WorldWideScience

Sample records for suppress host immunity

  1. Autophagy suppresses host adaptive immune responses toward Borrelia burgdorferi

    NARCIS (Netherlands)

    Buffen, Kathrin; Oosting, Marije; Li, Yang; Kanneganti, Thirumala-Devi; Netea, Mihai G.; Joosten, Leo A. B.

    Inhibition of autophagy increases the severity of murine Lyme arthritis and human adaptive immune responses against B. burgdorferi. We have previously demonstrated that inhibition of autophagy increased the Borrelia burgdorferi induced innate cytokine production in vitro, but little is known

  2. New concepts in immunity to Neisseria gonorrhoeae: innate responses and suppression of adaptive immunity favor the pathogen, not the host

    Directory of Open Access Journals (Sweden)

    Yingru eLiu

    2011-03-01

    Full Text Available It is well known that gonorrhea can be acquired repeatedly with no apparent development of protective immunity arising from previous episodes of infection. Symptomatic infection is characterized by a purulent exudate, but the host response mechanisms are poorly understood. While the remarkable antigenic variability displayed by Neisseria gonorrhoeae and its capacity to inhibit complement activation allow it to evade destruction by the host’s immune defenses, we propose that it also has the capacity to avoid inducing specific immune responses. In a mouse model of vaginal gonococcal infection, N. gonorrhoeae elicits Th17-driven inflammatory- immune responses, which recruit innate defense mechanisms including an influx of neutrophils. Concomitantly, N. gonorrhoeae suppresses Th1- and Th2-dependent adaptive immunity, including specific antibody responses, through a mechanism involving TGF-β and regulatory T cells. Blockade of TGF-β alleviates the suppression of specific anti-gonococcal responses and allows Th1 and Th2 responses to emerge with the generation of immune memory and protective immunity. Genital tract tissues are naturally rich in TGF-β, which fosters an immunosuppressive environment that is important in reproduction. In exploiting this niche, N. gonorrhoeae exemplifies a well-adapted pathogen that proactively elicits from its host innate responses that it can survive and concomitantly suppresses adaptive immunity. Comprehension of these mechanisms of gonococcal pathogenesis should allow the development of novel approaches to therapy and facilitate the development of an effective vaccine.

  3. The Listeria monocytogenes ChiA chitinase enhances virulence through suppression of host innate immunity.

    Science.gov (United States)

    Chaudhuri, Swarnava; Gantner, Benjamin N; Ye, Richard D; Cianciotto, Nicholas P; Freitag, Nancy E

    2013-03-19

    Environmental pathogens survive and replicate within the outside environment while maintaining the capacity to infect mammalian hosts. For some microorganisms, mammalian infection may be a relatively rare event. Understanding how environmental pathogens retain their ability to cause disease may provide insight into environmental reservoirs of disease and emerging infections. Listeria monocytogenes survives as a saprophyte in soil but is capable of causing serious invasive disease in susceptible individuals. The bacterium secretes virulence factors that promote cell invasion, bacterial replication, and cell-to-cell spread. Recently, an L. monocytogenes chitinase (ChiA) was shown to enhance bacterial infection in mice. Given that mammals do not synthesize chitin, the function of ChiA within infected animals was not clear. Here we have demonstrated that ChiA enhances L. monocytogenes survival in vivo through the suppression of host innate immunity. L. monocytogenes ΔchiA mutants were fully capable of establishing bacterial replication within target organs during the first 48 h of infection. By 72 to 96 h postinfection, however, numbers of ΔchiA bacteria diminished, indicative of an effective immune response to contain infection. The ΔchiA-associated virulence defect could be complemented in trans by wild-type L. monocytogenes, suggesting that secreted ChiA altered a target that resulted in a more permissive host environment for bacterial replication. ChiA secretion resulted in a dramatic decrease in inducible nitric oxide synthase (iNOS) expression, and ΔchiA mutant virulence was restored in NOS2(-/-) mice lacking iNOS. This work is the first to demonstrate modulation of a specific host innate immune response by a bacterial chitinase. Bacterial chitinases have traditionally been viewed as enzymes that either hydrolyze chitin as a food source or serve as a defense mechanism against organisms containing structural chitin (such as fungi). Recent evidence indicates

  4. Rapamycin delays growth of Wnt-1 tumors in spite of suppression of host immunity

    International Nuclear Information System (INIS)

    Svirshchevskaya, Elena V; Mariotti, Jacopo; Wright, Mollie H; Viskova, Natalia Y; Telford, William; Fowler, Daniel H; Varticovski, Lyuba

    2008-01-01

    Rapamycin, an inhibitor of mammalian target of Rapamycin (mTOR), is an immunosuppressive agent that has anti-proliferative effects on some tumors. However, the role of Rapamycin-induced immune suppression on tumor progression has not been examined. We developed a transplantation model for generation of mammary tumors in syngeneic recipients that can be used to address the role of the immune system on tumor progression. We examined the effect of Rapamycin on the immune system and growth of MMTV-driven Wnt-1 mammary tumors which were transplanted into irradiated and bone marrow-reconstituted, or naïve mice. Rapamycin induced severe immunosuppression and significantly delayed the growth of Wnt-1 tumors. T cell depletion in spleen and thymus and reduction in T cell cytokine secretion were evident within 7 days of therapy. By day 20, splenic but not thymic T cell counts, and cytokine secretion recovered. We determined whether adoptive T cell therapy enhances the anti-cancer effect using ex vivo generated Rapamycin-resistant T cells. However, T cell transfer during Rapamycin therapy did not improve the outcome relative to drug therapy alone. Thus, we could not confirm that suppression of T cell immunity contributes to tumor growth in this model. Consistent with suppression of the mTOR pathway, decreased 4E-BP1, p70 S6-kinase, and S6 protein phosphorylation correlated with a decrease in Wnt-1 tumor cell proliferation. Rapamycin has a direct anti-tumor effect on Wnt-1 breast cancer in vivo that involves inhibition of the mTOR pathway at doses that also suppress host immune responses

  5. The Ustilago maydis effector Pep1 suppresses plant immunity by inhibition of host peroxidase activity.

    Directory of Open Access Journals (Sweden)

    Christoph Hemetsberger

    Full Text Available The corn smut Ustilago maydis establishes a biotrophic interaction with its host plant maize. This interaction requires efficient suppression of plant immune responses, which is attributed to secreted effector proteins. Previously we identified Pep1 (Protein essential during penetration-1 as a secreted effector with an essential role for U. maydis virulence. pep1 deletion mutants induce strong defense responses leading to an early block in pathogenic development of the fungus. Using cytological and functional assays we show that Pep1 functions as an inhibitor of plant peroxidases. At sites of Δpep1 mutant penetrations, H₂O₂ strongly accumulated in the cell walls, coinciding with a transcriptional induction of the secreted maize peroxidase POX12. Pep1 protein effectively inhibited the peroxidase driven oxidative burst and thereby suppresses the early immune responses of maize. Moreover, Pep1 directly inhibits peroxidases in vitro in a concentration-dependent manner. Using fluorescence complementation assays, we observed a direct interaction of Pep1 and the maize peroxidase POX12 in vivo. Functional relevance of this interaction was demonstrated by partial complementation of the Δpep1 mutant defect by virus induced gene silencing of maize POX12. We conclude that Pep1 acts as a potent suppressor of early plant defenses by inhibition of peroxidase activity. Thus, it represents a novel strategy for establishing a biotrophic interaction.

  6. Expression of immune-response genes in lepidopteran host is suppressed by venom from an endoparasitoid, Pteromalus puparum

    Directory of Open Access Journals (Sweden)

    Fang Qi

    2010-09-01

    Full Text Available Abstract Background The relationships between parasitoids and their insect hosts have attracted attention at two levels. First, the basic biology of host-parasitoid interactions is of fundamental interest. Second, parasitoids are widely used as biological control agents in sustainable agricultural programs. Females of the gregarious endoparasitoid Pteromalus puparum (Hymenoptera: Pteromalidae inject venom along with eggs into their hosts. P. puparum does not inject polydnaviruses during oviposition. For this reason, P. puparum and its pupal host, the small white butterfly Pieris rapae (Lepidoptera: Pieridae, comprise an excellent model system for studying the influence of an endoparasitoid venom on the biology of the pupal host. P. puparum venom suppresses the immunity of its host, although the suppressive mechanisms are not fully understood. In this study, we tested our hypothesis that P. puparum venom influences host gene expression in the two main immunity-conferring tissues, hemocytes and fat body. Results At 1 h post-venom injection, we recorded significant decreases in transcript levels of 217 EST clones (revealing 113 genes identified in silico, including 62 unknown contigs derived from forward subtractive libraries of host hemocytes and in transcript levels of 288 EST clones (221 genes identified in silico, including 123 unknown contigs from libraries of host fat body. These genes are related to insect immune response, cytoskeleton, cell cycle and apoptosis, metabolism, transport, stress response and transcriptional and translational regulation. We verified the reliability of the suppression subtractive hybridization (SSH data with semi-quantitative RT-PCR analysis of a set of randomly selected genes. This analysis showed that most of the selected genes were down-regulated after venom injection. Conclusions Our findings support our hypothesis that P. puparum venom influences gene expression in host hemocytes and fat body. Specifically

  7. Insecticidal activity of the metalloprotease AprA occurs through suppression of host cellular and humoral immunity.

    Science.gov (United States)

    Lee, Seung Ah; Jang, Seong Han; Kim, Byung Hyun; Shibata, Toshio; Yoo, Jinwook; Jung, Yunjin; Kawabata, Shun-Ichiro; Lee, Bok Luel

    2018-04-01

    The biochemical characterization of virulence factors from entomopathogenic bacteria is important to understand entomopathogen-insect molecular interactions. Pseudomonas entomophila is a typical entomopathogenic bacterium that harbors virulence factors against several insects. However, the molecular actions of these factors against host innate immune responses are not clearly elucidated. In this study, we observed that bean bugs (Riptortus pedestris) that were injected with P. entomophila were highly susceptible to this bacterium. To determine how P. entomophila counteracts the host innate immunity to survive within the insect, we purified a highly enriched protein with potential host insect-killing activity from the culture supernatant of P. entomophila. Then, a 45-kDa protein was purified to homogeneity and identified as AprA which is an alkaline zinc metalloprotease of the genus Pseudomonas by liquid chromatography mass spectrometry (LC-MS). Purified AprA showed a pronounced killing effect against host insects and suppressed both host cellular and humoral innate immunity. Furthermore, to show that AprA is an important insecticidal protein of P. entomophila, we used an aprA-deficient P. entomophila mutant strain (ΔaprA). When ΔaprA mutant cells were injected to host insects, this mutant exhibited extremely attenuated virulence. In addition, the cytotoxicity against host hemocytes and the antimicrobial peptide-degrading ability of the ΔaprA mutant were greatly decreased. These findings suggest that AprA functions as an important insecticidal protein of P. entomophila via suppression of host cellular and humoral innate immune responses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Disease susceptibiliy in the zig-zag model of host-microbe Interactions: only a consequence of immune suppression?

    OpenAIRE

    Keller, Harald; Boyer, Laurent; Abad, Pierre

    2016-01-01

    For almost ten years, the Zig-Zag model has provided a convenient framework for explaining the molecular bases of compatibility and incompatibility in plant-microbe interactions (Jones and Dangl, 2006). According to the Zig-Zag model, disease susceptibility is a consequence of the suppression of host immunity during the evolutionary arms race between plants and pathogens. The Zig-Zag model thus fits well with biotrophic interactions, but is less applicable to interactions involving pathogens ...

  9. New Concepts in Immunity to Neisseria Gonorrhoeae: Innate Responses and Suppression of Adaptive Immunity Favor the Pathogen, Not the Host

    OpenAIRE

    Liu, Yingru; Feinen, Brandon; Russell, Michael W.

    2011-01-01

    It is well known that gonorrhea can be acquired repeatedly with no apparent development of protective immunity arising from previous episodes of infection. Symptomatic infection is characterized by a purulent exudate, but the host response mechanisms are poorly understood. While the remarkable antigenic variability displayed by Neisseria gonorrhoeae and its capacity to inhibit complement activation allow it to evade destruction by the host’s immune defenses, we propose that it also has the ...

  10. Serratia marcescens suppresses host cellular immunity via the production of an adhesion-inhibitory factor against immunosurveillance cells.

    Science.gov (United States)

    Ishii, Kenichi; Adachi, Tatsuo; Hamamoto, Hiroshi; Sekimizu, Kazuhisa

    2014-02-28

    Injection of a culture supernatant of Serratia marcescens into the bloodstream of the silkworm Bombyx mori increased the number of freely circulating immunosurveillance cells (hemocytes). Using a bioassay with live silkworms, serralysin metalloprotease was purified from the culture supernatant and identified as the factor responsible for this activity. Serralysin inhibited the in vitro attachment of both silkworm hemocytes and murine peritoneal macrophages. Incubation of silkworm hemocytes or murine macrophages with serralysin resulted in degradation of the cellular immune factor BmSPH-1 or calreticulin, respectively. Furthermore, serralysin suppressed in vitro phagocytosis of bacteria by hemocytes and in vivo bacterial clearance in silkworms. Disruption of the ser gene in S. marcescens attenuated its host killing ability in silkworms and mice. These findings suggest that serralysin metalloprotease secreted by S. marcescens suppresses cellular immunity by decreasing the adhesive properties of immunosurveillance cells, thereby contributing to bacterial pathogenesis.

  11. Serratia marcescens Suppresses Host Cellular Immunity via the Production of an Adhesion-inhibitory Factor against Immunosurveillance Cells*

    Science.gov (United States)

    Ishii, Kenichi; Adachi, Tatsuo; Hamamoto, Hiroshi; Sekimizu, Kazuhisa

    2014-01-01

    Injection of a culture supernatant of Serratia marcescens into the bloodstream of the silkworm Bombyx mori increased the number of freely circulating immunosurveillance cells (hemocytes). Using a bioassay with live silkworms, serralysin metalloprotease was purified from the culture supernatant and identified as the factor responsible for this activity. Serralysin inhibited the in vitro attachment of both silkworm hemocytes and murine peritoneal macrophages. Incubation of silkworm hemocytes or murine macrophages with serralysin resulted in degradation of the cellular immune factor BmSPH-1 or calreticulin, respectively. Furthermore, serralysin suppressed in vitro phagocytosis of bacteria by hemocytes and in vivo bacterial clearance in silkworms. Disruption of the ser gene in S. marcescens attenuated its host killing ability in silkworms and mice. These findings suggest that serralysin metalloprotease secreted by S. marcescens suppresses cellular immunity by decreasing the adhesive properties of immunosurveillance cells, thereby contributing to bacterial pathogenesis. PMID:24398686

  12. Influenza A Virus Protein PA-X Contributes to Viral Growth and Suppression of the Host Antiviral and Immune Responses.

    Science.gov (United States)

    Hayashi, Tsuyoshi; MacDonald, Leslie A; Takimoto, Toru

    2015-06-01

    Influenza virus infection causes global inhibition of host protein synthesis in infected cells. This host shutoff is thought to allow viruses to escape from the host antiviral response, which restricts virus replication and spread. Although the mechanism of host shutoff is unclear, a novel viral protein expressed by ribosomal frameshifting, PA-X, was found to play a major role in influenza virus-induced host shutoff. However, little is known about the impact of PA-X expression on currently circulating influenza A virus pathogenicity and the host antiviral response. In this study, we rescued a recombinant influenza A virus, A/California/04/09 (H1N1, Cal), containing mutations at the frameshift motif in the polymerase PA gene (Cal PA-XFS). Cal PA-XFS expressed significantly less PA-X than Cal wild type (WT). Cal WT, but not Cal PA-XFS, induced degradation of host β-actin mRNA and suppressed host protein synthesis, supporting the idea that PA-X induces host shutoff via mRNA decay. Moreover, Cal WT inhibited beta interferon (IFN-β) expression and replicated more rapidly than Cal PA-XFS in human respiratory cells. Mice infected with Cal PA-XFS had significantly lower levels of viral growth and greater expression of IFN-β mRNA in their lungs than mice infected with Cal WT. Importantly, more antihemagglutinin and neutralizing antibodies were produced in Cal PA-XFS-infected mice than in Cal WT-infected mice, despite the lower level of virus replication in the lungs. Our data indicate that PA-X of the pandemic H1N1 virus has a strong impact on viral growth and the host innate and acquired immune responses to influenza virus. Virus-induced host protein shutoff is considered to be a major factor allowing viruses to evade innate and acquired immune recognition. We provide evidence that the 2009 H1N1 influenza A virus protein PA-X plays a role in virus replication and inhibition of host antiviral response by means of its host protein synthesis shutoff activity both in vitro

  13. Suppression of host immune response by the core protein of hepatitis C virus: possible implications for hepatitis C virus persistence.

    Science.gov (United States)

    Large, M K; Kittlesen, D J; Hahn, Y S

    1999-01-15

    Hepatitis C virus (HCV) is a major human pathogen causing mild to severe liver disease worldwide. This positive strand RNA virus is remarkably efficient at establishing chronic infections. Although a high rate of genetic variability may facilitate viral escape and persistence in the face of Ag-specific immune responses, HCV may also encode proteins that facilitate evasion of immunological surveillance. To address the latter possibility, we examined the influence of specific HCV gene products on the host immune response to vaccinia virus in a murine model. Various vaccinia/HCV recombinants expressing different regions of the HCV polyprotein were used for i.p. inoculation of BALB/c mice. Surprisingly, a recombinant expressing the N-terminal half of the polyprotein (including the structural proteins, p7, NS2, and a portion of NS3; vHCV-S) led to a dose-dependent increase in mortality. Increased mortality was not observed for a recombinant expressing the majority of the nonstructural region or for a negative control virus expressing the beta-galactosidase protein. Examination of T cell responses in these mice revealed a marked suppression of vaccinia-specific CTL responses and a depressed production of IFN-gamma and IL-2. By using a series of vaccinia/HCV recombinants, we found that the HCV core protein was sufficient for immunosuppression, prolonged viremia, and increased mortality. These results suggest that the HCV core protein plays an important role in the establishment and maintenance of HCV infection by suppressing host immune responses, in particular the generation of virus-specific CTLs.

  14. Infection with host-range mutant adenovirus 5 suppresses innate immunity and induces systemic CD4+ T cell activation in rhesus macaques.

    Science.gov (United States)

    Qureshi, Huma; Genescà, Meritxell; Fritts, Linda; McChesney, Michael B; Robert-Guroff, Marjorie; Miller, Christopher J

    2014-01-01

    Ad5 is a common cause of respiratory disease and an occasional cause of gastroenteritis and conjunctivitis, and seroconversion before adolescence is common in humans. To gain some insight into how Ad5 infection affects the immune system of rhesus macaques (RM) 18 RM were infected with a host-range mutant Ad5 (Ad5hr) by 3 mucosal inoculations. There was a delay of 2 to 6 weeks after the first inoculation before plasmacytoid dendritic cell (pDC) frequency and function increased in peripheral blood. Primary Ad5hr infection suppressed IFN-γ mRNA expression, but the second Ad5hr exposure induced a rapid increase in IFN-gamma mRNA in peripheral blood mononuclear cells (PBMC). Primary Ad5hr infection suppressed CCL20, TNF and IL-1 mRNA expression in PBMC, and subsequent virus exposures further dampened expression of these pro-inflammatory cytokines. Primary, but not secondary, Ad5hr inoculation increased the frequency of CXCR3+ CD4+ T cells in blood, while secondary, but not primary, Ad5hr infection transiently increased the frequencies of Ki67+, HLADR+ and CD95+/CCR5+ CD4+ T cells in blood. Ad5hr infection induced polyfunctional CD4 and CD8+ T cells specific for the Ad5 hexon protein in all of the animals. Thus, infection with Ad5hr induced a complex pattern of innate and adaptive immunity in RM that included transient systemic CD4+ T cell activation and suppressed innate immunity on re-exposure to the virus. The complex effects of adenovirus infection on the immune system may help to explain the unexpected results of testing Ad5 vector expressing HIV antigens in Ad5 seropositive people.

  15. Expression of Early Immune-Response Genes in Lepidopteran Host are Suppressed by Venom From an Endoparasitoid, Pteromalus puparum

    Science.gov (United States)

    The relationships between parasitoids and their insect hosts have attracted attention at two levels. First, the basic biology of host-parasitoid interactions is of fundamental interest. Second, parasitoids have tremendous potential as biological control agents in sustainable agriculture programs. Pt...

  16. Deubiquitinase function of arterivirus papain-like protease 2 suppresses the innate immune response in infected host cells.

    Science.gov (United States)

    van Kasteren, Puck B; Bailey-Elkin, Ben A; James, Terrence W; Ninaber, Dennis K; Beugeling, Corrine; Khajehpour, Mazdak; Snijder, Eric J; Mark, Brian L; Kikkert, Marjolein

    2013-02-26

    Protein ubiquitination regulates important innate immune responses. The discovery of viruses encoding deubiquitinating enzymes (DUBs) suggests they remove ubiquitin to evade ubiquitin-dependent antiviral responses; however, this has never been conclusively demonstrated in virus-infected cells. Arteriviruses are economically important positive-stranded RNA viruses that encode an ovarian tumor (OTU) domain DUB known as papain-like protease 2 (PLP2). This enzyme is essential for arterivirus replication by cleaving a site within the viral replicase polyproteins and also removes ubiquitin from cellular proteins. To dissect this dual specificity, which relies on a single catalytic site, we determined the crystal structure of equine arteritis virus PLP2 in complex with ubiquitin (1.45 Å). PLP2 binds ubiquitin using a zinc finger that is uniquely integrated into an exceptionally compact OTU-domain fold that represents a new subclass of zinc-dependent OTU DUBs. Notably, the ubiquitin-binding surface is distant from the catalytic site, which allowed us to mutate this surface to significantly reduce DUB activity without affecting polyprotein cleavage. Viruses harboring such mutations exhibited WT replication kinetics, confirming that PLP2-mediated polyprotein cleavage was intact, but the loss of DUB activity strikingly enhanced innate immune signaling. Compared with WT virus infection, IFN-β mRNA levels in equine cells infected with PLP2 mutants were increased by nearly an order of magnitude. Our findings not only establish PLP2 DUB activity as a critical factor in arteriviral innate immune evasion, but the selective inactivation of DUB activity also opens unique possibilities for developing improved live attenuated vaccines against arteriviruses and other viruses encoding similar dual-specificity proteases.

  17. Genome-wide transcriptional profiling of peripheral blood leukocytes from cattle infected with Mycobacterium bovis reveals suppression of host immune genes

    Directory of Open Access Journals (Sweden)

    Killick Kate E

    2011-12-01

    Full Text Available Abstract Background Mycobacterium bovis is the causative agent of bovine tuberculosis (BTB, a pathological infection with significant economic impact. Recent studies have highlighted the role of functional genomics to better understand the molecular mechanisms governing the host immune response to M. bovis infection. Furthermore, these studies may enable the identification of novel transcriptional markers of BTB that can augment current diagnostic tests and surveillance programmes. In the present study, we have analysed the transcriptome of peripheral blood leukocytes (PBL from eight M. bovis-infected and eight control non-infected age-matched and sex-matched Holstein-Friesian cattle using the Affymetrix® GeneChip® Bovine Genome Array with 24,072 gene probe sets representing more than 23,000 gene transcripts. Results Control and infected animals had similar mean white blood cell counts. However, the mean number of lymphocytes was significantly increased in the infected group relative to the control group (P = 0.001, while the mean number of monocytes was significantly decreased in the BTB group (P = 0.002. Hierarchical clustering analysis using gene expression data from all 5,388 detectable mRNA transcripts unambiguously partitioned the animals according to their disease status. In total, 2,960 gene transcripts were differentially expressed (DE between the infected and control animal groups (adjusted P-value threshold ≤ 0.05; with the number of gene transcripts showing decreased relative expression (1,563 exceeding those displaying increased relative expression (1,397. Systems analysis using the Ingenuity® Systems Pathway Analysis (IPA Knowledge Base revealed an over-representation of DE genes involved in the immune response functional category. More specifically, 64.5% of genes in the affects immune response subcategory displayed decreased relative expression levels in the infected animals compared to the control group. Conclusions This

  18. Plant innate immunity induced by flagellin suppresses the hypersensitive response in non-host plants elicited by Pseudomonas syringae pv. averrhoi.

    Directory of Open Access Journals (Sweden)

    Chia-Fong Wei

    Full Text Available A new pathogen, Pseudomonas syringae pv. averrhoi (Pav, which causes bacterial spot disease on carambola was identified in Taiwan in 1997. Many strains of this pathovar have been isolated from different locations and several varieties of hosts. Some of these strains, such as HL1, are nonmotile and elicit a strong hypersensitive response (HR in nonhost tobacco leaves, while other strains, such as PA5, are motile and elicit a weak HR. Based on the image from a transmission electron microscope, the results showed that HL1 is flagellum-deficient and PA5 has normal flagella. Here we cloned and analyzed the fliC gene and glycosylation island from Pav HL1 and PA5. The amino acid sequences of FliC from HL1 and PA5 are identical to P. s. pvs. tabaci (Pta, glycinea and phaseolicola and share very high similarity with other pathovars of P. syringae. In contrast to the flagellin mutant PtaΔfliC, PA5ΔfliC grows as well as wild type in the host plant, but it elicits stronger HR than wild type does in non-host plants. Furthermore, the purified Pav flagellin, but not the divergent flagellin from Agrobacterium tumefaciens, is able to impair the HR induced by PA5ΔfliC. PA5Δfgt1 possessing nonglycosylated flagella behaved as its wild type in both bacterial growth in host and HR elicitation. Flagellin was infiltrated into tobacco leaves either simultaneously with flagellum-deficient HL1 or prior to the inoculation of wild type HL1, and both treatments impaired the HR induced by HL1. Moreover, the HR elicited by PA5 and PA5ΔfliC was enhanced by the addition of cycloheximide, suggesting that the flagellin is one of the PAMPs (pathogen-associated molecular patterns contributed to induce the PAMP-triggered immunity (PTI. Taken together, the results shown in this study reveal that flagellin in Pav is capable of suppressing HR via PTI induction during an incompatible interaction.

  19. Parasitoid polydnaviruses and immune interaction with secondary hosts.

    Science.gov (United States)

    Ye, Xi-Qian; Shi, Min; Huang, Jian-Hua; Chen, Xue-Xin

    2018-01-17

    Polydnaviruses (PDVs) are obligatory symbionts with parasitoid wasps. The PDV virions are produced solely in wasp (the primary host) calyx cells. They are injected into caterpillar hosts (the secondary host) during parasitoid oviposition, where they express irreplaceable actions to ensure survival and development of wasp larvae. Some of PDV gene products suppress host immune responses while others alter host growth, metabolism or endocrine system. Here, we treat new findings on PDV gene products and their action on immunity within secondary hosts. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Host adaptive immunity alters gut microbiota.

    Science.gov (United States)

    Zhang, Husen; Sparks, Joshua B; Karyala, Saikumar V; Settlage, Robert; Luo, Xin M

    2015-03-01

    It has long been recognized that the mammalian gut microbiota has a role in the development and activation of the host immune system. Much less is known on how host immunity regulates the gut microbiota. Here we investigated the role of adaptive immunity on the mouse distal gut microbial composition by sequencing 16 S rRNA genes from microbiota of immunodeficient Rag1(-/-) mice, versus wild-type mice, under the same housing environment. To detect possible interactions among immunological status, age and variability from anatomical sites, we analyzed samples from the cecum, colon, colonic mucus and feces before and after weaning. High-throughput sequencing showed that Firmicutes, Bacteroidetes and Verrucomicrobia dominated mouse gut bacterial communities. Rag1(-) mice had a distinct microbiota that was phylogenetically different from wild-type mice. In particular, the bacterium Akkermansia muciniphila was highly enriched in Rag1(-/-) mice compared with the wild type. This enrichment was suppressed when Rag1(-/-) mice received bone marrows from wild-type mice. The microbial community diversity increased with age, albeit the magnitude depended on Rag1 status. In addition, Rag1(-/-) mice had a higher gain in microbiota richness and evenness with increase in age compared with wild-type mice, possibly due to the lack of pressure from the adaptive immune system. Our results suggest that adaptive immunity has a pervasive role in regulating gut microbiota's composition and diversity.

  1. Evasion of host immune defenses by human papillomavirus.

    Science.gov (United States)

    Westrich, Joseph A; Warren, Cody J; Pyeon, Dohun

    2017-03-02

    A majority of human papillomavirus (HPV) infections are asymptomatic and self-resolving in the absence of medical interventions. Various innate and adaptive immune responses, as well as physical barriers, have been implicated in controlling early HPV infections. However, if HPV overcomes these host immune defenses and establishes persistence in basal keratinocytes, it becomes very difficult for the host to eliminate the infection. The HPV oncoproteins E5, E6, and E7 are important in regulating host immune responses. These oncoproteins dysregulate gene expression, protein-protein interactions, posttranslational modifications, and cellular trafficking of critical host immune modulators. In addition to the HPV oncoproteins, sequence variation and dinucleotide depletion in papillomavirus genomes has been suggested as an alternative strategy for evasion of host immune defenses. Since anti-HPV host immune responses are also considered to be important for antitumor immunity, immune dysregulation by HPV during virus persistence may contribute to immune suppression essential for HPV-associated cancer progression. Here, we discuss cellular pathways dysregulated by HPV that allow the virus to evade various host immune defenses. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  2. [Viral interactions with the host's immune system].

    Science.gov (United States)

    Humlová, Z

    2001-01-01

    Viruses are obligatory intracellular parasites, which differ in their structure and strategy of replication. The establishment of an antiviral state in uninfected cells and the elimination of virally infected cells are critical tasks in the host defence. Against the extensive array of immune modalities, viruses have successfully learned how to manipulate host immune control mechanisms. The study of viral strategies of immune evasion can provide insights into host-virus interactions and also illuminates essential functions of the immune system.

  3. Beyond the Immune Suppression: The Immunotherapy in Prostate Cancer

    Science.gov (United States)

    Silvestri, Ida; Cattarino, Susanna; Aglianò, Anna Maria; Collalti, Giulia; Sciarra, Alessandro

    2015-01-01

    Prostate cancer (PCa) is the second most common cancer in men. As well in many other human cancers, inflammation and immune suppression have an important role in their development. We briefly describe the host components that interact with the tumor to generate an immune suppressive environment involved in PCa promotion and progression. Different tools provide to overcome the mechanisms of immunosuppression including vaccines and immune checkpoint blockades. With regard to this, we report results of most recent clinical trials investigating immunotherapy in metastatic PCa (Sipuleucel-T, ipilimumab, tasquinimod, Prostvac-VF, and GVAX) and provide possible future perspectives combining the immunotherapy to the traditional therapies. PMID:26161414

  4. Host genetics affect microbial ecosystems via host immunity.

    Science.gov (United States)

    El Kafsi, Hela; Gorochov, Guy; Larsen, Martin

    2016-10-01

    Genetic evolution of multicellular organisms has occurred in response to environmental challenges, including competition for nutrients, climate change, physical and chemical stressors, and pathogens. However, fitness of an organism is dependent not only on defense efficacy, but also on the ability to take advantage of symbiotic organisms. Indeed, microbes not only encompass pathogenicity, but also enable efficient nutrient uptake from diets nondegradable by the host itself. Moreover, microbes play important roles in the development of host immunity. Here we review associations between specific host genes and variance in microbiota composition and compare with interactions between microbes and host immunity. Recent genome-wide association studies reveal that symbiosis between host and microbiota is the exquisite result of genetic coevolution. Moreover, a subset of microbes from human and mouse microbiota have been identified to interact with humoral and cellular immunity. Interestingly, microbes associated with both host genetics and host immunity are taxonomically related. Most involved are Bifidobacterium, Lactobacillus, and Akkermansia, which are dually associated with both host immunity and host genetics. We conclude that future therapeutics targeting microbiota in the context of chronic inflammatory diseases need to consider both immune and genetic host features associated with microbiota homeostasis.

  5. Immune modulation by helminth parasites of ruminants: implications for vaccine development and host immune competence

    OpenAIRE

    McNeilly, Tom N.; Nisbet, Alasdair J.

    2014-01-01

    Parasitic helminths reside in immunologically-exposed extracellular locations within their hosts, yet they are capable of surviving for extended periods. To enable this survival, these parasites have developed complex and multifaceted mechanisms to subvert or suppress host immunity. This review summarises current knowledge of immune modulation by helminth parasites of ruminants and the parasite-derived molecules involved in driving this modulation. Such immunomodulatory molecules have conside...

  6. Cooperative Immune Suppression by Escherichia coli and Shigella Effector Proteins.

    Science.gov (United States)

    de Jong, Maarten F; Alto, Neal M

    2018-04-01

    The enteric attaching and effacing (A/E) pathogens enterohemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC) and the invasive pathogens enteroinvasive E. coli (EIEC) and Shigella encode type III secretion systems (T3SS) used to inject effector proteins into human host cells during infection. Among these are a group of effectors required for NF-κB-mediated host immune evasion. Recent studies have identified several effector proteins from A/E pathogens and EIEC/ Shigella that are involved in suppression of NF-κB and have uncovered their cellular and molecular functions. A novel mechanism among these effectors from both groups of pathogens is to coordinate effector function during infection. This cooperativity among effector proteins explains how bacterial pathogens are able to effectively suppress innate immune defense mechanisms in response to diverse classes of immune receptor signaling complexes (RSCs) stimulated during infection. Copyright © 2018 American Society for Microbiology.

  7. DNA Tumor Virus Regulation of Host DNA Methylation and Its Implications for Immune Evasion and Oncogenesis.

    Science.gov (United States)

    Kuss-Duerkop, Sharon K; Westrich, Joseph A; Pyeon, Dohun

    2018-02-13

    Viruses have evolved various mechanisms to evade host immunity and ensure efficient viral replication and persistence. Several DNA tumor viruses modulate host DNA methyltransferases for epigenetic dysregulation of immune-related gene expression in host cells. The host immune responses suppressed by virus-induced aberrant DNA methylation are also frequently involved in antitumor immune responses. Here, we describe viral mechanisms and virus-host interactions by which DNA tumor viruses regulate host DNA methylation to evade antiviral immunity, which may contribute to the generation of an immunosuppressive microenvironment during cancer development. Recent trials of immunotherapies have shown promising results to treat multiple cancers; however, a significant number of non-responders necessitate identifying additional targets for cancer immunotherapies. Thus, understanding immune evasion mechanisms of cancer-causing viruses may provide great insights for reversing immune suppression to prevent and treat associated cancers.

  8. DNA Tumor Virus Regulation of Host DNA Methylation and Its Implications for Immune Evasion and Oncogenesis

    Directory of Open Access Journals (Sweden)

    Sharon K. Kuss-Duerkop

    2018-02-01

    Full Text Available Viruses have evolved various mechanisms to evade host immunity and ensure efficient viral replication and persistence. Several DNA tumor viruses modulate host DNA methyltransferases for epigenetic dysregulation of immune-related gene expression in host cells. The host immune responses suppressed by virus-induced aberrant DNA methylation are also frequently involved in antitumor immune responses. Here, we describe viral mechanisms and virus–host interactions by which DNA tumor viruses regulate host DNA methylation to evade antiviral immunity, which may contribute to the generation of an immunosuppressive microenvironment during cancer development. Recent trials of immunotherapies have shown promising results to treat multiple cancers; however, a significant number of non-responders necessitate identifying additional targets for cancer immunotherapies. Thus, understanding immune evasion mechanisms of cancer-causing viruses may provide great insights for reversing immune suppression to prevent and treat associated cancers.

  9. Immune modulation by helminth parasites of ruminants: implications for vaccine development and host immune competence.

    Science.gov (United States)

    McNeilly, Tom N; Nisbet, Alasdair J

    2014-01-01

    Parasitic helminths reside in immunologically-exposed extracellular locations within their hosts, yet they are capable of surviving for extended periods. To enable this survival, these parasites have developed complex and multifaceted mechanisms to subvert or suppress host immunity. This review summarises current knowledge of immune modulation by helminth parasites of ruminants and the parasite-derived molecules involved in driving this modulation. Such immunomodulatory molecules have considerable promise as vaccine targets, as neutralisation of their function is predicted to enhance anti-parasite immunity and, as such, current knowledge in this area is presented herein. Furthermore, we summarise current evidence that, as well as affecting parasite-specific immunity, immune modulation by these parasites may also affect the ability of ruminant hosts to control concurrent diseases or mount effective responses to vaccination. T.N. McNeilly and A.J. Nisbet, published by EDP Sciences, 2014

  10. Targeting Immune Regulatory Networks to Counteract Immune Suppression in Cancer

    Directory of Open Access Journals (Sweden)

    Chiara Camisaschi

    2016-11-01

    Full Text Available The onset of cancer is unavoidably accompanied by suppression of antitumor immunity. This occurs through mechanisms ranging from the progressive accumulation of regulatory immune cells associated with chronic immune stimulation and inflammation, to the expression of immunosuppressive molecules. Some of them are being successfully exploited as therapeutic targets, with impressive clinical results achieved in patients, as in the case of immune checkpoint inhibitors. To limit immune attack, tumor cells exploit specific pathways to render the tumor microenvironment hostile for antitumor effector cells. Local acidification might, in fact, anergize activated T cells and facilitate the accumulation of immune suppressive cells. Moreover, the release of extracellular vesicles by tumor cells can condition distant immune sites contributing to the onset of systemic immune suppression. Understanding which mechanisms may be prevalent in specific cancers or disease stages, and identifying possible strategies to counterbalance would majorly contribute to improving clinical efficacy of cancer immunotherapy. Here, we intend to highlight these mechanisms, how they could be targeted and the tools that might be available in the near future to achieve this goal.

  11. Evidence for suppression of immunity as a driver for genomic introgressions and host range expansion in races of Albugo candida, a generalist parasite

    DEFF Research Database (Denmark)

    McMullan, Mark; Gardiner, Anastasia; Bailey, Kate

    2015-01-01

    How generalist parasites with wide host ranges can evolve is a central question in parasite evolution. Albugo candida is an obligate biotrophic parasite that consists of many physiological races that each specialize on distinct Brassicaceae host species. By analyzing genome sequence assemblies of......, Darwin's finches, sunflowers and cichlid fishes, and the implications of introgression for pathogen evolution in an agro-ecological environment....

  12. Mechanisms underlying UV-induced immune suppression

    Energy Technology Data Exchange (ETDEWEB)

    Ullrich, Stephen E. [Department of Immunology, University of Texas, MD Anderson Cancer Center, South Campus Research Building 1, 7455 Fannin St., P.O. Box 301402, Houston, TX 77030-1903 (United States)]. E-mail: sullrich@mdanderson.org

    2005-04-01

    Skin cancer is the most prevalent form of human neoplasia. Estimates suggest that in excess of one million new cases of skin cancer will be diagnosed this year alone in the United States (www.cancer.org/statistics). Fortunately, because of their highly visible location, skin cancers are more rapidly diagnosed and more easily treated than other types of cancer. Be that as it may, approximately 10,000 Americans a year die from skin cancer. The cost of treating non-melanoma skin cancer is estimated to be in excess of US$ 650 million a year [J.G. Chen, A.B. Fleischer, E.D. Smith, C. Kancler, N.D. Goldman, P.M. Williford, S.R. Feldman, Cost of non-melanoma skin cancer treatment in the United States, Dermatol. Surg. 27 (2001) 1035-1038], and when melanoma is included, the estimated cost of treating skin cancer in the United States is estimated to rise to US$ 2.9 billion annually (www.cancer.org/statistics). Because the morbidity and mortality associated with skin cancer is a major public health problem, it is important to understand the mechanisms underlying skin cancer development. The primary cause of skin cancer is the ultraviolet (UV) radiation found in sunlight. In addition to its carcinogenic potential, UV radiation is also immune suppressive. In fact, data from studies with both experimental animals and biopsy proven skin cancer patients suggest that there is an association between the immune suppressive effects of UV radiation and its carcinogenic potential. The focus of this manuscript will be to review the mechanisms underlying the induction of immune suppression following UV exposure. Particular attention will be directed to the role of soluble mediators in activating immune suppression.

  13. Mechanisms underlying UV-induced immune suppression

    International Nuclear Information System (INIS)

    Ullrich, Stephen E.

    2005-01-01

    Skin cancer is the most prevalent form of human neoplasia. Estimates suggest that in excess of one million new cases of skin cancer will be diagnosed this year alone in the United States (www.cancer.org/statistics). Fortunately, because of their highly visible location, skin cancers are more rapidly diagnosed and more easily treated than other types of cancer. Be that as it may, approximately 10,000 Americans a year die from skin cancer. The cost of treating non-melanoma skin cancer is estimated to be in excess of US$ 650 million a year [J.G. Chen, A.B. Fleischer, E.D. Smith, C. Kancler, N.D. Goldman, P.M. Williford, S.R. Feldman, Cost of non-melanoma skin cancer treatment in the United States, Dermatol. Surg. 27 (2001) 1035-1038], and when melanoma is included, the estimated cost of treating skin cancer in the United States is estimated to rise to US$ 2.9 billion annually (www.cancer.org/statistics). Because the morbidity and mortality associated with skin cancer is a major public health problem, it is important to understand the mechanisms underlying skin cancer development. The primary cause of skin cancer is the ultraviolet (UV) radiation found in sunlight. In addition to its carcinogenic potential, UV radiation is also immune suppressive. In fact, data from studies with both experimental animals and biopsy proven skin cancer patients suggest that there is an association between the immune suppressive effects of UV radiation and its carcinogenic potential. The focus of this manuscript will be to review the mechanisms underlying the induction of immune suppression following UV exposure. Particular attention will be directed to the role of soluble mediators in activating immune suppression

  14. Bacterial subversion of host innate immune pathways.

    Science.gov (United States)

    Baxt, Leigh A; Garza-Mayers, Anna Cristina; Goldberg, Marcia B

    2013-05-10

    The pathogenesis of infection is a continuously evolving battle between the human host and the infecting microbe. The past decade has brought a burst of insights into the molecular mechanisms of innate immune responses to bacterial pathogens. In parallel, multiple specific mechanisms by which microorganisms subvert these host responses have been uncovered. This Review highlights recently characterized mechanisms by which bacterial pathogens avoid killing by innate host responses, including autophagy pathways and a proinflammatory cytokine transcriptional response, and by the manipulation of vesicular trafficking to avoid the toxicity of lysosomal enzymes.

  15. Exploiting host immunity: the Salmonella paradigm

    Science.gov (United States)

    Behnsen, Judith; Perez-Lopez, Araceli; Nuccio, Sean-Paul; Raffatellu, Manuela

    2014-01-01

    Pathogens have evolved clever strategies to evade and in some cases exploit the attacks of an activated immune system. Salmonella enterica is one such pathogen, exploiting multiple aspects of host defense to promote its replication in the host. Here we review recent findings on the mechanisms by which Salmonella establishes systemic and chronic infection, including strategies involving manipulation of innate immune signaling and inflammatory forms of cell death, as well as immune evasion by establishing residency in M2 macrophages. We also examine recent evidence showing that the oxidative environment and the high levels of antimicrobial proteins produced in response to localized Salmonella gastrointestinal infection enable the pathogen to successfully outcompete the resident gut microbiota. PMID:25582038

  16. Immune Regulation and Evasion of Mammalian Host Cell Immunity During Viral Infection

    OpenAIRE

    Pratheek, B. M.; Saha, Soham; Maiti, Prasanta K.; Chattopadhyay, Soma; Chattopadhyay, Subhasis

    2013-01-01

    The mammalian host immune system has wide array of defence mechanisms against viral infections. Depending on host immunity and the extent of viral persistence, either the host immune cells might clear/restrict the viral load and disease progression or the virus might evade host immunity by down regulating host immune effector response(s). Viral antigen processing and presentation in the host cells through major histocompatibility complex (MHC) elicit subsequent anti-viral effector T cell resp...

  17. Parasitism, host immune function, and sexual selection.

    Science.gov (United States)

    Møller, A P; Christe, P; Lux, E

    1999-03-01

    Parasite-mediated sexual selection may arise as a consequence of 1) females avoiding mates with directly transmitted parasites, 2) females choosing less-parasitized males that provide parental care of superior quality, or 3) females choosing males with few parasites in order to obtain genes for parasite resistance in their offspring. Studies of specific host-parasite systems and comparative analyses have revealed both supportive and conflicting evidence for these hypotheses. A meta-analysis of the available evidence revealed a negative relationship between parasite load and the expression of male secondary sexual characters. Experimental studies yielded more strongly negative relationships than observations did, and the relationships were more strongly negative for ectoparasites than for endoparasites. There was no significant difference in the magnitude of the negative effect for species with and without male parental care, or between behavioral and morphological secondary sexual characters. There was a significant difference between studies based on host immune function and those based on parasite loads, with stronger effects for measures of immune function, suggesting that the many negative results from previous analyses of parasite-mediated sexual selection may be explained because relatively benign parasites were studied. The multivariate analyses demonstrating strong effect sizes of immune function in relation to the expression of secondary sexual characters, and for species with male parental care as compared to those without, suggest that parasite resistance may be a general determinant of parasite-mediated sexual selection.

  18. IMMUNE SUPPRESSION OF CHALLENGED VACCINATES AS A RIGOROUS ASSESSMENT OF STERILE PROTECTION BY LENTIVIRAL VACCINES

    Science.gov (United States)

    Craigo, Jodi K.; Durkin, Shannon; Sturgeon, Timothy J.; Tagmyer, Tara; Cook, Sheila J.; Issel, Charles J.; Montelaro, Ronald C.

    2007-01-01

    We previously reported that an experimental live-attenuated equine infectious anemia virus (EIAV) vaccine, containing a mutated S2 accessory gene, provided protection from disease and detectable infection after virulent virus (EIAVPV) challenge [1,2]. To determine if attenuated EIAV vaccines actually prevent persistent infection by challenge virus, we employed a 14-day dexamethasone treatment of vaccinated horses post-challenge to suppress host immunity and amplify replication levels of any infecting EIAV. At two months post-challenge the horses were all protected from virulent-virus challenge, evidenced by a lack of EIA signs and detectable challenge plasma viral RNA. Upon immune suppression, 6/12 horses displayed clinical EIA. Post-immune suppression characterizations demonstrated that the attenuated vaccine evidently prevented detectable challenge virus infection in 50% of horses. These data highlight the utility of post-challenge immune suppression for evaluating persistent viral vaccine protective efficacy. PMID:17023099

  19. Tumor-Derived Exosomes and Their Role in Tumor-Induced Immune Suppression

    Directory of Open Access Journals (Sweden)

    Theresa L. Whiteside

    2016-10-01

    Full Text Available Tumor-derived exosomes (TEX are emerging as critical components of an intercellular information network between the tumor and the host. The tumor escapes from the host immune system by using a variety of mechanisms designed to impair or eliminate anti-tumor immunity. TEX carrying a cargo of immunoinhibitory molecules and factors represent one such mechanism. TEX, which are present in all body fluids of cancer patients, deliver negative molecular or genetic signals to immune cells re-programming their functions. Although TEX can also stimulate immune activity, in the microenvironments dominated by the tumor, TEX tend to mediate immune suppression thus promoting tumor progression. The TEX content, in part resembling that of the parent cell, may serve as a source of cancer biomarkers. TEX also interfere with immune therapies. A better understanding of TEX and their contribution to cancer progression and cancer patients’ response to immune therapies represents a challenging new field of investigation.

  20. Bacterial effector HopF2 interacts with AvrPto and suppresses Arabidopsis innate immunity at the plasma membrane

    Science.gov (United States)

    Plant pathogenic bacteria inject a cocktail of effector proteins into host plant cells to modulate the host immune response, thereby promoting pathogenicity. How or whether these effectors work cooperatively is largely unknown. The Pseudomonas syringae DC3000 effector HopF2 suppresses the host plan...

  1. Epigenetic modulation of host: new insights into immune evasion by ...

    Indian Academy of Sciences (India)

    Viruses have evolved with their hosts, which include all living species. This has been partly responsible for the development of highly advanced immune systems in the hosts. However, viruses too have evolved ways to regulate and evade the host's immune defence. In addition to mutational mechanisms that viruses employ ...

  2. [Association between chronicity of HBV infection and host immunity].

    Science.gov (United States)

    Shang, X B; Zhao, Q; Zhao, C Y

    2016-06-01

    The prognosis of hepatitis B virus (HBV) infection is determined by innate immunity, adaptive immunity, and a variety of regulatory factors in the host. Controversy still exists over the role of innate immunity in the progression of HBV infection. Adaptive immunity, especially the immune response mediated by CD8+ T cells, plays an important role in HBV clearance. However, in patients with chronic infection, such CD8+ T cells are often exhausted and associated with various regulatory factors including programmed cell death 1 and T-cell immunoglobulin mucin-3. This article elaborates on the association of chronicity of HBV infection with host immune system and various regulating factors.

  3. Pattern Recognition Receptors in Innate Immunity, Host Defense, and Immunopathology

    Science.gov (United States)

    Suresh, Rahul; Mosser, David M.

    2013-01-01

    Infection by pathogenic microbes initiates a set of complex interactions between the pathogen and the host mediated by pattern recognition receptors. Innate immune responses play direct roles in host defense during the early stages of infection, and they also exert a profound influence on the generation of the adaptive immune responses that ensue.…

  4. RNA-virus proteases counteracting host innate immunity.

    Science.gov (United States)

    Lei, Jian; Hilgenfeld, Rolf

    2017-10-01

    Virus invasion triggers host immune responses, in particular, innate immune responses. Pathogen-associated molecular patterns of viruses (such as dsRNA, ssRNA, or viral proteins) released during virus replication are detected by the corresponding pattern-recognition receptors of the host, and innate immune responses are induced. Through production of type-I and type-III interferons as well as various other cytokines, the host innate immune system forms the frontline to protect host cells and inhibit virus infection. Not surprisingly, viruses have evolved diverse strategies to counter this antiviral system. In this review, we discuss the multiple strategies used by proteases of positive-sense single-stranded RNA viruses of the families Picornaviridae, Coronaviridae, and Flaviviridae, when counteracting host innate immune responses. © 2017 Federation of European Biochemical Societies.

  5. Staphylococcus aureus strategies to evade the host acquired immune response.

    Science.gov (United States)

    Goldmann, Oliver; Medina, Eva

    2017-09-15

    Staphylococcus aureus poses a significant public-health problem. Infection caused by S. aureus can manifest as acute or long-lasting persistent diseases that are often refractory to antibiotic and are associated with significant morbidity and mortality. To develop more effective strategies for preventing or treating these infections, it is crucial to understand why the immune response is incapable to eradicate the bacterium. When S. aureus first infect the host, there is a robust activation of the host innate immune responses. Generally, S. aureus can survive this initial interaction due to the expression of a wide array of virulence factors that interfere with the host innate immune defenses. After this initial interaction the acquired immune response is the arm of the host defenses that will try to clear the pathogen. However, S. aureus is capable of maintaining infection in the host even in the presence of a robust antigen-specific immune response. Thus, understanding the mechanisms underlying the ability of S. aureus to escape immune surveillance by the acquired immune response will help uncover potentially important targets for the development of immune-based adjunctive therapies and more efficient vaccines. There are several lines of evidence that lead us to believe that S. aureus can directly or indirectly disable the acquired immune response. This review will discuss the different immune evasion strategies used by S. aureus to modulate the different components of the acquired immune defenses. Copyright © 2017 Elsevier GmbH. All rights reserved.

  6. Interactions of lactobacilli with the host immune system

    NARCIS (Netherlands)

    Meijerink, M.

    2011-01-01

    The aim of this thesis was to better understand the molecular mechanism of host res-ponses to probiotics. Probiotics can be used to stimulate or regulate immune responses in epithelial and immune cells of the intestinal mucosa and generate beneficial effects on the immune system. Carefully

  7. Subversion of plant cellular functions by bacterial type-III effectors: beyond suppression of immunity.

    Science.gov (United States)

    Macho, Alberto P

    2016-04-01

    Most bacterial plant pathogens employ a type-III secretion system to inject type-III effector (T3E) proteins directly inside plant cells. These T3Es manipulate host cellular processes in order to create a permissive niche for bacterial proliferation, allowing development of the disease. An important role of T3Es in plant pathogenic bacteria is the suppression of plant immune responses. However, in recent years, research has uncovered T3E functions different from direct immune suppression, including the modulation of plant hormone signaling, metabolism or organelle function. This insight article discusses T3E functions other than suppression of immunity, which may contribute to the modulation of plant cells in order to promote bacterial survival, nutrient release, and bacterial replication and dissemination. © 2015 The Author. New Phytologist © 2015 New Phytologist Trust.

  8. Regulatory T cells: immune suppression and beyond

    OpenAIRE

    Wan, Yisong Y

    2010-01-01

    Foxp3-expressing regulatory T cells (Tregs) were originally identified as critical in maintaining self-tolerance and immune homeostasis. The immunosuppressive functions of Tregs are widely acknowledged and have been extensively studied. Recent studies have revealed many diverse roles of Tregs in shaping the immune system and the inflammatory response. This review will discuss our efforts as well as the efforts of others towards understanding the multifaceted function of Treg...

  9. Disease tolerance and immunity in host protection against infection.

    Science.gov (United States)

    Soares, Miguel P; Teixeira, Luis; Moita, Luis F

    2017-02-01

    The immune system probably evolved to limit the negative effects exerted by pathogens on host homeostasis. This defence strategy relies on the concerted action of innate and adaptive components of the immune system, which sense and target pathogens for containment, destruction or expulsion. Resistance to infection refers to these immune functions, which reduce the pathogen load of an infected host as the means to preserve homeostasis. Immune-driven resistance to infection is coupled to an additional, and arguably as important, defence strategy that limits the extent of dysfunction imposed on host parenchymal tissues during infection, without exerting a direct negative effect on pathogens. This defence strategy, known as disease tolerance, relies on tissue damage control mechanisms that prevent the deleterious effects of pathogens and that uncouples immune-driven resistance mechanisms from immunopathology and disease. In this Review, we provide a unifying view of resistance and disease tolerance in the framework of immunity to infection.

  10. Immune regulation and evasion of Mammalian host cell immunity during viral infection.

    Science.gov (United States)

    Pratheek, B M; Saha, Soham; Maiti, Prasanta K; Chattopadhyay, Soma; Chattopadhyay, Subhasis

    2013-06-01

    The mammalian host immune system has wide array of defence mechanisms against viral infections. Depending on host immunity and the extent of viral persistence, either the host immune cells might clear/restrict the viral load and disease progression or the virus might evade host immunity by down regulating host immune effector response(s). Viral antigen processing and presentation in the host cells through major histocompatibility complex (MHC) elicit subsequent anti-viral effector T cell response(s). However, modulation of such response(s) might generate one of the important viral immune evasion strategies. Viral peptides are mostly generated by proteolytic cleavage in the cytosol of the infected host cells. CD8(+) T lymphocytes play critical role in the detection of viral infection by recognizing these peptides displayed at the plasma membrane by MHC-I molecules. The present review summarises the current knowledge on the regulation of mammalian host innate and adaptive immune components, which are operative in defence mechanisms against viral infections and the variety of strategies that viruses have evolved to escape host cell immunity. The understanding of viral immune evasion strategies is important for designing anti-viral immunotherapies.

  11. Modulation of host immunity by tick saliva

    Czech Academy of Sciences Publication Activity Database

    Kotál, Jan; Langhansová, H.; Lieskovská, J.; Andersen, J. F.; Francischetti, I.M.B.; Chavakis, T.; Kopecký, J.; Pedra, J. H. F.; Kotsyfakis, Michalis; Chmelař, J.

    2015-01-01

    Roč. 128, OCT 14 2015 (2015), s. 58-68 ISSN 1874-3919 R&D Projects: GA ČR GAP502/12/2409 Institutional support: RVO:60077344 Keywords : Adaptive immunity * Innate immunity * Saliva * Salivary glands * Tick Subject RIV: EB - Gene tics ; Molecular Biology Impact factor: 3.867, year: 2015

  12. Interaction of entomopathogenic fungi with the host immune system.

    Science.gov (United States)

    Qu, Shuang; Wang, Sibao

    2018-02-02

    Entomopathogenic fungi can invade wide range of insect hosts in the natural world and have been used as environmentally friendly alternatives to chemical insecticides for pest control. Studies of host-pathogen interactions provide valuable insights into the coevolutionay arms race between fungal pathogens and their hosts. Entomopathogenic fungi have evolved a series of sophisticated strategies to counter insect immune defenses. In response to fungal infection, insect hosts rely on behavior avoidance, physical barrier and innate immune defenses in the fight against invading pathogens. The insect cuticle acts as the first physical barrier against pathogens. It is an inhospitable physiological environment that contains chemicals (e.g., antimicrobial peptides and reactive oxygen species), which inhibit fungal growth. In addition, innate immune responses, including cellular immunity and humoral immunity, play critical roles in preventing fungal infection. In this review, we outline the current state of our knowledge of insect defenses to fungal infection and discuss the strategies by which entomopathogenic fungi counter the host immune system. Increased knowledge regarding the molecular interactions between entomopathogenic fungi and the insect host could provide new strategies for pest management. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Suppression of immune surveillance in melanoma [Immunotherapy of metastatic melanoma by reversal of immune suppression

    Energy Technology Data Exchange (ETDEWEB)

    Biggs, M. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Eiselein, J. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2001-06-01

    In this paper we develop the hypothesis that a significant fraction of patients with advanced melanoma can be successfully treated with immunotherapy. Reversal of antigen-specific immune suppression to melanoma polypeptide antigens is an essential, first step. We postulate the key regulation of CTL responses resides within the CD4+ T-lymphocytes and macrophage/dendritic cells. There is a pluri-potential cell within this regulatory arm that functions either as a Th1 cell or as a suppressor T-cell, Ths, depending on how antigen is presented. We have shown that poliovirus 1 Sabin will lyse human melanoma cells in tissue culture, and a special "vaccine" prepared from this lysis actively stimulates Ths cell function. The Ths arm of the regulatory system can be down-regulated with cyclophosphamide given 24 hours after the vaccine. The capacity to generate a CTL response is retained. The summary conclusion is that a phase 1 clinical trial in advanced melanoma using the special viral-tumor-lysate followed by cyclophosphamide, plus expanded autologous dendritic cells sensitized with the polypeptide epitopes captained in the viral-lysate will produce beneficial results.

  14. Evasion of host immune surveillance by hepatitis C virus: potential roles in viral persistence.

    Science.gov (United States)

    Moorman, J P; Joo, M; Hahn, Y S

    2001-01-01

    Hepatitis C virus (HCV) is a major human pathogen that causes mild to severe liver disease worldwide. This positive strand RNA virus is remarkably efficient at establishing chronic infections. In order for a noncytopathic virus such as HCV to persist, the virus must escape immune recognition or evade host immune surveillance. Immune escape via the hypervariable region of the E2 envelope protein has been postulated as one mechanism for HCV persistent infection. Such hypervariability within the E2 protein may be under selective pressure from protective B cell or T cell responses and be able to escape immune recognition by rapid mutation of antigenic site. In addition to antigenic variation, HCV may also suppress immune response, leading to dampening of cellular immunity. This is supported by recent studies in our laboratory demonstrating that the HCV core protein can suppress host immune responses to vaccinia virus by downregulating viral specific cytotoxic T lymphocyte (CTL) responses and cytokine production. An understanding of the mechanisms behind HCV persistence will provide a basis for the rational design of vaccines and novel therapeutic agents targeting human HCV infection.

  15. Protein A Suppresses Immune Responses during Staphylococcus aureus Bloodstream Infection in Guinea Pigs

    Science.gov (United States)

    Kim, Hwan Keun; Falugi, Fabiana; Thomer, Lena; Missiakas, Dominique M.

    2015-01-01

    ABSTRACT   Staphylococcus aureus infection is not associated with the development of protective immunity, and disease relapses occur frequently. We hypothesize that protein A, a factor that binds immunoglobulin Fcγ and cross-links VH3 clan B cell receptors (IgM), is the staphylococcal determinant for host immune suppression. To test this, vertebrate IgM was examined for protein A cross-linking. High VH3 binding activity occurred with human and guinea immunoglobulin, whereas mouse and rabbit immunoglobulins displayed little and no binding, respectively. Establishing a guinea pig model of S. aureus bloodstream infection, we show that protein A functions as a virulence determinant and suppresses host B cell responses. Immunization with SpAKKAA, which cannot bind immunoglobulin, elicits neutralizing antibodies that enable guinea pigs to develop protective immunity. Importance  Staphylococcus aureus is the leading cause of soft tissue and bloodstream infections; however, a vaccine with clinical efficacy is not available. Using mice to model staphylococcal infection, earlier work identified protective antigens; however, corresponding human clinical trials did not reach their endpoints. We show that B cell receptor (IgM) cross-linking by protein A is an important immune evasion strategy of S. aureus that can be monitored in a guinea pig model of bloodstream infection. Further, immunization with nontoxigenic protein A enables infected guinea pigs to elicit antibody responses that are protective against S. aureus. Thus, the guinea pig model may support preclinical development of staphylococcal vaccines. PMID:25564466

  16. Novel "Elements" of Immune Suppression within the Tumor Microenvironment.

    Science.gov (United States)

    Gurusamy, Devikala; Clever, David; Eil, Robert; Restifo, Nicholas P

    2017-06-01

    Adaptive evolution has prompted immune cells to use a wide variety of inhibitory signals, many of which are usurped by tumor cells to evade immune surveillance. Although tumor immunologists often focus on genes and proteins as mediators of immune function, here we highlight two elements from the periodic table-oxygen and potassium-that suppress the immune system in previously unappreciated ways. While both are key to the maintenance of T-cell function and tissue homeostasis, they are exploited by tumors to suppress immuno-surveillance and promote metastatic spread. We discuss the temporal and spatial roles of these elements within the tumor microenvironment and explore possible therapeutic interventions for effective and promising anticancer therapies. Cancer Immunol Res; 5(6); 426-33. ©2017 AACR . ©2017 American Association for Cancer Research.

  17. Viral Evasion and Subversion Mechanisms of the Host Immune System

    OpenAIRE

    Mehran Ghaemi-Bafghi; Alireza Haghparast

    2013-01-01

    Viruses are the most abundant and versatile pathogens which challenge the immune system and cause major threats to human health. Viruses employ differ¬ent mechanisms to evade host immune responses that we describe them under the following headings: Inhibition of humoral responses, Interference with interferons, Inhibition and modulation of cytokines and chemokines, Inhibitors of apoptosis, Evading CTLs and NKs, and modulating MHC function.Viruses inhibit humoral immunity in different ways whi...

  18. The skin microbiome: Is it affected by UV-induced immune suppression?

    Directory of Open Access Journals (Sweden)

    Vijaykumar Patra

    2016-08-01

    Full Text Available Human skin apart from functioning as a physical barricade to stop the entry of pathogens, also hosts innumerable commensal organisms. The skin cells and the immune system constantly interact with microbes, to maintain cutaneous homeostasis, despite the challenges offered by various environmental factors. A major environmental factor affecting the skin is ultraviolet radiation UV-R from sunlight. UV-R is well known to modulate the immune system, which can be both beneficial and deleterious. By targeting the cells and molecules within skin, UV-R can trigger the production and release of antimicrobial peptides (AMPs, affect the innate immune system and ultimately suppress the adaptive cellular immune response. This can contribute to skin carcinogenesis and the promotion of infectious agents such as herpes simplex virus and possibly others. On the other hand, a UV-established immunosuppressive environment may protect against the induction of immunologically mediated skin diseases including some of photodermatoses such as polymorphic light eruption. In this article, we share our perspective about the possibility that UV-induced immune suppression may alter the landscape of the skin's microbiome and its components. Alternatively, or in concert with this, direct UV-induced DNA and membrane damage to the microbiome may result in pathogen associated molecular patterns (PAMPs that interfere with UV-induced immune suppression.

  19. Effects of carotenoids, immune activation and immune suppression on the intensity of chronic coccidiosis in greenfinches.

    Science.gov (United States)

    Sepp, Tuul; Karu, Ulvi; Sild, Elin; Männiste, Marju; Hõrak, Peeter

    2011-03-01

    Allocation trade-offs of carotenoids between their use in the immune system and production of integumentary colouration have been suggested as a proximate mechanism maintaining honesty of signal traits. We tested how dietary carotenoid supplementation, immune activation and immune suppression affect intensity of coccidian infection in captive greenfinches Carduelis chloris, a passerine with carotenoid-based plumage. Immune activation with phytohaemagglutinin (PHA) decreased body mass among birds not supplemented with lutein, while among the carotenoid-fed birds, PHA had no effect on mass dynamics. Immune suppression with dexamethasone (DEX) induced loss of body mass and reduced the swelling response to PHA. DEX and PHA increased the concentration of circulating heterophils. Lutein supplementation increased plasma carotenoid levels but had no effect on the swelling response induced by PHA. PHA and DEX treatments did not affect plasma carotenoids. Immune stimulation by PHA suppressed the infection, but only among carotenoid-supplemented birds. Priming of the immune system can thus aid in suppressing chronic infection but only when sufficient amount of carotenoids is available. Our experiment shows the importance of carotenoids in immune response, but also the complicated nature of this impact, which could be the reason for inconsistent results in studies investigating the immunomodulatory effects of carotenoids. The findings about involvement of carotenoids in modulation of an immune response against coccidiosis suggest that carotenoid-based ornaments may honestly signal individuals' ability to manage chronic infections. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Staphylococcal Immune Evasion Proteins: Structure, Function, and Host Adaptation.

    Science.gov (United States)

    Koymans, Kirsten J; Vrieling, Manouk; Gorham, Ronald D; van Strijp, Jos A G

    2017-01-01

    Staphylococcus aureus is a successful human and animal pathogen. Its pathogenicity is linked to its ability to secrete a large amount of virulence factors. These secreted proteins interfere with many critical components of the immune system, both innate and adaptive, and hamper proper immune functioning. In recent years, numerous studies have been conducted in order to understand the molecular mechanism underlying the interaction of evasion molecules with the host immune system. Structural studies have fundamentally contributed to our understanding of the mechanisms of action of the individual factors. Furthermore, such studies revealed one of the most striking characteristics of the secreted immune evasion molecules: their conserved structure. Despite high-sequence variability, most immune evasion molecules belong to a small number of structural categories. Another remarkable characteristic is that S. aureus carries most of these virulence factors on mobile genetic elements (MGE) or ex-MGE in its accessory genome. Coevolution of pathogen and host has resulted in immune evasion molecules with a highly host-specific function and prevalence. In this review, we explore how these shared structures and genomic locations relate to function and host specificity. This is discussed in the context of therapeutic options for these immune evasion molecules in infectious as well as in inflammatory diseases.

  1. Subversion of Host Innate Immunity by Uropathogenic Escherichia coli

    Directory of Open Access Journals (Sweden)

    Patrick D. Olson

    2016-01-01

    Full Text Available Uropathogenic Escherichia coli (UPEC cause the majority of community-onset urinary tract infections (UTI and represent a major etiologic agent of healthcare-associated UTI. Introduction of UPEC into the mammalian urinary tract evokes a well-described inflammatory response, comprising pro-inflammatory cytokines and chemokines as well as cellular elements (neutrophils and macrophages. In human UTI, this inflammatory response contributes to symptomatology and provides means for diagnosis by standard clinical testing. Early in acute cystitis, as demonstrated in murine models, UPEC gains access to an intracellular niche that protects a population of replicating bacteria from arriving phagocytes. To ensure the establishment of this protected niche, UPEC employ multiple strategies to attenuate and delay the initiation of host inflammatory components, including epithelial secretion of chemoattractants. Recent work has also revealed novel mechanisms by which UPEC blunts neutrophil migration across infected uroepithelium. Taken together, these attributes distinguish UPEC from commensal and nonpathogenic E. coli strains. This review highlights the unique immune evasion and suppression strategies of this bacterial pathogen and offers directions for further study; molecular understanding of these mechanisms will inform the development of adjunctive, anti-virulence therapeutics for UTI.

  2. Subversion of Host Innate Immunity by Uropathogenic Escherichia coli.

    Science.gov (United States)

    Olson, Patrick D; Hunstad, David A

    2016-01-04

    Uropathogenic Escherichia coli (UPEC) cause the majority of community-onset urinary tract infections (UTI) and represent a major etiologic agent of healthcare-associated UTI. Introduction of UPEC into the mammalian urinary tract evokes a well-described inflammatory response, comprising pro-inflammatory cytokines and chemokines as well as cellular elements (neutrophils and macrophages). In human UTI, this inflammatory response contributes to symptomatology and provides means for diagnosis by standard clinical testing. Early in acute cystitis, as demonstrated in murine models, UPEC gains access to an intracellular niche that protects a population of replicating bacteria from arriving phagocytes. To ensure the establishment of this protected niche, UPEC employ multiple strategies to attenuate and delay the initiation of host inflammatory components, including epithelial secretion of chemoattractants. Recent work has also revealed novel mechanisms by which UPEC blunts neutrophil migration across infected uroepithelium. Taken together, these attributes distinguish UPEC from commensal and nonpathogenic E. coli strains. This review highlights the unique immune evasion and suppression strategies of this bacterial pathogen and offers directions for further study; molecular understanding of these mechanisms will inform the development of adjunctive, anti-virulence therapeutics for UTI.

  3. Measles immune suppression: lessons from the macaque model.

    Directory of Open Access Journals (Sweden)

    Rory D de Vries

    Full Text Available Measles remains a significant childhood disease, and is associated with a transient immune suppression. Paradoxically, measles virus (MV infection also induces robust MV-specific immune responses. Current hypotheses for the mechanism underlying measles immune suppression focus on functional impairment of lymphocytes or antigen-presenting cells, caused by infection with or exposure to MV. We have generated stable recombinant MVs that express enhanced green fluorescent protein, and remain virulent in non-human primates. By performing a comprehensive study of virological, immunological, hematological and histopathological observations made in animals euthanized at different time points after MV infection, we developed a model explaining measles immune suppression which fits with the "measles paradox". Here we show that MV preferentially infects CD45RA(- memory T-lymphocytes and follicular B-lymphocytes, resulting in high infection levels in these populations. After the peak of viremia MV-infected lymphocytes were cleared within days, followed by immune activation and lymph node enlargement. During this period tuberculin-specific T-lymphocyte responses disappeared, whilst strong MV-specific T-lymphocyte responses emerged. Histopathological analysis of lymphoid tissues showed lymphocyte depletion in the B- and T-cell areas in the absence of apoptotic cells, paralleled by infiltration of T-lymphocytes into B-cell follicles and reappearance of proliferating cells. Our findings indicate an immune-mediated clearance of MV-infected CD45RA(- memory T-lymphocytes and follicular B-lymphocytes, which causes temporary immunological amnesia. The rapid oligoclonal expansion of MV-specific lymphocytes and bystander cells masks this depletion, explaining the short duration of measles lymphopenia yet long duration of immune suppression.

  4. Suppression of adoptive antituberculosis immunity by normal recipient animals

    International Nuclear Information System (INIS)

    Lefford, M.J.

    1983-01-01

    Adoptive immunity is poorly expressed in normal syngeneic mice. This phenomenon was studied by using experimental antituberculosis immunity as a model system representing pure cell-mediated immunity. Expression of adoptive immunity was facilitated by pretreating recipients with sublethal ionizing radiation (500 rads) or high doses (200 mg/kg) of cyclophosphamide or by using adult thymectomized, lethally irradiated, bone-marrow-reconstituted (TXB) mice. Adult thymectomy was less effective, and a low dose of cyclophosphamide (20 mg/kg) was completely ineffective. The beneficial effect of sublethal irradiation was reduced over time; it persisted for 4 weeks and was absent after 8 weeks. Attempts to restore the suppressed state of normal mice to sublethally irradiated mice by using normal spleen or thymus cells did not succeed. Even in rats, which express adoptive antituberculosis immunity without immunosuppressive treatment, the use of sublethally irradiated or TXB recipients potentiated adoptive immunity. It was concluded that suppression of adoptive immunization in normal recipient mice is mediated predominantly, if not exclusively, by T lymphocytes that are sensitive to a number of immunosuppressive agents. The suppressor cells are long-lived and can be regenerated from precursors that are resistant to 500 but not to 900 rads of ionizing radiation

  5. The paradox of chronic neuroinflammation, systemic immune suppression, autoimmunity after traumatic chronic spinal cord injury.

