WorldWideScience

Sample records for suppress hcv rna

  1. Synthetic lipophilic antioxidant BO-653 suppresses HCV replication.

    Science.gov (United States)

    Yasui, Fumihiko; Sudoh, Masayuki; Arai, Masaaki; Kohara, Michinori

    2013-02-01

    The influence of the intracellular redox state on the hepatitis C virus (HCV) life cycle is poorly understood. This study demonstrated the anti-HCV activity of 2,3-dihydro-5-hydroxy-2,2-dipentyl-4,6-di-tert-butylbenzofuran (BO-653), a synthetic lipophilic antioxidant, and examined whether BO-653's antioxidant activity is integral to its anti-HCV activity. The anti-HCV activity of BO-653 was investigated in HuH-7 cells bearing an HCV subgenomic replicon (FLR3-1 cells) and in HuH-7 cells infected persistently with HCV (RMT-tri cells). BO-653 inhibition of HCV replication was also compared with that of several hydrophilic and lipophilic antioxidants. BO-653 suppressed HCV replication in FLR3-1 and RMT-tri cells in a concentration-dependent manner. The lipophilic antioxidants had stronger anti-HCV activities than the hydrophilic antioxidants, and BO-653 displayed the strongest anti-HCV activity of all the antioxidants examined. Therefore, the anti-HCV activity of BO-653 was examined in chimeric mice harboring human hepatocytes infected with HCV. The combination treatment of BO-653 and polyethylene glycol-conjugated interferon-α (PEG-IFN) decreased serum HCV RNA titer more than that seen with PEG-IFN alone. These findings suggest that both the lipophilic property and the antioxidant activity of BO-653 play an important role in the inhibition of HCV replication. Copyright © 2012 Wiley Periodicals, Inc.

  2. HCV viraemia in anti-HCV-negative haemodialysis patients: Do we need HCV RNA detection test?

    Science.gov (United States)

    Papadopoulos, Nikolaos; Griveas, Ioannis; Sveroni, Eirini; Argiana, Vasiliki; Kalliaropoulos, Antonios; Martinez-Gonzalez, Beatriz; Deutsch, Melanie

    2018-03-01

    Hepatitis C virus (HCV) infection is still common among dialysis patients, but the natural history of HCV in this group is not completely understood. The KDIGO HCV guidelines of 2009 recommend that chronic haemodialysis patients be screened for HCV antibody upon admission to the dialysis clinic and every 6 months thereafter if susceptible to HCV infection. However, previous studies have shown the presence of HCV viraemia in anti-HCV-negative haemodialysis patients as up to 22%. To evaluate the presence of HCV viraemia, using HCV RNA detection, among anti-HCV-negative haemodialysis patients from a tertiary dialysis unit in Athens. We enrolled 41 anti-HCV-negative haemodialysis patients diagnosed with third-generation enzyme immunoassay. HCV viraemia was evaluated using a sensitive (cut-off: 12 IU/mL) reverse transcriptase polymerase chain reaction (COBAS AmpliPrep/TaqMan system) for HCV RNA. None of the 41 anti-HCV-negative haemodialysis patients were shown to be viraemic. Routine HCV RNA testing appears not to be necessary in anti-HCV-negative haemodialysis patients.

  3. Hepatitis A virus infection suppresses hepatitis C virus replication and may lead to clearance of HCV.

    Science.gov (United States)

    Deterding, Katja; Tegtmeyer, Björn; Cornberg, Markus; Hadem, Johannes; Potthoff, Andrej; Böker, Klaus H W; Tillmann, Hans L; Manns, Michael P; Wedemeyer, Heiner

    2006-12-01

    The significance of hepatitis A virus (HAV) super-infection in patients with chronic hepatitis C had been a matter of debate. While some studies suggested an incidence of fulminant hepatitis A of up to 35%, this could not be confirmed by others. We identified 17 anti-HCV-positive patients with acute hepatitis A from a cohort of 3170 anti-HCV-positive patients recruited at a single center over a period of 12 years. Importantly, none of the anti-HCV-positive patients had a fulminant course of hepatitis A. HCV-RNA was detected by PCR in 84% of the anti-HCV-positive/anti-HAV-IgM-negative patients but only in 65% of anti-HCV-positive patients with acute hepatitis A (p=0.03), indicating suppression of HCV replication during hepatitis A. Previous HAV infection had no effect on HCV replication. After recovery from hepatitis A, an increased HCV replication could be demonstrated for 6 out of 9 patients with serial quantitative HCV-RNA values available while 2 patients remained HCV-RNA negative after clearance of HAV throughout follow-up of at least 2 years. HAV super-infection is associated with decreased HCV-RNA replication which may lead to recovery from HCV in some individuals. Fulminant hepatitis A is not frequent in patients with chronic hepatitis C recruited at a tertiary referral center.

  4. Cyclophilin B stimulates RNA synthesis by the HCV RNA dependent RNA polymerase.

    Science.gov (United States)

    Heck, Julie A; Meng, Xiao; Frick, David N

    2009-04-01

    Cyclophilins are cellular peptidyl isomerases that have been implicated in regulating hepatitis C virus (HCV) replication. Cyclophilin B (CypB) is a target of cyclosporin A (CsA), an immunosuppressive drug recently shown to suppress HCV replication in cell culture. Watashi et al. recently demonstrated that CypB is important for efficient HCV replication, and proposed that it mediates the anti-HCV effects of CsA through an interaction with NS5B [Watashi K, Ishii N, Hijikata M, Inoue D, Murata T, Miyanari Y, et al. Cyclophilin B is a functional regulator of hepatitis C virus RNA polymerase. Mol Cell 2005;19:111-22]. We examined the effects of purified CypB proteins on the enzymatic activity of NS5B. Recombinant CypB purified from insect cells directly stimulated NS5B-catalyzed RNA synthesis. CypB increased RNA synthesis by NS5B derived from genotype 1a, 1b, and 2a HCV strains. Stimulation appears to arise from an increase in productive RNA binding. NS5B residue Pro540, a previously proposed target of CypB peptidyl-prolyl isomerase activity, is not required for stimulation of RNA synthesis.

  5. Hepatitis C virus (HCV) RNA profiles among chronic HIV/HCV-coinfected individuals in ESPRIT; spontaneous HCV RNA clearance observed in nine individuals

    DEFF Research Database (Denmark)

    Grint, D; Tedaldi, Ellen; Peters, L

    2017-01-01

    OBJECTIVES: Studies have shown that hepatitis C virus (HCV) RNA levels remain stable over time in HIV/HCV-coinfected individuals taking combination antiretroviral therapy (cART), while spontaneous clearance of HCV RNA during the persistent infection phase has been documented only rarely among tho...

  6. HCV-induced autophagosomes are generated via homotypic fusion of phagophores that mediate HCV RNA replication.

    Directory of Open Access Journals (Sweden)

    Linya Wang

    2017-09-01

    Full Text Available Hepatitis C virus (HCV induces autophagy to promote its replication, including its RNA replication, which can take place on double-membrane vesicles known as autophagosomes. However, how HCV induces the biogenesis of autophagosomes and how HCV RNA replication complex may be assembled on autophagosomes were largely unknown. During autophagy, crescent membrane structures known as phagophores first appear in the cytoplasm, which then progress to become autophagosomes. By conducting electron microscopy and in vitro membrane fusion assay, we found that phagophores induced by HCV underwent homotypic fusion to generate autophagosomes in a process dependent on the SNARE protein syntaxin 7 (STX7. Further analyses by live-cell imaging and fluorescence microscopy indicated that HCV-induced phagophores originated from the endoplasmic reticulum (ER. Interestingly, comparing with autophagy induced by nutrient starvation, the progression of phagophores to autophagosomes induced by HCV took significantly longer time, indicating fundamental differences in the biogenesis of autophagosomes induced by these two different stimuli. As the knockdown of STX7 to inhibit the formation of autophagosomes did not affect HCV RNA replication, and purified phagophores could mediate HCV RNA replication, the assembly of the HCV RNA replication complex on autophagosomes apparently took place during the formative stage of phagophores. These findings provided important information for understanding how HCV controlled and modified this important cellular pathway for its own replication.

  7. Packaging of HCV-RNA into lentiviral vector

    International Nuclear Information System (INIS)

    Caval, Vincent; Piver, Eric; Ivanyi-Nagy, Roland; Darlix, Jean-Luc; Pagès, Jean-Christophe

    2011-01-01

    Highlights: ► Description of HCV-RNA Core-D1 interactions. ► In vivo evaluation of the packaging of HCV genome. ► Determination of the role of the three basic sub-domains of D1. ► Heterologous system involving HIV-1 vector particles to mobilise HCV genome. ► Full length mobilisation of HCV genome and HCV-receptor-independent entry. -- Abstract: The advent of infectious molecular clones of Hepatitis C virus (HCV) has unlocked the understanding of HCV life cycle. However, packaging of the genomic RNA, which is crucial to generate infectious viral particles, remains poorly understood. Molecular interactions of the domain 1 (D1) of HCV Core protein and HCV RNA have been described in vitro. Since compaction of genetic information within HCV genome has hampered conventional mutational approach to study packaging in vivo, we developed a novel heterologous system to evaluate the interactions between HCV RNA and Core D1. For this, we took advantage of the recruitment of Vpr fusion-proteins into HIV-1 particles. By fusing HCV Core D1 to Vpr we were able to package and transfer a HCV subgenomic replicon into a HIV-1 based lentiviral vector. We next examined how deletion mutants of basic sub-domains of Core D1 influenced HCV RNA recruitment. The results emphasized the crucial role of the first and third basic regions of D1 in packaging. Interestingly, the system described here allowed us to mobilise full-length JFH1 genome in CD81 defective cells, which are normally refractory to HCV infection. This finding paves the way to an evaluation of the replication capability of HCV in various cell types.

  8. Packaging of HCV-RNA into lentiviral vector

    Energy Technology Data Exchange (ETDEWEB)

    Caval, Vincent [INSERM U966, Universite Francois Rabelais de Tours, Faculte de Medecine, 10 Bd. Tonnelle, 37000 Tours (France); Piver, Eric [INSERM U966, Universite Francois Rabelais de Tours, Faculte de Medecine, 10 Bd. Tonnelle, 37000 Tours (France); Service de Biochimie et Biologie Moleculaire, CHRU de Tours (France); Ivanyi-Nagy, Roland; Darlix, Jean-Luc [LaboRetro, ENS-Lyon INSERM, U758, 46 Allee d' Italie, 69364 Lyon (France); Pages, Jean-Christophe, E-mail: jean-christophe.pages@univ-tours.fr [INSERM U966, Universite Francois Rabelais de Tours, Faculte de Medecine, 10 Bd. Tonnelle, 37000 Tours (France); Service de Biochimie et Biologie Moleculaire, CHRU de Tours (France)

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Description of HCV-RNA Core-D1 interactions. Black-Right-Pointing-Pointer In vivo evaluation of the packaging of HCV genome. Black-Right-Pointing-Pointer Determination of the role of the three basic sub-domains of D1. Black-Right-Pointing-Pointer Heterologous system involving HIV-1 vector particles to mobilise HCV genome. Black-Right-Pointing-Pointer Full length mobilisation of HCV genome and HCV-receptor-independent entry. -- Abstract: The advent of infectious molecular clones of Hepatitis C virus (HCV) has unlocked the understanding of HCV life cycle. However, packaging of the genomic RNA, which is crucial to generate infectious viral particles, remains poorly understood. Molecular interactions of the domain 1 (D1) of HCV Core protein and HCV RNA have been described in vitro. Since compaction of genetic information within HCV genome has hampered conventional mutational approach to study packaging in vivo, we developed a novel heterologous system to evaluate the interactions between HCV RNA and Core D1. For this, we took advantage of the recruitment of Vpr fusion-proteins into HIV-1 particles. By fusing HCV Core D1 to Vpr we were able to package and transfer a HCV subgenomic replicon into a HIV-1 based lentiviral vector. We next examined how deletion mutants of basic sub-domains of Core D1 influenced HCV RNA recruitment. The results emphasized the crucial role of the first and third basic regions of D1 in packaging. Interestingly, the system described here allowed us to mobilise full-length JFH1 genome in CD81 defective cells, which are normally refractory to HCV infection. This finding paves the way to an evaluation of the replication capability of HCV in various cell types.

  9. Hepatitis C virus (HCV) RNA profiles among chronic HIV/HCV-coinfected individuals in ESPRIT; spontaneous HCV RNA clearance observed in nine individuals.

    Science.gov (United States)

    Grint, D; Tedaldi, E; Peters, L; Mocroft, A; Edlin, B; Gallien, S; Klinker, H; Boesecke, C; Kokordelis, P; Rockstroh, J K

    2017-07-01

    Studies have shown that hepatitis C virus (HCV) RNA levels remain stable over time in HIV/HCV-coinfected individuals taking combination antiretroviral therapy (cART), while spontaneous clearance of HCV RNA during the persistent infection phase has been documented only rarely among those with the CC interleukin (IL)-28B genotype. This study describes HCV RNA profiles and factors associated with changes over time in HCV RNA levels in the ESPRIT study. HIV/HCV-coinfected individuals positive for HCV RNA were included in the study. Follow-up was counted from the first HCV RNA positive test and censored at the initiation of interferon-based treatment. HCV RNA and IL-28B measurements were performed in the same reference laboratory. Random effects mixed models were used to analyse changes over time in HCV RNA. A total of 312 ESPRIT patients were included in the study (151 in the arm receiving subcutaneous recombinant IL-2 and 161 in the control arm). Most of the patients were white (89%) and male (76%), and they had a median of 5 HCV RNA measurements per person [interquartile range (IQR) 3-6; range 1-9]. Median follow-up was 5 years (IQR: 2-6 years). At baseline, 96% of patients were taking cART and 93% had undetectable HIV RNA. Mean HCV RNA levels decreased by 13% per year over the study period [95% confidence interval (CI) 8-18%; P < 0.0001]. Baseline HCV RNA levels and the change over time in HCV RNA did not differ by randomization arm (P = 0.16 and P = 0.56, respectively). Nine individuals spontaneously cleared HCV RNA during follow-up [IL-28B genotypes: CC, five patients (56%); CT, four patients (44%)]. HCV RNA levels decreased over time in this population with well-controlled HIV infection. Spontaneous clearance of HCV RNA was documented in five individuals with IL-28B genotype CC and four with the CT genotype. © 2016 British HIV Association.

  10. HCV RNA in peripheral blood mononuclear cells (PBMCs) as a ...

    African Journals Online (AJOL)

    Abdel Fatah Fahmy Hanno

    2013-06-27

    Jun 27, 2013 ... tested positively for HCV RNA in PBMCs at the end of treatment had an overall significantly ... chronic hepatitis C, the history of previous use of antiviral medicine or .... Although hepatocytes are considered to be primary targets of. HCV, clinical .... 6. Yamagiwa S, Matsuda Y, Ichida T, Honda Y, Takamura M,.

  11. Cyclophilin B stimulates RNA synthesis by the HCV RNA dependent RNA polymerase

    OpenAIRE

    Heck, Julie A.; Meng, Xiao; Frick, David N.

    2009-01-01

    Cyclophilins are cellular peptidyl isomerases that have been implicated in regulating hepatitis C virus (HCV) replication. Cyclophilin B (CypB) is a target of cyclosporin A (CsA), an immunosuppressive drug recently shown to suppress HCV replication in cell culture. Watashi et al. recently demonstrated that CypB is important for efficient HCV replication, and proposed that it mediates the anti-HCV effects of CsA through an interaction with NS5B (Mol. Cell 19:111). We examined the effects of pu...

  12. Alterations in microRNA expression profile in HCV-infected hepatoma cells: Involvement of miR-491 in regulation of HCV replication via the PI3 kinase/Akt pathway

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, Hisashi; Tatsumi, Tomohide; Hosui, Atsushi; Nawa, Takatoshi; Kodama, Takahiro; Shimizu, Satoshi; Hikita, Hayato; Hiramatsu, Naoki; Kanto, Tatsuya [Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita 565-0871 (Japan); Hayashi, Norio [Kansai Rosai Hospital, 3-1-69, Inabaso, Amagasaki 660-8511 (Japan); Takehara, Tetsuo, E-mail: takehara@gh.med.osaka-u.ac.jp [Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita 565-0871 (Japan)

    2011-08-19

    Highlights: {yields} HCV infection upregulated miR-192, -194, -215, downregulated miR-320, -491. {yields} Transfection of miR-192, -215, and -491 enhanced HCV replication. {yields} Transfection of miR-491 inhibited Akt phosphorylation. {yields} Akt inhibition could be responsible for augmentation of HCV replication by miR-491. -- Abstract: The aim of this study was to investigate the role of microRNA (miRNA) on hepatitis C virus (HCV) replication in hepatoma cells. Using miRNA array analysis, miR-192/miR-215, miR-194, miR-320, and miR-491 were identified as miRNAs whose expression levels were altered by HCV infection. Among them, miR-192/miR-215 and miR-491 were capable of enhancing replication of the HCV replicon as well as HCV itself. HCV IRES activity or cell proliferation was not increased by forced expression of miR-192/miR-215 or miR-491. Investigation of signaling pathways revealed that miR-491 specifically suppressed the phosphoinositol-3 (PI3) kinase/Akt pathway. Under inhibition of PI3 kinase by LY294002, the suppressive effect of miR-491 on HCV replication was abolished, indicating that suppression of HCV replication by miR-491 was dependent on the PI3 kinase/Akt pathway. miRNAs altered by HCV infection would then affect HCV replication, which implies a complicated mechanism for regulating HCV replication. HCV-induced miRNA may be involved in changes in cellular properties including hepatocarcinogenesis.

  13. High rate of hepatitis C virus (HCV) recurrence in HIV-infected individuals with spontaneous HCV RNA clearance

    DEFF Research Database (Denmark)

    Peters, L; Mocroft, A; Soriano, V

    2014-01-01

    OBJECTIVES: Following resolution of hepatitis C virus (HCV) infection, recurrence has been shown to occur in some persons with repeated exposure to HCV. We aimed to investigate the rate and factors associated with HCV RNA recurrence among HIV-1-infected patients with prior spontaneous HCV RNA cle......-up. Our findings underline the importance of maintaining focus on preventive measures to reduce IDU and sharing of contaminated needles. Clinicians should maintain a high degree of vigilance to identify patients with new HCV infection early....

  14. Performance comparison of new generation HCV core antigen test versus HCV RNA test in management of hepatitis C virus infection.

    Science.gov (United States)

    Çetiner, Salih; Çetin Duran, Alev; Kibar, Filiz; Yaman, Akgün

    2017-06-01

    The study has evaluated the performance of HCV core antigen (Cag) test by comparing HCV RNA PCR assay which is considered the gold standard for management of HCV infection. Totally, 132 samples sent for HCV RNA (real-time PCR) test were included in the study. Anti-HCV antibody test and HCV Cag test were performed by chemiluminescent enzyme immunoassay (CMEI). Anti-HCV test was positive in all samples. HCV RNA was detected in 112/132 (84.8%) samples, and HCV Cag in 105/132 (79.5%). The most common HCV genotype was genotype 1 (86%). Considering the HCV RNA test as gold standard; the sensitivity, specificity, positive predictive value, negative predictive value and accuracy of Cag test were found to be 93.75%, 100%, 100%, 74.07% and 94.69%, respectively, and paired test results were detected as highly concordant. A high level of correlation was seen between HCV RNA and Cag tests, however, the concordance between the two tests appeared to be disrupted at viral loads lower than 10 3 IU/mL. On the contrary, the correlation reached significance for the values higher than 10 3 IU/mL. Viral loads were in the 17-2500IU/mL range for the negative results for Cag test. Pearson's correlation coefficient revealed a considerably high correlation. The concordance between HCV RNA and Cag tests was disrupted under a viral load lower than 10 3 IU/mL. Therefore, it would be appropriate to consider cost effectiveness, advantages and limitations of the HCV RNA and Cag tests during the decision on which method to use for patient management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. HCV-RNA quantification in liver bioptic samples and extrahepatic compartments, using the abbott RealTime HCV assay.

    Science.gov (United States)

    Antonucci, FrancescoPaolo; Cento, Valeria; Sorbo, Maria Chiara; Manuelli, Matteo Ciancio; Lenci, Ilaria; Sforza, Daniele; Di Carlo, Domenico; Milana, Martina; Manzia, Tommaso Maria; Angelico, Mario; Tisone, Giuseppe; Perno, Carlo Federico; Ceccherini-Silberstein, Francesca

    2017-08-01

    We evaluated the performance of a rapid method to quantify HCV-RNA in the hepatic and extrahepatic compartments, by using for the first time the Abbott RealTime HCV-assay. Non-tumoral (NT), tumoral (TT) liver samples, lymph nodes and ascitic fluid from patients undergoing orthotopic-liver-transplantation (N=18) or liver resection (N=4) were used for the HCV-RNA quantification; 5/22 patients were tested after or during direct acting antivirals (DAA) treatment. Total RNA and DNA quantification from tissue-biopsies allowed normalization of HCV-RNA concentrations in IU/μg of total RNA and IU/10 6 liver-cells, respectively. HCV-RNA was successfully quantified with high reliability in liver biopsies, lymph nodes and ascitic fluid samples. Among the 17 untreated patients, a positive and significant HCV-RNA correlation between serum and NT liver-samples was observed (Pearson: rho=0.544, p=0.024). Three DAA-treated patients were HCV-RNA "undetectable" in serum, but still "detectable" in all tested liver-tissues. Differently, only one DAA-treated patient, tested after sustained-virological-response, showed HCV-RNA "undetectability" in liver-tissue. HCV-RNA was successfully quantified with high reliability in liver bioptic samples and extrahepatic compartments, even when HCV-RNA was "undetectable" in serum. Abbott RealTime HCV-assay is a good diagnostic tool for HCV quantification in intra- and extra-hepatic compartments, whenever a bioptic sample is available. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Stability of hepatitis C virus (HCV) RNA levels among interferon-naïve HIV/HCV-coinfected individuals treated with combination antiretroviral therapy

    DEFF Research Database (Denmark)

    Grint, D; Peters, L; Reekie, J

    2013-01-01

    Infection with hepatitis C virus (HCV) is a major cause of chronic liver disease. High HCV RNA levels have been associated with poor treatment response. This study aimed to examine the natural history of HCV RNA in chronically HCV/HIV-coinfected individuals.......Infection with hepatitis C virus (HCV) is a major cause of chronic liver disease. High HCV RNA levels have been associated with poor treatment response. This study aimed to examine the natural history of HCV RNA in chronically HCV/HIV-coinfected individuals....

  17. HCV RNA traffic and association with NS5A in living cells

    International Nuclear Information System (INIS)

    Fiches, Guillaume N.; Eyre, Nicholas S.; Aloia, Amanda L.; Van Der Hoek, Kylie; Betz-Stablein, Brigit; Luciani, Fabio; Chopra, Abha; Beard, Michael R.

    2016-01-01

    The spatiotemporal dynamics of Hepatitis C Virus (HCV) RNA localisation are poorly understood. To address this we engineered HCV genomes harbouring MS2 bacteriophage RNA stem-loops within the 3′-untranslated region to allow tracking of HCV RNA via specific interaction with a MS2-Coat-mCherry fusion protein. Despite the impact of these insertions on viral fitness, live imaging revealed that replication of tagged-HCV genomes induced specific redistribution of the mCherry-tagged-MS2-Coat protein to motile and static foci. Further analysis showed that HCV RNA was associated with NS5A in both static and motile structures while a subset of motile NS5A structures was devoid of HCV RNA. Further investigation of viral RNA traffic with respect to lipid droplets (LDs) revealed HCV RNA-positive structures in close association with LDs. These studies provide new insights into the dynamics of HCV RNA traffic with NS5A and LDs and provide a platform for future investigations of HCV replication and assembly. - Highlights: • HCV can tolerate can bacteriophage MS2 stem-loop insertions within the 3′ UTR. • MS2 stem-loop containing HCV genomes allow for real-time imaging of HCV RNA. • HCV RNA is both static and motile and associates with NS5A and lipid droplets.

  18. HCV RNA traffic and association with NS5A in living cells

    Energy Technology Data Exchange (ETDEWEB)

    Fiches, Guillaume N.; Eyre, Nicholas S.; Aloia, Amanda L.; Van Der Hoek, Kylie [Department of Molecular and Cellular Biology, Research Centre for Infectious Diseases, University of Adelaide, Adelaide and Centre for Cancer Biology, SA Pathology, Adelaide, SA (Australia); Betz-Stablein, Brigit; Luciani, Fabio [Systems Immunology, School of Medical Sciences, University of New South Wales, Sydney, NSW (Australia); Chopra, Abha [Institute for Immunology and infectious diseases (IIID), Murdoch University, Perth, WA (Australia); Beard, Michael R., E-mail: michael.beard@adelaide.edu.au [Department of Molecular and Cellular Biology, Research Centre for Infectious Diseases, University of Adelaide, Adelaide and Centre for Cancer Biology, SA Pathology, Adelaide, SA (Australia)

    2016-06-15

    The spatiotemporal dynamics of Hepatitis C Virus (HCV) RNA localisation are poorly understood. To address this we engineered HCV genomes harbouring MS2 bacteriophage RNA stem-loops within the 3′-untranslated region to allow tracking of HCV RNA via specific interaction with a MS2-Coat-mCherry fusion protein. Despite the impact of these insertions on viral fitness, live imaging revealed that replication of tagged-HCV genomes induced specific redistribution of the mCherry-tagged-MS2-Coat protein to motile and static foci. Further analysis showed that HCV RNA was associated with NS5A in both static and motile structures while a subset of motile NS5A structures was devoid of HCV RNA. Further investigation of viral RNA traffic with respect to lipid droplets (LDs) revealed HCV RNA-positive structures in close association with LDs. These studies provide new insights into the dynamics of HCV RNA traffic with NS5A and LDs and provide a platform for future investigations of HCV replication and assembly. - Highlights: • HCV can tolerate can bacteriophage MS2 stem-loop insertions within the 3′ UTR. • MS2 stem-loop containing HCV genomes allow for real-time imaging of HCV RNA. • HCV RNA is both static and motile and associates with NS5A and lipid droplets.

  19. Undetectable hepatitis C virus RNA during syphilis infection in two HIV/HCV-co-infected patients

    DEFF Research Database (Denmark)

    Salado-Rasmussen, Kirsten; Knudsen, Andreas; Krarup, Henrik Bygum

    2014-01-01

    BACKGROUND: Treponema pallidum, the causative agent of syphilis, elicits a vigorous immune response in the infected host. This study sought to describe the impact of syphilis infection on hepatitis C virus (HCV) RNA levels in patients with HIV and chronic HCV infection. METHODS: Patients......-α), interferon gamma (IFN-γ), and IFN-γ-inducible protein 10 kDa (IP-10). RESULTS: Undetectable HCV RNA at the time of early latent syphilis infection was observed in 2 patients with HIV and chronic HCV infection. After treatment of the syphilis infection, HCV RNA levels increased again in patient 1, whereas...... patient 2 initiated HCV therapy and remained HCV RNA-negative. Available plasma samples obtained before and after the episode with undetectable HCV RNA were phylogenetically identical, making the possibility of spontaneous clearance and HCV reinfection less likely. The IL-10, TNF-α, and IP-10 levels...

  20. Indeterminate RIBA results were associated with the absence of hepatitis C virus RNA (HCV-RNA) in blood donors

    OpenAIRE

    Pereira, Felicidade Mota; Zarife, Maria Alice Sant'ana; Reis, Eliana Almeida Gomes; G. Reis, Mitermayer

    2014-01-01

    Introduction: Hepatitis C virus (HCV) infection is diagnosed by the presence of antibodies and is supplemented by confirmatory testing methods, such as recombinant immunoblot assay (RIBA) and HCV-RNA detection. This study aimed to evaluate the efficacy of RIBA testing to diagnose HCV infection in blood donors positive for anti-HCV antibodies. Methods: A total of 102 subjects positive for anti-HCV determined by enzyme-linked immunosorbent assay (ELISA) at the Hematology and Hemotherapy Found...

  1. Comparison of a newly developed automated and quantitative hepatitis C virus (HCV) core antigen test with the HCV RNA assay for clinical usefulness in confirming anti-HCV results.

    Science.gov (United States)

    Kesli, Recep; Polat, Hakki; Terzi, Yuksel; Kurtoglu, Muhammet Guzel; Uyar, Yavuz

    2011-12-01

    Hepatitis C virus (HCV) is a global health care problem. Diagnosis of HCV infection is mainly based on the detection of anti-HCV antibodies as a screening test with serum samples. Recombinant immunoblot assays are used as supplemental tests and for the final detection and quantification of HCV RNA in confirmatory tests. In this study, we aimed to compare the HCV core antigen test with the HCV RNA assay for confirming anti-HCV results to determine whether the HCV core antigen test may be used as an alternative confirmatory test to the HCV RNA test and to assess the diagnostic values of the total HCV core antigen test by determining the diagnostic specificity and sensitivity rates compared with the HCV RNA test. Sera from a total of 212 treatment-naive patients were analyzed for anti-HCV and HCV core antigen both with the Abbott Architect test and with the molecular HCV RNA assay consisting of a reverse transcription-PCR method as a confirmatory test. The diagnostic sensitivity, specificity, and positive and negative predictive values of the HCV core antigen assay compared to the HCV RNA test were 96.3%, 100%, 100%, and 89.7%, respectively. The levels of HCV core antigen showed a good correlation with those from the HCV RNA quantification (r = 0.907). In conclusion, the Architect HCV antigen assay is highly specific, sensitive, reliable, easy to perform, reproducible, cost-effective, and applicable as a screening, supplemental, and preconfirmatory test for anti-HCV assays used in laboratory procedures for the diagnosis of hepatitis C virus infection.

  2. Maternal hepatitis C (HCV) infection and Anti-D immunoglobulin therapy: study testing antibodies, RNA and Genotype of HCV in Baghdad.

    Science.gov (United States)

    Al-Kubaisy, Waqar; Daud, Suzanna; Al-Kubaisi, Mustafa Waseem; Al-Kubaisi, Omar Waseem; Abdullah, Nik Nairan

    2018-04-30

    Hepatitis C virus (HCV) infection is a serious health problem. It is a major contributor to end-stage liver disease. Worldwide, 1-8% of all pregnant women were infected. Women with viral hepatitis may be at an increased risk of pregnancy complications. There are several obstetrics intervention acts as risk factors, which are specific to women pertaining the HCV infection; anti-D immunoglobulin (Ig) therapy may be one of them. Our objectives were to estimate the prevalence of HCV antibodies (anti-HCV), RNA, and genotype distribution among women with anti-D Ig therapy. A cross sectional study was conducted. A sample of 154 Rhesus negative (Rh - ve) pregnant women regardless of the anti-D Ig therapy was collected. Anti-HCV were tested using third generation enzyme immunoassay (EIA-3) and immunoblot assay (Lia Tek-111), subsequently. In addition, 89 serum samples were subjected to molecular analysis using RT-PCR and DNA enzyme immunoassay (DEIA) method for the detection of HCV-RNA and genotypes. Anti-HCV, and HCV-RNA seroprevalence were significantly higher (17.1, 35.5%) among women with anti-D Ig than their counter group (6.4, 13.16%), p = .038, .018, respectively. Significant direct positive dose response correlation (r = 0.78, p = .005) had been seen between number of anti-D Ig therapy and anti-HCV seropositive rate. Anti-D Ig therapy act as a risk factor (odds ratio (OR) = 3.01, 95%CI: 1.01-8.9) especially from the third dose onward. Women with anti-D Ig therapy were at higher risk (3.6 times more) of positive HCV-RNA (OR =3.6, 95%CI =1.19-10.837). Genotype HCV-1b showed higher prevalent (52.9%) among the recipients of anti-D Ig therapy while genotype HCV-3a (6.6%) was the lowest. Our study showed that Anti-D immunoglobulin therapy acts as a risk factor for acquiring HCV infection. Screening for HCV should be recommended for all recipients of anti-D Ig. Not only HCV antibodies but HCV-RNA detection being recommended for the diagnosis of HCV

  3. Hepatitis C virus (HCV) induces formation of stress granules whose proteins regulate HCV RNA replication and virus assembly and egress.

    Science.gov (United States)

    Garaigorta, Urtzi; Heim, Markus H; Boyd, Bryan; Wieland, Stefan; Chisari, Francis V

    2012-10-01

    Stress granules (SGs) are cytoplasmic structures that are induced in response to environmental stress, including viral infections. Here we report that hepatitis C virus (HCV) triggers the appearance of SGs in a PKR- and interferon (IFN)-dependent manner. Moreover, we show an inverse correlation between the presence of stress granules and the induction of IFN-stimulated proteins, i.e., MxA and USP18, in HCV-infected cells despite high-level expression of the corresponding MxA and USP18 mRNAs, suggesting that interferon-stimulated gene translation is inhibited in stress granule-containing HCV-infected cells. Finally, in short hairpin RNA (shRNA) knockdown experiments, we found that the stress granule proteins T-cell-restricted intracellular antigen 1 (TIA-1), TIA1-related protein (TIAR), and RasGAP-SH3 domain binding protein 1 (G3BP1) are required for efficient HCV RNA and protein accumulation at early time points in the infection and that G3BP1 and TIA-1 are required for intracellular and extracellular infectious virus production late in the infection, suggesting that they are required for virus assembly. In contrast, TIAR downregulation decreases extracellular infectious virus titers with little effect on intracellular RNA content or infectivity late in the infection, suggesting that it is required for infectious particle release. Collectively, these results illustrate that HCV exploits the stress granule machinery at least two ways: by inducing the formation of SGs by triggering PKR phosphorylation, thereby downregulating the translation of antiviral interferon-stimulated genes, and by co-opting SG proteins for its replication, assembly, and egress.

  4. Analytical and clinical performance of the Hologic Aptima HCV Quant Dx Assay for the quantification of HCV RNA in plasma samples

    DEFF Research Database (Denmark)

    Schønning, Kristian; Pedersen, Martin Schou; Johansen, Kim

    2017-01-01

    obtained from 13 patients undergoing treatment with DAAs. RESULTS: Deming regression of results from 187 plasma samples with HCV RNA >2 Log IU/mL indicated that the Aptima assay quantified higher than the CAPCTMv2 test for HCV RNA >4.9 Log IU/mL. The linearity of the Aptima assay was excellent across...

  5. Indeterminate RIBA results were associated with the absence of hepatitis C virus RNA (HCV-RNA in blood donors

    Directory of Open Access Journals (Sweden)

    Felicidade Mota Pereira

    2014-01-01

    Full Text Available Introduction: Hepatitis C virus (HCV infection is diagnosed by the presence of antibodies and is supplemented by confirmatory testing methods, such as recombinant immunoblot assay (RIBA and HCV-RNA detection. This study aimed to evaluate the efficacy of RIBA testing to diagnose HCV infection in blood donors positive for anti-HCV antibodies. Methods: A total of 102 subjects positive for anti-HCV determined by enzyme-linked immunosorbent assay (ELISA at the Hematology and Hemotherapy Foundation of Bahia (HEMOBA were later assessed with new samples using the Abbott Architect anti-HCV test (Abbott Diagnostics, Wiesbaden, Germany, the RIBA III test (Chiron RIBA HCV 3.0 SIA, Chiron Corp., Emeryville, CA, USA, the polymerase chain reaction (PCR; COBAS® AMPLICOR HCV Roche Diagnostics Corp., Indianapolis, IN, USA and line probe assay (LiPA - Siemens, Tarrytown, NY, USA genotyping for HCV diagnosis. Results: Of these new samples, 38.2% (39/102 were positive, 57.8% (59/102 were negative and 3.9% (4/102 were indeterminate for anti-HCV; HCV-RNA was detected in 22.5% (23/102 of the samples. RIBA results were positive in 58.1% (25/43, negative in 9.3% (4/43 and indeterminate in 32.6% (14/43 of the samples. The prevailing genotypes were 1 (78.3%, 18/23, 3 (17.4%, 4/23 and 2 (4.3%, 1/23. All 14 samples with indeterminate RIBA results had undetectable viral loads (detection limit ≤50 IU/mL. Of these samples, 71.4% (10/14 were reevaluated six months later. Eighty percent (8/10 of these samples remained indeterminate by RIBA, and 20% (2/10 were negative. Conclusions: In this study, individuals with indeterminate RIBA results had no detectable HCV-RNA.

  6. Indeterminate RIBA results were associated with the absence of hepatitis C virus RNA (HCV-RNA) in blood donors.

    Science.gov (United States)

    Pereira, Felicidade Mota; Zarife, Maria Alice Sant'ana; Reis, Eliana Almeida Gomes; G Reis, Mitermayer

    2014-01-01

    Hepatitis C virus (HCV) infection is diagnosed by the presence of antibodies and is supplemented by confirmatory testing methods, such as recombinant immunoblot assay (RIBA) and HCV-RNA detection. This study aimed to evaluate the efficacy of RIBA testing to diagnose HCV infection in blood donors positive for anti-HCV antibodies. A total of 102 subjects positive for anti-HCV determined by enzyme-linked immunosorbent assay (ELISA) at the Hematology and Hemotherapy Foundation of Bahia (HEMOBA) were later assessed with new samples using the Abbott Architect anti-HCV test (Abbott Diagnostics, Wiesbaden, Germany), the RIBA III test (Chiron RIBA HCV 3.0 SIA, Chiron Corp., Emeryville, CA, USA), the polymerase chain reaction (PCR; COBAS® AMPLICOR HCV Roche Diagnostics Corp., Indianapolis, IN, USA) and line probe assay (LiPA - Siemens, Tarrytown, NY, USA) genotyping for HCV diagnosis. Of these new samples, 38.2% (39/102) were positive, 57.8% (59/102) were negative and 3.9% (4/102) were indeterminate for anti-HCV; HCV-RNA was detected in 22.5% (23/102) of the samples. RIBA results were positive in 58.1% (25/43), negative in 9.3% (4/43) and indeterminate in 32.6% (14/43) of the samples. The prevailing genotypes were 1 (78.3%, 18/23), 3 (17.4%, 4/23) and 2 (4.3%, 1/23). All 14 samples with indeterminate RIBA results had undetectable viral loads (detection limit ≤50 IU/mL). Of these samples, 71.4% (10/14) were reevaluated six months later. Eighty percent (8/10) of these samples remained indeterminate by RIBA, and 20% (2/10) were negative. In this study, individuals with indeterminate RIBA results had no detectable HCV-RNA.

  7. Performance of the new Bayer VERSANT HCV RNA 3.0 assay for quantitation of hepatitis C virus RNA in plasma and serum: Conversion to international units and comparison with the Roche COBAS amplicor HCV monitor, version 2.0, assay

    NARCIS (Netherlands)

    Beld, Marcel; Sentjens, Roel; Rebers, Sjoerd; Weegink, Christine; Weel, Jan; Sol, Cees; Boom, René

    2002-01-01

    We have evaluated the VERSANT HCV RNA 3.0. Assay (HCV 3.0 bDNA assay) (Bayer Diagnostics, Berkeley, Calif.), which is an improved signal amplification procedure for the HCV 2.0 bDNA assay for the quantitation of hepatitis C virus (HCV) RNA in serum or plasma of HCV-infected individuals. The HCV 3.0

  8. Evaluation of automated RNA-extraction technology and a qualitative HCV assay for sensitivity and detection of HCV RNA in pool-screening systems

    NARCIS (Netherlands)

    Beld, M.; Habibuw, M. R.; Rebers, S. P.; Boom, R.; Reesink, H. W.

    2000-01-01

    BACKGROUND: The objective of this study was the evaluation of NAT technology for the detection of HCV RNA in plasma pools according to the recommendations of the Paul Ehrlich Institute (5000 IU/mL/donation) and the Committee for Proprietary Medical Products (100 IU/mL/manufacturing pool). STUDY

  9. HCV core protein-induced down-regulation of microRNA-152 promoted aberrant proliferation by regulating Wnt1 in HepG2 cells.

    Directory of Open Access Journals (Sweden)

    Shifeng Huang

    Full Text Available Hepatitis C virus (HCV has been reported to regulate cellular microRNAs (miRNAs. The HCV core protein is considered to be a potential oncoprotein in HCV-related hepatocellular carcinoma (HCV-HCC, but HCV core-regulated miRNAs are largely unknown. Our preliminary experiments revealed significant down-regulation of microRNA-152 (miR-152 by HCV core protein in HepG2 cells. Through target gene prediction softwares, Wnt1 was predicted to be a potential target of miR-152. The present study was initiated to investigate whether miR-152 is aberrantly regulated by the HCV core protein, and involved in the regulation of the aberrant proliferation of HCV-HCC cells.MiR-152 levels were examined by stem-loop real-time RT-PCR (SLqRT-PCR. Cell proliferation was analyzed by MTT and colony formation assay. Cell cycle analysis was performed by flow cytometry. Luciferase reporter assay was conducted to confirm miRNA-target association. Wnt1 expression was determined by real-time qPCR and Western blotting.HCV core protein significantly suppressed miR-152 expression, and led to significant Wnt1 up-regulation with a concomitant aberrantly promoted proliferation. Moreover, we validated that miR-152 inhibition promoted, while miR-152 mimics inhibited cell proliferation. Using, qRT-PCR and western blot, Wnt1 was demonstrated to be regulated by miR-152. Luciferase activity assay showed that while miR-152 mimics significantly reduced the luciferase activity by 83.76% (P<0.0001, miR-152 inhibitor showed no effect on luciferase reporter. Most notably, salvage expression of miR-152 after Ad-HCV core infection for 24 h almost totally reversed the proliferation-promoting effect of the HCV core protein, and meanwhile, reduced the expression of both Wnt1 mRNA and protein to basal levels.These findings provide important evidence that the reduced miR-152 expression by HCV core protein can indirectly lose an inhibitory effect on Wnt1, which might, at least partially lead to cell

  10. Detection and quantification of serum or plasma HCV RNA: mini review of commercially available assays.

    Science.gov (United States)

    Le Guillou-Guillemette, Helene; Lunel-Fabiani, Francoise

    2009-01-01

    The treatment schedule (combination of compounds, doses, and duration) and the virological follow-up for management of antiviral treatment in patients chronically infected by HCV is now well standardized, but to ensure good monitoring of the treated patients, physicians need rapid, reproducible, and sensitive molecular virological tools with a wide range of detection and quantification of HCV RNA in blood samples. Several assays for detection and/or quantification of HCV RNA are currently commercially available. Here, all these assays are detailed, and a brief description of each step of the assay is provided. They are divided into two categories by method: those based on signal amplification and those based on target amplification. These two categories are then divided into qualitative, quantitative, and quantitative detection assays. The real-time reverse-transcription polymerase chain reaction (RT-PCR)-based assays are the most promising strategy in the HCV virological area.

  11. The evaluation of Recombinant Immunoblot assay (RIBA and HCV-RNA test results in patients with low titer Anti-HCV positivity

    Directory of Open Access Journals (Sweden)

    Berrin Uzun

    2014-12-01

    Full Text Available Objectives: Laboratory diagnosis of hepatitis C virus (HCV infection is based on the detection of anti-HCV antibodies by enzyme immunoassay (EIA or chemiluminescence immunoassay (CIA techniques. However, a consensus related to the problem of low titer (Serum/Cut-off; S/C= 1.0 anti-HCV antibodies is still lacking. The study attempts to evaluate the clinical status of the patients with low titer anti-HCV antibodies detected by third generation anti-HCV tests during February 2013- May 2014 retrospectively. Methods: Serum samples were studied by Advia Centaur XP autoanalyser (Bayer-Siemens, Germany for anti-HCV, and line immunoassay (Inno-LIATM HCV Score, İnnogenetics, Belgium for anti-HCV confirmatory test, Cobas AmpliPre/Cobas AMPLICOR HCV Test (Roche diagnostics, Switzerland for HCV RNA. Results: A total of 55.631 serum samples were studied, and 55 of them were anti-HCV positive of which with low antibody levels (sample/cutoff [S/CO]. S/CO values ranged from 1.15 to 6.15. Seventeen (31% of patients who have low antibody levels were defined as positive and 2 (4% patients were intermittent and 36 (65% patients were negative with line immunoassay. HCV-RNA was not detected in any of the samples. Conclusions: It is thought that antibody positivity must be verified in cases of recurrent reactivity when considering the cost-effectiveness of molecular tests. In the study was concluded that the use of molecular tests would be appropriate diagnosis, and the effectiveness of treatment if necessary after evaluation of patients with biochemical analysis. J Clin Exp Invest 2014; 5 (4: 553-556

  12. Correlation between alanine aminotransferase level, HCV-RNA titer ...

    African Journals Online (AJOL)

    In contrast, an insignificant correlation was found between ALT level and grade of necroinflammation. In conclusion neither ALT level nor HCV viremia can reflect the histological liver change accurately. As a result, liver biopsy or other noninvasive procedures that measure liver stiffness (i.e., Fibroscan) remain essential for ...

  13. Detection of HCV-RNA by Reverse Transcription Polymerase Chain Reaction Using Biotinylated and Radioiodinated Primers

    International Nuclear Information System (INIS)

    Ryu, Jin Sook; Moon, Dae Hyuk; Cheon, Jun Hong; Chung, Yoon Young; Park, Hung Dong; Chung, Young Hwa; Lee, Young Sang

    1994-01-01

    This study was performed to evaluate the clinical applicability of the reverse transcription polymerase chain reaction (RT-PCR) kit of HCV-RNA using biotinylated and radioiodinated primers. Study subjects were 118 patients with positive anti-HCV. HCV-RNA in patients serum was extracted by guanidium thiocyanate method. After first amplification, the product was reamplified by primers labelled with biotin and I-125. The final amplification product was detected by counting the radioactivity after incubation in avidin coated tubes. In 51 samples, the test was repeated for evaluation of reproducibility. This new method was also compared with conventional RT-PCR methods in 34 samples from patients with chronic liver disease. The results were as follows, 1) HCV-RNA was positive in 85(97%)of 88 patients with chronic liver disease, and in 23 (73%) of 30 patients with normal liver function. 2) In comparison with conventional method, HCV-RNA was detected in 32(94%) of 34 patients with new method, whereas in 27(79% ) of the same group with conventional method 3) Repeated test with new method in 52 samples demonstrated 82% of concordant result. In conclusion, new method with biotinylated and radioiodinated primers was more sensitive than conventional method. However, great care must be taken for quality control because there were considerable interassay variation and possibility of false positivity and false negativity.

  14. Detection of HCV-RNA by Reverse Transcription Polymerase Chain Reaction Using Biotinylated and Radioiodinated Primers

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jin Sook; Moon, Dae Hyuk; Cheon, Jun Hong; Chung, Yoon Young; Park, Hung Dong; Chung, Young Hwa; Lee, Young Sang [Asan Medical Center, University of Ulsan, Seoul (Korea, Republic of)

    1994-07-15

    This study was performed to evaluate the clinical applicability of the reverse transcription polymerase chain reaction (RT-PCR) kit of HCV-RNA using biotinylated and radioiodinated primers. Study subjects were 118 patients with positive anti-HCV. HCV-RNA in patients serum was extracted by guanidium thiocyanate method. After first amplification, the product was reamplified by primers labelled with biotin and I-125. The final amplification product was detected by counting the radioactivity after incubation in avidin coated tubes. In 51 samples, the test was repeated for evaluation of reproducibility. This new method was also compared with conventional RT-PCR methods in 34 samples from patients with chronic liver disease. The results were as follows, 1) HCV-RNA was positive in 85(97%)of 88 patients with chronic liver disease, and in 23 (73%) of 30 patients with normal liver function. 2) In comparison with conventional method, HCV-RNA was detected in 32(94%) of 34 patients with new method, whereas in 27(79% ) of the same group with conventional method 3) Repeated test with new method in 52 samples demonstrated 82% of concordant result. In conclusion, new method with biotinylated and radioiodinated primers was more sensitive than conventional method. However, great care must be taken for quality control because there were considerable interassay variation and possibility of false positivity and false negativity.

  15. Correlation between alanine aminotransferase level, HCV-RNA titer ...

    African Journals Online (AJOL)

    Reham Al Swaff

    2012-04-04

    Apr 4, 2012 ... RNA titer and/or serum ALT level in patients with chronic hepatitis C (genotype 4) infection. .... Other liver diseases such as alcoholic liver disease, non- .... Insulin resistance, obesity, and steatosis are associated with a.

  16. Il controllo di qualità nell’impiego della PCR applicata alla determinazione qualitativa dell’HCV-RNA

    Directory of Open Access Journals (Sweden)

    Giuseppe Giuliani

    2004-03-01

    Full Text Available Detection of hepatitis C virus (HCV RNA in samples of plasma/serum has become an essential part of the diagnosis and management of HCV-infected patients. Qualitative HCV-RNA tests are used to identify acute HCV infections as well as chronic HCV carriers.In recent years,a variety of commercial and non commercial test systems have been developed for this purpose. Each of these methods is calibrate with proprietary standards and exhibits its own sensitivity (detection limit and specificity. Obviously, laboratories performing HCV-RNA test should report accurate and reliable results regardless of the type of assay used.Where commercial kit are used for part of or the complete analytical procedure, documented validation points already covered by the kit manufacturer can substitute for the validation by the user.Nevertheless, the performance of the kit with respect to its intended use has to be demonstrated by the user. One of the best ways to assess the performance of individual laboratories for validation of qualitative HCV-RNA test is determine: 1. Specificity. In order to validate the specificity of the analytical procedure, at least 100 HCV-RNA-negative plasma pools should be tested and shown to be non-reactive. 2. Positive cut-off point (detection limit/sensitivity.The positive cut-off point (as defined in the Ph Eur General Method 2. 6. 21 is the minimum number of the target sequences per volume sample which can be detected in 95% of test runs.A dilution series of a working reagent or reference material, which has been calibrated against the WHO HCV International Standard (96/790, should be tested on different days to examine variation between test runs.At least 3 independent dilution series should be tested with a sufficient number of replicates at each dilution to give a total number of 24 test results for each dilution to enable a statistical analysis of the results; 3. Robustness.To demonstrate robustness, at least 20 HCV-RNA negative plasma

  17. dsRNA-Dependent Protein Kinase PKR and its Role in Stress, Signaling and HCV Infection

    Directory of Open Access Journals (Sweden)

    Eliane F. Meurs

    2012-10-01

    Full Text Available The double-stranded RNA-dependent protein kinase PKR plays multiple roles in cells, in response to different stress situations. As a member of the interferon (IFN‑Stimulated Genes, PKR was initially recognized as an actor in the antiviral action of IFN, due to its ability to control translation, through phosphorylation, of the alpha subunit of eukaryotic initiation factor 2 (eIF2a. As such, PKR participates in the generation of stress granules, or autophagy and a number of viruses have designed strategies to inhibit its action. However, PKR deficient mice resist most viral infections, indicating that PKR may play other roles in the cell other than just acting as an antiviral agent. Indeed, PKR regulates several signaling pathways, either as an adapter protein and/or using its kinase activity. Here we review the role of PKR as an eIF2a kinase, its participation in the regulation of the NF-kB, p38MAPK and insulin pathways, and we focus on its role during infection with the hepatitis C virus (HCV. PKR binds the HCV IRES RNA, cooperates with some functions of the HCV core protein and may represent a target for NS5A or E2. Novel data points out for a role of PKR as a pro-HCV agent, both as an adapter protein and as an eIF2a-kinase, and in cooperation with the di-ubiquitin-like protein ISG15. Developing pharmaceutical inhibitors of PKR may help in resolving some viral infections as well as stress-related damages.

  18. Theory Meets Experiment: Metal Ion Effects in HCV Genomic RNA Kissing Complex Formation

    Directory of Open Access Journals (Sweden)

    Li-Zhen Sun

    2017-12-01

    Full Text Available The long-range base pairing between the 5BSL3. 2 and 3′X domains in hepatitis C virus (HCV genomic RNA is essential for viral replication. Experimental evidence points to the critical role of metal ions, especially Mg2+ ions, in the formation of the 5BSL3.2:3′X kissing complex. Furthermore, NMR studies suggested an important ion-dependent conformational switch in the kissing process. However, for a long time, mechanistic understanding of the ion effects for the process has been unclear. Recently, computational modeling based on the Vfold RNA folding model and the partial charge-based tightly bound ion (PCTBI model, in combination with the NMR data, revealed novel physical insights into the role of metal ions in the 5BSL3.2-3′X system. The use of the PCTBI model, which accounts for the ion correlation and fluctuation, gives reliable predictions for the ion-dependent electrostatic free energy landscape and ion-induced population shift of the 5BSL3.2:3′X kissing complex. Furthermore, the predicted ion binding sites offer insights about how ion-RNA interactions shift the conformational equilibrium. The integrated theory-experiment study shows that Mg2+ ions may be essential for HCV viral replication. Moreover, the observed Mg2+-dependent conformational equilibrium may be an adaptive property of the HCV genomic RNA such that the equilibrium is optimized to the intracellular Mg2+ concentration in liver cells for efficient viral replication.

  19. An OPTIMIZE study retrospective analysis for management of telaprevir-treated hepatitis C virus (HCV)-infected patients by use of the Abbott RealTime HCV RNA assay.

    Science.gov (United States)

    Sarrazin, Christoph; Dierynck, Inge; Cloherty, Gavin; Ghys, Anne; Janssen, Katrien; Luo, Donghan; Witek, James; Buti, Maria; Picchio, Gaston; De Meyer, Sandra

    2015-04-01

    Protease inhibitor (PI)-based response-guided triple therapies for hepatitis C virus (HCV) infection are still widely used. Noncirrhotic treatment-naive and prior relapser patients receiving telaprevir-based treatment are eligible for shorter, 24-week total therapy if HCV RNA is undetectable at both weeks 4 and 12. In this study, the concordance in HCV RNA assessments between the Roche High Pure System/Cobas TaqMan and Abbott RealTime HCV RNA assays and the impacts of different HCV RNA cutoffs on treatment outcome were evaluated. A total of 2,629 samples from 663 HCV genotype 1 patients receiving telaprevir/pegylated interferon/ribavirin in OPTIMIZE were analyzed using the High Pure System and reanalyzed using Abbott RealTime (limits of detection, 15.1 IU/ml versus 8.3 IU/ml; limits of quantification, 25 IU/ml versus 12 IU/ml, respectively). Overall, good concordance was observed between the assays. Using undetectable HCV RNA at week 4, 34% of the patients would be eligible for shorter treatment duration with Abbott RealTime versus 72% with the High Pure System. However, using Abbott RealTime, a similar proportion (74%) would be eligible. Of the patients receiving 24-week total therapy, 87% achieved a sustained virologic response with undetectable HCV RNA by the High Pure System or Abbott RealTime; however, 92% of the patients with undetectable HCV RNA by Abbott RealTime achieved a sustained virologic response. Using undetectable HCV RNA as the cutoff, the more sensitive Abbott RealTime assay would identify fewer patients eligible for shorter treatment than the High Pure System. Our data confirm the Abbott RealTime assay, to determine eligibility for shortened PI-based HCV treatment. (The study was registered with ClinicalTrials.gov under registration no. NCT01241760.). Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. Point -of -care testing (POCT) in molecular diagnostics: Performance evaluation of GeneXpert HCV RNA test in diagnosing and monitoring of HCV infection.

    Science.gov (United States)

    Gupta, Ekta; Agarwala, Pragya; Kumar, Guresh; Maiwall, Rakhi; Sarin, Shiv Kumar

    2017-03-01

    Molecular testing at the point-of-care may turn out to be game changer for HCV diagnosis and treatment monitoring, through increased sensitivity, reduced turnaround time, and ease of performance. One such assay GeneXpert ® has recently been released. Comparative analysis between performances of GeneXpert ® and Abbott HCV-RNA was done. 174 HCV infected patients were recruited and, one time plasma samples from 154 patients and repeated samples from 20 patients, obtained at specific treatment time-points (0, 4, 12 and 24) weeks were serially re-tested on Xpert ® . Genotype 3 was the commonest, seen in 80 (66%) of the cases, genotype 1 in 34 (28.3%), genotype 4 in 4 (3.3%) and genotypes 2 and 5 in 1 (0.8%) each. Median HCV RNA load was 4.69 log 10 (range: 0-6.98log 10 ) IU/ml. Overall a very good correlation was seen between the two assays (R 2 =0.985), concordance of the results between the assays was seen in 138 samples (89.6%). High and low positive standards were tested ten times on Xpert ® to evaluate the precision and the coefficient of variation was 0.01 for HPC and 0.07 for the LPC. Monitoring of patients on two different regimes of treatment, pegylated interferon plus ribavirin and sofosbuvir plus ribavirin was done by both the systems at baseline, 4, 12 and 24 weeks. Perfect correlation between the assays in the course of therapy at different treatment time- point in genotypes 3 and 1 was seen. The study demonstrates excellent performance of the Xpert ® HCV assay in viral load assessment and in treatment course monitoring consistency. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Quantitation of HCV RNA in liver of patients with chronic hepatitis C Quantificação do RNA-HCV no fígado de pacientes com hepatite C crônica

    Directory of Open Access Journals (Sweden)

    Ana de Lôurdes Candolo MARTINELLI

    2000-10-01

    Full Text Available Background/Aims - Liver HCV RNA has been quantitated in few studies and the feasibility and the role of this parameter in the evaluation of patients with chronic HCV hepatitis still warrant study. Our aim was to determine the concentrations of HCV RNA in the liver of chronic HCV patients and to correlate the results with serum viral load. We also studied the relation of levels of HCV RNA in the liver with serum aminotransferases levels and with the presence of cirrhosis. Methods - Twenty patients (14 males, aged 28 to 61 years were studied. Twelve were infected by HCV type 1, six by type 3 and one by type 5. Percutaneous liver biopsy samples were obtained from 14 patients, and the remainder from liver explant in patients undergoing OLT. Twelve had chronic hepatitis and eight cirrhosis. HCV RNA levels were determined by bDNA. Results - HCV RNA levels below the detection limit were found in one liver and in five serum samples. HCV RNA (mean ± SD was 2.1 x 10(8 ± 2.2 x 10(8Eq/gm in the liver and 94 x 10(5 ± 93 x 10(5Eq/mL in serum, with a significant correlation between these values (r = 0.89; P Introdução/Objetivos - Poucos estudos avaliam a quantificação do RNA-HCV no fígado, portanto a praticabilidade e a aplicação desse parâmetro na avaliação de pacientes com hepatite C crônica ainda não estão definidas. O objetivo foi determinar as concentrações do RNA-HCV no fígado de pacientes com infecção crônica pelo vírus C da hepatite e correlacionar os resultados com a carga viral do soro. Foram também estudadas a relação dos níveis de RNA-HCV no fígado com os de aminotransferases no soro e com a presença de cirrose. Métodos - Foram estudados 20 pacientes (14 homens, 28 a 61 anos. A genotipagem do vírus da hepatite C revelou: tipo 1 (12 pacientes, tipo 3 (6 pacientes , tipo 5 (1 paciente. Amostras de fígado foram obtidas por via percutânea em 14 pacientes e de explantes de fígado de pacientes submetidos a transplante em

  2. Disruption of Claudin-1 Expression by miRNA-182 Alters the Susceptibility to Viral Infectivity in HCV Cell Models

    Directory of Open Access Journals (Sweden)

    Sarah E. Riad

    2018-03-01

    Full Text Available HCV entry involves a complex interplay between viral and host molecules. During post-binding interactions, the viral E2 complexes with CD81 receptor for delivery to the tight junction proteins CLDN1 and OCLN, which aid in viral internalization. Targeting HCV entry receptors represents an appealing approach to inhibit viral infectivity. This study aimed at investigating the impact of targeting CLDN1 by microRNAs on HCV infectivity. miR-155 was previously shown to target the 3′UTR of CLDN1 mRNA. Therefore, miR-155 was used as a control in this study. In-silico analysis and luciferase reporter assay were utilized to identify potential targeting miRNAs. The impact of the identified miRNAs on CLDN1 mRNA and protein expression was examined by qRT-PCR, indirect immunofluorescence and western blotting, respectively. The role of the selected miRNAs on HCV infectivity was assessed by measuring the viral load following the ectopic expression of the selected miRNAs. miR-182 was identified in-silico and by experimental validation to target CLDN1. Both miR-155 and miR-182 inhibited CLDN1 mRNA and protein expression in infected Huh7 cells. Ectopic expression of miR-155 increased, while miR-182 reduced the viral load. In conclusion, despite repressing CLDN1, the impact of miR-155 and miR-182 on HCV infectivity is contradictory. Ectopic miR-182 expression is suggested as an upstream regulator of the entry factor CLDN1, harnessing HCV infection.

  3. Association between depressive symptoms, CD4 count and HIV viral suppression among HIV-HCV co-infected people.

    Science.gov (United States)

    Aibibula, Wusiman; Cox, Joseph; Hamelin, Anne-Marie; Moodie, Erica E M; Anema, Aranka; Klein, Marina B; Brassard, Paul

    2018-05-01

    Depressive symptoms are associated with poor HIV viral control and immune recovery among people living with HIV. However, no prior studies assessed this association exclusively among people co-infected with HIV-hepatitis C virus (HCV). While people with HIV only and those with HIV-HCV co-infection share many characteristics, co-infected people may become more susceptible to the effects of depressive symptoms on health outcomes. We assessed this association exclusively among people co-infected with HIV-HCV in Canada using data from the Food Security & HIV-HCV Sub-Study (FS Sub-Study) of the Canadian Co-Infection Cohort (CCC). Stabilized inverse probability weighted marginal structural model was used to account for potential time-varying confounders. A total of 725 participants were enrolled between 2012 and 2015. At baseline, 52% of participants reported depressive symptoms, 75% had undetectable HIV viral load, and median CD4 count was 466 (IQR 300-665). People experiencing depressive symptoms had 1.32 times (95% CI: 1.07, 1.63) the risk of having detectable HIV viral load, but had comparable CD4 count to people who did not experience depressive symptoms (fold change of CD4 = 0.96, 95% CI: 0.91, 1.03). Presence of depressive symptoms is a risk factor for incomplete short-term HIV viral suppression among people co-infected with HIV-HCV. Therefore, depressive symptoms screening and related counseling may improve HIV related health outcomes and reduce HIV transmission.

  4. Small interfering RNA targeted to stem-loop II of the 5' untranslated region effectively inhibits expression of six HCV genotypes

    Directory of Open Access Journals (Sweden)

    Dash Srikanta

    2006-11-01

    Full Text Available Abstract Background The antiviral action of interferon alpha targets the 5' untranslated region (UTR used by hepatitis C virus (HCV to translate protein by an internal ribosome entry site (IRES mechanism. Although this sequence is highly conserved among different clinical strains, approximately half of chronically infected hepatitis C patients do not respond to interferon therapy. Therefore, development of small interfering RNA (siRNA targeted to the 5'UTR to inhibit IRES mediated translation may represent an alternative approach that could circumvent the problem of interferon resistance. Results Four different plasmid constructs were prepared for intracellular delivery of siRNAs targeting the stem loop II-III of HCV 5' UTR. The effect of siRNA production on IRES mediated translation was investigated using chimeric clones between the gene for green fluorescence protein (GFP and IRES sequences of six different HCV genotypes. The siRNA targeted to stem loop II effectively mediated degradation of HCV IRES mRNA and inhibited GFP expression in the case of six different HCV genotypes, where as siRNAs targeted to stem loop III did not. Furthermore, intracytoplasmic expression of siRNA into transfected Huh-7 cells efficiently degraded HCV genomic RNA and inhibited core protein expression from infectious full-length infectious clones HCV 1a and HCV 1b strains. Conclusion These in vitro studies suggest that siRNA targeted to stem-loop II is highly effective inhibiting IRES mediated translation of the major genotypes of HCV. Stem-loop II siRNA may be a good target for developing an intracellular immunization strategy based antiviral therapy to inhibit hepatitis C virus strains that are not inhibited by interferon.

  5. Connecting rules from paired miRNA and mRNA expression data sets of HCV patients to detect both inverse and positive regulatory relationships

    OpenAIRE

    Song, Renhua; Liu, Qian; Liu, Tao; Li, Jinyan

    2015-01-01

    Background Intensive research based on the inverse expression relationship has been undertaken to discover the miRNA-mRNA regulatory modules involved in the infection of Hepatitis C virus (HCV), the leading cause of chronic liver diseases. However, biological studies in other fields have found that inverse expression relationship is not the only regulatory relationship between miRNAs and their targets, and some miRNAs can positively regulate a mRNA by binding at the 5' UTR of the mRNA. Result...

  6. Transmission of HCV to a chimpanzee using virus particles produced in an RNA-transfected HepG2 cell culture.

    Science.gov (United States)

    Dash, S; Kalkeri, G; McClure, H M; Garry, R F; Clejan, S; Thung, S N; Murthy, K K

    2001-10-01

    It was demonstrated previously that HepG2 cells produce negative strand RNA and virus-like particles after transfection with RNA transcribed from a full-length hepatitis C virus (HCV) cDNA clone [Dash et al. (1997) American Journal of Pathology, 151:363-373]. To determine in vivo infectivity of these in vitro synthesized viral particles, a chimpanzee was inoculated intravenously with HCV derived from HepG2 cells. The infected chimpanzee was examined serially for elevation of liver enzymes, for the presence of HCV RNA in the serum by reverse transcription nested polymerase chain reaction (RT-PCR), anti-HCV antibodies in the serum, and inflammation in the liver. The chimpanzee developed elevated levels of liver enzymes after the second week, but the levels fluctuated over a 10-week period. HCV RNA was detected in the serum of the chimpanzee at the second, seventh and ninth weeks after inoculation, and remained positive up to 25 weeks. Liver biopsies at Weeks 18 and 19 revealed of mild inflammation. Nucleotide sequence analysis of HCV recovered from the infected chimpanzee at the second and ninth weeks showed 100% sequence homology with the clone used for transfection studies. Serum anti-HCV antibodies were not detected by EIA during the 25 weeks follow-up period. These results suggest that intravenous administration of the virus-like particles derived from RNA-transfected HepG2 cells are infectious, and therefore, the pMO9.6-T7 clone is an infectious clone. These results provide new information that in vitro synthesized HCV particles produced from full-length HCV clone can cause infection in a chimpanzee. This study will facilitate the use of innovative approaches to the study of assembly of HCV particles and mechanisms of virus infectivity in cell culture. Copyright 2001 Wiley-Liss, Inc.

  7. Occult HCV Infection (OCI) Diagnosis in Cirrhotic and Non-cirrhotic Naïve Patients by Intra-PBMC Nested Viral RNA PCR.

    Science.gov (United States)

    Abd Alla, Mohamed Darwish Ahmed; Elibiary, Saleh Ahmed; Wu, George Y; El-Awady, Mostafa Kamel

    2017-12-28

    Background and Aims: Occult HCV infections (OCIs) include IgG antibody seronegative cryptogenic (COCIs), as well as seropositive secondary naïve (SNOCIs) and experienced (SEOCIs) cases. We used peripheral-blood-mononuclear-cell (PBMC)-PCR to evaluate COCIs and SNOCIs prevalence, serum HCV spontaneous disappearance (SCSD) in naïve cirrhotics and non-cirrhotics, intra-PBMC HCV-RNA strands in relation to cirrhosis density in naïve non-viremia cases, and HCV-RNA seroconversion after 1 year of solitary naïve intra-PBMC infection. Methods: The anti-HCV IgG antibody-positive naïve-patients ( n = 785) were classified into viremic ( n = 673) and non-viremic [ n = 112, including non-cirrhotics ( n = 55) and cirrhotics ( n = 57)], and 62 controls without evidence of HCV-infection. Controls and post-HCV non-viremia cases ( n = 62+112 = 174) were submitted to hepatic Fibroscan-Elastography evaluation. All subjects ( n = 847) were screened for intra-PBMC HCV-RNA sense and antisense strands by nested-PCR. Results: Naïve-OCI cases (4.84%) that were diagnosed by PBMC-PCR significantly raised the total numbers of HCV-infection to 714 ( p = 0.01). The percent positivity of SNOCIs (34.82%) was significantly higher than for asymptomatic-COCIs (3.125%, p = 0.0001). Comparing PBMC-PCR with single-step-reverse-transcription (SRT)-PCR for identification of SCSD in naïve IgG antibody-positive non-viremia patients ( n = 112) revealed a decline in SCSD prevalence by PBMC-PCR (from 14.27% to 9.3%), regardless of presence of hepatic cirrhosis ( p = 0.03). SCSD was found to be higher by PBMC-PCR in non-cirrhotics compared to cirrhotics ( p = 0.0001), with an insignificant difference when using SRT-PCR ( p = 0.45). Intra-PBMC HCV-RNA infection was significantly more frequent in cirrhotics compared to both non-cirrhotics and controls ( p < 0.0005). An increased hepatic fibrosis density was recognized in intra-PBMC HCV-RNA infection with sense ( p = 0.0001) or antisense strand ( p = 0

  8. PCBP2 enhances the antiviral activity of IFN-α against HCV by stabilizing the mRNA of STAT1 and STAT2.

    Directory of Open Access Journals (Sweden)

    Zhongshuai Xin

    Full Text Available Interferon-α (IFN-α is a natural choice for the treatment of hepatitis C, but half of the chronically infected individuals do not achieve sustained clearance of hepatitis C virus (HCV during treatment with IFN-α alone. The virus can impair IFN-α signaling and cellular factors that have an effect on the viral life cycles. We found that the protein PCBP2 is down-regulated in HCV-replicon containing cells (R1b. However, the effects and mechanisms of PCBP2 on HCV are unclear. To determine the effect of PCBP2 on HCV, overexpression and knockdown of PCBP2 were performed in R1b cells. Interestingly, we found that PCBP2 can facilitate the antiviral activity of IFN-α against HCV, although the RNA level of HCV was unaffected by either the overexpression or absence of PCBP2 in R1b cells. RIP-qRT-PCR and RNA half-life further revealed that PCBP2 stabilizes the mRNA of STAT1 and STAT2 through binding the 3'Untranslated Region (UTR of these two molecules, which are pivotal for the IFN-α anti-HCV effect. RNA pull-down assay confirmed that there were binding sites located in the C-rich tracts in the 3'UTR of their mRNAs. Stabilization of mRNA by PCBP2 leads to the increased protein expression of STAT1 and STAT2 and a consistent increase of phosphorylated STAT1 and STAT2. These effects, in turn, enhance the antiviral effect of IFN-α. These findings indicate that PCBP2 may play an important role in the IFN-α response against HCV and may benefit the HCV clinical therapy.

  9. HCV IRES domain IIb affects the configuration of coding RNA in the 40S subunit's decoding groove.

    Science.gov (United States)

    Filbin, Megan E; Kieft, Jeffrey S

    2011-07-01

    Hepatitis C virus (HCV) uses a structured internal ribosome entry site (IRES) RNA to recruit the translation machinery to the viral RNA and begin protein synthesis without the ribosomal scanning process required for canonical translation initiation. Different IRES structural domains are used in this process, which begins with direct binding of the 40S ribosomal subunit to the IRES RNA and involves specific manipulation of the translational machinery. We have found that upon initial 40S subunit binding, the stem-loop domain of the IRES that contains the start codon unwinds and adopts a stable configuration within the subunit's decoding groove. This configuration depends on the sequence and structure of a different stem-loop domain (domain IIb) located far from the start codon in sequence, but spatially proximal in the IRES•40S complex. Mutation of domain IIb results in misconfiguration of the HCV RNA in the decoding groove that includes changes in the placement of the AUG start codon, and a substantial decrease in the ability of the IRES to initiate translation. Our results show that two distal regions of the IRES are structurally communicating at the initial step of 40S subunit binding and suggest that this is an important step in driving protein synthesis.

  10. Full Viral Suppression, Low-Level Viremia, and Quantifiable Plasma HIV-RNA at the End of Pregnancy in HIV-Infected Women on Antiretroviral Treatment.

    Science.gov (United States)

    Baroncelli, Silvia; Pirillo, Maria F; Tamburrini, Enrica; Guaraldi, Giovanni; Pinnetti, Carmela; Degli Antoni, Anna; Galluzzo, Clementina M; Stentarelli, Chiara; Amici, Roberta; Floridia, Marco

    2015-07-01

    There is limited information on full viral suppression and low-level HIV-RNA viremia in HIV-infected women at the end of pregnancy. We investigated HIV-RNA levels close to delivery in women on antiretroviral treatment in order to define rates of complete suppression, low-level viremia, and quantifiable HIV-RNA, exploring as potential determinants some clinical and viroimmunological variables. Plasma samples from a national study in Italy, collected between 2003 and 2012, were used. According to plasma HIV-RNA levels, three groups were defined: full suppression (target not detected), low-level viremia (target detected but HIV-RNA (≥37 copies/ml). Multivariable logistic regression was used to define determinants of full viral suppression and of quantifiable HIV-RNA. Among 107 women evaluated at a median gestational age of 35 weeks, 90 (84.1%) had HIV-RNA HIV-RNA was 109 copies/ml (IQR 46-251), with only one case showing resistance (mutation M184V; rate: 9.1%). In multivariable analyses, women with higher baseline HIV-RNA levels and with hepatitis C virus (HCV) coinfection were significantly more likely to have quantifiable HIV-RNA in late pregnancy. Full viral suppression was significantly more likely with nonnucleoside reverse transcriptase inhibitor (NNRTI)-based regimens and significantly less likely with higher HIV-RNA in early pregnancy. No cases of HIV transmission occurred. In conclusion, HIV-infected pregnant women showed a high rate of viral suppression and a low resistance rate before delivery. In most cases no target HIV-RNA was detected in plasma, suggesting a low risk of subsequent virological rebound and development of resistance. Women with high levels of HIV-RNA in early pregnancy and those who have concomitant HCV infection should be considered at higher risk of having quantifiable HIV-RNA at the end of pregnancy.

  11. Variation of transaminases, HCV-RNA levels and Th1/Th2 cytokine production during the post-partum period in pregnant women with chronic hepatitis C.

    Directory of Open Access Journals (Sweden)

    Angeles Ruiz-Extremera

    Full Text Available This study analyses the evolution of liver disease in women with chronic hepatitis C during the third trimester of pregnancy and the post-partum period, as a natural model of immune modulation and reconstitution. Of the 122 mothers recruited to this study, 89 were HCV-RNA+ve/HIV-ve and 33 were HCV-RNA-ve/HIV-ve/HCVantibody+ve and all were tested during the third trimester of pregnancy, at delivery and post-delivery. The HCV-RNA+ve mothers were categorized as either Type-A (66%, with an increase in ALT levels in the post-partum period (>40 U/L; P<0.001 or as Type-B (34%, with no variation in ALT values. The Type-A mothers also presented a significant decrease in serum HCV-RNA levels in the post-delivery period (P<0.001 and this event was concomitant with an increase in Th1 cytokine levels (INFγ, P = 0.04; IL12, P = 0.01 and IL2, P = 0.01. On the other hand, the Type-B mothers and the HCV-RNA-ve women presented no variations in either of these parameters. However, they did present higher Th1 cytokine levels in the partum period (INFγ and IL2, P<0.05 than both the Type-A and the HCV-RNA-ve women. Cytokine levels at the moment of delivery do not constitute a risk factor associated with HCV vertical transmission. It is concluded that differences in the ALT and HCV-RNA values observed in HCV-RNA+ve women in the postpartum period might be due to different ratios of Th1 cytokine production. In the Type-B women, the high partum levels of Th1 cytokines and the absence of post-partum variation in ALT and HCV-RNA levels may be related to permanent Th1 cytokine stimulation.

  12. Tospovirus : induction and suppression of RNA silencing

    NARCIS (Netherlands)

    Hedil, Marcio

    2016-01-01

    While infecting their hosts, viruses must deal with host immunity. In plants the antiviral RNA silencing pathway is an important part of plant innate immunity. Tospoviruses are segmented negative-stranded RNA viruses of plants. To counteract the antiviral RNA silencing response in plants,

  13. Strategies underlying RNA silencing suppression by negative strand RNA viruses

    NARCIS (Netherlands)

    Hemmes, J.C.

    2007-01-01

    The research described in this thesis focused on the strategies of negative strand RNA viruses to counteract antiviral RNA silencing. In plants and insects, RNA silencing has been shown to act as a sequence specific antiviral defence mechanism that is characterised by the processing of double

  14. Nanomechanical microcantilever operated in vibration modes with use of RNA aptamer as receptor molecules for label-free detection of HCV helicase.

    Science.gov (United States)

    Hwang, Kyo Seon; Lee, Sang-Myung; Eom, Kilho; Lee, Jeong Hoon; Lee, Yoon-Sik; Park, Jung Ho; Yoon, Dae Sung; Kim, Tae Song

    2007-11-30

    We report the nanomechanical microcantilevers operated in vibration modes (oscillation) with use of RNA aptamers as receptor molecules for label-free detection of hepatitis C virus (HCV) helicase. The nanomechanical detection principle is that the ligand-receptor binding on the microcantilever surface induces the dynamic response change of microcantilevers. We implemented the label-free detection of HCV helicase in the low concentration as much as 100 pg/ml from measuring the dynamic response change of microcantilevers. Moreover, from the recent studies showing that the ligand-receptor binding generates the surface stress on the microcantilever, we estimate the surface stress, on the oscillating microcantilevers, induced by ligand-receptor binding, i.e. binding between HCV helicase and RNA aptamer. In this article, it is suggested that the oscillating microcantilevers with use of RNA aptamers as receptor molecules may enable one to implement the sensitive label-free detection of very small amount of small-scale proteins.

  15. Humanized-VHH Transbodies that Inhibit HCV Protease and Replication

    Directory of Open Access Journals (Sweden)

    Surasak Jittavisutthikul

    2015-04-01

    Full Text Available There is a need for safe and broadly effective anti-HCV agents that can cope with genetic multiplicity and mutations of the virus. In this study, humanized-camel VHHs to genotype 3a HCV serine protease were produced and were linked molecularly to a cell penetrating peptide, penetratin (PEN. Human hepatic (Huh7 cells transfected with the JFH-1 RNA of HCV genotype 2a and treated with the cell penetrable nanobodies (transbodies had a marked reduction of the HCV RNA intracellularly and in their culture fluids, less HCV foci inside the cells and less amounts of HCV core antigen in culture supernatants compared with the infected cells cultured in the medium alone. The PEN-VHH-treated-transfected cells also had up-regulation of the genes coding for the host innate immune response (TRIF, TRAF3, IRF3, IL-28B and IFN-β, indicating that the cell penetrable nanobodies rescued the host innate immune response from the HCV mediated-suppression. Computerized intermolecular docking revealed that the VHHs bound to residues of the protease catalytic triad, oxyanion loop and/or the NS3 N-terminal portion important for non-covalent binding of the NS4A protease cofactor protein. The so-produced transbodies have high potential for testing further as a candidate for safe, broadly effective and virus mutation tolerable anti-HCV agents.

  16. HIV-1 nef suppression by virally encoded microRNA

    Directory of Open Access Journals (Sweden)

    Brisibe Ebiamadon

    2004-12-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are 21~25-nucleotides (nt long and interact with mRNAs to trigger either translational repression or RNA cleavage through RNA interference (RNAi, depending on the degree of complementarity with the target mRNAs. Our recent study has shown that HIV-1 nef dsRNA from AIDS patients who are long-term non-progressors (LTNPs inhibited the transcription of HIV-1. Results Here, we show the possibility that nef-derived miRNAs are produced in HIV-1 persistently infected cells. Furthermore, nef short hairpin RNA (shRNA that corresponded to a predicted nef miRNA (~25 nt, miR-N367 can block HIV-1 Nef expression in vitro and the suppression by shRNA/miR-N367 would be related with low viremia in an LTNP (15-2-2. In the 15-2-2 model mice, the weight loss, which may be rendered by nef was also inhibited by shRNA/miR-N367 corresponding to suppression of nef expression in vivo. Conclusions These data suggest that nef/U3 miRNAs produced in HIV-1-infected cells may suppress both Nef function and HIV-1 virulence through the RNAi pathway.

  17. Impaired cytokine production and suppressed lymphocyte proliferation activity in HCV-infected cocaine and heroin ("speedball") users.

    Science.gov (United States)

    Ríos-Olivares, Eddy; Vilá, Luis M; Reyes, Juan C; Rodríguez, José W; Colón, J Héctor M; Pagán, Nat O; Marrero, Amalia; Ríos-Orraca, Zilka M; Boukli, Nawal M; Shapshak, Paul; Robles, Rafaela R

    2006-12-01

    HCV-infected "speedball" users (n = 30) were selected from an original cohort of 400 intravenous drug users for cytokine analysis. Cytokine concentrations (TNF-alpha, IL-1beta, IL-6, IFN-gamma, IL-2, IL-4, IL-10 and IL-12) were determined in plasma and peripheral blood mononuclear cells (PBMC) cultures derived ex vivo from these patients. In addition, lymphocyte proliferation was measured in 49 HCV-positive "speedball" users. TNF-alpha, IL-6, IFN-gamma, IL-2, IL-4, IL-10, IL-12 cytokines and not IL-1beta were significantly increased in plasma from HCV-positive "speedball" users compared with healthy controls. Except for IL-10, all other cytokines measured were augmented in phytohemagglutinin-stimulated PBMC cultures from HCV-positive "speedball" users. Likewise, overproduction of cytokines TNF-alpha, IL-1beta, IL-6 and IFN-gamma, was consistently detected when PBMC cultures from HCV-positive "speedball" users were stimulated with a biological response modifier. However, HCV-infected "speedball" users showed significant reduction in lymphoproliferative activity. Compared with healthy subjects, there was a consistent overproduction of both TH1 and TH2 type cytokines in the plasma and PBMC's of HCV-infected "speedball" users. Furthermore, there was a persistent reduction of lymphoproliferative activity in this group. These immunologic abnormalities, coupled with the range of response between the two TH-types in HCV-infected "speedball" users, suggest impairment in the regulatory mechanism of the TH1-TH2 system.

