WorldWideScience

Sample records for supporting reward processes

  1. Neural correlates of reward processing in healthy siblings of patients with schizophrenia : Reward processing in schizophrenia siblings

    NARCIS (Netherlands)

    Hanssen, E.M.E.

    2015-01-01

    Deficits in motivational behavior and psychotic symptoms often observed in schizophrenia (SZ) may be driven by dysfunctional reward processing (RP). RP can be divided in two different stages; reward anticipation and reward consumption. Aberrant processing during reward anticipation seems to be

  2. A review of reward processing and motivational impairment in schizophrenia.

    Science.gov (United States)

    Strauss, Gregory P; Waltz, James A; Gold, James M

    2014-03-01

    This article reviews and synthesizes research on reward processing in schizophrenia, which has begun to provide important insights into the cognitive and neural mechanisms associated with motivational impairments. Aberrant cortical-striatal interactions may be involved with multiple reward processing abnormalities, including: (1) dopamine-mediated basal ganglia systems that support reinforcement learning and the ability to predict cues that lead to rewarding outcomes; (2) orbitofrontal cortex-driven deficits in generating, updating, and maintaining value representations; (3) aberrant effort-value computations, which may be mediated by disrupted anterior cingulate cortex and midbrain dopamine functioning; and (4) altered activation of the prefrontal cortex, which is important for generating exploratory behaviors in environments where reward outcomes are uncertain. It will be important for psychosocial interventions targeting negative symptoms to account for abnormalities in each of these reward processes, which may also have important interactions; suggestions for novel behavioral intervention strategies that make use of external cues, reinforcers, and mobile technology are discussed.

  3. Neural processing of reward in adolescent rodents

    Directory of Open Access Journals (Sweden)

    Nicholas W. Simon

    2015-02-01

    Full Text Available Immaturities in adolescent reward processing are thought to contribute to poor decision making and increased susceptibility to develop addictive and psychiatric disorders. Very little is known; however, about how the adolescent brain processes reward. The current mechanistic theories of reward processing are derived from adult models. Here we review recent research focused on understanding of how the adolescent brain responds to rewards and reward-associated events. A critical aspect of this work is that age-related differences are evident in neuronal processing of reward-related events across multiple brain regions even when adolescent rats demonstrate behavior similar to adults. These include differences in reward processing between adolescent and adult rats in orbitofrontal cortex and dorsal striatum. Surprisingly, minimal age related differences are observed in ventral striatum, which has been a focal point of developmental studies. We go on to discuss the implications of these differences for behavioral traits affected in adolescence, such as impulsivity, risk-taking, and behavioral flexibility. Collectively, this work suggests that reward-evoked neural activity differs as a function of age and that regions such as the dorsal striatum that are not traditionally associated with affective processing in adults may be critical for reward processing and psychiatric vulnerability in adolescents.

  4. Renewal processes with costs and rewards

    NARCIS (Netherlands)

    Vlasiou, M.; Cochran, J.J.; Cox, L.A.; Keskinocak, P.; Kharoufeh, J.P.; Smith, J.C.

    2011-01-01

    We review the theory of renewal reward processes, which describes renewal processes that have some cost or reward associated with each cycle. We present a new simplified proof of the renewal reward theorem that mimics the proof of the Elementary Renewal Theorem and avoids the technicalities in the

  5. A correction term for the covariance of renewal-reward processes with multivariate rewards

    NARCIS (Netherlands)

    Patch, B.; Nazarathy, Y.; Taimre, T.

    We consider a renewal-reward process with multivariate rewards. Such a process is constructed from an i.i.d. sequence of time periods, to each of which there is associated a multivariate reward vector. The rewards in each time period may depend on each other and on the period length, but not on the

  6. The endocannabinoid system in brain reward processes.

    Science.gov (United States)

    Solinas, M; Goldberg, S R; Piomelli, D

    2008-05-01

    Food, drugs and brain stimulation can serve as strong rewarding stimuli and are all believed to activate common brain circuits that evolved in mammals to favour fitness and survival. For decades, endogenous dopaminergic and opioid systems have been considered the most important systems in mediating brain reward processes. Recent evidence suggests that the endogenous cannabinoid (endocannabinoid) system also has an important role in signalling of rewarding events. First, CB(1) receptors are found in brain areas involved in reward processes, such as the dopaminergic mesolimbic system. Second, activation of CB(1) receptors by plant-derived, synthetic or endogenous CB(1) receptor agonists stimulates dopaminergic neurotransmission, produces rewarding effects and increases rewarding effects of abused drugs and food. Third, pharmacological or genetic blockade of CB(1) receptors prevents activation of dopaminergic neurotransmission by several addictive drugs and reduces rewarding effects of food and these drugs. Fourth, brain levels of the endocannabinoids anandamide and 2-arachidonoylglycerol are altered by activation of reward processes. However, the intrinsic activity of the endocannabinoid system does not appear to play a facilitatory role in brain stimulation reward and some evidence suggests it may even oppose it. The influence of the endocannabinoid system on brain reward processes may depend on the degree of activation of the different brain areas involved and might represent a mechanism for fine-tuning dopaminergic activity. Although involvement of the various components of the endocannabinoid system may differ depending on the type of rewarding event investigated, this system appears to play a major role in modulating reward processes.

  7. Social and monetary reward processing in autism spectrum disorders.

    Science.gov (United States)

    Delmonte, Sonja; Balsters, Joshua H; McGrath, Jane; Fitzgerald, Jacqueline; Brennan, Sean; Fagan, Andrew J; Gallagher, Louise

    2012-09-26

    Social motivation theory suggests that deficits in social reward processing underlie social impairments in autism spectrum disorders (ASD). However, the extent to which abnormalities in reward processing generalize to other classes of stimuli remains unresolved. The aim of the current study was to examine if reward processing abnormalities in ASD are specific to social stimuli or can be generalized to other classes of reward. Additionally, we sought to examine the results in the light of behavioral impairments in ASD. Participants performed adapted versions of the social and monetary incentive delay tasks. Data from 21 unmedicated right-handed male participants with ASD and 21 age- and IQ-matched controls were analyzed using a factorial design to examine the blood-oxygen-level-dependent (BOLD) response during the anticipation and receipt of both reward types. Behaviorally, the ASD group showed less of a reduction in reaction time (RT) for rewarded compared to unrewarded trials than the control group. In terms of the fMRI results, there were no significant group differences in reward circuitry during reward anticipation. During the receipt of rewards, there was a significant interaction between group and reward type in the left dorsal striatum (DS). The ASD group showed reduced activity in the DS compared to controls for social rewards but not monetary rewards and decreased activation for social rewards compared to monetary rewards. Controls showed no significant difference between the two reward types. Increased activation in the DS during social reward processing was associated with faster response times for rewarded trials, compared to unrewarded trials, in both groups. This is in line with behavioral results indicating that the ASD group showed less of a reduction in RT for rewarded compared to unrewarded trials. Additionally, de-activation to social rewards was associated with increased repetitive behavior in ASD. In line with social motivation theory, the ASD

  8. Neural Reward Processing Mediates the Relationship between Insomnia Symptoms and Depression in Adolescence.

    Science.gov (United States)

    Casement, Melynda D; Keenan, Kate E; Hipwell, Alison E; Guyer, Amanda E; Forbes, Erika E

    2016-02-01

    Emerging evidence suggests that insomnia may disrupt reward-related brain function-a potentially important factor in the development of depressive disorder. Adolescence may be a period during which such disruption is especially problematic given the rise in the incidence of insomnia and ongoing development of neural systems that support reward processing. The present study uses longitudinal data to test the hypothesis that disruption of neural reward processing is a mechanism by which insomnia symptoms-including nocturnal insomnia symptoms (NIS) and nonrestorative sleep (NRS)-contribute to depressive symptoms in adolescent girls. Participants were 123 adolescent girls and their caregivers from an ongoing longitudinal study of precursors to depression across adolescent development. NIS and NRS were assessed annually from ages 9 to 13 years. Girls completed a monetary reward task during a functional MRI scan at age 16 years. Depressive symptoms were assessed at ages 16 and 17 years. Multivariable regression tested the prospective associations between NIS and NRS, neural response during reward anticipation, and the mean number of depressive symptoms (omitting sleep problems). NRS, but not NIS, during early adolescence was positively associated with late adolescent dorsal medial prefrontal cortex (dmPFC) response to reward anticipation and depressive symptoms. DMPFC response mediated the relationship between early adolescent NRS and late adolescent depressive symptoms. These results suggest that NRS may contribute to depression by disrupting reward processing via altered activity in a region of prefrontal cortex involved in affective control. The results also support the mechanistic differentiation of NIS and NRS. © 2016 Associated Professional Sleep Societies, LLC.

  9. Integration of homeostatic signaling and food reward processing in the human brain.

    Science.gov (United States)

    Simon, Joe J; Wetzel, Anne; Sinno, Maria Hamze; Skunde, Mandy; Bendszus, Martin; Preissl, Hubert; Enck, Paul; Herzog, Wolfgang; Friederich, Hans-Christoph

    2017-08-03

    Food intake is guided by homeostatic needs and by the reward value of food, yet the exact relation between the two remains unclear. The aim of this study was to investigate the influence of different metabolic states and hormonal satiety signaling on responses in neural reward networks. Twenty-three healthy participants underwent functional magnetic resonance imaging while performing a task distinguishing between the anticipation and the receipt of either food- or monetary-related reward. Every participant was scanned twice in a counterbalanced fashion, both during a fasted state (after 24 hours fasting) and satiety. A functional connectivity analysis was performed to investigate the influence of satiety signaling on activation in neural reward networks. Blood samples were collected to assess hormonal satiety signaling. Fasting was associated with sensitization of the striatal reward system to the anticipation of food reward irrespective of reward magnitude. Furthermore, during satiety, individual ghrelin levels were associated with increased neural processing during the expectation of food-related reward. Our findings show that physiological hunger stimulates food consumption by specifically increasing neural processing during the expectation (i.e., incentive salience) but not the receipt of food-related reward. In addition, these findings suggest that ghrelin signaling influences hedonic-driven food intake by increasing neural reactivity during the expectation of food-related reward. These results provide insights into the neurobiological underpinnings of motivational processing and hedonic evaluation of food reward. ClinicalTrials.gov NCT03081585. This work was supported by the German Competence Network on Obesity, which is funded by the German Federal Ministry of Education and Research (FKZ 01GI1122E).

  10. Acute Stress Influences Neural Circuits of Reward Processing

    Directory of Open Access Journals (Sweden)

    Anthony John Porcelli

    2012-11-01

    Full Text Available People often make decisions under aversive conditions such as acute stress. Yet, less is known about the process in which acute stress can influence decision-making. A growing body of research has established that reward-related information associated with the outcomes of decisions exerts a powerful influence over the choices people make and that an extensive network of brain regions, prominently featuring the striatum, is involved in the processing of this reward-related information. Thus, an important step in research on the nature of acute stress’ influence over decision-making is to examine how it may modulate responses to rewards and punishments within reward-processing neural circuitry. In the current experiment, we employed a simple reward processing paradigm – where participants received monetary rewards and punishments – known to evoke robust striatal responses. Immediately prior to performing each of two task runs, participants were exposed to acute stress (i.e., cold pressor or a no stress control procedure in a between-subjects fashion. No stress group participants exhibited a pattern of activity within the dorsal striatum and orbitofrontal cortex consistent with past research on outcome processing – specifically, differential responses for monetary rewards over punishments. In contrast, acute stress group participants’ dorsal striatum and orbitofrontal cortex demonstrated decreased sensitivity to monetary outcomes and a lack of differential activity. These findings provide insight into how neural circuits may process rewards and punishments associated with simple decisions under acutely stressful conditions.

  11. Adaptive neural reward processing during anticipation and receipt of monetary rewards in mindfulness meditators.

    Science.gov (United States)

    Kirk, Ulrich; Brown, Kirk Warren; Downar, Jonathan

    2015-05-01

    Reward seeking is ubiquitous and adaptive in humans. But excessive reward seeking behavior, such as chasing monetary rewards, may lead to diminished subjective well-being. This study examined whether individuals trained in mindfulness meditation show neural evidence of lower susceptibility to monetary rewards. Seventy-eight participants (34 meditators, 44 matched controls) completed the monetary incentive delay task while undergoing functional magnetic resonance imaging. The groups performed equally on the task, but meditators showed lower neural activations in the caudate nucleus during reward anticipation, and elevated bilateral posterior insula activation during reward anticipation. Meditators also evidenced reduced activations in the ventromedial prefrontal cortex during reward receipt compared with controls. Connectivity parameters between the right caudate and bilateral anterior insula were attenuated in meditators during incentive anticipation. In summary, brain regions involved in reward processing-both during reward anticipation and receipt of reward-responded differently in mindfulness meditators than in nonmeditators, indicating that the former are less susceptible to monetary incentives. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  12. Retention preferences and the relationship between total rewards, perceived organisational support and perceived supervisor support

    Directory of Open Access Journals (Sweden)

    Wilmien Smit

    2015-08-01

    Full Text Available Orientation: Currently there is much debate whether modifying traditional reward packages to focus on the preferences of multi-generations would be essential in attracting, motivating and retaining talent. Total reward factors, perceived organisational support and perceived supervisor support are distinct but related concepts, all of which appear to influence an employee’s decision to stay at an organisation. Research purpose: The objective of this study was to identify the different total reward components that multi-generations prefer as most important for retention. In essence, the study aims to establish possible relationships between multi-generations’ total reward components, perceived organisational support, and perceived supervisor support. Motivation for the study: This study is useful as it conducts a contemporary retention exploration that considers both the emerging demographic workforce shift and the new paradigm shift towards talent management. Research methodology: A quantitative, cross-sectional research design was applied to gather data from employees (N = 303 from different industry sectors in South African organisations. Main findings: The results showed that performance management and remuneration are considered to be the most important retention factors amongst multi-generation groups. Differences between total reward preferences and demographical variables, which include age, gender, race, industry and job level, were found. Practical/managerial implications: Organisations should design their reward packages by taking employees preferences into account. More specifically, organisations should focus on remuneration, performance management and development opportunities in order to retain scarce skills. Contribution/value additions: The results of the study can assist managers to design effective retention strategies, whilst also providing crucial information for the retention and motivation of employees.

  13. Ventral striatal activity links adversity and reward processing in children

    Directory of Open Access Journals (Sweden)

    Niki H. Kamkar

    2017-08-01

    Full Text Available Adversity impacts many aspects of psychological and physical development including reward-based learning and decision-making. Mechanisms relating adversity and reward processing in children, however, remain unclear. Here, we show that adversity is associated with potentiated learning from positive outcomes and impulsive decision-making, but unrelated to learning from negative outcomes. We then show via functional magnetic resonance imaging that the link between adversity and reward processing is partially mediated by differences in ventral striatal response to rewards. The findings suggest that early-life adversity is associated with alterations in the brain’s sensitivity to rewards accounting, in part, for the link between adversity and altered reward processing in children.

  14. Ventral striatal activity links adversity and reward processing in children.

    Science.gov (United States)

    Kamkar, Niki H; Lewis, Daniel J; van den Bos, Wouter; Morton, J Bruce

    2017-08-01

    Adversity impacts many aspects of psychological and physical development including reward-based learning and decision-making. Mechanisms relating adversity and reward processing in children, however, remain unclear. Here, we show that adversity is associated with potentiated learning from positive outcomes and impulsive decision-making, but unrelated to learning from negative outcomes. We then show via functional magnetic resonance imaging that the link between adversity and reward processing is partially mediated by differences in ventral striatal response to rewards. The findings suggest that early-life adversity is associated with alterations in the brain's sensitivity to rewards accounting, in part, for the link between adversity and altered reward processing in children. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Reward anticipation and processing of social versus nonsocial stimuli in children with and without autism spectrum disorders.

    Science.gov (United States)

    Stavropoulos, Katherine K M; Carver, Leslie J

    2014-12-01

    How children respond to social and nonsocial rewards has important implications for both typical and atypical social-cognitive development. Individuals with autism spectrum disorders (ASD) are thought to process rewards differently than typically developing (TD) individuals. However, there is little direct evidence to support this claim. Two event-related potentials were measured. The stimulus preceding negativity (SPN) was utilized to measure reward anticipation, and the feedback related negativity (FRN) was utilized to measure reward processing. Participants were 6- to 8-year-olds with (N = 20) and without (N = 23) ASD. Children were presented with rewards accompanied by incidental face or nonface stimuli. Nonface stimuli were composed of scrambled face elements in the shape of arrows, controlling for low-level visual properties. Children with ASD showed smaller responses while anticipating and processing rewards accompanied by social stimuli than TD children. Anticipation and processing of rewards accompanied by nonsocial stimuli was intact in children with ASD. This is the first study to measure both reward anticipation and processing in ASD while controlling for reward properties. The findings provide evidence that children with autism have reward anticipation and processing deficits for social stimuli only. Our results suggest that while typically developing children find social stimuli more salient than nonsocial stimuli, children with ASD may have the opposite preference. © 2014 The Authors. Journal of Child Psychology and Psychiatry. © 2014 Association for Child and Adolescent Mental Health.

  16. Monetary rewards influence retrieval orientations.

    Science.gov (United States)

    Halsband, Teresa M; Ferdinand, Nicola K; Bridger, Emma K; Mecklinger, Axel

    2012-09-01

    Reward anticipation during learning is known to support memory formation, but its role in retrieval processes is so far unclear. Retrieval orientations, as a reflection of controlled retrieval processing, are one aspect of retrieval that might be modulated by reward. These processes can be measured using the event-related potentials (ERPs) elicited by retrieval cues from tasks with different retrieval requirements, such as via changes in the class of targeted memory information. To determine whether retrieval orientations of this kind are modulated by reward during learning, we investigated the effects of high and low reward expectancy on the ERP correlates of retrieval orientation in two separate experiments. The reward manipulation at study in Experiment 1 was associated with later memory performance, whereas in Experiment 2, reward was directly linked to accuracy in the study task. In both studies, the participants encoded mixed lists of pictures and words preceded by high- or low-reward cues. After 24 h, they performed a recognition memory exclusion task, with words as the test items. In addition to a previously reported material-specific effect of retrieval orientation, a frontally distributed, reward-associated retrieval orientation effect was found in both experiments. These findings suggest that reward motivation during learning leads to the adoption of a reward-associated retrieval orientation to support the retrieval of highly motivational information. Thus, ERP retrieval orientation effects not only reflect retrieval processes related to the sought-for materials, but also relate to the reward conditions with which items were combined during encoding.

  17. Differential Effects of Acute Stress on Anticipatory and Consummatory Phases of Reward Processing

    Science.gov (United States)

    Kumar, Poornima; Berghorst, Lisa H.; Nickerson, Lisa D.; Dutra, Sunny J.; Goer, Franziska; Greve, Douglas; Pizzagalli, Diego A.

    2014-01-01

    Anhedonia is one of the core symptoms of depression and has been linked to blunted responses to rewarding stimuli in striatal regions. Stress, a key vulnerability factor for depression, has been shown to induce anhedonic behavior, including reduced reward responsiveness in both animals and humans, but the brain processes associated with these effects remain largely unknown in humans. Emerging evidence suggests that stress has dissociable effects on distinct components of reward processing, as it has been found to potentiate motivation/‘wanting’ during the anticipatory phase but reduce reward responsiveness/‘liking’ during the consummatory phase. To examine the impact of stress on reward processing, we used a monetary incentive delay (MID) task and an acute stress manipulation (negative performance feedback) in conjunction with functional magnetic resonance imaging (fMRI). Fifteen healthy participants performed the MID task under no-stress and stress conditions. We hypothesized that stress would have dissociable effects on the anticipatory and consummatory phases in reward-related brain regions. Specifically, we expected reduced striatal responsiveness during reward consumption (mirroring patterns previously observed in clinical depression) and increased striatal activation during reward anticipation consistent with non-human findings. Supporting our hypotheses, significant Phase (Anticipation/Consumption) x Stress (Stress/No-stress) interactions emerged in the putamen, nucleus accumbens, caudate and amygdala. Post-hoc tests revealed that stress increased striatal and amygdalar activation during anticipation but decreased striatal activation during consumption. Importantly, stress-induced striatal blunting was similar to the profile observed in clinical depression under baseline (no-stress) conditions in prior studies. Given that stress is a pivotal vulnerability factor for depression, these results offer insight to better understand the etiology of this

  18. Developmental changes in the reward positivity: An electrophysiological trajectory of reward processing

    Directory of Open Access Journals (Sweden)

    Carmen N. Lukie

    2014-07-01

    Full Text Available Children and adolescents learn to regulate their behavior by utilizing feedback from the environment but exactly how this ability develops remains unclear. To investigate this question, we recorded the event-related brain potential (ERP from children (8–13 years, adolescents (14–17 years and young adults (18–23 years while they navigated a “virtual maze” in pursuit of monetary rewards. The amplitude of the reward positivity, an ERP component elicited by feedback stimuli, was evaluated for each age group. A current theory suggests the reward positivity is produced by the impact of reinforcement learning signals carried by the midbrain dopamine system on anterior cingulate cortex, which utilizes the signals to learn and execute extended behaviors. We found that the three groups produced a reward positivity of comparable size despite relatively longer ERP component latencies for the children, suggesting that the reward processing system reaches maturity early in development. We propose that early development of the midbrain dopamine system facilitates the development of extended goal-directed behaviors in anterior cingulate cortex.

  19. Nicotine Withdrawal Induces Neural Deficits in Reward Processing.

    Science.gov (United States)

    Oliver, Jason A; Evans, David E; Addicott, Merideth A; Potts, Geoffrey F; Brandon, Thomas H; Drobes, David J

    2017-06-01

    Nicotine withdrawal reduces neurobiological responses to nonsmoking rewards. Insight into these reward deficits could inform the development of targeted interventions. This study examined the effect of withdrawal on neural and behavioral responses during a reward prediction task. Smokers (N = 48) attended two laboratory sessions following overnight abstinence. Withdrawal was manipulated by having participants smoke three regular nicotine (0.6 mg yield; satiation) or very low nicotine (0.05 mg yield; withdrawal) cigarettes. Electrophysiological recordings of neural activity were obtained while participants completed a reward prediction task that involved viewing four combinations of predictive and reward-determining stimuli: (1) Unexpected Reward; (2) Predicted Reward; (3) Predicted Punishment; (4) Unexpected Punishment. The task evokes a medial frontal negativity that mimics the phasic pattern of dopaminergic firing in ventral tegmental regions associated with reward prediction errors. Nicotine withdrawal decreased the amplitude of the medial frontal negativity equally across all trial types (p nicotine dependence (p Nicotine withdrawal had equivocal impact across trial types, suggesting reward processing deficits are unlikely to stem from changes in phasic dopaminergic activity during prediction errors. Effects on tonic activity may be more pronounced. Pharmacological interventions directly targeting the dopamine system and behavioral interventions designed to increase reward motivation and responsiveness (eg, behavioral activation) may aid in mitigating withdrawal symptoms and potentially improving smoking cessation outcomes. Findings from this study indicate nicotine withdrawal impacts reward processing signals that are observable in smokers' neural activity. This may play a role in the subjective aversive experience of nicotine withdrawal and potentially contribute to smoking relapse. Interventions that address abnormal responding to both pleasant and

  20. Neural correlates of reward processing in healthy siblings of patients with schizophrenia

    NARCIS (Netherlands)

    Hanssen, Esther; van der Velde, J; Gromann, P.; Shergill, S.; de Haan, L.; Bruggeman, R.; Krabbendam, A.C.; Aleman, A.; van Atteveldt, N.M.

    2015-01-01

    Deficits in motivational behavior and psychotic symptoms often observed in schizophrenia (SZ) may be driven by dysfunctional reward processing (RP). RP can be divided in two different stages; reward anticipation and reward consumption. Aberrant processing during reward anticipation seems to be

  1. Neural Networks Involved in Adolescent Reward Processing: An Activation Likelihood Estimation Meta-Analysis of Functional Neuroimaging Studies

    Science.gov (United States)

    Silverman, Merav H.; Jedd, Kelly; Luciana, Monica

    2015-01-01

    Behavioral responses to, and the neural processing of, rewards change dramatically during adolescence and may contribute to observed increases in risk-taking during this developmental period. Functional MRI (fMRI) studies suggest differences between adolescents and adults in neural activation during reward processing, but findings are contradictory, and effects have been found in non-predicted directions. The current study uses an activation likelihood estimation (ALE) approach for quantitative meta-analysis of functional neuroimaging studies to: 1) confirm the network of brain regions involved in adolescents’ reward processing, 2) identify regions involved in specific stages (anticipation, outcome) and valence (positive, negative) of reward processing, and 3) identify differences in activation likelihood between adolescent and adult reward-related brain activation. Results reveal a subcortical network of brain regions involved in adolescent reward processing similar to that found in adults with major hubs including the ventral and dorsal striatum, insula, and posterior cingulate cortex (PCC). Contrast analyses find that adolescents exhibit greater likelihood of activation in the insula while processing anticipation relative to outcome and greater likelihood of activation in the putamen and amygdala during outcome relative to anticipation. While processing positive compared to negative valence, adolescents show increased likelihood for activation in the posterior cingulate cortex (PCC) and ventral striatum. Contrasting adolescent reward processing with the existing ALE of adult reward processing (Liu et al., 2011) reveals increased likelihood for activation in limbic, frontolimbic, and striatal regions in adolescents compared with adults. Unlike adolescents, adults also activate executive control regions of the frontal and parietal lobes. These findings support hypothesized elevations in motivated activity during adolescence. PMID:26254587

  2. Reward sensitivity is associated with brain activity during erotic stimulus processing.

    Science.gov (United States)

    Costumero, Victor; Barrós-Loscertales, Alfonso; Bustamante, Juan Carlos; Ventura-Campos, Noelia; Fuentes, Paola; Rosell-Negre, Patricia; Ávila, César

    2013-01-01

    The behavioral approach system (BAS) from Gray's reinforcement sensitivity theory is a neurobehavioral system involved in the processing of rewarding stimuli that has been related to dopaminergic brain areas. Gray's theory hypothesizes that the functioning of reward brain areas is modulated by BAS-related traits. To test this hypothesis, we performed an fMRI study where participants viewed erotic and neutral pictures, and cues that predicted their appearance. Forty-five heterosexual men completed the Sensitivity to Reward scale (from the Sensitivity to Punishment and Sensitivity to Reward Questionnaire) to measure BAS-related traits. Results showed that Sensitivity to Reward scores correlated positively with brain activity during reactivity to erotic pictures in the left orbitofrontal cortex, left insula, and right ventral striatum. These results demonstrated a relationship between the BAS and reward sensitivity during the processing of erotic stimuli, filling the gap of previous reports that identified the dopaminergic system as a neural substrate for the BAS during the processing of other rewarding stimuli such as money and food.

  3. Reward sensitivity is associated with brain activity during erotic stimulus processing.

    Directory of Open Access Journals (Sweden)

    Victor Costumero

    Full Text Available The behavioral approach system (BAS from Gray's reinforcement sensitivity theory is a neurobehavioral system involved in the processing of rewarding stimuli that has been related to dopaminergic brain areas. Gray's theory hypothesizes that the functioning of reward brain areas is modulated by BAS-related traits. To test this hypothesis, we performed an fMRI study where participants viewed erotic and neutral pictures, and cues that predicted their appearance. Forty-five heterosexual men completed the Sensitivity to Reward scale (from the Sensitivity to Punishment and Sensitivity to Reward Questionnaire to measure BAS-related traits. Results showed that Sensitivity to Reward scores correlated positively with brain activity during reactivity to erotic pictures in the left orbitofrontal cortex, left insula, and right ventral striatum. These results demonstrated a relationship between the BAS and reward sensitivity during the processing of erotic stimuli, filling the gap of previous reports that identified the dopaminergic system as a neural substrate for the BAS during the processing of other rewarding stimuli such as money and food.

  4. Brain activity and infant attachment history in young men during loss and reward processing.

    Science.gov (United States)

    Quevedo, Karina; Waters, Theodore E A; Scott, Hannah; Roisman, Glenn I; Shaw, Daniel S; Forbes, Erika E

    2017-05-01

    There is now ample evidence that the quality of early attachment experiences shapes expectations for supportive and responsive care and ultimately serves to scaffold adaptation to the salient tasks of development. Nonetheless, few studies have identified neural mechanisms that might give rise to these associations. Using a moderately large sample of low-income male participants recruited during infancy (N = 171), we studied the predictive significance of attachment insecurity and disorganization at age 18 months (as measured in the Strange Situation Procedure) for patterns of neural activation to reward and loss at age 20 years (assessed during a reward-based task as part of a functional magnetic resonance imaging scan). Results indicated that individuals with a history of insecure attachment showed hyperactivity in (a) reward- and emotion-related (e.g., basal ganglia and amygdala) structures and (b) emotion regulation and self-referential processing (cortical midline structures) in response to positive and negative outcomes (and anticipation of those outcomes). Further, the neural activation of individuals with a history of disorganized attachment suggested that they had greater emotional reactivity in anticipation of reward and employed greater cognitive control when negative outcomes were encountered. Overall, results suggest that the quality of early attachments has lasting impacts on brain function and reward processing.

  5. Reward processing in the value-driven attention network: reward signals tracking cue identity and location.

    Science.gov (United States)

    Anderson, Brian A

    2017-03-01

    Through associative reward learning, arbitrary cues acquire the ability to automatically capture visual attention. Previous studies have examined the neural correlates of value-driven attentional orienting, revealing elevated activity within a network of brain regions encompassing the visual corticostriatal loop [caudate tail, lateral occipital complex (LOC) and early visual cortex] and intraparietal sulcus (IPS). Such attentional priority signals raise a broader question concerning how visual signals are combined with reward signals during learning to create a representation that is sensitive to the confluence of the two. This study examines reward signals during the cued reward training phase commonly used to generate value-driven attentional biases. High, compared with low, reward feedback preferentially activated the value-driven attention network, in addition to regions typically implicated in reward processing. Further examination of these reward signals within the visual system revealed information about the identity of the preceding cue in the caudate tail and LOC, and information about the location of the preceding cue in IPS, while early visual cortex represented both location and identity. The results reveal teaching signals within the value-driven attention network during associative reward learning, and further suggest functional specialization within different regions of this network during the acquisition of an integrated representation of stimulus value. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  6. Mechanisms of impulsive choice: III. The role of reward processes

    Science.gov (United States)

    Marshall, Andrew T.

    2015-01-01

    Two experiments examined the relationship between reward processing and impulsive choice. In Experiment 1, rats chose between a smaller-sooner (SS) reward (1 pellet, 10 s) and a larger-later (LL) reward (1, 2, and 4 pellets, 30 s). The rats then experienced concurrent variable-interval 30-s schedules with variations in reward magnitude to evaluate reward magnitude discrimination. LL choice behavior positively correlated with reward magnitude discrimination. In Experiment 2, rats chose between an SS reward (1 pellet, 10 s) and an LL reward (2 and 4 pellets, 30 s). The rats then received either a reward intervention which consisted of concurrent fixed-ratio schedules associated with different magnitudes to improve their reward magnitude discrimination, or a control task. All rats then experienced a post-intervention impulsive choice task followed by a reward magnitude discrimination task to assess intervention efficacy. The rats that received the intervention exhibited increases in post-intervention LL choice behavior, and made more responses for larger-reward magnitudes in the reward magnitude discrimination task, suggesting that the intervention heightened sensitivities to reward magnitude. The results suggest that reward magnitude discrimination plays a key role in individual differences in impulsive choice, and could be a potential target for further intervention developments. PMID:26506254

  7. At what stage of neural processing does cocaine act to boost pursuit of rewards?

    Directory of Open Access Journals (Sweden)

    Giovanni Hernandez

    2010-11-01

    Full Text Available Dopamine-containing neurons have been implicated in reward and decision making. One element of the supporting evidence is that cocaine, like other drugs that increase dopaminergic neurotransmission, powerfully potentiates reward seeking. We analyze this phenomenon from a novel perspective, introducing a new conceptual framework and new methodology for determining the stage(s of neural processing at which drugs, lesions and physiological manipulations act to influence reward-seeking behavior. Cocaine strongly boosts the proclivity of rats to work for rewarding electrical brain stimulation. We show that the conventional conceptual framework and methods do not distinguish between three conflicting accounts of how the drug produces this effect: increased sensitivity of brain reward circuitry, increased gain, or decreased subjective reward costs. Sensitivity determines the stimulation strength required to produce a reward of a given intensity (a measure analogous to the KM of an enzyme whereas gain determines the maximum intensity attainable (a measure analogous to the vmax of an enzyme-catalyzed reaction. To distinguish sensitivity changes from the other determinants, we measured and modeled reward seeking as a function of both stimulation strength and opportunity cost. The principal effect of cocaine was a two-fourfold increase in willingness to pay for the electrical reward, an effect consistent with increased gain or decreased subjective cost. This finding challenges the long-standing view that cocaine increases the sensitivity of brain reward circuitry. We discuss the implications of the results and the analytic approach for theories of how dopaminergic neurons and other diffuse modulatory brain systems contribute to reward pursuit, and we explore the implications of the conceptual framework for the study of natural rewards, drug reward, and mood.

  8. Introducing uninteresting tasks to children: a comparison of the effects of rewards and autonomy support.

    Science.gov (United States)

    Joussemet, Mireille; Koestner, Richard; Lekes, Natasha; Houlfort, Nathalie

    2004-02-01

    Two experiments compared rewards and autonomy support as methods to promote children's self-regulation for an uninteresting vigilance task. Dependent measures were ratings of positive affect, perception of the task's value, and free-choice engagement. ANOVA results revealed some positive effects associated with autonomy support, whereas no effect for rewards was found in either study. The outcomes of most interest were correlations between free-choice behavior and self-reported measures of affect and value, reflecting the level of integration in self-regulation. As predicted by self-determination theory (Deci & Ryan, 1985, 1991, 2000), rewards were associated with behaviors incongruent from affect and value, whereas autonomy support led to integrated self-regulation. This finding was first detected in Study 1 and later replicated in Study 2. Together, these results point to autonomy support as a beneficial alternative to the common use of rewards.

  9. Altered neural reward and loss processing and prediction error signalling in depression

    Science.gov (United States)

    Ubl, Bettina; Kuehner, Christine; Kirsch, Peter; Ruttorf, Michaela

    2015-01-01

    Dysfunctional processing of reward and punishment may play an important role in depression. However, functional magnetic resonance imaging (fMRI) studies have shown heterogeneous results for reward processing in fronto-striatal regions. We examined neural responsivity associated with the processing of reward and loss during anticipation and receipt of incentives and related prediction error (PE) signalling in depressed individuals. Thirty medication-free depressed persons and 28 healthy controls performed an fMRI reward paradigm. Regions of interest analyses focused on neural responses during anticipation and receipt of gains and losses and related PE-signals. Additionally, we assessed the relationship between neural responsivity during gain/loss processing and hedonic capacity. When compared with healthy controls, depressed individuals showed reduced fronto-striatal activity during anticipation of gains and losses. The groups did not significantly differ in response to reward and loss outcomes. In depressed individuals, activity increases in the orbitofrontal cortex and nucleus accumbens during reward anticipation were associated with hedonic capacity. Depressed individuals showed an absence of reward-related PEs but encoded loss-related PEs in the ventral striatum. Depression seems to be linked to blunted responsivity in fronto-striatal regions associated with limited motivational responses for rewards and losses. Alterations in PE encoding might mirror blunted reward- and enhanced loss-related associative learning in depression. PMID:25567763

  10. Consolidation power of extrinsic rewards: reward cues enhance long-term memory for irrelevant past events.

    Science.gov (United States)

    Murayama, Kou; Kitagami, Shinji

    2014-02-01

    Recent research suggests that extrinsic rewards promote memory consolidation through dopaminergic modulation processes. However, no conclusive behavioral evidence exists given that the influence of extrinsic reward on attention and motivation during encoding and consolidation processes are inherently confounded. The present study provides behavioral evidence that extrinsic rewards (i.e., monetary incentives) enhance human memory consolidation independently of attention and motivation. Participants saw neutral pictures, followed by a reward or control cue in an unrelated context. Our results (and a direct replication study) demonstrated that the reward cue predicted a retrograde enhancement of memory for the preceding neutral pictures. This retrograde effect was observed only after a delay, not immediately upon testing. An additional experiment showed that emotional arousal or unconscious resource mobilization cannot explain the retrograde enhancement effect. These results provide support for the notion that the dopaminergic memory consolidation effect can result from extrinsic reward.

  11. Neural correlates of reward processing in healthy siblings of patients with schizophrenia

    Directory of Open Access Journals (Sweden)

    Esther eHanssen

    2015-09-01

    Full Text Available Deficits in motivational behavior and psychotic symptoms often observed in schizophrenia (SZ may be driven by dysfunctional reward processing (RP. RP can be divided in two different stages; reward anticipation and reward consumption. Aberrant processing during reward anticipation seems to be related to SZ. Studies in patients with SZ have found less activation in the ventral striatum (VS during anticipation of reward, but these findings do not provide information on effect of the genetic load on reward processing. Therefore, this study investigated RP in healthy first-degree relatives of SZ patients. The sample consisted of 94 healthy siblings of SZ patients and 57 healthy controls. Participants completed a classic RP task, the Monetary Incentive Delay task, during functional magnetic resonance imaging (fMRI. As expected, there were no behavioral differences between groups. In contrast to our expectations, we found no differences in any of the anticipatory reward related brain areas (region of interest analyses. Whole-brain analyses did reveal group differences during both reward anticipation and reward consumption; during reward anticipation siblings showed less deactivation in the insula, posterior cingulate cortex (PCC and medial frontal gyrus (MFG than controls. During reward consumption siblings showed less deactivation in the PCC and the right MFG compared to controls and activation in contrast to deactivation in controls in the precuneus and the left MFG. Exclusively in siblings, MFG activity correlated positively with subclinical negative symptoms. These regions are typically associated with the default mode network (DMN, which normally shows decreases in activation during task-related cognitive processes. Thus, in contrast to prior literature in patients with SZ, the results do not point to altered brain activity in classical RP brain areas, such as the VS. However, the weaker deactivation found outside the reward-related network in

  12. Impaired Feedback Processing for Symbolic Reward in Individuals with Internet Game Overuse

    Directory of Open Access Journals (Sweden)

    Jinhee Kim

    2017-10-01

    Full Text Available Reward processing, which plays a critical role in adaptive behavior, is impaired in addiction disorders, which are accompanied by functional abnormalities in brain reward circuits. Internet gaming disorder, like substance addiction, is thought to be associated with impaired reward processing, but little is known about how it affects learning, especially when feedback is conveyed by less-salient motivational events. Here, using both monetary (±500 KRW and symbolic (Chinese characters “right” or “wrong” rewards and penalties, we investigated whether behavioral performance and feedback-related neural responses are altered in Internet game overuse (IGO group. Using functional MRI, brain responses for these two types of reward/penalty feedback were compared between young males with problems of IGO (IGOs, n = 18, mean age = 22.2 ± 2.0 years and age-matched control subjects (Controls, n = 20, mean age = 21.2 ± 2.1 during a visuomotor association task where associations were learned between English letters and one of four responses. No group difference was found in adjustment of error responses following the penalty or in brain responses to penalty, for either monetary or symbolic penalties. The IGO individuals, however, were more likely to fail to choose the response previously reinforced by symbolic (but not monetary reward. A whole brain two-way ANOVA analysis for reward revealed reduced activations in the IGO group in the rostral anterior cingulate cortex/ventromedial prefrontal cortex (vmPFC in response to both reward types, suggesting impaired reward processing. However, the responses to reward in the inferior parietal region and medial orbitofrontal cortex/vmPFC were affected by the types of reward in the IGO group. Unlike the control group, in the IGO group the reward response was reduced only for symbolic reward, suggesting lower attentional and value processing specific to symbolic reward. Furthermore

  13. On mean reward variance in semi-Markov processes

    Czech Academy of Sciences Publication Activity Database

    Sladký, Karel

    2005-01-01

    Roč. 62, č. 3 (2005), s. 387-397 ISSN 1432-2994 R&D Projects: GA ČR(CZ) GA402/05/0115; GA ČR(CZ) GA402/04/1294 Institutional research plan: CEZ:AV0Z10750506 Keywords : Markov and semi-Markov processes with rewards * variance of cumulative reward * asymptotic behaviour Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.259, year: 2005

  14. Reward processing and mood-related symptoms: An RDoC and translational neuroscience perspective.

    Science.gov (United States)

    Nusslock, Robin; Alloy, Lauren B

    2017-07-01

    Two objectives of the NIMH Research Domain Criteria (RDoC) initiative are to identify (a) mechanisms that are common to multiple psychiatric disorders, and (b) mechanisms that are unique to specific psychiatric symptoms, and that reflect markers of differential risk for these symptoms. With respect to these objectives, a brain-behavior dimension that has received considerable attention and that is directly relevant to the Positive Valence Systems domain of the RDoC initiative involves reward processing. The present review paper first examines the relationship between reward processing and mood-related symptoms from an RDoC perspective. We then place this work in a larger context by examining the relationship between reward processing abnormalities and psychiatric symptoms defined broadly, including mood-related symptoms, schizophrenia, and addiction. Our review suggests that reward hyposensitivity relates to a subtype of anhedonia characterized by motivational deficits in unipolar depression, and reward hypersensitivity relates to a cluster of hypo/manic symptoms characterized by excessive approach motivation in the context of bipolar disorder. Integrating this perspective with research on reward processing abnormalities in schizophrenia and addiction, we further argue that the principles of equifinality and multifinality may be preferable to a transdiagnostic perspective for conceptualizing the relationship between reward processing and psychiatric symptoms defined broadly. We propose that vulnerability to either motivational anhedonia or approach-related hypo/manic symptoms involve extreme and opposite profiles of reward processing. We further propose that an equifinality and multifinality perspective may serve as a useful framework for future research on reward processing abnormalities and psychiatric symptoms. Copyright © 2017. Published by Elsevier B.V.

  15. Effects of alexithymia and empathy on the neural processing of social and monetary rewards.

    Science.gov (United States)

    Goerlich, Katharina Sophia; Votinov, Mikhail; Lammertz, Sarah E; Winkler, Lina; Spreckelmeyer, Katja N; Habel, Ute; Gründer, Gerhard; Gossen, Anna

    2017-07-01

    Empathy has been found to affect the neural processing of social and monetary rewards. Alexithymia, a subclinical condition showing a close inverse relationship with empathy is linked to dysfunctions of socio-emotional processing in the brain. Whether alexithymia alters the neural processing of rewards, which is currently unknown. Here, we investigated the influence of both alexithymia and empathy on reward processing using a social incentive delay (SID) task and a monetary incentive delay (MID) task in 45 healthy men undergoing functional magnetic resonance imaging. Controlling for temperament-character dimensions and rejection sensitivity, the relationship of alexithymia and empathy with neural activity in several a priori regions of interest (ROIs) was examined by means of partial correlations, while participants anticipated and received social and monetary rewards. Results were considered significant if they survived Holm-Bonferroni correction for multiple comparisons. Alexithymia modulated neural activity in several ROIs of the emotion and reward network, both during the anticipation of social and monetary rewards and in response to the receipt of monetary rewards. In contrast, empathy did not affect reward anticipation and modulated ROI activity only in response to the receipt of social rewards. These results indicate a significant influence of alexithymia on the processing of social and monetary rewards in the healthy brain.

  16. Amphetamine sensitization alters reward processing in the human striatum and amygdala.

    Directory of Open Access Journals (Sweden)

    Owen G O'Daly

    Full Text Available Dysregulation of mesolimbic dopamine transmission is implicated in a number of psychiatric illnesses characterised by disruption of reward processing and goal-directed behaviour, including schizophrenia, drug addiction and impulse control disorders associated with chronic use of dopamine agonists. Amphetamine sensitization (AS has been proposed to model the development of this aberrant dopamine signalling and the subsequent dysregulation of incentive motivational processes. However, in humans the effects of AS on the dopamine-sensitive neural circuitry associated with reward processing remains unclear. Here we describe the effects of acute amphetamine administration, following a sensitising dosage regime, on blood oxygen level dependent (BOLD signal in dopaminoceptive brain regions during a rewarded gambling task performed by healthy volunteers. Using a randomised, double-blind, parallel-groups design, we found clear evidence for sensitization to the subjective effects of the drug, while rewarded reaction times were unchanged. Repeated amphetamine exposure was associated with reduced dorsal striatal BOLD signal during decision making, but enhanced ventromedial caudate activity during reward anticipation. The amygdala BOLD response to reward outcomes was blunted following repeated amphetamine exposure. Positive correlations between subjective sensitization and changes in anticipation- and outcome-related BOLD signal were seen for the caudate nucleus and amygdala, respectively. These data show for the first time in humans that AS changes the functional impact of acute stimulant exposure on the processing of reward-related information within dopaminoceptive regions. Our findings accord with pathophysiological models which implicate aberrant dopaminergic modulation of striatal and amygdala activity in psychosis and drug-related compulsive disorders.

