceptible Mouse Strain

    Directory of Open Access Journals (Sweden)

    Ellen R. T. Watkiss

    2013-01-01

    Full Text Available Respiratory syncytial virus (RSV is the leading cause of infant bronchiolitis. The closely related pneumonia virus of mice (PVM causes a similar immune-mediated disease in mice, which allows an analysis of host factors that lead to severe illness. This project was designed to compare the immune responses to lethal and sublethal doses of PVM strain 15 in Balb/c and C57Bl/6 mice. Balb/c mice responded to PVM infection with an earlier and stronger innate response that failed to control viral replication. Production of inflammatory cyto- and chemokines, as well as infiltration of neutrophils and IFN-γ secreting natural killer cells into the lungs, was more predominant in Balb/c mice. In contrast, C57Bl/6 mice were capable of suppressing both viral replication and innate inflammatory responses. After a sublethal infection, PVM-induced IFN-γ production by splenocytes was stronger early during infection and weaker at late time points in C57Bl/6 mice when compared to Balb/c mice. Furthermore, although the IgG levels were similar and the mucosal IgA titres lower, the virus neutralizing antibody titres were higher in C57Bl/6 mice than in Balb/c mice. Overall, the difference in susceptibility of these two strains appeared to be related not to an inherent T helper bias, but to the capacity of the C57Bl/6 mice to control both viral replication and the immune response elicited by PVM.

  15. Eosinophils in mucosal immune responses

    Science.gov (United States)

    Travers, J; Rothenberg, M E

    2015-01-01

    Eosinophils, multifunctional cells that contribute to both innate and adaptive immunity, are involved in the initiation, propagation and resolution of immune responses, including tissue repair. They achieve this multifunctionality by expression of a diverse set of activation receptors, including those that directly recognize pathogens and opsonized targets, and by their ability to store and release preformed cytotoxic mediators that participate in host defense, to produce a variety of de novo pleotropic mediators and cytokines and to interact directly and indirectly with diverse cell types, including adaptive and innate immunocytes and structural cells. Herein, we review the basic biology of eosinophils and then focus on new emerging concepts about their role in mucosal immune homeostasis, particularly maintenance of intestinal IgA. We review emerging data about their development and regulation and describe new concepts concerning mucosal eosinophilic diseases. We describe recently developed therapeutic strategies to modify eosinophil levels and function and provide collective insight about the beneficial and detrimental functions of these enigmatic cells. PMID:25807184

  16. Tetanus-diphtheria-pertussis vaccine may suppress the immune response to subsequent immunization with pneumococcal CRM197-conjugate vaccine (coadministered with quadrivalent meningococcal TT-conjugate vaccine): a randomized, controlled trial⋆.

    Science.gov (United States)

    Tashani, Mohamed; Heron, Leon; Wong, Melanie; Rashid, Harunor; Booy, Robert

    2017-07-01

    : Due to their antigenic similarities, there is a potential for immunological interaction between tetanus/diphtheria-containing vaccines and carrier proteins presented on conjugate vaccines. The interaction could, unpredictably, result in either enhancement or suppression of the immune response to conjugate vaccines if they are injected soon after or concurrently with diphtheria or tetanus toxoid. We examined this interaction among adult Australian travellers before attending the Hajj pilgrimage of 2015. We randomly assigned each participant to one of three vaccination schedules. Group A received tetanus, diphtheria and acellular pertussis vaccine (Tdap) 3-4 weeks before receiving CRM197-conjugated 13-valent pneumococcal vaccine (PCV13) coadministered with TT-conjugated quadrivalent meningococcal vaccine (MCV4). Group B received all three vaccines concurrently. Group C received PCV13 and MCV4 3-4 weeks before Tdap. Blood samples collected at baseline, at each vaccination visit and 3-4 weeks after vaccination were tested for the pneumococcal opsonophagocytic assay (OPA). A total of 166 participants aged 18-64 (median 42) years were recruited, 159 completed the study. Compared with the other groups, Group A had significantly ( P  vaccination in seven serotypes of PCV13 (1, 3, 4, 5, 14, 18C and 9V). Additionally, Group A had lower frequency of serorises (≥ 4-fold rise in OPA titres) in serotype5 (79%, p = 0.01) and 18C (73.5%, p = 0.06); whereas Groups B and C had significantly lower frequencies of serorises in Serotype 4 (82%) and 6A (73.5%), respectively. No statistically significant difference was detected across the three groups in frequencies achieving OPA titre ≥ 1:8 post-vaccination. Tdap vaccination 3-4 weeks before administration of PCV13 and MCV4 significantly reduced the GMTs to seven of the 13 pneumococcal serotypes in adults. If multiple vaccination is required before travel, deferring tetanus/diphtheria until after administering the

  17. Type II collagen in cartilage evokes peptide-specific tolerance and skews the immune response.

    Science.gov (United States)

    Malmström, V; Kjellén, P; Holmdahl, R

    1998-06-01

    T cell recognition of type II collagen (CII) is a crucial event in the induction of collagen-induced arthritis in the mouse. Several CII peptides have been shown to be of importance, dependent on which MHC haplotype the mouse carries. By sequencing the rat CII and comparing the sequence with mouse, human, bovine and chicken CII, we have found that the immunodominant peptides all differ at critical positions compared with the autologous mouse sequence. Transgenic expression of the immunodominant Aq-restricted heterologous CII 256-270 epitope inserted into type I collagen (TSC mice) or type II collagen (MMC-1 mice) led to epitope-specific tolerance. Immunization of TSC mice with chick CII led to arthritis and immune responses, dependent on the subdominant, Aq-restricted and chick-specific CII 190-200 epitope. Immunization of F1 mice, expressing both H-2q and H-2r as well as transgenic expression of the Aq-restricted CII 256-270 epitope in cartilage, with bovine CII, led to arthritis, dependent on the Ar-restricted, bovine-specific epitope CII 607-621. These data show that the immunodominance of CII recognition is directed towards heterologous determinants, and that T cells directed towards the corresponding autologous epitopes are tolerated without evidence of active suppression.

  18. Functional characterization of Foxp3-specific spontaneous immune responses

    DEFF Research Database (Denmark)

    Larsen, Susanne Købke; Munir, S; Andersen, Anders Woetmann

    2013-01-01

    Tumor-infiltrating CD4+CD25+ regulatory T cells (Tregs) are associated with an impaired prognosis in several cancers. The transcription factor forkhead box P3 (Foxp3) is generally expressed in Tregs. Here, we identify and characterize spontaneous cytotoxic immune responses to Foxp3-expressing cel....... Consequently, induction of Foxp3-specific cytotoxic T-cell responses appears as an attractive tool to boost spontaneous or therapeutically provoked immune responses, for example, for the therapy of cancer....

  19. Hepatitis C Virus Frameshift/Alternate Reading Frame Protein Suppresses Interferon Responses Mediated by Pattern Recognition Receptor Retinoic-Acid-Inducible Gene-I.

    Directory of Open Access Journals (Sweden)

    Seung Bum Park

    Full Text Available Hepatitis C virus (HCV actively evades host interferon (IFN responses but the mechanisms of how it does so are not completely understood. In this study, we present evidence for an HCV factor that contributes to the suppression of retinoic-acid-inducible gene-I (RIG-I-mediated IFN induction. Expression of frameshift/alternate reading frame protein (F/ARFP from HCV -2/+1 frame in Huh7 hepatoma cells suppressed type I IFN responses stimulated by HCV RNA pathogen-associated molecular pattern (PAMP and poly(IC. The suppression occurred independently of other HCV factors; and activation of interferon stimulated genes, TNFα, IFN-λ1, and IFN-λ2/3 was likewise suppressed by HCV F/ARFP. Point mutations in the full-length HCV sequence (JFH1 genotype 2a strain were made to introduce premature termination codons in the -2/+1 reading frame coding for F/ARFP while preserving the original reading frame, which enhanced IFNα and IFNβ induction by HCV. The potentiation of IFN response by the F/ARFP mutations was diminished in Huh7.5 cells, which already have a defective RIG-I, and by decreasing RIG-I expression in Huh7 cells. Furthermore, adding F/ARFP back via trans-complementation suppressed IFN induction in the F/ARFP mutant. The F/ARFP mutants, on the other hand, were not resistant to exogenous IFNα. Finally, HCV-infected human liver samples showed significant F/ARFP antibody reactivity, compared to HCV-uninfected control livers. Therefore, HCV F/ARFP likely cooperates with other viral factors to suppress type I and III IFN induction occurring through the RIG-I signaling pathway. This study identifies a novel mechanism of pattern recognition receptor modulation by HCV and suggests a biological function of the HCV alternate reading frame in the modulation of host innate immunity.

  20. A multiherbal formulation influencing immune response in vitro.

    Science.gov (United States)

    Menghini, L; Leporini, L; Scanu, N; Pintore, G; Ferrante, C; Recinella, L; Orlando, G; Vacca, M; Brunetti, L

    2012-02-01

    Aim of this study was to evaluate the effects of phytocomplexes of Uncaria, Shiitake and Ribes in terms of viability and inflammatory response on immune cell-derived cultures. Standardized extracts of Uncaria, Shitake and Ribes and their commercial formulation were tested on cell lines PBMC, U937 and macrophage. The activity was evaluated in terms of cell viability (MTT test), variations of oxidative marker release (ROS and PGE2) and modulatory effects on immune response (gene expression of IL-6, IL-8 and TNFα, RT-PCR). Cell viability was not affected by extracts, except subtle variations observed only at higher doses (>250 µg/mL). The extract mixture was well tolerated, with no effects on cell viability up to doses of 500 µg/mL. Pre-treatment of macrophages with subtoxic doses of the extracts reduced the basal release of oxidative markers and enhanced the cell response to exogenous oxidant stimulation, as revealed by ROS and PGE2 release reduction. The same treatment on macrophage resulted in a selective modulation of the immune response, as shown by an increase of IL-6 mRNA and, partially, IL-8 mRNA, while a reduction was observed for TNFα mRNA. Data confirm that extracts and their formulations can act as regulator of the immune system with mechanisms involving the oxidative stress and the release of selected proinflammatory cytokines.

  1. DNA Damage Response and Immune Defence: Links and Mechanisms

    Directory of Open Access Journals (Sweden)

    Björn Schumacher

    2016-08-01

    Full Text Available DNA damage plays a causal role in numerous human pathologies including cancer, premature aging and chronic inflammatory conditions. In response to genotoxic insults, the DNA damage response (DDR orchestrates DNA damage checkpoint activation and facilitates the removal of DNA lesions. The DDR can also arouse the immune system by for example inducing the expression of antimicrobial peptides as well as ligands for receptors found on immune cells. The activation of immune signalling is triggered by different components of the DDR including DNA damage sensors, transducer kinases, and effectors. In this review, we describe recent advances on the understanding of the role of DDR in activating immune signalling. We highlight evidence gained into (i which molecular and cellular pathways of DDR activate immune signalling, (ii how DNA damage drives chronic inflammation, and (iii how chronic inflammation causes DNA damage and pathology in humans.

  2. Pathogen recognition in the innate immune response.

    Science.gov (United States)

    Kumar, Himanshu; Kawai, Taro; Akira, Shizuo

    2009-04-28

    Immunity against microbial pathogens primarily depends on the recognition of pathogen components by innate receptors expressed on immune and non-immune cells. Innate receptors are evolutionarily conserved germ-line-encoded proteins and include TLRs (Toll-like receptors), RLRs [RIG-I (retinoic acid-inducible gene-I)-like receptors] and NLRs (Nod-like receptors). These receptors recognize pathogens or pathogen-derived products in different cellular compartments, such as the plasma membrane, the endosomes or the cytoplasm, and induce the expression of cytokines, chemokines and co-stimulatory molecules to eliminate pathogens and instruct pathogen-specific adaptive immune responses. In the present review, we will discuss the recent progress in the study of pathogen recognition by TLRs, RLRs and NLRs and their signalling pathways.

  3. Modulation of the immune response by emotional stress

    NARCIS (Netherlands)

    Croiset, G; Heijnen, C J; Veldhuis, H D; de Wied, D; Ballieux, R E

    1987-01-01

    The influence of mild, emotional stress was investigated for its effect on the immune system by subjecting rats to the one-trial-learning passive avoidance test. The reactivity of the immune system was tested by determining the proliferative response after mitogenic stimulation in vitro as well as

  4. The sterile immune response during hepatic ischemia/reperfusion

    NARCIS (Netherlands)

    van Golen, Rowan F.; van Gulik, Thomas M.; Heger, Michal

    2012-01-01

    Hepatic ischemia and reperfusion elicits an immune response that lacks a microbial constituent yet poses a potentially lethal threat to the host. In this sterile setting, the immune system is alarmed by endogenous danger signals that are release by stressed and dying liver cells. The detection of

  5. Inflammatory cytokines in the brain: does the CNS shape immune responses?

    Science.gov (United States)

    Owens, T; Renno, T; Taupin, V; Krakowski, M

    1994-12-01

    Immune responses in the central nervous system (CNS) have traditionally been regarded as representing the intrusion of an unruly, ill-behaved mob of leukocytes into the well-ordered and organized domain of thought and reason. However, results accumulated over the past few years suggest that, far from being an immunologically privileged organ, T lymphocytes may be regular and frequent visitors to the CNS, for purposes of immune surveillance. Here, Trevor Owens and colleagues propose that the brain itself can regulate or shape immune responses therein. Furthermore, given that the immune cells may be subverted to autoimmunity, they suggest that the study of inflammatory autoimmune disease in the brain may shed light on the ability of the local environment to regulate immune responses.

  6. Effects of hyperthermia on the hamster immune system

    International Nuclear Information System (INIS)

    Gangavalli, R.; Cain, C.A.; Tompkins, W.A.F.

    1984-01-01

    In previous studies, the authors have shown that hyperthermia can enhance antibody-complement chytotoxicity of hamster and human tumor cells. Moreover, whole body microwave exposure of hamsters resulted in activation of peritoneal macrophages to a viricidal state and transient suppression of natural killer (NK) cell activity. In this study, the authors compare the effects of whole body heating by microwaves or by an environmental chamber (hot air) on the hamster immune system. Microwave exposure (25mW/cm/sup 2/; 1 hr) caused viricidal activation of peritoneal macrophages which resulted in restriction of vaccinia and vesicular stomatitis virs (VSV) growth. However, heating in an environmental chamber (41 0 C; 1 hr) did not activate macrophages to a viricidal state. Both microwave and hot air hyperthermia caused significant augmentation of antibody producing spleen cell response to sheep red blood cells (SRBC), using the Jerne hymolytic plaque assay, four days post exposure and immunization with SRBC. Natural killer spleen cell cytotoxicity was suppressed by microwave and hot air hyperthermia showing that NK lymphocytes are extremely sensitive to changes in temperature. These alterations in cellular immune response due to hyperthermia could be of significance in treatment of tumors and viral infections

  7. Influence of bedding type on mucosal immune responses.

    Science.gov (United States)

    Sanford, Amy N; Clark, Stephanie E; Talham, Gwen; Sidelsky, Michael G; Coffin, Susan E

    2002-10-01

    The mucosal immune system interacts with the external environment. In the study reported here, we found that bedding materials can influence the intestinal immune responses of mice. We observed that mice housed on wood, compared with cotton bedding, had increased numbers of Peyer's patches (PP) visible under a dissecting microscope. In addition, culture of lymphoid organs revealed increased production of total and virus-specific IgA by PP and mesenteric lymph node (MLN) lymphocytes from mice housed on wood, compared with cotton bedding. However, bedding type did not influence serum virus-specific antibody responses. These observations indicate that bedding type influences the intestinal immune system and suggest that this issue should be considered by mucosal immunologists and personnel at animal care facilities.

  8. Suppression of humoral immune responses by 2,3,7,8-tetrachlorodibenzo-p-dioxin intercalated in smectite clay.

    Science.gov (United States)

    Boyd, Stephen A; Johnston, Cliff T; Pinnavaia, Thomas J; Kaminski, Norbert E; Teppen, Brian J; Li, Hui; Khan, Bushra; Crawford, Robert B; Kovalova, Natalia; Kim, Seong-Su; Shao, Hua; Gu, Cheng; Kaplan, Barbara L F

    2011-12-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a highly toxic environmental contaminant found in soils and sediments. Because of its exceptionally low water solubility, this compound exists predominantly in the sorbed state in natural environments. Clay minerals, especially expandable smectite clays, are one of the major component geosorbents in soils and sediments that can function as an effective adsorbent for environmental dioxins, including TCDD. In this study, TCDD was intercalated in the smectite clay saponite by an incipient wetness method. The primary goal of this study was to intercalate TCDD in natural K-saponite clay and evaluate its immunotoxic effects in vivo. The relative bioavailability of TCDD was evaluated by comparing the metabolic activity of TCDD administered in the adsorbed state as an intercalate in saponite and freely dissolved in corn oil. This comparison revealed nearly identical TCDD-induced suppression of humoral immunity, a well-established and sensitive sequela, in a mammalian (mouse) model. This result suggests that TCDD adsorbed by clays is likely to be available for biouptake and biodistribution in mammals, consistent with previous observations of TCDD in livestock exposed to dioxin-contaminated ball clays that were used as feed additives. Adsorption of TCDD by clay minerals does not appear to mitigate risk associated with TCDD exposure substantially. Copyright © 2011 SETAC.

  9. Neuron-mediated generation of regulatory T cells from encephalitogenic T cells suppresses EAE

    DEFF Research Database (Denmark)

    Liu, Yawei; Teige, Ingrid; Birnir, Bryndis

    2006-01-01

    Neurons have been neglected as cells with a major immune-regulatory function because they do not express major histocompatibility complex class II. Our data show that neurons are highly immune regulatory, having a crucial role in governing T-cell response and central nervous system (CNS) inflamma......Neurons have been neglected as cells with a major immune-regulatory function because they do not express major histocompatibility complex class II. Our data show that neurons are highly immune regulatory, having a crucial role in governing T-cell response and central nervous system (CNS......) inflammation. Neurons induce the proliferation of activated CD4+ T cells through B7-CD28 and transforming growth factor (TGF)-beta1-TGF-beta receptor signaling pathways, resulting in amplification of T-cell receptor signaling through phosphorylated ZAP-70, interleukin (IL)-2 and IL-9. The interaction between...... neurons and T cells results in the conversion of encephalitogenic T cells to CD25+ TGF-beta1+ CTLA-4+ FoxP3+ T regulatory (Treg) cells that suppress encephalitogenic T cells and inhibit experimental autoimmune encephalomyelitis. Suppression is dependent on cytotoxic T lymphocyte antigen (CTLA)-4...

  10. Respons imun humoral pada pulpitis (Humoral immune response on pulpitis)

    OpenAIRE

    Widodo, Trijoedani

    2005-01-01

    Pulpitis is an inflammation process on dental pulp tissue, and usually as the continuous of caries. The microorganism in the caries is a potential immunogenic triggering the immune respons, both humoral and celluler immune responses. The aim of this research is to explain the humoral immune response changes in the dental pulp tissues of pulpitis. This research was done on three group samples: Irreversible pulpitis, Reversible pulpitis and sound teeth as the control group. The result showed th...

  11. Regulation of immune responsiveness in vivo by disrupting an early T-cell signaling event using a cell-permeable peptide.