  18. CD4+ Primary T Cells Expressing HCV-Core Protein Upregulate Foxp3 and IL-10, Suppressing CD4 and CD8 T Cells

    Science.gov (United States)

    Aguado, Enrique; Garcia-Cozar, Francisco

    2014-01-01

    Adaptive T cell responses are critical for controlling HCV infection. While there is clinical evidence of a relevant role for regulatory T cells in chronic HCV-infected patients, based on their increased number and function; mechanisms underlying such a phenomena are still poorly understood. Accumulating evidence suggests that proteins from Hepatitis C virus can suppress host immune responses. We and others have shown that HCV is present in CD4+ lymphocytes from chronically infected patients and that HCV-core protein induces a state of unresponsiveness in the CD4+ tumor cell line Jurkat. Here we show that CD4+ primary T cells lentivirally transduced with HCV-core, not only acquire an anergic phenotype but also inhibit IL-2 production and proliferation of bystander CD4+ or CD8+ T cells in response to anti-CD3 plus anti-CD28 stimulation. Core-transduced CD4+ T cells show a phenotype characterized by an increased basal secretion of the regulatory cytokine IL-10, a decreased IFN-γ production upon stimulation, as well as expression of regulatory T cell markers, CTLA-4, and Foxp3. A significant induction of CD4+CD25+CD127lowPD-1highTIM-3high regulatory T cells with an exhausted phenotype was also observed. Moreover, CCR7 expression decreased in HCV-core expressing CD4+ T cells explaining their sequestration in inflamed tissues such as the infected liver. This work provides a new perspective on de novo generation of regulatory CD4+ T cells in the periphery, induced by the expression of a single viral protein. PMID:24465502

  19. CD4+ primary T cells expressing HCV-core protein upregulate Foxp3 and IL-10, suppressing CD4 and CD8 T cells.

    Directory of Open Access Journals (Sweden)

    Cecilia Fernandez-Ponce

    Full Text Available Adaptive T cell responses are critical for controlling HCV infection. While there is clinical evidence of a relevant role for regulatory T cells in chronic HCV-infected patients, based on their increased number and function; mechanisms underlying such a phenomena are still poorly understood. Accumulating evidence suggests that proteins from Hepatitis C virus can suppress host immune responses. We and others have shown that HCV is present in CD4+ lymphocytes from chronically infected patients and that HCV-core protein induces a state of unresponsiveness in the CD4+ tumor cell line Jurkat. Here we show that CD4+ primary T cells lentivirally transduced with HCV-core, not only acquire an anergic phenotype but also inhibit IL-2 production and proliferation of bystander CD4+ or CD8+ T cells in response to anti-CD3 plus anti-CD28 stimulation. Core-transduced CD4+ T cells show a phenotype characterized by an increased basal secretion of the regulatory cytokine IL-10, a decreased IFN-γ production upon stimulation, as well as expression of regulatory T cell markers, CTLA-4, and Foxp3. A significant induction of CD4+CD25+CD127(lowPD-1(highTIM-3(high regulatory T cells with an exhausted phenotype was also observed. Moreover, CCR7 expression decreased in HCV-core expressing CD4+ T cells explaining their sequestration in inflamed tissues such as the infected liver. This work provides a new perspective on de novo generation of regulatory CD4+ T cells in the periphery, induced by the expression of a single viral protein.

  20. Dynamic changes in HCV RNA levels and viral quasispecies in a patient with chronic hepatitis C after telaprevir-based treatment

    NARCIS (Netherlands)

    de Bruijne, Joep; Sullivan, James C.; Kieffer, Tara L.; Botfield, Martyn; Shames, Ben; Schinkel, Janke; Molenkamp, Richard; Weegink, Christine; Reesink, Henk

    2012-01-01

    Background: Telaprevir is a selective inhibitor of the hepatitis C virus NS3 center dot 4A serine protease. Treatment with telaprevir resulted in a rapid HCV-RNA decline in chronic hepatitis C genotype 1 patients. Objectives: To report the clinical and viral course of a patient treated with

  1. Determinazione quantitativa di HCV-RNA: valutazione comparativa dei saggi Abbott Real-Time e Versant bDNA v.3

    Directory of Open Access Journals (Sweden)

    Aldo Manzin

    2007-06-01

    Full Text Available Hepatitis C virus (HCV RNA measurement before, during and after antiviral therapy has become an essential tool in the management of interferon-based treatment of HCV-related infections. Conventional Polymerase Chain Reaction (PCR has been largely used to obtain quantitative data, but laborious, time-consuming post-PCR handling steps are required to gain valuable results. Real time (RT PCR now provides advantages over end-point (EP PCR due to its improved rapidity, sensitivity, reproducibility and the reduced risk of carry-over contamination, and has now proven itself to be valuable for the more precise monitoring of viral load kinetics and assessing antiviral response.The Abbott Real-Time HCV-RNA is a recently introduced assay for the automated processing of clinical samples and HCV-RNA quantitation: its basic technology relies on use of fluorescent linear probes (dynamic range using 0.5 ml as input target= 12-108 IU/mL and a hybridization/detection step at low temperature (35°C, which allows target mismatches to be tolerated. To determine the clinical application of the Abbott Real-Time assay and defining its correlation with the Bayer Versant bDNA v.3 assay, 68 consecutive samples from unselected HCV-infected patients were retrospectively analysed with RT and the results obtained using the two tests compared.A good correlation was found between RT-PCR and bDNA: 97% of samples tested had a result within a 0.5 log HCV IU/mL difference (bias=0.15 log, whereas 6 samples negative with bDNA gave positive results with Abbott RT (range, 1.89-3.07 log IU/mL and “in-house” qualitative RT-PCR assays.

  2. Inhibitor candidates's identification of HCV's RNA polymerase NS5B using virtual screening against iPPI-library

    Science.gov (United States)

    Sulistyawati, Indah; Sulistyo Dwi K., P.; Ichsan, Mochammad

    2016-03-01

    Hepatitis C is one of the major causes of chronic liver failure that caused by Hepatitis C Virus (HCV). Preventing the progression of HCV's replication through the inhibition of The RNA polymerase NS5B of Hepatitis C virus (NS5B) can be achieved via 4 binding regions: Site I (Thumb I), Site II (Thumb II), Site III (Palm I), and Site IV (Palm II). The aim of this research is to identify a candidate of NS5B inhibitor as an alternative for Hepatitis C treatment. An NS5B's 3D structure (PDB ID = 3D5M) used in this study has met some criteria of a good model to be used in virtual screening againts iPPI-lib using MTiOpenScreen webserver. The top two natural compounds resulted here then docked using Pyrix 0.8 and discovered trans-6-Benzamido-2-methyldecahydroisoquinoline (-9,1kcal/mol) and 2,4-dichloro-5-[4-(2 methoxyphenyl) piperazine-1-carbonyl]-N-[3-(trifluoromethyl)phenyl] benzenesulfonamide (9,4 kcal/mol) can bind to Tyr448 similar with all three established inhibitors, such as setrobuvir (-11,4 kcal/mol; site 3 inhibitor), CHEMBL379677 (-9,1 kcal/mol; site 1 inhibitor), and nesbuvir (-7,7 kcal/mol; site 4 inhibitor). The results of this study are relatively still needs to be tested, both in vitro and in vivo, in order to obtain more comprehensive knowledges as a follow-up of this predictive study.

  3. Detection of HIV and HCV RNA in semen from Brazilian coinfected men using multiplex PCR before and after semen washing Detecção do RNA do HIV e HCV em sêmen de homens brasileiros, usando PCR multiplex antes e depois do "semen washing"

    Directory of Open Access Journals (Sweden)

    Cynthia Liliane Motta do Canto

    2006-08-01

    Full Text Available INTRODUCTION: Prolonged survival of patients under HAART has resulted in new demands for assisted reproductive technologies. HIV serodiscordant couples wish to make use of assisted reproduction techniques in order to avoid viral transmission to the partner or to the newborn. It is therefore essential to test the effectiveness of techniques aimed at reducing HIV and HCV loads in infected semen using molecular biology tests. METHODS: After seminal analysis, semen samples from 20 coinfected patients were submitted to cell fractioning and isolation of motile spermatozoa by density gradient centrifugation and swim-up. HIV and HCV RNA detection tests were performed with RNA obtained from sperm, seminal plasma and total semen. RESULTS: In pre-washing semen, HIV RNA was detected in 100% of total semen samples, whereas HCV RNA was concomitantly amplified in only one specimen. Neither HIV nor HCV were detected either in the swim-up or in the post-washing semen fractions. CONCLUSIONS: Reduction of HIV and/or HCV shedding in semen by density gradient centrifugation followed by swim-up is an efficient method. These findings lead us to believe that, although semen is rarely found to contain HCV, semen processing is highly beneficial for HIV/HCV coinfected individuals.O aumento da sobrevida dos pacientes que utilizam terapêutica antiretroviral altamente eficaz (HAART- Highly Active Antiretroviral Therapy trouxe uma nova demanda de casais sorodiscordantes que desejam filhos. Como esses casais não podem abandonar o uso de preservativos, torna-se indispensável tratar o sêmen infectado com técnicas laboratoriais eficazes que além de isolar os melhores espermatozóides, reduzam a carga viral do HIV e HCV a níveis indetectáveis. Para isso, são utilizadas técnicas de semen washing, associadas a testes ultra sensíveis de biologia molecular. Após análise seminal, sêmen de 20 pacientes co-infectados HIV-HCV foram submetidos a fracionamento celular e

  4. Flavivirus RNAi suppression: decoding non-coding RNA.

    Science.gov (United States)

    Pijlman, Gorben P

    2014-08-01

    Flaviviruses are important human pathogens that are transmitted by invertebrate vectors, mostly mosquitoes and ticks. During replication in their vector, flaviviruses are subject to a potent innate immune response known as antiviral RNA interference (RNAi). This defense mechanism is associated with the production of small interfering (si)RNA that lead to degradation of viral RNA. To what extent flaviviruses would benefit from counteracting antiviral RNAi is subject of debate. Here, the experimental evidence to suggest the existence of flavivirus RNAi suppressors is discussed. I will highlight the putative role of non-coding, subgenomic flavivirus RNA in suppression of RNAi in insect and mammalian cells. Novel insights from ongoing research will reveal how arthropod-borne viruses modulate innate immunity including antiviral RNAi. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Diagnostic accuracy of detection and quantification of HBV-DNA and HCV-RNA using dried blood spot (DBS) samples - a systematic review and meta-analysis.

    Science.gov (United States)

    Lange, Berit; Roberts, Teri; Cohn, Jennifer; Greenman, Jamie; Camp, Johannes; Ishizaki, Azumi; Messac, Luke; Tuaillon, Edouard; van de Perre, Philippe; Pichler, Christine; Denkinger, Claudia M; Easterbrook, Philippa

    2017-11-01

    The detection and quantification of hepatitis B (HBV) DNA and hepatitis C (HCV) RNA in whole blood collected on dried blood spots (DBS) may facilitate access to diagnosis and treatment of HBV and HCV infection in resource-poor settings. We evaluated the diagnostic performance of DBS compared to venous blood samples for detection and quantification of HBV-DNA and HCV-RNA in two systematic reviews and meta-analyses on the diagnostic accuracy of HBV DNA and HCV RNA from DBS compared to venous blood samples. We searched MEDLINE, Embase, Global Health, Web of Science, LILAC and Cochrane library for studies that assessed diagnostic accuracy with DBS. Heterogeneity was assessed and where appropriate pooled estimates of sensitivity and specificity were generated using bivariate analyses with maximum likelihood estimates and 95% confidence intervals. We also conducted a narrative review on the impact of varying storage conditions or different cut-offs for detection from studies that undertook this in a subset of samples. The QUADAS-2 tool was used to assess risk of bias. In the quantitative synthesis for diagnostic accuracy of HBV-DNA using DBS, 521 citations were identified, and 12 studies met the inclusion criteria. Overall quality of studies was rated as low. The pooled estimate of sensitivity and specificity for HBV-DNA was 95% (95% CI: 83-99) and 99% (95% CI: 53-100), respectively. In the two studies that reported on cut-offs and limit of detection (LoD) - one reported a sensitivity of 98% for a cut-off of ≥2000 IU/ml and another reported a LoD of 914 IU/ml using a commercial assay. Varying storage conditions for individual samples did not result in a significant variation of results. In the synthesis for diagnostic accuracy of HCV-RNA using DBS, 15 studies met the inclusion criteria, and this included six additional studies to a previously published review. The pooled sensitivity and specificity was 98% (95% CI:95-99) and 98% (95% CI:95-99.0), respectively

  6. IP-10 predicts the first phase decline of HCV RNA and overall viral response to therapy in patients co-infected with chronic hepatitis C virus infection and HIV

    DEFF Research Database (Denmark)

    Falconer, Karolin; Askarieh, Galia; Weis, Nina Margrethe

    2010-01-01

    The aim of this study was to investigate the utility of baseline plasma interferon-gamma inducible protein-10 (IP-10) levels in human immunodeficiency virus (HIV)-hepatitis C virus (HCV) co-infected patients. Baseline IP-10 was monitored during HCV combination therapy in 21 HIV-HCV co-infected...... patients (HCV genotype 1 (n = 16), 2 (n = 2), and 3 (n = 3)). Lower baseline IP-10 was significantly associated with a rapid decline in HCV RNA, in particular with the first phase reduction, and similar cut-off levels ( 600 pg/ml) as in HCV mono-infected patients apply. In conclusion, baseline IP......-10 infected patients, and may thus be useful in encouraging such difficult-to-treat patients to initiate therapy....

  7. Rheumatoid Case with HCV Infection

    OpenAIRE

    Bita Behnava; Seyed-Moayed Alavian

    2005-01-01

    Case Presentation:A 46-year-old woman referred to our center due to abnormality in aminotransferase level during check up. She had a history of blood transfusion 12 years ago. Anti-HCV Ab by ELISA method and HCV RNA by RT-PCR were positive. HCV RNA by Amplicor HCV monitor test counted 800,000 IU/ml and the genotype was 3a by Specific Primer-Targeted Region Core method. Laboratory evaluation revealed: Hb 11.9 mg/dl, WBC 5000 /ml, platelet count 190,000/ ml, ALT 70 IU/ml, AST 65 IU/ml, Alk phos...

  8. HCV Virus and Lymphoid Neoplasms

    Directory of Open Access Journals (Sweden)

    Yutaka Tsutsumi

    2011-01-01

    Full Text Available Hepatitis C virus (HCV is one of the viruses known to cause hepatic cancer. HCV is also believed to be involved in malignant lymphoma. In this paper, we investigated characteristics of malignant lymphoma cases that were anti-HCV antibody (HCV-Ab positive. We were able to perform pathological examinations on 13 out of 14 HCV-positive cases. Of these, lymphoid tissues of 10 stained positive for HCV-Ab. There was no significant correlation between the degree of HCV staining and the rate of recurrence or resistance to treatment. However, there did appear to be a consistent decrease in the amount of HCV-RNA between pre- and posttreatment among HCV-Ab-positive cases; that is, treatment-resistant cases that exhibited resistance from the first treatment and recurrent cases more frequently had a higher HCV level at treatment termination compared to the pretreatment level. This suggests that the HCV virus either accelerates oncogenesis by direct interaction with B cells or indirectly affects lymphoma prognosis.

  9. The modification of siRNA with 3' cholesterol to increase nuclease protection and suppression of native mRNA by select siRNA polyplexes.

    Science.gov (United States)

    Ambardekar, Vishakha V; Han, Huai-Yun; Varney, Michelle L; Vinogradov, Serguei V; Singh, Rakesh K; Vetro, Joseph A

    2011-02-01

    Polymer-siRNA complexes (siRNA polyplexes) are being actively developed to improve the therapeutic application of siRNA. A major limitation for many siRNA polyplexes, however, is insufficient mRNA suppression. Given that modifying the sense strand of siRNA with 3' cholesterol (chol-siRNA) increases the activity of free nuclease-resistant siRNA in vitro and in vivo, we hypothesized that complexation of chol-siRNA can increase mRNA suppression by siRNA polyplexes. In this study, the characteristics and siRNA activity of self assembled polyplexes formed with chol-siRNA or unmodified siRNA were compared using three types of conventional, positively charged polymers: (i) biodegradable, cross-linked nanogels (BDNG) (ii) graft copolymers (PEI-PEG), and (iii) linear block copolymers (PLL10-PEG, and PLL50-PEG). Chol-siRNA did not alter complex formation or the resistance of polyplexes to siRNA displacement by heparin but increased nuclease protection by BDNG, PLL10-PEG, and PLL50-PEG polyplexes over polyplexes with unmodified siRNA. Chol-CYPB siRNA increased suppression of native CYPB mRNA in mammary microvascular endothelial cells (MVEC) by BDNG polyplexes (35%) and PLL10-PEG polyplexes (69%) over comparable CYPB siRNA polyplexes but had no effect on PEI-PEG or PLL50-PEG polyplexes. Overall, these results indicate that complexation of chol-siRNA increases nuclease protection and mRNA suppression by select siRNA polyplexes. These results also suggest that polycationic block length is an important factor in increasing mRNA suppression by PLL-PEG chol-siRNA polyplexes in mammary MVEC. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. The Modification of siRNA with 3′ Cholesterol to Increase Nuclease Protection and Suppression of Native mRNA by Select siRNA Polyplexes

    Science.gov (United States)

    Ambardekar, Vishakha V.; Han, Huai-Yun; Varney, Michelle L.; Vinogradov, Serguei V.; Singh, Rakesh K.; Vetro, Joseph A.

    2010-01-01

    Polymer-siRNA complexes (siRNA polyplexes) are being actively developed to improve the therapeutic application of siRNA. A major limitation for many siRNA polyplexes, however, is insufficient mRNA suppression. Given that modifying the sense strand of siRNA with 3′ cholesterol (chol-siRNA) increases the activity of free nuclease-resistant siRNA in vitro and in vivo, we hypothesized that complexation of chol-siRNA can increase mRNA suppression by siRNA polyplexes. In this study, the characteristics and siRNA activity of self assembled polyplexes formed with chol-siRNA or unmodified siRNA were compared using three types of conventional, positively charged polymers: (i) biodegradable, cross-linked nanogels (BDNG) (ii) graft copolymers (PEI-PEG), and (iii) linear block copolymers (PLL10-PEG, and PLL50-PEG). Chol-siRNA did not alter complex formation or the resistance of polyplexes to siRNA displacement by heparin but increased nuclease protection by BDNG, PLL10-PEG, and PLL50-PEG polyplexes over polyplexes with unmodified siRNA. Chol-CYPB siRNA increased suppression of native CYPB mRNA in mammary microvascular endothelial cells (MVEC) by BDNG polyplexes (35%) and PLL10-PEG polyplexes (69%) over comparable CYPB siRNA polyplexes but had no effect on PEI-PEG or PLL50-PEG polyplexes. Overall, these results indicate that complexation of chol-siRNA increases nuclease protection and mRNA suppression by select siRNA polyplexes. These results also suggest that polycationic block length is an important factor in increasing mRNA suppression by PLL-PEG chol-siRNA polyplexes in mammary MVEC. PMID:21047680

  11. Kushenin induces the apoptosis of HCV-infected cells by blocking the PI3K-Akt-mTOR pathway via inhibiting NS5A

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yi; Chen, Na; Liu, Xiaojing; Lin, Shumei [Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061 (China); Luo, Wenjuan, E-mail: wenjuanluoxa@163.com [School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi 710061 (China); Liu, Min, E-mail: minliusx@163.com [Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061 (China)

    2016-07-01

    With the increased burden induced by HCV, there is an urgent need to develop better-tolerated agents with good safety. In this study, we evaluated the anti-HCV capability of kushenin, as well as the possible mechanism to Huh7.5-HCV cells. The results demonstrated that kushenin significantly inhibited the HCV-RNA level. Similarly, the expression of HCV-specific protein NS5A was also decreased. Molecular docking results displayed that kushenin bonded well to the active pockets of HCV NS5A, further confirming the effects of kushenin on HCV replication. Coimmunoprecipitation assay determined that kushenin suppressed the interaction between PI3K and NS5A in HCV-replicon cells. Furthermore, kushenin exerted an obviously induced function on HCV-replicon cells apoptosis by inhibiting PI3K-Akt-mTOR pathway, which could be ameliorated by the specific activator IGF-1 addition. Taken together, kushenin possesses the ability to inhibit HCV replication, and contributes to the increased apoptosis of HCV-infected cells by blocking the PI3K-Akt-mTOR pathway via inhibiting NS5A. Our results provide important evidence for a better understanding of the pathogenesis of HCV infection, and suggest that kushenin has the potential to treat HCV disease. - Highlights: • Kushenin inhibits HCV replication. • Kushenin bonds directly to NS5A protein. • Kushenin induces the apoptosis of HCV-infected cells. • kushenin suppresses the interaction between PI3K and NS5A. • Kushenin inhibits PI3K-Akt-mTOR pathway.

  12. Kushenin induces the apoptosis of HCV-infected cells by blocking the PI3K-Akt-mTOR pathway via inhibiting NS5A

    International Nuclear Information System (INIS)

    Zhou, Yi; Chen, Na; Liu, Xiaojing; Lin, Shumei; Luo, Wenjuan; Liu, Min

    2016-01-01

    With the increased burden induced by HCV, there is an urgent need to develop better-tolerated agents with good safety. In this study, we evaluated the anti-HCV capability of kushenin, as well as the possible mechanism to Huh7.5-HCV cells. The results demonstrated that kushenin significantly inhibited the HCV-RNA level. Similarly, the expression of HCV-specific protein NS5A was also decreased. Molecular docking results displayed that kushenin bonded well to the active pockets of HCV NS5A, further confirming the effects of kushenin on HCV replication. Coimmunoprecipitation assay determined that kushenin suppressed the interaction between PI3K and NS5A in HCV-replicon cells. Furthermore, kushenin exerted an obviously induced function on HCV-replicon cells apoptosis by inhibiting PI3K-Akt-mTOR pathway, which could be ameliorated by the specific activator IGF-1 addition. Taken together, kushenin possesses the ability to inhibit HCV replication, and contributes to the increased apoptosis of HCV-infected cells by blocking the PI3K-Akt-mTOR pathway via inhibiting NS5A. Our results provide important evidence for a better understanding of the pathogenesis of HCV infection, and suggest that kushenin has the potential to treat HCV disease. - Highlights: • Kushenin inhibits HCV replication. • Kushenin bonds directly to NS5A protein. • Kushenin induces the apoptosis of HCV-infected cells. • kushenin suppresses the interaction between PI3K and NS5A. • Kushenin inhibits PI3K-Akt-mTOR pathway.

  13. HCV Specific IL-21 Producing T Cells but Not IL-17A Producing T Cells Are Associated with HCV Viral Control in HIV/HCV Coinfection.

    Directory of Open Access Journals (Sweden)

    Sonya A MacParland

    Full Text Available Decreased hepatitis C virus (HCV clearance, faster cirrhosis progression and higher HCV RNA levels are associated with Human Immunodeficiency virus (HIV coinfection. The CD4+ T helper cytokines interleukin (IL-21 and IL-17A are associated with virus control and inflammation, respectively, both important in HCV and HIV disease progression. Here, we examined how antigen-specific production of these cytokines during HCV mono and HIV/HCV coinfection was associated with HCV virus control.We measured HCV-specific IL-21 and IL-17A production by transwell cytokine secretion assay in PBMCs from monoinfected and coinfected individuals. Viral control was determined by plasma HCV RNA levels.In acutely infected individuals, those able to establish transient/complete HCV viral control tended to have stronger HCV-specific IL-21-production than non-controllers. HCV-specific IL-21 production also correlated with HCV viral decline in acute infection. Significantly stronger HCV-specific IL-21 production was detected in HAART-treated coinfected individuals. HCV-specific IL-17A production was not associated with lower plasma HCV RNA levels in acute or chronic HCV infection and responses were stronger in HIV coinfection. HCV-specific IL-21/ IL-17A responses did not correlate with microbial translocation or fibrosis. Exogenous IL-21 treatment of HCV-specific CD8+ T cells from monoinfected individuals enhanced their function although CD8+ T cells from coinfected individuals were somewhat refractory to the effects of IL-21.These data show that HCV-specific IL-21 and IL-17A-producing T cells are induced in HIV/HCV coinfection. In early HIV/HCV coinfection, IL-21 may contribute to viral control, and may represent a novel tool to enhance acute HCV clearance in HIV/HCV coinfected individuals.

  14. Liver stiffness is not associated with short- and long-term plasma HIV RNA replication in immunocompetent patients with HIV infection and with HIV/HCV coinfection

    Science.gov (United States)

    Parisi, Saverio Giuseppe; Basso, Monica; Mengoli, Carlo; Scaggiante, Renzo; Andreis, Samantha; Franzetti, Marzia Maria; Cattelan, Anna Maria; Zago, Daniela; Cruciani, Mario; Andreoni, Massimo; Piovesan, Sara; Palù, Giorgio; Alberti, Alfredo

    2017-01-01

    Background Human immunodeficiency virus (HIV) may be directly responsible for liver damage but there are contrasting data regarding the influence of detectable plasma viremia. We analyzed the influence of plasma HIV RNA (pHIV) detectability and of other clinical and viro-immunological variables on liver stiffness (LS) measurement in adult immunocompetent HIV-monoinfected patients and in patients coinfected with hepatitis C virus (HCV). Methods Logistic regression analysis was performed using the value of LS>7.1 kPa as the dependent variable. A linear regression model was applied using LS measurement after log10 transformation (lkpa) as the dependent variable and we analyzed the predicted values versus the observed lkpa values; pHIV was classified as detectable or undetectable in the 12- and 36-month study periods before LS measurement. Results We studied 251 patients (178 with HIV monoinfection), most of whom were on antiviral treatment; 36-month study time was available for 154 subjects. The mean CD4+ cell count was 634 cells/mm3 in HIV-monoinfected patients and 606 cells/mm3 in coinfected patients. No difference in LS was found between patients with detectable or undetectable pHIV in either the 12- or the 36-month study period before transient elastography. The mean LS was higher in HIV/HCV coinfected patients (P<0.0001) than in the HIV-monoinfected subjects; lkpa was positively correlated with HCV coinfection (P<0.0001) and aspartate aminotransferase levels (P<0.0001). Detectable pHIV failed to reach significance. Eight HIV-monoinfected patients had a predicted LS measurement lower than the observed one, while eight patients had the opposite result. Conclusion LS was not correlated with ongoing HIV replication during the 12- and 36-month study periods in immunocompetent HIV-monoinfected and HIV/HCV-coinfected patients. PMID:28845109

  15. PML tumor suppressor protein is required for HCV production

    International Nuclear Information System (INIS)

    Kuroki, Misao; Ariumi, Yasuo; Hijikata, Makoto; Ikeda, Masanori; Dansako, Hiromichi; Wakita, Takaji; Shimotohno, Kunitada; Kato, Nobuyuki

    2013-01-01

    Highlights: ► PML tumor suppressor protein is required for HCV production. ► PML is dispensable for HCV RNA replication. ► HCV could not alter formation of PML-NBs. ► INI1 and DDX5, PML-related proteins, are involved in HCV life cycle. -- Abstract: PML tumor suppressor protein, which forms discrete nuclear structures termed PML-nuclear bodies, has been associated with several cellular functions, including cell proliferation, apoptosis and antiviral defense. Recently, it was reported that the HCV core protein colocalizes with PML in PML-NBs and abrogates the PML function through interaction with PML. However, role(s) of PML in HCV life cycle is unknown. To test whether or not PML affects HCV life cycle, we examined the level of secreted HCV core and the infectivity of HCV in the culture supernatants as well as the level of HCV RNA in HuH-7-derived RSc cells, in which HCV-JFH1 can infect and efficiently replicate, stably expressing short hairpin RNA targeted to PML. In this context, the level of secreted HCV core and the infectivity in the supernatants from PML knockdown cells was remarkably reduced, whereas the level of HCV RNA in the PML knockdown cells was not significantly affected in spite of very effective knockdown of PML. In fact, we showed that PML is unrelated to HCV RNA replication using the subgenomic HCV-JFH1 replicon RNA, JRN/3-5B. Furthermore, the infectivity of HCV-like particle in the culture supernatants was significantly reduced in PML knockdown JRN/3-5B cells expressing core to NS2 coding region of HCV-JFH1 genome using the trans-packaging system. Finally, we also demonstrated that INI1 and DDX5, the PML-related proteins, are involved in HCV production. Taken together, these findings suggest that PML is required for HCV production.

  16. Intracellular expression of IRF9 Stat fusion protein overcomes the defective Jak-Stat signaling and inhibits HCV RNA replication

    Directory of Open Access Journals (Sweden)

    Balart Luis A

    2010-10-01

    Full Text Available Abstract Interferon alpha (IFN-α binds to a cell surface receptor that activates the Jak-Stat signaling pathway. A critical component of this pathway is the translocation of interferon stimulated gene factor 3 (a complex of three proteins Stat1, Stat2 and IRF9 to the nucleus to activate antiviral genes. A stable sub-genomic replicon cell line resistant to IFN-α was developed in which the nuclear translocation of Stat1 and Stat2 proteins was prevented due to the lack of phosphorylation; whereas the nuclear translocation of IRF9 protein was not affected. In this study, we sought to overcome defective Jak-Stat signaling and to induce an antiviral state in the IFN-α resistant replicon cell line by developing a chimera IRF9 protein fused with the trans activating domain (TAD of either a Stat1 (IRF9-S1C or Stat2 (IRF9-S2C protein. We show here that intracellular expression of fusion proteins using the plasmid constructs of either IRF9-S1C or IRF9-S2C, in the IFN-α resistant cells, resulted in an increase in Interferon Stimulated Response Element (ISRE luciferase promoter activity and significantly induced HLA-1 surface expression. Moreover, we show that transient transfection of IRF9-S1C or IRF9-S2C plasmid constructs into IFN-α resistant replicon cells containing sub-genomic HCV1b and HCV2a viruses resulted in an inhibition of viral replication and viral protein expression independent of IFN-α treatment. The results of this study indicate that the recombinant fusion proteins of IRF9-S1C, IRF9-S2C alone, or in combination, have potent antiviral properties against the HCV in an IFN-α resistant cell line with a defective Jak-Stat signaling.

  17. Performance of ARCHITECT HCV core antigen test with specimens from US plasma donors and injecting drug users.

    Science.gov (United States)

    Mixson-Hayden, Tonya; Dawson, George J; Teshale, Eyasu; Le, Thao; Cheng, Kevin; Drobeniuc, Jan; Ward, John; Kamili, Saleem

    2015-05-01

    Hepatitis C virus (HCV) core antigen is a serological marker of current HCV infection. The aim of this study was mainly to evaluate the performance characteristics of the ARCHITECT HCV core antigen assay with specimens from US plasma donors and injecting drug users. A total of 551 serum and plasma samples with known anti-HCV and HCV RNA status were tested for HCV core antigen using the Abbott ARCHITECT HCV core antigen test. HCV core antigen was detectable in 100% of US plasma donor samples collected during the pre-seroconversion phase of infection (anti-HCV negative/HCV RNA positive). Overall sensitivity of the HCV core antigen assay was 88.9-94.3% in samples collected after seroconversion. The correlation between HCV core antigen and HCV RNA titers was 0.959. HCV core antigen testing may be reliably used to identify current HCV infection. Published by Elsevier B.V.

  18. Molecular Epidemiology of Hepatitis C Virus (HCV) in Kadun State ...

    African Journals Online (AJOL)

    Hepatitis C virus genotype 1b was found in the entire HCV RNA positive sample. Conclusions: The findings of 6.2% prevalence of HCV infection based on HCV RNA test confirmed that there is Hepatitis C virus in ... HOW TO USE AJOL.

  19. TGF-β Suppression of HBV RNA through AID-Dependent Recruitment of an RNA Exosome Complex

    Science.gov (United States)

    Kitamura, Kouichi; Wang, Zhe; Chowdhury, Sajeda; Monjurul, Ahasan Md; Wakae, Kousho; Koura, Miki; Shimadu, Miyuki; Kinoshita, Kazuo; Muramatsu, Masamichi

    2015-01-01

    Transforming growth factor (TGF)-β inhibits hepatitis B virus (HBV) replication although the intracellular effectors involved are not determined. Here, we report that reduction of HBV transcripts by TGF-β is dependent on AID expression, which significantly decreases both HBV transcripts and viral DNA, resulting in inhibition of viral replication. Immunoprecipitation reveals that AID physically associates with viral P protein that binds to specific virus RNA sequence called epsilon. AID also binds to an RNA degradation complex (RNA exosome proteins), indicating that AID, RNA exosome, and P protein form an RNP complex. Suppression of HBV transcripts by TGF-β was abrogated by depletion of either AID or RNA exosome components, suggesting that AID and the RNA exosome involve in TGF-β mediated suppression of HBV RNA. Moreover, AID-mediated HBV reduction does not occur when P protein is disrupted or when viral transcription is inhibited. These results suggest that induced expression of AID by TGF-β causes recruitment of the RNA exosome to viral RNP complex and the RNA exosome degrades HBV RNA in a transcription-coupled manner. PMID:25836330

  20. Detection of HCV core antigen and its diagnostic significance

    Directory of Open Access Journals (Sweden)

    YANG Jie

    2013-02-01

    Full Text Available ObjectiveTo compare the abilities of the hepatitis C virus (HCV core antigen (cAg test and the HCV RNA assay for confirming anti-HCV presence in order to determine the clinical utility of the HCV-cAg as an alternative or confirmatory diagnostic tool. MethodsSerum samples collected from 158 patients diagnosed with HCV infection were subjected to the enzyme-linked immunosorbent assay-based HCV-cAg test. The optical density (OD measured values were used to calculate the ratio of specimen absorbance to the cutoff value (S/CO. Simultaneously, the serum samples were subjected to PCR-based nucleic acid amplification quantitative fluorescence detection of HCV RNA. ResultsNone of the serum samples had a S/CO value <1 for the HCV-cAg test (100% negative, but all of the samples had a S/CO value >5 (100% positive. The HCV-cAg test sensitivity was 87.05%, specificity was 76.67%, positive predictive value was 9653%, and negative predictive value was 44.23%. As the S/CO value gradually increased, the significantly higher positive coincident rate of the HCV RNA test decreased. The HCV RNA negative coincident rate was significantly higher than that of the HCV-cAg test. HCV-cAg S/CO values between 1 and 2 corresponded to an HCV RNA values between 1.0×103 copies/ml and 1.0×104 copies/ml. The highest S/CO value obtained was 1.992. ConclusionThe HCV-cAg test is comparable to the HCV RNA assay for diagnosing HCV infection.

  1. Identification of the transcripts associated with spontaneous HCV clearance in individuals co-infected with HIV and HCV

    Directory of Open Access Journals (Sweden)

    Yue Chen

    2016-11-01

    Full Text Available Abstract Background Infection with human immunodeficiency virus (HIV influences the outcome and natural disease progression of hepatitis C virus (HCV infection. While the majority of HCV mono-infected and HCV/HIV co-infected subjects develop chronic HCV infection, 20–46% of mono- and co-infected subjects spontaneously clear HCV infection. The mechanism underlying viral clearance is not clearly understood. Analysis of differential cellular gene expression (mRNA between HIV-infected patients with persistent HCV infection or spontaneous clearance could provide a unique opportunity to decipher the mechanism of HCV clearance. Methods Plasma RNA from HIV/HCV co-infected subjects who cleared HCV and those who remained chronically infected with HCV was sequenced using Ion Torrent technology. The sequencing results were analyzed to identify transcripts that are associated with HCV clearance by measuring differential gene expression in HIV/HCV co-infected subjects who cleared HCV and those who remained chronically infected with HCV. Results We have identified plasma mRNA, the levels of which are significantly elevated (at least 5 fold, False Discovery Rate (FDR <0.05 before HCV infection in subjects who cleared HCV compared to those who remained chronically infected. Upon further analysis of these differentially expressed genes, before and after HCV infection, we found that before HCV infection 12 genes were uniquely upregulated in the clearance group compared to the chronically infected group. Importantly, a number of these 12 genes and their upstream regulators (such as CCL3, IL17D, LBP, SOCS3, NFKBIL1, IRF are associated with innate immune response functions. Conclusions These results suggest that subjects who spontaneously clear HCV may express these unique genes associated with innate immune functions.

  2. Persistence of Circulating Hepatitis C Virus Antigens-Specific Immune Complexes in Patients with Resolved HCV Infection.

    Science.gov (United States)

    Hu, Ke-Qin; Cui, Wei

    2018-05-01

    Our recent study indicated the possible presence of detectable hepatitis C virus antigens (HCV-Ags) after denaturation of sera with resolved HCV (R-HCV) infection. The present study determined and characterized persistent HCV-Ags-specific immune complexes (ICs) in these patients. Sixty-eight sera with R-HCV and 34 with viremic HCV (V-HCV) infection were tested for free and IC-bound HCV-Ags using HCV-Ags enzyme immunoassay (EIA), the presence of HCV-Ags-specific ICs by immunoprecipitation and Western blot (IP-WB), HCV ICs containing HCV virions using IP and HCV RNA RT-PCR, and correlation of HCV ICs with clinical presentation in these patients. Using HCV-Ags EIA, we found 57.4% of sera with R-HCV infection were tested positive for bound, but not free HCV-Ags. Using pooled or individual anti-HCV E1/E2, cAg, NS3, NS4b, and/or NS5a to precipitate HCV-specific-Ags, we confirmed persistent HCV-Ags ICs specific to various HCV structural and non-structural proteins not only in V-HCV infection, but also in R-HCV infection. Using IP and HCV RNA PCR, we then confirmed the presence of HCV virions within circulating ICs in V-HCV, but not in R-HCV sera. Multivariable analysis indicated significant and independent associations of persistent circulating HCV-Ags-specific ICs with both age and the presence of cirrhosis in patients with R-HCV infection. Various HCV-Ag-specific ICs, but not virions, persist in 57.4% of patients who had spontaneous or treatment-induced HCV clearance for 6 months to 20 years. These findings enriched our knowledge on HCV pathogenesis and support further study on its long-term clinical relevance, such as extrahepatic manifestation, transfusion medicine, and hepatocarcinogenesis.

  3. Improving clinical laboratory efficiency: a time-motion evaluation of the Abbott m2000 RealTime and Roche COBAS AmpliPrep/COBAS TaqMan PCR systems for the simultaneous quantitation of HIV-1 RNA and HCV RNA.

    Science.gov (United States)

    Amendola, Alessandra; Coen, Sabrina; Belladonna, Stefano; Pulvirenti, F Renato; Clemens, John M; Capobianchi, M Rosaria

    2011-08-01

    Diagnostic laboratories need automation that facilitates efficient processing and workflow management to meet today's challenges for expanding services and reducing cost, yet maintaining the highest levels of quality. Processing efficiency of two commercially available automated systems for quantifying HIV-1 and HCV RNA, Abbott m2000 system and Roche COBAS Ampliprep/COBAS TaqMan 96 (docked) systems (CAP/CTM), was evaluated in a mid/high throughput workflow laboratory using a representative daily workload of 24 HCV and 72 HIV samples. Three test scenarios were evaluated: A) one run with four batches on the CAP/CTM system, B) two runs on the Abbott m2000 and C) one run using the Abbott m2000 maxCycle feature (maxCycle) for co-processing these assays. Cycle times for processing, throughput and hands-on time were evaluated. Overall processing cycle time was 10.3, 9.1 and 7.6 h for Scenarios A), B) and C), respectively. Total hands-on time for each scenario was, in order, 100.0 (A), 90.3 (B) and 61.4 min (C). The interface of an automated analyzer to the laboratory workflow, notably system set up for samples and reagents and clean up functions, are as important as the automation capability of the analyzer for the overall impact to processing efficiency and operator hands-on time.

  4. Hepatitis C Virus Frameshift/Alternate Reading Frame Protein Suppresses Interferon Responses Mediated by Pattern Recognition Receptor Retinoic-Acid-Inducible Gene-I.

    Directory of Open Access Journals (Sweden)

    Seung Bum Park

    Full Text Available Hepatitis C virus (HCV actively evades host interferon (IFN responses but the mechanisms of how it does so are not completely understood. In this study, we present evidence for an HCV factor that contributes to the suppression of retinoic-acid-inducible gene-I (RIG-I-mediated IFN induction. Expression of frameshift/alternate reading frame protein (F/ARFP from HCV -2/+1 frame in Huh7 hepatoma cells suppressed type I IFN responses stimulated by HCV RNA pathogen-associated molecular pattern (PAMP and poly(IC. The suppression occurred independently of other HCV factors; and activation of interferon stimulated genes, TNFα, IFN-λ1, and IFN-λ2/3 was likewise suppressed by HCV F/ARFP. Point mutations in the full-length HCV sequence (JFH1 genotype 2a strain were made to introduce premature termination codons in the -2/+1 reading frame coding for F/ARFP while preserving the original reading frame, which enhanced IFNα and IFNβ induction by HCV. The potentiation of IFN response by the F/ARFP mutations was diminished in Huh7.5 cells, which already have a defective RIG-I, and by decreasing RIG-I expression in Huh7 cells. Furthermore, adding F/ARFP back via trans-complementation suppressed IFN induction in the F/ARFP mutant. The F/ARFP mutants, on the other hand, were not resistant to exogenous IFNα. Finally, HCV-infected human liver samples showed significant F/ARFP antibody reactivity, compared to HCV-uninfected control livers. Therefore, HCV F/ARFP likely cooperates with other viral factors to suppress type I and III IFN induction occurring through the RIG-I signaling pathway. This study identifies a novel mechanism of pattern recognition receptor modulation by HCV and suggests a biological function of the HCV alternate reading frame in the modulation of host innate immunity.

  5. Antiviral RNA silencing suppression activity of Tomato spotted wilt virus NSs protein.

    Science.gov (United States)

    Ocampo Ocampo, T; Gabriel Peralta, S M; Bacheller, N; Uiterwaal, S; Knapp, A; Hennen, A; Ochoa-Martinez, D L; Garcia-Ruiz, H

    2016-06-17

    In addition to regulating gene expression, RNA silencing is an essential antiviral defense system in plants. Triggered by double-stranded RNA, silencing results in degradation or translational repression of target transcripts. Viruses are inducers and targets of RNA silencing. To condition susceptibility, most plant viruses encode silencing suppressors that interfere with this process, such as the Tomato spotted wilt virus (TSWV) NSs protein. The mechanism by which NSs suppresses RNA silencing and its role in viral infection and movement remain to be determined. We cloned NSs from the Hawaii isolate of TSWV and using two independent assays show for the first time that this protein restored pathogenicity and supported the formation of local infection foci by suppressor-deficient Turnip mosaic virus and Turnip crinkle virus. Demonstrating the suppression of RNA silencing directed against heterologous viruses establishes the foundation to determine the means used by NSs to block this antiviral process.

  6. Viral RNA Silencing Suppression: The Enigma of Bunyavirus NSs Proteins

    Directory of Open Access Journals (Sweden)

    Marcio Hedil

    2016-07-01

    Full Text Available The Bunyaviridae is a family of arboviruses including both plant- and vertebrate-infecting representatives. The Tospovirus genus accommodates plant-infecting bunyaviruses, which not only replicate in their plant host, but also in their insect thrips vector during persistent propagative transmission. For this reason, they are generally assumed to encounter antiviral RNA silencing in plants and insects. Here we present an overview on how tospovirus nonstructural NSs protein counteracts antiviral RNA silencing in plants and what is known so far in insects. Like tospoviruses, members of the related vertebrate-infecting bunyaviruses classified in the genera Orthobunyavirus, Hantavirus and Phlebovirus also code for a NSs protein. However, for none of them RNA silencing suppressor activity has been unambiguously demonstrated in neither vertebrate host nor arthropod vector. The second part of this review will briefly describe the role of these NSs proteins in modulation of innate immune responses in mammals and elaborate on a hypothetical scenario to explain if and how NSs proteins from vertebrate-infecting bunyaviruses affect RNA silencing. If so, why this discovery has been hampered so far.

  7. Viral RNA Silencing Suppression: The Enigma of Bunyavirus NSs Proteins.

    Science.gov (United States)

    Hedil, Marcio; Kormelink, Richard

    2016-07-23

    The Bunyaviridae is a family of arboviruses including both plant- and vertebrate-infecting representatives. The Tospovirus genus accommodates plant-infecting bunyaviruses, which not only replicate in their plant host, but also in their insect thrips vector during persistent propagative transmission. For this reason, they are generally assumed to encounter antiviral RNA silencing in plants and insects. Here we present an overview on how tospovirus nonstructural NSs protein counteracts antiviral RNA silencing in plants and what is known so far in insects. Like tospoviruses, members of the related vertebrate-infecting bunyaviruses classified in the genera Orthobunyavirus, Hantavirus and Phlebovirus also code for a NSs protein. However, for none of them RNA silencing suppressor activity has been unambiguously demonstrated in neither vertebrate host nor arthropod vector. The second part of this review will briefly describe the role of these NSs proteins in modulation of innate immune responses in mammals and elaborate on a hypothetical scenario to explain if and how NSs proteins from vertebrate-infecting bunyaviruses affect RNA silencing. If so, why this discovery has been hampered so far.

  8. Flavivirus RNAi suppression: decoding non-coding RNA

    NARCIS (Netherlands)

    Pijlman, G.P.

    2014-01-01

    Flaviviruses are important human pathogens that are transmitted by invertebrate vectors, mostly mosquitoes and ticks. During replication in their vector, flaviviruses are subject to a potent innate immune response known as antiviral RNA interference (RNAi). This defense mechanism is associated with

  9. MicroRNA activity is suppressed in mouse oocytes

    Czech Academy of Sciences Publication Activity Database

    Ma, J.; Flemr, Matyáš; Stein, P.; Berninger, P.; Malík, Radek; Zavolan, M.; Svoboda, Petr; Schultz, R.M.

    2010-01-01

    Roč. 20, č. 3 (2010), s. 265-270 ISSN 0960-9822 R&D Project s: GA ČR GAP305/10/2215; GA MŠk ME09039 Grant - others:EMBO SDIG(DE) project 1483 Institutional research plan: CEZ:AV0Z50520514 Keywords : miRNA * oocyte * pluripotency Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 10.025, year: 2010

  10. The VP3 factor from viruses of Birnaviridae family suppresses RNA silencing by binding both long and small RNA duplexes.

    Directory of Open Access Journals (Sweden)

    Adrian Valli

    Full Text Available RNA silencing is directly involved in antiviral defense in a wide variety of eukaryotic organisms, including plants, fungi, invertebrates, and presumably vertebrate animals. The study of RNA silencing-mediated antiviral defences in vertebrates is hampered by the overlap with other antiviral mechanisms; thus, heterologous systems are often used to study the interplay between RNA silencing and vertebrate-infecting viruses. In this report we show that the VP3 protein of the avian birnavirus Infectious bursal disease virus (IBDV displays, in addition to its capacity to bind long double-stranded RNA, the ability to interact with double-stranded small RNA molecules. We also demonstrate that IBDV VP3 prevents the silencing mediated degradation of a reporter mRNA, and that this silencing suppression activity depends on its RNA binding ability. Furthermore, we find that the anti-silencing activity of IBDV VP3 is shared with the homologous proteins expressed by both insect- and fish-infecting birnaviruses. Finally, we show that IBDV VP3 can functionally replace the well-characterized HCPro silencing suppressor of Plum pox virus, a potyvirus that is unable to infect plants in the absence of an active silencing suppressor. Altogether, our results support the idea that VP3 protects the viral genome from host sentinels, including those of the RNA silencing machinery.

  11. The VP3 factor from viruses of Birnaviridae family suppresses RNA silencing by binding both long and small RNA duplexes.

    Science.gov (United States)

    Valli, Adrian; Busnadiego, Idoia; Maliogka, Varvara; Ferrero, Diego; Castón, José R; Rodríguez, José Francisco; García, Juan Antonio

    2012-01-01

    RNA silencing is directly involved in antiviral defense in a wide variety of eukaryotic organisms, including plants, fungi, invertebrates, and presumably vertebrate animals. The study of RNA silencing-mediated antiviral defences in vertebrates is hampered by the overlap with other antiviral mechanisms; thus, heterologous systems are often used to study the interplay between RNA silencing and vertebrate-infecting viruses. In this report we show that the VP3 protein of the avian birnavirus Infectious bursal disease virus (IBDV) displays, in addition to its capacity to bind long double-stranded RNA, the ability to interact with double-stranded small RNA molecules. We also demonstrate that IBDV VP3 prevents the silencing mediated degradation of a reporter mRNA, and that this silencing suppression activity depends on its RNA binding ability. Furthermore, we find that the anti-silencing activity of IBDV VP3 is shared with the homologous proteins expressed by both insect- and fish-infecting birnaviruses. Finally, we show that IBDV VP3 can functionally replace the well-characterized HCPro silencing suppressor of Plum pox virus, a potyvirus that is unable to infect plants in the absence of an active silencing suppressor. Altogether, our results support the idea that VP3 protects the viral genome from host sentinels, including those of the RNA silencing machinery.

  12. Alpha-synuclein suppression by targeted small interfering RNA in the primate substantia nigra.

    Directory of Open Access Journals (Sweden)

    Alison L McCormack

    Full Text Available The protein alpha-synuclein is involved in the pathogenesis of Parkinson's disease and other neurodegenerative disorders. Its toxic potential appears to be enhanced by increased protein expression, providing a compelling rationale for therapeutic strategies aimed at reducing neuronal alpha-synuclein burden. Here, feasibility and safety of alpha-synuclein suppression were evaluated by treating monkeys with small interfering RNA (siRNA directed against alpha-synuclein. The siRNA molecule was chemically modified to prevent degradation by exo- and endonucleases and directly infused into the left substantia nigra. Results compared levels of alpha-synuclein mRNA and protein in the infused (left vs. untreated (right hemisphere and revealed a significant 40-50% suppression of alpha-synuclein expression. These findings could not be attributable to non-specific effects of siRNA infusion since treatment of a separate set of animals with luciferase-targeting siRNA produced no changes in alpha-synuclein. Infusion with alpha-synuclein siRNA, while lowering alpha-synuclein expression, had no overt adverse consequences. In particular, it did not cause tissue inflammation and did not change (i the number and phenotype of nigral dopaminergic neurons, and (ii the concentrations of striatal dopamine and its metabolites. The data represent the first evidence of successful anti-alpha-synuclein intervention in the primate substantia nigra and support further development of RNA interference-based therapeutics.

  13. Antiviral Stilbene 1,2-Diamines Prevent Initiation of Hepatitis C Virus RNA Replication at the Outset of Infection▿

    Science.gov (United States)

    Gastaminza, Pablo; Pitram, Suresh M.; Dreux, Marlene; Krasnova, Larissa B.; Whitten-Bauer, Christina; Dong, Jiajia; Chung, Josan; Fokin, Valery V.; Sharpless, K. Barry; Chisari, Francis V.

    2011-01-01

    The recent development of a cell culture model of hepatitis C virus (HCV) infection based on the JFH-1 molecular clone has enabled discovery of new antiviral agents. Using a cell-based colorimetric screening assay to interrogate a 1,200-compound chemical library for anti-HCV activity, we identified a family of 1,2-diamines derived from trans-stilbene oxide that prevent HCV infection at nontoxic, low micromolar concentrations in cell culture. Structure-activity relationship analysis of ∼300 derivatives synthesized using click chemistry yielded compounds with greatly enhanced low nanomolar potency and a >1,000:1 therapeutic ratio. Using surrogate models of HCV infection, we showed that the compounds selectively block the initiation of replication of incoming HCV RNA but have no impact on viral entry, primary translation, or ongoing HCV RNA replication, nor do they suppress persistent HCV infection. Selection of an escape variant revealed that NS5A is directly or indirectly targeted by this compound. In summary, we have identified a family of HCV inhibitors that target a critical step in the establishment of HCV infection in which NS5A translated de novo from an incoming genomic HCV RNA template is required to initiate the replication of this important human pathogen. PMID:21430055

  14. Spontaneous viral clearance, viral load, and genotype distribution of hepatitis C virus (HCV) in HIV-infected patients with anti-HCV antibodies in Europe

    DEFF Research Database (Denmark)

    Soriano, Vincent; Mocroft, Amanda; Rockstroh, Juergen

    2008-01-01

    BACKGROUND: Variables influencing serum hepatitis C virus (HCV) RNA levels and genotype distribution in individuals with human immunodeficiency virus (HIV) infection are not well known, nor are factors determining spontaneous clearance after exposure to HCV in this population. METHODS: All HCV...... for hepatitis B surface antigen (HBsAg) were more likely to have spontaneously cleared HCV than were those negative for HBsAg (43% vs. 21%; aOR, 2.91 [95% CI, 1.94-4.38]). Of patients with HCV viremia, 786 (53%) carried HCV genotype 1, and 53 (4%), 440 (29%), and 217 (15%) carried HCV genotype 2, 3, and 4...

  15. Molecular Signature in HCV-Positive Lymphomas

    Directory of Open Access Journals (Sweden)

    Valli De Re

    2012-01-01

    Full Text Available Hepatitis C virus (HCV is a positive, single-stranded RNA virus, which has been associated to different subtypes of B-cell non-Hodgkin lymphoma (B-NHL. Cumulative evidence suggests an HCV-related antigen driven process in the B-NHL development. The underlying molecular signature associated to HCV-related B-NHL has to date remained obscure. In this review, we discuss the recent developments in this field with a special mention to different sets of genes whose expression is associated with BCR coupled to Blys signaling which in turn was found to be linked to B-cell maturation stages and NF-κb transcription factor. Even if recent progress on HCV-B-NHL signature has been made, the precise relationship between HCV and lymphoma development and phenotype signature remain to be clarified.

  16. Suppression of IL-6 Gene by shRNA Augments Gemcitabine Chemosensitization in Pancreatic Adenocarcinoma Cells

    Directory of Open Access Journals (Sweden)

    Hai-Bo Xing

    2018-01-01

    Full Text Available Pancreatic adenocarcinoma has an exceedingly poor prognosis, accounting for five-year survival of less than 5%. Presently, improving the efficacy of pancreatic adenocarcinoma treatment has been the focus of medical researchers worldwide. Recently, it has been suggested that deregulation of interleukin- (IL- 6 is caused by a key gene involved in the beginning and development of pancreatic adenocarcinoma. Herein, we investigated whether suppression of IL-6 could augment gemcitabine sensitivity in the PANC-1 cells. We found considerably higher expression of IL-6 in pancreatic adenocarcinoma tissues than that in the adjacent nontumorous tissues. Suppression of IL-6 by shRNA resulted in apoptosis as well as inhibition of cell proliferation and tumorigenicity. In addition, suppression of IL-6 remarkably promoted antitumor effect of gemcitabine, indicating that the combination of shRNA targeting IL-6 with gemcitabine may provide a potential clinical approach for pancreatic cancer therapy.

  17. PML tumor suppressor protein is required for HCV production

    Energy Technology Data Exchange (ETDEWEB)

    Kuroki, Misao [Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama 700-8558 (Japan); Research Fellow of the Japan Society for the Promotion of Science (Japan); Center for AIDS Research, Kumamoto University, Kumamoto 860-0811 (Japan); Ariumi, Yasuo, E-mail: ariumi@kumamoto-u.ac.jp [Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama 700-8558 (Japan); Center for AIDS Research, Kumamoto University, Kumamoto 860-0811 (Japan); Hijikata, Makoto [Department of Viral Oncology, Institute for Virus Research, Kyoto University, Kyoto 606-8507 (Japan); Ikeda, Masanori; Dansako, Hiromichi [Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama 700-8558 (Japan); Wakita, Takaji [Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640 (Japan); Shimotohno, Kunitada [Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Chiba 272-8516 (Japan); Kato, Nobuyuki [Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama 700-8558 (Japan)

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer PML tumor suppressor protein is required for HCV production. Black-Right-Pointing-Pointer PML is dispensable for HCV RNA replication. Black-Right-Pointing-Pointer HCV could not alter formation of PML-NBs. Black-Right-Pointing-Pointer INI1 and DDX5, PML-related proteins, are involved in HCV life cycle. -- Abstract: PML tumor suppressor protein, which forms discrete nuclear structures termed PML-nuclear bodies, has been associated with several cellular functions, including cell proliferation, apoptosis and antiviral defense. Recently, it was reported that the HCV core protein colocalizes with PML in PML-NBs and abrogates the PML function through interaction with PML. However, role(s) of PML in HCV life cycle is unknown. To test whether or not PML affects HCV life cycle, we examined the level of secreted HCV core and the infectivity of HCV in the culture supernatants as well as the level of HCV RNA in HuH-7-derived RSc cells, in which HCV-JFH1 can infect and efficiently replicate, stably expressing short hairpin RNA targeted to PML. In this context, the level of secreted HCV core and the infectivity in the supernatants from PML knockdown cells was remarkably reduced, whereas the level of HCV RNA in the PML knockdown cells was not significantly affected in spite of very effective knockdown of PML. In fact, we showed that PML is unrelated to HCV RNA replication using the subgenomic HCV-JFH1 replicon RNA, JRN/3-5B. Furthermore, the infectivity of HCV-like particle in the culture supernatants was significantly reduced in PML knockdown JRN/3-5B cells expressing core to NS2 coding region of HCV-JFH1 genome using the trans-packaging system. Finally, we also demonstrated that INI1 and DDX5, the PML-related proteins, are involved in HCV production. Taken together, these findings suggest that PML is required for HCV production.

  18. MicroRNA-33 promotes the replicative senescence of mouse embryonic fibroblasts by suppressing CDK6

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Shun; Huang, Haijiao; Li, Nanhong; Zhang, Bing; Jia, Yubin; Yang, Yukun; Yuan, Yuan; Xiong, Xing-dong; Wang, Dengchuan; Zheng, Hui-ling [Institute of Aging Research, Guangdong Medical University, Dongguan (China); Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan (China); Institute of Biochemistry & Molecular Biology, Guangdong Medical University, Zhanjiang (China); Liu, Xinguang, E-mail: xgliu64@126.com [Institute of Aging Research, Guangdong Medical University, Dongguan (China); Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan (China); Institute of Biochemistry & Molecular Biology, Guangdong Medical University, Zhanjiang (China)

    2016-05-13

    MicroRNAs are a large class of tiny noncoding RNAs, which have emerged as critical regulators of gene expression, and thus are involved in multiple cellular processes, including cellular senescence. MicroRNA-33 has previously been established to exert crucial effect on cell proliferation, lipid metabolism and cholesterol metabolism. Nonetheless, the association between microRNA-33 and cellular senescence and its underlying molecular mechanism are far to be elucidated. The present study has attempted to probe into the effect of microRNA-33 on MEFs senescence. Our data unveiled that microRNA-33 was dramatically down-regulated in senescent MEFs compared to the young MEFs, and ectopic expression of microRNA-33 promoted MEFs senescence, while knock-down of microRNA-33 exhibited a protective effect against senescence phenotype. Moreover, we verified CDK6 as a direct target of microRNA-33 in mouse. Silencing of CDK6 induced the premature senescence phenotype of MEFs similarly as microRNA-33, while enforced expression of CDK6 significantly reverse the senescence-induction effect of microRNA-33. Taken together, our results suggested that microRNA-33 enhanced the replicative senescence of MEFs potentially by suppressing CDK6 expression. -- Highlights: •MicroRNA-33 was dramatically down-regulated in senescent MEF cells. •Altered expression of microRNA-33 exerted a critical role in MEFs senescence. •MicroRNA-33 promoted the replicative senescence of MEFs via targeting of CDK6.

  19. MicroRNA-33 promotes the replicative senescence of mouse embryonic fibroblasts by suppressing CDK6

    International Nuclear Information System (INIS)

    Xu, Shun; Huang, Haijiao; Li, Nanhong; Zhang, Bing; Jia, Yubin; Yang, Yukun; Yuan, Yuan; Xiong, Xing-dong; Wang, Dengchuan; Zheng, Hui-ling; Liu, Xinguang

    2016-01-01

    MicroRNAs are a large class of tiny noncoding RNAs, which have emerged as critical regulators of gene expression, and thus are involved in multiple cellular processes, including cellular senescence. MicroRNA-33 has previously been established to exert crucial effect on cell proliferation, lipid metabolism and cholesterol metabolism. Nonetheless, the association between microRNA-33 and cellular senescence and its underlying molecular mechanism are far to be elucidated. The present study has attempted to probe into the effect of microRNA-33 on MEFs senescence. Our data unveiled that microRNA-33 was dramatically down-regulated in senescent MEFs compared to the young MEFs, and ectopic expression of microRNA-33 promoted MEFs senescence, while knock-down of microRNA-33 exhibited a protective effect against senescence phenotype. Moreover, we verified CDK6 as a direct target of microRNA-33 in mouse. Silencing of CDK6 induced the premature senescence phenotype of MEFs similarly as microRNA-33, while enforced expression of CDK6 significantly reverse the senescence-induction effect of microRNA-33. Taken together, our results suggested that microRNA-33 enhanced the replicative senescence of MEFs potentially by suppressing CDK6 expression. -- Highlights: •MicroRNA-33 was dramatically down-regulated in senescent MEF cells. •Altered expression of microRNA-33 exerted a critical role in MEFs senescence. •MicroRNA-33 promoted the replicative senescence of MEFs via targeting of CDK6.

  20. Treatment response in HCV related chronic hepatitis

    International Nuclear Information System (INIS)

    Hussain, A.B.; Hussain, T.; Hussain, S.; Masood, A.; Kazmi, Y.; Tariq, W.Z.; Karamat, K.A.

    2004-01-01

    Objective: To evaluate the virological response to treatment with interferon and ribavirin in-patients with hepatitis C related liver disease. Material and Methods: Two hundred seventy-nine patients were included in the study. These patients had taken interferon and ribavirin treatment for HCV related chronic hepatitis, and were referred to AFIP for HCV RNA testing by polymerase chain reaction (PCR) between January 2002 and September 2002. Out of 279 cases, 229 had taken the treatment for 06 or 12 months and were tested for end-of-treatment response (ETR). Fifty patients had completed there treatment regimens of 6 or 12 months treatment, at least 24 weeks before their PCR test and were having follow-up testing for sustained viral response (SVR). The sera of these patients were tested for HCV RNA by PCR, using a commercial kit of Amplicor (Roche) for qualitative detection of HCV RNA. Results: Out of 229 cases tested for end-of-treatment response, 198 (86.5%) had no detectable HCV RNA (responders) and 31 (13.50%) were PCR positive (non-responders). Thirty-eight out of 50 cases, tested for a sustained viral response, had a negative result for HCV PCR thus showing sustained response rate of 76%. Conclusion: The viral remission/response to interferon and ribavirin combination therapy in our patients was better than that quoted in other regions. (author)

  1. A SELEX-screened aptamer of human hepatitis B virus RNA encapsidation signal suppresses viral replication.

    Directory of Open Access Journals (Sweden)

    Hui Feng

    Full Text Available BACKGROUND: The specific interaction between hepatitis B virus (HBV polymerase (P protein and the ε RNA stem-loop on pregenomic (pg RNA is crucial for viral replication. It triggers both pgRNA packaging and reverse transcription and thus represents an attractive antiviral target. RNA decoys mimicking ε in P protein binding but not supporting replication might represent novel HBV inhibitors. However, because generation of recombinant enzymatically active HBV polymerase is notoriously difficult, such decoys have as yet not been identified. METHODOLOGY/PRINCIPAL FINDINGS: Here we used a SELEX approach, based on a new in vitro reconstitution system exploiting a recombinant truncated HBV P protein (miniP, to identify potential ε decoys in two large ε RNA pools with randomized upper stem. Selection of strongly P protein binding RNAs correlated with an unexpected strong enrichment of A residues. Two aptamers, S6 and S9, displayed particularly high affinity and specificity for miniP in vitro, yet did not support viral replication when part of a complete HBV genome. Introducing S9 RNA into transiently HBV producing HepG2 cells strongly suppressed pgRNA packaging and DNA synthesis, indicating the S9 RNA can indeed act as an ε decoy that competitively inhibits P protein binding to the authentic ε signal on pgRNA. CONCLUSIONS/SIGNIFICANCE: This study demonstrates the first successful identification of human HBV ε aptamers by an in vitro SELEX approach. Effective suppression of HBV replication by the S9 aptamer provides proof-of-principle for the ability of ε decoy RNAs to interfere with viral P-ε complex formation and suggests that S9-like RNAs may further be developed into useful therapeutics against chronic hepatitis B.

  2. Prader-Willi region non-protein coding RNA 1 suppressed gastric cancer growth as a competing endogenous RNA of microRNA-425-5p.

    Science.gov (United States)

    Chen, Zihao; Ju, Hongping; Yu, Shan; Zhao, Ting; Jing, Xiaojie; Li, Ping; Jia, Jing; Li, Nan; Tan, Bibo; Li, Yong

    2018-03-13

    Gastric cancer (GC) is one of a major global health problem especially in Asia. Nowadays, long non-coding RNA has gained significantly attention in the current research climate such as carcinogenesis. This research desired to explore the mechanism of Prader-Willi region non-protein coding RNA 1 (PWRN1) on regulating GC process. Differentially expressed lncRNAs in GC tissues were screened out through microarray analysis. The RNA and protein expression level was detected by qRT-PCR and western blot. Cell proliferation, apoptosis rate, metastasis abilities were respectively determined by CCK8, flow cytometry, wound healing and transwell assay. The luciferase reporter system was used to verify the targeting relationships between PWRN1, miR-425-5p and PTEN RIP assay was performed to prove whether PWRN1 acted as a competitive endogenous RNA (ceRNA) of miR-425-5p. Tumor xenograft model and immunohistochemistry were developed to study the influence of PWRN1 on tumor growth in vivo Microarray analysis determined that PWRN1 was different expressed between GC tissues and adjacent tissues. QRT-PCR revealed PWRN1 low expression in GC tissues and cells. PWRN1 up-regulated could reduce proliferation and metastasis and increased apoptosis in GC cells, while miR-425-5p had reverse effects. The RIP assay indicated that PWRN1 may target an oncogene miR-425-5p. The tumor xenograft assay found that up-regulated PWRN1 suppressed the tumor growth. The bioinformatic analysis, luciferase assay and western blot indicated that PWRN1 affected PTEN/Akt/MDM2/p53 axis via suppressing miR-425-5p. Our findings suggested that PWRN1 functioned as a ceRNA targeting to miR-425-5p and suppressed GC development via p53 signaling pathway. ©2018 The Author(s).

  3. Distribution of HCV genotypes among different exposure categories in Brazil

    Directory of Open Access Journals (Sweden)

    Oliveira M.L.A.

    1999-01-01

    Full Text Available Hepatitis C virus (HCV infection is widespread and responsible for more than 60% of chronic hepatitis cases. HCV presents a genetic variability which has led to viral classification into at least 6 genotypes and a series of subtypes. These variants present characteristic geographical distribution, but their association with different responses to treatment with interferon and severity of disease still remains controversial. The aim of this study was to investigate the patterns of distribution of HCV genotypes among different exposure categories in Brazil. Two hundred and fifty anti-HCV positive samples were submitted to HCV-RNA detection by RT-PCR and their genotype was determined by restriction fragment length polymorphism (RFLP analysis. In addition, the genotype/subtype of 60 samples was also determined by a reverse hybridization assay. HCV 1 was the most prevalent (72.0%, followed by type 3 (25.3%, HCV 2 (2.0% and HCV 4 (0.7%. The HCV genotype distribution varied among the different exposure categories, with HCV 1 being more frequent among blood donors, hemophiliacs and hemodialysis patients. A high frequency of HCV 3 was observed in cirrhotic patients, blood donors from the South of Brazil and injecting drug users (IDUs. The general distribution of the HCV genotype in Brazil is similar to that in other regions of the world.

  4. Sulforaphane Suppresses Hepatitis C Virus Replication by Up-Regulating Heme Oxygenase-1 Expression through PI3K/Nrf2 Pathway.

    Directory of Open Access Journals (Sweden)

    Jung-Sheng Yu

    Full Text Available Hepatitis C virus (HCV infection-induced oxidative stress is a major risk factor for the development of HCV-associated liver disease. Sulforaphane (SFN is an antioxidant phytocompound that acts against cellular oxidative stress and tumorigenesis. However, there is little known about its anti-viral activity. In this study, we demonstrated that SFN significantly suppressed HCV protein and RNA levels in HCV replicon cells and infectious system, with an IC50 value of 5.7 ± 0.2 μM. Moreover, combination of SFN with anti-viral drugs displayed synergistic effects in the suppression of HCV replication. In addition, we found nuclear factor erythroid 2-related factor 2 (Nrf2/HO-1 induction in response to SFN and determined the signaling pathways involved in this process, including inhibition of NS3 protease activity and induction of IFN response. In contrast, the anti-viral activities were attenuated by knockdown of HO-1 with specific inhibitor (SnPP and shRNA, suggesting that anti-HCV activity of SFN is dependent on HO-1 expression. Otherwise, SFN stimulated the phosphorylation of phosphoinositide 3-kinase (PI3K leading Nrf2-mediated HO-1 expression against HCV replication. Overall, our results indicated that HO-1 is essential in SFN-mediated anti-HCV activity and provide new insights in the molecular mechanism of SFN in HCV replication.

  5. SINE transcription by RNA polymerase III is suppressed by histone methylation but not by DNA methylation

    Science.gov (United States)

    Varshney, Dhaval; Vavrova-Anderson, Jana; Oler, Andrew J.; Cowling, Victoria H.; Cairns, Bradley R.; White, Robert J.

    2015-01-01

    Short interspersed nuclear elements (SINEs), such as Alu, spread by retrotransposition, which requires their transcripts to be copied into DNA and then inserted into new chromosomal sites. This can lead to genetic damage through insertional mutagenesis and chromosomal rearrangements between non-allelic SINEs at distinct loci. SINE DNA is heavily methylated and this was thought to suppress its accessibility and transcription, thereby protecting against retrotransposition. Here we provide several lines of evidence that methylated SINE DNA is occupied by RNA polymerase III, including the use of high-throughput bisulphite sequencing of ChIP DNA. We find that loss of DNA methylation has little effect on accessibility of SINEs to transcription machinery or their expression in vivo. In contrast, a histone methyltransferase inhibitor selectively promotes SINE expression and occupancy by RNA polymerase III. The data suggest that methylation of histones rather than DNA plays a dominant role in suppressing SINE transcription. PMID:25798578

  6. HCV Transmission between serodiscordant couples through sexual route

    International Nuclear Information System (INIS)

    Khan, R.S.A.; Khalid, S.R.; Naseer, M.; Mirza, R.

    2014-01-01

    To determine the rate of transmission of HCV between n spouses through sexual route. Study Design: Descriptive study. Place and Duration of Study: This study was carried out at Military Hospital, Rawalpindi, Pakistan. It was conducted over a period of 4 years from June 2009 to June 2013. Patients and Methods: One hundred and sixty eight consecutive patients confirmed to have HCV infection by PCR for HCV RNA were enrolled in the study. Their spouses were also included in the study, and it was established through PCR for HCV RNA that the spouses were not suffering from HCV infection. All couples were inducted in the study within the first two months of starting the study. Therefore, the maximum and minimum follow-up time was 48 months and 46 months, respectively. The spouses were questioned for HCV risk factors and were tested for HCV antibodies six monthly. Once spouses were found to be anti-HCV positive, their HCV status was confirmed with PCR for HCV RNA. Results: Out of 168 patients, 90 (53.57%) were males and 78 (46.43%) were females. PCR for HCV RNA was found to be positive in 4 of 168 (2.38%) spouses. All the se 4 couples in whom HCV transmission was found had genotype 3a. Out of the 4 spouses who tested positive for HCV RNA PCR, 3 (75%) were females and 1 (25%) was male. So HCV infection was transmitted in 3 out of 90 (3.33 %) and 1 out of 78 (1.28%) female and male spouses, respectively. In PCR for HCV RNA positive and negative spouses, the duration of marriage was 202 +- 53 and 199 +- 49 weeks; and the number of total sexual intercourses was 171 +- 93 and 169 +- 89, respectively. Conclusion: HCV transmission among serodiscordant couples in our setup did occur. The overall rate of transmission was 2.38%. The rate of transmission from male to female (3.33%) was higher than female to male (1.28%). However, a large scale study conducted over a longer duration of time is needed to recommend protected sex in serodiscordant couples if either partner is suffering

  7. MicroRNA regulation of cancer metabolism: role in tumour suppression

    Czech Academy of Sciences Publication Activity Database

    Tomasetti, M.; Santarelli, L.; Neužil, Jiří; Dong, L.

    2014-01-01

    Roč. 19, part a SI (2014), s. 29-38 ISSN 1567-7249 R&D Projects: GA ČR(CZ) GAP301/10/1937; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:86652036 Keywords : MicroRNA * Mitochondria * Tumour suppression Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.249, year: 2014

  8. Evaluation of the analytical performance of the new Abbott RealTime RT-PCRs for the quantitative detection of HCV and HIV-1 RNA

    NARCIS (Netherlands)

    Schutten, Martin; Fries, E; Burghoorn-Maas, C; Niesters, H G M

    2007-01-01

    BACKGROUND: Despite FDA approval and CE marking of commercial tests, manufacturer independent testing of technical aspects is important. OBJECTIVES: To evaluate the analytical performance of the new Abbott RealTime HCV and HIV-1 viral load tests. STUDY DESIGN: Sensitivity, specificity and

  9. HBV reactivation in patients with HCV/HBV cirrhosis on treatment with direct-acting antivirals.

    Science.gov (United States)

    Calvaruso, V; Ferraro, D; Licata, A; Bavetta, M G; Petta, S; Bronte, F; Colomba, G; Craxì, A; Di Marco, V

    2018-01-01

    Anecdotal reports suggest that patients with chronic hepatitis C virus (HCV) hepatitis and overt or occult hepatitis B virus (HBV) coinfection may reactivate HBV when HCV is suppressed or cleared by direct-acting antivirals (DAAs). We assessed the prevalence of overt or previous HBV coinfection and the risk of HBV reactivation in patients with HCV cirrhosis treated with DAAs. This was a retrospective cohort of 104 consecutive patients with HCV cirrhosis treated with DAAs. Serum HCV-RNA and HBV-DNA were tested at weeks 4, 8 and 12 of DAAs therapy and at week 12 of follow-up. At the start of DAAs, eight patients (7.7%) were HBsAg positive/HBeAg negative with undetectable HBV-DNA and low levels of quantitative HBsAg (four on nucleos(t)ide analogues [NUCs] and four inactive carriers), 37 patients (35.6%) had markers of previous HBV infection (25 anti-HBc positive, 12 anti-HBc/anti-HBs positive) and 59 (56.7%) had no evidence of HBV infection. Sixty-seven patients (64.4%) were HCV-RNA negative at week 4 and 98 (94.2%) achieved sustained virological response. All four HBsAg-positive patients treated with NUCs remained HBV-DNA negative, but three of four untreated patients showed an increase in HBV-DNA of 2-3 log without a biochemical flare and achieved HBV-DNA suppression when given NUCs. During or after DAAs, by conventional assay, HBV-DNA remained not detectable in all 37 anti-HBc-positive patients but in three of them (8.1%) HBV-DNA became detectable with a highly sensitive PCR. HBV reactivation is likely to occur in untreated HBV/HCV-coinfected cirrhotic patients when they undergo HCV treatment with DAAs. Pre-emptive therapy with NUCs should be considered in this setting. Anti-HBc-positive patients rarely reactivate HBV without clinical or virological outcomes. © 2017 John Wiley & Sons Ltd.

  10. Tumor-specific RNA interference targeting Pokemon suppresses tumor growth and induces apoptosis in prostate cancer.

    Science.gov (United States)

    Li, Yining; Xu, Shuxiong; Wang, Xiangwei; Shi, Hua; Sun, Zhaolin; Yang, Zhao

    2013-02-01

    To explore the exact mechanism of Pokemon in prostate cancer. Pokemon is a member of the POK family of transcriptional repressors. Its main function is suppression of the p14ARF (alternate reading frame) tumor suppressor gene. Although Pokemon expression has been found to be increased in various types of lymphoma, the exact mechanism of the gene in prostate cancer is not clear. In the present study, prostate cancer cells were transfected with the specific short hairpin ribonucleic acid (RNA) expression vector targeting Pokemon. The expression of Pokemon messenger RNA and its protein was detected by semiquantitative reverse transcriptase-polymerase chain reaction and Western blotting, respectively. The cell growth and cell apoptosis were also examined using the methyl thiazolyl tetrazolium assay and flow cytometry. The results demonstrated that specific RNA interference (RNAi) could decrease the expression levels of Pokemon gene messenger RNA and protein in prostate cancer cells. In addition, that specific RNAi significantly inhibited the cell proliferation and increased the apoptotic rate. In vivo experiments showed that specific RNAi inhibited the tumorigenicity of prostate cancer cells and significantly suppressed tumor growth. Therefore, an RNAi-targeted Pokemon gene strategy could be a potential approach to prostate cancer therapy. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. DHX9 suppresses RNA processing defects originating from the Alu invasion of the human genome.

    Science.gov (United States)

    Aktaş, Tuğçe; Avşar Ilık, İbrahim; Maticzka, Daniel; Bhardwaj, Vivek; Pessoa Rodrigues, Cecilia; Mittler, Gerhard; Manke, Thomas; Backofen, Rolf; Akhtar, Asifa

    2017-04-06

    Transposable elements are viewed as 'selfish genetic elements', yet they contribute to gene regulation and genome evolution in diverse ways. More than half of the human genome consists of transposable elements. Alu elements belong to the short interspersed nuclear element (SINE) family of repetitive elements, and with over 1 million insertions they make up more than 10% of the human genome. Despite their abundance and the potential evolutionary advantages they confer, Alu elements can be mutagenic to the host as they can act as splice acceptors, inhibit translation of mRNAs and cause genomic instability. Alu elements are the main targets of the RNA-editing enzyme ADAR and the formation of Alu exons is suppressed by the nuclear ribonucleoprotein HNRNPC, but the broad effect of massive secondary structures formed by inverted-repeat Alu elements on RNA processing in the nucleus remains unknown. Here we show that DHX9, an abundant nuclear RNA helicase, binds specifically to inverted-repeat Alu elements that are transcribed as parts of genes. Loss of DHX9 leads to an increase in the number of circular-RNA-producing genes and amount of circular RNAs, translational repression of reporters containing inverted-repeat Alu elements, and transcriptional rewiring (the creation of mostly nonsensical novel connections between exons) of susceptible loci. Biochemical purifications of DHX9 identify the interferon-inducible isoform of ADAR (p150), but not the constitutively expressed ADAR isoform (p110), as an RNA-independent interaction partner. Co-depletion of ADAR and DHX9 augments the double-stranded RNA accumulation defects, leading to increased circular RNA production, revealing a functional link between these two enzymes. Our work uncovers an evolutionarily conserved function of DHX9. We propose that it acts as a nuclear RNA resolvase that neutralizes the immediate threat posed by transposon insertions and allows these elements to evolve as tools for the post

  12. HBV And HCV Molecular Evolution

    Directory of Open Access Journals (Sweden)

    Flor H. Pujol

    2007-02-01

    hepatitis C virus (HCV. Six genotypes and a large number of subtypes in each genotype have been described for this member of the Flaviviridae family. Infections with HCV genotype 1 are associated with the lowest therapeutic success. HCV genotype 1b has also been more frequently associated with a more severe liver disease. However, this association seems to be due to the fact that individuals infected with this genotype have a longer mean duration of infection. HCV genotypes 1, 2, and 3 have a worldwide distribution and display an apidemic pattern of distribution. HCV subtypes 1a and 1b are the most common genotypes in the United States and are also are predominant in Europe, while in Japan, subtype 1b is predominant. Although HCV subtypes 2a and 2b are relatively common in America, Europe, and Japan, subtype 2c is found commonly in northern Italy. HCV genotype 3a is frequent in intravenous drug abusers in Europe and the United States. HCV genotype 4 appears to be prevalent in Africa and theMiddle East, and genotypes 5 and 6 seem to be confined to South Africa and Asia, respectively. These last genotypes display an endemic pattern of distribution. In addition, a change in the frequency of the prevailing genotypes has been described in several countries: in general, HCV genotype 1b is being displaced by genotypes 3a and/or 2. Coalescent studies have allowed to describe the epidemic pattern of dissemination of some HCV subtypes in specific countries, generally around 100 years ago. The origin of this virus is still an open question, but several studies traces it diversification only around 1,000 years ago.