  17. Dopamine modulates reward system activity during subconscious processing of sexual stimuli.

    Science.gov (United States)

    Oei, Nicole Y L; Rombouts, Serge Arb; Soeter, Roelof P; van Gerven, Joop M; Both, Stephanie

    2012-06-01

    Dopaminergic medication influences conscious processing of rewarding stimuli, and is associated with impulsive-compulsive behaviors, such as hypersexuality. Previous studies have shown that subconscious subliminal presentation of sexual stimuli activates brain areas known to be part of the 'reward system'. In this study, it was hypothesized that dopamine modulates activation in key areas of the reward system, such as the nucleus accumbens, during subconscious processing of sexual stimuli. Young healthy males (n=53) were randomly assigned to two experimental groups or a control group, and were administered a dopamine antagonist (haloperidol), a dopamine agonist (levodopa), or placebo. Brain activation was assessed during a backward-masking task with subliminally presented sexual stimuli. Results showed that levodopa significantly enhanced the activation in the nucleus accumbens and dorsal anterior cingulate when subliminal sexual stimuli were shown, whereas haloperidol decreased activations in those areas. Dopamine thus enhances activations in regions thought to regulate 'wanting' in response to potentially rewarding sexual stimuli that are not consciously perceived. This running start of the reward system might explain the pull of rewards in individuals with compulsive reward-seeking behaviors such as hypersexuality and patients who receive dopaminergic medication.

  18. Ventral striatal activity links adversity and reward processing in children

    NARCIS (Netherlands)

    Kamkar, N.H.; Lewis, D.J.; van den Bos, W.; Morton, J.B.

    2017-01-01

    Adversity impacts many aspects of psychological and physical development including reward-based learning and decision-making. Mechanisms relating adversity and reward processing in children, however, remain unclear. Here, we show that adversity is associated with potentiated learning from positive

  19. Reward reduces conflict by enhancing attentional control and biasing visual cortical processing.

    Science.gov (United States)

    Padmala, Srikanth; Pessoa, Luiz

    2011-11-01

    How does motivation interact with cognitive control during challenging behavioral conditions? Here, we investigated the interactions between motivation and cognition during a response conflict task and tested a specific model of the effect of reward on cognitive processing. Behaviorally, participants exhibited reduced conflict during the reward versus no-reward condition. Brain imaging results revealed that a group of subcortical and fronto-parietal regions was robustly influenced by reward at cue processing and, importantly, that cue-related responses in fronto-parietal attentional regions were predictive of reduced conflict-related signals in the medial pFC (MPFC)/ACC during the upcoming target phase. Path analysis revealed that the relationship between cue responses in the right intraparietal sulcus (IPS) and interference-related responses in the MPFC during the subsequent target phase was mediated via signals in the left fusiform gyrus, which we linked to distractor-related processing. Finally, reward increased functional connectivity between the right IPS and both bilateral putamen and bilateral nucleus accumbens during the cue phase, a relationship that covaried with across-individual sensitivity to reward in the case of the right nucleus accumbens. Taken together, our findings are consistent with a model in which motivationally salient cues are employed to upregulate top-down control processes that bias the selection of visual information, thereby leading to more efficient stimulus processing during conflict conditions.

  20. Neural reward processing is modulated by approach- and avoidance-related personality traits

    NARCIS (Netherlands)

    Simon, J.J.; Walther, S.; Fiebach, C.J.; Friederich, H.C.; Stippich, C.; Weisbrod, M.; Kaiser, S.

    2009-01-01

    The neural processing of reward can be differentiated into two sub-components with different functions, "wanting" (i.e., the expectation of a reward which includes appetitive and motivational components) and "liking" (i.e., the hedonic impact experienced during the receipt of a reward), involving

  1. Stress and reward processing in bipolar disorder: an fMRI study

    Science.gov (United States)

    Berghorst, Lisa H; Kumar, Poornima; Greve, Doug N; Deckersbach, Thilo; Ongur, Dost; Dutra, Sunny; Pizzagalli, Diego A

    2016-01-01

    Objectives A link between negative life stress and the onset of mood episodes in bipolar disorder (BD) has been established, but processes underlying such a link remain unclear. Growing evidence suggests that stress can negatively affect reward processing and related neurobiological substrates, indicating that a dysregulated reward system may provide a partial explanation. The aim of this study was to test the impact of stress on reward-related neural functioning in BD. Methods Thirteen euthymic or mildly depressed individuals with BD and 15 controls performed a Monetary Incentive Delay task while undergoing functional magnetic resonance imaging during no-stress and stress (negative psychosocial stressor involving poor performance feedback and threat of monetary deductions) conditions. Results In hypothesis-driven region-of- interest-based analyses, a significant group by condition interaction emerged in the amygdala during reward anticipation. Relative to controls, while anticipating a potential reward, subjects with BD were characterized by amygdalar hyperactivation in the no-stress condition but hypoactivation during stress. Moreover, relative to controls, subjects with BD had significantly larger amygdala volumes. After controlling for structural differences, the effects of stress on amygdalar function remained, whereas groups no longer differed during the no-stress condition. During reward consumption, a group by condition interaction emerged in the putamen due to increased putamen activation to rewards in participants with BD during stress, but an opposite pattern in controls. Conclusions Overall, findings highlight possible impairments in using reward-predicting cues to adaptively engage in goal-directed actions in BD, combined with stress-induced hypersensitivity to reward consumption. Potential clinical implications are discussed. PMID:27870507

  2. Further support for association between GWAS variant for positive emotion and reward systems.

    Science.gov (United States)

    Lancaster, T M; Ihssen, N; Brindley, L M; Linden, D E J

    2017-01-31

    A recent genome-wide association study (GWAS) identified a significant single-nucleotide polymorphism (SNP) for trait-positive emotion at rs322931 on chromosome 1, which was also associated with brain activation in the reward system of healthy individuals when observing positive stimuli in a functional magnetic resonance imaging (fMRI) study. In the current study, we aimed to further validate the role of variation at rs322931 in reward processing. Using a similar fMRI approach, we use two paradigms that elicit a strong ventral striatum (VS) blood oxygen-level dependency (BOLD) response in a sample of young, healthy individuals (N=82). In the first study we use a similar picture-viewing task to the discovery sample (positive>neutral stimuli) to replicate an effect of the variant on emotion processing. In the second study we use a probabilistic reversal learning procedure to identify reward processing during decision-making under uncertainly (reward>punishment). In a region of interest (ROI) analysis of the bilateral VS, we show that the rs322931 genotype was associated with BOLD in the left VS during the positive>neutral contrast (P ROI-CORRECTED =0.045) and during the reward>punishment contrast (P ROI-CORRECTED =0.018), although the effect of passive picture viewing was in the opposite direction from that reported in the discovery sample. These findings suggest that the recently identified GWAS hit may influence positive emotion via individual differences in activity in the key hubs of the brain's reward system. Furthermore, these effects may not be limited to the passive viewing of positive emotional scenes, but may also be observed during dynamic decision-making. This study suggests that future studies of this GWAS locus may yield further insight into the biological mechanisms of psychopathologies characterised by deficits in reward processing and positive emotion.

  3. Validation and extension of the reward-mountain model.

    Science.gov (United States)

    Breton, Yannick-André; Mullett, Ada; Conover, Kent; Shizgal, Peter

    2013-01-01

    The reward-mountain model relates the vigor of reward seeking to the strength and cost of reward. Application of this model provides information about the stage of processing at which manipulations such as drug administration, lesions, deprivation states, and optogenetic interventions act to alter reward seeking. The model has been updated by incorporation of new information about frequency following in the directly stimulated neurons responsible for brain stimulation reward and about the function that maps objective opportunity costs into subjective ones. The behavioral methods for applying the model have been updated and improved as well. To assess the impact of these changes, two related predictions of the model that were supported by earlier work have been retested: (1) altering the duration of rewarding brain stimulation should change the pulse frequency required to produce a reward of half-maximal intensity, and (2) this manipulation should not change the opportunity cost at which half-maximal performance is directed at earning a maximally intense reward. Prediction 1 was supported in all six subjects, but prediction 2 was supported in only three. The latter finding is interpreted to reflect recruitment, at some stimulation sites, of a heterogeneous reward substrate comprising dual, parallel circuits that integrate the stimulation-induced neural signals.

  4. Altered neural processing of reward and punishment in adolescents with Major Depressive Disorder.

    Science.gov (United States)

    Landes, I; Bakos, S; Kohls, G; Bartling, J; Schulte-Körne, G; Greimel, E

    2018-05-01

    Altered reward and punishment function has been suggested as an important vulnerability factor for the development of Major Depressive Disorder (MDD). Prior ERP studies found evidence for neurophysiological dysfunctions in reinforcement processes in adults with MDD. To date, only few ERP studies have examined the neural underpinnings of reinforcement processing in adolescents diagnosed with MDD. The present event-related potential (ERP) study aimed to investigate neurophysiological mechanisms of anticipation and consumption of reward and punishment in adolescents with MDD in one comprehensive paradigm. During ERP recording, 25 adolescents with MDD and 29 healthy controls (12-17 years) completed a Monetary Incentive Delay Task comprising both a monetary reward and a monetary punishment condition. During anticipation, the cue-P3 signaling attentional allocation was recorded. During consumption, the feedback-P3 and Reward Positivity (RewP) were recorded to capture attentional allocation and outcome evaluation, respectively. Compared to controls, adolescents with MDD showed prolonged cue-P3 latencies to reward cues. Furthermore, unlike controls, adolescents with MDD displayed shorter feedback-P3 latencies in the reward versus punishment condition. RewPs did not differ between groups. It remains unanswered whether the observed alterations in adolescent MDD represent a state or trait. Delayed neural processing of reward cues corresponds to the clinical presentation of adolescent MDD with reduced motivational tendencies to obtain rewards. Relatively shorter feedback-P3 latencies in the reward versus punishment condition could indicate a high salience of performance-contingent reward. Frequent exposure of negatively biased adolescents with MDD to performance-contingent rewards might constitute a promising intervention approach. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Threat/reward-sensitivity and hypomanic-personality modulate cognitive-control and attentional neural processes to emotional stimuli.

    Science.gov (United States)

    Pornpattananangkul, Narun; Hu, Xiaoqing; Nusslock, Robin

    2015-11-01

    Temperamental-traits (e.g. threat/reward-sensitivity) are found to modulate cognitive-control and attentional-processes. Yet, it is unclear exactly how these traits interact with emotional-stimuli in the modulation of cognitive-control, as reflected by the N2 event-related potential (ERP), and attentional-processes, as reflected by the P2 and P3 ERPs. Here in an ERP emotional-Go/NoGo task, 36 participants were instructed to inhibit their response to Fearful- and Happy-faces. Individual-differences in threat-sensitivity, reward-sensitivity and hypomanic-personality were assessed through self-report. Hypomanic-personality was assessed, given its relationship with reward-sensitivity and relevance to mood-disorder symptoms. Concerning cognitive-control, individuals with elevated threat-sensitivity displayed more-negative N2s to Happy-NoGo (relative to Fearful-NoGo) faces, whereas both individuals with elevated reward-sensitivity and hypomanic-personality displayed more-negative N2s to Fearful-NoGo (relative to Happy-NoGo) faces. Accordingly, when cognitive-control is required (during Go/NoGo), a mismatch between one's temperament and the valence of the NoGo-stimulus elevates detection of the need for cognitive-control. Conversely, the modulation of attentional-processing was specific to threat-sensitivity, as there was no relationship between either reward-sensitivity or hypomanic-personality and attentional-processing. Elevated threat-sensitivity was associated with enhanced early (P2s) and later (P3s) attentional-processing to Fearful-NoGo (relative to Happy-NoGo) faces. These latter findings support the negative attentional-bias model relating elevated threat-sensitivity with attentional-biases toward negative-stimuli and away from positive-stimuli. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  6. The CB1 Receptor as an Important Mediator of Hedonic Reward Processing

    Science.gov (United States)

    Friemel, Chris M; Zimmer, Andreas; Schneider, Miriam

    2014-01-01

    The endocannabinoid (ECB) system has emerged recently as a key mediator for reward processing. It is well known that cannabinoids affect appetitive learning processes and can induce reinforcing and rewarding effects. However, the involvement of the ECB system in hedonic aspects of reward-related behavior is not completely understood. With the present study, we investigated the modulatory role of the ECB system on hedonic perception, measured by the pleasure attenuated startle (PAS) paradigm for a palatable food reward. Here, a conditioned odor is thought to induce a pleasant affective state that attenuates an aversive reflex—the acoustic startle response. Modulatory effects of the CB1 receptor antagonist/inverse agonist SR1411716 and the cannabinoid agonist WIN 55 212-2 on PAS were examined in rats. PAS was also measured in CB1 receptor knockout (KO) and wild-type (WT) mice. Pharmacological inhibition as well as the absence of CB1 receptors was found to reduce PAS, whereas WIN 55 212-2 administration increased PAS. Finally, presentation of a conditioned reward cue was found to induce striatal FosB/ΔFosB expression in WT mice, but not in KO mice, indicating a reduced stimulation of reward-related brain regions in conditioned KO mice by odor presentation. We here show that in addition to our previous studies in rats, PAS may also serve as a valuable and suitable measure to assess hedonic processing in mice. Our data further indicate that the ECB system, and in particular CB1 receptor signaling, appears to be highly important for the mediation of hedonic aspects of reward processing. PMID:24718372

  7. Individual differences in the habitual use of cognitive reappraisal predict the reward-related processing.

    Science.gov (United States)

    Sai, Liyang; Wang, Sisi; Ward, Anne; Ku, Yixuan; Sang, Biao

    2015-01-01

    Recent studies have shown that instructed cognitive reappraisal can regulate the neural processing of reward. However, it is still unclear whether the habitual use of cognitive reappraisal in everyday life is related to brain activity involved in reward processing. In the present study, participants' neural responses to reward were measured using electroencephalography (EEG) recorded during a gambling task and their tendency to use cognitive reappraisal was assessed using the Emotion Regulation Questionnaire (ERQ). Event-related potential (ERP) results indicated that losses on the gambling task elicited greater negative reward-related feedback negativity (FN) than gains. The differential FN between losses and gains was significantly correlated with cognitive reappraisal scores across participants such that individuals with a higher tendency to use cognitive reappraisal showed stronger reward processing (i.e., amplified FN difference between losses and gains). This correlation remained significant after controlling for expressive suppression scores. However, expressive suppression per se was not correlated with FN differences. Taken together, these results suggest that the habitual use of cognitive reappraisal is associated with increased neural processing of reward.

  8. Functional connectivity in cortico-subcortical brain networks underlying reward processing in attention-deficit/hyperactivity disorder

    NARCIS (Netherlands)

    Oldehinkel, Marianne; Beckmann, Christian F.; Franke, Barbara; Hartman, Catharina A.; Hoekstra, Pieter J.; Oosterlaan, Jaap; Heslenfeld, Dirk; Buitelaar, Jan K.; Mennes, Maarten

    2016-01-01

    Background: Many patients with attention-deficit/hyperactivity disorder (ADHD) display aberrant reward-related behavior. Task-based fMRI studies have related atypical reward processing in ADHD to altered BOLD activity in regions underlying reward processing such as ventral striatum and orbitofrontal

  9. Goal or gold: overlapping reward processes in soccer players upon scoring and winning money.

    Directory of Open Access Journals (Sweden)

    Alexander Niklas Häusler

    Full Text Available Social rewards are important incentives for human behavior. This is especially true in team sports such as the most popular one worldwide: soccer. We investigated reward processing upon scoring a soccer goal in a standard two-versus-one situation and in comparison to winning in a monetary incentive task. The results show a strong overlap in brain activity between the two conditions in established reward regions of the mesolimbic dopaminergic system, including the ventral striatum and ventromedial pre-frontal cortex. The three main components of reward-associated learning, i.e., reward probability (RP, reward reception (RR and reward prediction errors (RPE showed highly similar activation in both con-texts, with only the RR and RPE components displaying overlapping reward activity. Passing and shooting behavior did not correlate with individual egoism scores, but we observe a positive correlation be-tween egoism and activity in the left middle frontal gyrus upon scoring after a pass versus a direct shot. Our findings suggest that rewards in the context of soccer and monetary incentives are based on similar neural processes.

  10. Goal or Gold: Overlapping Reward Processes in Soccer Players upon Scoring and Winning Money

    Science.gov (United States)

    Häusler, Alexander Niklas; Becker, Benjamin; Bartling, Marcel; Weber, Bernd

    2015-01-01

    Social rewards are important incentives for human behavior. This is especially true in team sports such as the most popular one worldwide: soccer. We investigated reward processing upon scoring a soccer goal in a standard two-versus-one situation and in comparison to winning in a monetary incentive task. The results show a strong overlap in brain activity between the two conditions in established reward regions of the mesolimbic dopaminergic system, including the ventral striatum and ventromedial pre-frontal cortex. The three main components of reward-associated learning i.e. reward probability (RP), reward reception (RR) and reward prediction errors (RPE) showed highly similar activation in both con-texts, with only the RR and RPE components displaying overlapping reward activity. Passing and shooting behavior did not correlate with individual egoism scores, but we observe a positive correlation be-tween egoism and activity in the left middle frontal gyrus upon scoring after a pass versus a direct shot. Our findings suggest that rewards in the context of soccer and monetary incentives are based on similar neural processes. PMID:25875594

  11. Monetary reward processing in obese individuals with and without binge eating disorder.

    Science.gov (United States)

    Balodis, Iris M; Kober, Hedy; Worhunsky, Patrick D; White, Marney A; Stevens, Michael C; Pearlson, Godfrey D; Sinha, Rajita; Grilo, Carlos M; Potenza, Marc N

    2013-05-01

    An important step in obesity research involves identifying neurobiological underpinnings of nonfood reward processing unique to specific subgroups of obese individuals. Nineteen obese individuals seeking treatment for binge eating disorder (BED) were compared with 19 non-BED obese individuals (OB) and 19 lean control subjects (LC) while performing a monetary reward/loss task that parses anticipatory and outcome components during functional magnetic resonance imaging. Differences in regional activation were investigated in BED, OB, and LC groups during reward/loss prospect, anticipation, and notification. Relative to the LC group, the OB group demonstrated increased ventral striatal and ventromedial prefrontal cortex activity during anticipatory phases. In contrast, the BED group relative to the OB group demonstrated diminished bilateral ventral striatal activity during anticipatory reward/loss processing. No differences were observed between the BED and LC groups in the ventral striatum. Heterogeneity exists among obese individuals with respect to the neural correlates of reward/loss processing. Neural differences in separable groups with obesity suggest that multiple, varying interventions might be important in optimizing prevention and treatment strategies for obesity. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  12. Neural Processing of Calories in Brain Reward Areas Can be Modulated by Reward Sensitivity

    NARCIS (Netherlands)

    van Rijn, Inge; Griffioen-Roose, Sanne; de Graaf, Cees; Smeets, Paul A M

    A food's reward value is dependent on its caloric content. Furthermore, a food's acute reward value also depends on hunger state. The drive to obtain rewards (reward sensitivity), however, differs between individuals. Here, we assessed the association between brain responses to calories in the mouth

  13. Listening to music in a risk-reward context: The roles of the temporoparietal junction and the orbitofrontal/insular cortices in reward-anticipation, reward-gain, and reward-loss.

    Science.gov (United States)

    Li, Chia-Wei; Chen, Jyh-Horng; Tsai, Chen-Gia

    2015-12-10

    Artificial rewards, such as visual arts and music, produce pleasurable feelings. Popular songs in the verse-chorus form provide a useful model for understanding the neural mechanisms underlying the processing of artificial rewards, because the chorus is usually the most rewarding element of a song. In this functional magnetic resonance imaging (fMRI) study, the stimuli were excerpts of 10 popular songs with a tensioned verse-to-chorus transition. We examined the neural correlates of three phases of reward processing: (1) reward-anticipation during the verse-to-chorus transition, (2) reward-gain during the first phrase of the chorus, and (3) reward-loss during the unexpected noise followed by the verse-to-chorus transition. Participants listened to these excerpts in a risk-reward context because the verse was followed by either the chorus or noise with equal probability. The results showed that reward-gain and reward-loss were associated with left- and right-biased temporoparietal junction activation, respectively. The bilateral temporoparietal junctions were active during reward-anticipation. Moreover, we observed left-biased lateral orbitofrontal activation during reward-anticipation, whereas the medial orbitofrontal cortex was activated during reward-gain. The findings are discussed in relation to the cognitive and emotional aspects of reward processing. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Regional brain activation supporting cognitive control in the context of reward is associated with treated adolescents’ marijuana problem severity at follow-up: A preliminary study

    Directory of Open Access Journals (Sweden)

    Tammy Chung

    2015-12-01

    Full Text Available This preliminary study examined the extent to which regional brain activation during a reward cue antisaccade (AS task was associated with 6-month treatment outcome in adolescent substance users. Antisaccade performance provides a sensitive measure of executive function and cognitive control, and generally improves with reward cues. We hypothesized that when preparing to execute an AS, greater activation in regions associated with cognitive and oculomotor control supporting AS, particularly during reward cue trials, would be associated with lower substance use severity at 6-month follow-up. Adolescents (n = 14, ages 14–18 recruited from community-based outpatient treatment completed an fMRI reward cue AS task (reward and neutral conditions, and provided follow-up data. Results indicated that AS errors decreased in reward, compared to neutral, trials. AS behavioral performance, however, was not associated with treatment outcome. As hypothesized, activation in regions of interest (ROIs associated with cognitive (e.g., ventrolateral prefrontal cortex and oculomotor control (e.g., supplementary eye field during reward trials were inversely correlated with marijuana problem severity at 6-months. ROI activation during neutral trials was not associated with outcomes. Results support the role of motivational (reward cue factors to enhance cognitive control processes, and suggest a potential brain-based correlate of youth treatment outcome.

  15. Allostatic dysregulation of natural reward processing in prescription opioid misuse: autonomic and attentional evidence.

    Science.gov (United States)

    Garland, Eric L; Froeliger, Brett; Howard, Matthew O

    2015-02-01

    Chronic pain patients who misuse prescription opioids may suffer from allostatic dysregulation of natural reward processing. Hence, this study examined whether prescription opioid misusers with chronic pain (n=72) evidenced decreased natural reward responsiveness relative to non-misusers with chronic pain (n=26). Subjects completed a dot probe task containing pain-related, opioid-related, and natural reward stimuli while attentional bias (AB) scores and heart rate variability (HRV) responses were assessed. Compared to non-misusers, misusers evidenced significantly more attenuated HRV responses to opioid, pain, and natural reward cues presented during the dot probe task. These significant between-groups differences in HRV were largest during attention to natural reward cues, but became non-significant in a sensitivity analysis controlling for opioid dosing. In addition, non-misusers evidenced an AB toward natural reward cues, whereas misusers did not. Findings suggest that opioid misusers exhibit attentional and autonomic deficits during reward processing. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Cigarette craving is associated with blunted reward processing in nicotine-dependent smokers.

    Science.gov (United States)

    Peechatka, Alyssa L; Whitton, Alexis E; Farmer, Stacey L; Pizzagalli, Diego A; Janes, Amy C

    2015-10-01

    Dysfunctional reward processing leading to the undervaluation of non-drug rewards is hypothesized to play a crucial role in nicotine dependence. However, it is unclear if blunted reward responsivity and the desire to use nicotine are directly linked after a brief period of abstinence. Such an association would suggest that individuals with reduced reward responsivity may be at increased risk to experience nicotine craving. Reward function was evaluated with a probabilistic reward task (PRT), which measures reward responsivity to monetary incentives. To identify whether smoking status influenced reward function, PRT performance was compared between non-depressed, nicotine-dependent smokers and non-smokers. Within smokers, correlations were conducted to determine if blunted reward responsivity on the PRT was associated with increased nicotine craving. Time since last nicotine exposure was standardized to 4h for all smokers. Smokers and non-smokers did not differ in reward responsivity on the PRT. However, within smokers, a significant negative correlation was found between reward responsivity and intensity of nicotine craving. The current findings show that, among smokers, the intensity of nicotine craving is linked to lower sensitivity to non-drug rewards. This finding is in line with prior theories that suggest reward dysfunction in some clinical populations (e.g., depressive disorders, schizophrenia) may facilitate nicotine use. The current study expands on such theories by indicating that sub-clinical variations in reward function are related to motivation for nicotine use. Identifying smokers who show blunted sensitivity to non-drug rewards may help guide treatments aimed at mitigating the motivation to smoke. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Reward retroactively enhances memory consolidation for related items

    OpenAIRE

    Patil, Anuya; Murty, Vishnu P.; Dunsmoor, Joseph E.; Phelps, Elizabeth A.; Davachi, Lila

    2017-01-01

    Reward motivation has been shown to modulate episodic memory processes in order to support future adaptive behavior. However, for a memory system to be truly adaptive, it should enhance memory for rewarded events as well as for neutral events that may seem inconsequential at the time of encoding but can gain importance later. Here, we investigated the influence of reward motivation on retroactive memory enhancement selectively for conceptually related information. We found behavioral evidence...

  18. Brain Stimulation Reward Supports More Consistent and Accurate Rodent Decision-Making than Food Reward.

    Science.gov (United States)

    McMurray, Matthew S; Conway, Sineadh M; Roitman, Jamie D

    2017-01-01

    Animal models of decision-making rely on an animal's motivation to decide and its ability to detect differences among various alternatives. Food reinforcement, although commonly used, is associated with problematic confounds, especially satiety. Here, we examined the use of brain stimulation reward (BSR) as an alternative reinforcer in rodent models of decision-making and compared it with the effectiveness of sugar pellets. The discriminability of various BSR frequencies was compared to differing numbers of sugar pellets in separate free-choice tasks. We found that BSR was more discriminable and motivated greater task engagement and more consistent preference for the larger reward. We then investigated whether rats prefer BSR of varying frequencies over sugar pellets. We found that animals showed either a clear preference for sugar reward or no preference between reward modalities, depending on the frequency of the BSR alternative and the size of the sugar reward. Overall, these results suggest that BSR is an effective reinforcer in rodent decision-making tasks, removing food-related confounds and resulting in more accurate, consistent, and reliable metrics of choice.

  19. The effect of a prospected reward on semantic processing : An N400 EEG study

    NARCIS (Netherlands)

    van der Ven, Sanne H. G.; van Touw, Sven A. C.; van Hoogmoed, Anne H.; Janssen, Eva M.; Leseman, Paul P. M.

    2016-01-01

    Promised rewards are often used in education to stimulate learning behaviour. The present study tested whether a reward prospect affects semantic processing and recall of learned materials. Thirty-nine females participated in an electroencephalogram (EEG) task measuring semantic processing using the

  20. Reactivation of Reward-Related Patterns from Single Past Episodes Supports Memory-Based Decision Making.

    Science.gov (United States)

    Wimmer, G Elliott; Büchel, Christian

    2016-03-09

    Rewarding experiences exert a strong influence on later decision making. While decades of neuroscience research have shown how reinforcement gradually shapes preferences, decisions are often influenced by single past experiences. Surprisingly, relatively little is known about the influence of single learning episodes. Although recent work has proposed a role for episodes in decision making, it is largely unknown whether and how episodic experiences contribute to value-based decision making and how the values of single episodes are represented in the brain. In multiple behavioral experiments and an fMRI experiment, we tested whether and how rewarding episodes could support later decision making. Participants experienced episodes of high reward or low reward in conjunction with incidental, trial-unique neutral pictures. In a surprise test phase, we found that participants could indeed remember the associated level of reward, as evidenced by accurate source memory for value and preferences to re-engage with rewarded objects. Further, in a separate experiment, we found that high-reward objects shown as primes before a gambling task increased financial risk taking. Neurally, re-exposure to objects in the test phase led to significant reactivation of reward-related patterns. Importantly, individual variability in the strength of reactivation predicted value memory performance. Our results provide a novel demonstration that affect-related neural patterns are reactivated during later experience. Reactivation of value information represents a mechanism by which memory can guide decision making. Copyright © 2016 the authors 0270-6474/16/362868-13$15.00/0.

  1. The neurobiology of pleasure, reward processes, addiction and their health implications.

    Science.gov (United States)

    Esch, Tobias; Stefano, George B

    2004-08-01

    Modern science begins to understand pleasure as a potential component of salutogenesis. Thereby, pleasure is described as a state or feeling of happiness and satisfaction resulting from an experience that one enjoys. We examine the neurobiological factors underlying reward processes and pleasure phenomena. Further, health implications related to pleasurable activities are analyzed. With regard to possible negative effects of pleasure, we focus on addiction and motivational toxicity. Pleasure can serve cognition, productivity and health, but simultaneously promotes addiction and other negative behaviors, i.e., motivational toxicity. It is a complex neurobiological phenomenon, relying on reward circuitry or limbic activity. These processes involve dopaminergic signaling. Moreover, endorphin and endogenous morphinergic mechanisms may play a role. Natural rewarding activities are necessary for survival and appetitive motivation, usually governing beneficial biological behaviors like eating, sex and reproduction. Social contacts can further facilitate the positive effects exerted by pleasurable experiences. However, artificial stimulants can be detrimental, since flexibility and normal control of behavior are deteriorated. Additionally, addictive drugs are capable of directly acting on reward pathways. Thus, the concrete outcome of pleasant experiences may be a question of dose. Moderate pleasurable experiences are able to enhance biological flexibility and health. Hence, pleasure can be a resistance resource or may serve salutogenesis. Natural rewards are mediated by sensory organ stimulation, thereby exhibiting a potential association with complementary medical approaches. Trust and belief can be part of a self-healing potential connected with rewarding stimuli. Further, the placebo response physiologically resembles pleasure phenomena, since both involve brain's reward circuitry stimulation and subjective feelings of well-being. Pleasurable activities can stimulate

  2. Reward guides vision when it's your thing: trait reward-seeking in reward-mediated visual priming.

    Directory of Open Access Journals (Sweden)

    Clayton Hickey

    Full Text Available Reward-related mesolimbic dopamine is thought to play an important role in guiding animal behaviour, biasing approach towards potentially beneficial environmental stimuli and away from objects unlikely to garner positive outcome. This is considered to result in part from an impact on perceptual and attentional processes: dopamine initiates a series of cognitive events that result in the priming of reward-associated perceptual features. We have provided behavioural and electrophysiological evidence that this mechanism guides human vision in search, an effect we refer to as reward priming. We have also demonstrated that there is substantial individual variability in this effect. Here we show that behavioural differences in reward priming are predicted remarkably well by a personality index that captures the degree to which a person's behaviour is driven by reward outcome. Participants with reward-seeking personalities are found to be those who allocate visual resources to objects characterized by reward-associated visual features. These results add to a rapidly developing literature demonstrating the crucial role reward plays in attentional control. They additionally illustrate the striking impact personality traits can have on low-level cognitive processes like perception and selective attention.

  3. Alterations of monetary reward and punishment processing in chronic cannabis users: an FMRI study.

    Science.gov (United States)

    Enzi, Björn; Lissek, Silke; Edel, Marc-Andreas; Tegenthoff, Martin; Nicolas, Volkmar; Scherbaum, Norbert; Juckel, Georg; Roser, Patrik

    2015-01-01

    Alterations in reward and punishment processing have been reported in adults suffering from long-term cannabis use. However, previous findings regarding the chronic effects of cannabis on reward and punishment processing have been inconsistent. In the present study, we used functional magnetic resonance imaging (fMRI) to reveal the neural correlates of reward and punishment processing in long-term cannabis users (n = 15) and in healthy control subjects (n = 15) with no history of drug abuse. For this purpose, we used the well-established Monetary Incentive Delay (MID) task, a reliable experimental paradigm that allows the differentiation between anticipatory and consummatory aspects of reward and punishment processing. Regarding the gain anticipation period, no significant group differences were observed. In the left caudate and the left inferior frontal gyrus, cannabis users were - in contrast to healthy controls - not able to differentiate between the conditions feedback of reward and control. In addition, cannabis users showed stronger activations in the left caudate and the bilateral inferior frontal gyrus following feedback of no punishment as compared to healthy controls. We interpreted these deficits in dorsal striatal functioning as altered stimulus-reward or action-contingent learning in cannabis users. In addition, the enhanced lateral prefrontal activation in cannabis users that is related to non-punishing feedback may reflect a deficit in emotion regulation or cognitive reappraisal in these subjects.

  4. Alterations of monetary reward and punishment processing in chronic cannabis users: an FMRI study.

    Directory of Open Access Journals (Sweden)

    Björn Enzi

    Full Text Available Alterations in reward and punishment processing have been reported in adults suffering from long-term cannabis use. However, previous findings regarding the chronic effects of cannabis on reward and punishment processing have been inconsistent. In the present study, we used functional magnetic resonance imaging (fMRI to reveal the neural correlates of reward and punishment processing in long-term cannabis users (n = 15 and in healthy control subjects (n = 15 with no history of drug abuse. For this purpose, we used the well-established Monetary Incentive Delay (MID task, a reliable experimental paradigm that allows the differentiation between anticipatory and consummatory aspects of reward and punishment processing. Regarding the gain anticipation period, no significant group differences were observed. In the left caudate and the left inferior frontal gyrus, cannabis users were - in contrast to healthy controls - not able to differentiate between the conditions feedback of reward and control. In addition, cannabis users showed stronger activations in the left caudate and the bilateral inferior frontal gyrus following feedback of no punishment as compared to healthy controls. We interpreted these deficits in dorsal striatal functioning as altered stimulus-reward or action-contingent learning in cannabis users. In addition, the enhanced lateral prefrontal activation in cannabis users that is related to non-punishing feedback may reflect a deficit in emotion regulation or cognitive reappraisal in these subjects.

  5. Reward Retroactively Enhances Memory Consolidation for Related Items

    Science.gov (United States)

    Patil, Anuya; Murty, Vishnu P.; Dunsmoor, Joseph E.; Phelps, Elizabeth A.; Davachi, Lila

    2017-01-01

    Reward motivation has been shown to modulate episodic memory processes in order to support future adaptive behavior. However, for a memory system to be truly adaptive, it should enhance memory for rewarded events as well as for neutral events that may seem inconsequential at the time of encoding but can gain importance later. Here, we investigated…

  6. Reduced cerebellar brain activity during reward processing in adolescent binge drinkers.

    Science.gov (United States)

    Cservenka, Anita; Jones, Scott A; Nagel, Bonnie J

    2015-12-01

    Due to ongoing development, adolescence may be a period of heightened vulnerability to the neurotoxic effects of alcohol. Binge drinking may alter reward-driven behavior and neurocircuitry, thereby increasing risk for escalating alcohol use. Therefore, we compared reward processing in adolescents with and without a history of recent binge drinking. At their baseline study visit, all participants (age=14.86 ± 0.88) were free of heavy alcohol use and completed a modified version of the Wheel of Fortune (WOF) functional magnetic resonance imaging task. Following this visit, 17 youth reported binge drinking on ≥3 occasions within a 90 day period and were matched to 17 youth who remained alcohol and substance-naïve. All participants repeated the WOF task during a second visit (age=16.83 ± 1.22). No significant effects were found in a region of interest analysis of the ventral striatum, but whole-brain analyses showed significant group differences in reward response at the second study visit in the left cerebellum, controlling for baseline visit brain activity (p/αreward processing in a dose-dependent manner. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Intertwining personal and reward relevance: evidence from the drift-diffusion model.

    Science.gov (United States)

    Yankouskaya, A; Bührle, R; Lugt, E; Stolte, M; Sui, J

    2018-01-24

    In their seminal paper 'Is our self nothing but reward', Northoff and Hayes (Biol Psychiatry 69(11):1019-1025, Northoff, Hayes, Biological Psychiatry 69(11):1019-1025, 2011) proposed three models of the relationship between self and reward and opened a continuing debate about how these different fields can be linked. To date, none of the proposed models received strong empirical support. The present study tested common and distinct effects of personal relevance and reward values by de-componenting different stages of perceptual decision making using a drift-diffusion approach. We employed a recently developed associative matching paradigm where participants (N = 40) formed mental associations between five geometric shapes and five labels referring personal relevance in the personal task, or five shape-label pairings with different reward values in the reward task and then performed a matching task by indicating whether a displayed shape-label pairing was correct or incorrect. We found that common effects of personal relevance and monetary reward were manifested in the facilitation of behavioural performance for high personal relevance and high reward value as socially important signals. The differential effects between personal and monetary relevance reflected non-decisional time in a perceptual decision process, and task-specific prioritization of stimuli. Our findings support the parallel processing model (Northoff & Hayes, Biol Psychiatry 69(11):1019-1025, Northoff, Hayes, Biological Psychiatry 69(11):1019-1025, 2011) and suggest that self-specific processing occurs in parallel with high reward processing. Limitations and further directions are discussed.

  8. The Influence of Reward Associations on Conflict Processing in the Stroop Task

    Science.gov (United States)

    Krebs, Ruth M.; Boehler, Carsten N.; Woldorff, Marty G.

    2010-01-01

    Performance in a behavioral task can be facilitated by associating stimulus properties with reward. In contrast, conflicting information is known to impede task performance. Here we investigated how reward associations influence the within-trial processing of conflicting information using a color-naming Stroop task in which a subset of ink colors…

  9. Elevated cognitive control over reward processing in recovered female patients with anorexia nervosa.

    Science.gov (United States)

    Ehrlich, Stefan; Geisler, Daniel; Ritschel, Franziska; King, Joseph A; Seidel, Maria; Boehm, Ilka; Breier, Marion; Clas, Sabine; Weiss, Jessika; Marxen, Michael; Smolka, Michael N; Roessner, Veit; Kroemer, Nils B

    2015-09-01

    Individuals with anorexia nervosa are thought to exert excessive self-control to inhibit primary drives. This study used functional MRI (fMRI) to interrogate interactions between the neural correlates of cognitive control and motivational processes in the brain reward system during the anticipation of monetary reward and reward-related feedback. In order to avoid confounding effects of undernutrition, we studied female participants recovered from anorexia nervosa and closely matched healthy female controls. The fMRI analysis (including node-to-node functional connectivity) followed a region of interest approach based on models of the brain reward system and cognitive control regions implicated in anorexia nervosa: the ventral striatum, medial orbitofrontal cortex (mOFC) and dorsolateral prefrontal cortex (DLPFC). We included 30 recovered patients and 30 controls in our study. There were no behavioural differences and no differences in hemodynamic responses of the ventral striatum and the mOFC in the 2 phases of the task. However, relative to controls, recovered patients showed elevated DLPFC activity during the anticipation phase, failed to deactivate this region during the feedback phase and displayed greater functional coupling between the DLPFC and mOFC. Recovered patients also had stronger associations than controls between anticipation-related DLPFC responses and instrumental responding. The results we obtained using monetary stimuli might not generalize to other forms of reward. Unaltered neural responses in ventral limbic reward networks but increased recruitment of and connectivity with lateral-frontal brain circuitry in recovered patients suggests an elevated degree of selfregulatory processes in response to rewarding stimuli. An imbalance between brain systems subserving bottom-up and top-down processes may be a trait marker of the disorder.

  10. Frontal-striatum dysfunction during reward processing: Relationships to amotivation in schizophrenia.

    Science.gov (United States)

    Chung, Yu Sun; Barch, Deanna M

    2016-04-01

    Schizophrenia is characterized by deficits of context processing, thought to be related to dorsolateral prefrontal cortex (DLPFC) impairment. Despite emerging evidence suggesting a crucial role of the DLPFC in integrating reward and goal information, we do not know whether individuals with schizophrenia can represent and integrate reward-related context information to modulate cognitive control. To address this question, 36 individuals with schizophrenia (n = 29) or schizoaffective disorder (n = 7) and 27 healthy controls performed a variant of a response conflict task (Padmala & Pessoa, 2011) during fMRI scanning, in both baseline and reward conditions, with monetary incentives on some reward trials. We used a mixed state-item design that allowed us to examine both sustained and transient reward effects on cognitive control. Different from predictions about impaired DLPFC function in schizophrenia, we found an intact pattern of increased sustained DLPFC activity during reward versus baseline blocks in individuals with schizophrenia at a group level but blunted sustained activations in the putamen. Contrary to our predictions, individuals with schizophrenia showed blunted cue-related activations in several regions of the basal ganglia responding to reward-predicting cues. Importantly, as predicted, individual differences in anhedonia/amotivation symptoms severity were significantly associated with reduced sustained DLPFC activation in the same region that showed overall increased activity as a function of reward. These results suggest that individual differences in motivational impairments in schizophrenia may be related to dysfunction of the DLPFC and striatum in motivationally salient situations. (c) 2016 APA, all rights reserved).

  11. Trait Anticipatory Pleasure Predicts Effort Expenditure for Reward.

    Directory of Open Access Journals (Sweden)

    Joachim T Geaney

    Full Text Available Research in motivation and emotion has been increasingly influenced by the perspective that processes underpinning the motivated approach of rewarding goals are distinct from those underpinning enjoyment during reward consummation. This distinction recently inspired the construction of the Temporal Experience of Pleasure Scale (TEPS, a self-report measure that distinguishes trait anticipatory pleasure (pre-reward feelings of desire from consummatory pleasure (feelings of enjoyment and gratification upon reward attainment. In a university community sample (N = 97, we examined the TEPS subscales as predictors of (1 the willingness to expend effort for monetary rewards, and (2 affective responses to a pleasant mood induction procedure. Results showed that both anticipatory pleasure and a well-known trait measure of reward motivation predicted effort-expenditure for rewards when the probability of being rewarded was relatively low. Against expectations, consummatory pleasure was unrelated to induced pleasant affect. Taken together, our findings provide support for the validity of the TEPS anticipatory pleasure scale, but not the consummatory pleasure scale.

  12. Diet-induced obesity causes ghrelin resistance in reward processing tasks.

    Science.gov (United States)

    Lockie, Sarah H; Dinan, Tara; Lawrence, Andrew J; Spencer, Sarah J; Andrews, Zane B

    2015-12-01

    Diet-induced obesity (DIO) causes ghrelin resistance in hypothalamic Agouti-related peptide (AgRP) neurons. However, ghrelin promotes feeding through actions at both the hypothalamus and mesolimbic dopamine reward pathways. Therefore, we hypothesized that DIO would also establish ghrelin resistance in the ventral tegmental area (VTA), a major site of dopaminergic cell bodies important in reward processing. We observed reduced sucrose and saccharin consumption in Ghrelin KO vs Ghrelin WT mice. Moreover, DIO reduced saccharin consumption relative to chow-fed controls. These data suggest that the deletion of ghrelin and high fat diet both cause anhedonia. To assess if these are causally related, we tested whether DIO caused ghrelin resistance in a classic model of drug reward, conditioned place preference (CPP). Chow or high fat diet (HFD) mice were conditioned with ghrelin (1mg/kg in 10ml/kg ip) in the presence or absence of food in the conditioning chamber. We observed a CPP to ghrelin in chow-fed mice but not in HFD-fed mice. HFD-fed mice still showed a CPP for cocaine (20mg/kg), indicating that they maintained the ability to develop conditioned behaviour. The absence of food availability during ghrelin conditioning sessions induced a conditioned place aversion, an effect that was still present in both chow and HFD mice. Bilateral intra-VTA ghrelin injection (0.33μg/μl in 0.5μl) robustly increased feeding in both chow-fed and high fat diet (HFD)-fed mice; however, this was correlated with body weight only in the chow-fed mice. Our results suggest that DIO causes ghrelin resistance albeit not directly in the VTA. We suggest there is impaired ghrelin sensitivity in upstream pathways regulating reward pathways, highlighting a functional role for ghrelin linking appropriate metabolic sensing with reward processing. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. A Markov reward model checker

    NARCIS (Netherlands)

    Katoen, Joost P.; Maneesh Khattri, M.; Zapreev, I.S.; Zapreev, I.S.