    Directory of Open Access Journals (Sweden)

    David M Guimond

    Full Text Available The inducible T cell kinase (ITK regulates type 2 (Th2 cytokines that provide defense against certain parasitic and bacterial infections and are involved in the pathogenesis of lung inflammation such as allergic asthma. Activation of ITK requires the interaction of its SH3 domain with the poly-proline region of its signaling partner, the SH2 domain containing leukocyte phosphoprotein of 76 kilodaltons (SLP-76. The specific disruption of the ITK-SH3/SLP-76 poly-proline interaction in vitro by a cell-permeable competitive inhibitor peptide (R9-QQP interferes with the activation of ITK and the transduction of its cellular functions in T lymphocytes. In the present investigation, we assessed the effects of R9-QQP treatment on the induction of an in vivo immune response as represented by lung inflammation in a murine model of allergic asthma. We found that mice treated with R9-QQP and sensitized and challenged with the surrogate allergen ovalbumin (OVA display significant inhibition of lung inflammation in a peptide-specific manner. Thus, parameters of the allergic response, such as airway hyper-responsiveness, suppression of inflammatory cell infiltration, reduction of bronchial mucus accumulation, and production of relevant cytokines from draining lymph nodes were significantly suppressed. These findings represent the first demonstration of the biological significance of the interaction between ITK and SLP-76 in the induction of an immune response in a whole animal model and specifically underscore the significance of the ITK-SH3 domain interaction with the poly-proline region of SLP-76 in the development of an inflammatory response. Furthermore, the experimental approach of intracellular peptide-mediated inhibition might be applicable to the study of other important intracellular interactions thus providing a paradigm for dissecting signal transduction pathways.

  12. The host immune response to Clostridium difficile infection

    Science.gov (United States)

    2013-01-01

    Clostridium difficile infection (CDI) is the most common infectious cause of healthcare-acquired diarrhoea. Outcomes of C. difficile colonization are varied, from asymptomatic carriage to fulminant colitis and death, due in part to the interplay between the pathogenic virulence factors of the bacterium and the counteractive immune responses of the host. Secreted toxins A and B are the major virulence factors of C. difficile and induce a profound inflammatory response by intoxicating intestinal epithelial cells causing proinflammatory cytokine release. Host cell necrosis, vascular permeability and neutrophil infiltration lead to an elevated white cell count, profuse diarrhoea and in severe cases, dehydration, hypoalbuminaemia and toxic megacolon. Other bacterial virulence factors, including surface layer proteins and flagella proteins, are detected by host cell surface signal molecules that trigger downstream cell-mediated immune pathways. Human studies have identified a role for serum and faecal immunoglobulin levels in protection from disease, but the recent development of a mouse model of CDI has enabled studies into the precise molecular interactions that trigger the immune response during infection. Key effector molecules have been identified that can drive towards a protective anti-inflammatory response or a damaging proinflammatory response. The limitations of current antimicrobial therapies for CDI have led to the development of both active and passive immunotherapies, none of which have, as yet been formally approved for CDI. However, recent advances in our understanding of the molecular basis of host immune protection against CDI may provide an exciting opportunity for novel therapeutic developments in the future. PMID:25165542

  13. Role of MicroRNAs in Obesity-Induced Metabolic Disorder and Immune Response.

    Science.gov (United States)

    Zhong, Hong; Ma, Minjuan; Liang, Tingming; Guo, Li

    2018-01-01

    In all living organisms, metabolic homeostasis and the immune system are the most fundamental requirements for survival. Recently, obesity has become a global public health issue, which is the cardinal risk factor for metabolic disorder. Many diseases emanating from obesity-induced metabolic dysfunction are responsible for the activated immune system, including innate and adaptive responses. Of note, inflammation is the manifest accountant signal. Deeply studied microRNAs (miRNAs) have participated in many pathways involved in metabolism and immune responses to protect cells from multiple harmful stimulants, and they play an important role in determining the progress through targeting different inflammatory pathways. Thus, immune response and metabolic regulation are highly integrated with miRNAs. Collectively, miRNAs are the new targets for therapy in immune dysfunction.

  14. Tumor PDT-associated immune response: relevance of sphingolipids

    Science.gov (United States)

    Korbelik, Mladen; Merchant, Soroush; Separovic, Duska M.

    2010-02-01

    Sphingolipids have become recognized as essential effector molecules in signal transduction with involvement in various aspects of cell function and death, immune response and cancer treatment response. Major representatives of sphingolipids family, ceramide, sphingosine and sphingosine-1-phosphate (S1P), have attracted interest in their relevance to tumor response to photodynamic therapy (PDT) because of their roles as enhancers of apoptosis, mediators of cell growth and vasculogenesis, and regulators of immune response. Our recent in vivo studies with mouse tumor models have confirmed that PDT treatment has a pronounced impact on sphingolipid profile in the targeted tumor and that significant advances in therapeutic gain with PDT can be attained by combining this modality with adjuvant treatment with ceramide analog LCL29.

  15. Transgenerational effects enhance specific immune response in a wild passerine

    Directory of Open Access Journals (Sweden)

    Juli Broggi

    2016-03-01

    Full Text Available Vertebrate mothers transfer diverse compounds to developing embryos that can affect their development and final phenotype (i.e., maternal effects. However, the way such effects modulate offspring phenotype, in particular their immunity, remains unclear. To test the impact of maternal effects on offspring development, we treated wild breeding house sparrows (Passer domesticus in Sevilla, SE Spain with Newcastle disease virus (NDV vaccine. Female parents were vaccinated when caring for first broods, eliciting a specific immune response to NDV. The immune response to the same vaccine, and to the PHA inflammatory test were measured in 11-day-old chicks from their following brood. Vaccinated chicks from vaccinated mothers developed a stronger specific response that was related to maternal NDV antibody concentration while rearing their chicks. The chicks’ carotenoid concentration and total antioxidant capacity in blood were negatively related to NDV antibody concentration, whereas no relation with PHA response was found. Specific NDV antibodies could not be detected in 11-day-old control chicks from vaccinated mothers, implying that maternally transmitted antibodies are not directly involved but may promote offspring specific immunity through a priming effect, while other immunity components remain unaffected. Maternally transmitted antibodies in the house sparrow are short-lived, depend on maternal circulation levels and enhance pre-fledging chick specific immunity when exposed to the same pathogens as the mothers.

  16. A specific primed immune response in Drosophila is dependent on phagocytes.

    Directory of Open Access Journals (Sweden)

    Linh N Pham

    2007-03-01

    Full Text Available Drosophila melanogaster, like other invertebrates, relies solely on its innate immune response to fight invading microbes; by definition, innate immunity lacks adaptive characteristics. However, we show here that priming Drosophila with a sublethal dose of Streptococcus pneumoniae protects against an otherwise-lethal second challenge of S. pneumoniae. This protective effect exhibits coarse specificity for S. pneumoniae and persists for the life of the fly. Although not all microbial challenges induced this specific primed response, we find that a similar specific protection can be elicited by Beauveria bassiana, a natural fly pathogen. To characterize this primed response, we focused on S. pneumoniae-induced protection. The mechanism underlying this protective effect requires phagocytes and the Toll pathway. However, activation of the Toll pathway is not sufficient for priming-induced protection. This work contradicts the paradigm that insect immune responses cannot adapt and will promote the search for similar responses overlooked in organisms with an adaptive immune response.

  17. Cloned, CD117 selected human amniotic fluid stem cells are capable of modulating the immune response.

    Directory of Open Access Journals (Sweden)

    Emily C Moorefield

    Full Text Available Amniotic fluid stem (AFS cells are broadly multipotent, can be expanded extensively in culture, are not tumorigenic and can be readily cryopreserved for cell banking. Mesenchymal stem cells (MSC show immunomodulatory activity and secrete a wide spectrum of cytokines and chemokines that suppress inflammatory responses, block mixed lymphocyte reactions (MLR and other immune reactions, and have proven therapeutic against conditions such as graft-versus-host disease. AFS cells resemble MSCs in many respects including surface marker expression and differentiation potential. We therefore hypothesized that AFS cells may exhibit similar immunomodulatory capabilities. We present data to demonstrate that direct contact with AFS cells inhibits lymphocyte activation. In addition, we show that cell-free supernatants derived from AFS cells primed with total blood monocytes or IL-1β, a cytokine released by monocytes and essential in mediation of the inflammatory response, also inhibited lymphocyte activation. Further investigation of AFS cell-free supernatants by protein array revealed secretion of multiple factors in common with MSCs that are known to be involved in immune regulation including growth related oncogene (GRO and monocyte chemotactic protein (MCP family members as well as interleukin-6 (IL-6. AFS cells activated by PBMCs released several additional cytokines as compared to BM-MSCs, including macrophage inflammatory protein-3α (MIP-3α, MIP-1α and Activin. AFS cells also released higher levels of MCP-1 and lower levels of MCP-2 compared to BM-MSCs in response to IL-1β activation. This suggests that there may be some AFS-specific mechanisms of inhibition of lymphocyte activation. Our results indicate that AFS cells are able to suppress inflammatory responses in vitro and that soluble factors are an essential component in the communication between lymphocytes and AFS cells. Their extensive self-renewal capacity, possibility for banking and

  18. Effects of antiretroviral therapy on immunity in patients infected with HIV.

    Science.gov (United States)

    Feola, D J; Thornton, A C; Garvy, B A

    2006-01-01

    Drug therapy for human immunodeficiency virus (HIV) is highly effective in suppressing viral replication and restoring immune function in patients with HIV. However, this same treatment can also be associated with immunotoxicity. For example, zidovudine and various other antiretroviral agents are capable of causing bone marrow suppression. Agents used to treat opportunistic infections in these individuals, including ganciclovir, foscarnet, and sulfamethoxazole-trimethoprim, can cause additional hematotoxicity. Drug-drug interactions must also be considered and managed in order to control iatrogenic causes of immunotoxicity. In this review, we examine the normal immune response to HIV, and the benefits of antiretroviral therapy in prolonging immune function. We then discuss immune-related adverse effects of drugs used to treat HIV and the opportunistic infections that are common among these patients. Finally, we address in vitro, animal, and clinical evidence of toxicity associated with various combination use of these agents.

  19. Immune responses of ducks infected with duck Tembusu virus

    Directory of Open Access Journals (Sweden)

    Ning eLi

    2015-05-01

    Full Text Available Duck Tembusu virus (DTMUV can cause serious disease in ducks, characterized by reduced egg production. Although the virus has been isolated and detection methods developed, the host immune responses to DTMUV infection are unclear. Therefore, we systematically examined the expression of immune-related genes and the viral distribution in DTMUV-infected ducks, using quantitative real-time PCR. Our results show that DTMUV replicates quickly in many tissues early in infection, with the highest viral titers in the spleen 1 day after infection. Rig-1, Mda5, and Tlr3 are involved in the host immune response to DTMUV, and the expression of proinflammatory cytokines (Il-1β, -2, -6, Cxcl8 and antiviral proteins (Mx, Oas, etc. are also upregulated early in infection. The expression of Il-6 increased most significantly in the tissues tested. The upregulation of Mhc-I was observed in the brain and spleen, but the expression of Mhc-II was upregulated in the brain and downregulated in the spleen. The expression of the interferons was also upregulated to different degrees in the spleen but that of the brain was various. Our study suggests that DTMUV replicates rapidly in various tissues and that the host immune responses are activated early in infection. However, the overexpression of cytokines may damage the host. These results extend our understanding of the immune responses of ducks to DTMUV infection, and provide insight into the pathogenesis of DTMUV attributable to host factors.

  20. Suppressive versus augmenting effect of the same pretreatment regimen in two murine tumor systems with distinct effector mechanisms

    International Nuclear Information System (INIS)

    Fujiwara, Hiromi; Hamaoka, Toshiyuki; Kitagawa, Masayasu

    1978-01-01

    The effect of presensitization with x-irradiated tumor cells on the development of host's immune resistance against the tumor-associated transplantation antigens (TATA) was investigated in two syngeneic tumor systems with distinct effector mechanisms. When X5563 plasmacytoma, to which immune resistance was mediated exclusively by killer T lymphocytes, was intravenously inoculated into syngeneic C3H/He mice with lower number after 7000 R x-irradiation, the mice failed to exhibit any protective immunity against the subsequent challenge with viable tumor cells. Moreover, these mice lost their capability to develop any immune resistance even after an appropriate immunization procedure. The immunodepression induced by such a pretreatment regimen was specific for X5563 tumor. While no suppressor cell activity was detected in the above pretreated mice, serum factor(s) from these mice was virtually responsible for this suppression. When the serum factor mediating this tumor-specific suppression was fractionated on the Sephadex G-200 column, the suppressive activity was found in albumin-corresponding fraction, free of any immunoglobulin component. In contrast, in MM102 mammary tumor system, in which immune resistance is solely mediated by tumor-specific antibody, the pretreatment with x-irradiated MM102 cells augmented the induction of anti-tumor immunity. These results indicate that while tumor antigens given in the form of x-irradiated tumor cells suppress the induction of killer T cell-mediated immunity in one system, the same presensitization regimen of tumor antigens augments the antibody-mediated immunity in another system, thus giving a divergent effect on the distinct effector mechanisms of syngeneic tumor immunity. (author)

  1. The role of dehydroepiandrosterone on functional innate immune responses to acute stress.

    Science.gov (United States)

    Prall, Sean P; Larson, Emilee E; Muehlenbein, Michael P

    2017-12-01

    The androgen dehydroepiandrosterone (DHEA) responds to stress activation, exhibits anti-glucocorticoid properties, and modulates immunity in diverse ways, yet little is known of its role in acute stress responses. In this study, the effects of DHEA and its sulfate ester DHEA-S on human male immune function during exposure to an acute stressor is explored. Variation in DHEA, DHEA-S, testosterone, and cortisol, along with bacterial killing assays, was measured in response to a modified Trier Social Stress test in 27 young adult males. Cortisol was positively related to salivary innate immunity but only for participants who also exhibited high DHEA responses. Additionally, DHEA positively and DHEA-S negatively predicted salivary immunity, but the opposite was observed for serum-based innate immunity. The DHEA response to acute stress appears to be an important factor in stress-mediated immunological responses, with differential effects on immunity dependent upon the presence of other hormones, primarily cortisol and DHEA-S. These results suggest that DHEA plays an important role, alongside other hormones, in modulating immunological shifts during acute stress. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Immunizations with hepatitis B viral antigens and a TLR7/8 agonist adjuvant induce antigen-specific immune responses in HBV-transgenic mice

    Directory of Open Access Journals (Sweden)

    Ying Wang

    2014-12-01

    Conclusions: Immunization with CL097-conjugated HBV-Ag reversed immune tolerance in HBV-Tg mice and induced antigen-specific immune responses. TLR7/8 agonists appear to be potent adjuvants for the induction of antigen-specific Th1 responses in an immune tolerant state.

  3. CD28 Aptamers as Powerful Immune Response Modulators

    Directory of Open Access Journals (Sweden)

    Fernando Pastor

    2013-01-01

    Full Text Available CD28 is one of the main costimulatory receptors responsible for the proper activation of T lymphocytes. We have isolated two aptamers that bind to the CD28 receptor. As a monomer, one of them interfered with the binding of CD28 to its ligand (B7, precluding the costimulatory signal, whereas the other one was inactive. However, dimerization of any of the anti-CD28 aptamers was sufficient to provide an artificial costimulatory signal. No antibody has featured a dual function (i.e., the ability to work as agonist and antagonist to date. Two different agonistic structures were engineered for each anti-CD28 aptamer. One showed remarkably improved costimulatory properties, surpassing the agonistic effect of an anti-CD28 antibody. Moreover, we showed in vivo that the CD28 agonistic aptamer is capable of enhancing the cellular immune response against a lymphoma idiotype and of prolonging survival of mice which receive the aptamer together with an idiotype vaccine. The CD28 aptamers described in this work could be used to modulate the immune response either blocking the interaction with B7 or enhancing vaccine-induced immune responses in cancer immunotherapy.

  4. Immune Response of Multiparous Hyper-Immunized Sows against Peptides from Non-Structural and Structural Proteins of PRRSV

    Directory of Open Access Journals (Sweden)

    Edgar Rascón-Castelo

    2015-11-01

    Full Text Available The purpose of this study was to evaluate the humoral and cellular responses of commercial multiparous and hyper-immunized sows against peptides from non-structural (nsp and structural proteins of porcine reproductive and respiratory syndrome virus (PRRSV. We selected sows with different numbers of parities from a commercial farm. Management practices on this farm include the use of the MLV commercial vaccine four times per year, plus two vaccinations during the acclimation period. The humoral response was evaluated via the antibody recognition of peptides from nsp and structural proteins, and the cellular response was assessed by measuring the frequency of peptide and PRRSV-specific IFN-gamma-secreting cells (IFNγ-SC. Our results show that sows with six parities have more antibodies against peptides from structural proteins than against peptides from nsp. The analysis of the cellular response revealed that the number of immunizations did not affect the frequency of IFNγ-SC and that the response was stronger against peptides from structural proteins (M protein than against nsp (nsp2. In summary, these results demonstrate that multiparous, hyper-immunized sows have a stronger immune humoral response to PRRSV structural peptides than nsp, but no differences in IFNγ-SC against the same peptides were observed.

  5. Role of MicroRNAs in Obesity-Induced Metabolic Disorder and Immune Response

    Directory of Open Access Journals (Sweden)

    Hong Zhong

    2018-01-01

    Full Text Available In all living organisms, metabolic homeostasis and the immune system are the most fundamental requirements for survival. Recently, obesity has become a global public health issue, which is the cardinal risk factor for metabolic disorder. Many diseases emanating from obesity-induced metabolic dysfunction are responsible for the activated immune system, including innate and adaptive responses. Of note, inflammation is the manifest accountant signal. Deeply studied microRNAs (miRNAs have participated in many pathways involved in metabolism and immune responses to protect cells from multiple harmful stimulants, and they play an important role in determining the progress through targeting different inflammatory pathways. Thus, immune response and metabolic regulation are highly integrated with miRNAs. Collectively, miRNAs are the new targets for therapy in immune dysfunction.

  6. RAD51 interconnects between DNA replication, DNA repair and immunity.

    Science.gov (United States)

    Bhattacharya, Souparno; Srinivasan, Kalayarasan; Abdisalaam, Salim; Su, Fengtao; Raj, Prithvi; Dozmorov, Igor; Mishra, Ritu; Wakeland, Edward K; Ghose, Subroto; Mukherjee, Shibani; Asaithamby, Aroumougame

    2017-05-05

    RAD51, a multifunctional protein, plays a central role in DNA replication and homologous recombination repair, and is known to be involved in cancer development. We identified a novel role for RAD51 in innate immune response signaling. Defects in RAD51 lead to the accumulation of self-DNA in the cytoplasm, triggering a STING-mediated innate immune response after replication stress and DNA damage. In the absence of RAD51, the unprotected newly replicated genome is degraded by the exonuclease activity of MRE11, and the fragmented nascent DNA accumulates in the cytosol, initiating an innate immune response. Our data suggest that in addition to playing roles in homologous recombination-mediated DNA double-strand break repair and replication fork processing, RAD51 is also implicated in the suppression of innate immunity. Thus, our study reveals a previously uncharacterized role of RAD51 in initiating immune signaling, placing it at the hub of new interconnections between DNA replication, DNA repair, and immunity. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Protection against ultraviolet-B radiation-induced local and systemic suppression of contact hypersensitivity and edema responses in C3H/HeN mice by green tea polyphenols

    International Nuclear Information System (INIS)

    Katiyar, S.K.; Elmets, C.A.; Agarwal, Rajesh; Mukhtar, Hasan

    1995-01-01

    Exposure of skin to UV radiation can cause diverse biological effects, including induction of inflammation, alteration in cutaneous immune cells and impairment of contact hypersensitivity (CHS) responses. Our laboratory has demonstrated that oral feeding as well as topical application of a polyphenolic fraction isolated from green tea (GTP) affords protection against the carcinogenic effects of UVB (280-320 nm) radiation. In this study, we investigated whether GTP could protect against UVB-induced immunosuppression and cutaneous inflammatory responses in C3H mice. Immunosuppression was assessed by contact sensitization with 2,4-dinitrofluorobenzene applied to UVB-irradiated skin (local suppression) or to a distant site (systemic suppression), while double skin-fold swelling was used as the measure of UVB-induced inflammation. (author)

  8. Suppressive effects of primed eosinophils on single epicutaneous sensitization through regulation of dermal dendritic cells.