    The replication of HCV is dependent on a RNA-polymerase RNA dependent which lacks proofreading activity, which confers to this virus a high rate of variability. This virus circulates as a quasispecies. This population dynamic inside a single strain confers to this virus the ability to

  13. The Polerovirus F box protein P0 targets ARGONAUTE1 to suppress RNA silencing.

    Science.gov (United States)

    Bortolamiol, Diane; Pazhouhandeh, Maghsoud; Marrocco, Katia; Genschik, Pascal; Ziegler-Graff, Véronique

    2007-09-18

    Plants employ post-transcriptional gene silencing (PTGS) as an antiviral defense response. In this mechanism, viral-derived small RNAs are incorporated into the RNA-induced silencing complex (RISC) to guide degradation of the corresponding viral RNAs. ARGONAUTE1 (AGO1) is a key component of RISC: it carries the RNA slicer activity. As a counter-defense, viruses have evolved various proteins that suppress PTGS. Recently, we showed that the Polerovirus P0 protein carries an F box motif required to form an SCF-like complex, which is also essential for P0's silencing suppressor function. Here, we investigate the molecular mechanism by which P0 impairs PTGS. First we show that P0's expression does not affect the biogenesis of primary siRNAs in an inverted repeat-PTGS assay, but it does affect their activity. Moreover, P0's expression in transformed Arabidopsis plants leads to various developmental abnormalities reminiscent of mutants affected in miRNA pathways, which is accompanied by enhanced levels of several miRNA-target transcripts, suggesting that P0 acts at the level of RISC. Interestingly, ectopic expression of P0 triggered AGO1 protein decay in planta. Finally, we provide evidence that P0 physically interacts with AGO1. Based on these results, we propose that P0 hijacks the host SCF machinery to modulate gene silencing by destabilizing AGO1.

  14. Effect of HCV Core Antigen and RNA Clearance during Therapy with Direct Acting Antivirals on Hepatic Stiffness Measured with Shear Wave Elastography in Patients with Chronic Viral Hepatitis C

    Directory of Open Access Journals (Sweden)

    Mariusz Łucejko

    2018-01-01

    Full Text Available To assess a combination of novel measures of therapeutic success in the treatment of chronic hepatitis C (CHC infection, we evaluated liver stiffness (LS with shear wave elastography and hepatitis C virus core antigen (HCVcAg concentrations. We followed 34 patients during and after treatment with direct acting antivirals. All patients achieved a sustained virologic and serologic response and a significant increase of albumin levels. Decreases of alanine aminotransferase (ALT activity and alpha-fetoprotein (AFP level were observed during the treatment and follow-up period. A significant decrease in LS was observed between baseline, end of treatment (EOT, and at 24- and 96-week post-treatment follow-up. LS decline between EOT and 96-week follow-up (FU96 was observed in 79% of patients. Significant LS changes were seen in patients with advanced fibrosis, particularly in cirrhotics and in patients with ALT exceeding 100 IU/mL. There was a positive correlation between ALT activity and LS changes at the baseline versus FU96. A negative correlation was demonstrated between individual HCVcAg baseline concentrations and reduction of LS at the baseline versus FU96. In conclusion, we observed that LS significantly declined during and after antiviral treatment. It was accompanied by improvement in some liver function measures, and disappearance of both HCVcAg and HCV ribonucleic acid (HCV RNA.

  15. Discordant CSF/plasma HIV-1 RNA in individuals on virologically suppressive antiretroviral therapy in Western India.

    Science.gov (United States)

    Dravid, Ameet N; Natrajan, Kartik; Kulkarni, Milind M; Saraf, Chinmay K; Mahajan, Uma S; Kore, Sachin D; Rathod, Niranjan M; Mahajan, Umakant S; Wadia, Rustom S

    2018-02-01

    Aim of this study was to estimate the prevalence of cerebrospinal fluid (CSF)/Plasma HIV-1 RNA discordance in virologically suppressed individuals presenting with incident neurologic symptoms.In this retrospective cohort study conducted between March 1, 2009, and March 1, 2017, HIV-1 infected adults exposed to atleast 12 months of antiretroviral therapy (ART) and having plasma viral load (VL) CSF/Plasma HIV-1 RNA discordance by measuring HIV-1 RNA in collected plasma and CSF samples. CSF/plasma HIV-1 RNA discordance was defined as either detectable CSF HIV-1 RNA (VL > 20 copies/mL) with an undetectable plasma RNA (complete viral suppression, VL ≤20 copies/mL) or CSF HIV-1 RNA ≥ 0.5 log10 higher than plasma RNA when plasma VL was between 20 and 1000 copies/mL (low-level viremia, LLV).Out of 1584 virologically suppressed patients, 71 (4.4%) presented with incident neurologic symptoms. Twenty out of 71 (28.2%) patients were diagnosed with CSF/Plasma HIV-1 discordance. Median plasma and CSF VL in patients with discordance was 120 [interquartile range (IQR): CSF HIV-1 genotypic resistance testing was done showed mutations that would compromise efficacy of prescribed ART regimen. Prevalence of CSF/plasma HIV-1 RNA discordance was higher among neurologically symptomatic patients with plasma LLV as compared with those with complete viral suppression (70% vs 11.8%, P CSF/plasma HIV-1 RNA discordance indicates replication of HIV-1 that has adapted to the CNS or has developed antiretroviral drug resistance. Larger studies should be performed to study incidence of discordance in India. This will help in managing patients presenting with neurologic symptoms on suppressive ART with appropriate neuroeffective therapy.

  16. [Comparison of eight screening tests for ant-HCV antibody].

    Science.gov (United States)

    Deguchi, Matsuo; Kagita, Masanori; Yamashita, Naoko; Nakano, Takasi; Tahara, Kazuko; Asari, Seishi; Iwatani, Yoshinori

    2002-09-01

    We compared eight HCV screening tests for detection of anti-HCV antibody; Ortho Quick Chaser HCV Ab (QC), Ortho HCV Ab ELISA III (ELISA), Ortho HVC Ab PA test III (PA), Lumipulse II Ortho HCV (LUMI), IMx HCV.DAINAPACKII (IMx), ARCHITECT HCV (ARCH), Immucheck.F-HCV C50 Ab (Immu), RANREAM HCV Ab Ex II (RAN). Sera from six hundred patients were examined by these eight screening tests. The positive rates of the eight screening tests were from 9.0% to 13.2%. Forty-five sera showed discrepant results between the eight screening tests, and about half of them showed weak positive reaction and/or false positive. Twenty-five of the forty-five sera were negative for ant-HCV antibody in the CHIRON RIBA III confirmatory test, and forty-four of them were negative for HCV-RNA in the PCR method. The agreement rates between the two reagents were from 95.5% to 99.2%, but were not always high between the two reagents that used similar antigen. The specificities and sensitivities evaluated by using the RIBA III confirmatory test were excellent in ELISA, LUMI, IMx, ARCH and Immu. Three BBI seroconversion panels were used to compare the positive readings in the initial stage of HCV infection by eight screening tests. ELISA and ARCH showed the earliest positive readings, and then IMx, LUMI = RAN, PA, QC and Immu in this order. These findings indicate that ELISA and ARCH were the most excellent in the sensitivity, specificity and early diagnosis of HCV infection. However, we must pay attention to the weak positive reaction in the screening tests, because there is a possibility of "false positive".

  17. IP-10 predicts the first phase decline of HCV RNA and overall viral response to therapy in patients co-infected with chronic hepatitis C virus infection and HIV

    DEFF Research Database (Denmark)

    Falconer, Karolin; Askarieh, Galia; Weis, Nina Margrethe

    2010-01-01

    The aim of this study was to investigate the utility of baseline plasma interferon-gamma inducible protein-10 (IP-10) levels in human immunodeficiency virus (HIV)-hepatitis C virus (HCV) co-infected patients. Baseline IP-10 was monitored during HCV combination therapy in 21 HIV-HCV co-infected pa......The aim of this study was to investigate the utility of baseline plasma interferon-gamma inducible protein-10 (IP-10) levels in human immunodeficiency virus (HIV)-hepatitis C virus (HCV) co-infected patients. Baseline IP-10 was monitored during HCV combination therapy in 21 HIV-HCV co......-10 viral response to HCV therapy in HIV-HCV co-infected patients, and may thus be useful in encouraging such difficult-to-treat patients to initiate therapy....

  18. Suppressing miRNA-15a/-16 expression by interleukin-6 enhances drug-resistance in myeloma cells

    Directory of Open Access Journals (Sweden)

    Chang Hong

    2011-09-01

    Full Text Available Abstract The bone marrow microenvironment facilitates the survival, differentiation, and proliferation of myeloma (MM cells. This study identified that microRNA-15a and -16 expressions tightly correlated with proliferation and drug sensitivity of MM cells. miRNA-15a/-16 expression in MM cells was significantly increased after treatment with cytotoxic agents. The interaction of bone marrow stromal cells (BMSC with MM cells resulted in decreased miRNA-15a/-16 expression and promoted the survival of the MM cells. Interleukin-6 (IL-6 produced by BMSCs suppressed the expression of miRNA-15a and 16 in a time- and dose- dependent pattern, with the suppression on miRNA-15a being more significant than on miRNA-16. miRNA-15a-transfected MM cells were found to be arrested in G1/S checkpoint, and the transfected MM cells had decreased growth and survival. In conclusion, our data suggest that via suppressing miRNA-15a and -16 expressions, IL-6 secreted by BMSCs promotes drug-resistance in myeloma cells.

  19. Prevalence of mixed hepatitis C virus (HCV genotypes among recently diagnosed dialysis patients with HCV infection

    Directory of Open Access Journals (Sweden)

    Mohammed A Al Balwi

    2011-01-01

    Full Text Available Hepatitis C virus (HCV infection is considered a major health problem recognized globally. HCV is a major cause of chronic liver disease that may lead to cirrhosis and hepatocellular carcinoma. The aim of this study was to investigate the prevalence of multiple (mixed HCV genotypes in Saudi patients recently diagnosed with HCV infection and their association with various clinical risk factors. We examined a total of 1,292 newly diagnosed HCV-positive cases between January 2006 and July 2009 at the Molecular Pathology Laboratory, King Abdulaziz Medical City, Riyadh. The clinical and laboratory data of the study patients were collected. The HCV-RNA viral load and its genotyping were carried out with RT-PCR technology to assist in the follow-up and management of HCV-infected patients undergoing antiviral therapy. Twenty-two patients (1.7% were found to have mixed HCV genotypes; of them, mixed genotypes associated with genotype-4 were seen in 19 patients (86%, mixed genotypes associated with genotype-1 were found in 68.4%, with genotype-3 in 26.3% and with genotype-2 in 5.3%. Additionally, mixed genotypes associated with genotype-1 were seen in three cases (13.6%; they were associated with genotype-2 in two (66.7% and with genotype-5 in one patient (33.3%. In conclusion, the prevalence rate of mixed HCV genotypes in the cohort of the newly infected Saudi patients was 1.7%, with genotype-4 being the most frequent genotype encountered.

  20. HCV core protein promotes hepatocyte proliferation and chemoresistance by inhibiting NR4A1

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Yongsheng, E-mail: yongshengtanwhu@126.com; Li, Yan, E-mail: liyansd2@163.com

    2015-10-23

    This study investigated the effect of HCV core protein on the proliferation of hepatocytes and hepatocellular carcinoma cells (HCC), the influence of HCV core protein on HCC apoptosis induced by the chemotherapeutic agent cisplatin, and the mechanism through which HCV core protein acts as a potential oncoprotein in HCV-related HCC by measuring the levels of NR4A1 and Runt-related transcription factor 3 (RUNX3), which are associated with tumor suppression and chemotherapy resistance. In the present study, PcDNA3.1-core and RUNX3 siRNA were transfected into LO2 and HepG2 cells using Lipofectamine 2000. LO2-core, HepG2-core, LO2-RUNX3 {sup low} and control cells were treated with different concentrations of cisplatin for 72 h, and cell proliferation and apoptosis were assayed using the CellTiter 96{sup ®}Aqueous Non-Radioactive Cell Proliferation Assay Kit. Western blot and real time PCR analyses were used to detect NR4A1, RUNX3, smad7, Cyclin D1 and BAX. Confocal microscopy was used to determine the levels of NR4A1 in HepG2 and HepG2-core cells. The growth rate of HepG2-core cells was considerably greater than that of HepG2 cells. HCV core protein increased the expression of cyclin D1 and decreased the expressions of NR4A1 and RUNX3. In LO2 – RUNX3 {sup low}, the rate of cell proliferation and the level of cisplatin resistance were the same as in the LO2 -core. These results suggest that HCV core protein decreases the sensitivity of hepatocytes to cisplatin by inhibiting the expression of NR4A1 and promoting the expression of smad7, which negatively regulates the TGF-β pathway. This effect results in down regulation of RUNX3, a target of the TGF-β pathway. Taken together, these findings indicate that in hepatocytes, HCV core protein increases drug resistance and inhibits cell apoptosis by inhibiting the expressions of NR4A1 and RUNX3. - Highlights: • HCV core protein inhibits HepG2 cell sensitivity to cisplatin. • Core expression in HepG2 decreases

  1. HCV core protein promotes hepatocyte proliferation and chemoresistance by inhibiting NR4A1

    International Nuclear Information System (INIS)

    Tan, Yongsheng; Li, Yan

    2015-01-01

    This study investigated the effect of HCV core protein on the proliferation of hepatocytes and hepatocellular carcinoma cells (HCC), the influence of HCV core protein on HCC apoptosis induced by the chemotherapeutic agent cisplatin, and the mechanism through which HCV core protein acts as a potential oncoprotein in HCV-related HCC by measuring the levels of NR4A1 and Runt-related transcription factor 3 (RUNX3), which are associated with tumor suppression and chemotherapy resistance. In the present study, PcDNA3.1-core and RUNX3 siRNA were transfected into LO2 and HepG2 cells using Lipofectamine 2000. LO2-core, HepG2-core, LO2-RUNX3 "l"o"w and control cells were treated with different concentrations of cisplatin for 72 h, and cell proliferation and apoptosis were assayed using the CellTiter 96"®Aqueous Non-Radioactive Cell Proliferation Assay Kit. Western blot and real time PCR analyses were used to detect NR4A1, RUNX3, smad7, Cyclin D1 and BAX. Confocal microscopy was used to determine the levels of NR4A1 in HepG2 and HepG2-core cells. The growth rate of HepG2-core cells was considerably greater than that of HepG2 cells. HCV core protein increased the expression of cyclin D1 and decreased the expressions of NR4A1 and RUNX3. In LO2 – RUNX3 "l"o"w, the rate of cell proliferation and the level of cisplatin resistance were the same as in the LO2 -core. These results suggest that HCV core protein decreases the sensitivity of hepatocytes to cisplatin by inhibiting the expression of NR4A1 and promoting the expression of smad7, which negatively regulates the TGF-β pathway. This effect results in down regulation of RUNX3, a target of the TGF-β pathway. Taken together, these findings indicate that in hepatocytes, HCV core protein increases drug resistance and inhibits cell apoptosis by inhibiting the expressions of NR4A1 and RUNX3. - Highlights: • HCV core protein inhibits HepG2 cell sensitivity to cisplatin. • Core expression in HepG2 decreases expression of NR4A1

  2. MicroRNA-mediated suppression of oncolytic adenovirus replication in human liver.

    Directory of Open Access Journals (Sweden)

    Erkko Ylösmäki

    Full Text Available MicroRNAs (miRNAs are important and ubiquitous regulators of gene expression that can suppress their target genes by translational inhibition as well as mRNA destruction. Cell type-specific miRNA expression patterns have been successfully exploited for targeting the expression of experimental and therapeutic gene constructs, for example to reduce pathogenic effects of cancer virotherapy in normal tissues. In order to avoid liver damage associated with systemic or intrahepatic delivery of oncolytic adenoviruses we have introduced the concept of suppressing adenovirus replication in hepatic cells by inserting target elements for the liver-specific miR122 into the viral genome. Here we show using ex vivo cultured tissue specimens that six perfectly complementary miR122 target sites in the 3' untranslated region of the viral E1A gene are sufficient in the absence of any other genetic modifications to prevent productive replication of serotype 5 adenovirus (Ad5 in normal human liver. This modification did not compromise the replicative capacity of the modified virus in cancer tissue derived from a colon carcinoma liver metastasis or its oncolytic potency in a human lung cancer xenograft mouse model. Unlike wild-type Ad5, the modified virus did not result in increased serum levels of liver enzymes in infected mice. These results provide a strong preclinical proof of concept for the use of miR122 target sites for reducing the risk of liver damage caused by oncolytic adenoviruses, and suggest that ectopic miR122 target elements should be considered as an additional safety measure included in any therapeutic virus or viral vector posing potential hazard to the liver.

  3. MicroRNA-145 suppresses hepatocellular carcinoma by targeting IRS1 and its downstream Akt signaling

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yelin [Department of Anesthesiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou (China); Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou (China); Hu, Chen; Cheng, Jun [Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou (China); Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou (China); Chen, Binquan [Department of Anesthesiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou (China); Ke, Qinghong; Lv, Zhen; Wu, Jian [Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou (China); Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou (China); Zhou, Yanfeng, E-mail: zyfhdj@yahoo.com [Department of Anesthesiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou (China)

    2014-04-18

    Highlights: • MiR-145 expression is down-regulated in HCC tissues and inversely related with IRS1 levels. • MiR-145 directly targets IRS1 in HCC cells. • Restored expression of miR-145 suppressed HCC cell proliferation and growth. • MiR-145 induced IRS1 under-expression potentially reduced downstream AKT signaling. - Abstract: Accumulating evidences have proved that dysregulation of microRNAs (miRNAs) is involved in cancer initiation and progression. In this study, we showed that miRNA-145 level was significantly decreased in hepatocellular cancer (HCC) tissues and cell lines, and its low expression was inversely associated with the abundance of insulin receptor substrate 1 (IRS1), a key mediator in oncogenic insulin-like growth factor (IGF) signaling. We verified IRS1 as a direct target of miR-145 using Western blotting and luciferase reporter assay. Further, the restoration of miR-145 in HCC cell lines suppressed cancer cell growth, owing to down-regulated IRS1 expression and its downstream Akt/FOXO1 signaling. Our results demonstrated that miR-145 could inhibit HCC through targeting IRS1 and its downstream signaling, implicating the loss of miR-145 regulation may be a potential molecular mechanism causing aberrant oncogenic signaling in HCC.

  4. Targeting Pin1 by inhibitor API-1 regulates microRNA biogenesis and suppresses hepatocellular carcinoma development.

    Science.gov (United States)

    Pu, Wenchen; Li, Jiao; Zheng, Yuanyuan; Shen, Xianyan; Fan, Xin; Zhou, Jian-Kang; He, Juan; Deng, Yulan; Liu, Xuesha; Wang, Chun; Yang, Shengyong; Chen, Qiang; Liu, Lunxu; Zhang, Guolin; Wei, Yu-Quan; Peng, Yong

    2018-01-30

    Hepatocellular carcinoma (HCC) is a leading cause of cancer death worldwide, but there are few effective treatments. Aberrant microRNA (miRNA) biogenesis is correlated with HCC development. We previously demonstrated that peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) participates in miRNA biogenesis and is a potential HCC treatment target. However, how Pin1 modulates miRNA biogenesis remains obscure. Here, we present in vivo evidence that Pin1 overexpression is directly linked to the development of HCC. Administration with the Pin1 inhibitor (API-1), a specific small molecule targeting Pin1 peptidyl-prolyl isomerase domain and inhibiting Pin1 cis-trans isomerizing activity, suppresses in vitro cell proliferation and migration of HCC cells. But API-1-induced Pin1 inhibition is insensitive to HCC cells with low Pin1 expression and/or low exportin-5 (XPO5) phosphorylation. Mechanistically, Pin1 recognizes and isomerizes the phosphorylated serine-proline motif of phosphorylated XPO5 and passivates phosphorylated XPO5. Pin1 inhibition by API-1 maintains the active conformation of phosphorylated XPO5 and restores XPO5-driven precursor miRNA nuclear-to-cytoplasm export, activating anticancer miRNA biogenesis and leading to both in vitro HCC suppression and HCC suppression in xenograft mice. Experimental evidence suggests that Pin1 inhibition by API-1 up-regulates miRNA biogenesis by retaining active XPO5 conformation and suppresses HCC development, revealing the mechanism of Pin1-mediated miRNA biogenesis and unequivocally supporting API-1 as a drug candidate for HCC therapy, especially for Pin1-overexpressing, extracellular signal-regulated kinase-activated HCC. (Hepatology 2018). © 2018 by the American Association for the Study of Liver Diseases.

  5. Characterization of the RNA silencing suppression activity of the Ebola virus VP35 protein in plants and mammalian cells.

    Science.gov (United States)

    Zhu, Yali; Cherukuri, Nil Celebi; Jackel, Jamie N; Wu, Zetang; Crary, Monica; Buckley, Kenneth J; Bisaro, David M; Parris, Deborah S

    2012-03-01

    Ebola virus (EBOV) causes a lethal hemorrhagic fever for which there is no approved effective treatment or prevention strategy. EBOV VP35 is a virulence factor that blocks innate antiviral host responses, including the induction of and response to alpha/beta interferon. VP35 is also an RNA silencing suppressor (RSS). By inhibiting microRNA-directed silencing, mammalian virus RSSs have the capacity to alter the cellular environment to benefit replication. A reporter gene containing specific microRNA target sequences was used to demonstrate that prior expression of wild-type VP35 was able to block establishment of microRNA silencing in mammalian cells. In addition, wild-type VP35 C-terminal domain (CTD) protein fusions were shown to bind small interfering RNA (siRNA). Analysis of mutant proteins demonstrated that reporter activity in RSS assays did not correlate with their ability to antagonize double-stranded RNA (dsRNA)-activated protein kinase R (PKR) or bind siRNA. The results suggest that enhanced reporter activity in the presence of VP35 is a composite of nonspecific translational enhancement and silencing suppression. Moreover, most of the specific RSS activity in mammalian cells is RNA binding independent, consistent with VP35's proposed role in sequestering one or more silencing complex proteins. To examine RSS activity in a system without interferon, VP35 was tested in well-characterized plant silencing suppression assays. VP35 was shown to possess potent plant RSS activity, and the activities of mutant proteins correlated strongly, but not exclusively, with RNA binding ability. The results suggest the importance of VP35-protein interactions in blocking silencing in a system (mammalian) that cannot amplify dsRNA.

  6. Suppression of cell division by pKi-67 antisense-RNA and recombinant protein.

    Science.gov (United States)

    Duchrow, M; Schmidt, M H; Zingler, M; Anemüller, S; Bruch, H P; Broll, R

    2001-01-01

    The human antigen defined by the monoclonal antibody Ki-67 (pKi-67) is a human nuclear protein strongly associated with cell proliferation and found in all tissues studied. It is widely used as a marker of proliferating cells, yet its function is unknown. To investigate its function we suppressed pKi-67 expression by antisense RNA and overexpressed a partial structure of pKi-67 in HeLa cells. A BrdU-incorporation assay showed a significant decrease in DNA synthesis after antisense inhibition. Cell cycle analysis indicated a higher proportion of cells in G1 phase and a lower proportion of cells in S phase while the number of G(2)/M phase cells remained constant. Overexpression of a recombinant protein encoding three of the repetitive elements from exon 13 of pKi-67 had a similar effect to that obtained by antisense inhibition. The similarity of the effect of expressing 'Ki-67 repeats' and pKi-67 antisense RNA could be explained by a negative effect on the folding of the endogenous protein in the endoplasmatic reticulum. Furthermore excessive self-association of pKi-67 via the repeat structure could inhibit its nuclear transport, preventing it from getting to its presumptive site of action. We conclude that the Ki-67 protein has an important role in the regulation of the cell cycle, which is mediated in part by its repetitive elements. Copyright 2001 S. Karger AG, Basel

  7. Seryl-tRNA Synthetases from Methanogenic Archaea: Suppression of Bacterial Amber Mutation and Heterologous Toxicity

    Directory of Open Access Journals (Sweden)

    Drasko Boko

    2010-01-01

    Full Text Available Methanogenic archaea possess unusual seryl-tRNA synthetases (SerRS, evolutionarily distinct from the SerRSs found in other archaea, eucaryotes and bacteria. Our recent X-ray structural analysis of Methanosarcina barkeri SerRS revealed an idiosyncratic N-terminal domain and catalytic zinc ion in the active site. To shed further light on substrate discrimination by methanogenic-type SerRS, we set up to explore in vivo the interaction of methanogenic-type SerRSs with their cognate tRNAs in Escherichia coli or Saccharomyces cerevisiae. The expression of various methanogenic-type SerRSs was toxic for E. coli, resulting in the synthesis of erroneous proteins, as revealed by β-galactosidase stability assay. Although SerRSs from methanogenic archaea recognize tRNAsSer from all three domains of life in vitro, the toxicity presumably precluded the complementation of endogenous SerRS function in both, E. coli and S. cerevisiae. However, despite the observed toxicity, coexpression of methanogenic-type SerRS with its cognate tRNA suppressed bacterial amber mutation.

  8. HCV-Induced Oxidative Stress: Battlefield-Winning Strategy

    Directory of Open Access Journals (Sweden)

    Khadija Rebbani

    2016-01-01

    Full Text Available About 150 million people worldwide are chronically infected with hepatitis C virus (HCV. The persistence of the infection is controlled by several mechanisms including the induction of oxidative stress. HCV relies on this strategy to redirect lipid metabolism machinery and escape immune response. The 3β-hydroxysterol Δ24-reductase (DHCR24 is one of the newly discovered host markers of oxidative stress. This protein, as HCV-induced oxidative stress responsive protein, may play a critical role in the pathogenesis of HCV chronic infection and associated liver diseases, when aberrantly expressed. The sustained expression of DHCR24 in response to HCV-induced oxidative stress results in suppression of nuclear p53 activity by blocking its acetylation and increasing its interaction with MDM2 in the cytoplasm leading to its degradation, which may induce hepatocarcinogenesis.

  9. HCV Core Antigen Testing for Diagnosis of HCV Infection: A systematic review and meta-analysis

    Science.gov (United States)

    Freiman, J. Morgan; Tran, Trang M.; Schumacher, Samuel G; White, Laura F.; Ongarello, Stefano; Cohn, Jennifer; Easterbrook, Philippa J.; Linas, Benjamin P.; Denkinger, Claudia M.

    2017-01-01

    Background Diagnosis of chronic Hepatitis C Virus (HCV) infection requires both a positive HCV antibody screen and confirmatory nucleic acid test (NAT). HCV core antigen (HCVcAg) is a potential alternative to NAT. Purpose This systematic review evaluated the accuracy of diagnosis of active HCV infection among adults and children for five HCVcAg tests compared to NAT. Data Sources EMBASE, PubMed, Web of Science, Scopus, and Cochrane from 1990 through March 31, 2016. Study Selection Cohort, cross-sectional, and randomized controlled trials were included without language restriction Data Extraction Two independent reviewers extracted data and assessed quality using an adapted Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. Data Synthesis 44 studies evaluated 5 index tests. Studies for the ARCHITECT had the highest quality, while those for Ortho ELISA were the lowest. From bivariate analyses, the sensitivity and specificity with 95% CI were: ARCHITECT 93.4% (90.1, 96.4) and 98.8% (97.4, 99.5), Ortho ELISA 93.2% (81.6, 97.7) and 99.2% (87.9, 100), and Hunan Jynda 59.5% (46.0, 71.7) and 82.9% (58.6, 94.3). Insufficient data were available for a meta-analysis for Lumipulse and Lumispot. In three quantitative studies using ARCHITECT, HCVcAg correlated closely with HCV RNA above 3000 IU/mL. Limitations There was insufficient data on covariates such as HIV or HBV status for sub-group analyses. Few studies reported genotypes of isolates and there were scant data for genotypes 4, 5, and 6. Most studies were conducted in high resource settings within reference laboratories. Conclusions HCVcAg assays with signal amplification have high sensitivity, high specificity, and good correlation with HCV RNA above 3000 IU/mL. HCVcAg assays have the potential to replace NAT in high HCV prevalence settings. PMID:27322622

  10. Suppression of sterol 27-hydroxylase mRNA and transcriptional activity by bile acids in cultured rat hepatocytes

    NARCIS (Netherlands)

    Twisk, J.; Wit, E.C.M. de; Princen, H.M.G.

    1995-01-01

    In previous work we have demonstrated suppression of cholesterol 7α-hydroxylase by bile acids at the level of mRNA and transcription, resulting in a similar decline in bile acid synthesis in cultured rat hepatocytes. In view of the substantial contribution of the 'alternative' or '27-hydroxylase'

  11. Pokemon siRNA Delivery Mediated by RGD-Modified HBV Core Protein Suppressed the Growth of Hepatocellular Carcinoma.

    Science.gov (United States)

    Kong, Jing; Liu, Xiaoping; Jia, Jianbo; Wu, Jinsheng; Wu, Ning; Chen, Jun; Fang, Fang

    2015-10-01

    Hepatocellular carcinoma (HCC) is a deadly human malignant tumor that is among the most common cancers in the world, especially in Asia. Hepatitis B virus (HBV) infection has been well established as a high risk factor for hepatic malignance. Studies have shown that Pokemon is a master oncogene for HCC growth, suggesting it as an ideal therapeutic target. However, efficient delivery system is still lacking for Pokemon targeting treatment. In this study, we used core proteins of HBV, which is modified with RGD peptides, to construct a biomimetic vector for the delivery of Pokemon siRNAs (namely, RGD-HBc-Pokemon siRNA). Quantitative PCR and Western blot assays revealed that RGD-HBc-Pokemon siRNA possessed the highest efficiency of Pokemon suppression in HCC cells. In vitro experiments further indicated that RGD-HBc-Pokemon-siRNA exerted a higher tumor suppressor activity on HCC cell lines, evidenced by reduced proliferation and attenuated invasiveness, than Pokemon-siRNA or RGD-HBc alone. Finally, animal studies demonstrated that RGD-HBc-Pokemon siRNA suppressed the growth of HCC xenografts in mice by a greater extent than Pokemon-siRNA or RGD-HBc alone. Based on the above results, Pokemon siRNA delivery mediated by RGD-modified HBV core protein was shown to be an effective strategy of HCC gene therapy.

  12. Physician experience and rates of plasma HIV-1 RNA suppression among illicit drug users: an observational study

    Directory of Open Access Journals (Sweden)

    Sangsari Sassan

    2012-01-01

    Full Text Available Abstract Background Despite the availability of antiretroviral therapy (ART, suboptimal treatment outcomes have been observed among HIV-seropositive illicit drug users. As there is an urgent need to improve responses to antiretroviral therapy among this population, we undertook this study to evaluate the role of physician experience on rates of plasma HIV-1 RNA suppression following initiation of ART. Methods Using data from a community-recruited cohort of HIV-positive illicit drug users, we used Cox proportional hazards regression to model the time to plasma viral HIV RNA Results Between May 1996 and December 2008, 267 individuals initiated ART among whom 227 (85% achieved a plasma HIV RNA Conclusions In this setting of universal HIV/AIDS care, illicit drug users with more experienced physicians exhibited faster rates of plasma viral load suppression. These findings argue for specialized services to help optimize HIV treatment outcomes among this population.

  13. Brain cytoplasmic RNA 1 suppresses smooth muscle differentiation and vascular development in mice.

    Science.gov (United States)

    Wang, Yung-Chun; Chuang, Ya-Hui; Shao, Qiang; Chen, Jian-Fu; Chen, Shi-You

    2018-04-13

    The cardiovascular system develops during the early stages of embryogenesis, and differentiation of smooth muscle cells (SMCs) is essential for that process. SMC differentiation is critically regulated by transforming growth factor (TGF)-β/SMAD family member 3 (SMAD3) signaling, but other regulators may also play a role. For example, long noncoding RNAs (lncRNAs) regulate various cellular activities and events, such as proliferation, differentiation, and apoptosis. However, whether long noncoding RNAs also regulate SMC differentiation remains largely unknown. Here, using the murine cell line C3H10T1/2, we found that brain cytoplasmic RNA 1 (BC1) is an important regulator of SMC differentiation. BC1 overexpression suppressed, whereas BC1 knockdown promoted, TGF-β-induced SMC differentiation, as indicated by altered cell morphology and expression of multiple SMC markers, including smooth muscle α-actin (αSMA), calponin, and smooth muscle 22α (SM22α). BC1 appeared to block SMAD3 activity and inhibit SMC marker gene transcription. Mechanistically, BC1 bound to SMAD3 via RNA SMAD-binding elements (rSBEs) and thus impeded TGF-β-induced SMAD3 translocation to the nucleus. This prevented SMAD3 from binding to SBEs in SMC marker gene promoters, an essential event in SMC marker transcription. In vivo , BC1 overexpression in mouse embryos impaired vascular SMC differentiation, leading to structural defects in the artery wall, such as random breaks in the elastic lamina, abnormal collagen deposition on SM fibers, and disorganized extracellular matrix proteins in the media of the neonatal aorta. Our results suggest that BC1 is a suppressor of SMC differentiation during vascular development. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. HCV and HBV coexist in HBsAg-negative patients with HCV viremia; possibility of coinfection in these patients must be considered in HBV-high endemic area

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Soon [Korea Cancer Center Hospital, Seoul (Korea, Republic of)

    1998-01-01

    Hepatocellular carcinoma (HCC) is one of the most common cancers and is highly associated with HBV infection in Korea. It has been suggested that HCV core protein may impair the polymerase activity of HBV in vitro, potentially lowering HBV titre in coinfected patients. The aim of this study was to confirm the coexistence of HBV viremia in HCV infected patients HCC who have apparent HBsAg seronegativity. The serological profiles of HBV and HCV in 616 patients with HCC were analysed and coinfection rate of HBV and HCV investigated. Sera were obtained from 16 patients who were both anti-HCV and HCV RNA positive but HbsAg negative, and tested for HBV BY PCR. As a control group, sera were obtained from 15 patients with HCC and 30 non-A abd non-B chronic hepatitis patients without HCC; both were anti-HCV, HCV-RNA, and HBsAg negative and tested for HBV PCR. Of 616 patients with HCC, 450 (73.1 %) had current HBV infection, 48 (7.8 %) had anti-HCV antibodies, and nine (1.5 %) had viral markers of both HCV abd HBV by serological profiles. Of 27 the patients with HCV viremia and HBsAg seronegativity, 14 (51.9 %) showed HBV viremia by PCR. In contrast, of the 75 patients in the control group who were both HCV PCR negative and HBsAg negative, five (11.1 %) showed HBV viremia by PCR. The PCR for HBV revealed coexistent HBV viremia in HCV viremia patients, despite HBsAg negativity by EIA. In HBV-endemic areas, the possibility of coinfection of HBV in HBsAg-negative patients with HCV viremia should be considered and molecular analysis for HBV-DNA performed. (author). 18 refs., 4 tabs.

  15. HCV and HBV coexist in HBsAg-negative patients with HCV viremia; possibility of coinfection in these patients must be considered in HBV-high endemic area

    International Nuclear Information System (INIS)

    Lee, Dong Soon

    1998-01-01

    Hepatocellular carcinoma (HCC) is one of the most common cancers and is highly associated with HBV infection in Korea. It has been suggested that HCV core protein may impair the polymerase activity of HBV in vitro, potentially lowering HBV titre in coinfected patients. The aim of this study was to confirm the coexistence of HBV viremia in HCV infected patients HCC who have apparent HBsAg seronegativity. The serological profiles of HBV and HCV in 616 patients with HCC were analysed and coinfection rate of HBV and HCV investigated. Sera were obtained from 16 patients who were both anti-HCV and HCV RNA positive but HbsAg negative, and tested for HBV BY PCR. As a control group, sera were obtained from 15 patients with HCC and 30 non-A abd non-B chronic hepatitis patients without HCC; both were anti-HCV, HCV-RNA, and HBsAg negative and tested for HBV PCR. Of 616 patients with HCC, 450 (73.1 %) had current HBV infection, 48 (7.8 %) had anti-HCV antibodies, and nine (1.5 %) had viral markers of both HCV abd HBV by serological profiles. Of 27 the patients with HCV viremia and HBsAg seronegativity, 14 (51.9 %) showed HBV viremia by PCR. In contrast, of the 75 patients in the control group who were both HCV PCR negative and HBsAg negative, five (11.1 %) showed HBV viremia by PCR. The PCR for HBV revealed coexistent HBV viremia in HCV viremia patients, despite HBsAg negativity by EIA. In HBV-endemic areas, the possibility of coinfection of HBV in HBsAg-negative patients with HCV viremia should be considered and molecular analysis for HBV-DNA performed. (author). 18 refs., 4 tabs

  16. HCV IRES-mediated core expression in zebrafish.

    Directory of Open Access Journals (Sweden)

    Ye Zhao

    Full Text Available The lack of small animal models for hepatitis C virus has impeded the discovery and development of anti-HCV drugs. HCV-IRES plays an important role in HCV gene expression, and is an attractive target for antiviral therapy. In this study, we report a zebrafish model with a biscistron expression construct that can co-transcribe GFP and HCV-core genes by human hepatic lipase promoter and zebrafish liver fatty acid binding protein enhancer. HCV core translation was designed mediated by HCV-IRES sequence and gfp was by a canonical cap-dependent mechanism. Results of fluorescence image and in situ hybridization indicate that expression of HCV core and GFP is liver-specific; RT-PCR and Western blotting show that both core and gfp expression are elevated in a time-dependent manner for both transcription and translation. It means that the HCV-IRES exerted its role in this zebrafish model. Furthermore, the liver-pathological impact associated with HCV-infection was detected by examination of gene markers and some of them were elevated, such as adiponectin receptor, heparanase, TGF-β, PDGF-α, etc. The model was used to evaluate three clinical drugs, ribavirin, IFNα-2b and vitamin B12. The results show that vitamin B12 inhibited core expression in mRNA and protein levels in dose-dependent manner, but failed to impact gfp expression. Also VB12 down-regulated some gene transcriptions involved in fat liver, liver fibrosis and HCV-associated pathological process in the larvae. It reveals that HCV-IRES responds to vitamin B12 sensitively in the zebrafish model. Ribavirin did not disturb core expression, hinting that HCV-IRES is not a target site of ribavirin. IFNα-2b was not active, which maybe resulted from its degradation in vivo for the long time. These findings demonstrate the feasibility of the zebrafish model for screening of anti-HCV drugs targeting to HCV-IRES. The zebrafish system provides a novel evidence of using zebrafish as a HCV model organism.

  17. Two Novel Motifs of Watermelon Silver Mottle Virus NSs Protein Are Responsible for RNA Silencing Suppression and Pathogenicity.

    Science.gov (United States)

    Huang, Chung-Hao; Hsiao, Weng-Rong; Huang, Ching-Wen; Chen, Kuan-Chun; Lin, Shih-Shun; Chen, Tsung-Chi; Raja, Joseph A J; Wu, Hui-Wen; Yeh, Shyi-Dong

    2015-01-01

    The NSs protein of Watermelon silver mottle virus (WSMoV) is the RNA silencing suppressor and pathogenicity determinant. In this study, serial deletion and point-mutation mutagenesis of conserved regions (CR) of NSs protein were performed, and the silencing suppression function was analyzed through agroinfiltration in Nicotiana benthamiana plants. We found two amino acid (aa) residues, H113 and Y398, are novel functional residues for RNA silencing suppression. Our further analyses demonstrated that H113 at the common epitope (CE) ((109)KFTMHNQ(117)), which is highly conserved in Asia type tospoviruses, and the benzene ring of Y398 at the C-terminal β-sheet motif ((397)IYFL(400)) affect NSs mRNA stability and protein stability, respectively, and are thus critical for NSs RNA silencing suppression. Additionally, protein expression of other six deleted (ΔCR1-ΔCR6) and five point-mutated (Y15A, Y27A, G180A, R181A and R212A) mutants were hampered and their silencing suppression ability was abolished. The accumulation of the mutant mRNAs and proteins, except Y398A, could be rescued or enhanced by co-infiltration with potyviral suppressor HC-Pro. When assayed with the attenuated Zucchini yellow mosaic virus vector in squash plants, the recombinants carrying individual seven point-mutated NSs proteins displayed symptoms much milder than the recombinant carrying the wild type NSs protein, suggesting that these aa residues also affect viral pathogenicity by suppressing the host silencing mechanism.

  18. Clearance of low levels of HCV viremia in the absence of a strong adaptive immune response

    Directory of Open Access Journals (Sweden)

    Manns Michael P

    2007-06-01

    Full Text Available Abstract Spontaneous clearance of hepatitis C virus (HCV has frequently been associated with the presence of HCV-specific cellular immunity. However, there had been also reports in chimpanzees demonstrating clearance of HCV-viremia in the absence of significant levels of detectable HCV-specific cellular immune responses. We here report seven asymptomatic acute hepatitis C cases with peak HCV-RNA levels between 300 and 100.000 copies/ml who all cleared HCV-RNA spontaneously. Patients were identified by a systematic screening of 1176 consecutive new incoming offenders in a German young offender institution. Four of the seven patients never developed anti-HCV antibodies and had normal ALT levels throughout follow-up. Transient weak HCV-specific CD4+ T cell responses were detectable in five individuals which did not differ in strength and breadth from age- and sex-matched patients with chronic hepatitis C and long-term recovered patients. In contrast, HCV-specific MHC-class-I-tetramer-positive cells were found in 3 of 4 HLA-A2-positive patients. Thus, these cases highlight that clearance of low levels of HCV viremia is possible in the absence of a strong adaptive immune response which might explain the low seroconversion rate after occupational exposure to HCV.

  19. The HCV and HIV coinfected patient: what have we learned about pathophysiology?

    Science.gov (United States)

    Talal, Andrew H; Canchis, P Wilfredo; Jacobson, Ira

    2002-02-01

    Hepatitis C virus (HCV) infection is an important problem in individuals who are also infected with HIV. HCV infection is very common in HIV-infected individuals, occurring in approximately one quarter to one third of this group, presumably as a consequence of shared routes of transmission related to virologic and pathogenic aspects of the viral infections. Although both are single-stranded RNA viruses and share similar epidemiologic properties, there are many important differences. Although the quantity of HIV RNA in plasma is an important prognostic determinant of HIV infection, this has not been shown with HCV. A direct relationship is apparent between HIV-related destruction of CD4 cells and the clinical consequences of the disease resulting from immunodeficiency. The pathogenesis of HCV, which occurs as a consequence of hepatic fibrosis, is much more complex. The hepatic stellate cell, the major producer of the extracellular matrix protein, is the main contributor to hepatic fibrosis, but the mechanism by which HCV induces hepatic fibrosis remains unclear. Treatment of HCV is increasingly important in HIV-infected patients due to improved HIV-associated morbidity and mortality and due to the frequency with which HCV occurs in patients with HIV-HCV coinfection. Timing of treatment initiation, management of side effects, and possible effects of anti-HCV therapy on HIV are among the issues that need consideration. Also, because several issues concerning HCV are unique to coinfected patients, further research is needed to determine optimal management of HCV in this setting.

  20. Full Viral Suppression, Low-Level Viremia, and Quantifiable Plasma HIV-RNA at the End of Pregnancy in HIV-Infected Women on Antiretroviral Treatment

    OpenAIRE

    Baroncelli, Silvia; Pirillo, Maria F.; Tamburrini, Enrica; Guaraldi, Giovanni; Pinnetti, Carmela; Antoni, Anna Degli; Galluzzo, Clementina M.; Stentarelli, Chiara; Amici, Roberta; Floridia, Marco

    2015-01-01

    There is limited information on full viral suppression and low-level HIV-RNA viremia in HIV-infected women at the end of pregnancy. We investigated HIV-RNA levels close to delivery in women on antiretroviral treatment in order to define rates of complete suppression, low-level viremia, and quantifiable HIV-RNA, exploring as potential determinants some clinical and viroimmunological variables. Plasma samples from a national study in Italy, collected between 2003 and 2012, were used. According ...

  1. Performance evaluation of the new Roche cobas AmpliPrep/cobas TaqMan HCV test, version 2.0, for detection and quantification of hepatitis C virus RNA

    NARCIS (Netherlands)

    S.D. Pas (Suzan); R. Molenkamp (Richard); J. Schinkel (Janke); S. Rebers; C. Copra (Cederick); S. Seven-Deniz; D. Thamke (Diana); R.J. de Knegt (Robert); B.L. Haagmans (Bart); M. Schutten (Martin)

    2013-01-01

    textabstractTo evaluate the analytical performance and explore the clinical applicability of the new Roche cobas AmpliPrep/cobas TaqMan HCV test, v2.0 (CAP/CTM v2.0), a platform comparison was performed on panels and diagnostic samples with the Roche cobas AmpliPrep/cobas TaqMan HCV test (CAP/CTM

  2. The Association between Female Genital Cutting and Spousal HCV Infection in Egypt

    Directory of Open Access Journals (Sweden)

    Chris R. Kenyon

    2014-01-01

    Full Text Available Objective. To identify the risk factors for HCV infection within married couples in Egypt. Methods. In 2008 Egypt conducted its first nationally representative survey of HCV prevalence. 11126 of the 12780 individuals aged 15–59 year who were sampled agreed to participate and provided information via a questionnaire about demographic and behavioural characteristics and blood for HCV antibody and RNA analysis. We assessed the risk factors for HCV infection in a subsample of 5182 married individuals via multivariate logistic regression. Results. Overall HCV antibody prevalence in the married couples was 18.2% (95% CI, 16.8–19.6. HCV antibody prevalence was higher in the husbands (23.7% than the wives (12.1%; P<0.001. Having a spouse who was infected with HCV was an independent risk factor for HCV infection with odds ratios of 2.1 (95% CI, 1.6–2.9 and 2.2 (95% CI, 1.6–3.1 for women and men, respectively. Husbands whose wives had experienced female genital cutting (FGC had a higher prevalence of HCV and this relationship was driven by a strong association in urban areas. Amongst the women there was no association between FGC and HCV overall but in urban areas only women who had experienced FGC were HCV infected. Conclusions. This study provides additional evidence of the importance of intrafamilial transmission of HCV in Egypt.

  3. Hepatitis C virus translation preferentially depends on active RNA replication.

    Directory of Open Access Journals (Sweden)

    Helene Minyi Liu

    Full Text Available Hepatitis C virus (HCV RNA initiates its replication on a detergent-resistant membrane structure derived from the endoplasmic reticulum (ER in the HCV replicon cells. By performing a pulse-chase study of BrU-labeled HCV RNA, we found that the newly-synthesized HCV RNA traveled along the anterograde-membrane traffic and moved away from the ER. Presumably, the RNA moved to the site of translation or virion assembly in the later steps of viral life cycle. In this study, we further addressed how HCV RNA translation was regulated by HCV RNA trafficking. When the movement of HCV RNA from the site of RNA synthesis to the Golgi complex was blocked by nocodazole, an inhibitor of ER-Golgi transport, HCV protein translation was surprisingly enhanced, suggesting that the translation of viral proteins occurred near the site of RNA synthesis. We also found that the translation of HCV proteins was dependent on active RNA synthesis: inhibition of viral RNA synthesis by an NS5B inhibitor resulted in decreased HCV viral protein synthesis even when the total amount of intracellular HCV RNA remained unchanged. Furthermore, the translation activity of the replication-defective HCV replicons or viral RNA with an NS5B mutation was greatly reduced as compared to that of the corresponding wildtype RNA. By performing live cell labeling of newly synthesized HCV RNA and proteins, we further showed that the newly synthesized HCV proteins colocalized with the newly synthesized viral RNA, suggesting that HCV RNA replication and protein translation take place at or near the same site. Our findings together indicate that the translation of HCV RNA is coupled to RNA replication and that the both processes may occur at the same subcellular membrane compartments, which we term the replicasome.

  4. Evaluation of the Abbott Real Time HCV genotype II assay for Hepatitis C virus genotyping.

    Science.gov (United States)

    Sariguzel, Fatma Mutlu; Berk, Elife; Gokahmetoglu, Selma; Ercal, Baris Derya; Celik, Ilhami

    2015-01-01

    The determination of HCV genotypes and subtypes is very important for the selection of antiviral therapy and epidemiological studies. The aim of this study was to evaluate the performance of Abbott Real Time HCV Genotype II assay in HCV genotyping of HCV infected patients in Kayseri, Turkey. One hundred patients with chronic hepatitis C admitted to our hospital were evaluated between June 2012 and December 2012, HCV RNA levels were determined by the COBAS® AmpliPrep/COBAS® TaqMan® 48 HCV test. HCV genotyping was investigated by the Abbott Real Time HCV Genotype II assay. With the exception of genotype 1, subtypes of HCV genotypes could not be determined by Abbott assay. Sequencing analysis was used as the reference method. Genotypes 1, 2, 3 and 4 were observed in 70, 4, 2 and 24 of the 100 patients, respectively, by two methods. The concordance between the two systems to determine HCV major genotypes was 100%. Of 70 patients with genotype 1, 66 showed infection with subtype 1b and 4 with subtype 1a by Abbott Real Time HCV Genotype II assay. Using sequence analysis, 61 showed infection with subtype 1b and 9 with subtype 1a. In determining of HCV genotype 1 subtypes, the difference between the two methods was not statistically significant (P>0.05). HCV genotype 4 and 3 samples were found to be subtype 4d and 3a, respectively, by sequence analysis. There were four patients with genotype 2. Sequence analysis revealed that two of these patients had type 2a and the other two had type 2b. The Abbott Real Time HCV Genotype II assay yielded results consistent with sequence analysis. However, further optimization of the Abbott Real Time HCV Genotype II assay for subtype identification of HCV is required.

  5. Inhibition of HCV replication by oxysterol-binding protein-related protein 4 (ORP4 through interaction with HCV NS5B and alteration of lipid droplet formation.

    Directory of Open Access Journals (Sweden)

    In-Woo Park

    Full Text Available Hepatitis C virus (HCV RNA replication involves complex interactions among the 3'x RNA element within the HCV 3' untranslated region, viral and host proteins. However, many of the host proteins remain unknown. In this study, we devised an RNA affinity chromatography /2D/MASS proteomics strategy and identified nine putative 3' X-associated host proteins; among them is oxysterol-binding protein-related protein 4 (ORP4, a cytoplasmic receptor for oxysterols. We determined the relationship between ORP4 expression and HCV replication. A very low level of constitutive ORP4 expression was detected in hepatocytes. Ectopically expressed ORP4 was detected in the endoplasmic reticulum and inhibited luciferase reporter gene expression in HCV subgenomic replicon cells and HCV core expression in JFH-1-infected cells. Expression of ORP4S, an ORP4 variant that lacked the N-terminal pleckstrin-homology domain but contained the C-terminal oxysterol-binding domain also inhibited HCV replication, pointing to an important role of the oxysterol-binding domain in ORP4-mediated inhibition of HCV replication. ORP4 was found to associate with HCV NS5B and its expression led to inhibition of the NS5B activity. ORP4 expression had little effect on intracellular lipid synthesis and secretion, but it induced lipid droplet formation in the context of HCV replication. Taken together, these results demonstrate that ORP4 is a negative regulator of HCV replication, likely via interaction with HCV NS5B in the replication complex and regulation of intracellular lipid homeostasis. This work supports the important role of lipids and their metabolism in HCV replication and pathogenesis.

  6. HIV RNA Suppression during and after Pregnancy among Women in the HIV Outpatient Study, 1996 to 2015.

    Science.gov (United States)

    Patel, Monita; Tedaldi, Ellen; Armon, Carl; Nesheim, Steven; Lampe, Margaret; Palella, Frank; Novak, Richard; Sutton, Madeline; Buchacz, Kate

    2018-01-01

    To examine HIV viral suppression during/after pregnancy. Prospective observational cohort. We identified pregnancies from 1996 to 2015. We examined HIV RNA viral load (VL), VL suppression (≤500 copies/mL), and antiretroviral therapy (ART) status at pregnancy start, end, and 6 months postpartum. We estimated risk ratios (RRs) and 95% confidence intervals (CIs) for VL nonsuppression. Among 253 pregnancies analyzed, 34.8% of women exhibited VL suppression at pregnancy start, 60.1% at pregnancy end, and 42.7% at 6 months postpartum. Median VL (log 10 copies/mL) was 2.80 (interquartile range [IQR]: 1.40-3.85) at pregnancy start, 1.70 (IQR: 1.40-2.82) at pregnancy end, and 2.30 (IQR: 1.40-3.86) at postpartum. Risk of postpartum VL nonsuppression was also lower among women on ART and with VL suppression at pregnancy end (versus those not; adjusted RR = 0.30, 95% CI: 0.17-0.53). Maintaining VL suppression among US women remains a challenge, particularly during postpartum. Achieving VL suppression earlier during pregnancy benefits women subsequently.

  7. HCV subtype characterization among injection drug users: implication for a crucial role of Zhenjiang in HCV transmission in China.

    Directory of Open Access Journals (Sweden)

    Chiyu Zhang

    Full Text Available BACKGROUND: HCV transmission is closely associated with drug-trafficking routes in China. However, the transmission route of HCV in Eastern China remains unclear. Here, we investigate the role of Zhenjiang city of Jiangsu province, an important transportation hub linking Shanghai with other regions of China, in HCV transmission. METHODOLOGY/PRINCIPAL FINDINGS: A total of 141 whole blood samples were collected from injection drug users (IDUs in Zhenjiang and then tested for HCV infection. Of them, 115 HCV positive plasmas were subjected to RNA extraction, RT-PCR amplification, and sequencing. The subtype characterization and the evolutionary origin of HCV strains circulating in Zhenjiang were determined using polygenetic or phylogeographic analyses. Seven HCV subtypes 1b, 2a, 3a, 3b, 6a, 6e and 6n were detected among Zhenjiang IDUs, showing a complex HCV epidemic. The most predominant subtypes were 3a (38% and 1b (26.8%. Among these subtypes, subtypes 3b, 6n and 6e originated from Southwestern China (i.e., Yunnan and/or Guangxi, subtypes 2a and 6a from Southern China (i.e., Guangdong, subtype 1b from Central (i.e., Henan and Northwestern (i.e., Xinjiang China, and subtype 3a from Southwestern (i.e., Yunnan and Northwestern (i.e., Xinjiang China. From Zhenjiang, subtypes 1b and 2a were further spread to Eastern (i.e., Shanghai and Northern (i.e., Beijing China, respectively. CONCLUSIONS/SIGNIFICANCE: The mixing of seven HCV subtypes in Zhenjiang from all quarters of China indicates that as an important middle station, Zhenjiang plays a crucial role in HCV transmission, just as it is important in population migration between other regions of China and Eastern China.

  8. Lentiviral transgenic microRNA-based shRNA suppressed mouse cytochromosome P450 3A (CYP3A expression in a dose-dependent and inheritable manner.

    Directory of Open Access Journals (Sweden)

    Yong Wang

    Full Text Available Cytochomosome P450 enzymes (CYP are heme-containing monooxygenases responsible for oxidative metabolism of many exogenous and endogenous compounds including drugs. The species difference of CYP limits the extent to which data obtained from animals can be translated to humans in pharmacodynamics or pharmacokinetics studies. Transgenic expression of human CYP in animals lacking or with largely reduced endogenous CYP counterparts is recognized as an ideal strategy to correct CYP species difference. CYP3A is the most abundant CYP subfamily both in human and mammals. In this study, we designed a microRNA-based shRNA (miR-shRNA simultaneously targeting four members of mouse CYP3A subfamily (CYP3A11, CYP3A16, CYP3A41 and CYP3A44, and transgenic mice expressing the designed miR-shRNA were generated by lentiviral transgenesis. Results showed that the CYP3A expression level in transgenic mice was markedly reduced compared to that in wild type or unrelated miR-shRNA transgenic mice, and was inversely correlated to the miR-shRNA expression level. The CYP3A expression levels in transgenic offspring of different generations were also remarkably lower compared to those of controls, and moreover the inhibition rate of CYP3A expression remained comparable over generations. The ratio of the targeted CYP3A transcriptional levels was comparable between knockdown and control mice of the same gender as detected by RT-PCR DGGE analysis. These data suggested that transgenic miR-shRNA suppressed CYP3A expression in a dose-dependent and inheritable manner, and transcriptional levels of the targeted CYP3As were suppressed to a similar extent. The observed knockdown efficacy was further confirmed by enzymatic activity analysis, and data showed that CYP3A activities in transgenic mice were markedly reduced compared to those in wild-type or unrelated miR-shRNA transgenic controls (1.11±0.71 vs 5.85±1.74, 5.9±2.4; P<0.01. This work laid down a foundation to further knock

  9. Suppression of liver receptor homolog-1 by microRNA-451 represses the proliferation of osteosarcoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhiyong; Wu, Shuwen; Lv, Shouzheng; Wang, Huili; Wang, Yong; Guo, Qiang, E-mail: qiangguo_gq@163.com

    2015-06-05

    Liver receptor homolog-1 (LRH-1) plays an important role in the onset and progression of many cancer types. However, the role of LRH-1 in osteosarcoma has not been well investigated. In this study, the critical role of LRH-1 in osteosarcoma cells was described. Quantitative polymerase chain reaction and Western blot analysis results revealed that LRH-1 was highly overexpressed in osteosarcoma cells. LRH-1 was knocked down by small interfering RNA (siRNA), and this phenomenon significantly inhibited osteosarcoma cell proliferation. Bioinformatics analysis results showed that LRH-1 contained putative binding sites of microRNA-451 (miR-451); this result was further validated through a dual-luciferase activity reporter assay. miR-451 was overexpressed in osteosarcoma cells through transfection of miR-451 mimics; miR-451 overexpression then significantly inhibited LRH-1 expression and cell proliferation. The loss of LRH-1 by siRNA or miR-451 mimics significantly impaired Wnt/β-catenin activity, leading to G0/G1 cell cycle arrest. Results showed that LRH-1 is implicated in osteosarcoma. Therefore, miR-451-induced suppression of LRH-1 can be a novel therapy to treat osteosarcoma. - Highlights: • LRH-1 was highly overexpressed in osteosarcoma cells. • Knockdown of LRH-1 inhibited osteosarcoma cell proliferation. • miR-451 directly targeted and regulated LRH-1 expression. • Overexpression of miR-451 suppressed Wnt activity.

  10. siRNA-mediated Erc gene silencing suppresses tumor growth in Tsc2 mutant renal carcinoma model.

    Science.gov (United States)

    Imamura, Osamu; Okada, Hiroaki; Takashima, Yuuki; Zhang, Danqing; Kobayashi, Toshiyuki; Hino, Okio

    2008-09-18

    Silencing of gene expression by small interfering RNAs (siRNAs) is rapidly becoming a powerful tool for genetic analysis and represents a potential strategy for therapeutic product development. However, there are no reports of systemic delivery of siRNAs for stable treatment except short hairpin RNAs (shRNAs). On the other hand, there are many reports of systemic delivery of siRNAs for transient treatment using liposome carriers and others. With regard to shRNAs, a report showed fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Therefore, we decided to use original siRNA microspheres instead of shRNA for stable treatment of disease. In this study, we designed rat-specific siRNA sequences for Erc/mesothelin, which is a tumor-specific gene expressed in the Eker (Tsc2 mutant) rat model of hereditary renal cancer and confirmed the efficacy of gene silencing in vitro. Then, by using siRNA microspheres, we found that the suppression of Erc/mesothelin caused growth inhibition of Tsc2 mutant renal carcinoma cells in tumor implantation experiments in mice.

  11. Local administration of siRNA through Microneedle: Optimization, Bio-distribution, Tumor Suppression and Toxicity

    Science.gov (United States)

    Tang, Tao; Deng, Yan; Chen, Jiao; Zhao, Yi; Yue, Ruifeng; Choy, Kwong Wai; Wang, Chi Chiu; Du, Quan; Xu, Yan; Han, Linxiao; Chung, Tony Kwok Hung

    2016-07-01

    Although RNA interference may become a novel therapeutic approach for cancer treatment, target-site accumulation of siRNA to achieve therapeutic dosage will be a major problem. Microneedle represents a better way to deliver siRNAs and we have evaluated for the first time the capability of a silicon microneedle array for delivery of Gapdh siRNA to the skin in vivo and the results showed that the microneedle arrays could effectively deliver siRNA to relevant regions of the skin noninvasively. For the further study in this field, we evaluated the efficacy of the injectable microneedle device for local delivery of siRNA to the mouse xenograft. The results presented here indicate that local administration of siRNA through injectable microneedle could effectively deliver siRNA into the tumor region, and inhibit tumor progression without major adverse effects.

  12. Ebolavirus VP35 uses a bimodal strategy to bind dsRNA for innate immune suppression

    Energy Technology Data Exchange (ETDEWEB)

    Kimberlin, Christopher R.; Bornholdt, Zachary A.; Li, Sheng; Woods, Jr., Virgil L.; MacRae, Ian J.; Saphire, Erica Ollmann (Scripps); (UCSD)

    2010-03-12

    Ebolavirus causes a severe hemorrhagic fever and is divided into five distinct species, of which Reston ebolavirus is uniquely nonpathogenic to humans. Disease caused by ebolavirus is marked by early immunosuppression of innate immune signaling events, involving silencing and sequestration of double-stranded RNA (dsRNA) by the viral protein VP35. Here we present unbound and dsRNA-bound crystal structures of the dsRNA-binding domain of Reston ebolavirus VP35. The structures show that VP35 forms an unusual, asymmetric dimer on dsRNA binding, with each of the monomers binding dsRNA in a different way: one binds the backbone whereas the other caps the terminus. Additional SAXS, DXMS, and dsRNA-binding experiments presented here support a model of cooperative dsRNA recognition in which binding of the first monomer assists binding of the next monomer of the oligomeric VP35 protein. This work illustrates how ebolavirus VP35 could mask key recognition sites of molecules such as RIG-I, MDA-5, and Dicer to silence viral dsRNA in infection.

  13. Suppression of SOX18 by siRNA inhibits cell growth and invasion of breast cancer cells.

    Science.gov (United States)

    Zhang, Jianxiang; Ma, Yanmei; Wang, Shoujun; Chen, Fu; Gu, Yuanting

    2016-06-01

    Breast cancer is the most common malignancy in women around the world, and its incidence and mortality rates are still rising. An increasing number of studies have reported that SOX18 plays an important role in various cancers. However, the role of SOX18 in breast cancer remains poorly understood. In this study, we aimed to investigate the biological role and potential molecular mechanism of SOX18 in breast cancer. We found that the mRNA and protein expression levels of SOX18 were prevalently and significantly overexpressed in human breast cancer cell lines. Next, we performed loss-of-function experiments by transfection of two breast cancer cell lines, BT-474 and MCF-7, with SOX18 small interfering RNAs (siRNA). Results showed that SOX18 siRNA transfection significantly suppressed mRNA and protein expression of SOX18 in breast cancer cells. Furthermore, knockdown of SOX18 significantly inhibited cell proliferation and invasion, but promoted apoptosis in breast cancer cells. Importantly, several oncogenic proteins, including the Ras homolog gene family member A (RhoA), platelet-derived growth factor B (PDGFB), Insulin-like growth factor 1 receptor (IGF-1R), and matrix metalloproteinase-7 (MMP-7), were markedly decreased by SOX18 siRNA. Taken together, the results of our study suggest that knockdown of SOX18 inhibits breast cancer cell growth and invasion, possibly by downregulating downstream oncogenic proteins, providing novel insights into the development of breast cancer therapy through targeting of SOX18.

  14. MicroRNA-1291 targets the FOXA2-AGR2 pathway to suppress pancreatic cancer cell proliferation and tumorigenesis

    Science.gov (United States)

    Qiu, Jing-Xin; Kim, Edward J.; Yu, Ai-Ming

    2016-01-01

    Pancreatic cancer is the fourth leading cause of cancer death in the United States. Better understanding of pancreatic cancer biology may help identify new oncotargets towards more effective therapies. This study investigated the mechanistic actions of microRNA-1291 (miR-1291) in the suppression of pancreatic tumorigenesis. Our data showed that miR-1291 was downregulated in a set of clinical pancreatic carcinoma specimens and human pancreatic cancer cell lines. Restoration of miR-1291 expression inhibited pancreatic cancer cell proliferation, which was associated with cell cycle arrest and enhanced apoptosis. Furthermore, miR-1291 sharply suppressed the tumorigenicity of PANC-1 cells in mouse models. A proteomic profiling study revealed 32 proteins altered over 2-fold in miR-1291-expressing PANC-1 cells that could be assembled into multiple critical pathways for cancer. Among them anterior gradient 2 (AGR2) was reduced to the greatest degree. Through computational and experimental studies we further identified that forkhead box protein A2 (FOXA2), a transcription factor governing AGR2 expression, was a direct target of miR-1291. These results connect miR-1291 to the FOXA2-AGR2 regulatory pathway in the suppression of pancreatic cancer cell proliferation and tumorigenesis, providing new insight into the development of miRNA-based therapy to combat pancreatic cancer. PMID:27322206

  15. HIV-Infected Ugandan Women on Antiretroviral Therapy Maintain HIV-1 RNA Suppression Across Periconception, Pregnancy, and Postpartum Periods.

    Science.gov (United States)

    Matthews, Lynn T; Ribaudo, Heather B; Kaida, Angela; Bennett, Kara; Musinguzi, Nicholas; Siedner, Mark J; Kabakyenga, Jerome; Hunt, Peter W; Martin, Jeffrey N; Boum, Yap; Haberer, Jessica E; Bangsberg, David R

    2016-04-01

    HIV-infected women risk sexual and perinatal HIV transmission during conception, pregnancy, childbirth, and breastfeeding. We compared HIV-1 RNA suppression and medication adherence across periconception, pregnancy, and postpartum periods, among women on antiretroviral therapy (ART) in Uganda. We analyzed data from women in a prospective cohort study, aged 18-49 years, enrolled at ART initiation and with ≥1 pregnancy between 2005 and 2011. Participants were seen quarterly. The primary exposure of interest was pregnancy period, including periconception (3 quarters before pregnancy), pregnancy, postpartum (6 months after pregnancy outcome), or nonpregnancy related. Regression models using generalized estimating equations compared the likelihood of HIV-1 RNA ≤400 copies per milliliter, pregnancy, and 89% of postpartum visits, and was more likely during periconception (adjusted odds ratio, 2.15) compared with nonpregnant periods. Average ART adherence was 90% [interquartile range (IQR), 70%-98%], 93% (IQR, 82%-98%), 92% (IQR, 72%-98%), and 88% (IQR, 63%-97%) during nonpregnant, periconception, pregnant, and postpartum periods, respectively. Average adherence pregnancy were virologically suppressed at most visits, with an increased likelihood of suppression and high adherence during periconception follow-up. Increased frequency of 72-hour gaps suggests a need for increased adherence support during postpartum periods.

  16. HBV-DNA in hemodialysis patients infected by HCV

    International Nuclear Information System (INIS)

    Arababadi, Mohammad Kazemi; Hassanshahi, Gholamhossein; Yousefi, Hassan

    2009-01-01

    End-stage renal disease patients on chronic hemodialysis (HD) patients are at risk for both hepatitis B virus (HBV) and hepatitis C virus (HCV) infection, and they may coexist. To determine the prevalence and clinical impact of HBV and HCV infection, we studied poly chain reaction (PCR) and reverse transcription (RT)-PCR on the blood samples of 90 HD patients in Kerman, Iran. ELISA test was used to detect anti-HBc, anti-HBs and HBs Ag. We found that 30 out of 90 (33.3%) patients were PCR-RT-PCR positive for HCV-RNA. No HBV-DNA (0%) was detected through the PCR study in both positive and negative HCV-RNA patient groups. Though none of the samples was HBsAg positive, 10 (33.3%) HCV-RNA positive patients were anti-HBc positive, and 12 (40.7%) were anti-HBs positive. We conclude that prevalence of hepatitis C infection is high in HD patients in our region, but not associated with active HBV infection. (author)

  17. Exposure to low infective doses of HCV induces cellular immune responses without consistently detectable viremia or seroconversion in chimpanzees

    International Nuclear Information System (INIS)

    Shata, Mohamed Tarek; Tricoche, Nancy; Perkus, Marion; Tom, Darley; Brotman, Betsy; McCormack, Patricia; Pfahler, Wolfram; Lee, Dong-Hun; Tobler, Leslie H.; Busch, Michael; Prince, Alfred M.

    2003-01-01

    In hepatitis C virus (HCV) infection, there is accumulating data suggesting the presence of cellular immune responses to HCV in exposed but seemingly uninfected populations. Some studies have suggested cross-reactive antigens rather than prior HCV exposure as the main reason for the immune responses. In this study we address this question by analyzing the immune response of chimpanzees that have been sequentially exposed to increasing doses of HCV virions. The level of viremia, as well as the immune responses to HCV at different times after virus inoculation, were examined. Our data indicate that HCV infective doses as low as 1-10 RNA (+) virions induce detectable cellular immune responses in chimpanzees without consistently detectable viremia or persistent seroconversion. However, increasing the infective doses of HCV to 100 RNA (+) virions overcame the low-inoculum-induced immune response and produced high-level viremia followed by seroconversion

  18. E-cadherin is transcriptionally activated via suppression of ZEB1 transcriptional repressor by small RNA-mediated gene silencing.

    Directory of Open Access Journals (Sweden)

    Minami Mazda

    Full Text Available RNA activation has been reported to be induced by small interfering RNAs (siRNAs that act on the promoters of several genes containing E-cadherin. In this study, we present an alternative mechanism of E-cadherin activation in human PC-3 cells by siRNAs previously reported to possess perfect-complementary sequences to E-cadherin promoter. We found that activation of E-cadherin can be also induced via suppression of ZEB1, which is a transcriptional repressor of E-cadherin, by seed-dependent silencing mechanism of these siRNAs. The functional seed-complementary sites of the siRNAs were found in the coding region in addition to the 3' untranslated region of ZEB1 mRNA. Promoter analyses indicated that E-boxes, which are ZEB1-binding sites, in the upstream promoter region are indispensable for E-cadherin transcription by the siRNAs. Thus, the results caution against ignoring siRNA seed-dependent silencing effects in genome-wide transcriptional regulation. In addition, members of miR-302/372/373/520 family, which have the same seed sequences with one of the siRNAs containing perfect-complementarity to E-cadherin promoter, are also found to activate E-cadherin transcription. Thus, E-cadherin could be upregulated by the suppression of ZEB1 transcriptional repressor by miRNAs in vivo.

  19. [Clinical benefit of HCV core antigen assay in patients receiving interferon and ribavirin combination therapy].

    Science.gov (United States)

    Higashimoto, Makiko; Takahashi, Masahiko; Jokyu, Ritsuko; Saito, Hidetsugu

    2006-02-01

    A highly sensitive second generation HCV core antigen assay has recently been developed. We compared viral disappearance and kinetics data between commercially available core antigen assays, Lumipulse Ortho HCV Ag, and a quantitative HCV RNA PCR assay, Cobas Amplicor HCV Monitor Test, Version 2 to estimate the predictive benefit of sustained viral response (SVR) and non-SVR in 59 patients treated with interferon and ribavirin combination therapy. We found a good correlation between HCV core Ag and HCV RNA level regardless of genotype. Although the sensitivity of the core antigen assay was lower than PCR, the dynamic range was broader than that of the PCR assay, so that we did not need to dilute the samples in 59 patients. We detected serial decline of core Ag levels in 24 hrs, 7 days and 14 days after interferon combination therapy. The decline of core antigen levels was significant in SVR patients compared to non-SVR as well as in genotype 2a, 2b patients compared to 1b. Core antigen-negative on day 1 could predict all 10 SVR patients (PPV = 100%), whereas RNA-negative could predict 22 SVR out of 25 on day 14 (PPV = 88.0%). None of the patients who had detectable serum core antigen on day 14 became SVR(NPV = 100%), although NPV was 91.2% on RNA negativity. An easy, simple, low cost new HCV core antigen detecting system seems to be useful for assessing and monitoring IFN treatment for HCV.

  20. A key role of microRNA-29b for the suppression of colon cancer cell migration by American ginseng.

    Directory of Open Access Journals (Sweden)

    Deepak Poudyal

    Full Text Available Metastasis of colon cancer cells increases the risk of colon cancer mortality. We have recently shown that American ginseng prevents colon cancer, and a Hexane extract of American Ginseng (HAG has particularly potent anti-inflammatory and anti-cancer properties. Dysregulated microRNA (miR expression has been observed in several disease conditions including colon cancer. Using global miR expression profiling, we observed increased miR-29b in colon cancer cells following exposure to HAG. Since miR-29b plays a role in regulating the migration of cancer cells, we hypothesized that HAG induces miR-29b expression to target matrix metalloproteinase-2 (MMP-2 thereby suppressing the migration of colon cancer cells. Results are consistent with this hypothesis. Our study supports the understanding that targeting MMP-2 by miR-29b is a mechanism by which HAG suppresses the migration of colon cancer cells.

  1. Nonsense and sense suppression abilities of original and derivative Methanosarcina mazei pyrrolysyl-tRNA synthetase-tRNA(Pyl pairs in the Escherichia coli BL21(DE3 cell strain.

    Directory of Open Access Journals (Sweden)

    Keturah A Odoi

    Full Text Available Systematic studies of nonsense and sense suppression of the original and three derivative Methanosarcina mazei PylRS-tRNA(Pyl pairs and cross recognition between nonsense codons and various tRNA(Pyl anticodons in the Escherichia coli BL21(DE3 cell strain are reported. tRNA(CUA(Pyl is orthogonal in E. coli and able to induce strong amber suppression when it is co-expressed with pyrrolysyl-tRNA synthetase (PylRS and charged with a PylRS substrate, N(ε-tert-butoxycarbonyl-L-lysine (BocK. Similar to tRNA(CUA(Pyl, tRNA(UUA(Pyl is also orthogonal in E. coli and can be coupled with PylRS to genetically incorporate BocK at an ochre mutation site. Although tRNA(UUA(Pyl is expected to recognize a UAG codon based on the wobble hypothesis, the PylRS-tRNA(UUA(Pyl pair does not give rise to amber suppression that surpasses the basal amber suppression level in E. coli. E. coli itself displays a relatively high opal suppression level and tryptophan (Trp is incorporated at an opal mutation site. Although the PylRS-tRNA(UCA(Pyl pair can be used to encode BocK at an opal codon, the pair fails to suppress the incorporation of Trp at the same site. tRNA(CCU(Pyl fails to deliver BocK at an AGG codon when co-expressed with PylRS in E. coli.

  2. Long noncoding RNA TUG1 is a diagnostic factor in lung adenocarcinoma and suppresses apoptosis via epigenetic silencing of BAX.

    Science.gov (United States)

    Liu, Huan; Zhou, Guizhi; Fu, Xin; Cui, Haiyan; Pu, Guangrui; Xiao, Yao; Sun, Wei; Dong, Xinhua; Zhang, Libin; Cao, Sijia; Li, Guiqin; Wu, Xiaowei; Yang, Xu

    2017-11-24

    Lung cancer is one of the leading causes of cancer-related mortality, and responds badly to existing treatment. Thus, it is of urgent need to identify novel diagnostic markers and therapeutic targets. Increasing evidences have indicated that long non-coding RNAs (lncRNAs) play an important role in initiation and progression of lung cancer. However, the role of lncRNA Taurine upregulated 1 (TUG1) in lung adenocarcinoma (LAD) progression is not well known. In this study, we determined the diagnostic value of TUG1 in LAD patients, and further uncovered the underlying functional mechanism. Our results showed that TUG1 was significantly upregulated in LAD cells and serum samples. Receiver operator characteristic (ROC) analysis suggested a relatively higher area under the curve (AUC) of TUG1 (0.756) contrast to cyfra21-1 (0.619). In addition, high TUG1 level was associated with enhanced tumor size, degree of differentiation, lymph node metastases, distant metastasis and TNM stage. Cell functional assays showed that knockdown of TUG1 suppressed LAD cell viability and promoted cell apoptosis. We then sought to reveal the underlying regulatory mechanism, and the pro-apoptotic protein BAX was then identified as the downstream target of TUG1. Gain and loss functional assays showed that inhibition of BAX reversed the induced apoptosis by TUG1 knockdown. Finally, RNA immunoprecipitation and Chromatin immunoprecipitation revealed that TUG1 suppressed BAX expression through physically interacting with EZH2. In conclusion, lncRNA TUG1 is a promising diagnostic marker for LAD patients and suppression of TUG1 levels could be a future direction to promote the prognosis of LAD patients.

  3. Hotair mediates hepatocarcinogenesis through suppressing miRNA-218 expression and activating P14 and P16 signaling.

    Science.gov (United States)

    Fu, Wei-Ming; Zhu, Xiao; Wang, Wei-Mao; Lu, Ying-Fei; Hu, Bao-Guang; Wang, Hua; Liang, Wei-Cheng; Wang, Shan-Shan; Ko, Chun-Hay; Waye, Mary Miu-Yee; Kung, Hsiang-Fu; Li, Gang; Zhang, Jin-Fang

    2015-10-01

    Long non-coding RNA Hotair has been considered as a pro-oncogene in multiple cancers. Although there is emerging evidence that reveals its biological function and the association with clinical prognosis, the precise mechanism remains largely elusive. We investigated the function and mechanism of Hotair in hepatocellular carcinoma (HCC) cell models and a xenograft mouse model. The regulatory network between miR-218 and Hotair was elucidated by RNA immunoprecipitation and luciferase reporter assays. Finally, the correlation between Hotair, miR-218 and the target gene Bmi-1 were evaluated in 52 paired HCC specimens. In this study, we reported that Hotair negatively regulated miR-218 expression in HCC, which might be mediated through an EZH2-targeting-miR-218-2 promoter regulatory axis. Further investigation revealed that Hotair knockdown dramatically inhibited cell viability and induced G1-phase arrest in vitro and suppressed tumorigenicity in vivo by promoting miR-218 expression. Oncogene Bmi-1 was shown to be a functional target of miR-218, and the main downstream targets signaling, P16(Ink4a) and P14(ARF), were activated in Hotair-suppressed tumorigenesis. In primary human HCC specimens, Hotair and Bmi-1 were concordantly upregulated whereas miR-218 was downregulated in these tissues. Furthermore, Hotair was inversely associated with miR-218 expression and positively correlated with Bmi-1 expression in these clinical tissues. Hotair silence activates P16(Ink4a) and P14(ARF) signaling by enhancing miR-218 expression and suppressing Bmi-1 expression, resulting in the suppression of tumorigenesis in HCC. Copyright © 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  4. Prevalence of HCV infection and associated factors among illicit drug users in Breves, State of Pará, northern Brazil

    OpenAIRE

    Pacheco,Suzy Danielly Barbosa; Silva-Oliveira,Gláucia Caroline; Maradei-Pereira,Luciana Maria Cunha; Crescente,José Ângelo Barletta; Lemos,José Alexandre Rodrigues de; Oliveira-Filho,Aldemir Branco de

    2014-01-01

    Introduction: Illicit drug users (DUs) are vulnerable to hepatitis C virus (HCV) infection. The shared use of illicit drugs is the main method of HCV transmission. Methods: A cross-sectional study was conducted in Breves, in northern Brazil. We surveyed 187 DUs to determine the prevalence of and factors associated with HCV infection. Results: The prevalence of anti-HCV antibodies was 36.9%, and the prevalence of hepatitis C virus-ribonucleic acid (HCV-RNA) was 31%. Hepatitis C virus infec...

  5. Down-regulation of LncRNA TUG1 enhances radiosensitivity in bladder cancer via suppressing HMGB1 expression.

    Science.gov (United States)

    Jiang, Huijuan; Hu, Xigang; Zhang, Hongzhi; Li, Wenbo

    2017-04-04

    Long non-coding RNAs (lncRNAs) have been reported to regulate the sensitivity of different cancer cells to chemoradiotherapy. Aberrant expression of lncRNA Taurine-upregulated gene 1 (TUG1) has been found to be involved in the development of bladder cancer, however, its function and underlying mechanism in the radioresistance of bladder cancer remains unclear. Quantitative real-time PCR (qRT-PCR) was conducted to measure the expression of TUG1 and HMGB1 mRNA in bladder cancer tissues and cell lines. HMGB1 protein levels were tested by western blot assays. Different doses of X-ray were used for radiation treatment of bladder cancer cells. Colony survival and cell viability were detected by clonogenic assay and CCK-8 Kit, respectively. Cell apoptosis was determined by flow cytometry. A xenograft mouse model was constructed to observe the effect of TUG1 on tumor growth in vivo. The levels of TUG1 and HMGB1 were remarkably increased in bladder cancer tissues and cell lines. Radiation treatment markedly elevated the expression of TUG1 and HMGB1. TUG1 knockdown inhibited cell proliferation, promoted cell apoptosis and decreased colony survival in SW780 and BIU87 cells under radiation. Moreover, TUG1 depletion suppressed the HMGB1 mRNA and protein levels. Furthermore, overexpression of HMGB1 reversed TUG1 knockdown-induced effect in bladder cancer cells. Radiation treatment dramatically reduced the tumor volume and weight in xenograft model, and this effect was more obvious when combined with TUG1 silencing. LncRNA TUG1 knockdown enhances radiosensitivity of bladder cancer by suppressing HMGB1 expression. TUG1 acts as a potential regulator of radioresistance of bladder cancer, and it may represent a promising therapeutic target for bladder cancer patients.