    2005-01-01

    This short tool paper introduces MRMC, a model checker for discrete-time and continuous-time Markov reward models. It supports reward extensions of PCTL and CSL, and allows for the automated verification of properties concerning long-run and instantaneous rewards as well as cumulative rewards. In

  14. Neural processing of calories in brain reward areas can be modulated by reward sensitivity

    Directory of Open Access Journals (Sweden)

    Inge eVan Rijn

    2016-01-01

    Full Text Available A food’s reward value is dependent on its caloric content. Furthermore, a food’s acute reward value also depends on hunger state. The drive to obtain rewards (reward sensitivity, however, differs between individuals. Here, we assessed the association between brain responses to calories in the mouth and trait reward sensitivity in different hunger states. Firstly, we assessed this in data from a functional neuroimaging study (van Rijn et al., 2015, in which participants (n=30 tasted simple solutions of a non-caloric sweetener with or without a non-sweet carbohydrate (maltodextrin during hunger and satiety. Secondly, we expanded these analyses to regular drinks by assessing the same relationship in data from a study in which soft drinks sweetened with either sucrose or a non-caloric sweetener were administered during hunger (n=18 (Griffioen-Roose et al., 2013. First, taste activation by the non-caloric solution/soft drink was subtracted from that by the caloric solution/soft drink to eliminate sweetness effects and retain activation induced by calories. Subsequently, this difference in taste activation was correlated with reward sensitivity as measured with the BAS drive subscale of the Behavioral Activation System (BAS questionnaire.When participants were hungry and tasted calories from the simple solution, brain activation in the right ventral striatum (caudate, right amygdala and anterior cingulate cortex (bilaterally correlated negatively with BAS drive scores. In contrast, when participants were satiated, taste responses correlated positively with BAS drive scores in the left caudate. These results were not replicated for soft drinks. Thus, neural responses to oral calories from maltodextrin were modulated by reward sensitivity in reward-related brain areas. This was not the case for sucrose. This may be due to the direct detection of maltodextrin, but not sucrose in the oral cavity. Also, in a familiar beverage, detection of calories per

  15. Neural Processing of Calories in Brain Reward Areas Can be Modulated by Reward Sensitivity.

    Science.gov (United States)

    van Rijn, Inge; Griffioen-Roose, Sanne; de Graaf, Cees; Smeets, Paul A M

    2015-01-01

    A food's reward value is dependent on its caloric content. Furthermore, a food's acute reward value also depends on hunger state. The drive to obtain rewards (reward sensitivity), however, differs between individuals. Here, we assessed the association between brain responses to calories in the mouth and trait reward sensitivity in different hunger states. Firstly, we assessed this in data from a functional neuroimaging study (van Rijn et al., 2015), in which participants (n = 30) tasted simple solutions of a non-caloric sweetener with or without a non-sweet carbohydrate (maltodextrin) during hunger and satiety. Secondly, we expanded these analyses to regular drinks by assessing the same relationship in data from a study in which soft drinks sweetened with either sucrose or a non-caloric sweetener were administered during hunger (n = 18) (Griffioen-Roose et al., 2013). First, taste activation by the non-caloric solution/soft drink was subtracted from that by the caloric solution/soft drink to eliminate sweetness effects and retain activation induced by calories. Subsequently, this difference in taste activation was correlated with reward sensitivity as measured with the BAS drive subscale of the Behavioral Activation System (BAS) questionnaire. When participants were hungry and tasted calories from the simple solution, brain activation in the right ventral striatum (caudate), right amygdala and anterior cingulate cortex (bilaterally) correlated negatively with BAS drive scores. In contrast, when participants were satiated, taste responses correlated positively with BAS drive scores in the left caudate. These results were not replicated for soft drinks. Thus, neural responses to oral calories from maltodextrin were modulated by reward sensitivity in reward-related brain areas. This was not the case for sucrose. This may be due to the direct detection of maltodextrin, but not sucrose in the oral cavity. Also, in a familiar beverage, detection of calories per se may be

  16. A test of the opponent-process theory of motivation using lesions that selectively block morphine reward.

    Science.gov (United States)

    Vargas-Perez, Hector; Ting-A-Kee, Ryan A; Heinmiller, Andrew; Sturgess, Jessica E; van der Kooy, Derek

    2007-06-01

    The opponent-process theory of motivation postulates that motivational stimuli activate a rewarding process that is followed by an opposed aversive process in a homeostatic control mechanism. Thus, an acute injection of morphine in nondependent animals should evoke an acute rewarding response, followed by a later aversive response. Indeed, the tegmental pedunculopontine nucleus (TPP) mediates the rewarding effects of opiates in previously morphine-naive animals, but not other unconditioned effects of opiates, or learning ability. The aversive opponent process for acute morphine reward was revealed using a place-conditioning paradigm. The conditioned place aversion induced by 16-h spontaneous morphine withdrawal from an acute morphine injection in nondependent rats was abolished by TPP lesions performed prior to drug experience. However, TPP-lesioned rats did show conditioned aversions for an environment paired with the acute administration of the opioid antagonist naloxone, which blocks endogenous opioids. The results show that blocking the rewarding effects of morphine with TPP lesions also blocked the opponent aversive effects of acute morphine withdrawal in nondependent animals. Thus, this spontaneous withdrawal aversion (the opponent process) is induced by the acute rewarding effects of morphine and not by other unconditioned effects of morphine, the pharmacological effects of morphine or endogenous opioids being displaced from opiate receptors.

  17. Trait Rumination Influences Neural Correlates of the Anticipation but Not the Consumption Phase of Reward Processing

    Directory of Open Access Journals (Sweden)

    Natália Kocsel

    2017-05-01

    Full Text Available Cumulative evidence suggests that trait rumination can be defined as an abstract information processing mode, which leads people to constantly anticipate the likely impact of present events on future events and experiences. A previous study with remitted depressed patients suggested that enhanced rumination tendencies distort brain mechanisms of anticipatory processes associated with reward and loss cues. In the present study, we explored the impact of trait rumination on neural activity during reward and loss anticipation among never-depressed people. We analyzed the data of 37 healthy controls, who performed the monetary incentive delay (MID task which was designed for the simultaneous measurement of the anticipation (motivational and consumption (hedonic phase of reward processing, during functional magnetic resonance imaging (fMRI. Our results show that rumination—after controlling for age, gender, and current mood—significantly influenced neural responses to reward (win cues compared to loss cues. Blood-oxygenation-level-dependent (BOLD activity in the left inferior frontal gyrus (IFG triangularis, left anterior insula, and left rolandic operculum was positively related to Ruminative Response Scale (RRS scores. We did not detect any significant rumination-related activations associated with win-neutral or loss-neutral cues and with reward or loss consumption. Our results highlight the influence of trait rumination on reward anticipation in a non-depressed sample. They also suggest that for never-depressed ruminators rewarding cues are more salient than loss cues. BOLD response during reward consumption did not relate to rumination, suggesting that rumination mainly relates to processing of the motivational (wanting aspect of reward rather than the hedonic (liking aspect, at least in the absence of pathological mood.

  18. Cerebral interactions of pain and reward and their relevance for chronic pain.

    Science.gov (United States)

    Becker, Susanne; Gandhi, Wiebke; Schweinhardt, Petra

    2012-06-29

    Pain and reward are opponent, interacting processes. Such interactions are enabled by neuroanatomical and neurochemical overlaps of brain systems that process pain and reward. Cerebral processing of hedonic ('liking') and motivational ('wanting') aspects of reward can be separated: the orbitofrontal cortex and opioids play an important role for the hedonic experience, and the ventral striatum and dopamine predominantly process motivation for reward. Supported by neuroimaging studies, we present here the hypothesis that the orbitofrontal cortex and opioids are responsible for pain modulation by hedonic experience, while the ventral striatum and dopamine mediate motivational effects on pain. A rewarding stimulus that appears to be particularly important in the context of pain is pain relief. Further, reward, including pain relief, leads to operant learning, which can affect pain sensitivity. Indirect evidence points at brain mechanisms that might underlie pain relief as a reward and related operant learning but studies are scarce. Investigating the cerebral systems underlying pain-reward interactions as well as related operant learning holds the potential of better understanding mechanisms that contribute to the development and maintenance of chronic pain, as detailed in the last section of this review. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  19. Reward positivity: Reward prediction error or salience prediction error?

    Science.gov (United States)

    Heydari, Sepideh; Holroyd, Clay B

    2016-08-01

    The reward positivity is a component of the human ERP elicited by feedback stimuli in trial-and-error learning and guessing tasks. A prominent theory holds that the reward positivity reflects a reward prediction error signal that is sensitive to outcome valence, being larger for unexpected positive events relative to unexpected negative events (Holroyd & Coles, 2002). Although the theory has found substantial empirical support, most of these studies have utilized either monetary or performance feedback to test the hypothesis. However, in apparent contradiction to the theory, a recent study found that unexpected physical punishments also elicit the reward positivity (Talmi, Atkinson, & El-Deredy, 2013). The authors of this report argued that the reward positivity reflects a salience prediction error rather than a reward prediction error. To investigate this finding further, in the present study participants navigated a virtual T maze and received feedback on each trial under two conditions. In a reward condition, the feedback indicated that they would either receive a monetary reward or not and in a punishment condition the feedback indicated that they would receive a small shock or not. We found that the feedback stimuli elicited a typical reward positivity in the reward condition and an apparently delayed reward positivity in the punishment condition. Importantly, this signal was more positive to the stimuli that predicted the omission of a possible punishment relative to stimuli that predicted a forthcoming punishment, which is inconsistent with the salience hypothesis. © 2016 Society for Psychophysiological Research.

  20. Reward processing and intertemporal decision making in adults and adolescents: the role of impulsivity and decision consistency.

    Science.gov (United States)

    Ripke, Stephan; Hübner, Thomas; Mennigen, Eva; Müller, Kathrin U; Rodehacke, Sarah; Schmidt, Dirk; Jacob, Mark J; Smolka, Michael N

    2012-10-10

    Several studies report differences between adults and adolescents in reward processing and impulsivity. Consistently, adolescents are more impulsive in their decision making, as measured by intertemporal choice tasks. Since impulsivity affects an individual's perception and neural processing of rewards, it is unclear whether previously reported differences in brain activation between adults and adolescents are primarily due to maturation of the brain reward system or differences in impulsivity (i.e. discounting behaviour). To disentangle this, we analysed data from 235 adolescents and 29 adults who performed an intertemporal choice task in which monetary rewards were adapted to individual impulsivity. Using functional magnetic resonance imaging (fMRI), we measured brain activity and assessed impulsivity and consistency of choices at the behavioural level. Although adolescents discounted delayed rewards more steeply than adults, when controlling for impulsivity, neural processing of reward value did not differ between groups. However, more impulsive subjects showed a lower brain response to delayed rewards, independent of age. Concerning decision making, adolescents exhibited a lower consistency of choices and less brain activity in the parietal network than adults. We conclude that processing of the value of prospective delayed rewards is more sensitive to discounting behaviour than to chronological age. Lower consistency of intertemporal choices might indicate ongoing maturation of parietal brain areas in adolescents. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Reduced cerebellar brain activity during reward processing in adolescent binge drinkers

    Directory of Open Access Journals (Sweden)

    Anita Cservenka

    2015-12-01

    Full Text Available Due to ongoing development, adolescence may be a period of heightened vulnerability to the neurotoxic effects of alcohol. Binge drinking may alter reward-driven behavior and neurocircuitry, thereby increasing risk for escalating alcohol use. Therefore, we compared reward processing in adolescents with and without a history of recent binge drinking. At their baseline study visit, all participants (age = 14.86 ± 0.88 were free of heavy alcohol use and completed a modified version of the Wheel of Fortune (WOF functional magnetic resonance imaging task. Following this visit, 17 youth reported binge drinking on ≥3 occasions within a 90 day period and were matched to 17 youth who remained alcohol and substance-naïve. All participants repeated the WOF task during a second visit (age = 16.83 ± 1.22. No significant effects were found in a region of interest analysis of the ventral striatum, but whole-brain analyses showed significant group differences in reward response at the second study visit in the left cerebellum, controlling for baseline visit brain activity (p/α < 0.05, which was negatively correlated with mean number of drinks consumed/drinking day in the last 90 days. These findings suggest that binge drinking during adolescence may alter brain activity during reward processing in a dose-dependent manner.

  2. The anticipation and outcome phases of reward and loss processing: A neuroimaging meta-analysis of the monetary incentive delay task.

    Science.gov (United States)

    Oldham, Stuart; Murawski, Carsten; Fornito, Alex; Youssef, George; Yücel, Murat; Lorenzetti, Valentina

    2018-04-25

    The processing of rewards and losses are crucial to everyday functioning. Considerable interest has been attached to investigating the anticipation and outcome phases of reward and loss processing, but results to date have been inconsistent. It is unclear if anticipation and outcome of a reward or loss recruit similar or distinct brain regions. In particular, while the striatum has widely been found to be active when anticipating a reward, whether it activates in response to the anticipation of losses as well remains ambiguous. Furthermore, concerning the orbitofrontal/ventromedial prefrontal regions, activation is often observed during reward receipt. However, it is unclear if this area is active during reward anticipation as well. We ran an Activation Likelihood Estimation meta-analysis of 50 fMRI studies, which used the Monetary Incentive Delay Task (MIDT), to identify which brain regions are implicated in the anticipation of rewards, anticipation of losses, and the receipt of reward. Anticipating rewards and losses recruits overlapping areas including the striatum, insula, amygdala and thalamus, suggesting that a generalised neural system initiates motivational processes independent of valence. The orbitofrontal/ventromedial prefrontal regions were recruited only during the reward outcome, likely representing the value of the reward received. Our findings help to clarify the neural substrates of the different phases of reward and loss processing, and advance neurobiological models of these processes. © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  3. Increased Default Mode Network Connectivity in Obsessive–Compulsive Disorder During Reward Processing

    Directory of Open Access Journals (Sweden)

    Kathrin Koch

    2018-06-01

    Full Text Available Objective: Obsessive-compulsive disorder (OCD is characterized by anxiety-provoking, obsessive thoughts (i.e., obsessions which patients react to with compulsive behaviors (i.e., compulsions. Due to the transient feeling of relief following the reduction of obsession-induced anxiety, compulsions are often described as relieving or even rewarding. Several studies investigated functional activation during reward processing in OCD, but findings are heterogeneous up to now and little is known about potential alterations in functional connectivity.Method: Against this background we studied OCD patients (n = 44 and healthy controls (n = 37 during the receipt of monetary reward by assessing both activation and functional connectivity.Results: Patients showed a decreased activation in several frontal regions and the posterior cingulate (PCC, BA31 together with a stronger connectivity between the PCC and the vmPFC (BA10.Conclusion: Present findings demonstrate an increased connectivity in patients within major nodes of the default mode network (DMN—a network known to be involved in the evaluation of internal mental states. These results may indicate an increased activity of internal, self-related processing at the expense of a normal responsiveness toward external rewards and incentives. This, in turn, may explain the constant urge for additional reinforcement and patients' inability to inhibit their compulsive behaviors.

  4. The impact of Parkinson's disease and subthalamic deep brain stimulation on reward processing.

    Science.gov (United States)

    Evens, Ricarda; Stankevich, Yuliya; Dshemuchadse, Maja; Storch, Alexander; Wolz, Martin; Reichmann, Heinz; Schlaepfer, Thomas E; Goschke, Thomas; Lueken, Ulrike

    2015-08-01

    Due to its position in cortico-subthalamic and cortico-striatal pathways, the subthalamic nucleus (STN) is considered to play a crucial role not only in motor, but also in cognitive and motivational functions. In the present study we aimed to characterize how different aspects of reward processing are affected by disease and deep brain stimulation of the STN (DBS-STN) in patients with idiopathic Parkinson's disease (PD). We compared 33 PD patients treated with DBS-STN under best medical treatment (DBS-on, medication-on) to 33 PD patients without DBS, but optimized pharmacological treatment and 34 age-matched healthy controls. We then investigated DBS-STN effects using a postoperative stimulation-on/ -off design. The task set included a delay discounting task, a task to assess changes in incentive salience attribution, and the Iowa Gambling Task. The presence of PD was associated with increased incentive salience attribution and devaluation of delayed rewards. Acute DBS-STN increased risky choices in the Iowa Gambling Task under DBS-on condition, but did not further affect incentive salience attribution or the evaluation of delayed rewards. Findings indicate that acute DBS-STN affects specific aspects of reward processing, including the weighting of gains and losses, while larger-scale effects of disease or medication are predominant in others reward-related functions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Reward contingencies and the recalibration of task monitoring and reward systems: a high-density electrical mapping study.

    Science.gov (United States)

    Morie, K P; De Sanctis, P; Foxe, J J

    2014-07-25

    Task execution almost always occurs in the context of reward-seeking or punishment-avoiding behavior. As such, ongoing task-monitoring systems are influenced by reward anticipation systems. In turn, when a task has been executed either successfully or unsuccessfully, future iterations of that task will be re-titrated on the basis of the task outcome. Here, we examined the neural underpinnings of the task-monitoring and reward-evaluation systems to better understand how they govern reward-seeking behavior. Twenty-three healthy adult participants performed a task where they accrued points that equated to real world value (gift cards) by responding as rapidly as possible within an allotted timeframe, while success rate was titrated online by changing the duration of the timeframe dependent on participant performance. Informative cues initiated each trial, indicating the probability of potential reward or loss (four levels from very low to very high). We manipulated feedback by first informing participants of task success/failure, after which a second feedback signal indicated actual magnitude of reward/loss. High-density electroencephalography (EEG) recordings allowed for examination of event-related potentials (ERPs) to the informative cues and in turn, to both feedback signals. Distinct ERP components associated with reward cues, task-preparatory and task-monitoring processes, and reward feedback processes were identified. Unsurprisingly, participants displayed increased ERP amplitudes associated with task-preparatory processes following cues that predicted higher chances of reward. They also rapidly updated reward and loss prediction information dependent on task performance after the first feedback signal. Finally, upon reward receipt, initial reward probability was no longer taken into account. Rather, ERP measures suggested that only the magnitude of actual reward or loss was now processed. Reward and task-monitoring processes are clearly dissociable, but

  6. Neural activation to monetary reward is associated with amphetamine reward sensitivity.

    Science.gov (United States)

    Crane, Natania A; Gorka, Stephanie M; Weafer, Jessica; Langenecker, Scott A; de Wit, Harriet; Phan, K Luan

    2018-03-14

    One known risk factor for drug use and abuse is sensitivity to rewarding effects of drugs. It is not known whether this risk factor extends to sensitivity to non-drug rewards. In this study with healthy young adults, we examined the association between sensitivity to the subjective rewarding effects of amphetamine and a neural indicator of anticipation of monetary reward. We hypothesized that greater euphorigenic response to amphetamine would be associated with greater neural activation to anticipation of monetary reward (Win > Loss). Healthy participants (N = 61) completed four laboratory sessions in which they received d-amphetamine (20 mg) and placebo in alternating order, providing self-report measures of euphoria and stimulation at regular intervals. At a separate visit 1-3 weeks later, participants completed the guessing reward task (GRT) during fMRI in a drug-free state. Participants reporting greater euphoria after amphetamine also exhibited greater neural activation during monetary reward anticipation in mesolimbic reward regions, including the bilateral caudate and putamen. This is the first study to show a relationship between neural correlates of monetary reward and sensitivity to the subjective rewarding effects of amphetamine in humans. These findings support growing evidence that sensitivity to reward in general is a risk factor for drug use and abuse, and suggest that sensitivity of drug-induced euphoria may reflect a general sensitivity to rewards. This may be an index of vulnerability for drug use or abuse.

  7. Functional magnetic resonance imaging in awake transgenic fragile X rats: evidence of dysregulation in reward processing in the mesolimbic/habenular neural circuit.

    Science.gov (United States)

    Kenkel, W M; Yee, J R; Moore, K; Madularu, D; Kulkarni, P; Gamber, K; Nedelman, M; Ferris, C F

    2016-03-22

    Anxiety and social deficits, often involving communication impairment, are fundamental clinical features of fragile X syndrome. There is growing evidence that dysregulation in reward processing is a contributing factor to the social deficits observed in many psychiatric disorders. Hence, we hypothesized that transgenic fragile X mental retardation 1 gene (fmr1) KO (FX) rats would display alterations in reward processing. To this end, awake control and FX rats were imaged for changes in blood oxygen level dependent (BOLD) signal intensity in response to the odor of almond, a stimulus to elicit the innate reward response. Subjects were 'odor naive' to this evolutionarily conserved stimulus. The resulting changes in brain activity were registered to a three-dimensional segmented, annotated rat atlas delineating 171 brain regions. Both wild-type (WT) and FX rats showed robust brain activation to a rewarding almond odor, though FX rats showed an altered temporal pattern and tended to have a higher number of voxels with negative BOLD signal change from baseline. This pattern of greater negative BOLD was especially apparent in the Papez circuit, critical to emotional processing and the mesolimbic/habenular reward circuit. WT rats showed greater positive BOLD response in the supramammillary area, whereas FX rats showed greater positive BOLD response in the dorsal lateral striatum, and greater negative BOLD response in the retrosplenial cortices, the core of the accumbens and the lateral preoptic area. When tested in a freely behaving odor-investigation paradigm, FX rats failed to show the preference for almond odor which typifies WT rats. However, FX rats showed investigation profiles similar to WT when presented with social odors. These data speak to an altered processing of this highly salient novel odor in the FX phenotype and lend further support to the notion that altered reward systems in the brain may contribute to fragile X syndrome symptomology.

  8. The risk variant in ODZ4 for bipolar disorder impacts on amygdala activation during reward processing.

    Science.gov (United States)

    Heinrich, Angela; Lourdusamy, Anbarasu; Tzschoppe, Jelka; Vollstädt-Klein, Sabine; Bühler, Mira; Steiner, Sabina; Bach, Christiane; Poustka, Luise; Banaschewski, Tobias; Barker, Gareth; Büchel, Christian; Conrod, Patricia; Garavan, Hugh; Gallinat, Jürgen; Heinz, Andreas; Ittermann, Bernd; Loth, Eva; Mann, Karl; Martinot, Jean-Luc; Paus, Tomáš; Pausova, Zdenka; Smolka, Michael; Ströhle, Andreas; Struve, Maren; Witt, Stephanie; Flor, Herta; Schumann, Gunter; Rietschel, Marcella; Nees, Frauke

    2013-06-01

    Bipolar disorder is a severe mood disorder, which normally begins during adolescence or early adulthood and has a heritability of up to 80%. The largest genome-wide association analysis of bipolar disorder recently identified a new genome-wide associated variant in OZD4 (rs12576775). The aim of the present study was to further elucidate the role of this risk variant in the disease process using an imaging genetics approach. As increased amygdala and striatal responses during the processing of reward and emotion are characteristic for bipolar disorder patients, it was tested whether the risk variant has an influence on this endophenotype in healthy adolescents. We examined the impact of the risk variant rs12576775 on functional magnetic resonance imaging data in an adolescent sample (N = 485). Differential activation between carriers of the risk allele (G-allele) and homozygous A-allele carriers in the amygdala and the striatum during a modification of the monetary incentive delay task (examining reward) and a face task (examining emotion) was analyzed. Carriers of the risk allele showed an increased blood oxygen level-dependent response in the amygdala during reward sensitivity (p = 0.05) and reward expectation (p < 0.05) but not during the face task. No significant group differences were found in the striatum during both reward and emotion processing. Our results indicate that the ODZ4 risk variant influences reward processing in the amygdala. Alterations in the processing of emotion may have different underlying mechanisms and need to be further examined. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Reward loss and the basolateral amygdala: A function in reward comparisons.

    Science.gov (United States)

    Kawasaki, Katsuyoshi; Annicchiarico, Iván; Glueck, Amanda C; Morón, Ignacio; Papini, Mauricio R

    2017-07-28

    The neural circuitry underlying behavior in reward loss situations is poorly understood. We considered two such situations: reward devaluation (from large to small rewards) and reward omission (from large rewards to no rewards). There is evidence that the central nucleus of the amygdala (CeA) plays a role in the negative emotion accompanying reward loss. However, little is known about the function of the basolateral nucleus (BLA) in reward loss. Two hypotheses of BLA function in reward loss, negative emotion and reward comparisons, were tested in an experiment involving pretraining excitotoxic BLA lesions followed by training in four tasks: consummatory successive negative contrast (cSNC), autoshaping (AS) acquisition and extinction, anticipatory negative contrast (ANC), and open field testing (OF). Cell counts in the BLA (but not in the CeA) were significantly lower in animals with lesions vs. shams. BLA lesions eliminated cSNC and ANC, and accelerated extinction of lever pressing in AS. BLA lesions had no effect on OF testing: higher activity in the periphery than in the central area. This pattern of results provides support for the hypothesis that BLA neurons are important for reward comparison. The three affected tasks (cSNC, ANC, and AS extinction) involve reward comparisons. However, ANC does not seem to involve negative emotions and it was affected, whereas OF activity is known to involve negative emotion, but it was not affected. It is hypothesized that a circuit involving the thalamus, insular cortex, and BLA is critically involved in the mechanism comparing current and expected rewards. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. The amygdala, reward and emotion.

    Science.gov (United States)

    Murray, Elisabeth A

    2007-11-01

    Recent research provides new insights into amygdala contributions to positive emotion and reward. Studies of neuronal activity in the monkey amygdala and of autonomic responses mediated by the monkey amygdala show that, contrary to a widely held view, the amygdala is just as important for processing positive reward and reinforcement as it is for negative. In addition, neuropsychological studies reveal that the amygdala is essential for only a fraction of what might be considered 'stimulus-reward processing', and that the neural substrates for emotion and reward are partially nonoverlapping. Finally, evidence suggests that two systems within the amygdala, operating in parallel, enable reward-predicting cues to influence behavior; one mediates a general, arousing effect of reward and the other links the sensory properties of reward to emotion.

  11. Topography, power, and current source density of θ oscillations during reward processing as markers for alcohol dependence.

    Science.gov (United States)

    Kamarajan, Chella; Rangaswamy, Madhavi; Manz, Niklas; Chorlian, David B; Pandey, Ashwini K; Roopesh, Bangalore N; Porjesz, Bernice

    2012-05-01

    Recent studies have linked alcoholism with a dysfunctional neural reward system. Although several electrophysiological studies have explored reward processing in healthy individuals, such studies in alcohol-dependent individuals are quite rare. The present study examines theta oscillations during reward processing in abstinent alcoholics. The electroencephalogram (EEG) was recorded in 38 abstinent alcoholics and 38 healthy controls as they performed a single outcome gambling task, which involved outcomes of either loss or gain of an amount (10 or 50¢) that was bet. Event-related theta band (3.0-7.0 Hz) power following each outcome stimulus was computed using the S-transform method. Theta power at the time window of the outcome-related negativity (ORN) and positivity (ORP) (200-500 ms) was compared across groups and outcome conditions. Additionally, behavioral data of impulsivity and task performance were analyzed. The alcoholic group showed significantly decreased theta power during reward processing compared to controls. Current source density (CSD) maps of alcoholics revealed weaker and diffuse source activity for all conditions and weaker bilateral prefrontal sources during the Loss 50 condition when compared with controls who manifested stronger and focused midline sources. Furthermore, alcoholics exhibited increased impulsivity and risk-taking on the behavioral measures. A strong association between reduced anterior theta power and impulsive task-performance was observed. It is suggested that decreased power and weaker and diffuse CSD in alcoholics may be due to dysfunctional neural reward circuitry. The relationship among alcoholism, theta oscillations, reward processing, and impulsivity could offer clues to understand brain circuitries that mediate reward processing and inhibitory control. Copyright © 2011 Wiley-Liss, Inc.

  12. Reward Processing and Risk for Depression Across Development.

    Science.gov (United States)

    Luking, Katherine R; Pagliaccio, David; Luby, Joan L; Barch, Deanna M

    2016-06-01

    Striatal response to reward has been of great interest in the typical development and psychopathology literatures. These parallel lines of inquiry demonstrate that although typically developing adolescents show robust striatal response to reward, adolescents with major depressive disorder (MDD) and those at high risk for MDD show a blunted response to reward. Understanding how these findings intersect is crucial for the development and application of early preventative interventions in at-risk children, ideally before the sharp increase in the rate of MDD onset that occurs in adolescence. Robust findings relating blunted striatal response to reward and MDD risk are reviewed and situated within a normative developmental context. We highlight the need for future studies investigating longitudinal development, specificity to MDD, and roles of potential moderators and mediators. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Hemispheric dissociation of reward processing in humans: insights from deep brain stimulation.

    Science.gov (United States)

    Palminteri, Stefano; Serra, Giulia; Buot, Anne; Schmidt, Liane; Welter, Marie-Laure; Pessiglione, Mathias

    2013-01-01

    Rewards have various effects on human behavior and multiple representations in the human brain. Behaviorally, rewards notably enhance response vigor in incentive motivation paradigms and bias subsequent choices in instrumental learning paradigms. Neurally, rewards affect activity in different fronto-striatal regions attached to different motor effectors, for instance in left and right hemispheres for the two hands. Here we address the question of whether manipulating reward-related brain activity has local or general effects, with respect to behavioral paradigms and motor effectors. Neuronal activity was manipulated in a single hemisphere using unilateral deep brain stimulation (DBS) in patients with Parkinson's disease. Results suggest that DBS amplifies the representation of reward magnitude within the targeted hemisphere, so as to affect the behavior of the contralateral hand specifically. These unilateral DBS effects on behavior include both boosting incentive motivation and biasing instrumental choices. Furthermore, using computational modeling we show that DBS effects on incentive motivation can predict DBS effects on instrumental learning (or vice versa). Thus, we demonstrate the feasibility of causally manipulating reward-related neuronal activity in humans, in a manner that is specific to a class of motor effectors but that generalizes to different computational processes. As these findings proved independent from therapeutic effects on parkinsonian motor symptoms, they might provide insight into DBS impact on non-motor disorders, such as apathy or hypomania. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Impaired cross-talk between mesolimbic food reward processing and metabolic signaling predicts body mass index

    Directory of Open Access Journals (Sweden)

    Joe J Simon

    2014-10-01

    Full Text Available The anticipation of the pleasure derived from food intake drives the motivation to eat, and hence facilitate overconsumption of food which ultimately results in obesity. Brain imaging studies provide evidence that mesolimbic brain regions underlie both general as well as food related anticipatory reward processing. In light of this knowledge, the present study examined the neural responsiveness of the ventral striatum in participants with a broad BMI spectrum. The study differentiated between general (i.e. monetary and food related anticipatory reward processing. We recruited a sample of volunteers with greatly varying body weights, ranging from a low BMI (below 20 kg/m² over a normal (20 to 25 kg/m² and overweight (25 to 30 kg/m² BMI, to class I (30 to 35 kg/m² and class II (35 to 40 kg/m² obesity. A total of 24 participants underwent functional magnetic resonance imaging whilst performing both a food and monetary incentive delay task, which allows to measure neural activation during the anticipation of rewards. After the presentation of a cue indicating the amount of food or money to be won, participants had to react correctly in order to earn snack points or money coins which could then be exchanged for real food or money, respectively, at the end of the experiment. During the anticipation of both types of rewards, participants displayed activity in the ventral striatum, a region that plays a pivotal role in the anticipation of rewards. Additionally, we observed that specifically anticipatory food reward processing predicted the individual BMI (current and maximum lifetime. This relation was found to be mediated by impaired hormonal satiety signaling, i.e. increased leptin levels and insulin resistance. These findings suggest that heightened food reward motivation contributes to obesity through impaired metabolic signaling.

  15. Intranasal oxytocin enhances neural processing of monetary reward and loss in post-traumatic stress disorder and traumatized controls.

    Science.gov (United States)

    Nawijn, Laura; van Zuiden, Mirjam; Koch, Saskia B J; Frijling, Jessie L; Veltman, Dick J; Olff, Miranda

    2016-04-01

    Anhedonia is a significant clinical problem in post-traumatic stress disorder (PTSD). PTSD patients show reduced motivational approach behavior, which may underlie anhedonic symptoms. Oxytocin administration is known to increase reward sensitivity and approach behavior. We therefore investigated whether oxytocin administration affected neural responses during motivational processing in PTSD patients and trauma-exposed controls. 35 police officers with PTSD (21 males) and 37 trauma-exposed police officers without PTSD (19 males) were included in a within-subjects, randomized, placebo-controlled fMRI study. Neural responses during anticipation of monetary reward and loss were investigated with a monetary incentive delay task (MID) after placebo and oxytocin (40 IU) administration. Oxytocin increased neural responses during reward and loss anticipation in PTSD patients and controls in the striatum, dorsal anterior cingulate cortex and insula, key regions in the reward pathway. Although PTSD patients did not differ from controls in motivational processing under placebo, anhedonia severity in PTSD patients was negatively related to reward responsiveness in the ventral striatum. Furthermore, oxytocin effects on reward processing in the ventral striatum were positively associated with anhedonia. Oxytocin administration increased reward pathway sensitivity during reward and loss anticipation in PTSD patients and trauma-exposed controls. Thus, oxytocin administration may increase motivation for goal-directed approach behavior in PTSD patients and controls, providing evidence for a neurobiological pathway through which oxytocin could potentially increase motivation and reward sensitivity in PTSD patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Blunted striatal response to monetary reward anticipation during smoking abstinence predicts lapse during a contingency-managed quit attempt.

    Science.gov (United States)

    Sweitzer, Maggie M; Geier, Charles F; Denlinger, Rachel; Forbes, Erika E; Raiff, Bethany R; Dallery, Jesse; McClernon, F J; Donny, Eric C

    2016-03-01

    Tobacco smoking is associated with dysregulated reward processing within the striatum, characterized by hypersensitivity to smoking rewards and hyposensitivity to non-smoking rewards. This bias toward smoking reward at the expense of alternative rewards is further exacerbated by deprivation from smoking, which may contribute to difficulty maintaining abstinence during a quit attempt. We examined whether abstinence-induced changes in striatal processing of rewards predicted lapse likelihood during a quit attempt supported by contingency management (CM), in which abstinence from smoking was reinforced with money. Thirty-six non-treatment-seeking smokers participated in two functional MRI (fMRI) sessions, one following 24-h abstinence and one following smoking as usual. During each scan, participants completed a rewarded guessing task designed to elicit striatal activation in which they could earn smoking and monetary rewards delivered after the scan. Participants then engaged in a 3-week CM-supported quit attempt. As previously reported, 24-h abstinence was associated with increased striatal activation in anticipation of smoking reward and decreased activation in anticipation of monetary reward. Individuals exhibiting greater decrements in right striatal activation to monetary reward during abstinence (controlling for activation during non-abstinence) were more likely to lapse during CM (p reward. These results are consistent with a growing number of studies indicating the specific importance of disrupted striatal processing of non-drug reward in nicotine dependence and highlight the importance of individual differences in abstinence-induced deficits in striatal function for smoking cessation.

  17. Reward, Context, and Human Behaviour

    Directory of Open Access Journals (Sweden)

    Clare L. Blaukopf

    2007-01-01

    Full Text Available Animal models of reward processing have revealed an extensive network of brain areas that process different aspects of reward, from expectation and prediction to calculation of relative value. These results have been confirmed and extended in human neuroimaging to encompass secondary rewards more unique to humans, such as money. The majority of the extant literature covers the brain areas associated with rewards whilst neglecting analysis of the actual behaviours that these rewards generate. This review strives to redress this imbalance by illustrating the importance of looking at the behavioural outcome of rewards and the context in which they are produced. Following a brief review of the literature of reward-related activity in the brain, we examine the effect of reward context on actions. These studies reveal how the presence of reward vs. reward and punishment, or being conscious vs. unconscious of reward-related actions, differentially influence behaviour. The latter finding is of particular importance given the extent to which animal models are used in understanding the reward systems of the human mind. It is clear that further studies are needed to learn about the human reaction to reward in its entirety, including any distinctions between conscious and unconscious behaviours. We propose that studies of reward entail a measure of the animal's (human or nonhuman knowledge of the reward and knowledge of its own behavioural outcome to achieve that reward.

  18. Neural correlates of reward processing in adults with 22q11 deletion syndrome.

    Science.gov (United States)

    van Duin, Esther D A; Goossens, Liesbet; Hernaus, Dennis; da Silva Alves, Fabiana; Schmitz, Nicole; Schruers, Koen; van Amelsvoort, Therese

    2016-01-01

    22q11.2 deletion syndrome (22q11DS) is caused by a microdeletion on chromosome 22q11.2 and associated with an increased risk to develop psychosis. The gene coding for catechol-O-methyl-transferase (COMT) is located at the deleted region, resulting in disrupted dopaminergic neurotransmission in 22q11DS, which may contribute to the increased vulnerability for psychosis. A dysfunctional motivational reward system is considered one of the salient features in psychosis and thought to be related to abnormal dopaminergic neurotransmission. The functional anatomy of the brain reward circuitry has not yet been investigated in 22q11DS. This study aims to investigate neural activity during anticipation of reward and loss in adult patients with 22q11DS. We measured blood-oxygen-level dependent (BOLD) activity in 16 patients with 22q11DS and 12 healthy controls during a monetary incentive delay task using a 3T Philips Intera MRI system. Data were analysed using SPM8. During anticipation of reward, the 22q11DS group alone displayed significant activation in bilateral middle frontal and temporal brain regions. Compared to healthy controls, significantly less activation in bilateral cingulate gyrus extending to premotor, primary motor and somatosensory areas was found. During anticipation of loss, the 22q11DS group displayed activity in the left middle frontal gyrus and anterior cingulate cortex, and relative to controls, they showed reduced brain activation in bilateral (pre)cuneus and left posterior cingulate. Within the 22q11DS group, COMT Val hemizygotes displayed more activation compared to Met hemizygotes in right posterior cingulate and bilateral parietal regions during anticipation of reward. During anticipation of loss, COMT Met hemizygotes compared to Val hemizygotes showed more activation in bilateral insula, striatum and left anterior cingulate. This is the first study to investigate reward processing in 22q11DS. Our preliminary results suggest that people with 22q11DS

  19. Nicotine, alcohol and cocaine coupling to reward processes via endogenous morphine signaling: the dopamine-morphine hypothesis.

    Science.gov (United States)

    Stefano, George B; Bianchi, Enrica; Guarna, Massimo; Fricchione, Gregory L; Zhu, Wei; Cadet, Patrick; Mantione, Kirk J; Casares, Federico M; Kream, Richard M; Esch, Tobias

    2007-06-01

    Pleasure is described as a state or feeling of happiness and satisfaction resulting from an experience that one enjoys. We examine the neurobiological factors underlying reward processes and pleasure phenomena. With regard to possible negative effects of pleasure, we focus on addiction and motivational toxicity. Pleasure can serve cognition, productivity and health, but simultaneously promotes addiction and other negative behaviors. It is a complex neurobiological phenomenon, relying on reward circuitry or limbic activity. These processes involve dopaminergic signaling. Moreover, nicotine, cocaine and alcohol appear to exert their pleasure providing action via endogenous morphinergic mechanisms. Natural rewarding activities are necessary for survival and appetitive motivation, usually governing beneficial biological behaviors like eating, sex and reproduction. Social contacts can further facilitate the positive effects exerted by pleasurable experiences. However, artificial stimulants can be detrimental, since flexibility and normal control of behavior are deteriorated. Additionally, addictive drugs are capable of directly acting on reward pathways, now, in part, via endogenous morphine processes.

  20. Neural alterations of fronto-striatal circuitry during reward anticipation in euthymic bipolar disorder.

    Science.gov (United States)

    Schreiter, S; Spengler, S; Willert, A; Mohnke, S; Herold, D; Erk, S; Romanczuk-Seiferth, N; Quinlivan, E; Hindi-Attar, C; Banzhaf, C; Wackerhagen, C; Romund, L; Garbusow, M; Stamm, T; Heinz, A; Walter, H; Bermpohl, F

    2016-11-01

    Bipolar disorder (BD), with the hallmark symptoms of elevated and depressed mood, is thought to be characterized by underlying alterations in reward-processing networks. However, to date the neural circuitry underlying abnormal responses during reward processing in BD remains largely unexplored. The aim of this study was to investigate whether euthymic BD is characterized by aberrant ventral striatal (VS) activation patterns and altered connectivity with the prefrontal cortex in response to monetary gains and losses. During functional magnetic resonance imaging 20 euthymic BD patients and 20 age-, gender- and intelligence quotient-matched healthy controls completed a monetary incentive delay paradigm, to examine neural processing of reward and loss anticipation. A priori defined regions of interest (ROIs) included the VS and the anterior prefrontal cortex (aPFC). Psychophysiological interactions (PPIs) between these ROIs were estimated and tested for group differences for reward and loss anticipation separately. BD participants, relative to healthy controls, displayed decreased activation selectively in the left and right VS during anticipation of reward, but not during loss anticipation. PPI analyses showed decreased functional connectivity between the left VS and aPFC in BD patients compared with healthy controls during reward anticipation. This is the first study showing decreased VS activity and aberrant connectivity in the reward-processing circuitry in euthymic, medicated BD patients during reward anticipation. Our findings contrast with research supporting a reward hypersensitivity model of BD, and add to the body of literature suggesting that blunted activation of reward processing circuits may be a vulnerability factor for mood disorders.

  1. Do reward-processing deficits in schizophrenia-spectrum disorders promote cannabis use? An investigation of physiological response to natural rewards and drug cues

    Science.gov (United States)

    Cassidy, Clifford M.; Brodeur, Mathieu B.; Lepage, Martin; Malla, Ashok

    2014-01-01

    Background Dysfunctional reward processing is present in individuals with schizophrenia-spectrum disorders (SSD) and may confer vulnerability to addiction. Our objective was to identify a deficit in patients with SSD on response to rewarding stimuli and determine whether this deficit predicts cannabis use. Methods We divided a group of patients with SSD and nonpsychotic controls into cannabis users and nonusers. Response to emotional and cannabis-associated visual stimuli was assessed using self-report, event-related potentials (using the late positive potential [LPP]), facial electromyography and skin-conductance response. Results Our sample comprised 35 patients with SSD and 35 nonpsychotic controls. Compared with controls, the patients with SSD showed blunted LPP response to pleasant stimuli (p = 0.003). Across measures, cannabis-using controls showed greater response to pleasant stimuli than to cannabis stimuli whereas cannabis-using patients showed little bias toward pleasant stimuli. Reduced LPP response to pleasant stimuli was predictive of more frequent subsequent cannabis use (β = −0.24, p = 0.034). Limitations It is not clear if the deficit associated with cannabis use is specific to rewarding stimuli or nonspecific to any kind of emotionally salient stimuli. Conclusion The LPP captures a reward-processing deficit in patients with SSD and shows potential as a biomarker for identifying patients at risk of heavy cannabis use. PMID:24913137

  2. Altered reward processing in pathological computer gamers--ERP-results from a semi-natural gaming-design.

    Science.gov (United States)

    Duven, Eva C P; Müller, Kai W; Beutel, Manfred E; Wölfling, Klaus

    2015-01-01

    Internet Gaming Disorder has been added as a research diagnosis in section III for the DSM-V. Previous findings from neuroscientific research indicate an enhanced motivational attention toward cues related to computer games, similar to findings in substance-related addictions. On the other hand in clinical observational studies tolerance effects are reported by patients with Internet Gaming disorder. In the present study we investigated whether an enhanced motivational attention or tolerance effects are present in patients with Internet Gaming Disorder. A clinical sample from the Outpatient Clinic for Behavioral Addictions in Mainz, Germany was recruited, fulfilling the diagnostic criteria for Internet Gaming Disorder. In a semi-natural EEG design participants played a computer game during the recording of event-related potentials to assess reward processing. The results indicated an attenuated P300 for patients with Internet Gaming Disorder in response to rewards in comparison to healthy controls, while the latency of N100 was prolonged and the amplitude of N100 was increased. Our findings support the hypothesis that tolerance effects are present in patients with Internet Gaming Disorder, when actively playing computer games. In addition, the initial orienting toward the gaming reward is suggested to consume more capacity for patients with Internet Gaming Disorder, which has been similarly reported by other studies with other methodological background in disorders of substance-related addictions.

  3. The class of L ∩ D and its application to renewal reward process

    Science.gov (United States)

    Kamışlık, Aslı Bektaş; Kesemen, Tülay; Khaniyev, Tahir

    2018-01-01

    The class of L ∩ D is generated by intersection of two important subclasses of heavy tailed distributions: The long tailed distributions and dominated varying distributions. This class itself is also an important member of heavy tailed distributions and has some principal application areas especially in renewal, renewal reward and random walk processes. The aim of this study is to observe some well and less known results on renewal functions generated by the class of L ∩ D and apply them into a special renewal reward process which is known in the literature a semi Markovian inventory model of type (s, S). Especially we focused on Pareto distribution which belongs to the L ∩ D subclass of heavy tailed distributions. As a first step we obtained asymptotic results for renewal function generated by Pareto distribution from the class of L ∩ D using some well-known results by Embrechts and Omey [1]. Then we applied the results we obtained for Pareto distribution to renewal reward processes. As an application we investigate inventory model of type (s, S) when demands have Pareto distribution from the class of L ∩ D. We obtained asymptotic expansion for ergodic distribution function and finally we reached asymptotic expansion for nth order moments of distribution of this process.

  4. Cigarette smoking modulates medication-associated deficits in a monetary reward task in patients with schizophrenia.

    Science.gov (United States)

    Lernbass, Birgit; Grön, Georg; Wolf, Nadine D; Abler, Birgit

    2013-09-01

    Imaging studies of reward processing have demonstrated a mesolimbic-mesocortical dopaminergic dysfunction in schizophrenia. Such studies on reward processing in patients and also in healthy controls showed that differential activations of dopaminergic brain areas are associated with adaptive changes in response speed related to different reward values. Given this relationship, we investigated reward processing on the behavioural level in a larger sample of 49 medicated patients with a diagnosis of schizophrenia (ICD-10 F20) and 49 healthy controls. Subjects were instructed to react by button press upon two different stimuli in order to retain a 60 % chance winning a previously announced high (1$) or low (20¢) amount of money paid to participants after the experiment. Concordant with previous reports on deficits in reward processing, acceleration of reaction times in patients upon low rewards differed significantly (p non-smoking subgroup of patients (n = 24). In this subgroup, we also observed a significant (p monetary reward task might constitute a feasible behavioural proxy for dopaminergic dysfunction and its different dimensions regarding psychopathology but also medication in patients with schizophrenia. In line with clinical observations, our findings support the notion that smoking modulates medication-associated side effects on reward processing in patients with schizophrenia.