    Science.gov (United States)

    Schwab, Jan M; Zhang, Yi; Kopp, Marcel A; Brommer, Benedikt; Popovich, Phillip G

    2014-08-01

    During the transition from acute to chronic stages of recovery after spinal cord injury (SCI), there is an evolving state of immunologic dysfunction that exacerbates the problems associated with the more clinically obvious neurologic deficits. Since injury directly affects cells embedded within the "immune privileged/specialized" milieu of the spinal cord, maladaptive or inefficient responses are likely to occur. Collectively, these responses qualify as part of the continuum of "SCI disease" and are important therapeutic targets to improve neural repair and neurological outcome. Generic immune suppressive therapies have been largely unsuccessful, mostly because inflammation and immunity exert both beneficial (plasticity enhancing) and detrimental (e.g. glia- and neurodegenerative; secondary damage) effects and these functions change over time. Moreover, "compartimentalized" investigations, limited to only intraspinal inflammation and associated cellular or molecular changes in the spinal cord, neglect the reality that the structure and function of the CNS are influenced by systemic immune challenges and that the immune system is 'hardwired' into the nervous system. Here, we consider this interplay during the progression from acute to chronic SCI. Specifically, we survey impaired/non-resolving intraspinal inflammation and the paradox of systemic inflammatory responses in the context of ongoing chronic immune suppression and autoimmunity. The concepts of systemic inflammatory response syndrome (SIRS), compensatory anti-inflammatory response syndrome (CARS) and "neurogenic" spinal cord injury-induced immune depression syndrome (SCI-IDS) are discussed as determinants of impaired "host-defense" and trauma-induced autoimmunity. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Escaping Deleterious Immune Response in Their Hosts: Lessons from Trypanosomatids

    Science.gov (United States)

    Geiger, Anne; Bossard, Géraldine; Sereno, Denis; Pissarra, Joana; Lemesre, Jean-Loup; Vincendeau, Philippe; Holzmuller, Philippe

    2016-01-01

    The Trypanosomatidae family includes the genera Trypanosoma and Leishmania, protozoan parasites displaying complex digenetic life cycles requiring a vertebrate host and an insect vector. Trypanosoma brucei gambiense, Trypanosoma cruzi, and Leishmania spp. are important human pathogens causing human African trypanosomiasis (HAT or sleeping sickness), Chagas’ disease, and various clinical forms of Leishmaniasis, respectively. They are transmitted to humans by tsetse flies, triatomine bugs, or sandflies, and affect millions of people worldwide. In humans, extracellular African trypanosomes (T. brucei) evade the hosts’ immune defenses, allowing their transmission to the next host, via the tsetse vector. By contrast, T. cruzi and Leishmania sp. have developed a complex intracellular lifestyle, also preventing several mechanisms to circumvent the host’s immune response. This review seeks to set out the immune evasion strategies developed by the different trypanosomatids resulting from parasite–host interactions and will focus on: clinical and epidemiological importance of diseases; life cycles: parasites–hosts–vectors; innate immunity: key steps for trypanosomatids in invading hosts; deregulation of antigen-presenting cells; disruption of efficient specific immunity; and the immune responses used for parasite proliferation. PMID:27303406

  7. Host Immune Response to Influenza A Virus Infection.

    Science.gov (United States)

    Chen, Xiaoyong; Liu, Shasha; Goraya, Mohsan Ullah; Maarouf, Mohamed; Huang, Shile; Chen, Ji-Long

    2018-01-01

    Influenza A viruses (IAVs) are contagious pathogens responsible for severe respiratory infection in humans and animals worldwide. Upon detection of IAV infection, host immune system aims to defend against and clear the viral infection. Innate immune system is comprised of physical barriers (mucus and collectins), various phagocytic cells, group of cytokines, interferons (IFNs), and IFN-stimulated genes, which provide first line of defense against IAV infection. The adaptive immunity is mediated by B cells and T cells, characterized with antigen-specific memory cells, capturing and neutralizing the pathogen. The humoral immune response functions through hemagglutinin-specific circulating antibodies to neutralize IAV. In addition, antibodies can bind to the surface of infected cells and induce antibody-dependent cell-mediated cytotoxicity or complement activation. Although there are neutralizing antibodies against the virus, cellular immunity also plays a crucial role in the fight against IAVs. On the other hand, IAVs have developed multiple strategies to escape from host immune surveillance for successful replication. In this review, we discuss how immune system, especially innate immune system and critical molecules are involved in the antiviral defense against IAVs. In addition, we highlight how IAVs antagonize different immune responses to achieve a successful infection.

  8. Host Immune Response to Influenza A Virus Infection

    Directory of Open Access Journals (Sweden)

    Xiaoyong Chen

    2018-03-01

    Full Text Available Influenza A viruses (IAVs are contagious pathogens responsible for severe respiratory infection in humans and animals worldwide. Upon detection of IAV infection, host immune system aims to defend against and clear the viral infection. Innate immune system is comprised of physical barriers (mucus and collectins, various phagocytic cells, group of cytokines, interferons (IFNs, and IFN-stimulated genes, which provide first line of defense against IAV infection. The adaptive immunity is mediated by B cells and T cells, characterized with antigen-specific memory cells, capturing and neutralizing the pathogen. The humoral immune response functions through hemagglutinin-specific circulating antibodies to neutralize IAV. In addition, antibodies can bind to the surface of infected cells and induce antibody-dependent cell-mediated cytotoxicity or complement activation. Although there are neutralizing antibodies against the virus, cellular immunity also plays a crucial role in the fight against IAVs. On the other hand, IAVs have developed multiple strategies to escape from host immune surveillance for successful replication. In this review, we discuss how immune system, especially innate immune system and critical molecules are involved in the antiviral defense against IAVs. In addition, we highlight how IAVs antagonize different immune responses to achieve a successful infection.

  9. Non-immune immunoglobulins shield Schistosoma japonicum from host immunorecognition

    Science.gov (United States)

    Wu, Chuang; Hou, Nan; Piao, Xianyu; Liu, Shuai; Cai, Pengfei; Xiao, Yan; Chen, Qijun

    2015-01-01

    Schistosomiasis is a major human parasitic disease with a global impact. Schistosoma japonicum, the most difficult to control, can survive within host veins for decades. Mechanisms of immune evasion by the parasite, including antigenic variation and surface masking, have been implicated but not well defined. In this study, we defined the immunoglobulin-binding proteomes of S. japonicum using human IgG, IgM, and IgE as the molecular bait for affinity purification, followed by protein identification by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Several proteins situated at the tegument of S. japonicum were able to nonselectively bind to the Fc domain of host immunoglobulins, indicating a mechanism for the avoidance of host immune attachment and recognition. The profile of the immunoglobulin-binding proteomes provides further clues for immune evasion mechanisms adopted by S. japonicum. PMID:26299686

  10. Cytomegaloviruses use multiple mechanisms to elude the host immune response.

    Science.gov (United States)

    Wiertz, E; Hill, A; Tortorella, D; Ploegh, H

    1997-06-01

    The study of the effects of cytomegaloviruses on the MHC class I-restricted antigen presentation pathway has yielded an embarrassment of riches. The human cytomegalovirus (HCMV) encodes at least five to six different glycoproteins, each interfering in a different way with elimination of the virus by the host immune system. Most likely, it is the concerted action of these glycoproteins that allows HCMV to escape from elimination by the host immune system during acute and perhaps also persistent infection. Prime targets of these CMV glycoproteins are MHC class I glycoproteins: the very molecules that signal the presence of a virally infected cell to the immune system. Recently, several novel links in the multi-step process of immune evasion by HCMV have been discovered.

  11. Aeromonas salmonicida type III secretion system-effectors-mediated immune suppression in rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Origgi, F C; Benedicenti, O; Segner, H; Sattler, U; Wahli, T; Frey, J

    2017-01-01

    Aeromonas salmonicida subsp. salmonicida, the etiologic agent of furunculosis, is a major pathogen in aquaculture. Together with other pathogens, it is characterized by the presence of a type 3 secretion system (T3SS). The T3SS is the main virulence mechanism of A. salmonicida. It is used by the bacterium to secrete and translocate several toxins and effector proteins into the host cell. Some of these factors have a detrimental impact on the integrity of the cell cytoskeleton, likely contributing to impair phagocytosis. Furthermore, it has been suggested that effectors of the T3SS are able to modulate the host's immune response. Here we present the first partial characterization of the immune response in rainbow trout (Oncorhynchus mykiss) infected with distinct strains of A. salmonicida either carrying (i) a fully functional T3SS or (ii) a functionally impaired T3SS or (iii) devoid of T3SS ("cured" strain). Infection with an A. salmonicida strain either carrying a fully functional or a secretion-impaired T3SS was associated with a strong and persistent immune suppression. However, the infection appeared to be fatal only in the presence of a fully functional T3SS. In contrast, the absence of T3SS was neither associated with immune suppression nor fish death. These findings suggest that the T3SS and T3SS-delivered effector molecules and toxins of A. salmonicida do not only impair the host cells' cytoskeleton thus damaging cell physiology and phagocytosis, but also heavily affect the transcription of critical immune mediators including the shut-down of important warning signals to recognize infection and induce immune defense. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. The role of epidermal cytokines in the generation of cutaneous immune reactions and ultraviolet radiation-induced immune suppression

    International Nuclear Information System (INIS)

    Ullrich, S.E.

    1995-01-01

    The immune suppression generated by UV exposure is a major risk factor for skin cancer patients. This finding has fuelled efforts to understand the mechanisms involved in the immune suppression induced by exposure to UV radiation. This article reviews the recent findings on the role of epidermal cytokines in the generation of an immune response and their role in the induction of immune suppression induced by UV exposure. (UK)

  13. Purulent pericarditis in a dog administered immune-suppressing drugs

    International Nuclear Information System (INIS)

    Mohri, T.; Takashima, K.; Yamane, T.; Sato, H.; Yamane, Y.

    2009-01-01

    A 5-year-old castrated mongrel dog was brought to our hospital with anorexia and vomiting. Laboratory testing revealed immune-mediated hemolytic anemia (IMHA), and so treatment was initiated with multiple immune-suppressing drugs, achieving partial remission from IMHA. However, cardiac tamponade due to purulent pericarditis was identified as a secondary disease. Culture of pericardial fluid yielded numerous Candida albicans and multidrug-resistant Acinetobacter sp. Pericardiocentesis was performed, and the condition of the dog improved. However, the dog died the next day

  14. Resistance and immune response in scabies-infested hosts immunized with Dermatophagoides mites.

    Science.gov (United States)

    Arlian, L G; Rapp, C M; Morgan, M S

    1995-06-01

    Seventy-one percent of rabbits immunized with a mixed (50:50) Dermatophagoides farinae and D. pteronyssinus house dust mite extract were resistant to infestation by Sarcoptes scabiei var. canis. The resistance was evidenced by a marked reduction in parasite load. All immunized hosts developed similar immunogen-specific antibody titers that were independent of the levels of scabies infestation that developed when the hosts were infested with scabies. Resistant hosts exhibited significantly lower scabies-specific immunoglobulin titers and produced antibody to fewer scabies antigens than did nonresistant hosts. All infested hosts (resistant and nonresistant) showed a cellular infiltrate in the scabietic lesions that was composed of neutrophils, plasma cells, macrophages, and mononuclear cells. Resistant hosts were characterized by fewer plasma cells in the infiltrate than were observed for non-resistant hosts. Resistant hosts exhibited a gradual increase in the number of infiltrating neutrophils, followed by a decrease that correlated with a decrease in the mite burden. Nonresistant hosts exhibited an early rapid increase, a decrease, and then a gradual increase in the concentration of neutrophils as the mite load increased. These results clearly showed that D. farinae/D. pteronyssinus antigens/epitopes can sensitize the hosts to scabies mites and induce protective immunity. The lower circulating antibody levels and generally stronger inflammatory cell-mediated response of resistant hosts compared with nonresistant hosts suggested that the mechanism by which immunization with Dermatophagoides mites induces immunity to scabies mites involved a down-regulated T helper cell type 2 (Th2) response with reduced antibody production but an up-regulated and stronger Th1 (inflammatory cell-mediated) response to scabies.

  15. Suppression of Antitumor Immune Responses by Human Papillomavirus through Epigenetic Downregulation of CXCL14

    Directory of Open Access Journals (Sweden)

    Louis Cicchini

    2016-05-01

    Full Text Available High-risk human papillomaviruses (HPVs are causally associated with multiple human cancers. Previous studies have shown that the HPV oncoprotein E7 induces immune suppression; however, the underlying mechanisms remain unknown. To understand the mechanisms by which HPV deregulates host immune responses in the tumor microenvironment, we analyzed gene expression changes of all known chemokines and their receptors using our global gene expression data sets from human HPV-positive and -negative head/neck cancer and cervical tissue specimens in different disease stages. We report that, while many proinflammatory chemokines increase expression throughout cancer progression, CXCL14 is dramatically downregulated in HPV-positive cancers. HPV suppression of CXCL14 is dependent on E7 and associated with DNA hypermethylation in the CXCL14 promoter. Using in vivo mouse models, we revealed that restoration of Cxcl14 expression in HPV-positive mouse oropharyngeal carcinoma cells clears tumors in immunocompetent syngeneic mice, but not in Rag1-deficient mice. Further, Cxcl14 reexpression significantly increases natural killer (NK, CD4+ T, and CD8+ T cell infiltration into the tumor-draining lymph nodes in vivo. In vitro transwell migration assays show that Cxcl14 reexpression induces chemotaxis of NK, CD4+ T, and CD8+ T cells. These results suggest that CXCL14 downregulation by HPV plays an important role in suppression of antitumor immune responses. Our findings provide a new mechanistic understanding of virus-induced immune evasion that contributes to cancer progression.

  16. Host-microbiota interplay in mediating immune disorders.

    Science.gov (United States)

    Felix, Krysta M; Tahsin, Shekha; Wu, Hsin-Jung Joyce

    2017-10-06

    To maintain health, the immune system must maintain a delicate balance between eliminating invading pathogens and avoiding immune disorders such as autoimmunity and allergies. The gut microbiota provide essential health benefits to the host, particularly by regulating immune homeostasis. Dysbiosis, an alteration and imbalance of the gut microbiota, is associated with the development of several autoimmune diseases in both mice and humans. In this review, we discuss recent advances in understanding how certain factors, such as age and gender, affect the gut microbiota, which in turn can influence the development of autoimmune diseases. The age factor in microbiota-dependent immune disorders indicates a window of opportunity for future diagnostic and therapeutic approaches. We also discuss unique commensal bacteria with strong immunomodulatory activity. Finally, we provide an overview of the potential molecular mechanisms whereby gut microbiota induce autoimmunity, as well as the evidence that gut microbiota trigger extraintestinal diseases by inducing the migration of gut-derived immune cells. Elucidating the interaction of gut microbiota and the host immune system will help us understand the pathogenesis of immune disorders, and provide us with new foundations to develop novel immuno- or microbe-targeted therapies. © 2017 New York Academy of Sciences.

  17. Soluble Host Defense Lectins in Innate Immunity to Influenza Virus

    Science.gov (United States)

    Ng, Wy Ching; Tate, Michelle D.; Brooks, Andrew G.; Reading, Patrick C.

    2012-01-01

    Host defenses against viral infections depend on a complex interplay of innate (nonspecific) and adaptive (specific) components. In the early stages of infection, innate mechanisms represent the main line of host defense, acting to limit the spread of virus in host tissues prior to the induction of the adaptive immune response. Serum and lung fluids contain a range of lectins capable of recognizing and destroying influenza A viruses (IAV). Herein, we review the mechanisms by which soluble endogenous lectins mediate anti-IAV activity, including their role in modulating IAV-induced inflammation and disease and their potential as prophylactic and/or therapeutic treatments during severe IAV-induced disease. PMID:22665991

  18. Virus-mediated suppression of host non-self recognition facilitates horizontal transmission of heterologous viruses.

    Directory of Open Access Journals (Sweden)

    Songsong Wu

    2017-03-01

    Full Text Available Non-self recognition is a common phenomenon among organisms; it often leads to innate immunity to prevent the invasion of parasites and maintain the genetic polymorphism of organisms. Fungal vegetative incompatibility is a type of non-self recognition which often induces programmed cell death (PCD and restricts the spread of molecular parasites. It is not clearly known whether virus infection could attenuate non-self recognition among host individuals to facilitate its spread. Here, we report that a hypovirulence-associated mycoreovirus, named Sclerotinia sclerotiorum mycoreovirus 4 (SsMYRV4, could suppress host non-self recognition and facilitate horizontal transmission of heterologous viruses. We found that cell death in intermingled colony regions between SsMYRV4-infected Sclerotinia sclerotiorum strain and other tested vegetatively incompatible strains was markedly reduced and inhibition barrage lines were not clearly observed. Vegetative incompatibility, which involves Heterotrimeric guanine nucleotide-binding proteins (G proteins signaling pathway, is controlled by specific loci termed het (heterokaryon incompatibility loci. Reactive oxygen species (ROS plays a key role in vegetative incompatibility-mediated PCD. The expression of G protein subunit genes, het genes, and ROS-related genes were significantly down-regulated, and cellular production of ROS was suppressed in the presence of SsMYRV4. Furthermore, SsMYRV4-infected strain could easily accept other viruses through hyphal contact and these viruses could be efficiently transmitted from SsMYRV4-infected strain to other vegetatively incompatible individuals. Thus, we concluded that SsMYRV4 is capable of suppressing host non-self recognition and facilitating heterologous viruses transmission among host individuals. These findings may enhance our understanding of virus ecology, and provide a potential strategy to utilize hypovirulence-associated mycoviruses to control fungal diseases.

  19. Human papillomavirus (HPV upregulates the cellular deubiquitinase UCHL1 to suppress the keratinocyte's innate immune response.

    Directory of Open Access Journals (Sweden)

    Rezaul Karim

    Full Text Available Persistent infection of basal keratinocytes with high-risk human papillomavirus (hrHPV may cause cancer. Keratinocytes are equipped with different pattern recognition receptors (PRRs but hrHPV has developed ways to dampen their signals resulting in minimal inflammation and evasion of host immunity for sustained periods of time. To understand the mechanisms underlying hrHPV's capacity to evade immunity, we studied PRR signaling in non, newly, and persistently hrHPV-infected keratinocytes. We found that active infection with hrHPV hampered the relay of signals downstream of the PRRs to the nucleus, thereby affecting the production of type-I interferon and pro-inflammatory cytokines and chemokines. This suppression was shown to depend on hrHPV-induced expression of the cellular protein ubiquitin carboxyl-terminal hydrolase L1 (UCHL1 in keratinocytes. UCHL1 accomplished this by inhibiting tumor necrosis factor receptor-associated factor 3 (TRAF3 K63 poly-ubiquitination which lead to lower levels of TRAF3 bound to TANK-binding kinase 1 and a reduced phosphorylation of interferon regulatory factor 3. Furthermore, UCHL1 mediated the degradation of the NF-kappa-B essential modulator with as result the suppression of p65 phosphorylation and canonical NF-κB signaling. We conclude that hrHPV exploits the cellular protein UCHL1 to evade host innate immunity by suppressing PRR-induced keratinocyte-mediated production of interferons, cytokines and chemokines, which normally results in the attraction and activation of an adaptive immune response. This identifies UCHL1 as a negative regulator of PRR-induced immune responses and consequently its virus-increased expression as a strategy for hrHPV to persist.

  20. Tumor - host immune interactions in Ewing sarcoma : implications for therapy

    NARCIS (Netherlands)

    Berghuis, Dagmar

    2012-01-01

    In this thesis, we report on various aspects of tumor - host (immune) interactions in Ewing sarcoma patients with the aim to obtain leads for immunotherapeutic or targeted treatment strategies. We demonstrate a key role for interferon gamma (IFNg) in enhancing both Ewing sarcoma immunogenicity and

  1. Programmed Death Ligand 2 in Cancer-Induced Immune Suppression

    Directory of Open Access Journals (Sweden)

    Esdy N. Rozali

    2012-01-01

    Full Text Available Inhibitory molecules of the B7/CD28 family play a key role in the induction of immune tolerance in the tumor microenvironment. The programmed death-1 receptor (PD-1, with its ligands PD-L1 and PD-L2, constitutes an important member of these inhibitory pathways. The relevance of the PD-1/PD-L1 pathway in cancer has been extensively studied and therapeutic approaches targeting PD-1 and PD-L1 have been developed and are undergoing human clinical testing. However, PD-L2 has not received as much attention and its role in modulating tumor immunity is less clear. Here, we review the literature on the immunobiology of PD-L2, particularly on its possible roles in cancer-induced immune suppression and we discuss the results of recent studies targeting PD-L2 in cancer.

  2. Salmonella–Host Interactions – Modulation of the Host Innate Immune System

    OpenAIRE

    Hurley, Daniel; McCusker, Matthew P.; Fanning, Séamus; Martins, Marta

    2014-01-01

    Salmonella enterica (S. enterica) are Gram-negative bacteria that can invade a broad range of hosts causing both acute and chronic infections. This phenotype is related to its ability to replicate and persist within non-phagocytic host epithelial cells as well as phagocytic dendritic cells and macrophages of the innate immune system.Infection with S. enterica manifests itself through a broad range of clinical symptoms and can result in asymptomatic carriage, gastroenteritis, systemic disease ...

  3. Regulation of host metabolism and immunity by the gut microbiome

    DEFF Research Database (Denmark)

    Laursen, Janne Marie

    During recent years, central roles of the gut microbiome in metabolic and immunological diseases have been uncovered, and multiple studies have shown that bacterial-derived components shape host physiology and immune responses via direct cellular interactions. The intestinal immune system...... is crucial for the induction of effective immune responses against invading pathogens while simultaneously being vital for maintenance of homeostatic conditions. This balancing act requires a tightly regulated system that might be influenced by bacterial metabolites such as butyrate, since reduced...... frequencies of butyrate-producing species associate with various lifestyle-associated disorders. In the present work, we used systems biology approaches to understand how bacterial components may associate with metabolic disease and mediate phenotypic shifts in pro-inflammatory immune cells. First, we...

  4. Th9 Cells Drive Host Immunity against Gastrointestinal Worm Infection.

    Science.gov (United States)

    Licona-Limón, Paula; Henao-Mejia, Jorge; Temann, Angela U; Gagliani, Nicola; Licona-Limón, Ileana; Ishigame, Harumichi; Hao, Liming; Herbert, De'broski R; Flavell, Richard A

    2013-10-17

    Type 2 inflammatory cytokines, including interleukin-4 (IL-4), IL-5, IL-9, and IL-13, drive the characteristic features of immunity against parasitic worms and allergens. Whether IL-9 serves an essential role in the initiation of host-protective responses is controversial, and the importance of IL-9- versus IL-4-producing CD4⁺ effector T cells in type 2 immunity is incompletely defined. Herein, we generated IL-9-deficient and IL-9-fluorescent reporter mice that demonstrated an essential role for this cytokine in the early type 2 immunity against Nippostrongylus brasiliensis. Whereas T helper 9 (Th9) cells and type 2 innate lymphoid cells (ILC2s) were major sources of infection-induced IL-9 production, the adoptive transfer of Th9 cells, but not Th2 cells, caused rapid worm expulsion, marked basophilia, and increased mast cell numbers in Rag2-deficient hosts. Taken together, our data show a critical and nonredundant role for Th9 cells and IL-9 in host-protective type 2 immunity against parasitic worm infection. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Immune response to Echinococcus infection: parasite avoidance and host protection.

    Science.gov (United States)

    Wakelin, D

    1997-12-01

    The life cycles of Echinococcus spp, involve two phases that have quite different immunological relationships with the host--the parenteral metacestode and the enteral adult. Immune control of the metacestode (at least of E. granulosus) by vaccination is now a real possibility, but there seems little prospect of similar control of the adult worms. Vaccination against metacestodes must not only induce effective responses but also prevent the parasite modulating these in such a way as to render them ineffective. This requires a much fuller understanding of the basis of parasite avoidance mechanisms, in particular an understanding of the balance of parasite- and host-protective mechanisms that involve the activity of T lymphocyte subsets. Protective responses against adult worms in the intestine appear weak and ineffective, although it is clear that the worms are immunogenic and there is some evidence that the host can become immune. Again, a more complete insight into the nature of the worm's association with the mucosal immune system is required, and a fuller understanding of the variables that influence this association; host genetic variation may prove to be an important factor that determines the outcome of adult worm infections.

  6. Invasion of Dendritic Cells, Macrophages and Neutrophils by the Bordetella Adenylate Cyclase Toxin: A Subversive Move to Fool Host Immunity.

    Science.gov (United States)

    Fedele, Giorgio; Schiavoni, Ilaria; Adkins, Irena; Klimova, Nela; Sebo, Peter

    2017-09-21

    Adenylate cyclase toxin (CyaA) is released in the course of B. pertussis infection in the host's respiratory tract in order to suppress its early innate and subsequent adaptive immune defense. CD11b-expressing dendritic cells (DC), macrophages and neutrophils are professional phagocytes and key players of the innate immune system that provide a first line of defense against invading pathogens. Recent findings revealed the capacity of B. pertussis CyaA to intoxicate DC with high concentrations of 3',5'-cyclic adenosine monophosphate (cAMP), which ultimately skews the host immune response towards the expansion of Th17 cells and regulatory T cells. CyaA-induced cAMP signaling swiftly incapacitates opsonophagocytosis, oxidative burst and NO-mediated killing of bacteria by neutrophils and macrophages. The subversion of host immune responses by CyaA after delivery into DC, macrophages and neutrophils is the subject of this review.

  7. Myc Cooperates with Ras by Programming Inflammation and Immune Suppression.

    Science.gov (United States)

    Kortlever, Roderik M; Sodir, Nicole M; Wilson, Catherine H; Burkhart, Deborah L; Pellegrinet, Luca; Brown Swigart, Lamorna; Littlewood, Trevor D; Evan, Gerard I

    2017-11-30

    The two oncogenes KRas and Myc cooperate to drive tumorigenesis, but the mechanism underlying this remains unclear. In a mouse lung model of KRas G12D -driven adenomas, we find that co-activation of Myc drives the immediate transition to highly proliferative and invasive adenocarcinomas marked by highly inflammatory, angiogenic, and immune-suppressed stroma. We identify epithelial-derived signaling molecules CCL9 and IL-23 as the principal instructing signals for stromal reprogramming. CCL9 mediates recruitment of macrophages, angiogenesis, and PD-L1-dependent expulsion of T and B cells. IL-23 orchestrates exclusion of adaptive T and B cells and innate immune NK cells. Co-blockade of both CCL9 and IL-23 abrogates Myc-induced tumor progression. Subsequent deactivation of Myc in established adenocarcinomas triggers immediate reversal of all stromal changes and tumor regression, which are independent of CD4 + CD8 + T cells but substantially dependent on returning NK cells. We show that Myc extensively programs an immune suppressive stroma that is obligatory for tumor progression. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Complement factor H in host defense and immune evasion.

    Science.gov (United States)

    Parente, Raffaella; Clark, Simon J; Inforzato, Antonio; Day, Anthony J

    2017-05-01

    Complement is the major humoral component of the innate immune system. It recognizes pathogen- and damage-associated molecular patterns, and initiates the immune response in coordination with innate and adaptive immunity. When activated, the complement system unleashes powerful cytotoxic and inflammatory mechanisms, and thus its tight control is crucial to prevent damage to host tissues and allow restoration of immune homeostasis. Factor H is the major soluble inhibitor of complement, where its binding to self markers (i.e., particular glycan structures) prevents complement activation and amplification on host surfaces. Not surprisingly, mutations and polymorphisms that affect recognition of self by factor H are associated with diseases of complement dysregulation, such as age-related macular degeneration and atypical haemolytic uremic syndrome. In addition, pathogens (i.e., non-self) and cancer cells (i.e., altered-self) can hijack factor H to evade the immune response. Here we review recent (and not so recent) literature on the structure and function of factor H, including the emerging roles of this protein in the pathophysiology of infectious diseases and cancer.

  9. Host Immune Responses That Promote Initial HIV Spread

    Science.gov (United States)

    2011-07-01

    been observed that Treg cells from hosts infected with HIV and FIV ( feline immunodeficiency virus) suppress antiviral responses during the chronic stage...E. R. Galemore, S. VandeWoude, and G. Dean. Regulatory T cell depletion prior to acute feline immunodeficiency virus infection does not alter...T cells is associated with improved antiviral responses in cats chronically infected with feline immunodeficiency virus. Virology, 403(2):163–72, 2010

  10. The paradox of chronic neuroinflammation, systemic immune suppression and autoimmunity after traumatic chronic spinal cord injury

    Science.gov (United States)

    Kopp, Marcel A.; Brommer, Benedikt; Popovich, Phillip G.

    2014-01-01

    During the transition from acute to chronic stages of recovery after spinal cord injury (SCI), there is an evolving state of immunologic dysfunction that exacerbates the problems associated with the more clinically obvious neurologic deficits. Since injury directly affects cells embedded within the “immune privileged/specialized” milieu of the spinal cord, maladaptive or inefficient responses are likely to occur. Collectively, these responses qualify as part of the continuum of “SCI disease” and are important therapeutic targets to improve neural repair and neurological outcome. Generic immune suppressive therapies have been largely unsuccessful, mostly because nflammation and immunity exert both beneficial (plasticity enhancing) and detrimental (e.g. glia- and neurodegenerative; secondary damage) effects and these functions change over time. Moreover, “compartmentalized” investigations, limited to only intraspinal inflammation and associated cellular or molecular changes in the spinal cord, neglect the reality that the structure and function of the CNS is influenced by systemic immune challenges and that the immune system is hardwired into the nervous system. Here, we consider this interplay during the progression from acute to chronic SCI. Specifically, we survey impaired/non-resolving intraspinal inflammation and the paradox of systemic inflammatory responses in the face of ongoing chronic immune suppression and autoimmunity. The concepts of systemic inflammatory response syndrome (SIRS), compensatory anti-inflammatory response syndrome (CARS) and ‘neurogenic’ spinal cord injury-induced immune depression syndrome (SCI-IDS) are discussed as determinants of impaired ‘host-defense’ and trauma-induced autoimmunity. PMID:25017893

  11. Immune suppression of erythropoiesis in transient erythroblastopenia of childhood.

    Science.gov (United States)

    Koenig, H M; Lightsey, A L; Nelson, D P; Diamond, L K

    1979-09-01

    Serum and IgG from four children with transient erythroblastopenia of childhood (TEC) was tested to see what effect it would have on development of erythroid colonies from bone marrow mononuclear cells. Serum and IgG specimens obtained at the time of diagnosis uniformly suppressed erythroid colony development from CFU-E. Washed bone marrow mononuclear cells from a child with TEC failed to grow in the presence of his own serum, but grew normally in the presence of isologous serum. Serum specimens obtained from patients after recovery from TEC had no effect on erythroid colony development. The anemia of TEC appears to be due to transient immune suppression of erythroid colony development.

  12. Conditional immune-gene suppression of honeybees parasitized by Varroa mites

    Science.gov (United States)

    Gregory, Pamela G.; Evans, Jay D.; Rinderer, Thomas; de Guzman, Lilia

    2005-01-01

    The ectoparasitic mite, Varroa destructor, is the most destructive parasite of managed honeybee colonies worldwide. Since V. destructor transfers pathogens to honeybees, it may be adaptive for bees to respond to mite infestation by upregulating their immune responses. Mites, however, may overcome the host's immune responses by suppressing them, which could facilitate the mite's ability to feed on hemolymph. A humoral immune response of bees parasitized by V. destructor may be detected by studying the expression levels of antibacterial peptides, such as abaecin and defensin, known to be immune-responsive. Expression levels for these two antibacterial peptides changed non-linearly with respect to the number of mites parasitizing honeybee pupae. Bees exposed to low or moderate number of mites had fewer immune-related transcripts than pupae that were never parasitized or pupae with high mite loads. Although many of the pupae tested indicated the presence of bacteria, no correlation with mite numbers or immune-response levels existed. All bees tested negative for acute paralysis and Kashmir bee viruses known to be vectored by V. destructor. PMID:16299597

  13. Tumor suppressor maspin as a modulator of host immune response to cancer

    Directory of Open Access Journals (Sweden)

    Sijana H. Dzinic

    2015-10-01

    Full Text Available Despite the promising clinical outcome, the primary challenge of the curative cancer immunotherapy is to overcome the dichotomy of the immune response: tumor-evoked immunostimulatory versus tumor-induced immunosuppressive. The goal needs to be two-fold, to re-establish sustainable antitumor-cancer immunity and to eliminate immunosuppression. The successful elimination of cancer cells by immunosurveillance requires the antigenic presentation of the tumor cells or tumor-associated antigens and the expression of immunostimulatory cytokines and chemokines by cancer and immune cells. Tumors are heterogeneous and as such, some of the tumor cells are thought to have stem cell characteristics that enable them to suppress or desensitize the host immunity due to acquired epigenetic changes. A central mechanism underlying tumor epigenetic instability is the increased histone deacetylase (HDAC-mediated repression of HDAC-target genes regulating homeostasis and differentiation. It was noted that pharmacological HDAC inhibitors are not effective in eliminating tumor cells partly because they may induce immunosuppression. We have shown that epithelial-specific tumor suppressor maspin, an ovalbumin-like non-inhibitory serine protease inhibitor, reprograms tumor cells toward better differentiated phenotypes by inhibiting HDAC1. Recently, we uncovered a novel function of maspin in directing host immunity towards tumor elimination. In this review, we discuss the maspin and maspin/HDAC1 interplay in tumor biology and immunology. We propose that maspin based therapies may eradicate cancer.

  14. Dual oxidase in mucosal immunity and host-microbe homeostasis.

    Science.gov (United States)

    Bae, Yun Soo; Choi, Myoung Kwon; Lee, Won-Jae

    2010-07-01

    Mucosal epithelia are in direct contact with microbes, which range from beneficial symbionts to pathogens. Accordingly, hosts must have a conflicting strategy to combat pathogens efficiently while tolerating symbionts. Recent progress has revealed that dual oxidase (DUOX) plays a key role in mucosal immunity in organisms that range from flies to humans. Information from the genetic model of Drosophila has advanced our understanding of the regulatory mechanism of DUOX and its role in mucosal immunity. Further investigations of DUOX regulation in response to symbiotic or non-symbiotic bacteria and the in vivo consequences in host physiology will give a novel insight into the microbe-controlling system of the mucosa. Copyright 2010 Elsevier Ltd. All rights reserved.

  15. Pathogens and host immunity in the ancient human oral cavity

    Science.gov (United States)

    Warinner, Christina; Matias Rodrigues, João F.; Vyas, Rounak; Trachsel, Christian; Shved, Natallia; Grossmann, Jonas; Radini, Anita; Hancock, Y.; Tito, Raul Y.; Fiddyment, Sarah; Speller, Camilla; Hendy, Jessica; Charlton, Sophy; Luder, Hans Ulrich; Salazar-García, Domingo C.; Eppler, Elisabeth; Seiler, Roger; Hansen, Lars; Samaniego Castruita, José Alfredo; Barkow-Oesterreicher, Simon; Teoh, Kai Yik; Kelstrup, Christian; Olsen, Jesper V.; Nanni, Paolo; Kawai, Toshihisa; Willerslev, Eske; von Mering, Christian; Lewis, Cecil M.; Collins, Matthew J.; Gilbert, M. Thomas P.; Rühli, Frank; Cappellini, Enrico

    2014-01-01

    Calcified dental plaque (dental calculus) preserves for millennia and entraps biomolecules from all domains of life and viruses. We report the first high-resolution taxonomic and protein functional characterization of the ancient oral microbiome and demonstrate that the oral cavity has long served as a reservoir for bacteria implicated in both local and systemic disease. We characterize: (i) the ancient oral microbiome in a diseased state, (ii) 40 opportunistic pathogens, (iii) the first evidence of ancient human-associated putative antibiotic resistance genes, (iv) a genome reconstruction of the periodontal pathogen Tannerella forsythia, (v) 239 bacterial and 43 human proteins, allowing confirmation of a long-term association between host immune factors, “red-complex” pathogens, and periodontal disease, and (vi) DNA sequences matching dietary sources. Directly datable and nearly ubiquitous, dental calculus permits the simultaneous investigation of pathogen activity, host immunity, and diet, thereby extending the direct investigation of common diseases into the human evolutionary past. PMID:24562188

  16. Viral Evasion and Subversion Mechanisms of the Host Immune System

    Directory of Open Access Journals (Sweden)

    Mehran Ghaemi-Bafghi

    2013-10-01

    Full Text Available Viruses are the most abundant and versatile pathogens which challenge the immune system and cause major threats to human health. Viruses employ differ¬ent mechanisms to evade host immune responses that we describe them under the following headings: Inhibition of humoral responses, Interference with interferons, Inhibition and modulation of cytokines and chemokines, Inhibitors of apoptosis, Evading CTLs and NKs, and modulating MHC function.Viruses inhibit humoral immunity in different ways which contains change of viral antigens, production of regulatory proteins of complement system and receptors of the Fc part of antibodies. Viruses block interferon production and function via interruption of cell signaling JAK/STAT pathway, Inhibition of eIF-2α phosphorylation and translational arrest and 2'5'OS/RNAse L system. Also, Poxviruses produce soluble versions of receptors for interferons. One of the most important ways of viral evasion is inhibition and manipulation of cytokines; for example, Herpsviruses and Poxviruses produce viral cytokines (virokines and cytokine receptors (viroceptors. In addition, viruses change maturation and expression of MHC I and MHC II molecules to interrupt viral antigens presentation and hide them from immune system recognition. Also, they inhibit NK cell functions.In this review, we provide an overview of the viral evasion mechanisms of immune system. Since most viruses have developed strategies for evasion of immune system, if we know these mechanisms in detail we can fight them more successfully.

  17. Mycobacterium tuberculosis co-operonic PE32/PPE65 proteins alter host immune responses by hampering Th1 response

    Directory of Open Access Journals (Sweden)

    Mohd eKhubaib

    2016-05-01

    Full Text Available PE/PPE genes, present in cluster with ESAT-6 like genes, are suspected to have a role in antigenic variation and virulence of Mycobacterium tuberculosis. Their roles in immune evasion and immune modulation of host are also well documented. We present evidence that PE32/PPE65 present within the RD8 region are co-operonic, co-transcribed and co-translated, and play role in modulating host immune responses. Experiments with macrophage cell lines revealed that this protein complex suppresses pro-inflammatory cytokines such as TNF-α and IL-6 whereas also inducing high expression of anti-inflammatory IL-10. Immunization of mice with these recombinant proteins dampens an effective Th1 response as evident from reduced frequency of IFN-g and IL-2 producing CD4+ and CD8+ T cells. IgG sub-typing from serum of immunized mice revealed high levels of IgG1 when compared with IgG2a and IgG2b. Further IgG1/IgG2a ratio clearly demonstrated that the protein complex manipulates the host immune response favourable to the pathogen. Our results demonstrate that the co-transcribed and co-translated PE32 and PPE65 antigens are involved specifically in modulating anti-mycobacterial host immune response by hampering Th1 response.

  18. Alphacoronavirus Protein 7 Modulates Host Innate Immune Response

    Science.gov (United States)

    Cruz, Jazmina L. G.; Becares, Martina; Sola, Isabel; Oliveros, Juan Carlos; Zúñiga, Sonia

    2013-01-01

    Innate immune response is the first line of antiviral defense resulting, in most cases, in pathogen clearance with minimal clinical consequences. Viruses have developed diverse strategies to subvert host defense mechanisms and increase their survival. In the transmissible gastroenteritis virus (TGEV) as a model, we previously reported that accessory gene 7 counteracts the host antiviral response by associating with the catalytic subunit of protein phosphatase 1 (PP1c). In the present work, the effect of the absence of gene 7 on the host cell, during infection, was further analyzed by transcriptomic analysis. The pattern of gene expression of cells infected with a recombinant mutant TGEV, lacking gene 7 expression (rTGEV-Δ7), was compared to that of cells infected with the parental virus (rTGEV-wt). Genes involved in the immune response, the interferon response, and inflammation were upregulated during TGEV infection in the absence of gene 7. An exacerbated innate immune response during infection with rTGEV-Δ7 virus was observed both in vitro and in vivo. An increase in macrophage recruitment and activation in lung tissues infected with rTGEV-Δ7 virus was observed compared to cells infected with the parental virus. In summary, the absence of protein 7 both in vitro and in vivo led to increased proinflammatory responses and acute tissue damage after infection. In a porcine animal model, which is immunologically similar to humans, we present a novel example of how viral proteins counteract host antiviral pathways to determine the infection outcome and pathogenesis. PMID:23824792

  19. Suppression of systemic autoimmunity by the innate immune adaptor STING

    Science.gov (United States)

    Sharma, Shruti; Campbell, Allison M.; Chan, Jennie; Schattgen, Stefan A.; Orlowski, Gregory M.; Nayar, Ribhu; Huyler, Annie H.; Nündel, Kerstin; Mohan, Chandra; Berg, Leslie J.; Shlomchik, Mark J.; Marshak-Rothstein, Ann; Fitzgerald, Katherine A.

    2015-01-01

    Cytosolic DNA-sensing pathways that signal via Stimulator of interferon genes (STING) mediate immunity to pathogens and also promote autoimmune pathology in DNaseII- and DNaseIII-deficient mice. In contrast, we report here that STING potently suppresses inflammation in a model of systemic lupus erythematosus (SLE). Lymphoid hypertrophy, autoantibody production, serum cytokine levels, and other indicators of immune activation were markedly increased in STING-deficient autoimmune-prone mice compared with STING-sufficient littermates. As a result, STING-deficient autoimmune-prone mice had significantly shorter lifespans than controls. Importantly, Toll-like receptor (TLR)-dependent systemic inflammation during 2,6,10,14-tetramethylpentadecane (TMPD)-mediated peritonitis was similarly aggravated in STING-deficient mice. Mechanistically, STING-deficient macrophages failed to express negative regulators of immune activation and thus were hyperresponsive to TLR ligands, producing abnormally high levels of proinflammatory cytokines. This hyperreactivity corresponds to dramatically elevated numbers of inflammatory macrophages and granulocytes in vivo. Collectively these findings reveal an unexpected negative regulatory role for STING, having important implications for STING-directed therapies. PMID:25646421

  20. Suppression of plant resistance gene-based immunity by a fungal effector.

    Directory of Open Access Journals (Sweden)

    Petra M Houterman

    2008-05-01

    Full Text Available The innate immune system of plants consists of two layers. The first layer, called basal resistance, governs recognition of conserved microbial molecules and fends off most attempted invasions. The second layer is based on Resistance (R genes that mediate recognition of effectors, proteins secreted by pathogens to suppress or evade basal resistance. Here, we show that a plant-pathogenic fungus secretes an effector that can both trigger and suppress R gene-based immunity. This effector, Avr1, is secreted by the xylem-invading fungus Fusarium oxysporum f.sp. lycopersici (Fol and triggers disease resistance when the host plant, tomato, carries a matching R gene (I or I-1. At the same time, Avr1 suppresses the protective effect of two other R genes, I-2 and I-3. Based on these observations, we tentatively reconstruct the evolutionary arms race that has taken place between tomato R genes and effectors of Fol. This molecular analysis has revealed a hitherto unpredicted strategy for durable disease control based on resistance gene combinations.

  1. Invasion of Dendritic Cells, Macrophages and Neutrophils by the Bordetella Adenylate Cyclase Toxin: A Subversive Move to Fool Host Immunity

    Directory of Open Access Journals (Sweden)

    Giorgio Fedele

    2017-09-01

    Full Text Available Adenylate cyclase toxin (CyaA is released in the course of B. pertussis infection in the host’s respiratory tract in order to suppress its early innate and subsequent adaptive immune defense. CD11b-expressing dendritic cells (DC, macrophages and neutrophils are professional phagocytes and key players of the innate immune system that provide a first line of defense against invading pathogens. Recent findings revealed the capacity of B. pertussis CyaA to intoxicate DC with high concentrations of 3′,5′-cyclic adenosine monophosphate (cAMP, which ultimately skews the host immune response towards the expansion of Th17 cells and regulatory T cells. CyaA-induced cAMP signaling swiftly incapacitates opsonophagocytosis, oxidative burst and NO-mediated killing of bacteria by neutrophils and macrophages. The subversion of host immune responses by CyaA after delivery into DC, macrophages and neutrophils is the subject of this review.

  2. Yersinia type III effectors perturb host innate immune responses

    Science.gov (United States)

    Pha, Khavong; Navarro, Lorena

    2016-01-01

    The innate immune system is the first line of defense against invading pathogens. Innate immune cells recognize molecular patterns from the pathogen and mount a response to resolve the infection. The production of proinflammatory cytokines and reactive oxygen species, phagocytosis, and induced programmed cell death are processes initiated by innate immune cells in order to combat invading pathogens. However, pathogens have evolved various virulence mechanisms to subvert these responses. One strategy utilized by Gram-negative bacterial pathogens is the deployment of a complex machine termed the type III secretion system (T3SS). The T3SS is composed of a syringe-like needle structure and the effector proteins that are injected directly into a target host cell to disrupt a cellular response. The three human pathogenic Yersinia spp. (Y. pestis, Y. enterocolitica, and Y. pseudotuberculosis) are Gram-negative bacteria that share in common a 70 kb virulence plasmid which encodes the T3SS. Translocation of the Yersinia effector proteins (YopE, YopH, YopT, YopM, YpkA/YopO, and YopP/J) into the target host cell results in disruption of the actin cytoskeleton to inhibit phagocytosis, downregulation of proinflammatory cytokine/chemokine production, and induction of cellular apoptosis of the target cell. Over the past 25 years, studies on the Yersinia effector proteins have unveiled tremendous knowledge of how the effectors enhance Yersinia virulence. Recently, the long awaited crystal structure of YpkA has been solved providing further insights into the activation of the YpkA kinase domain. Multisite autophosphorylation by YpkA to activate its kinase domain was also shown and postulated to serve as a mechanism to bypass regulation by host phosphatases. In addition, novel Yersinia effector protein targets, such as caspase-1, and signaling pathways including activation of the inflammasome were identified. In this review, we summarize the recent discoveries made on Yersinia

  3. Evasion of host immune responses by tumours and viruses.

    Science.gov (United States)

    Doherty, P C; Tripp, R A; Sixbey, J W

    1994-01-01

    Viruses and tumours use various mechanisms to avoid immune surveillance. Oncogenic viruses have achieved a balance with the immune system through evolutionary time to ensure long-term persistence. Mutations that promote escape mechanisms favouring tumour growth to the detriment of host survival through reproductive age offer no selective advantage and will not generally be maintained in the viral genome that persists in nature. Conventional (non-oncogenic) and tumour viruses interact with various immune mediators and T cells in different ways. Oncogenic viruses cannot operate solely in the context of a lytic cycle, though this may be characteristic of the initial phase of infection that is limited by the acute immune response. Some oncogenic viruses interact with normal cellular growth control and signalling mechanisms. Synthesis of key viral proteins may be tightly controlled in replicating cells that are subject to T cell surveillance, such as basal epithelia, while productive infection occurs in non-proliferating progeny that are lost under normal physiological conditions, such as desquamating epithelia. Tumorigenesis may be an aberrant consequence of the molecular mechanisms needed to maintain this pattern of viral growth regulation in the context of the cell cycle. Vaccines designed to limit the acute phase of infection with cell-free oncogenic viruses should be as effective as those for conventional viruses.

  4. Behavioral Immunity Suppresses an Epizootic in Caribbean Spiny Lobsters.

    Directory of Open Access Journals (Sweden)

    Mark J Butler

    Full Text Available Sociality has evolved in a wide range of animal taxa but infectious diseases spread rapidly in populations of aggregated individuals, potentially negating the advantages of their social interactions. To disengage from the coevolutionary struggle with pathogens, some hosts have evolved various forms of "behavioral immunity"; yet, the effectiveness of such behaviors in controlling epizootics in the wild is untested. Here we show how one form of behavioral immunity (i.e., the aversion of diseased conspecifics practiced by Caribbean spiny lobsters (Panulirus argus when subject to the socially transmitted PaV1 virus, appears to have prevented an epizootic over a large seascape. We capitalized on a "natural experiment" in which a die-off of sponges in the Florida Keys (USA resulted in a loss of shelters for juvenile lobsters over a ~2500km2 region. Lobsters were thus concentrated in the few remaining shelters, presumably increasing their exposure to the contagious virus. Despite this spatial reorganization of the population, viral prevalence in lobsters remained unchanged after the sponge die-off and for years thereafter. A field experiment in which we introduced either a healthy or PaV1-infected lobster into lobster aggregations in natural dens confirmed that spiny lobsters practice behavioral immunity. Healthy lobsters vacated dens occupied by PaV1-infected lobsters despite the scarcity of alternative shelters and the higher risk of predation they faced when searching for a new den. Simulations from a spatially-explicit, individual-based model confirmed our empirical results, demonstrating the efficacy of behavioral immunity in preventing epizootics in this system.

  5. Modulation of host immune responses by clinically relevant human DNA and RNA viruses.

    Science.gov (United States)

    Brander, C; Walker, B D

    2000-08-01

    Numerous mechanisms allow viruses to evade host immune surveillance, and new evasion strategies continue to be identified. In addition to interference with antigen processing and presentation, direct viral modulation of host immune responses can also be achieved by altering the host cytokine milieu and the development of immunoregulatory cells. A better understanding of these viral evasion strategies will help to define critical host defense mechanisms and will lead to novel immune-based therapeutic strategies in the future.

  6. Generalized selection to overcome innate immunity selects for host breadth in an RNA virus.

    Science.gov (United States)

    Wasik, Brian R; Muñoz-Rojas, Andrés R; Okamoto, Kenichi W; Miller-Jensen, Kathryn; Turner, Paul E

    2016-02-01

    Virus-host coevolution has selected for generalized host defense against viruses, exemplified by interferon production/signaling and other innate immune function in eukaryotes such as humans. Although cell-surface binding primarily limits virus infection success, generalized adaptation to counteract innate immunity across disparate hosts may contribute to RNA virus emergence potential. We examined this idea using vesicular stomatitis virus (VSV) populations previously evolved on strictly immune-deficient (HeLa) cells, strictly immune competent (MDCK) cells, or on alternating deficient/competent cells. By measuring viral fitness in unselected human cancer cells of differing innate immunity, we confirmed that HeLa-adapted populations were specialized for innate immune-deficient hosts, whereas MDCK-adapted populations were relatively more generalized for fitness on hosts of differing innate immune capacity and of different species origin. We also confirmed that HeLa-evolved populations maintained fitness in immune-deficient nonhuman primate cells. These results suggest that innate immunity is more prominent than host species in determining viral fitness at the host-cell level. Finally, our prediction was inexact that selection on alternating deficient/competent hosts should produce innate viral generalists. Rather, fitness differences among alternating host-evolved VSV populations indicated variable capacities to evade innate immunity. Our results suggest that the evolutionary history of innate immune selection can affect whether RNA viruses evolve greater host-breadth. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  7. Parasitization of Manduca sexta larvae by the parasitoid wasp Cotesia congregata induces an impaired host immune response.

    Science.gov (United States)

    Amaya, Kevin E; Asgari, Sassan; Jung, Richard; Hongskula, Melissa; Beckage, Nancy E

    2005-05-01

    During oviposition, the parasitoid wasp Cotesia congregata injects polydnavirus, venom, and parasitoid eggs into larvae of its lepidopteran host, the tobacco hornworm, Manduca sexta. Polydnaviruses (PDVs) suppress the immune system of the host and allow the juvenile parasitoids to develop without being encapsulated by host hemocytes mobilized by the immune system. Previous work identified a gene in the Cotesia rubecula PDV (CrV1) that is responsible for depolymerization of actin in hemocytes of the host Pieris rapae during a narrow temporal window from 4 to 8h post-parasitization. Its expression appears temporally correlated with hemocyte dysfunction. After this time, the hemocytes recover, and encapsulation is then inhibited by other mechanism(s). In contrast, in parasitized tobacco hornworm larvae this type of inactivation in hemocytes of parasitized M. sexta larvae leads to irreversible cellular disruption. We have characterized the temporal pattern of expression of the CrV1-homolog from the C. congregata PDV in host fat body and hemocytes using Northern blots, and localized the protein in host hemocytes with polyclonal antibodies to CrV1 protein produced in P. rapae in response to expression of the CrV1 protein. Host hemocytes stained with FITC-labeled phalloidin, which binds to filamentous actin, were used to observe hemocyte disruption in parasitized and virus-injected hosts and a comparison was made to hemocytes of nonparasitized control larvae. At 24h post-parasitization host hemocytes were significantly altered compared to those of nonparasitized larvae. Hemocytes from newly parasitized hosts displayed blebbing, inhibition of spreading and adhesion, and overall cell disruption. A CrV1-homolog gene product was localized in host hemocytes using polyclonal CrV1 antibodies, suggesting that CrV1-like gene products of C. congregata's bracovirus are responsible for the impaired immune response of the host.

  8. HTLV-1/-2 and HIV-1 co-infections: retroviral interference on host immune status.

    Science.gov (United States)

    Pilotti, Elisabetta; Bianchi, Maria V; De Maria, Andrea; Bozzano, Federica; Romanelli, Maria G; Bertazzoni, Umberto; Casoli, Claudio

    2013-12-23

    The human retroviruses HIV-1 and HTLV-1/HTLV-2 share similar routes of transmission but cause significantly different diseases. In this review we have outlined the immune mediated mechanisms by which HTLVs affect HIV-1 disease in co-infected hosts. During co-infection with HIV-1, HTLV-2 modulates the cellular microenvironment favoring its own viability and inhibiting HIV-1 progression. This is achieved when the HTLV-2 proviral load is higher than that of HIV-1, and thanks to the ability of HTLV-2 to: (i) up-regulate viral suppressive CCL3L1 chemokine expression; (ii) overcome HIV-1 capacity to activate the JAK/STAT pathway; (iii) reduce the activation of T and NK cells; (iv) modulate the host miRNA profiles. These alterations of immune functions have been mainly attributed to the effects of the HTLV-2 regulatory protein Tax and suggest that HTLV-2 exerts a protective role against HIV-1 infection. Contrary to HIV-1/HTLV-2, the effect of HIV-1/HTLV-1 co-infection on immunological and pathological conditions is still controversial. There is evidence that indicates a worsening of HIV-1 infection, while other evidence does not show clinically relevant effects in HIV-positive people. Possible differences on innate immune mechanisms and a particularly impact on NK cells are becoming evident. The differences between the two HIV-1/HTLV-1 and HIV-1/HTLV-2 co-infections are highlighted and further discussed.

  9. HTLV-1/-2 and HIV-1 Co-infections: Retroviral Interference On Host Immune Status

    Directory of Open Access Journals (Sweden)

    Elisabetta ePilotti

    2013-12-01

    Full Text Available The human retroviruses HIV-1 and HTLV-1/HTLV-2 share similar routes of transmission but cause significantly different diseases. In this review we have outlined the immune mediated mechanisms by which HTLVs affect HIV-1 disease in co-infected hosts. During co-infection with HIV-1, HTLV-2 modulates the cellular microenvironment favoring its own viability and inhibiting HIV-1 progression. This is achieved when the HTLV-2 proviral load is higher than that of HIV-1, and thanks to the ability of HTLV-2 to: i up-regulate viral suppressive CCL3L1 chemokine expression; ii overcome HIV-1 capacity to activate the JAK/STAT pathway; iii reduce the activation of T and NK cells; iv modulate the host miRNA profiles. These alterations of immune functions have been mainly attributed to the effects of the HTLV-2 regulatory protein Tax and suggest that HTLV-2 exerts a protective role against HIV-1 infection. Contrary to HIV-1/HTLV-2, the effect of HIV-1/HTLV-1 co-infection on immunological and pathological conditions is still controversial. There is evidence that indicate a worsening of HIV-1 infection, while other evidence does not show clinically relevant effects in HIV-positive people. Possible differences on innate immune mechanisms and a particularly impact on NK cells are becoming evident. The differences between the two HIV-1/HTLV-1 and HIV-1/HTLV-2 co-infections are highlighted and further discussed.

  10. Pteromalus puparum venom impairs host cellular immune responses by decreasing expression of its scavenger receptor gene

    Science.gov (United States)

    Insect host/parasitoid interactions are co-evolved systems in which host defenses are balanced by parasitoid mechanisms to disable or hide from host immune effectors. Although there is a rich literature on these systems, parasitoid immune-disabling mechanisms have not been fully elucidated. Here we ...

  11. Suppression or Activation of Immune Responses by Predicted Secreted Proteins of the Soybean Rust Pathogen Phakopsora pachyrhizi.

    Science.gov (United States)

    Qi, Mingsheng; Grayczyk, James P; Seitz, Janina M; Lee, Youngsill; Link, Tobias I; Choi, Doil; Pedley, Kerry F; Voegele, Ralf T; Baum, Thomas J; Whitham, Steven A

    2018-01-01

    Rust fungi, such as the soybean rust pathogen Phakopsora pachyrhizi, are major threats to crop production. They form specialized haustoria that are hyphal structures intimately associated with host-plant cell membranes. These haustoria have roles in acquiring nutrients and secreting effector proteins that manipulate host immune systems. Functional characterization of effector proteins of rust fungi is important for understanding mechanisms that underlie their virulence and pathogenicity. Hundreds of candidate effector proteins have been predicted for rust pathogens, but it is not clear how to prioritize these effector candidates for further characterization. There is a need for high-throughput approaches for screening effector candidates to obtain experimental evidence for effector-like functions, such as the manipulation of host immune systems. We have focused on identifying effector candidates with immune-related functions in the soybean rust fungus P. pachyrhizi. To facilitate the screening of many P. pachyrhizi effector candidates (named PpECs), we used heterologous expression systems, including the bacterial type III secretion system, Agrobacterium infiltration, a plant virus, and a yeast strain, to establish an experimental pipeline for identifying PpECs with immune-related functions and establishing their subcellular localizations. Several PpECs were identified that could suppress or activate immune responses in nonhost Nicotiana benthamiana, N. tabacum, Arabidopsis, tomato, or pepper plants.

  12. Mycobacterium tuberculosis Mce2E suppresses the macrophage innate immune response and promotes epithelial cell proliferation.

    Science.gov (United States)

    Qiang, Lihua; Wang, Jing; Zhang, Yong; Ge, Pupu; Chai, Qiyao; Li, Bingxi; Shi, Yi; Zhang, Lingqiang; Gao, George Fu; Liu, Cui Hua

    2018-03-23

    The intracellular pathogen Mycobacterium tuberculosis (Mtb) can survive in the host and cause disease by interfering with a variety of cellular functions. The mammalian cell entry 2 (mce2) operon of Mtb has been shown to contribute to tuberculosis pathogenicity. However, little is known about the regulatory roles of Mtb Mce2 family proteins towards host cellular functions. Here we show that the Mce2 family protein Mce2E suppressed the macrophage innate immune response and promoted epithelial cell proliferation. Mce2E inhibited activation of the extracellular signal-regulated kinase (ERK) and Jun N-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) signaling pathways in a non-canonical D motif (a MAPK-docking motif)-dependent manner, leading to reduced expression of TNF and IL-6 in macrophages. Furthermore, Mce2E promoted proliferation of human lung epithelium-derived lung adenoma A549 cells by inhibiting K48-linked polyubiquitination of eEF1A1 in a β strand region-dependent manner. In summary, Mce2E is a novel multifunctional Mtb virulence factor that regulates host cellular functions in a niche-dependent manner. Our data suggest a potential novel target for TB therapy.

  13. The effect of partial host immunity on the transmission of malaria parasites.

    OpenAIRE

    Buckling, A.; Read, A. F.

    2001-01-01

    Experiments were carried out to determine the effect of partial host immunity against the rodent malaria parasite Plasmodium chabaudi on the transmission success of the parasite. There was a fourfold reduction in both the blood-stage, asexually replicating parasite density and the gametocyte (transmissable stage) density in immunized hosts. Some of the reduction in asexual parasite densities was due to strain-specific immunity, but there was no evidence that strain-specific immunity affected ...

  14. A Small Cysteine-Rich Protein from the Asian Soybean Rust Fungus, Phakopsora pachyrhizi, Suppresses Plant Immunity.

    Directory of Open Access Journals (Sweden)

    Mingsheng Qi

    2016-09-01

    Full Text Available The Asian soybean rust fungus, Phakopsora pachyrhizi, is an obligate biotrophic pathogen causing severe soybean disease epidemics. Molecular mechanisms by which P. pachyrhizi and other rust fungi interact with their host plants are poorly understood. The genomes of all rust fungi encode many small, secreted cysteine-rich proteins (SSCRP. While these proteins are thought to function within the host, their roles are completely unknown. Here, we present the characterization of P. pachyrhizi effector candidate 23 (PpEC23, a SSCRP that we show to suppress plant immunity. Furthermore, we show that PpEC23 interacts with soybean transcription factor GmSPL12l and that soybean plants in which GmSPL12l is silenced have constitutively active immunity, thereby identifying GmSPL12l as a negative regulator of soybean defenses. Collectively, our data present evidence for a virulence function of a rust SSCRP and suggest that PpEC23 is able to suppress soybean immune responses and physically interact with soybean transcription factor GmSPL12l, a negative immune regulator.

  15. A Small Cysteine-Rich Protein from the Asian Soybean Rust Fungus, Phakopsora pachyrhizi, Suppresses Plant Immunity.

    Science.gov (United States)

    Qi, Mingsheng; Link, Tobias I; Müller, Manuel; Hirschburger, Daniela; Pudake, Ramesh N; Pedley, Kerry F; Braun, Edward; Voegele, Ralf T; Baum, Thomas J; Whitham, Steven A

    2016-09-01

    The Asian soybean rust fungus, Phakopsora pachyrhizi, is an obligate biotrophic pathogen causing severe soybean disease epidemics. Molecular mechanisms by which P. pachyrhizi and other rust fungi interact with their host plants are poorly understood. The genomes of all rust fungi encode many small, secreted cysteine-rich proteins (SSCRP). While these proteins are thought to function within the host, their roles are completely unknown. Here, we present the characterization of P. pachyrhizi effector candidate 23 (PpEC23), a SSCRP that we show to suppress plant immunity. Furthermore, we show that PpEC23 interacts with soybean transcription factor GmSPL12l and that soybean plants in which GmSPL12l is silenced have constitutively active immunity, thereby identifying GmSPL12l as a negative regulator of soybean defenses. Collectively, our data present evidence for a virulence function of a rust SSCRP and suggest that PpEC23 is able to suppress soybean immune responses and physically interact with soybean transcription factor GmSPL12l, a negative immune regulator.

  16. Host immune response in returning travellers infected with malaria

    Directory of Open Access Journals (Sweden)

    MacMullin Gregory

    2012-05-01

    regions of Africa. Conclusion Significantly higher levels of IL-12 (p40 and lower levels of EGF in CB travellers may serve as useful prognostic markers of disease severity and help guide clinical management upon return. IL-6 and M-CSF in older adults and MCP-1, IL-12 (p40 and M-CSF for P. vivax infected patients may also prove useful in understanding age-associated and species-specific host immune responses, as could the species-specific differences in Ang-2. Regional differences in host immune response to malaria infection within the same species may speak to unique strains circulating in parts of West Africa.

  17. Dengue Virus Targets the Adaptor Protein MITA to Subvert Host Innate Immunity

    Science.gov (United States)

    Yu, Chia-Yi; Chang, Tsung-Hsien; Liang, Jian-Jong; Chiang, Ruei-Lin; Lee, Yi-Ling; Liao, Ching-Len; Lin, Yi-Ling

    2012-01-01

    Dengue is one of the most important arboviral diseases caused by infection of four serotypes of dengue virus (DEN). We found that activation of interferon regulatory factor 3 (IRF3) triggered by viral infection and by foreign DNA and RNA stimulation was blocked by DEN-encoded NS2B3 through a protease-dependent mechanism. The key adaptor protein in type I interferon pathway, human mediator of IRF3 activation (MITA) but not the murine homologue MPYS, was cleaved in cells infected with DEN-1 or DEN-2 and with expression of the enzymatically active protease NS2B3. The cleavage site of MITA was mapped to LRR↓96G and the function of MITA was suppressed by dengue protease. DEN replication was reduced with overexpression of MPYS but not with MITA, while DEN replication was enhanced by MPYS knockdown, indicating an antiviral role of MITA/MPYS against DEN infection. The involvement of MITA in DEN-triggered innate immune response was evidenced by reduction of IRF3 activation and IFN induction in cells with MITA knockdown upon DEN-2 infection. NS2B3 physically interacted with MITA, and the interaction and cleavage of MITA could be further enhanced by poly(dA:dT) stimulation. Thus, we identified MITA as a novel host target of DEN protease and provide the molecular mechanism of how DEN subverts the host innate immunity. PMID:22761576

  18. Dengue virus targets the adaptor protein MITA to subvert host innate immunity.

    Science.gov (United States)

    Yu, Chia-Yi; Chang, Tsung-Hsien; Liang, Jian-Jong; Chiang, Ruei-Lin; Lee, Yi-Ling; Liao, Ching-Len; Lin, Yi-Ling

    2012-01-01

    Dengue is one of the most important arboviral diseases caused by infection of four serotypes of dengue virus (DEN). We found that activation of interferon regulatory factor 3 (IRF3) triggered by viral infection and by foreign DNA and RNA stimulation was blocked by DEN-encoded NS2B3 through a protease-dependent mechanism. The key adaptor protein in type I interferon pathway, human mediator of IRF3 activation (MITA) but not the murine homologue MPYS, was cleaved in cells infected with DEN-1 or DEN-2 and with expression of the enzymatically active protease NS2B3. The cleavage site of MITA was mapped to LRR↓(96)G and the function of MITA was suppressed by dengue protease. DEN replication was reduced with overexpression of MPYS but not with MITA, while DEN replication was enhanced by MPYS knockdown, indicating an antiviral role of MITA/MPYS against DEN infection. The involvement of MITA in DEN-triggered innate immune response was evidenced by reduction of IRF3 activation and IFN induction in cells with MITA knockdown upon DEN-2 infection. NS2B3 physically interacted with MITA, and the interaction and cleavage of MITA could be further enhanced by poly(dA:dT) stimulation. Thus, we identified MITA as a novel host target of DEN protease and provide the molecular mechanism of how DEN subverts the host innate immunity.

  19. Dengue virus targets the adaptor protein MITA to subvert host innate immunity.

    Directory of Open Access Journals (Sweden)

    Chia-Yi Yu

    Full Text Available Dengue is one of the most important arboviral diseases caused by infection of four serotypes of dengue virus (DEN. We found that activation of interferon regulatory factor 3 (IRF3 triggered by viral infection and by foreign DNA and RNA stimulation was blocked by DEN-encoded NS2B3 through a protease-dependent mechanism. The key adaptor protein in type I interferon pathway, human mediator of IRF3 activation (MITA but not the murine homologue MPYS, was cleaved in cells infected with DEN-1 or DEN-2 and with expression of the enzymatically active protease NS2B3. The cleavage site of MITA was mapped to LRR↓(96G and the function of MITA was suppressed by dengue protease. DEN replication was reduced with overexpression of MPYS but not with MITA, while DEN replication was enhanced by MPYS knockdown, indicating an antiviral role of MITA/MPYS against DEN infection. The involvement of MITA in DEN-triggered innate immune response was evidenced by reduction of IRF3 activation and IFN induction in cells with MITA knockdown upon DEN-2 infection. NS2B3 physically interacted with MITA, and the interaction and cleavage of MITA could be further enhanced by poly(dA:dT stimulation. Thus, we identified MITA as a novel host target of DEN protease and provide the molecular mechanism of how DEN subverts the host innate immunity.

  20. Conserved RXLR Effector Genes of Phytophthora infestans Expressed at the Early Stage of Potato Infection Are Suppressive to Host Defense

    Directory of Open Access Journals (Sweden)

    Junliang Yin

    2017-12-01

    Full Text Available Late blight has been the most devastating potato disease worldwide. The causal agent, Phytophthora infestans, is notorious for its capability to rapidly overcome host resistance. Changes in the expression pattern and the encoded protein sequences of effector genes in the pathogen are responsible for the loss of host resistance. Among numerous effector genes, the class of RXLR effector genes is well-known in mediating host genotype-specific resistance. We therefore performed deep sequencing of five genetically diverse P. infestans strains using in planta materials infected with zoospores (12 h post inoculation and focused on the identification of RXLR effector genes that are conserved in coding sequences, are highly expressed in early stages of plant infection, and have defense suppression activities. In all, 245 RXLR effector genes were expressed in five transcriptomes, with 108 being co-expressed in all five strains, 47 of them comparatively highly expressed. Taking sequence polymorphism into consideration, 18 candidate core RXLR effectors that were conserved in sequence and with higher in planta expression levels were selected for further study. Agrobacterium tumefaciens-mediated transient expression of the selected effector genes in Nicotiana benthamiana and potato demonstrated their potential virulence function, as shown by suppression of PAMP-triggered immunity (PTI or/and effector-triggered immunity (ETI. The identified collection of core RXLR effectors will be useful in the search for potential durable late blight resistance genes. Analysis of 10 known Avr RXLR genes revealed that the resistance genes R2, Rpi-blb2, Rpi-vnt1, Rpi-Smira1, and Rpi-Smira2 may be effective in potato cultivars. Analysis of 8 SFI (Suppressor of early Flg22-induced Immune response RXLR effector genes showed that SFI2, SFI3, and SFI4 were highly expressed in all examined strains, suggesting their potentially important function in early stages of pathogen infection.

  1. The Entomopathogenic Fungi Isaria fumosorosea Plays a Vital Role in Suppressing the Immune System of Plutella xylostella: RNA-Seq and DGE Analysis of Immunity-Related Genes.

    Science.gov (United States)

    Xu, Jin; Xu, Xiaoxia; Shakeel, Muhammad; Li, Shuzhong; Wang, Shuang; Zhou, Xianqiang; Yu, Jialin; Xu, Xiaojing; Yu, Xiaoqiang; Jin, Fengliang

    2017-01-01

    Most, if not all, entomopathogenic fungi have been used as alternative control agents to decrease the insect resistance and harmful effects of the insecticides on the environment. Among them, Isaria fumosorosea has also shown great potential to control different insect pests. In the present study, we explored the immune response of P. xylostella to the infection of I. fumosorosea at different time points by using RNA-Sequencing and differential gene expression technology at the genomic level. To gain insight into the host-pathogen interaction at the genomic level, five libraries of P. xylostella larvae at 12, 18, 24, and 36 h post-infection and a control were constructed. In total, 161 immunity-related genes were identified and grouped into four categories; immune recognition families, toll and Imd pathway, melanization, and antimicrobial peptides (AMPs). The results of differentially expressed immunity-related genes depicted that 15, 13, 53, and 14 up-regulated and 38, 51, 56, and 49 were down-regulated in P. xylostella at 12, 18, 24, and 36 h post-treatment, respectively. RNA-Seq results of immunity-related genes revealed that the expression of AMPs was reduced after treatment with I. fumosorosea . To validate RNA-Seq results by RT-qPCR, 22 immunity-related genes were randomly selected. In conclusion, our results demonstrate that I. fumosorosea has the potential to suppress the immune response of P. xylostella and can become a potential biopesticide for controlling P. xylostella .

  2. The Entomopathogenic Fungi Isaria fumosorosea Plays a Vital Role in Suppressing the Immune System of Plutella xylostella: RNA-Seq and DGE Analysis of Immunity-Related Genes

    Directory of Open Access Journals (Sweden)

    Jin Xu

    2017-07-01

    Full Text Available Most, if not all, entomopathogenic fungi have been used as alternative control agents to decrease the insect resistance and harmful effects of the insecticides on the environment. Among them, Isaria fumosorosea has also shown great potential to control different insect pests. In the present study, we explored the immune response of P. xylostella to the infection of I. fumosorosea at different time points by using RNA-Sequencing and differential gene expression technology at the genomic level. To gain insight into the host-pathogen interaction at the genomic level, five libraries of P. xylostella larvae at 12, 18, 24, and 36 h post-infection and a control were constructed. In total, 161 immunity-related genes were identified and grouped into four categories; immune recognition families, toll and Imd pathway, melanization, and antimicrobial peptides (AMPs. The results of differentially expressed immunity-related genes depicted that 15, 13, 53, and 14 up-regulated and 38, 51, 56, and 49 were down-regulated in P. xylostella at 12, 18, 24, and 36 h post-treatment, respectively. RNA-Seq results of immunity-related genes revealed that the expression of AMPs was reduced after treatment with I. fumosorosea. To validate RNA-Seq results by RT-qPCR, 22 immunity-related genes were randomly selected. In conclusion, our results demonstrate that I. fumosorosea has the potential to suppress the immune response of P. xylostella and can become a potential biopesticide for controlling P. xylostella.

  3. Platelet activating factor receptor binding plays a critical role in jet fuel-induced immune suppression

    International Nuclear Information System (INIS)

    Ramos, Gerardo; Kazimi, Nasser; Nghiem, Dat X.; Walterscheid, Jeffrey P.; Ullrich, Stephen E.

    2004-01-01

    Applying military jet fuel (JP-8) or commercial jet fuel (Jet-A) to the skin of mice suppresses the immune response in a dose-dependant manner. The release of biological response modifiers, particularly prostaglandin E 2 (PGE 2 ), is a critical step in activating immune suppression. Previous studies have shown that injecting selective cyclooxygenase-2 inhibitors into jet fuel-treated mice blocks immune suppression. Because the inflammatory phospholipid mediator, platelet-activating factor (PAF), up-regulates cyclooxygenase-2 production and PGE 2 synthesis by keratinocytes, we tested the hypothesis that PAF-receptor binding plays a role in jet fuel-induced immune suppression. Treating keratinocyte cultures with PAF and/or jet fuel (JP-8 and Jet-A) stimulates PGE 2 secretion. Jet fuel-induced PGE 2 production was suppressed by treating the keratinocytes with specific PAF-receptor antagonists. Injecting mice with PAF, or treating the skin of the mice with JP-8, or Jet-A, induced immune suppression. Jet fuel-induced immune suppression was blocked when the jet fuel-treated mice were injected with PAF-receptor antagonists before treatment. Jet fuel treatment has been reported to activate oxidative stress and treating the mice with anti-oxidants (Vitamins C, or E or beta-hydroxy toluene), before jet fuel application, interfered with immune suppression. These findings confirm previous studies showing that PAF-receptor binding can modulate immune function. Furthermore, they suggest that PAF-receptor binding may be an early event in the induction of immune suppression by immunotoxic environmental agents that target the skin

  4. Silencing the Honey Bee (Apis mellifera) Naked Cuticle Gene (nkd) Improves Host Immune Function and Reduces Nosema ceranae Infections.