    Science.gov (United States)

    Lin, Jing-Yi; Ta, Yng-Cun; Liu, I-Lin; Chen, Hsi-Wen; Wang, Li-Fang

    2016-07-01

    Eosinophils are multifunctional innate immune cells involved in many aspects of innate and adaptive immunity. Epicutaneous sensitization with protein allergen is an important sensitization route for atopic dermatitis. In this study, using a murine single protein-patch model, we show that eosinophils of a primed status accumulate in draining lymph nodes following single epicutaneous sensitization. Further, depletion of eosinophils results in enhancement of the induced Th1/Th2 immune responses, whereas IL-5-induced hypereosinophilia suppresses these responses. Mechanistically, primed eosinophils cause a reduction in the numbers and activation status of dermal dendritic cells in draining lymph nodes. Collectively, these results demonstrate that primed eosinophils exert suppressive effects on single epicutaneous sensitization through regulation of dermal dendritic cells. Thus, these findings highlight the critical roles of eosinophils in the pathogenesis of atopic dermatitis with important clinical implications for the prevention of allergen sensitization. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. [Bone marrow stromal damage mediated by immune response activity].

    Science.gov (United States)

    Vojinović, J; Kamenov, B; Najman, S; Branković, Lj; Dimitrijević, H

    1994-01-01

    The aim of this work was to estimate influence of activated immune response on hematopoiesis in vitro, using the experimental model of BCG immunized BALB/c mice and in patients with chronic immunoactivation: long-lasting infections, autoimmunity or malignancy. We correlated changes in long term bone marrow cultures (Dexter) and NBT reduction with appearance of anemia in patients and experimental model of immunization by BCG. Increased spontaneous NBT reduction pointed out role of macrophage activation in bone marrow stroma damage. Long-term bone marrow cultures showed reduced number of hematopoietic cells, with predomination of fibroblasts and loss of fat cells. This results correlated with anemia and leucocytosis with stimulated myelopoiesis in peripheral blood. Activation of immune response, or acting of any agent that directly changes extracellular matrix and cellularity of bone marrow, may result in microenviroment bone marrow damage that modify hematopoiesis.

  10. The Lung Immune Response to Nontypeable Haemophilus influenzae (Lung Immunity to NTHi

    Directory of Open Access Journals (Sweden)

    Paul T. King

    2015-01-01

    Full Text Available Haemophilus influenzae is divided into typeable or nontypeable strains based on the presence or absence of a polysaccharide capsule. The typeable strains (such as type b are an important cause of systemic infection, whilst the nontypeable strains (designated as NTHi are predominantly respiratory mucosal pathogens. NTHi is present as part of the normal microbiome in the nasopharynx, from where it may spread down to the lower respiratory tract. In this context it is no longer a commensal and becomes an important respiratory pathogen associated with a range of common conditions including bronchitis, bronchiectasis, pneumonia, and particularly chronic obstructive pulmonary disease. NTHi induces a strong inflammatory response in the respiratory tract with activation of immune responses, which often fail to clear the bacteria from the lung. This results in recurrent/persistent infection and chronic inflammation with consequent lung pathology. This review will summarise the current literature about the lung immune response to nontypeable Haemophilus influenzae, a topic that has important implications for patient management.

  11. Co-immunization with DNA and protein mixture: a safe and efficacious immunotherapeutic strategy for Alzheimer's disease in PDAPP mice.

    Science.gov (United States)

    Liu, Si; Shi, DanYang; Wang, Hai-Chao; Yu, Yun-Zhou; Xu, Qing; Sun, Zhi-Wei

    2015-01-14

    Active immunotherapy targeting β-amyloid (Aβ) is the most promising strategy to prevent or treat Alzheimer's disease (AD). Based on pre-clinical studies and clinical trials, a safe and effective AD vaccine requires a delicate balance between providing therapeutically adequate anti-Aβ antibodies and eliminating or suppressing unwanted adverse T cell-mediated inflammatory reactions. We describe here the immunological characterization and protective efficacy of co-immunization with a 6Aβ15-T DNA and protein mixture without adjuvant as an AD immunotherapeutic strategy. Impressively, this co-immunization induced robust Th2-polarized Aβ-specific antibodies while simultaneously suppressed unwanted inflammatory T cell reactions and avoiding Aβ42-specific T cell-mediated autoimmune responses in immunized mice. Co-immunization with the DNA + protein vaccine could overcome Aβ42-associated hypo-responsiveness and elicit long-term Aβ-specific antibody responses, which helped to maintain antibody-mediated clearance of amyloid and accordingly alleviated AD symptoms in co-immunized PDAPP mice. Our DNA and protein combined vaccine, which could induce an anti-inflammatory Th2 immune response with high level Aβ-specific antibodies and low level IFN-γ production, also demonstrated the capacity to inhibit amyloid accumulation and prevent cognitive dysfunction. Hence, co-immunization with antigen-matched DNA and protein may represent a novel and efficacious strategy for AD immunotherapy to eliminate T cell inflammatory reactions while retaining high level antibody responses.

  12. Immune responses of mature chicken bone-marrow-derived dendritic cells infected with Newcastle disease virus strains with differing pathogenicity.

    Science.gov (United States)

    Xiang, Bin; Zhu, Wenxian; Li, Yaling; Gao, Pei; Liang, Jianpeng; Liu, Di; Ding, Chan; Liao, Ming; Kang, Yinfeng; Ren, Tao

    2018-06-01

    Infection of chickens with virulent Newcastle disease virus (NDV) is associated with severe pathology and increased morbidity and mortality. The innate immune response contributes to the pathogenicity of NDV. As professional antigen-presenting cells, dendritic cells (DCs) play a unique role in innate immunity. However, the contribution of DCs to NDV infection has not been investigated in chickens. In this study, we selected two representative NDV strains, i.e., the velogenic NDV strain Chicken/Guangdong/GM/2014 (GM) and the lentogenic NDV strain La Sota, to investigate whether NDVs could infect LPS-activated chicken bone-derived marrow DCs (mature chicken BM-DCs). We compared the viral titres and innate immune responses in mature chicken BM-DCs following infection with those strains. Both NDV strains could infect mature chicken BM-DC, but the GM strain showed stronger replication capacity than the La Sota strain in mature chicken BM-DCs. Gene expression profiling showed that MDA5, LGP2, TLR3, TLR7, IFN-α, IFN-β, IFN-γ, IL-1β, IL-6, IL-18, IL-8, CCL5, IL-10, IL-12, MHC-I, and MHC-II levels were altered in mature DCs after infection with NDVs at all evaluated times postinfection. Notably, the GM strain triggered stronger innate immune responses than the La Sota strain in chicken BM-DCs. However, both strains were able to suppress the expression of some cytokines, such as IL-6 and IFN-α, in mature chicken DCs at 24 hpi. These data provide a foundation for further investigation of the role of chicken DCs in NDV infection.

  13. The habitat disruption induces immune-suppression and oxidative stress in honey bees

    Science.gov (United States)

    Morimoto, Tomomi; Kojima, Yuriko; Toki, Taku; Komeda, Yayoi; Yoshiyama, Mikio; Kimura, Kiyoshi; Nirasawa, Keijiro; Kadowaki, Tatsuhiko

    2011-01-01

    The honey bee is a major insect used for pollination of many commercial crops worldwide. Although the use of honey bees for pollination can disrupt the habitat, the effects on their physiology have never been determined. Recently, honey bee colonies have often collapsed when introduced in greenhouses for pollination in Japan. Thus, suppressing colony collapses and maintaining the number of worker bees in the colonies is essential for successful long-term pollination in greenhouses and recycling of honey bee colonies. To understand the physiological states of honey bees used for long-term pollination in greenhouses, we characterized their gene expression profiles by microarray. We found that the greenhouse environment changes the gene expression profiles and induces immune-suppression and oxidative stress in honey bees. In fact, the increase of the number of Nosema microsporidia and protein carbonyl content was observed in honey bees during pollination in greenhouses. Thus, honey bee colonies are likely to collapse during pollination in greenhouses when heavily infested with pathogens. Degradation of honey bee habitat by changing the outside environment of the colony, during pollination services for example, imposes negative impacts on honey bees. Thus, worldwide use of honey bees for crop pollination in general could be one of reasons for the decline of managed honey bee colonies. PMID:22393496

  14. DMPD: Innate immune responses during infection. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available va Correia J. Vaccine. 2004 Dec 6;22 Suppl 1:S25-30. (.png) (.svg) (.html) (.csml) Show Innate immune responses during infection. Pub...medID 15576198 Title Innate immune responses during infection. Authors Ulevitch RJ,

  15. JAK/STAT signaling pathway-mediated immune response in silkworm (Bombyx mori) challenged by Beauveria bassiana.

    Science.gov (United States)

    Geng, Tao; Lv, Ding-Ding; Huang, Yu-Xia; Hou, Cheng-Xiang; Qin, Guang-Xing; Guo, Xi-Jie

    2016-12-20

    Innate immunity was critical in insects defensive system and able to be induced by Janus kinase/signal transducer and activator of transcription cascade transduction (JAK/STAT) signaling pathway. Currently, it had been identified many JAK/STAT signaling pathway-related genes in silkworm, but little function was known on insect innate immunity. To explore the roles of JAK/STAT pathway in antifungal immune response in silkworm (Bombyx mori) against Beauveria bassiana infection, the expression patterns of B. mori C-type lectin 5 (BmCTL5) and genes encoding 6 components of JAK/STAT signaling pathway in silkworm challenged by B. bassiana were analyzed using quantitative real time PCR. Meanwhile the activation of JAK/STAT signaling pathway by various pathogenic micro-organisms and the affect of JAK/STAT signaling pathway inhibitors on antifungal activity in silkworm hemolymph was also detected. Moreover, RNAi assay of BmCTL5 and the affect on expression levels of signaling factors were also analyzed. We found that JAK/STAT pathway could be obviously activated in silkworm challenged with B. bassiana and had no response to bacteria and B. mori cytoplasmic polyhedrosis virus (BmCPV). However, the temporal expression patterns of JAK/STAT signaling pathway related genes were significantly different. B. mori downstream receptor kinase (BmDRK) might be a positive regulator of JAK/STAT signaling pathway in silkworm against B. bassiana infection. Moreover, antifungal activity assay showed that the suppression of JAK/STAT signaling pathway by inhibitors could significantly inhibit the antifungal activity in hemolymph and resulted in increased sensitivity of silkworm to B. bassiana infection, indicating that JAK/STAT signaling pathway might be involved in the synthesis and secretion of antifungal substances. The results of RNAi assays suggested that BmCTL5 might be one pattern recognition receptors for JAK/STAT signaling pathway in silkworm. These findings yield insights for better

  16. Interleukin 37 limits monosodium urate crystal-induced innate immune responses in human and murine models of gout.

    Science.gov (United States)

    Liu, Lei; Xue, Yu; Zhu, Yingfeng; Xuan, Dandan; Yang, Xue; Liang, Minrui; Wang, Juan; Zhu, Xiaoxia; Zhang, Jiong; Zou, Hejian

    2016-11-18

    Interleukin (IL)-37 has emerged as a fundamental inhibitor of innate immunity. Acute gout is a self-limiting inflammatory response to monosodium urate (MSU) crystals. In the current study, we assessed the preventive and therapeutic effect of recombinant human IL-37 (rhIL-37) in human and murine gout models. We investigated the expression of IL-37 in patients with active and inactive gouty arthritis and assessed the effect of rhIL-37 in human and murine gout models: a human monocyte cell line (THP-1) and human synovial cells (containing macrophage-like and fibroblast-like synoviocytes) exposed to MSU crystals, a peritoneal murine model of gout and a murine gouty arthritis model. After inhibition of Mer receptor tyrosine kinase (Mertk), levels of IL-1β, IL-8 and chemokine (C-C motif) ligand 2 (CCL-2) were detected by ELISA and expression of mammalian homologs of the drosophila Mad gene 3 (Smad), suppressor of cytokine signaling 3 (SOCS3), NACHT-LRR-PYD-containing protein 3 (NLRP3), and IL-8R of THP-1 were assessed by qPCR and western blot to explore the molecular mechanisms. Our studies strongly indicated that rhIL-37 played a potent immunosuppressive role in the pathogenesis of experimental gout models both in vitro and in vivo, by downregulating proinflammatory cytokines and chemokines, markedly reducing neutrophil and monocyte recruitment, and mitigating pathological joint inflammation. In our studies, rhIL-37 suppressed MSU-induced innate immune responses by enhancing expression of Smad3 and IL-1R8 to trigger multiple intracellular switches to block inflammation, including inhibition of NLRP3 and activation of SOCS3. Mertk signaling participated in rhIL-37 inhibitory pathways in gout models. By inhibition of Mertk, the anti-inflammatory effect of rhIL-37 was partly abrogated, and IL-1R8, Smad3 and S​OCS3 expression were suppressed, whereas NLRP3 expression was reactivated. Our studies reveal that IL-37 limits runaway inflammation initiated by MSU crystal

  17. The Pseudomonas syringae type III effector HopG1 targets mitochondria, alters plant development, and suppresses plant innate immunity

    Science.gov (United States)

    Block, Anna; Guo, Ming; Li, Guangyong; Elowsky, Christian; Clemente, Thomas E.; Alfano, James R.

    2009-01-01

    Summary The bacterial plant pathogen Pseudomonas syringae uses a type III protein secretion system to inject type III effectors into plant cells. Primary targets of these effectors appear to be effector-triggered immunity (ETI) and pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI). The type III effector HopG1 is a suppressor of ETI that is broadly conserved in bacterial plant pathogens. Here we show that HopG1 from P. syringae pv. tomato DC3000 also suppresses PTI. Interestingly, HopG1 localizes to plant mitochondria, suggesting that its suppression of innate immunity may be linked to a perturbation of mitochondrial function. While HopG1 possesses no obvious mitochondrial signal peptide, its N-terminal two-thirds was sufficient for mitochondrial localization. A HopG1-GFP fusion lacking HopG1’s N-terminal 13 amino acids was not localized to the mitochondria reflecting the importance of the N-terminus for targeting. Constitutive expression of HopG1 in Arabidopsis thaliana, Nicotiana tabacum (tobacco) and Lycopersicon esculentum (tomato) dramatically alters plant development resulting in dwarfism, increased branching and infertility. Constitutive expression of HopG1 in planta leads to reduced respiration rates and an increased basal level of reactive oxygen species. These findings suggest that HopG1’s target is mitochondrial and that effector/target interaction promotes disease by disrupting mitochondrial functions. PMID:19863557

  18. Variation in the suppression or enhancement of responses related to drug habits as a function of stimulus classes and competing response categories.

    Science.gov (United States)

    Haertzen, C A; Ross, F E

    1980-08-01

    Male prisoners who were opiate addicts (N = 47) were given three Process Association Tests of Addiction containing stimuli which evoked responses characteristic of three levels of drug habits: beginning and ending stage of addiction, intermediate stage of addiction, and an advanced level of addiction. Each test required subjects to associate 278 word stimuli with one of five options which were randomly selected from among 20 options covering the stages of addiction, steps in drug taking, and drug effects. The purpose of the study was to determine whether responses to particular options suppressed or enhanced responses to other options. A strong interaction was found between the classes of stimuli and the response options which produced suppression or enhancement. This interaction made it possible to develop a suppression scale to measure the effect of each class of stimulus. Popular responses most frequently suppressed responses of other options. Thus, when the stimuli were clean, responses of "to be clean" and "to live a normal life," which are sensitive indicators of the beginning or ending stages of addiction , suppressed responses of other stages. The response of "to be high," a prime indicator of an intermediate habit, suppressed responses of other options when the stimuli were drug names. Responses of "to be hooked" and "to fix," which are specific indicators of a strong habit, and "to be high," which is a nonspecific indicator of a strong habit, suppressed responses of many other options. In the development of new association tests the analysis of suppression could provide a basis for selectively varying option groupings in order to increase or decrease the frequently of certain responses.

  19. Hidden Consequences of Living in a Wormy World : Nematode-Induced Immune Suppression Facilitates Tuberculosis Invasion in African Buffalo

    NARCIS (Netherlands)

    Ezenwa, Vanessa O.; Etienne, Rampal S.; Luikart, Gordon; Beja-Pereira, Albano; Jolles, Anna E.

    2010-01-01

    Most hosts are infected with multiple parasites, and responses of the immune system to co occurring parasites may influence disease spread. Helminth infection can bias the host immune response toward a T-helper type 2 Th2) over a type 1 Th1) response, impairing the host's ability to control

  20. Enhancement of mucosal immune responses by chimeric influenza HA/SHIV virus-like particles

    International Nuclear Information System (INIS)

    Guo Lizheng; Lu Xiaoyan; Kang, S.-M.; Chen Changyi; Compans, Richard W.; Yao Qizhi

    2003-01-01

    To enhance mucosal immune responses using simian/human immunodeficiency virus-like particles (SHIV VLPs), we have produced novel phenotypically mixed chimeric influenza HA/SHIV VLPs and used them to immunize C57BL/6J mice intranasally. Antibody and cytotoxic T-cell (CTL) responses as well as cytokine production in both systemic and mucosal sites were compared after immunization with SHIV VLPs or chimeric HA/SHIV VLPs. By using enzyme-linked immunosorbent assay (ELISA), the levels of serum IgG and mucosal IgA to the HIV envelope protein (Env) were found to be highest in the group immunized with chimeric HA/SHIV VLPs. Furthermore, the highest titer of serum neutralizing antibody against HIV Env was found with the group immunized with chimeric HA/SHIV VLPs. Analysis of the IgG1/IgG2a ratio indicated that a T H 1-oriented immune response resulted from these VLP immunizations. HA/SHIV VLP-immunized mice also showed significantly higher CTL responses than those observed in SHIV VLP-immunized mice. Moreover, a MHC class I restricted T-cell activation ELISPOT assay showed a mixed type of T H 1/T H 2 cytokines in the HA/SHIV VLP-immunized mice, indicating that the chimeric VLPs can enhance both humoral and cellular immune responses to the HIV Env protein at multiple mucosal and systemic sites. The results indicate that incorporation of influenza HA into heterotypic VLPs may be highly effective for targeting vaccines to mucosal surfaces

  1. Nociceptor sensory neurons suppress neutrophil and γδ T cell responses in bacterial lung infections and lethal pneumonia.

    Science.gov (United States)

    Baral, Pankaj; Umans, Benjamin D; Li, Lu; Wallrapp, Antonia; Bist, Meghna; Kirschbaum, Talia; Wei, Yibing; Zhou, Yan; Kuchroo, Vijay K; Burkett, Patrick R; Yipp, Bryan G; Liberles, Stephen D; Chiu, Isaac M

    2018-05-01

    Lung-innervating nociceptor sensory neurons detect noxious or harmful stimuli and consequently protect organisms by mediating coughing, pain, and bronchoconstriction. However, the role of sensory neurons in pulmonary host defense is unclear. Here, we found that TRPV1 + nociceptors suppressed protective immunity against lethal Staphylococcus aureus pneumonia. Targeted TRPV1 + -neuron ablation increased survival, cytokine induction, and lung bacterial clearance. Nociceptors suppressed the recruitment and surveillance of neutrophils, and altered lung γδ T cell numbers, which are necessary for immunity. Vagal ganglia TRPV1 + afferents mediated immunosuppression through release of the neuropeptide calcitonin gene-related peptide (CGRP). Targeting neuroimmunological signaling may be an effective approach to treat lung infections and bacterial pneumonia.

  2. SHORT-TERM STRESS ENHANCES CELLULAR IMMUNITY AND INCREASES EARLY RESISTANCE TO SQUAMOUS CELL CARCINOMA

    OpenAIRE

    Dhabhar, Firdaus S.; Saul, Alison N.; Daugherty, Christine; Holmes, Tyson H.; Bouley, Donna M.; Oberyszyn, Tatiana M.