  5. Dopamine, reward learning, and active inference.

    Science.gov (United States)

    FitzGerald, Thomas H B; Dolan, Raymond J; Friston, Karl

    2015-01-01

    Temporal difference learning models propose phasic dopamine signaling encodes reward prediction errors that drive learning. This is supported by studies where optogenetic stimulation of dopamine neurons can stand in lieu of actual reward. Nevertheless, a large body of data also shows that dopamine is not necessary for learning, and that dopamine depletion primarily affects task performance. We offer a resolution to this paradox based on an hypothesis that dopamine encodes the precision of beliefs about alternative actions, and thus controls the outcome-sensitivity of behavior. We extend an active inference scheme for solving Markov decision processes to include learning, and show that simulated dopamine dynamics strongly resemble those actually observed during instrumental conditioning. Furthermore, simulated dopamine depletion impairs performance but spares learning, while simulated excitation of dopamine neurons drives reward learning, through aberrant inference about outcome states. Our formal approach provides a novel and parsimonious reconciliation of apparently divergent experimental findings.

  6. Reward sensitivity and food addiction in women.

    Science.gov (United States)

    Loxton, Natalie J; Tipman, Renée J

    2017-08-01

    Sensitivity to the rewarding properties of appetitive substances has long been implicated in excessive consumption of palatable foods and drugs of abuse. Previous research focusing on individual differences in reward responsiveness has found heightened trait reward sensitivity to be associated with binge-eating, hazardous drinking, and illicit substance use. Food addiction has been proposed as an extreme form of compulsive-overeating and has been associated with genetic markers of heightened reward responsiveness. However, little research has explicitly examined the association between reward sensitivity and food addiction. Further, the processes by which individual differences in this trait are associated with excessive over-consumption has not been determined. A total of 374 women from the community completed an online questionnaire assessing reward sensitivity, food addiction, emotional, externally-driven, and hedonic eating. High reward sensitivity was significantly associated with greater food addiction symptoms (r = 0.31). Bootstrapped tests of indirect effects found the relationship between reward sensitivity and food addiction symptom count to be uniquely mediated by binge-eating, emotional eating, and hedonic eating (notably, food availability). These indirect effects held even when controlling for BMI, anxiety, depression, and trait impulsivity. This study further supports the argument that high levels of reward sensitivity may offer a trait marker of vulnerability to excessive over-eating, beyond negative affect and impulse-control deficits. That the hedonic properties of food (especially food availability), emotional, and binge-eating behavior act as unique mediators suggest that interventions for reward-sensitive women presenting with food addiction may benefit from targeting food availability in addition to management of negative affect. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Memory Consolidation and Neural Substrate of Reward

    Directory of Open Access Journals (Sweden)

    Redolar-Ripoll, Diego

    2012-08-01

    Full Text Available The aim of this report is to analyze the relationships between reward and learning and memory processes. Different studies have described how information about rewards influences behavior and how the brain uses this reward information to control learning and memory processes. Reward nature seems to be processed in different ways by neurons in different brain structures, ranging from the detection and perception of rewards to the use of information about predicted rewards for the control of goal-directed behavior. The neural substrate underling this processing of reward information is a reliable way of improving learning and memory processes. Evidence from several studies indicates that this neural system can facilitate memory consolidation in a wide variety of learning tasks. From a molecular perspective, certain cardinal features of reward have been described as forms of memory. Studies of human addicts and studies in animal models of addiction show that chronic drug exposure produces stable changes in the brain at the cellular and molecular levels that underlie the long-lasting behavioral plasticity associated with addiction. These molecular and cellular adaptations involved in addiction are also implicated in learning and memory processes. Dopamine seems to be a critical common signal to activate different genetic mechanisms that ultimately remodel synapses and circuits. Despite memory is an active and complex process mediated by different brain areas, the neural substrate of reward is able to improve memory consolidation in a several paradigms. We believe that there are many equivalent traits between reward and learning and memory processes.

  8. The genetic basis of individual differences in reward processing and the link to addictive behavior and social cognition.

    Science.gov (United States)

    Yacubian, J; Büchel, C

    2009-11-24

    Dopaminergic neurotransmission is widely recognized to be critical to the neurobiology of reward, motivation and addiction. Interestingly, social interactions and related behavior also activate the same neuronal system. Consequently, genetic variations of dopamine neurotransmission are thought influence reward processing that in turn may affect distinctive social behavior and susceptibility to addiction. This review focuses on advances made to date in an effort to link genetic individual variations and reward processing as a possible basis for addictive behaviors.

  9. The reward probability index: design and validation of a scale measuring access to environmental reward.

    Science.gov (United States)

    Carvalho, John P; Gawrysiak, Michael J; Hellmuth, Julianne C; McNulty, James K; Magidson, Jessica F; Lejuez, C W; Hopko, Derek R

    2011-06-01

    Behavioral models of depression implicate decreased response-contingent positive reinforcement (RCPR) as critical toward the development and maintenance of depression (Lewinsohn, 1974). Given the absence of a psychometrically sound self-report measure of RCPR, the Reward Probability Index (RPI) was developed to measure access to environmental reward and to approximate actual RCPR. In Study 1 (n=269), exploratory factor analysis supported a 20-item two-factor model (Reward Probability, Environmental Suppressors) with strong internal consistency (α=.90). In Study 2 (n=281), confirmatory factor analysis supported this two-factor structure and convergent validity was established through strong correlations between the RPI and measures of activity, avoidance, reinforcement, and depression (r=.65 to .81). Discriminant validity was supported via smaller correlations between the RPI and measures of social support and somatic anxiety (r=-.29 to -.40). Two-week test-retest reliability was strong (r=.69). In Study 3 (n=33), controlling for depression symptoms, hierarchical regression supported the incremental validity of the RPI in predicting daily diary reports of environmental reward. The RPI represents a parsimonious, reliable, and valid measure that may facilitate understanding of the etiology of depression and its relationship to overt behaviors. Copyright © 2011. Published by Elsevier Ltd.

  10. Reward-based behaviors and emotional processing in human with narcolepsy-cataplexy

    Directory of Open Access Journals (Sweden)

    Sophie eBayard

    2013-05-01

    Full Text Available ajor advances in the past decade have led a better understanding of the pathophysiology of narcolepsy with cataplexy caused by the early loss of hypothalamic hypocretin neurons. Although a role for hypocretin in the regulation of sleep/wakefulness state is widely recognized, other functions, not necessarily related to arousal, have been identified. Hence, the hypocretin system enhances signaling in the mesolimbic pathways regulating reward processing, emotion and mood regulation, and addiction. Although studies on hypocretin-deficient mice have shown that hypocretin plays an essential role in reward-seeking, depression-like behavior and addiction, results in human narcolepsy remained subject to debate. Most of studies revealed that hypocretin-deficient narcolepsy patients either drug-free or medicated with psychostimulant had preferences towards risky choices in a decision-making task under ambiguity together with higher frequency of depressive symptoms and binge eating disorder compared to controls. However, human studies mostly reported the lack of association with pathological impulsivity and gambling, and substance and alcohol abuse in the context of narcolepsy-cataplexy. Prospective larger studies are required to confirm these findings in drug-free and medicated patients with narcolepsy. Inclusion of patients with other central hypersomnias without hypocretin deficiency will provide answer to the major question of the role of the hypocretin system in reward-based behaviors and emotional processing in humans.

  11. Dopamine receptor blockade attenuates the general incentive motivational effects of noncontingently delivered rewards and reward-paired cues without affecting their ability to bias action selection.

    Science.gov (United States)

    Ostlund, Sean B; Maidment, Nigel T

    2012-01-01

    Environmental cues affect our behavior in a variety of ways. Despite playing an invaluable role in guiding our daily activities, such cues also appear to trigger the harmful, compulsive behaviors that characterize addiction and other disorders of behavioral control. In instrumental conditioning, rewards and reward-paired cues bias action selection and invigorate reward-seeking behaviors, and appear to do so through distinct neurobehavioral processes. Although reward-paired cues are known to invigorate performance through a dopamine-dependent incentive motivational process, it is not known if dopamine also mediates the influence of rewards and reward-paired cues over action selection. The current study contrasted the effects of systemic administration of the nonspecific dopamine receptor antagonist flupentixol on response invigoration and action bias in Pavlovian-instrumental transfer, a test of cue-elicited responding, and in instrumental reinstatement, a test of noncontingent reward-elicited responding. Hungry rats were trained on two different stimulus-outcome relationships (eg, tone-grain pellets and noise-sucrose solution) and two different action-outcome relationships (eg, left press-grain and right press-sucrose). At test, we found that flupentixol pretreatment blocked the response invigoration generated by the cues but spared their ability to bias action selection to favor the action whose outcome was signaled by the cue being presented. The response-biasing influence of noncontingent reward deliveries was also unaffected by flupentixol. Interestingly, although flupentixol had a modest effect on the immediate response invigoration produced by those rewards, it was particularly potent in countering the lingering enhancement of responding produced by multiple reward deliveries. These findings indicate that dopamine mediates the general incentive motivational effects of noncontingent rewards and reward-paired cues but does not support their ability to bias

  12. Dopamine, reward learning, and active inference

    Directory of Open Access Journals (Sweden)

    Thomas eFitzgerald

    2015-11-01

    Full Text Available Temporal difference learning models propose phasic dopamine signalling encodes reward prediction errors that drive learning. This is supported by studies where optogenetic stimulation of dopamine neurons can stand in lieu of actual reward. Nevertheless, a large body of data also shows that dopamine is not necessary for learning, and that dopamine depletion primarily affects task performance. We offer a resolution to this paradox based on an hypothesis that dopamine encodes the precision of beliefs about alternative actions, and thus controls the outcome-sensitivity of behaviour. We extend an active inference scheme for solving Markov decision processes to include learning, and show that simulated dopamine dynamics strongly resemble those actually observed during instrumental conditioning. Furthermore, simulated dopamine depletion impairs performance but spares learning, while simulated excitation of dopamine neurons drives reward learning, through aberrant inference about outcome states. Our formal approach provides a novel and parsimonious reconciliation of apparently divergent experimental findings.

  13. Frontal glutamate and reward processing in adolescence and adulthood.

    Science.gov (United States)

    Gleich, Tobias; Lorenz, Robert C; Pöhland, Lydia; Raufelder, Diana; Deserno, Lorenz; Beck, Anne; Heinz, Andreas; Kühn, Simone; Gallinat, Jürgen

    2015-11-01

    The fronto-limbic network interaction, driven by glutamatergic and dopaminergic neurotransmission, represents a core mechanism of motivated behavior and personality traits. Reward seeking behavior undergoes tremendous changes in adolescence paralleled by neurobiological changes of this network including the prefrontal cortex, striatum and amygdala. Since fronto-limbic dysfunctions also underlie major psychiatric diseases beginning in adolescence, this investigation focuses on network characteristics separating adolescents from adults. To investigate differences in network interactions, the brain reward system activity (slot machine task) together with frontal glutamate concentration (anterior cingulate cortex, ACC) was measured in 28 adolescents and 26 adults employing functional magnetic resonance imaging and magnetic resonance spectroscopy, respectively. An inverse coupling of glutamate concentrations in the ACC and activation of the ventral striatum was observed in adolescents. Further, amygdala response in adolescents was negatively correlated with the personality trait impulsivity. For adults, no significant associations of network components or correlations with impulsivity were found. The inverse association between frontal glutamate concentration and striatal activation in adolescents is in line with the triadic model of motivated behavior stressing the important role of frontal top-down inhibition on limbic structures. Our data identified glutamate as the mediating neurotransmitter of this inhibitory process and demonstrates the relevance of glutamate on the reward system and related behavioral traits like impulsivity. This fronto-limbic coupling may represent a vulnerability factor for psychiatric disorders starting in adolescence but not in adulthood.

  14. Effect of familiarity on reward anticipation in children with and without autism spectrum disorders.

    Directory of Open Access Journals (Sweden)

    Katherine K M Stavropoulos

    Full Text Available Previous research on the reward system in autism spectrum disorders (ASD suggests that children with ASD anticipate and process social rewards differently than typically developing (TD children--but has focused on the reward value of unfamiliar face stimuli. Children with ASD process faces differently than their TD peers. Previous research has focused on face processing of unfamiliar faces, but less is known about how children with ASD process familiar faces. The current study investigated how children with ASD anticipate rewards accompanied by familiar versus unfamiliar faces.The stimulus preceding negativity (SPN of the event-related potential (ERP was utilized to measure reward anticipation. Participants were 6- to 10-year-olds with (N = 14 and without (N = 14 ASD. Children were presented with rewards accompanied by incidental face or non-face stimuli that were either familiar (caregivers or unfamiliar. All non-face stimuli were composed of scrambled face elements in the shape of arrows, controlling for visual properties.No significant differences between familiar versus unfamiliar faces were found for either group. When collapsing across familiarity, TD children showed larger reward anticipation to face versus non-face stimuli, whereas children with ASD did not show differential responses to these stimulus types. Magnitude of reward anticipation to faces was significantly correlated with behavioral measures of social impairment in the ASD group.The findings do not provide evidence for differential reward anticipation for familiar versus unfamiliar face stimuli in children with or without ASD. These findings replicate previous work suggesting that TD children anticipate rewards accompanied by social stimuli more than rewards accompanied by non-social stimuli. The results do not support the idea that familiarity normalizes reward anticipation in children with ASD. Our findings also suggest that magnitude of reward anticipation to faces is

  15. Within-subject neural reactivity to reward and threat is inverted in young adolescents.

    Science.gov (United States)

    Thomason, M E; Marusak, H A

    2017-07-01

    As children mature, they become increasingly independent and less reliant on caregiver support. Changes in brain systems are likely to stimulate and guide this process. One mechanistic hypothesis suggests that changes in neural systems that process reward and threat support the increase in exploratory behavior observed in the transition to adolescence. This study examines the basic tenets of this hypothesis by performing functional magnetic resonance imaging (fMRI) during well-established reward and threat processing tasks in 40 children and adolescents, aged 9-15 years. fMRI responses in the striatum and amygdala are fit to a model predicting that striatal reward and amygdala threat-responses will be unrelated in younger participants (aged 9-12 years), while older participants (aged 13-15 years) will differentially engage these structures. Our data are consistent with this model. Activity in the striatum and amygdala are comparable in younger children, but in older children, they are inversely related; those more responsive to reward show a reduced threat-response. Analyses testing age as a continuous variable yield consistent results. In addition, the proportion of threat to reward-response relates to self-reported approach behavior in older but not younger youth, exposing behavioral relevance in the relative level of activity in these structures. Results are consistent with the notion that both individual and developmental differences drive reward-seeking behavior in adolescence. While these response patterns may serve adaptive functions in the shift to independence, skew in these systems may relate to increased rates of emotional psychopathology and risk-taking observed in adolescence.

  16. Job characteristics and safety climate: the role of effort-reward and demand-control-support models.

    Science.gov (United States)

    Phipps, Denham L; Malley, Christine; Ashcroft, Darren M

    2012-07-01

    While safety climate is widely recognized as a key influence on organizational safety, there remain questions about the nature of its antecedents. One potential influence on safety climate is job characteristics (that is, psychosocial features of the work environment). This study investigated the relationship between two job characteristics models--demand-control-support (Karasek & Theorell, 1990) and effort-reward imbalance (Siegrist, 1996)--and safety climate. A survey was conducted with a random sample of 860 British retail pharmacists, using the job contents questionnaire (JCQ), effort-reward imbalance indicator (ERI) and a measure of safety climate in pharmacies. Multivariate data analyses found that: (a) both models contributed to the prediction of safety climate ratings, with the demand-control-support model making the largest contribution; (b) there were some interactions between demand, control and support from the JCQ in the prediction of safety climate scores. The latter finding suggests the presence of "active learning" with respect to safety improvement in high demand, high control settings. The findings provide further insight into the ways in which job characteristics relate to safety, both individually and at an aggregated level.

  17. The influence of motherhood on neural systems for reward processing in low income, minority, young women.

    Science.gov (United States)

    Moses-Kolko, Eydie L; Forbes, Erika E; Stepp, Stephanie; Fraser, David; Keenan, Kate E; Guyer, Amanda E; Chase, Henry W; Phillips, Mary L; Zevallos, Carlos R; Guo, Chaohui; Hipwell, Alison E

    2016-04-01

    Given the association between maternal caregiving behavior and heightened neural reward activity in experimental animal studies, the present study examined whether motherhood in humans positively modulates reward-processing neural circuits, even among mothers exposed to various life stressors and depression. Subjects were 77 first-time mothers and 126 nulliparous young women from the Pittsburgh Girls Study, a longitudinal study beginning in childhood. Subjects underwent a monetary reward task during functional magnetic resonance imaging in addition to assessment of current depressive symptoms. Life stress was measured by averaging data collected between ages 8-15 years. Using a region-of-interest approach, we conducted hierarchical regression to examine the relationship of psychosocial factors (life stress and current depression) and motherhood with extracted ventral striatal (VST) response to reward anticipation. Whole-brain regression analyses were performed post-hoc to explore non-striatal regions associated with reward anticipation in mothers vs nulliparous women. Anticipation of monetary reward was associated with increased neural activity in expected regions including caudate, orbitofrontal, occipital, superior and middle frontal cortices. There was no main effect of motherhood nor motherhood-by-psychosocial factor interaction effect on VST response during reward anticipation. Depressive symptoms were associated with increased VST activity across the entire sample. In exploratory whole brain analysis, motherhood was associated with increased somatosensory cortex activity to reward (FWE cluster forming threshold preward anticipation-related VST activity nor does motherhood modulate the impact of depression or life stress on VST activity. Future studies are needed to evaluate whether earlier postpartum assessment of reward function, inclusion of mothers with more severe depressive symptoms, and use of reward tasks specific for social reward might reveal an

  18. Alterations of the Brain Reward System in Antipsychotic Naïve Schizophrenia Patients

    DEFF Research Database (Denmark)

    Nielsen, Mette Ødegaard; Rostrup, Egill; Wulff, Sanne

    2012-01-01

    BACKGROUND: Various schizophrenic symptoms are suggested to be linked to a dysfunction of the brain reward system. Several studies have found alterations in the reward processing in patients with schizophrenia; however, most previous findings might be confounded by medication effects. METHODS...... as arousing events) into behavioral salience (events where a predicted reward requires performance) and valence anticipation (the anticipation of a monetarily significant outcome). Furthermore, the evaluation of monetary gain and loss was assessed. RESULTS: During reward anticipation, patients had...... and nonsignificant for value anticipation. Furthermore, patients showed a changed activation pattern during outcome evaluation in right prefrontal cortex. CONCLUSION: Our results suggest that changes during reward anticipation in schizophrenia are present from the beginning of the disease. This supports a possible...

  19. Abnormal Striatal BOLD Responses to Reward Anticipation and Reward Delivery in ADHD

    Science.gov (United States)

    Furukawa, Emi; Bado, Patricia; Tripp, Gail; Mattos, Paulo; Wickens, Jeff R.; Bramati, Ivanei E.; Alsop, Brent; Ferreira, Fernanda Meireles; Lima, Debora; Tovar-Moll, Fernanda; Sergeant, Joseph A.; Moll, Jorge

    2014-01-01

    Altered reward processing has been proposed to contribute to the symptoms of attention deficit hyperactivity disorder (ADHD). The neurobiological mechanism underlying this alteration remains unclear. We hypothesize that the transfer of dopamine release from reward to reward-predicting cues, as normally observed in animal studies, may be deficient in ADHD. Functional magnetic resonance imaging (fMRI) was used to investigate striatal responses to reward-predicting cues and reward delivery in a classical conditioning paradigm. Data from 14 high-functioning and stimulant-naïve young adults with elevated lifetime symptoms of ADHD (8 males, 6 females) and 15 well-matched controls (8 males, 7 females) were included in the analyses. During reward anticipation, increased blood-oxygen-level-dependent (BOLD) responses in the right ventral and left dorsal striatum were observed in controls, but not in the ADHD group. The opposite pattern was observed in response to reward delivery; the ADHD group demonstrated significantly greater BOLD responses in the ventral striatum bilaterally and the left dorsal striatum relative to controls. In the ADHD group, the number of current hyperactivity/impulsivity symptoms was inversely related to ventral striatal responses during reward anticipation and positively associated with responses to reward. The BOLD response patterns observed in the striatum are consistent with impaired predictive dopamine signaling in ADHD, which may explain altered reward-contingent behaviors and symptoms of ADHD. PMID:24586543

  20. Sensitivity to Temporal Reward Structure in Amygdala Neurons

    OpenAIRE

    Bermudez, Maria A.; Göbel, Carl; Schultz, Wolfram

    2012-01-01

    Summary The time of reward and the temporal structure of reward occurrence fundamentally influence behavioral reinforcement and decision processes [1–11]. However, despite knowledge about timing in sensory and motor systems [12–17], we know little about temporal mechanisms of neuronal reward processing. In this experiment, visual stimuli predicted different instantaneous probabilities of reward occurrence that resulted in specific temporal reward structures. Licking behavior demonstrated that...

  1. Extending Markov Automata with State and Action Rewards

    NARCIS (Netherlands)

    Guck, Dennis; Timmer, Mark; Blom, Stefan; Bertrand, N.; Bortolussi, L.

    This presentation introduces the Markov Reward Automaton (MRA), an extension of the Markov automaton that allows the modelling of systems incorporating rewards in addition to nondeterminism, discrete probabilistic choice and continuous stochastic timing. Our models support both rewards that are

  2. Selectivity in Postencoding Connectivity with High-Level Visual Cortex Is Associated with Reward-Motivated Memory.

    Science.gov (United States)

    Murty, Vishnu P; Tompary, Alexa; Adcock, R Alison; Davachi, Lila

    2017-01-18

    Reward motivation has been demonstrated to enhance declarative memory by facilitating systems-level consolidation. Although high-reward information is often intermixed with lower reward information during an experience, memory for high value information is prioritized. How is this selectivity achieved? One possibility is that postencoding consolidation processes bias memory strengthening to those representations associated with higher reward. To test this hypothesis, we investigated the influence of differential reward motivation on the selectivity of postencoding markers of systems-level memory consolidation. Human participants encoded intermixed, trial-unique memoranda that were associated with either high or low-value during fMRI acquisition. Encoding was interleaved with periods of rest, allowing us to investigate experience-dependent changes in connectivity as they related to later memory. Behaviorally, we found that reward motivation enhanced 24 h associative memory. Analysis of patterns of postencoding connectivity showed that, even though learning trials were intermixed, there was significantly greater connectivity with regions of high-level, category-selective visual cortex associated with high-reward trials. Specifically, increased connectivity of category-selective visual cortex with both the VTA and the anterior hippocampus predicted associative memory for high- but not low-reward memories. Critically, these results were independent of encoding-related connectivity and univariate activity measures. Thus, these findings support a model by which the selective stabilization of memories for salient events is supported by postencoding interactions with sensory cortex associated with reward. Reward motivation is thought to promote memory by supporting memory consolidation. Yet, little is known as to how brain selects relevant information for subsequent consolidation based on reward. We show that experience-dependent changes in connectivity of both the

  3. Changes in brain activation associated with reward processing in smokers and nonsmokers

    NARCIS (Netherlands)

    Martin-Solch, C; Magyar, S; Kunig, G; Missimer, J; Schultz, W; Leenders, KL

    Tobacco smoking is the most frequent form of substance abuse. Several studies have shown that the addictive action of nicotine is mediated by the mesolimbic. dopamine system. This system is implicated in reward processing. In order to better understand the relationship between nicotine addiction and

  4. Abnormal reward functioning across substance use disorders and major depressive disorder: Considering reward as a transdiagnostic mechanism.

    Science.gov (United States)

    Baskin-Sommers, Arielle R; Foti, Dan

    2015-11-01

    A common criticism of the Diagnostic and Statistical Manual of Mental Disorders (American Psychiatric Association, 2013) is that its criteria are based more on behavioral descriptions than on underlying biological mechanisms. Increasingly, calls have intensified for a more biologically-based approach to conceptualizing, studying, and treating psychological disorders, as exemplified by the Research Domain Criteria Project (RDoC). Among the most well-studied neurobiological mechanisms is reward processing. Moreover, individual differences in reward sensitivity are related to risk for substance abuse and depression. The current review synthesizes the available preclinical, electrophysiological, and neuroimaging literature on reward processing from a transdiagnostic, multidimensional perspective. Findings are organized with respect to key reward constructs within the Positive Valence Systems domain of the RDoC matrix, including initial responsiveness to reward (physiological 'liking'), approach motivation (physiological 'wanting'), and reward learning/habit formation. In the current review, we (a) describe the neural basis of reward, (b) elucidate differences in reward activity in substance abuse and depression, and (c) suggest a framework for integrating these disparate literatures and discuss the utility of shifting focus from diagnosis to process for understanding liability and co-morbidity. Ultimately, we believe that an integrative focus on abnormal reward functioning across the full continuum of clinically heterogeneous samples, rather than within circumscribed diagnostic categories, might actually help to refine the phenotypes and improve the prediction of onset and recovery of these disorders. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Brain Circuits Encoding Reward from Pain Relief.

    Science.gov (United States)

    Navratilova, Edita; Atcherley, Christopher W; Porreca, Frank

    2015-11-01

    Relief from pain in humans is rewarding and pleasurable. Primary rewards, or reward-predictive cues, are encoded in brain reward/motivational circuits. While considerable advances have been made in our understanding of reward circuits underlying positive reinforcement, less is known about the circuits underlying the hedonic and reinforcing actions of pain relief. We review findings from electrophysiological, neuroimaging, and behavioral studies supporting the concept that the rewarding effect of pain relief requires opioid signaling in the anterior cingulate cortex (ACC), activation of midbrain dopamine neurons, and the release of dopamine in the nucleus accumbens (NAc). Understanding of circuits that govern the reward of pain relief may allow the discovery of more effective and satisfying therapies for patients with acute or chronic pain.

  6. High temporal discounters overvalue immediate rewards rather than undervalue future rewards: an event-related brain potential study.

    Science.gov (United States)

    Cherniawsky, Avital S; Holroyd, Clay B

    2013-03-01

    Impulsivity is characterized in part by heightened sensitivity to immediate relative to future rewards. Although previous research has suggested that "high discounters" in intertemporal choice tasks tend to prefer immediate over future rewards because they devalue the latter, it remains possible that they instead overvalue immediate rewards. To investigate this question, we recorded the reward positivity, a component of the event-related brain potential (ERP) associated with reward processing, with participants engaged in a task in which they received both immediate and future rewards and nonrewards. The participants also completed a temporal discounting task without ERP recording. We found that immediate but not future rewards elicited the reward positivity. High discounters also produced larger reward positivities to immediate rewards than did low discounters, indicating that high discounters relatively overvalued immediate rewards. These findings suggest that high discounters may be more motivated than low discounters to work for monetary rewards, irrespective of the time of arrival of the incentives.

  7. Acute stress-induced cortisol elevations mediate reward system activity during subconscious processing of sexual stimuli

    OpenAIRE

    Oei, Nicole Y. L.; Both, Stephanie; van Heemst, Diana; van der Grond, Jeroen

    2014-01-01

    Summary Stress is thought to alter motivational processes by increasing dopamine (DA) secretion in the brain’s ‘‘reward system’’, and its key region, the nucleus accumbens (NAcc). However, stress studies using functional magnetic resonance imaging (fMRI), mainly found evidence for stress-induced decreases in NAcc responsiveness toward reward cues. Results from both animal and human PETstudies indicate that the stress hormone cortisol may be crucial in the interaction between st...

  8. Distinct Reward Properties are Encoded via Corticostriatal Interactions.

    Science.gov (United States)

    Smith, David V; Rigney, Anastasia E; Delgado, Mauricio R

    2016-02-02

    The striatum serves as a critical brain region for reward processing. Yet, understanding the link between striatum and reward presents a challenge because rewards are composed of multiple properties. Notably, affective properties modulate emotion while informative properties help obtain future rewards. We approached this problem by emphasizing affective and informative reward properties within two independent guessing games. We found that both reward properties evoked activation within the nucleus accumbens, a subregion of the striatum. Striatal responses to informative, but not affective, reward properties predicted subsequent utilization of information for obtaining monetary reward. We hypothesized that activation of the striatum may be necessary but not sufficient to encode distinct reward properties. To investigate this possibility, we examined whether affective and informative reward properties were differentially encoded in corticostriatal interactions. Strikingly, we found that the striatum exhibited dissociable connectivity patterns with the ventrolateral prefrontal cortex, with increasing connectivity for affective reward properties and decreasing connectivity for informative reward properties. Our results demonstrate that affective and informative reward properties are encoded via corticostriatal interactions. These findings highlight how corticostriatal systems contribute to reward processing, potentially advancing models linking striatal activation to behavior.

  9. The role of reward in word learning and its implications for language acquisition.

    Science.gov (United States)

    Ripollés, Pablo; Marco-Pallarés, Josep; Hielscher, Ulrike; Mestres-Missé, Anna; Tempelmann, Claus; Heinze, Hans-Jochen; Rodríguez-Fornells, Antoni; Noesselt, Toemme

    2014-11-03

    The exact neural processes behind humans' drive to acquire a new language--first as infants and later as second-language learners--are yet to be established. Recent theoretical models have proposed that during human evolution, emerging language-learning mechanisms might have been glued to phylogenetically older subcortical reward systems, reinforcing human motivation to learn a new language. Supporting this hypothesis, our results showed that adult participants exhibited robust fMRI activation in the ventral striatum (VS)--a core region of reward processing--when successfully learning the meaning of new words. This activation was similar to the VS recruitment elicited using an independent reward task. Moreover, the VS showed enhanced functional and structural connectivity with neocortical language areas during successful word learning. Together, our results provide evidence for the neural substrate of reward and motivation during word learning. We suggest that this strong functional and anatomical coupling between neocortical language regions and the subcortical reward system provided a crucial advantage in humans that eventually enabled our lineage to successfully acquire linguistic skills. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Episodic Memory Encoding Interferes with Reward Learning and Decreases Striatal Prediction Errors

    Science.gov (United States)

    Braun, Erin Kendall; Daw, Nathaniel D.

    2014-01-01

    Learning is essential for adaptive decision making. The striatum and its dopaminergic inputs are known to support incremental reward-based learning, while the hippocampus is known to support encoding of single events (episodic memory). Although traditionally studied separately, in even simple experiences, these two types of learning are likely to co-occur and may interact. Here we sought to understand the nature of this interaction by examining how incremental reward learning is related to concurrent episodic memory encoding. During the experiment, human participants made choices between two options (colored squares), each associated with a drifting probability of reward, with the goal of earning as much money as possible. Incidental, trial-unique object pictures, unrelated to the choice, were overlaid on each option. The next day, participants were given a surprise memory test for these pictures. We found that better episodic memory was related to a decreased influence of recent reward experience on choice, both within and across participants. fMRI analyses further revealed that during learning the canonical striatal reward prediction error signal was significantly weaker when episodic memory was stronger. This decrease in reward prediction error signals in the striatum was associated with enhanced functional connectivity between the hippocampus and striatum at the time of choice. Our results suggest a mechanism by which memory encoding may compete for striatal processing and provide insight into how interactions between different forms of learning guide reward-based decision making. PMID:25378157

  11. Reward Anticipation in Ventral Striatum and Individual Sensitivity to Reward: A Pilot Study of a Child-Friendly fMRI Task.

    Science.gov (United States)

    van Hulst, Branko M; de Zeeuw, Patrick; Lupas, Kellina; Bos, Dienke J; Neggers, Sebastiaan F W; Durston, Sarah

    2015-01-01

    Reward processing has been implicated in developmental disorders. However, the classic task to probe reward anticipation, the monetary incentive delay task, has an abstract coding of reward and no storyline and may therefore be less appropriate for use with developmental populations. We modified the task to create a version appropriate for use with children. We investigated whether this child-friendly version could elicit ventral striatal activation during reward anticipation in typically developing children and young adolescents (aged 9.5-14.5). In addition, we tested whether our performance-based measure of reward sensitivity was associated with anticipatory activity in ventral striatum. Reward anticipation was related to activity in bilateral ventral striatum. Moreover, we found an association between individual reward sensitivity and activity in ventral striatum. We conclude that this task assesses ventral striatal activity in a child-friendly paradigm. The combination with a performance-based measure of reward sensitivity potentially makes the task a powerful tool for developmental imaging studies of reward processing.

  12. The impact of cognitive load on reward evaluation.

    Science.gov (United States)

    Krigolson, Olave E; Hassall, Cameron D; Satel, Jason; Klein, Raymond M

    2015-11-19

    The neural systems that afford our ability to evaluate rewards and punishments are impacted by a variety of external factors. Here, we demonstrate that increased cognitive load reduces the functional efficacy of a reward processing system within the human medial-frontal cortex. In our paradigm, two groups of participants used performance feedback to estimate the exact duration of one second while electroencephalographic (EEG) data was recorded. Prior to performing the time estimation task, both groups were instructed to keep their eyes still and avoid blinking in line with well established EEG protocol. However, during performance of the time-estimation task, one of the two groups was provided with trial-to-trial-feedback about their performance on the time-estimation task and their eye movements to induce a higher level of cognitive load relative to participants in the other group who were solely provided with feedback about the accuracy of their temporal estimates. In line with previous work, we found that the higher level of cognitive load reduced the amplitude of the feedback-related negativity, a component of the human event-related brain potential associated with reward evaluation within the medial-frontal cortex. Importantly, our results provide further support that increased cognitive load reduces the functional efficacy of a neural system associated with reward processing. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Medial prefrontal brain activation to anticipated reward and loss in obsessive-compulsive disorder.

    Science.gov (United States)

    Kaufmann, C; Beucke, J C; Preuße, F; Endrass, T; Schlagenhauf, F; Heinz, A; Juckel, G; Kathmann, N

    2013-01-01

    Obsessive-compulsive disorder (OCD) is associated with dysfunctional brain activity in several regions which are also involved in the processing of motivational stimuli. Processing of reward and punishment appears to be of special importance to understand clinical symptoms. There is evidence for higher sensitivity to punishment in patients with OCD which raises the question how avoidance of punishment relates to activity within the brain's reward circuitry. We employed the monetary incentive delay task paradigm optimized for modeling the anticipation phase of immediate reward and punishment, in the context of a cross-sectional event-related FMRI study comparing OCD patients and healthy control participants (n = 19 in each group). While overall behavioral performance was similar in both groups, patients showed increased activation upon anticipated losses in a medial and superior frontal cortex region extending into the cingulate cortex, and decreased activation upon anticipated rewards. No evidence was found for altered activation of dorsal or ventral striatal regions. Patients also showed more delayed responses for anticipated rewards than for anticipated losses whereas the reverse was true in healthy participants. The medial prefrontal cortex has been shown to implement a domain-general process comprising negative affect, pain and cognitive control. This process uses information about punishment to control aversively motivated actions by integrating signals arriving from subcortical regions. Our results support the notion that OCD is associated with altered sensitivity to anticipated rewards and losses in a medial prefrontal region whereas there is no significant aberrant activation in ventral or dorsal striatal brain regions during processing of reinforcement anticipation.

  14. Acute stress-induced cortisol elevations mediate reward system activity during subconscious processing of sexual stimuli.

    Science.gov (United States)

    Oei, Nicole Y L; Both, Stephanie; van Heemst, Diana; van der Grond, Jeroen

    2014-01-01

    Stress is thought to alter motivational processes by increasing dopamine (DA) secretion in the brain's "reward system", and its key region, the nucleus accumbens (NAcc). However, stress studies using functional magnetic resonance imaging (fMRI), mainly found evidence for stress-induced decreases in NAcc responsiveness toward reward cues. Results from both animal and human PET studies indicate that the stress hormone cortisol may be crucial in the interaction between stress and dopaminergic actions. In the present study we therefore investigated whether cortisol mediated the effect of stress on DA-related responses to -subliminal-presentation of reward cues using the Trier Social Stress Test (TSST), which is known to reliably enhance cortisol levels. Young healthy males (n = 37) were randomly assigned to the TSST or control condition. After stress induction, brain activation was assessed using fMRI during a backward-masking paradigm in which potentially rewarding (sexual), emotionally negative and neutral stimuli were presented subliminally, masked by pictures of inanimate objects. A region of interest analysis showed that stress decreased activation in the NAcc in response to masked sexual cues (voxel-corrected, pcortisol levels were related to stronger NAcc activation, showing that cortisol acted as a suppressor variable in the negative relation between stress and NAcc activation. The present findings indicate that cortisol is crucially involved in the relation between stress and the responsiveness of the reward system. Although generally stress decreases activation in the NAcc in response to rewarding stimuli, high stress-induced cortisol levels suppress this relation, and are associated with stronger NAcc activation. Individuals with a high cortisol response to stress might on one hand be protected against reductions in reward sensitivity, which has been linked to anhedonia and depression, but they may ultimately be more vulnerable to increased reward

  15. Associations Between Neural Reward Processing and Binge Eating Among Adolescent Girls.

    Science.gov (United States)

    Bodell, Lindsay P; Wildes, Jennifer E; Goldschmidt, Andrea B; Lepage, Rachel; Keenan, Kate E; Guyer, Amanda E; Hipwell, Alison E; Stepp, Stephanie D; Forbes, Erika E

    2018-01-01

    Neuroimaging studies suggest that altered brain responses to food-related cues in reward-sensitive regions characterize individuals who experience binge-eating episodes. However, the absence of longitudinal data limits the understanding of whether reward-system alterations increase vulnerability to binge eating, as theorized in models of the development of this behavior. Adolescent girls (N = 122) completed a functional magnetic resonance imaging monetary reward task at age 16 years as part of an ongoing longitudinal study. Self-report of binge eating was assessed using the Eating Attitudes Test at ages 16 and 18 years. Regression analyses examined concurrent and longitudinal associations between the blood-oxygenation-level-dependent response to anticipating and winning monetary rewards and the severity of binge eating while controlling for age 16 depressive symptoms and socioeconomic status. Greater ventromedial prefrontal cortex and caudate responses to winning money were correlated with greater severity of binge eating concurrently but not prospectively. This study is the first to examine longitudinal associations between reward responding and binge eating in community-based, mostly low-socioeconomic status adolescent girls. Ventromedial prefrontal cortex response to reward outcome-possibly reflecting an enhanced subjective reward value-appears to be a state marker of binge-eating severity rather than a predictor of future severity. Copyright © 2017 The Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  16. Extinction Can Reduce the Impact of Reward Cues on Reward-Seeking Behavior.

    Science.gov (United States)

    Lovibond, Peter F; Satkunarajah, Michelle; Colagiuri, Ben

    2015-07-01

    Reward-associated cues are thought to promote relapse after treatment of appetitive disorders such as drug-taking, binge eating, and gambling. This process has been modelled in the laboratory using a Pavlovian-instrumental transfer (PIT) design in which Pavlovian cues facilitate instrumental reward-directed action. Attempts to reduce facilitation by cue exposure (extinction) have produced mixed results. We tested the effect of extinction in a recently developed PIT procedure using a natural reward, chocolate, in human participants. Facilitation of instrumental responding was only observed in participants who were aware of the Pavlovian contingencies. Pavlovian extinction successfully reduced, but did not completely eliminate, expectancy of reward and facilitation of instrumental responding. The results indicate that exposure can reduce the ability of cues to promote reward-directed behavior in the laboratory. However, the residual potency of extinguished cues means that additional active strategies may be needed in clinical practice to train patients to resist the impact of these cues in their environment. Copyright © 2015. Published by Elsevier Ltd.

  17. A Dynamic Connectome Supports the Emergence of Stable Computational Function of Neural Circuits through Reward-Based Learning.

    Science.gov (United States)

    Kappel, David; Legenstein, Robert; Habenschuss, Stefan; Hsieh, Michael; Maass, Wolfgang

    2018-01-01

    Synaptic connections between neurons in the brain are dynamic because of continuously ongoing spine dynamics, axonal sprouting, and other processes. In fact, it was recently shown that the spontaneous synapse-autonomous component of spine dynamics is at least as large as the component that depends on the history of pre- and postsynaptic neural activity. These data are inconsistent with common models for network plasticity and raise the following questions: how can neural circuits maintain a stable computational function in spite of these continuously ongoing processes, and what could be functional uses of these ongoing processes? Here, we present a rigorous theoretical framework for these seemingly stochastic spine dynamics and rewiring processes in the context of reward-based learning tasks. We show that spontaneous synapse-autonomous processes, in combination with reward signals such as dopamine, can explain the capability of networks of neurons in the brain to configure themselves for specific computational tasks, and to compensate automatically for later changes in the network or task. Furthermore, we show theoretically and through computer simulations that stable computational performance is compatible with continuously ongoing synapse-autonomous changes. After reaching good computational performance it causes primarily a slow drift of network architecture and dynamics in task-irrelevant dimensions, as observed for neural activity in motor cortex and other areas. On the more abstract level of reinforcement learning the resulting model gives rise to an understanding of reward-driven network plasticity as continuous sampling of network configurations.

  18. A neurocomputational account of reward and novelty processing and effects of psychostimulants in attention deficit hyperactivity disorder.

    Science.gov (United States)

    Sethi, Arjun; Voon, Valerie; Critchley, Hugo D; Cercignani, Mara; Harrison, Neil A

    2018-05-01

    Computational models of reinforcement learning have helped dissect discrete components of reward-related function and characterize neurocognitive deficits in psychiatric illnesses. Stimulus novelty biases decision-making, even when unrelated to choice outcome, acting as if possessing intrinsic reward value to guide decisions toward uncertain options. Heightened novelty seeking is characteristic of attention deficit hyperactivity disorder, yet how this influences reward-related decision-making is computationally encoded, or is altered by stimulant medication, is currently uncertain. Here we used an established reinforcement-learning task to model effects of novelty on reward-related behaviour during functional MRI in 30 adults with attention deficit hyperactivity disorder and 30 age-, sex- and IQ-matched control subjects. Each participant was tested on two separate occasions, once ON and once OFF stimulant medication. OFF medication, patients with attention deficit hyperactivity disorder showed significantly impaired task performance (P = 0.027), and greater selection of novel options (P = 0.004). Moreover, persistence in selecting novel options predicted impaired task performance (P = 0.025). These behavioural deficits were accompanied by a significantly lower learning rate (P = 0.011) and heightened novelty signalling within the substantia nigra/ventral tegmental area (family-wise error corrected P attention deficit hyperactivity disorder participants' overall task performance (P = 0.011), increased reward-learning rates (P = 0.046) and enhanced their ability to differentiate optimal from non-optimal novel choices (P = 0.032). It also reduced substantia nigra/ventral tegmental area responses to novelty. Preliminary cross-sectional evidence additionally suggested an association between long-term stimulant treatment and a reduction in the rewarding value of novelty. These data suggest that aberrant substantia nigra/ventral tegmental area novelty processing plays an

  19. Shared neural coding for social hierarchy and reward value in primate amygdala.

    Science.gov (United States)

    Munuera, Jérôme; Rigotti, Mattia; Salzman, C Daniel

    2018-03-01

    The social brain hypothesis posits that dedicated neural systems process social information. In support of this, neurophysiological data have shown that some brain regions are specialized for representing faces. It remains unknown, however, whether distinct anatomical substrates also represent more complex social variables, such as the hierarchical rank of individuals within a social group. Here we show that the primate amygdala encodes the hierarchical rank of individuals in the same neuronal ensembles that encode the rewards associated with nonsocial stimuli. By contrast, orbitofrontal and anterior cingulate cortices lack strong representations of hierarchical rank while still representing reward values. These results challenge the conventional view that dedicated neural systems process social information. Instead, information about hierarchical rank-which contributes to the assessment of the social value of individuals within a group-is linked in the amygdala to representations of rewards associated with nonsocial stimuli.