    Science.gov (United States)

    Li, Wenfeng; Evans, Jay D; Huang, Qiang; Rodríguez-García, Cristina; Liu, Jie; Hamilton, Michele; Grozinger, Christina M; Webster, Thomas C; Su, Songkun; Chen, Yan Ping

    2016-11-15

    Nosema ceranae is a new and emerging microsporidian parasite of European honey bees, Apis mellifera, that has been implicated in colony losses worldwide. RNA interference (RNAi), a posttranscriptional gene silencing mechanism, has emerged as a potent and specific strategy for controlling infections of parasites and pathogens in honey bees. While previous studies have focused on the silencing of parasite/pathogen virulence factors, we explore here the possibility of silencing a host factor as a mechanism for reducing parasite load. Specifically, we used an RNAi strategy to reduce the expression of a honey bee gene, naked cuticle (nkd), which is a negative regulator of host immune function. Our studies found that nkd mRNA levels in adult bees were upregulated by N. ceranae infection (and thus, the parasite may use this mechanism to suppress host immune function) and that ingestion of double-stranded RNA (dsRNA) specific to nkd efficiently silenced its expression. Furthermore, we found that RNAi-mediated knockdown of nkd transcripts in Nosema-infected bees resulted in upregulation of the expression of several immune genes (Abaecin, Apidaecin, Defensin-1, and PGRP-S2), reduction of Nosema spore loads, and extension of honey bee life span. The results of our studies clearly indicate that silencing the host nkd gene can activate honey bee immune responses, suppress the reproduction of N. ceranae, and improve the overall health of honey bees. This study represents a novel host-derived therapeutic for honey bee disease treatment that merits further exploration. Given the critical role of honey bees in the pollination of agricultural crops, it is urgent to develop strategies to prevent the colony decline induced by the infection of parasites/pathogens. Targeting parasites and pathogens directly by RNAi has been proven to be useful for controlling infections in honey bees, but little is known about the disease impacts of RNAi silencing of host factors. Here, we demonstrate

  5. Patterns of oligonucleotide sequences in viral and host cell RNA identify mediators of the host innate immune system.

    Directory of Open Access Journals (Sweden)

    Benjamin D Greenbaum

    Full Text Available The innate immune response provides a first line of defense against pathogens by targeting generic differential features that are present in foreign organisms but not in the host. These innate responses generate selection forces acting both in pathogens and hosts that further determine their co-evolution. Here we analyze the nucleic acid sequence fingerprints of these selection forces acting in parallel on both host innate immune genes and ssRNA viral genomes. We do this by identifying dinucleotide biases in the coding regions of innate immune response genes in plasmacytoid dendritic cells, and then use this signal to identify other significant host innate immune genes. The persistence of these biases in the orthologous groups of genes in humans and chickens is also examined. We then compare the significant motifs in highly expressed genes of the innate immune system to those in ssRNA viruses and study the evolution of these motifs in the H1N1 influenza genome. We argue that the significant under-represented motif pattern of CpG in an AU context--which is found in both the ssRNA viruses and innate genes, and has decreased throughout the history of H1N1 influenza replication in humans--is immunostimulatory and has been selected against during the co-evolution of viruses and host innate immune genes. This shows how differences in host immune biology can drive the evolution of viruses that jump into species with different immune priorities than the original host.

  6. The Activation and Suppression of Plant Innate Immunity by Parasitic Nematodes

    NARCIS (Netherlands)

    Goverse, A.; Smant, G.

    2014-01-01

    Plant-parasitic nematodes engage in prolonged and intimate relationships with their host plants, often involving complex alterations in host cell morphology and function. It is puzzling how nematodes can achieve this, seemingly without activating the innate immune system of their hosts. Secretions

  7. Fungal effector Ecp6 outcompetes host immune receptor for chitin binding through intrachain LysM dimerization

    NARCIS (Netherlands)

    Sánchez-Vallet, A.; Saleem-Batcha, R.; Kombrink, A.; Hansen, G.; Valkenburg, D.J.; Thomma, B.P.H.J.; Mesters, J.R.

    2013-01-01

    While host immune receptors detect pathogen-associated molecular patterns to activate immunity, pathogens attempt to deregulate host immunity through secreted effectors. Fungi employ LysM effectors to prevent recognition of cell wall-derived chitin by host immune receptors, although the mechanism to

  8. Perillyl alcohol suppresses antigen-induced immune responses in the lung

    International Nuclear Information System (INIS)

    Imamura, Mitsuru; Sasaki, Oh; Okunishi, Katsuhide; Nakagome, Kazuyuki; Harada, Hiroaki; Kawahata, Kimito; Tanaka, Ryoichi; Yamamoto, Kazuhiko; Dohi, Makoto

    2014-01-01

    Highlights: •Perillyl alcohol (POH) is an isoprenoid which inhibits the mevalonate pathway. •We examined whether POH suppresses immune responses with a mouse model of asthma. •POH treatment during sensitization suppressed Ag-induced priming of CD4 + T cells. •POH suppressed airway eosinophila and cytokine production in thoracic lymph nodes. -- Abstract: Perillyl alcohol (POH) is an isoprenoid which inhibits farnesyl transferase and geranylgeranyl transferase, key enzymes that induce conformational and functional changes in small G proteins to conduct signal production for cell proliferation. Thus, it has been tried for the treatment of cancers. However, although it affects the proliferation of immunocytes, its influence on immune responses has been examined in only a few studies. Notably, its effect on antigen-induced immune responses has not been studied. In this study, we examined whether POH suppresses Ag-induced immune responses with a mouse model of allergic airway inflammation. POH treatment of sensitized mice suppressed proliferation and cytokine production in Ag-stimulated spleen cells or CD4 + T cells. Further, sensitized mice received aerosolized OVA to induce allergic airway inflammation, and some mice received POH treatment. POH significantly suppressed indicators of allergic airway inflammation such as airway eosinophilia. Cytokine production in thoracic lymph nodes was also significantly suppressed. These results demonstrate that POH suppresses antigen-induced immune responses in the lung. Considering that it exists naturally, POH could be a novel preventive or therapeutic option for immunologic lung disorders such as asthma with minimal side effects

  9. DMPD: Macrophage migration inhibitory factor and host innate immune responses tomicrobes. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14620137 Macrophage migration inhibitory factor and host innate immune responses to...microbes. Calandra T. Scand J Infect Dis. 2003;35(9):573-6. (.png) (.svg) (.html) (.csml) Show Macrophage migration... inhibitory factor and host innate immune responses tomicrobes. PubmedID 14620137 Title Macrophage migration

  10. Seneca Valley Virus Suppresses Host Type I Interferon Production by Targeting Adaptor Proteins MAVS, TRIF, and TANK for Cleavage.

    Science.gov (United States)

    Qian, Suhong; Fan, Wenchun; Liu, Tingting; Wu, Mengge; Zhang, Huawei; Cui, Xiaofang; Zhou, Yun; Hu, Junjie; Wei, Shaozhong; Chen, Huanchun; Li, Xiangmin; Qian, Ping

    2017-08-15

    Seneca Valley virus (SVV) is an oncolytic RNA virus belonging to the Picornaviridae family. Its nucleotide sequence is highly similar to those of members of the Cardiovirus genus. SVV is also a neuroendocrine cancer-selective oncolytic picornavirus that can be used for anticancer therapy. However, the interaction between SVV and its host is yet to be fully characterized. In this study, SVV inhibited antiviral type I interferon (IFN) responses by targeting different host adaptors, including mitochondrial antiviral signaling (MAVS), Toll/interleukin 1 (IL-1) receptor domain-containing adaptor inducing IFN-β (TRIF), and TRAF family member-associated NF-κB activator (TANK), via viral 3C protease (3C pro ). SVV 3C pro mediated the cleavage of MAVS, TRIF, and TANK at specific sites, which required its protease activity. The cleaved MAVS, TRIF, and TANK lost the ability to regulate pattern recognition receptor (PRR)-mediated IFN production. The cleavage of TANK also facilitated TRAF6-induced NF-κB activation. SVV was also found to be sensitive to IFN-β. Therefore, SVV suppressed antiviral IFN production to escape host antiviral innate immune responses by cleaving host adaptor molecules. IMPORTANCE Host cells have developed various defenses against microbial pathogen infection. The production of IFN is the first line of defense against microbial infection. However, viruses have evolved many strategies to disrupt this host defense. SVV, a member of the Picornavirus genus, is an oncolytic virus that shows potential functions in anticancer therapy. It has been demonstrated that IFN can be used in anticancer therapy for certain tumors. However, the relationship between oncolytic virus and innate immune response in anticancer therapy is still not well known. In this study, we showed that SVV has evolved as an effective mechanism to inhibit host type I IFN production by using its 3C pro to cleave the molecules MAVS, TRIF, and TANK directly. These molecules are crucial for

  11. Epigenetic modulation of host: new insights into immune evasion by viruses.

    Science.gov (United States)

    Adhya, Dwaipayan; Basu, Anirban

    2010-12-01

    Viruses have evolved with their hosts, which include all living species. This has been partly responsible for the development of highly advanced immune systems in the hosts. However, viruses too have evolved ways to regulate and evade the host's immune defence. In addition to mutational mechanisms that viruses employ to mimic the host genome and undergo latency to evade the host's recognition of the pathogen, they have also developed epigenetic mechanisms by which they can render the host's immune responses inactive to their antigens. The epigenetic regulation of gene expression is intrinsically active inside the host and is involved in regulating gene expression and cellular differentiation. Viral immune evasion strategies are an area of major concern in modern biomedical research. Immune evasion strategies may involve interference with the host antigen presentation machinery or host immune gene expression capabilities, and viruses, in these manners, introduce and propagate infection. The aim of this review is to elucidate the various epigenetic changes that viruses are capable of bringing about in their host in order to enhance their own survivability and pathogenesis.

  12. How vaccinia virus has evolved to subvert the host immune response

    Science.gov (United States)

    Bahar, Mohammad W.; Graham, Stephen C.; Chen, Ron A.-J.; Cooray, Samantha; Smith, Geoffrey L.; Stuart, David I.; Grimes, Jonathan M.

    2011-01-01

    Viruses are obligate intracellular parasites and are some of the most rapidly evolving and diverse pathogens encountered by the host immune system. Large complicated viruses, such as poxviruses, have evolved a plethora of proteins to disrupt host immune signalling in their battle against immune surveillance. Recent X-ray crystallographic analysis of these viral immunomodulators has helped form an emerging picture of the molecular details of virus-host interactions. In this review we consider some of these immune evasion strategies as they apply to poxviruses, from a structural perspective, with specific examples from the European SPINE2-Complexes initiative. Structures of poxvirus immunomodulators reveal the capacity of viruses to mimic and compete against the host immune system, using a diverse range of structural folds that are unique or acquired from their hosts with both enhanced and unexpectedly divergent functions. PMID:21419849

  13. Immunity against helminths: interactions with the host and the intercurrent infections.

    Science.gov (United States)

    Moreau, Emmanuelle; Chauvin, Alain

    2010-01-01

    Helminth parasites are of considerable medical and economic importance. Studies of the immune response against helminths are of great interest in understanding interactions between the host immune system and parasites. Effector immune mechanisms against tissue-dwelling helminths and helminths localized in the lumen of organs, and their regulation, are reviewed. Helminth infections are characterized by an association of Th2-like and Treg responses. Worms are able to persist in the host and are mainly responsible for chronic infection despite a strong immune response developed by the parasitized host. Two types of protection against the parasite, namely, premune and partial immunities, have been described. Immune responses against helminths can also participate in pathogenesis. Th2/Treg-like immunomodulation allows the survival of both host and parasite by controlling immunopathologic disorders and parasite persistence. Consequences of the modified Th2-like responses on co-infection, vaccination, and inflammatory diseases are discussed.

  14. Antiretroviral therapy, immune suppression and renal impairment in HIV-positive persons

    DEFF Research Database (Denmark)

    Nielsen, Lene Ryom; Mocroft, Amanda; Lundgren, Jens D

    2014-01-01

    The purpose of this article is to review recent literature on antiretroviral treatment (ART) and immune suppression as risk factors for renal impairment in HIV-positive persons, and to discuss pending research questions within this field.......The purpose of this article is to review recent literature on antiretroviral treatment (ART) and immune suppression as risk factors for renal impairment in HIV-positive persons, and to discuss pending research questions within this field....

  15. Immunotherapy: Shifting the Balance of Cell-Mediated Immunity and Suppression in Human Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, Jo A.; Jochems, Caroline [Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Gulley, James L. [Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Schlom, Jeffrey, E-mail: js141c@nih.gov; Tsang, Kwong Y. [Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States)

    2012-12-11

    Active immunotherapy is dependent on the ability of the immune system to recognize and respond to tumors. Despite overwhelming evidence to support a cell-mediated immune response to prostate cancer, it is insufficient to eradicate the disease. This is likely due to a high level of suppression at the tumor site from a variety of sources, including immunosuppressive cells. Immune cells entering the tumor microenvironment may be inhibited directly by the tumor, stromal cells or other immune cells that have been induced to adopt a suppressive phenotype. The resurgence of interest in immunotherapy following the approval of sipuleucel-T and ipilimumab by the Food and Drug Administration has brought about new strategies for overcoming tumor-mediated suppression and bolstering anti-tumor responses. Improved understanding of the immune response to prostate cancer can lead to new combination therapies, such as the use of vaccine with small molecule and checkpoint inhibitors or other immunotherapies.

  16. Immunotherapy: Shifting the Balance of Cell-Mediated Immunity and Suppression in Human Prostate Cancer

    International Nuclear Information System (INIS)

    Tucker, Jo A.; Jochems, Caroline; Gulley, James L.; Schlom, Jeffrey; Tsang, Kwong Y.

    2012-01-01

    Active immunotherapy is dependent on the ability of the immune system to recognize and respond to tumors. Despite overwhelming evidence to support a cell-mediated immune response to prostate cancer, it is insufficient to eradicate the disease. This is likely due to a high level of suppression at the tumor site from a variety of sources, including immunosuppressive cells. Immune cells entering the tumor microenvironment may be inhibited directly by the tumor, stromal cells or other immune cells that have been induced to adopt a suppressive phenotype. The resurgence of interest in immunotherapy following the approval of sipuleucel-T and ipilimumab by the Food and Drug Administration has brought about new strategies for overcoming tumor-mediated suppression and bolstering anti-tumor responses. Improved understanding of the immune response to prostate cancer can lead to new combination therapies, such as the use of vaccine with small molecule and checkpoint inhibitors or other immunotherapies

  17. Immunity against Helminths: Interactions with the Host and the Intercurrent Infections

    OpenAIRE

    Moreau, Emmanuelle; Chauvin, Alain

    2010-01-01

    Helminth parasites are of considerable medical and economic importance. Studies of the immune response against helminths are of great interest in understanding interactions between the host immune system and parasites. Effector immune mechanisms against tissue-dwelling helminths and helminths localized in the lumen of organs, and their regulation, are reviewed. Helminth infections are characterized by an association of Th2-like and Treg responses. Worms are able to persist in the host and are...

  18. Sulphonylurea usage in melioidosis is associated with severe disease and suppressed immune response.

    Directory of Open Access Journals (Sweden)

    Xiang Liu

    2014-04-01

    Full Text Available BACKGROUND: Melioidosis is a problem in the developing tropical regions of Southeast Asia and Northern Australia where the the Gram negative saprophytic bacillus Burkholderia pseudomallei is endemic with the risk of fulminant septicaemia. While diabetes mellitus is a well-established risk factor for melioidiosis, little is known if specific hypoglycemic agents may differentially influence the susceptibility and clinical course of infection with B. pseudomallei (Bp. METHODOLOGY/PRINCIPAL FINDINGS: In this cohort study, patients with pre-existing diabetes and melioidosis were retrospectively studied. OUTCOME MEASURES: mortality, length of stay and development of complications (namely hypotension, intubation, renal failure and septicaemia were studied in relation to prior diabetic treatment regimen. Peripheral blood mononuclear cells (PBMC from diabetic patients and healthy PBMC primed with metformin, glyburide and insulin were stimulated with purified Bp antigens in vitro. Immune response and specific immune pathway mediators were studied to relate to the clinical findings mechanistically. Of 74 subjects, 44 (57.9% had sulphonylurea-containing diabetic regimens. Patient receiving sulphonylureas had more severe septic complications (47.7% versus 16.7% p = 0.006, in particular, hypotension requiring intropes (p = 0.005. There was also a trend towards increased mortality in sulphonylurea-users (15.9% versus 3.3% p = 0.08. In-vitro, glyburide suppressed inflammatory cytokine production in a dose-dependent manner. An effect of the drug was the induction of IL-1R-associated kinase-M at the level of mRNA transcription. CONCLUSION/SIGNIFICANCE: Sulphonylurea treatment results in suppression of host inflammatory response and may put patients at higher risk for adverse outcomes in melioidosis.

  19. Treg cell-IgA axis in maintenance of host immune homeostasis with microbiota

    OpenAIRE

    Feng, Ting; Elson, Charles O.; Cong, Yingzi

    2010-01-01

    The intestine is the home to a vast diversity of microbiota and a complex of mucosal immune system. Multiple regulatory mechanisms control host immune responses to microbiota and maintain intestinal immune homeostasis. This mini review will provide evidence indicating a Treg cell-IgA axis and such axis playing a major role in maintenance of intestinal homeostasis.

  20. Trained immunity: a memory for innate host defense

    NARCIS (Netherlands)

    Netea, M.G.; Quintin, J.; Meer, J.W.M. van der

    2011-01-01

    Immune responses in vertebrates are classically divided into innate and adaptive, with only the latter being able to build up immunological memory. However, although lacking adaptive immune responses, plants and invertebrates are protected against reinfection with pathogens, and invertebrates even

  1. Integrating Antimicrobial Therapy with Host Immunity to Fight Drug-Resistant Infections: Classical vs. Adaptive Treatment

    Science.gov (United States)

    Gjini, Erida; Brito, Patricia H.

    2016-01-01

    Antimicrobial resistance of infectious agents is a growing problem worldwide. To prevent the continuing selection and spread of drug resistance, rational design of antibiotic treatment is needed, and the question of aggressive vs. moderate therapies is currently heatedly debated. Host immunity is an important, but often-overlooked factor in the clearance of drug-resistant infections. In this work, we compare aggressive and moderate antibiotic treatment, accounting for host immunity effects. We use mathematical modelling of within-host infection dynamics to study the interplay between pathogen-dependent host immune responses and antibiotic treatment. We compare classical (fixed dose and duration) and adaptive (coupled to pathogen load) treatment regimes, exploring systematically infection outcomes such as time to clearance, immunopathology, host immunization, and selection of resistant bacteria. Our analysis and simulations uncover effective treatment strategies that promote synergy between the host immune system and the antimicrobial drug in clearing infection. Both in classical and adaptive treatment, we quantify how treatment timing and the strength of the immune response determine the success of moderate therapies. We explain key parameters and dimensions, where an adaptive regime differs from classical treatment, bringing new insight into the ongoing debate of resistance management. Emphasizing the sensitivity of treatment outcomes to the balance between external antibiotic intervention and endogenous natural defenses, our study calls for more empirical attention to host immunity processes. PMID:27078624

  2. Integrating Antimicrobial Therapy with Host Immunity to Fight Drug-Resistant Infections: Classical vs. Adaptive Treatment.

    Science.gov (United States)

    Gjini, Erida; Brito, Patricia H

    2016-04-01

    Antimicrobial resistance of infectious agents is a growing problem worldwide. To prevent the continuing selection and spread of drug resistance, rational design of antibiotic treatment is needed, and the question of aggressive vs. moderate therapies is currently heatedly debated. Host immunity is an important, but often-overlooked factor in the clearance of drug-resistant infections. In this work, we compare aggressive and moderate antibiotic treatment, accounting for host immunity effects. We use mathematical modelling of within-host infection dynamics to study the interplay between pathogen-dependent host immune responses and antibiotic treatment. We compare classical (fixed dose and duration) and adaptive (coupled to pathogen load) treatment regimes, exploring systematically infection outcomes such as time to clearance, immunopathology, host immunization, and selection of resistant bacteria. Our analysis and simulations uncover effective treatment strategies that promote synergy between the host immune system and the antimicrobial drug in clearing infection. Both in classical and adaptive treatment, we quantify how treatment timing and the strength of the immune response determine the success of moderate therapies. We explain key parameters and dimensions, where an adaptive regime differs from classical treatment, bringing new insight into the ongoing debate of resistance management. Emphasizing the sensitivity of treatment outcomes to the balance between external antibiotic intervention and endogenous natural defenses, our study calls for more empirical attention to host immunity processes.

  3. Contrasting within- and between-host immune selection shapes Neisseria Opa repertoires.

    Science.gov (United States)

    Watkins, Eleanor R; Grad, Yonatan H; Gupta, Sunetra; Buckee, Caroline O

    2014-10-09

    Pathogen evolution is influenced strongly by the host immune response. Previous studies of the effects of herd immunity on the population structure of directly transmitted, short-lived pathogens have primarily focused on the impact of competition for hosts. In contrast, for long-lived infections like HIV, theoretical work has focused on the mechanisms promoting antigenic variation within the host. In reality, successful transmission requires that pathogens balance both within- and between-host immune selection. The Opa adhesins in the bacterial Neisseria genus provide a unique system to study the evolution of the same antigens across two major pathogens: while N. meningitidis is an airborne, respiratory pathogen colonising the nasopharynx relatively transiently, N. gonorrhoeae can cause sexually transmitted, long-lived infections. We use a simple mathematical model and genomic data to show that trade-offs between immune selection pressures within- and between-hosts can explain the contrasting Opa repertoires observed in meningococci and gonococci.

  4. Ciprofloxacin Affects Host Cells by Suppressing Expression of the Endogenous Antimicrobial Peptides Cathelicidins and Beta-Defensin-3 in Colon Epithelia

    Directory of Open Access Journals (Sweden)

    Protim Sarker

    2014-07-01

    Full Text Available Antibiotics exert several effects on host cells including regulation of immune components. Antimicrobial peptides (AMPs, e.g., cathelicidins and defensins display multiple functions in innate immunity. In colonic mucosa, cathelicidins are induced by butyrate, a bacterial fermentation product. Here, we investigated the effect of antibiotics on butyrate-induced expression of cathelicidins and beta-defensins in colon epithelial cells. Real-time PCR analysis revealed that ciprofloxacin and clindamycin reduce butyrate-induced transcription of the human cathelicidin LL-37 in the colonic epithelial cell line HT-29. Suppression of LL-37 peptide/protein by ciprofloxacin was confirmed by Western blot analysis. Immunohistochemical analysis demonstrated that ciprofloxacin suppresses the rabbit cathelicidin CAP-18 in rectal epithelia of healthy and butyrate-treated Shigella-infected rabbits. Ciprofloxacin also down-regulated butyrate-induced transcription of the human beta-defensin-3 in HT-29 cells. Microarray analysis of HT-29 cells revealed upregulation by butyrate with subsequent down-regulation by ciprofloxacin of additional genes encoding immune factors. Dephosphorylation of histone H3, an epigenetic event provided a possible mechanism of the suppressive effect of ciprofloxacin. Furthermore, LL-37 peptide inhibited Clostridium difficile growth in vitro. In conclusion, ciprofloxacin and clindamycin exert immunomodulatory function by down-regulating AMPs and other immune components in colonic epithelial cells. Suppression of AMPs may contribute to the overgrowth of C. difficile, causing antibiotic-associated diarrhea.

  5. Glycans from Fasciola hepatica Modulate the Host Immune Response and TLR-Induced Maturation of Dendritic Cells

    Science.gov (United States)

    Rodríguez, Ernesto; Noya, Verónica; Cervi, Laura; Chiribao, María Laura; Brossard, Natalie; Chiale, Carolina; Carmona, Carlos; Giacomini, Cecilia; Freire, Teresa

    2015-01-01

    Helminths express various carbohydrate-containing glycoconjugates on their surface, and they release glycan-rich excretion/secretion products that can be very important in their life cycles, infection and pathology. Recent evidence suggests that parasite glycoconjugates could play a role in the evasion of the immune response, leading to a modified Th2-polarized immune response that favors parasite survival in the host. Nevertheless, there is limited information about the nature or function of glycans produced by the trematode Fasciola hepatica, the causative agent of fasciolosis. In this paper, we investigate whether glycosylated molecules from F. hepatica participate in the modulation of host immunity. We also focus on dendritic cells, since they are an important target of immune-modulation by helminths, affecting their activity or function. Our results indicate that glycans from F. hepatica promote the production of IL-4 and IL-10, suppressing IFNγ production. During infection, this parasite is able to induce a semi-mature phenotype of DCs expressing low levels of MHCII and secrete IL-10. Furthermore, we show that parasite glycoconjugates mediate the modulation of LPS-induced maturation of DCs since their oxidation restores the capacity of LPS-treated DCs to secrete high levels of the pro-inflammatory cytokines IL-6 and IL-12/23p40 and low levels of the anti-inflammatory cytokine IL-10. Inhibition assays using carbohydrates suggest that the immune-modulation is mediated, at least in part, by the recognition of a mannose specific-CLR that signals by recruiting the phosphatase Php2. The results presented here contribute to the understanding of the role of parasite glycosylated molecules in the modulation of the host immunity and might be useful in the design of vaccines against fasciolosis. PMID:26720149

  6. The fungal quorum-sensing molecule farnesol activates innate immune cells but suppresses cellular adaptive immunity.

    Science.gov (United States)

    Leonhardt, Ines; Spielberg, Steffi; Weber, Michael; Albrecht-Eckardt, Daniela; Bläss, Markus; Claus, Ralf; Barz, Dagmar; Scherlach, Kirstin; Hertweck, Christian; Löffler, Jürgen; Hünniger, Kerstin; Kurzai, Oliver

    2015-03-17

    important for fungal clearance and protective immunity. We show that farnesol is able to enhance inflammation by inducing activation of neutrophils and monocytes. At the same time, farnesol impairs differentiation of monocytes into immature dendritic cells (iDC) by modulating surface phenotype, cytokine release and migrational behavior. Consequently, iDC generated in the presence of farnesol are unable to induce proper T cell responses and fail to secrete Th1 promoting interleukin 12 (IL-12). As farnesol induced down-regulation of the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor, desensitization to GM-CSF could potentially explain transcriptional reprofiling of iDC effector molecules. Taken together, our data show that farnesol can also mediate Candida-host communication and is able to act as a virulence factor. Copyright © 2015 Leonhardt et al.

  7. Clonal variation in Xenorhabdus nematophila virulence and suppression of Manduca sexta immunity.

    Science.gov (United States)

    Park, Youngjin; Herbert, Erin E; Cowles, Charles E; Cowles, Kimberly N; Menard, Megan L; Orchard, Samantha S; Goodrich-Blair, Heidi

    2007-03-01

    Virulence of the insect pathogen Xenorhabdus nematophila is attributed in part to its ability to suppress immunity. For example, X. nematophila suppresses transcripts encoding several antimicrobial proteins, even in the presence of Salmonella enterica, an inducer of these transcripts. We show here that virulence and immune suppression phenotypes can be lost in a subpopulation of X. nematophila. Cells that have undergone 'virulence modulation' (vmo) have attenuated virulence and fail to suppress antimicrobial transcript levels, haemocyte aggregation and nodulation in Manduca sexta insects. When plated on certain media, vmo cells have a higher proportion of translucent (versus opaque) colonies compared with non-vmo cells. Like vmo strains, translucent colony isolates are defective in virulence and immune suppression. The X. nematophila genome encodes two 'opacity' genes with similarity to the Ail/PagC/Rck family of outer membrane proteins involved in adherence, invasion and serum resistance. Quantitative polymerase chain reaction analysis shows that RNA levels of one of these opacity genes, opaB, are higher in opaque relative to translucent colonies. We propose that in X. nematophila opaB may be one of several factors involved in immune suppression during infection, and expression of these factors can be co-ordinately eliminated in a subpopulation, possibly through a phase variation mechanism.

  8. Host immunity to Mycobacterium tuberculosis and risk of tuberculosis

    DEFF Research Database (Denmark)

    Michelsen, Sascha Wilk; Soborg, Bolette; Agger, Else-Marie

    2016-01-01

    BACKGROUND: Human immune responses to latent Mycobacterium tuberculosis (Mtb) infection (LTBI) may enable individuals to control Mtb infection and halt progression to tuberculosis (TB), a hypothesis applied in several novel TB vaccines. We aimed to evaluate whether immune responses to selected LTBI...

  9. Perillyl alcohol suppresses antigen-induced immune responses in the lung

    Energy Technology Data Exchange (ETDEWEB)

    Imamura, Mitsuru; Sasaki, Oh; Okunishi, Katsuhide; Nakagome, Kazuyuki; Harada, Hiroaki; Kawahata, Kimito; Tanaka, Ryoichi; Yamamoto, Kazuhiko [Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo (Japan); Dohi, Makoto, E-mail: mdohi-tky@umin.ac.jp [Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo (Japan); Institute of Respiratory Immunology, Shibuya Clinic for Respiratory Diseases and Allergology, Tokyo (Japan)

    2014-01-03

    Highlights: •Perillyl alcohol (POH) is an isoprenoid which inhibits the mevalonate pathway. •We examined whether POH suppresses immune responses with a mouse model of asthma. •POH treatment during sensitization suppressed Ag-induced priming of CD4{sup +} T cells. •POH suppressed airway eosinophila and cytokine production in thoracic lymph nodes. -- Abstract: Perillyl alcohol (POH) is an isoprenoid which inhibits farnesyl transferase and geranylgeranyl transferase, key enzymes that induce conformational and functional changes in small G proteins to conduct signal production for cell proliferation. Thus, it has been tried for the treatment of cancers. However, although it affects the proliferation of immunocytes, its influence on immune responses has been examined in only a few studies. Notably, its effect on antigen-induced immune responses has not been studied. In this study, we examined whether POH suppresses Ag-induced immune responses with a mouse model of allergic airway inflammation. POH treatment of sensitized mice suppressed proliferation and cytokine production in Ag-stimulated spleen cells or CD4{sup +} T cells. Further, sensitized mice received aerosolized OVA to induce allergic airway inflammation, and some mice received POH treatment. POH significantly suppressed indicators of allergic airway inflammation such as airway eosinophilia. Cytokine production in thoracic lymph nodes was also significantly suppressed. These results demonstrate that POH suppresses antigen-induced immune responses in the lung. Considering that it exists naturally, POH could be a novel preventive or therapeutic option for immunologic lung disorders such as asthma with minimal side effects.

  10. Innate Immunity Evasion by Enteroviruses: Insights into Virus-Host Interaction

    Directory of Open Access Journals (Sweden)

    Xiaobo Lei

    2016-01-01

    Full Text Available Enterovirus genus includes multiple important human pathogens, such as poliovirus, coxsackievirus, enterovirus (EV A71, EV-D68 and rhinovirus. Infection with EVs can cause numerous clinical conditions including poliomyelitis, meningitis and encephalitis, hand-foot-and-mouth disease, acute flaccid paralysis, diarrhea, myocarditis and respiratory illness. EVs, which are positive-sense single-stranded RNA viruses, trigger activation of the host antiviral innate immune responses through pathogen recognition receptors such as retinoic acid-inducible gene (RIG-I-likeand Toll-like receptors. In turn, EVs have developed sophisticated strategies to evade host antiviral responses. In this review, we discuss the interplay between the host innate immune responses and EV infection, with a primary focus on host immune detection and protection against EV infection and viral strategies to evade these antiviral immune responses.

  11. Innate Immunity Evasion by Enteroviruses: Insights into Virus-Host Interaction.

    Science.gov (United States)

    Lei, Xiaobo; Xiao, Xia; Wang, Jianwei

    2016-01-15

    Enterovirus genus includes multiple important human pathogens, such as poliovirus, coxsackievirus, enterovirus (EV) A71, EV-D68 and rhinovirus. Infection with EVs can cause numerous clinical conditions including poliomyelitis, meningitis and encephalitis, hand-foot-and-mouth disease, acute flaccid paralysis, diarrhea, myocarditis and respiratory illness. EVs, which are positive-sense single-stranded RNA viruses, trigger activation of the host antiviral innate immune responses through pathogen recognition receptors such as retinoic acid-inducible gene (RIG-I)-likeand Toll-like receptors. In turn, EVs have developed sophisticated strategies to evade host antiviral responses. In this review, we discuss the interplay between the host innate immune responses and EV infection, with a primary focus on host immune detection and protection against EV infection and viral strategies to evade these antiviral immune responses.

  12. Immune loss as a driver of coexistence during host-phage coevolution

    Science.gov (United States)

    Weissman, Jake L; Holmes, Rayshawn; Barrangou, Rodolphe; Moineau, Sylvain; Fagan, William F; Levin, Bruce; Johnson, Philip L F

    2018-01-01

    Bacteria and their viral pathogens face constant pressure for augmented immune and infective capabilities, respectively. Under this reciprocally imposed selective regime, we expect to see a runaway evolutionary arms race, ultimately leading to the extinction of one species. Despite this prediction, in many systems host and pathogen coexist with minimal coevolution even when well-mixed. Previous work explained this puzzling phenomenon by invoking fitness tradeoffs, which can diminish an arms race dynamic. Here we propose that the regular loss of immunity by the bacterial host can also produce host-phage coexistence. We pair a general model of immunity with an experimental and theoretical case study of the CRISPR-Cas immune system to contrast the behavior of tradeoff and loss mechanisms in well-mixed systems. We find that, while both mechanisms can produce stable coexistence, only immune loss does so robustly within realistic parameter ranges. PMID:29328063

  13. Programmed death ligand 2 in cancer-induced immune suppression

    NARCIS (Netherlands)

    Rozali, Esdy N.; Hato, Stanleyson V.; Robinson, Bruce W.; Lake, Richard A.; Lesterhuis, W. Joost

    2012-01-01

    Inhibitory molecules of the B7/CD28 family play a key role in the induction of immune tolerance in the tumor microenvironment. The programmed death-1 receptor (PD-1), with its ligands PD-L1 and PD-L2, constitutes an important member of these inhibitory pathways. The relevance of the PD-1/PD-L1

  14. RNA viruses can hijack vertebrate microRNAs to suppress innate immunity

    Science.gov (United States)

    Trobaugh, Derek W.; Gardner, Christina L.; Sun, Chengqun; Haddow, Andrew D.; Wang, Eryu; Chapnik, Elik; Mildner, Alexander; Weaver, Scott C.; Ryman, Kate D.; Klimstra, William B.

    2014-02-01

    Currently, there is little evidence for a notable role of the vertebrate microRNA (miRNA) system in the pathogenesis of RNA viruses. This is primarily attributed to the ease with which these viruses mutate to disrupt recognition and growth suppression by host miRNAs. Here we report that the haematopoietic-cell-specific miRNA miR-142-3p potently restricts the replication of the mosquito-borne North American eastern equine encephalitis virus in myeloid-lineage cells by binding to sites in the 3' non-translated region of its RNA genome. However, by limiting myeloid cell tropism and consequent innate immunity induction, this restriction directly promotes neurologic disease manifestations characteristic of eastern equine encephalitis virus infection in humans. Furthermore, the region containing the miR-142-3p binding sites is essential for efficient virus infection of mosquito vectors. We propose that RNA viruses can adapt to use antiviral properties of vertebrate miRNAs to limit replication in particular cell types and that this restriction can lead to exacerbation of disease severity.

  15. Not to be suppressed? Rethinking the host response at a root-parasite interface.

    Science.gov (United States)

    Goto, Derek B; Miyazawa, Hikota; Mar, Jessica C; Sato, Masanao

    2013-12-01

    Root-knot nematodes are highly efficient plant parasites that establish permanent feeding sites within host roots. The initiation of this feeding site is critical for parasitic success and requires an interaction with multiple signaling pathways involved in plant development and environmental response. Resistance against root-knot nematodes is relatively rare amongst their broad host range and they remain a major threat to agriculture. The development of effective and sustainable control strategies depends on understanding how host signaling pathways are manipulated during invasion of susceptible hosts. It is generally understood that root-knot nematodes either suppress host defense signaling during infestation or are able to avoid detection altogether, explaining their profound success as parasites. However, when compared to the depth of knowledge from other well-studied pathogen interactions, the published data on host responses to root-knot nematode infestation do not yet provide convincing support for this hypothesis and alternative explanations also exist. It is equally possible that defense-like signaling responses are actually induced and required during the early stages of root-knot nematode infestation. We describe how defense-signaling is highly context-dependent and that caution is necessary when interpreting transcriptional responses in the absence of appropriate control data or stringent validation of gene annotation. Further hypothesis-driven studies on host defense-like responses are required to account for these limitations and advance our understanding of root-knot nematode parasitism of plants. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. PTEN functions as a melanoma tumor suppressor by promoting host immune response.

    Science.gov (United States)

    Dong, Y; Richards, J-Ae; Gupta, R; Aung, P P; Emley, A; Kluger, Y; Dogra, S K; Mahalingam, M; Wajapeyee, N

    2014-09-18

    Cancer cells acquire several traits that allow for their survival and progression, including the ability to evade the host immune response. However, the mechanisms by which cancer cells evade host immune responses remain largely elusive. Here we study the phenomena of immune evasion in malignant melanoma cells. We find that the tumor suppressor phosphatase and tensin homolog (PTEN) is an important regulator of the host immune response against melanoma cells. Mechanistically, PTEN represses the expression of immunosuppressive cytokines by blocking the phosphatidylinositide 3-kinase (PI3K) pathway. In melanoma cells lacking PTEN, signal transducer and activator of transcription 3 activates the transcription of immunosuppressive cytokines in a PI3K-dependent manner. Furthermore, conditioned media from PTEN-deficient, patient-derived short-term melanoma cultures and established melanoma cell lines blocked the production of the interleukin-12 (IL-12) in human monocyte-derived dendritic cells. Inhibition of IL-12 production was rescued by restoring PTEN or using neutralizing antibodies against the immunosuppressive cytokines. Furthermore, we report that PTEN, as an alternative mechanism to promote the host immune response against cancer cells, represses the expression of programmed cell death 1 ligand, a known repressor of the host immune response. Finally, to establish the clinical significance of our results, we analyzed malignant melanoma patient samples with or without brisk host responses. These analyses confirmed that PTEN loss is associated with a higher percentage of malignant melanoma samples with non-brisk host responses compared with samples with brisk host responses. Collectively, these results establish that PTEN functions as a melanoma tumor suppressor in part by regulating the host immune response against melanoma cells and highlight the importance of assessing PTEN status before recruiting melanoma patients for immunotherapies.

  17. Immune-suppressive properties of the tumor microenvironment

    DEFF Research Database (Denmark)

    Becker, Jürgen C; Andersen, Mads Hald; Schrama, David

    2013-01-01

    Solid tumors are more than an accumulation of cancer cells. Indeed, cancerous cells create a permissive microenvironment by exploiting non-transformed host cells. Thus, solid tumors rather resemble abnormal organs composed of the cancerous cells itself and the stroma providing the supportive......-modulating capacities of the tumor microenvironment....

  18. Role of Pathogen-Derived Cell Wall Carbohydrates and Prostaglandin E2 in Immune Response and Suppression of Fish Immunity by the Oomycete Saprolegnia parasitica

    Science.gov (United States)

    Belmonte, Rodrigo; Wang, Tiehui; Duncan, Gary J.; Skaar, Ida; Mélida, Hugo; Bulone, Vincent; van West, Pieter

    2014-01-01

    Saprolegnia parasitica is a freshwater oomycete that is capable of infecting several species of fin fish. Saprolegniosis, the disease caused by this microbe, has a substantial impact on Atlantic salmon aquaculture. No sustainable treatment against saprolegniosis is available, and little is known regarding the host response. In this study, we examined the immune response of Atlantic salmon to S. parasitica infection and to its cell wall carbohydrates. Saprolegnia triggers a strong inflammatory response in its host (i.e., induction of interleukin-1β1 [IL-1β1], IL-6, and tumor necrosis factor alpha), while severely suppressing the expression of genes associated with adaptive immunity in fish, through downregulation of T-helper cell cytokines, antigen presentation machinery, and immunoglobulins. Oomycete cell wall carbohydrates were recognized by fish leukocytes, triggering upregulation of genes involved in the inflammatory response, similar to what is observed during infection. Our data suggest that S. parasitica is capable of producing prostaglanding E2 (PGE2) in vitro, a metabolite not previously shown to be produced by oomycetes, and two proteins with homology to vertebrate enzymes known to play a role in prostaglandin biosynthesis have been identified in the oomycete genome. Exogenous PGE2 was shown to increase the inflammatory response in fish leukocytes incubated with cell wall carbohydrates while suppressing genes involved in cellular immunity (gamma interferon [IFN-γ] and the IFN-γ-inducible protein [γ-IP]). Inhibition of S. parasitica zoospore germination and mycelial growth by two cyclooxygenase inhibitors (aspirin and indomethacin) also suggests that prostaglandins may be involved in oomycete development. PMID:25114122

  19. Role of pathogen-derived cell wall carbohydrates and prostaglandin E2 in immune response and suppression of fish immunity by the oomycete Saprolegnia parasitica.

    Science.gov (United States)

    Belmonte, Rodrigo; Wang, Tiehui; Duncan, Gary J; Skaar, Ida; Mélida, Hugo; Bulone, Vincent; van West, Pieter; Secombes, Christopher J

    2014-11-01

    Saprolegnia parasitica is a freshwater oomycete that is capable of infecting several species of fin fish. Saprolegniosis, the disease caused by this microbe, has a substantial impact on Atlantic salmon aquaculture. No sustainable treatment against saprolegniosis is available, and little is known regarding the host response. In this study, we examined the immune response of Atlantic salmon to S. parasitica infection and to its cell wall carbohydrates. Saprolegnia triggers a strong inflammatory response in its host (i.e., induction of interleukin-1β1 [IL-1β1], IL-6, and tumor necrosis factor alpha), while severely suppressing the expression of genes associated with adaptive immunity in fish, through downregulation of T-helper cell cytokines, antigen presentation machinery, and immunoglobulins. Oomycete cell wall carbohydrates were recognized by fish leukocytes, triggering upregulation of genes involved in the inflammatory response, similar to what is observed during infection. Our data suggest that S. parasitica is capable of producing prostaglandin [corrected] E2 (PGE2) in vitro, a metabolite not previously shown to be produced by oomycetes, and two proteins with homology to vertebrate enzymes known to play a role in prostaglandin biosynthesis have been identified in the oomycete genome. Exogenous PGE2 was shown to increase the inflammatory response in fish leukocytes incubated with cell wall carbohydrates while suppressing genes involved in cellular immunity (gamma interferon [IFN-γ] and the IFN-γ-inducible protein [γ-IP]). Inhibition of S. parasitica zoospore germination and mycelial growth by two cyclooxygenase inhibitors (aspirin and indomethacin) also suggests that prostaglandins may be involved in oomycete development. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  20. Infective Larvae of Brugia malayi Induce Polarization of Host Macrophages that Helps in Immune Evasion

    Directory of Open Access Journals (Sweden)

    Aditi Sharma

    2018-02-01

    Full Text Available Filarial parasites suppress, divert, or polarize the host immune response to aid their survival. However, mechanisms that govern the polarization of host MΦs during early filarial infection are not completely understood. In this study, we infected BALB/c mice with infective larvae stage-3 of Brugia malayi (Bm-L3 and studied their effect on the polarization of splenic MΦs. Results showed that MΦs displayed M2-phenotype by day 3 p.i. characterized by upregulated IL-4, but reduced IL-12 and Prostaglandin-D2 secretion. Increased arginase activity, higher arginase-1 but reduced NOS2 expression and poor phagocytic and antigen processing capacity was also observed. M2 MΦs supported T-cell proliferation and characteristically upregulated p-ERK but downregulated NF-κB-p65 and NF-κB-p50/105. Notably, Bm-L3 synergized with host regulatory T-cells (Tregs and polarized M2 MΦs to regulatory MΦs (Mregs by day 7 p.i., which secreted copious amounts of IL-10 and prostaglandin-E2. Mregs also showed upregulated expression levels of MHC-II, CD80, and CD86 and exhibited increased antigen-processing capacity but displayed impaired activation of NF-κB-p65 and NF-κB-p50/105. Neutralization of Tregs by anti-GITR + anti-CD25 antibodies checked the polarization of M2 MΦs to Mregs, decreased accumulation of regulatory B cells and inflammatory monocytes, and reduced secretion of IL-10, but enhanced IL-4 production and percentages of eosinophils, which led to Bm-L3 killing. In summary, we report hitherto undocumented effects of early Bm-L3 infection on the polarization of splenic MΦs and show how infective larvae deftly utilize the functional plasticity of host MΦs to establish themselves inside the host.

  1. Recent progress in understanding host immunity to Avian Coccidiosis: Role of IL-17 Family Cytokines

    Science.gov (United States)

    Host-pathogen interaction leading to protection against coccidiosis is complex, involving many aspects of innate and adaptive immunity to intracellular parasites. Recent application of global gene expression microarray analysis to investigate gut innate immune response to Eimeria infections led to t...

  2. Myeloid-derived suppressor cells mediate immune suppression in spinal cord injury.

    Science.gov (United States)

    Wang, Lei; Yu, Wei-bo; Tao, Lian-yuan; Xu, Qing

    2016-01-15

    Spinal cord injury (SCI) is characterized by the loss of motor and sensory functions in areas below the level of the lesion and numerous accompanying deficits. Previous studies have suggested that myeloid-derived suppressor cell (MDSC)-induced immune depression may play a pivotal role in the course of SCI. However, the concrete mechanism of these changes regarding immune suppression remains unknown. Here, we created an SCI mouse model to gain further evidence regarding the relationship between MDSCs following SCI and T lymphocyte suppression. We showed that in the SCI mouse model, the expanding MDSCs have the capacity to suppress T cell proliferation, and this suppression could be reversed by blocking the arginase. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Quantifying the dynamics of viruses and the cellular immune response of the host

    NARCIS (Netherlands)

    Althaus, C.L.

    2009-01-01

    Infections can be caused by viruses, which attack certain cells within an infected host. However, the immune system of the host has evolved remarkable defense mechanisms that counter against an infection. In particular, so-called cytotoxic T lymphocytes can recognize and eliminate infected cells.

  4. Lipochitooligosaccharides modulate plant host immunity to enable endosymbioses

    NARCIS (Netherlands)

    Limpens, E.H.M.; Zeijl, van A.L.; Geurts, R.

    2015-01-01

    Symbiotic nitrogen-fixing rhizobium bacteria and arbuscular mycorrhizal fungi use lipochitooligosaccharide (LCO) signals to communicate with potential host plants. Upon a compatible match, an intimate relation is established during which the microsymbiont is allowed to enter root (-derived) cells.

  5. Surmounting tumor-induced immune suppression by frequent vaccination or immunization in the absence of B cells.

    Science.gov (United States)

    Oizumi, Satoshi; Deyev, Vadim; Yamazaki, Koichi; Schreiber, Taylor; Strbo, Natasa; Rosenblatt, Joseph; Podack, Eckhard R

    2008-05-01

    Tumor-induced immune suppression is one of the most difficult obstacles to the success of tumor immunotherapy. Here, we show that established tumors suppress CD8 T cell clonal expansion in vivo, which is normally observed in tumor-free mice upon antigen-specific glycoprotein (gp) 96-chaperone vaccination. Suppression of CD8 T-cell expansion by established tumors is independent of tumor-associated expression of the antigen that is recognized by the CD8-T-cell receptor. Vaccination of tumor-bearing mice is associated with increased cellular recruitment to the vaccine site compared with tumor-free mice. However, rejection of established, suppressive tumors required frequent (daily) gp96 vaccination. B cells are known to attenuate T helper cell-1 responses. We found that in B-cell deficient mice, tumor rejection of established tumors can be achieved by a single vaccination. Accordingly, in tumor-free B-cell deficient mice, cognate CD8 cytotoxic T lymphocyte clonal expansion is enhanced in response to gp96-chaperone vaccination. The data have implications for the study of tumor-induced immune suppression and for translation of tumor immunotherapy into the clinical setting. Frequent vaccination with cellular vaccines and concurrent B-cell depletion may greatly enhance the activity of anticancer vaccine therapy in patients.

  6. Increased dietary fat prevents sleep deprivation-induced immune suppression in rats.

    Science.gov (United States)

    Horohov, D W; Pourciau, S S; Mistric, L; Chapman, A; Ryan, D H

    2001-06-01

    Fatty acid composition of rodent diets can affect baseline immune function as measured in vitro and in vivo. Stress, in a variety of forms, can also affect immune function. Possible interaction between diet and other stressors has not been fully explored. We examined the interaction between sleep deprivation stress and dietary fatty acid composition in altering lymphocyte responses to mitogen stimulation. Rats were fed diets containing various sources of fatty acids, then were subjected to sleep deprivation. Splenocytes were harvested and assayed for responsiveness to various mitogens, using a 72-h proliferation assay. Rats subjected to sleep deprivation experienced significant suppression of in vitro proliferative response to various mitogens. This immune suppression was dependent on duration of sleep deprivation. Feeding sleep deprived rats a diet enriched in fatty acids abrogated the effect of sleep deprivation. The fat content of rodent diets can have a marked effect on baseline and stress-modulated immune responses.

  7. Hidden Consequences of Living in a Wormy World : Nematode-Induced Immune Suppression Facilitates Tuberculosis Invasion in African Buffalo

    NARCIS (Netherlands)

    Ezenwa, Vanessa O.; Etienne, Rampal S.; Luikart, Gordon; Beja-Pereira, Albano; Jolles, Anna E.

    2010-01-01

    Most hosts are infected with multiple parasites, and responses of the immune system to co occurring parasites may influence disease spread. Helminth infection can bias the host immune response toward a T-helper type 2 Th2) over a type 1 Th1) response, impairing the host's ability to control

  8. Suppression of graft-versus-host reactivity by a single host-specific blood transfusion to prospective donors of hemopoietic cells

    NARCIS (Netherlands)

    Knulst, A.C.; Bril-Bazuin, C.; Savelkoul, H.F.J.; Benner, R.

    1991-01-01

    Delayed-type hypersensitivity responses against recipient's histocompatibility antigens can occur early in the course of a graft-versus-host reaction in lethally irradiated allogeneically reconstituted mice. This reactivity could be suppressed by a single host-specific blood transfusion to the

  9. Transcriptome-microRNA analysis of Sarcoptes scabiei and host immune response.

    Directory of Open Access Journals (Sweden)

    Ran He

    Full Text Available Scabies is a parasitic disease, caused by the mite Sarcoptes scabiei, and is considered one of the top 50 epidemic diseases and one the most common human skin disease, worldwide. Allergic dermatitis, including an intense itch, is a common symptom, however diagnosis is difficult and there is currently no effective vaccine. The goal of this study was to examine the immune interaction mechanism of both S. scabiei and infected hosts. mRNA-seq and microRNA-seq were conducted on the S. scabiei mite and on infected and uninfected hosts. We focused on differential expression of unigenes and microRNAs, as well as the real targets of unigenes in enriched immune signaling pathways. S. scabiei enhanced host immune function and decreased metabolism after infection, while the immune response of the host inhibited S. scabiei proliferation and metabolism signaling pathways. Differentially expressed unigenes of S. scabiei were enriched in the JAK-STAT signaling pathway and the Toll-like receptor signaling pathway. The differential expression analysis indicated that microRNAs of S. scabiei and hosts have major roles in regulating immune interactions between parasites and hosts.

  10. Transcriptome-microRNA analysis of Sarcoptes scabiei and host immune response.

    Science.gov (United States)

    He, Ran; Gu, Xiaobin; Lai, Weimin; Peng, Xuerong; Yang, Guangyou

    2017-01-01

    Scabies is a parasitic disease, caused by the mite Sarcoptes scabiei, and is considered one of the top 50 epidemic diseases and one the most common human skin disease, worldwide. Allergic dermatitis, including an intense itch, is a common symptom, however diagnosis is difficult and there is currently no effective vaccine. The goal of this study was to examine the immune interaction mechanism of both S. scabiei and infected hosts. mRNA-seq and microRNA-seq were conducted on the S. scabiei mite and on infected and uninfected hosts. We focused on differential expression of unigenes and microRNAs, as well as the real targets of unigenes in enriched immune signaling pathways. S. scabiei enhanced host immune function and decreased metabolism after infection, while the immune response of the host inhibited S. scabiei proliferation and metabolism signaling pathways. Differentially expressed unigenes of S. scabiei were enriched in the JAK-STAT signaling pathway and the Toll-like receptor signaling pathway. The differential expression analysis indicated that microRNAs of S. scabiei and hosts have major roles in regulating immune interactions between parasites and hosts.

  11. Shigella Manipulates Host Immune Responses by Delivering Effector Proteins with Specific Roles

    Science.gov (United States)

    Ashida, Hiroshi; Mimuro, Hitomi; Sasakawa, Chihiro

    2015-01-01

    The intestinal epithelium deploys multiple defense systems against microbial infection to sense bacterial components and danger alarms, as well as to induce intracellular signal transduction cascades that trigger both the innate and the adaptive immune systems, which are pivotal for bacterial elimination. However, many enteric bacterial pathogens, including Shigella, deliver a subset of virulence proteins (effectors) via the type III secretion system (T3SS) that enable bacterial evasion from host immune systems; consequently, these pathogens are able to efficiently colonize the intestinal epithelium. In this review, we present and select recently discovered examples of interactions between Shigella and host immune responses, with particular emphasis on strategies that bacteria use to manipulate inflammatory outputs of host-cell responses such as cell death, membrane trafficking, and innate and adaptive immune responses. PMID:25999954

  12. Shigella manipulates host immune responses by delivering effector proteins with specific roles

    Directory of Open Access Journals (Sweden)

    Hiroshi eAshida

    2015-05-01

    Full Text Available The intestinal epithelium deploys multiple defense systems against microbial infection to sense bacterial components and danger alarms, as well as to induce intracellular signal transduction cascades that trigger both the innate and adaptive immune system, which are pivotal for bacterial elimination. However, many enteric bacterial pathogens, including Shigella, deliver a subset of virulence proteins (effectors via the type III secretion system (T3SS that enable bacterial evasion from host immune systems; consequently, these pathogens are able to efficiently colonize the intestinal epithelium. In this review, we present select recently discovered examples of interactions between Shigella and host immune responses, with particular emphasis on strategies that bacteria use to manipulate inflammatory outputs of host cell responses such as cell death, membrane trafficking, and innate and adaptive immune responses.

  13. Staphylococcus aureus Manipulates Innate Immunity through Own and Host-Expressed Proteases

    Science.gov (United States)

    Pietrocola, Giampiero; Nobile, Giulia; Rindi, Simonetta; Speziale, Pietro

    2017-01-01

    Neutrophils, complement system and skin collectively represent the main elements of the innate immune system, the first line of defense of the host against many common microorganisms. Bacterial pathogens have evolved strategies to counteract all these defense activities. Specifically, Staphylococcus aureus, a major human pathogen, secretes a variety of immune evasion molecules including proteases, which cleave components of the innate immune system or disrupt the integrity of extracellular matrix and intercellular connections of tissues. Additionally, S. aureus secretes proteins that can activate host zymogens which, in turn, target specific defense components. Secreted proteins can also inhibit the anti-bacterial function of neutrophils or complement system proteases, potentiating S. aureus chances of survival. Here, we review the current understanding of these proteases and modulators of host proteases in the functioning of innate immunity and describe the importance of these mechanisms in the pathology of staphylococcal diseases. PMID:28529927

  14. The evolutionary dynamics of within-generation immune priming in invertebrate hosts.

    Science.gov (United States)

    Best, Alex; Tidbury, Hannah; White, Andy; Boots, Mike

    2013-03-06

    While invertebrates lack the machinery necessary for 'acquired immunity', there is increasing empirical evidence that exposure to low levels of disease may 'prime' an invertebrate's immune response, increasing its defence to subsequent exposure. Despite this increasing empirical data, there has been little theoretical attention paid to immune priming. Here, we investigate the evolution of immune priming, focusing on the role of the unique feedbacks generated by a newly developed susceptible-primed-infected epidemiological model. Contrasting our results with previous models on the evolution of acquired immunity, we highlight that there are important implications to the evolution of immunity through priming owing to these different epidemiological feedbacks. In particular, we find that in contrast to acquired immunity, priming is strongly selected for at high as well as intermediate pathogen virulence. We also find that priming may be greatest at either intermediate or high host lifespans depending on the severity of disease. Furthermore, hosts faced with more severe pathogens are more likely to evolve diversity in priming. Finally, we show when the evolution of priming leads to the exclusion of the pathogens or hosts experiencing population cycles. Overall the model acts as a baseline for understanding the evolution of priming in host-pathogen systems.

  15. HMGB1 enhances immune suppression by facilitating the differentiation and suppressive activity of myeloid-derived suppressor cells.

    Science.gov (United States)

    Parker, Katherine H; Sinha, Pratima; Horn, Lucas A; Clements, Virginia K; Yang, Huan; Li, Jianhua; Tracey, Kevin J; Ostrand-Rosenberg, Suzanne

    2014-10-15

    Chronic inflammation often precedes malignant transformation and later drives tumor progression. Likewise, subversion of the immune system plays a role in tumor progression, with tumoral immune escape now well recognized as a crucial hallmark of cancer. Myeloid-derived suppressor cells (MDSC) are elevated in most individuals with cancer, where their accumulation and suppressive activity are driven by inflammation. Thus, MDSCs may define an element of the pathogenic inflammatory processes that drives immune escape. The secreted alarmin HMGB1 is a proinflammatory partner, inducer, and chaperone for many proinflammatory molecules that MDSCs develop. Therefore, in this study, we examined HMGB1 as a potential regulator of MDSCs. In murine tumor systems, HMGB1 was ubiquitous in the tumor microenvironment, activating the NF-κB signal transduction pathway in MDSCs and regulating their quantity and quality. We found that HMGB1 promotes the development of MDSCs from bone marrow progenitor cells, contributing to their ability to suppress antigen-driven activation of CD4(+) and CD8(+) T cells. Furthermore, HMGB1 increased MDSC-mediated production of IL-10, enhanced crosstalk between MDSCs and macrophages, and facilitated the ability of MDSCs to downregulate expression of the T-cell homing receptor L-selectin. Overall, our results revealed a pivotal role for HMGB1 in the development and cancerous contributions of MDSCs. ©2014 American Association for Cancer Research.

  16. Pattern-triggered immunity suppresses programmed cell death triggered by fumonisin b1.

    Directory of Open Access Journals (Sweden)

    Daisuke Igarashi

    Full Text Available Programmed cell death (PCD is a crucial process for plant innate immunity and development. In plant innate immunity, PCD is believed to prevent the spread of pathogens from the infection site. Although proper control of PCD is important for plant fitness, we have limited understanding of the molecular mechanisms regulating plant PCD. Plant innate immunity triggered by recognition of effectors (effector-triggered immunity, ETI is often associated with PCD. However pattern-triggered immunity (PTI, which is triggered by recognition of elicitors called microbe-associated molecular patterns (MAMPs, is not. Therefore we hypothesized that PTI might suppress PCD. Here we report that PCD triggered by the mycotoxin fumonisin B1 (FB1 can be suppressed by PTI in Arabidopsis. FB1-triggered cell death was suppressed by treatment with the MAMPs flg22 (a part of bacterial flagellin or elf18 (a part of the bacterial elongation factor EF-Tu but not chitin (a component of fungal cell walls. Although plant hormone signaling is associated with PCD and PTI, both FB1-triggered cell death and suppression of cell death by flg22 treatment were still observed in mutants deficient in jasmonic acid (JA, ethylene (ET and salicylic acid (SA signaling. The MAP kinases MPK3 and MPK6 are transiently activated and inactivated within one hour during PTI. We found that FB1 activated MPK3 and MPK6 about 36-48 hours after treatment. Interestingly, this late activation was attenuated by flg22 treatment. These results suggest that PTI suppression of FB1-triggered cell death may involve suppression of MPK3/MPK6 signaling but does not require JA/ET/SA signaling.

  17. Host-pathogen interplay in viral transmission and immune evasion

    NARCIS (Netherlands)

    Mesman, A.W.

    2014-01-01

    Dendritic cell (DC) subsets and macrophages are located in mucosal tissues to identify intruding pathogens. In order to do so, these innate immune cells express pattern recognition receptors, including C-type lectin receptors (CLR) on the cell surface. Activation of these receptors promotes pathogen

  18. Serratia marcescens Induces Apoptotic Cell Death in Host Immune Cells via a Lipopolysaccharide- and Flagella-dependent Mechanism*

    Science.gov (United States)

    Ishii, Kenichi; Adachi, Tatsuo; Imamura, Katsutoshi; Takano, Shinya; Usui, Kimihito; Suzuki, Kazushi; Hamamoto, Hiroshi; Watanabe, Takeshi; Sekimizu, Kazuhisa

    2012-01-01

    Injection of Serratia marcescens into the blood (hemolymph) of the silkworm, Bombyx mori, induced the activation of c-Jun NH2-terminal kinase (JNK), followed by caspase activation and apoptosis of blood cells (hemocytes). This process impaired the innate immune response in which pathogen cell wall components, such as glucan, stimulate hemocytes, leading to the activation of insect cytokine paralytic peptide. S. marcescens induced apoptotic cell death of silkworm hemocytes and mouse peritoneal macrophages in vitro. We searched for S. marcescens transposon mutants with attenuated ability to induce apoptosis of silkworm hemocytes. Among the genes identified, disruption mutants of wecA (a gene involved in lipopolysaccharide O-antigen synthesis), and flhD and fliR (essential genes in flagella synthesis) showed reduced motility and impaired induction of mouse macrophage cell death. These findings suggest that S. marcescens induces apoptosis of host immune cells via lipopolysaccharide- and flagella-dependent motility, leading to the suppression of host innate immunity. PMID:22859304

  19. Analysis of Globodera rostochiensis effectors reveals conserved functions of SPRYSEC proteins in suppressing and eliciting plant immune responses

    KAUST Repository

    Ali, Shawkat

    2015-08-11

    Potato cyst nematodes (PCNs), including Globodera rostochiensis (Woll.), are important pests of potato. Plant parasitic nematodes produce multiple effector proteins, secreted from their stylets, to successfully infect their hosts. These include proteins delivered to the apoplast and to the host cytoplasm. A number of effectors from G. rostochiensis predicted to be delivered to the host cytoplasm have been identified, including several belonging to the secreted SPRY domain (SPRYSEC) family. SPRYSEC proteins are unique to members of the genus Globodera and have been implicated in both the induction and the repression of host defense responses. We have tested the properties of six different G. rostochiensis SPRYSEC proteins by expressing them in Nicotiana benthamiana and N. tabacum. We have found that all SPRYSEC proteins tested are able to suppress defense responses induced by NB-LRR proteins as well as cell death induced by elicitors, suggesting that defense repression is a common characteristic of members of this effector protein family. At the same time, GrSPRYSEC-15 elicited a defense responses in N. tabacum, which was found to be resistant to a virus expressing GrSPRYSEC-15. These results suggest that SPRYSEC proteins may possess characteristics that allow them to be recognized by the plant immune system.

  20. Immunoregulation by Trichinella spiralis: Benefits for parasite and host

    NARCIS (Netherlands)

    Aranzamendi Esteban, C.R.|info:eu-repo/dai/nl/341157430

    2013-01-01

    Several studies indicate that certain helminths suppress the host immune responses. This suppression may benefit the parasite since it increases the chances of survival in their host. By doing so, the hosts may also benefit due to concomitant reduction of immune pathology associated with allergies

  1. Myeloid cell sirtuin-1 expression does not alter host immune responses to Gram-negative endotoxemia or Gram-positive bacterial infection.

    Directory of Open Access Journals (Sweden)

    Laura E Crotty Alexander

    Full Text Available The role of sirtuin-1 (SIRT1 in innate immunity, and in particular the influence of SIRT1 on antimicrobial defense against infection, has yet to be reported but is important to define since SIRT1 inhibitors are being investigated as therapeutic agents in the treatment of cancer, Huntington's disease, and autoimmune diseases. Given the therapeutic potential of SIRT1 suppression, we sought to characterize the role of SIRT1 in host defense. Utilizing both pharmacologic methods and a genetic knockout, we demonstrate that SIRT1 expression has little influence on macrophage and neutrophil antimicrobial functions. Myeloid SIRT1 expression does not change mortality in gram-negative toxin-induced shock or gram-positive bacteremia, suggesting that therapeutic suppression of SIRT1 may be done safely without suppression of myeloid cell-specific immune responses to severe bacterial infections.

  2. Progranulin Protects Hippocampal Neurogenesis via Suppression of Neuroinflammatory Responses Under Acute Immune Stress.

    Science.gov (United States)

    Ma, Yanbo; Matsuwaki, Takashi; Yamanouchi, Keitaro; Nishihara, Masugi

    2017-07-01

    Immune stress is well known to suppress adult neurogenesis in the hippocampus. We have demonstrated that progranulin (PGRN) has a mitogenic effect on neurogenesis under several experimental conditions. We have also shown that PGRN suppresses excessive neuroinflammatory responses after traumatic brain injury. However, the role of PGRN in modulating neurogenesis under acute immune stress is yet to be elucidated. In the present study, we evaluated the involvement of PGRN in neurogenesis and inflammatory responses in the hippocampus using a lipopolysaccharide (LPS)-induced immune stress model. Treatment of mice with LPS significantly increased the expression of PGRN in activated microglia and decreased neurogenesis in the dentate gyrus of the hippocampus. PGRN deficiency increased CD68-immunoreactive area and exacerbated suppression of neurogenesis following LPS treatment. The expression levels of lysosomal genes including lysozyme M, macrophage expressed gene 1, and cathepsin Z were higher in PGRN-deficient than in wild-type mice, while PGRN deficiency decreased mammalian target of rapamycin (mTOR) mRNA levels, suggesting that PGRN suppresses excessive lysosomal biogenesis by promoting mTOR signaling. LPS treatment also increased the expression of proinflammatory genes such as interleukin (IL)-1β, tumor necrosis factor-α, and microsomal prostaglandin E synthase-1 (mPGES-1) in the hippocampus, and PGRN deficiency further enhanced gene expression of IL-6 and mPGES-1. These results suggest that PGRN plays a protecting role in hippocampal neurogenesis at least partially by attenuating neuroinflammatory responses during LPS-induced acute immune stress.

  3. The historical association between measles and pertussis: A case of immune suppression?

    Directory of Open Access Journals (Sweden)

    Stephen Coleman

    2015-12-01

    Full Text Available Objectives: According to historical medical reports, many children with measles subsequently contracted pertussis, often with fatal results. The likelihood of a child contracting pertussis after a measles infection is increased by its immune-suppressing effects. This research aims to verify the historical reports. Methods: The analysis examines statistically the historical relationship between average measles and pertussis incidence rates in the United States from 1938 to 1954 at the state level and in average weekly rates. Analysis of incidence rates is cross-sectional at the state level using public health data. Results: The results show that, on average and over time, states with higher measles rates have higher pertussis rates, and the peaks and nadirs of average weekly incidence rates of pertussis lag measles by a delay of about 3–4 weeks, well within the duration of immune suppression. Measles and pertussis have similar geographical distributions. Conclusion: The research tentatively supports the hypothesis that because of its immune-suppressing effects, measles causes an increase in pertussis, but other factors may be involved. Epidemic models should give more attention to the possibility of immune suppression for diseases such as measles where that might be a risk factor. The findings reemphasize the importance of measles vaccination for the prevention of other diseases.

  4. The historical association between measles and pertussis: A case of immune suppression?

    Science.gov (United States)

    Coleman, Stephen

    2015-01-01

    Objectives: According to historical medical reports, many children with measles subsequently contracted pertussis, often with fatal results. The likelihood of a child contracting pertussis after a measles infection is increased by its immune-suppressing effects. This research aims to verify the historical reports. Methods: The analysis examines statistically the historical relationship between average measles and pertussis incidence rates in the United States from 1938 to 1954 at the state level and in average weekly rates. Analysis of incidence rates is cross-sectional at the state level using public health data. Results: The results show that, on average and over time, states with higher measles rates have higher pertussis rates, and the peaks and nadirs of average weekly incidence rates of pertussis lag measles by a delay of about 3–4 weeks, well within the duration of immune suppression. Measles and pertussis have similar geographical distributions. Conclusion: The research tentatively supports the hypothesis that because of its immune-suppressing effects, measles causes an increase in pertussis, but other factors may be involved. Epidemic models should give more attention to the possibility of immune suppression for diseases such as measles where that might be a risk factor. The findings reemphasize the importance of measles vaccination for the prevention of other diseases. PMID:27092263

  5. Sex-dimorphic adverse drug reactions to immune suppressive agents in inflammatory bowel disease

    NARCIS (Netherlands)

    Z. Zelinkova (Zuzana); E. Bultman (Evelien); L. Vogelaar (Lauran); C. Bouziane (Cheima); E.J. Kuipers (Ernst); C.J. van der Woude (Janneke)

    2012-01-01

    textabstractAIM: To analyze sex differences in adverse drug reactions (ADR) to the immune suppressive medication in inflammatory bowel disease (IBD) patients. METHODS: All IBD patients attending the IBD outpatient clinic of a referral hospital were identifed through the electronic diagnosis

  6. Signaling Circuits and Regulation of Immune Suppression by Ovarian Tumor-Associated Macrophages

    Directory of Open Access Journals (Sweden)

    Martin J. Cannon

    2015-05-01

    Full Text Available The barriers presented by immune suppression in the ovarian tumor microenvironment present one of the biggest challenges to development of successful tumor vaccine strategies for prevention of disease recurrence and progression following primary surgery and chemotherapy. New insights gained over the last decade have revealed multiple mechanisms of immune regulation, with ovarian tumor-associated macrophages/DC likely to fulfill a central role in creating a highly immunosuppressive milieu that supports disease progression and blocks anti-tumor immunity. This review provides an appraisal of some of the key signaling pathways that may contribute to immune suppression in ovarian cancer, with a particular focus on the potential involvement of the c-KIT/PI3K/AKT, wnt/β-catenin, IL-6/STAT3 and AhR signaling pathways in regulation of indoleamine 2,3-dioxygenase expression in tumor-associated macrophages. Knowledge of intercellular and intracellular circuits that shape immune suppression may afford insights for development of adjuvant treatments that alleviate immunosuppression in the tumor microenvironment and enhance the clinical efficacy of ovarian tumor vaccines.

  7. Immune-suppressive activity of punicalagin via inhibition of NFAT activation

    International Nuclear Information System (INIS)

    Lee, Sang-Ik; Kim, Byoung-Soo; Kim, Kyoung-Shin; Lee, Samkeun; Shin, Kwang-Soo; Lim, Jong-Soon

    2008-01-01

    Since T cell activation is central to the development of autoimmune diseases, we screened a natural product library comprising 1400 samples of medicinal herbal extracts, to identify compounds that suppress T cell activity. Punicalagin (PCG) isolated from the fruit of Punica granatum was identified as a potent immune suppressant, based on its inhibitory action on the activation of the nuclear factor of activated T cells (NFAT). PCG downregulated the mRNA and soluble protein expression of interleukin-2 from anti-CD3/anti-CD28-stimulated murine splenic CD4+ T cells and suppressed mixed leukocytes reaction (MLR) without exhibiting cytotoxicity to the cells. In vivo, the PCG treatment inhibited phorbol 12-myristate 13-acetate (PMA)-induced chronic ear edema in mice and decreased CD3+ T cell infiltration of the inflamed tissue. These results suggest that PCG could be a potential candidate for the therapeutics of various immune pathologies

  8. Highly potent host external immunity acts as a strong selective force enhancing rapid parasite virulence evolution.

    Science.gov (United States)

    Rafaluk, Charlotte; Yang, Wentao; Mitschke, Andreas; Rosenstiel, Philip; Schulenburg, Hinrich; Joop, Gerrit

    2017-05-01

    Virulence is often under selection during host-parasite coevolution. In order to increase fitness, parasites are predicted to circumvent and overcome host immunity. A particular challenge for pathogens are external immune systems, chemical defence systems comprised of potent antimicrobial compounds released by prospective hosts into the environment. We carried out an evolution experiment, allowing for coevolution to occur, with the entomopathogenic fungus, Beauveria bassiana, and the red flour beetle, Tribolium castaneum, which has a well-documented external immune system with strong inhibitory effects against B. bassiana. After just seven transfers of experimental evolution we saw a significant increase in parasite induced host mortality, a proxy for virulence, in all B. bassiana lines. This apparent virulence increase was mainly the result of the B. bassiana lines evolving resistance to the beetles' external immune defences, not due to increased production of toxins or other harmful substances. Transcriptomic analyses of evolved B. bassiana implicated the up-regulation of oxidative stress resistance genes in the observed resistance to external immunity. It was concluded that external immunity acts as a powerful selective force for virulence evolution, with an increase in virulence being achieved apparently entirely by overcoming these defences, most likely due to elevated oxidative stress resistance. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. The Value of a Comparative Approach to Understand the Complex Interplay between Microbiota and Host Immunity.

    Science.gov (United States)

    Morella, Norma M; Koskella, Britt

    2017-01-01

    The eukaryote immune system evolved and continues to evolve within a microbial world, and as such is critically shaped by-and in some cases even reliant upon-the presence of host-associated microbial species. There are clear examples of adaptations that allow the host to simultaneously tolerate and/or promote growth of symbiotic microbiota while protecting itself against pathogens, but the relationship between immunity and the microbiome reaches far beyond simple recognition and includes complex cross talk between host and microbe as well as direct microbiome-mediated protection against pathogens. Here, we present a broad but brief overview of how the microbiome is controlled by and interacts with diverse immune systems, with the goal of identifying questions that can be better addressed by taking a comparative approach across plants and animals and different types of immunity. As two key examples of such an approach, we focus on data examining the importance of early exposure on microbiome tolerance and immune system development and function, and the importance of transmission among hosts in shaping the potential coevolution between, and long-term stability of, host-microbiome associations. Then, by comparing existing evidence across short-lived plants, mouse model systems and humans, and insects, we highlight areas of microbiome research that are strong in some systems and absent in others with the hope of guiding future research that will allow for broad-scale comparisons moving forward. We argue that such an approach will not only help with identification of generalities in host-microbiome-immune interactions but also improve our understanding of the role of the microbiome in host health.

  10. Plastic and micro-evolutionary responses of a nematode to the host immune environment.

    Science.gov (United States)

    Guivier, Emmanuel; Lippens, Cédric; Faivre, Bruno; Sorci, Gabriele

    2017-10-01

    Parasitic organisms have to cope with the defences deployed by their hosts and this can be achieved adopting immune evasion strategies or optimal life history traits according to the prevailing pattern of immune-mediated mortality. Parasites often encounter variable immune environments both within and between hosts, promoting the evolution of plastic strategies instead of fixed responses. Here, we explored the plasticity and micro-evolutionary responses of immunomodulatory mechanisms and life history traits to the immune environment provided by the host, using the parasitic nematode Heligmosomoides polygyrus. To test if the parasite responds plastically to the immune environment, we stimulated the systemic inflammatory response of mice and we assessed i) the expression of two genes with candidate immunomodulatory functions (Hp-Tgh2 and Hp-CPI); ii) changes in the number of eggs shed in the faeces. To test if the immune environment induces a micro-evolutionary response in the parasite, we maintained the nematode in mice whose inflammatory response was up- or down-regulated during four generations. We found that H. polygyrus plastically responded to a sudden rise of pro-inflammatory cytokines, up-regulating the expression of two candidate genes involved in the process of immune modulation, and enhancing egg output. At the micro-evolutionary level, parasites maintained in hosts experiencing different levels of inflammation did not have differential expression of Hp-Tgh2 and Hp-CPI genes when infecting unmanipulated, control, mice. However, parasites maintained in mice with an up-regulated inflammation shed more eggs compared to the control line. Overall, our study shows that H. polygyrus can plastically adjust the expression of immunomodulatory genes and life history traits, and responds to selection exerted by the host immune system. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Functionally redundant RXLR effectors from Phytophthora infestans act at different steps to suppress early flg22-triggered immunity.