    2009-01-01

    In contrast to chronic/long-term stress that suppresses/dysregulates immune function, an acute/short-term fight-or-flight stress response experienced during immune activation can enhance innate and adaptive immunity. Moderate ultraviolet-B (UV) exposure provides a non-invasive system for studying the naturalistic emergence, progression and regression of squamous cell carcinoma (SCC). Because SCC is an immunoresponsive cancer, we hypothesized that short-term stress experienced before UV exposu...

  3. Sex-specific consequences of an induced immune response on reproduction in a moth.

    Science.gov (United States)

    Barthel, Andrea; Staudacher, Heike; Schmaltz, Antje; Heckel, David G; Groot, Astrid T

    2015-12-16

    Immune response induction benefits insects in combatting infection by pathogens. However, organisms have a limited amount of resources available and face the dilemma of partitioning resources between immunity and other life-history traits. Since males and females differ in their life histories, sex-specific resource investment strategies to achieve an optimal immune response following an infection can be expected. We investigated immune response induction of females and males of Heliothis virescens in response to the entomopathogenic bacterium Serratia entomophila, and its effects on mating success and the female sexual signal. We found that females had higher expression levels of immune-related genes after bacterial challenge than males. However, males maintained a higher baseline expression of immune-related genes than females. The increased investment in immunity of female moths was negatively correlated with mating success and the female sexual signal. Male mating success was unaffected by bacterial challenge. Our results show that the sexes differed in their investment strategies: females invested in immune defense after a bacterial challenge, indicating facultative immune deployment, whereas males had higher baseline immunity than females, indicating immune maintenance. Interestingly, these differences in investment were reflected in the mate choice assays. As female moths are the sexual signallers, females need to invest resources in their attractiveness. However, female moths appeared to invest in immunity at the cost of reproductive effort.

  4. Molecular control of steady-state dendritic cell maturation and immune homeostasis.

    Science.gov (United States)

    Hammer, Gianna Elena; Ma, Averil

    2013-01-01

    Dendritic cells (DCs) are specialized sentinels responsible for coordinating adaptive immunity. This function is dependent upon coupled sensitivity to environmental signs of inflammation and infection to cellular maturation-the programmed alteration of DC phenotype and function to enhance immune cell activation. Although DCs are thus well equipped to respond to pathogens, maturation triggers are not unique to infection. Given that immune cells are exquisitely sensitive to the biological functions of DCs, we now appreciate that multiple layers of suppression are required to restrict the environmental sensitivity, cellular maturation, and even life span of DCs to prevent aberrant immune activation during the steady state. At the same time, steady-state DCs are not quiescent but rather perform key functions that support homeostasis of numerous cell types. Here we review these functions and molecular mechanisms of suppression that control steady-state DC maturation. Corruption of these steady-state operatives has diverse immunological consequences and pinpoints DCs as potent drivers of autoimmune and inflammatory disease.

  5. Inter-donor variation in cell subset specific immune signaling responses in healthy individuals.

    Science.gov (United States)

    Longo, Diane M; Louie, Brent; Wang, Ena; Pos, Zoltan; Marincola, Francesco M; Hawtin, Rachael E; Cesano, Alessandra

    2012-01-01

    Single cell network profiling (SCNP) is a multi-parameter flow cytometry based approach that allows for the simultaneous interrogation of intracellular signaling pathways in multiple cell subpopulations within heterogeneous tissues, without the need for individual cell subset isolation. Thus, the technology is extremely well-suited for characterizing the multitude of interconnected signaling pathways and immune cell subpopulations that regulate the function of the immune system. Recently, SCNP was applied to generate a functional map of the healthy human immune cell signaling network by profiling immune signaling pathways downstream of 12 immunomodulators in 7 distinct immune cell subsets within peripheral blood mononuclear cells (PBMCs) from 60 healthy donors. In the study reported here, the degree of inter-donor variation in the magnitude of the immune signaling responses was analyzed. The highest inter-donor differences in immune signaling pathway activity occurred following perturbation of the immune signaling network, rather than in basal signaling. When examining the full panel of immune signaling responses, as one may expect, the overall degree of inter-donor variation was positively correlated (r = 0.727) with the magnitude of node response (i.e. a larger median signaling response was associated with greater inter-donor variation). However, when examining the degree of heterogeneity across cell subpopulations for individual signaling nodes, cell subset specificity in the degree of inter-donor variation was observed for several nodes. For such nodes, relatively weak correlations between inter-donor variation and the magnitude of the response were observed. Further, within the phenotypically distinct subpopulations, a fraction of the immune signaling responses had bimodal response profiles in which (a) only a portion of the cells had elevated phospho-protein levels following modulation and (b) the proportion of responsive cells varied by donor. These data

  6. Immune response in the lungs following oral immunization with bacterial lysates of respiratory pathogens.

    Science.gov (United States)

    Ruedl, C; Frühwirth, M; Wick, G; Wolf, H

    1994-03-01

    We have investigated the local immune response of the BALB/c mouse respiratory tract after oral immunization with a bacterial lysate of seven common respiratory pathogens. After two immunization on five consecutive days, we examined the immunoglobulin (immunoglobulin G [IgG], IgM, and IgA) secretion rates of cells isolated from the lungs and compared them with those of spleen cells of orally immunized and nonimmunized animals by using a new test system based on time-resolved fluorescence. The procedure followed the principle of the classical ELISPOT test with nitrocellulose-bottomed microtiter plates, but europium (Eu3+)-linked streptavidin rather than enzyme-conjugated streptavidin was used, with the advantage of quantifying secreted immunoglobulins instead of detecting single antibody-secreting cells. Lymphocytes isolated from the lungs of treated animals revealed significant increases in total and antigen-specific IgA synthesis compared with the rates of the controls, whereas IgG and IgM production rates showed no remarkable differences. In addition, the sera of treated mice revealed higher antigen-specific IgA titers but not increased IgM and IgG levels. We conclude that priming the gut-associated lymphoid tissue with bacterial antigens of pneumotropic microorganisms can elicit an enhanced IgA response in a distant mucosal effector site, such as the respiratory tract, according to the concept of a common mucosa-associated immune system.

  7. Behavioral Fever Drives Epigenetic Modulation of the Immune Response in Fish.

    Science.gov (United States)

    Boltana, Sebastian; Aguilar, Andrea; Sanhueza, Nataly; Donoso, Andrea; Mercado, Luis; Imarai, Monica; Mackenzie, Simon

    2018-01-01

    Ectotherms choose the best thermal conditions to mount a successful immune response, a phenomenon known as behavioral fever. The cumulative evidence suggests that behavioral fever impacts positively upon lymphocyte proliferation, inflammatory cytokine expression, and other immune functions. In this study, we have explored how thermal choice during infection impacts upon underpinning molecular processes and how temperature increase is coupled to the immune response. Our results show that behavioral fever results in a widespread, plastic imprint on gene regulation, and lymphocyte proliferation. We further explored the possible contribution of histone modification and identified global associations between temperature and histone changes that suggest epigenetic remodeling as a result of behavioral fever. Together, these results highlight the critical importance of thermal choice in mobile ectotherms, particularly in response to an infection, and demonstrate the key role of epigenetic modification to orchestrate the thermocoupling of the immune response during behavioral fever.

  8. Suppressive effects of coffee on the SOS responses induced by UV and chemical mutagens

    International Nuclear Information System (INIS)

    Obana, Hirotaka; Nakamura, Sei-ichi; Tanaka, Ryou-ichi

    1986-01-01

    SOS-inducing activity of UV or chemical mutagens was strongly suppressed by instant coffee in Salmonella typhimurium TA1535/pSK1002. As decaffeinated instant coffee showed a similarly strong suppressive effect, it would seem that caffeine, a known inhibitor of SOS responses, is not responsible for the effect observed. The suppression was also shown by freshly brewed coffee extracts. However, the suppression was absent in green coffee-bean extracts. These results suggest that coffee contains some substance(s) which, apart from caffeine, suppresses SOS-inducing activity of UV or chemical mutagens and that the suppressive substance(s) are produced by roasting coffee beans. (Auth.)

  9. The effect of ionizing radiation on immune system

    International Nuclear Information System (INIS)

    Gyuleva, I.

    1999-01-01

    Delayed radiation effects of irradiation at relatively high doses - 0.52- 2 Gy in result of severe accidents are discussed. The immune response of lymphocyte populations manifested in formation of different kind of mutant cells at Hiroshima-A-bombing and Chernobyl accident are presented. It is of great interest the hypothesis presented launched by RERF (Japanese Foundation for Radiation Effect Research, Hiroshima) for radiation induced predominant of T H2 -lymphocytes in comparison to T H1 as delayed immune response at the Hiroshima-A-bomb survivors. The aspect of immune status is quite different at low doses irradiation (0.02 - 0.2 Gy). There is some stimulation in immune response known as hormesis effect. It is suggested that T-cell activation has key role in immune system stimulation at doses under 0.2 Gy. There is also activation of DNA-reparation mechanisms. Suppression of the hypothalamus-hypophysis-suprarenal axis brings to enhancing of immune potential. Chinese people living in a region with three-times higher background radiation, X-ray examined patients as well as occupationally exposed personnel have been investigated. Radioprotective effect of some cytokines and their influence on the individual radiosensitivity are also discussed.The investigations have to be continued because of some inconsistent results

  10. Immune responses to influenza virus and its correlation to age and inherited factors

    Directory of Open Access Journals (Sweden)

    Azadeh Bahadoran

    2016-11-01

    Full Text Available Influenza viruses belong to the family Orthomyxoviridae of enveloped viruses and are an important cause of respiratory infections worldwide. The influenza virus is able to infect a wide variety species as diverse as poultry, marine, pigs, horses and humans. Upon infection with influenza virus the innate immunity plays a critical role in efficient and rapid control of viral infections as well as in adaptive immunity initiation. The humoral immune system produces antibodies against different influenza antigens, of which the HA-specific antibody is the most important for neutralization of the virus and thus prevention of illness. Cell mediated immunity including CD4+ helper T cells and CD8+ cytotoxic T cells are the other arms of adaptive immunity induced upon influenza virus infection. The complex inherited factors and age related changes are associated with the host immune responses. Here, we review the different components of immune responses against influenza virus. Additionally, the correlation of the immune response to age and inherited factors has been discussed. These determinations lead to a better understanding of the limitations of immune responses for developing improved vaccines to control influenza virus infection.

  11. Phosphatidylinositol response and proliferation of oxidative enzyme-activated human T lymphocytes: suppression by plasma lipoproteins

    International Nuclear Information System (INIS)

    Akeson, A.L.; Scupham, D.W.; Harmony, J.A.

    1984-01-01

    The phosphatidylinositol (PI) response and DNA synthesis of neuraminidase and galactose oxidase (NAGO)-stimulated human T lymphocytes are suppressed by low density lipoproteins (LDL). To understand the mechanism of lymphocyte activation more fully, the PI response and DNA synthesis and suppression of these events by LDL in NAGO-stimulated T lymphocytes were characterized. Between 30 min and 6 hr after NAGO stimulation, there was an increase of 32 Pi incorporation into PI without increased incorporation into the phosphorylated forms of PI or into other phospholipids. DNA synthesis as determined by [ 3 H]thymidine incorporation depended on the lymphocyte-accessory monocyte ratio and total cell density. Optimal stimulation of the PI response and DNA synthesis occurred at the same concentration of neuraminidase and galactose oxidase. While the PI response was only partially suppressed by LDL with optimal suppression at 10 to 20 micrograms of protein/ml, DNA synthesis was completely suppressed although at much higher LDL concentrations, greater than 100 micrograms protein/ml. As monocyte numbers are increased, LDL suppression of DNA synthesis is decreased. The ability of NAGO to stimulate the PI response and DNA synthesis in a similar way, and the suppression of both events by LDL, suggests the PI response is important for lymphocyte activation and proliferation. Stimulation of human T lymphocytes by oxidative mitogens, neuraminidase, and galactose oxidase caused increased phosphatidylinositol metabolism and increased DNA synthesis. Both responses were suppressed by low density lipoproteins

  12. Host control of malaria infections: constraints on immune and erythropoeitic response kinetics.

    Directory of Open Access Journals (Sweden)

    Philip G McQueen

    2008-08-01

    Full Text Available The two main agents of human malaria, Plasmodium vivax and Plasmodium falciparum, can induce severe anemia and provoke strong, complex immune reactions. Which dynamical behaviors of host immune and erythropoietic responses would foster control of infection, and which would lead to runaway parasitemia and/or severe anemia? To answer these questions, we developed differential equation models of interacting parasite and red blood cell (RBC populations modulated by host immune and erythropoietic responses. The model immune responses incorporate both a rapidly responding innate component and a slower-responding, long-term antibody component, with several parasite developmental stages considered as targets for each type of immune response. We found that simulated infections with the highest parasitemia tended to be those with ineffective innate immunity even if antibodies were present. We also compared infections with dyserythropoiesis (reduced RBC production during infection to those with compensatory erythropoiesis (boosted RBC production or a fixed basal RBC production rate. Dyserythropoiesis tended to reduce parasitemia slightly but at a cost to the host of aggravating anemia. On the other hand, compensatory erythropoiesis tended to reduce the severity of anemia but with enhanced parasitemia if the innate response was ineffective. For both parasite species, sharp transitions between the schizont and the merozoite stages of development (i.e., with standard deviation in intra-RBC development time immune response, though P. vivax attacks a much smaller subset of RBCs. Since most P. vivax infections are nonlethal (if debilitating clinically, this suggests that P

  13. Delicate regulation of the cGAS-MITA-mediated innate immune response.

    Science.gov (United States)

    Luo, Wei-Wei; Shu, Hong-Bing

    2018-02-19

    Although it has long been demonstrated that cytosolic DNA is a potent immune stimulant, it is only in recent years that the molecular mechanisms of DNA-stimulated innate immune responses have emerged. Studies have established critical roles for the DNA sensor cyclic GMP-AMP synthase (cGAS) and the adapter protein MITA/STING in the innate immune response to cytosolic DNA or DNA viruses. Although the regulation of cGAS-MITA/STING-mediated signaling remains to be fully investigated, understanding the processes involved may help to explain the mechanisms of innate immune signaling events and perhaps autoinflammatory diseases and to provide potential therapeutic targets for drug intervention. In this review, we summarize recent progress on the regulation of the cGAS-MITA/STING-mediated innate immune response to DNA viruses at the organelle-trafficking, post-translational and transcriptional levels.Cellular & Molecular Immunology advance online publication, 19 February 2018; doi:10.1038/cmi.2016.51.

  14. Modelling the innate immune response against avian influenza virus in chicken

    NARCIS (Netherlands)

    Hagenaars, T.J.; Fischer, E.A.J.; Jansen, C.A.; Rebel, J.M.J.; Spekreijse, D.; Vervelde, L.; Backer, J.A.; Jong, de M.C.M.; Koets, A.P.

    2016-01-01

    At present there is limited understanding of the host immune response to (low pathogenic) avian influenza virus infections in poultry. Here we develop a mathematical model for the innate immune response to avian influenza virus in chicken lung, describing the dynamics of viral load,

  15. Immune response at birth, long-term immune memory and 2 years follow-up after in-utero anti-HBV DNA immunization.

    Science.gov (United States)

    Fazio, V M; Ria, F; Franco, E; Rosati, P; Cannelli, G; Signori, E; Parrella, P; Zaratti, L; Iannace, E; Monego, G; Blogna, S; Fioretti, D; Iurescia, S; Filippetti, R; Rinaldi, M

    2004-03-01

    Infections occurring at the end of pregnancy, during birth or by breastfeeding are responsible for the high toll of death among first-week infants. In-utero DNA immunization has demonstrated the effectiveness in inducing specific immunity in newborns. A major contribution to infant immunization would be achieved if a vaccine proved able to be protective as early as at the birth, preventing the typical 'first-week infections'. To establish its potential for use in humans, in-utero DNA vaccination efficiency has to be evaluated for short- and long-term safety, protection at delivery, efficacy of boosts in adults and effective window/s for modulation of immune response during pregnancy, in an animal model suitable with human development. Here we show that a single intramuscular in-utero anti-HBV DNA immunization at two-thirds of pig gestation produces, at birth, antibody titers considered protective in humans. The boost of antibody titers in every animal following recall at 4 and 10 months demonstrates the establishment of immune memory. The safety of in-utero fetus manipulation is guaranteed by short-term (no fetus loss, lack of local alterations, at-term spontaneous delivery, breastfeeding) and long-term (2 years) monitoring. Treatment of fetuses closer to delivery results in immune ignorance without induction of tolerance. This result highlights the repercussion of selecting the appropriate time point when this approach is used to deliver therapeutic genes. All these findings illustrate the relevance of naked DNA-based vaccination technology in therapeutic efforts aimed to prevent the high toll of death among first-week infants.

  16. Disease susceptibiliy in the zig-zag model of host-microbe Interactions: only a consequence of immune suppression?

    OpenAIRE

    Keller, Harald; Boyer, Laurent; Abad, Pierre

    2016-01-01

    For almost ten years, the Zig-Zag model has provided a convenient framework for explaining the molecular bases of compatibility and incompatibility in plant-microbe interactions (Jones and Dangl, 2006). According to the Zig-Zag model, disease susceptibility is a consequence of the suppression of host immunity during the evolutionary arms race between plants and pathogens. The Zig-Zag model thus fits well with biotrophic interactions, but is less applicable to interactions involving pathogens ...

  17. Radiation effects on tumor-specific DTH response, 2

    International Nuclear Information System (INIS)

    Nobusawa, Hiroshi; Hachisu, Reiko.

    1991-01-01

    Tumor-specific immunity was induced in C3H mice by immunizing with syngeneic MH134 hepatoma cells. Radiation sensitivity of anti-tumor activity of immunized spleen cells were examined and compared with the radiation sensitivity of the delayed-type hypersensitivity (DTH)-response. The spleen cells were irradiated in vitro, then mixed with the tumor cells. DTH-response intensity was determined from the footpad increment twenty-four hours after inoculation of tumor cells with immunized spleen cells. Anti-tumor activity of the spleen cells, based on growth inhibition of tumor cells, was measured by a cytostatic test in vivo with diffusion chambers. Tumor-specific DTH response was suppressed dose-dependently in the range of 12-24 Gy irradiation. No suppression was observed below 12 Gy. Without irradiation, growth of tumor cells was inhibited by immunized spleen cells more effectively than by normal spleen cells. Anti-tumor activity of immunized and normal spleen cells was diminished by irradiation doses of 20 Gy and 10 Gy, respectively. Comparing our report with others that analyzed the type of anti-tumor effector cells induced in this experimental system, we concluded that tumor-specific anti-tumor activity (tumor growth inhibition in vivo) that was radiosensitive at 10-20 Gy depended on a DTH-response. (author)

  18. [Immune mechanisms of the active ingredients of Chinese medicinal herbs for chronic prostatitis].

    Science.gov (United States)

    Wang, Hao; Zhou, Yu-chun; Xue, Jian-guo

    2016-01-01

    Chronic prostatitis is a common male disease, and its pathogenesis is not yet clear. Most scholars believe that oxidative stress and immune imbalance are the keys to the occurrence and progression of chronic prostatitis. Currently immunotherapy of chronic prostatitis remains in the exploratory stage. This article relates the active ingredients of 5 Chinese medicinal herbs (total glucosides of paeony, tripterigium wilfordii polglycosidium, curcumin, geniposide, and quercetin) for the treatment of chronic prostatitis and their possible action mechanisms as follows: 1) inhibiting the immune response and activation and proliferation of T-cells, and adjusting the proportion of Th1/Th2 cells; 2) upregulating the expression of Treg and enhancing the patient's tolerability; 3) suppressing the activation of the NF-kB factor, reducing the release of iNOS, and further decreasing the release of NO, IL-2 and other inflammatory cytokines, which contribute to the suppression of the immune response; 4) inhibiting the production of such chemokines as MCP-1 and MIP-1α in order to reduce their induction of inflammatory response. Studies on the immune mechanisms of Chinese medicinal herbs in the treatment of chronic prostatitis are clinically valuable for the development of new drugs for this disease.