  6. MicroRNA-214 suppresses gluconeogenesis by targeting activating transcriptional factor 4.

    Science.gov (United States)

    Li, Kai; Zhang, Jin; Yu, Junjie; Liu, Bin; Guo, Yajie; Deng, Jiali; Chen, Shanghai; Wang, Chunxia; Guo, Feifan

    2015-03-27

    Although the gluconeogenesis pathway is already a target for the treatment of type 2 diabetes, the potential role of microRNAs (miRNAs) in gluconeogenesis remains unclear. Here, we investigated the physiological functions of miR-214 in gluconeogenesis. The expression of miR-214 was suppressed by glucagon via protein kinase A signaling in primary hepatocytes, and miR-214 was down-regulated in the livers of fasted, high fat diet-induced diabetic and leptin receptor-mutated (db/db) mice. The overexpression of miR-214 in primary hepatocytes suppressed glucose production, and silencing miR-214 reversed this effect. Gluconeogenesis was suppressed in the livers of mice injected with an adenovirus expressing miR-214 (Ad-miR-214). Additionally, Ad-miR-214 alleviated high fat diet-induced elevation of gluconeogenesis and hyperglycemia. Furthermore, we found that activating transcription factor 4 (ATF4), a reported target of miR-214, can reverse the suppressive effect of miR-214 on gluconeogenesis in primary hepatocytes, and this suppressive effect was blocked in liver-specific ATF4 knock-out mice. ATF4 regulated gluconeogenesis via affecting forkhead box protein O1 (FOXO1) transcriptional activity. Finally, liver-specific miR-214 transgenic mice exhibited suppressed gluconeogenesis and reduced expression of ATF4, phosphoenolpyruvate carboxykinase, and glucose-6-phosphatase in liver. Taken together, our results suggest that the miR-214-ATF4 axis is a novel pathway for the regulation of hepatic gluconeogenesis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. MicroRNA-214 Suppresses Gluconeogenesis by Targeting Activating Transcriptional Factor 4*

    Science.gov (United States)

    Li, Kai; Zhang, Jin; Yu, Junjie; Liu, Bin; Guo, Yajie; Deng, Jiali; Chen, Shanghai; Wang, Chunxia; Guo, Feifan

    2015-01-01

    Although the gluconeogenesis pathway is already a target for the treatment of type 2 diabetes, the potential role of microRNAs (miRNAs) in gluconeogenesis remains unclear. Here, we investigated the physiological functions of miR-214 in gluconeogenesis. The expression of miR-214 was suppressed by glucagon via protein kinase A signaling in primary hepatocytes, and miR-214 was down-regulated in the livers of fasted, high fat diet-induced diabetic and leptin receptor-mutated (db/db) mice. The overexpression of miR-214 in primary hepatocytes suppressed glucose production, and silencing miR-214 reversed this effect. Gluconeogenesis was suppressed in the livers of mice injected with an adenovirus expressing miR-214 (Ad-miR-214). Additionally, Ad-miR-214 alleviated high fat diet-induced elevation of gluconeogenesis and hyperglycemia. Furthermore, we found that activating transcription factor 4 (ATF4), a reported target of miR-214, can reverse the suppressive effect of miR-214 on gluconeogenesis in primary hepatocytes, and this suppressive effect was blocked in liver-specific ATF4 knock-out mice. ATF4 regulated gluconeogenesis via affecting forkhead box protein O1 (FOXO1) transcriptional activity. Finally, liver-specific miR-214 transgenic mice exhibited suppressed gluconeogenesis and reduced expression of ATF4, phosphoenolpyruvate carboxykinase, and glucose-6-phosphatase in liver. Taken together, our results suggest that the miR-214-ATF4 axis is a novel pathway for the regulation of hepatic gluconeogenesis. PMID:25657009

  8. Analytical characteristics and comparative evaluation of Aptima HCV quant Dx assay with the Abbott RealTime HCV assay and Roche COBAS AmpliPrep/COBAS TaqMan HCV quantitative test v2.0.

    Science.gov (United States)

    Worlock, A; Blair, D; Hunsicker, M; Le-Nguyen, T; Motta, C; Nguyen, C; Papachristou, E; Pham, J; Williams, A; Vi, M; Vinluan, B; Hatzakis, A

    2017-04-04

    The Aptima HCV Quant Dx assay (Aptima assay) is a fully automated quantitative assay on the Panther® system. This assay is intended for confirmation of diagnosis and monitoring of HCV RNA in plasma and serum specimens. The purpose of the testing described in this paper was to evaluate the performance of the Aptima assay. The analytical sensitivity, analytical specificity, precision, and linearity of the Aptima assay were assessed. The performance of the Aptima assay was compared to two commercially available HCV assays; the Abbott RealTime HCV assay (Abbott assay, Abbott Labs Illinois, USA) and the Roche COBAS Ampliprep/COBAS Taqman HCV Quantitative Test v2.0 (Roche Assay, Roche Molecular Systems, Pleasanton CA, USA). The 95% Lower Limit of Detection (LoD) of the assay was determined from dilutions of the 2nd HCV WHO International Standard (NIBSC 96/798 genotype 1) and HCV positive clinical specimens in HCV negative human plasma and serum. Probit analysis was performed to generate the 95% predicted detection limits. The Lower Limit of Quantitation (LLoQ) was established for each genotype by diluting clinical specimens and the 2nd HCV WHO International Standard (NIBSC 96/798 genotype 1) in HCV negative human plasma and serum. Specificity was determined using 200 fresh and 536 frozen HCV RNA negative clinical specimens including 370 plasma specimens and 366 serum specimens. Linearity for genotypes 1 to 6 was established by diluting armored RNA or HCV positive clinical specimens in HCV negative serum or plasma from 8.08 log IU/mL to below 1 log IU/mL. Precision was tested using a 10 member panel made by diluting HCV positive clinical specimens or spiking armored RNA into HCV negative plasma and serum. A method comparison was conducted against the Abbott assay using 1058 clinical specimens and against the Roche assay using 608 clinical specimens from HCV infected patients. In addition, agreement between the Roche assay and the Aptima assay using specimens with low

  9. New modalities in the treatment of HCV in pre and post - transplantation setting.

    Science.gov (United States)

    Araz, Filiz; Durand, Christine M; Gürakar, Ahmet

    2015-05-01

    End-stage liver disease and hepatocellular carcinoma (HCC) secondary to hepatitis C virus (HCV) infection are the leading indications for liver transplantation (LT) in developed countries. Recurrence of HCV following LT is universal if the recipient has detectable serum HCV RNA at the time of LT. Recurrent HCV has an accelerated course and is associated with poor long term patient and graft survival. Interferon (IFN)-based regimens have achieved low Sustained Virological Rates (SVR) in this setting and are associated with a high rate of adverse events, resulting in treatment discontinuation. With advances in understanding the HCV life cycle, drugs targeting specific steps, particularly inhibiting the NS3/4A protease, NS5B RNA dependent RNA polymerase and the NS5A protein, have been developed. Sofosbuvir (SOF), a nucleotide analogue inhibitor of NS5B polymerase was the first compound to enter the market. Combinations of SOF with new HCV antivirals from other classes have allowed for IFN-free regimens with low rates of adverse events and SVR rates >90%. With the availability of newer agents, the approach to the treatment of HCV infection during the pre-and post-liver transplantation period has changed. We will hereby review the current status of HCV treatment and discuss the potential future therapies in the transplant setting.

  10. A Novel Type of Non-coding RNA, nc886, Implicated in Tumor Sensing and Suppression

    Directory of Open Access Journals (Sweden)

    Yong Sun Lee

    2015-06-01

    Full Text Available nc886 (=vtRNA2-1, pre-miR-886, or CBL3 is a newly identified non-coding RNA (ncRNA that represses the activity of protein kinase R (PKR. nc886 is transcribed by RNA polymerase III (Pol III and is intriguingly the first case of a Pol III gene whose expression is silenced by CpG DNA hypermethylation in several types of cancer. PKR is a sensor protein that recognizes evading viruses and induces apoptosis to eliminate infected cells. Like viral infection, nc886 silencing activates PKR and induces apoptosis. Thus, the significance of the nc886:PKR pathway in cancer is to sense and eliminate pre-malignant cells, which is analogous to PKR's role in cellular innate immunity. Beyond this tumor sensing role, nc886 plays a putative tumor suppressor role as supported by experimental evidence. Collectively, nc886 provides a novel example how epigenetic silencing of a ncRNA contributes to tumorigenesis by controlling the activity of its protein ligand.

  11. A comprehensive siRNA screen for kinases that suppress macroautophagy in optimal growth conditions

    DEFF Research Database (Denmark)

    Szyniarowski, Piotr; Corcelle-Termeau, Elisabeth; Farkas, Thomas

    2011-01-01

    , whereas CSNK1A1, BUB1, PKLR and NEK4 suppressed autophagosome formation downstream or independent of mTORC1. Importantly, all identified kinases except for BUB1 regulated macroautophagy also in immortalized MCF-10A breast epithelial cells. The kinases identified here shed light to the complex regulation...

  12. Hepatitis C virus genotyping of organ donor samples to aid in transplantation of HCV-positive organs.

    Science.gov (United States)

    Gentile, Caren; Van Deerlin, Vivianna M; Goldberg, David S; Reese, Peter P; Hasz, Richard D; Abt, Peter; Blumberg, Emily; Farooqi, Midhat S

    2018-02-01

    Given the availability of new highly efficacious anti-HCV therapies, some clinicians have advocated for wider use of kidneys from hepatitis C virus-positive (HCV+) donors, including transplanting them into HCV-negative recipients. As treatment regimens for HCV are commonly guided by genotype, pretransplant HCV genotyping of tissue donors would be beneficial. To our knowledge, donor HCV genotyping has never been reported. We retrieved archived frozen plasma samples for 17 previous organ donors through a local organ procurement organization. We performed HCV genotyping using the eSensor HCVg Direct Test (GenMark Diagnostics) and also by Sanger sequencing, for confirmation (Retrogen). In addition, viral loads were measured using the COBAS AmpliPrep/TaqMan system (Roche Diagnostics). We found that most of the samples (n = 14) were HCV Genotype 1a with the remainder being Genotype 2b (n = 1) or Genotype 3 (n = 2). All genotyping results were concordant with Sanger sequencing. The average HCV viral load in the sample group was ~ 1.6 million IU/mL (range: ~16 000 IU/mL to 7 million IU/mL). We demonstrate that viral RNA from organ donor plasma can be successfully genotyped for HCV. This ability suggests that transplantation of HCV+ kidneys into HCV-negative recipients, followed by genotype-guided antiviral therapy, could be feasible. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Vanillin Suppresses Cell Motility by Inhibiting STAT3-Mediated HIF-1α mRNA Expression in Malignant Melanoma Cells.

    Science.gov (United States)

    Park, Eun-Ji; Lee, Yoon-Mi; Oh, Taek-In; Kim, Byeong Mo; Lim, Beong-Ou; Lim, Ji-Hong

    2017-03-01

    Recent studies have shown that vanillin has anti-cancer, anti-mutagenic, and anti-metastatic activity; however, the precise molecular mechanism whereby vanillin inhibits metastasis and cancer progression is not fully elucidated. In this study, we examined whether vanillin has anti-cancer and anti-metastatic activities via inhibition of hypoxia-inducible factor-1α (HIF-1α) in A2058 and A375 human malignant melanoma cells. Immunoblotting and quantitative real time (RT)-PCR analysis revealed that vanillin down-regulates HIF-1α protein accumulation and the transcripts of HIF-1α target genes related to cancer metastasis including fibronectin 1 ( FN1 ), lysyl oxidase-like 2 ( LOXL2 ), and urokinase plasminogen activator receptor ( uPAR ). It was also found that vanillin significantly suppresses HIF-1α mRNA expression and de novo HIF-1α protein synthesis. To understand the suppressive mechanism of vanillin on HIF-1α expression, chromatin immunoprecipitation was performed. Consequently, it was found that vanillin causes inhibition of promoter occupancy by signal transducer and activator of transcription 3 (STAT3), but not nuclear factor-κB (NF-κB), on HIF1A . Furthermore, an in vitro migration assay revealed that the motility of melanoma cells stimulated by hypoxia was attenuated by vanillin treatment. In conclusion, we demonstrate that vanillin might be a potential anti-metastatic agent that suppresses metastatic gene expression and migration activity under hypoxia via the STAT3-HIF-1α signaling pathway.

  14. High-Salt Intake Suppressed MicroRNA-133a Expression in Dahl SS Rat Myocardium

    Science.gov (United States)

    Guo, Tong-Shuai; Zhang, Jie; Mu, Jian-Jun; Liu, Fu-Qiang; Yuan, Zu-Yi; Ren, Ke-Yu; Wang, Dan

    2014-01-01

    Salt-sensitive individuals show earlier and more serious cardiac damage than nonsalt-sensitive ones. Some studies have suggested that microRNA-133a could reduce cardiac hypertrophy and myocardial fibrosis. The current study aims to investigate the different functions of high-salt intake on salt-sensitive (SS) rats and Sprague-Dawley (SD) rats and the involvement of microRNA-133a in these roles. After high-salt intervention, the left ventricular mass (LVW) and left ventricular mass index (LVMI) of the salt-sensitive high salt (SHS) group were obviously higher than those of the salt-sensitive low salt (SLS) group. However, the difference between the Sprague-Dawley high salt (DHS) group and the Sprague-Dawley low salt (DLS) group was not significant. Compared with SLS group, collagen I and connective tissue growth factor (CTGF) in the heart of SHS group were significantly higher, whereas no statistical difference was observed between the DHS group and the DLS group. Compared with low-salt diet, microRNA-133a in the heart of both strains were significantly decreased, but that in the SHS group decreased more significantly. These results suggest that high salt intervention could down-regulate the expression of myocardial microRNA-133a, which may be one of the mechanisms involved in myocardial fibrosis in salt-sensitive hypertension. PMID:24937684

  15. High-Salt Intake Suppressed MicroRNA-133a Expression in Dahl SS Rat Myocardium

    Directory of Open Access Journals (Sweden)

    Tong-Shuai Guo

    2014-06-01

    Full Text Available Salt-sensitive individuals show earlier and more serious cardiac damage than nonsalt-sensitive ones. Some studies have suggested that microRNA-133a could reduce cardiac hypertrophy and myocardial fibrosis. The current study aims to investigate the different functions of high-salt intake on salt-sensitive (SS rats and Sprague-Dawley (SD rats and the involvement of microRNA-133a in these roles. After high-salt intervention, the left ventricular mass (LVW and left ventricular mass index (LVMI of the salt-sensitive high salt (SHS group were obviously higher than those of the salt-sensitive low salt (SLS group. However, the difference between the Sprague-Dawley high salt (DHS group and the Sprague-Dawley low salt (DLS group was not significant. Compared with SLS group, collagen I and connective tissue growth factor (CTGF in the heart of SHS group were significantly higher, whereas no statistical difference was observed between the DHS group and the DLS group. Compared with low-salt diet, microRNA-133a in the heart of both strains were significantly decreased, but that in the SHS group decreased more significantly. These results suggest that high salt intervention could down-regulate the expression of myocardial microRNA-133a, which may be one of the mechanisms involved in myocardial fibrosis in salt-sensitive hypertension.

  16. MET-2-Dependent H3K9 Methylation Suppresses Transgenerational Small RNA Inheritance.

    Science.gov (United States)

    Lev, Itamar; Seroussi, Uri; Gingold, Hila; Bril, Roberta; Anava, Sarit; Rechavi, Oded

    2017-04-24

    In C. elegans, alterations to chromatin produce transgenerational effects, such as inherited increase in lifespan and gradual loss of fertility. Inheritance of histone modifications can be induced by double-stranded RNA-derived heritable small RNAs. Here, we show that the mortal germline phenotype, which is typical of met-2 mutants, defective in H3K9 methylation, depends on HRDE-1, an argonaute that carries small RNAs across generations, and is accompanied by accumulated transgenerational misexpression of heritable small RNAs. We discovered that MET-2 inhibits small RNA inheritance, and, as a consequence, induction of RNAi in met-2 mutants leads to permanent RNAi responses that do not terminate even after more than 30 generations. We found that potentiation of heritable RNAi in met-2 animals results from global hyperactivation of the small RNA inheritance machinery. Thus, changes in histone modifications can give rise to drastic transgenerational epigenetic effects, by controlling the overall potency of small RNA inheritance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Sevoflurane suppresses proliferation by upregulating microRNA-203 in breast cancer cells.

    Science.gov (United States)

    Liu, Jiaying; Yang, Longqiu; Guo, Xia; Jin, Guangli; Wang, Qimin; Lv, Dongdong; Liu, Junli; Chen, Qiu; Song, Qiong; Li, Baolin

    2018-05-03

    Rapid proliferation is one of the critical characteristics of breast cancer. However, the underlying regulatory mechanism of breast cancer cell proliferation is largely unclear. The present study indicated that sevoflurane, one of inhalational anesthetics, could significantly suppress breast cancer cell proliferation by arresting cell cycle at G1 phase. Notably, the rescue experiment indicated that miR-203 was upregulated by sevoflurane and mediated the function of sevoflurane on suppressing the breast cancer cell proliferation. The present study indicated the function of the sevoflurane/miR-203 signaling pathway on regulating breast cancer cell proliferation. These results provide mechanistic insight into how the sevoflurane/miR-203 signaling pathway supresses proliferation of breast cancer cells, suggesting the sevoflurane/miR-203 pathway may be a potential target in the treatment of breast cancer.

  18. HIV Infection Status as a Predictor of Hepatitis C Virus RNA Testing in Primary Care

    Science.gov (United States)

    Yartel, Anthony K.; Morgan, Rebecca L.; Rein, David B.; Brown, Kimberly Ann; Kil, Natalie B.; Massoud, Omar I.; Fallon, Michael B.; Smith, Bryce D.

    2015-01-01

    Introduction Receipt of hepatitis C virus (HCV) RNA testing following a positive HCV antibody (anti-HCV+) test result to establish current infection is a quality indicator for HCV-related care. This study examines HIV infection status as a predictor of HCV RNA test receipt after an anti-HCV+ result in the primary care setting. Methods Electronic medical records of anti-HCV+ patients from a multisite retrospective study of patients aged ≥18 years who utilized one or more primary care outpatient services during 2005–2010 were analyzed in 2014. A multivariable logistic regression model examined the independent relationships between patient characteristics and receipt of HCV RNA testing. Results Among 1,115 anti-HCV+ patients, 133 (11.9%) were also HIV-positive. Of these, 77.4% (n=103) underwent HCV RNA testing to determine current infection status. By contrast, 66.7% (n=654/980) of anti-HCV+ patients who were HIV-negative received HCV RNA testing. Following multivariable adjustment, the odds of receiving HCV RNA testing were higher among anti-HCV+ patients who were also HIV-positive (AOR=1.9, 95% CI=1.2, 3.0), compared with their HIV-negative counterparts. Elevated alanine aminotransferase level was also associated with receipt of HCV RNA testing (AOR=1.9, 95% CI=1.4, 2.4). Black race was associated with decreased odds of receiving HCV RNA testing (AOR=0.7, 95% CI=0.5, 1.0). Conclusions HIV infection status is independently associated with the likelihood of receiving HCV RNA testing following an anti-HCV+ result. One quarter of anti-HCV+ patients who were also HIV-positive and one third of their HIV-negative counterparts, respectively, did not receive testing to establish active HCV infection, which is imperative for appropriate care and treatment. PMID:25896194

  19. HCV and HCC molecular epidemiology

    Directory of Open Access Journals (Sweden)

    Flor H. Pujol

    2007-02-01

    Full Text Available

    iHepatitis C virus (HCV is a member of the family Flaviviridae, responsible for the majority of the non-A non-B post-transfusion hepatitis before 1990. Around 170 millions persons in the world are thought to be infected with this virus. A high number of HCV-infected people develop cirrhosis and from these, a significant proportion progresses to hepatocellular carcinoma (HCC. Six HCV genotypes and a large number of subtypes in each genotype have been described. Infections with HCV genotype 1 are associated with the lowest therapeutic success. HCV genotypes 1, 2, and 3 have a worldwide distribution. HCV subtypes 1a and 1b are the most common genotypes in the United States and are also are predominant in Europe, while in Japan, subtype 1b is predominant. Although HCV subtypes 2a and 2b are relatively common in America, Europe, and Japan, subtype 2c is found commonly in northern Italy. HCV genotype 3a is frequent in intravenous drug abusers in Europe and the United States. HCV genotype 4 appears to be prevalent in Africa and the Middle East, and genotypes 5 and 6 seem to be confined to South Africa and Asia, respectively. HCC accounts for approximately 6% of all human cancers. Around 500,000 to 1 million cases occur annually worldwide, with HCC being the fifth common malignancy in men and the ninth in women. HCC is frequently a consequence of infection by HBV and HCV. The first line of evidences comes from epidemiologic studies. While HBV is the most frequent cause of HCC in many countries of Asia and South America, both HBV and HCV are found at similar frequencies, and eventually HCV at a higher frequency than HBV, among HCC patients in Europe, North America, and Japan. The cumulative appearance rate of HCC might be higher for HCV

  20. MicroRNA-320a suppresses human colon cancer cell proliferation by directly targeting {beta}-catenin

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jian-Yong [State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 710032 Xi' an (China); State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032 Xi' an (China); Huang, Yi [Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, 710032 Xi' an (China); Li, Ji-Peng [State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032 Xi' an (China); Zhang, Xiang; Wang, Lei [State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 710032 Xi' an (China); Meng, Yan-Ling [Department of Immunology, Fourth Military Medical University, 710032 Xi' an (China); Yan, Bo [State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 710032 Xi' an (China); Bian, Yong-Qian [State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032 Xi' an (China); Zhao, Jing [State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 710032 Xi' an (China); Wang, Wei-Zhong, E-mail: weichang@fmmu.edu.cn [State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032 Xi' an (China); and others

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer miR-320a is downregulated in human colorectal carcinoma. Black-Right-Pointing-Pointer Overexpression of miR-320a inhibits colon cancer cell proliferation. Black-Right-Pointing-Pointer {beta}-Catenin is a direct target of miR-320a in colon cancer cells. Black-Right-Pointing-Pointer miR-320a expression inversely correlates with mRNA expression of {beta}-catenin's target genes in human colon carcinoma. -- Abstract: Recent profile studies of microRNA (miRNA) expression have documented a deregulation of miRNA (miR-320a) in human colorectal carcinoma. However, its expression pattern and underlying mechanisms in the development and progression of colorectal carcinoma has not been elucidated clearly. Here, we performed real-time PCR to examine the expression levels of miR-320a in colon cancer cell lines and tumor tissues. And then, we investigated its biological functions in colon cancer cells by a gain of functional strategy. Further more, by the combinational approaches of bioinformatics and experimental validation, we confirmed target associations of miR-320a in colorectal carcinoma. Our results showed that miR-320a was frequently downregulated in cancer cell lines and colon cancer tissues. And we demonstrated that miR-320a restoration inhibited colon cancer cell proliferation and {beta}-catenin, a functionally oncogenic molecule was a direct target gene of miR-320a. Finally, the data of real-time PCR showed the reciprocal relationship between miR-320a and {beta}-catenin's downstream genes in colon cancer tissues. These findings indicate that miR-320a suppresses the growth of colon cancer cells by directly targeting {beta}-catenin, suggesting its application in prognosis prediction and cancer treatment.

  1. MicroRNA-320a suppresses human colon cancer cell proliferation by directly targeting β-catenin

    International Nuclear Information System (INIS)

    Sun, Jian-Yong; Huang, Yi; Li, Ji-Peng; Zhang, Xiang; Wang, Lei; Meng, Yan-Ling; Yan, Bo; Bian, Yong-Qian; Zhao, Jing; Wang, Wei-Zhong

    2012-01-01

    Highlights: ► miR-320a is downregulated in human colorectal carcinoma. ► Overexpression of miR-320a inhibits colon cancer cell proliferation. ► β-Catenin is a direct target of miR-320a in colon cancer cells. ► miR-320a expression inversely correlates with mRNA expression of β-catenin’s target genes in human colon carcinoma. -- Abstract: Recent profile studies of microRNA (miRNA) expression have documented a deregulation of miRNA (miR-320a) in human colorectal carcinoma. However, its expression pattern and underlying mechanisms in the development and progression of colorectal carcinoma has not been elucidated clearly. Here, we performed real-time PCR to examine the expression levels of miR-320a in colon cancer cell lines and tumor tissues. And then, we investigated its biological functions in colon cancer cells by a gain of functional strategy. Further more, by the combinational approaches of bioinformatics and experimental validation, we confirmed target associations of miR-320a in colorectal carcinoma. Our results showed that miR-320a was frequently downregulated in cancer cell lines and colon cancer tissues. And we demonstrated that miR-320a restoration inhibited colon cancer cell proliferation and β-catenin, a functionally oncogenic molecule was a direct target gene of miR-320a. Finally, the data of real-time PCR showed the reciprocal relationship between miR-320a and β-catenin’s downstream genes in colon cancer tissues. These findings indicate that miR-320a suppresses the growth of colon cancer cells by directly targeting β-catenin, suggesting its application in prognosis prediction and cancer treatment.

  2. MicroRNA203a suppresses glioma tumorigenesis through an ATM-dependent interferon response pathway.

    Science.gov (United States)

    Yang, Chuan He; Wang, Yinan; Sims, Michelle; Cai, Chun; He, Ping; Häcker, Hans; Yue, Junming; Cheng, Jinjun; Boop, Frederick A; Pfeffer, Lawrence M

    2017-12-22

    Glioblastoma (GBM) is a deadly and incurable brain tumor. Although microRNAs (miRNAs) play critical roles in regulating the cancer cell phenotype, the underlying mechanisms of how they regulate tumorigenesis are incompletely understood. We previously showed that miR-203a is expressed at relatively low levels in GBM patients, and ectopic miR-203a expression in GBM cell lines inhibited cell proliferation and migration, increased sensitivity to apoptosis induced by interferon (IFN) or temozolomide in vitro , and inhibited GBM tumorigenesis in vivo . Here we show that ectopic expression of miR-203a in GBM cell lines promotes the IFN response pathway as evidenced by increased IFN production and IFN-stimulated gene (ISG) expression, and high basal tyrosine phosphorylation of multiple STAT proteins. Importantly, we identified that miR-203a directly suppressed the protein levels of ataxia-telangiectasia mutated (ATM) kinase that negatively regulates IFN production. We found that high ATM expression in GBM correlates with poor patient survival and that ATM expression is inversely correlated with miR-203a expression. Knockout of ATM expression and inhibition of ATM function in GBM cell lines inhibited cell proliferation and migration, increased sensitivity to apoptosis induced by therapeutic agents in vitro , and markedly suppressed GBM tumor growth and promoted animal survival. In contrast, restoring ATM levels in GBM cells ectopically expressing miR-203a increased tumorigenicity and decreased animal survival. Our study suggests that low miR-203a expression in GBM suppresses the interferon response through an ATM-dependent pathway.

  3. frequency and risk factors for chronic HCV infection: a community based study

    International Nuclear Information System (INIS)

    Tahir, M.; Mustafa, G.; Khan, M.B.

    2011-01-01

    It was a community based, cross-sectional study undertaken to assess the frequency of HCV infection and to find out the risk factors associated with its spread. Methods: Study was carried out from Oct 2004 to Mar 2005. One hundred and twenty five apparently healthy consecutive subjects not known to be infected with HBV or HCV, between the ages 13 and 60 years with equal sex distribution were selected from the population of the Village Mera Kalan near Rawalpindi. They were screened for Anti HCV antibodies using ELISA and interviewed in detail. Subjects found positive for Anti HCV Ab were tested for ALT (Alanine aminotransferase) levels and HCV RNA by PCR. Results: The frequency of HCV was found to be 53.6%. The most important risk factor associated with the transmission of HCV infection was unsafe injection therapy with contaminated equipment. Other risk factors include ear and nose piercing by unsterilized means in females and sharing of razors in males. Conclusion: The prevalence of HCV infection in our population is significantly higher than in the developed world. Public awareness programs should target the identified risk factors to prevent HCV transmission. (author)

  4. Frequency of anti-HCV antibodies in patients with lichen planus

    International Nuclear Information System (INIS)

    Mahboob, A.; Haroon, T.S.; Iqbal, Z.; Butt, A.K.

    2003-01-01

    Objective: To determine the frequency of anti-HCV antibodies, identify risk factors associated with HCV infection and to screen asymptomatic carries in patients with lichen planus. Subjects and Methods: A total of 184 clinically diagnosed cased of lichen (LP) were selected for the study. Blood samples of all the patients were tested for anti hepatitis C virus antibodies (anti-HCV-Ab). Polymerase chain reaction for hepatitis C virus was done in patients with positive anti-HCV-Ab. Trancutaneous liver biopsy was performed in 7 patients with positive HCV-RNA. The histopathological results were evaluated using validated Metavir and Knodell scoring systems. Results: Out of 184 LP patients, 43 (23.4%) were anti-HCV antibodies positive. Females were predominantly affected and male to female ratio was 1:5.1. Maximum positively for anti-HCV was observed in age group 31-40 years (39.53%) followed by 41-50 years (25.58%). Eighty-one percent patients had history of dental treatment and 63% had received multiple injections for various ailments. Forty percent patients had family history of jaundice while 26% had jaundice in the past. Ten out of 16 anti-HCV antibody positive patients, checked for HCV-RNA, had high levels of virus in blood. Transcutaneous liver biopsy done in 7 patients revealed underlying liver disease at various stages. Four patients treated with alpha-interferon and ribazole therapy for liver disease, showed marked improvement in their skin disease. Conclusion: A high prevalence of HCV infection was detected in patients with lichen planus. Patients with lichen planus should be screened for HCV carrier state. (author)

  5. High false-negative rate of anti-HCV among Egyptian patients on regular hemodialysis.

    Science.gov (United States)

    El-Sherif, Assem; Elbahrawy, Ashraf; Aboelfotoh, Atef; Abdelkarim, Magdy; Saied Mohammad, Abdel-Gawad; Abdallah, Abdallah Mahmoud; Mostafa, Sadek; Elmestikawy, Amr; Elwassief, Ahmed; Salah, Mohamed; Abdelbaseer, Mohamed Ali; Abdelwahab, Kouka Saadeldin

    2012-07-01

    Routine serological testing for hepatitis C virus (HCV) infection among hemodialysis (HD) patients is currently recommended. A dilemma existed on the value of serology because some investigators reported a high rate of false-negative serologic testing. In this study, we aimed to detect the false-negative rate of anti-HCV among Egyptian HD patients. Seventy-eight HD patients, negative for anti-HCV, anti-HIV, and hepatitis B surface antigen, were tested for HCV RNA by reverse transcriptase polymerase chain reaction (RT-PCR). In the next step, the viral load was quantified by real-time PCR in RT-PCR-positive patients. Risk factors for HCV infection, as well as clinical and biochemical indicators of liver disease, were compared between false-negative and true-negative anti-HCV HD patients. The frequency of false-negative anti-HCV was 17.9%. Frequency of blood transfusion, duration of HD, dialysis at multiple centers, and diabetes mellitus were not identified as risk factors for HCV infection. The frequency of false-negative results had a linear relation to the prevalence of HCV infection in the HD units. Timely identification of HCV within dialysis units is needed in order to lower the risk of HCV spread within the HD units. The high false-negative rate of anti-HCV among HD patients in our study justifies testing of a large scale of patients for precious assessment of effectiveness of nucleic acid amplification technology testing in screening HD patient. © 2012 The Authors. Hemodialysis International © 2012 International Society for Hemodialysis.

  6. MicroRNA-200a suppresses the Wnt/?-catenin signaling pathway by interacting with ?-catenin

    OpenAIRE

    SU, JUAN; ZHANG, ANLING; SHI, ZHENDONG; MA, FEIFEI; PU, PEIYU; WANG, TAO; ZHANG, JIE; KANG, CHUNSHENG; ZHANG, QINGYU

    2011-01-01

    The Wnt/?-catenin signaling pathway is crucial for human organ development and is involved in tumor progression of many cancers. Accumulating evidence suggests that the expression of ?-catenin is, in part, regulated by specific microRNAs (miRNAs). The purpose of this study was to determine the expression of a recently identified epithelial to mesenchymal transition (EMT)-associated tumor suppressor microRNA (miR)-200a, in cancer cells. We also aimed to identify specific miR-200a target genes ...

  7. Analysis of in vitro replicated human hepatitis C virus (HCV for the determination of genotypes and quasispecies

    Directory of Open Access Journals (Sweden)

    Chelyapov Nickolas

    2006-09-01

    Full Text Available Abstract Isolation and self-replication of infectious HCV has been a difficult task. However, this is needed for the purposes of developing rational drugs and for the analysis of the natural virus. Our recent report of an in vitro system for the isolation of human HCV from infected patients and their replication in tissue culture addresses this challenge. At California Institute of Molecular Medicine several isolates of HCV, called CIMM-HCV, were grown for over three years in cell culture. This is a report of the analysis of CIMM-HCV isolates for subtypes and quasispecies using a 269 bp segment of the 5'UTR. HCV RNA from three patients and eleven CIMM-HCV were analyzed for this purpose. All isolates were essentially identical. Isolates of HCV from one patient were serially transmitted into fresh cells up to eight times and the progeny viruses from each transmission were compared to each other and also to the primary isolates from the patient's serum. Some isolates were also transmitted to different cell types, while others were cultured continuously without retransmission for over three years. We noted minor sequence changes when HCV was cultured for extended periods of time. HCV in T-cells and non-committed lymphoid cells showed a few differences when compared to isolates obtained from immortalized B-cells. These viruses maintained close similarity despite repeated transmissions and passage of time. There were no subtypes or quasispecies noted in CIMM-HCV.

  8. RNA.

    Science.gov (United States)

    Darnell, James E., Jr.

    1985-01-01

    Ribonucleic acid (RNA) converts genetic information into protein and usually must be processed to serve its function. RNA types, chemical structure, protein synthesis, translation, manufacture, and processing are discussed. Concludes that the first genes might have been spliced RNA and that humans might be closer than bacteria to primitive…

  9. MicroRNA-133a suppresses multiple oncogenic membrane receptors and cell invasion in non-small cell lung carcinoma.

    Directory of Open Access Journals (Sweden)

    Lu-Kai Wang

    Full Text Available Non-small cell lung cancers (NSCLCs cause high mortality worldwide, and the cancer progression can be activated by several genetic events causing receptor dysregulation, including mutation or amplification. MicroRNAs are a group of small non-coding RNA molecules that function in gene silencing and have emerged as the fine-tuning regulators during cancer progression. MiR-133a is known as a key regulator in skeletal and cardiac myogenesis, and it acts as a tumor suppressor in various cancers. This study demonstrates that miR-133a expression negatively correlates with cell invasiveness in both transformed normal bronchial epithelial cells and lung cancer cell lines. The oncogenic receptors in lung cancer cells, including insulin-like growth factor 1 receptor (IGF-1R, TGF-beta receptor type-1 (TGFBR1, and epidermal growth factor receptor (EGFR, are direct targets of miR-133a. MiR-133a can inhibit cell invasiveness and cell growth through suppressing the expressions of IGF-1R, TGFBR1 and EGFR, which then influences the downstream signaling in lung cancer cell lines. The cell invasive ability is suppressed in IGF-1R- and TGFBR1-repressed cells and this phenomenon is mediated through AKT signaling in highly invasive cell lines. In addition, by using the in vivo animal model, we find that ectopically-expressing miR-133a dramatically suppresses the metastatic ability of lung cancer cells. Accordingly, patients with NSCLCs who have higher expression levels of miR-133a have longer survival rates compared with those who have lower miR-133a expression levels. In summary, we identified the tumor suppressor role of miR-133a in lung cancer outcome prognosis, and we demonstrated that it targets several membrane receptors, which generally produce an activating signaling network during the progression of lung cancer.

  10. MicroRNA-99 family members suppress Homeobox A1 expression in epithelial cells.

    Directory of Open Access Journals (Sweden)

    Dan Chen

    Full Text Available The miR-99 family is one of the evolutionarily most ancient microRNA families, and it plays a critical role in developmental timing and the maintenance of tissue identity. Recent studies, including reports from our group, suggested that the miR-99 family regulates various physiological processes in adult tissues, such as dermal wound healing, and a number of disease processes, including cancer. By combining 5 independent genome-wide expression profiling experiments, we identified a panel of 266 unique transcripts that were down-regulated in epithelial cells transfected with miR-99 family members. A comprehensive bioinformatics analysis using 12 different sequence-based microRNA target prediction algorithms revealed that 81 out of these 266 down-regulated transcripts are potential direct targets for the miR-99 family. Confirmation experiments and functional analyses were performed to further assess 6 selected miR-99 target genes, including mammalian Target of rapamycin (mTOR, Homeobox A1 (HOXA1, CTD small phosphatase-like (CTDSPL, N-myristoyltransferase 1 (NMT1, Transmembrane protein 30A (TMEM30A, and SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 5 (SMARCA5. HOXA1 is a known proto-oncogene, and it also plays an important role in embryonic development. The direct targeting of the miR-99 family to two candidate binding sequences located in the HOXA1 mRNA was confirmed using a luciferase reporter gene assay and a ribonucleoprotein-immunoprecipitation (RIP-IP assay. Ectopic transfection of miR-99 family reduced the expression of HOXA1, which, in consequence, down-regulated the expression of its downstream gene (i.e., Bcl-2 and led to reduced proliferation and cell migration, as well as enhanced apoptosis. In summary, we identified a number of high-confidence miR-99 family target genes, including proto-oncogene HOXA1, which may play an important role in regulating epithelial cell proliferation and

  11. MicroRNA-99 family members suppress Homeobox A1 expression in epithelial cells.

    Science.gov (United States)

    Chen, Dan; Chen, Zujian; Jin, Yi; Dragas, Dragan; Zhang, Leitao; Adjei, Barima S; Wang, Anxun; Dai, Yang; Zhou, Xiaofeng

    2013-01-01

    The miR-99 family is one of the evolutionarily most ancient microRNA families, and it plays a critical role in developmental timing and the maintenance of tissue identity. Recent studies, including reports from our group, suggested that the miR-99 family regulates various physiological processes in adult tissues, such as dermal wound healing, and a number of disease processes, including cancer. By combining 5 independent genome-wide expression profiling experiments, we identified a panel of 266 unique transcripts that were down-regulated in epithelial cells transfected with miR-99 family members. A comprehensive bioinformatics analysis using 12 different sequence-based microRNA target prediction algorithms revealed that 81 out of these 266 down-regulated transcripts are potential direct targets for the miR-99 family. Confirmation experiments and functional analyses were performed to further assess 6 selected miR-99 target genes, including mammalian Target of rapamycin (mTOR), Homeobox A1 (HOXA1), CTD small phosphatase-like (CTDSPL), N-myristoyltransferase 1 (NMT1), Transmembrane protein 30A (TMEM30A), and SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 5 (SMARCA5). HOXA1 is a known proto-oncogene, and it also plays an important role in embryonic development. The direct targeting of the miR-99 family to two candidate binding sequences located in the HOXA1 mRNA was confirmed using a luciferase reporter gene assay and a ribonucleoprotein-immunoprecipitation (RIP-IP) assay. Ectopic transfection of miR-99 family reduced the expression of HOXA1, which, in consequence, down-regulated the expression of its downstream gene (i.e., Bcl-2) and led to reduced proliferation and cell migration, as well as enhanced apoptosis. In summary, we identified a number of high-confidence miR-99 family target genes, including proto-oncogene HOXA1, which may play an important role in regulating epithelial cell proliferation and migration during

  12. Biochemical and single-molecule analyses of the RNA silencing suppressing activity of CrPV-1A.

    Science.gov (United States)

    Watanabe, Mariko; Iwakawa, Hiro-Oki; Tadakuma, Hisashi; Tomari, Yukihide

    2017-10-13

    Viruses often encode viral silencing suppressors (VSSs) to counteract the hosts' RNA silencing activity. The cricket paralysis virus 1A protein (CrPV-1A) is a unique VSS that binds to a specific Argonaute protein (Ago)-the core of the RNA-induced silencing complex (RISC)-in insects to suppress its target cleavage reaction. However, the precise molecular mechanism of CrPV-1A action remains unclear. Here we utilized biochemical and single-molecule imaging approaches to analyze the effect of CrPV-1A during target recognition and cleavage by Drosophila Ago2-RISC. Our results suggest that CrPV-1A obstructs the initial target searching by Ago2-RISC via base pairing in the seed region. The combination of biochemistry and single-molecule imaging may help to pave the way for mechanistic understanding of VSSs with diverse functions. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Isolation and characterization of highly replicable hepatitis C virus genotype 1a strain HCV-RMT.

    Science.gov (United States)

    Arai, Masaaki; Tokunaga, Yuko; Takagi, Asako; Tobita, Yoshimi; Hirata, Yuichi; Ishida, Yuji; Tateno, Chise; Kohara, Michinori

    2013-01-01

    Multiple genotype 1a clones have been reported, including the very first hepatitis C virus (HCV) clone called H77. The replication ability of some of these clones has been confirmed in vitro and in vivo, although this ability is somehow compromised. We now report a newly isolated genotype 1a clone, designated HCV-RMT, which has the ability to replicate efficiently in patients, chimeric mice with humanized liver, and cultured cells. An authentic subgenomic replicon cell line was established from the HCV-RMT sequence with spontaneous introduction of three adaptive mutations, which were later confirmed to be responsible for efficient replication in HuH-7 cells as both subgenomic replicon RNA and viral genome RNA. Following transfection, the HCV-RMT RNA genome with three adaptive mutations was maintained for more than 2 months in HuH-7 cells. One clone selected from the transfected cells had a high copy number, and its supernatant could infect naïve HuH-7 cells. Direct injection of wild-type HCV-RMT RNA into the liver of chimeric mice with humanized liver resulted in vigorous replication, similar to inoculation with the parental patient's serum. A study of virus replication using HCV-RMT derivatives with various combinations of adaptive mutations revealed a clear inversely proportional relationship between in vitro and in vivo replication abilities. Thus, we suggest that HCV-RMT and its derivatives are important tools for HCV genotype 1a research and for determining the mechanism of HCV replication in vitro and in vivo.

  14. Isolation and characterization of highly replicable hepatitis C virus genotype 1a strain HCV-RMT.

    Directory of Open Access Journals (Sweden)

    Masaaki Arai

    Full Text Available Multiple genotype 1a clones have been reported, including the very first hepatitis C virus (HCV clone called H77. The replication ability of some of these clones has been confirmed in vitro and in vivo, although this ability is somehow compromised. We now report a newly isolated genotype 1a clone, designated HCV-RMT, which has the ability to replicate efficiently in patients, chimeric mice with humanized liver, and cultured cells. An authentic subgenomic replicon cell line was established from the HCV-RMT sequence with spontaneous introduction of three adaptive mutations, which were later confirmed to be responsible for efficient replication in HuH-7 cells as both subgenomic replicon RNA and viral genome RNA. Following transfection, the HCV-RMT RNA genome with three adaptive mutations was maintained for more than 2 months in HuH-7 cells. One clone selected from the transfected cells had a high copy number, and its supernatant could infect naïve HuH-7 cells. Direct injection of wild-type HCV-RMT RNA into the liver of chimeric mice with humanized liver resulted in vigorous replication, similar to inoculation with the parental patient's serum. A study of virus replication using HCV-RMT derivatives with various combinations of adaptive mutations revealed a clear inversely proportional relationship between in vitro and in vivo replication abilities. Thus, we suggest that HCV-RMT and its derivatives are important tools for HCV genotype 1a research and for determining the mechanism of HCV replication in vitro and in vivo.

  15. Suppression of MicroRNA let-7a Expression by Agmatine Regulates Neural Stem Cell Differentiation.

    Science.gov (United States)

    Song, Juhyun; Oh, Yumi; Kim, Jong Youl; Cho, Kyoung Joo; Lee, Jong Eun

    2016-11-01

    Neural stem cells (NSCs) effectively reverse some severe central nervous system (CNS) disorders, due to their ability to differentiate into neurons. Agmatine, a biogenic amine, has cellular protective effects and contributes to cellular proliferation and differentiation in the CNS. Recent studies have elucidated the function of microRNA let-7a (let-7a) as a regulator of cell differentiation with roles in regulating genes associated with CNS neurogenesis. This study aimed to investigate whether agmatine modulates the expression of crucial regulators of NSC differentiation including DCX, TLX, c-Myc, and ERK by controlling let-7a expression. Our data suggest that high levels of let-7a promoted the expression of TLX and c-Myc, as well as repressed DCX and ERK expression. In addition, agmatine attenuated expression of TLX and increased expression of ERK by negatively regulating let-7a. Our study therefore enhances the present understanding of the therapeutic potential of NSCs in CNS disorders.

  16. The effect of HIV infection and HCV viremia on inflammatory mediators and hepatic injury-The Women's Interagency HIV Study.

    Directory of Open Access Journals (Sweden)

    Sheila M Keating

    Full Text Available Hepatitis C virus infection induces inflammation and while it is believed that HIV co-infection enhances this response, HIV control may reduce inflammation and liver fibrosis in resolved or viremic HCV infection. Measurement of systemic biomarkers in co-infection could help define the mechanism of inflammation on fibrosis and determine if HIV control reduces liver pathology. A nested case-control study was performed to explore the relationship of systemic biomarkers of inflammation with liver fibrosis in HCV viremic and/or seropositive women with and without HIV infection. Serum cytokines, chemokines, growth factors and cell adhesion molecules were measured in HIV uninfected (HIV-, n = 18, ART-treated HIV-controlled (ARTc, n = 20, uncontrolled on anti-retroviral therapy (ARTuc, n = 21 and elite HIV controllers (Elite, n = 20. All were HCV seroreactive and had either resolved (HCV RNA-; <50IU/mL or had chronic HCV infection (HCV RNA+. In HCV and HIV groups, aspartate aminotransferase to platelet ratio (APRI was measured and compared to serum cytokines, chemokines, growth factors and cell adhesion molecules. APRI correlated with sVCAM, sICAM, IL-10, and IP-10 levels and inversely correlated with EGF, IL-17, TGF-α and MMP-9 levels. Collectively, all HCV RNA+ subjects had higher sVCAM, sICAM and IP-10 compared to HCV RNA-. In the ART-treated HCV RNA+ groups, TNF-α, GRO, IP-10, MCP-1 and MDC were higher than HIV-, Elite or both. In ARTuc, FGF-2, MPO, soluble E-selectin, MMP-9, IL-17, GM-CSF and TGF-α are lower than HIV-, Elite or both. Differential expression of soluble markers may reveal mechanisms of pathogenesis or possibly reduction of fibrosis in HCV/HIV co-infection.

  17. A microRNA, mir133b, suppresses melanopsin expression mediated by failure dopaminergic amacrine cells in RCS rats.

    Science.gov (United States)

    Li, Yaochen; Li, Chunshi; Chen, Zhongshan; He, Jianrong; Tao, Zui; Yin, Zheng Qin

    2012-03-01

    The photopigment melanopsin and melanopsin-containing RGCs (mRGCs or ipRGCs) represent a brand-new and exciting direction in the field of visual field. Although the melanopsin is much less sensitive to light and has far less spatial resolution, mRGCs have the unique ability to project to brain areas by the retinohypothalamic tract (RHT) and communicate directly with the brain. Unfortunately, melanopsin presents lower expression levels in many acute and chronic retinal diseases. The molecular mechanisms underlying melanopsin expression are not yet really understood. MicroRNAs play important roles in the control of development. Most importantly, the link of microRNA biology to a diverse set of cellular processes, ranging from proliferation, apoptosis and malignant transformation to neuronal development and fate specification is emerging. We employed Royal College of Surgeon (RCS) rats as animal model to investigate the underlying molecular mechanism regulating melanopsin expression using a panel of miRNA by quantitative real-time reverse transcription polymerase chain reaction. We identified a microRNA, mir133b, that is specifically expressed in retinal dopaminergic amacrine cells as well as markedly increased expression at early stage during retinal degeneration in RCS rats. The overexpression of mir133b downregulates the important transcription factor Pitx3 expression in dopaminergic amacrine cells in RCS rats retinas and makes amacrine cells stratification deficit in IPL. Furthermore, deficient dopaminergic amacrine cells presented decreased TH expression and dopamine production, which lead to a failure to direct mRGCs dendrite to stratify and enter INL and lead to the reduced correct connections between amacrine cells and mRGCs. Our study suggested that overexpression of mir133b and downregulated Pitx3 suppress maturation and function of dopaminergic amacrine cells, and overexpression of mir133b decreased TH and D2 receptor expression as well as dopamine

  18. Overexpression of p53 activated by small activating RNA suppresses the growth of human prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Ge Q

    2016-01-01

    Full Text Available Qiangqiang Ge,1,* Chenghe Wang,2,* Yajun Ruan,1,* Zhong Chen,1 Jihong Liu,1 Zhangqun Ye1 1Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 2Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: Previous research has reported that a particular double-stranded RNA, named dsP53-285, has the capacity to induce expression of the tumor suppressor gene TP53 in chimpanzee cells by targeting its promoter. Usually, it is the wild-type p53 protein, rather than mutants, which exhibits potent cancer-inhibiting effects. In addition, nonhuman primates, such as chimpanzees, share almost identical genome sequences with humans. This prompted us to speculate whether dsP53-285 can trigger wild-type p53 protein expression in human prostate cancer (PCa cells and consequently suppress cell growth. The human PCa cell lines LNCaP and DU145 were transfected with dsP53-285 for 72 hours. Compared with the dsControl and mock transfection groups, expression of both p53 messenger RNA and p53 protein was significantly enhanced after dsP53-285 transfection, and this enhancement was followed by upregulation of p21, which indirectly indicated that dsP53-285 induced wild-type p53 expression. Moreover, overexpression of wild-type p53 mediated by dsP53-285 downregulated the expression of Cyclin D1 and cyclin-dependent kinase 4/6, thereby inducing PCa cell cycle arrest in G0/G1 phase and then inhibiting cell proliferation and clonogenicity. More importantly, dsP53-285 suppressed PCa cells mainly by modulating wild-type p53 expression. In conclusion, our study provides evidence that dsP53-285 can significantly stimulate wild-type p53 expression in the human PCa cell lines LNCaP and DU145 and can exert potent antitumor effects. Keywords: p53, small activating RNA, prostate

  19. microRNA-146a promotes mycobacterial survival in macrophages through suppressing nitric oxide production.

    Science.gov (United States)

    Li, Miao; Wang, Jinli; Fang, Yimin; Gong, Sitang; Li, Meiyu; Wu, Minhao; Lai, Xiaomin; Zeng, Gucheng; Wang, Yi; Yang, Kun; Huang, Xi

    2016-03-30

    Macrophages play a crucial role in host innate anti-mycobacterial defense, which is tightly regulated by multiple factors, including microRNAs. Our previous study showed that a panel of microRNAs was markedly up-regulated in macrophages upon mycobacterial infection. Here, we investigated the biological function of miR-146a during mycobacterial infection. miR-146a expression was induced both in vitro and in vivo after Mycobacterium bovis BCG infection. The inducible miR-146a could suppress the inducible nitric oxide (NO) synthase (iNOS) expression and NO generation, thus promoting mycobacterial survival in macrophages. Inhibition of endogenous miR-146a increased NO production and mycobacterial clearance. Moreover, miR-146a attenuated the activation of nuclear factor κB and mitogen-activated protein kinases signaling pathways during BCG infection, which in turn repressed iNOS expression. Mechanistically, miR-146a directly targeted tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) at post-transcriptional level. Silencing TRAF6 decreased iNOS expression and NO production in BCG-infected macrophages, while overexpression of TRAF6 reversed miR-146a-mediated inhibition of NO production and clearance of mycobacteria. Therefore, we demonstrated a novel role of miR-146a in the modulation of host defense against mycobacterial infection by repressing NO production via targeting TRAF6, which may provide a promising therapeutic target for tuberculosis.

  20. MicroRNA-98 Suppress Warburg Effect by Targeting HK2 in Colon Cancer Cells.

    Science.gov (United States)

    Zhu, Weimin; Huang, Yijiao; Pan, Qi; Xiang, Pei; Xie, Nanlan; Yu, Hao

    2017-03-01

    Warburg effect is a hallmark of cancer cells. Accumulating evidence suggests that microRNAs (miRs) could regulate such metabolic reprograming. Aberrant expression of miR-98 has been observed in many types of cancers. However, its functions and significance in colon cancer remain largely elusive. To investigate miR-98 expression and the biological functions in colon cancer progression. miR-98 expression levels were determined by quantitative RT-PCR in 215 cases of colon cancer samples. miR-98 mimic or inhibitor was used to test the biological functions in SW480 and HCT116 cells, followed by cell proliferation assay, lactate production, glucose uptake, and cellular ATP levels assay and extracellular acidification rates measurement. Western blot and luciferase assay were used to identify the target of miR-98. miR-98 was significantly down-regulated in colon cancer tissues compared to adjacent colon tissues and acted as a suppressor for Warburg effect in cancer cells. miR-98 inhibited glycolysis by directly targeting hexokinase 2, or HK2, illustrating a novel pathway to mediate Warburg effect of cancer cells. In vitro experiments further indicated that HK2 was involved in miR-98-mediated suppression of glucose uptake, lactate production, and cell proliferation. In addition, we detected HK2 expression in colon cancer tissues and found that the expressions of miR-98 and HK2 were negatively correlated. miR-98 acts as tumor suppressor gene and inhibits Warburg effect in colon cancer cells, which provided potential targets for clinical treatments.

  1. MicroRNA-9 suppresses the growth, migration, and invasion of malignant melanoma cells via targeting NRP1

    Directory of Open Access Journals (Sweden)

    Xu D

    2016-11-01

    Full Text Available Dan Xu,1 Xiaofeng Chen,2 Quanyong He,1 Chengqun Luo1 1Department of Plastic Surgery, Third Xiangya Hospital of Central South University, 2Department of Neurosurgery, Brain Hospital of Hunan Province, Changsha, Hunan, People’s Republic of China Abstract: MicroRNAs (miRs are a class of small noncoding RNAs that negatively regulate the gene expression by directly binding to the 3' untranslated region of their target mRNA, thus resulting in mRNA degradation or translational repression. miR-9 has recently been demonstrated to play a role in the development and progression of malignant melanoma (MM, but the regulatory mechanism of miR-9 in the malignant phenotypes of MM still remains largely unknown. In this study, a total of 73 pairs of MM tissues and adjacent normal tissues were collected. Real-time reverse transcription polymerase chain reaction and Western blot were used to detect the mRNA and protein expression of miR-9. MTT assay, wound healing assay, and transwell assay were conducted to determine the cell proliferation, migration, and invasion. Luciferase reporter assay was used to determine the targeting relationship between miR-9 and NRP1. Our data demonstrated that miR-9 expression was significantly downregulated in MM tissues compared with that in adjacent normal tissues. The decreased miR-9 level was significantly associated with the tumor stage and metastasis of MM. We also found that the expression level of miR-9 was decreased in MM cell lines (G361, B16, A375, and HME1 compared with normal skin HACAT cells. Ectopic expression of miR-9 led to a significant decrease in the ability of proliferation, migration, and invasion in A375 cells. NRP1 was further identified as a direct target gene of miR-9, and the protein expression of NRP1 was negatively regulated by miR-9 in A375 cells. Furthermore, overexpression of NRP1 reversed the suppressive effects of miR-9 on the malignant phenotypes of A375 cells. In vivo study revealed that miR-9

  2. Hepatitis B virus reactivation after treatment for hepatitis C in hemodialysis patients with HBV/HCV coinfection

    Directory of Open Access Journals (Sweden)

    Raul Carlos Wahle

    2015-09-01

    Full Text Available In coinfected HBV/HCV patients, HBV replication is usually suppressed by HCV over the time. No study to date has evaluated the HBV viremia in long-term follow-up after HCV treatment in hemodialysis patients with HBV/HCV coinfection. This study aimed to assess the evolution of HBV viremia after HCV treatment in this special population. Ten hemodialysis patients with HBV/HCV coinfection with dominant HCV infection (HBV lower than 2000 IU/mL and significant fibrosis were treated with interferon-alpha 3 MU 3×/week for 12 months and could be followed for at least 36 months after HCV treatment. Six cases of HBV reactivation (60% during follow-up were observed and 5/6 had been successfully treated for HCV. Patients with HBV reactivation received anti-HBV therapy. Our preliminary findings indicate that treatment of hepatitis C in HBV/HCV coinfected hemodialysis patients may favor HBV reactivation. Thus, continued monitoring of HBV viremia must be recommended and prompt anti-HBV therapy should be implemented.

  3. microRNA 21-mediated suppression of Sprouty1 by Pokemon affects liver cancer cell growth and proliferation.

    Science.gov (United States)

    Jin, Xiu-Li; Sun, Qin-Sheng; Liu, Feng; Yang, Hong-Wei; Liu, Min; Liu, Hong-Xia; Xu, Wei; Jiang, Yu-Yang

    2013-07-01

    Transcriptional repressor Pokemon is a critical factor in embryogenesis, development, cell proliferation, differentiation, and oncogenesis, thus behaving as an oncogene. Oncomine database suggests a potential correlation between the expressions of Pokemon and Sprouty1. This study investigated the regulatory role of Pokemon in Sprouty1 expression and the effect on liver cancer cell growth and proliferation, revealing a novel miR-21-mediated regulatory circuit. In normal (HL-7702) and cancer (QGY-7703) liver cell lines, Sprouty1 expression is inversely correlated with Pokemon levels. Targeted expression or siRNA-mediated silencing showed that Pokemon is a repressor of Sprouty1 expression at both mRNA and protein levels, but Pokemon cannot affect the promoter activity of Sprouty1. Sprouty1 is a target of miR-21 and interestingly, we found that miR-21 is up-regulated by Pokemon in liver cancer cells. Luciferase reporter assays showed that Pokemon up-regulated miR-21 transcription in a dose-dependent manner, and ChIP assay exhibited a direct binding of Pokemon to the miR-21 promoter at -747 to -399 bp. Site-directed mutagenesis of the GC boxes at -684 to -679 bp and -652 to -647 bp of miR-21 promoter abolished the regulatory activity by Pokemon. Furthermore, we found that the modulation of Pokemon and miR-21 expression affected the growth and proliferation of liver cancer cells QGY-7703. In summary, our findings demonstrate that Pokemon suppresses Sprouty1 expression through a miR-21-mediated mechanism, affecting the growth and proliferation of liver cancer cells. This study recognized miR-21 and Sprouty1 as novel targets of the Pokemon regulatory network. Copyright © 2013 Wiley Periodicals, Inc.

  4. MicroRNA-200a suppresses the Wnt/β-catenin signaling pathway by interacting with β-catenin.

    Science.gov (United States)

    Su, Juan; Zhang, Anling; Shi, Zhendong; Ma, Feifei; Pu, Peiyu; Wang, Tao; Zhang, Jie; Kang, Chunsheng; Zhang, Qingyu

    2012-04-01

    The Wnt/β-catenin signaling pathway is crucial for human organ development and is involved in tumor progression of many cancers. Accumulating evidence suggests that the expression of β-catenin is, in part, regulated by specific microRNAs (miRNAs). The purpose of this study was to determine the expression of a recently identified epithelial to mesenchymal transition (EMT)-associated tumor suppressor microRNA (miR)-200a, in cancer cells. We also aimed to identify specific miR-200a target genes and to investigate the antitumor effects of miR-200a on the Wnt/β-catenin signaling pathway. We employed TOP/FOP flash luciferase assays to identify the effect of miR-200a on the Wnt/β-catenin pathway and we confirmed our observations using fluorescence microscopy. To determine target genes of miR-200a, a 3' untranslated region (3' UTR) luciferase assay was performed. Cell viability, invasion and wound healing assays were carried out for functional analysis after miRNA transfection. We further investigated the role of miR-200a in EMT by Western blot analysis. We found fluctuation in the expression of miR-200a that was accompanied by changes in the expression of members of the Wnt/β-catenin signaling pathway. We also determined that miR-200a can directly interact with the 3' UTR of CTNNB1 (the gene that encodes β-catenin) to suppress Wnt/β-catenin signaling. MiR-200a could also influence the biological activities of SGC790 and U251 cells. Our results demonstrate that miR-200a is a new tumor suppressor that can regulate the activity of the Wnt/β-catenin signaling pathway via two mechanisms. MiR-200a is a candidate target for tumor treatment via its regulation of the Wnt/β-catenin signaling pathway.

  5. HCV INFECTION THROUGH PERFORATING AND CUTTING MATERIAL AMONG CANDIDATES FOR BLOOD DONATION IN BELÉM, BRAZILIAN AMAZON

    Directory of Open Access Journals (Sweden)

    Rubenilson Caldas Valois

    2014-12-01

    Full Text Available This study evaluated epidemiological factors for HCV infection associated with sharing perforating and cutting instruments among candidates for blood donation (CBD in the city of Belém, Pará, Brazilian Amazon. Two definitions of HCV infection cases were used: anti-HCV positivity shown by EIA, and HCV-RNA detection by PCR. Infected and uninfected CBD completed a questionnaire about possible risk factors associated with sharing perforating and cutting instruments. The information was evaluated using simple and multiple logistic regressions. Between May and November 2010, 146 (1.1% persons with anti-HCV antibodies and 106 (0.8% with HCV-RNA were detected among 13,772 CBD in Belém. Risk factors associated with HCV infection based on the EIA (model 1 and PCR (model 2 results were: use of needles and syringes sterilized at home; shared use of razors at home, sharing of disposable razors in barbershops, beauty salons etc.; and sharing manicure and pedicure material. The models of HCV infection associated with sharing perforating and cutting instruments should be taken into account by local and regional health authorities and by those of other countries with similar cultural practices, in order to provide useful information to guide political and public strategies to control HCV transmission.

  6. Animal models for HCV and HBV studies

    Directory of Open Access Journals (Sweden)

    Isabelle Chemin

    2007-02-01

    the infectivity of infectious clones of HCV without chimpanzees. Chimpanzees became infected when RNA transcripts from molecular clones were inoculated directly into the liver. The infection generated by such transfection did not differ significantly from that observed in animals infected intravenously with wild-type HCV. It furthermore permits true homologous challenge in studies of protective immunity and in testing the efficacy of vaccine candidates.

    Finally, this in vivo transfection system has made it possible to test for the first time the importance of genetic elements for HCV infectivity.

    Although chimpanzees are the only animals fully permissive for HBV infection, their use for research purpose is severely limited by the high costs and strong ethical constrains. The only alternative source of HBV-permissive hepatocytes is the Asian tree shrew Tupaia belangeri. Though experimental infection of these squirrel-like mammals, phylogenetically related to primates, results only in a mild, transient replication, primary hepatocytes isolated from T. belangeri turned out to be a reliable tool for in vitro HBV infection experiments.

    Along with invaluable infection studies in chimpanzees, avian and mammalian HBV-related viruses continue to offer ample opportunities for studies in naturally occurring hosts. In general, most of our progresses in hepatitis B virus research are based on infection studies with two HBV-related animal viruses: the woodchuck HBV (WHV, which infects the Eastern American woodchuck (Marmota monax, and the duck HBV (DHBV, which infects Peking ducks. Both animal models have been essential for understanding various steps of viral life-cycle and factors involved in establishment of virus

  7. Prevalence of HCV infection and associated factors among illicit drug users in Breves, State of Pará, northern Brazil.

    Science.gov (United States)

    Pacheco, Suzy Danielly Barbosa; Silva-Oliveira, Gláucia Caroline; Maradei-Pereira, Luciana Maria Cunha; Crescente, José Ângelo Barletta; Lemos, José Alexandre Rodrigues de; Oliveira-Filho, Aldemir Branco de

    2014-01-01

    Illicit drug users (DUs) are vulnerable to hepatitis C virus (HCV) infection. The shared use of illicit drugs is the main method of HCV transmission. A cross-sectional study was conducted in Breves, in northern Brazil. We surveyed 187 DUs to determine the prevalence of and factors associated with HCV infection. The prevalence of anti-HCV antibodies was 36.9%, and the prevalence of hepatitis C virus-ribonucleic acid (HCV-RNA) was 31%. Hepatitis C virus infection was associated with tattoos, intravenous drug use, shared use of equipment for drug use, drug use for longer than 3 years, and daily drug use. Strategies for preventing and controlling HCV transmission should be implemented among DUs.

  8. Prevalence of HCV infection and associated factors among illicit drug users in Breves, State of Pará, northern Brazil

    Directory of Open Access Journals (Sweden)

    Suzy Danielly Barbosa Pacheco

    2014-06-01

    Full Text Available Introduction: Illicit drug users (DUs are vulnerable to hepatitis C virus (HCV infection. The shared use of illicit drugs is the main method of HCV transmission. Methods: A cross-sectional study was conducted in Breves, in northern Brazil. We surveyed 187 DUs to determine the prevalence of and factors associated with HCV infection. Results: The prevalence of anti-HCV antibodies was 36.9%, and the prevalence of hepatitis C virus-ribonucleic acid (HCV-RNA was 31%. Hepatitis C virus infection was associated with tattoos, intravenous drug use, shared use of equipment for drug use, drug use for longer than 3 years, and daily drug use. Conclusions: Strategies for preventing and controlling HCV transmission should be implemented among DUs.

  9. Overexpression of microRNA-194 suppresses the epithelial-mesenchymal transition in targeting stem cell transcription factor Sox3 in endometrial carcinoma stem cells.

    Science.gov (United States)

    Gong, Baolan; Yue, Yan; Wang, Renxiao; Zhang, Yi; Jin, Quanfang; Zhou, Xi

    2017-06-01

    The epithelial-mesenchymal transition is the key process driving cancer metastasis. MicroRNA-194 inhibits epithelial-mesenchymal transition in several cancers and its downregulation indicates a poor prognosis in human endometrial carcinoma. Self-renewal factor Sox3 induces epithelial-mesenchymal transition at gastrulation and is also involved epithelial-mesenchymal transition in several cancers. We intended to determine the roles of Sox3 in inducing epithelial-mesenchymal transition in endometrial cancer stem cells and the possible role of microRNA-194 in controlling Sox3 expression. Firstly, we found that Sox3 and microRNA-194 expressions were associated with the status of endometrial cancer stem cells in a panel of endometrial carcinoma tissue, the CD133+ cell was higher in tumorsphere than in differentiated cells, and overexpression of microRNA-194 would decrease CD133+ cell expression. Silencing of Sox3 in endometrial cancer stem cell upregulated the epithelial marker E-cadherin, downregulated the mesenchymal marker vimentin, and significantly reduced cell invasion in vitro; overexpression of Sox3 reversed these phenotypes. Furthermore, we discovered that the expression of Sox3 was suppressed by microRNA-194 through direct binding to the Sox3 3'-untranslated region. Ectopic expression of microRNA-194 in endometrial cancer stem cells induced a mesenchymal-epithelial transition by restoring E-cadherin expression, decreasing vimentin expression, and inhibiting cell invasion in vitro. Moreover, overexpression of microRNA-194 inhibited endometrial cancer stem cell invasion or metastasis in vivo by injection of adenovirus microRNA-194. These findings demonstrate the novel mechanism by which Sox3 contributes to endometrial cancer stem cell invasion and suggest that repression of Sox3 by microRNA-194 may have therapeutic potential to suppress endometrial carcinoma metastasis. The cancer stem cell marker, CD133, might be the surface marker of endometrial cancer stem

  10. Direct anti-HCV agents

    Directory of Open Access Journals (Sweden)

    Xingquan Zhang

    2016-01-01

    Full Text Available Unlike human immunodeficiency virus (HIV and hepatitis B virus (HBV, hepatitis C virus (HCV infection is a curable disease. Current direct antiviral agent (DAA targets are focused on HCV NS3/4A protein (protease, NS5B protein (polymerase and NS5A protein. The first generation of DAAs includes boceprevir and telaprevir, which are protease inhibitors and were approved for clinical use in 2011. The cure rate for genotype 1 patients increased from 45% to 70% when boceprevir or telaprevir was added to standard PEG-IFN/ribavirin. More effective and less toxic second generation DAAs supplanted these drugs by 2013. The second generation of DAAs includes sofosbuvir (Sovaldi, simeprevir (Olysio, and fixed combination medicines Harvoni and Viekira Pak. These drugs increase cure rates to over 90% without the need for interferon and effectively treat all HCV genotypes. With these drugs the “cure HCV” goal has become a reality. Concerns remain about drug resistance mutations and the high cost of these drugs. The investigation of new HCV drugs is progressing rapidly; fixed dose combination medicines in phase III clinical trials include Viekirax, asunaprevir+daclatasvir+beclabuvir, grazoprevir+elbasvir and others.

  11. MicroRNA-199 suppresses cell proliferation, migration and invasion by downregulating RGS17 in hepatocellular carcinoma.

    Science.gov (United States)

    Zhang, Wei; Qian, Sheng; Yang, Guowei; Zhu, Liang; Zhou, Bo; Wang, Jianhua; Liu, Rong; Yan, Zhiping; Qu, Xudong

    2018-06-15

    Hepatocellular carcinoma (HCC), the most common primary tumor of the liver, has a poor prognosis and shows rapid progression. MicroRNAs (miRNAs) play important roles in carcinogenesis and tumor progression. Regulators of G-protein signaling (RGS) are critical for defining G-protein-dependent signal fidelity. RGS17 plays an important role in the regulation of cancer cell proliferation, migration and invasion. Here, we showed that miR-199 was downregulated in a hepatocarcinoma cell line. Overexpression of miR-199 significantly suppressed HCC cell proliferation, migration, and invasion in vitro. RGS17 overexpression promoted HCC cell proliferation, migration, and invasion, and reversed the miR-199 mediated inhibition of proliferation, migration, and invasion. Dual-fluorescence reporter experiments confirmed that miR-199 downregulated RGS17 by direct interaction with the 3'-UTR of RGS17 mRNA. In vivo studies showed that miR-199 overexpression significantly inhibited the growth of tumors. Taken together, the results suggested that miR-199 inhibited tumor growth and metastasis by targeting RGS17. Published by Elsevier B.V.

  12. A genetic screen identifies interferon-α effector genes required to suppress hepatitis C virus replication.

    Science.gov (United States)

    Fusco, Dahlene N; Brisac, Cynthia; John, Sinu P; Huang, Yi-Wen; Chin, Christopher R; Xie, Tiao; Zhao, Hong; Jilg, Nikolaus; Zhang, Leiliang; Chevaliez, Stephane; Wambua, Daniel; Lin, Wenyu; Peng, Lee; Chung, Raymond T; Brass, Abraham L

    2013-06-01

    Hepatitis C virus (HCV) infection is a leading cause of end-stage liver disease. Interferon-α (IFNα) is an important component of anti-HCV therapy; it up-regulates transcription of IFN-stimulated genes, many of which have been investigated for their antiviral effects. However, all of the genes required for the antiviral function of IFNα (IFN effector genes [IEGs]) are not known. IEGs include not only IFN-stimulated genes, but other nontranscriptionally induced genes that are required for the antiviral effect of IFNα. In contrast to candidate approaches based on analyses of messenger RNA (mRNA) expression, identification of IEGs requires a broad functional approach. We performed an unbiased genome-wide small interfering RNA screen to identify IEGs that inhibit HCV. Huh7.5.1 hepatoma cells were transfected with small interfering RNAs incubated with IFNα and then infected with JFH1 HCV. Cells were stained using HCV core antibody, imaged, and analyzed to determine the percent infection. Candidate IEGs detected in the screen were validated and analyzed further. The screen identified 120 previously unreported IEGs. From these, we more fully evaluated the following: asparagine-linked glycosylation 10 homolog (yeast, α-1,2-glucosyltransferase); butyrylcholinesterase; dipeptidyl-peptidase 4 (CD26, adenosine deaminase complexing protein 2); glucokinase (hexokinase 4) regulator; guanylate cyclase 1, soluble, β 3; MYST histone acetyltransferase 1; protein phosphatase 3 (formerly 2B), catalytic subunit, β isoform; peroxisomal proliferator-activated receptor-γ-DBD-interacting protein 1; and solute carrier family 27 (fatty acid transporter), member 2; and demonstrated that they enabled IFNα-mediated suppression of HCV at multiple steps of its life cycle. Expression of these genes had more potent effects against flaviviridae because a subset was required for IFNα to suppress dengue virus but not influenza A virus. In addition, many of the host genes detected in this

  13. hnRNP A2/B1 interacts with influenza A viral protein NS1 and inhibits virus replication potentially through suppressing NS1 RNA/protein levels and NS1 mRNA nuclear export

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yimeng; Zhou, Jianhong; Du, Yuchun, E-mail: ydu@uark.edu

    2014-01-20

    The NS1 protein of influenza viruses is a major virulence factor and exerts its function through interacting with viral/cellular RNAs and proteins. In this study, we identified heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP A2/B1) as an interacting partner of NS1 proteins by a proteomic method. Knockdown of hnRNP A2/B1 by small interfering RNA (siRNA) resulted in higher levels of NS vRNA, NS1 mRNA, and NS1 protein in the virus-infected cells. In addition, we demonstrated that hnRNP A2/B1 proteins are associated with NS1 and NS2 mRNAs and that knockdown of hnRNP A2/B1 promotes transport of NS1 mRNA from the nucleus to the cytoplasm in the infected cells. Lastly, we showed that knockdown of hnRNP A2/B1 leads to enhanced virus replication. Our results suggest that hnRNP A2/B1 plays an inhibitory role in the replication of influenza A virus in host cells potentially through suppressing NS1 RNA/protein levels and NS1 mRNA nucleocytoplasmic translocation. - Highlights: • Cellular protein hnRNP A2/B1 interacts with influenza viral protein NS1. • hnRNP A2/B1 suppresses the levels of NS1 protein, vRNA and mRNA in infected cells. • hnRNP A2/B1 protein is associated with NS1 and NS2 mRNAs. • hnRNP A2/B1 inhibits the nuclear export of NS1 mRNAs. • hnRNP A2/B1 inhibits influenza virus replication.

  14. Trans-suppression of defense DEFB1 gene in intestinal epithelial cells following Cryptosporidium parvum infection is associated with host delivery of parasite Cdg7_FLc_1000 RNA.

    Science.gov (United States)

    Ming, Zhenping; Gong, Ai-Yu; Wang, Yang; Zhang, Xin-Tian; Li, Min; Dolata, Courtney E; Chen, Xian-Ming

    2018-03-01

    To counteract host immunity, Cryptosporidium parvum has evolved multiple strategies to suppress host antimicrobial defense. One such strategy is to reduce the production of the antimicrobial peptide beta-defensin 1 (DEFB1) by host epithelial cells but the underlying mechanisms remain unclear. Recent studies demonstrate that a panel of parasite RNA transcripts of low protein-coding potential are delivered into infected host cells and may modulate host gene transcription. Using in vitro models of intestinal cryptosporidiosis, in this study, we analyzed the expression profile of host beta-defensin genes in host cells following infection. We found that C. parvum infection caused a significant downregulation of the DEFB1 gene. Interestingly, downregulation of DEFB1 gene was associated with host delivery of Cdg7_FLc_1000 RNA transcript, a C. parvum RNA that has previously demonstrated to be delivered into the nuclei of infected host cells. Knockdown of Cdg7_FLc_1000 in host cells could attenuate the trans-suppression of host DEFB1 gene and decreased the parasite burden. Therefore, our data suggest that trans-suppression of DEFB1 gene in intestinal epithelial cells following C. parvum infection involves host delivery of parasite Cdg7_FLc_1000 RNA, a process that may be relevant to the epithelial defense evasion by C. parvum at the early stage of infection.

  15. Trans-suppression of host CDH3 and LOXL4 genes during Cryptosporidium parvum infection involves nuclear delivery of parasite Cdg7_FLc_1000 RNA.

    Science.gov (United States)

    Ming, Zhenping; Gong, Ai-Yu; Wang, Yang; Zhang, Xin-Tian; Li, Min; Li, Yao; Pang, Jing; Dong, Stephanie; Strauss-Soukup, Juliane K; Chen, Xian-Ming

    2018-05-01

    Intestinal infection by Cryptosporidium parvum causes significant alterations in the gene expression profile in host epithelial cells. Previous studies demonstrate that a panel of parasite RNA transcripts of low protein-coding potential are delivered into infected host cells and may modulate host gene transcription. Using in vitro models of human intestinal cryptosporidiosis, we report here that trans-suppression of the cadherin 3 (CDH3) and lysyl oxidase like 4 (LOXL4) genes in human intestinal epithelial cells following C. parvum infection involves host delivery of the Cdg7_FLc_1000 RNA, a C. parvum RNA that has been previously demonstrated to be delivered into the nuclei of infected host cells. Downregulation of CDH3 and LOXL4 genes was detected in host epithelial cells following C. parvum infection or in cells expressing the parasite Cdg7_FLc_1000 RNA. Knockdown of Cdg7_FLc_1000 attenuated the trans-suppression of CDH3 and LOXL4 genes in host cells induced by infection. Interestingly, Cdg7_FLc_1000 was detected to be recruited to the promoter regions of both CDH3 and LOXL4 gene loci in host cells following C. parvum infection. Host delivery of Cdg7_FLc_1000 promoted the PH domain zinc finger protein 1 (PRDM1)-mediated H3K9 methylation associated with trans-suppression in the CDH3 gene locus, but not the LOXL4 gene. Therefore, our data suggest that host delivery of Cdg7_FLc_1000 causes CDH3 trans-suppression in human intestinal epithelial cells following C. parvum infection through PRDM1-mediated H3K9 methylation in the CDH3 gene locus, whereas Cdg7_FLc_1000 induces trans-suppression of the host LOXL4 gene through H3K9/H3K27 methylation-independent mechanisms. Copyright © 2018 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  16. Four weeks of paritaprevir/ritonavir/ombitasvir plus dasabuvir encountering dengue fever resulted in sustained virological response in an HCV patient: A case report.

    Science.gov (United States)

    Huang, Chung-Feng; Jang, Tyng-Yuan; Lu, Po-Liang; Yu, Ming-Lung

    2016-11-01

    Direct antiviral agent (DAA) has been the standard of care for patients with hepatitis C virus (HCV) infection. Twelve weeks of paritaprevir/ritonavir/ombitasvir plus dasabuvir (PROD) with or without ribavirin has shown to have a sustained virological response at post-treatment 12 weeks (SVR12) rate of >90% in HCV genotype 1 (HCV-1) patients. We report a HCV-1b patient who received only 25 days of PROD treatment. The patient early terminated treatment due to dengue fever but eventually achieved SVR12. It may attribute to low baseline viral loads and extraordinarily rapid suppression of HCV after treatment day1. The finding may shed light for possible response-guided-therapy for so-called ultra-super-responders in the DAA era. Whether the dengue virus, the Flaviviridae family as with HCV, enhanced the HCV clearance remains unclear and needs further exploration.

  17. Relationship between hunger, adherence to antiretroviral therapy and plasma HIV RNA suppression among HIV-positive illicit drug users in a Canadian setting.

    Science.gov (United States)

    Anema, Aranka; Kerr, Thomas; Milloy, M-J; Feng, Cindy; Montaner, Julio S G; Wood, Evan

    2014-04-01

    Food insecurity may be a barrier to achieving optimal HIV treatment-related outcomes among illicit drug users. This study therefore, aimed to assess the impact of severe food insecurity, or hunger, on plasma HIV RNA suppression among illicit drug users receiving antiretroviral therapy (ART). A cross-sectional Multivariate logistic regression model was used to assess the potential relationship between hunger and plasma HIV RNA suppression. A sample of n = 406 adults was derived from a community-recruited open prospective cohort of HIV-positive illicit drug users, in Vancouver, British Columbia (BC), Canada. A total of 235 (63.7%) reported "being hungry and unable to afford enough food," and 241 (59.4%) had plasma HIV RNA hunger was associated with lower odds of plasma HIV RNA suppression (Odds Ratio = 0.59, 95% confidence interval [CI]: 0.39-0.90, p = 0.015). In multivariate analyses, this association was no longer significant after controlling for socio-demographic, behavioral, and clinical characteristics, including 95% adherence (Adjusted Odds Ratio [AOR] = 0.65, 95% CI: 0.37-1.10, p = 0.105). Multivariate models stratified by 95% adherence found that the direction and magnitude of this association was not significantly altered by the adherence level. Hunger was common among illicit drug users in this setting. Although, there was an association between hunger and lower likelihood of plasma HIV RNA suppression, this did not persist in adjusted analyses. Further research is warranted to understand the social-structural, policy, and physical factors shaping the HIV outcomes of illicit drug users.