  20. Investigating the Impact of a Genome-Wide Supported Bipolar Risk Variant of MAD1L1 on the Human Reward System.

    Science.gov (United States)

    Trost, Sarah; Diekhof, Esther K; Mohr, Holger; Vieker, Henning; Krämer, Bernd; Wolf, Claudia; Keil, Maria; Dechent, Peter; Binder, Elisabeth B; Gruber, Oliver

    2016-10-01

    Recent genome-wide association studies have identified MAD1L1 (mitotic arrest deficient-like 1) as a susceptibility gene for bipolar disorder and schizophrenia. The minor allele of the single-nucleotide polymorphism (SNP) rs11764590 in MAD1L1 was associated with bipolar disorder. Both diseases, bipolar disorder and schizophrenia, are linked to functional alterations in the reward system. We aimed at investigating possible effects of the MAD1L1 rs11764590 risk allele on reward systems functioning in healthy adults. A large homogenous sample of 224 young (aged 18-31 years) participants was genotyped and underwent functional magnetic resonance imaging (fMRI). All participants performed the 'Desire-Reason Dilemma' paradigm investigating the neural correlates that underlie reward processing and active reward dismissal in favor of a long-term goal. We found significant hypoactivations of the ventral tegmental area (VTA), the bilateral striatum and bilateral frontal and parietal cortices in response to conditioned reward stimuli in the risk allele carriers compared with major allele carriers. In the dilemma situation, functional connectivity between prefrontal brain regions and the ventral striatum was significantly diminished in the risk allele carriers. Healthy risk allele carriers showed a significant deficit of their bottom-up response to conditioned reward stimuli in the bilateral VTA and striatum. Furthermore, functional connectivity between the ventral striatum and prefrontal areas exerting top-down control on the mesolimbic reward system was reduced in this group. Similar alterations in reward processing and disturbances of prefrontal control mechanisms on mesolimbic brain circuits have also been reported in bipolar disorder and schizophrenia. Together, these findings suggest the existence of an intermediate phenotype associated with MAD1L1.

  1. Distinct Reward Properties are Encoded via Corticostriatal Interactions

    OpenAIRE

    David V. Smith; Anastasia E. Rigney; Mauricio R. Delgado

    2016-01-01

    The striatum serves as a critical brain region for reward processing. Yet, understanding the link between striatum and reward presents a challenge because rewards are composed of multiple properties. Notably, affective properties modulate emotion while informative properties help obtain future rewards. We approached this problem by emphasizing affective and informative reward properties within two independent guessing games. We found that both reward properties evoked activation within the nu...

  2. Pervasive competition between threat and reward in the brain.

    Science.gov (United States)

    Choi, Jong Moon; Padmala, Srikanth; Spechler, Philip; Pessoa, Luiz

    2014-06-01

    In the current functional MRI study, we investigated interactions between reward and threat processing. Visual cues at the start of each trial informed participants about the chance of winning monetary reward and/or receiving a mild aversive shock. We tested two competing hypothesis: according to the 'salience hypothesis', in the condition involving both reward and threat, enhanced activation would be observed because of increased salience; according to the 'competition hypothesis', the processing of reward and threat would trade-off against each other, leading to reduced activation. Analysis of skin conductance data during a delay phase revealed an interaction between reward and threat processing, such that the effect of reward was reduced during threat and the effect of threat was reduced during reward. Analysis of imaging data during the same task phase revealed interactions between reward and threat processing in several regions, including the midbrain/ventral tegmental area, caudate, putamen, bed nucleus of the stria terminalis, anterior insula, middle frontal gyrus and dorsal anterior cingulate cortex. Taken together, our findings reveal conditions during which reward and threat trade-off against each other across multiple sites. Such interactions are suggestive of competitive processes and may reflect the organization of opponent systems in the brain. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  3. Abstinence duration modulates striatal functioning during monetary reward processing in cocaine patients.

    Science.gov (United States)

    Bustamante, Juan-Carlos; Barrós-Loscertales, Alfonso; Costumero, Víctor; Fuentes-Claramonte, Paola; Rosell-Negre, Patricia; Ventura-Campos, Noelia; Llopis, Juan-José; Ávila, César

    2014-09-01

    Pre-clinical and clinical studies in cocaine addiction highlight alterations in the striatal dopaminergic reward system that subserve maintenance of cocaine use. Using an instrumental conditioning paradigm with monetary reinforcement, we studied striatal functional alterations in long-term abstinent cocaine-dependent patients and striatal functioning as a function of abstinence and treatment duration. Eighteen patients and 20 controls underwent functional magnetic resonance imaging during a Monetary Incentive Delay task. Region of interest analyses based on masks of the dorsal and ventral striatum were conducted to test between-group differences and the functional effects in the cocaine group of time (in months) with no more than two lapses from the first time patients visited the clinical service to seek treatment at the scanning time (duration of treatment), and the functional effects of the number of months with no lapses or relapses at the scanning session time (length of abstinence). We applied a voxel-wise and a cluster-wise FWE-corrected level (pFWE) at a threshold of P reward anticipation than the control group. The regression analyses in the patients group revealed a positive correlation between duration of treatment and brain activity in the left caudate during reward anticipation. Likewise, length of abstinence negatively correlated with brain activity in the bilateral nucleus accumbens during monetary outcome processing. In conclusion, caudate and nucleus accumbens show a different brain response pattern to non-drug rewards during cocaine addiction, which can be modulated by treatment success. © 2013 The Authors, Addiction Biology © 2013 Society for the Study of Addiction.

  4. Inhibiting food reward: delay discounting, food reward sensitivity, and palatable food intake in overweight and obese women.

    Science.gov (United States)

    Appelhans, Bradley M; Woolf, Kathleen; Pagoto, Sherry L; Schneider, Kristin L; Whited, Matthew C; Liebman, Rebecca

    2011-11-01

    Overeating is believed to result when the appetitive motivation to consume palatable food exceeds an individual's capacity for inhibitory control of eating. This hypothesis was supported in recent studies involving predominantly normal weight women, but has not been tested in obese populations. The current study tested the interaction between food reward sensitivity and inhibitory control in predicting palatable food intake among energy-replete overweight and obese women (N = 62). Sensitivity to palatable food reward was measured with the Power of Food Scale. Inhibitory control was assessed with a computerized choice task that captures the tendency to discount large delayed rewards relative to smaller immediate rewards. Participants completed an eating in the absence of hunger protocol in which homeostatic energy needs were eliminated with a bland preload of plain oatmeal, followed by a bogus laboratory taste test of palatable and bland snacks. The interaction between food reward sensitivity and inhibitory control was a significant predictor of palatable food intake in regression analyses controlling for BMI and the amount of preload consumed. Probing this interaction indicated that higher food reward sensitivity predicted greater palatable food intake at low levels of inhibitory control, but was not associated with intake at high levels of inhibitory control. As expected, no associations were found in a similar regression analysis predicting intake of bland foods. Findings support a neurobehavioral model of eating behavior in which sensitivity to palatable food reward drives overeating only when accompanied by insufficient inhibitory control. Strengthening inhibitory control could enhance weight management programs.

  5. Perceived stress predicts altered reward and loss feedback processing in medial prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Michael T Treadway

    2013-05-01

    Full Text Available Stress is significant risk factor for the development of psychopathology, particularly symptoms related to reward processing. Importantly, individuals display marked variation in how they perceive and cope with stressful events, and such differences are strongly linked to risk for developing psychiatric symptoms following stress exposure. However, many questions remain regarding the neural architecture that underlies inter-subject variability in perceptions of stressors. Using functional magnetic resonance imaging (fMRI during a monetary incentive delay paradigm, we examined the effects of self-reported perceived stress levels on neural activity during reward anticipation and feedback in a sample of healthy individuals. We found that subjects reporting more uncontrollable and overwhelming stressors displayed blunted neural responses in medial prefrontal cortex (mPFC following feedback related to monetary gains as well monetary losses. This is consistent with preclinical models that implicate the mPFC as a key site of vulnerability to the noxious effects of uncontrollable stressors. Our data help translate these findings to humans, and elucidate some of the neural mechanisms that may underlie stress-linked risk for developing reward-related psychiatric symptoms.

  6. Episodic memory encoding interferes with reward learning and decreases striatal prediction errors.

    Science.gov (United States)

    Wimmer, G Elliott; Braun, Erin Kendall; Daw, Nathaniel D; Shohamy, Daphna

    2014-11-05

    Learning is essential for adaptive decision making. The striatum and its dopaminergic inputs are known to support incremental reward-based learning, while the hippocampus is known to support encoding of single events (episodic memory). Although traditionally studied separately, in even simple experiences, these two types of learning are likely to co-occur and may interact. Here we sought to understand the nature of this interaction by examining how incremental reward learning is related to concurrent episodic memory encoding. During the experiment, human participants made choices between two options (colored squares), each associated with a drifting probability of reward, with the goal of earning as much money as possible. Incidental, trial-unique object pictures, unrelated to the choice, were overlaid on each option. The next day, participants were given a surprise memory test for these pictures. We found that better episodic memory was related to a decreased influence of recent reward experience on choice, both within and across participants. fMRI analyses further revealed that during learning the canonical striatal reward prediction error signal was significantly weaker when episodic memory was stronger. This decrease in reward prediction error signals in the striatum was associated with enhanced functional connectivity between the hippocampus and striatum at the time of choice. Our results suggest a mechanism by which memory encoding may compete for striatal processing and provide insight into how interactions between different forms of learning guide reward-based decision making. Copyright © 2014 the authors 0270-6474/14/3414901-12$15.00/0.

  7. The habenula governs the attribution of incentive salience to reward predictive cues

    Science.gov (United States)

    Danna, Carey L.; Shepard, Paul D.; Elmer, Greg I.

    2013-01-01

    The attribution of incentive salience to reward associated cues is critical for motivation and the pursuit of rewards. Disruptions in the integrity of the neural systems controlling these processes can lead to avolition and anhedonia, symptoms that cross the diagnostic boundaries of many neuropsychiatric illnesses. Here, we consider whether the habenula (Hb), a region recently demonstrated to encode negatively valenced events, also modulates the attribution of incentive salience to a neutral cue predicting a food reward. The Pavlovian autoshaping paradigm was used in the rat as an investigative tool to dissociate Pavlovian learning processes imparting strictly predictive value from learning that attributes incentive motivational value. Electrolytic lesions of the fasciculus retroflexus (fr), the sole pathway through which descending Hb efferents are conveyed, significantly increased incentive salience as measured by conditioned approaches to a cue light predictive of reward. Conversely, generation of a fictive Hb signal via fr stimulation during CS+ presentation significantly decreased the incentive salience of the predictive cue. Neither manipulation altered the reward predictive value of the cue as measured by conditioned approach to the food. Our results provide new evidence supporting a significant role for the Hb in governing the attribution of incentive motivational salience to reward predictive cues and further imply that pathological changes in Hb activity could contribute to the aberrant pursuit of debilitating goals or avolition and depression-like symptoms. PMID:24368898

  8. The habenula governs the attribution of incentive salience to reward predictive cues.

    Directory of Open Access Journals (Sweden)

    Carey L. Danna

    2013-12-01

    Full Text Available The attribution of incentive salience to reward associated cues is critical for motivation and the pursuit of rewards. Disruptions in the integrity of the neural systems controlling these processes can lead to avolition and anhedonia, symptoms that cross the diagnostic boundaries of many neuropsychiatric illnesses. Here, we consider whether the habenula (Hb, a region recently demonstrated to encode negatively valenced events, also modulates the attribution of incentive salience to a neutral cue predicting a food reward. The Pavlovian autoshaping paradigm was used in the rat as an investigative tool to dissociate Pavlovian learning processes imparting strictly predictive value from learning that attributes incentive motivational value. Electrolytic lesions of the fasciculus retroflexus (fr, the sole pathway through which descending Hb efferents are conveyed, significantly increased incentive salience as measured by conditioned approaches to a cue light predictive of reward. Conversely, generation of a fictive Hb signal via fr stimulation during CS+ presentation significantly decreased the incentive salience of the predictive cue. Neither manipulation altered the reward predictive value of the cue as measured by conditioned approach to the food. Our results provide new evidence supporting a significant role for the Hb in governing the attribution of incentive motivational salience to reward predictive cues and further imply that pathological changes in Hb activity could contribute to the aberrant pursuit of debilitating goals or avolition and depression-like symptoms.

  9. "Liking" and "wanting" linked to Reward Deficiency Syndrome (RDS): hypothesizing differential responsivity in brain reward circuitry.

    Science.gov (United States)

    Blum, Kenneth; Gardner, Eliot; Oscar-Berman, Marlene; Gold, Mark

    2012-01-01

    In an attempt to resolve controversy regarding the causal contributions of mesolimbic dopamine (DA) systems to reward, we evaluate the three main competing explanatory categories: "liking,"learning," and "wanting" [1]. That is, DA may mediate (a) the hedonic impact of reward (liking), (b) learned predictions about rewarding effects (learning), or (c) the pursuit of rewards by attributing incentive salience to reward-related stimuli (wanting). We evaluate these hypotheses, especially as they relate to the Reward Deficiency Syndrome (RDS), and we find that the incentive salience or "wanting" hypothesis of DA function is supported by a majority of the evidence. Neuroimaging studies have shown that drugs of abuse, palatable foods, and anticipated behaviors such as sex and gaming affect brain regions involving reward circuitry, and may not be unidirectional. Drugs of abuse enhance DA signaling and sensitize mesolimbic mechanisms that evolved to attribute incentive salience to rewards. Addictive drugs have in common that they are voluntarily selfadministered, they enhance (directly or indirectly) dopaminergic synaptic function in the nucleus accumbens (NAC), and they stimulate the functioning of brain reward circuitry (producing the "high" that drug users seek). Although originally believed simply to encode the set point of hedonic tone, these circuits now are believed to be functionally more complex, also encoding attention, reward expectancy, disconfirmation of reward expectancy, and incentive motivation. Elevated stress levels, together with polymorphisms of dopaminergic genes and other neurotransmitter genetic variants, may have a cumulative effect on vulnerability to addiction. The RDS model of etiology holds very well for a variety of chemical and behavioral addictions.

  10. HIV infection results in ventral-striatal reward system hypo-activation during cue processing

    NARCIS (Netherlands)

    Plessis, Stéfan du; Vink, Matthijs; Joska, John A; Koutsilieri, Eleni; Bagadia, Asif; Stein, Dan J; Emsley, Robin

    2015-01-01

    OBJECTIVE: Functional MRI has thus far demonstrated that HIV has an impact on frontal-striatal systems involved in executive functioning. The potential impact of HIV on frontal-striatal systems involved in reward processing has yet to be examined by functional MRI. This study therefore aims to

  11. Social Rewards and Social Networks in the Human Brain.

    Science.gov (United States)

    Fareri, Dominic S; Delgado, Mauricio R

    2014-08-01

    The rapid development of social media and social networking sites in human society within the past decade has brought about an increased focus on the value of social relationships and being connected with others. Research suggests that we pursue socially valued or rewarding outcomes-approval, acceptance, reciprocity-as a means toward learning about others and fulfilling social needs of forming meaningful relationships. Focusing largely on recent advances in the human neuroimaging literature, we review findings highlighting the neural circuitry and processes that underlie pursuit of valued rewarding outcomes across non-social and social domains. We additionally discuss emerging human neuroimaging evidence supporting the idea that social rewards provide a gateway to establishing relationships and forming social networks. Characterizing the link between social network, brain, and behavior can potentially identify contributing factors to maladaptive influences on decision making within social situations. © The Author(s) 2014.

  12. Reward eliminates retrieval-induced forgetting.

    Science.gov (United States)

    Imai, Hisato; Kim, Dongho; Sasaki, Yuka; Watanabe, Takeo

    2014-12-02

    Although it is well known that reward enhances learning and memory, how extensively such enhancement occurs remains unclear. To address this question, we examined how reward influences retrieval-induced forgetting (RIF) in which the retrieval of a nonpracticed item under the same category as a practiced item is worse than the retrieval of a nonpracticed item outside the category. Subjects were asked to try to encode category-exemplar pairs (e.g., FISH-salmon). Then, they were presented with a category name and a two-letter word stem (e.g., FISH-sa) and were asked to complete an encoded word (retrieval practice). For a correct response, apple juice was given as a reward in the reward condition and a beeping sound was presented in the no-reward condition. Finally, subjects were asked to report whether each exemplar had been presented in the first phase. RIF was replicated in the no-reward condition. However, in the reward condition, RIF was eliminated. These results suggest that reward enhances processing of retrieval of unpracticed members by mechanisms such as spreading activation within the same category, irrespective of whether items were practiced or not.

  13. The Development of Severe and Chronic Violence Among Youth: The Role of Psychopathic Traits and Reward Processing.

    Science.gov (United States)

    Reidy, Dennis E; Krusemark, Elizabeth; Kosson, David S; Kearns, Megan C; Smith-Darden, Joanne; Kiehl, Kent A

    2017-12-01

    Psychopathic traits are a manifestation of a personality pathology that comprises a core affective-interpersonal dysfunction (callous-unemotional traits) and an impulsive-antisocial behavioral component. Of particular importance, psychopathic traits are associated with the perpetration of some of the most severe acts of violence, and they appear to indicate a subset of youth at risk for earlier onset, greater frequency, and persistence of violent offending. Although these youth represent a minority of the population, they commit a significant proportion of the violence in the general community. In our review, we highlight evidence of a unique neurobiological predisposition that underlies the core affective deficits and describe contemporary accounts for the developmental processes leading to the antisocial behavior associated with psychopathy. Current evidence suggests that, for this subset of youth, the structure and function of neural circuitry supporting emotion processing, reward learning, decision making, and the development of emotion related to empathy may be crucial to understanding why they are at risk for violence. In particular, a reward dominant pattern of neurobehavioral conditioning may explain how these youth progress to some of the most severe and persistent forms of violence. However, this pattern of conditioning may also be essential to the primary prevention of such deleterious behavior. We suspect that effective strategies to prevent such violence may ultimately be informed by understanding these affective and motivational mechanisms.

  14. Reward Inference by Primate Prefrontal and Striatal Neurons

    OpenAIRE

    Pan, Xiaochuan; Fan, Hongwei; Sawa, Kosuke; Tsuda, Ichiro; Tsukada, Minoru; Sakagami, Masamichi

    2014-01-01

    The brain contains multiple yet distinct systems involved in reward prediction. To understand the nature of these processes, we recorded single-unit activity from the lateral prefrontal cortex (LPFC) and the striatum in monkeys performing a reward inference task using an asymmetric reward schedule. We found that neurons both in the LPFC and in the striatum predicted reward values for stimuli that had been previously well experienced with set reward quantities in the asymmetric reward task. Im...

  15. Cannabinoid Regulation of Brain Reward Processing with an Emphasis on the Role of CB1 Receptors: A Step Back into the Future.

    Science.gov (United States)

    Panagis, George; Mackey, Brian; Vlachou, Styliani

    2014-01-01

    Over the last decades, the endocannabinoid system has been implicated in a large variety of functions, including a crucial modulation of brain-reward circuits and the regulation of motivational processes. Importantly, behavioral studies have shown that cannabinoid compounds activate brain reward mechanisms and circuits in a similar manner to other drugs of abuse, such as nicotine, alcohol, cocaine, and heroin, although the conditions under which cannabinoids exert their rewarding effects may be more limited. Furthermore, there is evidence on the involvement of the endocannabinoid system in the regulation of cue- and drug-induced relapsing phenomena in animal models. The aim of this review is to briefly present the available data obtained using diverse behavioral experimental approaches in experimental animals, namely, the intracranial self-stimulation paradigm, the self-administration procedure, the conditioned place preference procedure, and the reinstatement of drug-seeking behavior procedure, to provide a comprehensive picture of the current status of what is known about the endocannabinoid system mechanisms that underlie modification of brain-reward processes. Emphasis is placed on the effects of cannabinoid 1 (CB1) receptor agonists, antagonists, and endocannabinoid modulators. Further, the role of CB1 receptors in reward processes is investigated through presentation of respective genetic ablation studies in mice. The vast majority of studies in the existing literature suggest that the endocannabinoid system plays a major role in modulating motivation and reward processes. However, much remains to be done before we fully understand these interactions. Further research in the future will shed more light on these processes and, thus, could lead to the development of potential pharmacotherapies designed to treat reward-dysfunction-related disorders.

  16. Cannabinoid regulation of brain reward processing with an emphasis on the role of CB1 receptors: a step back into the future

    Directory of Open Access Journals (Sweden)

    George ePanagis

    2014-07-01

    Full Text Available Over the last decades the endocannabinoid system has been implicated in a large variety of functions, including a crucial modulation of brain reward circuits and the regulation of motivational processes. Importantly, behavioural studies have shown that cannabinoid compounds activate brain reward mechanisms and circuits in a similar manner to other drugs of abuse, such as nicotine, alcohol, cocaine and heroin, although the conditions under which cannabinoids exert their rewarding effects may be more limited. Furthermore, there is evidence on the involvement of the endocannabinoid system in the regulation of cue- and drug-induced relapsing phenomena in animal models. The aim of this review is to briefly present the available data obtained using diverse behavioural experimental approaches in experimental animals, namely, the intracranial self-stimulation paradigm, the self-administration procedure, the conditioned place preference procedure and the reinstatement of drug-seeking behaviour procedure, to provide a comprehensive picture of the current status of what is known about the endocannabinoid system mechanisms that underlie modification of brain reward processes. Emphasis is placed on the effects of cannabinoid 1 (CB1 receptor agonists, antagonists and endocannabinoid modulators. Further, the role of CB1 receptors in reward processes is investigated through presentation of respective genetic ablation studies in mice. The vast majority of studies in the existing literature suggests that the endocannabinoid system plays a major role in modulating motivation and reward processes. However, much remains to be done before we fully understand these interactions. Further research in the future will shed more light on these processes and, thus, could lead to the development of potential pharmacotherapies designed to treat reward-dysfunction related disorders.

  17. Dorsomedial striatum lesions affect adjustment to reward uncertainty, but not to reward devaluation or omission.

    Science.gov (United States)

    Torres, Carmen; Glueck, Amanda C; Conrad, Shannon E; Morón, Ignacio; Papini, Mauricio R

    2016-09-22

    The dorsomedial striatum (DMS) has been implicated in the acquisition of reward representations, a proposal leading to the hypothesis that it should play a role in situations involving reward loss. We report the results of an experiment in which the effects of DMS excitotoxic lesions were tested in consummatory successive negative contrast (reward devaluation), autoshaping training with partial vs. continuous reinforcement (reward uncertainty), and appetitive extinction (reward omission). Animals with DMS lesions exhibited reduced lever pressing responding, but enhanced goal entries, during partial reinforcement training in autoshaping. However, they showed normal negative contrast, acquisition under continuous reinforcement (CR), appetitive extinction, and response facilitation in early extinction trials. Open-field testing also indicated normal motor behavior. Thus, DMS lesions selectively affected the behavioral adjustment to a situation involving reward uncertainty, producing a behavioral reorganization according to which goal tracking (goal entries) became predominant at the expense of sign tracking (lever pressing). This pattern of results shows that the function of the DMS in situations involving reward loss is not general, but restricted to reward uncertainty. We suggest that a nonassociative, drive-related process induced by reward uncertainty requires normal output from DMS neurons. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Diminished Neural Processing of Aversive and Rewarding Stimuli During Selective Serotonin Reuptake Inhibitor Treatment

    Science.gov (United States)

    McCabe, Ciara; Mishor, Zevic; Cowen, Philip J.; Harmer, Catherine J.

    2010-01-01

    Background Selective serotonin reuptake inhibitors (SSRIs) are popular medications for anxiety and depression, but their effectiveness, particularly in patients with prominent symptoms of loss of motivation and pleasure, has been questioned. There are few studies of the effect of SSRIs on neural reward mechanisms in humans. Methods We studied 45 healthy participants who were randomly allocated to receive the SSRI citalopram, the noradrenaline reuptake inhibitor reboxetine, or placebo for 7 days in a double-blind, parallel group design. We used functional magnetic resonance imaging to measure the neural response to rewarding (sight and/or flavor of chocolate) and aversive stimuli (sight of moldy strawberries and/or an unpleasant strawberry taste) on the final day of drug treatment. Results Citalopram reduced activation to the chocolate stimuli in the ventral striatum and the ventral medial/orbitofrontal cortex. In contrast, reboxetine did not suppress ventral striatal activity and in fact increased neural responses within medial orbitofrontal cortex to reward. Citalopram also decreased neural responses to the aversive stimuli conditions in key “punishment” areas such as the lateral orbitofrontal cortex. Reboxetine produced a similar, although weaker effect. Conclusions Our findings are the first to show that treatment with SSRIs can diminish the neural processing of both rewarding and aversive stimuli. The ability of SSRIs to decrease neural responses to reward might underlie the questioned efficacy of SSRIs in depressive conditions characterized by decreased motivation and anhedonia and could also account for the experience of emotional blunting described by some patients during SSRI treatment. PMID:20034615

  19. It's about time: Earlier rewards increase intrinsic motivation.

    Science.gov (United States)

    Woolley, Kaitlin; Fishbach, Ayelet

    2018-06-01

    Can immediate (vs. delayed) rewards increase intrinsic motivation? Prior research compared the presence versus absence of rewards. By contrast, this research compared immediate versus delayed rewards, predicting that more immediate rewards increase intrinsic motivation by creating a perceptual fusion between the activity and its goal (i.e., the reward). In support of the hypothesis, framing a reward from watching a news program as more immediate (vs. delayed) increased intrinsic motivation to watch the program (Study 1), and receiving more immediate bonus (vs. delayed, Study 2; and vs. delayed and no bonus, Study 3) increased intrinsic motivation in an experimental task. The effect of reward timing was mediated by the strength of the association between an activity and a reward, and was specific to intrinsic (vs. extrinsic) motivation-immediacy influenced the positive experience of an activity, but not perceived outcome importance (Study 4). In addition, the effect of the timing of rewards was independent of the effect of the magnitude of the rewards (Study 5). (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  20. Role of delay-based reward in the spatial cooperation

    Science.gov (United States)

    Wang, Xu-Wen; Nie, Sen; Jiang, Luo-Luo; Wang, Bing-Hong; Chen, Shi-Ming

    2017-01-01

    Strategy selection in games, a typical decision making, usually brings noticeable reward for players which have discounted value if the delay appears. The discounted value is measure: earning sooner with a small reward or later with a delayed larger reward. Here, we investigate effects of delayed rewards on the cooperation in structured population. It is found that delayed reward supports the spreading of cooperation in square lattice, small-world and random networks. In particular, intermediate reward differences between delays impel the highest cooperation level. Interestingly, cooperative individuals with the same delay time steps form clusters to resist the invasion of defects, and cooperative individuals with lowest delay reward survive because they form the largest clusters in the lattice.

  1. Neurocircuitry of drug reward

    Science.gov (United States)

    Ikemoto, Satoshi; Bonci, Antonello

    2013-01-01

    In recent years, neuroscientists have produced profound conceptual and mechanistic advances on the neurocircuitry of reward and substance use disorders. Here, we will provide a brief review of intracranial drug self-administration and optogenetic self-stimulation studies that identified brain regions and neurotransmitter systems involved in drug- and reward-related behaviors. Also discussed is a theoretical framework that helps to understand the functional properties of the circuitry involved in these behaviors. The circuitry appears to be homeostatically regulated and mediate anticipatory processes that regulate behavioral interaction with the environment in response to salient stimuli. That is, abused drugs or, at least, some may act on basic motivation and mood processes, regulating behavior-environment interaction. Optogenetics and related technologies have begun to uncover detailed circuit mechanisms linking key brain regions in which abused drugs act for rewarding effects. PMID:23664810

  2. Developmental continuity in reward-related enhancement of cognitive control.

    Science.gov (United States)

    Strang, Nicole M; Pollak, Seth D

    2014-10-01

    Adolescents engage in more risky behavior than children or adults. The most prominent hypothesis for this phenomenon is that brain systems governing reward sensitivity and brain systems governing self-regulation mature at different rates. Those systems governing reward sensitivity mature in advance of those governing self-control. This hypothesis has substantial empirical support, however, the evidence supporting this theory has been exclusively derived from contexts where self-control systems are required to regulate reward sensitivity in order to promote adaptive behavior. In adults, reward promotes a shift to a proactive control strategy and better cognitive control performance. It is unclear whether children and adolescents will respond to reward in the same way. Using fMRI methodology, we explored whether children and adolescents would demonstrate a shift to proactive control in the context of reward. We tested 22 children, 20 adolescents, and 23 adults. In contrast to our hypothesis, children, adolescents, and adults all demonstrated a shift to proactive cognitive control in the context of reward. In light of the results, current neurobiological theories of adolescent behavior need to be refined to reflect that in certain contexts there is continuity in the manner reward and cognitive control systems interact across development. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Monetary reward activates human prefrontal cortex

    International Nuclear Information System (INIS)

    Thut, G.; Roelcke, U.; Nienhusmeier, M.; Missimer, J.; Maguire, R.P.; Leenders, K.L.; Schultz, W.

    1997-01-01

    We present a rCBF PET activation study, in which we demonstrated that reward processing in humans activates a cortical-subcortical network including dorsolateral prefrontal, orbital frontal, thalamic and midbrain regions. It is suggested that, as found for non-human primates, the basal ganglia-thalamo-cortical system is implicated in reward processing. (author) 1 fig., 3 refs

  4. Motivational orientation modulates the neural response to reward.

    Science.gov (United States)

    Linke, Julia; Kirsch, Peter; King, Andrea V; Gass, Achim; Hennerici, Michael G; Bongers, André; Wessa, Michèle

    2010-02-01

    Motivational orientation defines the source of motivation for an individual to perform a particular action and can either originate from internal desires (e.g., interest) or external compensation (e.g., money). To this end, motivational orientation should influence the way positive or negative feedback is processed during learning situations and this might in turn have an impact on the learning process. In the present study, we thus investigated whether motivational orientation, i.e., extrinsic and intrinsic motivation modulates the neural response to reward and punishment as well as learning from reward and punishment in 33 healthy individuals. To assess neural responses to reward, punishment and learning of reward contingencies we employed a probabilistic reversal learning task during functional magnetic resonance imaging. Extrinsic and intrinsic motivation were assessed with a self-report questionnaire. Rewarding trials fostered activation in the medial orbitofrontal cortex and anterior cingulate gyrus (ACC) as well as the amygdala and nucleus accumbens, whereas for punishment an increased neural response was observed in the medial and inferior prefrontal cortex, the superior parietal cortex and the insula. High extrinsic motivation was positively correlated to increased neural responses to reward in the ACC, amygdala and putamen, whereas a negative relationship between intrinsic motivation and brain activation in these brain regions was observed. These findings show that motivational orientation indeed modulates the responsiveness to reward delivery in major components of the human reward system and therefore extends previous results showing a significant influence of individual differences in reward-related personality traits on the neural processing of reward. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  5. Striatal Activity and Reward Relativity: Neural Signals Encoding Dynamic Outcome Valuation.

    Science.gov (United States)

    Webber, Emily S; Mankin, David E; Cromwell, Howard C

    2016-01-01

    The striatum is a key brain region involved in reward processing. Striatal activity has been linked to encoding reward magnitude and integrating diverse reward outcome information. Recent work has supported the involvement of striatum in the valuation of outcomes. The present work extends this idea by examining striatal activity during dynamic shifts in value that include different levels and directions of magnitude disparity. A novel task was used to produce diverse relative reward effects on a chain of instrumental action. Rats ( Rattus norvegicus ) were trained to respond to cues associated with specific outcomes varying by food pellet magnitude. Animals were exposed to single-outcome sessions followed by mixed-outcome sessions, and neural activity was compared among identical outcome trials from the different behavioral contexts. Results recording striatal activity show that neural responses to different task elements reflect incentive contrast as well as other relative effects that involve generalization between outcomes or possible influences of outcome variety. The activity that was most prevalent was linked to food consumption and post-food consumption periods. Relative encoding was sensitive to magnitude disparity. A within-session analysis showed strong contrast effects that were dependent upon the outcome received in the immediately preceding trial. Significantly higher numbers of responses were found in ventral striatum linked to relative outcome effects. Our results support the idea that relative value can incorporate diverse relationships, including comparisons from specific individual outcomes to general behavioral contexts. The striatum contains these diverse relative processes, possibly enabling both a higher information yield concerning value shifts and a greater behavioral flexibility.

  6. Reward Anticipation in Ventral Striatum and Individual Sensitivity to Reward : A Pilot Study of a Child-Friendly fMRI Task

    NARCIS (Netherlands)

    van Hulst, Branko M; de Zeeuw, Patrick; Lupas, Kellina; Bos, Dienke J; Neggers, Sebastiaan F W; Durston, Sarah

    2015-01-01

    Reward processing has been implicated in developmental disorders. However, the classic task to probe reward anticipation, the monetary incentive delay task, has an abstract coding of reward and no storyline and may therefore be less appropriate for use with developmental populations. We modified the

  7. Spared internal but impaired external reward prediction error signals in major depressive disorder during reinforcement learning.

    Science.gov (United States)

    Bakic, Jasmina; Pourtois, Gilles; Jepma, Marieke; Duprat, Romain; De Raedt, Rudi; Baeken, Chris

    2017-01-01

    Major depressive disorder (MDD) creates debilitating effects on a wide range of cognitive functions, including reinforcement learning (RL). In this study, we sought to assess whether reward processing as such, or alternatively the complex interplay between motivation and reward might potentially account for the abnormal reward-based learning in MDD. A total of 35 treatment resistant MDD patients and 44 age matched healthy controls (HCs) performed a standard probabilistic learning task. RL was titrated using behavioral, computational modeling and event-related brain potentials (ERPs) data. MDD patients showed comparable learning rate compared to HCs. However, they showed decreased lose-shift responses as well as blunted subjective evaluations of the reinforcers used during the task, relative to HCs. Moreover, MDD patients showed normal internal (at the level of error-related negativity, ERN) but abnormal external (at the level of feedback-related negativity, FRN) reward prediction error (RPE) signals during RL, selectively when additional efforts had to be made to establish learning. Collectively, these results lend support to the assumption that MDD does not impair reward processing per se during RL. Instead, it seems to alter the processing of the emotional value of (external) reinforcers during RL, when additional intrinsic motivational processes have to be engaged. © 2016 Wiley Periodicals, Inc.

  8. Future planning: default network activity couples with frontoparietal control network and reward-processing regions during process and outcome simulations.

    Science.gov (United States)

    Gerlach, Kathy D; Spreng, R Nathan; Madore, Kevin P; Schacter, Daniel L

    2014-12-01

    We spend much of our daily lives imagining how we can reach future goals and what will happen when we attain them. Despite the prevalence of such goal-directed simulations, neuroimaging studies on planning have mainly focused on executive processes in the frontal lobe. This experiment examined the neural basis of process simulations, during which participants imagined themselves going through steps toward attaining a goal, and outcome simulations, during which participants imagined events they associated with achieving a goal. In the scanner, participants engaged in these simulation tasks and an odd/even control task. We hypothesized that process simulations would recruit default and frontoparietal control network regions, and that outcome simulations, which allow us to anticipate the affective consequences of achieving goals, would recruit default and reward-processing regions. Our analysis of brain activity that covaried with process and outcome simulations confirmed these hypotheses. A functional connectivity analysis with posterior cingulate, dorsolateral prefrontal cortex and anterior inferior parietal lobule seeds showed that their activity was correlated during process simulations and associated with a distributed network of default and frontoparietal control network regions. During outcome simulations, medial prefrontal cortex and amygdala seeds covaried together and formed a functional network with default and reward-processing regions. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  9. Model Checking Markov Reward Models with Impulse Rewards

    NARCIS (Netherlands)

    Cloth, Lucia; Katoen, Joost-Pieter; Khattri, Maneesh; Pulungan, Reza; Bondavalli, Andrea; Haverkort, Boudewijn; Tang, Dong

    This paper considers model checking of Markov reward models (MRMs), continuous-time Markov chains with state rewards as well as impulse rewards. The reward extension of the logic CSL (Continuous Stochastic Logic) is interpreted over such MRMs, and two numerical algorithms are provided to check the

  10. Age differences in default and reward networks during processing of personally relevant information.

    Science.gov (United States)

    Grady, Cheryl L; Grigg, Omer; Ng, Charisa

    2012-06-01

    We recently found activity in default mode and reward-related regions during self-relevant tasks in young adults. Here we examine the effect of aging on engagement of the default network (DN) and reward network (RN) during these tasks. Previous studies have shown reduced engagement of the DN and reward areas in older adults, but the influence of age on these circuits during self-relevant tasks has not been examined. The tasks involved judging personality traits about one's self or a well known other person. There were no age differences in reaction time on the tasks but older adults had more positive Self and Other judgments, whereas younger adults had more negative judgments. Both groups had increased DN and RN activity during the self-relevant tasks, relative to non-self tasks, but this increase was reduced in older compared to young adults. Functional connectivity of both networks during the tasks was weaker in the older relative to younger adults. Intrinsic functional connectivity, measured at rest, also was weaker in the older adults in the DN, but not in the RN. These results suggest that, in younger adults, the processing of personally relevant information involves robust activation of and functional connectivity within these two networks, in line with current models that emphasize strong links between the self and reward. The finding that older adults had more positive judgments, but weaker engagement and less consistent functional connectivity in these networks, suggests potential brain mechanisms for the "positivity bias" with aging. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Neuroimaging meta-analysis of cannabis use studies reveals convergent functional alterations in brain regions supporting cognitive control and reward processing.

    Science.gov (United States)

    Yanes, Julio A; Riedel, Michael C; Ray, Kimberly L; Kirkland, Anna E; Bird, Ryan T; Boeving, Emily R; Reid, Meredith A; Gonzalez, Raul; Robinson, Jennifer L; Laird, Angela R; Sutherland, Matthew T

    2018-03-01

    Lagging behind rapid changes to state laws, societal views, and medical practice is the scientific investigation of cannabis's impact on the human brain. While several brain imaging studies have contributed important insight into neurobiological alterations linked with cannabis use, our understanding remains limited. Here, we sought to delineate those brain regions that consistently demonstrate functional alterations among cannabis users versus non-users across neuroimaging studies using the activation likelihood estimation meta-analysis framework. In ancillary analyses, we characterized task-related brain networks that co-activate with cannabis-affected regions using data archived in a large neuroimaging repository, and then determined which psychological processes may be disrupted via functional decoding techniques. When considering convergent alterations among users, decreased activation was observed in the anterior cingulate cortex, which co-activated with frontal, parietal, and limbic areas and was linked with cognitive control processes. Similarly, decreased activation was observed in the dorsolateral prefrontal cortex, which co-activated with frontal and occipital areas and linked with attention-related processes. Conversely, increased activation among users was observed in the striatum, which co-activated with frontal, parietal, and other limbic areas and linked with reward processing. These meta-analytic outcomes indicate that cannabis use is linked with differential, region-specific effects across the brain.

  12. Impact of early life adversity on reward processing in young adults: EEG-fMRI results from a prospective study over 25 years.

    Directory of Open Access Journals (Sweden)

    Regina Boecker

    Full Text Available Several lines of evidence have implicated the mesolimbic dopamine reward pathway in altered brain function resulting from exposure to early adversity. The present study examined the impact of early life adversity on different stages of neuronal reward processing later in life and their association with a related behavioral phenotype, i.e. attention deficit/hyperactivity disorder (ADHD. 162 healthy young adults (mean age = 24.4 years; 58% female from an epidemiological cohort study followed since birth participated in a simultaneous EEG-fMRI study using a monetary incentive delay task. Early life adversity according to an early family adversity index (EFA and lifetime ADHD symptoms were assessed using standardized parent interviews conducted at the offspring's age of 3 months and between 2 and 15 years, respectively. fMRI region-of-interest analysis revealed a significant effect of EFA during reward anticipation in reward-related areas (i.e. ventral striatum, putamen, thalamus, indicating decreased activation when EFA increased. EEG analysis demonstrated a similar effect for the contingent negative variation (CNV, with the CNV decreasing with the level of EFA. In contrast, during reward delivery, activation of the bilateral insula, right pallidum and bilateral putamen increased with EFA. There was a significant association of lifetime ADHD symptoms with lower activation in the left ventral striatum during reward anticipation and higher activation in the right insula during reward delivery. The present findings indicate a differential long-term impact of early life adversity on reward processing, implicating hyporesponsiveness during reward anticipation and hyperresponsiveness when receiving a reward. Moreover, a similar activation pattern related to lifetime ADHD suggests that the impact of early life stress on ADHD may possibly be mediated by a dysfunctional reward pathway.

  13. Subliminal and supraliminal processing of reward-related stimuli in anorexia nervosa.

    Science.gov (United States)

    Boehm, I; King, J A; Bernardoni, F; Geisler, D; Seidel, M; Ritschel, F; Goschke, T; Haynes, J-D; Roessner, V; Ehrlich, S

    2018-04-01

    Previous studies have highlighted the role of the brain reward and cognitive control systems in the etiology of anorexia nervosa (AN). In an attempt to disentangle the relative contribution of these systems to the disorder, we used functional magnetic resonance imaging (fMRI) to investigate hemodynamic responses to reward-related stimuli presented both subliminally and supraliminally in acutely underweight AN patients and age-matched healthy controls (HC). fMRI data were collected from a total of 35 AN patients and 35 HC, while they passively viewed subliminally and supraliminally presented streams of food, positive social, and neutral stimuli. Activation patterns of the group × stimulation condition × stimulus type interaction were interrogated to investigate potential group differences in processing different stimulus types under the two stimulation conditions. Moreover, changes in functional connectivity were investigated using generalized psychophysiological interaction analysis. AN patients showed a generally increased response to supraliminally presented stimuli in the inferior frontal junction (IFJ), but no alterations within the reward system. Increased activation during supraliminal stimulation with food stimuli was observed in the AN group in visual regions including superior occipital gyrus and the fusiform gyrus/parahippocampal gyrus. No group difference was found with respect to the subliminal stimulation condition and functional connectivity. Increased IFJ activation in AN during supraliminal stimulation may indicate hyperactive cognitive control, which resonates with clinical presentation of excessive self-control in AN patients. Increased activation to food stimuli in visual regions may be interpreted in light of an attentional food bias in AN.

  14. The role of BDNF, leptin, and catecholamines in reward learning in bulimia nervosa.

    Science.gov (United States)

    Homan, Philipp; Grob, Simona; Milos, Gabriella; Schnyder, Ulrich; Eckert, Anne; Lang, Undine; Hasler, Gregor

    2014-12-07

    A relationship between bulimia nervosa and reward-related behavior is supported by several lines of evidence. The dopaminergic dysfunctions in the processing of reward-related stimuli have been shown to be modulated by the neurotrophin brain derived neurotrophic factor (BDNF) and the hormone leptin. Using a randomized, double-blind, placebo-controlled, crossover design, a reward learning task was applied to study the behavior of 20 female subjects with remitted bulimia nervosa and 27 female healthy controls under placebo and catecholamine depletion with alpha-methyl-para-tyrosine (AMPT). The plasma levels of BDNF and leptin were measured twice during the placebo and the AMPT condition, immediately before and 1 hour after a standardized breakfast. AMPT-induced differences in plasma BDNF levels were positively correlated with the AMPT-induced differences in reward learning in the whole sample (P=.05). Across conditions, plasma brain derived neurotrophic factor levels were higher in remitted bulimia nervosa subjects compared with controls (diagnosis effect; P=.001). Plasma BDNF and leptin levels were higher in the morning before compared with after a standardized breakfast across groups and conditions (time effect; Pbulimia nervosa and controls. A role of leptin in reward learning is not supported by this study. However, leptin levels were sensitive to a depletion of catecholamine stores in both remitted bulimia nervosa and controls. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  15. The role of the dorsal raphé nucleus in reward-seeking behavior

    Directory of Open Access Journals (Sweden)

    Kae eNakamura

    2013-08-01

    Full Text Available Pharmacological experiments have shown that the modulation of brain serotonin levels has a strong impact on value-based decision making. Anatomical and physiological evidence also revealed that the dorsal raphé nucleus (DRN, a major source of serotonin, and the dopamine system receive common inputs from brain regions associated with appetitive and aversive information processing. The serotonin and dopamine systems also have reciprocal functional influences on each other. However, the specific mechanism by which serotonin affects value-based decision making is not clear.To understand the information carried by the DRN for reward-seeking behavior, we measured single neuron activity in the primate DRN during the performance of saccade tasks to obtain different amounts of a reward. We found that DRN neuronal activity was characterized by tonic modulation that was altered by the expected and received reward value. Consistent reward-dependent modulation across different task periods suggested that DRN activity kept track of the reward value throughout a trial. The DRN was also characterized by modulation of its activity in the opposite direction by different neuronal subgroups, one firing strongly for the prediction and receipt of large rewards, with the other firing strongly for small rewards. Conversely, putative dopamine neurons showed positive phasic responses to reward-indicating cues and the receipt of an unexpected reward amount, which supports the reward prediction error signal hypothesis of dopamine.I suggest that the tonic reward monitoring signal of the DRN, possibly together with its interaction with the dopamine system, reports a continuous level of motivation throughout the performance of a task. Such a signal may provide reward context information to the targets of DRN projections, where it may be integrated further with incoming motivationally salient information.

  16. Individual differences in sensitivity to reward and punishment and neural activity during reward and avoidance learning.