    Directory of Open Access Journals (Sweden)

    Xiangzi Zheng

    2014-04-01

    Full Text Available Genome sequences of several economically important phytopathogenic oomycetes have revealed the presence of large families of so-called RXLR effectors. Functional screens have identified RXLR effector repertoires that either compromise or induce plant defense responses. However, limited information is available about the molecular mechanisms underlying the modes of action of these effectors in planta. The perception of highly conserved pathogen- or microbe-associated molecular patterns (PAMPs/MAMPs, such as flg22, triggers converging signaling pathways recruiting MAP kinase cascades and inducing transcriptional re-programming, yielding a generic anti-microbial response. We used a highly synchronizable, pathogen-free protoplast-based assay to identify a set of RXLR effectors from Phytophthora infestans (PiRXLRs, the causal agent of potato and tomato light blight that manipulate early stages of flg22-triggered signaling. Of thirty-three tested PiRXLR effector candidates, eight, called Suppressor of early Flg22-induced Immune response (SFI, significantly suppressed flg22-dependent activation of a reporter gene under control of a typical MAMP-inducible promoter (pFRK1-Luc in tomato protoplasts. We extended our analysis to Arabidopsis thaliana, a non-host plant species of P. infestans. From the aforementioned eight SFI effectors, three appeared to share similar functions in both Arabidopsis and tomato by suppressing transcriptional activation of flg22-induced marker genes downstream of post-translational MAP kinase activation. A further three effectors interfere with MAMP signaling at, or upstream of, the MAP kinase cascade in tomato, but not in Arabidopsis. Transient expression of the SFI effectors in Nicotiana benthamiana enhances susceptibility to P. infestans and, for the most potent effector, SFI1, nuclear localization is required for both suppression of MAMP signaling and virulence function. The present study provides a framework to decipher the

  12. E-cigarette use results in suppression of immune and inflammatory-response genes in nasal epithelial cells similar to cigarette smoke.

    Science.gov (United States)

    Martin, Elizabeth M; Clapp, Phillip W; Rebuli, Meghan E; Pawlak, Erica A; Glista-Baker, Ellen; Benowitz, Neal L; Fry, Rebecca C; Jaspers, Ilona

    2016-07-01

    Exposure to cigarette smoke is known to result in impaired host defense responses and immune suppressive effects. However, the effects of new and emerging tobacco products, such as e-cigarettes, on the immune status of the respiratory epithelium are largely unknown. We conducted a clinical study collecting superficial nasal scrape biopsies, nasal lavage, urine, and serum from nonsmokers, cigarette smokers, and e-cigarette users and assessed them for changes in immune gene expression profiles. Smoking status was determined based on a smoking history and a 3- to 4-wk smoking diary and confirmed using serum cotinine and urine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) levels. Total RNA from nasal scrape biopsies was analyzed using the nCounter Human Immunology v2 Expression panel. Smoking cigarettes or vaping e-cigarettes resulted in decreased expression of immune-related genes. All genes with decreased expression in cigarette smokers (n = 53) were also decreased in e-cigarette smokers. Additionally, vaping e-cigarettes was associated with suppression of a large number of unique genes (n = 305). Furthermore, the e-cigarette users showed a greater suppression of genes common with those changed in cigarette smokers. This was particularly apparent for suppressed expression of transcription factors, such as EGR1, which was functionally associated with decreased expression of 5 target genes in cigarette smokers and 18 target genes in e-cigarette users. Taken together, these data indicate that vaping e-cigarettes is associated with decreased expression of a large number of immune-related genes, which are consistent with immune suppression at the level of the nasal mucosa. Copyright © 2016 the American Physiological Society.

  13. Role of Trypanosoma cruzi Trans-sialidase on the Escape from Host Immune Surveillance

    Science.gov (United States)

    Nardy, Ana F. F. R.; Freire-de-Lima, Celio G.; Pérez, Ana R.; Morrot, Alexandre

    2016-01-01

    Chagas disease is caused by the flagellate protozoan Trypanosoma cruzi, affecting millions of people throughout Latin America. The parasite dampens host immune response causing modifications in diverse lymphoid compartments, including the thymus. T. cruzi trans-sialidase (TS) seems to play a fundamental role in such immunopathological events. This unusual enzyme catalyses the transference of sialic acid molecules from host glycoconjugates to acceptor molecules placed on the parasite surface. TS activity mediates several biological effects leading to the subversion of host immune system, hence favoring both parasite survival and the establishment of chronic infection. This review summarizes current findings on the roles of TS in the immune response during T. cruzi infection. PMID:27047464

  14. Effects of bestatin on the host immunity in patients treated for urogenital cancer

    International Nuclear Information System (INIS)

    Ozono, S.; Iwai, A.; Babaya, K.; Hiramatsu, T.; Yoshida, K.; Yamada, K.; Hirao, Y.; Aoyama, H.; Ohara, S.; Okajima, E.

    1990-01-01

    To examine effects of bestatin on the host immunity of patients with urogenital cancer, 54 patients were randomized into 2 groups: bestatin treated and controls. In each group, the patients were divided into 2 subgroups: one which received basic treatment expected to greatly affect host immunity ('invasive treatment') while the other one received other types of basic treatment ('non-invasive treatment'). Peripheral lymphocyte, OKT 4/8 ratio and purified protein derivative (PPD) skin reaction were used as immunological markers. There were significant differences in the 'invasive' treatment group between bestatin treated patients and controls concerning lymphocyte counts and PPD skin reactions and in the 'non-invasive' group concerning lymphocyte counts and OKT 4/8 ratios. These results suggest that bestatin may potentiate host immunity in patients with urogenital cancer. Further studies on larger materials are, however, needed before more definite conclusions can be drawn. (orig.)

  15. Immunity against Helminths: Interactions with the Host and the Intercurrent Infections

    Directory of Open Access Journals (Sweden)

    Emmanuelle Moreau

    2010-01-01

    mechanisms against tissue-dwelling helminths and helminths localized in the lumen of organs, and their regulation, are reviewed. Helminth infections are characterized by an association of Th2-like and Treg responses. Worms are able to persist in the host and are mainly responsible for chronic infection despite a strong immune response developed by the parasitized host. Two types of protection against the parasite, namely, premune and partial immunities, have been described. Immune responses against helminths can also participate in pathogenesis. Th2/Treg-like immunomodulation allows the survival of both host and parasite by controlling immunopathologic disorders and parasite persistence. Consequences of the modified Th2-like responses on co-infection, vaccination, and inflammatory diseases are discussed.

  16. Diet and host-microbial crosstalk in postnatal intestinal immune homeostasis.

    Science.gov (United States)

    Jain, Nitya; Walker, W Allan

    2015-01-01

    Neonates face unique challenges in the period following birth. The postnatal immune system is in the early stages of development and has a range of functional capabilities that are distinct from the mature adult immune system. Bidirectional immune-microbial interactions regulate the development of mucosal immunity and alter the composition of the microbiota, which contributes to overall host well-being. In the past few years, nutrition has been highlighted as a third element in this interaction that governs host health by modulating microbial composition and the function of the immune system. Dietary changes and imbalances can disturb the immune-microbiota homeostasis, which might alter susceptibility to several autoimmune and metabolic diseases. Major changes in cultural traditions, socioeconomic status and agriculture are affecting the nutritional status of humans worldwide, which is altering core intestinal microbial communities. This phenomenon is especially relevant to the neonatal and paediatric populations, in which the microbiota and immune system are extremely sensitive to dietary influences. In this Review, we discuss the current state of knowledge regarding early-life nutrition, its effects on the microbiota and the consequences of diet-induced perturbation of the structure of the microbial community on mucosal immunity and disease susceptibility.

  17. Training innate immunity: the changing concept of immunological memory in innate host defence.

    Science.gov (United States)

    Netea, Mihai G

    2013-08-01

    The inability of innate immunity to build an immunological memory is considered a main difference with adaptive immunity. This concept has been challenged by studies in plants, invertebrates and mammals. Recently, a paradigm shift in our understanding host defence has been triggered by the mounting evidence for innate immune memory, leading to increased responses to secondary infections. Important differences between the cell populations and the molecular mechanisms exist between the adaptive traits of innate host defence on the one hand and immunological memory of adaptive immunity on the other hand. The lasting state of enhanced innate immunity termed 'trained immunity' is mediated by prototypical innate immune cells such as natural killer cells and monocytes/macrophages. It provides protection against reinfection in a T/B-cell-independent manner, with both specific mechanisms and nonspecific epigenetic reprogramming mediating these effects. This concept represents a paradigm change in immunity, and its putative role in resistance to reinfection may represent the next step in the design of future vaccines. © 2013 Stichting European Society for Clinical Investigation Journal Foundation. Published by John Wiley & Sons Ltd.

  18. Yin and yang of interleukin-17 in host immunity to infection [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Shibali Das

    2017-05-01

    Full Text Available The interleukin-17 (IL-17 family cytokines, such as IL-17A and IL-17F, play important protective roles in host immune response to a variety of infections such as bacterial, fungal, parasitic, and viral. The IL-17R signaling and downstream pathways mediate induction of proinflammatory molecules which participate in control of these pathogens. However, the production of IL-17 can also mediate pathology and inflammation associated with infections. In this review, we will discuss the yin-and-yang roles of IL-17 in host immunity to pathogens.

  19. Recent advances on cellular therapies and immune modulators for graft-versus-host disease.

    Science.gov (United States)

    Filippini, Perla; Rutella, Sergio

    2014-10-01

    The efficacy of allogeneic hematopoietic stem cell transplantation is counterbalanced by the occurrence of life-threatening immune-mediated complications, such as graft-versus-host disease (GVHD), a multistep disease which is reportedly fatal to approximately 15% of transplant recipients. It is now established that T-cell-dendritic cell interactions, T-cell activation, release of proinflammatory cytokines and T-cell trafficking partake in GVHD pathogenesis. This article will focus on the most recent strategies aimed at preventing/treating GVHD by manipulating components of the innate and adaptive immune response from both the donor and the host.

  20. B cells as a critical node in the microbiota-host immune system network.

    Science.gov (United States)

    Slack, Emma; Balmer, Maria L; Macpherson, Andrew J

    2014-07-01

    Mutualism with our intestinal microbiota is a prerequisite for healthy existence. This requires physical separation of the majority of the microbiota from the host (by secreted antimicrobials, mucus, and the intestinal epithelium) and active immune control of the low numbers of microbes that overcome these physical and chemical barriers, even in healthy individuals. In this review, we address how B-cell responses to members of the intestinal microbiota form a robust network with mucus, epithelial integrity, follicular helper T cells, innate immunity, and gut-associated lymphoid tissues to maintain host-microbiota mutualism. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Comprehensive Transcriptome Meta-analysis to Characterize Host Immune Responses in Helminth Infections

    Science.gov (United States)

    Zhou, Guangyan; Stevenson, Mary M.; Geary, Timothy G.; Xia, Jianguo

    2016-01-01

    Helminth infections affect more than a third of the world’s population. Despite very broad phylogenetic differences among helminth parasite species, a systemic Th2 host immune response is typically associated with long-term helminth infections, also known as the “helminth effect”. Many investigations have been carried out to study host gene expression profiles during helminth infections. The objective of this study is to determine if there is a common transcriptomic signature characteristic of the helminth effect across multiple helminth species and tissue types. To this end, we performed a comprehensive meta-analysis of publicly available gene expression datasets. After data processing and adjusting for study-specific effects, we identified ~700 differentially expressed genes that are changed consistently during helminth infections. Functional enrichment analyses indicate that upregulated genes are predominantly involved in various immune functions, including immunomodulation, immune signaling, inflammation, pathogen recognition and antigen presentation. Down-regulated genes are mainly involved in metabolic process, with only a few of them are involved in immune regulation. This common immune gene signature confirms previous observations and indicates that the helminth effect is robust across different parasite species as well as host tissue types. To the best of our knowledge, this study is the first comprehensive meta-analysis of host transcriptome profiles during helminth infections. PMID:27058578

  2. Ironing Out the Wrinkles in Host Defense: Interactions between Iron Homeostasis and Innate Immunity

    Science.gov (United States)

    Wang, Lijian; Cherayil, Bobby J.

    2009-01-01

    Iron is an essential micronutrient for both microbial pathogens and their mammalian hosts. Changes in iron availability and distribution have significant effects on pathogen virulence and on the immune response to infection. Recent advances in our understanding of the molecular regulation of iron metabolism have shed new light on how alterations in iron homeostasis both contribute to and influence innate immunity. In this article, we review what is currently known about the role of iron in the response to infection. PMID:20375603

  3. Resiniferatoxin modulates the Th1 immune response and protects the host during intestinal nematode infection.

    Science.gov (United States)

    Muñoz-Carrillo, J L; Contreras-Cordero, J F; Muñoz-López, J L; Maldonado-Tapia, C H; Muñoz-Escobedo, J J; Moreno-García, M A

    2017-09-01

    In the early stage of the intestinal phase of Trichinella spiralis infection, the host triggers a Th1-type immune response with the aim of eliminating the parasite. However, this response damages the host which favours the survival of the parasite. In the search for novel pharmacological strategies that inhibit the Th1 immune response and assist the host against T. spiralis infection, a recent study showed that resiniferatoxin had anti-inflammatory activity contributed to the host in T. spiralis infection. In this study, we evaluated whether RTX modulates the host immune response through the inhibition of Th1 cytokines in the intestinal phase. In addition, it was determined whether the treatment with RTX affects the infectivity of T. spiralis-L1 and the development of the T. spiralis life cycle. Our results show that RTX decreased serum levels of IL-12, INF-γ, IL-1β, TNF-α and parasite burden on muscle tissue. It was observed that T. spiralis-L1 treated with RTX decreased their infectivity affecting the development of the T. spiralis life cycle in mouse. These results demonstrate that RTX is able to inhibit the production of Th1 cytokines, contributing to the defence against T. spiralis, which places it as a potential drug modulator of the immune response. © 2017 John Wiley & Sons Ltd.

  4. Polar Lipids of Burkholderia pseudomallei Induce Different Host Immune Responses

    Science.gov (United States)

    Gonzalez-Juarrero, Mercedes; Mima, Naoko; Trunck, Lily A.; Schweizer, Herbert P.; Bowen, Richard A.; Dascher, Kyle; Mwangi, Waithaka; Eckstein, Torsten M.

    2013-01-01

    Melioidosis is a disease in tropical and subtropical regions of the world that is caused by Burkholderia pseudomallei. In endemic regions the disease occurs primarily in humans and goats. In the present study, we used the goat as a model to dissect the polar lipids of B. pseudomallei to identify lipid molecules that could be used for adjuvants/vaccines or as diagnostic tools. We showed that the lipidome of B. pseudomallei and its fractions contain several polar lipids with the capacity to elicit different immune responses in goats, namely rhamnolipids and ornithine lipids which induced IFN-γ, whereas phospholipids and an undefined polar lipid induced strong IL-10 secretion in CD4+ T cells. Autologous T cells co-cultured with caprine dendritic cells (cDCs) and polar lipids of B. pseudomallei proliferated and up-regulated the expression of CD25 (IL-2 receptor) molecules. Furthermore, we demonstrated that polar lipids were able to up-regulate CD1w2 antigen expression in cDCs derived from peripheral blood monocytes. Interestingly, the same polar lipids had only little effect on the expression of MHC class II DR antigens in the same caprine dendritic cells. Finally, antibody blocking of the CD1w2 molecules on cDCs resulted in decreased expression for IFN-γ by CD4+ T cells. Altogether, these results showed that polar lipids of B. pseudomallei are recognized by the caprine immune system and that their recognition is primarily mediated by the CD1 antigen cluster. PMID:24260378

  5. Polar lipids of Burkholderia pseudomallei induce different host immune responses.

    Directory of Open Access Journals (Sweden)

    Mercedes Gonzalez-Juarrero

    Full Text Available Melioidosis is a disease in tropical and subtropical regions of the world that is caused by Burkholderia pseudomallei. In endemic regions the disease occurs primarily in humans and goats. In the present study, we used the goat as a model to dissect the polar lipids of B. pseudomallei to identify lipid molecules that could be used for adjuvants/vaccines or as diagnostic tools. We showed that the lipidome of B. pseudomallei and its fractions contain several polar lipids with the capacity to elicit different immune responses in goats, namely rhamnolipids and ornithine lipids which induced IFN-γ, whereas phospholipids and an undefined polar lipid induced strong IL-10 secretion in CD4(+ T cells. Autologous T cells co-cultured with caprine dendritic cells (cDCs and polar lipids of B. pseudomallei proliferated and up-regulated the expression of CD25 (IL-2 receptor molecules. Furthermore, we demonstrated that polar lipids were able to up-regulate CD1w2 antigen expression in cDCs derived from peripheral blood monocytes. Interestingly, the same polar lipids had only little effect on the expression of MHC class II DR antigens in the same caprine dendritic cells. Finally, antibody blocking of the CD1w2 molecules on cDCs resulted in decreased expression for IFN-γ by CD4(+ T cells. Altogether, these results showed that polar lipids of B. pseudomallei are recognized by the caprine immune system and that their recognition is primarily mediated by the CD1 antigen cluster.

  6. Skin immunization by microneedle patch overcomes statin-induced suppression of immune responses to influenza vaccine.

    Science.gov (United States)

    Vassilieva, Elena V; Wang, Shelly; Li, Song; Prausnitz, Mark R; Compans, Richard W

    2017-12-19

    Recent studies indicated that in elderly individuals, statin therapy is associated with a reduced response to influenza vaccination. The present study was designed to determine effects on the immune response to influenza vaccination induced by statin administration in a mouse model, and investigate potential approaches to improve the outcome of vaccination on the background of statin therapy. We fed middle aged BALB/c mice a high fat "western" diet (WD) alone or supplemented with atorvastatin (AT) for 14 weeks, and control mice were fed with the regular rodent diet. Mice were immunized with a single dose of subunit A/Brisbane/59/07 (H1N1) vaccine, either systemically or with dissolving microneedle patches (MNPs). We observed that a greater age-dependent decline in the hemagglutinin inhibition titers occurred in systemically-immunized mice than in MNP- immunized mice. AT dampened the antibody response in the animals vaccinated by either route of vaccine delivery. However, the MNP-vaccinated AT-treated animals had ~20 times higher total antibody levels to the influenza vaccine than the systemically vaccinated group one month postvaccination. We propose that microneedle vaccination against influenza provides an approach to ameliorate the immunosuppressive effect of statin therapy observed with systemic immunization.

  7. Both live and dead Enterococci activate Caenorhabditis elegans host defense via immune and stress pathways.

    Science.gov (United States)

    Yuen, Grace J; Ausubel, Frederick M

    2018-12-31

    The innate immune response of the nematode Caenorhabditis elegans has been extensively studied and a variety of Toll-independent immune response pathways have been identified. Surprisingly little, however, is known about how pathogens activate the C. elegans immune response. Enterococcus faecalis and Enterococcus faecium are closely related enterococcal species that exhibit significantly different levels of virulence in C. elegans infection models. Previous work has shown that activation of the C. elegans immune response by Pseudomonas aeruginosa involves P. aeruginosa-mediated host damage. Through ultrastructural imaging, we report that infection with either E. faecalis or E. faecium causes the worm intestine to become distended with proliferating bacteria in the absence of extensive morphological changes and apparent physical damage. Genetic analysis, whole-genome transcriptional profiling, and multiplexed gene expression analysis demonstrate that both enterococcal species, whether live or dead, induce a rapid and similar transcriptional defense response dependent upon previously described immune signaling pathways. The host response to E. faecium shows a stricter dependence upon stress response signaling pathways than the response to E. faecalis. Unexpectedly, we find that E. faecium is a C. elegans pathogen and that an active wild-type host defense response is required to keep an E. faecium infection at bay. These results provide new insights into the mechanisms underlying the C. elegans immune response to pathogen infection.

  8. Dairy Heifers Naturally Exposed to Fasciola hepatica Develop a Type 2 Immune Response and Concomitant Suppression of Leukocyte Proliferation.

    Science.gov (United States)

    Graham-Brown, John; Hartley, Catherine; Clough, Helen; Kadioglu, Aras; Baylis, Matthew; Williams, Diana J L

    2018-01-01

    Fasciola hepatica is a parasitic trematode of global importance in livestock. Control strategies reliant on anthelmintics are unsustainable due to the emergence of drug resistance. Vaccines are under development, but efficacies are variable. Evidence from experimental infection suggests that vaccine efficacy may be affected by parasite-induced immunomodulation. Little is known about the immune response to F. hepatica following natural exposure. Hence, we analyzed the immune responses over time in calves naturally exposed to F. hepatica infection. Cohorts of replacement dairy heifer calves ( n = 42) with no prior exposure to F. hepatica , on three commercial dairy farms, were sampled over the course of a grazing season. Exposure was determined through an F. hepatica -specific serum antibody enzyme-linked immunosorbent assay (ELISA) and fluke egg counts. Concurrent changes in peripheral blood leukocyte subpopulations, lymphocyte proliferation, and cytokine responses were measured. Relationships between fluke infection and immune responses were analyzed by using multivariable linear mixed-effect models. All calves from one farm showed evidence of exposure, while cohorts from the remaining two farms remained negative over the grazing season. A type 2 immune response was associated with exposure, with increased interleukin-4 (IL-4) production, IL-5 transcription, and eosinophilia. Suppression of parasite-specific peripheral blood mononuclear cell (PBMC) proliferation was evident, while decreased mitogen-stimulated gamma interferon (IFN-γ) production suggested immunomodulation, which was not restricted to parasite-specific responses. Our findings show that the global immune response is modulated toward a nonproliferative type 2 state following natural challenge with F. hepatica This has implications in terms of the timing of the administration of vaccination programs and for host susceptibility to coinfecting pathogens. Copyright © 2017 Graham-Brown et al.

  9. Insect herbivores selectively suppress the HPL branch of the oxylipin pathway in host plants.

    Science.gov (United States)

    Savchenko, Tatyana; Pearse, Ian S; Ignatia, Laura; Karban, Richard; Dehesh, Katayoon

    2013-02-01

    Insect herbivores have developed a myriad of strategies to manipulate the defense responses of their host plants. Here we provide evidence that chewing insects differentially alter the oxylipin profiles produced by the two main and competing branches of the plant defensive response pathway, the allene oxide synthase (AOS) and hydroperoxide lyase (HPL) branches, which are responsible for wound-inducible production of jasmonates (JAs), and green leafy volatiles (GLVs) respectively. Specifically, we used three Arabidopsis genotypes that were damaged by mechanical wounding or by insects of various feeding guilds (piercing aphids, generalist chewing caterpillars and specialist chewing caterpillars). We established that emission of GLVs is stimulated by wounding incurred mechanically or by aphids, but release of these volatiles is constitutively impaired by both generalist and specialist chewing insects. Simultaneously, however, these chewing herbivores stimulated JA production, demonstrating targeted insect suppression of the HPL branch of the oxylipin pathway. Use of lines engineered to express HPL constitutively, in conjunction with quantitative RT-PCR-based expression analyses, established a combination of transcriptional and post-transcriptional reprogramming of the HPL pathway genes as the mechanistic basis of insect-mediated suppression of the corresponding metabolites. Feeding studies suggested a potential evolutionary advantage of suppressing GLV production, as caterpillars preferably consumed leaf tissue from plants that had not been primed by these volatile cues. © 2012 The Authors The Plant Journal © 2012 Blackwell Publishing Ltd.

  10. Topical calcitriol protects from UV-induced genetic damage but suppresses cutaneous immunity in humans.

    Science.gov (United States)

    Damian, Diona L; Kim, Young Jin; Dixon, Katie M; Halliday, Gary M; Javeri, Arash; Mason, Rebecca S

    2010-08-01

    Calcitriol, the biologically active form of vitamin D, has been reported to cause both suppressive and protective immune effects in mice. Its immune effects in vivo in humans are unclear. We investigated the in vivo effects of topical calcitriol on minimal erythema dose and skin immune responses in healthy volunteers. We found that calcitriol did not protect from ultraviolet (UV)-induced erythema (sunburn) when applied either 24 h before or immediately after irradiation, although it decreased the density of sunburn cells and thymine dimers seen on biopsy when applied 24 h before and again immediately after irradiation. Using the Mantoux reaction as a model of skin immunity, we found that topical calcitriol applied at high total doses reduced the Mantoux responses of nearby untreated, unirradiated skin, suggesting a para-local or systemic immunosuppressive effect not observed with lower calcitriol doses. We then measured UV-induced suppression of Mantoux reactions at vehicle-treated sites and sites treated with low-dose calcitriol, and found that calcitriol neither reduced nor enhanced UV-induced immunosuppression. Despite calcitriol reducing UV-induced DNA damage, which should protect the immune system, it has immunosuppressive effects in our model which may help to explain the efficacy of analogues such as calcipotriol in the treatment of psoriasis.

  11. Modelling parasite transmission in a grazing system: the importance of host behaviour and immunity.

    Directory of Open Access Journals (Sweden)

    Naomi J Fox

    Full Text Available Parasitic helminths present one of the most pervasive challenges to grazing herbivores. Many macro-parasite transmission models focus on host physiological defence strategies, omitting more complex interactions between hosts and their environments. This work represents the first model that integrates both the behavioural and physiological elements of gastro-intestinal nematode transmission dynamics in a managed grazing system. A spatially explicit, individual-based, stochastic model is developed, that incorporates both the hosts' immunological responses to parasitism, and key grazing behaviours including faecal avoidance. The results demonstrate that grazing behaviour affects both the timing and intensity of parasite outbreaks, through generating spatial heterogeneity in parasite risk and nutritional resources, and changing the timing of exposure to the parasites' free-living stages. The influence of grazing behaviour varies with the host-parasite combination, dependent on the development times of different parasite species and variations in host immune response. Our outputs include the counterintuitive finding that under certain conditions perceived parasite avoidance behaviours (faecal avoidance can increase parasite risk, for certain host-parasite combinations. Through incorporating the two-way interaction between infection dynamics and grazing behaviour, the potential benefits of parasite-induced anorexia are also demonstrated. Hosts with phenotypic plasticity in grazing behaviour, that make grazing decisions dependent on current parasite burden, can reduce infection with minimal loss of intake over the grazing season. This paper explores how both host behaviours and immunity influence macro-parasite transmission in a spatially and temporally heterogeneous environment. The magnitude and timing of parasite outbreaks is influenced by host immunity and behaviour, and the interactions between them; the incorporation of both regulatory processes

  12. Loss of the innate immunity negative regulator IRAK-M leads to enhanced host immune defense against tumor growth

    Science.gov (United States)

    Xie, Qifa; Gan, Lu; Wang, Jianxia; Wilson, Ingred; Li, Liwu

    2010-01-01

    IRAK-M is a negative regulator of innate immunity signaling processes. Although attenuation of innate immunity may help to prevent excessive inflammation, it may also lead to compromised immune surveillance of tumor cells and contribute to tumor formation and growth. Here, we demonstrate that IRAK-M−/− mice are resistant to tumor growth upon inoculation with transplantable tumor cells. Immune cells from IRAK-M−/− mice are responsible for the anti-tumor effect, since adoptive transfer of splenocytes from IRAK-M−/− mice to wild type mice can transfer the tumor-resistant phenotype. Upon tumor cell challenge, there are elevated populations of CD4+ and CD8+ T cells and a decreased population of CD4+ CD25+Foxp3+ regulatory T cells in IRAK-M −/− splenocytes. Furthermore, we observe that IRAK-M deficiency leads to elevated proliferation and activation of T cells and B cells. Enhanced NFκB activation directly caused by IRAK-M deficiency may explain elevated activation of T and B cells. In addition, macrophages from IRAK-M−/− mice exhibit enhanced phagocytic function toward acetylated LDL and apoptotic thymocytes. Collectively, we demonstrate that IRAK-M is directly involved in the regulation of both innate and adaptive immune signaling processes, and deletion of IRAK-M enhances host anti-tumor immune response. PMID:17477969

  13. The Value of a Comparative Approach to Understand the Complex Interplay between Microbiota and Host Immunity

    Directory of Open Access Journals (Sweden)

    Norma M. Morella

    2017-09-01

    Full Text Available The eukaryote immune system evolved and continues to evolve within a microbial world, and as such is critically shaped by—and in some cases even reliant upon—the presence of host-associated microbial species. There are clear examples of adaptations that allow the host to simultaneously tolerate and/or promote growth of symbiotic microbiota while protecting itself against pathogens, but the relationship between immunity and the microbiome reaches far beyond simple recognition and includes complex cross talk between host and microbe as well as direct microbiome-mediated protection against pathogens. Here, we present a broad but brief overview of how the microbiome is controlled by and interacts with diverse immune systems, with the goal of identifying questions that can be better addressed by taking a comparative approach across plants and animals and different types of immunity. As two key examples of such an approach, we focus on data examining the importance of early exposure on microbiome tolerance and immune system development and function, and the importance of transmission among hosts in shaping the potential coevolution between, and long-term stability of, host–microbiome associations. Then, by comparing existing evidence across short-lived plants, mouse model systems and humans, and insects, we highlight areas of microbiome research that are strong in some systems and absent in others with the hope of guiding future research that will allow for broad-scale comparisons moving forward. We argue that such an approach will not only help with identification of generalities in host–microbiome–immune interactions but also improve our understanding of the role of the microbiome in host health.

  14. A Trematode Parasite Derived Growth Factor Binds and Exerts Influences on Host Immune Functions via Host Cytokine Receptor Complexes.

    Directory of Open Access Journals (Sweden)

    Azad A Sulaiman

    2016-11-01

    Full Text Available The trematode Fasciola hepatica is responsible for chronic zoonotic infection globally. Despite causing a potent T-helper 2 response, it is believed that potent immunomodulation is responsible for rendering this host reactive non-protective host response thereby allowing the parasite to remain long-lived. We have previously identified a growth factor, FhTLM, belonging to the TGF superfamily can have developmental effects on the parasite. Herein we demonstrate that FhTLM can exert influence over host immune functions in a host receptor specific fashion. FhTLM can bind to receptor members of the Transforming Growth Factor (TGF superfamily, with a greater affinity for TGF-β RII. Upon ligation FhTLM initiates the Smad2/3 pathway resulting in phenotypic changes in both fibroblasts and macrophages. The formation of fibroblast CFUs is reduced when cells are cultured with FhTLM, as a result of TGF-β RI kinase activity. In parallel the wound closure response of fibroblasts is also delayed in the presence of FhTLM. When stimulated with FhTLM blood monocyte derived macrophages adopt an alternative or regulatory phenotype. They express high levels interleukin (IL-10 and arginase-1 while displaying low levels of IL-12 and nitric oxide. Moreover they also undergo significant upregulation of the inhibitory receptor PD-L1 and the mannose receptor. Use of RNAi demonstrates that this effect is dependent on TGF-β RII and mRNA knock-down leads to a loss of IL-10 and PD-L1. Finally, we demonstrate that FhTLM aids newly excysted juveniles (NEJs in their evasion of antibody-dependent cell cytotoxicity (ADCC by reducing the NO response of macrophages-again dependent on TGF-β RI kinase. FhTLM displays restricted expression to the F. hepatica gut resident NEJ stages. The altered fibroblast responses would suggest a role for dampened tissue repair responses in facilitating parasite migration. Furthermore, the adoption of a regulatory macrophage phenotype would allow

  15. Impact of Depleting Therapeutic Monoclonal Antibodies on the Host Adaptive Immunity: A Bonus or a Malus?

    Directory of Open Access Journals (Sweden)

    Claire Deligne

    2017-08-01

    Full Text Available Clinical responses to anti-tumor monoclonal antibody (mAb treatment have been regarded for many years only as a consequence of the ability of mAbs to destroy tumor cells by innate immune effector mechanisms. More recently, it has also been shown that anti-tumor antibodies can induce a long-lasting anti-tumor adaptive immunity, likely responsible for durable clinical responses, a phenomenon that has been termed the vaccinal effect of antibodies. However, some of these anti-tumor antibodies are directed against molecules expressed both by tumor cells and normal immune cells, in particular lymphocytes, and, hence, can also strongly affect the host adaptive immunity. In addition to a delayed recovery of target cells, lymphocyte depleting-mAb treatments can have dramatic consequences on the adaptive immune cell network, its rebound, and its functional capacities. Thus, in this review, we will not only discuss the mAb-induced vaccinal effect that has emerged from experimental preclinical studies and clinical trials but also the multifaceted impact of lymphocytes-depleting therapeutic antibodies on the host adaptive immunity. We will also discuss some of the molecular and cellular mechanisms of action whereby therapeutic mAbs induce a long-term protective anti-tumor effect and the relationship between the mAb-induced vaccinal effect and the immune response against self-antigens.

  16. [Panarteritis nodosa-Special aspects of glucocorticoid and immune suppressive therapy (author's transl)].

    Science.gov (United States)

    Simon, B; Utz, G; Döhnert, G; Suchezky, H; Mörl, H; Horsch, A K

    1975-12-12

    Report dealing with the clinical and pathoanatomical course as well as the autopsy findings in a 54 year old female suffering from panarteritis nodosa. Onset of the illness with polyneuritis and arthralgia. One year later diagnosis of panarteritis nodosa verified by muscle biopsy. Deterioration of the disease leading to the development of peripheral gangrene could not be prevented in spite of intensive therapy with steroids, immune suppressive agents, digitalis and antihypertensive drugs. Death 4 years later by myocardial infarction. Autopsy revealed generalized healed panarteritis nodosa with scarring and obliteration of vessels. A short description of the symptoms of the disease is given and the efficacy of the therapy with steroids and immune suppressive drugs is discussed from the clinical as well as the pathoanatomical point of view. Immunopathologic mechanisms are considered to be the responsible factors for pathogenesis.

  17. Secondary immunity to Legionella pneumophila and Th1 activity are suppressed by delta-9-tetrahydrocannabinol injection.

    Science.gov (United States)

    Newton, C A; Klein, T W; Friedman, H

    1994-01-01

    Resistance to infection with Legionella pneumophila is primarily dependent upon cell-mediated immunity rather than humoral immunity. Recent evidence suggests that activation of cell-mediated immunity depends on Th1 cells and activation of humoral immunity depends on Th2 cells. In this report, delta 9-tetrahydrocannabinol (THC), the major psychoactive cannabinoid of marijuana and an immunomodulator, suppressed development of secondary immunity to L. pneumophila, which correlated with a reduction in Th1 activity. BALB/c mice, infected with a primary sublethal dose of L. pneumophila, developed resistance to a larger challenge infection 3 to 4 weeks later. However, intravenous injection of THC (4 mg/kg of body weight) 1 day prior to primary infection resulted in increased mortality after the challenge infection. The level of anti-L. pneumophila antibodies in serum increased in both THC-treated and control mice; however, in the THC group IgG1 antibodies which are stimulated by Th2 cells were elevated while Th1-regulated, IgG2a antibodies were depressed. Furthermore, cultured splenocytes from THC-treated mice had less L. pneumophila-specific lymphoproliferation, indicating a deficiency in cell-mediated immunity. Normal mouse splenocytes treated in vitro with THC and pokeweed mitogen showed suppressed production of gamma interferon, a cytokine associated with Th1 cells, but increased production of interleukin 4, a cytokine produced by Th2 cells. Splenocytes from THC-treated mice, stimulated in vitro with either pokeweed mitogen or anti-CD3 antibodies, also produced less gamma interferon, indicating less Th1 activity in these mice. These results suggest that THC decreases the development of anti-L. pneumophila immunity by causing a change in the balance of Th1 and Th2 activities. PMID:8063421

  18. The intestinal microbiota and host immune interactions in the critically ill

    NARCIS (Netherlands)

    Schuijt, T.J.; Poll, van der T.; Vos, de W.M.; Wiersinga, W.J.

    2013-01-01

    The gastrointestinal tract harbors a complex population of microbes that play a fundamental role in the development of the immune system and human health. Besides an important local contribution in the host defense against infections, it has become increasingly clear that intestinal bacteria also

  19. Recent progress in understanding host immune response to Avian Coccidiosis: Th1 and Th17 responses

    Science.gov (United States)

    Host-pathogen interaction leading to protection against coccidiosis is complex, involving many aspects of innate and adaptive immunity to intracellular parasites. The etiologic agent of avian coccidiosis is Eimeria, a genus of eukaryotic obligate intracellular parasites belonging to the phylum Apico...

  20. Enhanced host immune recognition of E.coli causing mastitis in CD-14 transgenic mice.

    Science.gov (United States)

    Escherchia coli causes mastitis, an economically significant disease in dairy animals. E. coli endotoxin (lipopolysaccharide, LPS) when bound by host membrane proteins such as CD-14, causes release of pro-inflammatory cytokines recruiting neutrophils as a early innate immune response. Excessive pr...

  1. [Regulation and evasion of host immune responses by Epstein-Barr virus].

    Science.gov (United States)

    Xiao, Nanyang; Chen, Qi; Cai, Shaoli

    2016-01-04

    Epstein-Barr virus (EBV) is the first identified human oncogenic DNA virus in the gamma-herpesvirus family. EBV triggers a cascade events of innate immune responses through Toll-like receptor signaling including the production of type I interferons and the activation of functional autophagy. However, EBV has developed much more elaborate and sophisticated strategies for subverting and escaping the host immune system, such as limiting its own gene expression, activing the host ubiquitin-specific protease system, and interfering ubiquitin modification. EBV impairs the host immune system, leading to lifelong persistent infections, which in turn result in the occurrence of EBV-associated diseases, such as nasopharyngeal carcinoma and infectious mononucleosis. Thus, to better understand the mechanisms regarding the infection latentency and oncogenicity of EBV invasion will be crucial for identifying potential immunotherapeutic targets for EBV- related diseases, such as infectious mononucleosis and nasopharyngeal carcinoma. In this article, we discuss the research advances regarding the virology and immunology of EBV in the modulation of the host immune response and evasion.

  2. Probiotic Cheese Attenuates Exercise-induced Immune Suppression In Wistar Rats

    OpenAIRE

    Lollo P.C.B.; Cruz A.G.; Morato P.N.; Moura C.S.; Carvalho-Silva L.B.; Oliveira C.A.F.; Faria J.A.F.; Amaya-Farfan J.

    2012-01-01

    Intense physical activity results in a substantial volume of stress and hence a significant probability of immunosuppression in athletes, with milk proteins being, perhaps, the most recommended protein supplements. Consumption of a probiotic cheese can attenuate immune suppression induced by exhausting exercise in rats. A popular Brazilian fresh cheese (Minas Frescal cheese) containing Lactobacillus acidophilus LA14 and Bifidobacterium longum BL05 was fed for 2 wk to adult Wistar rats, which ...

  3. Comparison of innate and Th1-type host immune responses inOesophagostomum dentatumandTrichuris suisinfections in pigs

    DEFF Research Database (Denmark)

    Andreasen, Annette; Skovgaard, Kerstin; Klaver, Elsenoor J.

    2016-01-01

    The present study investigated details of the innate and Th1/Treg type associated host immune responses in Trichuris suis and Oesophagostomum dentatum mono- and co-infected pigs and in vitro in stimulated porcine dendritic cell cultures. Forty-eight pigs were allocated into a 2-factorial design...... with two groups trickle inoculated with 10 T. suis eggs/kg/day (Group T) or 20 O. dentatum L3/kg/day (O). Another group (OT) was infected with both parasites. Group C remained uninfected. Expression of innate and Th1/Treg cell associated genes in gut mucosa and associated lymph nodes was determined by q......PCR at necropsy day 35 and 71. Gene expression showed suppressed/inhibited Th1 and Treg type immune reactions, in accordance with previous findings of a predominant Th2 type immune response to both nematodes. The in vitro part examined production of TNF-α in porcine dendritic cells (DC) exposed to T. suis and...

  4. The Pseudomonas syringae type III effector HopF2 suppresses Arabidopsis stomatal immunity.

    Directory of Open Access Journals (Sweden)

    Brenden Hurley

    Full Text Available Pseudomonas syringae subverts plant immune signalling through injection of type III secreted effectors (T3SE into host cells. The T3SE HopF2 can disable Arabidopsis immunity through Its ADP-ribosyltransferase activity. Proteomic analysis of HopF2 interacting proteins identified a protein complex containing ATPases required for regulating stomatal aperture, suggesting HopF2 may manipulate stomatal immunity. Here we report HopF2 can inhibit stomatal immunity independent of its ADP-ribosyltransferase activity. Transgenic expression of HopF2 in Arabidopsis inhibits stomatal closing in response to P. syringae and increases the virulence of surface inoculated P. syringae. Further, transgenic expression of HopF2 inhibits flg22 induced reactive oxygen species production. Intriguingly, ADP-ribosyltransferase activity is dispensable for inhibiting stomatal immunity and flg22 induced reactive oxygen species. Together, this implies HopF2 may be a bifunctional T3SE with ADP-ribosyltransferase activity required for inhibiting apoplastic immunity and an independent function required to inhibit stomatal immunity.

  5. Multiscale model for the effects of adaptive immunity suppression on the viral therapy of cancer

    International Nuclear Information System (INIS)

    Paiva, Leticia R; Silva, Hallan S; Ferreira, Silvio C; Martins, Marcelo L

    2013-01-01

    Oncolytic virotherapy—the use of viruses that specifically kill tumor cells—is an innovative and highly promising route for treating cancer. However, its therapeutic outcomes are mainly impaired by the host immune response to the viral infection. In this paper, we propose a multiscale mathematical model to study how the immune response interferes with the viral oncolytic activity. The model assumes that cytotoxic T cells can induce apoptosis in infected cancer cells and that free viruses can be inactivated by neutralizing antibodies or cleared at a constant rate by the innate immune response. Our simulations suggest that reprogramming the immune microenvironment in tumors could substantially enhance the oncolytic virotherapy in immune-competent hosts. Viable routes to such reprogramming are either in situ virus-mediated impairing of CD8 + T cells motility or blockade of B and T lymphocytes recruitment. Our theoretical results can shed light on the design of viral vectors or new protocols with neat potential impacts on the clinical practice. (paper)

  6. Beta and Gamma Human Herpesviruses: Agonistic and Antagonistic Interactions with the Host Immune System

    Directory of Open Access Journals (Sweden)

    Mario E. Cruz-Muñoz

    2018-01-01

    Full Text Available Viruses are the most abundant and diverse biological entities in the planet. Historically, our main interest in viruses has focused on their pathogenic role, recognized by pandemics that have decimated the world population. However, viral infections have also played a major role in the evolution of cellular organisms, both through interchanging of genes with novel functions and shaping the immune system. Examples abound of infections that seriously compromise the host integrity, but evidence of plant and insect viruses mutualistic relationships have recently surfaced in which infected hosts are better suited for survival, arguing that virus-host interactions are initially parasitic but become mutualistic over years of co-evolution. A similar mutual help scenario has emerged with commensal gut bacteria. EBV is a herpesvirus that shares more than a hundred million years of co-evolution with humans, today successfully infecting close to 100% of the adult world population. Infection is usually acquired early in childhood persisting for the host lifetime mostly without apparent clinical symptoms. Disturbance of this homeostasis is rare and results in several diseases, of which the best understood are infectious mononucleosis and several EBV-associated cancers. Less understood are recently found inborn errors of the immune system that result in primary immunodeficiencies with an increased predisposition almost exclusive to EBV-associated diseases. Puzzling to these scenarios of broken homeostasis is the co-existence of immunosuppression, inflammation, autoimmunity and cancer. Homologous to EBV, HCMV, HHV-6 and HHV-7 are herpesviruses that also latently infect most individuals. Several lines of evidence support a mutualistic equilibrium between HCMV/EBV and hosts, that when altered trigger diseases in which the immune system plays a critical role. Interestingly, these beta and gamma herpesviruses persistently infect all immune lineages and early

  7. Symbiotic and antibiotic interactions between gut commensal microbiota and host immune system

    Directory of Open Access Journals (Sweden)

    Mantas Kazimieras Malys

    2015-01-01

    Full Text Available The human gut commensal microbiota forms a complex population of microorganisms that survive by maintaining a symbiotic relationship with the host. Amongst the metabolic benefits it brings, formation of adaptive immune system and maintenance of its homeostasis are functions that play an important role. This review discusses the integral elements of commensal microbiota that stimulate responses of different parts of the immune system and lead to health or disease. It aims to establish conditions and factors that contribute to gut commensal microbiota's transformation from symbiotic to antibiotic relationship with human. We suggest that the host-microbiota relationship has been evolved to benefit both parties and any changes that may lead to disease, are not due to unfriendly properties of the gut microbiota but due to host genetics or environmental changes such as diet or infection.

  8. Staphylococcus aureus Colonization: Modulation of Host Immune Response and Impact on Human Vaccine Design

    Science.gov (United States)

    Brown, Aisling F.; Leech, John M.; Rogers, Thomas R.; McLoughlin, Rachel M.

    2014-01-01

    In apparent contrast to its invasive potential Staphylococcus aureus colonizes the anterior nares of 20–80% of the human population. The relationship between host and microbe appears particularly individualized and colonization status seems somehow predetermined. After decolonization, persistent carriers often become re-colonized with their prior S. aureus strain, whereas non-carriers resist experimental colonization. Efforts to identify factors facilitating colonization have thus far largely focused on the microorganism rather than on the human host. The host responds to S. aureus nasal colonization via local expression of anti-microbial peptides, lipids, and cytokines. Interplay with the co-existing microbiota also influences colonization and immune regulation. Transient or persistent S. aureus colonization induces specific systemic immune responses. Humoral responses are the most studied of these and little is known of cellular responses induced by colonization. Intriguingly, colonized patients who develop bacteremia may have a lower S. aureus-attributable mortality than their non-colonized counterparts. This could imply a staphylococcal-specific immune “priming” or immunomodulation occurring as a consequence of colonization and impacting on the outcome of infection. This has yet to be fully explored. An effective vaccine remains elusive. Anti-S. aureus vaccine strategies may need to drive both humoral and cellular immune responses to confer efficient protection. Understanding the influence of colonization on adaptive response is essential to intelligent vaccine design, and may determine the efficacy of vaccine-mediated immunity. Clinical trials should consider colonization status and the resulting impact of this on individual patient responses. We urgently need an increased appreciation of colonization and its modulation of host immunity. PMID:24409186

  9. Antigenic subversion: a novel mechanism of host immune evasion by Ebola virus.

    Directory of Open Access Journals (Sweden)

    Gopi S Mohan

    Full Text Available In addition to its surface glycoprotein (GP(1,2, Ebola virus (EBOV directs the production of large quantities of a truncated glycoprotein isoform (sGP that is secreted into the extracellular space. The generation of secreted antigens has been studied in several viruses and suggested as a mechanism of host immune evasion through absorption of antibodies and interference with antibody-mediated clearance. However such a role has not been conclusively determined for the Ebola virus sGP. In this study, we immunized mice with DNA constructs expressing GP(1,2 and/or sGP, and demonstrate that sGP can efficiently compete for anti-GP(12 antibodies, but only from mice that have been immunized by sGP. We term this phenomenon "antigenic subversion", and propose a model whereby sGP redirects the host antibody response to focus on epitopes which it shares with membrane-bound GP(1,2, thereby allowing it to absorb anti-GP(1,2 antibodies. Unexpectedly, we found that sGP can also subvert a previously immunized host's anti-GP(1,2 response resulting in strong cross-reactivity with sGP. This finding is particularly relevant to EBOV vaccinology since it underscores the importance of eliciting robust immunity that is sufficient to rapidly clear an infection before antigenic subversion can occur. Antigenic subversion represents a novel virus escape strategy that likely helps EBOV evade host immunity, and may represent an important obstacle to EBOV vaccine design.

  10. Antigenic subversion: a novel mechanism of host immune evasion by Ebola virus.

    Science.gov (United States)

    Mohan, Gopi S; Li, Wenfang; Ye, Ling; Compans, Richard W; Yang, Chinglai

    2012-01-01

    In addition to its surface glycoprotein (GP(1,2)), Ebola virus (EBOV) directs the production of large quantities of a truncated glycoprotein isoform (sGP) that is secreted into the extracellular space. The generation of secreted antigens has been studied in several viruses and suggested as a mechanism of host immune evasion through absorption of antibodies and interference with antibody-mediated clearance. However such a role has not been conclusively determined for the Ebola virus sGP. In this study, we immunized mice with DNA constructs expressing GP(1,2) and/or sGP, and demonstrate that sGP can efficiently compete for anti-GP(12) antibodies, but only from mice that have been immunized by sGP. We term this phenomenon "antigenic subversion", and propose a model whereby sGP redirects the host antibody response to focus on epitopes which it shares with membrane-bound GP(1,2), thereby allowing it to absorb anti-GP(1,2) antibodies. Unexpectedly, we found that sGP can also subvert a previously immunized host's anti-GP(1,2) response resulting in strong cross-reactivity with sGP. This finding is particularly relevant to EBOV vaccinology since it underscores the importance of eliciting robust immunity that is sufficient to rapidly clear an infection before antigenic subversion can occur. Antigenic subversion represents a novel virus escape strategy that likely helps EBOV evade host immunity, and may represent an important obstacle to EBOV vaccine design.

  11. Allicin enhances host pro-inflammatory immune responses and protects against acute murine malaria infection

    Directory of Open Access Journals (Sweden)

    Feng Yonghui

    2012-08-01

    Full Text Available Abstract Background During malaria infection, multiple pro-inflammatory mediators including IFN-γ, TNF and nitric oxide (NO play a crucial role in the protection against the parasites. Modulation of host immunity is an important strategy to improve the outcome of malaria infection. Allicin is the major biologically active component of garlic and shows anti-microbial activity. Allicin is also active against protozoan parasites including Plasmodium, which is thought to be mediated by inhibiting cysteine proteases. In this study, the immunomodulatory activities of allicin were assessed during acute malaria infection using a rodent malaria model Plasmodium yoelii 17XL. Methods To determine whether allicin modulates host immune responses against malaria infection, mice were treated with allicin after infection with P. yoelii 17XL. Mortality was checked daily and parasitaemia was determined every other day. Pro-inflammatory mediators and IL-4 were quantified by ELISA, while NO level was determined by the Griess method. The populations of dendritic cells (DCs, macrophages, CD4+ T and regulatory T cells (Treg were assessed by FACS. Results Allicin reduced parasitaemia and prolonged survival of the host in a dose-dependent manner. This effect is at least partially due to improved host immune responses. Results showed that allicin treatment enhanced the production of pro-inflammatory mediators such as IFN-γ, TNF, IL-12p70 and NO. The absolute numbers of CD4+ T cells, DCs and macrophages were significantly higher in allicin-treated mice. In addition, allicin promoted the maturation of CD11c+ DCs, whereas it did not cause major changes in IL-4 and the level of anti-inflammatory cytokine IL-10. Conclusions Allicin could partially protect host against P. yoelii 17XL through enhancement of the host innate and adaptive immune responses.

  12. Immune responses against human papillomavirus (HPV) infection and evasion of host defense in cervical cancer.

    Science.gov (United States)

    Sasagawa, Toshiyuki; Takagi, Hiroaki; Makinoda, Satoru

    2012-12-01

    Human papillomavirus (HPV) is the most important etiological factor for cervical cancer. A recent study demonstrated that more than 20 HPV types were thought to be oncogenic for uterine cervical cancer. Notably, more than one-half of women show cervical HPV infections soon after their sexual debut, and about 90 % of such infections are cleared within 3 years. Immunity against HPV might be important for elimination of the virus. The innate immune responses involving macrophages, natural killer cells, and natural killer T cells may play a role in the first line of defense against HPV infection. In the second line of defense, adaptive immunity via cytotoxic T lymphocytes (CTLs) targeting HPV16 E2 and E6 proteins appears to eliminate cells infected with HPV16. However, HPV can evade host immune responses. First, HPV does not kill host cells during viral replication and therefore neither presents viral antigen nor induces inflammation. HPV16 E6 and E7 proteins downregulate the expression of type-1 interferons (IFNs) in host cells. The lack of co-stimulatory signals by inflammatory cytokines including IFNs during antigen recognition may induce immune tolerance rather than the appropriate responses. Moreover, HPV16 E5 protein downregulates the expression of HLA-class 1, and it facilitates evasion of CTL attack. These mechanisms of immune evasion may eventually support the establishment of persistent HPV infection, leading to the induction of cervical cancer. Considering such immunological events, prophylactic HPV16 and 18 vaccine appears to be the best way to prevent cervical cancer in women who are immunized in adolescence.

  13. Stability of microbiota facilitated by host immune regulation: informing probiotic strategies to manage amphibian disease.

    Science.gov (United States)

    Küng, Denise; Bigler, Laurent; Davis, Leyla R; Gratwicke, Brian; Griffith, Edgardo; Woodhams, Douglas C

    2014-01-01

    Microbial communities can augment host immune responses and probiotic therapies are under development to prevent or treat diseases of humans, crops, livestock, and wildlife including an emerging fungal disease of amphibians, chytridiomycosis. However, little is known about the stability of host-associated microbiota, or how the microbiota is structured by innate immune factors including antimicrobial peptides (AMPs) abundant in the skin secretions of many amphibians. Thus, conservation medicine including therapies targeting the skin will benefit from investigations of amphibian microbial ecology that provide a model for vertebrate host-symbiont interactions on mucosal surfaces. Here, we tested whether the cutaneous microbiota of Panamanian rocket frogs, Colostethus panamansis, was resistant to colonization or altered by treatment. Under semi-natural outdoor mesocosm conditions in Panama, we exposed frogs to one of three treatments including: (1) probiotic - the potentially beneficial bacterium Lysinibacillus fusiformis, (2) transplant - skin washes from the chytridiomycosis-resistant glass frog Espadarana prosoblepon, and (3) control - sterile water. Microbial assemblages were analyzed by a culture-independent T-RFLP analysis. We found that skin microbiota of C. panamansis was resistant to colonization and did not differ among treatments, but shifted through time in the mesocosms. We describe regulation of host AMPs that may function to maintain microbial community stability. Colonization resistance was metabolically costly and microbe-treated frogs lost 7-12% of body mass. The discovery of strong colonization resistance of skin microbiota suggests a well-regulated, rather than dynamic, host-symbiont relationship, and suggests that probiotic therapies aiming to enhance host immunity may require an approach that circumvents host mechanisms maintaining equilibrium in microbial communities.

  14. The Development of Antimicrobial α-AApeptides that Suppress Pro-inflammatory Immune Responses

    Science.gov (United States)

    Padhee, Shruti; Smith, Christina; Wu, Haifan; Li, Yaqiong; Manoj, Namitha; Qiao, Qiao; Khan, Zoya; Cao, Chuanhai

    2014-01-01

    Herein we describe the development of a new class of antimicrobial and anti-infective peptidomimetics – cyclic lipo-α-AApeptides. They have potent and broad-spectrum antibacterial activity against a range of clinically relevant pathogens, including both multidrug-resistant Gram-positive and Gram-negative bacteria. Fluorescence microscopy suggests that cyclic lipo-α-AApeptides kill bacteria by disrupting bacterial membranes, possibly through a mechanism similar to that of cationic host defense peptides (HDPs). Furthermore, the cyclic lipo-α-AApeptide can mimic cationic host-defense peptides by antagonizing Toll-Like Receptor 4 (TLR4) signaling responses and suppressing pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α). Our results suggest that by mimicking host-defense peptides (HDPs), cyclic lipo-α-AApeptides may emerge to be a new class of antibiotic agents through direct bacteria killing, as well as novel anti-infective agents through immunomodulation. PMID:24677440

  15. The Host Immune Response to Streptococcus pneumoniae: Bridging Innate and Adaptive Immunity

    Science.gov (United States)

    2006-07-06

    expression affect the inflammatory response (Friedland et al., 1995; Wellmer et al., 2002). Heat-inactivation destroys the cytotoxic and cytokine...clearance of Brucella abortus. Infect. Immun. 73: 5137-5143. Wellmer , A., Zysk, G., Gerber, J., Kunst, T., Von Mering, M., Bunkowski, S., Eiffert, H

  16. Elevated Temperature and Drought Interact to Reduce Parasitoid Effectiveness in Suppressing Hosts

    Science.gov (United States)

    Romo, Cecilia M.; Tylianakis, Jason M.

    2013-01-01

    Climate change affects the abundance, distribution and activity of natural enemies that are important for suppressing herbivore crop pests. Moreover, higher mean temperatures and increased frequency of climatic extremes are expected to induce different responses across trophic levels, potentially disrupting predator-prey interactions. Using field observations, we examined the response of an aphid host-parasitoid system to variation in temperature. Temperature was positively associated with attack rates by parasitoids, but also with a non-significant trend towards increased attack rates by higher-level hyperparasitoids. Elevated hyperparasitism could partly offset any benefit of climate warming to parasitoids, and would suggest that higher trophic levels may hamper predictions of predator-prey interactions. Additionally, the mechanisms affecting host-parasitoid dynamics were examined using controlled laboratory experiments that simulated both temperature increase and drought. Parasitoid fitness and longevity responded differently when exposed to each climatic variable in isolation, compared to the interaction of both variables at once. Although temperature increase or drought tended to positively affect the ability of parasitoids to control aphid populations, these effects were significantly reversed when the drivers were expressed in concert. Additionally, separate warming and drought treatments reduced parasitoid longevity, and although temperature increased parasitoid emergence success and drought increased offspring production, combined temperature and drought produced the lowest parasitoid emergence. The non-additive effects of different climate drivers, combined with differing responses across trophic levels, suggest that predicting future pest outbreaks will be more challenging than previously imagined. PMID:23472147

  17. Elevated temperature and drought interact to reduce parasitoid effectiveness in suppressing hosts.

    Directory of Open Access Journals (Sweden)

    Cecilia M Romo

    Full Text Available Climate change affects the abundance, distribution and activity of natural enemies that are important for suppressing herbivore crop pests. Moreover, higher mean temperatures and increased frequency of climatic extremes are expected to induce different responses across trophic levels, potentially disrupting predator-prey interactions. Using field observations, we examined the response of an aphid host-parasitoid system to variation in temperature. Temperature was positively associated with attack rates by parasitoids, but also with a non-significant trend towards increased attack rates by higher-level hyperparasitoids. Elevated hyperparasitism could partly offset any benefit of climate warming to parasitoids, and would suggest that higher trophic levels may hamper predictions of predator-prey interactions. Additionally, the mechanisms affecting host-parasitoid dynamics were examined using controlled laboratory experiments that simulated both temperature increase and drought. Parasitoid fitness and longevity responded differently when exposed to each climatic variable in isolation, compared to the interaction of both variables at once. Although temperature increase or drought tended to positively affect the ability of parasitoids to control aphid populations, these effects were significantly reversed when the drivers were expressed in concert. Additionally, separate warming and drought treatments reduced parasitoid longevity, and although temperature increased parasitoid emergence success and drought increased offspring production, combined temperature and drought produced the lowest parasitoid emergence. The non-additive effects of different climate drivers, combined with differing responses across trophic levels, suggest that predicting future pest outbreaks will be more challenging than previously imagined.

  18. Individual Members of the Microbiota Disproportionately Modulate Host Innate Immune Responses.

    Science.gov (United States)

    Rolig, Annah S; Parthasarathy, Raghuveer; Burns, Adam R; Bohannan, Brendan J M; Guillemin, Karen

    2015-11-11

    Predicting host health status based on microbial community structure is a major goal of microbiome research. An implicit assumption of microbiome profiling for diagnostic purposes is that the proportional representation of different taxa determine host phenotypes. To test this assumption, we colonized gnotobiotic zebrafish with zebrafish-derived bacterial isolates and measured bacterial abundance and host neutrophil responses. Surprisingly, combinations of bacteria elicited immune responses that do not reflect the numerically dominant species. These data are consistent with a quantitative model in which the host responses to commensal species are additive but where various species have different per capita immunostimulatory effects. For example, one species has a high per capita immunosuppression that is mediated through a potent secreted factor. We conclude that the proportional representation of bacteria in a community does not necessarily predict its functional capacities; however, characterizing specific properties of individual species offers predictive insights into multi-species community function. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Distinct regions of the Phytophthora essential effector Avh238 determine its function in cell death activation and plant immunity suppression.

    Science.gov (United States)

    Yang, Bo; Wang, Qunqing; Jing, Maofeng; Guo, Baodian; Wu, Jiawei; Wang, Haonan; Wang, Yang; Lin, Long; Wang, Yan; Ye, Wenwu; Dong, Suomeng; Wang, Yuanchao

    2017-04-01

    Phytophthora pathogens secrete effectors to manipulate host innate immunity, thus facilitating infection. Among the RXLR effectors highly induced during Phytophthora sojae infection, Avh238 not only contributes to pathogen virulence but also triggers plant cell death. However, the detailed molecular basis of Avh238 functions remains largely unknown. We mapped the regions responsible for Avh238 functions in pathogen virulence and plant cell death induction using a strategy that combines investigation of natural variation and large-scale mutagenesis assays. The correlation between cellular localization and Avh238 functions was also evaluated. We found that the 79 th residue (histidine or leucine) of Avh238 determined its cell death-inducing activity, and that the 53 amino acids in its C-terminal region are responsible for promoting Phytophthora infection. Transient expression of Avh238 in Nicotiana benthamiana revealed that nuclear localization is essential for triggering cell death, while Avh238-mediated suppression of INF1-triggered cell death requires cytoplasmic localization. Our results demonstrate that a representative example of an essential Phytophthora RXLR effector can evolve to escape recognition by the host by mutating one nucleotide site, and can also retain plant immunosuppressive activity to enhance pathogen virulence in planta. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  20. The cyclic GMP-AMP synthetase-STING signaling pathway is required for both the innate immune response against HBV and the suppression of HBV assembly.

    Science.gov (United States)

    Dansako, Hiromichi; Ueda, Youki; Okumura, Nobuaki; Satoh, Shinya; Sugiyama, Masaya; Mizokami, Masashi; Ikeda, Masanori; Kato, Nobuyuki

    2016-01-01

    During viral replication, the innate immune response is induced through the recognition of viral replication intermediates by host factor(s). One of these host factors, cyclic GMP-AMP synthetase (cGAS), was recently reported to be involved in the recognition of viral DNA derived from DNA viruses. However, it is uncertain whether cGAS is involved in the recognition of hepatitis B virus (HBV), which is a hepatotropic DNA virus. In the present study, we demonstrated that HBV genome-derived double-stranded DNA induced the innate immune response through cGAS and its adaptor protein, stimulator of interferon genes (STING), in human hepatoma Li23 cells expressing high levels of cGAS. In addition, we demonstrated that HBV infection induced ISG56 through the cGAS-STING signaling pathway. This signaling pathway also showed an antiviral response towards HBV through the suppression of viral assembly. From these results, we conclude that the cGAS-STING signaling pathway is required for not only the innate immune response against HBV but also the suppression of HBV assembly. The cGAS-STING signaling pathway may thus be a novel target for anti-HBV strategies. © 2015 FEBS.

  1. In acute experimental autoimmune encephalomyelitis, infiltrating macrophages are immune activated, whereas microglia remain immune suppressed.

    Science.gov (United States)

    Vainchtein, I D; Vinet, J; Brouwer, N; Brendecke, S; Biagini, G; Biber, K; Boddeke, H W G M; Eggen, B J L

    2014-10-01

    Multiple sclerosis (MS) is an autoimmune demyelinating disorder of the central nervous system (CNS) characterized by loss of myelin accompanied by infiltration of T-lymphocytes and monocytes. Although it has been shown that these infiltrates are important for the progression of MS, the role of microglia, the resident macrophages of the CNS, remains ambiguous. Therefore, we have compared the phenotypes of microglia and macrophages in a mouse model for MS, experimental autoimmune encephalomyelitis (EAE). In order to properly discriminate between these two cell types, microglia were defined as CD11b(pos) CD45(int) Ly-6C(neg) , and infiltrated macrophages as CD11b(pos) CD45(high) Ly-6C(pos) . During clinical EAE, microglia displayed a weakly immune-activated phenotype, based on the expression of MHCII, co-stimulatory molecules (CD80, CD86, and CD40) and proinflammatory genes [interleukin-1β (IL-1β) and tumour necrosis factor- α (TNF-α)]. In contrast, CD11b(pos) CD45(high) Ly-6C(pos) infiltrated macrophages were strongly activated and could be divided into two populations Ly-6C(int) and Ly-6C(high) , respectively. Ly-6C(high) macrophages contained less myelin than Ly-6C(int) macrophages and expression levels of the proinflammatory cytokines IL-1β and TNF-α were higher in Ly-6C(int) macrophages. Together, our data show that during clinical EAE, microglia are only weakly activated whereas infiltrated macrophages are highly immune reactive. © 2014 Wiley Periodicals, Inc.

  2. The innate immune response to RSV: Advances in our understanding of critical viral and host factors.

    Science.gov (United States)

    Sun, Yan; López, Carolina B

    2017-01-11

    Respiratory syncytial virus (RSV) causes mild to severe respiratory illness in humans and is a major cause of hospitalizations of infants and the elderly. Both the innate and the adaptive immune responses contribute to the control of RSV infection, but despite successful viral clearance, protective immunity against RSV re-infection is usually suboptimal and infections recur. Poor understanding of the mechanisms limiting the induction of long-lasting immunity has delayed the development of an effective vaccine. The innate immune response plays a critical role in driving the development of adaptive immunity and is thus a crucial determinant of the infection outcome. Advances in recent years have improved our understanding of cellular and viral factors that influence the onset and quality of the innate immune response to RSV. These advances include the identification of a complex system of cellular sensors that mediate RSV detection and stimulate transcriptome changes that lead to virus control and the discovery that cell stress and apoptosis participate in the control of RSV infection. In addition, it was recently demonstrated that defective viral genomes (DVGs) generated during RSV replication are the primary inducers of the innate immune response. Newly discovered host pathways involved in the innate response to RSV, together with the potential generation of DVG-derived oligonucleotides, present various novel opportunities for the design of vaccine adjuvants able to induce a protective response against RSV and similar viruses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Inhibition of host immune response in colorectal cancer: Human leukocyte antigen-G and beyond

    Science.gov (United States)

    Garziera, Marica; Toffoli, Giuseppe

    2014-01-01

    Colorectal cancer (CRC) is one of the most diffuse cancers worldwide and is still a clinical burden. Increasing evidences associate CRC clinical outcome to immune contexture represented by adaptive immune cells. Their type, density and location are summarized in the Immune Score that has been shown to improve prognostic prediction of CRC patients. The non-classical MHC class I human leukocyte antigen-G (HLA-G), is a crucial tumor-driven immune escape molecule involved in immune tolerance. HLA-G and soluble counterparts are able to exert inhibitory functions by direct interactions with inhibitory receptors present on both innate cells such as natural killer cells, and adaptive immune cells as cytotoxic T and B lymphocytes. HLA-G may play a prominent role in CRC strategies to avoid host immunosurveillance. This review highlights the current knowledge on HLA-G contribution in CRC, in related inflammatory diseases and in other type of cancers and disorders. HLA-G genetic setting (specific haplotypes, genotypes and alleles frequencies) and association with circulating/soluble profiles was highlighted. HLA G prognostic and predictive value in CRC was investigated in order to define a novel prognostic immune biomarker in CRC. PMID:24744572

  4. Endoplasmic Reticulum Stress Caused by Lipoprotein Accumulation Suppresses Immunity against Bacterial Pathogens and Contributes to Immunosenescence

    Directory of Open Access Journals (Sweden)

    Jogender Singh

    2017-05-01

    Full Text Available The unfolded protein response (UPR is a stress response pathway that is activated upon increased unfolded and/or misfolded proteins in the endoplasmic reticulum (ER, and enhanced ER stress response prolongs life span and improves immunity. However, the mechanism by which ER stress affects immunity remains poorly understood. Using the nematode Caenorhabditis elegans, we show that mutations in the lipoproteins vitellogenins, which are homologs of human apolipoprotein B-100, resulted in upregulation of the UPR. Lipoprotein accumulation in the intestine adversely affects the immune response and the life span of the organism, suggesting that it could be a contributing factor to immunosenescence. We show that lipoprotein accumulation inhibited the expression of several immune genes encoding proteins secreted by the intestinal cells in an IRE-1-independent manner. Our studies provide a mechanistic explanation for adverse effects caused by protein aggregation and ER stress on immunity and highlight the role of an IRE-1-independent pathway in the suppression of the expression of genes encoding secreted proteins.

  5. Gastrointestinal helminths may affect host susceptibility to anthrax through seasonal immune trade-offs.

    Science.gov (United States)

    Cizauskas, Carrie A; Turner, Wendy C; Wagner, Bettina; Küsters, Martina; Vance, Russell E; Getz, Wayne M

    2014-11-12

    Most vertebrates experience coinfections, and many pathogen-pathogen interactions occur indirectly through the host immune system. These interactions are particularly strong in mixed micro-macroparasite infections because of immunomodulatory effects of helminth parasites. While these trade-offs have been examined extensively in laboratory animals, few studies have examined them in natural systems. Additionally, many wildlife pathogens fluctuate seasonally, at least partly due to seasonal host immune changes. We therefore examined seasonality of immune resource allocation, pathogen abundance and exposure, and interactions between infections and immunity in plains zebra (Equus quagga) in Etosha National Park (ENP), Namibia, a system with strongly seasonal patterns of gastrointestinal (GI) helminth infection intensity and concurrent anthrax outbreaks. Both pathogens are environmentally transmitted, and helminth seasonality is driven by environmental pressures on free living life stages. The reasons behind anthrax seasonality are currently not understood, though anthrax is less likely directly driven by environmental factors. We measured a complex, interacting set of variables and found evidence that GI helminth infection intensities, eosinophil counts, IgE and IgGb antibody titers, and possibly IL-4 cytokine signaling were increased in wetter seasons, and that ectoparasite infestations and possibly IFN-γ cytokine signaling were increased in drier seasons. Monocyte counts and anti-anthrax antibody titers were negatively associated with wet season eosinophilia, and monocytes were negatively correlated with IgGb and IgE titers. Taken together, this supports the hypothesis that ENP wet seasons are characterized by immune resource allocation toward Th-2 type responses, while Th1-type immunity may prevail in drier seasons, and that hosts may experience Th1-Th2 trade-offs. We found evidence that this Th2-type resource allocation is likely driven by GI parasite infections

  6. Effect of host nutrition on immunity and local immune response of rabbits to Obeliscoides cuniculi

    International Nuclear Information System (INIS)

    Sinski, E.; Bezubik, B.; Wedrychowicz, H.; Szklarczyk, J.; Doligalska, M.

    1988-01-01

    In a series of experiments carried out on young and adult rabbits the effect of isocaloric low protein diets containing 4% or 8% protein compared with a diet containing 21% protein on Obeliscoides cuniculi infection was studied. The pathogenesis, resistance and local immunity were assessed after single infections with 10,000 larvae or reinfection with 5000 larvae. Live weight gain was reduced in young and adult rabbits fed the low protein diets, but the establishment of parasites was not substantially influenced by protein deprivation. However, development of worms in the histotrophic phase and parasite fecundity were impaired in association with the low protein diet. Moreover, mild anaemia as well as changes in the mucosal immune response as a result of infection were related to the level of dietary protein. (author). 30 refs, 6 figs, 5 tabs

  7. Lack of host gut microbiota alters immune responses and intestinal granuloma formation during schistosomiasis.

    Science.gov (United States)

    Holzscheiter, M; Layland, L E; Loffredo-Verde, E; Mair, K; Vogelmann, R; Langer, R; Wagner, H; Prazeres da Costa, C

    2014-02-01

    Fatalities from schistosome infections arise due to granulomatous, immune-mediated responses to eggs that become trapped in host tissues. Schistosome-specific immune responses are characterized by initial T helper type 1 (Th1) responses and our previous studies demonstrated that myeloid differentiation primary response gene 88 (Myd88)-deficient mice failed to initiate such responses in vivo. Paradoxically, schistosomal antigens fail to stimulate innate cells to release proinflammatory cytokines in vitro. Since Schistosoma mansoni infection is an intestinal disease, we hypothesized that commensal bacteria could act as bystander activators of the intestinal innate immune system to instigate Th1 responses. Using a broad spectrum of orally administered antibiotics and anti-mycotics we analysed schistosome-infected mice that were simultaneously depleted of gut bacteria. After depletion there was significantly less inflammation in the intestine, which was accompanied by decreased intestinal granuloma development. In contrast, liver pathology remained unaltered. In addition, schistosome-specific immune responses were skewed and faecal egg excretion was diminished. This study demonstrates that host microbiota can act as a third partner in instigating helminth-specific immune responses. © 2013 British Society for Immunology.

  8. Modulation of Host Immunity by Human Respiratory Syncytial Virus Virulence Factors: A Synergic Inhibition of Both Innate and Adaptive Immunity

    Directory of Open Access Journals (Sweden)

    Gisela Canedo-Marroquín

    2017-08-01

    Full Text Available The Human Respiratory Syncytial Virus (hRSV is a major cause of acute lower respiratory tract infections (ARTIs and high rates of hospitalizations in children and in the elderly worldwide. Symptoms of hRSV infection include bronchiolitis and pneumonia. The lung pathology observed during hRSV infection is due in part to an exacerbated host immune response, characterized by immune cell infiltration to the lungs. HRSV is an enveloped virus, a member of the Pneumoviridae family, with a non-segmented genome and negative polarity-single RNA that contains 10 genes encoding for 11 proteins. These include the Fusion protein (F, the Glycoprotein (G, and the Small Hydrophobic (SH protein, which are located on the virus surface. In addition, the Nucleoprotein (N, Phosphoprotein (P large polymerase protein (L part of the RNA-dependent RNA polymerase complex, the M2-1 protein as a transcription elongation factor, the M2-2 protein as a regulator of viral transcription and (M protein all of which locate inside the virion. Apart from the structural proteins, the hRSV genome encodes for the non-structural 1 and 2 proteins (NS1 and NS2. HRSV has developed different strategies to evade the host immunity by means of the function of some of these proteins that work as virulence factors to improve the infection in the lung tissue. Also, hRSV NS-1 and NS-2 proteins have been shown to inhibit the activation of the type I interferon response. Furthermore, the hRSV nucleoprotein has been shown to inhibit the immunological synapsis between the dendritic cells and T cells during infection, resulting in an inefficient T cell activation. Here, we discuss the hRSV virulence factors and the host immunological features raised during infection with this virus.