  18. Prevalence and Incidence of HCV Infection among Prisoners in Central Brazil.

    Directory of Open Access Journals (Sweden)

    Marco Antonio Moreira Puga

    Full Text Available The aim of this multicenter, cross sectional study was to assess the prevalence, incidence and associated risk factors among incarcerated populations from twelve Brazilian prisons. The total of 3,368 individuals from twelve prisons was randomly recruited between March 2013 and March 2014. Participants were interviewed, and provided blood samples which were tested for antibodies to Hepatitis C (HCV ab. One year after the first investigation, a cohort study was conducted with 1,656 inmates who participated the cross sectional study. Positive samples were tested for the presence of HCV RNA. Out of 3,368 inmates, 520 (15.4% were females, and 2,848 (84.6% were males. The overall prevalence of HCV was 2.4% (95% CI: 1.9 to 2.9, with 0.6% (95% CI: 0.4 to 0.8 in females, and 2.7% (95% CI: 2.1 to 3.3 in males (p<0.01. HCV RNA was detected in 51/80 (63.7% samples. Among men prisoners, multivariate analysis of associated factors showed independent associations between HCV exposure and increasing age, inject drug use, length of incarceration, smoking hashish, sharing needle and syringe and HIV positivity. During the cohort study, 7/1,656 new cases of HCV infection were detected, and the incidence rate was 0.4/100 person-year. Once high frequency rates of specific HCV risk behaviors and new HCV infections have been identified inside prisons, effective interventions strategies such as screening, clinical evaluation and treatment to reduce the spread of HCV infection are essential.

  19. HCV Infection and B-Cell Lymphomagenesis

    Directory of Open Access Journals (Sweden)

    Masahiko Ito

    2011-01-01

    Full Text Available Hepatitis C virus (HCV has been recognized as a major cause of chronic liver diseases worldwide. It has been suggested that HCV infects not only hepatocytes but also mononuclear lymphocytes including B cells that express the CD81 molecule, a putative HCV receptor. HCV infection of B cells is the likely cause of B-cell dysregulation disorders such as mixed cryoglobulinemia, rheumatoid factor production, and B-cell lymphoproliferative disorders that may evolve into non-Hodgkin's lymphoma (NHL. Epidemiological data indicate an association between HCV chronic infection and the occurrence of B-cell NHL, suggesting that chronic HCV infection is associated at least in part with B-cell lymphomagenesis. In this paper, we aim to provide an overview of recent literature, including our own, to elucidate a possible role of HCV chronic infection in B-cell lymphomagenesis.

  20. Viral RNA silencing suppression

    NARCIS (Netherlands)

    Hedil, Marcio; Kormelink, Richard

    2016-01-01

    The Bunyaviridae is a family of arboviruses including both plant-and vertebrate-infecting representatives. The Tospovirus genus accommodates plant-infecting bunyaviruses, which not only replicate in their plant host, but also in their insect thrips vector during persistent propagative

  1. Low levels of HIV-1 RNA detected in the cerebrospinal fluid after up to 10 years of suppressive therapy are associated with local immune activation.

    Science.gov (United States)

    Dahl, Viktor; Peterson, Julia; Fuchs, Dietmar; Gisslen, Magnus; Palmer, Sarah; Price, Richard W

    2014-09-24

    Though combination antiretroviral therapy reduces the concentration of HIV-1 RNA in both plasma and cerebrospinal fluid (CSF) below the detection limit of clinical assays, low levels of HIV-1 RNA are frequently detectable in plasma using more sensitive assays. We examined the frequency and magnitude of persistent low-level HIV-1 RNA in CSF and its relation to the central nervous system (CNS) immune activation. CSF and plasma HIV-1 RNA were measured using the single-copy assay with a detection limit of 0.3 copies/ml in 70 CSF and 68 plasma samples from 45 treated HIV-1-infected patients with less than 40 copies/ml of HIV-1 RNA in both fluids by standard clinical assays. We also measured CSF neopterin to assess intrathecal immune activation. Theoretical drug exposure was estimated using the CNS penetration-efficacy score of treatment regimens. CSF HIV-1 RNA was detected in 12 of the 70 CSF samples (17%) taken after up to 10 years of suppressive therapy, compared to 39 of the 68 plasma samples (57%) with a median concentration of less than 0.3 copies/ml in CSF compared to 0.3 copies/ml in plasma (P < 0.0001). CSF samples with detectable HIV-1 RNA had higher CSF neopterin levels (mean 8.2 compared to 5.7 nmol/l; P = 0.0085). Patients with detectable HIV-1 RNA in CSF did not differ in pretreatment plasma HIV-1 RNA levels, nadir CD4 cell count or CNS penetration-efficacy score. Low-level CSF HIV-1 RNA and its association with elevated CSF neopterin highlight the potential for the CNS to serve as a viral reservoir and for persistent infection to cause subclinical CNS injury.

  2. Double-stranded RNA uptake through topical application, mediates silencing of five CYP4 genes and suppresses insecticide resistance in Diaphorina citri.

    Science.gov (United States)

    Killiny, Nabil; Hajeri, Subhas; Tiwari, Siddharth; Gowda, Siddarame; Stelinski, Lukasz L

    2014-01-01

    Silencing of genes through RNA interference (RNAi) in insects has gained momentum during the past few years. RNAi has been used to cause insect mortality, inhibit insect growth, increase insecticide susceptibility, and prevent the development of insecticide resistance. We investigated the efficacy of topically applied dsRNA to induce RNAi for five Cytochrome P450 genes family 4 (CYP4) in Diaphorina citri. We previously reported that these CYP4 genes are associated with the development of insecticide resistance in D. citri. We targeted five CYP4 genes that share a consensus sequence with one dsRNA construct. Quantitative PCR confirmed suppressed expression of the five CYP4 genes as a result of dsRNA topically applied to the thoracic region of D. citri when compared to the expression levels in a control group. Western blot analysis indicated a reduced signal of cytochrome P450 proteins (45 kDa) in adult D. citri treated with the dsRNA. In addition, oxidase activity and insecticide resistance were reduced for D. citri treated with dsRNA that targeted specific CYP4 genes. Mortality was significantly higher in adults treated with dsRNA than in adults treated with water. Our results indicate that topically applied dsRNA can penetrate the cuticle of D. citri and induce RNAi. These results broaden the scope of RNAi as a mechanism to manage pests by targeting a broad range of genes. The results also support the application of RNAi as a viable tool to overcome insecticide resistance development in D. citri populations. However, further research is needed to develop grower-friendly delivery systems for the application of dsRNA under field conditions. Considering the high specificity of dsRNA, this tool can also be used for management of D. citri by targeting physiologically critical genes involved in growth and development.

  3. Double-stranded RNA uptake through topical application, mediates silencing of five CYP4 genes and suppresses insecticide resistance in Diaphorina citri.

    Directory of Open Access Journals (Sweden)

    Nabil Killiny

    Full Text Available Silencing of genes through RNA interference (RNAi in insects has gained momentum during the past few years. RNAi has been used to cause insect mortality, inhibit insect growth, increase insecticide susceptibility, and prevent the development of insecticide resistance. We investigated the efficacy of topically applied dsRNA to induce RNAi for five Cytochrome P450 genes family 4 (CYP4 in Diaphorina citri. We previously reported that these CYP4 genes are associated with the development of insecticide resistance in D. citri. We targeted five CYP4 genes that share a consensus sequence with one dsRNA construct. Quantitative PCR confirmed suppressed expression of the five CYP4 genes as a result of dsRNA topically applied to the thoracic region of D. citri when compared to the expression levels in a control group. Western blot analysis indicated a reduced signal of cytochrome P450 proteins (45 kDa in adult D. citri treated with the dsRNA. In addition, oxidase activity and insecticide resistance were reduced for D. citri treated with dsRNA that targeted specific CYP4 genes. Mortality was significantly higher in adults treated with dsRNA than in adults treated with water. Our results indicate that topically applied dsRNA can penetrate the cuticle of D. citri and induce RNAi. These results broaden the scope of RNAi as a mechanism to manage pests by targeting a broad range of genes. The results also support the application of RNAi as a viable tool to overcome insecticide resistance development in D. citri populations. However, further research is needed to develop grower-friendly delivery systems for the application of dsRNA under field conditions. Considering the high specificity of dsRNA, this tool can also be used for management of D. citri by targeting physiologically critical genes involved in growth and development.

  4. Glomerular diseases associated with HBV and HCV infection

    Directory of Open Access Journals (Sweden)

    Boriana Kiperova

    2014-03-01

    Full Text Available Hepatitis B and C viruses are human pathogens of major significance. Their extrahepatic manifestations are global health problem. HBV is a well-known cause of membranous nephropathy, membranoproliferative GN and IgA nephropathy, frequently in Asian populations. Polyarteritis nodosa is a rare, but serious systemic complication of chronic HBV. Immunosuppressive therapy in HBV-related GN is not recommended. Interferon alpha treatment produces sustained remission of porteinuria, often associated with clearance of HBeAg and/or HBsAg, however, it has many side effects. Compared to interferon, nucleos(tide analogues offer some advantages. These antiviral agents suppress HBV replication through their inhibitory effect on viral DNA polymerase. They have convenient administration and high tolerability. Lamivudine is well tolerated and safe in long-term studies, but the resistance of HBV is an escalating problem. The resistance to newer polymerase inhibitors Entecavir and Tenofovir is significantly lower. Hepatitis C virus causes cryoglobulinemia-mediated glomerulonephritis and other immune complex forms of GN. The renal manifestations are usually associated with long-lasting HCV infection. HCV glomerular disease is more frequent in adult males, and often leads to chronic renal insufficiency. The first line treatment in patients with mild to moderate clinical and histological kidney damage is the antiviral therapy with pegylated INF alpha and ribavirin. In case of severe HCV-associated cryoglobulinemic GN - nephrotic syndrome, nephritic syndrome and/or progressive renal failure, high activity score of glomerulonephritis on light microscopy, the initial treatment might consist of sequential administration of antiviral and immunosuppressive agents (corticosteroids, cyclophosphamide and plasma exchange, or rituximab. The treatment of HCV-related glomerular disease is still under debate and based on scant experimental evidence. Large randomized and controlled

  5. Long non-coding RNA H19 suppresses retinoblastoma progression via counteracting miR-17-92 cluster.

    Science.gov (United States)

    Zhang, Aihui; Shang, Weiwei; Nie, Qiaoli; Li, Ting; Li, Suhui

    2018-04-01

    Long non-coding RNAs (lncRNAs) are frequently dysregulated and play important roles in many cancers. lncRNA H19 is one of the earliest discovered lncRNAs which has diverse roles in different cancers. However, the expression, roles, and action mechanisms of H19 in retinoblastoma are still largely unknown. In this study, we found that H19 is downregulated in retinoblastoma tissues and cell lines. Gain-of-function and loss-of-function assays showed that H19 inhibits retinoblastoma cell proliferation, induces retinoblastoma cell cycle arrest and cell apoptosis. Mechanistically, we identified seven miR-17-92 cluster binding sites on H19, and found that H19 directly bound to miR-17-92 cluster via these seven binding sites. Through binding to miR-17-92 cluster, H19 relieves the suppressing roles of miR-17-92 cluster on p21. Furthermore, H19 represses STAT3 activation induced by miR-17-92 cluster. Hence, our results revealed that H19 upregulates p21 expression, inhibits STAT3 phosphorylation, and downregulates the expression of STAT3 target genes BCL2, BCL2L1, and BIRC5. In addition, functional assays demonstrated that the mutation of miR-17-92 cluster binding sites on H19 abolished the proliferation inhibiting, cell cycle arrest and cell apoptosis inducing roles of H19 in retinoblastoma. In conclusion, our data suggested that H19 inhibits retinoblastoma progression via counteracting the roles of miR-17-92 cluster, and implied that enhancing the action of H19 may be a promising therapeutic strategy for retinoblastoma. © 2017 Wiley Periodicals, Inc.

  6. MicroRNA-424 suppresses estradiol-induced cell proliferation via targeting GPER in endometrial cancer cells.

    Science.gov (United States)

    Zhang, H; Wang, X; Chen, Z; Wang, W

    2015-11-30

    Endometrial carcinoma (EC) is the most common gynecologic malignancy with increasing morbidity in recent years. MicroRNAs (miRNAs), a type of non-coding RNA, have been proven to be critical in the process of tumorigenesis. miR-424 has been reported to play a protective role in various type of cancer including endometrial carcinoma. It has been reported that high levels of estrogen increase morbidity of EC by promoting cell growth ability. The current research was designed to delineate the mechanism of miR-424 in regulating E2 (17β-estradiol)-induced cell proliferation in endometrial cancer. In this study, we confirmed that cell proliferation is increased significantly in E2-treated endometrial cancer cell lines. Moreover, miR-424 overexpression dramatically decreased E2-induced cell proliferation, indicating a pivotal role in endometrial cancer cell growth. In addition, the results suggest that miR-424 up-regulation inactivated the PI3K/AKT signaling, which was mediated by G-protein-coupled estrogen receptor-1 (GPER) in endometrial cancer. Furthermore, the luciferase report confirmed the targeting reaction between miR-424 and GPER. After transfection with the GPER overexpression vector into E2-induced endometrial cancer cells, we found that GPER significantly attenuated the inhibition effect of miR-424 in E2-induced cell growth in EC. Taken together, our study suggests that increased miR-424 suppresses E2-induced cell growth, and providing a potential therapeutic target for estrogen-associated endometrial carcinoma.

  7. MicroRNA-215 suppresses cell proliferation, migration and invasion of colon cancer by repressing Yin-Yang 1

    International Nuclear Information System (INIS)

    Chen, Zehong; Han, Siqi; Huang, Wensheng; Wu, Jialin; Liu, Yuyi; Cai, Shirong; He, Yulong; Wu, Suijing; Song, Wu

    2016-01-01

    Colorectal cancer is one of the most common malignant tumors worldwide with rising incidence. MicroRNAs are small non-coding RNAs that implicate in multiple physiological or pathological processes. The aberrant expression of miRNA-215 (miR-215) has been illustrated in various types of cancers. However, the expression of miR-215 in human colon cancer and the biological roles of it remain largely unknown. We conducted this study to explore the expression and the function of miR-215 in human colon cancer. The results showed that miR-215 was remarkably downregulated in colon cancer tissues and cell lines. Overexpression of miR-215 by miR-215 mimic significantly inhibited colon cancer cell proliferation, migration and invasion while knockdown of miR-215 by miR-215 inhibitor exerted reverse effects. Furthermore, we newly identified Yin-Yang 1(YY1) as a direct target of miR-215 which could rescue the effects of miR-215 on colon cancer cells. In summary, our investigation revealed that miR-215 was downregulated in colon cancer and it suppressed colon cancer cell proliferation, migration and invasion by directly targeting YY1. - Highlights: • MiR-215 expression was decreased in colon cancer tissues and cell lines. • Mir-215 inhibited colon cancer cell proliferation, migration and invasion. • MiR-215 targeted YY1 directly. • The effects of miR-215 on colon cancer cells were mediated by YY1.

  8. The effect of HCV Core protein on the expression of miR-150

    Directory of Open Access Journals (Sweden)

    Sayad Khanizadeh

    2016-09-01

    Full Text Available Background : Hepatitis C virus (HCV is considered as one of the major pathogenic agents of chronic liver diseases. Previous studies have shown that HCV proteins can interaction with gene regulatory networks such as microRNAs. The aim of this study was to investigate the effect of HCV core protein on the expression of miR-150 in a cell culture model. Materials and Methods: Plasmids expressing full HCV core protein was transfected into Huh7 cell lines while a GFP expressing plasmid employed as negative control. Subsequently, total RNA extracted and Real-Time PCR performed to measure the expression level of miR-150 expression. Moreover, trypan blue exclusion assay was performed to investigate the effect of core protein on cell viability. Results: The gene expression analysis of miR-150 in Huh7 cells showed that endogenous HCV core protein could significantly down regulation of miR-150 when compared to GFP control plasmid and normal cells (P<0.01. Beside, core protein induced no significant proliferative or cytotoxic effects on hepatic cells as determined by trypan blue exclusion assay (P<0.05. Conclusion: Our study suggests that HCV core protein can led to down regulation of miR-150 expression. This data revealed that HCV protein interactions with cell regulatory machinery may contribute to pathogenesis of chronic liver diseases.

  9. Changes in epidemiological patterns of HCV infection and their impact on liver disease over the last 20 years in Greece.

    Science.gov (United States)

    Savvas, S P; Koskinas, J; Sinani, C; Hadziyannis, A; Spanou, F; Hadziyannis, S J

    2005-09-01

    The aim of this study was to investigate the relative frequency of hepatitis C virus (HCV) genotypes in Greek patients with chronic infection as well as possible secular changes in their distribution in relation to modes of transmission, age and time at acquisition of the infection and other variables. We evaluated 434 unselected patients, 241 males and 193 females with a median age of 46.2 years (18-75), with chronic HCV infection presenting during the period 1996-2000. HCV infection was confirmed by the detection of HCV-RNA by polymerase chain reaction (PCR), while HCV genotyping was performed by the Inno-LiPA assay. Liver biopsies were evaluated according to Ishak's scoring system. Of 434 patients, 167 had a history of blood transfusion [post-transfusion hepatitis (PTH)], 80 were i.v. drug users and in 187 the route of infection remained unknown. The overall distribution of HCV genotypes 1, 2, 3 and 4 was 47, 8.3, 27 and 15.2%, respectively. Genotype 3 was common in younger adults and i.v. drug users, whereas genotype 1 predominated in older people and PTH patients (P duration of infection (P = 0.013). Our study revealed a change of HCV genotype distribution in the last 20 years among Greek patients with chronic HCV infection as a result of epidemiological changes in HCV transmission. The presence of cirrhosis was associated only with the duration of infection. These observations have impact both on prevention and treatment.

  10. Dual-Routine HCV/HIV Testing: Seroprevalence and Linkage to Care in Four Community Health Centers in Philadelphia, Pennsylvania.

    Science.gov (United States)

    Coyle, Catelyn; Kwakwa, Helena

    2016-01-01

    Despite common risk factors, screening for hepatitis C virus (HCV) and HIV at the same time as part of routine medical care (dual-routine HCV/HIV testing) is not commonly implemented in the United States. This study examined improvements in feasibility of implementation, screening increase, and linkage to care when a dual-routine HCV/HIV testing model was integrated into routine primary care. National Nursing Centers Consortium implemented a dual-routine HCV/HIV testing model at four community health centers in Philadelphia, Pennsylvania, on September 1, 2013. Routine HCV and opt-out HIV testing replaced the routine HCV and opt-in HIV testing model through medical assistant-led, laboratory-based testing and electronic medical record modification to prompt, track, report, and facilitate reimbursement for tests performed on uninsured individuals. This study examined testing, seropositivity, and linkage-to-care comparison data for the nine months before (December 1, 2012-August 31, 2013) and after (September 1, 2013-May 31, 2014) implementation of the dual-routine HCV/HIV testing model. A total of 1,526 HCV and 1,731 HIV tests were performed before, and 1,888 HCV and 3,890 HIV tests were performed after dual-routine testing implementation, resulting in a 23.7% increase in HCV tests and a 124.7% increase in HIV tests. A total of 70 currently HCV-infected and four new HIV-seropositive patients vs. 101 HCV-infected and 13 new HIV-seropositive patients were identified during these two periods, representing increases of 44.3% for HCV antibody-positive and RNA-positive tests and 225.0% for HIV-positive tests. Linkage to care increased from 27 currently infected HCV--positive and one HIV-positive patient pre-dual-routine testing to 39 HCV--positive and nine HIV-positive patients post-dual-routine testing. The dual-routine HCV/HIV testing model shows that integrating dual-routine testing in a primary care setting is possible and leads to increased HCV and HIV screening

  11. HBV Bypasses the Innate Immune Response and Does Not Protect HCV From Antiviral Activity of Interferon.

    Science.gov (United States)

    Mutz, Pascal; Metz, Philippe; Lempp, Florian A; Bender, Silke; Qu, Bingqian; Schöneweis, Katrin; Seitz, Stefan; Tu, Thomas; Restuccia, Agnese; Frankish, Jamie; Dächert, Christopher; Schusser, Benjamin; Koschny, Ronald; Polychronidis, Georgios; Schemmer, Peter; Hoffmann, Katrin; Baumert, Thomas F; Binder, Marco; Urban, Stephan; Bartenschlager, Ralf

    2018-05-01

    Hepatitis C virus (HCV) infection is sensitive to interferon (IFN)-based therapy, whereas hepatitis B virus (HBV) infection is not. It is unclear whether HBV escapes detection by the IFN-mediated immune response or actively suppresses it. Moreover, little is known on how HBV and HCV influence each other in coinfected cells. We investigated interactions between HBV and the IFN-mediated immune response using HepaRG cells and primary human hepatocytes (PHHs). We analyzed the effects of HBV on HCV replication, and vice versa, at the single-cell level. PHHs were isolated from liver resection tissues from HBV-, HCV-, and human immunodeficiency virus-negative patients. Differentiated HepaRG cells overexpressing the HBV receptor sodium taurocholate cotransporting polypeptide (dHepaRGNTCP) and PHHs were infected with HBV. Huh7.5 cells were transfected with circular HBV DNA genomes resembling viral covalently closed circular DNA (cccDNA), and subsequently infected with HCV; this served as a model of HBV and HCV coinfection. Cells were incubated with IFN inducers, or IFNs, and antiviral response and viral replication were analyzed by immune fluorescence, reverse-transcription quantitative polymerase chain reaction, enzyme-linked immunosorbent assays, and flow cytometry. HBV infection of dHepaRGNTCP cells and PHHs neither activated nor inhibited signaling via pattern recognition receptors. Incubation of dHepaRGNTCP cells and PHHs with IFN had little effect on HBV replication or levels of cccDNA. HBV infection of these cells did not inhibit JAK-STAT signaling or up-regulation of IFN-stimulated genes. In coinfected cells, HBV did not prevent IFN-induced suppression of HCV replication. In dHepaRGNTCP cells and PHHs, HBV evades the induction of IFN and IFN-induced antiviral effects. HBV infection does not rescue HCV from the IFN-mediated response. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.

  12. Low prevalence of HCV infection with predominance of genotype 4 among HIV patients living in Libreville, Gabon.

    Directory of Open Access Journals (Sweden)

    Angélique Ndjoyi-Mbiguino

    Full Text Available Gabon is an endemic area for human immunodeficiency virus (HIV and hepatitis C virus (HCV and the risk of co-infection is high.Between November 2015 and April 2016, we conducted retrospective study on HCV infection among people living with HIV/AIDS (PLHA. A total of 491 PLHA were included in this study and tested for the presence of HCV infection. HIV viral loads were obtained using the Generic HIV viral Load® assay and the CD4+ T cells count was performed using BD FACSCount™ CD4 reagents. HCV screening was performed using the MP Diagnostics HCV ELISA 4.0 kit. HCV genotypes were determined by sequence analysis of NS5B and Core regions. The Mann-Whitney test was used to compare the groups. Chi-2 test and Fisher's Exact Test were used to compare prevalence.HCV seroprevalence was 2.9% (14/491, (95% confidence interval (CI:1.4-4.3%. The percentage of HCV viremic patients, defined by the detection of HCV RNA in plasma, was 57% (8/14, representing 1.6% of the total population. HCV seroprevalence and replicative infection were not statistically differ with gender. The percentage of co-infection increased with age. No correlation with CD4+ T cells count and HIV viral load level was registered in this study. Identified HCV strains were predominantly of genotype 4 (87.5% including 4k, 4e, 4g, 4p, 4f and 4c subtypes. Only one strain belonged to genotype 2 (subtype 2q. Analysis of the NS5B region did not reveal the presence of resistance-associated substitutions for sofosbuvir.A systematic screening of hepatitis C is therefore strongly recommended as well as genotyping of HCV strains in order to adapt treatments for the specific case of people living with HIV/AIDS in Central Africa.

  13. Microarray analysis identifies a common set of cellular genes modulated by different HCV replicon clones

    Directory of Open Access Journals (Sweden)

    Gerosolimo Germano

    2008-06-01

    Full Text Available Abstract Background Hepatitis C virus (HCV RNA synthesis and protein expression affect cell homeostasis by modulation of gene expression. The impact of HCV replication on global cell transcription has not been fully evaluated. Thus, we analysed the expression profiles of different clones of human hepatoma-derived Huh-7 cells carrying a self-replicating HCV RNA which express all viral proteins (HCV replicon system. Results First, we compared the expression profile of HCV replicon clone 21-5 with both the Huh-7 parental cells and the 21-5 cured (21-5c cells. In these latter, the HCV RNA has been eliminated by IFN-α treatment. To confirm data, we also analyzed microarray results from both the 21-5 and two other HCV replicon clones, 22-6 and 21-7, compared to the Huh-7 cells. The study was carried out by using the Applied Biosystems (AB Human Genome Survey Microarray v1.0 which provides 31,700 probes that correspond to 27,868 human genes. Microarray analysis revealed a specific transcriptional program induced by HCV in replicon cells respect to both IFN-α-cured and Huh-7 cells. From the original datasets of differentially expressed genes, we selected by Venn diagrams a final list of 38 genes modulated by HCV in all clones. Most of the 38 genes have never been described before and showed high fold-change associated with significant p-value, strongly supporting data reliability. Classification of the 38 genes by Panther System identified functional categories that were significantly enriched in this gene set, such as histones and ribosomal proteins as well as extracellular matrix and intracellular protein traffic. The dataset also included new genes involved in lipid metabolism, extracellular matrix and cytoskeletal network, which may be critical for HCV replication and pathogenesis. Conclusion Our data provide a comprehensive analysis of alterations in gene expression induced by HCV replication and reveal modulation of new genes potentially useful

  14. Frequency of HCV infection and its genotypes among patients attending a liver clinic and voluntary blood donors in a rural area of Pakistan

    International Nuclear Information System (INIS)

    Abbas, S.Z.; Ali, M.; Muhammad, A.H.; Shaw, S.; Abbas, S.Q.

    2009-01-01

    Objectives: To determine the frequency of Hepatitis C virus (HCV) infection and its genotypic distribution in a rural area of Sindh, Pakistan. Methodology: Retrospective study of patients attending the Free Liver Clinic (FLC), and investigated for detectable HCV antibodies (n=1638), and those screened for HCV infection prior to voluntary blood donation (n=804) at a teaching hospital, located in rural Sindh. All patients had HCV antibodies tested by ELISA. A total of 1022 patients, who tested 'reactive' to HCV antibodies, and who could financially afford to have HCV RNA tested by PCR, had their results analysed. A total of 200 patients also had their HCV genotyped and analysed. Results: Patients at FLC had a higher chance of being reactive for HCV antibodies, compared to voluntary blood donors (20% VS 14% - p = 0.004). HCV RNA was detectable in 904/1022 (88%) patients. Among type able genotypes, 125/166 (75%) had a single genotype, and 7 patients (4%) were infected with genotype 1, either alone (n=4) or in combination with 3a. Conclusions: One out of every five people tested in our FLC, and 14% of 'healthy' voluntary blood donors were seropositive for HCV antibodies. Genotype 1 is very rare in our region. (author)

  15. Exosomes serve as nanoparticles to suppress tumor growth and angiogenesis in gastric cancer by delivering hepatocyte growth factor siRNA.

    Science.gov (United States)

    Zhang, Haiyang; Wang, Yi; Bai, Ming; Wang, Junyi; Zhu, Kegan; Liu, Rui; Ge, Shaohua; Li, JiaLu; Ning, Tao; Deng, Ting; Fan, Qian; Li, Hongli; Sun, Wu; Ying, Guoguang; Ba, Yi

    2018-03-01

    Exosomes derived from cells have been found to mediate signal transduction between cells and to act as efficient carriers to deliver drugs and small RNA. Hepatocyte growth factor (HGF) is known to promote the growth of both cancer cells and vascular cells, and the HGF-cMET pathway is a potential clinical target. Here, we characterized the inhibitory effect of HGF siRNA on tumor growth and angiogenesis in gastric cancer. In addition, we showed that HGF siRNA packed in exosomes can be transported into cancer cells, where it dramatically downregulates HGF expression. A cell co-culture model was used to show that exosomes loaded with HGF siRNA suppress proliferation and migration of both cancer cells and vascular cells. Moreover, exosomes were able to transfer HGF siRNA in vivo, decreasing the growth rates of tumors and blood vessels. The results of our study demonstrate that exosomes have potential for use in targeted cancer therapy by delivering siRNA. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  16. C/EBPα Short-Activating RNA Suppresses Metastasis of Hepatocellular Carcinoma through Inhibiting EGFR/β-Catenin Signaling Mediated EMT.

    Directory of Open Access Journals (Sweden)

    Hongbo Huan

    Full Text Available Hepatocellular carcinoma is associated with high mortality, and tumor metastasis is an important reason for poor prognosis. However, metastasis has not been effectively prevented in clinical therapy and the mechanisms underlying metastasis have not been fully characterized. CCAAT/enhancer-binding protein-α (C/EBPα is a transcriptional regulator with an essential role in tumor metastasis. We used short-activating RNAs (saRNA to enhance expression of C/EBPα. Intravenous injection of C/EBPα-saRNA in a nude mouse liver orthotopic xenograft tumor model inhibited intrahepatic and distant metastasis. C/EBPα-saRNA-treated mice showed increased serum levels of albumin and decreased alanine aminotransferase (ALT, glutamic-oxalacetic transaminase (AST, indicating a role of C/EBPα in improving liver function. Migration and invasion were inhibited in hepatoma cell lines transfected with C/EBPα-saRNA. We also observed an inhibition of epithelial-mesenchymal transition (EMT and suppression of epidermal growth factor receptor (EGFR, EGFR phosphorylation, and β-catenin in C/EBPa-saRNA-transfected cells. Our results suggested that C/EBPα-saRNA successfully inhibited HCC metastasis by inhibiting EGFR/β-catenin signaling pathway mediated EMT in vitro and in vivo.

  17. Stable RNA interference of ErbB-2 gene synergistic with epirubicin suppresses breast cancer growth in vitro and in vivo

    International Nuclear Information System (INIS)

    Hu Xiaoqu; Su Fengxi; Qin Li; Jia Weijuan; Gong Chang; Yu Fengyan; Guo Jujiang; Song Erwei

    2006-01-01

    Overexpression of human epidermal growth factor receptor-2 (Her2, ErbB-2) contributes to the progression and metastasis of breast cancer, implying that Her2 gene is a suitable target of RNA interference (RNAi) for breast cancer therapy. Here, we employed plasmid-mediated expression of 2 different Her2-shRNAs (pU6-Her2shRNAs) efficiently silenced the target gene expression on Her2 expressing SKBR-3 breast cancer cells in both mRNA and protein levels. Consequently, pU6-Her2shRNA increased apoptosis and reduced proliferation of SKBR-3 cells assayed by TUNEL and MTT, respectively. In vivo, intra-tumor injection of pU6-Her2shRNA inhibited the growth of SKBR-3 tumors inoculated subcutaneously in nude mice. Furthermore, pU6-Her2shRNA synergized the tumor suppression effect of epirubicin to SKBR-3 cells in vitro and implanted subcutaneously in nude mice. Therefore, we concluded that stable silencing of Her2 gene expression with plasmid expressing shRNA may hold great promise as a novel therapy for Her2 expressing breast cancers alone or in combination with anthracycline chemotherapy

  18. Viral kinetics of hepatitis C virus RNA in patients with chronic hepatitis C treated with 18 MU of interferon alpha daily

    NARCIS (Netherlands)

    Sentjens, Roel E.; Weegink, Christine J.; Beld, Marcel G.; Cooreman, Michel C.; Reesink, Henk W.

    2002-01-01

    BACKGROUND: A rapid decrease of hepatitis C virus (HCV) RNA is interferon (IFN) dose-dependent, and a 3-log decline of HCV-RNA is a strong predictor of sustained virological response. In this study, viral kinetics of HCV RNA in patients treated with 18 MU interferon alpha (IFN-alpha) daily for 2

  19. Structure of the hepatitis C virus IRES bound to the human 80S ribosome: remodeling of the HCV IRES.

    Science.gov (United States)

    Boehringer, Daniel; Thermann, Rolf; Ostareck-Lederer, Antje; Lewis, Joe D; Stark, Holger

    2005-11-01

    Initiation of translation of the hepatitis C virus (HCV) polyprotein is driven by an internal ribosome entry site (IRES) RNA that bypasses much of the eukaryotic translation initiation machinery. Here, single-particle electron cryomicroscopy has been used to study the mechanism of HCV IRES-mediated initiation. A HeLa in vitro translation system was used to assemble human IRES-80S ribosome complexes under near physiological conditions; these were stalled before elongation. Domain 2 of the HCV IRES is bound to the tRNA exit site, touching the L1 stalk of the 60S subunit, suggesting a mechanism for the removal of the HCV IRES in the progression to elongation. Domain 3 of the HCV IRES positions the initiation codon in the ribosomal mRNA binding cleft by binding helix 28 at the head of the 40S subunit. The comparison with the previously published binary 40S-HCV IRES complex reveals structural rearrangements in the two pseudoknot structures of the HCV IRES in translation initiation.

  20. Apoptosis and clinical severity in patients with psoriasis and HCV infection

    Directory of Open Access Journals (Sweden)

    Sami A Gabr

    2014-01-01

    Full Text Available Background: It has been proposed that hepatitis C virus (HCV antigens are involved in the pathogenesis of psoriasis and may contribute to severity of the disease. Increased expression of the apoptosis-regulating proteins p53 and tTG and decreased levels of bcl-2 in the keratinocytes of the skin of psoriatic patients have been reported. Aim: This study aims to identify the serum levels of apoptosis-regulating proteins in patients with psoriasis and without HCV infection and to study the relation between clinical severity of psoriasis and the presence of HCV infection. Materials and Methods: Disease severity was assessed by psoriasis area severity index score (PASI of 90 patients with psoriasis grouped as mild (n = 30, moderate (n = 30 and severe (n = 30; 20 healthy individuals were used as controls. All groups were subjected for complete history taking, clinical examination, and tests for liver function and HCV infection. The serum levels of apoptosis related proteins: p53, tTG and bcl-2 were estimated by enzyme linked immune sorbent assay (ELISA. Results: There was a statistically significant (P < 0.001 correlation between clinical severity of psoriasis and presence of HCV antibodies and HCV-mRNA. In addition, significantly (P < 0.001 raised serum p53 and tTG, and reduced bcl-2 were observed among HCV-positive patients as compared to HCV-negative patients and control patients. Conclusion: These results conclude that clinical severity of psoriasis is affected by the presence of HCV antibodies and overexpression of apoptotic related proteins. In addition, altered serum levels of apoptosis-regulating proteins could be useful prognostic markers and therapeutic targets of psoriatic disease.

  1. Cost effectiveness of screening strategies for early identification of HIV and HCV infection in injection drug users.

    Directory of Open Access Journals (Sweden)

    Lauren E Cipriano

    Full Text Available To estimate the cost, effectiveness, and cost effectiveness of HIV and HCV screening of injection drug users (IDUs in opioid replacement therapy (ORT.Dynamic compartmental model of HIV and HCV in a population of IDUs and non-IDUs for a representative U.S. urban center with 2.5 million adults (age 15-59.We considered strategies of screening individuals in ORT for HIV, HCV, or both infections by antibody or antibody and viral RNA testing. We evaluated one-time and repeat screening at intervals from annually to once every 3 months. We calculated the number of HIV and HCV infections, quality-adjusted life years (QALYs, costs, and incremental cost-effectiveness ratios (ICERs.Adding HIV and HCV viral RNA testing to antibody testing averts 14.8-30.3 HIV and 3.7-7.7 HCV infections in a screened population of 26,100 IDUs entering ORT over 20 years, depending on screening frequency. Screening for HIV antibodies every 6 months costs $30,700/QALY gained. Screening for HIV antibodies and viral RNA every 6 months has an ICER of $65,900/QALY gained. Strategies including HCV testing have ICERs exceeding $100,000/QALY gained unless awareness of HCV-infection status results in a substantial reduction in needle-sharing behavior.Although annual screening for antibodies to HIV and HCV is modestly cost effective compared to no screening, more frequent screening for HIV provides additional benefit at less cost. Screening individuals in ORT every 3-6 months for HIV infection using both antibody and viral RNA technologies and initiating ART for acute HIV infection appears cost effective.

  2. MicroRNA-205 suppresses the oral carcinoma oncogenic activity via down-regulation of Axin-2 in KB human oral cancer cell.

    Science.gov (United States)

    Kim, Jae-Sung; Park, Sun-Young; Lee, Seul Ah; Park, Min-Gyeong; Yu, Sun-Kyoung; Lee, Myoung-Hwa; Park, Mi-Ra; Kim, Su-Gwan; Oh, Ji-Su; Lee, Sook-Young; Kim, Chun Sung; Kim, Heung-Joong; Chun, Hong Sung; Kim, Jin-Soo; Moon, Sung-Min; Kim, Do Kyung

    2014-02-01

    MicroRNA (miRNA) is a small noncoding RNA molecule, 19-25 nucleotides in length, which regulates several pathways including cell development, cell proliferation, carcinogenesis, apoptosis, etc. In this study, the over-expression of microRNA-205 (miR-205) increased the number of apoptotic cells by at least 4 times compared to the control. In addition, over-expressed miRNA in KB oral cancer cells triggered apoptosis via the caspase cascade, including the cleavage of caspase-9, caspase-7, caspase-3, and PARP. Flow cytometry showed that apoptotic cell death was increased significantly by 35.33% in KB oral cancer cells with over-expressed miR-205 compared to the control. The microarray data showed that axis inhibitor protein 2 (Axin2) was down-regulated in KB oral cancer cells transfected with miR-205. In addition, Axin2 was down-regulated by approximately 50% by over-expressed miR-205 at both the mRNA and protein levels. Interestingly, Axin2 was up-regulated in KB oral cancer compared to human normal oral keratinocytes. Furthermore, the cell cytotoxicity and apoptotic population of KB oral cancer cells were increased significantly after Axin2 siRNA transfection. These results suggest that Axin2 is might be as potential oncogene in KB oral cancer cells. The luciferase assay showed that over-expressed miR-205 in KB oral cancer cells suppressed AXIN2 expression through an interaction with its own binding site at AXIN2 3'UTR (64-92). These results suggest that miR-205 is a novel anti-oncogenic miRNA in KB oral cancer cells, and may have potential applications in oral cancer therapy.

  3. Formal hepatitis C education enhances HCV care coordination, expedites HCV treatment and improves antiviral response.

    Science.gov (United States)

    Lubega, Samali; Agbim, Uchenna; Surjadi, Miranda; Mahoney, Megan; Khalili, Mandana

    2013-08-01

    Formal Hepatitis C virus (HCV) education improves HCV knowledge but the impact on treatment uptake and outcome is not well described. We aimed to evaluate the impact of formal HCV patient education on primary provider-specialist HCV comanagement and treatment. Primary care providers within the San Francisco safety-net health care system were surveyed and the records of HCV-infected patients before and after institution of a formal HCV education class by liver specialty (2006-2011) were reviewed retrospectively. Characteristics of 118 patients who received anti-HCV therapy were: mean age 51, 73% males and ~50% White and uninsured. The time to initiation of HCV treatment was shorter among those who received formal education (median 136 vs 284 days, P non-1 genotype (OR 6.17, 95% CI 2.3-12.7, P = 0.0003) and receipt of HCV education (OR 3.0, 95% CI 1.1-7.9, P = 0.03) were associated with sustained virologic treatment response. Among 94 provider respondents (response rate = 38%), mean age was 42, 62% were White, and 63% female. Most providers agreed that the HCV education class increased patients' HCV knowledge (70%), interest in HCV treatment (52%), and provider-patient communication (56%). A positive provider attitude (Coef 1.5, 95% CI 0.1-2.9 percent, P = 0.039) was independently associated with referral rate to education class. Formal HCV education expedites HCV therapy and improves virologic response rates. As primary care provider attitude plays a significant role in referral to HCV education class, improving provider knowledge will likely enhance access to HCV specialty services in the vulnerable population. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. GLYCINE-RICH RNA-BINDING PROTEIN1 interacts with RECEPTOR-LIKE CYTOPLASMIC PROTEIN KINASE1 and suppresses cell death and defense responses in pepper (Capsicum annuum).

    Science.gov (United States)

    Kim, Dae Sung; Kim, Nak Hyun; Hwang, Byung Kook

    2015-01-01

    Plants use a variety of innate immune regulators to trigger cell death and defense responses against pathogen attack. We identified pepper (Capsicum annuum) GLYCINE-RICH RNA-BINDING PROTEIN1 (CaGRP1) as a RECEPTOR-LIKE CYTOPLASMIC PROTEIN KINASE1 (CaPIK1)-interacting partner, based on bimolecular fluorescence complementation and coimmunoprecipitation analyses as well as gene silencing and transient expression analysis. CaGRP1 contains an N-terminal RNA recognition motif and a glycine-rich region at the C-terminus. The CaGRP1 protein had DNA- and RNA-binding activity in vitro. CaGRP1 interacted with CaPIK1 in planta. CaGRP1 and CaGRP1-CaPIK1 complexes were localized to the nucleus in plant cells. CaPIK1 phosphorylated CaGRP1 in vitro and in planta. Transient coexpression of CaGRP1 with CaPIK1 suppressed the CaPIK1-triggered cell death response, accompanied by a reduced CaPIK1-triggered reactive oxygen species (ROS) burst. The RNA recognition motif region of CaGRP1 was responsible for the nuclear localization of CaGRP1 as well as the suppression of the CaPIK1-triggered cell death response. CaGRP1 silencing in pepper conferred enhanced resistance to Xanthomonas campestris pv vesicatoria (Xcv) infection; however, CaPIK1-silenced plants were more susceptible to Xcv. CaGRP1 interacts with CaPIK1 and negatively regulates CaPIK1-triggered cell death and defense responses by suppressing ROS accumulation. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  5. MiR-30e suppresses proliferation of hepatoma cells via targeting prolyl 4-hydroxylase subunit alpha-1 (P4HA1) mRNA

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Guoxing [State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin (China); Shi, Hui [State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin (China); Li, Jiong; Yang, Zhe [State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin (China); Fang, Runping; Ye, Lihong [State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin (China); Zhang, Weiying, E-mail: zhwybao@nankai.edu.cn [State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin (China); Zhang, Xiaodong, E-mail: zhangxd@nankai.edu.cn [State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin (China)

    2016-04-08

    Aberrant microRNA expression has been shown to be characteristic of many cancers. It has been reported that the expression levels of miR-30e are decreased in liver cancer tissues. However, the role of miR-30e in hepatocellular carcinoma remains poorly understood. In the present study, we investigated the significance of miR-30e in hepatocarcinogenesis. Bioinformatics analysis reveals a putative target site of miR-30e in the 3′-untranslated region (3′UTR) of prolyl 4-hydroxylase subunit alpha-1 (P4HA1) mRNA. Moreover, luciferase reporter gene assays verified that miR-30e directly targeted 3′UTR of P4HA1 mRNA. Then, we demonstrated that miR-30e was able to reduce the expression of P4HA1 at the levels of mRNA and protein using reverse transcription-polymerase chain reaction and Western blot analysis. Enforced expression of miR-30e suppressed proliferation of HepG2 cells by 5-ethynyl-2-deoxyuridine (EdU) assay and reduced colony formation of these cells by colony formation analysis. Conversely, anti-miR-30e enhanced the proliferation of hepatoma cells in vitro. Interestingly, the ectopic expression of P4HA1 could efficiently rescue the inhibition of cell proliferation mediated by miR-30e in HepG2 cells. Meanwhile, silencing of P4HA1 abolished the anti-miR-30e-induced proliferation of cells. Clinically, quantitative real-time PCR showed that miR-30e was down-regulated in liver tumor tissues relative to their peritumor tissues. The expression levels of miR-30e were negatively correlated to those of P4HA1 mRNA in clinical liver tumor tissues. Thus, we conclude that miR-30e suppresses proliferation of hepatoma cells through targeting P4HA1 mRNA. Our finding provides new insights into the mechanism of hepatocarcinogenesis. - Highlights: • P4HA1 is a novel target gene of miR-30e. • P4HA1 is increased in clinical HCC tissues. • MiR-30e is negatively correlated with P4HA1 in clinical HCC tissues. • MiR-30e suppresses the proliferation of HCC cells through

  6. Inhibition of PRL-3 gene expression in gastric cancer cell line SGC7901 via microRNA suppressed reduces peritoneal metastasis

    International Nuclear Information System (INIS)

    Li Zhengrong; Zhan Wenhua; Wang Zhao; Zhu Baohe; He Yulong; Peng Junsheng; Cai Shirong; Ma Jinping

    2006-01-01

    High expression of PRL-3, a protein tyrosine phosphatase, is proved to be associated with lymph node metastasis in gastric carcinoma from previous studies. In this paper, we examined the relationship between PRL-3 expression and peritoneal metastasis in gastric carcinoma. We applied the artificial miRNA (pCMV-PRL3miRNA), which is based on the murine miR-155 sequence, to efficiently silence the target gene expression of PRL-3 in SGC7901 gastric cancer cells at both mRNA and protein levels. Then we observed that, in vitro, pCMV-PRL3miRNA significantly depressed the SGC7901 cell invasion and migration independent of cellular proliferation. In vivo, PRL-3 knockdown effectively suppressed the growth of peritoneal metastases and improved the prognosis in nude mice. Therefore, we concluded that artificial miRNA can depress the expression of PRL-3, and that PRL-3 might be a potential therapeutic target for gastric cancer peritoneal metastasis

  7. The frequency of hypothyroidism and its relationship with HCV positivity in patients with thalassemia major in southern Iran.

    Science.gov (United States)

    Haghpanah, Sezaneh; Jelodari, Shohreh; Karamifar, Hammdollah; Saki, Forough; Rahimi, Rahil; De Sanctis, Vincenzo; Dehbozorgian, Javad; Karimi, Mehran

    2018-03-27

    Hypothyroidism is one the most complication due to iron overload in patients with β-thalassemia major (TM). On the other hand these patients are prone to Hepatitis C virus (HCV) infection that can cause  thyroid dysfunction by itself or as the side effect of treatment with interferon (INF) or IFN plus ribavirin. The aim of this study is to evaluate the association of hypothyroidism with HCV positivity and serum ferritin levels in patients with TM. In this cross-sectional study, 201 randomly selected patients with TM who were registered at the Thalassemia Clinic of a tertiary hospital in Shiraz, southern Iran were investigated. Thyroid function tests and serologic screening assays for HCV seropositivity (HCV Ab and HCV-RNA) were conducted for all patients. Frequency of hypothyroidism was 22.9% including 19.9% subclinical hypothyroidism, 2% primary overt hypothyroidism and 1% central hypothyroidism. Eighty six patients (42.8%) were HCV Ab positive and 60 patients (29.9%) were HCV RNA positive. No significant relationship was found between hypothyroidism and HCV positivity or receiving IFN-α (P>0.05). Hypothyroidism showed a borderline significant association with high serum ferritin levels in TM patients (P=0.055). Our results showed no significant association between hypothyroidism and HCV infection in TM patients. It seems that the main mechanism of hypothyroidism in our patients is iron overload; however, for better evaluation a larger multicenter study is recommended.  Also due to the importance of consequences of HCV infection, more careful pre-transfusional screening of blood should be considered in TM patients.

  8. Involvement of Cryptosporidium parvum Cdg7_FLc_1000 RNA in the Attenuation of Intestinal Epithelial Cell Migration via Trans-Suppression of Host Cell SMPD3.

    Science.gov (United States)

    Ming, Zhenping; Gong, Ai-Yu; Wang, Yang; Zhang, Xin-Tian; Li, Min; Mathy, Nicholas W; Strauss-Soukup, Juliane K; Chen, Xian-Ming

    2017-12-27

    Intestinal infection by Cryptosporidium parvum causes inhibition of epithelial turnover, but underlying mechanisms are unclear. Previous studies demonstrate that a panel of parasite RNA transcripts of low protein-coding potential are delivered into infected epithelial cells. Using in vitro and in vivo models of intestinal cryptosporidiosis, we report here that host delivery of parasite Cdg7_FLc_1000 RNA results in inhibition of epithelial cell migration through suppression of the gene encoding sphingomyelinase 3 (SMPD3). Delivery of Cdg7_FLc_1000 into infected cells promotes the histone methyltransferase G9a-mediated H3K9 methylation in the SMPD3 locus. The DNA-binding transcriptional repressor, PR domain zinc finger protein 1, is required for the assembly of Cdg7_FLc_1000 into the G9a complex and associated with the enrichment of H3K9 methylation at the gene locus. Pathologically, nuclear transfer of Cryptosporidium parvum Cdg7_FLc_1000 RNA is involved in the attenuation of intestinal epithelial cell migration via trans-suppression of host cell SMPD3. © The Author(s) 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  9. Induction of cell death by tospoviral protein NSs and the motif critical for cell death does not control RNA silencing suppression activity.

    Science.gov (United States)

    Singh, Ajeet; Permar, Vipin; Jain, R K; Goswami, Suneha; Kumar, Ranjeet Ranjan; Canto, Tomas; Palukaitis, Peter; Praveen, Shelly

    2017-08-01

    Groundnut bud necrosis virus induces necrotic symptoms in different hosts. Previous studies showed reactive oxygen species-mediated programmed cell death (PCD) resulted in necrotic symptoms. Transgenic expression of viral protein NSs mimics viral symptoms. Here, we showed a role for NSs in influencing oxidative burst in the cell, by analyzing H 2 O 2 accumulation, activities of antioxidant enzymes and expression levels of vacuolar processing enzymes, H 2 O 2 -responsive microRNA 319a.2 plus its possible target metacaspase-8. The role of NSs in PCD, was shown using two NSs mutants: one in the Trp/GH3 motif (a homologue of pro-apototic domain) (NSs S189R ) and the other in a non-Trp/GH3 motif (NSs L172R ). Tobacco rattle virus (TRV) expressing NSs S189R enhanced the PCD response, but not TRV-NSs L172R , while RNA silencing suppression activity was lost in TRV-NSs L172R , but not in TRV-NSs S189R . Therefore, we propose dual roles of NSs in RNA silencing suppression and induction of cell death, controlled by different motifs. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. HCV Core Protein Uses Multiple Mechanisms to Induce Oxidative Stress in Human Hepatoma Huh7 Cells

    Science.gov (United States)

    Ivanov, Alexander V.; Smirnova, Olga A.; Petrushanko, Irina Y.; Ivanova, Olga N.; Karpenko, Inna L.; Alekseeva, Ekaterina; Sominskaya, Irina; Makarov, Alexander A.; Bartosch, Birke; Kochetkov, Sergey N.; Isaguliants, Maria G.

    2015-01-01

    Hepatitis C virus (HCV) infection is accompanied by the induction of oxidative stress, mediated by several virus proteins, the most prominent being the nucleocapsid protein (HCV core). Here, using the truncated forms of HCV core, we have delineated several mechanisms by which it induces the oxidative stress. The N-terminal 36 amino acids of HCV core induced TGFβ1-dependent expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases 1 and 4, both of which independently contributed to the production of reactive oxygen species (ROS). The same fragment also induced the expression of cyclo-oxygenase 2, which, however, made no input into ROS production. Amino acids 37–191 of HCV core up-regulated the transcription of a ROS generating enzyme cytochrome P450 2E1. Furthermore, the same fragment induced the expression of endoplasmic reticulum oxidoreductin 1α. The latter triggered efflux of Ca2+ from ER to mitochondria via mitochondrial Ca2+ uniporter, leading to generation of superoxide anions, and possibly also H2O2. Suppression of any of these pathways in cells expressing the full-length core protein led to a partial inhibition of ROS production. Thus, HCV core causes oxidative stress via several independent pathways, each mediated by a distinct region of the protein. PMID:26035647

  11. Comprehensive Effects of Suppression of MicroRNA-383 in Human Bone-Marrow-Derived Mesenchymal Stem Cells on Treating Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Guo-Jun Wei

    2018-05-01

    Full Text Available Background/Aims: Transplantation of bone-marrow-derived mesenchymal stem cells (MSCs promotes neural cell regeneration after spinal cord injury (SCI. Recently, we showed that suppression of microRNA-383 (miR-383 in MSCs increased the protein levels of glial cell line derived neurotrophic factor (GDNF, resulting in improved therapeutic effects on SCI. However, the overall effects of miR-383 suppression in MSCs on SCI therapy were not determined yet. Here, we addressed this question. Methods: We used bioinformatics tools to predict all miR-383-targeting genes, confirmed the functional bindings in a dual luciferase reporter assay. The effects of alteration of candidate genes in MSCs on cell proliferation were analyzed by MTT assay and by Western blotting for PCNA. The effects on angiogenesis were assessed by HUVEC assay. The effects on SCI in vivo were analyzed by transplantation of the modified MSCs into nude rats that underwent SCI. Results: Suppression of miR-383 in MSCs not only upregulated GDNF protein, but also increased vascular endothelial growth factor A (VEGF-A and cyclin-dependent kinase 19 (CDK19, two other miR-383 targets. MiR-383-suppression-induced increases in CDK19 resulted in a slight but significant increase in MSC proliferation, while miR-383-suppression-induced increases in VEGF-A resulted in a slight but significant increase in MSC-mediated angiogenesis. Conclusions: Upregulation of CDK19 and VEGF-A by miR-383 suppression in MSCs further improve the therapeutic potential of MSCs in treating SCI in rats.

  12. Circulating Interferon-λ3, Responsiveness to HBV Vaccination, and HBV/HCV Infections in Haemodialysis Patients

    Directory of Open Access Journals (Sweden)

    Alicja E. Grzegorzewska

    2017-01-01

    Full Text Available The IFN-λ3 gene (IFNL3 plays a role in HCV clearance. We investigated circulating IFN-λ3 and IFNL3 SNPs in haemodialysis patients who differed in their response to HBV vaccination and their HBV/HCV infection status. In 201 patients, plasma IFN-λ3 was determined using ELISA. IFNL3 SNPs (rs12979860, rs8099917 were genotyped using HRM analysis. Differences in IFN-λ3 levels were shown between responders and nonresponders to HBV vaccination and between HBsAg-positive patients and those who developed anti-HBs after infection and became HBsAg negative. HBV vaccine responders without HCV resolution revealed lower IFN-λ3 than noninfected responders. HBsAg/HCV RNA-positive subjects showed lower IFN-λ3 than patients positive only for HCV RNA or subjects who resolved both infections. Circulating IFN-λ3 correlated positively with anti-HBs and negatively with positive HCV RNA testing in the adjusted regression analyses. HBV vaccine nonresponders, HBsAg-positive patients, and subjects with replicating HCV composed a group with unfavourable outcomes. Responders to HBV vaccination, subjects who became HBsAg negative, and those who cleared HCV were analysed as having favourable outcomes. The latter showed higher IFN-λ3 but did not differ in distribution of IFNL3 SNPs compared with subjects with unfavourable outcomes. Higher IFN-λ3 concentrations are associated with response to HBV vaccination, self-limited HBV infection, and HCV resolution.

  13. Telaprevir for previously treated chronic HCV infection

    NARCIS (Netherlands)

    McHutchison, John G.; Manns, Michael P.; Muir, Andrew J.; Terrault, Norah A.; Jacobson, Ira M.; Afdhal, Nezam H.; Heathcote, E. Jenny; Zeuzem, Stefan; Reesink, Hendrik W.; Garg, Jyotsna; Bsharat, Mohammad; George, Shelley; Kauffman, Robert S.; Adda, Nathalie; Di Bisceglie, Adrian M.; Heathcote, E. J.; Kaita, K.; Ma, M.; Myers, R.; Sherman, M.; Yoshida, E.; Berg, T.; Manns, M. P.; Zeuzem, S.; de Knegt, R.; van Hoek, B.; Afdhal, N. H.; Arora, S.; Bernstein, D.; Cochran, J.; Di Bisceglie, A. M.; Dickson, R.; Dieterich, D. T.; Etzkorn, K.; Everson, G. T.; Faruqui, S.; Ghalib, R.; Gitlin, N.; Godofsky, E.; Gordon, S.; Hassanein, T.; Jacobson, I. M.; Kilby, A.; Kugelmas, M.; Kwo, P. Y.; Lawitz, E. S.; Lindsay, K.; Maillard, M.; Nelson, D. R.; Nyberg, L.

    2010-01-01

    Patients with genotype 1 hepatitis C virus (HCV) who do not have a sustained response to therapy with peginterferon alfa and ribavirin have a low likelihood of success with retreatment. We randomly assigned patients with HCV genotype 1 who had not had a sustained virologic response after

  14. The history of hepatitis C virus (HCV)

    DEFF Research Database (Denmark)

    Bukh, Jens

    2016-01-01

    The discovery of hepatitis C virus (HCV) in 1989 permitted basic research to unravel critical components of a complex life cycle for this important human pathogen. HCV is a highly divergent group of viruses classified in 7 major genotypes and a great number of subtypes, and circulating in infected...

  15. Calcitriol Inhibits HCV Infection via Blockade of Activation of PPAR and Interference with Endoplasmic Reticulum-Associated Degradation

    Directory of Open Access Journals (Sweden)

    Yu-Min Lin

    2018-01-01

    Full Text Available Vitamin D has been identified as an innate anti-hepatitis C virus (HCV agent but the possible mechanisms for this issue remain unclear. Here, we clarified the mechanisms of calcitriol-mediated inhibition of HCV infection. Calcitriol partially inhibited HCV infection, nitric oxide (NO release and lipid accumulation in Huh7.5 human hepatoma cells via the activation of vitamin D receptor (VDR. When cells were pretreated with the activators of peroxisome proliferator-activated receptor (PPAR-α (Wy14643 and -γ (Ly171883, the calcitriol-mediated HCV suppression was reversed. Otherwise, three individual stimulators of PPAR-α/β/γ blocked the activation of VDR. PPAR-β (linoleic acid reversed the inhibition of NO release, whereas PPAR-γ (Ly171883 reversed the inhibitions of NO release and lipid accumulation in the presence of calcitriol. The calcitriol-mediated viral suppression, inhibition of NO release and activation of VDR were partially blocked by an inhibitor of endoplasmic reticulum-associated degradation (ERAD, kifunensine. Furthermore, calcitriol blocked the HCV-induced expressions of apolipoprotein J and 78 kDa glucose-regulated protein, which was restored by pretreatment of kifunensine. These results indicated that the calcitriol-mediated HCV suppression was associated with the activation of VDR, interference with ERAD process, as well as blockades of PPAR, lipid accumulation and nitrative stress.

  16. Gender differences in clinical, immunological, and virological outcomes in highly active antiretroviral-treated HIV–HCV coinfected patients

    Directory of Open Access Journals (Sweden)

    Joel Emery

    2010-05-01

    Full Text Available Joel Emery1, Neora Pick2, Edward J Mills3, Curtis L Cooper11The Ottawa Hospital Division of Infectious Diseases, University of Ottawa, Ottawa, Canada; 2Oak Tree Clinic, BC Women’s Hospital, Vancouver, Canada; 3Faculty of Health Sciences, University of Ottawa, Ottawa, CanadaObjective: The influence of biological sex on human immunodeficiency virus (HIV antiretroviral treatment outcome is not well described in HIV–hepatitis C (HCV coinfection.Methods: We assessed patients’ clinical outcomes of HIV–HCV coinfected patients initiating antiretroviral therapy attending the Ottawa Hospital Immunodeficiency Clinic from January 1996 to June 2008.Results: We assessed 144 males and 39 females. Although similar in most baseline characteristics, the CD4 count was higher in females (375 vs 290 cells/μL. Fewer females initiated ritonavir-boosted regimens. The median duration on therapy before interruption or change was longer in males (10 versus 4 months (odds ratio [OR] 1.40 95% confidence interval: 0.95–2.04; P = 0.09. HIV RNA suppression was frequent (74% and mean CD4 count achieved robust (over 400 cells/μL at 6 months, irrespective of sex. The primary reasons for therapy interruption in females and males included: gastrointestinal intolerance (25% vs 19%; P = 0.42; poor adherence (22% vs 15%; P = 0.31; neuropsychiatric symptoms (19% vs 5%; P = 0.003; and lost to follow-up (3% vs 13%; P = 0.08. Seven males (5% and no females discontinued therapy for liver-specific complications. Death rate was higher in females (23% vs 7%; P = 0.003.Conclusion: There are subtle differences in the characteristics of female and male HIV–HCV coinfected patients that influence HIV treatment decisions. The reasons for treatment interruption and change differ by biological sex. This knowledge should be considered when starting HIV therapy and in efforts to improve treatment outcomes.Keywords: AIDS, HIV, HCV, coinfection, HAART, viral load, women, gender differences

  17. miR-221 suppression through nanoparticle-based miRNA delivery system for hepatocellular carcinoma therapy and its diagnosis as a potential biomarker.

    Science.gov (United States)

    Li, Feng; Wang, Feiran; Zhu, Changlai; Wei, Qun; Zhang, Tianyi; Zhou, You Lang

    2018-01-01

    MicroRNA-221(miR-221) is frequently dysregulated in cancer. The purpose of this study was to explore whether miR-221 can be used as a potential diagnostic marker or therapeutic target for hepatocellular carcinoma (HCC). In this study, we investigated whether miR-221 expression was associated with clini-copathological characteristics and prognosis in HCC patients, and we developed a nanoparticle-based miRNA delivery system and detected its therapeutic efficacy in vitro and in vivo. We found that miR-221 was upregulated in HCC tissues, cell lines and blood of HCC patients. Upregulated miR-221 was associated with clinical TNM stage and tumor capsular infiltration, and showed poor prognosis, suggesting that its suppression could serve as an effective approach for hepatocellular carcinoma therapy. Treatment of HCC cells with nanoparticle/miR-221 inhibitor complexes suppressed their growth, colony formation ability, migration and invasion. In vivo, the growth of the tumors treated by the nanoparticle/miR-221 inhibitor complexes were significantly less than those treated by the nanoparticle/miRNA scramble complexes. In addition, circulating miR-221 may act as a potential tumor biomarker for early diagnosis of HCC, and combined serum miR-221 and AFP detection gave a better performance than individual detection in early diagnosis of HCC. These findings suggest that a nanoparticle-based miRNA delivery system could potentially serve as a safe and effective treatment and miR-221 could also be a potential diagnostic marker for HCC.

  18. Suppression of the expression of hypoxia-inducible factor-1α by RNA interference alleviates hypoxia-induced pulmonary hypertension in adult rats.

    Science.gov (United States)

    Li, Ying; Shi, Bo; Huang, Liping; Wang, Xin; Yu, Xiaona; Guo, Baosheng; Ren, Weidong

    2016-12-01

    Hypoxia-inducible factor-1α (HIF-1α) has been implicated in the pathogenesis of hypoxic pulmonary hypertension (PH). However, the potential clinical value of HIF-1α as a therapeutic target in the treatment of PH has not yet been evaluated. In this study, an animal model of hypoxia-induced PH was established by exposing adult rats to 10% O2 for 3 weeks, and the effects of the lentivirus-mediated delivery of HIF-1α short hairpin RNA (shRNA) by intratracheal instillation prior to exposure to hypoxia on the manifestations of hypoxia-induced PH were assessed. The successful delivery of HIF-1α shRNA into the pulmonary arteries effectively suppressed the hypoxia-induced upregulation of HIF-1α, accompanied by the prominent attenuation the symptoms associated with hypoxia-induced PH, including the elevation of pulmonary arterial pressure, hypertrophy and hyperplasia of pulmonary artery smooth muscle cells (PASMCs), as well as the muscularization of pulmonary arterioles. In addition, the knockdown of HIF-1α in cultured rat primary PASMCs significantly inhibited the hypoxia-induced acceleration of the cell cycle and the proliferation of the PASMCs, suggesting that HIF-1α may be a direct mediator of PASMC hyperplasia in hypoxia-induced PH. In conclusion, this study demonstrates the potent suppressive effects of HIF-1α shRNA on hypoxia-induced PH and PASMC hyperplasia, providing evidence for the potential application of HIF-1α shRNA in the treatment of hypoxic PH.

  19. Serotonin 2A receptor mRNA levels in the neonatal dopamine-depleted rat striatum remain upregulated following suppression of serotonin hyperinnervation.

    Science.gov (United States)

    Basura, G J; Walker, P D

    1999-08-05

    Sixty days after bilateral dopamine (DA) depletion (>98%) with 6-hydroxydopamine (6-OHDA) in neonatal rats, serotonin (5-HT) content doubled and 5-HT(2A) receptor mRNA expression rose 54% within the rostral striatum. To determine if striatal 5-HT(2A) receptor mRNA upregulation is dependent on increased 5-HT levels following DA depletion, neonatal rats received dual injections of 6-OHDA and 5,7-dihydroxytryptamine (5,7-DHT) which suppressed 5-HT content by approximately 90%. In these 6-OHDA/5,7-DHT-treated rats, striatal 5-HT(2A) receptor mRNA expression was still elevated (87% above vehicle controls). Comparative analysis of 5-HT(2C) receptor mRNA expression yielded no significant changes in any experimental group. These results demonstrate that upregulated 5-HT(2A) receptor biosynthesis in the DA-depleted rat is not dependent on subsequent 5-HT hyperinnervation. Copyright 1999 Elsevier Science B.V.

  20. Inducible and reversible suppression of Npm1 gene expression using stably integrated small interfering RNA vector in mouse embryonic stem cells

    International Nuclear Information System (INIS)

    Wang Beibei; Lu Rui; Wang Weicheng; Jin Ying

    2006-01-01

    The tetracycline (Tc)-inducible small interference RNA (siRNA) is a powerful tool for studying gene function in mammalian cells. However, the system is infrequently utilized in embryonic stem (ES) cells. Here, we present First application of the Tc-inducible, stably integrated plasmid-based siRNA system in mouse ES cells to down-regulate expression of Npm1, an essential gene for embryonic development. The physiological role of Npm1 in ES cells has not been defined. Our data show that the knock-down of Npm1 expression by this siRNA system was not only highly efficient, but also Tc- dose- and induction time-dependent. Particularly, the down-regulation of Npm1 expression was reversible. Importantly, suppression of Npm1 expression in ES cells resulted in reduced cell proliferation. Taken together, this system allows for studying gene function in a highly controlled manner, otherwise difficult to achieve in ES cells. Moreover, our results demonstrate that Npm1 is essential for ES cell proliferation

  1. Partial suppression of the respiratory defect of qrs1/her2 glutamyl-tRNA amidotransferase mutants by overexpression of the mitochondrial pentatricopeptide Msc6p.

    Science.gov (United States)

    Moda, Bruno S; Ferreira-Júnior, José Ribamar; Barros, Mario H

    2016-08-01

    Recently, a large body of evidences indicates the existence in the mitochondrial matrix of foci that contain different proteins involved in mitochondrial RNA metabolism. Some of these proteins have a pentatricopeptide repeat motif that constitutes their RNA-binding structures. Here we report that MSC6, a mitochondrial pentatricopeptide protein of unknown function, is a multi copy suppressor of mutations in QRS1/HER2 a component of the trimeric complex that catalyzes the transamidation of glutamyl-tRNAQ to glutaminyl-tRNAQ. This is an essential step in mitochondrial translation because of the lack of a specific mitochondrial aminoacyl glutaminyl-tRNA synthetase. MSC6 over-expression did not abolish translation of an aberrant variant form of Cox2p detected in QRS1/HER2 mutants, arguing against a suppression mechanism that bypasses Qrs1p function. A slight decrement of the mitochondrial translation capacity as well as diminished growth on respiratory carbon sources media for respiratory activity was observed in the msc6 null mutant. Additionally, the msc6 null mutant did not display any impairment in RNA transcription, processing or turnover. We concluded that Msc6p is a mitochondrial matrix protein and further studies are required to indicate the specific function of Msc6p in mitochondrial translation.

  2. Needlestick accident resulting in occupational transmission of HCV: Report of two cases

    Directory of Open Access Journals (Sweden)

    Eunice B Martin Chaves

    2016-01-01

    Full Text Available Occupational transmission of hepatitis C virus (HCV through needlestick injury is a serious problem worldwide. Occupational transmission of HCV is estimated at an average rate between 0,5% and 0,75%. There are factors associated with increased risk of transmission, such as deep injuries, procedures involving hollow-bore needle placement in the source patient’s vein or artery, and high HCV RNA titer in the source patient. We describe two cases of HCV seroconversion in nursing assistants after different risk needlestick injuries.   A transmissão ocupacional do vírus da hepatite C (VHC através de acidentes com material perfurocortante é um problema global. Essa transmissão é estimada, em média, entre 0,5% e 0,75%. Alguns fatores estão associados ao aumento do risco de transmissão, tais como lesões profundas, procedimentos que envolvam colocação da agulha em veia ou artéria, e altos títulos de HCV-RNA no paciente-fonte. Descrevemos dois casos de soroconversão ao VHC em auxiliares de enfermagem após acidentes com agulhas.

  3. Suppression of Cancer Stemness p21-regulating mRNA and microRNA Signatures in Recurrent Ovarian Cancer Patient Samples

    LENUS (Irish Health Repository)

    Gallagher, Michael F

    2012-01-19

    Abstract Background Malignant ovarian disease is characterised by high rates of mortality due to high rates of recurrent chemoresistant disease. Anecdotal evidence indicates this may be due to chemoresistant properties of cancer stem cells (CSCs). However, our understanding of the role of CSCs in recurrent ovarian disease remains sparse. In this study we used gene microarrays and meta-analysis of our previously published microRNA (miRNA) data to assess the involvement of cancer stemness signatures in recurrent ovarian disease. Methods Microarray analysis was used to characterise early regulation events in an embryonal carcinoma (EC) model of cancer stemness. This was then compared to our previously published microarray data from a study of primary versus recurrent ovarian disease. In parallel, meta-analysis was used to identify cancer stemness miRNA signatures in tumor patient samples. Results Microarray analysis demonstrated a 90% difference between gene expression events involved in early regulation of differentiation in murine EC (mEC) and embryonic stem (mES) cells. This contrasts the known parallels between mEC and mES cells in the undifferentiated and well-differentiated states. Genelist comparisons identified a cancer stemness signature set of genes in primary versus recurrent data, a subset of which are known p53-p21 regulators. This signature is present in primary and recurrent or in primary alone but essentially never in recurrent tumors specifically. Meta-analysis of miRNA expression showed a much stronger cancer stemness signature within tumor samples. This miRNA signature again related to p53-p21 regulation and was expressed prominently in recurrent tumors. Our data indicate that the regulation of p53-p21 in ovarian cancer involves, at least partially, a cancer stemness component. Conclusion We present a p53-p21 cancer stemness signature model for ovarian cancer. We propose that this may, at least partially, differentially regulate the p53-p21

  4. Suppression of cancer stemness p21-regulating mRNA and microRNA signatures in recurrent ovarian cancer patient samples

    Directory of Open Access Journals (Sweden)

    Gallagher Michael F

    2012-01-01

    Full Text Available Abstract Background Malignant ovarian disease is characterised by high rates of mortality due to high rates of recurrent chemoresistant disease. Anecdotal evidence indicates this may be due to chemoresistant properties of cancer stem cells (CSCs. However, our understanding of the role of CSCs in recurrent ovarian disease remains sparse. In this study we used gene microarrays and meta-analysis of our previously published microRNA (miRNA data to assess the involvement of cancer stemness signatures in recurrent ovarian disease. Methods Microarray analysis was used to characterise early regulation events in an embryonal carcinoma (EC model of cancer stemness. This was then compared to our previously published microarray data from a study of primary versus recurrent ovarian disease. In parallel, meta-analysis was used to identify cancer stemness miRNA signatures in tumor patient samples. Results Microarray analysis demonstrated a 90% difference between gene expression events involved in early regulation of differentiation in murine EC (mEC and embryonic stem (mES cells. This contrasts the known parallels between mEC and mES cells in the undifferentiated and well-differentiated states. Genelist comparisons identified a cancer stemness signature set of genes in primary versus recurrent data, a subset of which are known p53-p21 regulators. This signature is present in primary and recurrent or in primary alone but essentially never in recurrent tumors specifically. Meta-analysis of miRNA expression showed a much stronger cancer stemness signature within tumor samples. This miRNA signature again related to p53-p21 regulation and was expressed prominently in recurrent tumors. Our data indicate that the regulation of p53-p21 in ovarian cancer involves, at least partially, a cancer stemness component. Conclusion We present a p53-p21 cancer stemness signature model for ovarian cancer. We propose that this may, at least partially, differentially regulate the p

  5. HIV/HCV Coinfection in Taiwan.

    Science.gov (United States)

    Hsu, Ching-Sheng; Kao, Jia-Horng

    2016-01-01

    Both human immunodeficiency virus (HIV) and hepatitis C virus (HCV) infection are important global public health problems with shared transmission routes. Although HIV/HCV coinfection is not uncommon, the prevalence rates vary significantly across different studies and regions. In Taiwan, injection drug users have become the major contributors to the HIV/AIDS epidemic since 2005. Because the prevalence of HCV infection is high in injection drug users, this HIV epidemic is also associated with a significant increase of HIV/HCV coinfection in Taiwan. To control Taiwan's HIV epidemic, Taiwan Centers for Disease Control (CDC) launched a harm-reduction program in 2006. The HIV epidemic, the percentage attributed to injection drug users, and the prevalence of HIV/HCV coinfection gradually declined thereafter. In this article, we aimed to thoroughly examine the current literatures of HIV/HCV coinfection in Taiwan and hope to provide a better understanding of the needs for the management of this coinfection. We conducted a narrative review and searched for literature from PubMed, Ovid MEDLINE, and the Cochrane Library database untill August 2015. Studies relevant to the epidemiology and associated risk factors of HIV/HCV coinfection in Taiwan were examined and discussed.

  6. Down-regulation of LncRNA TUG1 enhances radiosensitivity in bladder cancer via suppressing HMGB1 expression

    OpenAIRE

    Jiang, Huijuan; Hu, Xigang; Zhang, Hongzhi; Li, Wenbo

    2017-01-01

    Background Long non-coding RNAs (lncRNAs) have been reported to regulate the sensitivity of different cancer cells to chemoradiotherapy. Aberrant expression of lncRNA Taurine-upregulated gene 1 (TUG1) has been found to be involved in the development of bladder cancer, however, its function and underlying mechanism in the radioresistance of bladder cancer remains unclear. Methods Quantitative real-time PCR (qRT-PCR) was conducted to measure the expression of TUG1 and HMGB1 mRNA in bladder canc...

  7. Suppression of leaky expression of adenovirus genes by insertion of microRNA-targeted sequences in the replication-incompetent adenovirus vector genome

    Directory of Open Access Journals (Sweden)

    Kahori Shimizu

    2014-01-01

    Full Text Available Leaky expression of adenovirus (Ad genes occurs following transduction with a conventional replication-incompetent Ad vector, leading to an induction of cellular immunity against Ad proteins and Ad protein-induced toxicity, especially in the late phase following administration. To suppress the leaky expression of Ad genes, we developed novel Ad vectors by incorporating four tandem copies of sequences with perfect complementarity to miR-122a or miR-142-3p into the 3′-untranslated region (UTR of the E2A, E4, or pIX gene, which were mainly expressed from the Ad vector genome after transduction. These Ad vectors easily grew to high titers comparable to those of a conventional Ad vector in conventional 293 cells. The leaky expression of these Ad genes in mouse organs was significantly suppressed by 2- to 100-fold, compared with a conventional Ad vector, by insertion of the miRNA-targeted sequences. Notably, the Ad vector carrying the miR-122a–targeted sequences into the 3′-UTR of the E4 gene expressed higher and longer-term transgene expression and more than 20-fold lower levels of all the Ad early and late genes examined in the liver than a conventional Ad vector. miR-122a–mediated suppression of the E4 gene expression in the liver significantly reduced the hepatotoxicity which an Ad vector causes via both adaptive and non-adaptive immune responses.

  8. Myostatin inhibits osteoblastic differentiation by suppressing osteocyte-derived exosomal microRNA-218: A novel mechanism in muscle-bone communication.

    Science.gov (United States)

    Qin, Yiwen; Peng, Yuanzhen; Zhao, Wei; Pan, Jianping; Ksiezak-Reding, Hanna; Cardozo, Christopher; Wu, Yingjie; Divieti Pajevic, Paola; Bonewald, Lynda F; Bauman, William A; Qin, Weiping

    2017-06-30

    Muscle and bone are closely associated in both anatomy and function, but the mechanisms that coordinate their synergistic action remain poorly defined. Myostatin, a myokine secreted by muscles, has been shown to inhibit muscle growth, and the disruption of the myostatin gene has been reported to cause muscle hypertrophy and increase bone mass. Extracellular vesicle-exosomes that carry microRNA (miRNA), mRNA, and proteins are known to perform an important role in cell-cell communication. We hypothesized that myostatin may play a crucial role in muscle-bone interactions and may promote direct effects on osteocytes and on osteocyte-derived exosomal miRNAs, thereby indirectly influencing the function of other bone cells. We report herein that myostatin promotes expression of several bone regulators such as sclerostin (SOST), DKK1, and RANKL in cultured osteocytic (Ocy454) cells, concomitant with the suppression of miR-218 in both parent Ocy454 cells and derived exosomes. Exosomes produced by Ocy454 cells that had been pretreated with myostatin could be taken up by osteoblastic MC3T3 cells, resulting in a marked reduction of Runx2, a key regulator of osteoblastic differentiation, and in decreased osteoblastic differentiation via the down-regulation of the Wnt signaling pathway. Importantly, the inhibitory effect of myostatin-modified osteocytic exosomes on osteoblast differentiation is completely reversed by expression of exogenous miR-218, through a mechanism involving miR-218-mediated inhibition of SOST. Together, our findings indicate that myostatin directly influences osteocyte function and thereby inhibits osteoblastic differentiation, at least in part, through the suppression of osteocyte-derived exosomal miR-218, suggesting a novel mechanism in muscle-bone communication. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Opposite Effects of Two Human ATG10 Isoforms on Replication of a HCV Sub-genomic Replicon Are Mediated via Regulating Autophagy Flux in Zebrafish

    Directory of Open Access Journals (Sweden)

    Yu-Chen Li

    2018-04-01

    Full Text Available Autophagy is a host mechanism for cellular homeostatic control. Intracellular stresses are symptoms of, and responses to, dysregulation of the physiological environment of the cell. Alternative gene transcription splicing is a mechanism potentially used by a host to respond to physiological or pathological challenges. Here, we aimed to confirm opposite effects of two isoforms of the human autophagy-related protein ATG10 on an HCV subgenomic replicon in zebrafish. A liver-specific HCV subreplicon model was established and exhibited several changes in gene expression typically induced by HCV infection, including overexpression of several HCV-dependent genes (argsyn, leugpcr, rasgbd, and scaf-2, as well as overexpression of several ER stress related genes (atf4, chop, atf6, and bip. Autophagy flux was blocked in the HCV model. Our results indicated that the replication of the HCV subreplicon was suppressed via a decrease in autophagosome formation caused by the autophagy inhibitor 3MA, but enhanced via dysfunction in the lysosomal degradation caused by another autophagy inhibitor CQ. Human ATG10, a canonical isoform in autophagy, facilitated the amplification of the HCV-subgenomic replicon via promoting autophagosome formation. ATG10S, a non-canonical short isoform of the ATG10 protein, promoted autophagy flux, leading to lysosomal degradation of the HCV-subgenomic replicon. Human ATG10S may therefore inhibit HCV replication, and may be an appropriate target for future antiviral drug screening.

  10. The Entomopathogenic Fungi Isaria fumosorosea Plays a Vital Role in Suppressing the Immune System of Plutella xylostella: RNA-Seq and DGE Analysis of Immunity-Related Genes.

    Science.gov (United States)

    Xu, Jin; Xu, Xiaoxia; Shakeel, Muhammad; Li, Shuzhong; Wang, Shuang; Zhou, Xianqiang; Yu, Jialin; Xu, Xiaojing; Yu, Xiaoqiang; Jin, Fengliang

    2017-01-01

    Most, if not all, entomopathogenic fungi have been used as alternative control agents to decrease the insect resistance and harmful effects of the insecticides on the environment. Among them, Isaria fumosorosea has also shown great potential to control different insect pests. In the present study, we explored the immune response of P. xylostella to the infection of I. fumosorosea at different time points by using RNA-Sequencing and differential gene expression technology at the genomic level. To gain insight into the host-pathogen interaction at the genomic level, five libraries of P. xylostella larvae at 12, 18, 24, and 36 h post-infection and a control were constructed. In total, 161 immunity-related genes were identified and grouped into four categories; immune recognition families, toll and Imd pathway, melanization, and antimicrobial peptides (AMPs). The results of differentially expressed immunity-related genes depicted that 15, 13, 53, and 14 up-regulated and 38, 51, 56, and 49 were down-regulated in P. xylostella at 12, 18, 24, and 36 h post-treatment, respectively. RNA-Seq results of immunity-related genes revealed that the expression of AMPs was reduced after treatment with I. fumosorosea . To validate RNA-Seq results by RT-qPCR, 22 immunity-related genes were randomly selected. In conclusion, our results demonstrate that I. fumosorosea has the potential to suppress the immune response of P. xylostella and can become a potential biopesticide for controlling P. xylostella .