  19. Maximizing Tumor Immunity With Fractionated Radiation

    International Nuclear Information System (INIS)

    Schaue, Dörthe; Ratikan, Josephine A.; Iwamoto, Keisuke S.; McBride, William H.

    2012-01-01

    Purpose: Technologic advances have led to increased clinical use of higher-sized fractions of radiation dose and higher total doses. How these modify the pathways involved in tumor cell death, normal tissue response, and signaling to the immune system has been inadequately explored. Here we ask how radiation dose and fraction size affect antitumor immunity, the suppression thereof, and how this might relate to tumor control. Methods and Materials: Mice bearing B16-OVA murine melanoma were treated with up to 15 Gy radiation given in various-size fractions, and tumor growth followed. The tumor-specific immune response in the spleen was assessed by interferon-γ enzyme-linked immunospot (ELISPOT) assay with ovalbumin (OVA) as the surrogate tumor antigen and the contribution of regulatory T cells (Tregs) determined by the proportion of CD4 + CD25 hi Foxp3 + T cells. Results: After single doses, tumor control increased with the size of radiation dose, as did the number of tumor-reactive T cells. This was offset at the highest dose by an increase in Treg representation. Fractionated treatment with medium-size radiation doses of 7.5 Gy/fraction gave the best tumor control and tumor immunity while maintaining low Treg numbers. Conclusions: Radiation can be an immune adjuvant, but the response varies with the size of dose per fraction. The ultimate challenge is to optimally integrate cancer immunotherapy into radiation therapy.

  20. Escaping deleterious immune response in their hosts: lessons from trypanosomatids

    Directory of Open Access Journals (Sweden)

    Anne eGeiger

    2016-05-01

    Full Text Available The Trypanosomatidae family includes the genera Trypanosoma and Leishmania, protozoan parasites displaying complex digenetic life cycles requiring a vertebrate host and an insect vector. Trypanosoma brucei gambiense, T. cruzi and Leishmania spp are important human pathogens causing Human African Trypanosomiasis (HAT or Sleeping Sickness, Chagas’ disease, and various clinical forms of Leishmaniasis, respectively. They are transmitted to humans by tsetse flies, triatomine bugs or sandflies and affect millions of people worldwide.In humans, extracellular African trypanosomes (T. brucei evade the hosts’ immune defences, allowing their transmission to the next host, via the tsetse vector. By contrast, T. cruzi and Leishmania sp. have developed a complex intracellular lifestyle, also preventing several mechanisms to circumvent the host’s immune response.This review seeks to set out the immune evasion strategies developed by the different trypanosomatids resulting from parasite-host interactions and, will focus on: clinical and epidemiological importance of diseases; life cycles: parasites-hosts-vectors; innate immunity: key steps for trypanosomatids in invading hosts; deregulation of antigen presenting cells; disruption of efficient specific immunity; and the immune responses used for parasite proliferation.

  1. Escaping Deleterious Immune Response in Their Hosts: Lessons from Trypanosomatids

    Science.gov (United States)

    Geiger, Anne; Bossard, Géraldine; Sereno, Denis; Pissarra, Joana; Lemesre, Jean-Loup; Vincendeau, Philippe; Holzmuller, Philippe

    2016-01-01

    The Trypanosomatidae family includes the genera Trypanosoma and Leishmania, protozoan parasites displaying complex digenetic life cycles requiring a vertebrate host and an insect vector. Trypanosoma brucei gambiense, Trypanosoma cruzi, and Leishmania spp. are important human pathogens causing human African trypanosomiasis (HAT or sleeping sickness), Chagas’ disease, and various clinical forms of Leishmaniasis, respectively. They are transmitted to humans by tsetse flies, triatomine bugs, or sandflies, and affect millions of people worldwide. In humans, extracellular African trypanosomes (T. brucei) evade the hosts’ immune defenses, allowing their transmission to the next host, via the tsetse vector. By contrast, T. cruzi and Leishmania sp. have developed a complex intracellular lifestyle, also preventing several mechanisms to circumvent the host’s immune response. This review seeks to set out the immune evasion strategies developed by the different trypanosomatids resulting from parasite–host interactions and will focus on: clinical and epidemiological importance of diseases; life cycles: parasites–hosts–vectors; innate immunity: key steps for trypanosomatids in invading hosts; deregulation of antigen-presenting cells; disruption of efficient specific immunity; and the immune responses used for parasite proliferation. PMID:27303406

  2. Study of the integrated immune response induced by an inactivated EV71 vaccine.

    Directory of Open Access Journals (Sweden)

    Longding Liu

    Full Text Available Enterovirus 71 (EV71, a major causative agent of hand-foot-and-mouth disease (HFMD, causes outbreaks among children in the Asia-Pacific region. A vaccine is urgently needed. Based on successful pre-clinical work, phase I and II clinical trials of an inactivated EV71 vaccine, which included the participants of 288 and 660 respectively, have been conducted. In the present study, the immune response and the correlated modulation of gene expression in the peripheral blood mononuclear cells (PBMCs of 30 infants (6 to 11 months immunized with this vaccine or placebo and consented to join this study in the phase II clinical trial were analyzed. The results showed significantly greater neutralizing antibody and specific T cell responses in vaccine group after two inoculations on days 0 and 28. Additionally, more than 600 functional genes that were up- or down-regulated in PBMCs were identified by the microarray assay, and these genes included 68 genes associated with the immune response in vaccine group. These results emphasize the gene expression profile of the immune system in response to an inactivated EV71 vaccine in humans and confirmed that such an immune response was generated as the result of the positive mobilization of the immune system. Furthermore, the immune response was not accompanied by the development of a remarkable inflammatory response.NCT01391494 and NCT01512706.

  3. Modelling the Innate Immune Response against Avian Influenza Virus in Chicken

    NARCIS (Netherlands)

    Hagenaars, T J; Fischer, E A J; Jansen, C A; Rebel, J M J; Spekreijse, D; Vervelde, L; Backer, J A; de Jong, M.C.M.; Koets, A P

    2016-01-01

    At present there is limited understanding of the host immune response to (low pathogenic) avian influenza virus infections in poultry. Here we develop a mathematical model for the innate immune response to avian influenza virus in chicken lung, describing the dynamics of viral load, interferon-α, -β

  4. Immune response to uv-induced tumors: transplantation immunity and lymphocyte populations exhibiting anti-tumor activity

    International Nuclear Information System (INIS)

    Streeter, P.R.

    1985-01-01

    Ultraviolet light-induced murine skin tumors were analyzed for their ability to induce tumor-specific and cross-protective transplantation immunity in immunocompetent syngeneic mice. These studies revealed that progressor UV-tumors, like regressor UV-tumors, possess tumor-specific transplantation antigens. Cross-protective transplantation immunity to UV-tumors, however, was associated with sensitization to the serum used to culture the tumor lines rather than to cross-reactive or common determinants on UV-tumors. An analysis of the cytolytic activity of lymphocytes from the spleens of mice immunized with either regressor or progressor UV-tumors revealed a striking difference between the two immune splenocyte populations. From regressor tumor-immune animals, cytolytic T (Tc) lymphocytes with specificity for the immunizing tumor were found. However, the analysis of splenic lymphocytes from progressor tumor immune animals revealed no such effector cells. To more effectively examine those lymphocytes exhibiting cytolytic activity in vitro, T lymphocyte cloning technology was used as a means of isolating homogeneous lymphocyte populations with the effector activities described above. The mechanisms where NK cells and other nonspecific effector cells could be induced in tumor-immune animals are discussed in the context of class II restricted immune responses

  5. Brucella ovis: invasion, traffic, virulence factors and immune responseBrucella ovis: invasão, tráfego, fatores de virulência e resposta imune

    Directory of Open Access Journals (Sweden)

    João Marcelo Azevedo de Paula Antunes

    2013-06-01

    Full Text Available Brucellosis remains an economic problem in animals and public health. Worldwide ovine brucellosis caused by Brucella ovis is considered a major cause of infertility in sheep. The factors responsible for persistence of the agent in these locations are not known, as well as the mechanisms involved in immune defense and possibly the persistence of the agent. Brucella spp. induces moderate inflammatory response. The nature of the intracellular agent stimulates immune response of the type 1 helper T lymphocytes. Studies of the pathogenesis of ovine brucellosis are scarce. Recent developments have shown that the inflammatory response induced by moderate brucelas represent probably the result of an attempt to escape the immune response and suppression of host immune response. Were reviewed by the mechanisms described by brucelas and Brucella ovis for penetration into the host, escape of the immune response and the immune response generated by the infection. A brucelose permanece como problema econômico em animais e de saúde pública. Em todo o mundo a brucelose ovina ocasionada pela Brucella ovis é considerada uma das principais causas de infertilidade em ovinos. Os fatores responsáveis pela persistência do agente nestes locais não são conhecidos, bem como os mecanismos imunes envolvidos na defesa e eventualmente na persistência do agente. Brucella spp. induz resposta inflamatória moderada. A natureza intracelular do agente estimula resposta imune celular do tipo linfócito T helper 1. Os estudos de patogenia da brucelose ovina são escassos. Recentes avanços demonstraram que a resposta inflamatória moderada induzida pelas brucelas representam provavelmente o resultado de tentativa de escape da resposta imune e supressão da resposta imune hospedeira. Foram revisados os mecanismos descritos pelas brucelas e pela Brucella ovis para penetração no hospedeiro, escape da resposta imune, bem como a resposta imunológica gerada pela infecção.

  6. Role of IL-12 and IFN-γ in immune response to toxoplasma gondii infection

    International Nuclear Information System (INIS)

    Moawad, M.A.F.; ElGawish, M.A.M.

    2004-01-01

    Interlenkin 12 (IL-12) is a potent immunoregulatory molecule that is critically involved in a wide range of diseases. In several murine models of intracellular infection, endogenous IL-12 has been shown to be crucial for the generation of a protective Th1 response in a primary infection for a intracellular pathogens. Interferon-gamma (IFN-γ) is also an important mediator of cellular immunity against microbial pathogens and tumor cells due to its potent capacity to activate macrophages for enhanced cytotoxicity. The aim of the present study is to evaluate the immune response to toxoplasma gondii after primary inflection (infected groups and secondary infection (re-infected groups for over 19 weeks (the time of the experiment). the evaluation was assessed by measurements of levels of IL-12 and IFN-γ using ELISA technique in the sera of these infected rats. The results demonstrated that the primary immune response induced a fluctuation in the levels of IL-12 in the sera of infected rats, which reached maximum value of 122.6 ±1.4 pg/ml after 15 weeks of primary infection. While, in the challenged groups (secondary immune response, re-infected groups) the levels of IL-12 were generally lower than that of the primary immune response. On the other hand, IFN-γ levels increased significantly in the secondary immune response (re-infected groups) as compared to primary immune response 9 infected groups) In conclusion, the results suggest that IL-12 might have a role in the defense mechanism against intracellular infection with T-gondii especially in primary immune response than in the secondary immune response. This is in contrast to IFN-γ that takes the up-hand in secondary immune response to T-gondii infection

  7. Immune responses accelerate ageing: proof-of-principle in an insect model.

    Directory of Open Access Journals (Sweden)

    E Rhiannon Pursall

    Full Text Available The pathology of many of the world's most important infectious diseases is caused by the immune response. Additionally age-related disease is often attributed to inflammatory responses. Consequently a reduction in infections and hence inflammation early in life has been hypothesized to explain the rise in lifespan in industrialized societies. Here we demonstrate experimentally for the first time that eliciting an immune response early in life accelerates ageing. We use the beetle Tenebrio molitor as an inflammation model. We provide a proof of principle for the effects of early infection on morbidity late in life and demonstrate a long-lasting cost of immunopathology. Along with presenting a proof-of-principle study, we discuss a mechanism for the apparently counter-adaptive persistence of immunopathology in natural populations. If immunopathology from early immune response only becomes costly later in life, natural selection on reducing self-harm would be relaxed, which could explain the presence of immune self-harm in nature.

  8. Neonatal and Infantile Immune Responses to Encapsulated Bacteria and Conjugate Vaccines

    Directory of Open Access Journals (Sweden)

    Peter Klein Klouwenberg

    2008-01-01

    Full Text Available Encapsulated bacteria are responsible for the majority of mortality among neonates and infants. The major components on the surface of these bacteria are polysaccharides which are important virulence factors. Immunity against these components protects against disease. However, most of the polysaccharides are thymus-independent (TI-2 antigens which induce an inadequate immune response in neonates and infants. The mechanisms that are thought to play a role in the unresponsiveness of this age group to TI-2 stimuli will be discussed. The lack of immune response may be overcome by conjugating the polysaccharides to a carrier protein. This transforms bacterial polysaccharides from a TI-2 antigen into a thymus-dependent (TD antigen, thereby inducing an immune response and immunological memory in neonates and infants. Such conjugated vaccines have been shown to be effective against the most common causes of invasive disease caused by encapsulated bacteria in neonates and children. These and several other approaches in current vaccine development will be discussed.

  9. The fungal quorum-sensing molecule farnesol activates innate immune cells but suppresses cellular adaptive immunity.

    Science.gov (United States)

    Leonhardt, Ines; Spielberg, Steffi; Weber, Michael; Albrecht-Eckardt, Daniela; Bläss, Markus; Claus, Ralf; Barz, Dagmar; Scherlach, Kirstin; Hertweck, Christian; Löffler, Jürgen; Hünniger, Kerstin; Kurzai, Oliver

    2015-03-17

    Farnesol, produced by the polymorphic fungus Candida albicans, is the first quorum-sensing molecule discovered in eukaryotes. Its main function is control of C. albicans filamentation, a process closely linked to pathogenesis. In this study, we analyzed the effects of farnesol on innate immune cells known to be important for fungal clearance and protective immunity. Farnesol enhanced the expression of activation markers on monocytes (CD86 and HLA-DR) and neutrophils (CD66b and CD11b) and promoted oxidative burst and the release of proinflammatory cytokines (tumor necrosis factor alpha [TNF-α] and macrophage inflammatory protein 1 alpha [MIP-1α]). However, this activation did not result in enhanced fungal uptake or killing. Furthermore, the differentiation of monocytes to immature dendritic cells (iDC) was significantly affected by farnesol. Several markers important for maturation and antigen presentation like CD1a, CD83, CD86, and CD80 were significantly reduced in the presence of farnesol. Furthermore, farnesol modulated migrational behavior and cytokine release and impaired the ability of DC to induce T cell proliferation. Of major importance was the absence of interleukin 12 (IL-12) induction in iDC generated in the presence of farnesol. Transcriptome analyses revealed a farnesol-induced shift in effector molecule expression and a down-regulation of the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor during monocytes to iDC differentiation. Taken together, our data unveil the ability of farnesol to act as a virulence factor of C. albicans by influencing innate immune cells to promote inflammation and mitigating the Th1 response, which is essential for fungal clearance. Farnesol is a quorum-sensing molecule which controls morphological plasticity of the pathogenic yeast Candida albicans. As such, it is a major mediator of intraspecies communication. Here, we investigated the impact of farnesol on human innate immune cells known to be

  10. Filovirus pathogenesis and immune evasion: insights from Ebola virus and Marburg virus

    Energy Technology Data Exchange (ETDEWEB)

    Messaoudi, Ilhem; Amarasinghe, Gaya K.; Basler, Christopher F.

    2015-10-06

    Ebola viruses and Marburg viruses, members of the filovirus family, are zoonotic pathogens that cause severe disease in people, as highlighted by the latest Ebola virus epidemic in West Africa. Filovirus disease is characterized by uncontrolled virus replication and the activation of host responses that contribute to pathogenesis. Underlying these phenomena is the potent suppression of host innate antiviral responses, particularly the type I interferon response, by viral proteins, which allows high levels of viral replication. In this Review, we describe the mechanisms used by filoviruses to block host innate immunity and discuss the links between immune evasion and filovirus pathogenesis.

  11. Multiple candidate effectors from the oomycete pathogen Hyaloperonospora arabidopsidis suppress host plant immunity.

    Directory of Open Access Journals (Sweden)

    Georgina Fabro

    2011-11-01

    Full Text Available Oomycete pathogens cause diverse plant diseases. To successfully colonize their hosts, they deliver a suite of effector proteins that can attenuate plant defenses. In the oomycete downy mildews, effectors carry a signal peptide and an RxLR motif. Hyaloperonospora arabidopsidis (Hpa causes downy mildew on the model plant Arabidopsis thaliana (Arabidopsis. We investigated if candidate effectors predicted in the genome sequence of Hpa isolate Emoy2 (HaRxLs were able to manipulate host defenses in different Arabidopsis accessions. We developed a rapid and sensitive screening method to test HaRxLs by delivering them via the bacterial type-three secretion system (TTSS of Pseudomonas syringae pv tomato DC3000-LUX (Pst-LUX and assessing changes in Pst-LUX growth in planta on 12 Arabidopsis accessions. The majority (~70% of the 64 candidates tested positively contributed to Pst-LUX growth on more than one accession indicating that Hpa virulence likely involves multiple effectors with weak accession-specific effects. Further screening with a Pst mutant (ΔCEL showed that HaRxLs that allow enhanced Pst-LUX growth usually suppress callose deposition, a hallmark of pathogen-associated molecular pattern (PAMP-triggered immunity (PTI. We found that HaRxLs are rarely strong avirulence determinants. Although some decreased Pst-LUX growth in particular accessions, none activated macroscopic cell death. Fewer HaRxLs conferred enhanced Pst growth on turnip, a non-host for Hpa, while several reduced it, consistent with the idea that turnip's non-host resistance against Hpa could involve a combination of recognized HaRxLs and ineffective HaRxLs. We verified our results by constitutively expressing in Arabidopsis a sub-set of HaRxLs. Several transgenic lines showed increased susceptibility to Hpa and attenuation of Arabidopsis PTI responses, confirming the HaRxLs' role in Hpa virulence. This study shows TTSS screening system provides a useful tool to test whether

  12. Humoral and cellular immune responses to modified hepatitis B ...

    African Journals Online (AJOL)

    Purpose: To evaluate the immunogenicity and types of immune response of a quality-controlled modified recombinant hepatitis B surface antigen (HBsAg) plasmid encoding HBsAg in mice. Methods: The characterized plasmid DNA was used in the immunization of Balb/c mice. Three groups of mice were intramuscularly ...

  13. MicroRNA-29b modulates innate and antigen-specific immune responses in mouse models of autoimmunity.

    Directory of Open Access Journals (Sweden)

    Apolline Salama

    Full Text Available In addition to important regulatory roles in gene expression through RNA interference, it has recently been shown that microRNAs display immune stimulatory effects through direct interaction with receptors of innate immunity of the Toll-like receptor family, aggravating neuronal damage and tumour growth. Yet no evidence exists on consequences of microRNA immune stimulatory actions in the context of an autoimmune disease. Using microRNA analogues, we here show that pancreatic beta cell-derived microRNA sequences induce pro-inflammatory (TNFa, IFNa, IL-12, IL-6 or suppressive (IL-10 cytokine secretion by primary mouse dendritic cells in a sequence-dependent manner. For miR-29b, immune stimulation in RAW264.7 macrophages involved the endosomal Toll-like receptor-7, independently of the canonical RNA interference pathway. In vivo, the systemic delivery of miR-29b activates CD11b+B220- myeloid and CD11b-B220+ plasmacytoid dendritic cells and induces IFNa, TNFa and IL-6 production in the serum of recipient mice. Strikingly, in a murine model of adoptive transfer of autoimmune diabetes, miR-29b reduces the cytolytic activity of transferred effector CD8+ T-cells, insulitis and disease incidence in a single standalone intervention. Endogenous miR-29b, spontaneously released from beta-cells within exosomes, stimulates TNFa secretion from spleen cells isolated from diabetes-prone NOD mice in vitro. Hence, microRNA sequences modulate innate and ongoing adaptive immune responses raising the question of their potential role in the breakdown of tolerance and opening up new applications for microRNA-based immune therapy.