    Science.gov (United States)

    Kim, Sang Hee; Yoon, HeungSik; Kim, Hackjin; Hamann, Stephan

    2015-09-01

    In this functional neuroimaging study, we investigated neural activations during the process of learning to gain monetary rewards and to avoid monetary loss, and how these activations are modulated by individual differences in reward and punishment sensitivity. Healthy young volunteers performed a reinforcement learning task where they chose one of two fractal stimuli associated with monetary gain (reward trials) or avoidance of monetary loss (avoidance trials). Trait sensitivity to reward and punishment was assessed using the behavioral inhibition/activation scales (BIS/BAS). Functional neuroimaging results showed activation of the striatum during the anticipation and reception periods of reward trials. During avoidance trials, activation of the dorsal striatum and prefrontal regions was found. As expected, individual differences in reward sensitivity were positively associated with activation in the left and right ventral striatum during reward reception. Individual differences in sensitivity to punishment were negatively associated with activation in the left dorsal striatum during avoidance anticipation and also with activation in the right lateral orbitofrontal cortex during receiving monetary loss. These results suggest that learning to attain reward and learning to avoid loss are dependent on separable sets of neural regions whose activity is modulated by trait sensitivity to reward or punishment. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  17. Processing of Continuously Provided Punishment and Reward in Children with ADHD and the Modulating Effects of Stimulant Medication : An ERP Study

    NARCIS (Netherlands)

    Groen, Yvonne; Tucha, Oliver; Wijers, Albertus A.; Althaus, Monika

    2013-01-01

    Objectives: Current models of ADHD suggest abnormal reward and punishment sensitivity, but the exact mechanisms are unclear. This study aims to investigate effects of continuous reward and punishment on the processing of performance feedback in children with ADHD and the modulating effects of

  18. Reward Processing by the Dorsal Raphe Nucleus: 5-HT and Beyond

    Science.gov (United States)

    Luo, Minmin; Zhou, Jingfeng; Liu, Zhixiang

    2015-01-01

    The dorsal raphe nucleus (DRN) represents one of the most sensitive reward sites in the brain. However, the exact relationship between DRN neuronal activity and reward signaling has been elusive. In this review, we will summarize anatomical, pharmacological, optogenetics, and electrophysiological studies on the functions and circuit mechanisms of…

  19. BAS-drive trait modulates dorsomedial striatum activity during reward response-outcome associations.

    Science.gov (United States)

    Costumero, Víctor; Barrós-Loscertales, Alfonso; Fuentes, Paola; Rosell-Negre, Patricia; Bustamante, Juan Carlos; Ávila, César

    2016-09-01

    According to the Reinforcement Sensitivity Theory, behavioral studies have found that individuals with stronger reward sensitivity easily detect cues of reward and establish faster associations between instrumental responses and reward. Neuroimaging studies have shown that processing anticipatory cues of reward is accompanied by stronger ventral striatum activity in individuals with stronger reward sensitivity. Even though establishing response-outcome contingencies has been consistently associated with dorsal striatum, individual differences in this process are poorly understood. Here, we aimed to study the relation between reward sensitivity and brain activity while processing response-reward contingencies. Forty-five participants completed the BIS/BAS questionnaire and performed a gambling task paradigm in which they received monetary rewards or punishments. Overall, our task replicated previous results that have related processing high reward outcomes with activation of striatum and medial frontal areas, whereas processing high punishment outcomes was associated with stronger activity in insula and middle cingulate. As expected, the individual differences in the activity of dorsomedial striatum correlated positively with BAS-Drive. Our results agree with previous studies that have related the dorsomedial striatum with instrumental performance, and suggest that the individual differences in this area may form part of the neural substrate responsible for modulating instrumental conditioning by reward sensitivity.

  20. Hypocretin / orexin involvement in reward and reinforcement

    Science.gov (United States)

    España, Rodrigo A.

    2015-01-01

    Since the discovery of the hypocretins/orexins, a series of observations have indicated that these peptides influence a variety of physiological processes including feeding, sleep/wake function, memory, and stress. More recently, the hypocretins have been implicated in reinforcement and reward-related processes via actions on the mesolimbic dopamine system. Although investigation into the relationship between the hypocretins and reinforcement/reward remains in relatively early stages, accumulating evidence suggests that continued research into this area may offer new insights into the addiction process and provide the foundation to generate novel pharmacotherapies for drug abuse. The current chapter will focus on contemporary perspectives of hypocretin regulation of cocaine reward and reinforcement via actions on the mesolimbic dopamine system. PMID:22640614

  1. Imaging human reward processing with positron emission tomography and functional magnetic resonance imaging.

    Science.gov (United States)

    Urban, Nina B L; Slifstein, Mark; Meda, Shashwath; Xu, Xiaoyan; Ayoub, Rawad; Medina, Olga; Pearlson, Godfrey D; Krystal, John H; Abi-Dargham, Anissa

    2012-05-01

    Functional neuroimaging (fMRI) studies show activation in mesolimbic circuitry in tasks involving reward processing, like the Monetary Incentive Delay Task (MIDT). In voltammetry studies in animals, mesolimbic dopamine release is associated with reward salience. This study examined the relationship between fMRI activation and magnitude of dopamine release measured with Positron emission tomography study (PET) in the same subjects using MIDT in both modalities to test if fMRI activation is related to dopamine release. Eighteen healthy subjects were scanned with [¹¹C]raclopride PET at baseline and after MIDT. Binding potential (BP(ND)) was derived by equilibrium analysis in striatal subregions and percent change across conditions (∆BP(ND)) was measured. Blood oxygen level dependence (BOLD) signal changes with MIDT were measured during fMRI using voxelwise analysis and ROI analysis and correlated with ∆BP(ND). ∆BP(ND) was not significant in the ventral striatum (VST) but reached significance in the posterior caudate. The fMRI BOLD activation was highest in VST. No significant associations between ∆BP(ND) and change in fMRI BOLD were observed with VST using ROI analysis. Voxelwise analysis showed positive correlation between BOLD activation in anticipation of the highest reward and ∆BP(ND) in VST and precommissural putamen. Our study indicates that endogenous dopamine release in VST is of small magnitude and is related to BOLD signal change during performance of the MIDT in only a few voxels when rewarding and nonrewarding conditions are interspersed. The lack of correlation at the ROI level may be due to the small magnitude of release or to the particular dependence of BOLD on glutamatergic signaling.

  2. BOLD responses in reward regions to hypothetical and imaginary monetary rewards.

    Science.gov (United States)

    Miyapuram, Krishna P; Tobler, Philippe N; Gregorios-Pippas, Lucy; Schultz, Wolfram

    2012-01-16

    Monetary rewards are uniquely human. Because money is easy to quantify and present visually, it is the reward of choice for most fMRI studies, even though it cannot be handed over to participants inside the scanner. A typical fMRI study requires hundreds of trials and thus small amounts of monetary rewards per trial (e.g. 5p) if all trials are to be treated equally. However, small payoffs can have detrimental effects on performance due to their limited buying power. Hypothetical monetary rewards can overcome the limitations of smaller monetary rewards but it is less well known whether predictors of hypothetical rewards activate reward regions. In two experiments, visual stimuli were associated with hypothetical monetary rewards. In Experiment 1, we used stimuli predicting either visually presented or imagined hypothetical monetary rewards, together with non-rewarding control pictures. Activations to reward predictive stimuli occurred in reward regions, namely the medial orbitofrontal cortex and midbrain. In Experiment 2, we parametrically varied the amount of visually presented hypothetical monetary reward keeping constant the amount of actually received reward. Graded activation in midbrain was observed to stimuli predicting increasing hypothetical rewards. The results demonstrate the efficacy of using hypothetical monetary rewards in fMRI studies. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Ventral pallidum roles in reward and motivation.

    Science.gov (United States)

    Smith, Kyle S; Tindell, Amy J; Aldridge, J Wayne; Berridge, Kent C

    2009-01-23

    In recent years the ventral pallidum has become a focus of great research interest as a mechanism of reward and incentive motivation. As a major output for limbic signals, the ventral pallidum was once associated primarily with motor functions rather than regarded as a reward structure in its own right. However, ample evidence now suggests that ventral pallidum function is a major mechanism of reward in the brain. We review data indicating that (1) an intact ventral pallidum is necessary for normal reward and motivation, (2) stimulated activation of ventral pallidum is sufficient to cause reward and motivation enhancements, and (3) activation patterns in ventral pallidum neurons specifically encode reward and motivation signals via phasic bursts of excitation to incentive and hedonic stimuli. We conclude that the ventral pallidum may serve as an important 'limbic final common pathway' for mesocorticolimbic processing of many rewards.

  4. Reward deficiency and anti-reward in pain chronification

    OpenAIRE

    Borsook, D.; Linnman, C.; Faria, Vanda; Strassman, A. M.; Becerra, L.; Elman, I.

    2016-01-01

    Converging lines of evidence suggest that the pathophysiology of pain is mediated to a substantial degree via allostatic neuroadaptations in reward- and stress-related brain circuits. Thus, reward deficiency (RD) represents a within-system neuroadaptation to pain-induced protracted activation of the reward circuits that leads to depletion-like hypodopaminergia, clinically manifested anhedonia, and diminished motivation for natural reinforcers. Anti-reward (AR) conversely pertains to a between...

  5. Acute stress-induced cortisol elevations mediate reward system activity during subconscious processing of sexual stimuli

    NARCIS (Netherlands)

    Oei, N.Y.L.; Both, S.; van Heemst, D.; van der Grond, J.

    2014-01-01

    Stress is thought to alter motivational processes by increasing dopamine (DA) secretion in the brain's "reward system", and its key region, the nucleus accumbens (NAcc). However, stress studies using functional magnetic resonance imaging (fMRI), mainly found evidence for stress-induced decreases in

  6. Reward networks in the brain as captured by connectivity measures

    Directory of Open Access Journals (Sweden)

    Estela Camara

    2009-12-01

    Full Text Available An assortment of human behaviors is thought to be driven by rewards including reinforcement learning, novelty processing, learning, decision making, economic choice, incentive motivation, and addiction. In each case the ventral tegmental area / ventral striatum (Nucleus accumbens system (VTA-VS has been implicated as a key structure by functional imaging studies, mostly on the basis of standard, univariate analyses. Here we propose that standard fMRI analysis needs to be complemented by methods that take into account the differential connectivity of the VTA-VS system in the different behavioral contexts in order to describe reward based processes more appropriately. We first consider the wider network for reward processing as it emerged from animal experimentation. Subsequently, an example for a method to assess functional connectivity is given. Finally, we illustrate the usefulness of such analyses by examples regarding reward valuation, reward expectation and the role of reward in addiction.

  7. Impairment of probabilistic reward-based learning in schizophrenia.

    Science.gov (United States)

    Weiler, Julia A; Bellebaum, Christian; Brüne, Martin; Juckel, Georg; Daum, Irene

    2009-09-01

    Recent models assume that some symptoms of schizophrenia originate from defective reward processing mechanisms. Understanding the precise nature of reward-based learning impairments might thus make an important contribution to the understanding of schizophrenia and the development of treatment strategies. The present study investigated several features of probabilistic reward-based stimulus association learning, namely the acquisition of initial contingencies, reversal learning, generalization abilities, and the effects of reward magnitude. Compared to healthy controls, individuals with schizophrenia exhibited attenuated overall performance during acquisition, whereas learning rates across blocks were similar to the rates of controls. On the group level, persons with schizophrenia were, however, unable to learn the reversal of the initial reward contingencies. Exploratory analysis of only the subgroup of individuals with schizophrenia who showed significant learning during acquisition yielded deficits in reversal learning with low reward magnitudes only. There was further evidence of a mild generalization impairment of the persons with schizophrenia in an acquired equivalence task. In summary, although there was evidence of intact basic processing of reward magnitudes, individuals with schizophrenia were impaired at using this feedback for the adaptive guidance of behavior.

  8. Rewards.

    Science.gov (United States)

    Gunderman, Richard B; Kamer, Aaron P

    2011-05-01

    For much of the 20th century, psychologists and economists operated on the assumption that work is devoid of intrinsic rewards, and the only way to get people to work harder is through the use of rewards and punishments. This so-called carrot-and-stick model of workplace motivation, when applied to medical practice, emphasizes the use of financial incentives and disincentives to manipulate behavior. More recently, however, it has become apparent that, particularly when applied to certain kinds of work, such approaches can be ineffective or even frankly counterproductive. Instead of focusing on extrinsic rewards such as compensation, organizations and their leaders need to devote more attention to the intrinsic rewards of work itself. This article reviews this new understanding of rewards and traces out its practical implications for radiology today. Copyright © 2011. Published by Elsevier Inc.

  9. The role of reward and reward uncertainty in episodic memory

    OpenAIRE

    Mason, Alice; Farrell, Simon; Howard-Jones, Paul; Ludwig, Casimir

    2017-01-01

    Declarative memory has been found to be sensitive to reward-related changes in the environment. The reward signal can be broken down into information regarding the expected value of the reward, reward uncertainty and the prediction error. Research has established that high as opposed to low reward values enhance declarative memory. Research in neuroscience suggests that high uncertainty activates the reward system, which could lead to enhanced learning and memory. Here we present the results ...

  10. Diminished social reward anticipation in the broad autism phenotype as revealed by event-related brain potentials.

    Science.gov (United States)

    Cox, Anthony; Kohls, Gregor; Naples, Adam J; Mukerji, Cora E; Coffman, Marika C; Rutherford, Helena J V; Mayes, Linda C; McPartland, James C

    2015-10-01

    Diminished responsivity to reward incentives is a key contributor to the social-communication problems seen in autism spectrum disorders (ASDs). Social motivation theories suggest that individuals with ASD do not experience social interactions as rewarding, leading to negative consequences for the development of brain circuitry subserving social information. In this study, we examined neural responses to social and non-social reward anticipation in 35 typically developing young adults, examining modulation of reward sensitivity by level of autistic traits. Using an Event-related potential incentive-delay task incorporating novel, more ecologically valid forms of reward, higher expression of autistic traits was associated with an attenuated P3 response to the anticipation of social (simulated real-time video feedback from an observer), but not non-social (candy), rewards. Exploratory analyses revealed that this was unrelated to mentalizing ability. The P3 component reflects motivated attention to reward signals, suggesting attenuated motivation allocation specific to social incentives. The study extends prior findings of atypical reward anticipation in ASD, demonstrating that attenuated social reward responsiveness extends to autistic traits in the range of typical functioning. Results support the development of innovative paradigms for investigating social and non-social reward responsiveness. Insight into vulnerabilities in reward processing is critical for understanding social function in ASD. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  11. Reward associations magnify memory-based biases on perception.

    Science.gov (United States)

    Doallo, Sonia; Patai, Eva Zita; Nobre, Anna Christina

    2013-02-01

    Long-term spatial contextual memories are a rich source of predictions about the likely locations of relevant objects in the environment and should enable tuning of neural processing of unfolding events to optimize perception and action. Of particular importance is whether and how the reward outcome of past events can impact perception. We combined behavioral measures with recordings of brain activity with high temporal resolution to test whether the previous reward outcome associated with a memory could modulate the impact of memory-based biases on perception, and if so, the level(s) at which visual neural processing is biased by reward-associated memory-guided attention. Data showed that past rewards potentiate the effects of spatial memories upon the discrimination of target objects embedded within complex scenes starting from early perceptual stages. We show that a single reward outcome of learning impacts on how we perceive events in our complex environments.

  12. Active reward processing during human sleep: insights from sleep-related eating disorder

    Directory of Open Access Journals (Sweden)

    Lampros ePerogamvros

    2012-11-01

    Full Text Available In this paper, we present two carefully documented cases of patients with sleep-related eating disorder (SRED, a parasomnia which is characterized by involuntary compulsive eating during the night and whose pathophysiology is not known. Using video-polysomnography and psychometric examination, we found that both patients present elevated novelty seeking and increased reward sensitivity on reward-related questionnaires. In light of new evidence on the mesolimbic dopaminergic implication in compulsive eating disorders, our findings suggest a role of an active reward system during sleep in the manifestation of SRED.

  13. Age associations with neural processing of reward anticipation in adolescents with bipolar disorders

    Directory of Open Access Journals (Sweden)

    Snežana Urošević

    2016-01-01

    Full Text Available Reward/behavioral approach system hypersensitivity is implicated in bipolar disorders (BD and in normative development during adolescence. Pediatric onset of BD is associated with a more severe illness course. However, little is known about neural processing of rewards in adolescents with BD or developmental (i.e., age associations with activation of these neural systems. The present study aims to address this knowledge gap. The present sample included 21 adolescents with BD and 26 healthy adolescents, ages 13 to 19. Participants completed a functional magnetic resonance imaging (fMRI protocol using the Monetary Incentive Delay (MID task. Behavioral performance was similar between groups. Group differences in BOLD activation during target anticipation and feedback anticipation periods of the task were examined using whole-brain analyses, as were group differences in age effects. During both target anticipation and feedback anticipation, adolescents with BD, compared to adolescents without psychopathology, exhibited decreased engagement of frontal regions involved in cognitive control (i.e., dorsolateral prefrontal cortex. Healthy adolescents exhibited age-related decreases, while adolescents with BD exhibited age-related increases, in activity of other cognitive control frontal areas (i.e., right inferior frontal gyrus, suggesting altered development in the BD group. Longitudinal research is needed to examine potentially abnormal development of cognitive control during reward pursuit in adolescent BD and whether early therapeutic interventions can prevent these potential deviations from normative development.

  14. Age associations with neural processing of reward anticipation in adolescents with bipolar disorders

    Science.gov (United States)

    Urošević, Snežana; Luciana, Monica; Jensen, Jonathan B.; Youngstrom, Eric A.; Thomas, Kathleen M.

    2016-01-01

    Reward/behavioral approach system hypersensitivity is implicated in bipolar disorders (BD) and in normative development during adolescence. Pediatric onset of BD is associated with a more severe illness course. However, little is known about neural processing of rewards in adolescents with BD or developmental (i.e., age) associations with activation of these neural systems. The present study aims to address this knowledge gap. The present sample included 21 adolescents with BD and 26 healthy adolescents, ages 13 to 19. Participants completed a functional magnetic resonance imaging (fMRI) protocol using the Monetary Incentive Delay (MID) task. Behavioral performance was similar between groups. Group differences in BOLD activation during target anticipation and feedback anticipation periods of the task were examined using whole-brain analyses, as were group differences in age effects. During both target anticipation and feedback anticipation, adolescents with BD, compared to adolescents without psychopathology, exhibited decreased engagement of frontal regions involved in cognitive control (i.e., dorsolateral prefrontal cortex). Healthy adolescents exhibited age-related decreases, while adolescents with BD exhibited age-related increases, in activity of other cognitive control frontal areas (i.e., right inferior frontal gyrus), suggesting altered development in the BD group. Longitudinal research is needed to examine potentially abnormal development of cognitive control during reward pursuit in adolescent BD and whether early therapeutic interventions can prevent these potential deviations from normative development. PMID:27114896

  15. Total rewards strategy for a multi-generational workforce in a financial institution

    Directory of Open Access Journals (Sweden)

    Mark Bussin

    2014-11-01

    Research purpose: This study investigated whether perceptions of reward strategy differed across generations in a large financial institution in South Africa. This context was specifically chosen due to the significant competition to attract and retain staff that exists in the financial sector. To contribute to the practical challenges of reward implementation, the study investigated whether specific reward preferences associated with generation exist, and whether offering rewards based on these preferences would successfully attract and retain staff. Motivation for study: South African businesses are competing for skilled staff and rely heavily on a total reward strategy to compensate all generations of employees. Given the financial incentives to retain and attract the most effective staff, it is essential that reward strategies meet their objectives. All factors impacting the efficacy of reward strategies should be considered, including the impact of generational differences in preference. This is of relevance not only to the financial industry, but to all companies that employ staff across a variety of generations. Research design, approach and method: A quantitative survey design was used. A total of 6316 employees from a financial firm completed a survey investigating their experiences and perceptions of reward strategies. Statistically significant differences across different generations and reward preferences were considered. Main findings: Significant differences in reward preferences were found across generational cohorts. This supports international literature. Practical/managerial implications: The results indicate that there is an opportunity for businesses and managers to link components of the total reward strategy to specific generations in the workforce by offering a wider variety of reward options to employees. Employee perceptions indicate a willingness to have reward strategies tailored to their needs and to have a greater say in their reward

  16. Toward a common theory for learning from reward, affect, and motivation: the SIMON framework.

    Science.gov (United States)

    Madan, Christopher R

    2013-10-07

    While the effects of reward, affect, and motivation on learning have each developed into their own fields of research, they largely have been investigated in isolation. As all three of these constructs are highly related, and use similar experimental procedures, an important advance in research would be to consider the interplay between these constructs. Here we first define each of the three constructs, and then discuss how they may influence each other within a common framework. Finally, we delineate several sources of evidence supporting the framework. By considering the constructs of reward, affect, and motivation within a single framework, we can develop a better understanding of the processes involved in learning and how they interplay, and work toward a comprehensive theory that encompasses reward, affect, and motivation.

  17. Counteracting effect of threat on reward enhancements during working memory.

    Science.gov (United States)

    Choi, Jong Moon; Padmala, Srikanth; Pessoa, Luiz

    2015-01-01

    Cognitive performance has been shown to be enhanced when performance-based rewards are at stake. On the other hand, task-irrelevant threat processing has been shown to have detrimental effects during several cognitive tasks. Crucially, the impact of reward and threat on cognition has been studied largely independently of one another. Hence, our understanding of how reward and threat simultaneously contribute to performance is incomplete. To fill in this gap, the present study investigated how reward and threat interact with one another during a cognitive task. We found that threat of shock counteracted the beneficial effect of reward during a working memory task. Furthermore, individual differences in self-reported reward-sensitivity and anxiety were linked to the extent to which reward and threat interacted during behaviour. Together, the current findings contribute to a limited but growing literature unravelling how positive and negative information processing jointly influence cognition.

  18. Reward deficiency and anti-reward in pain chronification.

    Science.gov (United States)

    Borsook, D; Linnman, C; Faria, V; Strassman, A M; Becerra, L; Elman, I

    2016-09-01

    Converging lines of evidence suggest that the pathophysiology of pain is mediated to a substantial degree via allostatic neuroadaptations in reward- and stress-related brain circuits. Thus, reward deficiency (RD) represents a within-system neuroadaptation to pain-induced protracted activation of the reward circuits that leads to depletion-like hypodopaminergia, clinically manifested anhedonia, and diminished motivation for natural reinforcers. Anti-reward (AR) conversely pertains to a between-systems neuroadaptation involving over-recruitment of key limbic structures (e.g., the central and basolateral amygdala nuclei, the bed nucleus of the stria terminalis, the lateral tegmental noradrenergic nuclei of the brain stem, the hippocampus and the habenula) responsible for massive outpouring of stressogenic neurochemicals (e.g., norepinephrine, corticotropin releasing factor, vasopressin, hypocretin, and substance P) giving rise to such negative affective states as anxiety, fear and depression. We propose here the Combined Reward deficiency and Anti-reward Model (CReAM), in which biopsychosocial variables modulating brain reward, motivation and stress functions can interact in a 'downward spiral' fashion to exacerbate the intensity, chronicity and comorbidities of chronic pain syndromes (i.e., pain chronification). Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. A reward-centred model of anorexia nervosa: a focussed narrative review of the neurological and psychophysiological literature.

    Science.gov (United States)

    O'Hara, Caitlin B; Campbell, Iain C; Schmidt, Ulrike

    2015-05-01

    This focussed narrative review examines neurobiological and psychophysiological evidence supporting a role for altered reward processes in the development and maintenance of anorexia nervosa (AN). In AN, there does not appear to be a generalised inability to experience reward. Rather, data suggest that a reluctance to gain weight leads to an aversive appraisal of food- and taste-related stimuli. As a result, cues compatible with this aberrant mode of thinking become rewarding for the individual. Evidence also suggests that attribution of motivational salience to such cues promotes anorectic behaviours. These findings are consistent with models in which interactions between cognition and reward are important in eliciting the anorectic "habit". A model is proposed which is consistent with elements of other theoretical frameworks, but differs in that its emphasis is towards neural overlaps between AN and addiction. It is consistent with AN being a reward-based learned behaviour in which aberrant cognitions related to eating and shape alter functioning of central reward systems. It proposes that the primary neural problem responsible for the development, maintenance, and treatment resistance is centred in the striatal reward system. This helps shift the emphasis of aetiological models towards reward processing, particularly in the context of illness-compatible cues. Furthermore, it suggests that continuing to explore the utility and valued nature of AN in the patient's life would be a useful inclusion in treatment and prevention models. Copyright © 2015. Published by Elsevier Ltd.

  20. Reward inference by primate prefrontal and striatal neurons.

    Science.gov (United States)

    Pan, Xiaochuan; Fan, Hongwei; Sawa, Kosuke; Tsuda, Ichiro; Tsukada, Minoru; Sakagami, Masamichi

    2014-01-22

    The brain contains multiple yet distinct systems involved in reward prediction. To understand the nature of these processes, we recorded single-unit activity from the lateral prefrontal cortex (LPFC) and the striatum in monkeys performing a reward inference task using an asymmetric reward schedule. We found that neurons both in the LPFC and in the striatum predicted reward values for stimuli that had been previously well experienced with set reward quantities in the asymmetric reward task. Importantly, these LPFC neurons could predict the reward value of a stimulus using transitive inference even when the monkeys had not yet learned the stimulus-reward association directly; whereas these striatal neurons did not show such an ability. Nevertheless, because there were two set amounts of reward (large and small), the selected striatal neurons were able to exclusively infer the reward value (e.g., large) of one novel stimulus from a pair after directly experiencing the alternative stimulus with the other reward value (e.g., small). Our results suggest that although neurons that predict reward value for old stimuli in the LPFC could also do so for new stimuli via transitive inference, those in the striatum could only predict reward for new stimuli via exclusive inference. Moreover, the striatum showed more complex functions than was surmised previously for model-free learning.

  1. Reward-enhanced memory in younger and older adults.

    Science.gov (United States)

    Spaniol, Julia; Schain, Cécile; Bowen, Holly J

    2014-09-01

    We investigated how the anticipation of remote monetary reward modulates intentional episodic memory formation in younger and older adults. On the basis of prior findings of preserved reward-cognition interactions in aging, we predicted that reward anticipation would be associated with enhanced memory in both younger and older adults. On the basis of previous demonstrations of a time-dependent effect of reward anticipation on memory, we expected the memory enhancement to increase with study-test delay. In Experiment 1, younger and older participants encoded a series of picture stimuli associated with high- or low-reward values. At test (24-hr postencoding), recognition hits resulted in either high or low monetary rewards, whereas false alarms were penalized to discourage guessing. Experiment 2 was similar to Experiment 1, but the study-test delay was manipulated within subjects (immediate vs 24hr). In Experiment 1, younger and older adults showed enhanced recognition for high-reward pictures compared with low-reward pictures. Experiment 2 replicated this finding and additionally showed that the effect did not extend to immediate recognition. The current findings provide support for a time-dependent mechanism of reward-based memory enhancement. They also suggest that aging leaves intact the positive influence of reward anticipation on intentional long-term memory formation. © The Author 2013. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Facilitation of voluntary goal-directed action by reward cues.

    Science.gov (United States)

    Lovibond, Peter F; Colagiuri, Ben

    2013-10-01

    Reward-associated cues are known to influence motivation to approach both natural and man-made rewards, such as food and drugs. However, the mechanisms underlying these effects are not well understood. To model these processes in the laboratory with humans, we developed an appetitive Pavlovian-instrumental transfer procedure with a chocolate reward. We used a single unconstrained response that led to an actual rather than symbolic reward to assess the strength of reward motivation. Presentation of a chocolate-paired cue, but not an unpaired cue, markedly enhanced instrumental responding over a 30-s period. The same pattern was observed with 10-s and 30-s cues, showing that close cue-reward contiguity is not necessary for facilitation of reward-directed action. The results confirm that reward-related cues can instigate voluntary action to obtain that reward. The effectiveness of long-duration cues suggests that in clinical settings, attention should be directed to both proximal and distal cues for reward.

  3. Curiosity and reward: Valence predicts choice and information prediction errors enhance learning.

    Science.gov (United States)

    Marvin, Caroline B; Shohamy, Daphna

    2016-03-01

    Curiosity drives many of our daily pursuits and interactions; yet, we know surprisingly little about how it works. Here, we harness an idea implied in many conceptualizations of curiosity: that information has value in and of itself. Reframing curiosity as the motivation to obtain reward-where the reward is information-allows one to leverage major advances in theoretical and computational mechanisms of reward-motivated learning. We provide new evidence supporting 2 predictions that emerge from this framework. First, we find an asymmetric effect of positive versus negative information, with positive information enhancing both curiosity and long-term memory for information. Second, we find that it is not the absolute value of information that drives learning but, rather, the gap between the reward expected and reward received, an "information prediction error." These results support the idea that information functions as a reward, much like money or food, guiding choices and driving learning in systematic ways. (c) 2016 APA, all rights reserved).

  4. Reward disrupts reactivated human skill memory.

    Science.gov (United States)

    Dayan, Eran; Laor-Maayany, Rony; Censor, Nitzan

    2016-06-16

    Accumulating evidence across species and memory domains shows that when an existing memory is reactivated, it becomes susceptible to modifications. However, the potential role of reward signals in these mechanisms underlying human memory dynamics is unknown. Leaning on a wealth of findings on the role of reward in reinforcing memory, we tested the impact of reinforcing a skill memory trace with monetary reward following memory reactivation, on strengthening of the memory trace. Reinforcing reactivated memories did not strengthen the memory, but rather led to disruption of the memory trace, breaking down the link between memory reactivation and subsequent memory strength. Statistical modeling further revealed a strong mediating role for memory reactivation in linking between memory encoding and subsequent memory strength only when the memory was replayed without reinforcement. We suggest that, rather than reinforcing the existing memory trace, reward creates a competing memory trace, impairing expression of the original reward-free memory. This mechanism sheds light on the processes underlying skill acquisition, having wide translational implications.

  5. Reward priming eliminates color-driven affect in perception.

    Science.gov (United States)

    Hu, Kesong

    2018-01-03

    Brain and behavior evidence suggests that colors have distinct affective properties. Here, we investigated how reward influences color-driven affect in perception. In Experiment 1, we assessed competition between blue and red patches during a temporal-order judgment (TOJ) across a range of stimulus onset asynchronies (SOAs). During the value reinforcement, reward was linked to either blue (version 1) or red (version 2) in the experiment. The same stimuli then served as test ones in the following unrewarded, unspeeded TOJ task. Our analysis showed that blue patches were consistently seen as occurring first, even when objectively appearing 2nd at short SOAs. This accelerated perception of blue over red was disrupted by prior primes related to reward (vs. neutral) but not perceptional (blue vs. red) priming. Experiment 2 replicated the findings of Experiment 1 while uncoupling action and stimulus values. These results are consistent with the blue-approach and red-avoidance motivation hypothesis and highlight an active nature of the association of reward priming and color processing. Together, the present study implies a link between reward and color affect and contributes to the understanding of how reward influences color affect in visual processing.

  6. Reward Processing in Adolescents with Bipolar I Disorder

    Science.gov (United States)

    Singh, Manpreet K.; Chang, Kiki D.; Kelley, Ryan G.; Cui, Xu; Sherdell, Lindsey; Howe, Meghan E.; Gotlib, Ian H.; Reiss, Allan L.

    2013-01-01

    Objective: Bipolar disorder (BD) is a debilitating psychiatric condition that commonly begins in adolescence, a developmental period that has been associated with increased reward seeking. Because youth with BD are especially vulnerable to negative risk-taking behaviors, understanding the neural mechanisms by which dysregulated affect interacts…

  7. Prosocial reward learning in children and adolescents

    Directory of Open Access Journals (Sweden)

    Youngbin Kwak

    2016-10-01

    Full Text Available Adolescence is a period of increased sensitivity to social contexts. To evaluate how social context sensitivity changes over development – and influences reward learning – we investigated how children and adolescents perceive and integrate rewards for oneself and others during a dynamic risky-decision-making task. Children and adolescents (N=75, 8-16 yrs performed the Social Gambling Task (SGT, (Kwak et al., 2014 and completed a set of questionnaires measuring other-regarding behavior. In the SGT, participants choose amongst four card decks that have different payout structures for oneself and for a charity. We examined patterns of choices, overall decision strategies, and how reward outcomes led to trial-by-trial adjustments in behavior, as estimated using a reinforcement-learning model. Performance of children and adolescents was compared to data from a previously collected sample of adults (N=102 performing the identical task. We found that that children/adolescents were not only more sensitive to rewards directed to the charity than self but also showed greater prosocial tendencies on independent measures of other-regarding behavior. Children and adolescents also showed less use of a strategy that prioritizes rewards for self at the expense of rewards for others. These results support the conclusion that, compared to adults, children and adolescents show greater sensitivity to outcomes for others when making decisions and learning about potential rewards.

  8. A common neural code for social and monetary rewards in the human striatum.

    Science.gov (United States)

    Wake, Stephanie J; Izuma, Keise

    2017-10-01

    Although managing social information and decision making on the basis of reward is critical for survival, it remains uncertain whether differing reward type is processed in a uniform manner. Previously, we demonstrated that monetary reward and the social reward of good reputation activated the same striatal regions including the caudate nucleus and putamen. However, it remains unclear whether overlapping activations reflect activities of identical neuronal populations or two overlapping but functionally independent neuronal populations. Here, we re-analyzed the original data and addressed this question using multivariate-pattern-analysis and found evidence that in the left caudate nucleus and bilateral nucleus accumbens, social vs monetary reward were represented similarly. The findings suggest that social and monetary rewards are processed by the same population of neurons within these regions of the striatum. Additional findings demonstrated similar neural patterns when participants experience high social reward compared to viewing others receiving low social reward (potentially inducing schadenfreude). This is possibly an early indication that the same population of neurons may be responsible for processing two different types of social reward (good reputation and schadenfreude). These findings provide a supplementary perspective to previous research, helping to further elucidate the mechanisms behind social vs non-social reward processing. © The Author (2017). Published by Oxford University Press.

  9. Reward sensitivity to faces versus objects in children: an ERP study.

    Science.gov (United States)

    Stavropoulos, Katherine K M; Carver, Leslie J

    2014-10-01

    How children respond to social and nonsocial rewards has important implications for understanding social cognitive development. Adults find faces intrinsically rewarding. However, little is known about how children respond to face vs nonface rewards. We utilized event-related potentials (the stimulus-preceding negativity, SPN) to measure differences in reward anticipation during a guessing game in 6- to 8-year-olds. Children were presented with reward indicators accompanied by incidental face or nonface stimuli. Nonface stimuli were comprised of scrambled faces in the shape of arrows, controlling for low-level properties of the two conditions. Children showed an increased SPN when the reward stimuli were accompanied by faces, relative to nonface stimuli. This suggests that children find a face stimulus more rewarding than a nonface stimulus. The results have important implications for processing social vs nonsocial rewards in typically developing children, and allow testing of populations with deficits in social reward processing, such as autism spectrum disorder. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  10. Temporal dynamics of reward anticipation in the human brain.

    Science.gov (United States)

    Zhang, Yuanyuan; Li, Qi; Wang, Zhao; Liu, Xun; Zheng, Ya

    2017-09-01

    Reward anticipation is a complex process including cue evaluation, motor preparation, and feedback anticipation. The present study investigated whether these psychological processes were dissociable on neural dynamics in terms of incentive valence and approach motivation. We recorded EEG when participants were performing a monetary incentive delay task, and found a cue-P3 during the cue-evaluation stage, a contingent negative variation (CNV) during the motor-preparation stage, and a stimulus-preceding negativity (SPN) during the feedback-anticipation stage. Critically, both the cue-P3 and SPN exhibited an enhanced sensitivity to gain versus loss anticipation, which was not observed for the CNV. Moreover, both the cue-P3 and SPN, instead of the CNV, for gain anticipation selectively predicted the participants' approach motivation as measured in a following effort expenditure for rewards task, particularly when reward uncertainty was maximal. Together, these results indicate that reward anticipation consists of several sub-stages, each with distinct functional significance, thus providing implications for neuropsychiatric diseases characterized by dysfunction in anticipatory reward processing. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Age-related functional changes in gustatory and reward processing regions: An fMRI study.

    Science.gov (United States)

    Jacobson, Aaron; Green, Erin; Murphy, Claire

    2010-11-01

    Changes in appetite in older adults may result in unhealthy weight change and negatively affect overall nutrition. Research examining gustatory processing in young adults has linked changes in patterns of the hemodynamic response of gustatory and motivation related brain regions to the physiological states of hunger and satiety. Whether the same brain regions are involved in taste processing in older adults is unknown. The current study used functional magnetic resonance imaging (fMRI) to examine age-related changes in gustatory processing during hedonic assessment. Caffeine, citric acid, sucrose, and NaCl were administered orally during two event-related fMRI sessions, one during hunger and one after a pre-load. Participants assessed the pleasantness of the solutions in each session. Increased activity of the insula was seen in both age groups during hunger. Activity of secondary and higher order taste processing and reward regions such as the orbitofrontal cortex, amygdala, hippocampus, thalamus, and caudate nucleus was also observed. Hunger and satiety differentially affected the hemodynamic response, resulting in positive global activation during hunger and negative during satiety in both age groups. While in a state of hunger, the frequency and consistency of positive activation in gustatory and reward processing regions was greater in older adults. Additional regions not commonly associated with taste processing were also activated in older adults. Investigating the neurological response of older adults to taste stimuli under conditions of hunger and satiety may aid in understanding appetite, health, and functional changes in this population. Copyright 2010 Elsevier Inc. All rights reserved.

  12. Rewards and Performance Incentives.

    Science.gov (United States)

    Zigon, Jack

    1994-01-01

    Discusses rewards and performance incentives for employees, including types of rewards; how rewards help in managing; dysfunctional awards; selecting the right reward; how to find rewards that fit; and delivering rewards effectively. Examples are included. (three references) (LRW)

  13. Towards a common theory for learning from reward, affect, and motivation: The SIMON framework

    Directory of Open Access Journals (Sweden)

    Christopher R Madan

    2013-10-01

    Full Text Available While the effects of reward, affect, and motivation on learning have each developed into their own fields of research, they largely have been investigated in isolation. As all three of these constructs are highly related, and use similar experimental procedures, an important advance in research would be to consider the interplay between these constructs. Here we first define each of the three constructs, and then discuss how they may influence each other within a common framework. Finally, we delineate several sources of evidence supporting the framework. By considering the constructs of reward, affect, and motivation within a single framework, we can develop a better understanding of the processes involved in learning and how they interplay, and work towards a comprehensive theory that encompasses reward, affect, and motivation.

  14. Cortical and hippocampal correlates of deliberation during model-based decisions for rewards in humans.

    Directory of Open Access Journals (Sweden)

    Aaron M Bornstein

    Full Text Available How do we use our memories of the past to guide decisions we've never had to make before? Although extensive work describes how the brain learns to repeat rewarded actions, decisions can also be influenced by associations between stimuli or events not directly involving reward - such as when planning routes using a cognitive map or chess moves using predicted countermoves - and these sorts of associations are critical when deciding among novel options. This process is known as model-based decision making. While the learning of environmental relations that might support model-based decisions is well studied, and separately this sort of information has been inferred to impact decisions, there is little evidence concerning the full cycle by which such associations are acquired and drive choices. Of particular interest is whether decisions are directly supported by the same mnemonic systems characterized for relational learning more generally, or instead rely on other, specialized representations. Here, building on our previous work, which isolated dual representations underlying sequential predictive learning, we directly demonstrate that one such representation, encoded by the hippocampal memory system and adjacent cortical structures, supports goal-directed decisions. Using interleaved learning and decision tasks, we monitor predictive learning directly and also trace its influence on decisions for reward. We quantitatively compare the learning processes underlying multiple behavioral and fMRI observables using computational model fits. Across both tasks, a quantitatively consistent learning process explains reaction times, choices, and both expectation- and surprise-related neural activity. The same hippocampal and ventral stream regions engaged in anticipating stimuli during learning are also engaged in proportion to the difficulty of decisions. These results support a role for predictive associations learned by the hippocampal memory system to

  15. Human processing of behaviorally relevant and irrelevant absence of expected rewards: a high-resolution ERP study.

    Directory of Open Access Journals (Sweden)

    Louis Nahum

    Full Text Available Acute lesions of the posterior medial orbitofrontal cortex (OFC in humans may induce a state of reality confusion marked by confabulation, disorientation, and currently inappropriate actions. This clinical state is strongly associated with an inability to abandon previously valid anticipations, that is, extinction capacity. In healthy subjects, the filtering of memories according to their relation with ongoing reality is associated with activity in posterior medial OFC (area 13 and electrophysiologically expressed at 220-300 ms. These observations indicate that the human OFC also functions as a generic reality monitoring system. For this function, it is presumably more important for the OFC to evaluate the current behavioral appropriateness of anticipations rather than their hedonic value. In the present study, we put this hypothesis to the test. Participants performed a reversal learning task with intermittent absence of reward delivery. High-density evoked potential analysis showed that the omission of expected reward induced a specific electrocortical response in trials signaling the necessity to abandon the hitherto reward predicting choice, but not when omission of reward had no such connotation. This processing difference occurred at 200-300 ms. Source estimation using inverse solution analysis indicated that it emanated from the posterior medial OFC. We suggest that the human brain uses this signal from the OFC to keep thought and behavior in phase with reality.

  16. Reward Learning, Neurocognition, Social Cognition, and Symptomatology in Psychosis.

    Science.gov (United States)

    Lewandowski, Kathryn E; Whitton, Alexis E; Pizzagalli, Diego A; Norris, Lesley A; Ongur, Dost; Hall, Mei-Hua

    2016-01-01

    Patients with psychosis spectrum disorders exhibit deficits in social and neurocognition, as well as hallmark abnormalities in motivation and reward processing. Aspects of reward processing may overlap behaviorally and neurobiologically with some elements of cognitive functioning, and abnormalities in these processes may share partially overlapping etiologies in patients. However, whether reward processing and cognition are associated across the psychoses and linked to state and trait clinical symptomatology is unclear. The present study examined associations between cognitive functioning, reward learning, and clinical symptomatology in a cross-diagnostic sample. Patients with schizophrenia (SZ; n = 37), bipolar I disorder with psychosis (BD; n = 42), and healthy controls (n = 29) were assessed for clinical symptoms (patients only), neurocognitive functioning using the MATRICS Battery (MCCB) and reward learning using the probabilistic reward task (PRT). Groups were compared on neurocognition and PRT response bias, and associations between PRT response bias and neurocognition or clinical symptoms were examined controlling for demographic variables and PRT task difficulty (discriminability). Patients with SZ performed worse than controls on most measures of neurocognition; patients with BD exhibited deficits in some domains between the level of patients with SZ and controls. The SZ - but not BD - group exhibited deficits in social cognition compared to controls. Patients and controls did not differ on PRT response bias, but did differ on PRT discriminability. Better response bias across the sample was associated with poorer social cognition, but not neurocognition; conversely, discriminability was associated with neurocognition but not social cognition. Symptoms of psychosis, particularly negative symptoms, were associated with poorer response bias across patient groups. Reward learning was associated with symptoms of psychosis - in particular negative

  17. A Positive Affective Neuroendocrinology (PANE Approach to Reward and Behavioral Dysregulation

    Directory of Open Access Journals (Sweden)

    Keith eWelker

    2015-07-01

    Full Text Available Emerging lines of research suggest that both testosterone and maladaptive reward processing can modulate behavioral dysregulation. Yet to date, no integrative account has been provided that systematically explains neuroendocrine function, dysregulation of reward, and behavioral dysregulation in a unified perspective. This is particularly important given specific neuroendocrine systems are potential mechanisms underlying and giving rise to reward-relevant behaviors. In this review, we propose a forward thinking approach to study the mechanisms of reward and behavioral dysregulation from a positive affective neuroendocrinology (PANE perspective. This approach holds that testosterone increases reward processing, which increases the likelihood of behavioral dysregulation. Additionally, the PANE framework holds that reward processing mediates the effects of testosterone on behavioral dysregulation. We also explore sources of potential sex differences and the roles of age, cortisol, and individual differences within the PANE framework. Finally, we discuss future prospects for research questions and methodology in the emerging field of affective neuroendocrinology.