  9. The cytoskeleton in cell-autonomous immunity: structural determinants of host defence

    Science.gov (United States)

    Mostowy, Serge; Shenoy, Avinash R.

    2016-01-01

    Host cells use antimicrobial proteins, pathogen-restrictive compartmentalization and cell death in their defence against intracellular pathogens. Recent work has revealed that four components of the cytoskeleton — actin, microtubules, intermediate filaments and septins, which are well known for their roles in cell division, shape and movement — have important functions in innate immunity and cellular self-defence. Investigations using cellular and animal models have shown that these cytoskeletal proteins are crucial for sensing bacteria and for mobilizing effector mechanisms to eliminate them. In this Review, we highlight the emerging roles of the cytoskeleton as a structural determinant of cell-autonomous host defence. PMID:26292640

  10. Viruses use stealth technology to escape from the host immune system.

    Science.gov (United States)

    Wiertz, E J; Mukherjee, S; Ploegh, H L

    1997-03-01

    In this review, we focus on recent investigations that reveal novel mechanisms by which viruses evade detection and elimination by the host immune system. In particular, we consider the evasion mechanisms of five persistent viruses: herpes simplex virus, human cytomegalovirus, mouse cytomegalovirus, Epstein-Barr virus and adenovirus. Unravelling the strategies used by viruses to survive within the host could identify new targets for antiviral drugs and for improved vaccines. Identification of the mechanisms that underlie these strategies might also reveal new, fundamental features of biology that occur in uninfected cells and are exploited by viruses.

  11. Immune regulation during parasitic infections : from bench to field

    NARCIS (Netherlands)

    Wammes, Linda Judith

    2013-01-01

    Helminth parasites are able to induce immune regulation in their host. Suppression of the host immune system is beneficial for both the parasite, by inhibiting anti-parasite immunity, and for the host, by preventing tissue damage due to excessive inflammation. There are indications that in

  12. Innate immune recognition of the microbiota promotes host-microbial symbiosis.

    Science.gov (United States)

    Chu, Hiutung; Mazmanian, Sarkis K

    2013-07-01

    Pattern-recognition receptors (PRRs) are traditionally known to sense microbial molecules during infection to initiate inflammatory responses. However, ligands for PRRs are not exclusive to pathogens and are abundantly produced by the resident microbiota during normal colonization. Mechanism(s) that underlie this paradox have remained unclear. Recent studies reveal that gut bacterial ligands from the microbiota signal through PRRs to promote development of host tissue and the immune system, and protection from disease. Evidence from both invertebrate and vertebrate models reveals that innate immune receptors are required to promote long-term colonization by the microbiota. This emerging perspective challenges current models in immunology and suggests that PRRs may have evolved, in part, to mediate the bidirectional cross-talk between microbial symbionts and their hosts.

  13. Arctigenin protects against liver injury from acute hepatitis by suppressing immune cells in mice.

    Science.gov (United States)

    Cheng, Xixi; Wang, Huafeng; Yang, Jinlai; Cheng, Yingnan; Wang, Dan; Yang, Fengrui; Li, Yan; Zhou, Dongmei; Wang, Yanxia; Xue, Zhenyi; Zhang, Lijuan; Zhang, Qi; Yang, Luhong; Zhang, Rongxin; Da, Yurong

    2018-03-23

    As a phenylpropanoid and dibenzylbutyrolactone lignan present in medical plants, such as those used in traditional Chinese herbal medicine, including Arctium lappa (Niubang), arctigenin exhibits antimicrobial, anti-inflammatory, and anticancer activities. In this study, we investigated the protective role of arctigenin in Concanavalin A (ConA)-induced acute hepatitis in mice. Arctigenin remarkably reduced the congestion and necroinflammation of livers, and improved hepatic function (ALT and AST) in ConA-induced acute hepatitis in vivo. The infiltration of CD4 T, NKT and macrophages into the livers was found to be reduced with arctigenin treatment. Arctigenin suppressed ConA-induced T lymphocyte proliferations that might have resulted from enhanced IL-10 production by macrophages and CD4 T cells. These results suggested that arctigenin could be a powerful drug candidate for acute hepatitis through immune suppression. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  14. Gammaherpesvirus Co-infection with Malaria Suppresses Anti-parasitic Humoral Immunity.

    Directory of Open Access Journals (Sweden)

    Caline G Matar

    2015-05-01

    Full Text Available Immunity to non-cerebral severe malaria is estimated to occur within 1-2 infections in areas of endemic transmission for Plasmodium falciparum. Yet, nearly 20% of infected children die annually as a result of severe malaria. Multiple risk factors are postulated to exacerbate malarial disease, one being co-infections with other pathogens. Children living in Sub-Saharan Africa are seropositive for Epstein Barr Virus (EBV by the age of 6 months. This timing overlaps with the waning of protective maternal antibodies and susceptibility to primary Plasmodium infection. However, the impact of acute EBV infection on the generation of anti-malarial immunity is unknown. Using well established mouse models of infection, we show here that acute, but not latent murine gammaherpesvirus 68 (MHV68 infection suppresses the anti-malarial humoral response to a secondary malaria infection. Importantly, this resulted in the transformation of a non-lethal P. yoelii XNL infection into a lethal one; an outcome that is correlated with a defect in the maintenance of germinal center B cells and T follicular helper (Tfh cells in the spleen. Furthermore, we have identified the MHV68 M2 protein as an important virus encoded protein that can: (i suppress anti-MHV68 humoral responses during acute MHV68 infection; and (ii plays a critical role in the observed suppression of anti-malarial humoral responses in the setting of co-infection. Notably, co-infection with an M2-null mutant MHV68 eliminates lethality of P. yoelii XNL. Collectively, our data demonstrates that an acute gammaherpesvirus infection can negatively impact the development of an anti-malarial immune response. This suggests that acute infection with EBV should be investigated as a risk factor for non-cerebral severe malaria in young children living in areas endemic for Plasmodium transmission.

  15. Gammaherpesvirus Co-infection with Malaria Suppresses Anti-parasitic Humoral Immunity

    Science.gov (United States)

    Matar, Caline G.; Anthony, Neil R.; O’Flaherty, Brigid M.; Jacobs, Nathan T.; Priyamvada, Lalita; Engwerda, Christian R.; Speck, Samuel H.; Lamb, Tracey J.

    2015-01-01

    Immunity to non-cerebral severe malaria is estimated to occur within 1-2 infections in areas of endemic transmission for Plasmodium falciparum. Yet, nearly 20% of infected children die annually as a result of severe malaria. Multiple risk factors are postulated to exacerbate malarial disease, one being co-infections with other pathogens. Children living in Sub-Saharan Africa are seropositive for Epstein Barr Virus (EBV) by the age of 6 months. This timing overlaps with the waning of protective maternal antibodies and susceptibility to primary Plasmodium infection. However, the impact of acute EBV infection on the generation of anti-malarial immunity is unknown. Using well established mouse models of infection, we show here that acute, but not latent murine gammaherpesvirus 68 (MHV68) infection suppresses the anti-malarial humoral response to a secondary malaria infection. Importantly, this resulted in the transformation of a non-lethal P. yoelii XNL infection into a lethal one; an outcome that is correlated with a defect in the maintenance of germinal center B cells and T follicular helper (Tfh) cells in the spleen. Furthermore, we have identified the MHV68 M2 protein as an important virus encoded protein that can: (i) suppress anti-MHV68 humoral responses during acute MHV68 infection; and (ii) plays a critical role in the observed suppression of anti-malarial humoral responses in the setting of co-infection. Notably, co-infection with an M2-null mutant MHV68 eliminates lethality of P. yoelii XNL. Collectively, our data demonstrates that an acute gammaherpesvirus infection can negatively impact the development of an anti-malarial immune response. This suggests that acute infection with EBV should be investigated as a risk factor for non-cerebral severe malaria in young children living in areas endemic for Plasmodium transmission. PMID:25996913

  16. Gammaherpesvirus Co-infection with Malaria Suppresses Anti-parasitic Humoral Immunity.

    Science.gov (United States)

    Matar, Caline G; Anthony, Neil R; O'Flaherty, Brigid M; Jacobs, Nathan T; Priyamvada, Lalita; Engwerda, Christian R; Speck, Samuel H; Lamb, Tracey J

    2015-05-01

    Immunity to non-cerebral severe malaria is estimated to occur within 1-2 infections in areas of endemic transmission for Plasmodium falciparum. Yet, nearly 20% of infected children die annually as a result of severe malaria. Multiple risk factors are postulated to exacerbate malarial disease, one being co-infections with other pathogens. Children living in Sub-Saharan Africa are seropositive for Epstein Barr Virus (EBV) by the age of 6 months. This timing overlaps with the waning of protective maternal antibodies and susceptibility to primary Plasmodium infection. However, the impact of acute EBV infection on the generation of anti-malarial immunity is unknown. Using well established mouse models of infection, we show here that acute, but not latent murine gammaherpesvirus 68 (MHV68) infection suppresses the anti-malarial humoral response to a secondary malaria infection. Importantly, this resulted in the transformation of a non-lethal P. yoelii XNL infection into a lethal one; an outcome that is correlated with a defect in the maintenance of germinal center B cells and T follicular helper (Tfh) cells in the spleen. Furthermore, we have identified the MHV68 M2 protein as an important virus encoded protein that can: (i) suppress anti-MHV68 humoral responses during acute MHV68 infection; and (ii) plays a critical role in the observed suppression of anti-malarial humoral responses in the setting of co-infection. Notably, co-infection with an M2-null mutant MHV68 eliminates lethality of P. yoelii XNL. Collectively, our data demonstrates that an acute gammaherpesvirus infection can negatively impact the development of an anti-malarial immune response. This suggests that acute infection with EBV should be investigated as a risk factor for non-cerebral severe malaria in young children living in areas endemic for Plasmodium transmission.

  17. Innate immune recognition of the microbiota promotes host-microbial symbiosis

    OpenAIRE

    Chu, Hiutung; Mazmanian, Sarkis K.

    2013-01-01

    Pattern recognition receptors (PRRs) are traditionally known to recognize microbial molecules during infection to initiate inflammatory responses. However, ligands for PRRs are not exclusive to pathogens, and are abundantly produced by the resident microbiota during normal colonization. Mechanism(s) that underlie this paradox have remained unclear. Recent studies reveal that gut bacterial ligands from the microbiota signal through PRRs to promote host tissue and immune development, and protec...

  18. Structural modifications of bacterial lipopolysaccharide that facilitate Gram-negative bacteria evasion of host innate immunity

    Directory of Open Access Journals (Sweden)

    Motohiro eMatsuura

    2013-05-01

    Full Text Available Bacterial lipopolysaccharide (LPS, a cell wall component characteristic of Gram-negative bacteria, is a representative pathogen-associated molecular pattern that allows mammalian cells to recognize bacterial invasion and trigger innate immune responses. The polysaccharide moiety of LPS primary plays protective roles for bacteria such as prevention from complement attacks or camouflage with common host carbohydrate residues. The lipid moiety, termed lipid A, is recognized by the Toll-like receptor 4 (TLR4/MD-2 complex, which transduces signals for activation of host innate immunity. The basic structure of lipid A is a glucosamine disaccharide substituted by phosphate groups and acyl groups. Lipid A with 6 acyl groups (hexa-acylated form has been indicated to be a strong stimulator of the TLR4/MD-2 complex. This type of lipid A is conserved among a wide variety of Gram-negative bacteria, and those bacteria are easily recognized by host cells for activation of defensive innate immune responses. Modifications of the lipid A structure to less-acylated forms have been observed in some bacterial species, and those forms are poor stimulators of the TLR4/MD-2 complex. Such modifications are thought to facilitate bacterial evasion of host innate immunity, thereby enhancing pathogenicity. This hypothesis is supported by studies of Yersinia pestis LPS, which contains hexa-acylated lipid A when the bacterium grows at 27ºC (the temperature of the vector flea, and shifts to contain less-acylated forms when grown at the human body temperature of 37ºC. This alteration of lipid A forms following transmission of Y. pestis from fleas to humans contributes predominantly to the virulence of this bacterium over other virulence factors. A similar role for less-acylated lipid A forms has been indicated in some other bacterial species, such as Francisella tularensis, Helicobacter pylori, and Porphyromonas gingivalis, and further studies to explore this concept are

  19. Suppression of Long-Lived Humoral Immunity Following Borrelia burgdorferi Infection.

    Directory of Open Access Journals (Sweden)

    Rebecca A Elsner

    2015-07-01

    Full Text Available Lyme Disease caused by infection with Borrelia burgdorferi is an emerging infectious disease and already by far the most common vector-borne disease in the U.S. Similar to many other infections, infection with B. burgdorferi results in strong antibody response induction, which can be used clinically as a diagnostic measure of prior exposure. However, clinical studies have shown a sometimes-precipitous decline of such antibodies shortly following antibiotic treatment, revealing a potential deficit in the host's ability to induce and/or maintain long-term protective antibodies. This is further supported by reports of frequent repeat infections with B. burgdorferi in endemic areas. The mechanisms underlying such a lack of long-term humoral immunity, however, remain unknown. We show here that B. burgdorferi infected mice show a similar rapid disappearance of Borrelia-specific antibodies after infection and subsequent antibiotic treatment. This failure was associated with development of only short-lived germinal centers, micro-anatomical locations from which long-lived immunity originates. These showed structural abnormalities and failed to induce memory B cells and long-lived plasma cells for months after the infection, rendering the mice susceptible to reinfection with the same strain of B. burgdorferi. The inability to induce long-lived immune responses was not due to the particular nature of the immunogenic antigens of B. burgdorferi, as antibodies to both T-dependent and T-independent Borrelia antigens lacked longevity and B cell memory induction. Furthermore, influenza immunization administered at the time of Borrelia infection also failed to induce robust antibody responses, dramatically reducing the protective antiviral capacity of the humoral response. Collectively, these studies show that B. burgdorferi-infection results in targeted and temporary immunosuppression of the host and bring new insight into the mechanisms underlying the failure

  20. Pseudomonas syringae evades host immunity by degrading flagellin monomers with alkaline protease AprA.

    Science.gov (United States)

    Pel, Michiel J C; van Dijken, Anja J H; Bardoel, Bart W; Seidl, Michael F; van der Ent, Sjoerd; van Strijp, Jos A G; Pieterse, Corné M J

    2014-07-01

    Bacterial flagellin molecules are strong inducers of innate immune responses in both mammals and plants. The opportunistic pathogen Pseudomonas aeruginosa secretes an alkaline protease called AprA that degrades flagellin monomers. Here, we show that AprA is widespread among a wide variety of bacterial species. In addition, we investigated the role of AprA in virulence of the bacterial plant pathogen P. syringae pv. tomato DC3000. The AprA-deficient DC3000 ΔaprA knockout mutant was significantly less virulent on both tomato and Arabidopsis thaliana. Moreover, infiltration of A. thaliana Col-0 leaves with DC3000 ΔaprA evoked a significantly higher level of expression of the defense-related genes FRK1 and PR-1 than did wild-type DC3000. In the flagellin receptor mutant fls2, pathogen virulence and defense-related gene activation did not differ between DC3000 and DC3000 ΔaprA. Together, these results suggest that AprA of DC3000 is important for evasion of recognition by the FLS2 receptor, allowing wild-type DC3000 to be more virulent on its host plant than AprA-deficient DC3000 ΔaprA. To provide further evidence for the role of DC3000 AprA in host immune evasion, we overexpressed the AprA inhibitory peptide AprI of DC3000 in A. thaliana to counteract the immune evasive capacity of DC3000 AprA. Ectopic expression of aprI in A. thaliana resulted in an enhanced level of resistance against wild-type DC3000, while the already elevated level of resistance against DC3000 ΔaprA remained unchanged. Together, these results indicate that evasion of host immunity by the alkaline protease AprA is important for full virulence of strain DC3000 and likely acts by preventing flagellin monomers from being recognized by its cognate immune receptor.

  1. Effects of immunosuppression on avian coccidiosis: cyclosporin A but not hormonal bursectomy abrogates host protective immunity.

    Science.gov (United States)

    Lillehoj, H S

    1987-01-01

    The effects of cyclosporin A (CsA) treatment and hormonal bursectomy on Eimeria tenella infection of chickens were investigated to evaluate the role of humoral antibody and cell-mediated immunity (CMI) in the host protective immunity to an intestinal protozoan disease, coccidiosis. Hormonal bursectomy had no significant effect on the host response to E. tenella. CsA treatment had a differential effect on the course of disease depending on how CsA was given relative to infection. Daily administration of CsA for 7 days beginning 1 day before primary infection with E. tenella enhanced disease resistance, whereas a single dose of CsA given before primary infection enhanced disease susceptibility compared with that of untreated controls. Chickens treated with CsA during the primary infection were resistant to reinfection at 5 weeks post-primary infection. Treatment of chickens immune to E. tenella with CsA at the time of secondary infection abrogated their resistance to reinfection despite the presence of high levels of coccidia-specific secretory immunoglobulin A and serum immunoglobulin G. Splenic lymphocytes obtained after CsA treatment demonstrated a substantially depressed concanavalin A response, but not a depressed lipopolysaccharide response. Because CsA was not directly toxic to parasites in vivo when administered during the secondary infection, these results suggest that CsA interacts with the immune system to allow priming during the primary infection, while interfering with the effector function of CMI during the secondary infection. Taken together, present findings indicate that CMI plays a major role in host protective immunity to E. tenella. PMID:3496277

  2. Suppression of immune response to Lol pI by administration of idiotype.

    Science.gov (United States)

    Boutin, Y; Hébert, J

    1995-03-01

    Allergic diseases are characterized by an increased production of specific IgE antibodies. Suppression of IgE antibody production may be accomplished through idiotypic manipulation. Using an animal model, we explored the effects of anti-Lol pI monoclonal antibody administration on the subsequent IgE and IgG antibody response against Lol pI. Mice were treated with an anti-Lol pI monoclonal antibody (290A-167), which resulted in the production of anti-idiotypic antibodies as evidenced by their ability to bind to the Fab fraction of 290A-167 and to inhibit the binding of rabbit polyclonal anti-idiotypic antibodies to 290A-167. The animals were then immunized with Lol pI adsorbed onto alum, and the immune response to the protein was analyzed. Antigen-specific IgG1 and IgE responses were strongly suppressed as determined by immunoassay. Suppression of anti-Lol pI IgE antibodies was confirmed by a reduction of end-point titers measured by passive cutaneous anaphylaxis. The suppression of antigen-specific antibody was accompanied by a reduction of anti-Lol pI antibody-producing spleen cells. These data indicate that pretreatment with 290A-167 can strongly downregulate the IgE response to the main allergen of ryegrass pollen, which is associated with an increase in anti-idiotypic antibodies. This approach could provide rapid, long-term hyposensitization in patients with grass pollen allergy.

  3. Haloperidol suppresses murine dendritic cell maturation and priming of the T helper 1-type immune response.

    Science.gov (United States)

    Matsumoto, Atsuhiro; Ohta, Noriyuki; Goto, Yukiko; Kashiwa, Yozo; Yamamoto, Shunsuke; Fujino, Yuji

    2015-04-01

    Haloperidol has immunomodulatory effects when used to treat patients with schizophrenia and also is used to sedate critically ill patients in the intensive care unit. Although the mechanism by which haloperidol affects immune function is unclear, one possibility is that it alters dendritic cell (DC) function. DCs are potent antigen-presenting cells that influence the activation and maturation of T lymphocytes. In this study, we investigated the in vitro and in vivo immunomodulatory effects of haloperidol on DC-mediated immune responses. Using bone marrow-derived DCs in cell culture, we evaluated the effect of haloperidol on expression of costimulatory molecules (CD80 and CD86), major histocompatibility complex class ΙІ molecules, and the DC maturation marker CD83. DC culture supernatants also were evaluated for interleukin-12 p40 levels. In addition, we analyzed the effect of haloperidol on a mixed cell culture containing DCs and lymphocytes and measured the secretion of interferon-γ in the culture supernatants. We also assessed the in vivo effects of haloperidol on hapten-induced contact hypersensitivity responses. Haloperidol inhibited the expression of CD80, CD86, major histocompatibility complex class ΙІ, and CD83 molecules on DCs and the secretion of interleukin-12p40 in DC culture supernatants. In mixed cell cultures containing both T cells (CD4 and CD8α) and DCs, haloperidol-treated DCs suppressed the proliferation of allogeneic T cells and effectively inhibited the production of interferon-γ. In vivo, haloperidol reduced hapten-induced contact hypersensitivity responses. Furthermore, an antagonist to D2-like receptor suppressed the maturation of DCs in a manner similar to haloperidol. The results of our study suggest that haloperidol suppresses the functional maturation of DCs and plays an important role in the inhibition of DC-induced T helper 1 immune responses in the whole animal. Furthermore, the effect of haloperidol on DCs may be mediated by

  4. Suppression of the immune response to ovalbumin in vivo by anti-idiotypic antibodies

    International Nuclear Information System (INIS)

    Grinevich, A.S.; Pinegin, B.V.

    1986-01-01

    Conditions of suppression of the immune response to a food allergin (ovalbumin) were studied with the aid of anti-idiotypic (AID) antibodies. Hen ovalbumin was used and the experiments were performed on mice. Antibodies were isolated from the resulting protein fractions and tested for inhibitor activity by the method of direct radioimmunologic analysis. The test system consisted of the reaction of binding the globulin fraction to the total preparation of antibodies to ovalbumin from mice and a 125 I-labeled total preparation of antibodies to ovalbumin of the same animals

  5. Suppression of Innate Immune Response by Primary Human Keratinocytes Expressing HPV-16 E6 and E7

    National Research Council Canada - National Science Library

    Guess, Jennifer L

    2005-01-01

    Human papillomavims (HPV) types infect the skin and mucosal epithelium. Lesions resulting from HPV infection can linger for months or years suggesting that HPV - presence goes unnoticed by the host immune system...

  6. Type VI Secretion System Transports Zn2+ to Combat Multiple Stresses and Host Immunity.

    Directory of Open Access Journals (Sweden)

    Tietao Wang

    2015-07-01

    Full Text Available Type VI secretion systems (T6SSs are widespread multi-component machineries that translocate effectors into either eukaryotic or prokaryotic cells, for virulence or for interbacterial competition. Herein, we report that the T6SS-4 from Yersinia pseudotuberculosis displays an unexpected function in the transportation of Zn2+ to combat diverse stresses and host immunity. Environmental insults such as oxidative stress induce the expression of T6SS-4 via OxyR, the transcriptional factor that also regulates many oxidative response genes. Zinc transportation is achieved by T6SS-4-mediated translocation of a novel Zn2+-binding protein substrate YezP (YPK_3549, which has the capacity to rescue the sensitivity to oxidative stress exhibited by T6SS-4 mutants when added to extracellular milieu. Disruption of the classic zinc transporter ZnuABC together with T6SS-4 or yezP results in mutants that almost completely lost virulence against mice, further highlighting the importance of T6SS-4 in resistance to host immunity. These results assigned an unconventional role to T6SSs, which will lay the foundation for studying novel mechanisms of metal ion uptake by bacteria and the role of this process in their resistance to host immunity and survival in harmful environments.

  7. Innate immunity in HIV-1 infection: epithelial and non-specific host factors of mucosal immunity- a workshop report.

    Science.gov (United States)

    Nittayananta, W; Weinberg, A; Malamud, D; Moyes, D; Webster-Cyriaque, J; Ghosh, S

    2016-04-01

    The interplay between HIV-1 and epithelial cells represents a critical aspect in mucosal HIV-1 transmission. Epithelial cells lining the oral cavity cover subepithelial tissues, which contain virus-susceptible host cells including CD4(+) T lymphocytes, monocytes/macrophages, and dendritic cells. Oral epithelia are among the sites of first exposure to both cell-free and cell-associated virus HIV-1 through breast-feeding and oral-genital contact. However, oral mucosa is considered to be naturally resistant to HIV-1 transmission. Oral epithelial cells have been shown to play a crucial role in innate host defense. Nevertheless, it is not clear to what degree these local innate immune factors contribute to HIV-1 resistance of the oral mucosa. This review paper addressed the following issues that were discussed at the 7th World Workshop on Oral Health and Disease in AIDS held in Hyderabad, India, during November 6-9, 2014: (i) What is the fate of HIV-1 after interactions with oral epithelial cells?; (ii) What are the keratinocyte and other anti-HIV effector oral factors, and how do they contribute to mucosal protection?; (iii) How can HIV-1 interactions with oral epithelium affect activation and populations of local immune cells?; (iv) How can HIV-1 interactions alter functions of oral epithelial cells? © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Suppressing autoimmunity in Arabidopsis thaliana with dominant negative immune receptors

    DEFF Research Database (Denmark)

    Greeff, Michael Christiaan

    R genes, as we have recently found that transgenics with similarly mutated rpm1-DN alleles lose resistance to Pseudomonas syringae expressing the AvrRpm1 effector. Accordingly, we have constructed a collection of 100 R-DN alleles and transformed them into other autoimmune mutants including camta3......A small set of Resistance proteins (R-proteins), guards plants against a large set of pathogen effector proteins that can suppress or subvert plant defense responses. The guard model attempts to solve this discrepancy by proposing that a major function of R proteins is to monitor host effector...... Cell Death 11 (acd11) leads to inappropriate activation of hypersensitive cell death. We have previously performed a large-scale survival screen for suppressors of acd11 and found that cell death in acd11 is suppressed by mutations in a gene encoding an R protein. We have thus proposed that loss of ACD...

  9. Suppressing autoimmunity in Arabidopsis thaliana with dominant negative immune receptors

    DEFF Research Database (Denmark)

    Greeff, Michael Christiaan

    Cell Death 11 (acd11) leads to inappropriate activation of hypersensitive cell death. We have previously performed a large-scale survival screen for suppressors of acd11 and found that cell death in acd11 is suppressed by mutations in a gene encoding an R protein. We have thus proposed that loss of ACD......11 results in HR cell death because LAZ5 directly or indirectly guards it. The LAZ5 alleles we first found were dominant negative (laz5-DN). The laz-DN allele mutation was found in a conserved functionally important ATP binding region, the P-loop. Site-directed DN mutant alleles can be made for other......A small set of Resistance proteins (R-proteins), guards plants against a large set of pathogen effector proteins that can suppress or subvert plant defense responses. The guard model attempts to solve this discrepancy by proposing that a major function of R proteins is to monitor host effector...

  10. "Up-dating the monograph." [corrected] Cytolytic immune lymphocytes in the armamentarium of the human host.

    Science.gov (United States)

    Sinkovics, J G

    2008-12-01

    The author of the monograph "Cytolytic Immune Lymphocytes..." (published in 2008 by Schenk Buchverlag Campus Dialog, Budapest, Passau, Pécs) proposed several research projects and described certain clinical events that require further elaboration and documentation. In this article the author provides what is required and has since become available. The first subject matter in question concerns the fusogenic viruses. The ancient fusogenic viruses might have created the first eukaryotic cell(s) by uniting archaeabacterial and prokaryotic/protobacterial protospheroplasts. Extant fusogenic viruses either produce tumor cell syncytia and lyse them, thus practicing viral oncolysis. Or, create chimaeric fusion products, the so-called "natural hybridomas", of lymphoma cells exhibiting transmembrane budding of retrovirus particles or envelope proteins, and anti-viral specific antibody-producing plasma cells. The second topic concerns the horizontal-lateral mode of acquisition of those genes, which were "present in the waiting" in the amphioxus, sea urchin, and the agnathans, and met in the primitive gnatostomata sharks to encode in unison the entire adaptive immune system. The consensus of opinion is such that these genes derived from newly acquired transposons/retrotransposons. The author points out that the extant Epstein-Barr virus harbors genes displaying sequence homology with those genes from the sharks up to mammals that regulate the somatic hypermutation of specific antibody production. The author proposes that an ancient herpesvirus might have propagated the V(D)J and RAG genes from sea urchins to sharks. The third area is that of lymphocytes cytotoxic/cytolytic to virally infected or malignantly transformed host cells. This discovery led to the adoptive immune lymphocyte therapy of tumors. Installed in the adaptive immune system are regulatory T cells and myeloid-derived suppressor cells for he protection of "self". Tumor cells masquerading as "self" are protected

  11. A comprehensive transcriptome and immune-gene repertoire of the lepidopteran model host Galleria mellonella

    Directory of Open Access Journals (Sweden)

    Glöckner Gernot

    2011-06-01

    Full Text Available Abstract Background The larvae of the greater wax moth Galleria mellonella are increasingly used (i as mini-hosts to study pathogenesis and virulence factors of prominent bacterial and fungal human pathogens, (ii as a whole-animal high throughput infection system for testing pathogen mutant libraries, and (iii as a reliable host model to evaluate the efficacy of antibiotics against human pathogens. In order to compensate for the lack of genomic information in Galleria, we subjected the transcriptome of different developmental stages and immune-challenged larvae to next generation sequencing. Results We performed a Galleria transcriptome characterization on the Roche 454-FLX platform combined with traditional Sanger sequencing to obtain a comprehensive transcriptome. To maximize sequence diversity, we pooled RNA extracted from different developmental stages, larval tissues including hemocytes, and from immune-challenged larvae and normalized the cDNA pool. We generated a total of 789,105 pyrosequencing and 12,032 high-quality Sanger EST sequences which clustered into 18,690 contigs with an average length of 1,132 bases. Approximately 40% of the ESTs were significantly similar (E ≤ e-03 to proteins of other insects, of which 45% have a reported function. We identified a large number of genes encoding proteins with established functions in immunity related sensing of microbial signatures and signaling, as well as effector molecules such as antimicrobial peptides and inhibitors of microbial proteinases. In addition, we found genes known as mediators of melanization or contributing to stress responses. Using the transcriptomic data, we identified hemolymph peptides and proteins induced upon immune challenge by 2D-gelelectrophoresis combined with mass spectrometric analysis. Conclusion Here, we have developed extensive transcriptomic resources for Galleria. The data obtained is rich in gene transcripts related to immunity, expanding remarkably our

  12. Current progress in host innate and adaptive immunity against hepatitis C virus infection.

    Science.gov (United States)

    Shi, Jijing; Li, Yuanyuan; Chang, Wenxian; Zhang, Xuexiu; Wang, Fu-Sheng

    2017-07-01

    Hepatitis C virus (HCV) infects more than 170 million people worldwide and is the main cause of chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. Although the newly developed direct-acting antivirals (DAAs) have transformed the treatment of HCV infection, controlling HCV infection on a global scale remains a challenge because of the high cost, low resistance barrier of DAAs and lack of HCV vaccine. The host immune responses associated with HCV infection, especially HCV-specific T cellular immunity, determine the outcome of HCV infection: either acute or chronic infection. It is important to fully interpret the immunopathogenesis of HCV infection and consequently to exploit effective strategies to eliminate HCV. Here, we review the current progress in HCV immunology, which will deepen our understanding of the spectrum of HCV infection and immunity in humans.

  13. PDE4 inhibition suppresses IL-17-associated immunity in dry eye disease.

    Science.gov (United States)

    Sadrai, Zahra; Stevenson, William; Okanobo, Andre; Chen, Yihe; Dohlman, Thomas H; Hua, Jing; Amparo, Francisco; Chauhan, Sunil K; Dana, Reza

    2012-06-14

    To determine the effect of phosphodiesterase type-4 (PDE4) inhibition on IL-17-associated immunity in experimental dry eye disease (DED). Murine DED was induced, after which a PDE4 inhibitor (cilomilast), dexamethasone, cyclosporine, or a relevant vehicle was administered topically. Real-time PCR, immunohistochemical staining, and flow cytometry were employed to evaluate the immuno-inflammatory parameters of DED with a focus on IL-17-associated immunity. Corneal fluorescein staining (CFS) was performed to evaluate clinical disease progression. DED induction increased proinflammatory cytokine expression, pathogenic immune cell infiltration, and CFS scores. Cilomilast significantly decreased the expression of TNF-α in the cornea (P ≤ 0.05) and IL-1α, IL-1β, and TNF-α in the conjunctiva (P ≤ 0.05) as compared with vehicle control. Cilomilast treatment markedly decreased the presence of CD11b+ antigen-presenting cells in the central and peripheral cornea (P ≤ 0.05), and led to decreased conjunctival expression of cytokines IL-6, IL-23, and IL-17 (P ≤ 0.05). Moreover, cilomilast decreased the expression of IL-17 and IL-23 in the draining lymph nodes (P ≤ 0.05). Topical cilomilast was significantly more effective than vehicle at reducing CFS scores (P ≤ 0.05). The therapeutic efficacy of cilomilast was comparable or superior to that of dexamethasone and cyclosporine in all tested measures. Topical cilomilast suppresses the generation of IL-17-associated immunity in experimental DED.

  14. Anopheles stephensi Heme Peroxidase HPX15 Suppresses Midgut Immunity to Support Plasmodium Development

    Science.gov (United States)

    Kajla, Mithilesh; Kakani, Parik; Choudhury, Tania Pal; Kumar, Vikas; Gupta, Kuldeep; Dhawan, Rini; Gupta, Lalita; Kumar, Sanjeev

    2017-01-01

    The heme peroxidase HPX15 is an evolutionary conserved anopheline lineage-specific gene. Previously, we found that this gene is present in the genome of 19 worldwide distributed different species of Anopheles mosquito and its orthologs are absent in other mosquitoes, insects, or human. In addition, 65–99% amino acid identity among these 19 orthologs permitted us to hypothesize that the functional aspects of this gene might be also conserved in different anophelines. In this study, we found that Anopheles stephensi AsHPX15 gene is mainly expressed in the midgut and highly induced after uninfected or Plasmodium berghei-infected blood feeding. RNA interference-mediated silencing of midgut AsHPX15 gene drastically reduced the number of developing P. berghei oocysts. An antiplasmodial gene nitric oxide synthase was induced 13-fold in silenced midguts when compared to the unsilenced controls. Interestingly, the induction of antiplasmodial immunity in AsHPX15-silenced midguts is in absolute agreement with Anopheles gambiae. In A. gambiae, AgHPX15 catalyzes the formation of a dityrosine network at luminal side of the midgut that suppresses the activation of mosquito immunity against the bolus bacteria. Thus, a low-immunity zone created by this mechanism indirectly supports Plasmodium development inside the midgut lumen. These indistinguishable functional behaviors and conserved homology indicates that HPX15 might be a potent target to manipulate the antiplasmodial immunity of the anopheline midgut, and it will open new frontiers in the field of malaria control. PMID:28352267

  15. Stories of love and hate: innate immunity and host-microbe crosstalk in the intestine.

    Science.gov (United States)

    Rosenstiel, Philip

    2013-03-01

    Recent advances in molecular techniques have enabled a deep view into the structure and function of the host's immune system and the stably associated commensal intestinal flora. This review outlines selected aspects of the interplay of innate immune recognition and effectors that shape the ecological niches for the intestinal microbiota. Several studies have demonstrated a pivotal role of innate immune receptor pathways (NOD-like receptors and Toll-like receptors) for the maintenance of microbial communities in the gut. Genetic deficiencies in these pathways have been associated with increased susceptibility to inflammation that in animal models can be transmitted via direct contact or by stool transplantation in the absence of abundant pathogens. The genetic architecture of the human host shapes the diversity and function of its stably associated intestinal microflora. Innate immune receptors such as NOD2 or the inflammasome component NOD-like receptor, pyrin-domain containing 6 play a major role in licensing the microbiota under physiological conditions. Understanding the symbiotic interplay in the intestinal tract should help develop procedures and therapeutic interventions aiming at the identification and restoration of disturbed microbiota states. Indeed, these states may be the missing trigger factor for the manifestation of a multitude of civilization disorders including inflammatory bowel disease and gastrointestinal cancer.

  16. Lactobacillus-derived extracellular vesicles enhance host immune responses against vancomycin-resistant enterococci.

    Science.gov (United States)

    Li, Ming; Lee, Kiho; Hsu, Min; Nau, Gerard; Mylonakis, Eleftherios; Ramratnam, Bharat

    2017-03-14

    Probiotic bacteria are known to modulate host immune responses against various pathogens. Recently, extracellular vesicles (EVs) have emerged as potentially important mediators of host-pathogen interactions. In this study, we explored the role of L. plantarum derived EVs in modulating host responses to vancomycin-resistant Enterococcus faecium (VRE) using both Caenorhabditis elegans and human cells. Our previous work has shown that probiotic conditioning C. elegans with L. acidophilus NCFM prolongs the survival of nematodes exposed to VRE. Similarly, L. plantarum WCFS1 derived extracellular vesicles (LDEVs) also significantly protected the worms against VRE infection. To dissect the molecular mechanisms of this EV-induced protection, we found that treatment of C. elegans with LDEVs significantly increased the transcription of host defense genes, cpr-1 and clec-60. Both cpr-1 and clec-60 have been previously reported to have protective roles against bacterial infections. Incubating human colon-derived Caco-2 cells with fluorescent dye-labeled LDEVs confirmed that LDEVs could be transported into the mammalian cells. Furthermore, LDEV uptake was associated with significant upregulation of CTSB, a human homologous gene of cpr-1, and REG3G, a human gene that has similar functions to clec-60. We have found that EVs produced from L. plantarum WCFS1 up-regulate the expression of host defense genes and provide protective effects on hosts. Using probiotic-derived EVs instead of probiotic bacteria themselves, this study provides a new direction to treat antimicrobial resistant pathogens, such as VRE.

  17. Zinc Homeostasis at the Bacteria/Host Interface-From Coordination Chemistry to Nutritional Immunity.

    Science.gov (United States)

    Wątły, Joanna; Potocki, Sławomir; Rowińska-Żyrek, Magdalena

    2016-11-02

    Zinc is one of the most important metal nutrients for species from all kingdoms, being a key structural or catalytic component of hundreds of enzymes, crucial for the survival of both pathogenic microorganisms and their hosts. This work is an overview of the homeostasis of zinc in bacteria and humans. It explains the importance of this metal nutrient for pathogens, describes the roles of zinc sensors, regulators, and transporters, and summarizes various uptake systems and different proteins involved in zinc homeostasis-both those used for storage, buffering, and signaling inside the cell and those excreted in order to obtain Zn II from the host. The human zinc-dependent immune system response is explained, with a special focus given to 'zinc nutritional immunity', a process that describes the competition between the bacteria or fungus and the host for this metal, during which both the pathogen and host make huge efforts to control zinc availability. This sophisticated tug of war over Zn II might be considered as a possible target for novel antibacterial therapies. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. THE ROLE OF EXTRACELLULAR VESICLES IN MODULATING THE HOST IMMUNE RESPONSE DURING PARASITIC INFECTIONS

    Directory of Open Access Journals (Sweden)

    Sergio eMontaner

    2014-09-01

    Full Text Available Parasites are the cause of major diseases affecting billions of people. As the inflictions caused by these parasites affect mainly developing countries, they are considered as neglected diseases. These parasitic infections are often chronic and lead to significant immunomodulation of the host immune response by the parasite, which could benefit both the parasite and the host and are the result of millions of years of co-evolution. The description of parasite extracellular vesicles (EVs in protozoa and helminths suggest that they may play an important role in host-parasite communication. In this review, recent studies on parasitic (protozoa and helminths EVs are presented and their potential use as novel therapeutical approaches is discussed.

  19. Basic science of host immunity in osteoarticular tuberculosis - A clinical study

    Directory of Open Access Journals (Sweden)

    Arora Anil

    2006-01-01

    Full Text Available Background : Osteoarticular tuberculosis is coming back with vengeance. Host immunity plays a major role in either containing the disease or allowing the spread. Number of resistant cases and drug defaulters are on the rise. Immunepotentiation (immunomodulation has shown beneficial response in pulmonary tuberculosis in various studies. Methods : This study was done to assess immune status of various categories of patients of osteoarticular tuberculosis, to modulate (alter or change the immune system in non responder patients and to add immunomodulation therapy in some patients from the very beginning of antitubercular chemotherapy and observe their clinical response and objectively assess their immune status. Prospective study was done in two phases involving 103 patients suffering from osteoarticular tuberculosis. In phase one 61 patients (Two Groups - Group 1 called fresh virgin/responder cases given first line antitubercular drugs (ATT = 41 patients; Group 2 called Non responders immunomodulated with cycles of oral levamisole, BCG and DPT vaccine as an adjuvant to ATT = 20 patients assessed for their cellular immune profile. In second phase 42 patients (In three Groups - Group 3A who received only ATT = 15 patients; Group 3B who received ATT and immunomodulation from very beginning = 15 patients; Group 4 who were non responders, put on immunomodulation after minimum three months of ATT =12 patients were assessed for their interleukin profiles at presentation and after three months of therapy in respective groups. The immune parameters of all above mentioned patients (n=103 were correlated with the type of clinical presentation, course of disease, response to therapy and response to immunomodulation. Follow up in all the groups ranges from 24 - 49 months (mean 27.2 months. Results : Group1 (n=41: Thirty nine out of 41 patients showed clinicoradiological response at three months of therapy. The CD4 cell counts in these patients rose to a

  20. Type I Interferon Induced Epigenetic Regulation of Macrophages Suppresses Innate and Adaptive Immunity in Acute Respiratory Viral Infection.

    Directory of Open Access Journals (Sweden)

    Danielle N Kroetz

    2015-12-01

    Full Text Available Influenza A virus (IAV is an airborne pathogen that causes significant morbidity and mortality each year. Macrophages (Mϕ are the first immune population to encounter IAV virions in the lungs and are required to control infection. In the present study, we explored the mechanism by which cytokine signaling regulates the phenotype and function of Mϕ via epigenetic modification of chromatin. We have found that type I interferon (IFN-I potently upregulates the lysine methyltransferase Setdb2 in murine and human Mϕ, and in turn Setdb2 regulates Mϕ-mediated immunity in response to IAV. The induction of Setdb2 by IFN-I was significantly impaired upon inhibition of the JAK-STAT signaling cascade, and chromatin immunoprecipitation revealed that both STAT1 and interferon regulatory factor 7 bind upstream of the transcription start site to induce expression. The generation of Setdb2LacZ reporter mice revealed that IAV infection results in systemic upregulation of Setdb2 in myeloid cells. In the lungs, alveolar Mϕ expressed the highest level of Setdb2, with greater than 70% lacZ positive on day 4 post-infection. Silencing Setdb2 activity in Mϕ in vivo enhanced survival in lethal IAV infection. Enhanced host protection correlated with an amplified antiviral response and less obstruction to the airways. By tri-methylating H3K9, Setdb2 silenced the transcription of Mx1 and Isg15, antiviral effectors that inhibit IAV replication. Accordingly, a reduced viral load in knockout mice on day 8 post-infection was linked to elevated Isg15 and Mx1 transcript in the lungs. In addition, Setdb2 suppressed the expression of a large number of other genes with proinflammatory or immunomodulatory function. This included Ccl2, a chemokine that signals through CCR2 to regulate monocyte recruitment to infectious sites. Consistently, knockout mice produced more CCL2 upon IAV infection and this correlated with a 2-fold increase in the number of inflammatory monocytes and

  1. Graft-versus-host disease: regulation by microbe-associated molecules and innate immune receptors.

    Science.gov (United States)

    Penack, Olaf; Holler, Ernst; van den Brink, Marcel R M

    2010-03-11

    Acute graft-versus-host disease (GVHD) remains the major obstacle to a more favorable therapeutic outcome of allogeneic hematopoietic stem cell transplantation (HSCT). GVHD is characterized by tissue damage in gut, liver, and skin, caused by donor T cells that are critical for antitumor and antimicrobial immunity after HSCT. One obstacle in combating GVHD used to be the lack of understanding the molecular mechanisms that are involved in the initiation phase of this syndrome. Recent research has demonstrated that interactions between microbial-associated molecules (pathogen-associated molecular patterns [PAMPs]) and innate immune receptors (pathogen recognition receptors [PRRs]), such as NOD-like receptors (NLRs) and Toll-like receptors (TLRs), control adaptive immune responses in inflammatory disorders. Polymorphisms of the genes encoding NOD2 and TLR4 are associated with a higher incidence of GVHD in HSC transplant recipients. Interestingly, NOD2 regulates GVHD through its inhibitory effect on antigen-presenting cell (APC) function. These insights identify important mechanisms regarding the induction of GVHD through the interplay of microbial molecules and innate immunity, thus opening a new area for future therapeutic approaches. This review covers current knowledge of the role of PAMPs and PRRs in the control of adaptive immune responses during inflammatory diseases, particularly GVHD.

  2. Feline Panleucopenia Virus NS2 Suppresses the Host IFN-β Induction by Disrupting the Interaction between TBK1 and STING

    Directory of Open Access Journals (Sweden)

    Hongtao Kang

    2017-01-01

    Full Text Available Feline panleucopenia virus (FPV is a highly infectious pathogen that causes severe diseases in pets, economically important animals and wildlife in China. Although FPV was identified several years ago, little is known about how it overcomes the host innate immunity. In the present study, we demonstrated that infection with the FPV strain Philips-Roxane failed to activate the interferon β (IFN-β pathway but could antagonize the induction of IFN stimulated by Sendai virus (SeV in F81 cells. Subsequently, by screening FPV nonstructural and structural proteins, we found that only nonstructural protein 2 (NS2 significantly suppressed IFN expression. We demonstrated that the inhibition of SeV-induced IFN-β production by FPV NS2 depended on the obstruction of the IFN regulatory factor 3 (IRF3 signaling pathway. Further, we verified that NS2 was able to target the serine/threonine-protein kinase TBK1 and prevent it from being recruited by stimulator of interferon genes (STING protein, which disrupted the phosphorylation of the downstream protein IRF3. Finally, we identified that the C-terminus plus the coiled coil domain are the key domains of NS2 that are required for inhibiting the IFN pathway. Our study has yielded strong evidence for the FPV mechanisms that counteract the host innate immunity.

  3. Colletotrichum higginsianum extracellular LysM proteins play dual roles in appressorial function and suppression of chitin-triggered plant immunity.

    Science.gov (United States)

    Takahara, Hiroyuki; Hacquard, Stéphane; Kombrink, Anja; Hughes, H Bleddyn; Halder, Vivek; Robin, Guillaume P; Hiruma, Kei; Neumann, Ulla; Shinya, Tomonori; Kombrink, Erich; Shibuya, Naoto; Thomma, Bart P H J; O'Connell, Richard J

    2016-09-01

    The genome of the hemibiotrophic anthracnose fungus, Colletotrichum higginsianum, encodes a large repertoire of candidate-secreted effectors containing LysM domains, but the role of such proteins in the pathogenicity of any Colletotrichum species is unknown. Here, we characterized the function of two effectors, ChELP1 and ChELP2, which are transcriptionally activated during the initial intracellular biotrophic phase of infection. Using immunocytochemistry, we found that ChELP2 is concentrated on the surface of bulbous biotrophic hyphae at the interface with living host cells but is absent from filamentous necrotrophic hyphae. We show that recombinant ChELP1 and ChELP2 bind chitin and chitin oligomers in vitro with high affinity and specificity and that both proteins suppress the chitin-triggered activation of two immune-related plant mitogen-activated protein kinases in the host Arabidopsis. Using RNAi-mediated gene silencing, we found that ChELP1 and ChELP2 are essential for fungal virulence and appressorium-mediated penetration of both Arabidopsis epidermal cells and cellophane membranes in vitro. The findings suggest a dual role for these LysM proteins as effectors for suppressing chitin-triggered immunity and as proteins required for appressorium function. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  4. Critical role of heme oxygenase-1 in Foxp3-mediated immune suppression

    International Nuclear Information System (INIS)

    Choi, Byung-Min; Pae, Hyun-Ock; Jeong, Young-Ran; Kim, Young-Myeong; Chung, Hun-Taeg

    2005-01-01

    Foxp3, which encodes the transcription factor scurfin, is indispensable for the development and function of CD4 + CD25 + regulatory T cells (Treg). Recent data suggest conversion of peripheral CD4 + CD25 - naive T cells to CD4 + CD25 + Treg by acquisition of Foxp3 through costimulation with TCR and TGF-β or forced expression of the gene. One critical question is how Foxp3 causes T cells to become regulatory. In the present work, we demonstrate that Foxp3 can induce heme oxygenase-1 (HO-1) expression and subsequently such regulatory phenotypes as the suppression of nontransfected cells in a cell-cell contact-dependent manner as well as impaired proliferation and production of cytokines upon stimulation in Jurkat T cells. Moreover, we confirm the expression of both Foxp3 and HO-1 in peripheral CD4 + CD25 + Treg and suppressive function of the cells are relieved by the inhibition of HO-1 activity. In summary, we demonstrate that Foxp3 induces HO-1 expression and HO-1 engages in Foxp3-mediated immune suppression

  5. Microbiota metabolite regulation of host immune homeostasis: a mechanistic missing link.

    Science.gov (United States)

    Steinmeyer, S; Lee, K; Jayaraman, A; Alaniz, R C

    2015-05-01

    Metazoans predominantly co-exist with symbiotic microorganisms called the microbiota. Metagenomic surveys of the microbiota reveal a diverse ecosystem of microbes particularly in the gastrointestinal (GI) tract. Perturbations in the GI microbiota in higher mammals (i.e., humans) are linked to diseases with variegated symptomology including inflammatory bowel disease, asthma, and auto-inflammatory disorders. Indeed, studies using germ-free mice (lacking a microbiota) confirm that host development and homeostasis are dependent on the microbiota. A long-known key feature of the GI tract microbiota is metabolizing host indigestible dietary matter for maximum energy extraction; however, host signaling pathways are greatly influenced by the microbiota as well. In line with these observations, recent research has revealed that metabolites produced strictly by select microbiota members are mechanistic regulators of host cell functions. In this review, we discuss two major classes of microbiota-produced metabolites: short-chain fatty acids and tryptophan metabolites. We describe the known important roles for these metabolites in shaping host immunity and comment on the current status and future directions for microbiota metabolomics research.

  6. The influence of changing host immunity on 1918-19 pandemic dynamics.

    Science.gov (United States)

    Bolton, K J; McCaw, J M; McVernon, J; Mathews, J D

    2014-09-01

    The sociological and biological factors which gave rise to the three pandemic waves of Spanish influenza in England during 1918-19 are still poorly understood. Symptom reporting data available for a limited set of locations in England indicates that reinfection in multiple waves occurred, suggesting a role for loss of infection-acquired immunity. Here we explore the role that changes in host immunity, driven by a combination of within-host factors and viral evolution, may play in explaining weekly mortality data and wave-by-wave symptomatic attack-rates available for a subset of English cities. Our results indicate that changes in the phenotype of the pandemic virus are likely required to explain the closely spaced waves of infection, but distinguishing between the detailed contributions of viral evolution and changing adaptive immune responses to transmission rates is difficult given the dearth of sero-epidemiological and virological data available even for more contemporary pandemics. We find that a dynamical model in which pre-pandemic protection in older "influenza-experienced" cohorts is lost rapidly prior to the second wave provides the best fit to the mortality and symptom reporting data. Best fitting parameter estimates for such a model indicate that post-infection protection lasted of order months, while other statistical analyses indicate that population-age was inversely correlated with overall mortality during the herald wave. Our results suggest that severe secondary waves of pandemic influenza may be triggered by viral escape from pre-pandemic immunity, and thus that understanding the role of heterosubtypic or cross-protective immune responses to pandemic influenza may be key to controlling the severity of future influenza pandemics. Copyright © 2014. Published by Elsevier B.V.

  7. Immune regulation during parasitic infections: from bench to field

    OpenAIRE

    Wammes, Linda Judith

    2013-01-01

    Helminth parasites are able to induce immune regulation in their host. Suppression of the host immune system is beneficial for both the parasite, by inhibiting anti-parasite immunity, and for the host, by preventing tissue damage due to excessive inflammation. There are indications that in countries where parasites have been eliminated the immune regulatory network is impaired, leading to inflammatory diseases such as allergies and asthma. An important player in immune regulation is the regul...

  8. Interactions between host metabolism, immune regulation, and the gut microbiota in diet-associated obesity and metabolic dysfunction

    DEFF Research Database (Denmark)

    Andersen, Daniel

    The increase in the prevalence of obesity and obesity-associated complications such as the metabolic syndrome is becoming a global challenge. Dietary habits and nutrient consumption modulates host homeostasis, which manifests in various diet-induced complications marked by changes in host...... metabolism and immune regulation, which are intricately linked. In addition, diet effectively shapes the gut microbiota composition and activity, which in turn interacts with the host to modulate host metabolism and immune regulation. In the three studies included in this PhD thesis, we have explored...... the impact of specific dietary components on host metabolic function, immune regulation and gut microbiota composition and activity. In the first study, we have characterized the effect of a combined high-fat and gliadin-rich diet, since dietary gliadin has been reported to be associated with intestinal...

  9. A proteomics perspective on viral DNA sensors in host defense and viral immune evasion mechanisms.

    Science.gov (United States)

    Crow, Marni S; Javitt, Aaron; Cristea, Ileana M

    2015-06-05

    The sensing of viral DNA is an essential step of cellular immune response to infections with DNA viruses. These human pathogens are spread worldwide, triggering a wide range of virus-induced diseases, and are associated with high levels of morbidity and mortality. Despite similarities between DNA molecules, mammalian cells have the remarkable ability to distinguish viral DNA from their own DNA. This detection is carried out by specialized antiviral proteins, called DNA sensors. These sensors bind to foreign DNA to activate downstream immune signaling pathways and alert neighboring cells by eliciting the expression of antiviral cytokines. The sensing of viral DNA was shown to occur both in the cytoplasm and in the nucleus of infected cells, disproving the notion that sensing occurred by simple spatial separation of viral and host DNA. A number of omic approaches, in particular, mass-spectrometry-based proteomic methods, have significantly contributed to the constantly evolving field of viral DNA sensing. Here, we review the impact of omic methods on the identification of viral DNA sensors, as well as on the characterization of mechanisms involved in host defense or viral immune evasion. Copyright © 2015. Published by Elsevier Ltd.

  10. Pathobiology of Salmonella, intestinal microbiota, and the host innate immune response

    Directory of Open Access Journals (Sweden)

    Renato Lima Santos

    2014-05-01

    Full Text Available Salmonella is a relevant pathogen under a clinical and public health perspective. Therefore, there has been a significant scientific effort to learn about pathogenic determinants of this pathogen. The clinical relevance of the disease, associated with the molecular tools available to study Salmonella as well as suitable animal models for salmonellosis, have provided optimal conditions to drive the scientific community to generate a large expansion of our knowledge about the pathogenesis of Salmonella-induced enterocolitis that took place during the past two decades. This research effort has also generated a wealth of information on the host immune mechanisms that complements gaps in the fundamental research in this area. This review focus on how the interaction between Salmonella, the microbiota and intestinal innate immunity leads to disease manifestation. As a highly successful enteropathogen, Salmonella actively elicits a robust acute intestinal inflammatory response from the host, which could theoretically lead to the pathogen demise. However, Salmonella has evolved redundant molecular machineries that renders this pathogen highly adapted to the inflamed intestinal environment, in which Salmonella is capable of outcompete resident commensal organisms. The adaptation of Salmonella to the inflamed intestinal lumen associated with the massive inflammatory response that leads to diarrhea, generate perfect conditions for transmission of the pathogen. These conditions illustrate the complexity of the co-evolution and ecology of the pathogen, commensals and the host.

  11. Pathobiology of salmonella, intestinal microbiota, and the host innate immune response.

    Science.gov (United States)

    Santos, Renato Lima

    2014-01-01

    Salmonella is a relevant pathogen under a clinical and public health perspective. Therefore, there has been a significant scientific effort to learn about pathogenic determinants of this pathogen. The clinical relevance of the disease, associated with the molecular tools available to study Salmonella as well as suitable animal models for salmonellosis, have provided optimal conditions to drive the scientific community to generate a large expansion of our knowledge about the pathogenesis of Salmonella-induced enterocolitis that took place during the past two decades. This research effort has also generated a wealth of information on the host immune mechanisms that complements gaps in the fundamental research in this area. This review focus on how the interaction between Salmonella, the microbiota and intestinal innate immunity leads to disease manifestation. As a highly successful enteropathogen, Salmonella actively elicits a robust acute intestinal inflammatory response from the host, which could theoretically lead to the pathogen demise. However, Salmonella has evolved redundant molecular machineries that renders this pathogen highly adapted to the inflamed intestinal environment, in which Salmonella is capable of outcompete resident commensal organisms. The adaptation of Salmonella to the inflamed intestinal lumen associated with the massive inflammatory response that leads to diarrhea, generate perfect conditions for transmission of the pathogen. These conditions illustrate the complexity of the co-evolution and ecology of the pathogen, commensals, and the host.

  12. An image classification approach to analyze the suppression of plant immunity by the human pathogen Salmonella Typhimurium

    Directory of Open Access Journals (Sweden)

    Schikora Marek

    2012-07-01

    Full Text Available Abstract Background The enteric pathogen Salmonella is the causative agent of the majority of food-borne bacterial poisonings. Resent research revealed that colonization of plants by Salmonella is an active infection process. Salmonella changes the metabolism and adjust the plant host by suppressing the defense mechanisms. In this report we developed an automatic algorithm to quantify the symptoms caused by Salmonella infection on Arabidopsis. Results The algorithm is designed to attribute image pixels into one of the two classes: healthy and unhealthy. The task is solved in three steps. First, we perform segmentation to divide the image into foreground and background. In the second step, a support vector machine (SVM is applied to predict the class of each pixel belonging to the foreground. And finally, we do refinement by a neighborhood-check in order to omit all falsely classified pixels from the second step. The developed algorithm was tested on infection with the non-pathogenic E. coli and the plant pathogen Pseudomonas syringae and used to study the interaction between plants and Salmonella wild type and T3SS mutants. We proved that T3SS mutants of Salmonella are unable to suppress the plant defenses. Results obtained through the automatic analyses were further verified on biochemical and transcriptome levels. Conclusion This report presents an automatic pixel-based classification method for detecting “unhealthy” regions in leaf images. The proposed method was compared to existing method and showed a higher accuracy. We used this algorithm to study the impact of the human pathogenic bacterium Salmonella Typhimurium on plants immune system. The comparison between wild type bacteria and T3SS mutants showed similarity in the infection process in animals and in plants. Plant epidemiology is only one possible application of the proposed algorithm, it can be easily extended to other detection tasks, which also rely on color information, or

  13. An image classification approach to analyze the suppression of plant immunity by the human pathogen Salmonella Typhimurium.

    Science.gov (United States)

    Schikora, Marek; Neupane, Balram; Madhogaria, Satish; Koch, Wolfgang; Cremers, Daniel; Hirt, Heribert; Kogel, Karl-Heinz; Schikora, Adam

    2012-07-19

    The enteric pathogen Salmonella is the causative agent of the majority of food-borne bacterial poisonings. Resent research revealed that colonization of plants by Salmonella is an active infection process. Salmonella changes the metabolism and adjust the plant host by suppressing the defense mechanisms. In this report we developed an automatic algorithm to quantify the symptoms caused by Salmonella infection on Arabidopsis. The algorithm is designed to attribute image pixels into one of the two classes: healthy and unhealthy. The task is solved in three steps. First, we perform segmentation to divide the image into foreground and background. In the second step, a support vector machine (SVM) is applied to predict the class of each pixel belonging to the foreground. And finally, we do refinement by a neighborhood-check in order to omit all falsely classified pixels from the second step. The developed algorithm was tested on infection with the non-pathogenic E. coli and the plant pathogen Pseudomonas syringae and used to study the interaction between plants and Salmonella wild type and T3SS mutants. We proved that T3SS mutants of Salmonella are unable to suppress the plant defenses. Results obtained through the automatic analyses were further verified on biochemical and transcriptome levels. This report presents an automatic pixel-based classification method for detecting "unhealthy" regions in leaf images. The proposed method was compared to existing method and showed a higher accuracy. We used this algorithm to study the impact of the human pathogenic bacterium Salmonella Typhimurium on plants immune system. The comparison between wild type bacteria and T3SS mutants showed similarity in the infection process in animals and in plants. Plant epidemiology is only one possible application of the proposed algorithm, it can be easily extended to other detection tasks, which also rely on color information, or even extended to other features.

  14. Effects of age and immune suppression of sheep on fecundity, hatching and larval feeding of different strains of Haemonchus contortus.

    Science.gov (United States)

    Sargison, N D; Jackson, F; Gilleard, J S

    2011-09-01

    The effects of host age and immune suppression on abomasal parasitic infection in sheep were investigated following single experimental oral infections with MHco3 (ISE), MHco4 (WRS) and MHco10 (CAVR) strains of Haemonchus contortus in naïve 5-month-old crossbred lambs (n=1 per group) and 15-month-old Greyface sheep treated with methyl prednisolone acetate (n=2 per group) or without corticosteroid treatment (n=2 per group). Adult female H. contortus in 5-month-old lambs (n=1 per group) shed on average 6.5, 3.1 and 8.0 times more eggs than in 15-month-old sheep (n=4 per group) following infection with MHco3 (ISE), MHco4 (WRS) and MHco10 (CAVR) strains of H. contortus, respectively, over a period of 28 days following the commencement of patency. There was no obvious effect of age of sheep or corticosteroid treatment on the abomasal establishment of H. contortus or on in vitro assays for egg hatching or larval feeding at different concentrations of anthelmintics, although statistical analysis could not be performed due to the small group sizes. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Genome wide transcriptome profiling of a murine acute melioidosis model reveals new insights into how Burkholderia pseudomallei overcomes host innate immunity

    Directory of Open Access Journals (Sweden)

    Nathan Sheila

    2010-11-01

    activated in the host within 24 hrs, including the core immune response commonly seen in general inflammatory infections. Nevertheless, this activation is suppressed at 42 hr post-infection and in addition, suboptimal activation and function of the downstream complement system promotes uncontrolled spread of the bacteria.

  16. Impact of Nosema ceranae and Nosema apis on individual worker bees of the two host species (Apis cerana and Apis mellifera) and regulation of host immune response.

    Science.gov (United States)

    Sinpoo, Chainarong; Paxton, Robert J; Disayathanoowat, Terd; Krongdang, Sasiprapa; Chantawannakul, Panuwan

    Nosema apis and Nosema ceranae are obligate intracellular microsporidian parasites infecting midgut epithelial cells of host adult honey bees, originally Apis mellifera and Apis cerana respectively. Each microsporidia cross-infects the other host and both microsporidia nowadays have a worldwide distribution. In this study, cross-infection experiments using both N. apis and N. ceranae in both A. mellifera and A. cerana were carried out to compare pathogen proliferation and impact on hosts, including host immune response. Infection by N. ceranae led to higher spore loads than by N. apis in both host species, and there was greater proliferation of microsporidia in A. mellifera compared to A. cerana. Both N. apis and N. ceranae were pathogenic in both host Apis species. N. ceranae induced subtly, though not significantly, higher mortality than N. apis in both host species, yet survival of A. cerana was no different to that of A. mellifera in response to N. apis or N. ceranae. Infections of both host species with N. apis and N. ceranae caused significant up-regulation of AMP genes and cellular mediated immune genes but did not greatly alter apoptosis-related gene expression. In this study, A. cerana enlisted a higher immune response and displayed lower loads of N. apis and N. ceranae spores than A. mellifera, suggesting it may be better able to defend itself against microsporidia infection. We caution against over-interpretation of our results, though, because differences between host and parasite species in survival were insignificant and because size differences between microsporidia species and between host Apis species may alternatively explain the differential proliferation of N. ceranae in A. mellifera. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Retnla (relmalpha/fizz1 suppresses helminth-induced Th2-type immunity.

    Directory of Open Access Journals (Sweden)

    John T Pesce

    2009-04-01

    Full Text Available Retnla (Resistin-like molecule alpha/FIZZ1 is induced during Th2 cytokine immune responses. However, the role of Retnla in Th2-type immunity is unknown. Here, using Retnla(-/- mice and three distinct helminth models, we show that Retnla functions as a negative regulator of Th2 responses. Pulmonary granuloma formation induced by the eggs of the helminth parasite Schistosoma mansoni is dependent on IL-4 and IL-13 and associated with marked increases in Retnla expression. We found that both primary and secondary pulmonary granuloma formation were exacerbated in the absence of Retlna. The number of granuloma-associated eosinophils and serum IgE titers were also enhanced. Moreover, when chronically infected with S. mansoni cercariae, Retnla(-/- mice displayed significant increases in granulomatous inflammation in the liver and the development of fibrosis and progression to hepatosplenic disease was markedly augmented. Finally, Retnla(-/- mice infected with the gastrointestinal (GI parasite Nippostrongylus brasiliensis had intensified lung pathology to migrating larvae, reduced fecundity, and accelerated expulsion of adult worms from the intestine, suggesting Th2 immunity was enhanced. When their immune responses were compared, helminth infected Retnla(-/- mice developed stronger Th2 responses, which could be reversed by exogenous rRelmalpha treatment. Studies with several cytokine knockout mice showed that expression of Retnla was dependent on IL-4 and IL-13 and inhibited by IFN-gamma, while tissue localization and cell isolation experiments indicated that eosinophils and epithelial cells were the primary producers of Retnla in the liver and lung, respectively. Thus, the Th2-inducible gene Retnla suppresses resistance to GI nematode infection, pulmonary granulomatous inflammation, and fibrosis by negatively regulating Th2-dependent responses.

  18. PDE4 Inhibition Suppresses IL-17–Associated Immunity in Dry Eye Disease

    Science.gov (United States)

    Sadrai, Zahra; Stevenson, William; Okanobo, Andre; Chen, Yihe; Dohlamn, Thomas H.; Hua, Jing; Amparo, Francisco; Chauhan, Sunil K.; Dana, Reza

    2012-01-01

    Purpose. To determine the effect of phosphodiesterase type-4 (PDE4) inhibition on IL-17–associated immunity in experimental dry eye disease (DED). Methods. Murine DED was induced, after which a PDE4 inhibitor (cilomilast), dexamethasone, cyclosporine, or a relevant vehicle was administered topically. Real-time PCR, immunohistochemical staining, and flow cytometry were employed to evaluate the immuno-inflammatory parameters of DED with a focus on IL-17–associated immunity. Corneal fluorescein staining (CFS) was performed to evaluate clinical disease progression. Results. DED induction increased proinflammatory cytokine expression, pathogenic immune cell infiltration, and CFS scores. Cilomilast significantly decreased the expression of TNF-α in the cornea (P ≤ 0.05) and IL-1α, IL-1β, and TNF-α in the conjunctiva (P ≤ 0.05) as compared with vehicle control. Cilomilast treatment markedly decreased the presence of CD11b+ antigen-presenting cells in the central and peripheral cornea (P ≤ 0.05), and led to decreased conjunctival expression of cytokines IL-6, IL-23, and IL-17 (P ≤ 0.05). Moreover, cilomilast decreased the expression of IL-17 and IL-23 in the draining lymph nodes (P ≤ 0.05). Topical cilomilast was significantly more effective than vehicle at reducing CFS scores (P ≤ 0.05). The therapeutic efficacy of cilomilast was comparable or superior to that of dexamethasone and cyclosporine in all tested measures. Conclusions. Topical cilomilast suppresses the generation of IL-17–associated immunity in experimental DED. PMID:22577075

  19. Host immune responses to the itch mite, Sarcoptes scabiei, in humans.

    Science.gov (United States)

    Bhat, Sajad A; Mounsey, Kate E; Liu, Xiaosong; Walton, Shelley F

    2017-08-10

    Scabies is a parasitic disease due to infestation of skin by the burrowing mite Sarcoptes scabiei. Scabies is a major public health problem and endemic in resource poor communities worldwide affecting over 100 million people. Associated bacterial infections cause substantial morbidity, and in severe cases can lead to renal and cardiac diseases. Mite infestation of the skin causes localised cutaneous inflammation, pruritus, skin lesions, and allergic and inflammatory responses are mounted by the host against the mite and its products. Our current understanding of the immune and inflammatory responses associated with the clinical manifestations in scabies is far outweighed by the significant global impact of the disease. This review aims to provide a better understanding of human immune responses to S. scabiei in ordinary and crusted scabies phenotypes.

  20. IMMUNE INHIBITION OF VIRUS RELEASE FROM HUMAN AND NONHUMAN CELLS BY ANTIBODY TO VIRAL AND HOST-CELL DETERMINANTS

    NARCIS (Netherlands)

    SHARIFF, DM; DESPERBASQUES, M; BILLSTROM, M; GEERLIGS, HJ; WELLING, GW; WELLINGWESTER, S; BUCHAN, A; SKINNER, GRB

    1991-01-01

    Immune inhibition of release of the DNA virues, herpes simplex virus types 1 and 2 and pseudorabies virus by anti-viral and anti-host cell sera occurred while two RNA viruses, influenza and encephalomyocarditis, were inhibited only by anti-viral sera (not anti-host cell sera). Simian virus 40 and

  1. The bacterium Wolbachia exploits host innate immunity to establish a symbiotic relationship with the dengue vector mosquito Aedes aegypti

    OpenAIRE

    Pan, Xiaoling; Pike, Andrew; Joshi, Deepak; Bian, Guowu; McFadden, Michael J; Lu, Peng; Liang, Xiao; Zhang, Fengrui; Raikhel, Alexander S; Xi, Zhiyong

    2017-01-01

    A host’s immune system plays a central role in shaping the composition of the microbiota and, in return, resident microbes influence immune responses. Symbiotic associations of the maternally transmitted bacterium Wolbachia occur with a wide range of arthropods. It is, however, absent from the dengue and Zika vector mosquito Aedes aegypti in nature. When Wolbachia is artificially forced to form symbiosis with this new mosquito host, it boosts the basal immune response and enhances the mosquit...

  2. Diagnostic value of FDG-PET/(CT) in children with fever of unknown origin and unexplained fever during immune suppression

    Energy Technology Data Exchange (ETDEWEB)

    Blokhuis, Gijsbert J.; Diender, Marije G.; Oyen, Wim J.G. [Radboud University Medical Center, Department of Nuclear Medicine, Nijmegen (Netherlands); Bleeker-Rovers, Chantal P. [Radboud University Medical Center, Division of Infectious Diseases, Department of Internal Medicine, Nijmegen (Netherlands); Draaisma, Jos M.T. [Radboud University Medical Center, Department of Paediatrics, Nijmegen (Netherlands); Geus-Oei, Lioe-Fee de [Radboud University Medical Center, Department of Nuclear Medicine, Nijmegen (Netherlands); University of Twente, MIRA Institute for Biomedical Technology and Technical Medicine, Biomedical Photonic Imaging Group, Enschede (Netherlands)

    2014-10-15

    Fever of unknown origin (FUO) and unexplained fever during immune suppression in children are challenging medical problems. The aim of this study is to investigate the diagnostic value of fluorine-18 fluorodeoxyglucose positron emission tomography (FDG-PET) and FDG-PET combined with computed tomography (FDG-PET/CT) in children with FUO and in children with unexplained fever during immune suppression. All FDG-PET/(CT) scans performed in the Radboud university medical center for the evaluation of FUO or unexplained fever during immune suppression in the last 10 years were reviewed. Results were compared with the final clinical diagnosis. FDG-PET/(CT) scans were performed in 31 children with FUO. A final diagnosis was established in 16 cases (52 %). Of the total number of scans, 32 % were clinically helpful. The sensitivity and specificity of FDG-PET/CT in these patients was 80 % and 78 %, respectively. FDG-PET/(CT) scans were performed in 12 children with unexplained fever during immune suppression. A final diagnosis was established in nine patients (75 %). Of the total number of these scans, 58 % were clinically helpful. The sensitivity and specificity of FDG-PET/CT in children with unexplained fever during immune suppression was 78 % and 67 %, respectively. FDG-PET/CT appears a valuable imaging technique in the evaluation of children with FUO and in the diagnostic process of children with unexplained fever during immune suppression. Prospective studies of FDG-PET/CT as part of a structured diagnostic protocol are warranted to assess the additional diagnostic value. (orig.)

  3. Plant Hormone Salicylic Acid Produced by a Malaria Parasite Controls Host Immunity and Cerebral Malaria Outcome.

    Directory of Open Access Journals (Sweden)

    Ryuma Matsubara

    Full Text Available The apicomplexan parasite Toxoplasma gondii produces the plant hormone abscisic acid, but it is unclear if phytohormones are produced by the malaria parasite Plasmodium spp., the most important parasite of this phylum. Here, we report detection of salicylic acid, an immune-related phytohormone of land plants, in P. berghei ANKA and T. gondii cell lysates. However, addition of salicylic acid to P. falciparum and T. gondii culture had no effect. We transfected P. falciparum 3D7 with the nahG gene, which encodes a salicylic acid-degrading enzyme isolated from plant-infecting Pseudomonas sp., and established a salicylic acid-deficient mutant. The mutant had a significantly decreased concentration of parasite-synthesized prostaglandin E2, which potentially modulates host immunity as an adaptive evolution of Plasmodium spp. To investigate the function of salicylic acid and prostaglandin E2 on host immunity, we established P. berghei ANKA mutants expressing nahG. C57BL/6 mice infected with nahG transfectants developed enhanced cerebral malaria, as assessed by Evans blue leakage and brain histological observation. The nahG-transfectant also significantly increased the mortality rate of mice. Prostaglandin E2 reduced the brain symptoms by induction of T helper-2 cytokines. As expected, T helper-1 cytokines including interferon-γ and interleukin-2 were significantly elevated by infection with the nahG transfectant. Thus, salicylic acid of Plasmodium spp. may be a new pathogenic factor of this threatening parasite and may modulate immune function via parasite-produced prostaglandin E2.