  11. The Entomopathogenic Fungi Isaria fumosorosea Plays a Vital Role in Suppressing the Immune System of Plutella xylostella: RNA-Seq and DGE Analysis of Immunity-Related Genes

    Directory of Open Access Journals (Sweden)

    Jin Xu

    2017-07-01

    Full Text Available Most, if not all, entomopathogenic fungi have been used as alternative control agents to decrease the insect resistance and harmful effects of the insecticides on the environment. Among them, Isaria fumosorosea has also shown great potential to control different insect pests. In the present study, we explored the immune response of P. xylostella to the infection of I. fumosorosea at different time points by using RNA-Sequencing and differential gene expression technology at the genomic level. To gain insight into the host-pathogen interaction at the genomic level, five libraries of P. xylostella larvae at 12, 18, 24, and 36 h post-infection and a control were constructed. In total, 161 immunity-related genes were identified and grouped into four categories; immune recognition families, toll and Imd pathway, melanization, and antimicrobial peptides (AMPs. The results of differentially expressed immunity-related genes depicted that 15, 13, 53, and 14 up-regulated and 38, 51, 56, and 49 were down-regulated in P. xylostella at 12, 18, 24, and 36 h post-treatment, respectively. RNA-Seq results of immunity-related genes revealed that the expression of AMPs was reduced after treatment with I. fumosorosea. To validate RNA-Seq results by RT-qPCR, 22 immunity-related genes were randomly selected. In conclusion, our results demonstrate that I. fumosorosea has the potential to suppress the immune response of P. xylostella and can become a potential biopesticide for controlling P. xylostella.

  12. Long Noncoding RNA HOXC-AS1 Suppresses Ox-LDL-Induced Cholesterol Accumulation Through Promoting HOXC6 Expression in THP-1 Macrophages.

    Science.gov (United States)

    Huang, Chuan; Hu, Yan-Wei; Zhao, Jing-Jing; Ma, Xin; Zhang, Yuan; Guo, Feng-Xia; Kang, Chun-Min; Lu, Jing-Bo; Xiu, Jian-Cheng; Sha, Yan-Hua; Gao, Ji-Juan; Wang, Yan-Chao; Li, Pan; Xu, Bang-Ming; Zheng, Lei; Wang, Qian

    2016-11-01

    Atherosclerosis is a common pathological basis of cardiovascular disease, which remains the leading cause of mortality. Long noncoding RNAs (lncRNAs) are newly studied non-protein-coding RNAs involved in gene regulation, but how lncRNAs exert regulatory effect on atherosclerosis remains unclear. In this study, we found that lncRNA HOXC cluster antisense RNA 1 (HOXC-AS1) and homeobox C6 (HOXC6) were downregulated in carotid atherosclerosis by performing microarray analysis. The results were verified in atherosclerotic plaques and normal arterial intima tissues by quantitative reverse transcription PCR and western blot analysis. Lentivirus-mediated overexpression of HOXC-AS1 induced HOXC6 expression at mRNA and protein levels in THP-1 macrophages. Besides, oxidized low-density lipoprotein (Ox-LDL) decreased expression of HOXC-AS1 and HOXC6 in a time-dependent manner. Induction of cholesterol accumulation by Ox-LDL could be partly suppressed by overexpression of HOXC-AS1.

  13. MiR-27a suppresses triglyceride accumulation and affects gene mRNA expression associated with fat metabolism in dairy goat mammary gland epithelial cells.

    Science.gov (United States)

    Lin, Xian-Zi; Luo, Jun; Zhang, Li-Ping; Wang, Wei; Shi, Heng-Bo; Zhu, Jiang-Jiang

    2013-05-25

    MicroRNAs (miRNAs), a well-defined group of small RNAs containing about 22 nucleotides, participate in various biological metabolic processes. miR-27a is a miRNA that is known to regulate fat synthesis and differentiation in preadipocyte cells. However, little is known regarding the role that miR-27a plays in regulating goat milk fat synthesis. In this study, we determined the miR-27a expression profile in goat mammary gland and found that miR-27a expression was correlated with the lactation cycle. Additionally, prolactin promoted miR-27a expression in goat mammary gland epithelial cells. Further functional analysis showed that over-expression of miR-27a down-regulated triglyceride accumulation and decreased the ratio of unsaturated/saturated fatty acid in mammary gland epithelial cells. miR-27a also significantly affected mRNA expression related to milk fat metabolism. Specifically, over-expression of miR-27a reduced gene mRNA expression associated with triglyceride synthesis by suppressing PPARγ protein levels. This study provides the first experimental evidence that miR-27a regulates triglyceride synthesis in goat mammary gland epithelial cells and improves our understanding about the importance of miRNAs in milk fat synthesis. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  14. HCV knowledge among a sample of HCV positive Aboriginal Australians residing in New South Wales.

    Science.gov (United States)

    Wilson, Hannah; Brener, Loren; Jackson, L Clair; Saunders, Veronica; Johnson, Priscilla; Treloar, Carla

    2017-06-01

    Australian Aboriginal and Torres Strait Islanders are overrepresented in both the prevalence and incidence of the hepatitis C (HCV). HCV knowledge has been associated with a range of positive health behaviours. HCV knowledge has previously been investigated as a single construct; however examining different knowledge domains (i.e. transmission, risk of complications, testing and treatment) separately may be beneficial. This study investigated whether having greater HCV knowledge in different domains is associated with self-reported positive health behaviours. 203 Aboriginal people living with HCV completed a survey assessing HCV knowledge, testing and care, lifestyle changes since diagnosis and treatment intent. Respondents' knowledge was relatively high. Greater knowledge of risk of health complications was associated with undertaking more positive lifestyle changes since diagnosis. Respondents testing and treatment knowledge was significantly associated with incarceration, lifestyle changes since diagnosis and future treatment intentions. This study illustrates the importance of ensuring that knowledge is high across different HCV domains to optimise a range of positive health behaviours of Aboriginal people living with HCV. Future health promotion campaigns targeted at Aboriginal people living with HCV could benefit from broadening their focus from prevention to other domains such as testing and treatment.

  15. The proteasomal Rpn11 metalloprotease suppresses tombusvirus RNA recombination and promotes viral replication via facilitating assembly of the viral replicase complex.

    Science.gov (United States)

    Prasanth, K Reddisiva; Barajas, Daniel; Nagy, Peter D

    2015-03-01

    RNA viruses co-opt a large number of cellular proteins that affect virus replication and, in some cases, viral genetic recombination. RNA recombination helps viruses in an evolutionary arms race with the host's antiviral responses and adaptation of viruses to new hosts. Tombusviruses and a yeast model host are used to identify cellular factors affecting RNA virus replication and RNA recombination. In this study, we have examined the role of the conserved Rpn11p metalloprotease subunit of the proteasome, which couples deubiquitination and degradation of proteasome substrates, in tombusvirus replication and recombination in Saccharomyces cerevisiae and plants. Depletion or mutations of Rpn11p lead to the rapid formation of viral RNA recombinants in combination with reduced levels of viral RNA replication in yeast or in vitro based on cell extracts. Rpn11p interacts with the viral replication proteins and is recruited to the viral replicase complex (VRC). Analysis of the multifunctional Rpn11p has revealed that the primary role of Rpn11p is to act as a "matchmaker" that brings the viral p92(pol) replication protein and the DDX3-like Ded1p/RH20 DEAD box helicases into VRCs. Overexpression of Ded1p can complement the defect observed in rpn11 mutant yeast by reducing TBSV recombination. This suggests that Rpn11p can suppress tombusvirus recombination via facilitating the recruitment of the cellular Ded1p helicase, which is a strong suppressor of viral recombination, into VRCs. Overall, this work demonstrates that the co-opted Rpn11p, which is involved in the assembly of the functional proteasome, also functions in the proper assembly of the tombusvirus VRCs. RNA viruses evolve rapidly due to genetic changes based on mutations and RNA recombination. Viral genetic recombination helps viruses in an evolutionary arms race with the host's antiviral responses and facilitates adaptation of viruses to new hosts. Cellular factors affect viral RNA recombination, although the role

  16. Soilborne wheat mosaic virus (SBWMV 19K protein belongs to a class of cysteine rich proteins that suppress RNA silencing

    Directory of Open Access Journals (Sweden)

    Howard Amanda

    2005-03-01

    Full Text Available Abstract Amino acid sequence analyses indicate that the Soilborne wheat mosaic virus (SBWMV 19K protein is a cysteine-rich protein (CRP and shares sequence homology with CRPs derived from furo-, hordei-, peclu- and tobraviruses. Since the hordei- and pecluvirus CRPs were shown to be pathogenesis factors and/or suppressors of RNA silencing, experiments were conducted to determine if the SBWMV 19K CRP has similar activities. The SBWMV 19K CRP was introduced into the Potato virus X (PVX viral vector and inoculated to tobacco plants. The SBWMV 19K CRP aggravated PVX-induced symptoms and restored green fluorescent protein (GFP expression to GFP silenced tissues. These observations indicate that the SBWMV 19K CRP is a pathogenicity determinant and a suppressor of RNA silencing.

  17. Suppression of FAT/CD36 mRNA by human growth hormone in pancreatic β-cells

    DEFF Research Database (Denmark)

    Dalgaard, Louise Torp; Thams, Peter Grevsen; Gaarn, Louise Winkel

    2011-01-01

    of this study was to examine the effect of human growth hormone (hGH) on mRNAs of fatty acid transport and binding proteins expressed in pancreatic β-cells, and to examine this in relation to β-cell survival after exposure to fatty acids. hGH decreased mRNA levels of FAT/CD36, whereas mRNAs of GPR40, FASN, FABP...

  18. Suppression of FAT/CD36 mRNA by human growth hormone in pancreatic ß-cells

    DEFF Research Database (Denmark)

    Dalgaard, Louise Torp; Thams, Peter Grevsen; Gaarn, Louise Winkel

    2011-01-01

    of this study was to examine the effect of human growth hormone (hGH) on mRNAs of fatty acid transport and binding proteins expressed in pancreatic ß-cells, and to examine this in relation to ß-cell survival after exposure to fatty acids. hGH decreased mRNA levels of FAT/CD36, whereas mRNAs of GPR40, FASN, FABP...

  19. HCV viremia in clinical and biomedical perspective

    International Nuclear Information System (INIS)

    Hussain, A.B.; Tariq, W.Z.; Karamat, K.A.; Ghani, E.; Mushtaq, S.

    2000-01-01

    Sera of 172 patients from military / civil hospitals and general practitioners of Rawalpindi/Islamabad region and vicinity areas of northern Pakistan with anti-HCV IgG positive aerostats were tested at Armed Forces Institute of Pathology (AFIP), Rawalpindi, between July and November, 1997 for detection of HCV viremia by reverse transcriptases polymerase chain reaction (RT-PCR). Randomly selected 100 samples (40 viremia positive and 60 negative after PCR) were tested for serum alanine aminotransferase (ALT) levels. For each patient, information based upon clinical and laboratory findings was recorded on a performa to correlate the clinical and biochemical findings with the results of qualitative reverse transcriptase polymerase Chain Reaction (RT PCR) for HCV in Hepatitis C virus (HCV) infected patients. Of the total 172 HCV infected (Anti HCV Positive), 61(35.61%) patients were found to be viremic. Active infection was more frequent in the age of 30 years onwards. The past history of jaundice, surgical operation and chronic renal failure was more frequent with the viremia positive cases. Although, statistically insignificant, there was evidence of some association of diabetes mellitus with viremia ALT levels and its mean were higher in viremics, 27(73%) of 37 cases with a minimum three months history of interferon treatment for hepatitis C were found negative for viremia. (author)

  20. The lncRNA TUG1 modulates proliferation in trophoblast cells via epigenetic suppression of RND3.

    Science.gov (United States)

    Xu, Yetao; Ge, Zhiping; Zhang, Erbao; Zuo, Qing; Huang, Shiyun; Yang, Nana; Wu, Dan; Zhang, Yuanyuan; Chen, Yanzi; Xu, Haoqin; Huang, Huan; Jiang, Zhiyan; Sun, Lizhou

    2017-10-12

    Due to limited treatment options, pre-eclampsia (PE) is associated with fetal perinatal and maternal morbidity and mortality. During the causes of PE, failure of uterine spiral artery remodeling which might be related to functioning abnormally of trophoblast cells, result in the occurrence and progression of PE. Recently, abnormal expression of long non-coding RNAs (lncRNAs), as imperative regulators involved in human diseases progression (included PE), which has been indicated by increasing evidence. In this research, we found that TUG1, a lncRNA, was markedly reduced in placental samples from patients with PE. Loss-function assays indicated that knockdown TUG1 significantly affected cell proliferation, apoptosis, migration and network formation in vitro. RNA-seq revealed that TUG1 could affect abundant genes, and then explore the function and regulatory mechanism of TUG1 in trophoblast cells. Furthermore, RNA immunoprecipitation and chromatin immunoprecipitation assays validated that TUG1 can epigenetically inhibit the level of RND3 through binding to EZH2, thus promoting PE development. Therefore, via illuminating the TUG1 mechanisms underlying PE development and progression, our findings might furnish a prospective therapeutic strategy for PE intervention.

  1. Long noncoding RNA CASC2 predicts the prognosis of glioma patients and functions as a suppressor for gliomas by suppressing Wnt/β-catenin signaling pathway

    Directory of Open Access Journals (Sweden)

    Wang R

    2017-07-01

    Full Text Available Ronglin Wang,1,* Yuqian Li,1,* Gang Zhu,1,* Bo Tian,1 Wen Zeng,1 Yang Yang,2 Zhihong Li1 1Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, 2Department of Neurosurgery, The 451th hospital of PLA, Xi’an, Shaanxi, People’s Republic of China *These authors contributed equally to this work Background: Previous studies have demonstrated that long noncoding RNA cancer susceptibility candidate 2 (lncRNA CASC2 is frequently downregulated in several types of tumors and functions as a tumor-suppressive factor. However, the clinical significance and function of CASC2 in human glioma remain largely unknown. The purpose of this study was to identify the clinical values of CASC2, as well as investigate the potential molecular mechanisms in glioma. Methods: This retrospective study first analyzed the expression levels of CASC2 using quantitative real-time polymerase chain reaction. Then, CASC2 expression levels were associated with various clinicopathologic characteristics and the survival rate of patients with glioma. Finally, the function and underlying molecular mechanisms of CASC2 in human glioma were investigated in U251 cell line. Results: By quantitative real-time polymerase chain reaction analysis, our data showed that CASC2 expression was significantly downregulated in glioma tissues and cell lines (U87 and U251 compared to adjacent normal brain tissues or normal human astrocytes. Moreover, its expression negatively correlated with tumor grade in glioma patients. Furthermore, Kaplan–Meier curves with log-rank analysis revealed a close correlation between downregulated CASC2 and shorter survival time in glioma patients. In addition, Cox regression analysis indicated that CASC2 could be considered as an independent risk factor for poor prognosis. Finally, in vitro experiment demonstrated that CASC2 overexpression remarkably suppressed glioma cell proliferation, migration, and invasion through suppressing Wnt

  2. Suppression of microRNA-31 increases sensitivity to 5-FU at an early stage, and affects cell migration and invasion in HCT-116 colon cancer cells

    Directory of Open Access Journals (Sweden)

    Sun Xiao-Feng

    2010-11-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are endogenously expressed noncoding RNAs with important biological and pathological functions. Although several studies have shown that microRNA-31 (miR-31 is obviously up-regulated in colorectal cancer (CRC, there is no study on the functional roles of miR-31 in CRC. Methods Anti-miR™ miRNA 31 inhibitor (anti-miR-31 is a sequence-specific and chemically modified oligonucleotide to specifically target and knockdown miR-31 molecule. The effect of anti-miR-31 transfection was investigated by real-time PCR. HCT-116p53+/+ and HCT-116p53-/-colon cancer cells were treated by anti-miR-31 with or without 5-fluorouracil (5-FU, cell proliferation was determined by MTT assay; apoptosis was detected by DAPI staining; cell cycle was evaluated by flow cytometry; colony formation, migration and invasion assays were performed to investigate the effect of suppression of miR-31 on the cell lines. Results Real-time PCR results showed that anti-miR-31 was efficiently introduced into the cells and reduced miR-31 levels to 44.1% in HCT-116p53+/+ and 67.8% in HCT-116p53-/-cell line (p = 0.042 and 0.046. MTT results showed that anti-miR-31 alone had no effect on the proliferation of HCT-116p53+/+ or HCT-116p53-/-. However, when combined with 5-FU, anti-miR-31 inhibited the proliferation of the two cell lines as early as 24 h after exposure to 5-FU (p = 0.038 and 0.044. Suppression of miR-31 caused a reduction of the migratory cells by nearly 50% compared with the negative control in both HCT-116p53+/+ and HCT-116p53-/-(p = 0.040 and 0.001. The invasive ability of the cells were increased by 8-fold in HCT-116p53+/+ and 2-fold in HCT-116p53-/- (p = 0.045 and 0.009. Suppression of miR-31 had no effect on cell cycle and colony formation (p > 0.05. Conclusions Suppression of miR-31 increases sensitivity to 5-FU at an early stage, and affects cell migration and invasion in HCT-116 colon cancer cells.

  3. MicroRNA-101 mediates the suppressive effect of laminar shear stress on mTOR expression in vascular endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Kui; Fan, Wendong; Wang, Xing; Ke, Xiao [Division of Cardiology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080 (China); Wu, Guifu, E-mail: eecpchina@yahoo.com.cn [Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou 510080 (China); Hu, Chengheng, E-mail: huchenghengpci@yahoo.com.cn [Division of Cardiology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080 (China)

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer Laminar shear stress upregulates miR-101 expression in vascular endothelial cells. Black-Right-Pointing-Pointer miR-101 represses mTOR expression through a specific 3 Prime UTR binding site. Black-Right-Pointing-Pointer Overexpression of miR-101 inhibits G1/S transition and endothelial cell proliferation. Black-Right-Pointing-Pointer Blockade of miR-101 attenuates the suppressive effect of laminar flow on mTOR expression. -- Abstract: Shear stress associated with blood flow plays an important role in regulating gene expression and cell function in endothelial cells (ECs). MicroRNAs (miRNAs) are highly conserved, small non-coding RNAs that negatively regulate the expression of target genes by binding to the mRNA 3 Prime -untranslated region (3 Prime UTR) at the posttranscriptional level involved in diverse cellular processes. This study demonstrates that microRNA-101 in response to laminar shear stress (LSS) is involved in the flow regulation of gene expression in ECs. qRT-PCR analysis showed that miR-101 expression was significantly upregulated in human umbilical vein endothelial cells (HUVECs) exposed to 12 dyn/cm{sup 2} laminar shear stress for 12 h. We found that transfection of miR-101 significantly decreased the luciferase activity of plasmid reporter containing the 3 Prime UTR of mammalian target of rapamycin (mTOR) gene. Western analysis revealed that the protein level of mTOR was significantly reduced in ECs transfected with miR-101. Furthermore, miR-101 overexpression induced cell cycle arrest at the G1/S transition and suppressed endothelial cell proliferation. Finally, transfection of miR-101 inhibitors attenuated the suppressive effects of LSS on mTOR expression, which identified the efficacy of loss-of-function of miR-101 in laminar flow-treated ECs. In conclusion, we have demonstrated that upregulation of miR-101 in response to LSS contributes to the suppressive effects of LSS on mTOR expression and EC

  4. HBV or HCV Coinfection in HIV-1-Infected Pregnant Women in France: Prevalence and Pregnancy Outcomes.

    Science.gov (United States)

    Benhammou, Valérie; Tubiana, Roland; Matheron, Sophie; Sellier, Pierre; Mandelbrot, Laurent; Chenadec, Jérôme Le; Marel, Emmanuelle; Khoshnood, Babak; Warszawski, Josiane

    2018-04-15

    Chronic hepatitis B virus (HBV) or hepatitis C virus (HCV) infection is frequent in HIV-infected persons but their impact on pregnant HIV-infected women is understudied. We explored whether these coinfections are associated with adverse pregnancy outcomes and lower response to antiretroviral therapy (ART). Pregnancies in HIV-1-infected women included in the ANRS French Perinatal Cohort between 2005 and 2013 were analyzed if HBV and HCV infection statuses were available. Among 4236 women, the prevalence of HBV (HBs Ag+) and HCV (RNA+) were 6.2% (95% confidence interval: 5.4 to 6.8) and 1.7% (1.3 to 2.1), respectively. HCV coinfection was strongly associated with a history of drug use; HBV coinfection was 6 times more frequent in women born in Sub-Saharan Africa than in European France. Baseline HIV viral load, CD4 count, and HIV care during pregnancy were similar in coinfected and monoinfected HIV mothers, except that 90% of HBV/HIV women were receiving tenofovir and/or lamivudine or emtricitabine. HCV coinfection was significantly associated with cholestasis [adjusted odds ratio: 4.1 (1.5-10.8), P = 0.005], preterm delivery [3.0 (1.6-5.7), P HIV-infected women, chronic HBV infection, mostly treated using targeted ART, had no major impact on the course of pregnancy. By contrast, chronic HCV infection was associated with a higher risk of obstetrical complications and a poorer immune-virological response to ART. It is yet unknown whether cure of HCV infection before conception can limit these adverse outcomes.

  5. Suppression of human breast tumors in NOD/SCID mice by CD44 shRNA gene therapy combined with doxorubicin treatment

    Directory of Open Access Journals (Sweden)

    Pham PV

    2012-05-01

    Full Text Available Phuc Van Pham1, Ngoc Bich Vu1, Thuy Thanh Duong1, Tam Thanh Nguyen1, Nhung Hai Truong1, Nhan Lu Chinh Phan1, Tue Gia Vuong1, Viet Quoc Pham1, Hoang Minh Nguyen1, Kha The Nguyen1, Nhung Thi Nguyen1, Khue Gia Nguyen1, Lam Tan Khat1, Dong Van Le2, Kiet Dinh Truong1, Ngoc Kim Phan11Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, HCM City, 2Military Medical University, Ha Noi, VietnamBackground: Breast cancer stem cells with a CD44+CD24- phenotype are the origin of breast tumors. Strong CD44 expression in this population indicates its important role in maintaining the stem cell phenotype. Previous studies show that CD44 down-regulation causes CD44+CD24- breast cancer stem cells to differentiate into non-stem cells that are sensitive to antitumor drugs and lose many characteristics of the original cells. In this study, we determined tumor suppression in non-obese severe combined immunodeficiency mice using CD44 shRNA therapy combined with doxorubicin treatment.Methods: Tumor-bearing non-obese severe combined immunodeficiency mice were established by injection of CD44+CD24- cells. To track CD44+CD24- cells, green fluorescence protein was stably transduced using a lentiviral vector prior to injection into mice. The amount of CD44 shRNA lentiviral vector used for transduction was based on CD44 down-regulation by in vitro CD44 shRNA transduction. Mice were treated with direct injection of CD44 shRNA lentiviral vector into tumors followed by doxorubicin administration after 48 hours. The effect was evaluated by changes in the size and weight of tumors compared with that of the control.Results: The combination of CD44 down-regulation and doxorubicin strongly suppressed tumor growth with significant differences in tumor sizes and weights compared with that of CD44 down-regulation or doxorubicin treatment alone. In the combination of CD44 down-regulation and doxorubicin group, the tumor weight was

  6. IL13Rα2 siRNA inhibited cell proliferation, induced cell apoptosis, and suppressed cell invasion in papillary thyroid carcinoma cells

    Directory of Open Access Journals (Sweden)

    Gu MJ

    2018-03-01

    Full Text Available Mingjun Gu Department of Endocrinology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, People’s Republic of China Aim: Papillary thyroid carcinoma (PTC is the most common type of thyroid cancer. Infiltrative growth and metastasis are the two most intractable characteristics of PTC. Interleukin-13 receptor α2 (IL13Rα2 with high affinity for Th2-derived cytokine IL-13 has been reported to be overexpressed in several tumors. In this study, an analysis of IL13Rα2 expression in PTC and matched paracancerous tissues was undertaken, and its biologic functions in PTC were assessed. Methods: IL13Rα2 and vascular endothelial growth factor (VEGF expression were detected by using real-time polymerase chain reaction and immunohistochemistry analyses. Cell proliferation, invasion, apoptosis, and caspase activity were measured with the Cell Counting Kit-8, Transwell, flow cytometry analyses, and biochemistry assay, respectively. Results: Upregulation of IL13Rα2 and VEGF was observed in PTC tissues compared with matched paracancerous tissues. Pearson’s correlation analysis indicated that IL13Rα2 mRNA level in the tested PTC tissues was positively correlated with VEGF mRNA level. Besides, inhibited cell proliferation, induced cell apoptosis, and suppressed cell invasion were detected in IL13Rα2-silenced TPC-1 cells. Increased activity of Caspase 3 and Caspase 9, along with elevated cleaved Caspase 3 and poly (ADP-ribose polymerase indicated the signal pathway of cell apoptosis induced by IL13Rα2 siRNA. In addition, downregulated metastasis- and angiogenesis-related proteins VEGF, VEGFR2, MMP2, and MMP9 indicated the decreased number of invading cells after knockdown of IL13Rα2. Conclusion: The results demonstrate that IL13Rα2 plays an important role in the progress of PTC. IL13Rα2 knockdown in PTC cells inhibited cell proliferation, induced cell apoptosis, and suppressed cell invasion. These data suggest that IL13Rα2

  7. MiR-520b suppresses proliferation of hepatoma cells through targeting ten-eleven translocation 1 (TET1) mRNA

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weiying; Lu, Zhanping; Gao, Yuen [State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin (China); Ye, Lihong [State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin (China); Song, Tianqiang, E-mail: tjchi@hotmai.com [Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin (China); Zhang, Xiaodong, E-mail: zhangxd@nankai.edu.cn [State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin (China)

    2015-05-08

    Accumulating evidence indicates that microRNAs are able to act as oncogenes or tumor suppressor genes in human cancer. We previously reported that miR-520b was down-regulated in hepatocellular carcinoma (HCC) and its deregulation was involved in hepatocarcinogenesis. In the present study, we report that miR-520b suppresses cell proliferation in HCC through targeting the ten-eleven translocation 1 (TET1) mRNA. Notably, we identified that miR-520b was able to target 3′-untranslated region (3′UTR) of TET1 mRNA by luciferase reporter gene assays. Then, we revealed that miR-520b was able to reduce the expression of TET1 at the levels of mRNA and protein using reverse transcription-polymerase chain reaction and Western blotting analysis. In terms of function, 5-ethynyl-2-deoxyuridine (EdU) incorporation and colony formation assays demonstrated that the forced miR-520b expression remarkably inhibited proliferation of hepatoma cells, but TET1 overexpression could rescue the inhibition of cell proliferation mediated by miR-520b. Furthermore, anti-miR-520b enhanced proliferation of hepatoma cells, whereas silencing of TET1 abolished anti-miR-520b-induced acceleration of cell proliferation. Then, we validated that the expression levels of miR-520b were negatively related to those of TET1 mRNA in clinical HCC tissues. Thus, we conclude that miR-520b depresses proliferation of liver cancer cells through targeting 3′UTR of TET1 mRNA. Our finding provides new insights into the mechanism of hepatocarcinogenesis. - Highlights: • TET1 is a novel target gene of miR-520b. • TET1 is upregulated in clinical HCC tissues. • MiR-520b is negatively correlated with TET1 in clinical HCC tissues. • MiR-520b depresses the proliferation of HCC cells through targeting TET1 mRNA.

  8. Sex-specific effects of TLR9 promoter variants on spontaneous clearance of HCV infection.

    Science.gov (United States)

    Fischer, Janett; Weber, Alexander N R; Böhm, Stephan; Dickhöfer, Sabine; El Maadidi, Souhayla; Deichsel, Danilo; Knop, Viola; Klinker, Hartwig; Möller, Bernd; Rasenack, Jens; Wang, Lisa; Sharma, Manu; Hinrichsen, Holger; Spengler, Ulrich; Buggisch, Peter; Sarrazin, Christoph; Pawlita, Michael; Waterboer, Tim; Wiese, Manfred; Probst-Müller, Elsbeth; Malinverni, Raffaele; Bochud, Pierre-Yves; Gardiner, Clair; O'Farrelly, Cliona; Berg, Thomas

    2017-10-01

    As pathogen sensors, Toll-like receptors (TLR) play a role in the first defence line during HCV infection. However, the impact of the DNA sensor TLR9 on the natural course of HCV infection is unknown. To address this, TLR9 promoter polymorphisms (single nucleotide polymorphisms (SNPs)) rs187084 and rs5743836 were investigated for their effect on disease progression. Therefore, the TLR9 SNPs and the interferon lambda 4 ( IFNL4 ) rs12979860 were genotyped in chronically HCV type 1 infected (n=333), in patients who spontaneously cleared the infection (n=161), in the Swiss HCV cohort (n=1057) and the well-characterised German (n=305) and Irish (n=198) 'anti-D' cohorts. Functional analyses were done with promoter reporter constructs of human TLR9 in B cells and assessing TLR9 mRNA levels in whole blood of healthy volunteers. The TLR9 rs187084 C allele was associated with spontaneous virus clearance in women of the study cohort (OR=2.15 (95% CI 1.18 to 3.90) p=0.012), of the Swiss HCV cohort (OR=2.06 (95% CI 1.02 to 4.18) p=0.044) and in both 'anti-D' cohorts (German: OR=2.01 (95% CI 1.14 to 3.55) p=0.016; Irish: OR=1.93 (95% CI 1.10 to 3.68) p=0.047). Multivariate analysis in the combined study and Swiss HCV cohorts supported the results (OR=1.99 (95% CI 1.30 to 3.05) p=0.002). Functional analyses revealed higher transcriptional activities for both TLR9 variants and an association of the C allele of rs5743836 with allele-specific TLR9 mRNA regulation by oestrogens in women. TLR9 promoter SNPs are associated with the natural course of HCV infection and show higher transcriptional activities. Our results imply the DNA sensor TLR9 in natural immunity against the RNA virus, HCV. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  9. Long Noncoding RNA lncSHGL Recruits hnRNPA1 to Suppress Hepatic Gluconeogenesis and Lipogenesis.

    Science.gov (United States)

    Wang, Junpei; Yang, Weili; Chen, Zhenzhen; Chen, Ji; Meng, Yuhong; Feng, Biaoqi; Sun, Libo; Dou, Lin; Li, Jian; Cui, Qinghua; Yang, Jichun

    2018-04-01

    Mammalian genomes encode a huge number of long noncoding RNAs (lncRNAs) with unknown functions. This study determined the role and mechanism of a new lncRNA, lncRNA suppressor of hepatic gluconeogenesis and lipogenesis (lncSHGL), in regulating hepatic glucose/lipid metabolism. In the livers of obese mice and patients with nonalcoholic fatty liver disease, the expression levels of mouse lncSHGL and its human homologous lncRNA B4GALT1-AS1 were reduced. Hepatic lncSHGL restoration improved hyperglycemia, insulin resistance, and steatosis in obese diabetic mice, whereas hepatic lncSHGL inhibition promoted fasting hyperglycemia and lipid deposition in normal mice. lncSHGL overexpression increased Akt phosphorylation and repressed gluconeogenic and lipogenic gene expression in obese mouse livers, whereas lncSHGL inhibition exerted the opposite effects in normal mouse livers. Mechanistically, lncSHGL recruited heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) to enhance the translation efficiency of CALM mRNAs to increase calmodulin (CaM) protein level without affecting their transcription, leading to the activation of the phosphatidyl inositol 3-kinase (PI3K)/Akt pathway and repression of the mTOR/SREBP-1C pathway independent of insulin and calcium in hepatocytes. Hepatic hnRNPA1 overexpression also activated the CaM/Akt pathway and repressed the mTOR/SREBP-1C pathway to ameliorate hyperglycemia and steatosis in obese mice. In conclusion, lncSHGL is a novel insulin-independent suppressor of hepatic gluconeogenesis and lipogenesis. Activating the lncSHGL/hnRNPA1 axis represents a potential strategy for the treatment of type 2 diabetes and steatosis. © 2018 by the American Diabetes Association.

  10. MicroRNA-139 suppresses proliferation in luminal type breast cancer cells by targeting Topoisomerase II alpha

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Wei [Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, Xi' an 710032 (China); State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 710032 Xi' an (China); Sa, Ke-Di; Zhang, Xiang; Jia, Lin-Tao; Zhao, Jing [State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 710032 Xi' an (China); Yang, An-Gang [State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, 710032 Xi' an (China); Zhang, Rui, E-mail: ruizhang@fmmu.edu.cn [State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 710032 Xi' an (China); Fan, Jing, E-mail: jingfan@fmmu.edu.cn [Department of Vascular and Endocrine Surgery, Xijing Hospital, Fourth Military Medical University, Xi' an 710032 (China); Bian, Ka, E-mail: kakamax85@hotmail.com [State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, 710032 Xi' an (China); Department of Otolaryngology, Tangdu Hospital, Fourth Military Medical University, Xi' an 710038 (China)

    2015-08-07

    The classification of molecular subtypes of breast cancer improves the prognostic accuracy and therapeutic benefits in clinic. However, because of the complexity of breast cancer, more biomarkers and functional molecules need to be explored. Here, analyzing the data in a huge cohort of breast cancer patients, we found that Topoisomerase II alpha (TOP2a), an important target of chemotherapy is a biomarker for prognosis in luminal type breast cancer patients, but not in basal like or HER2 positive breast cancer patients. We identified that miR-139, a previous reported anti-metastatic microRNA targets 3’-untranslated region (3′UTR) of TOP2a mRNA. Further more, we revealed that the forced expression of miR-139 reduces the TOP2a expression at both mRNA and protein levels. And our functional experiments showed that the ectopic expression of miR-139 remarkably inhibits proliferation in luminal type breast cancer cells, while exogenous TOP2a expression could rescue inhibition of cell proliferation mediated by miR-139. Collectively, our present study demonstrates the miR-139-TOP2a regulatory axis is important for proliferation in luminal type breast cancer cells. This functional link may help us to further understand the specificity of subtypes of breast cancer and optimize the strategy of cancer treatment. - Highlights: • High levels of TOP2a expression are closely associated with poor prognosis in luminal type breast cancer patients. • TOP2a is a novel target of miR-139. • Overexpression of miR-139 inhibits proliferation in luminal type breast cancer cells. • TOP2a is essential for miR-139-induced growth arrest in luminal type breast cancer cells.

  11. MicroRNA-145 suppresses ROS-induced Ca2+ overload of cardiomyocytes by targeting CaMKIIδ

    International Nuclear Information System (INIS)

    Cha, Min-Ji; Jang, Jin-Kyung; Ham, Onju; Song, Byeong-Wook; Lee, Se-Yeon; Lee, Chang Yeon; Park, Jun-Hee; Lee, Jiyun; Seo, Hyang-Hee; Choi, Eunhyun; Jeon, Woo-min; Hwang, Hye Jin; Shin, Hyun-Taek

    2013-01-01

    Highlights: •CaMKIIδ mediates H 2 O 2 -induced Ca 2+ overload in cardiomyocytes. •miR-145 can inhibit Ca 2+ overload. •A luciferase assay confirms that miR-145 functions as a CaMKIIδ-targeting miRNA. •Overexpression of miR-145 regulates CaMKIIδ-related genes and ameliorates apoptosis. -- Abstract: A change in intracellular free calcium (Ca 2+ ) is a common signaling mechanism of reperfusion-induced cardiomyocyte death. Calcium/calmodulin dependent protein kinase II (CaMKII) is a critical regulator of Ca 2+ signaling and mediates signaling pathways responsible for functions in the heart including hypertrophy, apoptosis, arrhythmia, and heart disease. MicroRNAs (miRNA) are involved in the regulation of cell response, including survival, proliferation, apoptosis, and development. However, the roles of miRNAs in Ca 2+ -mediated apoptosis of cardiomyocytes are uncertain. Here, we determined the potential role of miRNA in the regulation of CaMKII dependent apoptosis and explored its underlying mechanism. To determine the potential roles of miRNAs in H 2 O 2 -mediated Ca 2+ overload, we selected and tested 6 putative miRNAs that targeted CaMKIIδ, and showed that miR-145 represses CaMKIIδ protein expression and Ca 2+ overload. We confirmed CaMKIIδ as a direct downstream target of miR-145. Furthermore, miR-145 regulates Ca 2+ -related signals and ameliorates apoptosis. This study demonstrates that miR-145 regulates reactive oxygen species (ROS)-induced Ca 2+ overload in cardiomyocytes. Thus, miR-145 affects ROS-mediated gene regulation and cellular injury responses

  12. MicroRNA-145 suppresses ROS-induced Ca{sup 2+} overload of cardiomyocytes by targeting CaMKIIδ

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Min-Ji [Cardiovascular Research Institute, Yonsei University College of Medicine, 250 Seongsanno, Seodamun-gu, Seoul 120-752 (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, 250 Seongsanno, Seodamun-gu, Seoul 120-752 (Korea, Republic of); Jang, Jin-Kyung [College of Pharmacy, Sookmyung Women’s University, 52 HyoChangWon-Gil, Yongsan-ku, Seoul 140-742 (Korea, Republic of); Ham, Onju; Song, Byeong-Wook; Lee, Se-Yeon [Cardiovascular Research Institute, Yonsei University College of Medicine, 250 Seongsanno, Seodamun-gu, Seoul 120-752 (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, 250 Seongsanno, Seodamun-gu, Seoul 120-752 (Korea, Republic of); Lee, Chang Yeon; Park, Jun-Hee [Department of Integrated Omics for Biomedical Sciences, Graduate School, Yonsei University, 50 Yonsei-ro, Seodamun-gu, Seoul 120-759 (Korea, Republic of); Lee, Jiyun; Seo, Hyang-Hee [Cardiovascular Research Institute, Yonsei University College of Medicine, 250 Seongsanno, Seodamun-gu, Seoul 120-752 (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, 250 Seongsanno, Seodamun-gu, Seoul 120-752 (Korea, Republic of); Choi, Eunhyun [Severance Integrative Research Institute for Cerebral and Cardiovascular Disease, Yonsei University Health System, 250 Seongsanno, Seodamun-gu, Seoul 120-752 (Korea, Republic of); Jeon, Woo-min [Department of Animal Resource, Sahmyook University, Seoul 139-742 (Korea, Republic of); Hwang, Hye Jin [Cardiovascular Research Institute, Yonsei University College of Medicine, 250 Seongsanno, Seodamun-gu, Seoul 120-752 (Korea, Republic of); Shin, Hyun-Taek [College of Pharmacy, Sookmyung Women’s University, 52 HyoChangWon-Gil, Yongsan-ku, Seoul 140-742 (Korea, Republic of); and others

    2013-06-14

    Highlights: •CaMKIIδ mediates H{sub 2}O{sub 2}-induced Ca{sup 2+} overload in cardiomyocytes. •miR-145 can inhibit Ca{sup 2+} overload. •A luciferase assay confirms that miR-145 functions as a CaMKIIδ-targeting miRNA. •Overexpression of miR-145 regulates CaMKIIδ-related genes and ameliorates apoptosis. -- Abstract: A change in intracellular free calcium (Ca{sup 2+}) is a common signaling mechanism of reperfusion-induced cardiomyocyte death. Calcium/calmodulin dependent protein kinase II (CaMKII) is a critical regulator of Ca{sup 2+} signaling and mediates signaling pathways responsible for functions in the heart including hypertrophy, apoptosis, arrhythmia, and heart disease. MicroRNAs (miRNA) are involved in the regulation of cell response, including survival, proliferation, apoptosis, and development. However, the roles of miRNAs in Ca{sup 2+}-mediated apoptosis of cardiomyocytes are uncertain. Here, we determined the potential role of miRNA in the regulation of CaMKII dependent apoptosis and explored its underlying mechanism. To determine the potential roles of miRNAs in H{sub 2}O{sub 2}-mediated Ca{sup 2+} overload, we selected and tested 6 putative miRNAs that targeted CaMKIIδ, and showed that miR-145 represses CaMKIIδ protein expression and Ca{sup 2+} overload. We confirmed CaMKIIδ as a direct downstream target of miR-145. Furthermore, miR-145 regulates Ca{sup 2+}-related signals and ameliorates apoptosis. This study demonstrates that miR-145 regulates reactive oxygen species (ROS)-induced Ca{sup 2+} overload in cardiomyocytes. Thus, miR-145 affects ROS-mediated gene regulation and cellular injury responses.

  13. A non-canonical RNA degradation pathway suppresses RNAi-dependent epimutations in the human fungal pathogen Mucor circinelloides.

    Science.gov (United States)

    Calo, Silvia; Nicolás, Francisco E; Lee, Soo Chan; Vila, Ana; Cervantes, Maria; Torres-Martinez, Santiago; Ruiz-Vazquez, Rosa M; Cardenas, Maria E; Heitman, Joseph

    2017-03-01

    Mucorales are a group of basal fungi that includes the casual agents of the human emerging disease mucormycosis. Recent studies revealed that these pathogens activate an RNAi-based pathway to rapidly generate drug-resistant epimutant strains when exposed to stressful compounds such as the antifungal drug FK506. To elucidate the molecular mechanism of this epimutation pathway, we performed a genetic analysis in Mucor circinelloides that revealed an inhibitory role for the non-canonical RdRP-dependent Dicer-independent silencing pathway, which is an RNAi-based mechanism involved in mRNA degradation that was recently identified. Thus, mutations that specifically block the mRNA degradation pathway, such as those in the genes r3b2 and rdrp3, enhance the production of drug resistant epimutants, similar to the phenotype previously described for mutation of the gene rdrp1. Our genetic analysis also revealed two new specific components of the epimutation pathway related to the quelling induced protein (qip) and a Sad-3-like helicase (rnhA), as mutations in these genes prevented formation of drug-resistant epimutants. Remarkably, drug-resistant epimutant production was notably increased in M. circinelloides f. circinelloides isolates from humans or other animal hosts. The host-pathogen interaction could be a stressful environment in which the phenotypic plasticity provided by the epimutant pathway might provide an advantage for these strains. These results evoke a model whereby balanced regulation of two different RNAi pathways is determined by the activation of the RNAi-dependent epimutant pathway under stress conditions, or its repression when the regular maintenance of the mRNA degradation pathway operates under non-stress conditions.

  14. A non-canonical RNA degradation pathway suppresses RNAi-dependent epimutations in the human fungal pathogen Mucor circinelloides.

    Directory of Open Access Journals (Sweden)

    Silvia Calo

    2017-03-01

    Full Text Available Mucorales are a group of basal fungi that includes the casual agents of the human emerging disease mucormycosis. Recent studies revealed that these pathogens activate an RNAi-based pathway to rapidly generate drug-resistant epimutant strains when exposed to stressful compounds such as the antifungal drug FK506. To elucidate the molecular mechanism of this epimutation pathway, we performed a genetic analysis in Mucor circinelloides that revealed an inhibitory role for the non-canonical RdRP-dependent Dicer-independent silencing pathway, which is an RNAi-based mechanism involved in mRNA degradation that was recently identified. Thus, mutations that specifically block the mRNA degradation pathway, such as those in the genes r3b2 and rdrp3, enhance the production of drug resistant epimutants, similar to the phenotype previously described for mutation of the gene rdrp1. Our genetic analysis also revealed two new specific components of the epimutation pathway related to the quelling induced protein (qip and a Sad-3-like helicase (rnhA, as mutations in these genes prevented formation of drug-resistant epimutants. Remarkably, drug-resistant epimutant production was notably increased in M. circinelloides f. circinelloides isolates from humans or other animal hosts. The host-pathogen interaction could be a stressful environment in which the phenotypic plasticity provided by the epimutant pathway might provide an advantage for these strains. These results evoke a model whereby balanced regulation of two different RNAi pathways is determined by the activation of the RNAi-dependent epimutant pathway under stress conditions, or its repression when the regular maintenance of the mRNA degradation pathway operates under non-stress conditions.

  15. MicroRNA-139 suppresses proliferation in luminal type breast cancer cells by targeting Topoisomerase II alpha

    International Nuclear Information System (INIS)

    Hua, Wei; Sa, Ke-Di; Zhang, Xiang; Jia, Lin-Tao; Zhao, Jing; Yang, An-Gang; Zhang, Rui; Fan, Jing; Bian, Ka

    2015-01-01

    The classification of molecular subtypes of breast cancer improves the prognostic accuracy and therapeutic benefits in clinic. However, because of the complexity of breast cancer, more biomarkers and functional molecules need to be explored. Here, analyzing the data in a huge cohort of breast cancer patients, we found that Topoisomerase II alpha (TOP2a), an important target of chemotherapy is a biomarker for prognosis in luminal type breast cancer patients, but not in basal like or HER2 positive breast cancer patients. We identified that miR-139, a previous reported anti-metastatic microRNA targets 3’-untranslated region (3′UTR) of TOP2a mRNA. Further more, we revealed that the forced expression of miR-139 reduces the TOP2a expression at both mRNA and protein levels. And our functional experiments showed that the ectopic expression of miR-139 remarkably inhibits proliferation in luminal type breast cancer cells, while exogenous TOP2a expression could rescue inhibition of cell proliferation mediated by miR-139. Collectively, our present study demonstrates the miR-139-TOP2a regulatory axis is important for proliferation in luminal type breast cancer cells. This functional link may help us to further understand the specificity of subtypes of breast cancer and optimize the strategy of cancer treatment. - Highlights: • High levels of TOP2a expression are closely associated with poor prognosis in luminal type breast cancer patients. • TOP2a is a novel target of miR-139. • Overexpression of miR-139 inhibits proliferation in luminal type breast cancer cells. • TOP2a is essential for miR-139-induced growth arrest in luminal type breast cancer cells

  16. Long noncoding RNA TUG1 is a diagnostic factor in lung adenocarcinoma and suppresses apoptosis via epigenetic silencing of BAX

    OpenAIRE

    Liu, Huan; Zhou, Guizhi; Fu, Xin; Cui, Haiyan; Pu, Guangrui; Xiao, Yao; Sun, Wei; Dong, Xinhua; Zhang, Libin; Cao, Sijia; Li, Guiqin; Wu, Xiaowei; Yang, Xu

    2017-01-01

    Lung cancer is one of the leading causes of cancer-related mortality, and responds badly to existing treatment. Thus, it is of urgent need to identify novel diagnostic markers and therapeutic targets. Increasing evidences have indicated that long non-coding RNAs (lncRNAs) play an important role in initiation and progression of lung cancer. However, the role of lncRNA Taurine upregulated 1 (TUG1) in lung adenocarcinoma (LAD) progression is not well known. In this study, we determined the diagn...

  17. MicroRNA-122 triggers mesenchymal-epithelial transition and suppresses hepatocellular carcinoma cell motility and invasion by targeting RhoA.

    Directory of Open Access Journals (Sweden)

    Sheng-Chun Wang

    Full Text Available The loss of microRNA-122 (miR-122 expression is strongly associated with increased invasion and metastasis, and poor prognosis of hepatocellular carcinoma (HCC, however, the underlying mechanisms remain poorly understood. In the present study, we observed that miR-122 over-expression in HCC cell lines Sk-hep-1 and Bel-7402 triggered the mesenchymal-epithelial transition (MET, as demonstrated by epithelial-like morphological changes, up-regulated epithelial proteins (E-cadherin, ZO-1, α-catenin, occludin, BVES, and MST4, and down-regulated mesenchymal proteins (vimentin and fibronectin. The over-expression of miRNA-122 also caused cytoskeleton disruption, RhoA/Rock pathway inactivation, enhanced cell adhesion, and suppression of migration and invasion of Sk-hep-1 and Bel-7402 cells, whereas, these effects could be reversed through miR-122 inhibition. Additional studies demonstrated that the inhibition of wild-type RhoA function induced MET and inhibited cell migration and invasion, while RhoA over-expression reversed miR-122-induced MET and inhibition of migration and invasion of HCC cells, suggesting that miR-122 induced MET and suppressed the migration and invasion of HCC cells by targeting RhoA. Moreover, our results demonstrated that HNF4α up-regulated its target gene miR-122 that subsequently induced MET and inhibited cell migration and invasion, whereas miR-122 inhibition reversed these HNF4α-induced phenotypes. These results revealed functional and mechanistic links among the tumor suppressors HNF4α, miR-122, and RhoA in EMT and invasive and metastatic phenotypes of HCC. Taken together, our study provides the first evidence that the HNF4α/miR-122/RhoA axis negatively regulates EMT and the migration and invasion of HCC cells.

  18. Amino acid sequence motifs essential for P0-mediated suppression of RNA silencing in an isolate of potato leafroll virus from Inner Mongolia.

    Science.gov (United States)

    Zhuo, Tao; Li, Yuan-Yuan; Xiang, Hai-Ying; Wu, Zhan-Yu; Wang, Xian-Bin; Wang, Ying; Zhang, Yong-Liang; Li, Da-Wei; Yu, Jia-Lin; Han, Cheng-Gui

    2014-06-01

    Polerovirus P0 suppressors of host gene silencing contain a consensus F-box-like motif with Leu/Pro (L/P) requirements for suppressor activity. The Inner Mongolian Potato leafroll virus (PLRV) P0 protein (P0(PL-IM)) has an unusual F-box-like motif that contains a Trp/Gly (W/G) sequence and an additional GW/WG-like motif (G139/W140/G141) that is lacking in other P0 proteins. We used Agrobacterium infiltration-mediated RNA silencing assays to establish that P0(PL-IM) has a strong suppressor activity. Mutagenesis experiments demonstrated that the P0(PL-IM) F-box-like motif encompasses amino acids 76-LPRHLHYECLEWGLLCG THP-95, and that the suppressor activity is abolished by L76A, W87A, or G88A substitution. The suppressor activity is also weakened substantially by mutations within the G139/W140/G141 region and is eliminated by a mutation (F220R) in a C-terminal conserved sequence of P0(PL-IM). As has been observed with other P0 proteins, P0(PL-IM) suppression is correlated with reduced accumulation of the host AGO1-silencing complex protein. However, P0(PL-IM) fails to bind SKP1, which functions in a proteasome pathway that may be involved in AGO1 degradation. These results suggest that P0(PL-IM) may suppress RNA silencing by using an alternative pathway to target AGO1 for degradation. Our results help improve our understanding of the molecular mechanisms involved in PLRV infection.

  19. [Contribution of HCV core antigen testing in HCV diagnosis by test from the company Abbott Laboratories].

    Science.gov (United States)

    Trbusek, J

    2009-11-01

    Detection of HCV core antigen as direct marker of hepatitis C infection clearly improves diagnosis of this disease (especially reduction of window period) and brings broad clinical utilization. The company Abbott Laboratories offers fully automated laboratory test for measurement of HCV core antigen on ARCHITECT analyzers.

  20. Polyploidization of murine mesenchymal cells is associated with suppression of the long noncoding RNA H19 and reduced tumorigenicity.

    Science.gov (United States)

    Shoshani, Ofer; Massalha, Hassan; Shani, Nir; Kagan, Sivan; Ravid, Orly; Madar, Shalom; Trakhtenbrot, Luba; Leshkowitz, Dena; Rechavi, Gideon; Zipori, Dov

    2012-12-15

    Mesenchymal stromal cells (MSC) are used extensively in clinical trials; however, the possibility that MSCs have a potential for malignant transformation was raised. We examined the genomic stability versus the tumor-forming capacity of multiple mouse MSCs. Murine MSCs have been shown to be less stable and more prone to malignant transformation than their human counterparts. A large series of independently isolated MSC populations exhibited low tumorigenic potential under syngeneic conditions, which increased in immunocompromised animals. Unexpectedly, higher ploidy correlated with reduced tumor-forming capacity. Furthermore, in both cultured MSCs and primary hepatocytes, polyploidization was associated with a dramatic decrease in the expression of the long noncoding RNA H19. Direct knockdown of H19 expression in diploid cells resulted in acquisition of polyploid cell traits. Moreover, artificial tetraploidization of diploid cancer cells led to a reduction of H19 levels, as well as to an attenuation of the tumorigenic potential. Polyploidy might therefore serve as a protective mechanism aimed at reducing malignant transformation through the involvement of the H19 regulatory long noncoding RNA.

  1. Silencing of RhoA and RhoC expression by RNA interference suppresses human colorectal carcinoma growth in vivo

    Directory of Open Access Journals (Sweden)

    Wang Haibo

    2010-09-01

    Full Text Available Abstract Background RhoA and RhoC have been proved to be over-expressed in many solid cancers, including colorectal cancer. The reduction of RhoA and RhoC expression by RNA interference (RNAi resulted growth inhibition of cancer cells. The present study was to evaluate the effect of silencing of RhoA and RhoC expression by RNAi on growth of human colorectal carcinoma (CRC in tumor-bearing nude mice in vivo. Methods To establish HCT116 cell transplantable model, the nude mice were subcutaneously inoculated with 1.0 × 107 HCT116 cells and kept growing till the tumor xenografts reached 5-7 mm in diameter. Then the mice were randomly assigned to three groups(seven mice in each group: (1 normal saline(NS group, (2replication-defective recombinant adenovirus carrying the negative control shRNA (Ad-HK group and (3replication-defective recombinant adenovirus carrying the 4-tandem linked RhoA and RhoC shRNAs (Ad-RhoA-RhoC group. Ad-HK (4 × 108 pfu, 30 ul/mouse, Ad-RhoA-RhoC (4 × 108 pfu, 30 ul/mouse or PBS (30 ul/mouse was injected intratumorally four times once every other day. The weight and volumes of tumor xenografts were recorded. The levels of RhoA and RhoC mRNA transcripts and proteins in tumor xenografts were detected by reverse quantitative transcription polymerase chain reaction (QRT-PCR and immunohistochemical staining respectively. The terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL assay was used to detect the death of cells. Results The xenografts in mice could be seen at 5th day from the implantation of HCT116 cells and all had reached 5-7 mm in size at 9th day. After injection intratumorally, the growth speed of tumor xenografts in Ad-RhoA-RhoC group was significantly delayed compared with those in NS and Ad-HK group(P RhoA and RhoC reduced more in Ad-RhoA-RhoC group than those in NS and Ad-HK group. The relative RhoA and RhoC mRNA transcripts were decreased to 48% and 43% respectively (P RhoA and Rho

  2. Deep 16S rRNA Pyrosequencing Reveals a Bacterial Community Associated with Banana Fusarium Wilt Disease Suppression Induced by Bio-Organic Fertilizer Application

    Science.gov (United States)

    Ruan, Yunze; Xue, Chao; Zhang, Jian; Li, Rong; Shen, Qirong

    2014-01-01

    Our previous work demonstrated that application of a bio-organic fertilizer (BIO) to a banana mono-culture orchard with serious Fusarium wilt disease effectively decreased the number of soil Fusarium sp. and controlled the soil-borne disease. Because bacteria are an abundant and diverse group of soil organisms that responds to soil health, deep 16 S rRNA pyrosequencing was employed to characterize the composition of the bacterial community to investigate how it responded to BIO or the application of other common composts and to explore the potential correlation between bacterial community, BIO application and Fusarium wilt disease suppression. After basal quality control, 137,646 sequences and 9,388 operational taxonomic units (OTUs) were obtained from the 15 soil samples. Proteobacteria, Acidobacteria, Bacteroidetes, Gemmatimonadetes and Actinobacteria were the most frequent phyla and comprised up to 75.3% of the total sequences. Compared to the other soil samples, BIO-treated soil revealed higher abundances of Gemmatimonadetes and Acidobacteria, while Bacteroidetes were found in lower abundance. Meanwhile, on genus level, higher abundances compared to other treatments were observed for Gemmatimonas and Gp4. Correlation and redundancy analysis showed that the abundance of Gemmatimonas and Sphingomonas and the soil total nitrogen and ammonium nitrogen content were higher after BIO application, and they were all positively correlated with disease suppression. Cumulatively, the reduced Fusarium wilt disease incidence that was seen after BIO was applied for 1-year might be attributed to the general suppression based on a shift within the bacteria soil community, including specific enrichment of Gemmatimonas and Sphingomonas. PMID:24871319

  3. Mechanistic study on the nuclear modifier gene MSS1 mutation suppressing neomycin sensitivity of the mitochondrial 15S rRNA C1477G mutation in Saccharomyces cerevisiae.

    Science.gov (United States)

    Zhou, Qiyin; Wang, Wei; He, Xiangyu; Zhu, Xiaoyu; Shen, Yaoyao; Yu, Zhe; Wang, Xuexiang; Qi, Xuchen; Zhang, Xuan; Fan, Mingjie; Dai, Yu; Yang, Shuxu; Yan, Qingfeng

    2014-01-01

    The phenotypic manifestation of mitochondrial DNA (mtDNA) mutations can be modulated by nuclear genes and environmental factors. However, neither the interaction among these factors nor their underlying mechanisms are well understood. The yeast Saccharomyces cerevisiae mtDNA 15S rRNA C1477G mutation (PR) corresponds to the human 12S rRNA A1555G mutation. Here we report that a nuclear modifier gene mss1 mutation suppresses the neomycin-sensitivity phenotype of a yeast C1477G mutant in fermentable YPD medium. Functional assays show that the mitochondrial function of the yeast C1477G mutant was impaired severely in YPD medium with neomycin. Moreover, the mss1 mutation led to a significant increase in the steady-state level of HAP5 (heme activated protein), which greatly up-regulated the expression of glycolytic transcription factors RAP1, GCR1, and GCR2 and thus stimulated glycolysis. Furthermore, the high expression of the key glycolytic enzyme genes HXK2, PFK1 and PYK1 indicated that enhanced glycolysis not only compensated for the ATP reduction from oxidative phosphorylation (OXPHOS) in mitochondria, but also ensured the growth of the mss1(PR) mutant in YPD medium with neomycin. This study advances our understanding of the phenotypic manifestation of mtDNA mutations.

  4. Differential expression of miR-1, a putative tumor suppressing microRNA, in cancer resistant and cancer susceptible mice

    Directory of Open Access Journals (Sweden)

    Jessica L. Fleming

    2013-04-01

    Full Text Available Mus spretus mice are highly resistant to several types of cancer compared to Mus musculus mice. To determine whether differences in microRNA (miRNA expression account for some of the differences in observed skin cancer susceptibility between the strains, we performed miRNA expression profiling of skin RNA for over 300 miRNAs. Five miRNAs, miR-1, miR-124a-3, miR-133a, miR-134, miR-206, were differentially expressed by array and/or qPCR. miR-1 was previously shown to have tumor suppressing abilities in multiple tumor types. We found miR-1 expression to be lower in mouse cutaneous squamous cell carcinomas (cSCCs compared to normal skin. Based on the literature and our expression data, we performed detailed studies on predicted miR-1 targets and evaluated the effect of miR-1 expression on two murine cSCC cell lines, A5 and B9. Following transfection of miR-1, we found decreased mRNA expression of three validated miR-1 targets, Met, Twf1 and Ets1 and one novel target Bag4. Decreased expression of Ets1 was confirmed by Western analysis and by 3’ reporter luciferase assays containing wildtype and mutated Ets1 3’UTR. We evaluated the effect of miR-1 on multiple tumor phenotypes including apoptosis, proliferation, cell cycle and migration. In A5 cells, expression of miR-1 led to decreased proliferation compared to a control miR. miR-1 expression also led to increased apoptosis at later time points (72 and 96 h and to a decrease in cells in S-phase. In summary, we identified five miRNAs with differential expression between cancer resistant and cancer susceptible mice and found that miR-1, a candidate tumor suppressor, has targets with defined roles in tumorigenesis.

  5. Autophagy in HCV Infection: Keeping Fat and Inflammation at Bay

    Directory of Open Access Journals (Sweden)

    Tiziana Vescovo

    2014-01-01

    Full Text Available Hepatitis C virus (HCV infection is one of the main causes of chronic liver disease. Viral persistence and pathogenesis rely mainly on the ability of HCV to deregulate specific host processes, including lipid metabolism and innate immunity. Recently, autophagy has emerged as a cellular pathway, playing a role in several aspects of HCV infection. This review summarizes current knowledge on the molecular mechanisms that link the HCV life cycle with autophagy machinery. In particular, we discuss the role of HCV/autophagy interaction in dysregulating inflammation and lipid homeostasis and its potential for translational applications in the treatment of HCV-infected patients.

  6. Liver Fibrosis in HCV Monoinfected and HIV/HCV Coinfected Patients: Dysregulation of Matrix Metalloproteinases (MMPs and Their Tissue Inhibitors TIMPs and Effect of HCV Protease Inhibitors

    Directory of Open Access Journals (Sweden)

    Tiziana Latronico

    2016-03-01

    Full Text Available An imbalance between matrix metalloproteinases (MMPs and tissue inhibitors of metalloproteinases (TIMPs may contribute to liver fibrosis in patients with hepatitis C (HCV infection. We measured the circulating levels of different MMPs and TIMPs in HCV monoinfected and HIV/HCV coinfected patients and evaluated the potential for anti-HCV therapy to modulate MMP and TIMP levels in HCV subjects. We analyzed 83 plasma samples from 16 HCV monoinfected patients undergoing dual or triple anti-HCV therapy, 15 HIV/HCV coinfected patients with undetectable HIV load, and 10 healthy donors (HD. Levels of MMP-1, MMP-2, MMP-3, MMP-8, MMP-9, MMP-10, TIMP-1, and TIMP-2 were measured by a SearchLight Multiplex Immunoassay Kit. MMP-2 and MMP-9 were the highest expressed MMPs among all the analyzed samples and their levels significantly increased in HCV monoinfected and HIV/HCV coinfected subjects compared to HD. TIMP-1 levels were significantly higher in HCV and HIV/HCV subjects compared to HD and were correlated with liver stiffness. These findings raise the possibility of using circulating TIMP-1 as a non-invasive marker of liver fibrosis in HCV infection. A longitudinal study demonstrated that MMP-9 levels significantly decreased (40% reduction from baseline in patients receiving dual as well as triple direct-acting antivirals (DAA anti-HCV therapy, which had no effect on MMP-2, TIMP-1, and TIMP-2. As the dysregulation of MMP-2 and MMP-9 may reflect inflammatory processes in the liver, the decrease of MMP-9 following HCV protease inhibitor treatment suggests a positive effect on the reduction of liver inflammation.

  7. Knockdown of long noncoding RNA linc-ITGB1 suppresses migration, invasion of hepatocellular carcinoma via regulating ZEB1.

    Science.gov (United States)

    Yu, W-W; Wang, K; Liao, G-J

    2017-11-01

    This research focuses on the influence of linc-ITGB1 on the metastasis of hepatocellular carcinoma and further explores its underlying mechanism. A total of 70 hepatocellular carcinoma patients were chosen for our study. RT-qPCR was used for detecting the expression level of linc-ITGB1 in their cancer tissues. Moreover, the expression level of linc-ITGB1 was also detected in hepatocellular carcinoma cell lines. Furthermore, whether linc-ITGB1 could affect the migrated and invaded ability of hepatocellular carcinoma cells was determined by wound healing assay and transwell assay. We further explored the potential mechanism by RT-qPCR and Western blot assay. Linc-ITGB1 expression level in hepatocellular carcinoma tissues was remarkably higher than that in adjacent tissues. Moreover, migrated and invaded ability of hepatocellular carcinoma cells was inhibited through knockdown of linc-ITGB1. Further study revealed that silenced linc-ITGB1 inhibited the expression of ZEB1 and then suppressed epithelial to mesenchymal transition (EMT), which was important during the metastasis of hepatocellular carcinoma. Moreover, the inhibition of cell invasion by silenced linc-ITGB1 could be rescued through overexpression of ZEB1 in hepatocellular carcinoma. The results indicate that linc-ITGB1, a novel oncogene in tumorigenesis, could promote the metastasis and EMT via ZEB1, which may offer a possible therapeutic target in hepatocellular carcinoma.

  8. Sensitization of human carcinoma cells to alkylating agents by small interfering RNA suppression of 3-alkyladenine-DNA glycosylase.

    Science.gov (United States)

    Paik, Johanna; Duncan, Tod; Lindahl, Tomas; Sedgwick, Barbara

    2005-11-15

    One of the major cytotoxic lesions generated by alkylating agents is DNA 3-alkyladenine, which can be excised by 3-alkyladenine DNA glycosylase (AAG). Inhibition of AAG may therefore result in increased cellular sensitivity to chemotherapeutic alkylating agents. To investigate this possibility, we have examined the role of AAG in protecting human tumor cells against such agents. Plasmids that express small interfering RNAs targeted to two different regions of AAG mRNA were transfected into HeLa cervical carcinoma cells and A2780-SCA ovarian carcinoma cells. Stable derivatives of both cell types with low AAG protein levels were sensitized to alkylating agents. Two HeLa cell lines with AAG protein levels reduced by at least 80% to 90% displayed a 5- to 10-fold increase in sensitivity to methyl methanesulfonate, N-methyl-N-nitrosourea, and the chemotherapeutic drugs temozolomide and 1,3-bis(2-chloroethyl)-1-nitrosourea. These cells showed no increase in sensitivity to UV light or ionizing radiation. After treatment with methyl methanesulfonate, AAG knockdown HeLa cells were delayed in S phase but accumulated in G2-M. Our data support the hypothesis that ablation of AAG activity in human tumor cells may provide a useful strategy to enhance the efficacy of current chemotherapeutic regimens that include alkylating agents.

  9. MicroRNA-214 Suppresses Osteogenic Differentiation of Human Periodontal Ligament Stem Cells by Targeting ATF4

    Directory of Open Access Journals (Sweden)

    Siqi Yao

    2017-01-01

    Full Text Available Periodontitis is the main cause of adult tooth loss. Stem cell-based tissue engineering has become a promising therapy for periodontitis treatment. To date, human periodontal ligament stem cells (hPDLSCs have been shown to be a favorable source for tissue engineering, but modulatory mechanisms of hPDLSCs remain unclear. Approximately 60% of mammalian genes are the targets of over 2000 miRNAs in multiple human cell types, and miRNAs are able to influence various biological processes in the human body, including bone formation. In this study, we found that after osteogenic induction, miR-214 was significantly decreased in hPDLSCs; therefore, we examined the effects of miR-214 on osteogenic differentiation. Computational miRNA target prediction analyses and luciferase reporter assays revealed that activating transcription factor 4 (ATF4 is a direct target of miR-214. We prepared cells overexpressing miR-214 and found that miR-214 negatively regulates osteogenic differentiation of hPDLSCs. For the target of miR-214, ATF4 protein expression level was decreased after induction. In conclusion, we found that miR-214-ATF4 axis is a novel pathway for regulating hPDLSC osteogenic differentiation.

  10. miRNA-218-loaded carboxymethyl chitosan - Tocopherol nanoparticle to suppress the proliferation of gastrointestinal stromal tumor growth

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Lin; Wang, Ming; Zhao, Wen-Yi; Zhang, Zi-Zhen; Tang, De-Feng; Zhang, Ye-Qian [Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127 (China); Cao, Hui, E-mail: caohui10281@163.com [Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127 (China); Zhang, Zhi-Gang, E-mail: zhangzhiganggz@hotmail.com [State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200240 (China)

    2017-03-01

    Gastrointestinal stromal tumors (GIST) are one of the most common forms of mesenchymal cancers of the gastrointestinal tract. Although chemotherapeutic drugs inhibited the proliferation of GIST, however, sizable proportion of people developed resistance and therefore difficult to treat. In the present study, O-carboxymethyl chitosan (OCMC)-tocopherol polymer conjugate was synthesized and formulated into stable polymeric nanoparticles. The main aim of present study was to increase the therapeutic efficacy of miR-218 in GIST. The mean size of nanoparticles was ~ 110 nm with a spherical shape. The miR-218 NP has been shown inhibit the cell proliferation and exhibited a superior cell apoptosis. The miR-218 NP inhibited the cell invasion and promoted the apoptosis of GIST cancer cells. In the present study, we have successfully showed that KIT1 is the target gene of miR-218 as shown by the luciferase reporter assay. These findings collectively suggest the miR-218 loaded nanoparticle by virtue of effective transfection could act as a tumor suppressor miRNA in the treatment of GIST. - Highlights: • O-carboxymethyl chitosan (OCMC)-tocopherol polymer conjugate was synthesized and formulated in nanoparticles. • The miR-218 NP has been shown inhibit the cell proliferation and exhibited a superior cell apoptosis. • We have successfully showed that KIT1 is the target gene of miR-218 as shown by the luciferase reporter assay.

  11. MicroRNA-302a suppresses influenza A virus-stimulated interferon regulatory factor-5 expression and cytokine storm induction.

    Science.gov (United States)

    Chen, Xueyuan; Zhou, Li; Peng, Nanfang; Yu, Haisheng; Li, Mengqi; Cao, Zhongying; Lin, Yong; Wang, Xueyu; Li, Qian; Wang, Jun; She, Yinglong; Zhu, Chengliang; Lu, Mengji; Zhu, Ying; Liu, Shi

    2017-12-29

    During influenza A virus (IAV) infection, cytokine storms play a vital and critical role in clinical outcomes. We have previously reported that microRNA (miR)-302c regulates IAV-induced IFN expression by targeting the 3'-UTR of nuclear factor κB (NF-κB)-inducing kinase. In the current study, we found that miR-302a, another member of the miR-302 cluster, controls the IAV-induced cytokine storm. According to results from cell-based and knockout mouse models, IAV induces a cytokine storm via interferon regulatory factor-5 (IRF-5). We also found that IAV infection up-regulates IRF-5 expression and that IRF-5 in turn promotes IAV replication. Furthermore, we observed that IRF-5 is a direct target of miR-302a, which down-regulated IRF-5 expression by binding its 3'-UTR. Moreover, IAV increased IRF-5 expression by down-regulating miR-302a expression. Interestingly, miR-302a inhibited IAV replication. In IAV-infected patients, miR-302a expression was down-regulated, whereas IRF-5 expression was up-regulated. Taken together, our work uncovers and defines a signaling pathway implicated in an IAV-induced cytokine storm. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Monocyte activation in HIV/HCV coinfection correlates with cognitive impairment.

    Directory of Open Access Journals (Sweden)

    Hans Rempel

    Full Text Available Coinfection with human immunodeficiency virus (HIV and hepatitis C virus (HCV challenges the immune system with two viruses that elicit distinct immune responses. Chronic immune activation is a hallmark of HIV infection and an accurate indicator of disease progression. Suppressing HIV viremia by antiretroviral therapy (ART effectively prolongs life and significantly improves immune function. HIV/HCV coinfected individuals have peripheral immune activation despite effective ART control of HIV viral load. Here we examined freshly isolated CD14 monocytes for gene expression using high-density cDNA microarrays and analyzed T cell subsets, CD4 and CD8, by flow cytometry to characterize immune activation in monoinfected HCV and HIV, and HIV-suppressed coinfected subjects. To determine the impact of coinfection on cognition, subjects were evaluated in 7 domains for neuropsychological performance, which were summarized as a global deficit score (GDS. Monocyte gene expression analysis in HIV-suppressed coinfected subjects identified 43 genes that were elevated greater than 2.5 fold. Correlative analysis of subjects' GDS and gene expression found eight genes with significance after adjusting for multiple comparisons. Correlative expression of six genes was confirmed by qPCR, five of which were categorized as type 1 IFN response genes. Global deficit scores were not related to plasma lipopolysaccharide levels. In the T cell compartment, coinfection significantly increased expression of activation markers CD38 and HLADR on both CD4 and CD8 T cells but did not correlate with GDS. These findings indicate that coinfection is associated with a type 1 IFN monocyte activation profile which was further found to correlate with cognitive impairment, even in subjects with controlled HIV infection. HIV-suppressed coinfected subjects with controlled HIV viral load experiencing immune activation could benefit significantly from successful anti-HCV therapy and may be

  13. Direct-Acting Antivirals Improve Access to Care and Cure for Patients With HIV and Chronic HCV Infection.

    Science.gov (United States)

    Collins, Lauren F; Chan, Austin; Zheng, Jiayin; Chow, Shein-Chung; Wilder, Julius M; Muir, Andrew J; Naggie, Susanna

    2018-01-01

    Direct-acting antivirals (DAA) as curative therapy for hepatitis C virus (HCV) infection offer >95% sustained virologic response (SVR), including in patients with human immunodeficiency virus (HIV) infection. Despite improved safety and efficacy of HCV treatment, challenges remain, including drug-drug interactions between DAA and antiretroviral therapy (ART) and restrictions on access by payers. We performed a retrospective cohort study of all HIV/HCV co-infected and HCV mono-infected patients captured in care at our institution from 2011-2015, reflecting the DAA era, to determine treatment uptake and SVR, and to elucidate barriers to accessing DAA for co-infected patients. We identified 9290 patients with HCV mono-infection and 507 with HIV/HCV co-infection. Compared to mono-infected patients, co-infected patients were younger and more likely to be male and African-American. For both groups, treatment uptake improved from the DAA/pegylated interferon (PEGIFN)-ribavirin to IFN-free DAA era. One-third of co-infected patients in the IFN-free DAA era required ART switch and nearly all remained virologically suppressed after 6 months. We observed SVR >95% for most patient subgroups including those with co-infection, prior treatment-experience, and cirrhosis. Predictors of access to DAA for co-infected patients included Caucasian race, CD4 count ≥200 cells/mm 3 , HIV virologic suppression and cirrhosis. Time to approval of DAA was longest for patients insured by Medicaid, followed by private insurance and Medicare. DAA therapy has significantly improved access to HCV treatment and high SVR is independent of HIV status. However, in order to realize cure for all, barriers and disparities in access need to be urgently addressed.

  14. Transcriptional profiling of PBMCs unravels B cell mediated immunopathogenic imprints of HCV vasculitis.

    Science.gov (United States)

    Comstock, Emily; Kim, Cheol-Woo; Murphy, Alison; Emmanuel, Benjamin; Zhang, Xi; Sneller, Michael; Poonia, Bhawna; Kottilil, Shyamasundaran

    2017-01-01

    B cell depletion therapy using rituximab has been shown to be effective in achieving remission in patients with HCV-mixed cryoglobulinemic (MC) vasculitis. Previously, we have demonstrated abnormalities in peripheral immune cells involving neutrophils, chemotaxis, and innate immune activation among patients with HCV-MC vasculitis when compared to HCV patients without vasculitis. In this study, we evaluated the effect of B cell depletion therapy on transcriptional profiles of peripheral blood mononuclear cells before and after riruximab therapy, in order to unravel the pathogenic mechanism involved in HCV-MC vasculitis induced by abnormal B cell proliferation. DNA microarray analysis was performed using RNA from PBMCs from seven patients with HCV-MC vasculitis and seven normal volunteers. DNA was hybridized to Affymetrix U133A chips. After normalization, differentially expressed gene list with treatment was generated using partitional clustering. RT-PCR, flow cytometry, and enzyme immunoassay (EIA) was used to validate DNA microarray findings. Differentially expressed genes included B cells and non-B cell genes. Validation of genes using purified cell subsets demonstrated distinct effect of B cell depletion therapy on non-B cells, such as monocytes, T cells, and NK cells. Notably, B lymphocyte stimulator (BLyS) levels were persistently elevated in patients who subsequently relapsed. In conclusion, pathogenesis of HCV-MC vasculitis is mediated by abnormal proliferation of B cells, driven by BLyS, leading to significant effects on non-B cells in mediating symptomatology. Future therapeutics using a combination approach of B cell depletion and proliferation may be desired to achieve long-term remission.

  15. New insights into HCV replication in original cells from Aedes mosquitoes.

    Science.gov (United States)

    Fallecker, Catherine; Caporossi, Alban; Rechoum, Yassine; Garzoni, Frederic; Larrat, Sylvie; François, Olivier; Fender, Pascal; Morand, Patrice; Berger, Imre; Petit, Marie-Anne; Drouet, Emmanuel

    2017-08-22

    The existing literature about HCV association with, and replication in mosquitoes is extremely poor. To fill this gap, we performed cellular investigations aimed at exploring (i) the capacity of HCV E1E2 glycoproteins to bind on Aedes mosquito cells and (ii) the ability of HCV serum particles (HCVsp) to replicate in these cell lines. First, we used purified E1E2 expressing baculovirus-derived HCV pseudo particles (bacHCVpp) so we could investigate their association with mosquito cell lines from Aedes aegypti (Aag-2) and Aedes albopictus (C6/36). We initiated a series of infections of both mosquito cells (Ae aegypti and Ae albopictus) with the HCVsp (Lat strain - genotype 3) and we observed the evolution dynamics of viral populations within cells over the course of infection via next-generation sequencing (NGS) experiments. Our binding assays revealed bacHCVpp an association with the mosquito cells, at comparable levels obtained with human hepatocytes (HepaRG cells) used as a control. In our infection experiments, the HCV RNA (+) were detectable by RT-PCR in the cells between 21 and 28 days post-infection (p.i.). In human hepatocytes HepaRG and Ae aegypti insect cells, NGS experiments revealed an increase of global viral diversity with a selection for a quasi-species, suggesting a structuration of the population with elimination of deleterious mutations. The evolutionary pattern in Ae albopictus insect cells is different (stability of viral diversity and polymorphism). These results demonstrate for the first time that natural HCV could really replicate within Aedes mosquitoes, a discovery which may have major consequences for public health as well as in vaccine development.

  16. Comparison of RNA expression profiles on generations of Porphyra yezoensis (Rhodophyta, based on suppression subtractive hybridization (SSH

    Directory of Open Access Journals (Sweden)

    Shen Songdong

    2011-10-01

    Full Text Available Abstract Background Porphyra yezoensis Ueda is one of the most important edible seaweed, with a dimorphic life cycle which consists of gametophyte as macroscopical blade and sporophyte as microscopic filamentous. Conspicuous differences exist in the two generations, such as morphology, cell structure, biochemistry, physiology, and so on. The developmental process of Porphyra yezoensis has been studied thoroughly, but the mechanism is still ambiguous and few studies on genetic expression have been carried out. In this study, the suppression subtractive hybridization (SSH method conducted to generate large-scale expressed sequence tags (EST is designed to identify gene candidates related to the morphological and physiological differences between the gametophytic and sporophytic generations of Porphyra yezoensis Ueda. Findings Each 300 clones of sporophyte and gametophyte cells were dipped onto the membrane for hybridization. The result of dot-blot suggested there were 222 positive clones in gametophyte library and 236 positive clones in sporophyte library. 383 positive clones of strongest signals had been sequenced, and 191 EST sequences of gametophyte and 192 of sporophyte were obtained. A total of 196 genes were obtained, within which 104 genes were identified from the gametophyte and 92 from the sporophyte. Thirty-nine genes of the gametophyte and 62 genes of the sporophyte showed sequence similarity to those genes with known or putative functions which were classified according to their putative biological roles and molecular functions. The GO annotation showed about 58% of the cellular component of sporophyte and gametophyte cells were mainly located in cytoplasm and nucleus. The special genes were located in Golgi apparatus, and high expression in plastid, ribosome and endoplasmic reticulum. The main biological functions of gametophyte cells contributed to DNA repair/replication, carbohydrate metabolism, transport and transcription

  17. MicroRNA-128 suppresses paclitaxel-resistant lung cancer by inhibiting MUC1-C and BMI-1 in cancer stem cells.

    Science.gov (United States)

    Koh, Hyebin; Park, Hyeri; Chandimali, Nisansala; Huynh, Do Luong; Zhang, Jiao Jiao; Ghosh, Mrinmoy; Gera, Meeta; Kim, Nameun; Bak, Yesol; Yoon, Do-Young; Park, Yang Ho; Kwon, Taeho; Jeong, Dong Kee

    2017-12-15

    The existence of cancer stem cells (CSCs) is the main reason for failure of cancer treatment caused by drug resistance. Therefore, eradicating cancers by targeting CSCs remains a significant challenge. In the present study, because of the important role of BMI-1 proto-oncogene, polycomb ring finger (BMI-1) and C-terminal Mucin1 (MUC1-C) in tumor growth and maintenance of CSCs, we aimed to confirm that microRNA miR-128, as an inhibitor of BMI-1 and MUC1-C, could effectively suppress paclitaxel (PTX)-resistant lung cancer stem cells. We showed that CSCs have significantly higher expression levels of BMI-1, MUC1-C, stemness proteins, signaling factors, and higher malignancy compared with normal tumor cells. After transfection with miR-128, the BMI-1 and MUC1-C levels in CSCs were suppressed. When miR-128 was stably expressed in PTX-resistant lung cancer stem cells, the cells showed decreased proliferation, metastasis, self-renewal, migration, invasive ability, clonogenicity, and tumorigenicity in vitro and in vivo and increased apoptosis compared with miR-NC (negative control) CSCs. Furthermore, miR-128 effectively decreased the levels of β-catenin and intracellular signaling pathway-related factors in CSCs. MiR-128 also decreased the luciferase activity of MUC1 reporter constructs and reduced the levels of transmembrane MUC1-C and BMI-1. These results suggested miR-128 as an attractive therapeutic strategy for PTX-resistant lung cancer via inhibition of BMI-1 and MUC1-C.