  14. A modified live canine parvovirus vaccine. II. Immune response.

    Science.gov (United States)

    Carmichael, L E; Joubert, J C; Pollock, R V

    1983-01-01

    The safety and efficacy of an attenuated canine parvovirus (A-CPV) vaccine was evaluated in both experimental and in field dogs. After parenteral vaccination, seronegative dogs developed hemagglutination-inhibition (HI) antibody titers as early as postvaccination (PV) day 2. Maximal titers occurred within 1 week. Immunity was associated with the persistence of HI antibody titers (titers greater than 80) that endured at least 2 years. Immune dogs challenged with virulent CPV did not shed virus in their feces. The A-CPV vaccine did not cause illness alone or in combination with living canine distemper (CD) and canine adenovirus type-2 (CAV-2) vaccines, nor did it interfere with the immune response to the other viruses. A high rate (greater than 98%) of immunity was engendered in seronegative pups. In contrast, maternal antibody interfered with the active immune response to the A-CPV. More than 95% of the dogs with HI titers less than 10 responded to the vaccine, but only 50% responded when titers were approximately 20. No animal with a titer greater than 80 at the time of vaccination became actively immunized. Susceptibility to virulent CPV during that period when maternal antibody no longer protects against infection, but still prevents active immunization, is the principal cause of vaccinal failure in breeding kennels where CPV is present. Reduction, but not complete elimination, of CPV disease in large breeding kennels occurred within 1-2 months of instituting an A-CPV vaccination program.

  15. Structural Biology of the Immune Checkpoint Receptor PD-1 and Its Ligands PD-L1/PD-L2

    NARCIS (Netherlands)

    Zak, Krzysztof M.; Grudnik, Przemyslaw; Magiera, Katarzyna; Dömling, Alexander; Dubin, Grzegorz; Holak, Tad A.

    2017-01-01

    Cancer cells can avoid and suppress immune responses through activation of inhibitory immune checkpoint proteins, such as PD-1, PD-L1, and CTLA-4. Blocking the activities of these proteins with monoclonal antibodies, and thus restoring T cell function, has delivered breakthrough therapies against

  16. Nanotechnology, neuromodulation & the immune response: discourse, materiality & ethics.

    Science.gov (United States)

    Fins, Joseph J

    2015-04-01

    Drawing upon the American Pragmatic tradition in philosophy and the more recent work of philosopher Karen Barad, this paper examines how scientific problems are both obscured, and resolved by our use of language describing the natural world. Using the example of the immune response engendered by neural implants inserted in the brain, the author explains how this discourse has been altered by the advent of nanotechnology methods and devices which offer putative remedies that might temper the immune response in the central nervous system. This emergent nanotechnology has altered this problem space and catalyzed one scientific community to acknowledge a material reality that was always present, if not fully acknowledged.

  17. Cell mediated immune response in human antirabies revaccination

    Directory of Open Access Journals (Sweden)

    Débora Regina Veiga

    1987-04-01

    Full Text Available The occurrence of secondary cell mediated immune response (CMI in human antirabies immunization was studied. The Puenzalida & Palácios vaccine was used because it is routinely used in Brazil. CMI was evaluated by lymphoblastic transformation indices obtained in whole blood culture in the presence of rabies and control (nervous tissue antigens. Eleven volunteers submitted to revaccination constituted the group under study, while three other volunteers submitted primo vaccination were utilized as control group. A clear secondary CMI to rabies antigen was detected in all the revaccinated volunteers who showed earlier and more intense response than the control group. Response to the control antigen, however, present in all the components of the first group was not detectable in two out of the three primovaccinated and very low in the third one.

  18. High-dimensional analysis of the aging immune system: verification of age-associated differences in immune signaling responses in healthy donors.

    Science.gov (United States)

    Longo, Diane M; Louie, Brent; Ptacek, Jason; Friedland, Greg; Evensen, Erik; Putta, Santosh; Atallah, Michelle; Spellmeyer, David; Wang, Ena; Pos, Zoltan; Marincola, Francesco M; Schaeffer, Andrea; Lukac, Suzanne; Railkar, Radha; Beals, Chan R; Cesano, Alessandra; Carayannopoulos, Leonidas N; Hawtin, Rachael E

    2014-06-21

    Single-cell network profiling (SCNP) is a multiparametric flow cytometry-based approach that simultaneously measures evoked signaling in multiple cell subsets. Previously, using the SCNP approach, age-associated immune signaling responses were identified in a cohort of 60 healthy donors. In the current study, a high-dimensional analysis of intracellular signaling was performed by measuring 24 signaling nodes in 7 distinct immune cell subsets within PBMCs in an independent cohort of 174 healthy donors [144 elderly (>65 yrs); 30 young (25-40 yrs)]. Associations between age and 9 immune signaling responses identified in the previously published 60 donor cohort were confirmed in the current study. Furthermore, within the current study cohort, 48 additional immune signaling responses differed significantly between young and elderly donors. These associations spanned all profiled modulators and immune cell subsets. These results demonstrate that SCNP, a systems-based approach, can capture the complexity of the cellular mechanisms underlying immunological aging. Further, the confirmation of age associations in an independent donor cohort supports the use of SCNP as a tool for identifying reproducible predictive biomarkers in areas such as vaccine response and response to cancer immunotherapies.

  19. Gut Microbiota Promotes Obesity-Associated Liver Cancer through PGE2-Mediated Suppression of Antitumor Immunity.

    Science.gov (United States)

    Loo, Tze Mun; Kamachi, Fumitaka; Watanabe, Yoshihiro; Yoshimoto, Shin; Kanda, Hiroaki; Arai, Yuriko; Nakajima-Takagi, Yaeko; Iwama, Atsushi; Koga, Tomoaki; Sugimoto, Yukihiko; Ozawa, Takayuki; Nakamura, Masaru; Kumagai, Miho; Watashi, Koichi; Taketo, Makoto M; Aoki, Tomohiro; Narumiya, Shuh; Oshima, Masanobu; Arita, Makoto; Hara, Eiji; Ohtani, Naoko

    2017-05-01

    Obesity increases the risk of cancers, including hepatocellular carcinomas (HCC). However, the precise molecular mechanisms through which obesity promotes HCC development are still unclear. Recent studies have shown that gut microbiota may influence liver diseases by transferring its metabolites and components. Here, we show that the hepatic translocation of obesity-induced lipoteichoic acid (LTA), a Gram-positive gut microbial component, promotes HCC development by creating a tumor-promoting microenvironment. LTA enhances the senescence-associated secretory phenotype (SASP) of hepatic stellate cells (HSC) collaboratively with an obesity-induced gut microbial metabolite, deoxycholic acid, to upregulate the expression of SASP factors and COX2 through Toll-like receptor 2. Interestingly, COX2-mediated prostaglandin E 2 (PGE 2 ) production suppresses the antitumor immunity through a PTGER4 receptor, thereby contributing to HCC progression. Moreover, COX2 overexpression and excess PGE 2 production were detected in HSCs in human HCCs with noncirrhotic, nonalcoholic steatohepatitis (NASH), indicating that a similar mechanism could function in humans. Significance: We showed the importance of the gut-liver axis in obesity-associated HCC. The gut microbiota-driven COX2 pathway produced the lipid mediator PGE 2 in senescent HSCs in the tumor microenvironment, which plays a pivotal role in suppressing antitumor immunity, suggesting that PGE 2 and its receptor may be novel therapeutic targets for noncirrhotic NASH-associated HCC. Cancer Discov; 7(5); 522-38. ©2017 AACR. This article is highlighted in the In This Issue feature, p. 443 . ©2017 American Association for Cancer Research.

  20. Heroin use is associated with suppressed pro-inflammatory cytokine response after LPS exposure in HIV-infected individuals.

    Directory of Open Access Journals (Sweden)

    Hinta Meijerink

    Full Text Available Opioid use is associated with increased incidence of infectious diseases. Although experimental studies have shown that opioids affect various functions of immune cells, only limited data are available from human studies. Drug use is an important risk factor for HIV transmission; however no data are available whether heroin and/or methadone modulate immune response. Therefore, we examined the effect of heroin and methadone use among HIV-infected individuals on the production of cytokines after ex vivo stimulation with various pathogens.Treatment naïve HIV-infected individuals from Indonesia were recruited. Several cohorts of individuals were recruited: 1 using heroin 2 receiving methadone opioid substitution 3 using heroin over 1 year ago and 4 controls (never used opioids. Whole blood was stimulated with Mycobacterium tuberculosis, Candida albicans and LPS for 24 to 48 hours. Cytokine production (IL-1 β, IL-6, IL-10, IFN-α, IFN-γ and TNF-α was determined using multiplex beads assay.Among 82 individuals, the cytokine levels in unstimulated samples did not differ between groups. Overall, heroin users had significantly lower cytokine response after exposure to LPS (p<0.05. After stimulation with either M. tuberculosis or C. albicans the cytokine production of all groups were comparable.The cytokine production after exposure to LPS is significantly down-regulated in HIV-infected heroin users. Interesting, methadone use did not suppress cytokine response, which could have implications guidelines of opioid substitution.

  1. Reevaluation of immune activation in the era of cART and an aging HIV-infected population.

    Science.gov (United States)

    de Armas, Lesley R; Pallikkuth, Suresh; George, Varghese; Rinaldi, Stefano; Pahwa, Rajendra; Arheart, Kristopher L; Pahwa, Savita

    2017-10-19

    Biological aging is associated with immune activation (IA) and declining immunity due to systemic inflammation. It is widely accepted that HIV infection causes persistent IA and premature immune senescence despite effective antiretroviral therapy and virologic suppression; however, the effects of combined HIV infection and aging are not well defined. Here, we assessed the relationship between markers of IA and inflammation during biological aging in HIV-infected and -uninfected populations. Antibody response to seasonal influenza vaccination was implemented as a measure of immune competence and relationships between IA, inflammation, and antibody responses were explored using statistical modeling appropriate for integrating high-dimensional data sets. Our results show that markers of IA, such as coexpression of HLA antigen D related (HLA-DR) and CD38 on CD4+ T cells, exhibit strong associations with HIV infection but not with biological age. Certain variables that showed a strong relationship with aging, such as declining naive and CD38+ CD4 and CD8+ T cells, did so regardless of HIV infection. Interestingly, the variable of biological age was not identified in a predictive model as significantly impacting vaccine responses in either group, while distinct IA and inflammatory variables were closely associated with vaccine response in HIV-infected and -uninfected populations. These findings shed light on the most relevant and persistent immune defects during virological suppression with antiretroviral therapy.

  2. Secondary immune response of rainbow trout following repeated immersion vaccination

    DEFF Research Database (Denmark)

    Jaafar, R. M.; Al-Jubury, A.; Chettri, J. K.

    2017-01-01

    Teleosts are able to raise a protective immune response, comprising both innate and adaptive elements, against various pathogens. This is the basis for a widespread use of vaccines, administered as injection or immersion, in the aquaculture industry. It has been described that repeated injection...... vaccination of fish raises a secondary immune response, consisting of rapid, accelerated and increased antibody reaction. This study reports how rainbow trout responds to repeated immersion vaccination against yersiniosis (ERM) caused by the bacterial pathogen Yersinia ruckeri. It was found that rainbow trout...... does not raise a classical secondary response following repeated immersion vaccination. Serum antibody titres were merely slightly increased even after three immunizations, using 30-s immersion into a bacterin consisting of formalin-inactivated Y. ruckeri (serotype O1, biotypes 1 and 2), performed over...

  3. Secondary immune response of rainbow trout following repeated immersion vaccination

    DEFF Research Database (Denmark)

    Jaafar, R. M.; Al-Jubury, Azmi; Chettri, Jiwan Kumar

    2018-01-01

    Teleosts are able to raise a protective immune response, comprising both innate and adaptive elements, against various pathogens. This is the basis for a widespread use of vaccines, administered as injection or immersion, in the aquaculture industry. It has been described that repeated injection...... vaccination of fish raises a secondary immune response, consisting of rapid, accelerated and increased antibody reaction. This study reports how rainbow trout responds to repeated immersion vaccination against yersiniosis (ERM) caused by the bacterial pathogen Yersinia ruckeri. It was found that rainbow trout...... does not raise a classical secondary response following repeated immersion vaccination. Serum antibody titres were merely slightly increased even after three immunizations, using 30-s immersion into a bacterin consisting of formalin-inactivated Y. ruckeri (serotype O1, biotypes 1 and 2), performed over...

  4. [Comparison of immune response after oral and intranasal immunization with recombinant Lactobacillus casei expressing ETEC F41].

    Science.gov (United States)

    Liu, Jiankui; Wei, Chunhua; Hou, Xilin; Wang, Guihua; Yu, Liyun

    2009-04-01

    In order to represent a promising strategy for mucosal vaccination, oral or intranasal immunization of Specific Pathogen Free (SPF) BALB/c mice were performed. The mucosal immunity, systemic immune and protective immune responses were compared after immunization with the recombinant Lactobacillus casei (L. casei) harboring enterotoxigenic Escherichia coli (ETEC) F41. The recombinant fusion proteins were detected by Western blot. Surface localization of the fusion protein was verified by immunofluorescence microscopy and flow cytometry. Six-week-old female SPF BALB/c mice (160 heads) were divided into 4 groups for immunization and control. Oral and intranasal immunization of mice was performed with the recombinant strain L. casei harboring pLA-F41 or pLA. For oral immunization, the mice were inoculated daily on days 0 to 4, 7 to 11, 21 to 25, and 49 to 53. A lighter schedule was used for nasal immunization (days 0 to 2, 7 to 9, 21 and 49). Specific anti-F41 IgG antibody in the serum and specific anti-F41 secret immunoglobulin A (sIgA) antibody in the lung, intestines, vagina fluid and feces of mice were detected by indirect ELISA. The mice orally or intranasally immunized with pLA-F41/L. casei and pLA/IL. casei were challenged with standard-type ETEC F41 (C83919) (2 x 10(3) LD50). Mice immunized with pLA-F41/L. casei could produce remarkable anti-F41 antibody level. More than 90% survived in oral immunization group whereas more than 85% survived in intranasal immunization group after challenged with C83919, all dead in the control group. Ninety percent of the pups survived in oral immunization group whereas 80% survived in intranasal immunization group after challenged with C83919, but only a 5% survival rate for pups that were either immunized with a control pLA vector or unimmunized. Oral or intranasal immunization with recombinant L. casei displaying ETEC F41 antigens on the surface induced effective and similar systemic and mucosal immune responses against the

  5. Effects of X-irradiation and thymectomy on the immune response of the marine teleost, Sebastiscus marmoratus

    International Nuclear Information System (INIS)

    Nakanishi, T.

    1986-01-01

    Effects of X-irradiation and thymectomy on the immune response of the rock fish, S. marmoratus were studied. Animals were thymectomized and irradiated at the dose of 2000 R. In non-thymectomized and irradiated fish, injected with SRBC one week after irradiation, antibody production was completely suppressed and they required twice the time for rejection of scales allografted three days after irradiation. On the other hand, fish which were irradiated four days after thymectomy and injected one week after irradiation, showed a fairly high level of antibody, although, in the allograft rejection, no significant difference was observed when compared to the irradiated fish. Furthermore, animals thymectomized, irradiated and autoimplanted showed higher production of antibody when immunized three months after irradiation compared to matched controls. In the same manner, in the allograft rejection, a slight restoration was found in fish reconstituted with a non-irradiated thymus. From these results, it is considered that, as in mammals, the adult thymus of fish plays an important role in recovery from the damage to the immune system caused by irradiation. Furthermore, a combination of X-irradiation and thymectomy suggests that suppressor T-cells which are resistant to X-rays exist in the fish thymus

  6. Immune system development during early childhood in tropical Latin America: evidence for the age-dependent down regulation of the innate immune response.

    Science.gov (United States)

    Teran, Rommy; Mitre, Edward; Vaca, Maritza; Erazo, Silvia; Oviedo, Gisela; Hübner, Marc P; Chico, Martha E; Mattapallil, Joseph J; Bickle, Quentin; Rodrigues, Laura C; Cooper, Philip J

    2011-03-01

    The immune response that develops in early childhood underlies the development of inflammatory diseases such as asthma and there are few data from tropical Latin America (LA). This study investigated the effects of age on the development of immunity during the first 5 years of life by comparing innate and adaptive immune responses in Ecuadorian children aged 6-9 months, 22-26 months, and 48-60 months. Percentages of naïve CD4+ T cells declined with age while those of memory CD4(+) and CD8(+) T cells increased indicating active development of the immune system throughout the first five years. Young infants had greater innate immune responses to TLR agonists compared to older children while regulatory responses including SEB-induced IL-10 and percentages of FoxP3(+) T-regulatory cells decreased with age. Enhanced innate immunity in early life may be important for host defense against pathogens but may increase the risk of immunopathology. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Complex role for the immune system in initiation and progression of pancreatic cancer.

    Science.gov (United States)

    Inman, Kristin S; Francis, Amanda A; Murray, Nicole R

    2014-08-28

    The immune system plays a complex role in the development and progression of pancreatic cancer. Inflammation can promote the formation of premalignant lesions and accelerate pancreatic cancer development. Conversely, pancreatic cancer is characterized by an immunosuppressive environment, which is thought to promote tumor progression and invasion. Here we review the current literature describing the role of the immune response in the progressive development of pancreatic cancer, with a focus on the mechanisms that drive recruitment and activation of immune cells at the tumor site, and our current understanding of the function of the immune cell types at the tumor. Recent clinical and preclinical data are reviewed, detailing the involvement of the immune response in pancreatitis and pancreatic cancer, including the role of specific cytokines and implications for disease outcome. Acute pancreatitis is characterized by a predominantly innate immune response, while chronic pancreatitis elicits an immune response that involves both innate and adaptive immune cells, and often results in profound systemic immune-suppression. Pancreatic adenocarcinoma is characterized by marked immune dysfunction driven by immunosuppressive cell types, tumor-promoting immune cells, and defective or absent inflammatory cells. Recent studies reveal that immune cells interact with cancer stem cells and tumor stromal cells, and these interactions have an impact on development and progression of pancreatic ductal adenocarcinoma (PDAC). Finally, current PDAC therapies are reviewed and the potential for harnessing the actions of the immune response to assist in targeting pancreatic cancer using immunotherapy is discussed.

  8. Attenuation of Pathogenic Immune Responses during Infection with Human and Simian Immunodeficiency Virus (HIV/SIV) by the Tetracycline Derivative Minocycline

    Science.gov (United States)

    Drewes, Julia L.; Szeto, Gregory L.; Engle, Elizabeth L.; Liao, Zhaohao; Shearer, Gene M.; Zink, M. Christine; Graham, David R.