  4. Beyond immunity: quantifying the effects of host anti-parasite behavior on parasite transmission.

    Science.gov (United States)

    Daly, Elizabeth W; Johnson, Pieter T J

    2011-04-01

    A host's first line of defense in response to the threat of parasitic infection is behavior, yet the efficacy of anti-parasite behaviors in reducing infection are rarely quantified relative to immunological defense mechanisms. Larval amphibians developing in aquatic habitats are at risk of infection from a diverse assemblage of pathogens, some of which cause substantial morbidity and mortality, suggesting that behavioral avoidance and resistance could be significant defensive strategies. To quantify the importance of anti-parasite behaviors in reducing infection, we exposed larval Pacific chorus frogs (Pseudacris regilla) to pathogenic trematodes (Ribeiroia and Echinostoma) in one of two experimental conditions: behaviorally active (unmanipulated) or behaviorally impaired (anesthetized). By quantifying both the number of successful and unsuccessful parasites, we show that host behavior reduces infection prevalence and intensity for both parasites. Anesthetized hosts were 20-39% more likely to become infected and, when infected, supported 2.8-fold more parasitic cysts. Echinostoma had a 60% lower infection success relative to the more deadly Ribeiroia and was also more vulnerable to behaviorally mediated reductions in transmission. For Ribeiroia, increases in host mass enhanced infection success, consistent with epidemiological theory, but this relationship was eroded among active hosts. Our results underscore the importance of host behavior in mitigating disease risk and suggest that, in some systems, anti-parasite behaviors can be as or more effective than immune-mediated defenses in reducing infection. Considering the severe pathologies induced by these and other pathogens of amphibians, we emphasize the value of a broader understanding of anti-parasite behaviors and how co-occurring stressors affect them.

  5. Analyses of Brucella pathogenesis, host immunity, and vaccine targets using systems biology and bioinformatics

    Directory of Open Access Journals (Sweden)

    Yongqun eHe

    2012-02-01

    Full Text Available Brucella is a Gram-negative, facultative intracellular bacterium that causes zoonotic brucellosis in humans and various animals. Out of ten classified Brucella species, B. melitensis, B. abortus, B. suis, and B. canis are pathogenic to humans. In the past decade, the mechanisms of Brucella pathogenesis and host immunity have been extensively investigated using the cutting edge systems biology and bioinformatics approaches. This article provides a comprehensive review of the applications of Omics (including genomics, transcriptomics, and proteomics and bioinformatics technologies for the analysis of Brucella pathogenesis, host immune responses, and vaccine targets. Based on more than 30 sequenced Brucella genomes, comparative genomics is able to identify gene variations among Brucella strains that help to explain host specificity and virulence differences among Brucella species. Diverse transcriptomics and proteomics gene expression studies have been conducted to analyze gene expression profiles of wild type Brucella strains and mutants under different laboratory conditions. High throughput Omics analyses of host responses to infections with virulent or attenuated Brucella strains have been focused on responses by mouse and cattle macrophages, bovine trophoblastic cells, mouse and boar splenocytes, and ram buffy coat. Differential serum responses in humans and rams to Brucella infections have been analyzed using high throughput serum antibody screening technology. The Vaxign reverse vaccinology has been used to predict many Brucella vaccine targets. More than 180 Brucella virulence factors and their gene interaction networks have been identified using advanced literature mining methods. The recent development of community-based Vaccine Ontology and Brucellosis Ontology provides an efficient way for Brucella data integration, exchange, and computer-assisted automated reasoning.

  6. Analyses of Brucella Pathogenesis, Host Immunity, and Vaccine Targets using Systems Biology and Bioinformatics

    Science.gov (United States)

    He, Yongqun

    2011-01-01

    Brucella is a Gram-negative, facultative intracellular bacterium that causes zoonotic brucellosis in humans and various animals. Out of 10 classified Brucella species, B. melitensis, B. abortus, B. suis, and B. canis are pathogenic to humans. In the past decade, the mechanisms of Brucella pathogenesis and host immunity have been extensively investigated using the cutting edge systems biology and bioinformatics approaches. This article provides a comprehensive review of the applications of Omics (including genomics, transcriptomics, and proteomics) and bioinformatics technologies for the analysis of Brucella pathogenesis, host immune responses, and vaccine targets. Based on more than 30 sequenced Brucella genomes, comparative genomics is able to identify gene variations among Brucella strains that help to explain host specificity and virulence differences among Brucella species. Diverse transcriptomics and proteomics gene expression studies have been conducted to analyze gene expression profiles of wild type Brucella strains and mutants under different laboratory conditions. High throughput Omics analyses of host responses to infections with virulent or attenuated Brucella strains have been focused on responses by mouse and cattle macrophages, bovine trophoblastic cells, mouse and boar splenocytes, and ram buffy coat. Differential serum responses in humans and rams to Brucella infections have been analyzed using high throughput serum antibody screening technology. The Vaxign reverse vaccinology has been used to predict many Brucella vaccine targets. More than 180 Brucella virulence factors and their gene interaction networks have been identified using advanced literature mining methods. The recent development of community-based Vaccine Ontology and Brucellosis Ontology provides an efficient way for Brucella data integration, exchange, and computer-assisted automated reasoning. PMID:22919594

  7. Role of secreted aspartyl proteases in Candida albicans virulence, host immune response and immunoprotection in murine disseminated candidiasis

    OpenAIRE

    Correia, Isabel Alexandra Duarte Ferreira Lopes

    2012-01-01

    Tese de doutoramento em Ciências (ramo de conhecimento em Biologia) The polymorphic yeast Candida albicans is an important opportunistic human pathogen and the most common causative agent of fungal invasive infections. Host physical barriers and immune system integrity are crucial factors in controlling the establishment of Candida infections. However, the high adaptability of C. albicans to different host niches is also a determinant factor. The host-fungus interplay is dynami...

  8. A novel Meloidogyne graminicola effector, MgMO237, interacts with multiple host defence-related proteins to manipulate plant basal immunity and promote parasitism.

    Science.gov (United States)

    Chen, Jiansong; Hu, Lili; Sun, Longhua; Lin, Borong; Huang, Kun; Zhuo, Kan; Liao, Jinling

    2018-02-27

    Plant-parasitic nematodes can secrete effector proteins into the host tissue to facilitate their parasitism. In this study, we report a novel effector protein, MgMO237, from Meloidogyne graminicola, which is exclusively expressed within the dorsal oesophageal gland cell and markedly up-regulated in parasitic third-/fourth-stage juveniles of M. graminicola. Transient expression of MgMO237 in protoplasts from rice roots showed that MgMO237 was localized in the cytoplasm and nucleus of the host cells. Rice plants overexpressing MgMO237 showed an increased susceptibility to M. graminicola. In contrast, rice plants expressing RNA interference vectors targeting MgMO237 showed an increased resistance to M. graminicola. In addition, yeast two-hybrid and co-immunoprecipitation assays showed that MgMO237 interacted specifically with three rice endogenous proteins, i.e. 1,3-β-glucan synthase component (OsGSC), cysteine-rich repeat secretory protein 55 (OsCRRSP55) and pathogenesis-related BetvI family protein (OsBetvI), which are all related to host defences. Moreover, MgMO237 can suppress host defence responses, including the expression of host defence-related genes, cell wall callose deposition and the burst of reactive oxygen species. These results demonstrate that the effector MgMO237 probably promotes the parasitism of M. graminicola by interacting with multiple host defence-related proteins and suppressing plant basal immunity in the later parasitic stages of nematodes. © 2018 BSPP AND JOHN WILEY & SONS LTD.

  9. Control of immune ligands by members of a cytomegalovirus gene expansion suppresses natural killer cell activation.

    Science.gov (United States)

    Fielding, Ceri A; Weekes, Michael P; Nobre, Luis V; Ruckova, Eva; Wilkie, Gavin S; Paulo, Joao A; Chang, Chiwen; Suárez, Nicolás M; Davies, James A; Antrobus, Robin; Stanton, Richard J; Aicheler, Rebecca J; Nichols, Hester; Vojtesek, Borek; Trowsdale, John; Davison, Andrew J; Gygi, Steven P; Tomasec, Peter; Lehner, Paul J; Wilkinson, Gavin W G

    2017-02-10

    The human cytomegalovirus (HCMV) US12 family consists of ten sequentially arranged genes (US12-21) with poorly characterized function. We now identify novel natural killer (NK) cell evasion functions for four members: US12, US14, US18 and US20. Using a systematic multiplexed proteomics approach to quantify ~1300 cell surface and ~7200 whole cell proteins, we demonstrate that the US12 family selectively targets plasma membrane proteins and plays key roles in regulating NK ligands, adhesion molecules and cytokine receptors. US18 and US20 work in concert to suppress cell surface expression of the critical NKp30 ligand B7-H6 thus inhibiting NK cell activation. The US12 family is therefore identified as a major new hub of immune regulation.

  10. Cell-mediated immune suppression effect of rocket kerosene through dermal exposure in mice

    Directory of Open Access Journals (Sweden)

    Bing-xin XU

    2015-10-01

    Full Text Available Objective To study the effect of cell-mediated immune suppression effect of rocket kerosene (RK through dermal application in mice. Methods Skin delayed type hypersensitivity (DTH was used to observe the relation of the RK amount the skin exposed and the cellular immune inhibitory function. Different amount of the undiluted fuel was smeared directly onto the dorsal skin of mice. Mice in negative and positive control groups were treated with acetone. After the last exposure, all the mice except those in negative control group were allergized by evenly smearing with 1% dinitrofluorobenzene (DNFB solution on their dorsum. Five days after allergy, 1% DNFB solution was smeared onto right ear of all mice to stimulate the allergic reaction. Twenty-four hours after attack, the auricle swelling, spleen index and thymus index in corresponding mice were determined. In the first series of experiments, different dosages of RK were applied once, and the ICR mice were randomly divided into negative control group, positive control group and experimental group (0.5ml/kg.BW×1, 1ml/kg.BW×1 and 2ml/kg.BW×1 group. In the second series of experiments, the certain and same dosage of RK was applied for different times, and the ICR mice were randomly divided into negative control group, positive control group and experimental group (0.5ml/kg.BW×1, 0.5mL/kg.BW×2, 0.5ml/kg.BW×3, 0.5ml/kg.BW×4 and 0.5mL/kg.BW×5 group. In the third series of experiments, the different dosages of RK were applied more than once, and the ICR mice were randomly divided into negative control group, positive control group and experimental group (0.5ml/kg.BW×5, 1ml/kg.BW×5 and 2ml/kg.BW×5 group. Lymphocyte proliferation experiment in vitrowas conducted to observe the persistent time of the cell-mediated immune suppression in mice by RK dermal exposure. The lymphocyte proliferation induced by concanavalin A (Con A was analyzed by MTT assay, and T lymphocyte subsets (CD3+, CD4+ and CD

  11. Mycobacterium tuberculosis controls microRNA-99b (miR-99b) expression in infected murine dendritic cells to modulate host immunity.

    Science.gov (United States)

    Singh, Yogesh; Kaul, Vandana; Mehra, Alka; Chatterjee, Samit; Tousif, Sultan; Dwivedi, Ved Prakash; Suar, Mrutyunjay; Van Kaer, Luc; Bishai, William R; Das, Gobardhan

    2013-02-15

    Mycobacterium tuberculosis resides and replicates within host phagocytes by modulating host microbicidal responses. In addition, it suppresses the production of host protective cytokines to prevent activation of and antigen presentation by M. tuberculosis-infected cells, causing dysregulation of host protective adaptive immune responses. Many cytokines are regulated by microRNAs (miRNAs), a newly discovered class of small noncoding RNAs, which have been implicated in modulating host immune responses in many bacterial and viral diseases. Here, we show that miRNA-99b (miR-99b), an orphan miRNA, plays a key role in the pathogenesis of M. tuberculosis infection. We found that miR-99b expression was highly up-regulated in M. tuberculosis strain H37Rv-infected dendritic cells (DCs) and macrophages. Blockade of miR-99b expression by antagomirs resulted in significantly reduced bacterial growth in DCs. Interestingly, knockdown of miR-99b in DCs significantly up-regulated proinflammatory cytokines such as IL-6, IL-12, and IL-1β. Furthermore, mRNA and membrane-bound protein data indicated that inhibition of miR-99b augments TNF-α and TNFRSF-4 production. Thus, miR-99b targets TNF-α and TNFRSF-4 receptor genes. Treatment of anti-miR-99b-transfected DCs with anti-TNF-α antibody resulted in increased bacterial burden. Thus, our findings unveil a novel host evasion mechanism adopted by M. tuberculosis via miR-99b, which may open up new avenues for designing miRNA-based vaccines and therapies.

  12. Mycobacterium tuberculosis Controls MicroRNA-99b (miR-99b) Expression in Infected Murine Dendritic Cells to Modulate Host Immunity*

    Science.gov (United States)

    Singh, Yogesh; Kaul, Vandana; Mehra, Alka; Chatterjee, Samit; Tousif, Sultan; Dwivedi, Ved Prakash; Suar, Mrutyunjay; Van Kaer, Luc; Bishai, William R.; Das, Gobardhan

    2013-01-01

    Mycobacterium tuberculosis resides and replicates within host phagocytes by modulating host microbicidal responses. In addition, it suppresses the production of host protective cytokines to prevent activation of and antigen presentation by M. tuberculosis-infected cells, causing dysregulation of host protective adaptive immune responses. Many cytokines are regulated by microRNAs (miRNAs), a newly discovered class of small noncoding RNAs, which have been implicated in modulating host immune responses in many bacterial and viral diseases. Here, we show that miRNA-99b (miR-99b), an orphan miRNA, plays a key role in the pathogenesis of M. tuberculosis infection. We found that miR-99b expression was highly up-regulated in M. tuberculosis strain H37Rv-infected dendritic cells (DCs) and macrophages. Blockade of miR-99b expression by antagomirs resulted in significantly reduced bacterial growth in DCs. Interestingly, knockdown of miR-99b in DCs significantly up-regulated proinflammatory cytokines such as IL-6, IL-12, and IL-1β. Furthermore, mRNA and membrane-bound protein data indicated that inhibition of miR-99b augments TNF-α and TNFRSF-4 production. Thus, miR-99b targets TNF-α and TNFRSF-4 receptor genes. Treatment of anti-miR-99b-transfected DCs with anti-TNF-α antibody resulted in increased bacterial burden. Thus, our findings unveil a novel host evasion mechanism adopted by M. tuberculosis via miR-99b, which may open up new avenues for designing miRNA-based vaccines and therapies. PMID:23233675

  13. In vivo evolution of the gp90 gene and consistently low plasma viral load during transient immune suppression demonstrate the safety of an attenuated equine infectious anemia virus (EIAV) vaccine.

    Science.gov (United States)

    Ma, Jian; Jiang, Chenggang; Lin, Yuezhi; Wang, Xuefeng; Zhao, Liping; Xiang, Wenhua; Shao, Yiming; Shen, Rongxian; Kong, Xiangang; Zhou, Jianhua

    2009-01-01

    To study the in vivo evolution of the attenuated Chinese equine infectious anemia virus (EIAV) vaccine, viral gp90 gene variation and virus replication in immunosuppressed hosts were investigated. The results showed that after vaccination, the gp90 gene followed an evolutionary trend of declining diversity. The trend coincided with the maturation of immunity to EIAV, and eventually, the gp90 gene became highly homologous. The sequences of these predominant quasispecies were consistently detected up to 18 months after vaccination. Furthermore, after transient immune suppression with dexamethasone, the plasma viral RNA copy number of the vaccine strain in three vaccinated ponies remained consistently below the "pathogenic threshold" level, while the viral load increased by 25,000-fold in the positive control of an inapparent carrier of the parental virulent strain. This study is the first to provide evidence for the safety of an attenuated lentiviral vaccine with decreased genomic diversity and consistently low viral replication under suppressed immunity.

  14. PD-L1 and PD-L2 have distinct roles in regulating host immunity to cutaneous leishmaniasis.

    Science.gov (United States)

    Liang, Spencer C; Greenwald, Rebecca J; Latchman, Yvette E; Rosas, Lucia; Satoskar, Abhay; Freeman, Gordon J; Sharpe, Arlene H

    2006-01-01

    To compare the roles of programmed death 1 ligand 1 (PD-L1) and PD-L2 in regulating immunity to infection, we investigated responses of mice lacking PD-L1 or PD-L2 to infection with Leishmania mexicana. PD-L1(-/-) and PD-L2(-/-) mice exhibited distinct disease outcomes following infection with L. mexicana. In comparison to susceptible WT mice, PD-L1(-/-) mice showed resistance to L. mexicana, as demonstrated by reduced growth of cutaneous lesions and parasite burden. In contrast, PD-L2(-/-) mice developed exacerbated disease with increased parasite burden. Host resistance to L. mexicana is partly associated with the development of a Th1 response and down-regulation of the Th2 response. Both PD-L1(-/-) and PD-L2(-/-) mice produced levels of IFN-gamma similar to WT mice. However, the development of IL-4-producing cells was reduced in PD-L1(-/-) mice, demonstrating a role for PD-L1 in regulating Th cell differentiation. This inadequate Th2 response may explain the increased resistance of PD-L1(-/-) mice. Although no alterations in Th1/Th2 skewing were observed in PD-L2(-/-) mice, PD-L2(-/-) mice exhibited a marked increase in L. mexicana-specific antibody production. Increased Leishmania-specific IgG production may suppress the healing response through FcgammaR ligation on macrophages. Taken together, our results demonstrate that PD-L1 and PD-L2 have distinct roles in regulating the immune response to L. mexicana.

  15. Suppressive effects of aluminum trichloride on the T lymphocyte immune function of rats.

    Science.gov (United States)

    Zhu, Yanzhu; Hu, Chongwei; Li, Xinwei; Shao, Bing; Sun, Hao; Zhao, Hansong; Li, Yanfei

    2012-03-01

    Aluminum (Al) has increasingly been used in the daily life, and could cause the change of human health because it can accumulate in the organs. A rat model was thus used to examine potential effect of Al on the immune function. Forty male Wistar rats (5 weeks old) weighed 110-120 g were randomly allocated into four groups and were orally exposed to 0, 64.18, 128.36, and 256.72 mg/kg body weight aluminum trichloride (AlCl3) in drinking water for 120 days. The levels of CD3+, CD4+, CD8+ T lymphocyte, acid non-specific activity esterase (ANAE+) in blood, and interleukin-2 (IL-2) and tumor necrosis factor-α (TNF-α) in serum were determined at the end of experiment. The results showed that the proportions of CD3+, CD4+ T lymphocyte, the ratio of CD4+/CD8+, and the levels of ANAE+, IL-2, and TNF-α were significantly reduced in AlCl3-treated rats, while the proportion of CD8+ T lymphocyte was increased in an AlCl3-dose dependent manner. Our findings indicate that a long term exposure of AlCl3 could suppress the T lymphocyte immune function of rats. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Probiotic cheese attenuates exercise-induced immune suppression in Wistar rats.

    Science.gov (United States)

    Lollo, P C B; Cruz, A G; Morato, P N; Moura, C S; Carvalho-Silva, L B; Oliveira, C A F; Faria, J A F; Amaya-Farfan, J

    2012-07-01

    Intense physical activity results in a substantial volume of stress and hence a significant probability of immunosuppression in athletes, with milk proteins being, perhaps, the most recommended protein supplements. Consumption of a probiotic cheese can attenuate immune suppression induced by exhausting exercise in rats. A popular Brazilian fresh cheese (Minas Frescal cheese) containing Lactobacillus acidophilus LA14 and Bifidobacterium longum BL05 was fed for 2wk to adult Wistar rats, which then were brought to exhaustion on the treadmill. Two hours after exhaustion, the rats were killed and material was collected for the determination of serum uric acid, total and high-density lipoprotein cholesterol fraction, total protein, triacylglycerols, aspartate aminotransferase, alanine aminotransferase, creatine kinase, and blood cell (monocyte, lymphocyte, neutrophil, and leukocyte) counts. Exercise was efficient in reducing lymphocyte counts, irrespective of the type of ingested cheese, but the decrease in the group fed the probiotic cheese was 22% compared with 48% in the animals fed regular cheese. Monocyte counts were unaltered in the rats fed probiotic cheese compared with a significant decrease in the rats fed the regular cheese. Most importantly, ingestion of the probiotic cheese resulted in a >100% increase in serum high-density lipoprotein cholesterol and a 50% decrease in triacylglycerols. We conclude that probiotic Minas Frescal cheese may be a viable alternative to enhance the immune system and could be used to prevent infections, particularly those related to the physical overexertion of athletes. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Host immune response and acute disease in a zebrafish model of francisella pathogenesis

    Science.gov (United States)

    Vojtech, L.N.; Sanders, G.E.; Conway, C.; Ostland, V.; Hansen, J.D.

    2009-01-01

    Members of the bacterial genus Francisella are highly virulent and infectious pathogens. New models to study Francisella pathogenesis in evolutionarily distinct species are needed to provide comparative insight, as the mechanisms of host resistance and pathogen virulence are not well understood. We took advantage of the recent discovery of a novel species of Francisella to establish a zebrafish/Francisella comparative model of pathogenesis and host immune response. Adult zebraflsh were susceptible to acute Francisella-induced disease and suffered mortality in a dose-dependent manner. Using immunohistochemical analysis, we localized bacterial antigens primarily to lymphoid tissues and livers of zebraflsh following infection by intraperitoneal injection, which corresponded to regions of local cellular necrosis. Francisella sp. bacteria replicated rapidly in these tissues beginning 12 h postinfection, and bacterial titers rose steadily, leveled off, and then decreased by 7 days postinfection. Zebraflsh mounted a significant tissue-specific proinflammatory response to infection as measured by the upregulation of interleukin-l?? (IL-1??), gamma interferon, and tumor necrosis factor alpha mRNA beginning by 6 h postinfection and persisting for up to 7 days postinfection. In addition, exposure of zebraflsh to heat-killed bacteria demonstrated that the significant induction of IL-?? was highly specific to live bacteria. Taken together, the pathology and immune response to acute Francisella infection in zebraflsh share many features with those in mammals, highlighting the usefulness of this new model system for addressing both general and specific questions about Francisella host-pathogen interactions via an evolutionary approach. Copyright ?? 2009, American Society for Microbiology. All Rights Reserved.

  18. Xenopus-FV3 host-pathogen interactions and immune evasion.

    Science.gov (United States)

    Jacques, Robert; Edholm, Eva-Stina; Jazz, Sanchez; Odalys, Torres-Luquis; Francisco, De Jesús Andino

    2017-11-01

    We first review fundamental insights into anti-ranavirus immunity learned with the Xenopus laevis/ranavirus FV3 model that are generally applicable to ectothermic vertebrates. We then further investigate FV3 genes involved in immune evasion. Focusing on FV3 knockout (KO) mutants defective for a putative viral caspase activation and recruitment domain-containing (CARD)-like protein (Δ64R-FV3), a β-hydroxysteroid dehydrogenase homolog (Δ52L-FV3), and an immediate-early18kDa protein (FV3-Δ18K), we assessed the involvement of these viral genes in replication, dissemination and interaction with peritoneal macrophages in tadpole and adult frogs. Our results substantiate the role of 64R and 52L as critical immune evasion genes, promoting persistence and dissemination in the host by counteracting type III IFN in tadpoles and type I IFN in adult frogs. Comparably, the substantial accumulation of genome copy numbers and exacerbation of type I and III IFN gene expression responses but deficient release of infectious virus suggests that 18K is a viral regulatory gene. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Host translational inhibition by Pseudomonas aeruginosa Exotoxin A Triggers an immune response in Caenorhabditis elegans.

    Science.gov (United States)

    McEwan, Deborah L; Kirienko, Natalia V; Ausubel, Frederick M

    2012-04-19

    Intestinal epithelial cells are exposed to both innocuous and pathogenic microbes, which need to be distinguished to mount an effective immune response. To understand the mechanisms underlying pathogen recognition, we investigated how Pseudomonas aeruginosa triggers intestinal innate immunity in Caenorhabditis elegans, a process independent of Toll-like pattern recognition receptors. We show that the P. aeruginosa translational inhibitor Exotoxin A (ToxA), which ribosylates elongation factor 2 (EF2), upregulates a significant subset of genes normally induced by P. aeruginosa. Moreover, immune pathways involving the ATF-7 and ZIP-2 transcription factors, which protect C. elegans from P. aeruginosa, are required for preventing ToxA-mediated lethality. ToxA-responsive genes are not induced by enzymatically inactive ToxA protein but can be upregulated independently of ToxA by disruption of host protein translation. Thus, C. elegans has a surveillance mechanism to recognize ToxA through its effect on protein translation rather than by direct recognition of either ToxA or ribosylated EF2. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Beneficial and Harmful Interactions of Antibiotics with Microbial Pathogens and the Host Innate Immune System

    Directory of Open Access Journals (Sweden)

    Ronald Anderson

    2010-05-01

    Full Text Available In general antibiotics interact cooperatively with host defences, weakening and decreasing the virulence of microbial pathogens, thereby increasing vulnerability to phagocytosis and eradication by the intrinsic antimicrobial systems of the host. Antibiotics, however, also interact with host defences by several other mechanisms, some harmful, others beneficial. Harmful activities include exacerbation of potentially damaging inflammatory responses, a property of cell-wall targeted agents, which promotes the release of pro-inflammatory microbial cytotoxins and cell-wall components. On the other hand, inhibitors of bacterial protein synthesis, especially macrolides, possess beneficial anti-inflammatory/cytoprotective activities, which result from interference with the production of microbial virulence factors/cytotoxins. In addition to these pathogen-directed, anti-inflammatory activities, some classes of antimicrobial agent possess secondary anti-inflammatory properties, unrelated to their conventional antimicrobial activities, which target cells of the innate immune system, particularly neutrophils. This is a relatively uncommon, potentially beneficial property of antibiotics, which has been described for macrolides, imidazole anti-mycotics, fluoroquinolones, and tetracyclines. Although of largely unproven significance in the clinical setting, increasing awareness of the pro-inflammatory and anti-inflammatory properties of antibiotics may contribute to a more discerning and effective use of these agents.

  1. Nutrition and Helicobacter pylori: Host Diet and Nutritional Immunity Influence Bacterial Virulence and Disease Outcome

    Directory of Open Access Journals (Sweden)

    Kathryn P. Haley

    2016-01-01

    Full Text Available Helicobacter pylori colonizes the stomachs of greater than 50% of the world’s human population making it arguably one of the most successful bacterial pathogens. Chronic H. pylori colonization results in gastritis in nearly all patients; however in a subset of people, persistent infection with H. pylori is associated with an increased risk for more severe disease outcomes including B-cell lymphoma of mucosal-associated lymphoid tissue (MALT lymphoma and invasive adenocarcinoma. Research aimed at elucidating determinants that mediate disease progression has revealed genetic differences in both humans and H. pylori which increase the risk for developing gastric cancer. Furthermore, host diet and nutrition status have been shown to influence H. pylori-associated disease outcomes. In this review we will discuss how H. pylori is able to create a replicative niche within the hostile host environment by subverting and modifying the host-generated immune response as well as successfully competing for limited nutrients such as transition metals by deploying an arsenal of metal acquisition proteins and virulence factors. Lastly, we will discuss how micronutrient availability or alterations in the gastric microbiome may exacerbate negative disease outcomes associated with H. pylori colonization.

  2. Nutrition and Helicobacter pylori: Host Diet and Nutritional Immunity Influence Bacterial Virulence and Disease Outcome.

    Science.gov (United States)

    Haley, Kathryn P; Gaddy, Jennifer A

    2016-01-01

    Helicobacter pylori colonizes the stomachs of greater than 50% of the world's human population making it arguably one of the most successful bacterial pathogens. Chronic H. pylori colonization results in gastritis in nearly all patients; however in a subset of people, persistent infection with H. pylori is associated with an increased risk for more severe disease outcomes including B-cell lymphoma of mucosal-associated lymphoid tissue (MALT lymphoma) and invasive adenocarcinoma. Research aimed at elucidating determinants that mediate disease progression has revealed genetic differences in both humans and H. pylori which increase the risk for developing gastric cancer. Furthermore, host diet and nutrition status have been shown to influence H. pylori-associated disease outcomes. In this review we will discuss how H. pylori is able to create a replicative niche within the hostile host environment by subverting and modifying the host-generated immune response as well as successfully competing for limited nutrients such as transition metals by deploying an arsenal of metal acquisition proteins and virulence factors. Lastly, we will discuss how micronutrient availability or alterations in the gastric microbiome may exacerbate negative disease outcomes associated with H. pylori colonization.

  3. Diagnostic value of FDG-PET/(CT) in children with fever of unknown origin and unexplained fever during immune suppression

    NARCIS (Netherlands)

    Blokhuis, Gijsbert J.; Bleeker-Rovers, Chantal P.; Diender, Marije G.; Oyen, Wim J.G.; Draaisma, Jos M. Th.; de Geus-Oei, Lioe-Fee

    2014-01-01

    Purpose Fever of unknown origin (FUO) and unexplained fever during immune suppression in children are challenging medical problems. The aim of this study is to investigate the diagnostic value of fluorine-18 fluorodeoxyglucose positron emission tomography (FDG-PET) and FDG-PET combined with computed

  4. Immunity in Chagas’ Disease.

    Science.gov (United States)

    This is the final report on the immunity in Chagas ’ disease contract and it summarizes the results of a diversity of studies directed toward...antibody test for Chagas ’ disease. Also mentioned are the facts that the cell membranes of live trypomastigotes are not immunoreactive with the...humoral immune response of an infected host and that suppression of parasitemias in chronic Chagas ’ disease is probably a function of the cell immune system of the host. (Author)

  5. Fungal effector Ecp6 outcompetes host immune receptor for chitin binding through intrachain LysM dimerization

    Science.gov (United States)

    Kombrink, Anja; Hansen, Guido; Valkenburg, Dirk-Jan

    2013-01-01

    While host immune receptors detect pathogen-associated molecular patterns to activate immunity, pathogens attempt to deregulate host immunity through secreted effectors. Fungi employ LysM effectors to prevent recognition of cell wall-derived chitin by host immune receptors, although the mechanism to compete for chitin binding remained unclear. Structural analysis of the LysM effector Ecp6 of the fungal tomato pathogen Cladosporium fulvum reveals a novel mechanism for chitin binding, mediated by intrachain LysM dimerization, leading to a chitin-binding groove that is deeply buried in the effector protein. This composite binding site involves two of the three LysMs of Ecp6 and mediates chitin binding with ultra-high (pM) affinity. Intriguingly, the remaining singular LysM domain of Ecp6 binds chitin with low micromolar affinity but can nevertheless still perturb chitin-triggered immunity. Conceivably, the perturbation by this LysM domain is not established through chitin sequestration but possibly through interference with the host immune receptor complex. DOI: http://dx.doi.org/10.7554/eLife.00790.001 PMID:23840930

  6. Recent progress in host immunity to avian coccidiosis: IL-17 family cytokines as sentinels of the intestinal mucosa.

    Science.gov (United States)

    Min, Wongi; Kim, Woo H; Lillehoj, Erik P; Lillehoj, Hyun S

    2013-11-01

    The molecular and cellular mechanisms leading to immune protection against coccidiosis are complex and include multiple aspects of innate and adaptive immunities. Innate immunity is mediated by various subpopulations of immune cells that recognize pathogen associated molecular patterns (PAMPs) through their pattern recognition receptors (PRRs) leading to the secretion of soluble factors with diverse functions. Adaptive immunity, which is important in conferring protection against subsequent reinfections, involves subtypes of T and B lymphocytes that mediate antigen-specific immune responses. Recently, global gene expression microarray analysis has been used in an attempt to dissect this complex network of immune cells and molecules during avian coccidiosis. These new studies emphasized the uniqueness of the innate immune response to Eimeria infection, and directly led to the discovery of previously uncharacterized host genes and proteins whose expression levels were modulated following parasite infection. Among these is the IL-17 family of cytokines. This review highlights recent progress in IL-17 research in the context of host immunity to avian coccidiosis. Copyright © 2013. Published by Elsevier Ltd.

  7. The utilization of oropharyngeal intratracheal PAMP administration and bronchoalveolar lavage to evaluate the host immune response in mice.

    Science.gov (United States)

    Allen, Irving C

    2014-04-02

    The host immune response to pathogens is a complex biological process. The majority of in vivo studies classically employed to characterize host-pathogen interactions take advantage of intraperitoneal injections of select bacteria or pathogen associated molecular patterns (PAMPs) in mice. While these techniques have yielded tremendous data associated with infectious disease pathobiology, intraperitoneal injection models are not always appropriate for host-pathogen interaction studies in the lung. Utilizing an acute lung inflammation model in mice, it is possible to conduct a high resolution analysis of the host innate immune response utilizing lipopolysaccharide (LPS). Here, we describe the methods to administer LPS using nonsurgical oropharyngeal intratracheal administration, monitor clinical parameters associated with disease pathogenesis, and utilize bronchoalveolar lavage fluid to evaluate the host immune response. The techniques that are described are widely applicable for studying the host innate immune response to a diverse range of PAMPs and pathogens. Likewise, with minor modifications, these techniques can also be applied in studies evaluating allergic airway inflammation and in pharmacological applications.

  8. TGF-β1/Smad2/3/Foxp3 signaling is required for chronic stress-induced immune suppression.

    Science.gov (United States)

    Zhang, Haiju; Caudle, Yi; Wheeler, Clay; Zhou, Yu; Stuart, Charles; Yao, Baozhen; Yin, Deling

    2018-01-15

    Depending on the duration and severity, psychological tension and physical stress can enhance or suppress the immune system in both humans and animals. Although it has been established that chronic stress exerts a significant suppressive effect on immune function, the mechanisms by which affects immune responses remain elusive. By employing an in vivo murine system, we revealed that TGF-β1/Smad2/3/Foxp3 axis was remarkably activated following chronic stress. Furthermore, TLR9 and p38 MAPK played a critical role in the activation of TGF-β1/Smad2/3/Foxp3 signaling cascade. Moreover, inhibition of TGF-β1/Smad2/3/Foxp3 or p38 significantly attenuated chronic stress-induced lymphocyte apoptosis and apoptosis-related proteins, as well as the differentiation of T regulatory cells in spleen. Interestingly, disequilibrium of pro-inflammatory and anti-inflammatory cytokines balance caused by chronic stress was also rescued by blocking TGF-β1/Smad2/3/Foxp3 axis. These findings yield insight into a novel mechanism by which chronic stress modulates immune functions and identifies new targets for the development of novel anti-immune suppressant medications. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. IRAK-M regulation and function in host defense and immune homeostasis

    Directory of Open Access Journals (Sweden)

    Leah L.N. Hubbard

    2010-06-01

    Full Text Available Antigen presenting cells (APCs of the innate immune system sense a wide range of pathogens via pattern recognition receptors (PRRs. Engagement of certain PRRs can induce production of pro-inflammatory mediators that facilitate effective clearance of pathogen. Toll-like receptors (TLRs are a well described group of PRRs that belong to the TLR/Interleukin-1 receptor (IL-1R superfamily. However, TLR/IL-1R induction of pro-inflammatory mediators must be regulated to prevent excessive inflammation and tissue damage. One molecule of recent interest that is known to inhibit TLR/IL-1R signaling is interleukin-1 receptor associated kinase (IRAK-M, also known as IRAK-3. IRAK-M is expressed in a number of immune and epithelial cells types, and through its inhibition of pro-inflammatory cytokine production, IRAK-M can regulate immune homeostasis and tolerance in a number of infectious and non-infectious diseases. Furthermore, use of IRAK-M deficient animals has increased our understanding of the importance of IRAK-M in regulating immune responsiveness to a variety of pathogens. Although IRAK-M expression is typically induced through TLR signaling, IRAK-M can also be expressed in response to various endogenous and exogenous soluble factors as well as cell surface and intracellular signaling molecules. This review will focus on clinical scenarios in which expression of IRAK-M is beneficial (as in early sepsis and those situations where IRAK-M expression is harmful to the host (as in cancer and following bone marrow transplant. There is strong rationale for therapeutic targeting of IRAK-M for clinical benefit. However, effective targeting will require a greater understanding of the transcriptional regulation of this gene.

  10. Cis-urocanic acid, a sunlight-induced immunosuppressive factor, activates immune suppression via the 5-HT2A receptor

    Science.gov (United States)

    Walterscheid, Jeffrey P.; Nghiem, Dat X.; Kazimi, Nasser; Nutt, Leta K.; McConkey, David J.; Norval, Mary; Ullrich, Stephen E.

    2006-01-01

    Exposure to UV radiation induces skin cancer and suppresses the immune response. To induce immune suppression, the electromagnetic energy of UV radiation must be absorbed by an epidermal photoreceptor and converted into a biologically recognizable signal. Two photoreceptors have been recognized: DNA and trans-urocanic acid (UCA). Trans-UCA is normally found in the outermost layer of skin and isomerizes to the cis isomer upon exposure to UV radiation. Although UCA was identified as a UV photoreceptor years ago, and many have documented its ability to induce immune suppression, its exact mode of action remains elusive. Particularly vexing has been the identity of the molecular pathway by which cis-UCA mediates immune suppression. Here we provide evidence that cis-UCA binds to the serotonin [5-hydroxytryptamine (5-HT)] receptor with relatively high affinity (Kd = 4.6 nM). Anti-cis-UCA antibody precipitates radiolabeled 5-HT, and the binding is inhibited by excess 5-HT and/or excess cis-UCA. Similarly, anti-5-HT antibody precipitates radiolabeled cis-UCA, and the binding is inhibited by excess 5-HT or excess cis-UCA. Calcium mobilization was activated when a mouse fibroblast line, stably transfected with the human 5-HT2A receptor, was treated with cis-UCA. Cis-UCA-induced calcium mobilization was blocked with a selective 5-HT2A receptor antagonist. UV- and cis-UCA-induced immune suppression was blocked by antiserotonin antibodies or by treating the mice with 5-HT2A receptor antagonists. Our findings identify cis-UCA as a serotonin receptor ligand and indicate that the immunosuppressive effects of cis-UCA and UV radiation are mediated by activation of the 5-HT2A receptor. PMID:17085585

  11. Saccharomyces boulardii Modifies Salmonella Typhimurium Traffic and Host Immune Responses along the Intestinal Tract

    Science.gov (United States)

    Pontier-Bres, Rodolphe; Munro, Patrick; Boyer, Laurent; Anty, Rodolphe; Imbert, Véronique; Terciolo, Chloé; André, Fréderic; Rampal, Patrick; Lemichez, Emmanuel; Peyron, Jean-François; Czerucka, Dorota

    2014-01-01

    Salmonella enterica serovar Typhimurium (ST) is an enteropathogenic Gram-negative bacterium that causes infection following oral ingestion. ST spreads rapidly along the gastrointestinal tract (GIT) and invades the intestinal epithelium to ultimately reach internal body organs. The probiotic yeast Saccharomyces boulardii BIOCODEX (S.b-B) is prescribed for prophylaxis of diarrheal infectious diseases. We previously showed that S.b-B prevents weight loss in ST-infected mice and significantly decreases bacterial translocation to the spleen and liver. This study was designed to investigate the effect of S.b-B on ST migration along the GIT and the impact of the yeast on the host's early innate immune responses. Bioluminescent imaging (BLI) was used to evaluate the effect of S.b-B on the progression of luminescent Salmonella Typhimurium (ST-lux) in the GIT of mice pretreated with streptomycin. Photonic emission (PE) was measured in GIT extracts (stomach, small intestine, cecum and colon) at various time periods post-infection (PI). PE analysis revealed that, 45 min PI, ST-lux had migrated slightly faster in the mice treated with S.b-B than in the untreated infected animals. At 90 min PI, ST-lux had reached the cecum in both groups of mice. Adhesion of ST to S.b-B was visualized in the intestines of the mice and probably accounts for (1) the faster elimination of ST-lux in the feces, and (2) reduced translocation of ST to the spleen and liver. In the early phase of infection, S.b-B also modifies the host's immune responses by (1) increasing IFN-γ gene expression and decreasing IL-10 gene expression in the small intestine, and (2) elevating both IFN-γ, and IL-10 mRNA levels in the cecum. BLI revealed that S.b-B modifies ST migration and the host immune response along the GIT. Study findings shed new light on the protective mechanisms of S.b-B during the early phase of Salmonella pathogenesis. PMID:25118595

  12. Saccharomyces boulardii modifies Salmonella typhimurium traffic and host immune responses along the intestinal tract.

    Directory of Open Access Journals (Sweden)

    Rodolphe Pontier-Bres

    Full Text Available Salmonella enterica serovar Typhimurium (ST is an enteropathogenic Gram-negative bacterium that causes infection following oral ingestion. ST spreads rapidly along the gastrointestinal tract (GIT and invades the intestinal epithelium to ultimately reach internal body organs. The probiotic yeast Saccharomyces boulardii BIOCODEX (S.b-B is prescribed for prophylaxis of diarrheal infectious diseases. We previously showed that S.b-B prevents weight loss in ST-infected mice and significantly decreases bacterial translocation to the spleen and liver. This study was designed to investigate the effect of S.b-B on ST migration along the GIT and the impact of the yeast on the host's early innate immune responses. Bioluminescent imaging (BLI was used to evaluate the effect of S.b-B on the progression of luminescent Salmonella Typhimurium (ST-lux in the GIT of mice pretreated with streptomycin. Photonic emission (PE was measured in GIT extracts (stomach, small intestine, cecum and colon at various time periods post-infection (PI. PE analysis revealed that, 45 min PI, ST-lux had migrated slightly faster in the mice treated with S.b-B than in the untreated infected animals. At 90 min PI, ST-lux had reached the cecum in both groups of mice. Adhesion of ST to S.b-B was visualized in the intestines of the mice and probably accounts for (1 the faster elimination of ST-lux in the feces, and (2 reduced translocation of ST to the spleen and liver. In the early phase of infection, S.b-B also modifies the host's immune responses by (1 increasing IFN-γ gene expression and decreasing IL-10 gene expression in the small intestine, and (2 elevating both IFN-γ, and IL-10 mRNA levels in the cecum. BLI revealed that S.b-B modifies ST migration and the host immune response along the GIT. Study findings shed new light on the protective mechanisms of S.b-B during the early phase of Salmonella pathogenesis.

  13. Viral miRNAs Alter Host Cell miRNA Profiles and Modulate Innate Immune Responses

    Directory of Open Access Journals (Sweden)

    Afsar R. Naqvi

    2018-03-01

    Full Text Available Prevalence of the members of herpesvirus family in oral inflammatory diseases is increasingly acknowledged suggesting their likely role as an etiological factor. However, the underlying mechanisms remain obscure. In our recent miRNA profiling of healthy and diseased human tooth pulps, elevated expression of human herpesvirus encoded viral microRNAs (v-miRs were identified. Based on the fold induction and significance values, we selected three v-miRs namely miR-K12-3-3p [Kaposi sarcoma-associated virus (KSHV], miR-H1 [herpes simplex virus 1 (HSV1], and miR-UL-70-3p [human cytomegalovirus (HCMV] to further examine their impact on host cellular functions. We examined their impact on cellular miRNA profiles of primary human oral keratinocytes (HOK. Our results show differential expression of several host miRNAs in v-miR-transfected HOK. High levels of v-miRs were detected in exosomes derived from v-miR transfected HOK as well as the KSHV-infected cell lines. We show that HOK-derived exosomes release their contents into macrophages (Mφ and alter expression of endogenous miRNAs. Concurrent expression analysis of precursor (pre-miRNA and mature miRNA suggest transcriptional or posttranscriptional impact of v-miRs on the cellular miRNAs. Employing bioinformatics, we predicted several pathways targeted by deregulated cellular miRNAs that include cytoskeletal organization, endocytosis, and cellular signaling. We validated three novel targets of miR-K12-3-3p and miR-H1 that are involved in endocytic and intracellular trafficking pathways. To evaluate the functional consequence of this regulation, we performed phagocytic uptake of labeled bacteria and noticed significant attenuation in miR-H1 and miR-K12-3-3p but not miR-UL70-3p transfected primary human Mφ. Multiple cytokine analysis of E. coli challenged Mφ revealed marked reduction of secreted cytokine levels with important roles in innate and adaptive immune responses suggesting a role of v-miRs in

  14. A novel Meloidogyne enterolobii effector MeTCTP promotes parasitism by suppressing programmed cell death in host plants.

    Science.gov (United States)

    Zhuo, Kan; Chen, Jiansong; Lin, Borong; Wang, Jing; Sun, Fengxia; Hu, Lili; Liao, Jinling

    2017-01-01

    Meloidogyne enterolobii is one of the most important plant-parasitic nematodes that can overcome the Mi-1 resistance gene and damage many economically important crops. Translationally controlled tumour protein (TCTP) is a multifunctional protein that exists in various eukaryotes and plays an important role in parasitism. In this study, a novel M. enterolobii TCTP effector, named MeTCTP, was identified and functionally characterized. MeTCTP was specifically expressed within the dorsal gland and was up-regulated during M. enterolobii parasitism. Transient expression of MeTCTP in protoplasts from tomato roots showed that MeTCTP was localized in the cytoplasm of the host cells. Transgenic Arabidopsis thaliana plants overexpressing MeTCTP were more susceptible to M. enterolobii infection than wild-type plants in a dose-dependent manner. By contrast, in planta RNA interference (RNAi) targeting MeTCTP suppressed the expression of MeTCTP in infecting nematodes and attenuated their parasitism. Furthermore, MeTCTP could suppress programmed cell death triggered by the pro-apoptotic protein BAX. These results demonstrate that MeTCTP is a novel plant-parasitic nematode effector that promotes parasitism, probably by suppressing programmed cell death in host plants. © 2016 BSPP and John Wiley & Sons Ltd.

  15. Evolution of African swine fever virus genes related to evasion of host immune response.

    Science.gov (United States)

    Frączyk, Magdalena; Woźniakowski, Grzegorz; Kowalczyk, Andrzej; Bocian, Łukasz; Kozak, Edyta; Niemczuk, Krzysztof; Pejsak, Zygmunt

    2016-09-25

    African swine fever (ASF) is a notifiable and one of the most complex and devastating infectious disease of pigs, wild boars and other representatives of Suidae family. African swine fever virus (ASFV) developed various molecular mechanisms to evade host immune response including alteration of interferon production by multigene family protein (MGF505-2R), inhibition of NF-κB and nuclear activating factor in T-cells by the A238L protein, or modulation of host defense by CD2v lectin-like protein encoded by EP402R and EP153R genes. The current situation concerning ASF in Poland seems to be stable in comparison to other eastern European countries but up-to-date in total 106 ASF cases in wild boar and 5 outbreaks in pigs were identified. The presented study aimed to reveal and summarize the genetic variability of genes related to inhibition or modulation of infected host response among 67 field ASF isolates collected from wild boar and pigs. The nucleotide sequences derived from the analysed A238L and EP153R regions showed 100% identity. However, minor but remarkable genetic diversity was found within EP402R and MGF505-2R genes suggesting slow molecular evolution of circulating ASFV isolates and the important role of this gene in modulation of interferon I production and hemadsorption phenomenon. The obtained nucleotide sequences of Polish ASFV isolates were closely related to Georgia 2007/1 and Odintsovo 02/14 isolates suggesting their common Caucasian origin. In the case of EP402R and partially in MGF505-2R gene the identified genetic variability was related to spatio-temporal occurrence of particular cases and outbreaks what may facilitate evolution tracing of ASFV isolates. This is the first report indicating identification of genetic variability within the genes related to evasion of host immune system which may be used to trace the direction of ASFV isolates molecular evolution. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Evidence of a salt refuge: chytrid infection loads are suppressed in hosts exposed to salt.

    Science.gov (United States)

    Stockwell, M P; Clulow, J; Mahony, M J

    2015-03-01

    With the incidence of emerging infectious diseases on the rise, it is becoming increasingly important to identify refuge areas that protect hosts from pathogens and therefore prevent population declines. For the chytrid fungus Batrachochytrium dendrobatidis, temperature and humidity refuge areas for amphibian hosts exist but are difficult to manipulate. Other environmental features that may affect the outcome of infection include water quality, drying regimes, abundance of alternate hosts and isolation from other hosts. We identified relationships between water bodies with these features and infection levels in the free-living hosts inhabiting them. Where significant relationships were identified, we used a series of controlled experiments to test for causation. Infection loads were negatively correlated with the salt concentration of the aquatic habitat and the degree of water level fluctuation and positively correlated with fish abundance. However, only the relationship with salt was confirmed experimentally. Free-living hosts inhabiting water bodies with mean salinities of up to 3.5 ppt had lower infection loads than those exposed to less salt. The experiment confirmed that exposure to sodium chloride concentrations >2 ppt significantly reduced host infection loads compared to no exposure (0 ppt). These results suggest that the exposure of amphibians to salt concentrations found naturally in lentic habitats may be responsible for the persistence of some susceptible species in the presence of B. dendrobatidis. By manipulating the salinity of water bodies, it may be possible to create refuges for declining amphibians, thus allowing them to be reintroduced to their former ranges.

  17. Ficolins do not alter host immune responses to lipopolysaccharide-induced inflammation in vivo

    DEFF Research Database (Denmark)

    Genster, Ninette; Østrup, Olga; Schjalm, Camilla

    2017-01-01

    Ficolins are a family of pattern recognition molecules that are capable of activating the lectin pathway of complement. A limited number of reports have demonstrated a protective role of ficolins in animal models of infection. In addition, an immune modulatory role of ficolins has been suggested....... Yet, the contribution of ficolins to inflammatory disease processes remains elusive. To address this, we investigated ficolin deficient mice during a lipopolysaccharide (LPS)-induced model of systemic inflammation. Although murine serum ficolin was shown to bind LPS in vitro, there was no difference...... an unaltered spleen transcriptome profile in ficolin deficient mice compared to wildtype mice. Collectively, results from this study demonstrate that ficolins are not involved in host response to LPS-induced systemic inflammation....

  18. Interferon-Beta Therapy of Multiple Sclerosis Patients Improves the Responsiveness of T Cells for Immune Suppression by Regulatory T Cells

    Directory of Open Access Journals (Sweden)

    Bettina Trinschek

    2015-07-01

    Full Text Available Multiple sclerosis (MS is an inflammatory autoimmune disease characterized by imbalanced immune regulatory networks, and MS patient-derived T effector cells are inefficiently suppressed through regulatory T cells (Treg, a phenomenon known as Treg resistance. In the current study we investigated T cell function in MS patients before and after interferon-beta therapy. We compared cytokine profile, responsiveness for Treg-mediated suppression ex vivo and evaluated reactivity of T cells in vivo using a humanized mouse model. We found that CD4+ and CD8+ T cells of therapy-naive MS patients were resistant to Treg-mediated suppression. Treg resistance is associated with an augmented IL-6 production, enhanced IL-6 receptor expression, and increased PKB/c-Akt phosphorylation. These parameters as well as responsiveness of T cells to Treg-mediated suppression were restored after interferon-beta therapy of MS patients. Following transfer into immunodeficient mice, MS T cells induced a lethal graft versus host disease (GvHD and in contrast to T cells of healthy volunteers, this aggressive T cell response could not be controlled by Treg, but was abolished by anti-IL-6 receptor antibodies. However, magnitude and lethality of GvHD induced by MS T cells was significantly decreased after interferon-beta therapy and the reaction was prevented by Treg activation in vivo. Our data reveals that interferon-beta therapy improves the immunoregulation of autoaggressive T effector cells in MS patients by changing the IL-6 signal transduction pathway, thus restoring their sensitivity to Treg-mediated suppression.

  19. Bacterial genotoxin functions as immune-modulator and promotes host survival

    Directory of Open Access Journals (Sweden)

    Riccardo Guidi

    2016-07-01

    Full Text Available Bacterial genotoxins are effectors that cause DNA damage in target cells. Many aspects of the biology of these toxins have been characterised in vitro, such as structure, cellular internalisation pathways and effects on the target cells. However, little is known about their function in vivo. Salmonella enterica serovar Typhi (S. Typhi is a Gram-negative, intracellular bacterium that causes typhoid fever, a debilitating disease infecting more than 20 million people every year. S. Typhi produce a genotoxin named typhoid toxin (TT, but its role in the contest of host infection is poorly characterized. The major obstacle in addressing this issue is that S. Typhi is exclusively a human pathogen. To overcome this limitation, we have used as model bacterium S. Typhimurium, and engineered it to produce endogenous levels of an active and inactive typhoid toxin, hereby named as TT (or genotoxic and cdtB (or control, respectively. To our surprise, infection with the genotoxin strain strongly suppressed intestinal inflammation, leading to a better survival of the host during the acute phase of infection, suggesting typhoid toxin may exert a protective role. The presence of a functional genotoxin was also associated with an increased frequency of asymptomatic carriers.

  20. Host immune responses after hypoxic reactivation of IFN-γ induced persistent Chlamydia trachomatis infection

    Directory of Open Access Journals (Sweden)

    Stefan eJerchel

    2014-04-01

    Full Text Available Genital tract infections with Chlamydia trachomatis (C. trachomatis are the most frequent sexually transmitted disease worldwide. Severe clinical sequelae such as pelvic inflammatory disease (PID, tubal occlusion and tubal infertility are linked to chronic inflammatory processes of persistently infected tissues. The oxygen concentrations in the female urogenital tract are physiologically low and further diminished (0.5-5 % O2, hypoxia during an ongoing inflammation. However, little is known about the effect of a low oxygen environment on genital C. trachomatis infections. In this study, we investigated the host immune responses during reactivation of IFN-γ induced persistent C. trachomatis infection under hypoxia. For this purpose, the activation of the MAP-kinases p44/42 and p38 as well as the induction of the pro-inflammatory cytokines IL-1β, IL-6, IL-8 and MCP-1 were analyzed. Upon hypoxic reactivation of IFN-γ induced persistent C. trachomatis infection, the phosphorylation of the p44/42 but not of the p38 MAP-kinase was significantly diminished compared to IFN-γ induced chlamydial persistence under normoxic condition. In addition, significantly reduced IL-6 and IL-8 mRNA expression levels were observed for reactivated Chlamydiae under hypoxia compared to a persistent chlamydial infection under normoxia. Our findings indicate that hypoxia not only reactivates IFN-γ induced persistent C. trachomatis infections resulting in increased bacterial growth and progeny but also dampens inflammatory host immune signaling responses that are normally observed in a normoxic environment.

  1. Suppression or activation of immune responses by predicted secreted proteins of the soybean rust pathogen Phakopsora pachyrhizi

    Science.gov (United States)

    Rust fungi, such as Phakopsora pachyrhizi, are major threats to crop production. They form specialized haustoria that are intimately associated with plant cells. These haustoria have roles in acquiring nutrients and secreting effector proteins that manipulate host immune systems. Functional characte...

  2. A chromosomally encoded virulence factor protects the Lyme disease pathogen against host-adaptive immunity.

    Directory of Open Access Journals (Sweden)

    Xiuli Yang

    2009-03-01

    Full Text Available Borrelia burgdorferi, the bacterial pathogen of Lyme borreliosis, differentially expresses select genes in vivo, likely contributing to microbial persistence and disease. Expression analysis of spirochete genes encoding potential membrane proteins showed that surface-located membrane protein 1 (lmp1 transcripts were expressed at high levels in the infected murine heart, especially during early stages of infection. Mice and humans with diagnosed Lyme borreliosis also developed antibodies against Lmp1. Deletion of lmp1 severely impaired the pathogen's ability to persist in diverse murine tissues including the heart, and to induce disease, which was restored upon chromosomal complementation of the mutant with the lmp1 gene. Lmp1 performs an immune-related rather than a metabolic function, as its deletion did not affect microbial persistence in immunodeficient mice, but significantly decreased spirochete resistance to the borreliacidal effects of anti-B. burgdorferi sera in a complement-independent manner. These data demonstrate the existence of a virulence factor that helps the pathogen evade host-acquired immune defense and establish persistent infection in mammals.

  3. Characterization and monitoring of host immune responses to infectious agents: what a future for microbiological diagnostics?

    Directory of Open Access Journals (Sweden)

    Riccardo Dolcetti

    2009-06-01

    Full Text Available Our knowledge on the mechanisms underlying microbial pathogenesis and host-microbe interactions has greatly improved over the last decade. In particular, the development of new and specific analytical methods has allowed the detailed characterization of innate and adaptive immune responses against clinically relevant microbial infections. Immunogenetic studies are continuously providing new insights on the genetic bases of individual differences in susceptibility to specific pathogens and most of the genetic markers identified so far include polymorphisms in genes controlling both innate and adaptive immune responses. Moreover, new standardized T cell assays allow reliable and reproducible evaluations of T cell phenotype and functions (i.e.: ELISPOT, including the identification of distinct functional signatures that are associated with the control of the infection.Although the number of these assays currently used in clinical practice is limited, a considerable increase is foreseen for the near future.This perspective constitutes an unprecedented opportunity for Clinical Microbiologists, who may now develop and apply integrated microbiologic/immunologic assays that may be useful for a more precise diagnostic definition and a more accurate clinical monitoring of the disease.

  4. HSV-1 ICP0: An E3 Ubiquitin Ligase That Counteracts Host Intrinsic and Innate Immunity

    Directory of Open Access Journals (Sweden)

    Mirna Perusina Lanfranca

    2014-05-01

    Full Text Available The herpes simplex virus type 1 (HSV-1 encoded E3 ubiquitin ligase, infected cell protein 0 (ICP0, is required for efficient lytic viral replication and regulates the switch between the lytic and latent states of HSV-1. As an E3 ubiquitin ligase, ICP0 directs the proteasomal degradation of several cellular targets, allowing the virus to counteract different cellular intrinsic and innate immune responses. In this review, we will focus on how ICP0’s E3 ubiquitin ligase activity inactivates the host intrinsic defenses, such as nuclear domain 10 (ND10, SUMO, and the DNA damage response to HSV-1 infection. In addition, we will examine ICP0’s capacity to impair the activation of interferon (innate regulatory mediators that include IFI16 (IFN γ-inducible protein 16, MyD88 (myeloid differentiation factor 88, and Mal (MyD88 adaptor-like protein. We will also consider how ICP0 allows HSV-1 to evade activation of the NF-κB (nuclear factor kappa B inflammatory signaling pathway. Finally, ICP0’s paradoxical relationship with USP7 (ubiquitin specific protease 7 and its roles in intrinsic and innate immune responses to HSV-1 infection will be discussed.

  5. Identifying Schistosoma japonicum excretory/secretory proteins and their interactions with host immune system.

    Science.gov (United States)

    Liao, Qi; Yuan, Xiongying; Xiao, Hui; Liu, Changning; Lv, Zhiyue; Zhao, Yi; Wu, Zhongdao

    2011-01-01

    Schistosoma japonicum is a major infectious agent of schistosomiasis. It has been reported that large number of proteins excreted and secreted by S. japonicum during its life cycle are important for its infection and survival in definitive hosts. These proteins can be used as ideal candidates for vaccines or drug targets. In this work, we analyzed the protein sequences of S. japonicum and found that compared with other proteins in S. japonicum, excretory/secretory (ES) proteins are generally longer, more likely to be stable and enzyme, more likely to contain immune-related binding peptides and more likely to be involved in regulation and metabolism processes. Based on the sequence difference between ES and non-ES proteins, we trained a support vector machine (SVM) with much higher accuracy than existing approaches. Using this SVM, we identified 191 new ES proteins in S. japonicum, and further predicted 7 potential interactions between these ES proteins and human immune proteins. Our results are useful to understand the pathogenesis of schistosomiasis and can serve as a new resource for vaccine or drug targets discovery for anti-schistosome.

  6. Identifying Schistosoma japonicum excretory/secretory proteins and their interactions with host immune system.

    Directory of Open Access Journals (Sweden)

    Qi Liao

    Full Text Available Schistosoma japonicum is a major infectious agent of schistosomiasis. It has been reported that large number of proteins excreted and secreted by S. japonicum during its life cycle are important for its infection and survival in definitive hosts. These proteins can be used as ideal candidates for vaccines or drug targets. In this work, we analyzed the protein sequences of S. japonicum and found that compared with other proteins in S. japonicum, excretory/secretory (ES proteins are generally longer, more likely to be stable and enzyme, more likely to contain immune-related binding peptides and more likely to be involved in regulation and metabolism processes. Based on the sequence difference between ES and non-ES proteins, we trained a support vector machine (SVM with much higher accuracy than existing approaches. Using this SVM, we identified 191 new ES proteins in S. japonicum, and further predicted 7 potential interactions between these ES proteins and human immune proteins. Our results are useful to understand the pathogenesis of schistosomiasis and can serve as a new resource for vaccine or drug targets discovery for anti-schistosome.

  7. Human cytomegalovirus latency-associated proteins elicit immune-suppressive IL-10 producing CD4⁺ T cells.

    Directory of Open Access Journals (Sweden)

    Gavin M Mason

    Full Text Available Human cytomegalovirus (HCMV is a widely prevalent human herpesvirus, which, after primary infection, persists in the host for life. In healthy individuals, the virus is well controlled by the HCMV-specific T cell response. A key feature of this persistence, in the face of a normally robust host immune response, is the establishment of viral latency. In contrast to lytic infection, which is characterised by extensive viral gene expression and virus production, long-term latency in cells of the myeloid lineage is characterised by highly restricted expression of viral genes, including UL138 and LUNA. Here we report that both UL138 and LUNA-specific T cells were detectable directly ex vivo in healthy HCMV seropositive subjects and that this response is principally CD4⁺ T cell mediated. These UL138-specific CD4⁺ T cells are able to mediate MHC class II restricted cytotoxicity and, importantly, show IFNγ effector function in the context of both lytic and latent infection. Furthermore, in contrast to CDCD4⁺ T cells specific to antigens expressed solely during lytic infection, both the UL138 and LUNA-specific CD4⁺ T cell responses included CD4⁺ T cells that secreted the immunosuppressive cytokine cIL-10. We also show that cIL-10 expressing CD4⁺ T-cells are directed against latently expressed US28 and UL111A. Taken together, our data show that latency-associated gene products of HCMV generate CD4⁺ T cell responses in vivo, which are able to elicit effector function in response to both lytic and latently infected cells. Importantly and in contrast to CD4⁺ T cell populations, which recognise antigens solely expressed during lytic infection, include a subset of cells that secrete the immunosuppressive cytokine cIL-10. This suggests that HCMV skews the T cell responses to latency-associated antigens to one that is overall suppressive in order to sustain latent carriage in vivo.

  8. Cigarette smoke-exposed saliva suppresses cellular and humoral immune responses in an animal model

    International Nuclear Information System (INIS)

    Jafarzadeh, A.; Bakhshi, H.; Rezayati, M.T.; Nemati, M.

    2009-01-01

    To evaluate the effects of cigarette smoke (CS)-exposed saliva on cellular and antibody responses in an animal model. The stimulatory and non-stimulatory saliva samples were collected from 10 healthy subjects and were then exposed to CS for 20 or 80 minutes. The CS-exposed saliva samples were administrated intraperitoneally (i.p) to male Balb/c mice. Then the delayed type hypersensitivity (DTH) and antibody responses to sheep red blood cell (SRBC) was assessed. Moreover, the total white blood cells (WBC) counts and the blood lymphocytes counts were determined. The mean of DTH responses of animal groups received 20 minutes or 80 minutes CS-exposed saliva samples was significantly lower than that observed in control group. Moreover, The mean titer of anti-SRBC antibody was significantly lower in animal groups who received 80 minutes CS-exposed stimulatory or non-stimulatory saliva as compared to control group (P<0.04 and P<0.002, respectively). The mean counts of blood lymphocytes in 80 minutes CS exposed-stimulatory saliva group was also significantly lower as compared to control group (P<0.05). These results show that the CS-exposed saliva samples have profound suppressive effects on both cellular and humoral immune response in a mouse animal model (JPMA 59:760; 2009). (author)

  9. A Murine Model of Persistent Inflammation, Immune Suppression, and Catabolism Syndrome

    Directory of Open Access Journals (Sweden)

    Amanda M. Pugh

    2017-08-01

    Full Text Available Critically ill patients that survive sepsis can develop a Persistent Inflammation, Immunosuppression, and Catabolism Syndrome (PICS, which often leads to extended recovery periods and multiple complications. Here, we utilized a cecal ligation and puncture (CLP method in mice with the goal of creating a model that concurrently displays all the characteristics of PICS. We observed that, after eight days, mice that survive the CLP develop persistent inflammation with significant myelopoiesis in the bone marrow and spleen. These mice also demonstrate ongoing immune suppression, as evidenced by the decreased total and naïve splenic CD4 and CD8 T cells with a concomitant increase in immature myeloid cells. The mice further display significant weight loss and decreased muscle mass, indicating a state of ongoing catabolism. When PICS mice are challenged with intranasal Pseudomonas aeruginosa, mortality is significantly elevated compared to sham mice. This mortality difference is associated with increased bacterial loads in the lung, as well as impaired neutrophil migration and neutrophil dysfunction in the PICS mice. Altogether, we have created a sepsis model that concurrently exhibits PICS characteristics. We postulate that this will help determine the mechanisms underlying PICS and identify potential therapeutic targets to improve outcomes for this patient population.

  10. Suppression of the primary immune response in rainbow trout, Salmo gairdneri, sublethally irradiated during embryogenesis

    International Nuclear Information System (INIS)

    Strand, J.A.; Fujihara, M.P.; Burdett, R.D.

    1975-03-01

    Eggs of rainbow trout were spawned artificially in the laboratory, fertilized, and immediately immersed in 0, 0.01, 0.1, 1.0, and 10.0 μCi/ml tritium (biological grade) contaminated spring water (pathogen free). Rearing through 20 days of embryogenesis at 10.5 +- 0.2 0 C was facilitated within a recirculation drip incubation system of 150 liter capacity. Exposure of the embryos to 0, 0.01, 0.1, 1.0, and 10.0 μCi/ml tritium resulted in an estimated total dose of 0, 0.048, 0.470, 4.550, and 40.348 rads. At 5 months post hatch, control and irradiated test fish were administered intraperitoneally 0.1 cc of a heat killed antigen (1.8 X 10 8 cells per ml, Chondrococcus columnaris) in 25 percent Freund's incomplete adjuvant. A 0.1 cc sham vaccination containing saline and 25 percent Freund's incomplete adjuvant was similarly administered to another group of control fish. At 3 weeks post vaccination and at weekly intervals thereafter, a standard tube agglutination test for the specific antigen of vaccination was performed on serum from each fish. Results showed a marked suppression of the primary immune response in fish irradiated at the 4.550 and 40.348 rad levels. (U.S.)

  11. Growth differentiation factor-15 suppresses maturation and function of dendritic cells and inhibits tumor-specific immune response.

    Directory of Open Access Journals (Sweden)

    Zhizhong Zhou

    Full Text Available Dendritic cells (DCs play a key role in the initiation stage of an antigen-specific immune response. A variety of tumor-derived factors (TDFs can suppress DC maturation and function, resulting in defects in the tumor-specific immune response. To identify unknown TDFs that may suppress DCs maturation and function, we established a high-throughput screening technology based on a human liver tumor T7 phage cDNA library and screened all of the proteins derived from hepatoma cells that potentially interact with immature DCs. Growth/differentiation factor-15 (GDF-15 was detected and chosen for further study. By incubation of DCs cultures with GDF-15, we demonstrate that GDF-15 can inhibit surface protrusion formation during DC maturation; suppress the membrane expression of CD83, CD86 and HLA-DR on DCs; enhance phagocytosis by DCs; reduce IL-12 and elevate TGF-β1 secretion by DCs; inhibit T cell stimulation and cytotoxic T lymphocyte (CTL activation by DCs. By building tumor-bearing mouse models, we demonstrate that GDF-15 can inhibit the ability of DCs to stimulate a tumor-specific immune response in vivo. These results indicate that GDF-15 may be one of the critical molecules that inhibit DC maturation and function and are involved in tumor immune escape. Thus, GDF-15 may be a novel target in tumor immunotherapy.

  12. THE BIOTIC FACTOR OF TREMATOD OPISTHORHIS FELINEUS INVASION INFLUENCE ON HOST IMMUNE STATUS AND SOMATIC CELLS PROLIFERATIVE ACTIVITY

    Directory of Open Access Journals (Sweden)

    A. G. Rybka

    2016-01-01

    Full Text Available The paper confirms long-time opisthorhis invasion role as a risk factor of host immune system reconstitution as well as an important factor in holangiocarcinomas development. It was shown that opisthorhosis invasion primal stage induce host immune system reconstitution. Host immune B-cells system is activated by metacercaria antigens, while the same antigens inhibits T-cells activity. Opisthorhis metabolites stimulate proliferative mithogen-induced T-cells acti vity. Chronic opisthorchis invasion leads to immune system disbalance. It means: decrease of specific and non-speci fic natural killers activity, number of high proliferative activity T-lymphocytes and the shift of regulatory T-cells subset to suppressors prevalence. At the same time specific as well as non-specific T-suppressors functional ability is very low. It was shown T-cells helper-amplifier activation. Despite of circulating B-cells decrease the antibody produced cells number is spleen increases significantly at the same time with circulating immune complexes accumulation. Even 3–6 month after dehelmintisation the immune system disbalance decreases but lefts. In addition, chronic opisthorhis invasion leads to the proliferative processes activation in ductal epithelium, liver, lymph nodes and in other organs which leads to cancer proliferation. According to the results obtained the opisthorhis infected patients needs to be immunocorrected before as well as after dehelmintisation for holangiocancerogenesis profylaxis.

  13. A computational tool integrating host immunity with antibiotic dynamics to study tuberculosis treatment.

    Science.gov (United States)

    Pienaar, Elsje; Cilfone, Nicholas A; Lin, Philana Ling; Dartois, Véronique; Mattila, Joshua T; Butler, J Russell; Flynn, JoAnne L; Kirschner, Denise E; Linderman, Jennifer J

    2015-02-21

    While active tuberculosis (TB) is a treatable disease, many complex factors prevent its global elimination. Part of the difficulty in developing optimal therapies is the large design space of antibiotic doses, regimens and combinations. Computational models that capture the spatial and temporal dynamics of antibiotics at the site of infection can aid in reducing the design space of costly and time-consuming animal pre-clinical and human clinical trials. The site of infection in TB is the granuloma, a collection of immune cells and bacteria that form in the lung, and new data suggest that penetration of drugs throughout granulomas is problematic. Here we integrate our computational model of granuloma formation and function with models for plasma pharmacokinetics, lung tissue pharmacokinetics and pharmacodynamics for two first line anti-TB antibiotics. The integrated model is calibrated to animal data. We make four predictions. First, antibiotics are frequently below effective concentrations inside granulomas, leading to bacterial growth between doses and contributing to the long treatment periods required for TB. Second, antibiotic concentration gradients form within granulomas, with lower concentrations toward their centers. Third, during antibiotic treatment, bacterial subpopulations are similar for INH and RIF treatment: mostly intracellular with extracellular bacteria located in areas non-permissive for replication (hypoxic areas), presenting a slowly increasing target population over time. Finally, we find that on an individual granuloma basis, pre-treatment infection severity (including bacterial burden, host cell activation and host cell death) is predictive of treatment outcome. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Stimulation of host immune defenses by a small molecule protects C. elegans from bacterial infection.

    Science.gov (United States)

    Pukkila-Worley, Read; Feinbaum, Rhonda; Kirienko, Natalia V; Larkins-Ford, Jonah; Conery, Annie L; Ausubel, Frederick M

    2012-01-01

    The nematode Caenorhabditis elegans offers currently untapped potential for carrying out high-throughput, live-animal screens of low molecular weight compound libraries to identify molecules that target a variety of cellular processes. We previously used a bacterial infection assay in C. elegans to identify 119 compounds that affect host-microbe interactions among 37,214 tested. Here we show that one of these small molecules, RPW-24, protects C. elegans from bacterial infection by stimulating the host immune response of the nematode. Using transcriptome profiling, epistasis pathway analyses with C. elegans mutants, and an RNAi screen, we show that RPW-24 promotes resistance to Pseudomonas aeruginosa infection by inducing the transcription of a remarkably small number of C. elegans genes (∼1.3% of all genes) in a manner that partially depends on the evolutionarily-conserved p38 MAP kinase pathway and the transcription factor ATF-7. These data show that the immunostimulatory activity of RPW-24 is required for its efficacy and define a novel C. elegans-based strategy to identify compounds with activity against antibiotic-resistant bacterial pathogens.

  15. Stimulation of host immune defenses by a small molecule protects C. elegans from bacterial infection.

    Directory of Open Access Journals (Sweden)

    Read Pukkila-Worley

    Full Text Available The nematode Caenorhabditis elegans offers currently untapped potential for carrying out high-throughput, live-animal screens of low molecular weight compound libraries to identify molecules that target a variety of cellular processes. We previously used a bacterial infection assay in C. elegans to identify 119 compounds that affect host-microbe interactions among 37,214 tested. Here we show that one of these small molecules, RPW-24, protects C. elegans from bacterial infection by stimulating the host immune response of the nematode. Using transcriptome profiling, epistasis pathway analyses with C. elegans mutants, and an RNAi screen, we show that RPW-24 promotes resistance to Pseudomonas aeruginosa infection by inducing the transcription of a remarkably small number of C. elegans genes (∼1.3% of all genes in a manner that partially depends on the evolutionarily-conserved p38 MAP kinase pathway and the transcription factor ATF-7. These data show that the immunostimulatory activity of RPW-24 is required for its efficacy and define a novel C. elegans-based strategy to identify compounds with activity against antibiotic-resistant bacterial pathogens.

  16. TCDD adsorbed on silica as a model for TCDD contaminated soils: Evidence for suppression of humoral immunity in mice.

    Science.gov (United States)

    Kaplan, Barbara L F; Crawford, Robert B; Kovalova, Natalia; Arencibia, Amaya; Kim, Seong Su; Pinnavaia, Thomas J; Boyd, Stephen A; Teppen, Brian J; Kaminski, Norbert E

    2011-04-11

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), the prototypical aryl hydrocarbon receptor (AhR) ligand, exhibits immune suppression in vivo and in vitro. Suppression of primary humoral immune responses in particular has been well characterized as one of the most sensitive functional immune endpoints in animals treated with TCDD. Previous studies have used purified TCDD to elucidate the mechanisms by which TCDD and dioxin-like compounds (DLC) impair IgM production by B cells, but did not represent the route by which animals and humans are likely to be exposed environmentally. In the studies reported here, mice were treated with TCDD adsorbed onto a well-defined synthetic silica phase of known purity and physical properties, followed by sensitization with sheep erythrocytes to initiate a humoral immune response. We found that surfactant-templated mesoporous forms of amorphous silica provided an ideal combination of purity, dispersibility and textural properties for immobilizing TCDD. TCDD-adsorbed silica distributed to the spleen and liver after oral administration as assessed by induction of cyp1a1 gene expression. Most notably, TCDD delivered in the adsorbed state on amorphous silica and as a solute in corn oil (CO) produced similar suppression of the anti-sheep red blood cell immunoglobulin M antibody forming cell (sRBC IgM AFC) response at equivalent doses of TCDD. These results suggest that TCDD immobilized on silicate particles found in soils distributes to the spleen and suppresses humoral immunity. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  17. A benign helminth alters the host immune system and the gut microbiota in a rat model system.