  18. Orbitofrontal reward sensitivity and impulsivity in adult attention deficit hyperactivity disorder.

    Science.gov (United States)

    Wilbertz, Gregor; van Elst, Ludger Tebartz; Delgado, Mauricio R; Maier, Simon; Feige, Bernd; Philipsen, Alexandra; Blechert, Jens

    2012-03-01

    Impulsivity symptoms of adult attention deficit hyperactivity disorder (ADHD) such as increased risk taking have been linked with impaired reward processing. Previous studies have focused on reward anticipation or on rewarded executive functioning tasks and have described a striatal hyporesponsiveness and orbitofrontal alterations in adult and adolescent ADHD. Passive reward delivery and its link to behavioral impulsivity are less well understood. To study this crucial aspect of reward processing we used functional magnetic resonance imaging (fMRI) combined with electrodermal assessment in male and female adult ADHD patients (N=28) and matched healthy control participants (N=28) during delivery of monetary and non-monetary rewards. Further, two behavioral tasks assessed risky decision making (game of dice task) and delay discounting. Results indicated that both groups activated ventral and dorsal striatum and the medial orbitofrontal cortex (mOFC) in response to high-incentive (i.e. monetary) rewards. A similar, albeit less strong activation pattern was found for low-incentive (i.e. non-monetary) rewards. Group differences emerged when comparing high and low incentive rewards directly: activation in the mOFC coded for the motivational change in reward delivery in healthy controls, but not ADHD patients. Additionally, this dysfunctional mOFC activity in patients correlated with risky decision making and delay discounting and was paralleled by physiological arousal. Together, these results suggest that the mOFC codes reward value and type in healthy individuals whereas this function is deficient in ADHD. The brain-behavior correlations suggest that this deficit might be related to behavioral impulsivity. Reward value processing difficulties in ADHD should be considered when assessing reward anticipation and emotional learning in research and applied settings. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Neural correlates of RDoC reward constructs in adolescents with diverse psychiatric symptoms: A Reward Flanker Task pilot study.

    Science.gov (United States)

    Bradley, Kailyn A L; Case, Julia A C; Freed, Rachel D; Stern, Emily R; Gabbay, Vilma

    2017-07-01

    There has been growing interest under the Research Domain Criteria initiative to investigate behavioral constructs and their underlying neural circuitry. Abnormalities in reward processes are salient across psychiatric conditions and may precede future psychopathology in youth. However, the neural circuitry underlying such deficits has not been well defined. Therefore, in this pilot, we studied youth with diverse psychiatric symptoms and examined the neural underpinnings of reward anticipation, attainment, and positive prediction error (PPE, unexpected reward gain). Clinically, we focused on anhedonia, known to reflect deficits in reward function. Twenty-two psychotropic medication-free youth, 16 with psychiatric symptoms, exhibiting a full range of anhedonia, were scanned during the Reward Flanker Task. Anhedonia severity was quantified using the Snaith-Hamilton Pleasure Scale. Functional magnetic resonance imaging analyses were false discovery rate corrected for multiple comparisons. Anticipation activated a broad network, including the medial frontal cortex and ventral striatum, while attainment activated memory and emotion-related regions such as the hippocampus and parahippocampal gyrus, but not the ventral striatum. PPE activated a right-dominant fronto-temporo-parietal network. Anhedonia was only correlated with activation of the right angular gyrus during anticipation and the left precuneus during PPE at an uncorrected threshold. Findings are preliminary due to the small sample size. This pilot characterized the neural circuitry underlying different aspects of reward processing in youth with diverse psychiatric symptoms. These results highlight the complexity of the neural circuitry underlying reward anticipation, attainment, and PPE. Furthermore, this study underscores the importance of RDoC research in youth. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Associations among smoking, anhedonia, and reward learning in depression.

    Science.gov (United States)

    Liverant, Gabrielle I; Sloan, Denise M; Pizzagalli, Diego A; Harte, Christopher B; Kamholz, Barbara W; Rosebrock, Laina E; Cohen, Andrew L; Fava, Maurizio; Kaplan, Gary B

    2014-09-01

    Depression and cigarette smoking co-occur at high rates. However, the etiological mechanisms that contribute to this relationship remain unclear. Anhedonia and associated impairments in reward learning are key features of depression, which also have been linked to the onset and maintenance of cigarette smoking. However, few studies have investigated differences in anhedonia and reward learning among depressed smokers and depressed nonsmokers. The goal of this study was to examine putative differences in anhedonia and reward learning in depressed smokers (n=36) and depressed nonsmokers (n=44). To this end, participants completed self-report measures of anhedonia and behavioral activation (BAS reward responsiveness scores) and as well as a probabilistic reward task rooted in signal detection theory, which measures reward learning (Pizzagalli, Jahn, & O'Shea, 2005). When considering self-report measures, depressed smokers reported higher trait anhedonia and reduced BAS reward responsiveness scores compared to depressed nonsmokers. In contrast to self-report measures, nicotine-satiated depressed smokers demonstrated greater acquisition of reward-based learning compared to depressed nonsmokers as indexed by the probabilistic reward task. Findings may point to a potential mechanism underlying the frequent co-occurrence of smoking and depression. These results highlight the importance of continued investigation of the role of anhedonia and reward system functioning in the co-occurrence of depression and nicotine abuse. Results also may support the use of treatments targeting reward learning (e.g., behavioral activation) to enhance smoking cessation among individuals with depression. Copyright © 2014. Published by Elsevier Ltd.

  1. Cannabinoid modulation of drug reward and the implications of marijuana legalization.

    Science.gov (United States)

    Covey, Dan P; Wenzel, Jennifer M; Cheer, Joseph F

    2015-12-02

    Marijuana is the most popular illegal drug worldwide. Recent trends indicate that this may soon change; not due to decreased marijuana use, but to an amendment in marijuana's illegal status. The cannabinoid type 1 (CB1) receptor mediates marijuana's psychoactive and reinforcing properties. CB1 receptors are also part of the brain endocannabinoid (eCB) system and support numerous forms of learning and memory, including the conditioned reinforcing properties of cues predicting reward or punishment. This is accomplished via eCB-dependent alterations in mesolimbic dopamine function, which plays an obligatory role in reward learning and motivation. Presynaptic CB1 receptors control midbrain dopamine neuron activity and thereby shape phasic dopamine release in target regions, particularly the nucleus accumbens (NAc). By also regulating synaptic input to the NAc, CB1 receptors modulate NAc output onto downstream neurons of the basal ganglia motor circuit, and thereby support goal-directed behaviors. Abused drugs promote short- and long-term adaptations in eCB-regulation of mesolimbic dopamine function, and thereby hijack neural systems related to the pursuit of rewards to promote drug abuse. By pharmacologically targeting the CB1 receptors, marijuana has preferential access to this neuronal system and can potently alter eCB-dependent processing of reward-related stimuli. As marijuana legalization progresses, greater access to this drug should increase the utility of marijuana as a research tool to better understand the eCB system, which has the potential to advance cannabinoid-based treatments for drug addiction. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Contingency learning in alcohol dependence and pathological gambling: learning and unlearning reward contingencies

    NARCIS (Netherlands)

    Vanes, L.D.; Holst, R.J. van; Jansen, J.M.; Brink, W. van den; Oosterlaan, J.; Goudriaan, A.E.

    2014-01-01

    BACKGROUND: Patients with alcohol dependence (AD) and pathological gambling (PG) are characterized by dysfunctional reward processing and their ability to adapt to alterations of reward contingencies is impaired. However, most neurocognitive tasks investigating reward processing involve a complex

  3. Contingency Learning in Alcohol Dependence and Pathological Gambling: Learning and Unlearning Reward Contingencies

    NARCIS (Netherlands)

    Vanes, L.D.; Holst, R.; Jansen, J.D.; van den Brink, W.A.; Oosterlaan, J.; Goudriaan, A.E.

    2014-01-01

    Background: Patients with alcohol dependence (AD) and pathological gambling (PG) are characterized by dysfunctional reward processing and their ability to adapt to alterations of reward contingencies is impaired. However, most neurocognitive tasks investigating reward processing involve a complex

  4. Chronic motivational state interacts with task reward structure in dynamic decision-making.

    Science.gov (United States)

    Cooper, Jessica A; Worthy, Darrell A; Maddox, W Todd

    2015-12-01

    Research distinguishes between a habitual, model-free system motivated toward immediately rewarding actions, and a goal-directed, model-based system motivated toward actions that improve future state. We examined the balance of processing in these two systems during state-based decision-making. We tested a regulatory fit hypothesis (Maddox & Markman, 2010) that predicts that global trait motivation affects the balance of habitual- vs. goal-directed processing but only through its interaction with the task framing as gain-maximization or loss-minimization. We found support for the hypothesis that a match between an individual's chronic motivational state and the task framing enhances goal-directed processing, and thus state-based decision-making. Specifically, chronic promotion-focused individuals under gain-maximization and chronic prevention-focused individuals under loss-minimization both showed enhanced state-based decision-making. Computational modeling indicates that individuals in a match between global chronic motivational state and local task reward structure engaged more goal-directed processing, whereas those in a mismatch engaged more habitual processing. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Beyond Rewards

    Science.gov (United States)

    Hall, Philip S.

    2009-01-01

    Using rewards to impact students' behavior has long been common practice. However, using reward systems to enhance student learning conveniently masks the larger and admittedly more difficult task of finding and implementing the structure and techniques that children with special needs require to learn. More important, rewarding the child for good…

  6. β-Adrenoreceptor stimulation mediates reconsolidation of social reward-related memories.

    Directory of Open Access Journals (Sweden)

    E J Marijke Achterberg

    Full Text Available In recent years, the notion that consolidated memories become transiently unstable after retrieval and require reconsolidation to persist for later use has received strong experimental support. To date, the majority of studies on reconsolidation have focused on memories of negative emotions, while the dynamics of positive memories have been less well studied. Social play, the most characteristic social behavior displayed by young mammals, is important for social and cognitive development. It has strong rewarding properties, illustrated by the fact that it can induce conditioned place preference (CPP. In order to understand the dynamics of positive social memories, we evaluated the effect of propranolol, a β-adrenoreceptor antagonist known to influence a variety of memory processes, on acquisition, consolidation, retrieval and reconsolidation of social play-induced CPP in adolescent rats.Systemic treatment with propranolol, immediately before or after a CPP test (i.e. retrieval session, attenuated CPP 24 h later. Following extinction, CPP could be reinstated in saline--but not in propranolol-treated rats, indicating that propranolol treatment had persistently disrupted the CPP memory trace. Propranolol did not affect social play-induced CPP in the absence of memory retrieval or when administered 1 h or 6 h after retrieval. Furthermore, propranolol did not affect acquisition, consolidation or retrieval of social play-induced CPP.We conclude that β-adrenergic neurotransmission selectively mediates the reconsolidation, but not other processes involved in the storage and stability of social reward-related memories in adolescent rats. These data support the notion that consolidation and reconsolidation of social reward-related memories in adolescent rats rely on distinct neural mechanisms.

  7. Contingency learning in alcohol dependence and pathological gambling: learning and unlearning reward contingencies

    NARCIS (Netherlands)

    Vanes, Lucy D.; van Holst, Ruth J.; Jansen, Jochem M.; van den Brink, Wim; Oosterlaan, Jaap; Goudriaan, Anna E.

    2014-01-01

    Patients with alcohol dependence (AD) and pathological gambling (PG) are characterized by dysfunctional reward processing and their ability to adapt to alterations of reward contingencies is impaired. However, most neurocognitive tasks investigating reward processing involve a complex mix of

  8. Reward speeds up and increases consistency of visual selective attention: a lifespan comparison.

    Science.gov (United States)

    Störmer, Viola; Eppinger, Ben; Li, Shu-Chen

    2014-06-01

    Children and older adults often show less favorable reward-based learning and decision making, relative to younger adults. It is unknown, however, whether reward-based processes that influence relatively early perceptual and attentional processes show similar lifespan differences. In this study, we investigated whether stimulus-reward associations affect selective visual attention differently across the human lifespan. Children, adolescents, younger adults, and older adults performed a visual search task in which the target colors were associated with either high or low monetary rewards. We discovered that high reward value speeded up response times across all four age groups, indicating that reward modulates attentional selection across the lifespan. This speed-up in response time was largest in younger adults, relative to the other three age groups. Furthermore, only younger adults benefited from high reward value in increasing response consistency (i.e., reduction of trial-by-trial reaction time variability). Our findings suggest that reward-based modulations of relatively early and implicit perceptual and attentional processes are operative across the lifespan, and the effects appear to be greater in adulthood. The age-specific effect of reward on reducing intraindividual response variability in younger adults likely reflects mechanisms underlying the development and aging of reward processing, such as lifespan age differences in the efficacy of dopaminergic modulation. Overall, the present results indicate that reward shapes visual perception across different age groups by biasing attention to motivationally salient events.

  9. Understanding the Impact of Rewards on Employees’ Creativity and Innovation: a Literature Review Study

    OpenAIRE

    Al-Mahdawiy, Badeel

    2016-01-01

    Purpose: The purpose of this master’s thesis is to study how organizational rewards; intrinsic rewards and extrinsic monetary and non-monetary rewards, affect employees’ creativity and innovation within an organizational environment, and to propose a new categorization of organizational rewards. Methodology: A literature review of selected peer-reviewed studies from different countries and industries. Findings: The results of this study support the following notions; (1) intrinsic rewards sup...

  10. Regulating task-monitoring systems in response to variable reward contingencies and outcomes in cocaine addicts.

    Science.gov (United States)

    Morie, Kristen P; De Sanctis, Pierfilippo; Garavan, Hugh; Foxe, John J

    2016-03-01

    We investigated anticipatory and consummatory reward processing in cocaine addiction. In addition, we set out to assess whether task-monitoring systems were appropriately recalibrated in light of variable reward schedules. We also examined neural measures of task-monitoring and reward processing as a function of hedonic tone, since anhedonia is a vulnerability marker for addiction that is obviously germane in the context of reward processing. High-density event-related potentials were recorded while participants performed a speeded response task that systematically varied anticipated probabilities of reward receipt. The paradigm dissociated feedback regarding task success (or failure) from feedback regarding the value of reward (or loss), so that task-monitoring and reward processing could be examined in partial isolation. Twenty-three active cocaine abusers and 23 age-matched healthy controls participated. Cocaine abusers showed amplified anticipatory responses to reward predictive cues, but crucially, these responses were not as strongly modulated by reward probability as in controls. Cocaine users also showed blunted responses to feedback about task success or failure and did not use this information to update predictions about reward. In turn, they showed clearly blunted responses to reward feedback. In controls and users, measures of anhedonia were associated with reward motivation. In cocaine users, anhedonia was also associated with diminished monitoring and reward feedback responses. Findings imply that reward anticipation and monitoring deficiencies in addiction are associated with increased responsiveness to reward cues but impaired ability to predict reward in light of task contingencies, compounded by deficits in responding to actual reward outcomes.

  11. Intranasal oxytocin increases neural responses to social reward in post-traumatic stress disorder.

    Science.gov (United States)

    Nawijn, Laura; van Zuiden, Mirjam; Koch, Saskia B J; Frijling, Jessie L; Veltman, Dick J; Olff, Miranda

    2017-02-01

    Therapeutic alliance and perceived social support are important predictors of treatment response for post-traumatic stress disorder (PTSD). Intranasal oxytocin administration may enhance treatment response by increasing sensitivity for social reward and thereby therapeutic alliance and perceived social support. As a first step to investigate this therapeutical potential, we investigated whether intranasal oxytocin enhances neural sensitivity to social reward in PTSD patients. Male and female police officers with (n = 35) and without PTSD (n = 37) were included in a double-blind, randomized, placebo-controlled cross-over fMRI study. After intranasal oxytocin (40 IU) and placebo administration, a social incentive delay task was conducted to investigate neural responses during social reward and punishment anticipation and feedback. Under placebo, PTSD patients showed reduced left anterior insula (AI) responses to social rewards (i.e. happy faces) compared with controls. Oxytocin administration increased left AI responses during social reward in PTSD patients, such that PTSD patients no longer differed from controls under placebo. Furthermore, in PTSD patients, oxytocin increased responses to social reward in the right putamen. By normalizing abberant insula responses and increasing putamen responses to social reward, oxytocin administration may enhance sensitivity for social support and therapeutic alliance in PTSD patients. Future studies are needed to investigate clinical effects of oxytocin. © The Author (2016). Published by Oxford University Press.

  12. ADHD Related Behaviors Are Associated with Brain Activation in the Reward System

    Science.gov (United States)

    Stark, R.; Bauer, E.; Merz, C. J.; Zimmermann, M.; Reuter, M.; Plichta, M. M.; Kirsch, P.; Lesch, K. P.; Fallgatter, A. J.; Vaitl, D.; Herrmann, M. J.

    2011-01-01

    Neuroimaging studies on attention-deficit/hyperactivity disorder (ADHD) suggest dysfunctional reward processing, with hypo-responsiveness during reward anticipation in the reward system including the nucleus accumbens (NAcc). In this study, we investigated the association between ADHD related behaviors and the reward system using functional…

  13. Reward learning and negative emotion during rapid attentional competition

    Directory of Open Access Journals (Sweden)

    Takemasa eYokoyama

    2015-03-01

    Full Text Available Learned stimulus-reward associations influence how attention is allocated, such that stimuli rewarded in the past are favored in situations involving limited resources and competition. At the same time, task-irrelevant, high-arousal negative stimuli capture attention and divert resources away from tasks resulting in poor behavioral performance. Yet, investigations of how reward learning and negative stimuli affect perceptual and attentional processing have been conducted in a largely independent fashion. We have recently reported that performance-based monetary rewards reduce negative stimuli interference during perception. The goal of the present study was to investigate how stimuli associated with past monetary rewards compete with negative stimuli during a subsequent attentional task when, critically, no performance-based rewards were at stake. Across two experiments, we found that target stimuli that were associated with high reward reduced the interference effect of potent, negative distractors. Similar to our recent findings with performance-based rewards, our results demonstrate that reward-associated stimuli reduce the deleterious impact of negative stimuli on behavior.

  14. Comparing the Distance Learning-Related Course Development Approach and Faculty Support and Rewards Structure at AACSB Accredited Institutions between 2001 and 2006

    Directory of Open Access Journals (Sweden)

    Heidi Perreault, Ed.D.

    2008-07-01

    Full Text Available The study compared the support and rewards provided faculty members for online course teaching and the development approaches used at business schools accredited by AACSB between 2001 and 2006. Data were collected from 81 professors in 2001 and 140 professors in 2006. The professors were involved in developing or teaching online courses at AACSB business schools across the United States. The findings indicate that faculty members received limited support and are not taking advantage of training options. Faculty members are most likely rewarded for their involvement in distance learning through stipends based on the number of online sections taught. Little has changed during the five-year period in regards to course development. Faculty members continue to use an individual instead of a team approach to course development and most faculty members learned online course development and delivery techniques on their own.

  15. Pavlovian reward prediction and receipt in schizophrenia: relationship to anhedonia.

    Directory of Open Access Journals (Sweden)

    Erin C Dowd

    Full Text Available Reward processing abnormalities have been implicated in the pathophysiology of negative symptoms such as anhedonia and avolition in schizophrenia. However, studies examining neural responses to reward anticipation and receipt have largely relied on instrumental tasks, which may confound reward processing abnormalities with deficits in response selection and execution. 25 chronic, medicated outpatients with schizophrenia and 20 healthy controls underwent functional magnetic resonance imaging using a pavlovian reward prediction paradigm with no response requirements. Subjects passively viewed cues that predicted subsequent receipt of monetary reward or non-reward, and blood-oxygen-level-dependent signal was measured at the time of cue presentation and receipt. At the group level, neural responses to both reward anticipation and receipt were largely similar between groups. At the time of cue presentation, striatal anticipatory responses did not differ between patients and controls. Right anterior insula demonstrated greater activation for nonreward than reward cues in controls, and for reward than nonreward cues in patients. At the time of receipt, robust responses to receipt of reward vs. nonreward were seen in striatum, midbrain, and frontal cortex in both groups. Furthermore, both groups demonstrated responses to unexpected versus expected outcomes in cortical areas including bilateral dorsolateral prefrontal cortex. Individual difference analyses in patients revealed an association between physical anhedonia and activity in ventral striatum and ventromedial prefrontal cortex during anticipation of reward, in which greater anhedonia severity was associated with reduced activation to money versus no-money cues. In ventromedial prefrontal cortex, this relationship held among both controls and patients, suggesting a relationship between anticipatory activity and anhedonia irrespective of diagnosis. These findings suggest that in the absence of

  16. Independent functional connectivity networks underpin food and monetary reward sensitivity in excess weight.

    Science.gov (United States)

    Verdejo-Román, Juan; Fornito, Alex; Soriano-Mas, Carles; Vilar-López, Raquel; Verdejo-García, Antonio

    2017-02-01

    Overvaluation of palatable food is a primary driver of obesity, and is associated with brain regions of the reward system. However, it remains unclear if this network is specialized in food reward, or generally involved in reward processing. We used functional magnetic resonance imaging (fMRI) to characterize functional connectivity during processing of food and monetary rewards. Thirty-nine adults with excess weight and 37 adults with normal weight performed the Willingness to Pay for Food task and the Monetary Incentive Delay task in the fMRI scanner. A data-driven graph approach was applied to compare whole-brain, task-related functional connectivity between groups. Excess weight was associated with decreased functional connectivity during the processing of food rewards in a network involving primarily frontal and striatal areas, and increased functional connectivity during the processing of monetary rewards in a network involving principally frontal and parietal areas. These two networks were topologically and anatomically distinct, and were independently associated with BMI. The processing of food and monetary rewards involve segregated neural networks, and both are altered in individuals with excess weight. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Using food as a reward: An examination of parental reward practices.

    Science.gov (United States)

    Roberts, Lindsey; Marx, Jenna M; Musher-Eizenman, Dara R

    2018-01-01

    Eating patterns and taste preferences are often established early in life. Many studies have examined how parental feeding practices may affect children's outcomes, including food intake and preference. The current study focused on a common food parenting practice, using food as a reward, and used Latent Profile Analysis (LPA) to examine whether mothers (n = 376) and fathers (n = 117) of children ages 2.8 to 7.5 (M = 4.7; SD = 1.1) grouped into profiles (i.e., subgroups) based on how they use of food as a reward. The 4-class model was the best-fitting LPA model, with resulting classes based on both the frequency and type of reward used. Classes were: infrequent reward (33%), tangible reward (21%), food reward (27%), and frequent reward (19%). The current study also explored whether children's eating styles (emotional overeating, rood fussiness, food responsiveness, and satiety responsiveness) and parenting style (Authoritative, Authoritarian, and Permissive) varied by reward profile. Analyses of Variance (ANOVA) revealed that the four profiles differed significantly for all outcome variables except satiety responsiveness. It appears that the use of tangible and food-based rewards have important implications in food parenting. More research is needed to better understand how the different rewarding practices affect additional child outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Pain and suicidality: insights from reward and addiction neuroscience.

    Science.gov (United States)

    Elman, Igor; Borsook, David; Volkow, Nora D

    2013-10-01

    Suicidality is exceedingly prevalent in pain patients. Although the pathophysiology of this link remains unclear, it may be potentially related to the partial congruence of physical and emotional pain systems. The latter system's role in suicide is also conspicuous during setbacks and losses sustained in the context of social attachments. Here we propose a model based on the neural pathways mediating reward and anti-reward (i.e., allostatic adjustment to recurrent activation of the reward circuitry); both are relevant etiologic factors in pain, suicide and social attachments. A comprehensive literature search on neurobiology of pain and suicidality was performed. The collected articles were critically reviewed and relevant data were extracted and summarized within four key areas: (1) physical and emotional pain, (2) emotional pain and social attachments, (3) pain- and suicide-related alterations of the reward and anti-reward circuits as compared to addiction, which is the premier probe for dysfunction of these circuits and (4) mechanistically informed treatments of co-occurring pain and suicidality. Pain-, stress- and analgesic drugs-induced opponent and proponent states of the mesolimbic dopaminergic pathways may render reward and anti-reward systems vulnerable to sensitization, cross-sensitization and aberrant learning of contents and contexts associated with suicidal acts and behaviors. These findings suggest that pain patients exhibit alterations in the brain circuits mediating reward (depressed function) and anti-reward (sensitized function) that may affect their proclivity for suicide and support pain and suicidality classification among other "reward deficiency syndromes" and a new proposal for "enhanced anti-reward syndromes". We suggest that interventions aimed at restoring the balance between the reward and anti-reward networks in patients with chronic pain may help decreasing their suicide risk. Published by Elsevier Ltd.

  19. Adolescent development of context-dependent stimulus-reward association memory and its neural correlates.

    Science.gov (United States)

    Voss, Joel L; O'Neil, Jonathan T; Kharitonova, Maria; Briggs-Gowan, Margaret J; Wakschlag, Lauren S

    2015-01-01

    Expression of learned stimulus-reward associations based on context is essential for regulation of behavior to meet situational demands. Contextual regulation improves during development, although the developmental progression of relevant neural and cognitive processes is not fully specified. We therefore measured neural correlates of flexible, contextual expression of stimulus-reward associations in pre/early-adolescent children (ages 9-13 years) and young adults (ages 19-22 years). After reinforcement learning using standard parameters, a contextual reversal manipulation was used whereby contextual cues indicated that stimulus-reward associations were the same as previously reinforced for some trials (consistent trials) or were reversed on other trials (inconsistent trials). Subjects were thus required to respond according to original stimulus-reward associations vs. reversed associations based on trial-specific contextual cues. Children and young adults did not differ in reinforcement learning or in relevant functional magnetic resonance imaging (fMRI) correlates. In contrast, adults outperformed children during contextual reversal, with better performance specifically for inconsistent trials. fMRI signals corresponding to this selective advantage included greater activity in lateral prefrontal cortex (LPFC), hippocampus, and dorsal striatum for young adults relative to children. Flexible expression of stimulus-reward associations based on context thus improves via adolescent development, as does recruitment of brain regions involved in reward learning and contextual expression of memory. HighlightsEarly-adolescent children and young adults were equivalent in reinforcement learning.Adults outperformed children in contextual expression of stimulus-reward associations.Adult advantages correlated with increased activity of relevant brain regions.Specific neurocognitive developmental changes support better contextual regulation.

  20. A simple solution for model comparison in bold imaging: the special case of reward prediction error and reward outcomes.

    Science.gov (United States)

    Erdeniz, Burak; Rohe, Tim; Done, John; Seidler, Rachael D

    2013-01-01

    Conventional neuroimaging techniques provide information about condition-related changes of the BOLD (blood-oxygen-level dependent) signal, indicating only where and when the underlying cognitive processes occur. Recently, with the help of a new approach called "model-based" functional neuroimaging (fMRI), researchers are able to visualize changes in the internal variables of a time varying learning process, such as the reward prediction error or the predicted reward value of a conditional stimulus. However, despite being extremely beneficial to the imaging community in understanding the neural correlates of decision variables, a model-based approach to brain imaging data is also methodologically challenging due to the multicollinearity problem in statistical analysis. There are multiple sources of multicollinearity in functional neuroimaging including investigations of closely related variables and/or experimental designs that do not account for this. The source of multicollinearity discussed in this paper occurs due to correlation between different subjective variables that are calculated very close in time. Here, we review methodological approaches to analyzing such data by discussing the special case of separating the reward prediction error signal from reward outcomes.

  1. Natural Rewards, Neuroplasticity, and Non-Drug Addictions

    Science.gov (United States)

    Olsen, Christopher M.

    2011-01-01

    There is a high degree of overlap between brain regions involved in processing natural rewards and drugs of abuse. “Non-drug” or “behavioral” addictions have become increasingly documented in the clinic, and pathologies include compulsive activities such as shopping, eating, exercising, sexual behavior, and gambling. Like drug addiction, non-drug addictions manifest in symptoms including craving, impaired control over the behavior, tolerance, withdrawal, and high rates of relapse. These alterations in behavior suggest that plasticity may be occurring in brain regions associated with drug addiction. In this review, I summarize data demonstrating that exposure to non-drug rewards can alter neural plasticity in regions of the brain that are affected by drugs of abuse. Research suggests that there are several similarities between neuroplasticity induced by natural and drug rewards and that, depending on the reward, repeated exposure to natural rewards might induce neuroplasticity that either promotes or counteracts addictive behavior. PMID:21459101

  2. Ventromedial Prefrontal Cortex Activation Is Associated with Memory Formation for Predictable Rewards

    Science.gov (United States)

    Bialleck, Katharina A.; Schaal, Hans-Peter; Kranz, Thorsten A.; Fell, Juergen; Elger, Christian E.; Axmacher, Nikolai

    2011-01-01

    During reinforcement learning, dopamine release shifts from the moment of reward consumption to the time point when the reward can be predicted. Previous studies provide consistent evidence that reward-predicting cues enhance long-term memory (LTM) formation of these items via dopaminergic projections to the ventral striatum. However, it is less clear whether memory for items that do not precede a reward but are directly associated with reward consumption is also facilitated. Here, we investigated this question in an fMRI paradigm in which LTM for reward-predicting and neutral cues was compared to LTM for items presented during consumption of reliably predictable as compared to less predictable rewards. We observed activation of the ventral striatum and enhanced memory formation during reward anticipation. During processing of less predictable as compared to reliably predictable rewards, the ventral striatum was activated as well, but items associated with less predictable outcomes were remembered worse than items associated with reliably predictable outcomes. Processing of reliably predictable rewards activated the ventromedial prefrontal cortex (vmPFC), and vmPFC BOLD responses were associated with successful memory formation of these items. Taken together, these findings show that consumption of reliably predictable rewards facilitates LTM formation and is associated with activation of the vmPFC. PMID:21326612

  3. Boys with conduct problems and callous-unemotional traits: Neural response to reward and punishment and associations with treatment response

    Directory of Open Access Journals (Sweden)

    Amy L. Byrd

    2018-04-01

    Full Text Available Abnormalities in reward and punishment processing are implicated in the development of conduct problems (CP, particularly among youth with callous-unemotional (CU traits. However, no studies have examined whether CP children with high versus low CU traits exhibit differences in the neural response to reward and punishment. A clinic-referred sample of CP boys with high versus low CU traits (ages 8–11; n = 37 and healthy controls (HC; n = 27 completed a fMRI task assessing reward and punishment processing. CP boys also completed a randomized control trial examining the effectiveness of an empirically-supported intervention (i.e., Stop-Now-And-Plan; SNAP. Primary analyses examined pre-treatment differences in neural activation to reward and punishment, and exploratory analyses assessed whether these differences predicted treatment outcome. Results demonstrated associations between CP and reduced amygdala activation to punishment independent of age, race, IQ and co-occurring ADHD and internalizing symptoms. CU traits were not associated with reward or punishment processing after accounting for covariates and no differences were found between CP boys with high versus low CU traits. While boys assigned to SNAP showed a greater reduction in CP, differences in neural activation were not associated with treatment response. Findings suggest that reduced sensitivity to punishment is associated with early-onset CP in boys regardless of the level of CU traits. Keywords: Conduct problems, Callous-unemotional (CU traits, Reward, Punishment, fMRI

  4. Dissociated roles of the anterior cingulate cortex in reward and conflict processing as revealed by the feedback error-related negativity and N200.

    Science.gov (United States)

    Baker, Travis E; Holroyd, Clay B

    2011-04-01

    The reinforcement learning theory of the error-related negativity (ERN) holds that the impact of reward signals carried by the midbrain dopamine system modulates activity of the anterior cingulate cortex (ACC), alternatively disinhibiting and inhibiting the ACC following unpredicted error and reward events, respectively. According to a recent formulation of the theory, activity that is intrinsic to the ACC produces a component of the event-related brain potential (ERP) called the N200, and following unpredicted rewards, the N200 is suppressed by extrinsically applied positive dopamine reward signals, resulting in an ERP component called the feedback-ERN (fERN). Here we demonstrate that, despite extensive spatial and temporal overlap between the two ERP components, the functional processes indexed by the N200 (conflict) and the fERN (reward) are dissociable. These results point toward avenues for future investigation. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Processing of primary and secondary rewards: a quantitative meta-analysis and review of human functional neuroimaging studies

    NARCIS (Netherlands)

    Sescousse, G.T.; Caldu, X.; Segura, B.; Dreher, J.C.

    2013-01-01

    One fundamental question concerning brain reward mechanisms is to determine how reward-related activity is influenced by the nature of rewards. Here, we review the neuroimaging literature and explicitly assess to what extent the representations of primary and secondary rewards overlap in the human

  6. Self-stimulating rats combine subjective reward magnitude and subjective reward rate multiplicatively.

    Science.gov (United States)

    Leon, M I; Gallistel, C R

    1998-07-01

    For rats that bar pressed for intracranial electrical stimulation in a 2-lever matching paradigm with concurrent variable interval schedules of reward, the authors found that the time allocation ratio is based on a multiplicative combination of the ratio of subjective reward magnitudes and the ratio of the rates of reward. Multiplicative combining was observed in a range covering approximately 2 orders of magnitude in the ratio of the rates of reward from about 1:10 to 10:1) and an order of magnitude change in the size of rewards. After determining the relation between the pulse frequency of stimulation and subjective reward magnitude, the authors were able to predict from knowledge of the subjective magnitudes of the rewards and the obtained relative rates of reward the subject's time allocation ratio over a range in which it varied by more than 3 orders of magnitude.

  7. Relationship between oscillatory neuronal activity during reward processing and trait impulsivity and sensation seeking.

    Directory of Open Access Journals (Sweden)

    Gregor Leicht

    Full Text Available BACKGROUND: The processing of reward and punishment stimuli in humans appears to involve brain oscillatory activity of several frequencies, probably each with a distinct function. The exact nature of associations of these electrophysiological measures with impulsive or risk-seeking personality traits is not completely clear. Thus, the aim of the present study was to investigate event-related oscillatory activity during reward processing across a wide spectrum of frequencies, and its associations with impulsivity and sensation seeking in healthy subjects. METHODS: During recording of a 32-channel EEG 22 healthy volunteers were characterized with the Barratt Impulsiveness and the Sensation Seeking Scale and performed a computerized two-choice gambling task comprising different feedback options with positive vs. negative valence (gain or loss and high or low magnitude (5 vs. 25 points. RESULTS: We observed greater increases of amplitudes of the feedback-related negativity and of activity in the theta, alpha and low-beta frequency range following loss feedback and, in contrast, greater increase of activity in the high-beta frequency range following gain feedback. Significant magnitude effects were observed for theta and delta oscillations, indicating greater amplitudes upon feedback concerning large stakes. The theta amplitude changes during loss were negatively correlated with motor impulsivity scores, whereas alpha and low-beta increase upon loss and high-beta increase upon gain were positively correlated with various dimensions of sensation seeking. CONCLUSIONS: The findings suggest that the processing of feedback information involves several distinct processes, which are subserved by oscillations of different frequencies and are associated with different personality traits.

  8. Reward/Punishment reversal learning in older suicide attempters.

    Science.gov (United States)

    Dombrovski, Alexandre Y; Clark, Luke; Siegle, Greg J; Butters, Meryl A; Ichikawa, Naho; Sahakian, Barbara J; Szanto, Katalin

    2010-06-01

    Suicide rates are high in old age, and the contribution of cognitive risk factors remains poorly understood. Suicide may be viewed as an outcome of an altered decision process. The authors hypothesized that impairment in reward/punishment-based learning, a component of affective decision making, is associated with attempted suicide in late-life depression. They expected that suicide attempters would discount past reward/punishment history, focusing excessively on the most recent rewards and punishments. The authors further hypothesized that this impairment could be dissociated from executive abilities, such as forward planning. The authors assessed reward/punishment-based learning using the probabilistic reversal learning task in 65 individuals age 60 and older: suicide attempters, suicide ideators, nonsuicidal depressed elderly, and nondepressed comparison subjects. The authors used a reinforcement learning computational model to decompose reward/punishment processing over time. The Stockings of Cambridge test served as a control measure of executive function. Suicide attempters but not suicide ideators showed impaired probabilistic reversal learning compared to both nonsuicidal depressed elderly and nondepressed comparison subjects, after controlling for effects of education, global cognitive function, and substance use. Model-based analyses revealed that suicide attempters discounted previous history to a higher degree relative to comparison subjects, basing their choice largely on reward/punishment received on the last trial. Groups did not differ in their performance on the Stockings of Cambridge test. Older suicide attempters display impaired reward/punishment-based learning. The authors propose a hypothesis that older suicide attempters make overly present-focused decisions, ignoring past experiences. Modification of this "myopia for the past" may have therapeutic potential.

  9. Intersection of reward and memory in monkey rhinal cortex.

    Science.gov (United States)

    Clark, Andrew M; Bouret, Sebastien; Young, Adrienne M; Richmond, Barry J

    2012-05-16

    In humans and other animals, the vigor with which a reward is pursued depends on its desirability, that is, on the reward's predicted value. Predicted value is generally context-dependent, varying according to the value of rewards obtained in the recent and distant past. Signals related to reward prediction and valuation are believed to be encoded in a circuit centered around midbrain dopamine neurons and their targets in the prefrontal cortex and basal ganglia. Notably absent from this hypothesized reward pathway are dopaminergic targets in the medial temporal lobe. Here we show that a key part of the medial temporal lobe memory system previously reported to be important for sensory mnemonic and perceptual processing, the rhinal cortex (Rh), is required for using memories of previous reward values to predict the value of forthcoming rewards. We tested monkeys with bilateral Rh lesions on a task in which reward size varied across blocks of uncued trials. In this experiment, the only cues for predicting current reward value are the sizes of rewards delivered in previous blocks. Unexpectedly, monkeys with Rh ablations, but not intact controls, were insensitive to differences in predicted reward, responding as if they expected all rewards to be of equal magnitude. Thus, it appears that Rh is critical for using memory of previous rewards to predict the value of forthcoming rewards. These results are in agreement with accumulating evidence that Rh is critical for establishing the relationships between temporally interleaved events, which is a key element of episodic memory.

  10. Is the enhancement of memory due to reward driven by value or salience?

    Science.gov (United States)

    Madan, Christopher R; Spetch, Marcia L

    2012-02-01

    Past research using two levels of reward has shown that the higher-value items are remembered better than lower-value items and this enhancement is assumed to be driven by an effect of reward value. In the present study, multiple levels of reward were used to test the influence of reward salience on memory. Using a value-learning procedure, words were associated with reward values, and then memory for these words was later tested with free recall. Critically, multiple reward levels were used, allowing us to test two specific hypotheses whereby rewards can influence memory: (a) higher value items are remembered better than lower value items (reward value hypothesis), and (b) highest and lowest value items are remembered best and intermediate-value items are remembered worst (following a U-shaped relationship between value and memory; reward salience hypothesis). In two experiments we observed a U-shaped relationship between reward value and memory, supporting the notion that memory is enhanced due to reward salience, and not purely through reward value. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Information search with situation-specific reward functions

    Directory of Open Access Journals (Sweden)

    Bjorn Meder

    2012-03-01

    Full Text Available can strongly conflict with the goal of obtaining information for improving payoffs. Two environments with such a conflict were identified through computer optimization. Three subsequent experiments investigated people's search behavior in these environments. Experiments 1 and 2 used a multiple-cue probabilistic category-learning task to convey environmental probabilities. In a subsequent search task subjects could query only a single feature before making a classification decision. The crucial manipulation concerned the search-task reward structure. The payoffs corresponded either to accuracy, with equal rewards associated with the two categories, or to an asymmetric payoff function, with different rewards associated with each category. In Experiment 1, in which learning-task feedback corresponded to the true category, people later preferentially searched the accuracy-maximizing feature, whether or not this would improve monetary rewards. In Experiment 2, an asymmetric reward structure was used during learning. Subjects searched the reward-maximizing feature when asymmetric payoffs were preserved in the search task. However, if search-task payoffs corresponded to accuracy, subjects preferentially searched a feature that was suboptimal for reward and accuracy alike. Importantly, this feature would have been most useful, under the learning-task payoff structure. Experiment 3 found that, if words and numbers are used to convey environmental probabilities, neither reward nor accuracy consistently predicts search. These findings emphasize the necessity of taking into account people's goals and search-and-decision processes during learning, thereby challenging current models of information search.

  12. Common and distinct neural features of social and non-social reward processing in autism and social anxiety disorder.

    Science.gov (United States)

    Richey, John A; Rittenberg, Alison; Hughes, Lauren; Damiano, Cara R; Sabatino, Antoinette; Miller, Stephanie; Hanna, Eleanor; Bodfish, James W; Dichter, Gabriel S

    2014-03-01

    Autism spectrum disorders (ASDs) and social anxiety disorder (SAD) are both characterized by social dysfunction, but no study to date has compared neural responses to social rewards in ASDs and SAD. Neural responses during social and non-social reward anticipation and outcomes were examined in individuals with ASD (n = 16), SAD (n = 15) and a control group (n = 19) via functional magnetic resonance imaging. Analyses modeling all three groups revealed increased nucleus accumbens (NAc) activation in SAD relative to ASD during monetary reward anticipation, whereas both the SAD and ASD group demonstrated decreased bilateral NAc activation relative to the control group during social reward anticipation. During reward outcomes, the SAD group did not differ significantly from the other two groups in ventromedial prefrontal cortex activation to either reward type. Analyses comparing only the ASD and SAD groups revealed greater bilateral amygdala activation to social rewards in SAD relative to ASD during both anticipation and outcome phases, and the magnitude of left amygdala hyperactivation in the SAD group during social reward anticipation was significantly correlated with the severity of trait anxiety symptoms. Results suggest reward network dysfunction to both monetary and social rewards in SAD and ASD during reward anticipation and outcomes, but that NAc hypoactivation during monetary reward anticipation differentiates ASD from SAD.

  13. Valence, Not Utility, Underlies Reward-Driven Prioritization in Human Vision.

    Science.gov (United States)

    Barbaro, Ludwig; Peelen, Marius V; Hickey, Clayton

    2017-10-25

    Objects associated with reward draw attention and evoke enhanced activity in visual cortex. What is the underlying mechanism? One possibility is that reward's impact on vision is mediated by unique circuitry that modulates sensory processing, selectively increasing the salience of reward-associated stimuli. Alternatively, effects of reward may be part of a more general mechanism that prioritizes the processing of any beneficial object, importantly including stimuli that are associated with the evasion of loss. Here, we test these competing hypotheses by having male and female humans detect naturalistic objects associated with monetary reward, the evasion of equivalent loss, or neither of these. If vision is economically normative, processing of objects associated with reward and evasion of loss should be prioritized relative to neutral stimuli. Results from fMRI and behavioral experiments show that this is not the case: whereas objects associated with reward were better detected and represented in ventral visual cortex, detection and representation of stimuli associated with the evasion of loss were degraded. Representations in parietal cortex reveal a notable exception to this pattern, showing enhanced encoding of both reward- and loss-associated stimuli. Experience-driven visual prioritization can thus be economically irrational, driven by valence rather than objective utility. SIGNIFICANCE STATEMENT Normative economic models propose that gain should have the same value as evasion of equivalent loss. Is human vision rational in this way? Objects associated with reward draw attention and are well represented in visual cortex. This is thought to have evolutionary origins, highlighting objects likely to provide benefit in the future. But benefit can be conferred not only through gain, but also through evasion of loss. Here we demonstrate that the visual system prioritizes real-world objects presented in images of natural scenes only when these objects have been

  14. Processing of Continuously Provided Punishment and Reward in Children with ADHD and the Modulating Effects of Stimulant Medication: An ERP Study

    OpenAIRE

    Groen, Yvonne; Tucha, Oliver; Wijers, Albertus A.; Althaus, Monika

    2013-01-01

    OBJECTIVES: Current models of ADHD suggest abnormal reward and punishment sensitivity, but the exact mechanisms are unclear. This study aims to investigate effects of continuous reward and punishment on the processing of performance feedback in children with ADHD and the modulating effects of stimulant medication. METHODS: 15 Methylphenidate (Mph)-treated and 15 Mph-free children of the ADHD-combined type and 17 control children performed a selective attention task with three feedback conditi...

  15. Reward-seeking behavior and addiction: cause or cog?

    Science.gov (United States)

    Arias-Carrión, Oscar; Salama, Mohamed

    2012-09-01

    Although dopaminergic system represents the cornerstone in rewarding, other neurotransmitters can modulate both the reward system and the psychomotor effects of addictive drugs. Many hypotheses have been proposed for a better understanding of the reward system and its role in drug addiction. However, after many years of investigation, no single theory can completely explain the neural basis of drug addiction. Recent reports introduce novel neurotransmitters into the game e.g. dynorphins, orexins, histamine, gheralin and galanin. The interacting functions of these neurotransmitters have shown that the reward system and its role in drug dependence, is far more complicated than was thought before. Individual variations exist regarding response to drug exposure, vulnerability for addiction and the effects of different cues on reward systems. Consequently, genetic variations of neurotransmission are thought to influence reward processing that in turn may affect distinctive social behavior and susceptibility to addiction. However, the individual variations can not be based mainly on genetics; environmental factors seem to play a role too. Here we discuss the current knowledge about the orquestic regulation of different neurotransmitters on reward-seeking behavior and their potential effect on drug addiction.