    2014-01-01

    HIV immune pathogenesis is postulated to involve two major mechanisms: 1) chronic innate immune responses that drive T cell activation and apoptosis and 2) induction of immune regulators that suppress T cell function and proliferation. Both arms are elevated chronically in lymphoid tissues of non-natural hosts, which ultimately develop AIDS. However, these mechanisms are not elevated chronically in natural hosts of SIV infection that avert immune pathogenesis despite similarly high viral loads. In this study we investigated whether minocycline could modulate these pathogenic antiviral responses in non-natural hosts of HIV and SIV. We found that minocycline attenuated in vitro induction of type I interferon (IFN) and the IFN-stimulated genes indoleamine 2,3-dioxygenase (IDO1) and TNF-related apoptosis inducing ligand (TRAIL) in human plasmacytoid dendritic cells and PBMCs exposed to aldrithiol-2 inactivated HIV or infectious influenza virus. Activation-induced TRAIL and expression of cytotoxic T-lymphocyte antigen 4 (CTLA-4) in isolated CD4+ T cells were also reduced by minocycline. Translation of these in vitro findings to in vivo effects, however, were mixed as minocycline significantly reduced markers of activation and activation-induced cell death (CD25, Fas, caspase-3) but did not affect expression of IFNβ or the IFN-stimulated genes IDO1, FasL, or Mx in the spleens of chronically SIV-infected pigtailed macaques. TRAIL expression, reflecting the mixed effects of minocycline on activation and type I IFN stimuli, was reduced by half, but this change was not significant. These results show that minocycline administered after infection may protect against aspects of activation-induced cell death during HIV/SIV immune disease, but that in vitro effects of minocycline on type I IFN responses are not recapitulated in a rapid progressor model in vivo. PMID:24732038

  9. Vaxfectin enhances antigen specific antibody titers and maintains Th1 type immune responses to plasmid DNA immunization.

    Science.gov (United States)

    Reyes, L; Hartikka, J; Bozoukova, V; Sukhu, L; Nishioka, W; Singh, G; Ferrari, M; Enas, J; Wheeler, C J; Manthorpe, M; Wloch, M K

    2001-06-14

    Antigen specific immune responses were characterized after intramuscular immunization of BALB/c mice with 5 antigen encoding plasmid DNAs (pDNAs) complexed with Vaxfectin, a cationic lipid formulation. Vaxfectin increased IgG titers for all of the antigens with no effect on the CTL responses to the 2 antigens for which CTL assays were performed. Both antigen specific IgG1 and IgG2a were increased, although IgG2a remained greater than IgG1. Furthermore, Vaxfectin had no effect on IFN-gamma or IL-4 production by splenocytes re-stimulated with antigen, suggesting that the Th1 type responses typical of intramuscular pDNA immunization were not altered. Studies with IL-6 -/- mice suggest that the antibody enhancement is IL-6 dependent and results in a correlative increase in antigen specific antibody secreting cells.

  10. Suppression of adaptive immunity to heterologous antigens during Plasmodium infection through hemozoin-induced failure of dendritic cell function

    Directory of Open Access Journals (Sweden)

    Phillips R

    2006-04-01

    Full Text Available Abstract Background Dendritic cells (DCs are central to the initiation and regulation of the adaptive immune response during infection. Modulation of DC function may therefore allow evasion of the immune system by pathogens. Significant depression of the host's systemic immune response to both concurrent infections and heterologous vaccines has been observed during malaria infection, but the mechanisms underlying this immune hyporesponsiveness are controversial. Results Here, we demonstrate that the blood stages of malaria infection induce a failure of DC function in vitro and in vivo, causing suboptimal activation of T cells involved in heterologous immune responses. This effect on T-cell activation can be transferred to uninfected recipients by DCs isolated from infected mice. Significantly, T cells activated by these DCs subsequently lack effector function, as demonstrated by a failure to migrate to lymphoid-organ follicles, resulting in an absence of B-cell responses to heterologous antigens. Fractionation studies show that hemozoin, rather than infected erythrocyte (red blood cell membranes, reproduces the effect of intact infected red blood cells on DCs. Furthermore, hemozoin-containing DCs could be identified in T-cell areas of the spleen in vivo. Conclusion Plasmodium infection inhibits the induction of adaptive immunity to heterologous antigens by modulating DC function, providing a potential explanation for epidemiological studies linking endemic malaria with secondary infections and reduced vaccine efficacy.

  11. Innate immune responses to gut microbiota differ between oceanic and freshwater threespine stickleback populations

    Directory of Open Access Journals (Sweden)

    Kathryn Milligan-Myhre

    2016-02-01

    Full Text Available Animal hosts must co-exist with beneficial microbes while simultaneously being able to mount rapid, non-specific, innate immune responses to pathogenic microbes. How this balance is achieved is not fully understood, and disruption of this relationship can lead to disease. Excessive inflammatory responses to resident microbes are characteristic of certain gastrointestinal pathologies such as inflammatory bowel disease (IBD. The immune dysregulation of IBD has complex genetic underpinnings that cannot be fully recapitulated with single-gene-knockout models. A deeper understanding of the genetic regulation of innate immune responses to resident microbes requires the ability to measure immune responses in the presence and absence of the microbiota using vertebrate models with complex genetic variation. Here, we describe a new gnotobiotic vertebrate model to explore the natural genetic variation that contributes to differences in innate immune responses to microbiota. Threespine stickleback, Gasterosteus aculeatus, has been used to study the developmental genetics of complex traits during the repeated evolution from ancestral oceanic to derived freshwater forms. We established methods to rear germ-free stickleback larvae and gnotobiotic animals monoassociated with single bacterial isolates. We characterized the innate immune response of these fish to resident gut microbes by quantifying the neutrophil cells in conventionally reared monoassociated or germ-free stickleback from both oceanic and freshwater populations grown in a common intermediate salinity environment. We found that oceanic and freshwater fish in the wild and in the laboratory share many intestinal microbial community members. However, oceanic fish mount a strong immune response to residential microbiota, whereas freshwater fish frequently do not. A strong innate immune response was uniformly observed across oceanic families, but this response varied among families of freshwater fish

  12. Inhibition of the immune response to experimental fresh osteoarticular allografts

    International Nuclear Information System (INIS)

    Rodrigo, J.J.; Schnaser, A.M.; Reynolds, H.M. Jr.; Biggart, J.M. III; Leathers, M.W.; Chism, S.E.; Thorson, E.; Grotz, T.; Yang, Q.M.

    1989-01-01

    The immune response to osteoarticular allografts is capable of destroying the cartilage--a tissue that has antigens on its cells identical to those on the bone and marrow cells. Osteoarticular allografts of the distal femur were performed in rats using various methods to attempt to temporarily inhibit the antibody response. The temporary systemic immunosuppressant regimens investigated were cyclophosphamide, azathioprine and prednisolone, cyclosporine A, and total lymphoid irradiation. The most successful appeared to be cyclosporine A, but significant side effects were observed. To specifically inhibit the immune response in the allograft antigens without systemically inhibiting the entire immune system, passive enhancement and preadministration of donor blood were tried. Neither was as effective as coating the donor bone with biodegradable cements, a method previously found to be successful. Cyclosporine A was investigated in dogs in a preliminary study of medial compartmental knee allografts and was found to be successful in inhibiting the antibody response and in producing a more successful graft; however, some significant side effects were similarly observed

  13. Unanticipated Mycobacterium tuberculosis complex culture inhibition by immune modulators, immune suppressants, a growth enhancer, and vitamins A and D: clinical implications.

    Science.gov (United States)

    Greenstein, Robert J; Su, Liya; Shahidi, Azra; Brown, William D; Clifford, Anya; Brown, Sheldon T

    2014-09-01

    The development of novel antibiotics to treat multidrug-resistant (MDR) tuberculosis is time-consuming and expensive. Multiple immune modulators, immune suppressants, anti-inflammatories, and growth enhancers, and vitamins A and D, inhibit Mycobacterium avium subspecies paratuberculosis (MAP) in culture. We studied the culture inhibition of Mycobacterium tuberculosis complex by these agents. Biosafety level two M. tuberculosis complex (ATCC 19015 and ATCC 25177) was studied in radiometric Bactec or MGIT culture. Agents evaluated included clofazimine, methotrexate, 6-mercaptopurine, cyclosporine A, rapamycin, tacrolimus, monensin, and vitamins A and D. All the agents mentioned above caused dose-dependent inhibition of the M. tuberculosis complex. There was no inhibition by the anti-inflammatory 5-aminosalicylic acid, which causes bacteriostatic inhibition of MAP. We conclude that, at a minimum, studies with virulent M. tuberculosis are indicated with the agents mentioned above, as well as with the thioamide 5-propothiouricil, which has previously been shown to inhibit the M. tuberculosis complex in culture. Our data additionally emphasize the importance of vitamins A and D in treating mycobacterial diseases. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Study of the immune response to thyroglobulin through a model of experimental autoimmune thyroiditis

    International Nuclear Information System (INIS)

    Santos Castro, M. dos.

    1981-01-01

    The cellular and humoral immune response to thyroglobulin of different species was studied in guinea pigs. The experiments described suggested that the immune system can be activated against self-determinants. Human and pork thyroglobulin were able to induce the experimental thyroiditis as well as some immune responses, such as in vitro proliferative response, delayed hypersensitivity and antibodies. Although guinea pig thyroglobulin was unable to induce specific T-lymphocyte proliferation in vitro, delayed hypersensitivity response and antibodies, it was very efficient in inducing the autoimmune thyroiditis. On the contrary, bovine thyroglobulin did not induce experimental autoimmune thyroiditis despite producing good responses as determined by similar in vitro proliferative response, delayed hypersensitivity and on the humoral level. These results suggest that the assays utilised were not able to evaluate the relevant immune response to genesis of the thyroiditis. The determinant selection mechanisms operating in these immune responses are probably selecting determinants not responsible for self-recognition in vivo. It was suggested that the macrophage could be the cell responsible for the presentation of these determinants to the lymphocyte in an immunogenic form. (Author) [pt

  15. Laccase 1 gene from Plutella xylostella (PxLac1) and its functions in humoral immune response.

    Science.gov (United States)

    Wang, Ze-Hua; Hu, Rong-Min; Ye, Xi-Qian; Huang, Jian-Hua; Chen, Xue-Xin; Shi, Min

    Laccase (EC 1.10.3.2) is a phenoloxidase found in many insect species. The Laccase 1 gene from Plutella xylostella (PxLac1) was cloned, and its expression patterns and functions were determined using qPCR and RNAi methods. The results showed that the expression levels of PxLac1 were consistently high in all larval stages, and the most abundant was in the midgut during the 4th instar stage. Moreover, the expression of PxLac1 was up-regulated in response to bacterial infection, and decreased 24 h after being parasitized by Cotesia vestalis. Further analyses indicated that the effect of parasitization on PxLac1 was induced by active C. vestalis Bracovirus (CvBV). Haemocyte-free hemolymph phenoloxidase (PO) activity was suppressed when PxLac1 was treated with RNAi. Our results provide evidence for a connection between the Laccase 1 gene and insect immunity, and revealed that parasitoid polydnavirus suppresses host PO activity via PxLac1 regulation. Copyright © 2018. Published by Elsevier Ltd.

  16. UVB-induced immune suppression and infection with Schistosoma mansoni

    International Nuclear Information System (INIS)

    Noonan, F.P.; Lewis, F.A.

    1995-01-01

    Irradiation with ultraviolet B (UVB, 290-320 nm) causes a systematic immunosuppression of cell-mediated immunity. The question of whether UV immunosuppression modulates the course of infectious diseases is important because UVB levels in sunlight are sufficient to predict significant UV-induced immunosuppression at most latitudes. We have investigated the effect of immunosuppressive doses of UVB on the disease caused by the helminth parasite Schistosoma mansoni. C57BL/6 mice were irradiated once or three times weekly over 60-80 days with UV from a bank of FS40 sunlamps. Each UV treatment consisted of an immunosuppressive UV dose, as determined by suppression of contact hypersensitivity to trinitrochlorobenzene, corresponding to about 15-30 min of noonday tropical sunlight exposure under ideal clear sky conditions. Cumulative UV doses were between 80 and 170 kJ/m 2 . Worm and egg burdens, liver granuloma diameters and liver fibrosis showed minimal changes ( 2 administered in six treatments) did not impair the resistance to rechallenge conferred by vaccination with 60 Co-irradiated cercariae. We have observed a dichotomy between UV immnosuppression and both disease and vaccination in this helminth infection, in contrast to the effects of UVB shown in other infectious diseases. (author)

  17. Augmentation of antigen-specific immune responses using DNA-fusogenic liposome vaccine

    International Nuclear Information System (INIS)

    Yoshikawa, Tomoaki; Imazu, Susumu; Gao Jianqing; Hayashi, Kazuyuki; Tsuda, Yasuhiro; Shimokawa, Mariko; Sugita, Toshiki; Niwa, Takako; Oda, Atushi; Akashi, Mitsuru; Tsutsumi, Yasuo; Mayumi, Tadanori; Nakagawa, Shinsaku

    2004-01-01

    In an attempt to enhance the immunological efficacy of genetic immunization, we investigated a new biological means for delivering antigen gene directly to the cytoplasm via membrane fusion. In this context, we investigated fusogenic liposome (FL) encapsulating DNA as a possible genetic immunization vehicle. RT-PCR analysis indicated that a FL could introduce and express encapsulating OVA gene efficiently and rapidly in vitro. Consistent with this observation, an in vitro assay showed that FL-mediated antigen-gene delivery can induce potent presentation of antigen via the MHC class I-dependent pathway. Accordingly, immunization with FL containing the OVA-gene induced potent OVA-specific Th1 and Th2 cytokine production. Additionally, OVA-specific CTL responses and antibody production were also observed in systemic compartments including the spleen, upon immunization with the OVA-gene encapsulating FL. These findings suggest that FL is an effective genetic immunization carrier system for the stimulation of antigen-specific immune responses against its encoding antigen

  18. Identification of formaldehyde-responsive genes by suppression subtractive hybridization

    International Nuclear Information System (INIS)

    Lee, Min-Ho; Kim, Young-Ae; Na, Tae-Young; Kim, Sung-Hye; Shin, Young Kee; Lee, Byung-Hoon; Shin, Ho-Sang; Lee, Mi-Ock

    2008-01-01

    Formaldehyde is frequently used in indoor household and occupational environments. Inhalation of formaldehyde invokes an inflammatory response, including a variety of allergic signs and symptoms. Therefore, formaldehyde has been considered as the most prevalent cause of sick building syndrome, which has become a major social problem, especially in developing urban areas. Further formaldehyde is classified as a genotoxicant in the respiratory tract of rats and humans. To better understand the molecular mechanisms involved in formaldehyde intoxication, we sought differentially regulated genes by formaldehyde exposure to Hs 680.Tr human trachea cells, using polymerase chain reaction (PCR)-based suppression subtractive hybridization. We identified 27 different formaldehyde-inducible genes, including those coding for the major histocompatibility complex, class IA, calcyclin, glutathione S-transferase pi, mouse double minute 2 (MDM2), platelet-derived growth factor receptor alpha, and which are known to be associated with cell proliferation and differentiation, immunity and inflammation, and detoxification. Induction of these genes by formaldehyde treatment was confirmed by reverse transcription PCR and western blot analysis. Further, the expression of calcyclin, glutathione S-transferase pi, PDGFRA and MDM2 were significantly induced in the tracheal epithelium of Sprague Dawley rats after formaldehyde inhalation. Our results suggest that the elevated levels of these genes may be associated with the formaldehyde-induced toxicity, and that they deserve evaluation as potential biomarkers for formaldehyde intoxication

  19. The effect of oral immunization on the population of lymphocytes migrating to the mammary gland of the sow

    OpenAIRE

    Dijk, J.E. van; Kortbeek-Jacobs, J.M.C.; Kooten, P.J.S. van; Donk, J.A. van der; Rutten, V.P.M.G.

    1984-01-01

    Sows were immunized orally with live Escherichia coli according to various immunization schedules. Six pregnant gilts were used; 4 immunized at various intervals during the last month of gestation, 1 control immunized after parturition following suppression of lactation by weaning and 1 non-immunized control. The effect of oral vaccination on cell populations from lymphoid organs was studied. The in vitro proliferative responses of the cell populations to K88 antigen, anti-Ig sera and mitogen...

  20. Immune response capacity after human splenic autotransplantation - Restoration of response to individual pneumococcal vaccine subtypes

    NARCIS (Netherlands)

    Leemans, R; Manson, W; Snijder, JAM; Smit, JW; Klasen, HJ; The, TH; Timens, W

    Objective To evaluate features of general immune function, in particular the restoration of the humoral immune response to pneumococcal capsular polysaccharides, in humans undergoing a spleen autotransplantation after splenectomy because of trauma. Summary Background Data After splenectomy, patients

  1. Humoral and cell-mediated immune responses in DNA immunized mink challenged with wild-type canine distemper virus

    DEFF Research Database (Denmark)

    Nielsen, Line; Søgaard, Mette; Karlskov-Mortensen, Peter

    2009-01-01

    The aim of the study was to investigate the different phases of the immune response after DNA immunization with the hemagglutinin and nucleoprotein genes from canine distemper virus (CDV). Although attenuated live CDV vaccines have effectively reduced the incidence of disease, canine distemper...

  2. Protection Against Lung Cancer Patient Plasma-Induced Lymphocyte Suppression by Ganoderma Lucidum Polysaccharides

    Directory of Open Access Journals (Sweden)

    Li-Xin Sun

    2014-01-01

    Full Text Available Background/Aims: This study was conducted to determine the potential of Ganoderma lucidum polysaccharides (Gl-PS in protection against lung cancer patient plasma-induced suppression of lymphocytes. Lung cancer is a major cause of disease and loss of life in the United States and worldwide. Cancer cells release immunosuppressive mediators, such as PGE2, TGF-β, IL-10, and VEGF, to inhibit the immune response to escape from immune surveillance. Gl-PS has been shown to counteract this immune inhibition in an animal cell culture model, and thus to facilitate tumor control. The present study explored whether or not such an effect could also be demonstrated in human lung cancer patients. Methods: Immunofluorescence, flow cytometry, MTT, immunocytochemistry, and western blot analysis were used to assess lymphocyte activation with PHA. Results: The plasma of lung cancer patients suppressed proliferation, CD69 expression, and perforin and granzyme B production in lymphocytes upon activation by PHA, effects that were partially of fully reversed by Gl-PS. Conclusion: Lung cancer patient plasma-induced suppression of lymphocyte activation by phytohemagglutinin may be antagonized fully or partially by Gl-PS, an observation suggesting the potential of Gl-PS in cancer therapy.

  3. Evasion of adaptive and innate immune response mechanisms by γ-herpesviruses

    Science.gov (United States)

    Feng, Pinghui; Moses, Ashlee; Früh, Klaus

    2015-01-01

    γ-Herpesviral immune evasion mechanisms are optimized to support the acute, lytic and the longterm, latent phase of infection. During acute infection, specific immune modulatory proteins limit, but also exploit, the antiviral activities of cell intrinsic innate immune responses as well as those of innate and adaptive immune cells. During latent infection, a restricted gene expression program limits immune targeting and cis-acting mechanisms to reduce the antigen presentation as well as antigenicity of latency-associated proteins. Here, we will review recent progress in our understanding of γ-herpesviral immune evasion strategies. PMID:23735334

  4. Induction of complex immune responses and strong protection against retrovirus challenge by adenovirus-based immunization depends on the order of vaccine delivery.

    Science.gov (United States)

    Kaulfuß, Meike; Wensing, Ina; Windmann, Sonja; Hrycak, Camilla Patrizia; Bayer, Wibke

    2017-02-06

    In the Friend retrovirus mouse model we developed potent adenovirus-based vaccines that were designed to induce either strong Friend virus GagL 85-93 -specific CD8 + T cell or antibody responses, respectively. To optimize the immunization outcome we evaluated vaccination strategies using combinations of these vaccines. While the vaccines on their own confer strong protection from a subsequent Friend virus challenge, the simple combination of the vaccines for the establishment of an optimized immunization protocol did not result in a further improvement of vaccine effectivity. We demonstrate that the co-immunization with GagL 85-93 /leader-gag encoding vectors together with envelope-encoding vectors abrogates the induction of GagL 85-93 -specific CD8 + T cells, and in successive immunization protocols the immunization with the GagL 85-93 /leader-gag encoding vector had to precede the immunization with an envelope encoding vector for the efficient induction of GagL 85-93 -specific CD8 + T cells. Importantly, the antibody response to envelope was in fact enhanced when the mice were adenovirus-experienced from a prior immunization, highlighting the expedience of this approach. To circumvent the immunosuppressive effect of envelope on immune responses to simultaneously or subsequently administered immunogens, we developed a two immunizations-based vaccination protocol that induces strong immune responses and confers robust protection of highly Friend virus-susceptible mice from a lethal Friend virus challenge.