    Science.gov (United States)

    Wegener Parfrey, Laura; Jirků, Milan; Šíma, Radek; Jalovecká, Marie; Sak, Bohumil; Grigore, Karina; Jirků Pomajbíková, Kateřina

    2017-01-01

    Helminths and bacteria are major players in the mammalian gut ecosystem and each influences the host immune system and health. Declines in helminth prevalence and bacterial diversity appear to play a role in the dramatic rise of immune mediated inflammatory diseases (IMIDs) in western populations. Helminths are potent modulators of immune system and their reintroduction is a promising therapeutic avenue for IMIDs. However, the introduction of helminths represents a disturbance for the host and it is important to understand the impact of helminth reintroduction on the host, including the immune system and gut microbiome. We tested the impact of a benign tapeworm, Hymenolepis diminuta, in a rat model system. We find that H. diminuta infection results in increased interleukin 10 gene expression in the beginning of the prepatent period, consistent with induction of a type 2 immune response. We also find induction of humoral immunity during the patent period, shown here by increased IgA in feces. Further, we see an immuno-modulatory effect in the small intestine and spleen in patent period, as measured by reductions in tissue immune cells. We observed shifts in microbiota community composition during the patent period (beta-diversity) in response to H. diminuta infection. However, these compositional changes appear to be minor; they occur within families and genera common to both treatment groups. There was no change in alpha diversity. Hymenolepis diminuta is a promising model for helminth therapy because it establishes long-term, stable colonization in rats and modulates the immune system without causing bacterial dysbiosis. These results suggest that the goal of engineering a therapeutic helminth that can safely manipulate the mammalian immune system without disrupting the rest of the gut ecosystem is in reach.

  18. IPNV with high and low virulence: host immune responses and viral mutations during infection

    Directory of Open Access Journals (Sweden)

    Skjesol Astrid

    2011-08-01

    Full Text Available Abstract Background Infectious pancreatic necrosis virus (IPNV is an aquatic member of the Birnaviridae family that causes widespread disease in salmonids. IPNV is represented by multiple strains with markedly different virulence. Comparison of isolates reveals hyper variable regions (HVR, which are presumably associated with pathogenicity. However little is known about the rates and modes of sequence divergence and molecular mechanisms that determine virulence. Also how the host response may influence IPNV virulence is poorly described. Methods In this study we compared two field isolates of IPNV (NFH-Ar and NFH-El. The sequence changes, replication and mortality were assessed following experimental challenge of Atlantic salmon. Gene expression analyses with qPCR and microarray were applied to examine the immune responses in head kidney. Results Significant differences in mortality were observed between the two isolates, and viral load in the pancreas at 13 days post infection (d p.i. was more than 4 orders of magnitude greater for NFH-Ar in comparison with NFH-El. Sequence comparison of five viral genes from the IPNV isolates revealed different mutation rates and Ka/Ks ratios. A strong tendency towards non-synonymous mutations was found in the HRV of VP2 and in VP3. All mutations in VP5 produced precocious stop codons. Prior to the challenge, NFH-Ar and NFH-El possessed high and low virulence motifs in VP2, respectively. Nucleotide substitutions were noticed already during passage of viruses in CHSE-214 cells and their accumulation continued in the challenged fish. The sequence changes were notably directed towards low virulence. Co-ordinated activation of anti-viral genes with diverse functions (IFN-a1 and c, sensors - Rig-I, MDA-5, TLR8 and 9, signal transducers - Srk2, MyD88, effectors - Mx, galectin 9, galectin binding protein, antigen presentation - b2-microglobulin was observed at 13 d p.i. (NFH-Ar and 29 d p.i. (both isolates

  19. Suppression of Plant Immune Responses by the Pseudomonas savastanoi pv. savastanoi NCPPB 3335 Type III Effector Tyrosine Phosphatases HopAO1 and HopAO2

    Directory of Open Access Journals (Sweden)

    María Pilar Castañeda-Ojeda

    2017-05-01

    Full Text Available The effector repertoire of the olive pathogen P. savastanoi pv. savastanoi NCPPB 3335 includes two members of the HopAO effector family, one of the most diverse T3E families of the P. syringae complex. The study described here explores the phylogeny of these dissimilar members, HopAO1 and HopAO2, among the complex and reveals their activities as immune defense suppressors. Although HopAO1 is predominantly encoded by phylogroup 3 strains isolated from woody organs of woody hosts, both HopAO1 and HopAO2 are phylogenetically clustered according to the woody/herbaceous nature of their host of isolation, suggesting host specialization of the HopAO family across the P. syringae complex. HopAO1 and HopAO2 translocate into plant cells and show hrpL-dependent expression, which allows their classification as actively deployed type III effectors. Our data also show that HopAO1 and HopAO2 possess phosphatase activity, a hallmark of the members of this family. Both of them exert an inhibitory effect on early plant defense responses, such as ROS production and callose deposition, and are able to suppress ETI responses induced by the effectorless polymutant of P. syringae pv. tomato DC3000 (DC3000D28E in Nicotiana. Moreover, we demonstrate that a ΔhopAO1 mutant of P. savastanoi NCPBB 3335 exhibits a reduced fitness and virulence in olive plants, which supports the relevance of this effector during the interaction of this strain with its host plants. This work contributes to the field with the first report regarding functional analysis of HopAO homologs encoded by P. syringae or P. savastanoi strains isolated from woody hosts.

  20. Suppression of Plant Immune Responses by the Pseudomonas savastanoi pv. savastanoi NCPPB 3335 Type III Effector Tyrosine Phosphatases HopAO1 and HopAO2

    Science.gov (United States)

    Castañeda-Ojeda, María Pilar; Moreno-Pérez, Alba; Ramos, Cayo; López-Solanilla, Emilia

    2017-01-01

    The effector repertoire of the olive pathogen P. savastanoi pv. savastanoi NCPPB 3335 includes two members of the HopAO effector family, one of the most diverse T3E families of the P. syringae complex. The study described here explores the phylogeny of these dissimilar members, HopAO1 and HopAO2, among the complex and reveals their activities as immune defense suppressors. Although HopAO1 is predominantly encoded by phylogroup 3 strains isolated from woody organs of woody hosts, both HopAO1 and HopAO2 are phylogenetically clustered according to the woody/herbaceous nature of their host of isolation, suggesting host specialization of the HopAO family across the P. syringae complex. HopAO1 and HopAO2 translocate into plant cells and show hrpL-dependent expression, which allows their classification as actively deployed type III effectors. Our data also show that HopAO1 and HopAO2 possess phosphatase activity, a hallmark of the members of this family. Both of them exert an inhibitory effect on early plant defense responses, such as ROS production and callose deposition, and are able to suppress ETI responses induced by the effectorless polymutant of P. syringae pv. tomato DC3000 (DC3000D28E) in Nicotiana. Moreover, we demonstrate that a ΔhopAO1 mutant of P. savastanoi NCPBB 3335 exhibits a reduced fitness and virulence in olive plants, which supports the relevance of this effector during the interaction of this strain with its host plants. This work contributes to the field with the first report regarding functional analysis of HopAO homologs encoded by P. syringae or P. savastanoi strains isolated from woody hosts. PMID:28529516

  1. The Role of the Tumor Vasculature in the Host Immune Response: Implications for Therapeutic Strategies Targeting the Tumor Microenvironment.

    Science.gov (United States)

    Hendry, Shona A; Farnsworth, Rae H; Solomon, Benjamin; Achen, Marc G; Stacker, Steven A; Fox, Stephen B

    2016-01-01

    Recently developed cancer immunotherapy approaches including immune checkpoint inhibitors and chimeric antigen receptor T cell transfer are showing promising results both in trials and in clinical practice. These approaches reflect increasing recognition of the crucial role of the tumor microenvironment in cancer development and progression. Cancer cells do not act alone, but develop a complex relationship with the environment in which they reside. The host immune response to tumors is critical to the success of immunotherapy; however, the determinants of this response are incompletely understood. The immune cell infiltrate in tumors varies widely in density, composition, and clinical significance. The tumor vasculature is a key component of the microenvironment that can influence tumor behavior and treatment response and can be targeted through the use of antiangiogenic drugs. Blood vascular and lymphatic endothelial cells have important roles in the trafficking of immune cells, controlling the microenvironment, and modulating the immune response. Improving access to the tumor through vascular alteration with antiangiogenic drugs may prove an effective combinatorial strategy with immunotherapy approaches and might be applicable to many tumor types. In this review, we briefly discuss the host's immune response to cancer and the treatment strategies utilizing this response, before focusing on the pathological features of tumor blood and lymphatic vessels and the contribution these might make to tumor immune evasion.

  2. A novel, polymer-coated oncolytic measles virus overcomes immune suppression and induces robust antitumor activity

    Directory of Open Access Journals (Sweden)

    Kaname Nosaki

    2016-01-01

    Full Text Available Although various therapies are available to treat cancers, including surgery, chemotherapy, and radiotherapy, cancer has been the leading cause of death in Japan for the last 30 years, and new therapeutic modalities are urgently needed. As a new modality, there has recently been great interest in oncolytic virotherapy, with measles virus being a candidate virus expected to show strong antitumor effects. The efficacy of virotherapy, however, was strongly limited by the host immune response in previous clinical trials. To enhance and prolong the antitumor activity of virotherapy, we combined the use of two newly developed tools: the genetically engineered measles virus (MV-NPL and the multilayer virus-coating method of layer-by-layer deposition of ionic polymers. We compared the oncolytic effects of this polymer-coated MV-NPL with the naked MV-NPL, both in vitro and in vivo. In the presence of anti-MV neutralizing antibodies, the polymer-coated virus showed more enhanced oncolytic activity than did the naked MV-NPL in vitro. We also examined antitumor activities in virus-treated mice. Complement-dependent cytotoxicity and antitumor activities were higher in mice treated with polymer-coated MV-NPL than in mice treated with the naked virus. This novel, polymer-coated MV-NPL is promising for clinical cancer therapy in the future.

  3. An IMD-like pathway mediates both endosymbiont control and host immunity in the cereal weevil Sitophilus spp.

    Science.gov (United States)

    Maire, Justin; Vincent-Monégat, Carole; Masson, Florent; Zaidman-Rémy, Anna; Heddi, Abdelaziz

    2018-01-08

    Many insects developing on nutritionally unbalanced diets have evolved symbiotic associations with vertically transmitted intracellular bacteria (endosymbionts) that provide them with metabolic components, thereby improving the host's abilities to thrive on such poor ecological niches. While host-endosymbiont coevolutionary constraints are known to entail massive genomic changes in the microbial partner, host's genomic evolution remains elusive, particularly with regard to the immune system. In the cereal weevil Sitophilus spp., which houses Sodalis pierantonius, endosymbionts are secluded in specialized host cells, the bacteriocytes that group together as an organ, the bacteriome. We previously reported that at standard conditions, the bacteriome highly expresses the coleoptericin A (colA) antimicrobial peptide (AMP), which was shown to prevent endosymbiont escape from the bacteriocytes. However, following the insect systemic infection by pathogens, the bacteriome upregulates a cocktail of AMP encoding genes, including colA. The regulations that allow these contrasted immune responses remain unknown. In this short report, we provide evidence that an IMD-like pathway is conserved in two sibling species of cereal weevils, Sitophilus oryzae and Sitophilus zeamais. RNA interference (RNAi) experiments showed that imd and relish genes are essential for (i) colA expression in the bacteriome under standard conditions, (ii) AMP up-regulation in the bacteriome following a systemic immune challenge, and (iii) AMP systemic induction following an immune challenge. Histological analyses also showed that relish inhibition by RNAi resulted in endosymbiont escape from the bacteriome, strengthening the involvement of an IMD-like pathway in endosymbiont control. We conclude that Sitophilus' IMD-like pathway mediates both the bacteriome immune program involved in endosymbiont seclusion within the bacteriocytes and the systemic and local immune responses to exogenous challenges. This

  4. Ralstonia solanacearum Type III Effector RipAY Is a Glutathione-Degrading Enzyme That Is Activated by Plant Cytosolic Thioredoxins and Suppresses Plant Immunity

    Directory of Open Access Journals (Sweden)

    Takafumi Mukaihara

    2016-04-01

    Full Text Available The plant pathogen Ralstonia solanacearum uses a large repertoire of type III effector proteins to succeed in infection. To clarify the function of effector proteins in host eukaryote cells, we expressed effectors in yeast cells and identified seven effector proteins that interfere with yeast growth. One of the effector proteins, RipAY, was found to share homology with the ChaC family proteins that function as γ-glutamyl cyclotransferases, which degrade glutathione (GSH, a tripeptide that plays important roles in the plant immune system. RipAY significantly inhibited yeast growth and simultaneously induced rapid GSH depletion when expressed in yeast cells. The in vitro GSH degradation activity of RipAY is specifically activated by eukaryotic factors in the yeast and plant extracts. Biochemical purification of the yeast protein identified that RipAY is activated by thioredoxin TRX2. On the other hand, RipAY was not activated by bacterial thioredoxins. Interestingly, RipAY was activated by plant h-type thioredoxins that exist in large amounts in the plant cytosol, but not by chloroplastic m-, f-, x-, y- and z-type thioredoxins, in a thiol-independent manner. The transient expression of RipAY decreased the GSH level in plant cells and affected the flg22-triggered production of reactive oxygen species (ROS and expression of pathogen-associated molecular pattern (PAMP-triggered immunity (PTI marker genes in Nicotiana benthamiana leaves. These results indicate that RipAY is activated by host cytosolic thioredoxins and degrades GSH specifically in plant cells to suppress plant immunity.

  5. Differential responses of innate immunity triggered by different subtypes of influenza a viruses in human and avian hosts.

    Science.gov (United States)

    Cao, Yingying; Huang, Yaowei; Xu, Ke; Liu, Yuanhua; Li, Xuan; Xu, Ye; Zhong, Wu; Hao, Pei

    2017-12-21

    Innate immunity provides first line of defense against viral infections. The interactions between hosts and influenza A virus and the response of host innate immunity to viral infection are critical determinants for the pathogenicity or virulence of influenza A viruses. This study was designed to investigate global changes of gene expression and detailed responses of innate immune systems in human and avian hosts during the course of infection with various subtypes of influenza A viruses, using collected and self-generated transcriptome sequencing data from human bronchial epithelial (HBE), human tracheobronchial epithelial (HTBE), and A549 cells infected with influenza A virus subtypes, namely H1N1, H3N2, H5N1 HALo mutant, and H7N9, and from ileum and lung of chicken and quail infected with H5N1, or H5N2. We examined the induction of various cytokines and chemokines in human hosts infected with different subtypes of influenza A viruses. Type I and III interferons were found to be differentially induced with each subtype. H3N2 caused abrupt and the strongest response of IFN-β and IFN-λ, followed by H1N1 (though much weaker), whereas H5N1 HALo mutant and H7N9 induced very minor change in expression of type I and III interferons. Similarly, differential responses of other innate immunity-related genes were observed, including TMEM173, MX1, OASL, IFI6, IFITs, IFITMs, and various chemokine genes like CCL5, CX3CL1, and chemokine (C-X-C motif) ligands, SOCS (suppressors of cytokine signaling) genes. Third, the replication kinetics of H1N1, H3N2, H5N1 HALo mutant and H7N9 subtypes were analyzed, H5N1 HALo mutant was found to have the highest viral replication rate, followed by H3N2, and H1N1, while H7N9 had a rate similar to that of H1N1 or H3N2 though in different host cell type. Our study illustrated the differential responses of innate immunity to infections of different subtypes of influenza A viruses. We found the influenza viruses which induced stronger innate

  6. Targeting of Immune Cells by Dual TLR2/7 Ligands Suppresses Features of Allergic Th2 Immune Responses in Mice

    Directory of Open Access Journals (Sweden)

    Jonathan Laiño

    2017-01-01

    Full Text Available Background. TLR ligands can promote Th1-biased immune responses, mimicking potent stimuli of viruses and bacteria. Aim. To investigate the adjuvant properties of dual TLR2/7 ligands compared to those of the mixture of both single ligands. Methods. Dual TLR2/7 ligands: CL401, CL413, and CL531, including CL264 (TLR7-ligand and Pam2CysK4 (TLR2-ligand, were used. Immune-modulatory capacity of the dual ligands with the individual ligands alone or as a mixture in mouse BMmDCs, BMmDC:TC cocultures, or BMCMCs was compared and assessed in naïve mice and in a mouse model of OVA-induced intestinal allergy. Results. CL413 and CL531 induced BMmDC-derived IL-10 secretion, suppressed rOVA-induced IL-5 secretion from OVA-specific DO11.10 CD4+ TCs, and induced proinflammatory cytokine secretion in vivo. In contrast, CL401 induced considerably less IL-10 secretion and led to IL-17A production in BMmDC:TC cocultures, but not BMCMC IL-6 secretion, or IL-6 or TNF-α production in vivo. No immune-modulating effects were observed with single ligands. All dual TLR2/7 ligands suppressed DNP-induced IgE-and-Ag-specific mast cell degranulation. Compared to vaccination with OVA, vaccination with the mixture CL531 and OVA, significantly suppressed OVA-specific IgE production in the intestinal allergy model. Conclusions. Based on beneficial immune-modulating properties, CL413 and CL531 may have utility as potential adjuvants for allergy treatment.

  7. T-cell autophagy deficiency increases mortality and suppresses immune responses after sepsis.

    Directory of Open Access Journals (Sweden)

    Chih-Wen Lin

    Full Text Available Although the role of autophagy in sepsis has been characterized in several organs, its role in the adaptive immune system remains to be ascertained. This study aimed to investigate the role of autophagy in sepsis-induced T cell apoptosis and immunosuppression, using knockout mice with T cell specific deletion of autophagy essential gene Atg7.Sepsis was induced in a cecal ligation and puncture (CLP model, with T-cell-specific Atg7-knockout mice compared to control mice. Autophagic vacuoles examined by electron microscopy were decreased in the spleen after CLP. Autophagy proteins LC3-II and ATG7, and autophagosomes and autolysosomes stained by Cyto-ID Green and acridine orange were decreased in CD4+ and CD8+ splenocytes at 18 h and 24 h after CLP. This decrease in autophagy was associated with increased apoptosis of CD4+ and CD8+ after CLP. Moreover, mice lacking Atg7 in T lymphocytes showed an increase in sepsis-induced mortality, T cell apoptosis and loss of CD4+ and CD8+ T cells, in comparison to control mice. This was accompanied by suppressed cytokine production of Th1/Th2/Th17 by CD4+ T cells, reduced phagocytosis in macrophages and decreased bacterial clearance in the spleen after sepsis.These results indicated that sepsis led to down-regulation of autophagy in T lymphocytes, which may result in enhanced apoptosis induction and decreased survival in sepsis. Autophagy may therefore play a protective role against sepsis-induced T lymphocyte apoptosis and immunosuppression.

  8. The carcinogenic potential of tacrolimus ointment beyond immune suppression: a hypothesis creating case report

    International Nuclear Information System (INIS)

    Becker, Jürgen C; Houben, Roland; Vetter, Claudia S; Bröcker, Eva B

    2006-01-01

    Since tacrolimus ointment was approved by the U.S. Food and Drug Administration (FDA) as a promising treatment for atopic dermatitis, it has been approved in more than 30 additional countries, including numerous European Union member nations. Moreover, in the current clinical routine the use of this drug is no longer restricted to the approved indication, but has been extended to a wide variety of inflammatory skin diseases including some with the potential of malignant transformation. So far, the side-effects reported from the topical use of tacrolimus have been relatively minor (e.g. burning, pruritus, erythema). Recently, however, the FDA reviewed the safety of topical tacrolimus, which resulted in a warning that the use of calcineurin inhibitors may be associated with an increased risk of cancer. Oral lichen planus (OLP) was diagnosed in a 56-year-old women in February 1999. After several ineffective local and systemic therapeutic measures an off-label treatment of this recalcitrant condition using Tacrolimus 0.1% ointment was initiated in May 2002. After a few weeks of treatment most of the lesions ameliorated, with the exception of the plaques on the sides of the tongue. Nevertheless, the patient became free of symptoms which, however, reoccurred once tacrolimus was weaned, as a consequence treatment was maintained. In April 2005, the plaques on the left side of the tongue appeared increasingly compact and a biopsy specimen confirmed the suspected diagnosis of an oral squamous cell carcinoma. The suspected causal relationship between topical use of tacrolimus and the development of a squamous cell carcinoma prompted us to test the notion that the carcinogenicity of tacrolimus may go beyond mere immune suppression. To this end, tacrolimus has been shown to have an impact on cancer signalling pathways such as the MAPK and the p53 pathway. In the given case, we were able to demonstrate that these pathways had also been altered subsequent to tacrolimus therapy

  9. The carcinogenic potential of tacrolimus ointment beyond immune suppression: a hypothesis creating case report

    Directory of Open Access Journals (Sweden)

    Vetter Claudia S

    2006-01-01

    Full Text Available Abstract Background Since tacrolimus ointment was approved by the U.S. Food and Drug Administration (FDA as a promising treatment for atopic dermatitis, it has been approved in more than 30 additional countries, including numerous European Union member nations. Moreover, in the current clinical routine the use of this drug is no longer restricted to the approved indication, but has been extended to a wide variety of inflammatory skin diseases including some with the potential of malignant transformation. So far, the side-effects reported from the topical use of tacrolimus have been relatively minor (e.g. burning, pruritus, erythema. Recently, however, the FDA reviewed the safety of topical tacrolimus, which resulted in a warning that the use of calcineurin inhibitors may be associated with an increased risk of cancer. Case presentation Oral lichen planus (OLP was diagnosed in a 56-year-old women in February 1999. After several ineffective local and systemic therapeutic measures an off-label treatment of this recalcitrant condition using Tacrolimus 0.1% ointment was initiated in May 2002. After a few weeks of treatment most of the lesions ameliorated, with the exception of the plaques on the sides of the tongue. Nevertheless, the patient became free of symptoms which, however, reoccurred once tacrolimus was weaned, as a consequence treatment was maintained. In April 2005, the plaques on the left side of the tongue appeared increasingly compact and a biopsy specimen confirmed the suspected diagnosis of an oral squamous cell carcinoma. Conclusion The suspected causal relationship between topical use of tacrolimus and the development of a squamous cell carcinoma prompted us to test the notion that the carcinogenicity of tacrolimus may go beyond mere immune suppression. To this end, tacrolimus has been shown to have an impact on cancer signalling pathways such as the MAPK and the p53 pathway. In the given case, we were able to demonstrate that these

  10. Immune Suppressive Effects of Tonsil-Derived Mesenchymal Stem Cells on Mouse Bone-Marrow-Derived Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Minhwa Park

    2015-01-01

    Full Text Available Mesenchymal stem cells (MSCs are considered valuable sources for cell therapy because of their immune regulatory function. Here, we investigated the effects of tonsil-derived MSCs (T-MSCs on the differentiation, maturation, and function of dendritic cells (DCs. We examined the effect of T-MSCs on differentiation and maturation of bone-marrow- (BM- derived monocytes into DCs and we found suppressive effect of T-MSCs on DCs via direct contact as well as soluble mediators. Moreover, T cell proliferation, normally increased in the presence of DCs, was inhibited by T-MSCs. Differentiation of CD4+ T cell subsets by the DC-T cell interaction also was inhibited by T-MSCs. The soluble mediators suppressed by T-MSCs were granulocyte-macrophage colony-stimulating factor (GM-CSF, RANTES, interleukin-6 (IL-6, and monocyte chemoattractant protein-1 (MCP-1. Taken together, T-MSCs exert immune modulatory function via suppression of the differentiation, maturation, and function of BM-derived DCs. Our data suggests that T-MSCs could be used as a novel source of stem cell therapy as immune modulators.

  11. Permanence of suppression of the primary immune response in rainbow trout, Salmo gairdneri, sublethally exposed to tritiated water during embryognesis

    International Nuclear Information System (INIS)

    Strand, J.A.; Fujihara, M.P.; Poston, T.M.; Abernethy, C.S.

    1982-01-01

    Previous experiments demonstrated that antibody synthesis in response to a challenge from the bacterium, Flexibacter columnaris, was significantly suppressed in juvenile (5 month) rainbow trout following exposure to tritium at doses as low as 4.0 rads when administered during the first 20 days of embryogenesis. In continuing studies, a secondary challenge to columnaris cells delivered to yearling (17 month) trout was used to test the hypothesis that early embryonic exposure to tritium irradiation (0, 0.04, 0.4, 4.0, and 40.0 rads) resulted in permanent injury to the primary immune process. Results indicated that under the prescribed experimental conditions, suppression of the primary immune response was permanent; that is, the degree of injury in yearling fish (17 months) equaled or exceeded that found in juvenile fish (5 months). At levels in the range of the maximum permissible concentration (MPC), tritium produced measurable, dose dependent, and irreversible suppression of immune capacity in affected fish. The threshold-free and exponential nature of the dose-response curve suggests extrapolation of effects to even lower exposures. (author)

  12. Brain microbial populations in HIV/AIDS: α-proteobacteria predominate independent of host immune status.

    Directory of Open Access Journals (Sweden)

    William G Branton

    Full Text Available The brain is assumed to be a sterile organ in the absence of disease although the impact of immune disruption is uncertain in terms of brain microbial diversity or quantity. To investigate microbial diversity and quantity in the brain, the profile of infectious agents was examined in pathologically normal and abnormal brains from persons with HIV/AIDS [HIV] (n = 12, other disease controls [ODC] (n = 14 and in cerebral surgical resections for epilepsy [SURG] (n = 6. Deep sequencing of cerebral white matter-derived RNA from the HIV (n = 4 and ODC (n = 4 patients and SURG (n = 2 groups revealed bacterially-encoded 16 s RNA sequences in all brain specimens with α-proteobacteria representing over 70% of bacterial sequences while the other 30% of bacterial classes varied widely. Bacterial rRNA was detected in white matter glial cells by in situ hybridization and peptidoglycan immunoreactivity was also localized principally in glia in human brains. Analyses of amplified bacterial 16 s rRNA sequences disclosed that Proteobacteria was the principal bacterial phylum in all human brain samples with similar bacterial rRNA quantities in HIV and ODC groups despite increased host neuroimmune responses in the HIV group. Exogenous viruses including bacteriophage and human herpes viruses-4, -5 and -6 were detected variably in autopsied brains from both clinical groups. Brains from SIV- and SHIV-infected macaques displayed a profile of bacterial phyla also dominated by Proteobacteria but bacterial sequences were not detected in experimentally FIV-infected cat or RAG1⁻/⁻ mouse brains. Intracerebral implantation of human brain homogenates into RAG1⁻/⁻ mice revealed a preponderance of α-proteobacteria 16 s RNA sequences in the brains of recipient mice at 7 weeks post-implantation, which was abrogated by prior heat-treatment of the brain homogenate. Thus, α-proteobacteria represented the major bacterial component of the primate brain

  13. Host heterogeneous ribonucleoprotein K (hnRNP K as a potential target to suppress hepatitis B virus replication.

    Directory of Open Access Journals (Sweden)

    2005-07-01

    Full Text Available BACKGROUND: Hepatitis B virus (HBV infection results in complications such as cirrhosis and hepatocellular carcinoma. Suppressing viral replication in chronic HBV carriers is an effective approach to controlling disease progression. Although antiviral compounds are available, we aimed to identify host factors that have a significant effect on viral replication efficiency. METHODS AND FINDINGS: We studied a group of hepatitis B carriers by associating serum viral load with their respective HBV genomes, and observed a significant association between high patient serum viral load with a natural sequence variant within the HBV enhancer II (Enh II regulatory region at position 1752. Using a viral fragment as an affinity binding probe, we isolated a host DNA-binding protein belonging to the class of heterogeneous nuclear ribonucleoproteins--hnRNP K--that binds to and modulates the replicative efficiency of HBV. In cell transfection studies, overexpression of hnRNP K augmented HBV replication, while gene silencing of endogenous hnRNP K carried out by small interfering RNAs resulted in a significant reduction of HBV viral load. CONCLUSION: The evidence presented in this study describes a wider role for hnRNP K beyond maintenance of host cellular functions and may represent a novel target for pharmacologic intervention of HBV replication.

  14. Longitudinal Antigenic Sequences and Sites from Intra-Host Evolution (LASSIE Identifies Immune-Selected HIV Variants

    Directory of Open Access Journals (Sweden)

    Peter Hraber

    2015-10-01

    Full Text Available Within-host genetic sequencing from samples collected over time provides a dynamic view of how viruses evade host immunity. Immune-driven mutations might stimulate neutralization breadth by selecting antibodies adapted to cycles of immune escape that generate within-subject epitope diversity. Comprehensive identification of immune-escape mutations is experimentally and computationally challenging. With current technology, many more viral sequences can readily be obtained than can be tested for binding and neutralization, making down-selection necessary. Typically, this is done manually, by picking variants that represent different time-points and branches on a phylogenetic tree. Such strategies are likely to miss many relevant mutations and combinations of mutations, and to be redundant for other mutations. Longitudinal Antigenic Sequences and Sites from Intrahost Evolution (LASSIE uses transmitted founder loss to identify virus “hot-spots” under putative immune selection and chooses sequences that represent recurrent mutations in selected sites. LASSIE favors earliest sequences in which mutations arise. With well-characterized longitudinal Env sequences, we confirmed selected sites were concentrated in antibody contacts and selected sequences represented diverse antigenic phenotypes. Practical applications include rapidly identifying immune targets under selective pressure within a subject, selecting minimal sets of reagents for immunological assays that characterize evolving antibody responses, and for immunogens in polyvalent “cocktail” vaccines.

  15. Identification of immune response-related genes in the Chinese oak silkworm, Antheraea pernyi by suppression subtractive hybridization.

    Science.gov (United States)

    Liu, Qiu-Ning; Zhu, Bao-Jian; Wang, Lei; Wei, Guo-Qing; Dai, Li-Shang; Lin, Kun-Zhang; Sun, Yu; Qiu, Jian-Feng; Fu, Wei-Wei; Liu, Chao-Liang

    2013-11-01

    Insects possess an innate immune system that responds to invading microorganisms. In this study, a subtractive cDNA library was constructed to screen for immune response-related genes in the fat bodies of Antheraea pernyi (Lepidoptera: Saturniidae) pupa challenged with Escherichia coli. Four hundred putative EST clones were identified by suppression subtractive hybridization (SSH), including 50 immune response-related genes, three cytoskeleton genes, eight cell cycle and apoptosis genes, five respiration and energy metabolism genes, five transport genes, 40 metabolism genes, ten stress response genes, four transcription and translation regulation genes and 77 unknown genes. To verify the reliability of the SSH data, the transcription of a set of randomly selected immune response-related genes were confirmed by semi-quantitative reverse transcription-PCR (RT-PCR) and real-time quantitative reverse transcription-PCR (qRT-PCR). These identified immune response-related genes provide insight into understanding the innate immunity in A. pernyi. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Trypanosome infection establishment in the tsetse fly gut is influenced by microbiome-regulated host immune barriers.

    Directory of Open Access Journals (Sweden)

    Brian L Weiss

    Full Text Available Tsetse flies (Glossina spp. vector pathogenic African trypanosomes, which cause sleeping sickness in humans and nagana in domesticated animals. Additionally, tsetse harbors 3 maternally transmitted endosymbiotic bacteria that modulate their host's physiology. Tsetse is highly resistant to infection with trypanosomes, and this phenotype depends on multiple physiological factors at the time of challenge. These factors include host age, density of maternally-derived trypanolytic effector molecules present in the gut, and symbiont status during development. In this study, we investigated the molecular mechanisms that result in tsetse's resistance to trypanosomes. We found that following parasite challenge, young susceptible tsetse present a highly attenuated immune response. In contrast, mature refractory flies express higher levels of genes associated with humoral (attacin and pgrp-lb and epithelial (inducible nitric oxide synthase and dual oxidase immunity. Additionally, we discovered that tsetse must harbor its endogenous microbiome during intrauterine larval development in order to present a parasite refractory phenotype during adulthood. Interestingly, mature aposymbiotic flies (Gmm(Apo present a strong immune response earlier in the infection process than do WT flies that harbor symbiotic bacteria throughout their entire lifecycle. However, this early response fails to confer significant resistance to trypanosomes. Gmm(Apo adults present a structurally compromised peritrophic matrix (PM, which lines the fly midgut and serves as a physical barrier that separates luminal contents from immune responsive epithelial cells. We propose that the early immune response we observe in Gmm(Apo flies following parasite challenge results from the premature exposure of gut epithelia to parasite-derived immunogens in the absence of a robust PM. Thus, tsetse's PM appears to regulate the timing of host immune induction following parasite challenge. Our results

  17. Possible Therapeutic Application of Targeting Type II Natural Killer T Cell-Mediated Suppression of Tumor Immunity

    Science.gov (United States)

    Kato, Shingo; Berzofsky, Jay A.; Terabe, Masaki

    2018-01-01

    Natural killer T (NKT) cells are a unique T cell subset that exhibits characteristics from both the innate immune cells and T cells. There are at least two subsets of NKT cells, type I and type II. These two subsets of NKT cells have opposite functions in antitumor immunity. Type I NKT cells usually enhance and type II NKT cells suppress antitumor immunity. In addition, these two subsets of NKT cells cross-regulate each other. In this review, we mainly focus on immunosuppressive NKT cells, type II NKT cells. After summarizing their definition, experimental tools to study them, and subsets of them, we will discuss possible therapeutic applications of type II NKT cell pathway targeted therapies. PMID:29520281

  18. Scabies Mite Peritrophins Are Potential Targets of Human Host Innate Immunity

    Science.gov (United States)

    Holt, Deborah C.; Kemp, Dave J.; Fischer, Katja

    2011-01-01

    the complement cascade. These initial findings indicate a novel role of scabies mite peritrophins in triggering a host innate immune response within the mite gut. PMID:21980545

  19. Scabies mite peritrophins are potential targets of human host innate immunity.

    Directory of Open Access Journals (Sweden)

    Angela Mika

    2011-09-01

    lectin pathway of the complement cascade. These initial findings indicate a novel role of scabies mite peritrophins in triggering a host innate immune response within the mite gut.

  20. Host immunity in the protective response to vaccination with heat-killed Burkholderia mallei

    Directory of Open Access Journals (Sweden)

    Paessler Slobodan

    2008-09-01

    Full Text Available Abstract Background We performed initial cell, cytokine and complement depletion studies to investigate the possible role of these effectors in response to vaccination with heat-killed Burkholderia mallei in a susceptible BALB/c mouse model of infection. Results While protection with heat-killed bacilli did not result in sterilizing immunity, limited protection was afforded against an otherwise lethal infection and provided insight into potential host protective mechanisms. Our results demonstrated that mice depleted of either B cells, TNF-α or IFN-γ exhibited decreased survival rates, indicating a role for these effectors in obtaining partial protection from a lethal challenge by the intraperitoneal route. Additionally, complement depletion had no effect on immunoglobulin production when compared to non-complement depleted controls infected intranasally. Conclusion The data provide a basis for future studies of protection via vaccination using either subunit or whole-organism vaccine preparations from lethal infection in the experimental BALB/c mouse model. The results of this study demonstrate participation of B220+ cells and pro-inflammatory cytokines IFN-γ and TNF-α in protection following HK vaccination.

  1. Association of the Host Immune Response with Protection Using a Live Attenuated African Swine Fever Virus Model.

    Science.gov (United States)

    Carlson, Jolene; O'Donnell, Vivian; Alfano, Marialexia; Velazquez Salinas, Lauro; Holinka, Lauren G; Krug, Peter W; Gladue, Douglas P; Higgs, Stephen; Borca, Manuel V

    2016-10-22

    African swine fever (ASF) is a lethal hemorrhagic disease of swine caused by a double-stranded DNA virus, ASF virus (ASFV). There is no vaccine to prevent the disease and current control measures are limited to culling and restricting animal movement. Swine infected with attenuated strains are protected against challenge with a homologous virulent virus, but there is limited knowledge of the host immune mechanisms generating that protection. Swine infected with Pretoriuskop/96/4 (Pret4) virus develop a fatal severe disease, while a derivative strain lacking virulence-associated gene 9GL (Pret4Δ9GL virus) is completely attenuated. Swine infected with Pret4Δ9GL virus and challenged with the virulent parental virus at 7, 10, 14, 21, and 28 days post infection (dpi) showed a progressive acquisition of protection (from 40% at 7 dpi to 80% at 21 and 28 dpi). This animal model was used to associate the presence of host immune response (ASFV-specific antibody and interferon (IFN)-γ responses, or specific cytokine profiles) and protection against challenge. With the exception of ASFV-specific antibodies in survivors challenged at 21 and 28 dpi, no association between the parameters assessed and protection could be established. These results, encompassing data from 65 immunized swine, underscore the complexity of the system under study, suggesting that protection relies on the concurrence of different host immune mechanisms.

  2. Association of the Host Immune Response with Protection Using a Live Attenuated African Swine Fever Virus Model

    Directory of Open Access Journals (Sweden)

    Jolene Carlson

    2016-10-01

    Full Text Available African swine fever (ASF is a lethal hemorrhagic disease of swine caused by a double-stranded DNA virus, ASF virus (ASFV. There is no vaccine to prevent the disease and current control measures are limited to culling and restricting animal movement. Swine infected with attenuated strains are protected against challenge with a homologous virulent virus, but there is limited knowledge of the host immune mechanisms generating that protection. Swine infected with Pretoriuskop/96/4 (Pret4 virus develop a fatal severe disease, while a derivative strain lacking virulence-associated gene 9GL (Pret4Δ9GL virus is completely attenuated. Swine infected with Pret4Δ9GL virus and challenged with the virulent parental virus at 7, 10, 14, 21, and 28 days post infection (dpi showed a progressive acquisition of protection (from 40% at 7 dpi to 80% at 21 and 28 dpi. This animal model was used to associate the presence of host immune response (ASFV-specific antibody and interferon (IFN-γ responses, or specific cytokine profiles and protection against challenge. With the exception of ASFV-specific antibodies in survivors challenged at 21 and 28 dpi, no association between the parameters assessed and protection could be established. These results, encompassing data from 65 immunized swine, underscore the complexity of the system under study, suggesting that protection relies on the concurrence of different host immune mechanisms.

  3. Mechanisms of Host-Pathogen Protein Complex Formation and Bacterial Immune Evasion of Streptococcus suis Protein Fhb.

    Science.gov (United States)

    Li, Xueqin; Liu, Peng; Gan, Shuzhen; Zhang, Chunmao; Zheng, Yuling; Jiang, Yongqiang; Yuan, Yuan

    2016-08-12

    Streptococcus suis serotype 2 (S. suis 2)-induced sepsis and meningitis are often accompanied by bacteremia. The evasion of polymorphonuclear leukocyte-mediated phagocytic clearance is central to the establishment of bacteremia caused by S. suis 2 and is facilitated by the ability of factor H (FH)-binding protein (Fhb) to bind FH on the bacterial surface, thereby impeding alternative pathway complement activation and phagocytic clearance. Here, C3b/C3d was found to bind to Fhb, along with FH, forming a large immune complex. The formation of this immune complex was mediated by domain II of Fhb via electrostatic and hydrophobic interactions, which, to our knowledge, is a new type of interaction. Interestingly, Fhb was found to be associated with the cell envelope and also present in the culture supernatant, where secreted Fhb inhibited complement activation via interactions with domain II, thereby enhancing antiphagocytic clearance by polymorphonuclear leukocytes. Thus, Fhb is a multifunctional bacterial protein, which binds host complement component C3 as well as FH and interferes with innate immune recognition in a secret protein manner. S. suis 2 therefore appears to have developed a new strategy to combat host innate immunity and enhance survival in host blood. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Mechanisms of Host-Pathogen Protein Complex Formation and Bacterial Immune Evasion of Streptococcus suis Protein Fhb*

    Science.gov (United States)

    Li, Xueqin; Liu, Peng; Gan, Shuzhen; Zhang, Chunmao; Zheng, Yuling; Jiang, Yongqiang; Yuan, Yuan

    2016-01-01

    Streptococcus suis serotype 2 (S. suis 2)-induced sepsis and meningitis are often accompanied by bacteremia. The evasion of polymorphonuclear leukocyte-mediated phagocytic clearance is central to the establishment of bacteremia caused by S. suis 2 and is facilitated by the ability of factor H (FH)-binding protein (Fhb) to bind FH on the bacterial surface, thereby impeding alternative pathway complement activation and phagocytic clearance. Here, C3b/C3d was found to bind to Fhb, along with FH, forming a large immune complex. The formation of this immune complex was mediated by domain II of Fhb via electrostatic and hydrophobic interactions, which, to our knowledge, is a new type of interaction. Interestingly, Fhb was found to be associated with the cell envelope and also present in the culture supernatant, where secreted Fhb inhibited complement activation via interactions with domain II, thereby enhancing antiphagocytic clearance by polymorphonuclear leukocytes. Thus, Fhb is a multifunctional bacterial protein, which binds host complement component C3 as well as FH and interferes with innate immune recognition in a secret protein manner. S. suis 2 therefore appears to have developed a new strategy to combat host innate immunity and enhance survival in host blood. PMID:27342778

  5. Suppression of adaptive immunity to heterologous antigens during Plasmodium infection through hemozoin-induced failure of dendritic cell function

    Directory of Open Access Journals (Sweden)

    Phillips R

    2006-04-01

    Full Text Available Abstract Background Dendritic cells (DCs are central to the initiation and regulation of the adaptive immune response during infection. Modulation of DC function may therefore allow evasion of the immune system by pathogens. Significant depression of the host's systemic immune response to both concurrent infections and heterologous vaccines has been observed during malaria infection, but the mechanisms underlying this immune hyporesponsiveness are controversial. Results Here, we demonstrate that the blood stages of malaria infection induce a failure of DC function in vitro and in vivo, causing suboptimal activation of T cells involved in heterologous immune responses. This effect on T-cell activation can be transferred to uninfected recipients by DCs isolated from infected mice. Significantly, T cells activated by these DCs subsequently lack effector function, as demonstrated by a failure to migrate to lymphoid-organ follicles, resulting in an absence of B-cell responses to heterologous antigens. Fractionation studies show that hemozoin, rather than infected erythrocyte (red blood cell membranes, reproduces the effect of intact infected red blood cells on DCs. Furthermore, hemozoin-containing DCs could be identified in T-cell areas of the spleen in vivo. Conclusion Plasmodium infection inhibits the induction of adaptive immunity to heterologous antigens by modulating DC function, providing a potential explanation for epidemiological studies linking endemic malaria with secondary infections and reduced vaccine efficacy.

  6. How Human Papillomavirus Replication and Immune Evasion Strategies Take Advantage of the Host DNA Damage Repair Machinery.

    Science.gov (United States)

    Bordignon, Valentina; Di Domenico, Enea Gino; Trento, Elisabetta; D'Agosto, Giovanna; Cavallo, Ilaria; Pontone, Martina; Pimpinelli, Fulvia; Mariani, Luciano; Ensoli, Fabrizio

    2017-12-19

    The DNA damage response (DDR) is a complex signalling network activated when DNA is altered by intrinsic or extrinsic agents. DDR plays important roles in genome stability and cell cycle regulation, as well as in tumour transformation. Viruses have evolved successful life cycle strategies in order to ensure a chronic persistence in the host, virtually avoiding systemic sequelae and death. This process promotes the periodic shedding of large amounts of infectious particles to maintain a virus reservoir in individual hosts, while allowing virus spreading within the community. To achieve such a successful lifestyle, the human papilloma virus (HPV) needs to escape the host defence systems. The key to understanding how this is achieved is in the virus replication process that provides by itself an evasion mechanism by inhibiting and delaying the host immune response against the viral infection. Numerous studies have demonstrated that HPV exploits both the ataxia-telangiectasia mutated (ATM) and ataxia-telangiectasia and rad3-related (ATR) DDR pathways to replicate its genome and maintain a persistent infection by downregulating the innate and cell-mediated immunity. This review outlines how HPV interacts with the ATM- and ATR-dependent DDR machinery during the viral life cycle to create an environment favourable to viral replication, and how the interaction with the signal transducers and activators of transcription (STAT) protein family and the deregulation of the Janus kinase (JAK)-STAT pathways may impact the expression of interferon-inducible genes and the innate immune responses.

  7. The bacterium Wolbachia exploits host innate immunity to establish a symbiotic relationship with the dengue vector mosquito Aedes aegypti.

    Science.gov (United States)

    Pan, Xiaoling; Pike, Andrew; Joshi, Deepak; Bian, Guowu; McFadden, Michael J; Lu, Peng; Liang, Xiao; Zhang, Fengrui; Raikhel, Alexander S; Xi, Zhiyong

    2018-01-01

    A host's immune system plays a central role in shaping the composition of the microbiota and, in return, resident microbes influence immune responses. Symbiotic associations of the maternally transmitted bacterium Wolbachia occur with a wide range of arthropods. It is, however, absent from the dengue and Zika vector mosquito Aedes aegypti in nature. When Wolbachia is artificially forced to form symbiosis with this new mosquito host, it boosts the basal immune response and enhances the mosquito's resistance to pathogens, including dengue, Zika virus and malaria parasites. The mechanisms involved in establishing a symbiotic relationship between Wolbachia and A. aegypti, and the long-term outcomes of this interaction, are not well understood. Here, we have demonstrated that both the immune deficiency (IMD) and Toll pathways are activated by the Wolbachia strain wAlbB upon its introduction into A. aegypti. Silencing the Toll and IMD pathways via RNA interference reduces the wAlbB load. Notably, wAlbB induces peptidoglycan recognition protein (PGRP)-LE expression in the carcass of A. aegypti, and its silencing results in a reduction of symbiont load. Using transgenic mosquitoes with stage-specific induction of the IMD and Toll pathways, we have shown that elevated wAlbB infection in these mosquitoes is maintained via maternal transmission. These results indicate that host innate immunity is utilized to establish and promote host-microbial symbiosis. Our results will facilitate a long-term projection of the stability of the Wolbachia-A. aegypti mosquito system that is being developed to control dengue and Zika virus transmission to humans.

  8. DMPD: Toll-like receptors and the host defense against microbial pathogens: bringingspecificity to the innate-immune system. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available gingspecificity to the innate-immune system. Netea MG, van der Graaf C, Van der Meer JW, Kullberg BJ. J Leuk... the host defense against microbial pathogens: bringingspecificity to the innate-immune system... bringingspecificity to the innate-immune system. Authors Netea MG, van der Graaf C, Van der Meer JW, Kullbe

  9. Minimal modulation of the host immune response to SIS matrix implants by mesenchymal stem cells from the amniotic fluid.

    Science.gov (United States)

    Lesage, F; Pranpanus, S; Bosisio, F M; Jacobs, M; Ospitalieri, S; Toelen, J; Deprest, J

    2017-12-01

    Surgical restoration of soft tissue defects often requires implantable devices. The clinical outcome of the surgery is determined by the properties inherent to the used matrix. Mesenchymal stem cells (MSC) modulate the immune processes after in vivo transplantation and their addition to matrices is associated with constructive remodeling. Herein we evaluate the potential of MSC derived from the amniotic fluid (AF-MSC), an interesting MSC source for cell therapeutic applications in the perinatal period, for immune modulation when added to a biomaterial. We implant cell free small intestinal submucosa (SIS) or SIS seeded with AF-MSC at a density of 1 × 10 5 /cm 2 subcutaneously at the abdominal wall in immune competent rats. The host immune response is evaluated at 3, 7 and 14 days postoperatively. The matrix-specific or cellular characteristics are not altered after 24 h of in vitro co-culture of SIS with AF-MSC. The host immune response was not different between animals implanted with cell free or AF-MSC-seeded SIS in terms of cellular infiltration, vascularity, macrophage polarization or scaffold replacement. Profiling the mRNA expression level of inflammatory cytokines at the matrix interface shows a significant reduction in the expression of the pro-inflammatory marker Tnf-α and a trend towards lower iNos expression upon AF-MSC-seeding of the SIS matrix. Anti-inflammatory marker expression does not alter upon cell seeding of matrix implants. We conclude that SIS is a suitable substrate for in vitro culture of AF-MSC and fibroblasts. AF-MSC addition to SIS does not significantly modulate the host immune response after subcutaneous implantation in rats.

  10. The perioperative immune/inflammatory insult in cancer surgery

    OpenAIRE

    Roxburgh, Campbell S; Horgan, Paul G; McMillan, Donald C

    2013-01-01

    Within the tumor microenvironment, non-specific innate immune responses can suppress adaptive cytotoxic immunity and hence promote tumor progression. Surgery and trauma provokes high-grade, non-specific inflammatory responses that suppress cell-mediated immunity. Here, the surgical resection of neoplastic lesions is considered in the context of antitumor immunity, providing the rationale for development of perioperative interventions to maintain the immunological competence of the host.

  11. Role of Neurochemicals in the Interaction between the Microbiota and the Immune and the Nervous System of the Host Organism.

    Science.gov (United States)

    Oleskin, Alexander V; Shenderov, Boris A; Rogovsky, Vladimir S

    2017-09-01

    This work is concerned with the role of evolutionary conserved substances, neurotransmitters, and neurohormones, within the complex framework of the microbial consortium-immune system-nervous system axis in the human or animal organism. Although the operation of each of these systems per se is relatively well understood, their combined effects on the host organism still await further research. Drawing on recent research on host-produced and microbial low-molecular-weight neurochemicals such as biogenic amines, amino acids, and short-chain fatty acids (SCFAs), we suggest that these mediators form a part of a universal neurochemical "language." It mediates the whole gamut of harmonious and disharmonious interactions between (a) the intestinal microbial consortium, (b) local and systemic immune cells, and (c) the central and peripheral nervous system. Importantly, the ongoing microbiota-host interactivity is bidirectional. We present evidence that a large number of microbially produced low-molecular-weight compounds are identical or homologous to mediators that are synthesized by immune or nervous cells and, therefore, can bind to the corresponding host receptors. In addition, microbial cells specifically respond to host-produced neuromediators/neurohormones because they have adapted to them during the course of many millions of years of microbiota-host coevolution. We emphasize that the terms "microbiota" and "microbial consortium" are to be used in the broadest sense, so as to include, apart from bacteria, also eukaryotic microorganisms. These are exemplified by the mycobiota whose role in the microbial consortium-immune system-nervous system axis researchers are only beginning to elucidate. In light of the above, it is imperative to reform the current strategies of using probiotic microorganisms and their metabolites for treating and preventing dysbiosis-related diseases. The review demonstrates, in the example of novel probiotics (psychobiotics), that many target

  12. Hidden suppression of sex ratio distortion suggests Red queen dynamics between Wolbachia and its dwarf spider host.

    Science.gov (United States)

    Vanthournout, B; Hendrickx, F

    2016-08-01

    Genetic conflict theory predicts strong selection for host nuclear factors suppressing endosymbiont effects on reproduction; however, evidence of these suppressors is currently scarce. This can either be caused by a low suppressor evolution rate, or if suppressors originate frequently, by rapid spread and concurrent masking of their activity by silencing the endosymbiont effect. To explore this, we use two populations of a dwarf spider with a similar female bias, caused by a Wolbachia infection. Using inter- and intrapopulation crosses, we determine that one of these populations demonstrates a higher suppressing capability towards Wolbachia despite having a similar population sex ratio. This suggests that spider and endosymbiont are locked in so-called red queen dynamics where, despite continuous coevolution, average fitness remains the same, hence hiding the presence of the suppressor. Finding different suppressor activity in populations that even lack phenotypic differentiation (i.e. similar sex ratio) further supports the hypothesis that suppressors originate often, but are often hidden by their own mode of action by countering endosymbiont effects. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  13. Host-Brucella interactions and the Brucella genome as tools for subunit antigen discovery and immunization against brucellosis

    Science.gov (United States)

    Gomez, Gabriel; Adams, Leslie G.; Rice-Ficht, Allison; Ficht, Thomas A.

    2013-01-01

    Vaccination is the most important approach to counteract infectious diseases. Thus, the development of new and improved vaccines for existing, emerging, and re-emerging diseases is an area of great interest to the scientific community and general public. Traditional approaches to subunit antigen discovery and vaccine development lack consideration for the critical aspects of public safety and activation of relevant protective host immunity. The availability of genomic sequences for pathogenic Brucella spp. and their hosts have led to development of systems-wide analytical tools that have provided a better understanding of host and pathogen physiology while also beginning to unravel the intricacies at the host-pathogen interface. Advances in pathogen biology, host immunology, and host-agent interactions have the potential to serve as a platform for the design and implementation of better-targeted antigen discovery approaches. With emphasis on Brucella spp., we probe the biological aspects of host and pathogen that merit consideration in the targeted design of subunit antigen discovery and vaccine development. PMID:23720712

  14. The role of type III effectors from Xanthomonas axonopodis pv. manihotis in virulence and suppression of plant immunity.

    Science.gov (United States)

    Medina, Cesar Augusto; Reyes, Paola Andrea; Trujillo, Cesar Augusto; Gonzalez, Juan Luis; Bejarano, David Alejandro; Montenegro, Nathaly Andrea; Jacobs, Jonathan M; Joe, Anna; Restrepo, Silvia; Alfano, James R; Bernal, Adriana

    2018-03-01

    Xanthomonas axonopodis pv. manihotis (Xam) causes cassava bacterial blight, the most important bacterial disease of cassava. Xam, like other Xanthomonas species, requires type III effectors (T3Es) for maximal virulence. Xam strain CIO151 possesses 17 predicted T3Es belonging to the Xanthomonas outer protein (Xop) class. This work aimed to characterize nine Xop effectors present in Xam CIO151 for their role in virulence and modulation of plant immunity. Our findings demonstrate the importance of XopZ, XopX, XopAO1 and AvrBs2 for full virulence, as well as a redundant function in virulence between XopN and XopQ in susceptible cassava plants. We tested their role in pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI) using heterologous systems. AvrBs2, XopR and XopAO1 are capable of suppressing PTI. ETI suppression activity was only detected for XopE4 and XopAO1. These results demonstrate the overall importance and diversity in functions of major virulence effectors AvrBs2 and XopAO1 in Xam during cassava infection. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  15. Suppression of the primary immune response in rainbow trout, Salmo gairdneri, sublethally exposed to tritiated water during embryogenesis

    International Nuclear Information System (INIS)

    Strand, J.A.

    1975-01-01

    Antibody synthesis in response to vaccination with a 0.1 cc (1.8 x 10 8 cells/cc) intraperitoneally injected heat-killed strain of Flexibacter columnaris was employed to investigate the effect of tritium irradiation (0, 0.04, 0.4, 4.0 and 40.0 rads total dose for 20 days during embryogenesis) on development of the primary immune response in 5-month rainbow trout, Salmo gairdneri. Total serum protein measurements and electrophoretic separation of blood serum proteins followed by densitometric analyses were performed to assess the potential for qualitative and quantitative changes in blood serum components which conceivably accounted for suppressed immune responsiveness in tritium-irradiated fish. Data on the biological effects of tritium on early life stages in terms of hatchability, abnormality, latent mortality, and growth were also collected. A review of all experiments directed at determining the effects of early radiation exposure on the parameters of hatchability, incidence of abnormality, latent mortality and depressed growth, revealed considerable variation among similar treatments and indicated that significant effects at dose levels of 50 rads and below were not consistently demonstrated. While present experimental results demonstrated that the primary immune response in juvenile rainbow trout was significantly suppressed following embryonic exposure to tritium at essentially the 1.0 μCi/ml level, and perhaps at the 0.1 μCi/ml level, these concentrations are no less than 5 to 6 orders of magnitude above present levels for tritium in the aquatic environment

  16. PERIPHERAL IMMUNE SYSTEM SUPPRESSION IN EARLY ABSTINENT ALCOHOL DEPENDENT INDIVIDUALS: LINKS TO STRESS AND CUE-RELATED CRAVING

    Science.gov (United States)

    Fox, Helen C; Milivojevic, Verica; Angarita, Gustavo A; Stowe, Raymond; Sinha, Rajita

    2017-01-01

    Background Peripheral immune system cytokines may play an integral role in underlying sensitized stress response and alcohol craving during early withdrawal. To date, the nature of these immune changes during early abstinence have not been examined. Methods Thirty-nine early abstinent, treatment-seeking alcohol dependent individuals and 46 socially drinking controls were exposed to three guided imageries: stress, alcohol cue and neutral. These were presented randomly across consecutive days. Plasma measures of tumor necrosis factor alpha (TNFα), tumor necrosis factor receptor 1 (TNFR1), interleukin-6 (IL-6), and interleukin-10 (IL-10), were collected at baseline, immediately after imagery and at various recovery time-points. Ratings of alcohol craving, negative mood and anxiety were also obtained at the same time-points. Results The alcohol group demonstrated decreased basal IL-10 compared with controls particularly following exposure to alcohol cue. They also showed a dampened TNFα and TNFR1 response to stress and cue, respectively, and a generalized suppression of IL-6. In the alcohol group, these immune system adaptations occurred alongside significant elevations in anxiety, negative mood and alcohol craving. Conclusions Findings demonstrate that broad immuno-suppression is still observed in alcohol dependent individuals after three weeks of abstinence and may be linked to motivation for alcohol. PMID:28675117

  17. Albugo-imposed changes to tryptophan-derived antimicrobial metabolite biosynthesis may contribute to suppression of non-host resistance to Phytophthora infestans in Arabidopsis thaliana.

    Science.gov (United States)

    Prince, David C; Rallapalli, Ghanasyam; Xu, Deyang; Schoonbeek, Henk-Jan; Çevik, Volkan; Asai, Shuta; Kemen, Eric; Cruz-Mireles, Neftaly; Kemen, Ariane; Belhaj, Khaoula; Schornack, Sebastian; Kamoun, Sophien; Holub, Eric B; Halkier, Barbara A; Jones, Jonathan D G

    2017-03-20

    Plants are exposed to diverse pathogens and pests, yet most plants are resistant to most plant pathogens. Non-host resistance describes the ability of all members of a plant species to successfully prevent colonization by any given member of a pathogen species. White blister rust caused by Albugo species can overcome non-host resistance and enable secondary infection and reproduction of usually non-virulent pathogens, including the potato late blight pathogen Phytophthora infestans on Arabidopsis thaliana. However, the molecular basis of host defense suppression in this complex plant-microbe interaction is unclear. Here, we investigate specific defense mechanisms in Arabidopsis that are suppressed by Albugo infection. Gene expression profiling revealed that two species of Albugo upregulate genes associated with tryptophan-derived antimicrobial metabolites in Arabidopsis. Albugo laibachii-infected tissue has altered levels of these metabolites, with lower indol-3-yl methylglucosinolate and higher camalexin accumulation than uninfected tissue. We investigated the contribution of these Albugo-imposed phenotypes to suppression of non-host resistance to P. infestans. Absence of tryptophan-derived antimicrobial compounds enables P. infestans colonization of Arabidopsis, although to a lesser extent than Albugo-infected tissue. A. laibachii also suppresses a subset of genes regulated by salicylic acid; however, salicylic acid plays only a minor role in non-host resistance to P. infestans. Albugo sp. alter tryptophan-derived metabolites and suppress elements of the responses to salicylic acid in Arabidopsis. Albugo sp. imposed alterations in tryptophan-derived metabolites may play a role in Arabidopsis non-host resistance to P. infestans. Understanding the basis of non-host resistance to pathogens such as P. infestans could assist in development of strategies to elevate food security.

  18. Regulation of stem-cell mediated host immunity by the sphingolipid ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Changes in the functioning of the human immune system are the main cause for many diseases, including auto-immunity, infections, and cancer. Research suggests that the sphingolipid pathway plays an important role in hematopoietic stem cell functions and, as a consequence, in the generation of mature immune cells ...

  19. Indian Hedgehog Suppresses a Stromal Cell–Driven Intestinal Immune Response

    Directory of Open Access Journals (Sweden)

    B. Florien Westendorp

    2018-01-01

    Conclusions: We show that epithelium-derived Indian Hedgehog signals exclusively to fibroblasts in the intestine. Loss of Ihh leads to a rapid immune response with up-regulation of fibroblast-derived CXCL12, and migration of immune cells into the lamina propria.

  20. Host-Brucella Interactions and Brucella Genome as Tools for Subunit Antigen Discovery and Immunization Against Brucellosis

    OpenAIRE

    Gabriel eGomez; Leslie Garry Adams; Allison Rice Ficht; Allison Rice Ficht; Thomas A Ficht

    2013-01-01

    Vaccination is the most important approach to counteract infectious diseases. Thus, the development of new and improved vaccines for existing, emerging and re-emerging diseases is an area of great interest to the scientific community and general public. Traditional approaches to subunit antigen discovery and vaccine development lack consideration for the critical vaccination aspects of public safety and activation of relevant protective host immunity. The availability of genomic sequences for...

  1. Pharmacological Inhibition of Host Heme Oxygenase-1 Suppresses Mycobacterium tuberculosis Infection In Vivo by a Mechanism Dependent on T Lymphocytes

    Directory of Open Access Journals (Sweden)

    Diego L. Costa

    2016-10-01

    Full Text Available Heme oxygenase-1 (HO-1 is a stress response antioxidant enzyme which catalyzes the degradation of heme released during inflammation. HO-1 expression is upregulated in both experimental and human Mycobacterium tuberculosis infection, and in patients it is a biomarker of active disease. Whether the enzyme plays a protective versus pathogenic role in tuberculosis has been the subject of debate. To address this controversy, we administered tin protoporphyrin IX (SnPPIX, a well-characterized HO-1 enzymatic inhibitor, to mice during acute M. tuberculosis infection. These SnPPIX-treated animals displayed a substantial reduction in pulmonary bacterial loads comparable to that achieved following conventional antibiotic therapy. Moreover, when administered adjunctively with antimycobacterial drugs, the HO-1 inhibitor markedly enhanced and accelerated pathogen clearance. Interestingly, both the pulmonary induction of HO-1 expression and the efficacy of SnPPIX treatment in reducing bacterial burden were dependent on the presence of host T lymphocytes. Although M. tuberculosis expresses its own heme-degrading enzyme, SnPPIX failed to inhibit its enzymatic activity or significantly restrict bacterial growth in liquid culture. Together, the above findings reveal mammalian HO-1 as a potential target for host-directed monotherapy and adjunctive therapy of tuberculosis and identify the immune response as a critical regulator of this function.

  2. Structure-function analysis of the Fusarium oxysporum Avr2 effector allows uncoupling of its immune-suppressing activity from recognition.

    Science.gov (United States)

    Di, Xiaotang; Cao, Lingxue; Hughes, Richard K; Tintor, Nico; Banfield, Mark J; Takken, Frank L W

    2017-11-01

    Plant pathogens employ effector proteins to manipulate their hosts. Fusarium oxysporum f. sp. lycopersici (Fol), the causal agent of tomato wilt disease, produces effector protein Avr2. Besides being a virulence factor, Avr2 triggers immunity in I-2 carrying tomato (Solanum lycopersicum). Fol strains that evade I-2 recognition carry point mutations in Avr2 (e.g. Avr2 R45H ), but retain full virulence. Here we investigate the virulence function of Avr2 and determine its crystal structure. Transgenic tomato and Arabidopsis expressing either wild-type ΔspAvr2 (deleted signal-peptide) or the ΔspAvr2 R45H variant become hypersusceptible to fungal, and even bacterial infections, suggesting that Avr2 targets a conserved defense mechanism. Indeed, Avr2 transgenic plants are attenuated in immunity-related readouts, including flg22-induced growth inhibition, ROS production and callose deposition. The crystal structure of Avr2 reveals that the protein shares intriguing structural similarity to ToxA from the wheat pathogen Pyrenophora tritici-repentis and to TRAF proteins. The I-2 resistance-breaking Avr2 V41M , Avr2 R45H and Avr2 R46P variants cluster on a surface-presented loop. Structure-guided mutagenesis enabled uncoupling of virulence from I-2-mediated recognition. We conclude that I-2-mediated recognition is not based on monitoring Avr2 virulence activity, which includes suppression of immune responses via an evolutionarily conserved effector target, but by recognition of a distinct epitope. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  3. Crimean-Congo Hemorrhagic Fever Virus Suppresses Innate Immune Responses via a Ubiquitin and ISG15 Specific Protease

    Directory of Open Access Journals (Sweden)

    Florine E.M. Scholte

    2017-09-01

    Full Text Available Antiviral responses are regulated by conjugation of ubiquitin (Ub and interferon-stimulated gene 15 (ISG15 to proteins. Certain classes of viruses encode Ub- or ISG15-specific proteases belonging to the ovarian tumor (OTU superfamily. Their activity is thought to suppress cellular immune responses, but studies demonstrating the function of viral OTU proteases during infection are lacking. Crimean-Congo hemorrhagic fever virus (CCHFV, family Nairoviridae is a highly pathogenic human virus that encodes an OTU with both deubiquitinase and deISGylase activity as part of the viral RNA polymerase. We investigated CCHFV OTU function by inactivating protease catalytic activity or by selectively disrupting its deubiquitinase and deISGylase activity using reverse genetics. CCHFV OTU inactivation blocked viral replication independently of its RNA polymerase activity, while deubiquitinase activity proved critical for suppressing the interferon responses. Our findings provide insights into viral OTU functions and support the development of therapeutics and vaccines.

  4. Homologous RXLR effectors from Hyaloperonospora arabidopsidis and Phytophthora sojae suppress immunity in distantly related plants

    Science.gov (United States)

    Diverse pathogens secrete effector proteins into plant cells to manipulate host cellular processes. Oomycete pathogens contain very large complements of predicted effector genes defined by an RXLR host cell entry motif. The genome of Hyaloperonospora arabidopsidis (Hpa, downy mildew of Arabidopsis) ...

  5. Proteomics and its applications to aquaculture in China: infection, immunity, and interaction of aquaculture hosts with pathogens.

    Science.gov (United States)

    Peng, Xuan-Xian

    2013-01-01

    China is the largest fishery producer worldwide in term of its aquaculture output, and plays leading and decisive roles in international aquaculture development. To improve aquaculture output further and promote aquaculture business development, infectious diseases and immunity of fishes and other aquaculture species must be studied. In this regard, aquaculture proteomics has been widely carried out in China to get a better understanding of aquaculture host immunity and microbial pathogenesis as well as host-pathogen interactions, and to identify novel disease targets and vaccine candidates for therapeutic interventions. These proteomics studies include development of novel methods, assays, and advanced concepts in order to characterize proteomics mechanisms of host innate immune defense and microbial pathogenesis. This review article summarizes some recently published technical approaches and their applications to aquaculture proteomics with an emphasis on the responses of aquaculture animals to bacteria, viruses, and other aqua-environmental stresses, and development of broadly cross-protective vaccine candidates. The reviewed articles are those that have been published in international peer reviewed journals. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Host suppression and bioinformatics for sequence-based characterization of unknown pathogens.

    Energy Technology Data Exchange (ETDEWEB)

    Branda, Steven S.; Lane, Todd W.; Misra, Milind; Meagher, Robert J.; Patel, Kamlesh D.; Kaiser, Julia N.

    2009-11-01

    Bioweapons and emerging infectious diseases pose formidable and growing threats to our national security. Rapid advances in biotechnology and the increasing efficiency of global transportation networks virtually guarantee that the United States will face potentially devastating infectious disease outbreaks caused by novel ('unknown') pathogens either intentionally or accidentally introduced into the population. Unfortunately, our nation's biodefense and public health infrastructure is primarily designed to handle previously characterized ('known') pathogens. While modern DNA assays can identify known pathogens quickly, identifying unknown pathogens currently depends upon slow, classical microbiological methods of isolation and culture that can take weeks to produce actionable information. In many scenarios that delay would be costly, in terms of casualties and economic damage; indeed, it can mean the difference between a manageable public health incident and a full-blown epidemic. To close this gap in our nation's biodefense capability, we will develop, validate, and optimize a system to extract nucleic acids from unknown pathogens present in clinical samples drawn from infected patients. This system will extract nucleic acids from a clinical sample, amplify pathogen and specific host response nucleic acid sequences. These sequences will then be suitable for ultra-high-throughput sequencing (UHTS) carried out by a third party. The data generated from UHTS will then be processed through a new data assimilation and Bioinformatic analysis pipeline that will allow us to characterize an unknown pathogen in hours to days instead of weeks to months. Our methods will require no a priori knowledge of the pathogen, and no isolation or culturing; therefore it will circumvent many of the major roadblocks confronting a clinical microbiologist or virologist when presented with an unknown or engineered pathogen.

  7. Mediation of host immune responses after immunization of neonatal calves with a heat-killed Mycobacterium avium subsp. paratuberculosis vaccine

    Science.gov (United States)

    A major drawback of current whole-cell vaccines for Mycobacterium avium subsp. paratuberculosis(MAP) is the interference with diagnostic tests for bovine tuberculosis and paratuberculosis. The current study was designed to explore effects of immunization with a heat-killed whole cell vaccine (Mycop...

  8. Immune system deregulation in hypertensive patients chronically RAS suppressed developing albuminuria

    OpenAIRE

    Martin-Lorenzo, Marta; Gonzalez-Calero, Laura; Martinez, Paula J.; Baldan-Martin, Montserrat; Lopez, Juan Antonio; Ruiz-Hurtado, Gema; de la Cuesta, Fernando; Segura, Juli?n; Vazquez, Jes?s; Vivanco, Fernando; Barderas, Maria G.; Ruilope, Luis M.; Alvarez-Llamas, Gloria

    2017-01-01

    Albuminuria development in hypertensive patients is an indicator of higher cardiovascular (CV) risk and renal damage. Chronic renin-angiotensin system (RAS) suppression facilitates blood pressure control but it does not prevent from albuminuria development. We pursued the identification of protein indicators in urine behind albuminuria development in hypertensive patients under RAS suppression. Urine was collected from 100 patients classified in three groups according to albuminuria developme...

  9. STSV2 as a Model Crenarchaeal Virus for Studying Virus-Host Interactions and CRISPR-Cas Adaptive Immunity

    DEFF Research Database (Denmark)

    León Sobrino, Carlos

    , the archaea harbour their own viruses, which constitute an extraordinarily diverse group with exotic morphologies and unique features. Prokaryotes possess a variety of defence mechanisms. The CRISPR-Cas adaptive immune system is of great importance for archaea –84% of them possess it, compared to 45...... generate immune memory by inserting in its own genome short invader-derived DNA fragments forming a database –the CRISPR locus. Little was known about this system until recent years, and the generation of immune memory has been the most elusive step. In this work, the interactions of the spindle......-shaped monocaudavirus STSV2 and its host Sulfolobus islandicus REY15A were studied. This interaction produced, after several days, de novo CRISPR adaptation – that is, without any previous memory that can act as a trigger. We employed transcriptome sequencing to characterise the long-term progression...

  10. Small non-coding RNAs: new insights in modulation of host immune response by intracellular bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Waqas Ahmed

    2016-10-01

    Full Text Available Pathogenic bacteria possess intricate regulatory networks that temporally control the production of virulence factors, and enable the bacteria to survive and proliferate within host cell. Small non-coding RNAs (sRNAs have been identified as important regulators of gene expression in diverse biological contexts. Recent research has shown bacterial sRNAs involved in growth and development, cell proliferation, differentiation, metabolism, cell signaling and immune response through regulating protein–protein interactions or via their ability to base pair with RNA and DNA. In this review, we provide a brief overview of mechanism of action employed by immune-related sRNAs, their known functions in immunity, and how they can be integrated into regulatory circuits that govern virulence, which will facilitates to understand pathogenesis and the development of novel, more effective therapeutic approaches to treat infections caused by intracellular bacterial pathogens.

  11. Immune inhibition of virus release from human and nonhuman cells by antibody to viral and host cell determinants.

    Science.gov (United States)

    Shariff, D M; Davies, J; Desperbasques, M; Billstrom, M; Geerligs, H J; Welling, G W; Welling-Wester, S; Buchan, A; Skinner, G R

    1991-01-01

    Immune inhibition of release of the DNA viruses, herpes simplex virus types 1 and 2 and pseudorabies virus by anti-viral and anti-host cell sera occurred while two RNA viruses, influenza and encephalomyocarditis, were inhibited only by anti-viral sera (not anti-host cell sera). Simian virus 40 and surprisingly two herpes viruses, bovine mamillitis and equine abortion, were not inhibited by either anti-viral or anti-host sera. Using the herpes simplex virus model, inhibition of virus release was detected in different cells of human and nonhuman origin with cross-inhibition between cell lines of different origin; thus, this form of immunotherapy may not require antibody to be tissue or organ specific. Evidence of inhibition of virus release from neoplastic and leukemic cell lines suggests possible application of this approach to control of virus-mediated leukoproliferative pathology (e.g. Burkitt's lymphoma or adult T cell leukemia).

  12. Human and Animal Isolates of Yersinia enterocolitica Show Significant Serotype-Specific Colonization and Host-Specific Immune Defense Properties

    Science.gov (United States)

    Schaake, Julia; Kronshage, Malte; Uliczka, Frank; Rohde, Manfred; Knuuti, Tobias; Strauch, Eckhard; Fruth, Angelika; Wos-Oxley, Melissa

    2013-01-01

    Yersinia enterocolitica is a human pathogen that is ubiquitous in livestock, especially pigs. The bacteria are able to colonize the intestinal tract of a variety of mammalian hosts, but the severity of induced gut-associated diseases (yersiniosis) differs significantly between hosts. To gain more information about the individual virulence determinants that contribute to colonization and induction of immune responses in different hosts, we analyzed and compared the interactions of different human- and animal-derived isolates of serotypes O:3, O:5,27, O:8, and O:9 with murine, porcine, and human intestinal cells and macrophages. The examined strains exhibited significant serotype-specific cell binding and entry characteristics, but adhesion and uptake into different host cells were not host specific and were independent of the source of the isolate. In contrast, survival and replication within macrophages and the induced proinflammatory response differed between murine, porcine, and human macrophages, suggesting a host-specific immune response. In fact, similar levels of the proinflammatory cytokine macrophage inflammatory protein 2 (MIP-2) were secreted by murine bone marrow-derived macrophages with all tested isolates, but the equivalent interleukin-8 (IL-8) response of porcine bone marrow-derived macrophages was strongly serotype specific and considerably lower in O:3 than in O:8 strains. In addition, all tested Y. enterocolitica strains caused a considerably higher level of secretion of the anti-inflammatory cytokine IL-10 by porcine than by murine macrophages. This could contribute to limiting the severity of the infection (in particular of serotype O:3 strains) in pigs, which are the primary reservoir of Y. enterocolitica strains pathogenic to humans. PMID:23959720

  13. Innate and adaptive immunity cooperate flexibly to maintain host-microbiota mutualism.

    OpenAIRE

    Slack Emma; Hapfelmeier Siegfried; Stecher Bärbel; Velykoredko Yuliya; Stoel Maaike; Lawson Melissa A E; Geuking Markus B; Beutler Bruce; Tedder Thomas F; Hardt Wolf-Dietrich; Bercik Premysl; Verdu Elena F; McCoy Kathy D; Macpherson Andrew J

    2009-01-01

    Commensal bacteria in the lower intestine of mammals are 10 times as numerous as the body's cells. We investigated the relative importance of different immune mechanisms in limiting the spread of the intestinal microbiota. Here we reveal a flexible continuum between innate and adaptive immune function in containing commensal microbes. Mice deficient in critical innate immune functions such as Toll like receptor signaling or oxidative burst production spontaneously produce high titer serum ant...