  18. RNA interference suppression of mucin 5AC (MUC5AC reduces the adhesive and invasive capacity of human pancreatic cancer cells

    Directory of Open Access Journals (Sweden)

    Yamada Nobuya

    2010-05-01

    Full Text Available Abstract Background MUC5AC is a secretory mucin normally expressed in the surface muconous cells of stomach and bronchial tract. It has been known that MUC5AC de novo expression occurred in the invasive ductal carcinoma and pancreatic intraepithelial neoplasm with no detectable expression in normal pancreas, however, its function remains uncertain. Here, we report the impact of MUC5AC on the adhesive and invasive ability of pancreatic cancer cells. Methods We used two MUC5AC expressing cell lines derived from human pancreatic cancer, SW1990 and BxPC3. Small-interfering (si RNA directed against MUC5AC were used to assess the effects of MUC5AC on invasion and adhesion of pancreas cancer cells in vitro and in vivo. We compared parental cells (SW1990 and BxPC3 with MUC5AC suppressed cells by si RNA (si-SW1990 and si-BxPC3. Results MUC5AC was found to express in more than 80% of pancreatic ductal carcinoma specimens. Next we observed that both of si-SW1990 and si-BxPC3 showed significantly lower adhesion and invasion to extracellular matrix components compared with parental cell lines. Expression of genes associated with adhesion and invasion including several integerins, matrix metalloproteinase (MMP -3 and vascular endothelial growth factor (VEGF were down-regulated in both MUC5AC suppressed cells. Furthermore, production of VEGF and phosphorylation of VEGFR-1 were significantly reduced by MUC5AC down regulation. Both of si-SW1990 and si-BxPC3 attenuated activation of Erk1/2. In vivo, si-SW1990 did not establish subcutaneous tumor in nude mice. Conclusions Knockdown of MUC5AC reduced the ability of pancreatic cancer cells to adhesion and invasion, suggesting that MUC5AC might contribute to the invasive motility of pancreatic cancer cells by enhancing the expression of integrins, MMP-3, VEGF and activating Erk pathway.

  19. Epstein-Barr Virus MicroRNA miR-BART20-5p Suppresses Lytic Induction by Inhibiting BAD-Mediated caspase-3-Dependent Apoptosis.

    Science.gov (United States)

    Kim, Hyoji; Choi, Hoyun; Lee, Suk Kyeong

    2016-02-01

    Epstein-Barr virus (EBV) is a human gammaherpesvirus associated with a variety of tumor types. EBV can establish latency or undergo lytic replication in host cells. In general, EBV remains latent in tumors and expresses a limited repertoire of latent proteins to avoid host immune surveillance. When the lytic cycle is triggered by some as-yet-unknown form of stimulation, lytic gene expression and progeny virus production commence. Thus far, the exact mechanism of EBV latency maintenance and the in vivo triggering signal for lytic induction have yet to be elucidated. Previously, we have shown that the EBV microRNA miR-BART20-5p directly targets the immediate early genes BRLF1 and BZLF1 as well as Bcl-2-associated death promoter (BAD) in EBV-associated gastric carcinoma. In this study, we found that both mRNA and protein levels of BRLF1 and BZLF1 were suppressed in cells following BAD knockdown and increased after BAD overexpression. Progeny virus production was also downregulated by specific knockdown of BAD. Our results demonstrated that caspase-3-dependent apoptosis is a prerequisite for BAD-mediated EBV lytic cycle induction. Therefore, our data suggest that miR-BART20-5p plays an important role in latency maintenance and tumor persistence of EBV-associated gastric carcinoma by inhibiting BAD-mediated caspase-3-dependent apoptosis, which would trigger immediate early gene expression. EBV has an ability to remain latent in host cells, including EBV-associated tumor cells hiding from immune surveillance. However, the exact molecular mechanisms of EBV latency maintenance remain poorly understood. Here, we demonstrated that miR-BART20-5p inhibited the expression of EBV immediate early genes indirectly, by suppressing BAD-induced caspase-3-dependent apoptosis, in addition to directly, as we previously reported. Our study suggests that EBV-associated tumor cells might endure apoptotic stress to some extent and remain latent with the aid of miR-BART20-5p. Blocking the

  20. Tanshinol suppresses endothelial cells apoptosis in mice with atherosclerosis via lncRNA TUG1 up-regulating the expression of miR-26a.

    Science.gov (United States)

    Chen, Chao; Cheng, Guangqing; Yang, Xiaoni; Li, Changsheng; Shi, Ran; Zhao, Ningning

    2016-01-01

    Endothelial cell (EC) apoptosis is a crucial process for the development of atherosclerosis. Tanshinol is reported to protect vascular endothelia and attenuate the formation of atherosclerosis. However, the potential molecule mechanism of the protective role of tanshinol in atherosclerosis need to be further investigated. ApoE(-/-)mice were fed with a high-fat diet and treated with tanshinol to detect the effect of tanshinol on endothelial cells apoptosis with TUNEL staining assay. qRT-PCR and Western blot were performed to examine the expression of TUG1 and miR-26a in endothelial cells. RNA-binding protein immunoprecipitation assay was performed to verify the relationship between TUG1 and miR-26a. It has been shown that tanshinol reduced the aortic atherosclerotic lesion area in the entire aorta and aortic sinus in a concentration dependent manner, and suppressed the endothelial cells apoptosis in ApoE(-/-) mice. We further found that the mRNA level of TUG1 was reduced and the expression of miR-26a was up-regulated by tanshinol in endothelial cells. In addition, TUG1 down-regulated the expression of miR-26a in ECV304 cells. Finally, it was shown that overexpression of TUG1 removed the reversed effect of tanshinol on oxidized low-density lipoprotein (ox-LDL)-induced endothelial cells apoptosis. Taken together, our study reveals that tanshinol could attenuate the endothelial cells apoptosis in atherosclerotic ApoE(-/-) mice. Moreover, low TUG1 expression and high level of miR-26a are associated with the endothelial protecting effect of tanshinol.

  1. MicroRNA hsa-let-7b suppresses the odonto/osteogenic differentiation capacity of stem cells from apical papilla by targeting MMP1.

    Science.gov (United States)

    Wang, Yanqiu; Pang, Xiyao; Wu, Jintao; Jin, Lin; Yu, Yan; Gobin, Romila; Yu, Jinhua

    2018-01-31

    MicroRNA let-7 family acts as the key regulator of the differentiation of mesenchymal stem cells (MSCs). However, the influence of let-7b on biological characteristics of stem cells from apical papilla (SCAPs) is still controversial. In this study, the expression of hsa-let-7b was obviously downregulated during the osteogenic differentiation of SCAPs. SCAPs were then infected with hsa-let-7b or hsa-let-7b inhibitor lentiviruses. The proliferation ability was determined by CCK-8 and flow cytometry. The odonto/osteogenic differentiation capacity was analyzed by alkaline phosphatase (ALP) activity, alizarin red staining, Western blot assay, and real-time RT-PCR. Bioinformatics analysis was used to screen out the target of hsa-let-7b and the target relationship was confirmed by dual luciferase reporter assay. Hsa-let-7b was of no influence on the proliferation of SCAPs. Interferential expression of hsa-let-7b increased the ALP activity as well as the formation of calcified nodules of SCAPs. Moreover, the mRNA levels of osteoblastic markers (ALP, RUNX2, OSX, OPN, and OCN) were upregulated while the protein levels of DSPP, ALP, RUNX2, OSX, OPN, and OCN also increased considerably. Conversely, overexpression of hsa-let-7b inhibited the odonto/osteogenic differentiation capacity of SCAPs. Bioinformatics analysis revealed a putative binding site of hsa-let-7b in the matrix metalloproteinase 1 (MMP1) 3'-untranslated region (3'-UTR). Dual luciferase reporter assay confirmed that hsa-let-7b targets MMP1. The odonto/osteogenic differentiation ability of SCAPs ascended after repression of hsa-let-7b, which was then reversed after co-transfection with siMMP1. Together, hsa-let-7b can suppress the odonto/osteogenic differentiation capacity of SCAPs by targeting MMP1. © 2018 Wiley Periodicals, Inc.

  2. Analysis of Tomato spotted wilt virus NSs protein indicates the importance of the N-terminal domain for avirulence and RNA silencing suppression.

    Science.gov (United States)

    de Ronde, Dryas; Pasquier, Adrien; Ying, Su; Butterbach, Patrick; Lohuis, Dick; Kormelink, Richard

    2014-02-01

    Recently, Tomato spotted wilt virus (TSWV) nonstructural protein NSs has been identified unambiguously as an avirulence (Avr) determinant for Tomato spotted wilt (Tsw)-based resistance. The observation that NSs from two natural resistance-breaking isolates had lost RNA silencing suppressor (RSS) activity and Avr suggested a link between the two functions. To test this, a large set of NSs mutants was generated by alanine substitutions in NSs from resistance-inducing wild-type strains (NSs(RI) ), amino acid reversions in NSs from resistance-breaking strains (NSs(RB)), domain deletions and swapping. Testing these mutants for their ability to suppress green fluorescent protein (GFP) silencing and to trigger a Tsw-mediated hypersensitive response (HR) revealed that the two functions can be separated. Changes in the N-terminal domain were found to be detrimental for both activities and indicated the importance of this domain, additionally supported by domain swapping between NSs(RI) and NSs(RB). Swapping domains between the closely related Tospovirus Groundnut ringspot virus (GRSV) NSs and TSWV NSs(RI) showed that Avr functionality could not simply be transferred between species. Although deletion of the C-terminal domain rendered NSs completely dysfunctional, only a few single-amino-acid mutations in the C-terminus affected both functions. Mutation of a GW/WG motif (position 17/18) rendered NSs completely dysfunctional for RSS and Avr activity, and indicated a putative interaction between NSs and Argonaute 1 (AGO1), and its importance in TSWV virulence and viral counter defence against RNA interference. © 2013 BSPP AND JOHN WILEY & SONS LTD.

  3. Prevalence of HCV Infections Among Hemodialysis Patients in Al ...

    African Journals Online (AJOL)

    1527 patients (11%) who were HCV free at the start of the study. By the end of the study, a total of 42.2% were found to be anti-HCV reactive. Conclusion: The study demonstrated high prevalence of anti-HCV in HD units in Al Gharbiyah Governorate. Similar studies must be conducted in all Egyptian governorates' HD units ...

  4. HCV Co-infection is Associated with Metabolic Abnormalities among ...

    African Journals Online (AJOL)

    Table 3 shows results of simple linear regression of glucose and the cholesterol fractions against HCV co- infection status. HIV/HCV co infection predicted a statistically significant reduction in all the cholesterol containing fractions. No such relationship existed between the HCV co infection and glucose or triglycerides. The.

  5. Efficient infectious cell culture systems of the hepatitis C virus (HCV) prototype strains HCV-1 and H77

    DEFF Research Database (Denmark)

    Li, Yi-Ping; Ramirez, Santseharay; Mikkelsen, Lotte

    2015-01-01

    UNLABELLED: The first discovered and sequenced hepatitis C virus (HCV) genome and the first in vivo infectious HCV clones originated from the HCV prototype strains HCV-1 and H77, respectively, both widely used in research of this important human pathogen. In the present study, we developed...... efficiently after transfection and subsequent infection of naive Huh7.5 cells, reaching titers of 10(3.5) and 10(4.4) FFU/ml, respectively. IMPORTANCE: Hepatitis C virus (HCV) was discovered in 1989 with the cloning of the prototype strain HCV-1 genome. In 1997, two molecular clones of H77, the other HCV...... prototype strain, were shown to be infectious in chimpanzees, but not in vitro. HCV research was hampered by a lack of infectious cell culture systems, which became available only in 2005 with the discovery of JFH1 (genotype 2a), a genome that could establish infection in Huh7.5 cells. Recently, we...

  6. Correlates of HCV seropositivity among familial contacts of HCV positive patients

    Directory of Open Access Journals (Sweden)

    Matera Antonio

    2006-09-01

    Full Text Available Abstract Background Determinants of intrafamilial HCV transmission are still being debated. The aim of this study is to investigate the correlates of HCV seropositivity among familial contacts of HCV positive patients in Italy. Methods A cross-sectional study was conducted with 175 HCV positive patients (index cases, recruited from Policlinico Gemelli in Rome as well as other hospitals in Central Italy between 1995 and 2000 (40% female, mean age 57 ± 15.2 years, and 259 familial contacts. Differences in proportions of qualitative variables were tested with non-parametric tests (χ2, Yates correction, Fisher exact test, and a p value Results Seropositivity for HCV was found in 8.9% of the contacts. From the univariate analysis, risk factors significantly associated to HCV positivity in the contacts were: intravenous drug addiction (p = 0.004 and intercourse with drug addicts (p = 0.005. The only variables associated significantly and independently to HCV seropositivity in patients' contacts were intercourse with drug addicts (OR = 19.28; 95% CI: 2.01 – 184.94, the retirement status from work (OR = 3.76; 95% CI: 1.17 – 11.98, the time of the relationship (OR = 1.06; 95% CI: 1.00 – 1.11 and tattoos (OR = 7.68; 95% CI: 1.00 – 60.20. Conclusion The present study confirms that having intercourse with a drug addict is the most significant risk factor for intrafamilial HCV transmission. The association with retirement status from work could be related to both a long-term relationship with an index case and past exposure to common risk factors.

  7. MicroRNA-200a-3p suppresses tumor proliferation and induces apoptosis by targeting SPAG9 in renal cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xinsheng; Jiang, Fuquan; Song, Haitao; Li, Xu; Xian, Jiantao; Gu, Xinquan, E-mail: guxqprofessor@163.com

    2016-02-12

    Sperm-associated antigen 9(SPAG9), as a well-recognized oncogene protein, has a critical effect on renal cell carcinoma (RCC) progression. Our study tried to explore the mediator of miR-200a-3p, a tumor suppressing miRNA on SPAG9 expression and renal cell proliferation and apoptosis. We found the expression of miR-200a-3p was significantly lower in RCC specimens. Based on in vitro assays, we found miR-200a-3p significantly inhibit cancer cell proliferation by inducing apoptosis. In addition, our study uncovered that miR-200a-3p directly regulates oncogenic SPAG9 in 786-O and ACHN cells. Silencing of SPAG9 resulted in significantly decreased in the growth and the cell cycle of the renal cancer cell lines. Understanding of oncogenic SPAG9 regulated by miR-200a-3p might be beneficial to reveal new therapeutic targets for RCC. - Highlights: • MiR-200a-3p is downregulated in renal cell carcinoma. • MiR-200a-3p regulates cell proliferation through inducing apoptosis. • MiR-200a-3p is involved in cell cycle regulation. • SPAG9 is a potential target of miR-200a-3p.

  8. RNA interference of pheromone biosynthesis-activating neuropeptide receptor suppresses mating behavior by inhibiting sex pheromone production in Plutella xylostella (L.).

    Science.gov (United States)

    Lee, Dae-Weon; Shrestha, Sony; Kim, A Young; Park, Seok Joo; Yang, Chang Yeol; Kim, Yonggyun; Koh, Young Ho

    2011-04-01

    Sex pheromone production is regulated by pheromone biosynthesis-activating neuropeptide (PBAN) in many lepidopteran species. We cloned a PBAN receptor (Plx-PBANr) gene from the female pheromone gland of the diamondback moth, Plutella xylostella (L.). Plx-PBANr encodes 338 amino acids and has conserved structural motifs implicating in promoting G protein coupling and tyrosine-based sorting signaling along with seven transmembrane domains, indicating a typical G protein-coupled receptor. The expression of Plx-PBANr was found only in the pheromone gland of female adults among examined tissues and developmental stages. Heterologous expression in human uterus cervical cancer cells revealed that Plx-PBANr induced significant calcium elevation when challenged with Plx-PBAN. Female P. xylostella injected with double-stranded RNA specific to Plx-PBANr showed suppression of the receptor gene expression and exhibited significant reduction in pheromone biosynthesis, which resulted in loss of male attractiveness. Taken together, the identified PBAN receptor is functional in PBAN signaling via calcium secondary messenger, which leads to activation of pheromone biosynthesis and male attraction. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Israeli Acute Paralysis Virus Infection Leads to an Enhanced RNA Interference Response and Not Its Suppression in the Bumblebee Bombus terrestris

    Directory of Open Access Journals (Sweden)

    Kaat Cappelle

    2016-12-01

    Full Text Available RNA interference (RNAi is the primary antiviral defense system in insects and its importance for pollinator health is indisputable. In this work, we examined the effect of Israeli acute paralysis virus (IAPV infection on the RNAi process in the bumblebee, Bombus terrestris, and whether the presence of possible functional viral suppressors could alter the potency of the host’s immune response. For this, a two-fold approach was used. Through a functional RNAi assay, we observed an enhancement of the RNAi system after IAPV infection instead of its suppression, despite only minimal upregulation of the genes involved in RNAi. Besides, the presence of the proposed suppressor 1A and the predicted OrfX protein in IAPV could not be confirmed using high definition mass spectrometry. In parallel, when bumblebees were infected with cricket paralysis virus (CrPV, known to encode a suppressor of RNAi, no increase in RNAi efficiency was seen. For both viruses, pre-infection with the one virus lead to a decreased replication of the other virus, indicating a major effect of competition. These results are compelling in the context of Dicistroviridae in multi-virus/multi-host networks as the effect of a viral infection on the RNAi machinery may influence subsequent virus infections.

  10. MicroRNA-34a promotes genomic instability by a broad suppression of genome maintenance mechanisms downstream of the oncogene KSHV-vGPCR.

    Science.gov (United States)

    Krause, Claudia J; Popp, Oliver; Thirunarayanan, Nanthakumar; Dittmar, Gunnar; Lipp, Martin; Müller, Gerd

    2016-03-01

    The Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded chemokine receptor vGPCR acts as an oncogene in Kaposi's sarcomagenesis. Until now, the molecular mechanisms by which the vGPCR contributes to tumor development remain incompletely understood. Here, we show that the KSHV-vGPCR contributes to tumor progression through microRNA (miR)-34a-mediated induction of genomic instability. Large-scale analyses on the DNA, gene and protein level of cell lines derived from a mouse model of vGPCR-driven tumorigenesis revealed that a vGPCR-induced upregulation of miR-34a resulted in a broad suppression of genome maintenance genes. A knockdown of either the vGPCR or miR-34a largely restored the expression of these genes and confirmed miR-34a as a downstream effector of the KSHV-vGPCR that compromises genome maintenance mechanisms. This novel, protumorigenic role of miR-34a questions the use of miR-34a mimetics in cancer therapy as they could impair genome stability.

  11. Demonstration of Hepatitis C Virus RNA with In Situ Hybridization Employing a Locked Nucleic Acid Probe in Humanized Liver of Infected Chimeric Mice and in Needle-Biopsied Human Liver

    Directory of Open Access Journals (Sweden)

    Kazuya Shiogama

    2013-01-01

    Full Text Available Background. In situ hybridization (ISH with high sensitivity has been requested to demonstrate hepatitis C virus (HCV RNA in formalin-fixed, paraffin-embedded (FFPE sections of the liver. Methods. ISH employing a locked-nucleic-acid- (LNA-modified oligonucleotide probe and biotin-free catalyzed signal amplification system (CSAII was applied to HCV-RNA detection in the liver tissue. Nested reverse-transcription polymerase chain reaction (RT-PCR was performed for HCV genotyping using total RNA extracted from FFPE sections. The target tissues included FFPE tissue sections of humanized livers in HCV-infected chimeric mice (HCV genotypes 1a, 1b, and 2a and noninfected and of needle-biopsied livers from HCV-infected patients. Results. HCV-RNA was demonstrated with the ISH technique in HCV-infected liver tissues from both chimeric mice and 9 (82% of 11 patients with HCV infection. The HCV signals were sensitive to RNase. Nested RT-PCR confirmed the genotype in 8 (73% of 11 livers (type 1b: 6 lesions and type 2a: 2 lesions. HCV-RNA was not identified in chronic hepatitis B lesions, fatty liver, autoimmune hepatitis, and hepatocellular carcinoma. Conclusion. ISH using the LNA-modified oligonucleotide probe and CSAII was applicable to detecting HCV-RNA in routinely prepared FFPE liver specimens.

  12. Recombinant immunoblot assay reaction patterns and hepatitis C virus RNA in blood donors and non-A, non-B hepatitis patients

    NARCIS (Netherlands)

    Bresters, D.; Zaaijer, H. L.; Cuypers, H. T.; Reesink, H. W.; Winkel, I. N.; van Exel-Oehlers, P. J.; van Drimmelen, A. A.; Jansen, P. L.; van der Poel, C. L.; Lelie, P. N.

    1993-01-01

    To establish the value of the second-generation recombinant immunoblot assay (RIBA-2) and cDNA polymerase chain reaction (cDNA PCR) for confirmation of hepatitis C virus (HCV) infection, anti-HCV reaction patterns and the presence of HCV RNA were examined in 610 blood donors and 255 non-A, non-B

  13. Arbidol: a broad-spectrum antiviral that inhibits acute and chronic HCV infection

    Directory of Open Access Journals (Sweden)

    Pécheur Eve-Isabelle

    2006-07-01

    Full Text Available Abstract Arbidol (ARB is an antiviral compound that was originally proven effective for treatment of influenza and several other respiratory viral infections. The broad spectrum of ARB anti-viral activity led us to evaluate its effect on hepatitis C virus (HCV infection and replication in cell culture. Long-term ARB treatment of Huh7 cells chronically replicating a genomic length genotype 1b replicon resulted in sustained reduction of viral RNA and protein expression, and eventually cured HCV infected cells. Pre-treatment of human hepatoma Huh7.5.1 cells with 15 μM ARB for 24 to 48 hours inhibited acute infection with JFH-1 virus by up to 1000-fold. The inhibitory effect of ARB on HCV was not due to generalized cytotoxicity, nor to augmentation of IFN antiviral signaling pathways, but involved impaired virus-mediated membrane fusion. ARB's affinity for membranes may inhibit several aspects of the HCV lifecycle that are membrane-dependent.

  14. The Future of HCV Therapy: NS4B as an Antiviral Target

    Directory of Open Access Journals (Sweden)

    Hadas Dvory-Sobol

    2010-11-01

    Full Text Available Chronic hepatitis C virus (HCV infection is a major worldwide cause of liver disease, including cirrhosis and hepatocellular carcinoma. It is estimated that more than 170 million individuals are infected with HCV, with three to four million new cases each year. The current standard of care, combination treatment with interferon and ribavirin, eradicates the virus in only about 50% of chronically infected patients. Notably, neither of these drugs directly target HCV. Many new antiviral therapies that specifically target hepatitis C (e.g. NS3 protease or NS5B polymerase inhibitors are therefore in development, with a significant number having advanced into clinical trials. The nonstructural 4B (NS4B protein, is among the least characterized of the HCV structural and nonstructural proteins and has been subjected to few pharmacological studies. NS4B is an integral membrane protein with at least four predicted transmembrane (TM domains. A variety of functions have been postulated for NS4B, such as the ability to induce the membranous web replication platform, RNA binding and NTPase activity. This review summarizes potential targets within the nonstructural protein NS4B, with a focus on novel classes of NS4B inhibitors.

  15. Insulin-resistance HCV infection-related affects vascular stiffness in normotensives.

    Science.gov (United States)

    Perticone, Maria; Maio, Raffaele; Tassone, Eliezer Joseph; Tripepi, Giovanni; Di Cello, Serena; Miceli, Sofia; Caroleo, Benedetto; Sciacqua, Angela; Licata, Anna; Sesti, Giorgio; Perticone, Francesco

    2015-01-01

    BACKGROUND AND AIMS. Arterial stiffness evaluated as pulse wave velocity, is an early marker of vascular damage and an independent predictor for cardiovascular events. We investigated if the insulin resistance/hyperinsulinemia chronic hepatitis C virus infection-related could influence arterial stiffness. METHODS. We enrolled 260 outpatients matched for age, body mass index, gender, ethnicity: 52 with never-treated uncomplicated chronic hepatitis C virus infection (HCV(+)), 104 never-treated hypertensives (HT) and 104 healthy subjects (NT). Pulse wave velocity was evaluated by a validated system employing high-fidelity applanation tonometry. We also measured: fasting plasma glucose and insulin, total, LDL- and HDL-cholesterol, triglyceride, creatinine, e-GFR-EPI, HOMA, quantitative HCV-RNA. RESULTS. HCV(+) patients with respect to NT had an increased pulse wave velocity (7.9 ± 2.1 vs 6.4 ± 2.1 m/s; P direct correlation between HOMA and pulse wave velocity in HCV(+) patients, similar to that observed in hypertensives. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Analysis of hepatitis C virus RNA dimerization and core–RNA interactions

    Science.gov (United States)

    Ivanyi-Nagy, Roland; Kanevsky, Igor; Gabus, Caroline; Lavergne, Jean-Pierre; Ficheux, Damien; Penin, François; Fossé, Philippe; Darlix, Jean-Luc

    2006-01-01

    The core protein of hepatitis C virus (HCV) has been shown previously to act as a potent nucleic acid chaperone in vitro, promoting the dimerization of the 3′-untranslated region (3′-UTR) of the HCV genomic RNA, a process probably mediated by a small, highly conserved palindromic RNA motif, named DLS (dimer linkage sequence) [G. Cristofari, R. Ivanyi-Nagy, C. Gabus, S. Boulant, J. P. Lavergne, F. Penin and J. L. Darlix (2004) Nucleic Acids Res., 32, 2623–2631]. To investigate in depth HCV RNA dimerization, we generated a series of point mutations in the DLS region. We find that both the plus-strand 3′-UTR and the complementary minus-strand RNA can dimerize in the presence of core protein, while mutations in the DLS (among them a single point mutation that abolished RNA replication in a HCV subgenomic replicon system) completely abrogate dimerization. Structural probing of plus- and minus-strand RNAs, in their monomeric and dimeric forms, indicate that the DLS is the major if not the sole determinant of UTR RNA dimerization. Furthermore, the N-terminal basic amino acid clusters of core protein were found to be sufficient to induce dimerization, suggesting that they retain full RNA chaperone activity. These findings may have important consequences for understanding the HCV replicative cycle and the genetic variability of the virus. PMID:16707664

  17. Analysis of hepatitis C virus RNA dimerization and core-RNA interactions.

    Science.gov (United States)

    Ivanyi-Nagy, Roland; Kanevsky, Igor; Gabus, Caroline; Lavergne, Jean-Pierre; Ficheux, Damien; Penin, François; Fossé, Philippe; Darlix, Jean-Luc

    2006-01-01

    The core protein of hepatitis C virus (HCV) has been shown previously to act as a potent nucleic acid chaperone in vitro, promoting the dimerization of the 3'-untranslated region (3'-UTR) of the HCV genomic RNA, a process probably mediated by a small, highly conserved palindromic RNA motif, named DLS (dimer linkage sequence) [G. Cristofari, R. Ivanyi-Nagy, C. Gabus, S. Boulant, J. P. Lavergne, F. Penin and J. L. Darlix (2004) Nucleic Acids Res., 32, 2623-2631]. To investigate in depth HCV RNA dimerization, we generated a series of point mutations in the DLS region. We find that both the plus-strand 3'-UTR and the complementary minus-strand RNA can dimerize in the presence of core protein, while mutations in the DLS (among them a single point mutation that abolished RNA replication in a HCV subgenomic replicon system) completely abrogate dimerization. Structural probing of plus- and minus-strand RNAs, in their monomeric and dimeric forms, indicate that the DLS is the major if not the sole determinant of UTR RNA dimerization. Furthermore, the N-terminal basic amino acid clusters of core protein were found to be sufficient to induce dimerization, suggesting that they retain full RNA chaperone activity. These findings may have important consequences for understanding the HCV replicative cycle and the genetic variability of the virus.

  18. Immune biomarker differences and changes comparing HCV mono-infected, HIV/HCV co-infected, and HCV spontaneously cleared patients.

    Directory of Open Access Journals (Sweden)

    Lauren E Kushner

    Full Text Available Immune biomarkers are implicated in HCV treatment response, fibrosis, and accelerated pathogenesis of comorbidities, though only D-dimer and C-reactive protein have been consistently studied. Few studies have evaluated HIV/HCV co-infection, and little longitudinal data exists describing a broader antiviral cytokine response.Fifty immune biomarkers were analyzed at baseline (BL and HCV end of treatment follow-up(FU time point using the Luminex 50-plex assay in plasma samples from 15 HCV-cleared, 24 HCV mono- and 49 HIV/HCV co-infected patients receiving antiretroviral treatment, who either did or did not receive pegylated-interferon/ribavirin HCV treatment. Biomarker levels were compared among spontaneous clearance patients, mono- and co-infected, untreated and HCV-treated, and sustained virologic responders (SVR and non-responders (NR at BL and FU using nonparametric analyses. A Bonferroni correction, adjusting for tests of 50 biomarkers, was used to reduce Type I error.Compared to HCV patients at BL, HIV/HCV patients had 22 significantly higher and 4 significantly lower biomarker levels, following correction for multiple testing. There were no significantly different BL levels when comparing SVR and NR in mono- or co-infected patients; however, FU levels changed considerably in co-infected patients, with seven becoming significantly higher and eight becoming significantly lower in SVR patients. Longitudinally between BL and FU, 13 markers significantly changed in co-infected SVR patients, while none significantly changed in co-infected NR patients. There were also no significant changes in longitudinal analyses of mono-infected patients achieving SVR or mono-infected and co-infected groups deferring treatment.Clear differences exist in pattern and quantity of plasma immune biomarkers among HCV mono-infected, HIV/HCV co-infected, and HCV-cleared patients; and with SVR in co-infected patients treated for HCV. Though >90% of patients were male and

  19. Novel Electron Spin Resonance-Enzyme Immunosorbent Assay for Detecting Occult Hepatitis B Infection in HCV Chronic Liver Disease

    Directory of Open Access Journals (Sweden)

    Hala Badawi

    2017-11-01

    Full Text Available Background: Hepatitis B virus infection in patients who lack detectable hepatitis B surface antigen (HBsAg is called occult hepatitis B infection (OHB. The very low level of HBV genome may hamper its detection by molecular techniques. Recently, a highly sensitive EIA utilizing a novel modified electron spin resonance (ESR technique (modified ESR-EIA was developed to detect HBsAg by measuring stabilized nitroxide radicals. Aim: to detect occult HBV infection, using ESR-EIA among HCV-related chronic liver disease (CLD Egyptian patients who were seronegative for HBsAg by standard EIA. Methods: The study was conducted on two periods of time; in 1st period, 72 inpatients in Tropical Medicine Department of TBRI, were enrolled in the study. They were divided into two groups; 44 seropositive anti-HCV patients (Group I, 28 seronegative anti-HCV patients (Group II. Sera were subjected to virological assays for HBsAg, HBeAg, anti-HBc IgM, anti-HBc IgG, anti-HBs, anti-HCV and HCV RNA. We also examined serum HBV DNA by polymerase chain reaction (PCR technique and real-time detection polymerase chain reaction (RTD-PCR. In the 2nd period; modified ESR-EIA was applied on 32 TBRI inpatients, 23 in Tropical Medicine Department (Group I and 9 from hemodialysis unit (Group II with HCV-related CLD. Results: OHB was detected in 18.1% and 86.9% of our patients in 2002 and 2006 respectively. In phase 1, there was a higher detection rate among HCV patients in Group I (25% than Group II (7%, with higher prevalence (52.4% in patients with positive HCV RNA in Group I versus those with negative HCV viremia (8% in Group II. HBV DNA by either PCR or RTD-PCR was negative in all patients of both groups as the HBV viral load of the samples were below detectable level of the methods used; less than 100 copies/ml. None of 9 hemodialysis patients were positive for OHB. Conclusion: The newly developed quantitative ESR-EIA technique represents a great evolution for screening and

  20. Understanding the molecular mechanism(s) of hepatitis C virus (HCV) induced interferon resistance.

    Science.gov (United States)

    Qashqari, Hanadi; Al-Mars, Amany; Chaudhary, Adeel; Abuzenadah, Adel; Damanhouri, Ghazi; Alqahtani, Mohammed; Mahmoud, Maged; El Sayed Zaki, Maysaa; Fatima, Kaneez; Qadri, Ishtiaq

    2013-10-01

    Hepatitis C virus (HCV) is one of the foremost causes of chronic liver disease affecting over 300 million globally. HCV contains a positive-stranded RNA of ~9600 nt and is surrounded by the 5' and 3'untranslated regions (UTR). The only successful treatment regimen includes interferon (IFN) and ribavirin. Like many other viruses, HCV has also evolved various mechanisms to circumvent the IFN response by blocking (1) downstream signaling actions via STAT1, STAT2, IRF9 and JAK-STAT pathways and (2) repertoire of IFN Stimulatory Genes (ISGs). Several studies have identified complex host demographic and genetic factors as well as viral genetic heterogeneity associated with outcomes of IFN therapy. The genetic predispositions of over 2000 ISGS may render the patients to become resistant, thus identification of such parameters within a subset of population are necessary for management corollary. The ability of various HCV genotypes to diminish IFN antiviral responses plays critical role in the establishment of chronic infection at the acute stage of infection, thus highlighting importance of the resistance in HCV treated groups. The recently defined role of viral protein such as C, E2, NS3/NS4 and NS5A proteins in inducing the IFN resistance are discussed in this article. How the viral and host genetic composition and epistatic connectivity among polymorphic genomic sites synchronizes the evolutionary IFN resistance trend remains under investigation. However, these signals may have the potential to be employed for accurate prediction of therapeutic outcomes. In this review article, we accentuate the significance of host and viral components in IFN resistance with the aim to determine the successful outcome in patients. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Active RNA replication of hepatitis C virus downregulates CD81 expression.

    Science.gov (United States)

    Ke, Po-Yuan; Chen, Steve S-L

    2013-01-01

    So far how hepatitis C virus (HCV) replication modulates subsequent virus growth and propagation still remains largely unknown. Here we determine the impact of HCV replication status on the consequential virus growth by comparing normal and high levels of HCV RNA expression. We first engineered a full-length, HCV genotype 2a JFH1 genome containing a blasticidin-resistant cassette inserted at amino acid residue of 420 in nonstructural (NS) protein 5A, which allowed selection of human hepatoma Huh7 cells stably-expressing HCV. Short-term establishment of HCV stable cells attained a highly-replicating status, judged by higher expressions of viral RNA and protein as well as higher titer of viral infectivity as opposed to cells harboring the same genome without selection. Interestingly, maintenance of highly-replicating HCV stable cells led to decreased susceptibility to HCV pseudotyped particle (HCVpp) infection and downregulated cell surface level of CD81, a critical HCV entry (co)receptor. The decreased CD81 cell surface expression occurred through reduced total expression and cytoplasmic retention of CD81 within an endoplasmic reticulum -associated compartment. Moreover, productive viral RNA replication in cells harboring a JFH1 subgenomic replicon containing a similar blasticidin resistance gene cassette in NS5A and in cells robustly replicating full-length infectious genome also reduced permissiveness to HCVpp infection through decreasing the surface expression of CD81. The downregulation of CD81 surface level in HCV RNA highly-replicating cells thus interfered with reinfection and led to attenuated viral amplification. These findings together indicate that the HCV RNA replication status plays a crucial determinant in HCV growth by modulating the expression and intracellular localization of CD81.

  2. Active RNA replication of hepatitis C virus downregulates CD81 expression.

    Directory of Open Access Journals (Sweden)

    Po-Yuan Ke

    Full Text Available So far how hepatitis C virus (HCV replication modulates subsequent virus growth and propagation still remains largely unknown. Here we determine the impact of HCV replication status on the consequential virus growth by comparing normal and high levels of HCV RNA expression. We first engineered a full-length, HCV genotype 2a JFH1 genome containing a blasticidin-resistant cassette inserted at amino acid residue of 420 in nonstructural (NS protein 5A, which allowed selection of human hepatoma Huh7 cells stably-expressing HCV. Short-term establishment of HCV stable cells attained a highly-replicating status, judged by higher expressions of viral RNA and protein as well as higher titer of viral infectivity as opposed to cells harboring the same genome without selection. Interestingly, maintenance of highly-replicating HCV stable cells led to decreased susceptibility to HCV pseudotyped particle (HCVpp infection and downregulated cell surface level of CD81, a critical HCV entry (coreceptor. The decreased CD81 cell surface expression occurred through reduced total expression and cytoplasmic retention of CD81 within an endoplasmic reticulum -associated compartment. Moreover, productive viral RNA replication in cells harboring a JFH1 subgenomic replicon containing a similar blasticidin resistance gene cassette in NS5A and in cells robustly replicating full-length infectious genome also reduced permissiveness to HCVpp infection through decreasing the surface expression of CD81. The downregulation of CD81 surface level in HCV RNA highly-replicating cells thus interfered with reinfection and led to attenuated viral amplification. These findings together indicate that the HCV RNA replication status plays a crucial determinant in HCV growth by modulating the expression and intracellular localization of CD81.

  3. Ribavirin enhances IFN-α signalling and MxA expression: a novel immune modulation mechanism during treatment of HCV.

    Directory of Open Access Journals (Sweden)

    Nigel J Stevenson

    Full Text Available The nucleoside analogue Ribavirin significantly increases patient response to IFN-α treatment of HCV, by directly inhibiting viral replication. Recent studies indicate that Ribavirin also regulates immunity and we propose that Ribavirin enhances specific interferon sensitive gene (ISG expression by amplifying the IFN-α-JAK/STAT pathway. We found that IFN-α-induced STAT1 and STAT3 phosphorylation was increased in hepatocytes co-treated with Ribavirin and IFN-α, compared to IFN-α alone. Ribavirin specifically enhanced IFN-α induced mRNA and protein of the anti-viral mediator MxA, which co-localised with HCV core protein. These novel findings indicate for the first time that Ribavirin, in addition to its viral incorporation, also enhances IFN-α-JAK/STAT signalling, leading to a novel MxA-mediated immuno-modulatory mechanism that may enhance IFN-α anti-viral activity against HCV.

  4. Circulating sCD14 is associated with virological response to pegylated-interferon-alpha/ribavirin treatment in HIV/HCV co-infected patients.

    Directory of Open Access Journals (Sweden)

    Giulia Marchetti

    Full Text Available Microbial translocation (MT through the gut accounts for immune activation and CD4+ loss in HIV and may influence HCV disease progression in HIV/HCV co-infection. We asked whether increased MT and immune activation may hamper anti-HCV response in HIV/HCV patients.98 HIV/HCV patients who received pegylated-alpha-interferon (peg-INF-alpha/ribavirin were retrospectively analyzed. Baseline MT (lipopolysaccharide, LPS, host response to MT (sCD14, CD38+HLA-DR+CD4+/CD8+, HCV genotype, severity of liver disease were assessed according to Early Virological Response (EVR: HCV-RNA <50 IU/mL at week 12 of therapy or ≥2 log(10 reduction from baseline after 12 weeks of therapy and Sustained Virological Response (SVR: HCV-RNA <50 IU/mL 24 weeks after end of therapy. Mann-Whitney/Chi-square test and Pearson's correlation were used. Multivariable regression was performed to determine factors associated with EVR/SVR.71 patients displayed EVR; 41 SVR. Patients with HCV genotypes 1-4 and cirrhosis presented a trend to higher sCD14, compared to patients with genotypes 2-3 (p = 0.053 and no cirrhosis (p = 0.052. EVR and SVR patients showed lower levels of circulating sCD14 (p = 0.0001, p = 0.026, respectively, but similar T-cell activation compared to Non-EVR (Null Responders, NR and Non-SVR (N-SVR subjects. sCD14 resulted the main predictive factor of EVR (0.145 for each sCD14 unit more, 95%CI 0.031-0.688, p = 0.015. SVR was associated only with HCV genotypes 2-3 (AOR 0.022 for genotypes 1-4 vs 2-3, 95%CI 0.001-0.469, p = 0.014.In HIV/HCV patients sCD14 correlates with the severity of liver disease and predicts early response to peg-INF-alpha/ribavirin, suggesting MT-driven immune activation as pathway of HIV/HCV co-infection and response to therapy.

  5. Signals Involved in Regulation of Hepatitis C Virus RNA Genome Translation and Replication.

    Science.gov (United States)

    Niepmann, Michael; Shalamova, Lyudmila A; Gerresheim, Gesche K; Rossbach, Oliver

    2018-01-01

    Hepatitis C virus (HCV) preferentially replicates in the human liver and frequently causes chronic infection, often leading to cirrhosis and liver cancer. HCV is an enveloped virus classified in the genus Hepacivirus in the family Flaviviridae and has a single-stranded RNA genome of positive orientation. The HCV RNA genome is translated and replicated in the cytoplasm. Translation is controlled by the Internal Ribosome Entry Site (IRES) in the 5' untranslated region (5' UTR), while also downstream elements like the cis -replication element (CRE) in the coding region and the 3' UTR are involved in translation regulation. The cis -elements controlling replication of the viral RNA genome are located mainly in the 5'- and 3'-UTRs at the genome ends but also in the protein coding region, and in part these signals overlap with the signals controlling RNA translation. Many long-range RNA-RNA interactions (LRIs) are predicted between different regions of the HCV RNA genome, and several such LRIs are actually involved in HCV translation and replication regulation. A number of RNA cis -elements recruit cellular RNA-binding proteins that are involved in the regulation of HCV translation and replication. In addition, the liver-specific microRNA-122 (miR-122) binds to two target sites at the 5' end of the viral RNA genome as well as to at least three additional target sites in the coding region and the 3' UTR. It is involved in the regulation of HCV RNA stability, translation and replication, thereby largely contributing to the hepatotropism of HCV. However, we are still far from completely understanding all interactions that regulate HCV RNA genome translation, stability, replication and encapsidation. In particular, many conclusions on the function of cis -elements in HCV replication have been obtained using full-length HCV genomes or near-full-length replicon systems. These include both genome ends, making it difficult to decide if a cis -element in question acts on HCV

  6. Virological Mechanisms in the Coinfection between HIV and HCV

    Directory of Open Access Journals (Sweden)

    Maria Carla Liberto

    2015-01-01

    Full Text Available Due to shared transmission routes, coinfection with Hepatitis C Virus (HCV is common in patients infected by Human Immunodeficiency Virus (HIV. The immune-pathogenesis of liver disease in HIV/HCV coinfected patients is a multifactorial process. Several studies demonstrated that HIV worsens the course of HCV infection, increasing the risk of cirrhosis and hepatocellular carcinoma. Also, HCV might increase immunological defects due to HIV and risk of comorbidities. A specific cross-talk among HIV and HCV proteins in coinfected patients modulates the natural history, the immune responses, and the life cycle of both viruses. These effects are mediated by immune mechanisms and by a cross-talk between the two viruses which could interfere with host defense mechanisms. In this review, we focus on some virological/immunological mechanisms of the pathogenetic interactions between HIV and HCV in the human host.

  7. Functional analysis of microRNA-122 binding sequences of hepatitis C virus and identification of variants with high resistance against specific antagomir

    DEFF Research Database (Denmark)

    Li, Yi-ping; Pham, Long; Uzcategui, Nathalie

    2016-01-01

    MicroRNA miR-122 stimulates the replication and translation of hepatitis C virus (HCV) RNA through binding to two adjacent sites S1 and S2 within the HCV 5' untranslated region (5'UTR). We previously demonstrated that the miR-122 antagomir miravirsen (SPC3649) suppressed the infection of JFH1-based...... recombinants with HCV genotype 1-6 5'UTR-NS2 in human hepatoma Huh7.5 cells. However, specific S1 mutations were permitted and conferred viral resistance to miravirsen treatment. Using the J6 (genotype 2a) 5'UTR-NS2 JFH1-based recombinant, we here performed reverse-genetics analysis of S1 (ACACUCCG...... or combined GA at positions 2-3 of 5'E were permitted. In S1 and S2, several single mutations were allowed at specific positions. UCC to CGA change at position 4-3-2 of S1, S2, or both S1 and S2 (S1/S2), as well as C to G change at position 2 of S1/S2 were permitted. We found that 5'E mutations did not confer...

  8. Ultrastructural Localization and Molecular Associations of HCV Capsid Protein in Jurkat T Cells

    Directory of Open Access Journals (Sweden)

    Cecilia Fernández-Ponce

    2018-01-01

    Full Text Available Hepatitis C virus core protein is a highly basic viral protein that multimerizes with itself to form the viral capsid. When expressed in CD4+ T lymphocytes, it can induce modifications in several essential cellular and biological networks. To shed light on the mechanisms underlying the alterations caused by the viral protein, we have analyzed HCV-core subcellular localization and its associations with host proteins in Jurkat T cells. In order to investigate the intracellular localization of Hepatitis C virus core protein, we have used a lentiviral system to transduce Jurkat T cells and subsequently localize the protein using immunoelectron microscopy techniques. We found that in Jurkat T cells, Hepatitis C virus core protein mostly localizes in the nucleus and specifically in the nucleolus. In addition, we performed pull-down assays combined with Mass Spectrometry Analysis, to identify proteins that associate with Hepatitis C virus core in Jurkat T cells. We found proteins such as NOLC1, PP1γ, ILF3, and C1QBP implicated in localization and/or traffic to the nucleolus. HCV-core associated proteins are implicated in RNA processing and RNA virus infection as well as in functions previously shown to be altered in Hepatitis C virus core expressing CD4+ T cells, such as cell cycle delay, decreased proliferation, and induction of a regulatory phenotype. Thus, in the current work, we show the ultrastructural localization of Hepatitis C virus core and the first profile of HCV core associated proteins in T cells, and we discuss the functions and interconnections of these proteins in molecular networks where relevant biological modifications have been described upon the expression of Hepatitis C virus core protein. Thereby, the current work constitutes a necessary step toward understanding the mechanisms underlying HCV core mediated alterations that had been described in relevant biological processes in CD4+ T cells.

  9. Signals Involved in Regulation of Hepatitis C Virus RNA Genome Translation and Replication

    Directory of Open Access Journals (Sweden)

    Michael Niepmann

    2018-03-01

    Full Text Available Hepatitis C virus (HCV preferentially replicates in the human liver and frequently causes chronic infection, often leading to cirrhosis and liver cancer. HCV is an enveloped virus classified in the genus Hepacivirus in the family Flaviviridae and has a single-stranded RNA genome of positive orientation. The HCV RNA genome is translated and replicated in the cytoplasm. Translation is controlled by the Internal Ribosome Entry Site (IRES in the 5′ untranslated region (5′ UTR, while also downstream elements like the cis-replication element (CRE in the coding region and the 3′ UTR are involved in translation regulation. The cis-elements controlling replication of the viral RNA genome are located mainly in the 5′- and 3′-UTRs at the genome ends but also in the protein coding region, and in part these signals overlap with the signals controlling RNA translation. Many long-range RNA–RNA interactions (LRIs are predicted between different regions of the HCV RNA genome, and several such LRIs are actually involved in HCV translation and replication regulation. A number of RNA cis-elements recruit cellular RNA-binding proteins that are involved in the regulation of HCV translation and replication. In addition, the liver-specific microRNA-122 (miR-122 binds to two target sites at the 5′ end of the viral RNA genome as well as to at least three additional target sites in the coding region and the 3′ UTR. It is involved in the regulation of HCV RNA stability, translation and replication, thereby largely contributing to the hepatotropism of HCV. However, we are still far from completely understanding all interactions that regulate HCV RNA genome translation, stability, replication and encapsidation. In particular, many conclusions on the function of cis-elements in HCV replication have been obtained using full-length HCV genomes or near-full-length replicon systems. These include both genome ends, making it difficult to decide if a cis-element in

  10. MicroRNA-128b suppresses tumor growth and promotes apoptosis by targeting A2bR in gastric cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ping; Guo, Xueyan; Zong, Wei [Department of Gastroenterology, The Third Affiliated Hospital, College of Medicine, Xi' an Jiaotong University, Xi' an 710068 (China); Song, Bin [Department of General Surgery, The Third Affiliated Hospital, College of Medicine, Xi' an Jiaotong University, Xi' an 710068 (China); Liu, Guisheng [Department of Gastroenterology, The Third Affiliated Hospital, College of Medicine, Xi' an Jiaotong University, Xi' an 710068 (China); He, Shuixiang, E-mail: fisrstsxianghe@163.com [Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Xi' an Jiaotong University, Xi' an 710061 (China)

    2015-11-27

    MicroRNAs (miRNAs) play crucial roles in the development and progression of human cancers, including gastric cancer (GC). The discovery of miRNAs may provide a new and powerful tool for studying the mechanism, diagnosis, and treatment of GC. In this study, we aimed to investigate the role and mechanism of miR-128b in the development and progression of GC. Quantitative real-time PCR (qRT-PCR) was used to measure the expression level of miR-128b in GC tissues and cell lines. We found that miR-128b was significantly down-regulated in GC tissues and cell lines. In addition, over-expression of miR-128b inhibited GC cell proliferation, migration and invasion of GC cells in vitro. Gain-of-function in vitro experiments further showed that the miR-128b mimic significantly promoted GC cell apoptosis. Subsequent dual-luciferase reporter assay identified one of the proto-oncogene A2bR as direct target of miR-128b. Therefore, our results indicate that miR-128b is a proto-oncogene miRNA that can suppresses GC proliferation and migration through down-regulation of the oncogene gene A2bR. Taken together, our results indicate that miR-128b could serve as a potential diagnostic biomarker and therapeutic option for human GC in the near future. - Highlights: • The expression of MiR-128b is significantly down-regulated in GC tissues and cell lines. • Ectopic expression of miR-128b directly affects cell proliferation, migration and invasion in vitro. • Overexpression of miR-128b increases apoptosis in GC cells. • A2bR is a candidate target gene of miR-128b. • MiR-128b represses cell proliferation, migration and invasion and promotes apoptosis by targeting A2bR in GC.

  11. Zingerone suppresses liver inflammation induced by antibiotic mediated endotoxemia through down regulating hepatic mRNA expression of inflammatory markers in Pseudomonas aeruginosa peritonitis mouse model.

    Directory of Open Access Journals (Sweden)

    Lokender Kumar

    Full Text Available Antibiotic-induced endotoxin release is associated with high mortality rate even when appropriate antibiotics are used for the treatment of severe infections in intensive care units. Since liver is involved in systemic clearance and detoxification of endotoxin hence it becomes a primary target organ for endotoxin mediated inflammation. Currently available anti-inflammatory drugs give rise to serious side effects. Hence, there is an urgent need for safe and effective anti-inflammatory therapy. It is likely that anti-inflammatory phytochemicals and neutraceutical agents may have the potential to reduce the endotoxin mediated inflammation and complications associated with endotoxin release. Keeping this in mind, the present study was planned to evaluate the hepatoprotective potential of zingerone (active compound of zingiber officinale against liver inflammation induced by antibiotic mediated endotoxemia. The selected antibiotics capable of releasing high content of endotoxin were employed for their in vivo efficacy in P.aeruginosa peritonitis model. Released endotoxin induced inflammation and zingerone as co-anti-inflammatory therapy significantly reduced inflammatory response. Improved liver histology and reduced inflammatory markers MDA, RNI, MPO, tissue damage markers (AST, ALT, ALP and inflammatory cytokines (MIP-2, IL-6 and TNF-α were indicative of therapeutic potential of zingerone. The mechanism of action of zingerone may be related to significant inhibition of the mRNA expression of inflammatory markers (TLR4, RelA, NF-kB2, TNF- α, iNOS, COX-2 indicating that zingerone interferes with cell signalling pathway and suppresses hyper expression of cell signaling molecules of inflammatory pathway. Zingerone therapy significantly protected liver from endotoxin induced inflammatory damage by down regulating biochemical as well as molecular markers of inflammation. In conclusion, this study provides evidence that zingerone is a potent anti

  12. Zingerone suppresses liver inflammation induced by antibiotic mediated endotoxemia through down regulating hepatic mRNA expression of inflammatory markers in Pseudomonas aeruginosa peritonitis mouse model.

    Science.gov (United States)

    Kumar, Lokender; Chhibber, Sanjay; Harjai, Kusum

    2014-01-01

    Antibiotic-induced endotoxin release is associated with high mortality rate even when appropriate antibiotics are used for the treatment of severe infections in intensive care units. Since liver is involved in systemic clearance and detoxification of endotoxin hence it becomes a primary target organ for endotoxin mediated inflammation. Currently available anti-inflammatory drugs give rise to serious side effects. Hence, there is an urgent need for safe and effective anti-inflammatory therapy. It is likely that anti-inflammatory phytochemicals and neutraceutical agents may have the potential to reduce the endotoxin mediated inflammation and complications associated with endotoxin release. Keeping this in mind, the present study was planned to evaluate the hepatoprotective potential of zingerone (active compound of zingiber officinale) against liver inflammation induced by antibiotic mediated endotoxemia. The selected antibiotics capable of releasing high content of endotoxin were employed for their in vivo efficacy in P.aeruginosa peritonitis model. Released endotoxin induced inflammation and zingerone as co-anti-inflammatory therapy significantly reduced inflammatory response. Improved liver histology and reduced inflammatory markers MDA, RNI, MPO, tissue damage markers (AST, ALT, ALP) and inflammatory cytokines (MIP-2, IL-6 and TNF-α) were indicative of therapeutic potential of zingerone. The mechanism of action of zingerone may be related to significant inhibition of the mRNA expression of inflammatory markers (TLR4, RelA, NF-kB2, TNF- α, iNOS, COX-2) indicating that zingerone interferes with cell signalling pathway and suppresses hyper expression of cell signaling molecules of inflammatory pathway. Zingerone therapy significantly protected liver from endotoxin induced inflammatory damage by down regulating biochemical as well as molecular markers of inflammation. In conclusion, this study provides evidence that zingerone is a potent anti

  13. Suppression of microRNA-629 enhances sensitivity of cervical cancer cells to 1'S-1'-acetoxychavicol acetate via regulating RSU1.

    Science.gov (United States)

    Phuah, Neoh Hun; Azmi, Mohamad Nurul; Awang, Khalijah; Nagoor, Noor Hasima

    2017-01-01

    Cervical cancer is the fourth most frequent malignancy affecting women worldwide, but drug resistance and toxicities remain a major challenge in chemotherapy. The use of natural compounds is promising because they are less toxic and able to target multiple signaling pathways. The 1'S-1'-acetoxychavicol acetate (ACA), a natural compound isolated from wild ginger Alpinia conchigera , induced cytotoxicity on various cancer cells including cervical cancer. MicroRNAs (miRNAs) are short noncoding RNAs that regulate numerous biological processes, such as apoptosis and chemosensitivity. Past studies reported that miR-629 is upregulated in many cancers, and its expression was altered in ACA-treated cervical cancer cells. However, the role of miR-629 in regulating sensitivity toward ACA or other anticancer agents has not been reported. Hence, this study aims to investigate the role of miR-629 in regulating response toward ACA on cervical cancer cells. The miR-629 expression following transfection with miR-629 hairpin inhibitor and hairpin inhibitor negative control was measured using quantitative real-time polymerase chain reaction (RT-qPCR). The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to investigate sensitivity toward ACA. Apoptosis was detected using Annexin V/propidium iodide and Caspase 3/7 assays. The gene target for miR-629 was identified using miRNA target prediction programs, luciferase reporter assay and Western blots. Gene overexpression studies were performed to evaluate its role in regulating response toward ACA. Transfection with miR-629 hairpin inhibitor downregulated its expression in both cervical cancer cell lines. Suppression of miR-629 increased sensitivity toward ACA by reducing cell proliferation and inducing apoptosis. Luciferase reporter assay confirmed RSU1 as a direct target of miR-629. Overexpression of miR-629 decreased RSU1 protein expression, while inhibition of miR-629 increased RSU1 protein expression

  14. Hepatitis C virus (HCV genotype 1 subtype identification in new HCV drug development and future clinical practice.

    Directory of Open Access Journals (Sweden)

    Stéphane Chevaliez

    Full Text Available BACKGROUND: With the development of new specific inhibitors of hepatitis C virus (HCV enzymes and functions that may yield different antiviral responses and resistance profiles according to the HCV subtype, correct HCV genotype 1 subtype identification is mandatory in clinical trials for stratification and interpretation purposes and will likely become necessary in future clinical practice. The goal of this study was to identify the appropriate molecular tool(s for accurate HCV genotype 1 subtype determination. METHODOLOGY/PRINCIPAL FINDINGS: A large cohort of 500 treatment-naïve patients eligible for HCV drug trials and infected with either subtype 1a or 1b was studied. Methods based on the sole analysis of the 5' non-coding region (5'NCR by sequence analysis or reverse hybridization failed to correctly identify HCV subtype 1a in 22.8%-29.5% of cases, and HCV subtype 1b in 9.5%-8.7% of cases. Natural polymorphisms at positions 107, 204 and/or 243 were responsible for mis-subtyping with these methods. A real-time PCR method using genotype- and subtype-specific primers and probes located in both the 5'NCR and the NS5B-coding region failed to correctly identify HCV genotype 1 subtype in approximately 10% of cases. The second-generation line probe assay, a reverse hybridization assay that uses probes targeting both the 5'NCR and core-coding region, correctly identified HCV subtypes 1a and 1b in more than 99% of cases. CONCLUSIONS/SIGNIFICANCE: In the context of new HCV drug development, HCV genotyping methods based on the exclusive analysis of the 5'NCR should be avoided. The second-generation line probe assay is currently the best commercial assay for determination of HCV genotype 1 subtypes 1a and 1b in clinical trials and practice.

  15. Y-box-binding protein 1 interacts with hepatitis C virus NS3/4A and influences the equilibrium between viral RNA replication and infectious particle production.

    Science.gov (United States)

    Chatel-Chaix, Laurent; Melançon, Pierre; Racine, Marie-Ève; Baril, Martin; Lamarre, Daniel

    2011-11-01

    The hepatitis C virus (HCV) NS3/4A protein has several essential roles in the virus life cycle, most probably through dynamic interactions with host factors. To discover cellular cofactors that are co-opted by HCV for its replication, we elucidated the NS3/4A interactome using mass spectrometry and identified Y-box-binding protein 1 (YB-1) as an interacting partner of NS3/4A protein and HCV genomic RNA. Importantly, silencing YB-1 expression decreased viral RNA replication and severely impaired the propagation of the infectious HCV molecular clone JFH-1. Immunofluorescence studies further revealed a drastic HCV-dependent redistribution of YB-1 to the surface of the lipid droplets, an important organelle for HCV assembly. Core and NS3 protein-dependent polyprotein maturation were shown to be required for YB-1 relocalization. Unexpectedly, YB-1 knockdown cells showed the increased production of viral infectious particles while HCV RNA replication was impaired. Our data support that HCV hijacks YB-1-containing ribonucleoparticles and that YB-1-NS3/4A-HCV RNA complexes regulate the equilibrium between HCV RNA replication and viral particle production.

  16. Health Beliefs and Co-morbidities Associated with Appointment-Keeping Behavior Among HCV and HIV/HCV Patients.

    Science.gov (United States)

    Pundhir, Pooja; North, Carol S; Fatunde, Oluwatomilade; Jain, Mamta K

    2016-02-01

    Appointment-keeping behavior is an important requisite for HCV linkage and treatment initiation. In this study we examine what impact hepatitis C (HCV) knowledge and attitudes has on appointment-keeping behavior among a cohort of HCV and HCV/HIV patients. Knowledge scores and attitude scales, obtained from a cross-sectional survey, were correlated with proportion of appointments kept 1 year prior to taking the survey. Independent risk factors for missing appointments were examined by multiple regression analysis. 292 HCV patients completed the survey, and 149 (51%) were co-infected with HIV. HCV patients kept 67.5 ± 17.4% of their total appointments and a similar proportion (67 ± 38.2) of Liver Clinic appointments, but they attended a higher proportion (73 ± 24.4) of Primary Care Clinic appointments. However, certain health beliefs, psychiatric illness, and HIV co-infection were independently associated with lower levels of appointment-keeping behavior. HCV knowledge was not associated with appointment-keeping behavior. Health beliefs, psychiatric illness, and HIV co-infection are associated with missing appointments, but no link between knowledge and appointment keeping behavior is apparent. In order to increase engagement into HCV care, HCV care coordination programs need to focus on addressing health beliefs and providing resources to those at highest risk for missing appointments.

  17. Drug treatment program patients' hepatitis C virus (HCV education needs and their use of available HCV education services

    Directory of Open Access Journals (Sweden)

    Osborne Andrew

    2007-03-01

    Full Text Available Abstract Background In spite of the disproportionate prevalence of hepatitis C virus (HCV infection among drug users, many remain uninformed or misinformed about the virus. Drug treatment programs are important sites of opportunity for providing HCV education to their patients, and many programs do, in fact, offer this education in a variety of formats. Little is known, however, about the level of HCV knowledge among drug treatment program patients, and the extent to which they utilize their programs' HCV education services. Methods Using data collected from patients (N = 280 in 14 U.S. drug treatment programs, we compared patients who reported that they never injected drugs (NIDUs with past or current drug injectors (IDUs concerning their knowledge about HCV, whether they used HCV education opportunities at their programs, and the facilitators and barriers to doing so. All of the programs were participating in a research project that was developing, implementing, and evaluating a staff training to provide HCV support to patients. Results Although IDUs scored higher on an HCV knowledge assessment than NIDUs, there were many gaps in HCV knowledge among both groups of patients. To address these knowledge gaps, all of the programs offered at least one form of HCV education: all offered 1:1 sessions with staff, 12 of the programs offered HCV education in a group format, and 11 of the programs offered this education through pamphlets/books. Only 60% of all of the participating patients used any of their programs' HCV education services, but those who did avail themselves of these HCV education opportunities generally assessed them positively. In all, many patients were unaware that HCV education was offered at their programs through individual sessions with staff, group meetings, and books/pamphlets, (42%, 49%, and 46% of the patients, respectively, and 22% were unaware that any HCV education opportunities existed. Conclusion Efforts especially need

  18. Molecular epidemiology of HCV monoinfection and HIV/HCV coinfection in injection drug users in Liuzhou, Southern China.

    Directory of Open Access Journals (Sweden)

    Yi Tan

    Full Text Available BACKGROUND: Hepatitis C virus (HCV mono-infection and HCV/HIV (human immunodeficiency virus co-infection are growing problems in injection drug users (IDU. Their prevalence and genotypic patterns vary with geographic locations. Access to harm reduction measures is opening up opportunities for improving the HIV/HCV profiling of IDU in China, where IDUs account for a significant proportion of the two infections especially in the southern part of the country. METHODOLOGY/PRINCIPAL FINDINGS: A cross sectional study was conducted. Through the Liuzhou Methadone Clinic, a total of 117 injection drug users (IDUs were recruited from Guangxi, Southern China. A majority of the IDUs (96% were HCV antibody positive, of which 21% were HIV infected. Unlike HCV monoinfection, there was spatial heterogeneity in the distribution of HIV/HCV coinfection, the latter also characterized by a higher prevalence of needle-sharing. Phylogenetic analysis revealed that genotype 6a was predominant in the study population. There were shorter genetic distances among the 6a sequences compared to the other HCV subtypes-1a, 3a, and 3b. CONCLUSION/SIGNIFICANCE: The results suggested that HIV and HCV were introduced at around the same time to the IDU populations in Southern China, followed by their differential spread as determined by the biologic characteristics of the virus and the intensity of behavioural risk. This pattern is different from that in other South East Asian countries where HCV infections have probably predated HIV.

  19. New preclinical antimalarial drugs potently inhibit hepatitis C virus genotype 1b RNA replication.

    Directory of Open Access Journals (Sweden)

    Youki Ueda

    Full Text Available BACKGROUND: Persistent hepatitis C virus (HCV infection causes chronic liver diseases and is a global health problem. Although new triple therapy (pegylated-interferon, ribavirin, and telaprevir/boceprevir has recently been started and is expected to achieve a sustained virologic response of more than 70% in HCV genotype 1 patients, there are several problems to be resolved, including skin rash/ageusia and advanced anemia. Thus a new type of anti-HCV drug is still needed. METHODOLOGY/PRINCIPAL FINDINGS: Recently developed HCV drug assay systems using HCV-RNA-replicating cells (e.g., HuH-7-derived OR6 and Li23-derived ORL8 were used to evaluate the anti-HCV activity of drug candidates. During the course of the evaluation of anti-HCV candidates, we unexpectedly found that two preclinical antimalarial drugs (N-89 and its derivative N-251 showed potent anti-HCV activities at tens of nanomolar concentrations irrespective of the cell lines and HCV strains of genotype 1b. We confirmed that replication of authentic HCV-RNA was inhibited by these drugs. Interestingly, however, this anti-HCV activity did not work for JFH-1 strain of genotype 2a. We demonstrated that HCV-RNA-replicating cells were cured by treatment with only N-89. A comparative time course assay using N-89 and interferon-α demonstrated that N-89-treated ORL8 cells had more rapid anti-HCV kinetics than did interferon-α-treated cells. This anti-HCV activity was largely canceled by vitamin E. In combination with interferon-α and/or ribavirin, N-89 or N-251 exhibited a synergistic inhibitory effect. CONCLUSIONS/SIGNIFICANCE: We found that the preclinical antimalarial drugs N-89 and N-251 exhibited very fast and potent anti-HCV activities using cell-based HCV-RNA-replication assay systems. N-89 and N-251 may be useful as a new type of anti-HCV reagents when used singly or in combination with interferon and/or ribavirin.

  20. Stable replication of the EBNA1/OriP-mediated baculovirus vector and its application to anti-HCV gene therapy

    Directory of Open Access Journals (Sweden)

    Chang Myint OO

    2009-10-01

    Full Text Available Abstract Background Hepatitis C virus (HCV is one of the main causes of liver-related morbidity and mortality. Although combined interferon-α-ribavirin therapy is effective for about 50% of the patients with HCV, better therapies are needed and preventative vaccines have yet to be developed. Short-hairpin RNAs (shRNAs inhibit gene expression by RNA interference. The application of transient shRNA expression is limited, however, due to the inability of the shRNA to replicate in mammalian cells and its inefficient transduction. The duration of transgene (shRNA expression in mammalian cells can be significantly extended using baculovirus-based shRNA-expressing vectors that contain the latent viral protein Epstein-Barr nuclear antigen 1 (EBNA1 and the origin of latent viral DNA replication (OriP sequences. These recombinant vectors contain compatible promoters and are highly effective for infecting primary hepatocyte and hepatoma cell lines, making them very useful tools for studies of hepatitis B and hepatitis C viruses. Here, we report the use of these baculovirus-based vector-derived shRNAs to inhibit core-protein expression in full-length hepatitis C virus (HCV replicon cells. Results We constructed a long-term transgene shRNA expression vector that contains the EBV EBNA1 and OriP sequences. We also designed baculovirus vector-mediated shRNAs against the highly conserved core-protein region of HCV. HCV core protein expression was inhibited by the EBNA1/OriP baculovirus vector for at least 14 days, which was considerably longer than the 3 days of inhibition produced by the wild-type baculovirus vector. Conclusion These findings indicate that we successfully constructed a long-term transgene (shRNA expression vector (Ac-EP-shRNA452 using the EBNA1/OriP system, which was propagated in Escherichia coli and converted into mammalian cells. The potential anti-HCV activity of the long-term transgene (shRNA expression vector was evaluated with the view

  1. Functional RNA structures throughout the Hepatitis C Virus genome.

    Science.gov (United States)

    Adams, Rebecca L; Pirakitikulr, Nathan; Pyle, Anna Marie

    2017-06-01

    The single-stranded Hepatitis C Virus (HCV) genome adopts a set of elaborate RNA structures that are involved in every stage of the viral lifecycle. Recent advances in chemical probing, sequencing, and structural biology have facilitated analysis of RNA folding on a genome-wide scale, revealing novel structures and networks of interactions. These studies have underscored the active role played by RNA in every function of HCV and they open the door to new types of RNA-targeted therapeutics. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Inhibition of Hepatitis C Virus in Mice by a Small Interfering RNA Targeting a Highly Conserved Sequence in Viral IRES Pseudoknot.

    Directory of Open Access Journals (Sweden)

    Jae-Su Moon

    Full Text Available The hepatitis C virus (HCV internal ribosome entry site (IRES that directs cap-independent viral translation is a primary target for small interfering RNA (siRNA-based HCV antiviral therapy. However, identification of potent siRNAs against HCV IRES by bioinformatics-based siRNA design is a challenging task given the complexity of HCV IRES secondary and tertiary structures and association with multiple proteins, which can also dynamically change the structure of this cis-acting RNA element. In this work, we utilized siRNA tiling approach whereby siRNAs were tiled with overlapping sequences that were shifted by one or two nucleotides over the HCV IRES stem-loop structures III and IV spanning nucleotides (nts 277-343. Based on their antiviral activity, we mapped a druggable region (nts 313-343 where the targets of potent siRNAs were enriched. siIE22, which showed the greatest anti-HCV potency, targeted a highly conserved sequence across diverse HCV genotypes, locating within the IRES subdomain IIIf involved in pseudoknot formation. Stepwise target shifting toward the 5' or 3' direction by 1 or 2 nucleotides reduced the antiviral potency of siIE22, demonstrating the importance of siRNA accessibility to this highly structured and sequence-conserved region of HCV IRES for RNA interference. Nanoparticle-mediated systemic delivery of the stability-improved siIE22 derivative gs_PS1 siIE22, which contains a single phosphorothioate linkage on the guide strand, reduced the serum HCV genome titer by more than 4 log10 in a xenograft mouse model for HCV replication without generation of resistant variants. Our results provide a strategy for identifying potent siRNA species against a highly structured RNA target and offer a potential pan-HCV genotypic siRNA therapy that might be beneficial for patients resistant to current treatment regimens.

  3. HCV-related liver cancer in people with haemophilia

    NARCIS (Netherlands)

    Meijer, K.; Haagsma, E. B.

    . The topic of this monograph is liver cancer associated with chronic HCV infection. We start with some background information on chronic HCV infection and its long-term sequelae, one of which is liver cancer. The rest of the article is concerned with liver cancer or hepatocellular carcinoma (HCC).

  4. Seroprevalence of Hepatitis C Virus (HCV) antibodies in pregnant ...

    African Journals Online (AJOL)

    Background: Hepatitis C virus (HCV) infection is a major public health concern. The aim of this study was to ascertain the seroprevalence and risk factors of HCV antibodies among pregnant women in Anyigba, Kogi State North Central Nigeria. Materials and methods:Blood samples (5mls) were collected from one hundred ...

  5. Transfusion Related Hepatitis C Virus (HCV) Infection in Sickle Cell ...

    African Journals Online (AJOL)

    Rev Olaleye

    ABSTRACT: This study aimed to determine retrospectively, the prevalence of hepatitis C virus infection in relation to a background history of blood transfusion; through anti HCV antibody screening test, amongst adult sickle cell disease patients. Anti HCV antibody was tested for in the serum of 92 consecutively selected ...

  6. Socioeconomic status in HCV infected patients – risk and prognosis

    DEFF Research Database (Denmark)

    Omland, Lars Haukali; Osler, Merete; Jepsen, Peter

    2013-01-01

    It is unknown whether socioeconomic status (SES) is a risk factor for hepatitis C virus (HCV) infection or a prognostic factor following infection.......It is unknown whether socioeconomic status (SES) is a risk factor for hepatitis C virus (HCV) infection or a prognostic factor following infection....

  7. Historical epidemiology of hepatitis C virus (HCV) in selected countries

    DEFF Research Database (Denmark)

    Bruggmann, P; Øvrehus, Anne Lindebo; Moreno, C

    2014-01-01

    Chronic infection with hepatitis C virus (HCV) is a leading indicator for liver disease. New treatment options are becoming available, and there is a need to characterize the epidemiology and disease burden of HCV. Data for prevalence, viremia, genotype, diagnosis and treatment were obtained...

  8. Expression of chimeric HCV peptide in transgenic tobacco plants ...

    African Journals Online (AJOL)

    Expression of chimeric HCV peptide in transgenic tobacco plants infected with recombinant alfalfa mosaic virus for development of a plant-derived vaccine against HCV. AK El Attar, AM Shamloul, AA Shalaby, BY Riad, A Saad, HM Mazyad, JM Keith ...

  9. Enzymatic activities of the GB virus-B RNA-dependent RNA polymerase

    International Nuclear Information System (INIS)

    Ranjith-Kumar, C.T.; Santos, Jan Lee; Gutshall, Lester L.; Johnston, Victor K.; Juili, L.-G.; Kim, M.-J.; Porter, David J.; Maley, Derrick; Greenwood, Cathy; Earnshaw, David L.; Baker, Audrey; Gu Baohua; Silverman, Carol; Sarisky, Robert T.; Kao Cheng

    2003-01-01

    The GB virus-B (GBV-B) nonstructural protein 5B (NS5B) encodes an RNA-dependent RNA polymerase (RdRp) with greater than 50% sequence similarity to the hepatitis C virus (HCV) NS5B. Recombinant GBV-B NS5B was reported to possess RdRp activity (W. Zhong et al., 2000, J. Viral Hepat. 7, 335-342). In this study, the GBV-B RdRp was examined more thoroughly for different RNA synthesis activities, including primer-extension, de novo initiation, template switch, terminal nucleotide addition, and template specificity. The results can be compared with previous characterizations of the HCV RdRp. The two RdRps share similarities in terms of metal ion and template preference, the abilities to add nontemplated nucleotides, perform both de novo initiation and extension from a primer, and switch templates. However, several differences in RNA synthesis between the GBV-B and HCV RdRps were observed, including (i) optimal temperatures for activity, (ii) ranges of Mn 2+ concentration tolerated for activity, and (iii) cation requirements for de novo RNA synthesis and terminal transferase activity. To assess whether the recombinant GBV-B RdRp may represent a relevant surrogate system for testing HCV antiviral agents, two compounds demonstrated to be active at nanomolar concentrations against HCV NS5B were tested on the GBV RdRp. A chain terminating nucleotide analog could prevent RNA synthesis, while a nonnucleoside HCV inhibitor was unable to affect RNA synthesis by the GBV RdRp

  10. Adeno-Associated Viral Vector-Mediated mTOR Inhibition by Short Hairpin RNA Suppresses Laser-Induced Choroidal Neovascularization

    Directory of Open Access Journals (Sweden)

    Tae Kwann Park

    2017-09-01

    Full Text Available Choroidal neovascularization (CNV is the defining characteristic feature of the wet subtype of age-related macular degeneration (AMD and may result in irreversible blindness. Based on anti-vascular endothelial growth factor (anti-VEGF, the current therapeutic approaches to CNV are fraught with difficulties, and mammalian target of rapamycin (mTOR has recently been proposed as a possible therapeutic target, although few studies have been conducted. Here, we show that a recombinant adeno-associated virus-delivered mTOR-inhibiting short hairpin RNA (rAAV-mTOR shRNA, which blocks the activity of both mTOR complex 1 and 2, represents a promising therapeutic approach for the treatment of CNV. Eight-week-old male C57/B6 mice were treated with the short hairpin RNA (shRNA after generating CNV lesions in the eyes via laser photocoagulation. The recombinant adeno-associated virus (rAAV delivery vehicle was able to effectively transduce cells in the inner retina, and significantly fewer inflammatory cells and less extensive CNV were observed in the animals treated with rAAV-mTOR shRNA when compared with control- and rAAV-scrambled shRNA-treated groups. Presumably related to the reduction of CNV, increased autophagy was detected in CNV lesions treated with rAAV-mTOR shRNA, whereas significantly fewer apoptotic cells detected in the outer nuclear layer around the CNV indicate that mTOR inhibition may also have neuroprotective effects. Taken together, these results demonstrate the therapeutic potential of mTOR inhibition, resulting from rAAV-mTOR shRNA activity, in the treatment of AMD-related CNV. Keywords: retinal neovascularization, choroidal neovascularization, adeno-associated virus, mTOR, RNA interference, mTOR shRNA, autophagy

  11. Evaluation of the Ortho-Clinical Diagnostics Vitros ECi Anti-HCV test: comparison with three other methods.

    Science.gov (United States)

    Watterson, Jeannette M; Stallcup, Paulina; Escamilla, David; Chernay, Patrick; Reyes, Alfred; Trevino, Sylvia C

    2007-01-01

    After observing a high incidence of low positive hepatitis C virus (HCV) antibody screens by the Ortho-Clinical Vitros ECi test (Orthoclinical Diagnostics, Raritan, NJ), we compared results against those obtained using another chemiluminescent analyzer, as well as two U.S. Food and Drug Administration (FDA)-approved confirmatory methodologies. To ascertain the true anti-HCV status of samples deemed low-positive by the Ortho-Clinical Vitros ECi test, we tested samples using the ADVIA Centaur HCV screen test (Siemens Medical Solutions Diagnostics), the Chiron recombinant immunoblot assay (RIBA) test (Chiron Corp., Emeryville, CA), and the Roche COBAS Amplicor HCV qualitative test (Roche Diagnostics, Indianapolis, IN) in a series of studies. Of 94 specimens positive by Vitros ECi, 19% were observed to be negative by Centaur. A separate study of 91 samples with signal-to-cutoff (s/co) values less than 8.0 showed that all but one was negative for HCV ribonucleic acid (RNA). In comparison with RIBA, 100% (77) samples positive by the Vitros ECi test with s/co values less than 12.0 were negative or indeterminate by RIBA. A final study comparing all four methods side-by-side showed 63% disagreement by Centaur for Vitros ECi low-positive samples, 75% disagreement by RIBA, and 97% disagreement by polymerase chain reaction (PCR). In conclusion, the Ortho-Clinical Vitros ECi Anti-HCV test yields a high rate of false-positive results in the low s/co range in our patient population. (c) 2007 Wiley-Liss, Inc.

  12. Different mechanisms of hepatitis C virus RNA polymerase activation by cyclophilin A and B in vitro.

    Science.gov (United States)

    Weng, Leiyun; Tian, Xiao; Gao, Yayi; Watashi, Koichi; Shimotohno, Kunitada; Wakita, Takaji; Kohara, Michinori; Toyoda, Tetsuya

    2012-12-01

    Cyclophilins (CyPs) are cellular proteins that are essential to hepatitis C virus (HCV) replication. Since cyclosporine A was discovered to inhibit HCV infection, the CyP pathway contributing to HCV replication is a potential attractive stratagem for controlling HCV infection. Among them, CyPA is accepted to interact with HCV nonstructural protein (NS) 5A, although interaction of CyPB and NS5B, an RNA-dependent RNA polymerase (RdRp), was proposed first. CyPA, CyPB, and HCV RdRp were expressed in bacteria and purified using combination column chromatography. HCV RdRp activity was analyzed in vitro with purified CyPA and CyPB. CyPA at a high concentration (50× higher than that of RdRp) but not at low concentration activated HCV RdRp. CyPB had an allosteric effect on genotype 1b RdRp activation. CyPB showed genotype specificity and activated genotype 1b and J6CF (2a) RdRps but not genotype 1a or JFH1 (2a) RdRps. CyPA activated RdRps of genotypes 1a, 1b, and 2a. CyPB may also support HCV genotype 1b replication within the infected cells, although its knockdown effect on HCV 1b replicon activity was controversial in earlier reports. CyPA activated HCV RdRp at the early stages of transcription, including template RNA binding. CyPB also activated genotype 1b RdRp. However, their activation mechanisms are different. These data suggest that both CyPA and CyPB are excellent targets for the treatment of HCV 1b, which shows the greatest resistance to interferon and ribavirin combination therapy. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. A comparative method for finding and folding RNA secondary structures within protein-coding regions

    DEFF Research Database (Denmark)

    Pedersen, Jakob Skou; Meyer, Irmtraud Margret; Forsberg, Roald

    2004-01-01

    that RNA-DECODER's parameters can be automatically trained to successfully fold known secondary structures within the HCV genome. We scan the genomes of HCV and polio virus for conserved secondary-structure elements, and analyze performance as a function of available evolutionary information. On known...... secondary structures, RNA-DECODER shows a sensitivity similar to the programs MFOLD, PFOLD and RNAALIFOLD. When scanning the entire genomes of HCV and polio virus for structure elements, RNA-DECODER's results indicate a markedly higher specificity than MFOLD, PFOLD and RNAALIFOLD....

  14. An overview of HCV molecular biology, replication and immune responses

    Directory of Open Access Journals (Sweden)

    Nawaz Zafar

    2011-04-01

    Full Text Available Abstract Hepatitis C virus (HCV causes acute and chronic hepatitis which can eventually lead to permanent liver damage, hepatocellular carcinoma and death. Currently, there is no vaccine available for prevention of HCV infection due to high degree of strain variation. The current treatment of care, Pegylated interferon α in combination with ribavirin is costly, has significant side effects and fails to cure about half of all infections. In this review, we summarize molecular virology, replication and immune responses against HCV and discussed how HCV escape from adaptive and humoral immune responses. This advance knowledge will be helpful for development of vaccine against HCV and discovery of new medicines both from synthetic chemistry and natural sources.