  5. Exosomes as a tumor immune escape mechanism: possible therapeutic implications

    Directory of Open Access Journals (Sweden)

    Hanley Harold H

    2008-07-01

    Full Text Available Abstract Advances in cancer therapy have been substantial in terms of molecular understanding of disease mechanisms, however these advances have not translated into increased survival in the majority of cancer types. One unsolved problem in current cancer therapeutics is the substantial immune suppression seen in patients. Conventionally, investigations in this area have focused on antigen-nonspecific immune suppressive molecules such as cytokines and T cell apoptosis inducing molecules such as Fas ligand. More recently, studies have demonstrated nanovesicle particles termed exosomes are involved not only in stimulation but also inhibition of immunity in physiological conditions. Interestingly, exosomes secreted by cancer cells have been demonstrated to express tumor antigens, as well as immune suppressive molecules such as PD-1L and FasL. Concentrations of exosomes from plasma of cancer patients have been associated with spontaneous T cell apoptosis, which is associated in some situations with shortened survival. In this paper we place the "exosome-immune suppression" concept in perspective of other tumor immune evasion mechanisms. We conclude by discussing a novel therapeutic approach to cancer immune suppression by extracorporeal removal of exosomes using hollow fiber filtration technology

  6. iNKT cells suppress the CD8+ T cell response to a murine Burkitt's-like B cell lymphoma.

    Directory of Open Access Journals (Sweden)

    Ryan L Bjordahl

    Full Text Available The T cell response to B cell lymphomas differs from the majority of solid tumors in that the malignant cells themselves are derived from B lymphocytes, key players in immune response. B cell lymphomas are therefore well situated to manipulate their surrounding microenvironment to enhance tumor growth and minimize anti-tumor T cell responses. We analyzed the effect of T cells on the growth of a transplantable B cell lymphoma and found that iNKT cells suppressed the anti-tumor CD8(+ T cell response. Lymphoma cells transplanted into syngeneic wild type (WT mice or Jalpha18(-/- mice that specifically lack iNKT cells grew initially at the same rate, but only the mice lacking iNKT cells were able to reject the lymphoma. This effect was due to the enhanced activity of tumor-specific CD8(+ T cells in the absence of iNKT cells, and could be partially reversed by reconstitution of iNKT cells in Jalpha 18(-/- mice. Treatment of tumor-bearing WT mice with alpha -galactosyl ceramide, an activating ligand for iNKT cells, reduced the number of tumor-specific CD8(+ T cells. In contrast, lymphoma growth in CD1d1(-/- mice that lack both iNKT and type II NKT cells was similar to that in WT mice, suggesting that type II NKT cells are required for full activation of the anti-tumor immune response. This study reveals a tumor-promoting role for iNKT cells and suggests their capacity to inhibit the CD8(+ T cell response to B cell lymphoma by opposing the effects of type II NKT cells.

  7. Friends and foes of tuberculosis: modulation of protective immunity.

    Science.gov (United States)

    Brighenti, Susanna; Joosten, Simone A

    2018-05-27

    Protective immunity in tuberculosis (TB) is subject of debate in the TB research community, as this is key to fully understand TB pathogenesis and to develop new promising tools for TB diagnosis and prognosis as well as a more efficient TB vaccine. IFN-γ producing CD4 + T cells are key in TB control, but may not be sufficient to provide protection. Additional subsets have been identified that contribute to protection such as multifunctional and cytolytic T cell subsets, including classical and non-classical T cells as well as novel innate immune cell subsets resulting from trained immunity. However, to define protective immune responses against TB, the complexity of balancing TB immunity also has to be considered. In this review, insights in effector cell immunity and how this is modulated by regulatory cells, associated comorbidities and the host microbiome is discussed. We systematically map how different suppressive immune cell subsets may affect effector cell responses at the local site of infection. We also dissect how common co-morbidities such as HIV, helminthes and diabetes may bias protective TB immunity towards pathogenic and regulatory responses. Finally, also the composition and diversity of the microbiome in the lung and gut could affect host TB immunity. Understanding these various aspects of the immunological balance in the human host is fundamental to prevent TB infection and disease. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. Suppressive and immunoprotective functions of Tregs

    Directory of Open Access Journals (Sweden)

    Pushpa ePandiyan

    2011-11-01

    Full Text Available CD4+CD25+Foxp3+ T lymphocytes, known as regulatory T cells or Tregs, have been proposed to be a lineage of professional immune suppressive cells that exclusively counteract the effects of the immunoprotective "helper" and "cytotoxic" lineages of T lymphocytes. Here we discuss new concepts on the mechanisms and functions of Tregs. There are several key points we emphasize: 1. Tregs exert suppressive effects both directly on effector T cells and indirectly through antigen-presenting cells (APCs; 2. Regulation can occur through a novel mechanism of cytokine consumption to regulate as opposed to the usual mechanism of cytokine/chemokine production; 3. In cases where CD4+ effector T cells are directly inhibited by Tregs, it is chiefly through a mechanism of lymphokine withdrawal apoptosis leading to polyclonal deletion (PCD; and 4. Contrary to the current view, we discuss new evidence that Tregs, similar to other T cells lineages, can promote protective immune responses in certain infectious contexts (Pandiyan et al. 2011; Chen et al 2011. Although these points are at variance to varying degrees with the standard model of Treg behavior, we will recount developing findings that support these new concepts.

  9. Effectors from Wheat Rust Fungi Suppress Multiple Plant Defense Responses.

    Science.gov (United States)

    Ramachandran, Sowmya R; Yin, Chuntao; Kud, Joanna; Tanaka, Kiwamu; Mahoney, Aaron K; Xiao, Fangming; Hulbert, Scot H

    2017-01-01

    Fungi that cause cereal rust diseases (genus Puccinia) are important pathogens of wheat globally. Upon infection, the fungus secretes a number of effector proteins. Although a large repository of putative effectors has been predicted using bioinformatic pipelines, the lack of available high-throughput effector screening systems has limited functional studies on these proteins. In this study, we mined the available transcriptomes of Puccinia graminis and P. striiformis to look for potential effectors that suppress host hypersensitive response (HR). Twenty small (wheat, confirming its activity in a homologous system. Overall, this study provides the first evidence for the presence of effectors in Puccinia species suppressing multiple plant defense responses.

  10. Plant-based oral tolerance to hemophilia therapy employs a complex immune regulatory response including LAP+CD4+ T cells.

    Science.gov (United States)

    Wang, Xiaomei; Su, Jin; Sherman, Alexandra; Rogers, Geoffrey L; Liao, Gongxian; Hoffman, Brad E; Leong, Kam W; Terhorst, Cox; Daniell, Henry; Herzog, Roland W

    2015-04-09

    Coagulation factor replacement therapy for the X-linked bleeding disorder hemophilia is severely complicated by antibody ("inhibitor") formation. We previously found that oral delivery to hemophilic mice of cholera toxin B subunit-coagulation factor fusion proteins expressed in chloroplasts of transgenic plants suppressed inhibitor formation directed against factors VIII and IX and anaphylaxis against factor IX (FIX). This observation and the relatively high concentration of antigen in the chloroplasts prompted us to evaluate the underlying tolerance mechanisms. The combination of oral delivery of bioencapsulated FIX and intravenous replacement therapy induced a complex, interleukin-10 (IL-10)-dependent, antigen-specific systemic immune suppression of pathogenic antibody formation (immunoglobulin [Ig] 1/inhibitors, IgE) in hemophilia B mice. Tolerance induction was also successful in preimmune mice but required prolonged oral delivery once replacement therapy was resumed. Orally delivered antigen, initially targeted to epithelial cells, was taken up by dendritic cells throughout the small intestine and additionally by F4/80(+) cells in the duodenum. Consistent with the immunomodulatory responses, frequencies of tolerogenic CD103(+) and plasmacytoid dendritic cells were increased. Ultimately, latency-associated peptide expressing CD4(+) regulatory T cells (CD4(+)CD25(-)LAP(+) cells with upregulated IL-10 and transforming growth factor-β (TGF-β) expression) as well as conventional CD4(+)CD25(+) regulatory T cells systemically suppressed anti-FIX responses. © 2015 by The American Society of Hematology.

  11. Ageing and the humoral immune response in mice

    International Nuclear Information System (INIS)

    Blankwater, M.J.

    1978-01-01

    The study presented in this thesis is concerned with changes in the humoral immune system as a function of age in different inbred mouse strains. Their capacity to develop humoral immune responses to experimentally given thymus-dependent and thymus-independent antigens under various conditions is compared. Furthermore, experiments employing thymus transplantation and thymic humoral factors which are directed at the restoration of the diminished T cell functions in old age are reported. (Auth.)

  12. Ebola haemorrhagic fever virus: pathogenesis, immune responses, potential prevention.

    Science.gov (United States)

    Marcinkiewicz, Janusz; Bryniarski, Krzysztof; Nazimek, Katarzyna

    2014-01-01

    Ebola zoonotic RNA filovirus represents human most virulent and lethal pathogens, which induces acute hemorrhagic fever and death within few days in a range of 60-90% of symptomatic individuals. Last outbreak in 2014 in West Africa caused panic that Ebola epidemic can be spread to other continents. Number of deaths in late December reached almost 8,000 individuals out of more than 20,000 symptomatic patients. It seems that only a coordinated international response could counteract the further spread of Ebola. Major innate immunity mechanisms against Ebola are associated with the production of interferons, that are inhibited by viral proteins. Activation of host NK cells was recognized as a leading immune function responsible for recovery of infected people. Uncontrolled cell infection by Ebola leads to an impairment of immunity with cytokine storm, coagulopathy, systemic bleeding, multi-organ failure and death. Tested prevention strategies to induce antiviral immunity include: i. recombinant virus formulations (vaccines); ii. cocktail of monoclonal antibodies (serotherapy); iii. alternative RNA-interference-based antiviral methods. Maintaining the highest standards of aseptic and antiseptic precautions is equally important. Present brief review summarizes a current knowledge concerning pathogenesis of Ebola hemorrhagic disease and the virus interaction with the immune system and discusses recent advances in prevention of Ebola infection by vaccination and serotherapy.

  13. Immune response and biochemistry of calves immunized with rMSP1a ( Anaplasma marginale using carbon nanotubes as carrier molecules

    Directory of Open Access Journals (Sweden)

    Bruna Torres Silvestre

    2018-05-01

    Full Text Available Abstract Vaccination against Anaplasma marginale has been considered an important control strategy for bovine anaplasmosis. Recently, mice immunized with rMSP1 a linked to carbon nanotubes (MWNT showed significant immune responses, generating a new possibility for use of an inactivated vaccine. The objective of this study was to investigate the cellular and humoral responses in calves immunized with MWNT+rMSP1a , associated with inactivated vaccine of A. marginale produced in vitro, and evaluate the toxic effects of the MWNT on renal and hepatic function. rMSP1a was covalently linked to MWNT. Inactivated vaccine (AmUFMG2 was produced by cultivating A. marginale in IDE8 cells. Twenty-four Holstein calves were divided (four groups and immunized subcutaneously with PBS and non-carboxylated MWNT (control, G1, AmUFMG2 (G2, MWNT+rMSP1a (G3, and AmUFMG2 with MWNT+rMSP1a (G4. Blood samples were collected for total leukocyte counts, biochemical profiling and evaluation of the cellular and humoral response. Immunization with MWNT+rMSP1a induced increase in the total number of leukocytes, NK cells, in the lymphocyte populations and higher levels of antibodies compared to calves immunized only with AmUFMG2. Furthermore, MWNT did not induce changes in the biochemical profile. These data indicate that MWNT+rMSP1a were able to induce the immune responses more efficiently than AmUFMG2 alone, without generating toxicity.

  14. Immune-mediated competition in rodent malaria is most likely caused by induced changes in innate immune clearance of merozoites.

    Directory of Open Access Journals (Sweden)

    Jayanthi Santhanam

    2014-01-01

    Full Text Available Malarial infections are often genetically diverse, leading to competitive interactions between parasites. A quantitative understanding of the competition between strains is essential to understand a wide range of issues, including the evolution of virulence and drug resistance. In this study, we use dynamical-model based Bayesian inference to investigate the cause of competitive suppression of an avirulent clone of Plasmodium chabaudi (AS by a virulent clone (AJ in immuno-deficient and competent mice. We test whether competitive suppression is caused by clone-specific differences in one or more of the following processes: adaptive immune clearance of merozoites and parasitised red blood cells (RBCs, background loss of merozoites and parasitised RBCs, RBC age preference, RBC infection rate, burst size, and within-RBC interference. These processes were parameterised in dynamical mathematical models and fitted to experimental data. We found that just one parameter μ, the ratio of background loss rate of merozoites to invasion rate of mature RBCs, needed to be clone-specific to predict the data. Interestingly, μ was found to be the same for both clones in single-clone infections, but different between the clones in mixed infections. The size of this difference was largest in immuno-competent mice and smallest in immuno-deficient mice. This explains why competitive suppression was alleviated in immuno-deficient mice. We found that competitive suppression acts early in infection, even before the day of peak parasitaemia. These results lead us to argue that the innate immune response clearing merozoites is the most likely, but not necessarily the only, mediator of competitive interactions between virulent and avirulent clones. Moreover, in mixed infections we predict there to be an interaction between the clones and the innate immune response which induces changes in the strength of its clearance of merozoites. What this interaction is unknown, but

  15. Work stress and innate immune response.

    Science.gov (United States)

    Boscolo, P; Di Gioacchino, M; Reale, M; Muraro, R; Di Giampaolo, L

    2011-01-01

    Several reports highlight the relationship between blood NK cytotoxic activity and life style. Easy life style, including physical activity, healthy dietary habits as well as good mental health are characterized by an efficient immune response. Life style is related to the type of occupational activity since work has a central part in life either as source of income or contributing to represent the social identity. Not only occupational stress, but also job loss or insecurity are thus considered serious stressful situations, inducing emotional disorders which may affect both neuroendocrine and immune systems; reduced reactivity to mitogens and/or decreased blood NK cytotoxic activity was reported in unemployed workers or in those with a high perception of job insecurity and/or job stress. Although genetic factors have a key role in the pathogenesis of autoimmune disorders, occupational stress (as in night shifts) was reported associated to an increased incidence of autoimmune disorders. Monitoring blood NK response may thus be included in the health programs as an indirect index of stressful job and/or poor lifestyle.

  16. Unexpected Modulation of Recall B and T Cell Responses after Immunization with Rotavirus-like Particles in the Presence of LT-R192G

    Directory of Open Access Journals (Sweden)

    Christelle Basset

    2010-08-01

    Full Text Available LT-R192G, a mutant of the thermolabile enterotoxin of E. coli, is a potent adjuvant of immunization. Immune responses are generally analyzed at the end of protocols including at least 2 administrations, but rarely after a prime. To investigate this point, we compared B and T cell responses in mice after one and two intrarectal immunizations with 2/6 rotavirus-like particles (2/6-VLP and LT-R192G. After a boost, we found, an unexpected lower B cell expansion measured by flow cytometry, despite a secondary antibody response. We then analyzed CD4+CD25+Foxp3+ regulatory T cells (Tregs and CD4+CD25+Foxp3− helper T cells after in vitro (restimulation of mesenteric lymph node cells with the antigen (2/6-VLP, the adjuvant (LT-R192G or both. 2/6-VLP did not activate CD4+CD25+Foxp3− nor Foxp3+ T cells from non-immunized and 2/6-VLP immunized mice, whereas they did activate both subsets from mice immunized with 2/6-VLP in the presence of adjuvant. LT-R192G dramatically decreased CD4+CD25+Foxp3+ T cells from non-immunized and 2/6-VLP immunized mice but not from mice immunized with 2/6-VLP and adjuvant. Moreover, in this case, LT-R192G increased Foxp3 expression on CD4+CD25+Foxp3+ cells, suggesting specific Treg activation during the recall. Finally, when both 2/6-VLP and LT-R192G were used for restimulation, LT-R192G clearly suppressed both 2/6-VLP-specific CD4+CD25+Foxp3− and Foxp3+ T cells. All together, these results suggest that LT-R192G exerts different effects on CD4+CD25+Foxp3+ T cells, depending on a first or a second contact. The unexpected immunomodulation observed during the recall should be considered in designing vaccination protocols.

  17. Non specific immune response in the African catfish ...

    African Journals Online (AJOL)

    Non specific immune response in the African catfish, Heterobranchus longifilis fed diets fortified with ethanolic extracts of selected traditional medicinal plants and disease resistance against Pseudomonas aeruginosa.

  18. Immune Response in Mussels To Environmental Pollution.

    Science.gov (United States)

    Pryor, Stephen C.; Facher, Evan

    1997-01-01

    Describes the use of mussels in measuring the extent of chemical contamination and its variation in different coastal regions. Presents an experiment to introduce students to immune response and the effects of environmental pollution on marine organisms. Contains 14 references. (JRH)

  19. Muscles provide protection during microbial infection by activating innate immune response pathways in Drosophila and zebrafish

    Directory of Open Access Journals (Sweden)

    Arunita Chatterjee

    2016-06-01

    Full Text Available Muscle contraction brings about movement and locomotion in animals. However, muscles have also been implicated in several atypical physiological processes including immune response. The role of muscles in immunity and the mechanism involved has not yet been deciphered. In this paper, using Drosophila indirect flight muscles (IFMs as a model, we show that muscles are immune-responsive tissues. Flies with defective IFMs are incapable of mounting a potent humoral immune response. Upon immune challenge, the IFMs produce anti-microbial peptides (AMPs through the activation of canonical signaling pathways, and these IFM-synthesized AMPs are essential for survival upon infection. The trunk muscles of zebrafish, a vertebrate model system, also possess the capacity to mount an immune response against bacterial infections, thus establishing that immune responsiveness of muscles is evolutionarily conserved. Our results suggest that physiologically fit muscles might boost the innate immune response of an individual.

  20. Long-Range Activation of Systemic Immunity through Peptidoglycan Diffusion in Drosophila

    Science.gov (United States)

    Gendrin, Mathilde; Welchman, David P.; Poidevin, Mickael; Hervé, Mireille; Lemaitre, Bruno

    2009-01-01

    The systemic immune response of Drosophila is known to be induced both by septic injury and by oral infection with certain bacteria, and is characterized by the secretion of antimicrobial peptides (AMPs) into the haemolymph. To investigate other possible routes of bacterial infection, we deposited Erwinia carotovora (Ecc15) on various sites of the cuticle and monitored the immune response via expression of the AMP gene Diptericin. A strong response was observed to deposition on the genital plate of males (up to 20% of a septic injury response), but not females. We show that the principal response to genital infection is systemic, but that some AMPs, particularly Defensin, are induced locally in the genital tract. At late time points we detected bacteria in the haemolymph of immune deficient RelishE20 flies, indicating that the genital plate can be a route of entry for pathogens, and that the immune response protects flies against the progression of genital infection. The protective role of the immune response is further illustrated by our observation that RelishE20 flies exhibit significant lethality in response to genital Ecc15 infections. We next show that a systemic immune response can be induced by deposition of the bacterial elicitor peptidoglycan (PGN), or its terminal monomer tracheal cytotoxin (TCT), on the genital plate. This immune response is downregulated by PGRP-LB and Pirk, known regulators of the Imd pathway, and can be suppressed by the overexpression of PGRP-LB in the haemolymph compartment. Finally, we provide strong evidence that TCT can activate a systemic response by crossing epithelia, by showing that radiolabelled TCT deposited on the genital plate can subsequently be detected in the haemolymph. Genital infection is thus an intriguing new model for studying the systemic immune response to local epithelial infections and a potential route of entry for naturally occurring pathogens of Drosophila. PMID:20019799