  14. Epicutaneous immunization with protein antigen TNP-Ig and NOD2 ligand muramyl dipeptide (MDP) reverses skin-induced suppression of contact hypersensitivity.

    Science.gov (United States)

    Majewska-Szczepanik, Monika; Dorożyńska, Iwona; Strzępa, Anna; Szczepanik, Marian

    2014-02-01

    Epicutaneous (EC) immunization offers a new method of a needle-free and self-administrable immunization by using a topically applied patch to deliver vaccine. We have previously shown that EC immunization with hapten-conjugated protein antigen TNP-Ig prior to hapten sensitization inhibits Th1-mediated contact hypersensitivity (CHS) in mice. Our further work showed that EC immunization with TNP-Ig and Toll-like receptor (TLR) ligands prior to hapten sensitization reverses skin-induced suppression. Animal model of contact hypersensitivity was used to study reversal of skin-induced suppression. Current work showed that EC immunization with protein antigen TNP-Ig and MDP NOD2 agonist - muramyldipeptide (L isoform) reverses skin-induced suppression of CHS. On the other hand L18-MDP NOD2 agonist - muramyldipeptide with a C18 fatty acid chain and MDP control - negative control for MDP - muramyldipeptide (D isoform, inactive) did not reverse skin-induced suppression. "Transfer in" experiment showed that reversal of skin-induced suppression can be adoptively transferred with lymphoid cells isolated from donors EC treated with TNP-Ig and MDP NOD2 agonist. Moreover, experiment employing two non-cross-reacting antigens TNP-Ig and OX-Ig proved that reversal of skin-induced suppression is antigen specific. Additionally, lymph node cells isolated from mice EC immunized with TNP-Ig and MDP NOD2 agonist produced increased level of IFN-γ suggesting that this cytokine might be involved in reversal of skin-induced suppression. This work shows that EC immunization with protein antigen plus NOD2 ligand MDP may be a potential tool to increase the immunogenicity of weekly immunogenic antigens. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  15. Immunization of dogs with recombinant GnRH-1 suppresses the development of reproductive function.

    Science.gov (United States)

    Liu, Ya; Tian, Yuan; Zhao, Xijie; Jiang, Shudong; Li, Fubao; Zhang, Yunhai; Zhang, Xiaorong; Li, Yunsheng; Zhou, Jie; Fang, Fugui

    2015-02-01

    This study was designed to evaluate the effect of active immunization using recombinant GnRH-I protein on reproductive function in dogs. Six male and six female dogs were randomly assigned to either a control group or an immunization group (n = 3 males or 3 females/group). Dogs (aged 16 weeks) were immunized against GnRH-I with a maltose-binding protein-gonadotropin-releasing hormone I hexamer generated by recombinant DNA technology. Blood samples were taken at 4-week intervals after immunization. The serum concentrations of testosterone and estradiol and anti-GnRH-I antibodies were determined by RIA and ELISA, respectively. The results showed that active immunization with recombinant GnRH-I increased the serum levels of anti-GnRH antibodies (P dogs and a significant reduction (P dogs. Microscopically, spermatogonia were visible, but no spermatids and spermatozoa were detected in the seminiferous tubules. Neither early antral nor antral follicles were found in the immunized group. These results demonstrate that recombinant GnRH-I is an effective immunogen in dogs. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. T Lymphocyte Immunity in Host Defence against Chlamydia trachomatis and Its Implication for Vaccine Development

    Directory of Open Access Journals (Sweden)

    X Yang

    1998-01-01

    Full Text Available Chlamydia trachomatis is an obligate intracellular bacterial pathogen that causes several significant human infectious diseases, including trachoma, urethritis, cervicitis and salpingitis, and is an important cofactor for transmission of human immunodeficiency virus. Until very recently, over three decades of research effort aimed at developing a C trachomatis vaccine had failed, due mainly to the lack of a precise understanding of the mechanisms for protective immunity. Although most studies concerning protective immunity to C trachomatis have focused on humoral immune responses, recent studies have clearly shown that T helper-1 (Th1-like CD4 T cell-mediated immune responses play the dominant role in protective immunity. These studies suggest a paradigm for chlamydial immunity and pathology based on the concept of heterogeneity (Th1/Th2 in CD4 T cell immune responses. This concept for chlamydial immunity offers a rational template on which to base renewed efforts for development of a chlamydial vaccine that targets the induction of cell-mediated Th1 immune responses.

  17. Stealth proteins: in silico identification of a novel protein family rendering bacterial pathogens invisible to host immune defense.

    Directory of Open Access Journals (Sweden)

    Peter Sperisen

    2005-11-01

    Full Text Available There are a variety of bacterial defense strategies to survive in a hostile environment. Generation of extracellular polysaccharides has proved to be a simple but effective strategy against the host's innate immune system. A comparative genomics approach led us to identify a new protein family termed Stealth, most likely involved in the synthesis of extracellular polysaccharides. This protein family is characterized by a series of domains conserved across phylogeny from bacteria to eukaryotes. In bacteria, Stealth (previously characterized as SacB, XcbA, or WefC is encoded by subsets of strains mainly colonizing multicellular organisms, with evidence for a protective effect against the host innate immune defense. More specifically, integrating all the available information about Stealth proteins in bacteria, we propose that Stealth is a D-hexose-1-phosphoryl transferase involved in the synthesis of polysaccharides. In the animal kingdom, Stealth is strongly conserved across evolution from social amoebas to simple and complex multicellular organisms, such as Dictyostelium discoideum, hydra, and human. Based on the occurrence of Stealth in most Eukaryotes and a subset of Prokaryotes together with its potential role in extracellular polysaccharide synthesis, we propose that metazoan Stealth functions to regulate the innate immune system. Moreover, there is good reason to speculate that the acquisition and spread of Stealth could be responsible for future epidemic outbreaks of infectious diseases caused by a large variety of eubacterial pathogens. Our in silico identification of a homologous protein in the human host will help to elucidate the causes of Stealth-dependent virulence. At a more basic level, the characterization of the molecular and cellular function of Stealth proteins may shed light on fundamental mechanisms of innate immune defense against microbial invasion.

  18. Stealth Proteins: In Silico Identification of a Novel Protein Family Rendering Bacterial Pathogens Invisible to Host Immune Defense.

    Directory of Open Access Journals (Sweden)

    2005-11-01

    Full Text Available There are a variety of bacterial defense strategies to survive in a hostile environment. Generation of extracellular polysaccharides has proved to be a simple but effective strategy against the host's innate immune system. A comparative genomics approach led us to identify a new protein family termed Stealth, most likely involved in the synthesis of extracellular polysaccharides. This protein family is characterized by a series of domains conserved across phylogeny from bacteria to eukaryotes. In bacteria, Stealth (previously characterized as SacB, XcbA, or WefC is encoded by subsets of strains mainly colonizing multicellular organisms, with evidence for a protective effect against the host innate immune defense. More specifically, integrating all the available information about Stealth proteins in bacteria, we propose that Stealth is a D-hexose-1-phosphoryl transferase involved in the synthesis of polysaccharides. In the animal kingdom, Stealth is strongly conserved across evolution from social amoebas to simple and complex multicellular organisms, such as Dictyostelium discoideum, hydra, and human. Based on the occurrence of Stealth in most Eukaryotes and a subset of Prokaryotes together with its potential role in extracellular polysaccharide synthesis, we propose that metazoan Stealth functions to regulate the innate immune system. Moreover, there is good reason to speculate that the acquisition and spread of Stealth could be responsible for future epidemic outbreaks of infectious diseases caused by a large variety of eubacterial pathogens. Our in silico identification of a homologous protein in the human host will help to elucidate the causes of Stealth-dependent virulence. At a more basic level, the characterization of the molecular and cellular function of Stealth proteins may shed light on fundamental mechanisms of innate immune defense against microbial invasion.

  19. Corticosterone suppresses immune activity in territorial Galápagos marine iguanas during reproduction.

    Science.gov (United States)

    Berger, Silke; Martin, Lynn B; Wikelski, Martin; Romero, L Michael; Kalko, Elisabeth K V; Vitousek, Maren N; Rödl, Thomas

    2005-04-01

    Individuals that display elaborate sexually selected characters often show reduced immune function. According to the immunocompetence handicap hypothesis, testosterone (T) is responsible for this result as it drives the development and maintenance of sexual characters and causes immunosuppression. But glucocorticoids also have strong influences on immune function and may also be elevated in reproductively active males. Here, we compared immune activity using the phytohemagglutinin (PHA) skin test in three discrete groups of male marine iguanas (Amblyrhynchus cristatus): territorials, satellites, and bachelors. Males of these three reproductive phenotypes had indistinguishable T concentrations during the height of the breeding season, but their corticosterone (cort) concentrations, body condition and hematocrit were significantly different. Territorial males, the animals with the most elaborate sexual ornaments and behaviors, had lower immune responses and body condition but higher cort concentrations and hematocrit than satellites or bachelors. To test directly cort's immunosuppressive role, we elevated cort by either restraining animals or additionally injecting cort and compared their PHA swelling response with the response of free-roaming animals. Such experimental elevation of cort significantly decreased immune activity in both restrained and cort-injected animals. Our data show that cort can induce immunosuppression, but they do not support the immunocompetence handicap hypothesis in its narrow sense because T concentrations were not related to immunosuppression.

  20. Bacteria modulate the CD8+ T cell epitope repertoire of host cytosol-exposed proteins to manipulate the host immune response.

    Directory of Open Access Journals (Sweden)

    Yaakov Maman

    2011-10-01

    Full Text Available The main adaptive immune response to bacteria is mediated by B cells and CD4+ T-cells. However, some bacterial proteins reach the cytosol of host cells and are exposed to the host CD8+ T-cells response. Both gram-negative and gram-positive bacteria can translocate proteins to the cytosol through type III and IV secretion and ESX-1 systems, respectively. The translocated proteins are often essential for the bacterium survival. Once injected, these proteins can be degraded and presented on MHC-I molecules to CD8+ T-cells. The CD8+ T-cells, in turn, can induce cell death and destroy the bacteria's habitat. In viruses, escape mutations arise to avoid this detection. The accumulation of escape mutations in bacteria has never been systematically studied. We show for the first time that such mutations are systematically present in most bacteria tested. We combine multiple bioinformatic algorithms to compute CD8+ T-cell epitope libraries of bacteria with secretion systems that translocate proteins to the host cytosol. In all bacteria tested, proteins not translocated to the cytosol show no escape mutations in their CD8+ T-cell epitopes. However, proteins translocated to the cytosol show clear escape mutations and have low epitope densities for most tested HLA alleles. The low epitope densities suggest that bacteria, like viruses, are evolutionarily selected to ensure their survival in the presence of CD8+ T-cells. In contrast with most other translocated proteins examined, Pseudomonas aeruginosa's ExoU, which ultimately induces host cell death, was found to have high epitope density. This finding suggests a novel mechanism for the manipulation of CD8+ T-cells by pathogens. The ExoU effector may have evolved to maintain high epitope density enabling it to efficiently induce CD8+ T-cell mediated cell death. These results were tested using multiple epitope prediction algorithms, and were found to be consistent for most proteins tested.

  1. Experimental porcine eperythrozoonosis: T-lymphocyte suppression and misdirected immune responses.

    Science.gov (United States)

    Zachary, J F; Smith, A R

    1985-04-01

    Immune responses and hematologic alterations were investigated in splenectomized pigs after IM inoculation with Eperythrozoon suis. Early hematologic alterations were massive parasitism of RBC, severe hypoglycemia, moderate bilirubinemia, and mild anemia; later findings included severe anemia, minimal parasitism of RBC, spontaneous agglutination of RBC at 25 C and 4 C which was reversible at 37 C, transient thrombocytopenia, and mild bilirubinemia. The humoral immune responses consisting of a transitory hyperglobulinemia and increase of indirect hemagglutination (IHA) titers against E suis were attributed to immunoglobulin M cold agglutinins. Cell-mediated immune responses, measured by phytohemagglutinin- and pokeweed mitogen-induced lymphocyte blastogenesis, were reduced after massive parasitemia. Blastogenesis induced by Escherichia coli lipopolysaccharide mitogen was increased before the hyperglobulinemia and an increase in IHA titer. There was an increase in the uptake of [3H]thymidine by lymphocytes cultured without mitogens after the decline in total globulin concentration and IHA titer.

  2. Treatment of silymarin, a plant flavonoid, prevents ultraviolet light-induced immune suppression and oxidative stress in mouse skin.

    Science.gov (United States)

    Katiyar, Santosh K

    2002-12-01

    It is well documented that ultraviolet (UV) light-induced immune suppression and oxidative stress play an important role in the induction of skin cancers. Earlier, we have shown that topical treatment of silymarin, a plant flavonoid from milk thistle (Silybum marianum L. Gaertn.), to mouse skin prevents photocarcinogenesis, but the preventive mechanism of photocarcinogenesis in vivo animal system by silymarin is not well defined and understood. To define the mechanism of prevention, we employed immunostaining, analytical assays and ELISA which revealed that topical treatment of silymarin (1 mg/cm2 skin area) to C3H/HeN mice inhibits UVB (90 mJ/cm2)-induced suppression of contact hypersensitivity (CHS) response to contact sensitizer dinitrofluorobenzene. Prevention of UVB-induced suppression of CHS by silymarin was found to be associated with the inhibition of infiltrating leukocytes, particularly CD11b+ cell type, and myeloperoxidase activity (50-71%). Silymarin treatment also resulted in significant reduction of UVB-induced immunosuppressive cytokine interleukin-10 producing cells and its production (58-72%, pskin cancer risk human population and ii) development of sunscreen containing silymarin as an antioxidant (chemopreventive agent) or silymarin can be supplemented in skin care products.

  3. Transforming growth factor-beta promotes rhinovirus replication in bronchial epithelial cells by suppressing the innate immune response.

    Directory of Open Access Journals (Sweden)

    Nicole Bedke

    Full Text Available Rhinovirus (RV infection is a major cause of asthma exacerbations which may be due to a deficient innate immune response in the bronchial epithelium. We hypothesized that the pleiotropic cytokine, TGF-β, influences interferon (IFN production by primary bronchial epithelial cells (PBECs following RV infection. Exogenous TGF-β(2 increased RV replication and decreased IFN protein secretion in response to RV or double-stranded RNA (dsRNA. Conversely, neutralizing TGF-β antibodies decreased RV replication and increased IFN expression in response to RV or dsRNA. Endogenous TGF-β(2 levels were higher in conditioned media of PBECs from asthmatic donors and the suppressive effect of anti-TGF-β on RV replication was significantly greater in these cells. Basal SMAD-2 activation was reduced when asthmatic PBECs were treated with anti-TGF-β and this was accompanied by suppression of SOCS-1 and SOCS-3 expression. Our results suggest that endogenous TGF-β contributes to a suppressed IFN response to RV infection possibly via SOCS-1 and SOCS-3.

  4. The immunoreceptor adapter protein DAP12 suppresses B lymphocyte?driven adaptive immune responses

    OpenAIRE

    Nakano-Yokomizo, Takako; Tahara-Hanaoka, Satoko; Nakahashi-Oda, Chigusa; Nabekura, Tsukasa; Tchao, Nadia K.; Kadosaki, Momoko; Totsuka, Naoya; Kurita, Naoki; Nakamagoe, Kiyotaka; Tamaoka, Akira; Takai, Toshiyuki; Yasui, Teruhito; Kikutani, Hitoshi; Honda, Shin-ichiro; Shibuya, Kazuko

    2011-01-01

    DAP12, an immunoreceptor tyrosine-based activation motif?bearing adapter protein, is involved in innate immunity mediated by natural killer cells and myeloid cells. We show that DAP12-deficient mouse B cells and B cells from a patient with Nasu-Hakola disease, a recessive genetic disorder resulting from loss of DAP12, showed enhanced proliferation after stimulation with anti-IgM or CpG. Myeloid-associated immunoglobulin-like receptor (MAIR) II (Cd300d) is a DAP12-associated immune receptor. L...

  5. CD19 CAR T Cells Expressing IL-12 Eradicate Lymphoma in Fully Lymphoreplete Mice through Induction of Host Immunity

    Directory of Open Access Journals (Sweden)

    Gray Kueberuwa

    2018-03-01

    Full Text Available Chimeric antigen receptor (CAR T cell therapy represents a significant advancement in cancer therapy. Larger studies have shown ∼90% complete remission rates against chemoresistant and/or refractory CD19+ leukemia or lymphoma. Effective CAR T cell therapy is highly dependent on lymphodepleting preconditioning, which is achieved through chemotherapy or radiotherapy that carries with it significant toxicities. These can exclude patients of low performance status. In order to overcome the need for preconditioning, we constructed fully mouse first and second generation anti-murine CD19 CARs with or without interleukin-12 (IL-12 secretion. To test these CARs, we established a mouse model to reflect the human situation without preconditioning. Murine second generation CAR T cells expressing IL-12 were capable of eradicating established B cell lymphoma with a long-term survival rate of ∼25%. We believe this to be the first study in a truly lymphoreplete model. We provide evidence that IL-12-expressing CAR T cells not only directly kill target CD19+ cells, but also recruit host immune cells to an anti-cancer immune response. This finding is critical because lymphodepletion regimens required for the success of current CAR T cell technology eliminate host immune cells whose anti-cancer activity could otherwise be harnessed by strategies such as IL-12-secreting CAR T cells. Keywords: CD19 CAR T cells, IL-12, immunotherapy, chimeric antigen receptor, adoptive cellular therapy, lymphoma, B cell malignancies, TRUCKs, pre-conditioning

  6. The Bacterial Second Messenger Cyclic di-GMP Regulates Brucella Pathogenesis and Leads to Altered Host Immune Response.

    Science.gov (United States)

    Khan, Mike; Harms, Jerome S; Marim, Fernanda M; Armon, Leah; Hall, Cherisse L; Liu, Yi-Ping; Banai, Menachem; Oliveira, Sergio C; Splitter, Gary A; Smith, Judith A

    2016-12-01

    Brucella species are facultative intracellular bacteria that cause brucellosis, a chronic debilitating disease significantly impacting global health and prosperity. Much remains to be learned about how Brucella spp. succeed in sabotaging immune host cells and how Brucella spp. respond to environmental challenges. Multiple types of bacteria employ the prokaryotic second messenger cyclic di-GMP (c-di-GMP) to coordinate responses to shifting environments. To determine the role of c-di-GMP in Brucella physiology and in shaping host-Brucella interactions, we utilized c-di-GMP regulatory enzyme deletion mutants. Our results show that a ΔbpdA phosphodiesterase mutant producing excess c-di-GMP displays marked attenuation in vitro and in vivo during later infections. Although c-di-GMP is known to stimulate the innate sensor STING, surprisingly, the ΔbpdA mutant induced a weaker host immune response than did wild-type Brucella or the low-c-di-GMP guanylate cyclase ΔcgsB mutant. Proteomics analysis revealed that c-di-GMP regulates several processes critical for virulence, including cell wall and biofilm formation, nutrient acquisition, and the type IV secretion system. Finally, ΔbpdA mutants exhibited altered morphology and were hypersensitive to nutrient-limiting conditions. In summary, our results indicate a vital role for c-di-GMP in allowing Brucella to successfully navigate stressful and shifting environments to establish intracellular infection. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  7. Synergy between the Host Immune System and Bacteriophage Is Essential for Successful Phage Therapy against an Acute Respiratory Pathogen.

    Science.gov (United States)

    Roach, Dwayne R; Leung, Chung Yin; Henry, Marine; Morello, Eric; Singh, Devika; Di Santo, James P; Weitz, Joshua S; Debarbieux, Laurent

    2017-07-12

    The rise of multi-drug-resistant (MDR) bacteria has spurred renewed interest in the use of bacteriophages in therapy. However, mechanisms contributing to phage-mediated bacterial clearance in an animal host remain unclear. We investigated the effects of host immunity on the efficacy of phage therapy for acute pneumonia caused by MDR Pseudomonas aeruginosa in a mouse model. Comparing efficacies of phage-curative and prophylactic treatments in healthy immunocompetent, MyD88-deficient, lymphocyte-deficient, and neutrophil-depleted murine hosts revealed that neutrophil-phage synergy is essential for the resolution of pneumonia. Population modeling of in vivo results further showed that neutrophils are required to control both phage-sensitive and emergent phage-resistant variants to clear infection. This "immunophage synergy" contrasts with the paradigm that phage therapy success is largely due to bacterial permissiveness to phage killing. Lastly, therapeutic phages were not cleared by pulmonary immune effector cells and were immunologically well tolerated by lung tissues. Copyright © 2017. Published by Elsevier Inc.

  8. Glutamine antagonist-mediated immune suppression decreases pathology but delays virus clearance in mice during nonfatal alphavirus encephalomyelitis.

    Science.gov (United States)

    Baxter, Victoria K; Glowinski, Rebecca; Braxton, Alicia M; Potter, Michelle C; Slusher, Barbara S; Griffin, Diane E

    2017-08-01

    Infection of weanling C57BL/6 mice with the TE strain of Sindbis virus (SINV) causes nonfatal encephalomyelitis associated with hippocampal-based memory impairment that is partially prevented by treatment with 6-diazo-5-oxo-l-norleucine (DON), a glutamine antagonist (Potter et al., J Neurovirol 21:159, 2015). To determine the mechanism(s) of protection, lymph node and central nervous system (CNS) tissues from SINV-infected mice treated daily for 1 week with low (0.3mg/kg) or high (0.6mg/kg) dose DON were examined. DON treatment suppressed lymphocyte proliferation in cervical lymph nodes resulting in reduced CNS immune cell infiltration, inflammation, and cell death compared to untreated SINV-infected mice. Production of SINV-specific antibody and interferon-gamma were also impaired by DON treatment with a delay in virus clearance. Cessation of treatment allowed activation of the antiviral immune response and viral clearance, but revived CNS pathology, demonstrating the ability of the immune response to mediate both CNS damage and virus clearance. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Extracellular Vesicles from a Helminth Parasite Suppress Macrophage Activation and Constitute an Effective Vaccine for Protective Immunity

    Directory of Open Access Journals (Sweden)

    Gillian Coakley

    2017-05-01

    Full Text Available Recent studies have demonstrated that many parasites release extracellular vesicles (EVs, yet little is known about the specific interactions of EVs with immune cells or their functions during infection. We show that EVs secreted by the gastrointestinal nematode Heligmosomoides polygyrus are internalized by macrophages and modulate their activation. EV internalization causes downregulation of type 1 and type 2 immune-response-associated molecules (IL-6 and TNF, and Ym1 and RELMα and inhibits expression of the IL-33 receptor subunit ST2. Co-incubation with EV antibodies abrogated suppression of alternative activation and was associated with increased co-localization of the EVs with lysosomes. Furthermore, mice vaccinated with EV-alum generated protective immunity against larval challenge, highlighting an important role in vivo. In contrast, ST2-deficient mice are highly susceptible to infection, and they are unable to clear parasites following EV vaccination. Hence, macrophage activation and the IL-33 pathway are targeted by H. polygyrus EVs, while neutralization of EV function facilitates parasite expulsion.

  10. Aspergillus galactosaminogalactan mediates adherence to host constituents and conceals hyphal β-glucan from the immune system.

    Directory of Open Access Journals (Sweden)

    Fabrice N Gravelat

    Full Text Available Aspergillus fumigatus is the most common cause of invasive mold disease in humans. The mechanisms underlying the adherence of this mold to host cells and macromolecules have remained elusive. Using mutants with different adhesive properties and comparative transcriptomics, we discovered that the gene uge3, encoding a fungal epimerase, is required for adherence through mediating the synthesis of galactosaminogalactan. Galactosaminogalactan functions as the dominant adhesin of A. fumigatus and mediates adherence to plastic, fibronectin, and epithelial cells. In addition, galactosaminogalactan suppresses host inflammatory responses in vitro and in vivo, in part through masking cell wall β-glucans from recognition by dectin-1. Finally, galactosaminogalactan is essential for full virulence in two murine models of invasive aspergillosis. Collectively these data establish a role for galactosaminogalactan as a pivotal bifunctional virulence factor in the pathogenesis of invasive aspergillosis.

  11. A single social defeat transiently suppresses the anti-viral immune response in mice

    NARCIS (Netherlands)

    de Groot, Johanna; Milligen, Florine J. van; Moonen-Leusen, Bernie W.M.; Thomas, Gethin; Koolhaas, Jaap M.

    1999-01-01

    Most of the studies dealing with effects of stress on anti-viral immunity have been carried out with stressors that are of long duration and that bear little relationship to the nature of the species. In this paper, we investigated the effect of a stressor mimicking real-life situations more

  12. Suppression of plant resistance gene-based immunity by a fungal effector

    NARCIS (Netherlands)

    Houterman, P.M.; Cornelissen, B.J.C.; Rep, M.

    2008-01-01

    The innate immune system of plants consists of two layers. The first layer, called basal resistance, governs recognition of conserved microbial molecules and fends off most attempted invasions. The second layer is based on Resistance (R) genes that mediate recognition of effectors, proteins secreted

  13. Visualizing and Quantifying the Suppressive Effects of Glucocorticoids on the Tadpole Immune System in Vivo

    Science.gov (United States)

    Schreiber, Alexander M.

    2011-01-01

    A challenging topic in undergraduate physiology courses is the complex interaction between the vertebrate endocrine system and the immune system. There are relatively few established and accessible laboratory exercises available to instructors to help their students gain a working understanding of these interactions. The present laboratory module…

  14. Host stress physiology and Trypanosoma haemoparasite infection influence innate immunity in the woylie (Bettongia penicillata).

    Science.gov (United States)

    Hing, Stephanie; Currie, Andrew; Broomfield, Steven; Keatley, Sarah; Jones, Krista; Thompson, R C Andrew; Narayan, Edward; Godfrey, Stephanie S

    2016-06-01

    Understanding immune function is critical to conserving wildlife in view of infectious disease threats, particularly in threatened species vulnerable to stress, immunocompromise and infection. However, few studies examine stress, immune function and infection in wildlife. We used a flow cytometry protocol developed for human infants to assess phagocytosis, a key component of innate immunity, in a critically endangered marsupial, the woylie (Bettongia penicillata). The effects of stress physiology and Trypanosoma infection on phagocytosis were investigated. Blood and faecal samples were collected from woylies in a captive facility over three months. Trypanosoma status was determined using PCR. Faecal cortisol metabolites (FCM) were quantified by enzyme-immunoassay. Mean phagocytosis measured was >90%. An interaction between sex and FCM influenced the percentage of phagocytosing leukocytes, possibly reflecting the influence of sex hormones and glucocorticoids. An interaction between Trypanosoma status and FCM influenced phagocytosis index, suggesting that stress physiology and infection status influence innate immunity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Optimal immunity meets natural variation: the evolutionary biology of host defence.

    Science.gov (United States)

    Graham, A L

    2013-11-01

    This editorial introduces the seven articles that comprise the Parasite Immunology special issue on the Evolutionary Biology of Host Defence. The rationale for an evolutionary approach to immunoparasitology is briefly outlined, and then the articles are placed in that broader context. A central aim of each article is to explain the generation and maintenance of immunological heterogeneity among hosts in nature. The authors describe new tools and approaches that enable unprecedented insight into evolutionary and immunological processes in both the laboratory and the wild. The examples discussed include insects, birds and mammals (as hosts) and trypanosomes, apicomplexans and nematodes (as parasites). © 2013 John Wiley & Sons Ltd.

  16. Erwinia amylovora effector protein Eop1 suppresses PAMP-triggered immunity in Malus

    Science.gov (United States)

    Erwinia amylovora (Ea) utilizes a type three secretion system (T3SS) to deliver effector proteins into plant host cells. Several Ea effectors have been identified based on their sequence similarity to plant and animal bacterial pathogen effectors; however, the function of the majority of Ea effecto...

  17. Human papillomavirus targets crossroads in immune signaling

    NARCIS (Netherlands)

    Tummers, Bart

    2016-01-01

    Persistent infections with high-risk type human papillomaviruses (hrHPVs) can progress to cancer. HrHPVs infect keratinocytes (KCs) and successfully suppress host immunity for up to two years despite the fact that KCs are well equipped to detect and initiate immune responses to invading pathogens.

  18. Impact of Enterobius vermicularis infection and mebendazole treatment on intestinal microbiota and host immune response

    OpenAIRE

    Yang, Chin-An; Liang, Chao; Lin, Chia-Li; Hsiao, Chiung-Tzu; Peng, Ching-Tien; Lin, Hung-Chih; Chang, Jan-Gowth

    2017-01-01

    Background Previous studies on the association of enterobiasis and chronic inflammatory diseases have revealed contradictory results. The interaction of Enterobius vermicularis infection in particular with gut microbiota and induced immune responses has never been thoroughly examined. Methodology/Findings In order to answer the question of whether exposure to pinworm and mebendazole can shift the intestinal microbial composition and immune responses, we recruited 109 (30 pinworm-negative, 79 ...

  19. Unanticipated Mycobacterium tuberculosis complex culture inhibition by immune modulators, immune suppressants, a growth enhancer, and vitamins A and D: clinical implications.

    Science.gov (United States)

    Greenstein, Robert J; Su, Liya; Shahidi, Azra; Brown, William D; Clifford, Anya; Brown, Sheldon T

    2014-09-01

    The development of novel antibiotics to treat multidrug-resistant (MDR) tuberculosis is time-consuming and expensive. Multiple immune modulators, immune suppressants, anti-inflammatories, and growth enhancers, and vitamins A and D, inhibit Mycobacterium avium subspecies paratuberculosis (MAP) in culture. We studied the culture inhibition of Mycobacterium tuberculosis complex by these agents. Biosafety level two M. tuberculosis complex (ATCC 19015 and ATCC 25177) was studied in radiometric Bactec or MGIT culture. Agents evaluated included clofazimine, methotrexate, 6-mercaptopurine, cyclosporine A, rapamycin, tacrolimus, monensin, and vitamins A and D. All the agents mentioned above caused dose-dependent inhibition of the M. tuberculosis complex. There was no inhibition by the anti-inflammatory 5-aminosalicylic acid, which causes bacteriostatic inhibition of MAP. We conclude that, at a minimum, studies with virulent M. tuberculosis are indicated with the agents mentioned above, as well as with the thioamide 5-propothiouricil, which has previously been shown to inhibit the M. tuberculosis complex in culture. Our data additionally emphasize the importance of vitamins A and D in treating mycobacterial diseases. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Necrotizing herpetic retinopathies. A spectrum of herpes virus-induced diseases determined by the immune state of the host.

    Science.gov (United States)

    Guex-Crosier, Y; Rochat, C; Herbort, C P

    1997-12-01

    Necrotizing herpetic retinopathies (NHR), a new spectrum of diseases induced by viruses of the herpes family (herpes simplex virus, varicella-zoster virus and cytomegalovirus), includes acute retinal necrosis (ARN) occurring in apparently immunocompetent patients and progressive outer retinal necrosis (PORN) described in severely immuno-compromised patients. Signs of impaired cellular immunity were seen in 16% of ARN patients in a review of 216 reported cases, indicating that immune dysfunction is not only at the origin of PORN but might also be at the origin of ARN. The aim of this study was to correlate clinical findings in NHR patients with their immunologic parameters. Charts from patients with the diagnosis of ARN or PORN seen from 1990 to 1995 were reviewed. Clinical characteristics and disease patterns were correlated with immunological parameters taking into account CD4 lymphocyte rate in AIDS patients and blood-lymphocyte subpopulation determination by flow cytometry, cutaneous delayed type hypersensitivity testing and lymphocytic proliferation rate to seven antigens in HIV-negative patients. During the period considered, 11 patients and 7 patients fulfilled the criteria of ARN and PORN respectively. Immune dysfunctions were identified in most patients. Mild type of ARN and classical ARN were associated with discrete immune dysfunctions, ARN with features of PORN was seen in more immunodepressed patients and classical PORN was always seen in severely immunodepressed HIV patients. Our findings suggest that NHR is a continuous spectrum of diseases induced by herpes viruses, whose clinical expression depends on the immune state of the host going from mild or classical ARN at one end in patients with non-detectable or slight immune dysfunction to PORN in severely immunodepressed patients at the other end and with intermediary forms between these extremes.

  1. Cell therapy for Parkinson's disease: Functional role of the host immune response on survival and differentiation of dopaminergic neuroblasts.

    Science.gov (United States)

    Wenker, Shirley D; Leal, María Celeste; Farías, María Isabel; Zeng, Xianmin; Pitossi, Fernando J

    2016-05-01

    Parkinson's disease (PD) is a neurodegenerative disorder, whose cardinal pathology is the loss of dopaminergic neurons in the substantia nigra. Current treatments for PD have side effects in the long term and do not halt disease progression or regenerate dopaminergic cell loss. Attempts to compensate neuronal cell loss by transplantation of dopamine-producing cells started more than 30 years ago, leading to several clinical trials. These trials showed safety and variable efficacy among patients. In addition to variability in efficacy, several patients developed graft-induced dyskinesia. Nevertheless, they have provided a proof of concept that motor symptoms could be improved by cell transplantation. Cell transplantation in the brain presents several immunological challenges. The adaptive immune response should be abolished to avoid graft rejection by the host. In addition, the innate immune response will always be present after transplanting cells into the brain. Remarkably, the innate immune response can have dramatic effects on the survival, differentiation and proliferation of the transplanted cells, but has been hardly investigated. In this review, we analyze data on the functional effects of signals from the innate immune system on dopaminergic differentiation, survival and proliferation. Then, we discussed efforts on cell transplantation in animal models and PD patients, highlighting the immune response and the immunomodulatory treatment strategies performed. The analysis of the available data lead us to conclude that the modulation of the innate immune response after transplantation can increase the success of future clinical trials in PD by enhancing cell differentiation and survival. This article is part of a Special Issue entitled SI: PSC and the brain. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. The habitat disruption induces immune-suppression and oxidative stress in honey bees

    OpenAIRE

    Morimoto, Tomomi; Kojima, Yuriko; Toki, Taku; Komeda, Yayoi; Yoshiyama, Mikio; Kimura, Kiyoshi; Nirasawa, Keijiro; Kadowaki, Tatsuhiko

    2011-01-01

    The honey bee is a major insect used for pollination of many commercial crops worldwide. Although the use of honey bees for pollination can disrupt the habitat, the effects on their physiology have never been determined. Recently, honey bee colonies have often collapsed when introduced in greenhouses for pollination in Japan. Thus, suppressing colony collapses and maintaining the number of worker bees in the colonies is essential for successful long-term pollination in greenhouses and recycli...

  3. Effect of Probiotic Bacteria on Microbial Host Defense, Growth, and Immune Function in Human Immunodeficiency Virus Type-1 Infection

    Directory of Open Access Journals (Sweden)

    Stig Bengmark

    2011-12-01

    Full Text Available The hypothesis that probiotic administration protects the gut surface and could delay progression of Human Immunodeficiency Virus type1 (HIV-1 infection to the Acquired Immunodeficiency Syndrome (AIDS was proposed in 1995. Over the last five years, new studies have clarified the significance of HIV-1 infection of the gut associated lymphoid tissue (GALT for subsequent alterations in the microflora and breakdown of the gut mucosal barrier leading to pathogenesis and development of AIDS. Current studies show that loss of gut CD4+ Th17 cells, which differentiate in response to normal microflora, occurs early in HIV-1 disease. Microbial translocation and suppression of the T regulatory (Treg cell response is associated with chronic immune activation and inflammation. Combinations of probiotic bacteria which upregulate Treg activation have shown promise in suppressing pro inflammatory immune response in models of autoimmunity including inflammatory bowel disease and provide a rationale for use of probiotics in HIV-1/AIDS. Disturbance of the microbiota early in HIV-1 infection leads to greater dominance of potential pathogens, reducing levels of bifidobacteria and lactobacillus species and increasing mucosal inflammation. The interaction of chronic or recurrent infections, and immune activation contributes to nutritional deficiencies that have lasting consequences especially in the HIV-1 infected child. While effective anti-retroviral therapy (ART has enhanced survival, wasting is still an independent predictor of survival and a major presenting symptom. Congenital exposure to HIV-1 is a risk factor for growth delay in both infected and non-infected infants. Nutritional intervention after 6 months of age appears to be largely ineffective. A meta analysis of randomized, controlled clinical trials of infant formulae supplemented with Bifidobacterium lactis showed that weight gain was significantly greater in infants who received B. lactis compared to

  4. Evidence for significant influence of host immunity on changes in differential blood count during malaria.

    Science.gov (United States)

    Berens-Riha, Nicole; Kroidl, Inge; Schunk, Mirjam; Alberer, Martin; Beissner, Marcus; Pritsch, Michael; Kroidl, Arne; Fröschl, Günter; Hanus, Ingrid; Bretzel, Gisela; von Sonnenburg, Frank; Nothdurft, Hans Dieter; Löscher, Thomas; Herbinger, Karl-Heinz

    2014-04-23

    Malaria has been shown to change blood counts. Recently, a few studies have investigated the alteration of the peripheral blood monocyte-to-lymphocyte count ratio (MLCR) and the neutrophil-to-lymphocyte count ratio (NLCR) during infection with Plasmodium falciparum. Based on these findings this study investigates the predictive values of blood count alterations during malaria across different sub-populations. Cases and controls admitted to the Department of Infectious Diseases and Tropical Medicine from January 2000 through December 2010 were included in this comparative analysis. Blood count values and other variables at admission controlled for age, gender and immune status were statistically investigated. The study population comprised 210 malaria patients, infected with P. falciparum (68%), Plasmodium vivax (21%), Plasmodium ovale (7%) and Plasmodium malariae (4%), and 210 controls. A positive correlation of parasite density with NLCR and neutrophil counts, and a negative correlation of parasite density with thrombocyte, leucocyte and lymphocyte counts were found. An interaction with semi-immunity was observed; ratios were significantly different in semi-immune compared to non-immune patients (P value of the ratios was fair but limited. However, these changes were less pronounced in patients with semi-immunity. The ratios might constitute easily applicable surrogate biomarkers for immunity.

  5. Suppression of inflammatory immune responses in celiac disease by experimental hookworm infection.

    Directory of Open Access Journals (Sweden)

    Henry J McSorley

    Full Text Available We present immunological data from two clinical trials where the effect of experimental human hookworm (Necator americanus infection on the pathology of celiac disease was evaluated. We found that basal production of Interferon- (IFN-γ and Interleukin- (IL-17A from duodenal biopsy culture was suppressed in hookworm-infected participants compared to uninfected controls. Increased levels of CD4+CD25+Foxp3+ cells in the circulation and mucosa are associated with active celiac disease. We show that this accumulation also occurs during a short-term (1 week oral gluten challenge, and that hookworm infection suppressed the increase of circulating CD4+CD25+Foxp3+ cells during this challenge period. When duodenal biopsies from hookworm-infected participants were restimulated with the immunodominant gliadin peptide QE65, robust production of IL-2, IFN-γ and IL-17A was detected, even prior to gluten challenge while participants were strictly adhering to a gluten-free diet. Intriguingly, IL-5 was produced only after hookworm infection in response to QE65. Thus we hypothesise that hookworm-induced TH2 and IL-10 cross-regulation of the TH1/TH17 inflammatory response may be responsible for the suppression of these responses during experimental hookworm infection.

  6. Analysis of putative apoplastic effectors from the nematode, Globodera rostochiensis, and identification of an expansin-like protein that can induce and suppress host defenses.

    Directory of Open Access Journals (Sweden)

    Shawkat Ali

    Full Text Available The potato cyst nematode, Globodera rostochiensis, is an important pest of potato. Like other pathogens, plant parasitic nematodes are presumed to employ effector proteins, secreted into the apoplast as well as the host cytoplasm, to alter plant cellular functions and successfully infect their hosts. We have generated a library of ORFs encoding putative G. rostochiensis putative apoplastic effectors in vectors for expression in planta. These clones were assessed for morphological and developmental effects on plants as well as their ability to induce or suppress plant defenses. Several CLAVATA3/ESR-like proteins induced developmental phenotypes, whereas predicted cell wall-modifying proteins induced necrosis and chlorosis, consistent with roles in cell fate alteration and tissue invasion, respectively. When directed to the apoplast with a signal peptide, two effectors, an ubiquitin extension protein (GrUBCEP12 and an expansin-like protein (GrEXPB2, suppressed defense responses including NB-LRR signaling induced in the cytoplasm. GrEXPB2 also elicited defense response in species- and sequence-specific manner. Our results are consistent with the scenario whereby potato cyst nematodes secrete effectors that modulate host cell fate and metabolism as well as modifying host cell walls. Furthermore, we show a novel role for an apoplastic expansin-like protein in suppressing intra-cellular defense responses.

  7. Cross-Species Virus-Host Protein-Protein Interactions Inhibiting Innate Immunity

    Science.gov (United States)

    2016-07-01

    of zoonotic viruses acquiring new host species , including humans. This news story was prompted by the emergence of the Middle Eastern Respiratory...infectious diseases are viral in nature and involve a host species jump from animals to humans. Many factors may contribute to (re-) emergence of viral...widespread morbidity and mortality, with new strains emerging from animal reservoirs possessing the potential to cause pandemics. The influenza A RNA

  8. Novel Bat Influenza Virus NS1 Proteins Bind Double-Stranded RNA and Antagonize Host Innate Immunity.

    Science.gov (United States)

    Turkington, Hannah L; Juozapaitis, Mindaugas; Kerry, Philip S; Aydillo, Teresa; Ayllon, Juan; García-Sastre, Adolfo; Schwemmle, Martin; Hale, Benjamin G

    2015-10-01

    We demonstrate that novel bat HL17NL10 and HL18NL11 influenza virus NS1 proteins are effective interferon antagonists but do not block general host gene expression. Solving the RNA-binding domain structures revealed the canonical NS1 symmetrical homodimer, and RNA binding required conserved basic residues in this domain. Interferon antagonism was strictly dependent on RNA binding, and chimeric bat influenza viruses expressing NS1s defective in this activity were highly attenuated in interferon-competent cells but not in cells unable to establish antiviral immunity. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Daily Plasmodium yoelii infective mosquito bites do not generate protection or suppress previous immunity against the liver stage

    Directory of Open Access Journals (Sweden)

    Wong Kurt A

    2011-04-01

    Full Text Available Abstract Background Human populations that are naturally subjected to Plasmodium infection do not acquire complete protection against the liver stage of this parasite despite prolonged and frequent exposure. However, sterile immunity against Plasmodium liver stage can be achieved after repeated exposure to radiation attenuated sporozoites. The reasons for this different response remain largely unknown, but a suppressive effect of blood stage Plasmodium infection has been proposed as a cause for the lack of liver stage protection. Methods Using Plasmodium yoelii 17XNL, the response generated in mice subjected to daily infective bites from normal or irradiated mosquitoes was compared. The effect of daily-infected mosquito bites on mice that were previously immunized against P. yoelii liver stage was also studied. Results It was observed that while the bites of normal infected mosquitoes do not generate strong antibody responses and protection, the bites of irradiated mosquitoes result in high levels of anti-sporozoite antibodies and protection against liver stage Plasmodium infection. Exposure to daily infected mosquito bites did not eliminate the protection acquired previously with a experimental liver stage vaccine. Conclusions Liver stage immunity generated by irradiated versus normal P. yoelii infected mosquitoes is essentially different, probably because of the blood stage infection that follows normal mosquito bites, but not irradiated. While infective mosquito bites do not induce a protective liver stage response, they also do not interfere with previously acquired liver stage protective responses, even if they induce a complete blood stage infection. Considering that the recently generated anti-malaria vaccines induce only partial protection against infection, it is encouraging that, at least in mouse models, immunity is not negatively affected by subsequent exposure and infection with the parasite.

  10. Insight into bacterial virulence mechanisms against host immune response via the Yersinia pestis-human protein-protein interaction network.

    Science.gov (United States)

    Yang, Huiying; Ke, Yuehua; Wang, Jian; Tan, Yafang; Myeni, Sebenzile K; Li, Dong; Shi, Qinghai; Yan, Yanfeng; Chen, Hui; Guo, Zhaobiao; Yuan, Yanzhi; Yang, Xiaoming; Yang, Ruifu; Du, Zongmin

    2011-11-01

    A Yersinia pestis-human protein interaction network is reported here to improve our understanding of its pathogenesis. Up to 204 interactions between 66 Y. pestis bait proteins and 109 human proteins were identified by yeast two-hybrid assay and then combined with 23 previously published interactions to construct a protein-protein interaction network. Topological analysis of the interaction network revealed that human proteins targeted by Y. pestis were significantly enriched in the proteins that are central in the human protein-protein interaction network. Analysis of this network showed that signaling pathways important for host immune responses were preferentially targeted by Y. pestis, including the pathways involved in focal adhesion, regulation of cytoskeleton, leukocyte transendoepithelial migration, and Toll-like receptor (TLR) and mitogen-activated protein kinase (MAPK) signaling. Cellular pathways targeted by Y. pestis are highly relevant to its pathogenesis. Interactions with host proteins involved in focal adhesion and cytoskeketon regulation pathways could account for resistance of Y. pestis to phagocytosis. Interference with TLR and MAPK signaling pathways by Y. pestis reflects common characteristics of pathogen-host interaction that bacterial pathogens have evolved to evade host innate immune response by interacting with proteins in those signaling pathways. Interestingly, a large portion of human proteins interacting with Y. pestis (16/109) also interacted with viral proteins (Epstein-Barr virus [EBV] and hepatitis C virus [HCV]), suggesting that viral and bacterial pathogens attack common cellular functions to facilitate infections. In addition, we identified vasodilator-stimulated phosphoprotein (VASP) as a novel interaction partner of YpkA and showed that YpkA could inhibit in vitro actin assembly mediated by VASP.

  11. A case of preventable pulmonary tuberculosis in a Greenlandic, heavily immune suppressed patient

    DEFF Research Database (Denmark)

    Christensen, Anne-Sophie H; Johansen, Isik S

    2012-01-01

    Immune modulating therapy, such as tumour necrosis factor (TNF)-alpha inhibitors, is becoming increasingly more widespread in the treatment of many autoimmune diseases. One of the well-documented side effects of TNF-alpha inhibitors is an increased risk of reactivating latent tuberculosis infection...... initiating anti-TNF-α treatment and secondly, as part of routine tuberculosis contact tracing. He subsequently developed severe pulmonary tuberculosis and was hospitalised for 6 weeks....

  12. Multivariate statistical analyses demonstrate unique host immune responses to single and dual lentiviral infection.

    Directory of Open Access Journals (Sweden)

    Sunando Roy

    2009-10-01

    Full Text Available Feline immunodeficiency virus (FIV and human immunodeficiency virus (HIV are recently identified lentiviruses that cause progressive immune decline and ultimately death in infected cats and humans. It is of great interest to understand how to prevent immune system collapse caused by these lentiviruses. We recently described that disease caused by a virulent FIV strain in cats can be attenuated if animals are first infected with a feline immunodeficiency virus derived from a wild cougar. The detailed temporal tracking of cat immunological parameters in response to two viral infections resulted in high-dimensional datasets containing variables that exhibit strong co-variation. Initial analyses of these complex data using univariate statistical techniques did not account for interactions among immunological response variables and therefore potentially obscured significant effects between infection state and immunological parameters.Here, we apply a suite of multivariate statistical tools, including Principal Component Analysis, MANOVA and Linear Discriminant Analysis, to temporal immunological data resulting from FIV superinfection in domestic cats. We investigated the co-variation among immunological responses, the differences in immune parameters among four groups of five cats each (uninfected, single and dual infected animals, and the "immune profiles" that discriminate among them over the first four weeks following superinfection. Dual infected cats mount an immune response by 24 days post superinfection that is characterized by elevated levels of CD8 and CD25 cells and increased expression of IL4 and IFNgamma, and FAS. This profile discriminates dual infected cats from cats infected with FIV alone, which show high IL-10 and lower numbers of CD8 and CD25 cells.Multivariate statistical analyses demonstrate both the dynamic nature of the immune response to FIV single and dual infection and the development of a unique immunological profile in dual

  13. Effects of juvenile host density and food availability on adult immune response, parasite resistance and virulence in a Daphnia-parasite system.

    Directory of Open Access Journals (Sweden)

    Corine N Schoebel

    Full Text Available Host density can increase infection rates and reduce host fitness as increasing population density enhances the risk of becoming infected either through increased encounter rate or because host condition may decline. Conceivably, potential hosts could take high host density as a cue to up-regulate their defence systems. However, as host density usually covaries with food availability, it is difficult to examine the importance of host density in isolation. Thus, we performed two full-factorial experiments that varied juvenile densities of Daphnia magna (a freshwater crustacean and food availability independently. We also included a simulated high-density treatment, where juvenile experimental animals were kept in filtered media that previously maintained Daphnia at high-density. Upon reaching adulthood, we exposed the Daphnia to their sterilizing bacterial parasite, Pasteuria ramosa, and examined how the juvenile treatments influenced the likelihood and severity of infection (Experiment I and host immune investment (Experiment II. Neither juvenile density nor food treatments affected the likelihood of infection; however, well-fed hosts that were well-fed as juveniles produced more offspring prior to sterilization than their less well-fed counterparts. By contrast, parasite growth was independent of host juvenile resources or host density. Parasite-exposed hosts had a greater number of circulating haemocytes than controls (i.e., there was a cellular immune response, but the magnitude of immune response was not mediated by food availability or host density. These results suggest that density dependent effects on disease arise primarily through correlated changes in food availability: low food could limit parasitism and potentially curtail epidemics by reducing both the host's and parasite's reproduction as both depend on the same food.

  14. Regulatory T Cells and Host Anti-CML Responses

    National Research Council Canada - National Science Library

    Wong, Jr, K. K

    2008-01-01

    CD4+CD25+FoxP-3+ regulatory T-cells (Tregs) suppress immune responses to "self" antigens, but also have been shown to suppress host anti-tumor responses in several human malignancies, including breast, gastrointestinal, and ovarian cancer...

  15. Agonistic anti-CD40 antibody profoundly suppresses the immune response to infection with lymphocytic choriomeningitis virus

    DEFF Research Database (Denmark)

    Bartholdy, Christina; Kauffmann, Susanne Ørding; Christensen, Jan Pravsgaard

    2007-01-01

    -CD40 treatment of MHC class II-deficient mice infected with a moderate dose of LCMV resulted in severe suppression of the antiviral CD8 T cell response and uncontrolled virus spread, rather than improved CD8 T cell immune surveillance. In Ab-treated wild-type mice, the antiviral CD8 T cell response......Previous work has shown that agonistic Abs to CD40 (anti-CD40) can boost weak CD8 T cell responses as well as substitute for CD4 T cell function during chronic gammaherpes virus infection. Agonistic anti-CD40 treatment has, therefore, been suggested as a potential therapeutic strategy...... in immunocompromised patients. In this study, we investigated whether agonistic anti-CD40 could substitute for CD4 T cell help in generating a sustained CD8 T cell response and prevent viral recrudescence following infection with lymphocytic choriomeningitis virus (LCMV). Contrary to expectations, we found that anti...

  16. Genetic 'budget' of viruses and the cost to the infected host: a theory on the relationship between the genetic capacity of viruses, immune evasion, persistence and disease.

    Science.gov (United States)

    Chaston, T B; Lidbury, B A

    2001-02-01

    The nature of the pathogen-host relationship is recognized as being a dynamic coevolutionary process where the immune system has required ongoing adaptation and improvement to combat infection. Under survival pressure from sophisticated immune responses, adaptive processes for microbes, including viruses, have manifested as immune evasion strategies. This paper proposes a theory that virus immune evasion can be broadly classified into 'acquisition' or 'erroneous replication' strategies. Acquisition strategies are characteristic of large genome dsDNA viruses, which (i) replicate in the cell nucleus; (ii) have acquired host genes that can be used to directly manipulate responses to infection; (iii) are often latent for the lifetime of the host; and (iv) have little or no serious impact on health. Alternatively, erroneous replication strategies are characteristic of small genome RNA viruses, which are recognized as being the cause of many serious diseases in humans. It is proposed that this propensity for disease is due to the cytoplasmic site of replication and truncated temporal relationship with the host, which has limited or removed the evolutionary opportunity for RNA viruses to have acquired host genes. This has resulted in RNA viruses relying on error-prone replication strategies which, while allowing survival and persistence, are more likely to lead to disease due to the lack of direct viral control over potentially host-deleterious inflammatory and immune responses to infection.

  17. Suppression of Th2 immune responses by the sulfated polysaccharide from Porphyra haitanensis in tropomyosin-sensitized mice.

    Science.gov (United States)

    Shi, Chaolan; Pan, Tzuming; Cao, Minjie; Liu, Qingmei; Zhang, Lingjing; Liu, Guangming

    2015-02-01

    The sulfated polysaccharide from Porphyra was hypothesized to exhibit immunoregulatory, anti-tumor and anti-inflammatory activity, but its anti-allergic activity is not fully understood. Therefore, the aim of this study was to isolate sulfated polysaccharide from Porphyra haitanensis (PHPS) and investigate its anti-allergic potential using a tropomyosin (TM)-induced mouse allergy model. Intraperitoneal injection of PHPS suppressed the allergic reaction by modulating serum IgE, IgG1 and IgG2a levels in mice. In particular, when PHPS was injected prior to the first immunization with TM, the IgE level decreased by 34.2% compared with the control (PBS) group. Oral therapeutic administration of PHPS to TM-sensitized mice decreased histamine release and repaired the pathology in the jejunum of the small intestine. In vitro, the mRNA expressions of the TM-induced Th2 cytokines (interleukin-4 (IL-4), IL-5 and IL-13) in splenic lymphocytes were reduced by PHPS; however, the expression of Th1 and regulatory cytokines (interferon gamma (IFN-γ) and IL-10) were up-regulated in PHPS-treated splenic lymphocytes. In the splenic lymphocyte supernatant, the IL-4, IL-13 and IFN-γ levels were also regulated by PHPS. Moreover, PHPS induced IFN-γ secretion via the Jun N-terminal kinase (JNK) and Janus kinase 2 (JAK2) signaling pathways. Therefore, these results suggest that PHPS suppresses the TM-induced allergic reaction, possibly by modulating the imbalance of the Th1/Th2 immune response. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Adaptive immunity alters distinct host feeding pathways during nematode induced inflammation, a novel mechanism in parasite expulsion.

    Directory of Open Access Journals (Sweden)

    John J Worthington

    2013-01-01

    Full Text Available Gastrointestinal infection is often associated with hypophagia and weight loss; however, the precise mechanisms governing these responses remain poorly defined. Furthermore, the possibility that alterations in feeding during infection may be beneficial to the host requires further study. We used the nematode Trichinella spiralis, which transiently inhabits the small intestine before migrating to skeletal muscle, as a biphasic model of infection to determine the cellular and molecular pathways controlling feeding during enteric and peripheral inflammation. Through the infection of genetically modified mice lacking cholecystokinin, Tumor necrosis factor α receptors and T and B-cells, we observed a biphasic hypophagic response to infection resulting from two separate immune-driven mechanisms. The enteroendocrine I-cell derived hormone cholecystokinin is an essential mediator of initial hypophagia and is induced by CD4+ T-cells during enteritis. In contrast, the second hypophagic response is extra-intestinal and due to the anorectic effects of TNFα during peripheral infection of the muscle. Moreover, via maintaining naive levels of the adipose secreted hormone leptin throughout infection we demonstrate a novel feedback loop in the immunoendocrine axis. Immune driven I-cell hyperplasia and resultant weight loss leads to a reduction in the inflammatory adipokine leptin, which in turn heightens protective immunity during infection. These results characterize specific immune mediated mechanisms which reduce feeding during intestinal or peripheral inflammation. Importantly, the molecular mediators of each phase are entirely separate. The data also introduce the first evidence that I-cell hyperplasia is an adaptively driven immune response that directly impinges on the outcome to infection.

  19. Development of novel DIF-1 derivatives that selectively suppress innate immune responses.

    Science.gov (United States)

    Nguyen, Van Hai; Kikuchi, Haruhisa; Kubohara, Yuzuru; Takahashi, Katsunori; Katou, Yasuhiro; Oshima, Yoshiteru

    2015-08-01

    The multiple pharmacological activities of differentiation-inducing factor-1 (DIF-1) of the cellular slime mold Dictyostelium discoideum led us to examine the use of DIF-1 as a 'drug template' to develop promising seed compounds for drug discovery. DIF-1 and its derivatives were synthesized and evaluated for their regulatory activities in innate immune responses. We found two new derivatives (4d and 5e) with highly selective inhibitory activities against production of the antimicrobial peptide attacin in Drosophila S2 cells and against production of interleukin-2 in Jurkat cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Asynchrony between Host Plant and Insects-Defoliator within a Tritrophic System: The Role of Herbivore Innate Immunity.

    Directory of Open Access Journals (Sweden)

    Vyacheslav V Martemyanov

    Full Text Available The effects of asynchrony in the phenology of spring-feeding insect-defoliators and their host plants on insects' fitness, as well as the importance of this effect for the population dynamics of outbreaking species of insects, is a widespread and well-documented phenomenon. However, the spreading of this phenomenon through the food chain, and especially those mechanisms operating this spreading, are still unclear. In this paper, we study the effect of seasonally declined leafquality (estimated in terms of phenolics and nitrogen content on herbivore fitness, immune parameters and resistance against pathogen by using the silver birch Betula pendula--gypsy moth Lymantria dispar--nucleopolyhedrovirus as the tritrophic system. We show that a phenological mismatch induced by the delay in the emergence of gypsy moth larvae and following feeding on mature leaves has negative effects on the female pupal weight, on the rate of larval development and on the activity of phenoloxidase in the plasma of haemolymph. In addition, the larval susceptibility to exogenous nucleopolyhydrovirus infection as well as covert virus activation were both enhanced due to the phenological mismatch. The observed effects of phenological mismatch on insect-baculovirus interaction may partially explain the strong and fast fluctuations in the population dynamics of the gypsy moth that is often observed in the studied part of the defoliator area. This study also reveals some indirect mechanisms of effect related to host plant quality, which operate through the insect innate immune status and affect resistance to both exogenous and endogenous virus.

  1. The Immune Responses of the Animal Hosts of West Nile Virus: A Comparison of Insects, Birds, and Mammals

    Directory of Open Access Journals (Sweden)

    Laura R. H. Ahlers

    2018-04-01

    Full Text Available Vector-borne diseases, including arboviruses, pose a serious threat to public health worldwide. Arboviruses of the flavivirus genus, such as Zika virus (ZIKV, dengue virus, yellow fever virus (YFV, and West Nile virus (WNV, are transmitted to humans from insect vectors and can cause serious disease. In 2017, over 2,000 reported cases of WNV virus infection occurred in the United States, with two-thirds of cases classified as neuroinvasive. WNV transmission cycles through two different animal populations: birds and mosquitoes. Mammals, particularly humans and horses, can become infected through mosquito bites and represent dead-end hosts of WNV infection. Because WNV can infect diverse species, research on this arbovirus has investigated the host response in mosquitoes, birds, humans, and horses. With the growing geographical range of the WNV mosquito vector and increased human exposure, improved surveillance and treatment of the infection will enhance public health in areas where WNV is endemic. In this review, we survey the bionomics of mosquito species involved in Nearctic WNV transmission. Subsequently, we describe the known immune response pathways that counter WNV infection in insects, birds, and mammals, as well as the mechanisms known to curb viral infection. Moreover, we discuss the bacterium Wolbachia and its involvement in reducing flavivirus titer in insects. Finally, we highlight the similarities of the known immune pathways and identify potential targets for future studies aimed at improving antiviral therapeutic and vaccination design.

  2. Signal transduction of Helicobacter pylori during interaction with host cell protein receptors of epithelial and immune cells

    Science.gov (United States)

    Pachathundikandi, Suneesh Kumar; Tegtmeyer, Nicole; Backert, Steffen

    2013-01-01

    Helicobacter pylori infections can induce pathologies ranging from chronic gastritis, peptic ulceration to gastric cancer. Bacterial isolates harbor numerous well-known adhesins, vacuolating cytotoxin VacA, protease HtrA, urease, peptidoglycan, and type IV secretion systems (T4SS). It appears that H. pylori targets more than 40 known host protein receptors on epithelial or immune cells. A series of T4SS components such as CagL, CagI, CagY, and CagA can bind to the integrin α5β1 receptor. Other targeted membrane-based receptors include the integrins αvβ3, αvβ5, and β2 (CD18), RPTP-α/β, GP130, E-cadherin, fibronectin, laminin, CD46, CD74, ICAM1/LFA1, T-cell receptor, Toll-like receptors, and receptor tyrosine kinases EGFR, ErbB2, ErbB3, and c-Met. In addition, H. pylori is able to activate the intracellular receptors NOD1, NOD2, and NLRP3 with important roles in innate immunity. Here we review the interplay of various bacterial factors with host protein receptors. The contribution of these interactions to signal transduction and pathogenesis is discussed. PMID:24280762

  3. An Interferon Regulated MicroRNA Provides Broad Cell-Intrinsic Antiviral Immunity through Multihit Host-Directed Targeting of the Sterol Pathway.

    Directory of Open Access Journals (Sweden)

    Kevin A Robertson

    2016-03-01

    Full Text Available In invertebrates, small interfering RNAs are at the vanguard of cell-autonomous antiviral immunity. In contrast, antiviral mechanisms initiated by interferon (IFN signaling predominate in mammals. Whilst mammalian IFN-induced miRNA are known to inhibit specific viruses, it is not known whether host-directed microRNAs, downstream of IFN-signaling, have a role in mediating broad antiviral resistance. By performing an integrative, systematic, global analysis of RNA turnover utilizing 4-thiouridine labeling of newly transcribed RNA and pri/pre-miRNA in IFN-activated macrophages, we identify a new post-transcriptional viral defense mechanism mediated by miR-342-5p. On the basis of ChIP and site-directed promoter mutagenesis experiments, we find the synthesis of miR-342-5p is coupled to the antiviral IFN response via the IFN-induced transcription factor, IRF1. Strikingly, we find miR-342-5p targets mevalonate-sterol biosynthesis using a multihit mechanism suppressing the pathway at different functional levels: transcriptionally via SREBF2, post-transcriptionally via miR-33, and enzymatically via IDI1 and SC4MOL. Mass spectrometry-based lipidomics and enzymatic assays demonstrate the targeting mechanisms reduce intermediate sterol pathway metabolites and total cholesterol in macrophages. These results reveal a previously unrecognized mechanism by which IFN regulates the sterol pathway. The sterol pathway is known to be an integral part of the macrophage IFN antiviral response, and we show that miR-342-5p exerts broad antiviral effects against multiple, unrelated pathogenic viruses such Cytomegalovirus and Influenza A (H1N1. Metabolic rescue experiments confirm the specificity of these effects and demonstrate that unrelated viruses have differential mevalonate and sterol pathway requirements for their replication. This study, therefore, advances the general concept of broad antiviral defense through multihit targeting of a single host pathway.

  4. Pseudomonas syringae evades host immunity by degrading flagellin monomers with alkaline protease AprA

    NARCIS (Netherlands)

    Pel, Michiel J C; van Dijken, Anja J H; Bardoel, Bart W; Seidl, Michael F; van der Ent, Sjoerd; van Strijp, Jos A G; Pieterse, Corné M J

    Bacterial flagellin molecules are strong inducers of innate immune responses in both mammals and plants. The opportunistic pathogen Pseudomonas aeruginosa secretes an alkaline protease called AprA that degrades flagellin monomers. Here, we show that AprA is widespread among a wide variety of

  5. Pseudomonas syringae evades host Immunity by degrading flagellin monomers with alkaline protease AprA

    NARCIS (Netherlands)

    Pel, M.J.C.; Van Dijken, A.J.H.; Bardoel, B.W.; Seidl, M.F; Van der Ent, S.; Van Strijp, J.A.G.

    2014-01-01

    Bacterial flagellin molecules are strong inducers of innate immune responses in both mammals and plants. The opportunistic pathogen Pseudomonas aeruginosa secretes an alkaline protease called AprA that degrades flagellin monomers. Here, we show that AprA is widespread among a wide variety of

  6. Adaptive Immunity-Dependent Intestinal Hypermotility Contributes to Host Defense against Giardia spp.

    OpenAIRE

    Andersen, Yolanda S.; Gillin, Frances D.; Eckmann, Lars

    2006-01-01

    Humans infected with Giardia exhibit intestinal hypermotility, but the underlying mechanisms and functional significance are uncertain. Here we show in murine models of giardiasis that small-intestinal hypermotility occurs in a delayed fashion relative to peak parasite burden, is dependent on adaptive immune defenses, and contributes to giardial clearance.

  7. Ceftaroline modulates the innate immune and host defense responses of immunocompetent cells exposed to cigarette smoke.

    Science.gov (United States)

    Bruno, A; Cipollina, C; Di Vincenzo, S; Siena, L; Dino, P; Di Gaudio, F; Gjomarkaj, M; Pace, E

    2017-09-05

    Cigarette smoke, the principal risk factor for chronic obstructive pulmonary disease (COPD), negatively influences the effectiveness of the immune system's response to a pathogen. The antibiotic ceftaroline exerts immune-modulatory effects in bronchial epithelial cells exposed to cigarette smoke. The present study aims to assess the effects of ceftaroline on TLR2 and TLR4 expression, LPS binding and TNF-α and human beta defensin (HBD2) release in an undifferentiated and PMA-differentiated human monocyte cell line (THP-1) exposed or not to cigarette smoke extracts (CSE). TLR2, TLR4, and LPS binding were assessed by flow cytometry, TNF-α and HBD2 release were evaluated by ELISA. The constitutive expression of TLR2 and TLR4 and LPS binding were higher in differentiated compared to undifferentiated THP-1 cells. In undifferentiated THP-1 cells, CSE increased TLR2 and TLR4 protein levels, LPS binding and TNF-α release and reduced HBD2 release and ceftaroline counteracted all these effects. In differentiated THP-1, CSE did not significantly affect TLR2 and TLR4 expression and LPS binding but reduced HBD2 release and increased TNF-α release. Ceftaroline counteracted the effects of CSE on HBD2 release in differentiated THP-1. Ceftaroline counteracts the effect of CSE in immune cells by increasing the effectiveness of the innate immune system. This effect may also assist in reducing pathogen activity and recurrent exacerbations in COPD patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Immune Response in Hepatitis B Virus Infection

    Science.gov (United States)

    Tan, Anthony; Koh, Sarene; Bertoletti, Antonio

    2015-01-01

    Hepatitis B virus (HBV) can replicate within hepatocytes without causing direct cell damage. The host immune response is, therefore, not only essential to control the spread of virus infection, but it is also responsible for the inflammatory events causing liver pathologies. In this review, we discuss how HBV deals with host immunity and how we can harness it to achieve virus control and suppress liver damage. PMID:26134480

  9. Suppressive effects of subchronic aluminum overload on the splenic immune function may be related to oxidative stress in mice.

    Science.gov (United States)

    Luo, Xue; Jia, Shujie; Ma, Qinlong; Zhong, Min; Gao, Peng; Yu, Zhengping; Zhang, Yanwen

    2014-03-01

    Aluminum (Al) is widely used in daily life and was recently recognized as a possible source of human intoxication because of its ability to accumulate in organs. The objective of the present study was to investigate the effects of subchronic Al overload on splenic immune function in mice. Furthermore, we have preliminarily explored its mechanism. The Al overload model was established via intragastric administration of Al once a day for 60 days. The body weight, spleen weight, and splenic coefficient were determined. The concentration of Al in the spleen was detected by inductively coupled plasma-mass spectrometry. The cytokine mRNA expression of spleen tissues was detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Biochemical methods were used to detect superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA) contents in spleen tissue. Body weight, spleen weight, and cytokine mRNA expression of spleen tissues were significantly reduced by Al overload. SOD and GSH-Px activities were also decreased, while the MDA content was increased in subchronic Al overload mice. The results indicate that subchronic exposure to aluminum trichloride (AlCl3) would result in Al accumulation, which suppressed spleen immune function through a mechanism related to oxidative stress.

  10. Bacterial-epithelial contact is a key determinant of host innate immune responses to enteropathogenic and enteroaggregative Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Lindsey A Edwards

    Full Text Available BACKGROUND: Enteropathogenic (EPEC and Enteroaggregative (EAEC E. coli have similar, but distinct clinical symptoms and modes of pathogenesis. Nevertheless when they infect the gastrointestinal tract, it is thought that their flagellin causes IL-8 release leading to neutrophil recruitment and gastroenteritis. However, this may not be the whole story as the effect of bacterial adherence to IEC innate response(s remains unclear. Therefore, we have characterized which bacterial motifs contribute to the innate epithelial response to EPEC and EAEC, using a range of EPEC and EAEC isogenic mutant strains. METHODOLOGY: Caco-2 and HEp-2 cell lines were exposed to prototypical EPEC strain E2348/69 or EAEC strain O42, in addition to a range of isogenic mutant strains. E69 [LPS, non-motile, non-adherent, type three secretion system (TTSS negative, signalling negative] or O42 [non-motile, non-adherent]. IL-8 and CCL20 protein secretion was measured. Bacterial surface structures were assessed by negative staining Transmission Electron Microscopy. The Fluorescent-actin staining test was carried out to determine bacterial adherence. RESULTS: Previous studies have reported a balance between the host pro-inflammatory response and microbial suppression of this response. In our system an overall balance towards the host pro-inflammatory response is seen with the E69 WT and to a greater extent O42 WT, which is in fit with clinical symptoms. On removal of the external EPEC structures flagella, LPS, BFP, EspA and EspC; and EAEC flagella and AAF, the host inflammatory response is reduced. However, removal of E69 lymphostatin increases the host inflammatory response suggesting involvement in the bacterial mediated anti-inflammatory response. CONCLUSION: Epithelial responses were due to combinations of bacterial agonists, with host-bacterial contact a key determinant of these innate responses. Host epithelial recognition was offset by the microbe's ability to down

  11. Roles of the host oxidative immune response and bacterial antioxidant rubrerythrin during Porphyromonas gingivalis infection.

    Directory of Open Access Journals (Sweden)

    Piotr Mydel

    2006-07-01

    Full Text Available The efficient clearance of microbes by neutrophils requires the concerted action of reactive oxygen species and microbicidal components within leukocyte secretory granules. Rubrerythrin (Rbr is a nonheme iron protein that protects many air-sensitive bacteria against oxidative stress. Using oxidative burst-knockout (NADPH oxidase-null mice and an rbr gene knockout bacterial strain, we investigated the interplay between the phagocytic oxidative burst of the host and the oxidative stress response of the anaerobic periodontal pathogen Porphyromonas gingivalis. Rbr ensured the proliferation of P. gingivalis in mice that possessed a fully functional oxidative burst response, but not in NADPH oxidase-null mice. Furthermore, the in vivo protection afforded by Rbr was not associated with the oxidative burst responses of isolated neutrophils in vitro. Although the phagocyte-derived oxidative burst response was largely ineffective against P. gingivalis infection, the corresponding oxidative response to the Rbr-positive microbe contributed to host-induced pathology via potent mobilization and systemic activation of neutrophils. It appeared that Rbr also provided protection against reactive nitrogen species, thereby ensuring the survival of P. gingivalis in the infected host. The presence of the rbr gene in P. gingivalis also led to greater oral bone loss upon infection. Collectively, these results indicate that the host oxidative burst paradoxically enhances the survival of P. gingivalis by exacerbating local and systemic inflammation, thereby contributing to the morbidity and mortality associated with infection.

  12. Mechanism of eliciting host immunity against cancer cells treated with silica-phthalocyanine-based near infrared photoimmunotherapy (Conference Presentation)

    Science.gov (United States)

    Kobayashi, Hisataka

    2016-03-01

    Near infrared (NIR) photoimmunotherapy (PIT) is a new type of molecularly-targeted cancer photo-therapy based on conjugating a near infrared silica-phthalocyanine dye, IR700, to a monoclonal antibody (MAb) targeting cancer-specific cell-surface molecules. When exposed to NIR light, the conjugate induces a highly-selective necrotic/ immunogenic cell death (ICD) only in receptor-positive, MAb-IR700-bound cancer cells. This cell death occurs as early as 1 minute after exposure to NIR light. Meanwhile, immediately adjacent receptor-negative cells including immune cells are unharmed. Therefore, we hypothesized that NIR-PIT could efficiently elicit host immunity against treated cancer cells. Three-dimensional dynamic quantitative phase contrast microscopy and selective plane illumination microscopy of tumor cells undergoing PIT showed rapid swelling in treated cells immediately after light exposure suggesting rapid water influx into cells, followed by irreversible morphologic changes such as bleb formation, and rupture of vesicles. Furthermore, biological markers of ICD including relocation of HSP70/90 and calreticulin, and release of ATP and High Mobility Group Box 1 (HMGB1), were clearly detected immediately after NIR-PIT. When NIR-PIT was performed in a mixture of cancer cells and immature dendritic cells, maturation of immature dendritic cells was strongly induced rapidly after NIR-PIT. In summary, NIR-PIT can induce necrotic/ immunogenic cell death that promotes rapid maturation of immature dendritic cells adjacent to dying cancer cells. Therefore, NIR-PIT could efficiently initiate host immune response against NIR-PIT treated cancer cells growing in patients.

  13. A m