  15. The HCV Synthesis Project: Scope, methodology, and preliminary results

    Directory of Open Access Journals (Sweden)

    Scheinmann Roberta

    2008-09-01

    Full Text Available Abstract Background The hepatitis C virus (HCV is hyper-endemic in injecting drug users. There is also excess HCV among non-injection drug users who smoke, snort, or sniff heroin, cocaine, crack, or methamphetamine. Methods To summarize the research literature on HCV in drug users and identify gaps in knowledge, we conducted a synthesis of the relevant research carried out between 1989 and 2006. Using rigorous search methods, we identified and extracted data from published and unpublished reports of HCV among drug users. We designed a quality assurance system to ensure accuracy and consistency in all phases of the project. We also created a set of items to assess study design quality in each of the reports we included. Results We identified 629 reports containing HCV prevalence rates, incidence rates and/or genotype distribution among injecting or non-injecting drug user populations published between January 1989 and December 2006. The majority of reports were from Western Europe (41%, North America (26%, Asia (11% and Australia/New Zealand (10%. We also identified reports from Eastern Europe, South America, the Middle East, and the Caribbean. The number of publications reporting HCV rates in drug users increased dramatically between 1989 and 2006 to 27–52 reports per year after 1998. Conclusion The data collection and quality assurance phases of the HCV Synthesis Project have been completed. Recommendations for future research on HCV in drug users have come out of our data collection phase. Future research reports can enhance their contributions to our understanding of HCV etiology by clearly defining their drug user participants with respect to type of drug and route of administration. Further, the use of standard reporting methods for risk factors would enable data to be combined across a larger set of studies; this is especially important for HCV seroconversion studies which suffer from small sample sizes and low power to examine risk

  16. Suppression of microRNA-629 enhances sensitivity of cervical cancer cells to 1′S-1′-acetoxychavicol acetate via regulating RSU1

    Directory of Open Access Journals (Sweden)

    Phuah NH

    2017-03-01

    Full Text Available Neoh Hun Phuah,1 Mohamad Nurul Azmi,2 Khalijah Awang,2 Noor Hasima Nagoor1,3 1Faculty of Science, Institute of Biological Science (Genetics and Molecular Biology, 2Faculty of Science, Department of Chemistry, Centre for Natural Product Research and Drug Discovery (CENAR, 3Centre for Research in Biotechnology for Agriculture (CEBAR, University of Malaya, Kuala Lumpur, Malaysia Background: Cervical cancer is the fourth most frequent malignancy affecting women worldwide, but drug resistance and toxicities remain a major challenge in chemotherapy. The use of natural compounds is promising because they are less toxic and able to target multiple signaling pathways. The 1'S-1'-acetoxychavicol acetate (ACA, a natural compound isolated from wild ginger Alpinia conchigera, induced cytotoxicity on various cancer cells including cervical cancer. MicroRNAs (miRNAs are short noncoding RNAs that regulate numerous biological processes, such as apoptosis and chemosensitivity. Past studies reported that miR-629 is upregulated in many cancers, and its expression was altered in ACA-treated cervical cancer cells. However, the role of miR-629 in regulating sensitivity toward ACA or other anticancer agents has not been reported. Hence, this study aims to investigate the role of miR-629 in regulating response toward ACA on cervical cancer cells.  Methods: The miR-629 expression following transfection with miR-629 hairpin inhibitor and hairpin inhibitor negative control was measured using quantitative real-time polymerase chain reaction (RT-qPCR. The 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay was used to investigate sensitivity toward ACA. Apoptosis was detected using Annexin V/propidium iodide and Caspase 3/7 assays. The gene target for miR-629 was identified using miRNA target prediction programs, luciferase reporter assay and Western blots. Gene overexpression studies were performed to evaluate its role in regulating response toward ACA

  17. Long noncoding RNA AK126698 inhibits proliferation and migration of non-small cell lung cancer cells by targeting Frizzled-8 and suppressing Wnt/β-catenin signaling pathway

    Directory of Open Access Journals (Sweden)

    Fu X

    2016-06-01

    Full Text Available Xiao Fu,1 Hui Li,1 Chunxiao Liu,2 Bin Hu,1 Tong Li,1 Yang Wang1 1Department of Thoracic Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 2Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, People’s Republic of China Background: Recent studies indicate that long noncoding RNAs (lncRNAs play a key role in the control of cellular processes such as proliferation, metastasis, and differentiation. The lncRNA dysregulation has been identified in all types of cancer. We previously found that lncRNA AK126698 suppresses cisplatin resistance in A549 cells through the Wnt/β-catenin signaling pathway. However, the clinical significance of lncRNA AK126698 and the molecular mechanisms through which it regulates cancer cell proliferation and migration are largely unknown. Methods: We examined the expression of lncRNA AK126698 in 56 non-small cell lung cancer (NSCLC tissue samples and three NSCLC cell lines using quantitative real-time polymerase chain reaction. Gain and loss of function approaches were used to evaluate the biological function of AK126698 in NSCLC cells. The effects of lncRNA AK126698 on cell proliferation were investigated using cell counting kit-8 and 5-ethynyl-2'-deoxyuridine assays, and apoptosis was measured by flow cytometry. Protein levels of AK126698 targets were evaluated by Western blotting. Results: Our results showed that lncRNA AK126698 was significantly downregulated in NSCLC tissues, compared with paired adjacent nontumor tissue samples. Furthermore, lower AK126698 expression was associated with larger tumor size and advanced tumor stage. Ectopic AK126698 expression inhibited cell proliferation and migration and induced apoptosis. Conversely, decreased AK126698 expression promoted cell proliferation and migration and inhibited cell apoptosis. Importantly, we demonstrated that Frizzled-8, a receptor of Wnt/β-catenin pathway, was a target of AK126698. Furthermore

  18. Characterization of vaniprevir, a hepatitis C virus NS3/4A protease inhibitor, in patients with HCV genotype 1 infection: safety, antiviral activity, resistance, and pharmacokinetics.

    Science.gov (United States)

    Lawitz, Eric; Sulkowski, Mark; Jacobson, Ira; Kraft, Walter K; Maliakkal, Benedict; Al-Ibrahim, Mohamed; Gordon, Stuart C; Kwo, Paul; Rockstroh, Juergen Kurt; Panorchan, Paul; Miller, Michelle; Caro, Luzelena; Barnard, Richard; Hwang, Peggy May; Gress, Jacqueline; Quirk, Erin; Mobashery, Niloufar

    2013-09-01

    Vaniprevir is a competitive inhibitor of the hepatitis C virus (HCV) NS3/4A protease that has potent anti-HCV activity in preclinical models. This placebo-controlled dose-ranging study assessed the safety, tolerability, and antiviral efficacy of vaniprevir monotherapy in patients with genotype 1 chronic HCV infection. Treatment-naive and treatment-experienced non-cirrhotic adult patients with baseline HCV RNA >10(6)IU/ml were randomized to receive placebo or vaniprevir at doses of 125 mg qd, 600 mg qd, 25mg bid, 75 mg bid, 250 mg bid, 500 mg bid, and 700 mg bid for 8 days. Forty patients (82.5% male, 75% genotype 1a) received at least one dose of placebo or vaniprevir. After 1 week of vaniprevir, the decrease in HCV RNA from baseline ranged from 1.8 to 4.6 log₁₀IU/ml across all treatment groups, and there was a greater than dose-proportional increase in vaniprevir exposure at doses above 75 mg bid. The most commonly reported drug-related adverse events (AEs) were diarrhea (n=5) and nausea (n=5). No pattern of laboratory or ECG abnormalities was observed, all AEs resolved during the study, and there were no discontinuations due to AEs. No serious AEs were reported. Resistance-associated amino acid variants were identified at positions R155 and D168 in patients infected with genotype 1a virus. Vaniprevir monotherapy demonstrated potent antiviral activity in patients with chronic genotype 1 HCV infection, and was generally well tolerated with no serious AEs or discontinuations due to AEs. Further development of vaniprevir, including studies in combination with other anti-HCV agents, is ongoing. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. [Small interfering RNA-mediated COX-2 gene silencing enhances chemosensitivity of KB/VCR cells by suppressing MDR-1 gene expression and P-glycoprotein activity].

    Science.gov (United States)

    Mo, Xianchao; Li, Weizhong

    2014-05-01

    To investigate the effect of small interfering RNA (siRNA)-mediated COX-2 gene silencing in enhancing the chemosensitivity of KB/VCR cell lines. KB/VCR cells were trasnfected with COX-2 siRNA were examined for expressions of COX-2 and MDR-1 mRNAs with RT-PCR and for Rho-123 accumulation using flow cytometry. MTT assay was used to analyze the proliferation of the transfected KB/VCR cells. Compared with the negative and blank control groups, COX-2 siRNA transfection resulted in significant growth inhibition of KB/VCR cells exposed to vincristine (PKB/VCR cells. COX-2 gene silencing can enhance the chemosensitivity of KB/VCR cells to vincristine, the mechanism of which may involve down-regulated MDR-1 gene expression and inhibition of P-glycoprotein activity.

  20. Discovery and validation of the tumor-suppressive function of long noncoding RNA PANDA in human diffuse large B-cell lymphoma through the inactivation of MAPK/ERK signaling pathway.

    Science.gov (United States)

    Wang, Yingjun; Zhang, Mingzhi; Xu, Huanan; Wang, Yifei; Li, Zhaoming; Chang, Yu; Wang, Xinhuan; Fu, Xiaorui; Zhou, Zhiyuan; Yang, Siyuan; Wang, Bei; Shang, Yufeng

    2017-09-22

    Diffuse large B-cell lymphoma (DLBCL) is one of the leading causes of cancer-related mortality, and responds badly to existing treatment. Thus, it is of urgent need to identify novel prognostic markers and therapeutic targets of DLBCL. Recent studies have shown that long non-coding RNAs (lncRNAs) play an important role in the development of cancer. By using the next generation HiSeq sequencing assay, we determined lncRNAs exhibiting differential expression between DLBCL patients and healthy controls. Then, RT-qPCR was performed for identification in clinical samples and cell materials, and lncRNA PANDA was verified to be down-regulated in DLBCL patients and have considerable diagnostic potential. In addition, decreased serum PANDA level was correlated to poorer clinical outcome and lower overall survival in DLBCL patients. Subsequently, we determined the experimental role of lncRNA PANDA in DLBCL progression. Luciferase reporter assay and chromatin immunoprecipitation assay suggested that lncRNA PANDA was induced by p53 and p53 interacts with the promoter region of PANDA. Cell functional assay further indicated that PANDA functioned as a tumor suppressor gene through the suppression of cell growth by a G0/G1 cell cycle arrest in DLBCL. More importantly, Cignal Signal Transduction Reporter Array and western blot assay showed that lncRNA PANDA inactivated the MAPK/ERK signaling pathway. In conclusion, our integrated approach demonstrates that PANDA in DLBCL confers a tumor suppressive function through inhibiting cell proliferation and silencing MAPK/ERK signaling pathway. Thus, PANDA may be a promising therapeutic target for patients with DLBCL.

  1. Bifurcations in the interplay of messenger RNA, protein and nonprotein coding RNA

    International Nuclear Information System (INIS)

    Zhdanov, Vladimir P

    2008-01-01

    The interplay of messenger RNA (mRNA), protein, produced via translation of this RNA, and nonprotein coding RNA (ncRNA) may include regulation of the ncRNA production by protein and (i) ncRNA-protein association resulting in suppression of the protein regulatory activity or (ii) ncRNA-mRNA association resulting in degradation of the miRNA-mRNA complex. The kinetic models describing these two scenarios are found to predict bistability provided that protein suppresses the ncRNA formation

  2. Promiscuous prediction and conservancy analysis of CTL binding epitopes of HCV 3a viral proteome from Punjab Pakistan: an In Silico Approach

    Directory of Open Access Journals (Sweden)

    Idrees Muhammad

    2011-02-01

    Full Text Available Abstract Background HCV is a positive sense RNA virus affecting approximately 180 million people world wide and about 10 million Pakistani populations. HCV genotype 3a is the major cause of infection in Pakistani population. One of the major problems of HCV infection especially in the developing countries that limits the limits the antiviral therapy is the long term treatment, high dosage and side effects. Studies of antigenic epitopes of viral sequences of a specific origin can provide an effective way to overcome the mutation rate and to determine the promiscuous binders to be used for epitope based subunit vaccine design. An in silico approach was applied for the analysis of entire HCV proteome of Pakistani origin, aimed to identify the viral epitopes and their conservancy in HCV genotypes 1, 2 and 3 of diverse origin. Results Immunoinformatic tools were applied for the predictive analysis of HCV 3a antigenic epitopes of Pakistani origin. All the predicted epitopes were then subjected for their conservancy analysis in HCV genotypes 1, 2 and 3 of diverse origin (worldwide. Using freely available web servers, 150 MHC II epitopes were predicted as promiscuous binders against 51 subjected alleles. E2 protein represented the 20% of all the predicted MHC II epitopes. 75.33% of the predicted MHC II epitopes were (77-100% conserve in genotype 3; 47.33% and 40.66% in genotype 1 and 2 respectively. 69 MHC I epitopes were predicted as promiscuous binders against 47 subjected alleles. NS4b represented 26% of all the MHC I predicted epitopes. Significantly higher epitope conservancy was represented by genotype 3 i.e. 78.26% and 21.05% for genotype 1 and 2. Conclusions The study revealed comprehensive catalogue of potential HCV derived CTL epitopes from viral proteome of Pakistan origin. A considerable number of predicted epitopes were found to be conserved in different HCV genotype. However, the number of conserved epitopes in HCV genotype 3 was

  3. Efficient infectious cell culture systems of the hepatitis C virus (HCV) prototype strains HCV-1 and H77.

    Science.gov (United States)

    Li, Yi-Ping; Ramirez, Santseharay; Mikkelsen, Lotte; Bukh, Jens

    2015-01-01

    The first discovered and sequenced hepatitis C virus (HCV) genome and the first in vivo infectious HCV clones originated from the HCV prototype strains HCV-1 and H77, respectively, both widely used in research of this important human pathogen. In the present study, we developed efficient infectious cell culture systems for these genotype 1a strains by using the HCV-1/SF9_A and H77C in vivo infectious clones. We initially adapted a genome with the HCV-1 5'UTR-NS5A (where UTR stands for untranslated region) and the JFH1 NS5B-3'UTR (5-5A recombinant), including the genotype 2a-derived mutations F1464L/A1672S/D2979G (LSG), to grow efficiently in Huh7.5 cells, thus identifying the E2 mutation S399F. The combination of LSG/S399F and reported TNcc(1a)-adaptive mutations A1226G/Q1773H/N1927T/Y2981F/F2994S promoted adaptation of the full-length HCV-1 clone. An HCV-1 recombinant with 17 mutations (HCV1cc) replicated efficiently in Huh7.5 cells and produced supernatant infectivity titers of 10(4.0) focus-forming units (FFU)/ml. Eight of these mutations were identified from passaged HCV-1 viruses, and the A970T/I1312V/C2419R/A2919T mutations were essential for infectious particle production. Using CD81-deficient Huh7 cells, we further demonstrated the importance of A970T/I1312V/A2919T or A970T/C2419R/A2919T for virus assembly and that the I1312V/C2419R combination played a major role in virus release. Using a similar approach, we found that NS5B mutation F2994R, identified here from culture-adapted full-length TN viruses and a common NS3 helicase mutation (S1368P) derived from viable H77C and HCV-1 5-5A recombinants, initiated replication and culture adaptation of H77C containing LSG and TNcc(1a)-adaptive mutations. An H77C recombinant harboring 19 mutations (H77Ccc) replicated and spread efficiently after transfection and subsequent infection of naive Huh7.5 cells, reaching titers of 10(3.5) and 10(4.4) FFU/ml, respectively. Hepatitis C virus (HCV) was discovered in 1989 with

  4. Identification of Variants of Hepatitis C Virus (HCV Entry Factors in Patients Highly Exposed to HCV but Remaining Uninfected: An ANRS Case-Control Study.

    Directory of Open Access Journals (Sweden)

    Baptiste Fouquet

    Full Text Available Hepatitis C virus (HCV causes persistent infection in 75% of cases and is a major public health problem worldwide. More than 92% of intravenous drug users (IDU infected by human immunodeficiency virus type 1 (HIV-1 are seropositive for HCV, and it is conceivable that some HIV-1-infected IDU who remain uninfected by HCV may be genetically resistant.Here we conducted a case-control study to identify mutations in HCV entry coreceptors in HIV-infected IDU who remained uninfected by HCV. We recruited 138 patients, comprising 22 HIV+ HCV- case IDU and 116 HIV+ HCV+ control IDU. We focused on coreceptors in which point mutations are known to abolish HCV infectivity in vitro. Our previous study of the Claudin-1 gene revealed no specific variants in the same case population. Here we performed direct genomic sequencing of the Claudin-6, Claudin-9, Occludin and Scavenger receptor-B1 (SCARB1 gene coding regions. Most HIV+ HCV- IDU had no mutations in HCV coreceptors. However, two HIV+ HCV- patients harbored a total of four specific mutations/variants of HCV entry factors that were not found in the HIV+ HCV+ controls. One case patient harbored heterozygous variants of both Claudin-6 and Occludin, and the other case patient harbored two heterozygous variants of SCARB1. This suggests that HCV resistance might involve complex genetic events and factors other than coreceptors, a situation similar to that reported for HIV-1 resistance.

  5. Acetaminophen-induced acute liver injury in HCV transgenic mice

    International Nuclear Information System (INIS)

    Uehara, Takeki; Kosyk, Oksana; Jeannot, Emmanuelle; Bradford, Blair U.; Tech, Katherine; Macdonald, Jeffrey M.; Boorman, Gary A.; Chatterjee, Saurabh; Mason, Ronald P.; Melnyk, Stepan B.; Tryndyak, Volodymyr P.; Pogribny, Igor P.; Rusyn, Ivan

    2013-01-01

    The exact etiology of clinical cases of acute liver failure is difficult to ascertain and it is likely that various co-morbidity factors play a role. For example, epidemiological evidence suggests that coexistent hepatitis C virus (HCV) infection increased the risk of acetaminophen-induced acute liver injury, and was associated with an increased risk of progression to acute liver failure. However, little is known about possible mechanisms of enhanced acetaminophen hepatotoxicity in HCV-infected subjects. In this study, we tested a hypothesis that HCV-Tg mice may be more susceptible to acetaminophen hepatotoxicity, and also evaluated the mechanisms of acetaminophen-induced liver damage in wild type and HCV-Tg mice expressing core, E1 and E2 proteins. Male mice were treated with a single dose of acetaminophen (300 or 500 mg/kg in fed animals; or 200 mg/kg in fasted animals; i.g.) and liver and serum endpoints were evaluated at 4 and 24 h after dosing. Our results suggest that in fed mice, liver toxicity in HCV-Tg mice is not markedly exaggerated as compared to the wild-type mice. In fasted mice, greater liver injury was observed in HCV-Tg mice. In fed mice dosed with 300 mg/kg acetaminophen, we observed that liver mitochondria in HCV-Tg mice exhibited signs of dysfunction showing the potential mechanism for increased susceptibility. -- Highlights: ► Acetaminophen-induced liver injury is a significant clinical challenge. ► HCV-infected subjects may be at higher risk for acetaminophen-induced liver injury. ► We used HCV transgenics to test if liver injury due to acetaminophen is exacerbated.

  6. Acetaminophen-induced acute liver injury in HCV transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Uehara, Takeki; Kosyk, Oksana; Jeannot, Emmanuelle; Bradford, Blair U. [Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599 (United States); Tech, Katherine; Macdonald, Jeffrey M. [Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599 (United States); Boorman, Gary A. [Covance, Chantilly, VA 20151 (United States); Chatterjee, Saurabh; Mason, Ronald P. [Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, RTP, NC 27713 (United States); Melnyk, Stepan B. [Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72201 (United States); Tryndyak, Volodymyr P.; Pogribny, Igor P. [Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079 (United States); Rusyn, Ivan, E-mail: iir@unc.edu [Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599 (United States)

    2013-01-15

    The exact etiology of clinical cases of acute liver failure is difficult to ascertain and it is likely that various co-morbidity factors play a role. For example, epidemiological evidence suggests that coexistent hepatitis C virus (HCV) infection increased the risk of acetaminophen-induced acute liver injury, and was associated with an increased risk of progression to acute liver failure. However, little is known about possible mechanisms of enhanced acetaminophen hepatotoxicity in HCV-infected subjects. In this study, we tested a hypothesis that HCV-Tg mice may be more susceptible to acetaminophen hepatotoxicity, and also evaluated the mechanisms of acetaminophen-induced liver damage in wild type and HCV-Tg mice expressing core, E1 and E2 proteins. Male mice were treated with a single dose of acetaminophen (300 or 500 mg/kg in fed animals; or 200 mg/kg in fasted animals; i.g.) and liver and serum endpoints were evaluated at 4 and 24 h after dosing. Our results suggest that in fed mice, liver toxicity in HCV-Tg mice is not markedly exaggerated as compared to the wild-type mice. In fasted mice, greater liver injury was observed in HCV-Tg mice. In fed mice dosed with 300 mg/kg acetaminophen, we observed that liver mitochondria in HCV-Tg mice exhibited signs of dysfunction showing the potential mechanism for increased susceptibility. -- Highlights: ► Acetaminophen-induced liver injury is a significant clinical challenge. ► HCV-infected subjects may be at higher risk for acetaminophen-induced liver injury. ► We used HCV transgenics to test if liver injury due to acetaminophen is exacerbated.

  7. Performance characteristics of the ARCHITECT anti-HCV assay.

    Science.gov (United States)

    Jonas, Gesa; Pelzer, Claudia; Beckert, Christian; Hausmann, Michael; Kapprell, Hans-Peter

    2005-10-01

    The ARCHITECT Anti-HCV assay is a fully automated high throughput chemiluminescent microparticle immunoassay (CMIA) for the detection of antibodies to structural and nonstructural proteins of the hepatitis C virus (HCV). To further enhance the performance of this test, the assay was modified to improve the specificity for blood donor specimens. The specificity of the enhanced ARCHITECT Anti-HCV assay was evaluated by screening blood donor samples randomly collected from various German blood banks, as well as hospitalized patient samples derived from Germany and the US. Additionally, antibody sensitivity was determined on commercially available anti-HCV seroconversion panels and on a commercially available worldwide anti-HCV genotype performance panel. Apparent specificity of the modified ARCHITECT Anti-HCV assay in a blood donor population consisting of 3811 specimens was 99.92%, compared to 99.76% for the current on-market assay. Additionally, antibody sensitivity was determined on commercially available anti-HCV seroconversion panels. Seroconversion sensitivity equivalent to or better than the current on-market product was observed by testing 33 seroconversion panels. This study demonstrates that the modified version of the ARCHITECT Anti-HCV assay shows improved specificity for blood donor specimens compared to the current assay on market without compromising sensitivity. With the availability of the improved ARCHITECT Anti-HCV assay and the recent launch of the ARCHITECT HIV Ag/Ab Combo assay, the ARCHITECT system now offers a full hepatitis/retrovirus menu with excellent performance on a high throughput, random access, automated analyzer, ideally suited for blood screening and diagnostic applications.

  8. Host apolipoprotein B messenger RNA-editing enzyme catalytic polypeptide-like 3G is an innate defensive factor and drug target against hepatitis C virus.

    Science.gov (United States)

    Peng, Zong-Gen; Zhao, Zhi-Yun; Li, Yan-Ping; Wang, Yu-Ping; Hao, Lan-Hu; Fan, Bo; Li, Yu-Huan; Wang, Yue-Ming; Shan, Yong-Qiang; Han, Yan-Xing; Zhu, Yan-Ping; Li, Jian-Rui; You, Xue-Fu; Li, Zhuo-Rong; Jiang, Jian-Dong

    2011-04-01

    Host cellular factor apolipoprotein B messenger RNA (mRNA)-editing enzyme catalytic polypeptide-like 3G (hA3G) is a cytidine deaminase that inhibits a group of viruses including human immunodeficiency virus-1 (HIV-1). In the continuation of our research on hA3G, we found that hA3G stabilizing compounds significantly inhibited hepatitis C virus (HCV) replication. Therefore, this study investigated the role of hA3G in HCV replication. Introduction of external hA3G into HCV-infected Huh7.5 human hepatocytes inhibited HCV replication; knockdown of endogenous hA3G enhanced HCV replication. Exogenous HIV-1 virion infectivity factor (Vif) decreased intracellular hA3G and therefore enhanced HCV proliferation, suggesting that the presence of Vif might be an explanation for the HIV-1/HCV coinfection often observed in HIV-1(+) individuals. Treatment of the HCV-infected Huh7.5 cells with RN-5 or IMB-26, two known hA3G stabilizing compounds, increased intracellular hA3G and accordingly inhibited HCV replication. The compounds inhibit HCV through increasing the level of hA3G incorporated into HCV particles, but not through inhibiting HCV enzymes. However, G/A hypermutation in the HCV genome were not detected, suggesting a new antiviral mechanism of hA3G in HCV, different from that in HIV-1. Stabilization of hA3G by RN-5 was safe in vivo. hA3G appears to be a cellular restrict factor against HCV and could be a potential target for drug discovery. 2011 American Association for the Study of Liver Diseases.

  9. Ddx19 links mRNA nuclear export with progression of transcription and replication and suppresses genomic instability upon DNA damage in proliferating cells.

    Science.gov (United States)

    Hodroj, Dana; Serhal, Kamar; Maiorano, Domenico

    2017-09-03

    The DEAD-box Helicase 19 (Ddx19) gene codes for an RNA helicase involved in both mRNA (mRNA) export from the nucleus into the cytoplasm and in mRNA translation. In unperturbed cells, Ddx19 localizes in the cytoplasm and at the cytoplasmic face of the nuclear pore. Here we review recent findings related to an additional Ddx19 function in the nucleus in resolving RNA:DNA hybrids (R-loops) generated during collision between transcription and replication, and upon DNA damage. Activation of a DNA damage response pathway dependent upon the ATR kinase, a major regulator of replication fork progression, stimulates translocation of the Ddx19 protein from the cytoplasm into the nucleus. Only nuclear Ddx19 is competent to resolve R-loops, and down regulation of Ddx19 expression induces DNA double strand breaks only in proliferating cells. Overall these observations put forward Ddx19 as an important novel mediator of the crosstalk between transcription and replication.

  10. Addressing HCV infection in Europe: reported, estimated and undiagnosed cases

    DEFF Research Database (Denmark)

    Merkinaite, Simona; Lazarus, Jeff; Gore, Charles

    2008-01-01

    . At present, it is the most common cause of chronic liver disease and liver transplantation in a number of countries, with an estimated 250,000 people dying annually from HCV-related causes. Despite the magnitude of the problem, the virus does not receive adequate attention from either the general public...... or from health policy-makers. This study assesses HCV prevalence from both estimated totals and undiagnosed cases in selected European countries. Secondary sources were assessed and experts in 17 European countries were interviewed about HCV prevalence, reporting strategies and transmission. Available...

  11. Central nervous system involvement in patients with HCV-related cryoglobulinemia: review and a case report

    Directory of Open Access Journals (Sweden)

    B. Canesi

    2011-09-01

    % cryoglobulins were present, HCV antibody and HCV-RNA (type 2a-2c were positive. Cryoglobulins were never typed, because they disappeared after plasma exchanges. Liver enzymes, renal function and findings on cerebrospinal fluid were normal. Cerebral CT and MRI were also normal. Antinuclear antibodies, anti nDNA antibodies, antiphospholipid antibodies, lupus anticoagulant, ANCA, Lyme disease serology, complete tests for thrombophilia were negative. Bone aspiration was normal. The patient, in coma, was treated with two plasma exchanges. During the first treatment she recovered consciousness. Prednisone (1 mg/Kg/day and cyclophosphamide (400 mg iv for three days were added. After a week two plasma exchanges were performed again. Liver enzymes and rheumatoid factor were analyzed monthly for six months and than every two months for another six month period up to the present. Liver enzymes were always normal, rheumatoid factor was always at a lower level than the first evaluation (now it’s 311 U/ml. At present she is taking Prednisone 5 mg once a day, neurologic syntoms are absent and neurologic examination is normal. Discussion: We can conclude that: central neurologic involvement may be the clinical presentation of HCV infection and mixed cryoglobulinemia. HCV serologic tests and cryoglobulins should be considered in patient with encephalopathy of non-obvious cause; plasma exchange is the treatment of choice in acute severe forms; in some patients HCV could involve directly CNS, even in the absence of cryoglobulin production.

  12. Over-expression of the miRNA cluster at chromosome 14q32 in the alcoholic brain correlates with suppression of predicted target mRNA required for oligodendrocyte proliferation.

    Science.gov (United States)

    Manzardo, A M; Gunewardena, S; Butler, M G

    2013-09-10

    We examined miRNA expression from RNA isolated from the frontal cortex (Broadman area 9) of 9 alcoholics (6 males, 3 females, mean age 48 years) and 9 matched controls using both the Affymetrix GeneChip miRNA 2.0 and Human Exon 1.0 ST Arrays to further characterize genetic influences in alcoholism and the effects of alcohol consumption on predicted target mRNA expression. A total of 12 human miRNAs were significantly up-regulated in alcohol dependent subjects (fold change≥1.5, false discovery rate (FDR)≤0.3; p<0.05) compared with controls including a cluster of 4 miRNAs (e.g., miR-377, miR-379) from the maternally expressed 14q32 chromosome region. The status of the up-regulated miRNAs was supported using the high-throughput method of exon microarrays showing decreased predicted mRNA gene target expression as anticipated from the same RNA aliquot. Predicted mRNA targets were involved in cellular adhesion (e.g., THBS2), tissue differentiation (e.g., CHN2), neuronal migration (e.g., NDE1), myelination (e.g., UGT8, CNP) and oligodendrocyte proliferation (e.g., ENPP2, SEMA4D1). Our data support an association of alcoholism with up-regulation of a cluster of miRNAs located in the genomic imprinted domain on chromosome 14q32 with their predicted gene targets involved with oligodendrocyte growth, differentiation and signaling. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Hepatitis C virus coinfection does not influence the CD4 cell recovery in HIV-1-infected patients with maximum virologic suppression

    DEFF Research Database (Denmark)

    Peters, Lars; Mocroft, Amanda; Soriano, Vincent

    2009-01-01

    BACKGROUND: Conflicting data exist whether hepatitis C virus (HCV) affects the CD4 cell recovery in patients with HIV starting antiretroviral treatment. OBJECTIVE: To investigate the influence of HCV coinfection on the CD4 recovery in patients with maximum virologic suppression within the EuroSIDA...

  14. miR-192, miR-194 and miR-215: a convergent microRNA network suppressing tumor progression in renal cell carcinoma.

    Science.gov (United States)

    Khella, H W Z; Bakhet, M; Allo, G; Jewett, M A S; Girgis, A H; Latif, A; Girgis, H; Von Both, I; Bjarnason, G A; Yousef, G M

    2013-10-01

    MicroRNAs (miRNAs) play a crucial role in tumor progression and metastasis. We, and others, recently identified a number of miRNAs that are dysregulated in metastatic renal cell carcinoma compared with primary renal cell carcinoma. Here, we investigated three miRNAs that are significantly downregulated in metastatic tumors: miR-192, miR-194 and miR-215. Gain-of-function analyses showed that restoration of their expression decreases cell migration and invasion in renal cell carcinoma cell line models, whereas knockdown of these miRNAs resulted in enhancing cellular migration and invasion abilities. We identified three targets of these miRNAs with potential role in tumor aggressiveness: murine double minute 2, thymidylate synthase, and Smad Interacting protein 1/zinc finger E-box binding homeobox 2. We observed a convergent effect (the same molecule can be targeted by all three miRNAs) and a divergent effect (the same miRNA can control multiple targets) for these miRNAs. We experimentally validated these miRNA-target interactions using three independent approaches. First, we observed that miRNA overexpression significantly reduces the mRNA and protein levels of their targets. In the second, we observed significant reduction of the luciferase signal of a vector containing the 3'UTR of the target upon miRNA overexpression. Finally, we show the presence of inverse correlation between miRNA changes and the expression levels of their targets in patient specimens. We also examined the prognostic significance of miR-215 in renal cell carcinoma. Lower expression of miR-215 is associated with significantly reduced disease-free survival time. These findings were validated on an independent data set from The Cancer Genome Atlas. These results can pave the way to the clinical use of miRNAs as prognostic markers and therapeutic targets.

  15. Suppression of HPV-16 late L1 5′-splice site SD3632 by binding of hnRNP D proteins and hnRNP A2/B1 to upstream AUAGUA RNA motifs

    Science.gov (United States)

    Li, Xiaoze; Johansson, Cecilia; Glahder, Jacob; Mossberg, Ann-Kristin; Schwartz, Stefan

    2013-01-01

    Human papillomavirus type 16 (HPV-16) 5′-splice site SD3632 is used exclusively to produce late L1 mRNAs. We identified a 34-nt splicing inhibitory element located immediately upstream of HPV-16 late 5′-splice site SD3632. Two AUAGUA motifs located in these 34 nt inhibited SD3632. Two nucleotide substitutions in each of the HPV-16 specific AUAGUA motifs alleviated splicing inhibition and induced late L1 mRNA production from episomal forms of the HPV-16 genome in primary human keratinocytes. The AUAGUA motifs bind specifically not only to the heterogeneous nuclear RNP (hnRNP) D family of RNA-binding proteins including hnRNP D/AUF, hnRNP DL and hnRNP AB but also to hnRNP A2/B1. Knock-down of these proteins induced HPV-16 late L1 mRNA expression, and overexpression of hnRNP A2/B1, hnRNP AB, hnRNP DL and the two hnRNP D isoforms hnRNP D37 and hnRNP D40 further suppressed L1 mRNA expression. This inhibition may allow HPV-16 to hide from the immune system and establish long-term persistent infections with enhanced risk at progressing to cancer. There is an inverse correlation between expression of hnRNP D proteins and hnRNP A2/B1 and HPV-16 L1 production in the cervical epithelium, as well as in cervical cancer, supporting the conclusion that hnRNP D proteins and A2/B1 inhibit HPV-16 L1 mRNA production. PMID:24013563

  16. The NF-κB family member RelB regulates microRNA miR-146a to suppress cigarette smoke-induced COX-2 protein expression in lung fibroblasts.

    Science.gov (United States)

    Zago, Michela; Rico de Souza, Angela; Hecht, Emelia; Rousseau, Simon; Hamid, Qutayba; Eidelman, David H; Baglole, Carolyn J

    2014-04-21

    Diseases due to cigarette smoke exposure, including chronic obstructive pulmonary disease (COPD) and lung cancer, are associated with chronic inflammation typified by the increased expression of cyclooxygenase-2 (COX-2) protein. RelB is an NF-κB family member that suppresses cigarette smoke induction of COX-2 through an unknown mechanism. The ability of RelB to regulate COX-2 expression may be via miR-146a, a miRNA that attenuates COX-2 in lung fibroblasts. In this study we tested whether RelB attenuation of cigarette smoke-induced COX-2 protein is due to miR-146a. Utilizing pulmonary fibroblasts deficient in RelB expression, together with siRNA knock-down of RelB, we show the essential role of RelB in diminishing smoke-induced COX-2 protein expression despite robust activation of the canonical NF-κB pathway and subsequent induction of Cox-2 mRNA. RelB did not regulate COX-2 protein expression at the level of mRNA stability. Basal levels of miR-146a were significantly lower in Relb-deficient cells and cigarette smoke increased miR-146a expression only in Relb-expressing cells. Inhibition of miR-146a had no effects on Relb expression or induction of Cox-2 mRNA by cigarette smoke but significantly increased COX-2 protein. These data highlight the potential of a RelB-miR-146a axis as a novel regulatory pathway that attenuates inflammation in response to respiratory toxicants. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Plant RNA binding proteins for control of RNA virus infection

    Directory of Open Access Journals (Sweden)

    Sung Un eHuh

    2013-12-01

    Full Text Available Plant RNA viruses have effective strategies to infect host plants through either direct or indirect interactions with various host proteins, thus suppressing the host immune system. When plant RNA viruses enter host cells exposed RNAs of viruses are recognized by the host immune system through processes such as siRNA-dependent silencing. Interestingly, some host RNA binding proteins have been involved in the inhibition of RNA virus replication, movement, and translation through RNA-specific binding. Host plants intensively use RNA binding proteins for defense against viral infections in nature. In this mini review, we will summarize the function of some host RNA binding proteins which act in a sequence-specific binding manner to the infecting virus RNA. It is important to understand how plants effectively suppresses RNA virus infections via RNA binding proteins, and this defense system can be potentially developed as a synthetic virus defense strategy for use in crop engineering.

  18. Analysis of Tomato spotted wilt virus NSs protein indicates the importance of the N-terminal for avirulence and RNA silencing suppression

    NARCIS (Netherlands)

    Ronde, de D.; Pasquier, A.; Ying, S.; Butterbach, P.B.E.; Lohuis, D.; Kormelink, R.J.M.

    2014-01-01

    Recently, Tomato spotted wilt virus (TSWV) nonstructural protein NSs has been identified unambiguously as an avirulence (Avr) determinant for Tomato spotted wilt (Tsw)-based resistance. The observation that NSs from two natural resistance-breaking isolates had lost RNA silencing suppressor (RSS)

  19. Novel dystrophin mutations revealed by analysis of dystrophin mRNA: alternative splicing suppresses the phenotypic effect of a nonsense mutation

    Czech Academy of Sciences Publication Activity Database

    Fajkusová, L.; Lukáš, Z.; Tvrdíková, M.; Kuhrová, V.; Hájek, J.; Fajkus, Jiří

    2001-01-01

    Roč. 11, č. 2 (2001), s. 133-138 ISSN 0960-8966 R&D Projects: GA MZd IZ3700; GA MZd NM19; GA MZd NA5227 Institutional research plan: CEZ:AV0Z5004920 Keywords : Duchenne muscular dystrophy * Becker muscular dystrophy * dystrophin mRNA Subject RIV: BO - Biophysics Impact factor: 2.547, year: 2001

  20. The effect of HCV serological status on Doxorubicin based ...

    African Journals Online (AJOL)

    Karim Yousri Welaya

    2014-09-10

    Sep 10, 2014 ... Pretreatment evaluation included serological testing for HCV. FAC Adjuvant ... National Cancer Institute; IRB, Institutional Research Board; LVEF, ..... Mild Skin changes, including skin discoloration and nail changes, not ...

  1. The design of drugs for HIV and HCV.

    Science.gov (United States)

    De Clercq, Erik

    2007-12-01

    Since the discovery of the human immunodeficiency virus (HIV) in 1983, dramatic progress has been made in the development of novel antiviral drugs. The HIV epidemic fuelled the development of new antiviral drug classes, which are now combined to provide highly active antiretroviral therapies. The need for the treatment of hepatitis C virus (HCV), which was discovered in 1989, has also provided considerable impetus for the development of new classes of antiviral drugs, and future treatment strategies for chronic HCV might involve combination regimens that are analogous to those currently used for HIV. By considering the drug targets in the different stages of the life cycle of these two viruses, this article presents aspects of the history, medicinal chemistry and mechanisms of action of approved and investigational drugs for HIV and HCV, and highlights general lessons learned from anti-HIV-drug design that could be applied to HCV.

  2. Hepatitis C virus (HCV): ever in reliable partnerships?

    African Journals Online (AJOL)

    GRACE

    2006-06-16

    Jun 16, 2006 ... hemophiliacs, multiple changes in HCV genotypes were observed in 58 % of the subjects, .... similar sources of transmission (Crockett and Keeffe,. 2005). .... tests 1 year apart. Longitudinal evaluation is also very important for ...

  3. Highly-Immunogenic Virally-Vectored T-cell Vaccines Cannot Overcome Subversion of the T-cell Response by HCV during Chronic Infection

    Directory of Open Access Journals (Sweden)

    Leo Swadling

    2016-08-01

    Full Text Available An effective therapeutic vaccine for the treatment of chronic hepatitis C virus (HCV infection, as an adjunct to newly developed directly-acting antivirals (DAA, or for the prevention of reinfection, would significantly reduce the global burden of disease associated with chronic HCV infection. A recombinant chimpanzee adenoviral (ChAd3 vector and a modified vaccinia Ankara (MVA, encoding the non-structural proteins of HCV (NSmut, used in a heterologous prime/boost regimen induced multi-specific, high-magnitude, durable HCV-specific CD4+ and CD8+ T-cell responses in healthy volunteers, and was more immunogenic than a heterologous Ad regimen. We now assess the immunogenicity of this vaccine regimen in HCV infected patients (including patients with a low viral load suppressed with interferon/ribavirin therapy, determine T-cell cross-reactivity to endogenous virus, and compare immunogenicity with that observed previously in both healthy volunteers and in HCV infected patients vaccinated with the heterologous Ad regimen. Vaccination of HCV infected patients with ChAd3-NSmut/MVA-NSmut was well tolerated. Vaccine-induced HCV-specific T-cell responses were detected in 8/12 patients; however, CD4+ T-cell responses were rarely detected, and the overall magnitude of HCV-specific T-cell responses was markedly reduced when compared to vaccinated healthy volunteers. Furthermore, HCV-specific cells had a distinct partially-functional phenotype (lower expression of activation markers, granzyme B, and TNFα production, weaker in vitro proliferation, and higher Tim3 expression, with comparable Tbet and Eomes expression compared to healthy volunteers. Robust anti-vector T-cells and antibodies were induced, showing that there is no global defect in immunity. The level of viremia at the time of vaccination did not correlate with the magnitude of the vaccine-induced T-cell response. Full-length, next-generation sequencing of the circulating virus demonstrated that T

  4. Hepatitis C virus RNA functionally sequesters miR-122

    DEFF Research Database (Denmark)

    Luna, Joseph M; Scheel, Troels K H; Danino, Tal

    2015-01-01

    Hepatitis C virus (HCV) uniquely requires the liver-specific microRNA-122 for replication, yet global effects on endogenous miRNA targets during infection are unexplored. Here, high-throughput sequencing and crosslinking immunoprecipitation (HITS-CLIP) experiments of human Argonaute (AGO) during...

  5. School adolescents’ knowledge concerning hepatitis C virus (HCV

    Directory of Open Access Journals (Sweden)

    Lidia Sierpińska

    2017-01-01

    Full Text Available Introduction. Infection with hepatitis C virus (HCV is a serious clinical, epidemiological and social problem inPoland.    Objective. The objective of the study was recognition of knowledge concerning HCV infection among adolescents attending post-secondary schools. Material and method. The study was conducted in 2016, among 106 school adolescents attending two post-secondary schools inRadom, by means of a questionnaire designed by the author and a standardized questionnaire according to the Polish Group of HCV Experts. Statistical analysis was performed using the software Statistica 10.0. Results. The majority of adolescents (84.5% knew that HCV causes hepatitis C.  Boys more frequently than girls knew that the disease spreads by contact with infected blood (72.0% and 50.6%, respectively. Girls significantly more often than boys knew that approximately 700,000 people inPoland are infected with HCV (54.3% and 24.0%, respectively. According to 84.1% of respondents everyone is exposed to this infection.  Boys more often than girls (72.0% and 55.6% correctly provided examples of situations in which the infection may occur. The majority of adolescents (88.5% knew that the hepatitis C antibody (anti-HCV blood test indicates whether the person has an infection. A half of the examined adolescents (50.9% knew that there is currently no vaccine available to protect against hepatitis C, and that it is possible to cure the person infected with HCV. Conclusions. The level of adolescents’ knowledge concerning HCV infection varied according to the demographic and social factors. School adolescents should be provided incentives for prophylaxis of infection and participation in prophylactic programmes, in order to limit the risk of contracting hepatitis C.

  6. Small molecule inhibitors of HCV replication from Pomegranate

    Science.gov (United States)

    Reddy, B. Uma; Mullick, Ranajoy; Kumar, Anuj; Sudha, Govindarajan; Srinivasan, Narayanaswamy; Das, Saumitra

    2014-06-01

    Hepatitis C virus (HCV) is the causative agent of end-stage liver disease. Recent advances in the last decade in anti HCV treatment strategies have dramatically increased the viral clearance rate. However, several limitations are still associated, which warrant a great need of novel, safe and selective drugs against HCV infection. Towards this objective, we explored highly potent and selective small molecule inhibitors, the ellagitannins, from the crude extract of Pomegranate (Punica granatum) fruit peel. The pure compounds, punicalagin, punicalin, and ellagic acid isolated from the extract specifically blocked the HCV NS3/4A protease activity in vitro. Structural analysis using computational approach also showed that ligand molecules interact with the catalytic and substrate binding residues of NS3/4A protease, leading to inhibition of the enzyme activity. Further, punicalagin and punicalin significantly reduced the HCV replication in cell culture system. More importantly, these compounds are well tolerated ex vivo and`no observed adverse effect level' (NOAEL) was established upto an acute dose of 5000 mg/kg in BALB/c mice. Additionally, pharmacokinetics study showed that the compounds are bioavailable. Taken together, our study provides a proof-of-concept approach for the potential use of antiviral and non-toxic principle ellagitannins from pomegranate in prevention and control of HCV induced complications.

  7. Naturally occurring mutations associated with resistance to HCV NS5B polymerase and NS3 protease inhibitors in treatment-naïve patients with chronic hepatitis C.

    Science.gov (United States)

    Costantino, Angela; Spada, Enea; Equestre, Michele; Bruni, Roberto; Tritarelli, Elena; Coppola, Nicola; Sagnelli, Caterina; Sagnelli, Evangelista; Ciccaglione, Anna Rita

    2015-11-14

    The detection of baseline resistance mutations to new direct-acting antivirals (DAAs) in HCV chronically infected treatment-naïve patients could be important for their management and outcome prevision. In this study, we investigated the presence of mutations, which have been previously reported to be associated with resistance to DAAs in HCV polymerase (NS5B) and HCV protease (NS3) regions, in sera of treatment-naïve patients. HCV RNA from 152 naïve patients (84 % Italian and 16 % immigrants from various countries) infected with different HCV genotypes (21,1a; 21, 1b; 2, 2a; 60, 2c; 22, 3a; 25, 4d and 1, 4k) was evaluated for sequence analysis. Amplification and sequencing of fragments in the NS5B (nt 8256-8640) and NS3 (nt 3420-3960) regions of HCV genome were carried out for 152 and 28 patients, respectively. The polymorphism C316N/H in NS5B region, associated with resistance to sofosbuvir, was detected in 9 of the 21 (43 %) analysed sequences from genotype 1b-infected patients. Naturally occurring mutations V36L, and M175L in the NS3 protease region were observed in 100 % of patients infected with subtype 2c and 4. A relevant proportion of treatment naïve genotype 1b infected patients evaluated in this study harboured N316 polymorphism and might poorly respond to sofosbuvir treatment. As sofosbuvir has been approved for treatment of HCV chronic infection in USA and Europe including Italy, pre-treatment testing for N316 polymorphism on genotype 1b naïve patients should be considered for this drug.

  8. The influence of HAART on the efficacy and safety of pegylated interferon and ribavirin therapy for the treatment of chronic HCV infection in HIV-positive individuals

    Directory of Open Access Journals (Sweden)

    Vogel M

    2010-03-01

    Full Text Available Abstract Objective This study was performed to investigate the impact of HAART versus no HAART and nucleoside free versus nucleoside containing HAART on the efficacy and safety of pegylated interferon and ribavirin therapy for the treatment of chronic HCV infection in HIV/HCV co-infected patients. In addition a control group of HCV mono-infected patients undergoing anti-HCV therapy was evaluated. Methods Multicenter, partially randomized, controlled clinical trial. HIV-negative and -positive patients with chronic HCV infection were treated with pegylated interferon alfa-2a and ribavirin (800 - 1200 mg/day for 24 - 48 weeks in one of four treatment arms: HIV-negative (A, HIV-positive without HAART (B and HIV-positive on HAART (C. Patients within arm C were randomized to receive open label either a nucleoside containing (C1 or a nucleoside free HAART (C2. Results 168 patients were available for analysis. By intent-to-treat analysis similar sustained virological response rates (SVR, negative HCV-RNA 24 weeks after the end of therapy were observed comparing HIV-negative and -positive patients (54% vs. 54%, p = 1.000. Among HIV-positive patients SVR rates were similar between patients off and on HAART (57% vs. 52%, p = 0.708. Higher SVR rates were observed in patients on a nucleoside free HAART compared to patients on a nucleoside containing HAART, though confounding could not be ruled out and in the intent-to-treat analysis the difference was not statistically significant (64% vs. 46%, p = 0.209. Conclusions Similar response rates for HCV therapy can be achieved in HIV-positive and -negative patients. Patients on nucleoside free HAART reached at least equal rates of sustained virological response compared to patients on standard HAART.

  9. Marijuana-derived Δ-9-tetrahydrocannabinol suppresses Th1/Th17 cell-mediated delayed-type hypersensitivity through microRNA regulation.

    Science.gov (United States)

    Sido, Jessica M; Jackson, Austin R; Nagarkatti, Prakash S; Nagarkatti, Mitzi

    2016-09-01

    ∆(9)-Tetrahydrocannabinol (THC) is one of the major bioactive cannabinoids derived from the Cannabis sativa plant and is known for its anti-inflammatory properties. Delayed-type hypersensitivity (DTH) is driven by proinflammatory T helper cells including the classic inflammatory Th1 lineage as well as the more recently discovered Th17 lineage. In the current study, we investigated whether THC can alter the induction of Th1/Th17 cells involved in mBSA-induced DTH response. THC treatment (20 mg/kg) of C57BL/6 mice with DTH caused decreased swelling and infiltration of immune cells at the site of antigen rechallenge. Additionally, THC treatment decreased lymphocyte activation as well as Th1/Th17 lineage commitment, including reduced lineage-specific transcription factors and cytokines. Interestingly, while DTH caused an overexpression of miR-21, which increases Th17 differentiation via SMAD7 inhibition, and downregulation of miR-29b, an IFN-γ inhibitor, THC treatment reversed this microRNA (miR) dysregulation. Furthermore, when we transfected primary cells from DTH mice with miR-21 inhibitor or miR-29b mimic, as seen with THC treatment, the expression of target gene message was directly impacted increasing SMAD7 and decreasing IFN-γ expression, respectively. In summary, the current study suggests that THC treatment during DTH response can simultaneously inhibit Th1/Th17 activation via regulation of microRNA (miRNA) expression. • THC treatment inhibits simultaneous Th1/Th17 driven inflammation. • THC treatment corrects DTH-mediated microRNA dysregulation. • THC treatment regulates proinflammatory cytokines and transcription factors.

  10. In vivo targeting of ADAM9 gene expression using lentivirus-delivered shRNA suppresses prostate cancer growth by regulating REG4 dependent cell cycle progression.

    Directory of Open Access Journals (Sweden)

    Che-Ming Liu

    Full Text Available Cancer cells respond to stress by activating a variety of survival signaling pathways. A disintegrin and metalloproteinase (ADAM 9 is upregulated during cancer progression and hormone therapy, functioning in part through an increase in reactive oxygen species. Here, we present in vitro and in vivo evidence that therapeutic targeting of ADAM9 gene expression by lentivirus-delivered small hairpin RNA (shRNA significantly inhibited proliferation of human prostate cancer cell lines and blocked tumor growth in a murine model of prostate cancer bone metastasis. Cell cycle studies confirmed an increase in the G1-phase and decrease in the S-phase population of cancer cells under starvation stress conditions, which correlated with elevated intracellular superoxide levels. Microarray data showed significantly decreased levels of regenerating islet-derived family member 4 (REG4 expression in prostate cancer cells with knockdown of ADAM9 gene expression. This REG4 downregulation also resulted in induction of expression of p21(Cip1/WAF1, which negatively regulates cyclin D1 and blocks the G1/S transition. Our data reveal a novel molecular mechanism of ADAM9 in the regulation of prostate cancer cell proliferation, and suggests a combined modality of ADAM9 shRNA gene therapy and cytotoxic agents for hormone refractory and bone metastatic prostate cancer.

  11. Suppression of heat shock protein 70 by siRNA enhances the antitumor effects of cisplatin in cultured human osteosarcoma cells.

    Science.gov (United States)

    Mori, Yuki; Terauchi, Ryu; Shirai, Toshiharu; Tsuchida, Shinji; Mizoshiri, Naoki; Arai, Yuji; Kishida, Tsunao; Fujiwara, Hiroyoshi; Mazda, Osam; Kubo, Toshikazu

    2017-09-01

    Although advances in chemotherapy have improved the prognosis for osteosarcoma, some patients do not respond sufficiently to treatment. Heat shock protein 70 (Hsp70) is expressed at high levels in cancer cells and attenuates the therapeutic efficacy of anticancer agents, resulting in a poorer prognosis. This study investigated whether small interfering RNA (siRNA)-mediated inhibition of Hsp70 expression in an osteosarcoma cell line would enhance sensitivity to cisplatin. The expression of Hsp70 with cisplatin treatment was observed by using Western blotting and real-time reverse transcription polymerase chain reaction (RT-PCR). Changes in the IC 50 of cisplatin when Hsp70 was inhibited by siRNA were evaluated. Cisplatin's effectiveness in inducing apoptosis was assessed by assay of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL), caspase-3 activity, and mitochondrial membrane potential. Up-regulation of Hsp70 expression was dependent on the concentration of cisplatin. Inhibition of Hsp70 expression significantly reduced the IC 50 of cisplatin. When cisplatin was added to osteosarcoma cells with Hsp70 expression inhibited, a significant increase in apoptosis was demonstrated in TUNEL, caspase-3, and mitochondrial membrane potential assays. Inhibition of Hsp70 expression induced apoptosis in cultured osteosarcoma cells, indicating that Hsp70 inhibition enhanced sensitivity to cisplatin. Inhibition of Hsp70 expression may provide a new adjuvant therapy for osteosarcoma.

  12. RNA interference suppression of A100A4 reduces the growth and metastatic phenotype of human renal cancer cells via NF-kB-dependent MMP-2 and bcl-2 pathway.

    Science.gov (United States)

    Yang, X-C; Wang, X; Luo, L; Dong, D-H; Yu, Q-C; Wang, X-S; Zhao, K

    2013-06-01

    S100A4 is a well established marker and mediator of metastatic disease, but the exact mechanisms responsible for the metastasis promoting effects are less well defined. We tested a hypothesis that the S100A4 gene plays a role in the proliferation and invasiveness of human renal cancer cells (RCC) and may be associated with its metastatic spread. The small interference RNA vector pcDNA3.1-S100A4 siRNA was transfected in to the human renal cancer cell lines ACHN, Ketr-3, OS-RC-2, CaKi-2 and HTB-47, then treated with ABT-737 or BB94. Cell apoptosis and cell viability was detected by flow cytometry and MTT assay. Matrigel was used for cell motility and invasion assay. MMP-2, bcl-2 and S100A4 was detected by RT-PCR and western blot assay. NF-kB subunit p65 activity was detected by confocal microscopy assay. We then determine the effect S100A4 sliencing on tumor growth, lung metastasis development in vivo. Immunohistochemistry was used to detected the expression of S100A4, bcl-2, MMP-2, p65 and CD31. S100A4 silencing in ACHN cells by RNA interference significantly inhibited NF-kB and NF-kB-mediated MMP-2 and bcl-2 activation and cellular migration, proliferation, and promoted apoptosis. Furthermore, re-expression of S100A4 in S100A4-siRNA-transfected ACHN cells by transient S100A4 cDNA transfection restored the NF-kB and NF-kB-mediated MMP-2 and bcl-2 activation and their high migratory and cellular proliferative ability. An inhibitor ABT-737 (the Bcl-2 antagonist targets Bcl-2) against Bcl-2 suppressed cellular proliferation and promoted apoptosis induced by S100A4 re-expression in S100A4-siRNA-transfected ACHN cells. A inhibitor BB94 against MMPs to neutralize MMP-2 protein suppressed cellular invasion and migration induced by S100A4 re-expression in S100A4-siRNA-transfected ACHN cells. In the prevention model, S100A4 silencing inhibited primary tumor growth by (tumor weight) (76 ± 8%) and (tumor volum) (78 ± 4%) respectively and promoted apoptosis and the formation

  13. Tumor-targeting magnetic lipoplex delivery of short hairpin RNA suppresses IGF-1R overexpression of lung adenocarcinoma A549 cells in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chunmao; Ding, Chao; Kong, Minjian [Department of Cardiothoracic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009 (China); Dong, Aiqiang, E-mail: dr_dongaiqiang@sina.com [Department of Cardiothoracic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009 (China); Qian, Jianfang; Jiang, Daming; Shen, Zhonghua [Department of Cardiothoracic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009 (China)

    2011-07-08

    Highlights: {yields} We compared lipofection with magnetofection about difference of transfection efficiency on delivery a therapeutic gene in vitro and in vivo. {yields} We investigated the difference of shRNA induced by magnetofection and lipofection into A549 cell and subcutaneous tumor to knockdown IGF-1R overexpressed in A549 cell and A549 tumor. {yields} We investigated in vivo shRNA silenced IGF-1R overexpression 24, 48, and 72 h after shRNA intravenous injection into tumor-bearing mice by way of magnetofection and lipofection. {yields} Our results showed that magnetofection could achieve therapeutic gene targeted delivery into special site, which contributed to targeted gene therapy of lung cancers. -- Abstract: Liposomal magnetofection potentiates gene transfection by applying a magnetic field to concentrate magnetic lipoplexes onto target cells. Magnetic lipoplexes are self-assembling ternary complexes of cationic lipids with plasmid DNA associated with superparamagnetic iron oxide nanoparticles (SPIONs). Type1insulin-like growth factor receptor (IGF-1R), an important oncogene, is frequently overexpressed in lung cancer and mediates cancer cell proliferation and tumor growth. In this study, we evaluated the transfection efficiency (percentage of transfected cells) and therapeutic potential (potency of IGF-1R knockdown) of liposomal magnetofection of plasmids expressing GFP and shRNAs targeting IGF-1R (pGFPshIGF-1Rs) in A549 cells and in tumor-bearing mice as compared to lipofection using Lipofectamine 2000. Liposomal magnetofection provided a threefold improvement in transgene expression over lipofection and transfected up to 64.1% of A549 cells in vitro. In vitro, IGF-1R specific-shRNA transfected by lipofection inhibited IGF-1R protein by 56.1 {+-} 6% and by liposomal magnetofection by 85.1 {+-} 3%. In vivo delivery efficiency of the pGFPshIGF-1R plasmid into the tumor was significantly higher in the liposomal magnetofection group than in the

  14. Tumor-targeting magnetic lipoplex delivery of short hairpin RNA suppresses IGF-1R overexpression of lung adenocarcinoma A549 cells in vitro and in vivo

    International Nuclear Information System (INIS)

    Wang, Chunmao; Ding, Chao; Kong, Minjian; Dong, Aiqiang; Qian, Jianfang; Jiang, Daming; Shen, Zhonghua

    2011-01-01

    Highlights: → We compared lipofection with magnetofection about difference of transfection efficiency on delivery a therapeutic gene in vitro and in vivo. → We investigated the difference of shRNA induced by magnetofection and lipofection into A549 cell and subcutaneous tumor to knockdown IGF-1R overexpressed in A549 cell and A549 tumor. → We investigated in vivo shRNA silenced IGF-1R overexpression 24, 48, and 72 h after shRNA intravenous injection into tumor-bearing mice by way of magnetofection and lipofection. → Our results showed that magnetofection could achieve therapeutic gene targeted delivery into special site, which contributed to targeted gene therapy of lung cancers. -- Abstract: Liposomal magnetofection potentiates gene transfection by applying a magnetic field to concentrate magnetic lipoplexes onto target cells. Magnetic lipoplexes are self-assembling ternary complexes of cationic lipids with plasmid DNA associated with superparamagnetic iron oxide nanoparticles (SPIONs). Type1insulin-like growth factor receptor (IGF-1R), an important oncogene, is frequently overexpressed in lung cancer and mediates cancer cell proliferation and tumor growth. In this study, we evaluated the transfection efficiency (percentage of transfected cells) and therapeutic potential (potency of IGF-1R knockdown) of liposomal magnetofection of plasmids expressing GFP and shRNAs targeting IGF-1R (pGFPshIGF-1Rs) in A549 cells and in tumor-bearing mice as compared to lipofection using Lipofectamine 2000. Liposomal magnetofection provided a threefold improvement in transgene expression over lipofection and transfected up to 64.1% of A549 cells in vitro. In vitro, IGF-1R specific-shRNA transfected by lipofection inhibited IGF-1R protein by 56.1 ± 6% and by liposomal magnetofection by 85.1 ± 3%. In vivo delivery efficiency of the pGFPshIGF-1R plasmid into the tumor was significantly higher in the liposomal magnetofection group than in the lipofection group. In vivo IGF-1R

  15. Downregulation of eIF4G by microRNA-503 enhances drug sensitivity of MCF-7/ADR cells through suppressing the expression of ABC transport proteins.

    Science.gov (United States)

    Pan, Xia; Yang, Xiaoyan; Zang, Jinglei; Zhang, Si; Huang, Nan; Guan, Xinxin; Zhang, Jianhua; Wang, Zhihui; Li, Xi; Lei, Xiaoyong

    2017-06-01

    Overexpression of adenosine triphosphate-binding cassette (ABC) transport protein is emerging as a critical contributor to anticancer drug resistance. The eukaryotic translation initiation factor (eIF) 4F complex, the key modulator of mRNA translation, is regulated by the phosphoinositide 3-kinase-AKT-mammalian target of rapamycin pathway in anticancer drug-resistant tumors. The present study demonstrated the roles of ABC translation protein alterations in the acquisition of the Adriamycin (ADM)-resistant phenotype of MCF-7 human breast cells. Quantitative polymerase chain reaction and western blot analysis were applied to examine the differences in mRNA and protein levels, respectively. It was found that the expression of the ABC sub-family B member 1, ABC sub-family C member 1 and ABC sub-family G member 2 transport proteins were upregulated in MCF-7/ADR cells. An MTT assay was used to detect the cell viability, from the results MCF-7/ADR cells were less sensitive to ADM, tamoxifen (TAM) and taxol (TAX) treatment compared with MCF-7 cells. We predicted that the 3'-untranslated region of eukaryotic translation initiation factor 4-γ 1 (eIF4G) contains a potential miRNA binding site for microRNA (miR)-503 through using computational programs. These binding sites were confirmed by luciferase reporter assays. eIF4G mRNA degradation was accelerated in cells transfected with miR-503 mimics. Furthermore, it was demonstrated that eIF4G and ABC translation proteins were significantly downregulated in MCF-7/ADR cells after transfection with miR-503. It was found that miR-503 mimics could sensitize the cells to treatment with ADM, TAM and TAX. These findings demonstrated for the first time that eIF4G acted as a key factor in MCF-7/ADR cells, and may be an efficient agent for preventing and reversing multi-drug resistance in breast cancer.

  16. MicroRNA-144-3p suppresses gastric cancer progression by inhibiting epithelial-to-mesenchymal transition through targeting PBX3

    International Nuclear Information System (INIS)

    Li, Butian; Zhang, Shengping; Shen, Hao; Li, Chenglong

    2017-01-01

    MicroRNAs are aberrantly expressed in a wide variety of human cancers. The present study aims to elucidate the effects and molecular mechanisms of miR-144-3p that underlie gastric cancer (GC) development. It was observed that miR-144-3p expression was significantly decreased in GC tissues compared to that in paired non-tumor tissues; moreover, its expression was lower in tissues of advanced stage and larger tumor size, as well as in lymph node metastasis tissues compared to that in control groups. miR-144-3p expression was associated with depth of invasion (P = 0.030), tumor size (P = 0.047), lymph node metastasis (P = 0.047), and TNM stage (P = 0.048). Additionally, miR-144-3p significantly inhibited proliferation, migration, and invasion in GC cells. It also reduced F-actin expression and suppressed epithelial-to-mesenchymal transition (EMT) in GC cells. Furthermore, pre-leukemia transcription factor 3 (PBX3) was a direct target gene of miR-144-3p. PBX3 was overexpressed in GC tissues and promoted EMT in GC cells. The effects of miR-144-3p mimics or inhibitors on cell migration, invasion, and proliferation were reversed by PBX3 overexpression or downregulation respectively. These results suggest that miR-144-3p suppresses GC progression by inhibiting EMT through targeting PBX3. - Highlights: • miR-144-3p is downregulated in gastric cancer tissues and associated with malignant clinical factors. • miR-144-3p inhibits proliferation, migration, and invasion in gastric cancer cells. • PBX3 is a direct target of miR-144-3p and promotes EMT in gastric cancer. • miR-144-3p suppresses EMT in gastric cancer by regulating PBX3.

  17. Antiviral Effect of Ribavirin against HCV Associated with Increased Frequency of G-to-A and C-to-U Transitions in Infectious Cell Culture Model

    DEFF Research Database (Denmark)

    Galli, Andrea; Mens, Helene; Gottwein, Judith M

    2018-01-01

    -polymerase gene was amplified, cloned, and sequenced to estimate genetic distances. We confirm that the antiviral effect of all three RBV-drug forms on HCV relies on induction of specific transitions (G-to-A and C-to-U). These mutations lead to generation of non-infectious virions, reflected by decreased spread......Ribavirin (RBV) is a broad-spectrum antiviral active against a wide range of RNA viruses. Despite having been used for decades in the treatment of chronic hepatitis C virus (HCV) infection, the precise mechanism of action of RBV is unknown. In other viruses, it inhibits propagation by increasing...... the rate of G-to-A and C-to-U transitions. Here, we utilized the J6/JFH1 HCV cell-culture system to investigate whether RBV inhibits HCV through the same mechanism. Infected Huh7.5 cells were treated with increasing concentrations of RBV or its phosphorylated forms. A fragment of the HCV NS5B...

  18. Model projections on the impact of HCV treatment in the prevention of HCV transmission among people who inject drugs in Europe

    DEFF Research Database (Denmark)

    Fraser, Hannah; Martin, Natasha K; Brummer-Korvenkontio, Henrikki

    2018-01-01

    BACKGROUND: Prevention of hepatitis C virus (HCV) transmission among people who inject drugs (PWID) is critical to eliminating HCV in Europe. We estimate impact of current and scaled-up HCV treatment with and without scaling-up opioid substitution therapy (OST) and needle and syringe programmes (...

  19. High awareness of hepatitis C virus (HCV) but limited knowledge of HCV complications among HIV-positive and HIV-negative men who have sex with men

    NARCIS (Netherlands)

    Lambers, Femke A. E.; Prins, Maria; Davidovich, Udi; Stolte, Ineke G.

    2014-01-01

    Hepatitis C virus (HCV) has emerged as a sexually transmitted infection among HIV-positive men who have sex with men (MSM) in high-income countries. Little is reported about HCV awareness among MSM, although this is essential for developing targeted prevention strategies. We, therefore, studied HCV

  20. Effect of abacavir on sustained virologic response to HCV treatment in HIV/HCV co-infected patients, Cohere in Eurocoord

    DEFF Research Database (Denmark)

    Smit, Colette; Arends, Joop; Peters, Lars

    2015-01-01

    BACKGROUND: Contradicting results on the effect of abacavir (ABC) on hepatitis C virus (HCV) treatment responses in HIV/HCV co-infected patients have been reported. We evaluated the influence of ABC on the response to pegylated interferon (pegIFN) and ribavirin (RBV)-containing HCV treatment in H...

  1. MicroRNA-130a and -130b enhance activation of hepatic stellate cells by suppressing PPARγ expression: A rat fibrosis model study

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Le; Wang, Jinlong; Lu, Hongwei [Department of General Surgery, The Second Affiliated Hospital of Xi' an Jiaotong University, No.157, West 5th Road, Xi' an, Shaanxi 710004 (China); Zhang, Guoyu [West Hospital Ward 1, Shaanxi Provincial People' s Hospital, No.256, Youyi Road(west), Xi' an, Shaanxi 710068 (China); Liu, Yang; Wang, Jiazhong; Zhang, Yafei; Shang, Hao; Ji, Hong; Chen, Xi; Duan, Yanxia [Department of General Surgery, The Second Affiliated Hospital of Xi' an Jiaotong University, No.157, West 5th Road, Xi' an, Shaanxi 710004 (China); Li, Yiming, E-mail: yiminngli@163.com [Department of General Surgery, The Second Affiliated Hospital of Xi' an Jiaotong University, No.157, West 5th Road, Xi' an, Shaanxi 710004 (China)

    2015-09-25

    Hepatic stellate cells (HSCs) are the primary sources of extracellular matrix (ECM) in normal and fibrotic liver. Peroxisome proliferator-activated receptor gamma (PPARγ) maintains HSCs in a quiescent state, and its downregulation induces HSC activation. MicroRNAs (miRNAs) can induce PPARγ mRNA degradation, but the mechanism by which miRNAs regulate PPARγ in rat HSCs is unclear. This study aimed to investigate some miRNAs which putatively bind to the 3′-untranslated region (3′-UTR) of PPARγ mRNA, and increase expression of ECM genes in rat HSCs. In carbon tetrachloride injection (CCl{sub 4}) and common bile duct ligation (CBDL) liver fibrosis models, miRNAs miR-130a, miR-130b, miR-301a, miR-27b and miR-340 levels were found to be increased and PPARγ expression decreased. Overexpression of miR-130a and miR-130b enhanced cell proliferation by involving Runx3. MiR-130a and miR-130b decreased PPARγ expression by targeting the 3′-UTR of PPARγ mRNA in rat HSC-T6 cells. Transforming growth factor-β1 (TGF-β1) may mediate miR-130a and miR-130b overexpression, PPARγ downregulation, and ECM genes overexpression in cell culture. These findings suggest that miR-130a and miR-130b are involved in downregulation of PPARγ in liver fibrosis. - Highlights: • MiR-130a and miR-130b are increased and PPARγ is decreased in liver fibrosis models. • MiR-130a and miR-130b decreased PPARγ by targeting the 3′-UTR of PPARγ mRNA. • MiR-130a and miR-130b enhanced HSC cell proliferation by involving Runx3. • TGF-β1 may mediate miR-130a and miR-130b overexpression.

  2. Radiation-induced phosphorylation of P53 protects radioresistant Spodoptera frugiperda 9 cells by suppressing microRNA-31-Bim-Bax mediated apoptosis

    International Nuclear Information System (INIS)

    Kumar, Ashish; Chandna, Sudhir

    2016-01-01

    In this study, we demonstrate the role of microRNA-31 (miR-31) in the regulation of radiation-induced apoptosis in model radioresistant insect cell line Sf9 (derived from the ovaries of insect Spodoptera frugiperda) which carries well-conserved apoptotic response. We also investigated the miR-31 expression regulation by p53 homologue in these cells. Our initial in silico analysis confirmed perfect conservation of mature miR-31 across various insect orders, hence we designed biotinylated probes from Bombyx mori sequence for successful detection of miR-31 in Sf9 cells

  3. Advances in the treatment of HIV/HCV coinfection in adults.

    Science.gov (United States)

    Schlabe, Stefan; Rockstroh, Jürgen K

    2018-01-01

    Direct-acting antivirals (DAA) have revolutionized the modern treatment of chronic hepatitis C (HCV). These highly efficacious, well-tolerated, all-oral HCV regimens allow cure of HCV in over 95% of HCV-monoinfected as well as HIV/HCV-coinfected patients with short treatment durations of 8-12 weeks. Areas covered: This review will address recent developments of DAA-therapy in HIV/HCV-coinfected patients in clinical trials and real life cohorts and evaluate remaining challenges, particularly resistance, drug-drug interactions, acute HCV infection and liver transplantation focusing on HIV/HCV-coinfected patients. Expert opinion: Indeed, all available data have shown that HIV/HCV-coinfection has no impact on HCV-treatment outcome. Management, indication of therapy and follow-up of HCV-infection are now the same for both patient populations. HIV/HCV-coinfected patients however, require careful evaluation of potential drug-drug-interactions between HCV drugs and HIV antiretroviral therapy, medication for substance abuse and other comedications. The few remaining gaps in DAA-therapy in particular treatment of cirrhotic treatment-experienced genotype 3 infections, decompensated cirrhosis, chronic kidney disease and patients with prior DAA treatment failure have mostly been overcome by the development of new HCV agents recently licensed. Clearly, the biggest challenge globally remains the access to treatment and the inclusion of all patient populations affected in particular people who inject drugs (PWID).

  4. Intrahepatic Vγ9Vδ2 T-cells from HCV-infected patients show an exhausted phenotype but can inhibit HCV replication.

    Science.gov (United States)

    Cimini, E; Bordoni, V; Sacchi, A; Visco-Comandini, U; Montalbano, M; Taibi, C; Casetti, R; Lalle, E; D'Offizi, G; Capobianchi, M R; Agrati, C

    2018-01-02

    Hepatitis C virus (HCV) persistence results from inefficiencies of both innate and adaptive immune responses to eradicate the infection. A functional impairment of circulating Vγ9Vδ2 T-cells was described but few data are available on Vγ9Vδ2 T-cells in the liver that, however, represents the battlefield in the HCV/host interaction. Aim of this work was to compare circulating and intrahepatic Vγ9Vδ2 T-cells in chronic HCV-infected patients (HCV pos ) and in HCV-negative (HCV neg ) subjects. Phenotypic and functional analysis was performed by flow cytometry. Anti-HCV activity was analyzed by using an in vitro autologous liver culture system. Independently from HCV infection, the liver was enriched of Vγ9Vδ2 T-cells expressing an effector/activated phenotype. In contrast, an enrichment of PD-1 expressing Vγ9Vδ2 T-cells was observed both in the peripheral blood and in the liver of HCV pos patients, probably due to a persistent antigenic stimulation. Moreover, a lower frequency of IFN-γ producing Vγ9Vδ2 T-cells was observed in the liver of HCV pos patients, suggesting a functional impairment in the cytokine production in HCV pos liver. Despite this hypo-responsiveness, intrahepatic Vγ9Vδ2 T-cells are able to exert an anti-HCV activity after specific stimulation. Altogether, our data show that HCV infection induced a dysregulation of intrahepatic Vγ9Vδ2 T cells that maintain their anti-HCV activity after specific stimulation. A study aimed to evaluate the mechanisms of the antiviral activity may be useful to identify new pathways able to improve Vγ9Vδ2 T-cells intrahepatic function during HCV infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Downregulation of viral RNA translation by hepatitis C virus non-structural protein NS5A requires the poly(U/UC) sequence in the 3' UTR.

    Science.gov (United States)

    Hoffman, Brett; Li, Zhubing; Liu, Qiang

    2015-08-01

    Hepatitis C virus (HCV) non-structural protein 5A (NS5A) is essential for viral replication; however, its effect on HCV RNA translation remains controversial partially due to the use of reporters lacking the 3' UTR, where NS5A binds to the poly(U/UC) sequence. We investigated the role of NS5A in HCV translation using a monocistronic RNA containing a Renilla luciferase gene flanked by the HCV UTRs. We found that NS5A downregulated viral RNA translation in a dose-dependent manner. This downregulation required both the 5' and 3' UTRs of HCV because substitution of either sequence with the 5' and 3' UTRs of enterovirus 71 or a cap structure at the 5' end eliminated the effects of NS5A on translation. Translation of the HCV genomic RNA was also downregulated by NS5A. The inhibition of HCV translation by NS5A required the poly(U/UC) sequence in the 3' UTR as NS5A did not affect translation when it was deleted. In addition, we showed that, whilst the amphipathic α-helix of NS5A has no effect on viral translation, the three domains of NS5A can inhibit translation independently, also dependent on the presence of the poly(U/UC) sequence in the 3' UTR. These results suggested that NS5A downregulated HCV RNA translation through a mechanism involving the poly(U/UC) sequence in the 3' UTR.

  6. Interferon and ribavarin associated depression in hcv patients and role of selective serotonin reuptake inhibitors

    International Nuclear Information System (INIS)

    Bashir, K.; Hussain, C.A.; Amer, K.

    2013-01-01

    Objective: To determine the frequency and severity of depression associated with antiviral therapy of Hepatitis C Virus (HCV) infection and effect of selective serotonin reuptake Inhibitors (SSRIs) to treat these depressive symptoms. Type of Study: Observational Analytical study. Place of Study and Duration: The study was conducted at Psychiatry, Medicine and Pathology department of Combined Military Hospital Sialkot Pakistan from February 2009 to July 2010. Subjects and Methods: All the patients in this study were suffering from HCV infection and were managed with Interferon (3 m.i.u. s/c thrice weekly) and Cap Ribavirin (400 mg bid) for six months. Patients were assessed by Hospital Anxiety and Depression Scale (HADS) - Urdu Version and Beck's Depressive Inventory (BDI) Scores after twelve weeks of antiviral therapy. Depressed patients were managed with selective serotonin reuptake inhibitors (SSRIs) for six weeks and again evaluated on HADS and BDI Scores. Response to SSRIs was defined as complete response, partial response and no response. Results: A total of 105 patients were studied out of which 75 were male and 30 were female with mean age 29.4 years. Out of these 54 (51.43%) patients developed depression and this tendency to develop depression was not related with the age and sex of the patients. The mean HADS and BDI scores before and after treatments with SSRIs were compared for significance and it was quite significant. There was not a single patient who did not show response to SSRIs. Conclusion: Depression is frequently associated with antiviral therapy of HCV RNA viraemia with interferon and SSRIs have proved an effective and safe remedy in these patients. (author)

  7. Long Intergenic Noncoding RNA 00511 Acts as an Oncogene in Non–small-cell Lung Cancer by Binding to EZH2 and Suppressing p57

    Directory of Open Access Journals (Sweden)

    Cheng-Cao Sun

    2016-01-01

    Full Text Available Long noncoding RNAs (lncRNAs play crucial roles in carcinogenesis. However, the function and mechanism of lncRNAs in human non–small-cell lung cancer (NSCLC are still remaining largely unknown. Long intergenic noncoding RNA 00511 (LINC00511 has been found to be upregulated and acts as an oncogene in breast cancer, but little is known about its expression pattern, biological function and underlying mechanism in NSCLC. Herein, we identified LINC00511 as an oncogenic lncRNA by driving tumorigenesis in NSCLC. We found LINC00511 was upregulated and associated with oncogenesis, tumor size, metastasis, and poor prognosis in NSCLC. Moreover, LINC00511 affected cell proliferation, invasiveness, metastasis, and apoptosis in multiple NSCLC cell lines. Mechanistically, LINC00511 bound histone methyltransferase enhancer of zeste homolog 2 ((EZH2, the catalytic subunit of the polycomb repressive complex 2 (PRC2, a highly conserved protein complex that regulates gene expression by methylating lysine 27 on histone H3, and acted as a modular scaffold of EZH2/PRC2 complexes, coordinated their localization, and specified the histone modification pattern on the target genes, including p57, and consequently altered NSCLC cell biology. Thus, LINC00511 is mechanistically, functionally, and clinically oncogenic in NSCLC. Targeting LINC00511 and its pathway may be meaningful for treating patients with NSCLC.

  8. Human Monocytes Accelerate Proliferation and Blunt Differentiation of Preadipocytes in Association With Suppression of C/Ebpα mRNA

    Science.gov (United States)

    Couturier, Jacob; Patel, Sanjeet G.; Iyer, Dinakar; Balasubramanyam, Ashok; Lewis, Dorothy E.

    2015-01-01

    Obesity, type 2 diabetes, and HIV-associated lipodystrophy are associated with abnormalities in adipocyte growth and differentiation. In persons with these conditions, adipose depots contain increased numbers of macrophages, but the origins of these cells and their specific effects are uncertain. Peripheral blood mononuclear cells (PBMC)-derived monocytes, but not T cells, cocultured via transwells with primary subcutaneous preadipocytes, increased proliferation (approximately twofold) and reduced differentiation (~50%) of preadipocytes. Gene expression analyses in proliferating preadipocytes (i.e., prior to hormonal induction of terminal differentiation) revealed that monocytes down-regulated mRNA levels of CCAAT/enhancer binding protein, alpha (C/EBPα) and up-regulated mRNA levels of G0/G1 switch 2 (G0S2) message, genes important for the regulation of adipogenesis and the cell cycle. These data indicate that circulating peripheral blood monocytes can disrupt adipogenesis by interfering with a critical step in C/EBPα and G0S2 transcription required for preadipocytes to make the transition from proliferation to differentiation. Interactions between preadipocytes and monocytes also increased the inflammatory cytokines IL-6 and IL-8, as well as a novel chemotactic cytokine, CXCL1. Additionally, the levels of both IL-6 and CXCL1 were highest when preadipocytes and monocytes were cultured together, compared to each cell in culture alone. Such cross-talk amplifies the production of mediators of tissue inflammation. PMID:21869759

  9. microRNA 125a Regulates MHC-I Expression on Esophageal Adenocarcinoma Cells, Associated With Suppression of Anti-tumor Immune Response and Poor Outcomes of Patients.

    Science.gov (United States)

    Mari, Luigi; Hoefnagel, Sanne J M; Zito, Domenico; van de Meent, Marian; van Endert, Peter; Calpe, Silvia; Sancho Serra, Maria Del Carmen; Heemskerk, Mirjam H M; van Laarhoven, Hanneke W M; Hulshof, Maarten C C M; Gisbertz, Susanne S; Medema, Jan Paul; van Berge Henegouwen, Mark I; Meijer, Sybren L; Bergman, Jacques J G H M; Milano, Francesca; Krishnadath, Kausilia K

    2018-06-07

    Immune checkpoint inhibition may affect growth or progression of highly aggressive cancers, such as esophageal adenocarcinoma (EAC). We investigated the regulation of expression of major histocompatibility complex, class 1 (MHC-I) proteins (encoded by HLA-A, HLA-B, and HLA-C) and the immune response to EACs in patient samples. We performed quantitative PCR array analyses of OE33 cells and OE19 cells, which express different levels of the ATP binding cassette subfamily B member