  16. Improved memory for reward cues following acute buprenorphine administration in humans

    NARCIS (Netherlands)

    Syal, Supriya; Ipser, Jonathan; Terburg, David|info:eu-repo/dai/nl/32304087X; Solms, Mark; Panksepp, Jaak; Malcolm-Smith, Susan; Bos, Peter A.|info:eu-repo/dai/nl/337018995; Montoya, Estrella R.|info:eu-repo/dai/nl/34141347X; Stein, Dan J.; van Honk, Jack|info:eu-repo/dai/nl/188602801

    2015-01-01

    In rodents, there is abundant evidence for the involvement of the opioid system in the processing of reward cues, but this system has remained understudied in humans. In humans, the happy facial expression is a pivotal reward cue. Happy facial expressions activate the brain's reward system and are

  17. Segregated encoding of reward-identity and stimulus-reward associations in human orbitofrontal cortex.

    Science.gov (United States)

    Klein-Flügge, Miriam Cornelia; Barron, Helen Catharine; Brodersen, Kay Henning; Dolan, Raymond J; Behrens, Timothy Edward John

    2013-02-13

    A dominant focus in studies of learning and decision-making is the neural coding of scalar reward value. This emphasis ignores the fact that choices are strongly shaped by a rich representation of potential rewards. Here, using fMRI adaptation, we demonstrate that responses in the human orbitofrontal cortex (OFC) encode a representation of the specific type of food reward predicted by a visual cue. By controlling for value across rewards and by linking each reward with two distinct stimuli, we could test for representations of reward-identity that were independent of associative information. Our results show reward-identity representations in a medial-caudal region of OFC, independent of the associated predictive stimulus. This contrasts with a more rostro-lateral OFC region encoding reward-identity representations tied to the predicate stimulus. This demonstration of adaptation in OFC to reward specific representations opens an avenue for investigation of more complex decision mechanisms that are not immediately accessible in standard analyses, which focus on correlates of average activity.

  18. Occipital Alpha and Gamma Oscillations Support Complementary Mechanisms for Processing Stimulus Value Associations.

    Science.gov (United States)

    Marshall, Tom R; den Boer, Sebastiaan; Cools, Roshan; Jensen, Ole; Fallon, Sean James; Zumer, Johanna M

    2018-01-01

    Selective attention is reflected neurally in changes in the power of posterior neural oscillations in the alpha (8-12 Hz) and gamma (40-100 Hz) bands. Although a neural mechanism that allows relevant information to be selectively processed has its advantages, it may lead to lucrative or dangerous information going unnoticed. Neural systems are also in place for processing rewarding and punishing information. Here, we examine the interaction between selective attention (left vs. right) and stimulus's learned value associations (neutral, punished, or rewarded) and how they compete for control of posterior neural oscillations. We found that both attention and stimulus-value associations influenced neural oscillations. Whereas selective attention had comparable effects on alpha and gamma oscillations, value associations had dissociable effects on these neural markers of attention. Salient targets (associated with positive and negative outcomes) hijacked changes in alpha power-increasing hemispheric alpha lateralization when salient targets were attended, decreasing it when they were being ignored. In contrast, hemispheric gamma-band lateralization was specifically abolished by negative distractors. Source analysis indicated occipital generators of both attentional and value effects. Thus, posterior cortical oscillations support both the ability to selectively attend while at the same time retaining the ability to remain sensitive to valuable features in the environment. Moreover, the versatility of our attentional system to respond separately to salient from merely positively valued stimuli appears to be carried out by separate neural processes reflected in different frequency bands.

  19. Dopamine reward prediction error coding.

    Science.gov (United States)

    Schultz, Wolfram

    2016-03-01

    Reward prediction errors consist of the differences between received and predicted rewards. They are crucial for basic forms of learning about rewards and make us strive for more rewards-an evolutionary beneficial trait. Most dopamine neurons in the midbrain of humans, monkeys, and rodents signal a reward prediction error; they are activated by more reward than predicted (positive prediction error), remain at baseline activity for fully predicted rewards, and show depressed activity with less reward than predicted (negative prediction error). The dopamine signal increases nonlinearly with reward value and codes formal economic utility. Drugs of addiction generate, hijack, and amplify the dopamine reward signal and induce exaggerated, uncontrolled dopamine effects on neuronal plasticity. The striatum, amygdala, and frontal cortex also show reward prediction error coding, but only in subpopulations of neurons. Thus, the important concept of reward prediction errors is implemented in neuronal hardware.

  20. The circadian clock, reward and memory

    Directory of Open Access Journals (Sweden)

    Urs eAlbrecht

    2011-11-01

    Full Text Available During our daily activities, we experience variations in our cognitive performance, which is often accompanied by cravings for small rewards, such as consuming coffee or chocolate. This indicates that the time of day, cognitive performance and reward may be related to one another. This review will summarize data that describes the influence of the circadian clock on addiction and mood-related behavior and put the data into perspective in relation to memory processes.

  1. The role of high-frequency oscillatory activity in reward processing and learning.

    Science.gov (United States)

    Marco-Pallarés, Josep; Münte, Thomas F; Rodríguez-Fornells, Antoni

    2015-02-01

    Oscillatory activity has been proposed as a key mechanism in the integration of brain activity of distant structures. Particularly, high frequency brain oscillatory activity in the beta and gamma range has received increasing interest in the domains of attention and memory. In addition, a number of recent studies have revealed an increase of beta-gamma activity (20-35 Hz) after unexpected or relevant positive reward outcomes. In the present manuscript we review the literature on this phenomenon and we propose that this activity is a brain signature elicited by unexpected positive outcomes in order to transmit a fast motivational value signal to the reward network. In addition, we hypothesize that beta-gamma oscillatory activity indexes the interaction between attentional and emotional systems, and that it directly reflects the appearance of unexpected positive rewards in learning-related contexts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Reward-dependent modulation of working memory in lateral prefrontal cortex.

    Science.gov (United States)

    Kennerley, Steven W; Wallis, Jonathan D

    2009-03-11

    Although research implicates lateral prefrontal cortex (PFC) in executive control and goal-directed behavior, it remains unclear how goals influence executive processes. One possibility is that goal-relevant information, such as expected rewards, could modulate the representation of information relating to executive control, thereby ensuring the efficient allocation of cognitive resources. To investigate this, we examined how reward modulated spatial working memory. Past studies investigating spatial working memory have focused on dorsolateral PFC, but this area only weakly connects with areas processing reward. Ventrolateral PFC has better connections in this regard. Thus, we contrasted the functional properties of single neurons in ventrolateral and dorsolateral PFC as two subjects performed a task that required them to hold spatial information in working memory under different expectancies of reward for correct performance. We balanced the order of presentation of spatial and reward information so we could assess the neuronal encoding of the two pieces of information independently and conjointly. Neurons in ventrolateral PFC encoded both spatial and reward information earlier, stronger and in a more sustained manner than neurons in dorsolateral PFC. Within ventrolateral PFC, spatial selectivity was more prevalent on the inferior convexity than within the principal sulcus. Finally, when reward increased spatial selectivity, behavioral performance improved, whereas when reward decreased spatial selectivity, behavioral performance deteriorated. These results suggest that ventrolateral PFC may be a locus whereby information about expected rewards can modulate information in working memory. The pattern of results is consistent with a role for ventrolateral PFC in attentional control.

  3. The unconscious and conscious foundations of human reward pursuit

    NARCIS (Netherlands)

    Bijleveld, E.|info:eu-repo/dai/nl/313905223

    2012-01-01

    Human reward pursuit is often found to be governed by conscious assessments of expected value and required effort. Yet, research also indicates that rewards are initially valuated and processed outside awareness, using rudimentary brain structures. Building on both findings, a new framework is

  4. Translational Rodent Paradigms to Investigate Neuromechanisms Underlying Behaviors Relevant to Amotivation and Altered Reward Processing in Schizophrenia.

    Science.gov (United States)

    Young, Jared W; Markou, Athina

    2015-09-01

    Amotivation and reward-processing deficits have long been described in patients with schizophrenia and considered large contributors to patients' inability to integrate well in society. No effective treatments exist for these symptoms, partly because the neuromechanisms mediating such symptoms are poorly understood. Here, we propose a translational neuroscientific approach that can be used to assess reward/motivational deficits related to the negative symptoms of schizophrenia using behavioral paradigms that can also be conducted in experimental animals. By designing and using objective laboratory behavioral tools that are parallel in their parameters in rodents and humans, the neuromechanisms underlying behaviors with relevance to these symptoms of schizophrenia can be investigated. We describe tasks that measure the motivation of rodents to expend physical and cognitive effort to gain rewards, as well as probabilistic learning tasks that assess both reward learning and feedback-based decision making. The latter tasks are relevant because of demonstrated links of performance deficits correlating with negative symptoms in patients with schizophrenia. These tasks utilize operant techniques in order to investigate neural circuits targeting a specific domain across species. These tasks therefore enable the development of insights into altered mechanisms leading to negative symptom-relevant behaviors in patients with schizophrenia. Such findings will then enable the development of targeted treatments for these altered neuromechanisms and behaviors seen in schizophrenia. © The Author 2015. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. Low putamen activity associated with poor reward sensitivity in childhood chronic fatigue syndrome

    Directory of Open Access Journals (Sweden)

    Kei Mizuno, Ph.D.

    2016-01-01

    Full Text Available Motivational signals influence a wide variety of cognitive processes and components of behavioral performance. Cognitive dysfunction in patients with childhood chronic fatigue syndrome (CCFS may be closely associated with a low motivation to learn induced by impaired neural reward processing. However, the extent to which reward processing is impaired in CCFS patients is unclear. The aim of the present functional magnetic resonance imaging (fMRI study was to determine whether brain activity in regions related to reward sensitivity is impaired in CCFS patients. fMRI data were collected from 13 CCFS patients (mean age, 13.6 ± 1.0 years and 13 healthy children and adolescents (HCA (mean age, 13.7 ± 1.3 years performing a monetary reward task. Neural activity in high- and low-monetary-reward conditions was compared between CCFS and HCA groups. Severity of fatigue and the reward obtained from learning in daily life were evaluated by questionnaires. Activity of the putamen was lower in the CCFS group than in the HCA group in the low-reward condition, but not in the high-reward condition. Activity of the putamen in the low-reward condition in CCFS patients was negatively and positively correlated with severity of fatigue and the reward from learning in daily life, respectively. We previously revealed that motivation to learn was correlated with striatal activity, particularly the neural activity in the putamen. This suggests that in CCFS patients low putamen activity, associated with altered dopaminergic function, decreases reward sensitivity and lowers motivation to learn.

  6. Reward-Guided Learning with and without Causal Attribution

    Science.gov (United States)

    Jocham, Gerhard; Brodersen, Kay H.; Constantinescu, Alexandra O.; Kahn, Martin C.; Ianni, Angela M.; Walton, Mark E.; Rushworth, Matthew F.S.; Behrens, Timothy E.J.

    2016-01-01

    Summary When an organism receives a reward, it is crucial to know which of many candidate actions caused this reward. However, recent work suggests that learning is possible even when this most fundamental assumption is not met. We used novel reward-guided learning paradigms in two fMRI studies to show that humans deploy separable learning mechanisms that operate in parallel. While behavior was dominated by precise contingent learning, it also revealed hallmarks of noncontingent learning strategies. These learning mechanisms were separable behaviorally and neurally. Lateral orbitofrontal cortex supported contingent learning and reflected contingencies between outcomes and their causal choices. Amygdala responses around reward times related to statistical patterns of learning. Time-based heuristic mechanisms were related to activity in sensorimotor corticostriatal circuitry. Our data point to the existence of several learning mechanisms in the human brain, of which only one relies on applying known rules about the causal structure of the task. PMID:26971947

  7. Craving love? Enduring grief activates brain's reward center.

    Science.gov (United States)

    O'Connor, Mary-Frances; Wellisch, David K; Stanton, Annette L; Eisenberger, Naomi I; Irwin, Michael R; Lieberman, Matthew D

    2008-08-15

    Complicated Grief (CG) occurs when an individual experiences prolonged, unabated grief. The neural mechanisms distinguishing CG from Noncomplicated Grief (NCG) are unclear, but hypothesized mechanisms include both pain-related activity (related to the social pain of loss) and reward-related activity (related to attachment behavior). Bereaved women (11 CG, 12 NCG) participated in an event-related functional magnetic resonance imaging scan, during grief elicitation with idiographic stimuli. Analyses revealed that whereas both CG and NCG participants showed pain-related neural activity in response to reminders of the deceased, only those with CG showed reward-related activity in the nucleus accumbens (NA). This NA cluster was positively correlated with self-reported yearning, but not with time since death, participant age, or positive/negative affect. This study supports the hypothesis that attachment activates reward pathways. For those with CG, reminders of the deceased still activate neural reward activity, which may interfere with adapting to the loss in the present.

  8. Differences in neural responses to reward and punishment processing between anorexia nervosa subtypes: An fMRI study.

    Science.gov (United States)

    Murao, Ema; Sugihara, Genichi; Isobe, Masanori; Noda, Tomomi; Kawabata, Michiko; Matsukawa, Noriko; Takahashi, Hidehiko; Murai, Toshiya; Noma, Shun'ichi

    2017-09-01

    Anorexia nervosa (AN) includes the restricting (AN-r) and binge-eating/purging (AN-bp) subtypes, which have been reported to differ regarding their underlying pathophysiologies as well as their behavioral patterns. However, the differences in neural mechanisms of reward systems between AN subtypes remain unclear. The aim of the present study was to explore differences in the neural processing of reward and punishment between AN subtypes. Twenty-three female patients with AN (11 AN-r and 12 AN-bp) and 20 healthy women underwent functional magnetic resonance imaging while performing a monetary incentive delay task. Whole-brain one-way analysis of variance was conducted to test between-group differences. There were significant group differences in brain activation in the rostral anterior cingulate cortex and right posterior insula during loss anticipation, with increased brain activation in the AN-bp group relative to the AN-r and healthy women groups. No significant differences were found during gain anticipation. AN-bp patients showed altered neural responses to punishment in brain regions implicated in emotional arousal. Our findings suggest that individuals with AN-bp are more sensitive to potential punishment than individuals with AN-r and healthy individuals at the neural level. The present study provides preliminary evidence that there are neurobiological differences between AN subtypes with regard to the reward system, especially punishment processing. © 2017 The Authors. Psychiatry and Clinical Neurosciences © 2017 Japanese Society of Psychiatry and Neurology.

  9. Reward associations impact both iconic and visual working memory.

    Science.gov (United States)

    Infanti, Elisa; Hickey, Clayton; Turatto, Massimo

    2015-02-01

    Reward plays a fundamental role in human behavior. A growing number of studies have shown that stimuli associated with reward become salient and attract attention. The aim of the present study was to extend these results into the investigation of iconic memory and visual working memory. In two experiments we asked participants to perform a visual-search task where different colors of the target stimuli were paired with high or low reward. We then tested whether the pre-established feature-reward association affected performance on a subsequent visual memory task, in which no reward was provided. In this test phase participants viewed arrays of 8 objects, one of which had unique color that could match the color associated with reward during the previous visual-search task. A probe appeared at varying intervals after stimulus offset to identify the to-be-reported item. Our results suggest that reward biases the encoding of visual information such that items characterized by a reward-associated feature interfere with mnemonic representations of other items in the test display. These results extend current knowledge regarding the influence of reward on early cognitive processes, suggesting that feature-reward associations automatically interact with the encoding and storage of visual information, both in iconic memory and visual working memory. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Heterogeneity of reward mechanisms.

    Science.gov (United States)

    Lajtha, A; Sershen, H

    2010-06-01

    The finding that many drugs that have abuse potential and other natural stimuli such as food or sexual activity cause similar chemical changes in the brain, an increase in extracellular dopamine (DA) in the shell of the nucleus accumbens (NAccS), indicated some time ago that the reward mechanism is at least very similar for all stimuli and that the mechanism is relatively simple. The presently available information shows that the mechanisms involved are more complex and have multiple elements. Multiple brain regions, multiple receptors, multiple distinct neurons, multiple transmitters, multiple transporters, circuits, peptides, proteins, metabolism of transmitters, and phosphorylation, all participate in reward mechanisms. The system is variable, is changed during development, is sex-dependent, and is influenced by genetic differences. Not all of the elements participate in the reward of all stimuli. Different set of mechanisms are involved in the reward of different drugs of abuse, yet different mechanisms in the reward of natural stimuli such as food or sexual activity; thus there are different systems that distinguish different stimuli. Separate functions of the reward system such as anticipation, evaluation, consummation and identification; all contain function-specific elements. The level of the stimulus also influences the participation of the elements of the reward system, there are possible reactions to even below threshold stimuli, and excessive stimuli can change reward to aversion involving parts of the system. Learning and memory of past reward is an important integral element of reward and addictive behavior. Many of the reward elements are altered by repeated or chronic stimuli, and chronic exposure to one drug is likely to alter the response to another stimulus. To evaluate and identify the reward stimulus thus requires heterogeneity of the reward components in the brain.

  11. Evidence for the negative impact of reward on self-regulated learning.

    Science.gov (United States)

    Wehe, Hillary S; Rhodes, Matthew G; Seger, Carol A

    2015-01-01

    The undermining effect refers to the detrimental impact rewards can have on intrinsic motivation to engage in a behaviour. The current study tested the hypothesis that participants' self-regulated learning behaviours are susceptible to the undermining effect. Participants were assigned to learn a set of Swahili-English word pairs. Half of the participants were offered a reward for performance, and half were not offered a reward. After the initial study phase, participants were permitted to continue studying the words during a free period. The results were consistent with an undermining effect: Participants who were not offered a reward spent more time studying the words during the free period. The results suggest that rewards may negatively impact self-regulated learning behaviours and provide support for the encouragement of intrinsic motivation.

  12. Dopamine reward prediction error coding

    OpenAIRE

    Schultz, Wolfram

    2016-01-01

    Reward prediction errors consist of the differences between received and predicted rewards. They are crucial for basic forms of learning about rewards and make us strive for more rewards?an evolutionary beneficial trait. Most dopamine neurons in the midbrain of humans, monkeys, and rodents signal a reward prediction error; they are activated by more reward than predicted (positive prediction error), remain at baseline activity for fully predicted rewards, and show depressed activity with less...

  13. Abstinent adult daily smokers show reduced anticipatory but elevated saccade-related brain responses during a rewarded antisaccade task.

    Science.gov (United States)

    Geier, Charles F; Sweitzer, Maggie M; Denlinger, Rachel; Sparacino, Gina; Donny, Eric C

    2014-08-30

    Chronic smoking may result in reduced sensitivity to non-drug rewards (e.g., money), a phenomenon particularly salient during abstinence. During a quit attempt, this effect may contribute to biased decision-making (smoking>alternative reinforcers) and relapse. Although relevant for quitting, characterization of reduced reward function in abstinent smokers remains limited. Moreover, how attenuated reward function affects other brain systems supporting decision-making has not been established. Here, we use a rewarded antisaccade (rAS) task to characterize non-drug reward processing and its influence on inhibitory control, key elements underlying decision-making, in abstinent smokers vs. non-smokers. Abstinent (12-hours) adult daily smokers (N=23) and non-smokers (N=11) underwent fMRI while performing the rAS. Behavioral performances improved on reward vs. neutral trials. Smokers showed attenuated activation in ventral striatum during the reward cue and in superior precentral sulcus and posterior parietal cortex during response preparation, but greater responses during the saccade response in posterior cingulate and parietal cortices. Smokers' attenuated anticipatory responses suggest reduced motivation from monetary reward, while heightened activation during the saccade response suggests that additional circuitry may be engaged later to enhance inhibitory task performance. Overall, this preliminary study highlights group differences in decision-making components and the utility of the rAS to characterize these effects. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Molecular role of dopamine in anhedonia linked to reward deficiency syndrome (RDS) and anti- reward systems.

    Science.gov (United States)

    Gold, Mark S; Blum, Kenneth; Febo, Marcelo; Baron, David; Modestino, Edward Justin; Elman, Igor; Badgaiyan, Rajendra D

    2018-03-01

    Anhedonia is a condition that leads to the loss of feelings pleasure in response to natural reinforcers like food, sex, exercise, and social activities. This disorder occurs in addiction, and an array of related neuropsychiatric syndromes, including schizophrenia, depression, and Post Traumatic Stress Disorder (PTSD). Anhedonia may by due to derangements in mesolimbic dopaminergic pathways and their terminal fields (e.g., striatum, amygdala, and prefrontal cortex) that persist long after the traces of the causative drugs are eliminated (pharmacokinetically). Here we postulate that anhedonia is not a distinct entity but is rather an epiphenomenon of hypodopaminergic states and traits arising from the interaction of genetic traits and epigenetic neurobiological alterations in response to environmental influences. Moreover, dopaminergic activity is rather complex, and so it may give rise to differential pathophysiological processes such as incentive sensitization, aberrant learning and stress-like "anti-reward" phenomena. These processes may have additive, synergistic or antagonistic interactions with the concurrent reward deficiency states leading in some instances to more severe and long-lasting symptoms. Operant understanding of the neurogenetic antecedents to reward deficiency syndrome (RDS) and the elucidation of reward gene polymorphisms may provide a map for accessing an individual's genetic risk for developing Anhedonia. Prevention techniques that can restore homeostatic balance via physiological activation of dopaminergic receptors (D2/D3) may be instrumental for targeting not only anhedonia per se but also drug craving and relapse.

  15. Disentangling reward anticipation with simultaneous pupillometry / fMRI.

    Science.gov (United States)

    Schneider, Max; Leuchs, Laura; Czisch, Michael; Sämann, Philipp G; Spoormaker, Victor I

    2018-05-05

    The reward system may provide an interesting intermediate phenotype for anhedonia in affective disorders. Reward anticipation is characterized by an increase in arousal, and previous studies have linked the anterior cingulate cortex (ACC) to arousal responses such as dilation of the pupil. Here, we examined pupil dynamics during a reward anticipation task in forty-six healthy human subjects and evaluated its neural correlates using functional magnetic resonance imaging (fMRI). Pupil size showed a strong increase during monetary reward anticipation, a moderate increase during verbal reward anticipation and a decrease during control trials. For fMRI analyses, average pupil size and pupil change were computed in 1-s time bins during the anticipation phase. Activity in the ventral striatum was inversely related to the pupil size time course, indicating an early onset of activation and a role in reward prediction processing. Pupil dilations were linked to increased activity in the salience network (dorsal ACC and bilateral insula), which likely triggers an increase in arousal to enhance task performance. Finally, increased pupil size preceding the required motor response was associated with activity in the ventral attention network. In sum, pupillometry provides an effective tool for disentangling different phases of reward anticipation, with relevance for affective symptomatology. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Learning to maximize reward rate: a model based on semi-Markov decision processes.

    Science.gov (United States)

    Khodadadi, Arash; Fakhari, Pegah; Busemeyer, Jerome R

    2014-01-01

    WHEN ANIMALS HAVE TO MAKE A NUMBER OF DECISIONS DURING A LIMITED TIME INTERVAL, THEY FACE A FUNDAMENTAL PROBLEM: how much time they should spend on each decision in order to achieve the maximum possible total outcome. Deliberating more on one decision usually leads to more outcome but less time will remain for other decisions. In the framework of sequential sampling models, the question is how animals learn to set their decision threshold such that the total expected outcome achieved during a limited time is maximized. The aim of this paper is to provide a theoretical framework for answering this question. To this end, we consider an experimental design in which each trial can come from one of the several possible "conditions." A condition specifies the difficulty of the trial, the reward, the penalty and so on. We show that to maximize the expected reward during a limited time, the subject should set a separate value of decision threshold for each condition. We propose a model of learning the optimal value of decision thresholds based on the theory of semi-Markov decision processes (SMDP). In our model, the experimental environment is modeled as an SMDP with each "condition" being a "state" and the value of decision thresholds being the "actions" taken in those states. The problem of finding the optimal decision thresholds then is cast as the stochastic optimal control problem of taking actions in each state in the corresponding SMDP such that the average reward rate is maximized. Our model utilizes a biologically plausible learning algorithm to solve this problem. The simulation results show that at the beginning of learning the model choses high values of decision threshold which lead to sub-optimal performance. With experience, however, the model learns to lower the value of decision thresholds till finally it finds the optimal values.

  17. Commitment to Self-Rewards

    OpenAIRE

    Koch, Alexander K.; Nafziger, Julia

    2009-01-01

    Self-administered rewards are ubiquitous. They serve as incentives for personal accomplish¬ments and are widely recommended as tools for overcoming self-control problems. However, it seems puzzling why self-rewards can work: the prospect of a reward has a motivating force only if the threat of self-denial of the reward after low performance is credible. We explain how a rational forward-looking individual may achieve commitment to self-rewards, by applying Köszegi and Rabin's (2006) model of ...

  18. Linking online gaming and addictive behavior: Converging evidence for a general reward deficiency in frequent online gamers

    Directory of Open Access Journals (Sweden)

    Tim eHahn

    2014-11-01

    Full Text Available Millions of people regularly play so-called Massively Multiplayer Online Role Playing Games (MMORPGs. Recently, it has been argued that MMORPG overuse is becoming a significant health problem worldwide. Symptoms such as tolerance, withdrawal and craving have been described. Based on behavioral, resting state and task-related neuroimaging data, we test whether frequent players of the MMORPG World of Warcraft (WoW – similar to drug addicts and individuals with an increased risk for addictions – show a generally deficient reward system. In frequent players of the MMORPG World of Warcraft (WoW-players and in a control group of non-gamers we assessed 1 trait sensitivity to reward, 2 BOLD responses during monetary reward processing in the ventral striatum and 3 ventral-striatal resting state dynamics. We find a decreased neural activation in the ventral striatum during the anticipation of both small and large monetary rewards. Additionally, we show generally altered neurodynamics in this region independent of any specific task for WoW players (resting state. On the behavioral level, we found differences in trait sensitivity to reward, suggesting that the reward processing deficiencies found in this study are not a consequence of gaming, but predisposed to it. These findings empirically support a direct link between frequent online gaming and the broad field of behavioral and drug addiction research, thus opening new avenues for clinical interventions in addicted gamers and potentially improving the assessment of addiction-risk in the vast population of frequent gamers.

  19. Marijuana and cannabinoid regulation of brain reward circuits.

    Science.gov (United States)

    Lupica, Carl R; Riegel, Arthur C; Hoffman, Alexander F

    2004-09-01

    The reward circuitry of the brain consists of neurons that synaptically connect a wide variety of nuclei. Of these brain regions, the ventral tegmental area (VTA) and the nucleus accumbens (NAc) play central roles in the processing of rewarding environmental stimuli and in drug addiction. The psychoactive properties of marijuana are mediated by the active constituent, Delta(9)-THC, interacting primarily with CB1 cannabinoid receptors in a large number of brain areas. However, it is the activation of these receptors located within the central brain reward circuits that is thought to play an important role in sustaining the self-administration of marijuana in humans, and in mediating the anxiolytic and pleasurable effects of the drug. Here we describe the cellular circuitry of the VTA and the NAc, define the sites within these areas at which cannabinoids alter synaptic processes, and discuss the relevance of these actions to the regulation of reinforcement and reward. In addition, we compare the effects of Delta(9)-THC with those of other commonly abused drugs on these reward circuits, and we discuss the roles that endogenous cannabinoids may play within these brain pathways, and their possible involvement in regulating ongoing brain function, independently of marijuana consumption. We conclude that, whereas Delta(9)-THC alters the activity of these central reward pathways in a manner that is consistent with other abused drugs, the cellular mechanism through which this occurs is likely different, relying upon the combined regulation of several afferent pathways to the VTA.

  20. Event-related EEG responses to anticipation and delivery of monetary and social reward.

    Science.gov (United States)

    Flores, Amanda; Münte, Thomas F; Doñamayor, Nuria

    2015-07-01

    Monetary and a social incentive delay tasks were used to characterize reward anticipation and delivery with electroencephalography. During reward anticipation, N1, P2 and P3 components were modulated by both prospective reward value and incentive type (monetary or social), suggesting distinctive allocation of attentional and motivational resources depending not only on whether rewards or non-rewards were cued, but also on the monetary and social nature of the prospective outcomes. In the delivery phase, P2, FRN and P3 components were also modulated by levels of reward value and incentive type, illustrating how distinctive affective and cognitive processes were attached to the different outcomes. Our findings imply that neural processing of both reward anticipation and delivery can be specific to incentive type, which might have implications for basic as well as translational research. These results are discussed in the light of previous electrophysiological and neuroimaging work using similar tasks. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Serotonergic modulation of reward and punishment

    DEFF Research Database (Denmark)

    Macoveanu, Julian

    2014-01-01

    Until recently, the bulk of research on the human reward system was focused on studying the dopaminergic and opioid neurotransmitter systems. However, extending the initial data from animal studies on reward, recent pharmacological brain imaging studies on human participants bring a new line......-related processing and may also provide a neural correlated for the emotional blunting observed in the clinical treatment of psychiatric disorders with selective serotonin reuptake inhibitors. Given the unique profile of action of each serotonergic receptor subtype, future pharmacological studies may favor receptor...

  2. Utilization of reward-prospect enhances preparatory attention and reduces stimulus conflict.

    Science.gov (United States)

    van den Berg, Berry; Krebs, Ruth M; Lorist, Monicque M; Woldorff, Marty G

    2014-06-01

    The prospect of gaining money is an incentive widely at play in the real world. Such monetary motivation might have particularly strong influence when the cognitive system is challenged, such as when needing to process conflicting stimulus inputs. Here, we employed manipulations of reward-prospect and attentional-preparation levels in a cued-Stroop stimulus conflict task, along with the high temporal resolution of electrical brain recordings, to provide insight into the mechanisms by which reward-prospect and attention interact and modulate cognitive task performance. In this task, the cue indicated whether or not the participant needed to prepare for an upcoming Stroop stimulus and, if so, whether there was the potential for monetary reward (dependent on performance on that trial). Both cued attention and cued reward-prospect enhanced preparatory neural activity, as reflected by increases in the hallmark attention-related negative-polarity ERP slow wave (contingent negative variation [CNV]) and reductions in oscillatory Alpha activity, which was followed by enhanced processing of the subsequent Stroop stimulus. In addition, similar modulations of preparatory neural activity (larger CNVs and reduced Alpha) predicted shorter versus longer response times (RTs) to the subsequent target stimulus, consistent with such modulations reflecting trial-to-trial variations in attention. Particularly striking were the individual differences in the utilization of reward-prospect information. In particular, the size of the reward effects on the preparatory neural activity correlated across participants with the degree to which reward-prospect both facilitated overall task performance (shorter RTs) and reduced conflict-related behavioral interference. Thus, the prospect of reward appears to recruit attentional preparation circuits to enhance processing of task-relevant target information.

  3. Random reward priming is task-contingent: The robustness of the 1-trial reward priming effect

    Directory of Open Access Journals (Sweden)

    Árni Gunnar Ásgeirsson

    2014-04-01

    Full Text Available Consistent financial reward of particular features influences the allocation of visual attention in many ways. More surprising are 1-trial reward priming effects on attention where reward schedules are random and reward on one trial influences attentional allocation on the next. Those findings are thought to reflect that rewarded features become more salient than unrewarded ones on the subsequent trial. Here we attempt to conceptually replicate this effect, testing its generalizability. In three versions of an analogous paradigm to the additional singleton paradigm involving singleton search for a Gabor patch of odd spatial frequency we found no evidence of reward priming, while we only partially replicate the reward priming in the exact original paradigm tested by Hickey and colleagues. The results cast doubt on the proposal that random reward enhances salience, suggested in the original papers, and highlight the need for a more nuanced account. In many other paradigms reward effects have been found to progress gradually, becoming stronger as they build up, and we argue that for robust reward priming, reward schedules need to be more consistent than in the original 1-trial reward priming paradigm.

  4. Hunger does not motivate reward in women remitted from anorexia nervosa.

    Science.gov (United States)

    Wierenga, Christina E; Bischoff-Grethe, Amanda; Melrose, A James; Irvine, Zoe; Torres, Laura; Bailer, Ursula F; Simmons, Alan; Fudge, Julie L; McClure, Samuel M; Ely, Alice; Kaye, Walter H

    2015-04-01

    Hunger enhances sensitivity to reward, yet individuals with anorexia nervosa (AN) are not motivated to eat when starved. This study investigated brain response to rewards during hunger and satiated states to examine whether diminished response to reward could underlie food restriction in AN. Using a delay discounting monetary decision task known to discriminate brain regions contributing to processing of immediate rewards and cognitive control important for decision making regarding future rewards, we compared 23 women remitted from AN (RAN group; to reduce the confounding effects of starvation) with 17 healthy comparison women (CW group). Monetary rewards were used because the rewarding value of food may be confounded by anxiety in AN. Interactions of Group (RAN, CW) × Visit (hunger, satiety) revealed that, for the CW group, hunger significantly increased activation in reward salience circuitry (ventral striatum, dorsal caudate, anterior cingulate cortex) during processing of immediate reward, whereas satiety increased activation in cognitive control circuitry (ventrolateral prefrontal cortex, insula) during decision making. In contrast, brain response in reward and cognitive neurocircuitry did not differ during hunger and satiety in the RAN group. A main effect of group revealed elevated response in the middle frontal gyrus for the RAN group compared with the CW group. Women remitted from AN failed to increase activation of reward valuation circuitry when hungry and showed elevated response in cognitive control circuitry independent of metabolic state. Decreased sensitivity to the motivational drive of hunger may explain the ability of individuals with AN to restrict food when emaciated. Difficulties in valuating emotional salience may contribute to inabilities to appreciate the risks inherent in this disorder. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  5. Processing of continuously provided punishment and reward in children with ADHD and the modulating effects of stimulant medication: an ERP study.

    Science.gov (United States)

    Groen, Yvonne; Tucha, Oliver; Wijers, Albertus A; Althaus, Monika

    2013-01-01

    Current models of ADHD suggest abnormal reward and punishment sensitivity, but the exact mechanisms are unclear. This study aims to investigate effects of continuous reward and punishment on the processing of performance feedback in children with ADHD and the modulating effects of stimulant medication. 15 Methylphenidate (Mph)-treated and 15 Mph-free children of the ADHD-combined type and 17 control children performed a selective attention task with three feedback conditions: no-feedback, gain and loss. Event Related Potentials (ERPs) time-locked to feedback and errors were computed. All groups performed more accurately with gain and loss than without feedback. Feedback-related ERPs demonstrated no group differences in the feedback P2, but an enhanced late positive potential (LPP) to feedback stimuli (both gains and losses) for Mph-free children with ADHD compared to controls. Feedback-related ERPs in Mph-treated children with ADHD were similar to controls. Correlational analyses in the ADHD groups revealed that the severity of inattention problems correlated negatively with the feedback P2 amplitude and positively with the LPP to losses and omitted gains. The early selective attention for rewarding and punishing feedback was relatively intact in children with ADHD, but the late feedback processing was deviant (increased feedback LPP). This may explain the often observed positive effects of continuous reinforcement on performance and behaviour in children with ADHD. However, these group findings cannot be generalised to all individuals with the ADHD, because the feedback-related ERPs were associated with the severity of the inattention problems. Children with ADHD-combined type with more inattention problems showed both deviant early attentional selection of feedback stimuli, and deviant late processing of non-reward and punishment.

  6. The effectiveness of loyalty rewards to promote the use of an Internet-based heart health program.

    Science.gov (United States)

    Liu, Sam; Hodgson, Corinne; Zbib, Ahmad M; Payne, Ada Y M; Nolan, Robert P

    2014-07-02

    Internet-based health programs have been shown to be effective in reducing risk for cardiovascular disease. However, their rates of enrollment and engagement remain low. It is currently unclear whether rewards from established loyalty programs can serve as a conditioned stimulus to improve the use of a freely available Internet-based program. The objectives of the study were to (1) examine enrollment rates and levels of engagement with the My Health eSupport program between a Conditioned Reward group and a Control group, and (2) investigate the influence of loyalty rewards and participant characteristics on levels of enrollment and program engagement. The study sample (n=142,726) consisted of individuals who were offered enrollment in an Internet-based health intervention (My Health eSupport) after completing the Heart&Stroke Risk Assessment on the Heart and Stroke Foundation website. My Health eSupport programs provided encouragement and tips for lifestyle change. This is a free, self-guided, fully automated program that proactively delivers tailored email messages at 2-week intervals based on the participant's stage of motivational "readiness" and priority for lifestyle change. Participants in the Conditioned Reward group were offered a single exposure of 20 loyalty reward points from the Air Miles loyalty program for completing the Heart&Stroke Risk Assessment (10 reward points) and enrolling in the Internet-based program (10 reward points). Meanwhile, no rewards were given to the Control group participants. All data were collected between February 1, 2011 and February 10, 2012. In total, 51.38% (73,327/142,726) of individuals in the Conditioned Reward group and 48.62% (69,399/142,726) of individuals in the Control group completed the Heart&Stroke Risk Assessment. Subsequently, significantly more individuals from the Conditioned Reward group (52.96%, 38,835/73,327) enrolled in the My Health eSupport program than Controls (4.07%, 2826/69,399). Regression analyses

  7. 36 CFR 262.1 - Rewards in connection with fire or property prosecutions.

    Science.gov (United States)

    2010-07-01

    ..., DEPARTMENT OF AGRICULTURE LAW ENFORCEMENT SUPPORT ACTIVITIES Rewards and Payments § 262.1 Rewards in... or stealing any property of the United States; and (4) Not exceeding $10,000 for information leading to the arrest and conviction of any person charged with damaging or stealing the Pacific yew tree...

  8. I endeavor to make it: effort increases valuation of subsequent monetary reward.

    Science.gov (United States)

    Ma, Qingguo; Meng, Liang; Wang, Lei; Shen, Qiang

    2014-03-15

    Although it is commonly accepted that the amount of effort we put into accomplishing a task would exert an influence on subsequent reward processing and outcome evaluation, whether effort is incorporated as a cost or it would increase the valuation of concomitant reward is still under debate. In this study, EEGs were recorded while subjects performed calculation tasks that required different amount of effort, correct responses of which were followed by either no reward or fixed compensation. Results showed that high effort induced larger differentiated FRN responses to the reward and non-reward discrepancy across two experimental conditions. Furthermore, P300 manifested valence effect during reward feedback, with more positive amplitudes for reward than for non-reward only in the high effort condition. These results suggest that effort might increase subjective evaluation toward subsequent reward. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Neural Correlates of Impaired Reward-Effort Integration in Remitted Bulimia Nervosa.

    Science.gov (United States)

    Mueller, Stefanie Verena; Morishima, Yosuke; Schwab, Simon; Wiest, Roland; Federspiel, Andrea; Hasler, Gregor

    2018-03-01

    The integration of reward magnitudes and effort costs is required for an effective behavioral guidance. This reward-effort integration was reported to be dependent on dopaminergic neurotransmission. As bulimia nervosa has been associated with a dysregulated dopamine system and catecholamine depletion led to reward-processing deficits in remitted bulimia nervosa, the purpose of this study was to identify the role of catecholamine dysfunction and its relation to behavioral and neural reward-effort integration in bulimia nervosa. To investigate the interaction between catecholamine functioning and behavioral, and neural responses directly, 17 remitted bulimic (rBN) and 21 healthy individuals (HC) received alpha-methyl-paratyrosine (AMPT) over 24 h to achieve catecholamine depletion in a randomized, crossover study design. We used functional magnetic resonance imaging (fMRI) and the monetary incentive delay (MID) task to assess reward-effort integration in relation to catecholaminergic neurotransmission at the behavioral and neural level. AMPT reduced the ability to integrate rewards and efforts effectively in HC participants. In contrast, in rBN participants, the reduced reward-effort integration was associated with illness duration in the sham condition and unrelated to catecholamine depletion. Regarding neural activation, AMPT decreased the reward anticipation-related neural activation in the anteroventral striatum. This decrease was associated with the AMPT-induced reduction of monetary earning in HC in contrast to rBN participants. Our findings contributed to the theory of a desensitized dopaminergic system in bulimia nervosa. A disrupted processing of reward magnitudes and effort costs might increase the probability of maintenance of bulimic symptoms.

  10. Extending overjustification: the effect of perceived reward-giver intention on response to rewards.

    Science.gov (United States)

    Forehand, M R

    2000-12-01

    The perceived intention model incorporates a new moderator, beliefs about reward-giver intention, into the overjustification paradigm. In 2 simulated shopping studies featuring products paired with promotional rewards, consumers who believed the marketer was promotion focused (reward used to encourage purchase) reported lower purchase intentions and brand attitudes for promoted products after promotion, whereas consumers who believed the marketer was reward focused (promotion used to distribute the reward) showed no attitude change. Promotion-focus beliefs lowered attitudes by heightening the contingency between the promotion and purchase and thereby increasing the perceived causal role of the reward. This effect was contingent on initial behavior--postpromotion attitude change occurred for consumers who actively engaged in product decisions but not for consumers who passively observed the choice sets.

  11. Reward Motivation Enhances Task Coding in Frontoparietal Cortex.

    Science.gov (United States)

    Etzel, Joset A; Cole, Michael W; Zacks, Jeffrey M; Kay, Kendrick N; Braver, Todd S

    2016-04-01

    Reward motivation often enhances task performance, but the neural mechanisms underlying such cognitive enhancement remain unclear. Here, we used a multivariate pattern analysis (MVPA) approach to test the hypothesis that motivation-related enhancement of cognitive control results from improved encoding and representation of task set information. Participants underwent two fMRI sessions of cued task switching, the first under baseline conditions, and the second with randomly intermixed reward incentive and no-incentive trials. Information about the upcoming task could be successfully decoded from cue-related activation patterns in a set of frontoparietal regions typically associated with task control. More critically, MVPA classifiers trained on the baseline session had significantly higher decoding accuracy on incentive than non-incentive trials, with decoding improvement mediating reward-related enhancement of behavioral performance. These results strongly support the hypothesis that reward motivation enhances cognitive control, by improving the discriminability of task-relevant information coded and maintained in frontoparietal brain regions. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Linking online gaming and addictive behavior: converging evidence for a general reward deficiency in frequent online gamers.

    Science.gov (United States)

    Hahn, Tim; Notebaert, Karolien Hilde; Dresler, Thomas; Kowarsch, Linda; Reif, Andreas; Fallgatter, Andreas J

    2014-01-01

    Millions of people regularly play so-called massively multiplayer online role playing games (MMORPGs). Recently, it has been argued that MMORPG overuse is becoming a significant health problem worldwide. Symptoms such as tolerance, withdrawal, and craving have been described. Based on behavioral, resting state, and task-related neuroimaging data, we test whether frequent players of the MMORPG "World of Warcraft" (WoW) - similar to drug addicts and individuals with an increased risk for addictions - show a generally deficient reward system. In frequent players of the MMORPG "World of Warcraft" (WoW-players) and in a control group of non-gamers we assessed (1) trait sensitivity to reward (SR), (2) BOLD responses during monetary reward processing in the ventral striatum, and (3) ventral-striatal resting-state dynamics. We found a decreased neural activation in the ventral striatum during the anticipation of both small and large monetary rewards. Additionally, we show generally altered neurodynamics in this region independent of any specific task for WoW players (resting state). On the behavioral level, we found differences in trait SR, suggesting that the reward processing deficiencies found in this study are not a consequence of gaming, but predisposed to it. These findings empirically support a direct link between frequent online gaming and the broad field of behavioral and drug addiction research, thus opening new avenues for clinical interventions in addicted gamers and potentially improving the assessment of addiction-risk in the vast population of frequent gamers.

  13. Effects of direct social experience on trust decisions and neural reward circuitry

    Directory of Open Access Journals (Sweden)

    Dominic S. Fareri

    2012-10-01

    Full Text Available The human striatum is integral for reward-processing and supports learning by linking experienced outcomes with prior expectations. Recent endeavors implicate the striatum in processing outcomes of social interactions, such as social approval/rejection, as well as in learning reputations of others. Interestingly, social impressions often influence our behavior with others during interactions. Information about an interaction partner’s moral character acquired from biographical information hinders updating of expectations after interactions via top down modulation of reward circuitry. An outstanding question is whether initial impressions formed through experience similarly modulate the ability to update social impressions at the behavioral and neural level. We investigated the role of experienced social information on trust behavior and reward-related BOLD activity. Participants played a computerized ball tossing game with three fictional partners manipulated to be perceived as good, bad or neutral. Participants then played an iterated trust game as investors with these same partners while undergoing fMRI. Unbeknownst to participants, partner behavior in the trust game was random and unrelated to their ball-tossing behavior. Participants’ trust decisions were influenced by their prior experience in the ball tossing game, investing less often with the bad partner compared to the good and neutral. Reinforcement learning models revealed that participants were more sensitive to updating their beliefs about good and bad partners when experiencing outcomes consistent with initial experience. Increased striatal and anterior cingulate BOLD activity for positive versus negative trust game outcomes emerged, which further correlated with model-derived prediction-error (PE learning signals. These results suggest that initial impressions formed from direct social experience can be continually shaped by consistent information through reward learning

  14. Effects of Direct Social Experience on Trust Decisions and Neural Reward Circuitry

    Science.gov (United States)

    Fareri, Dominic S.; Chang, Luke J.; Delgado, Mauricio R.

    2012-01-01

    The human striatum is integral for reward-processing and supports learning by linking experienced outcomes with prior expectations. Recent endeavors implicate the striatum in processing outcomes of social interactions, such as social approval/rejection, as well as in learning reputations of others. Interestingly, social impressions often influence our behavior with others during interactions. Information about an interaction partner’s moral character acquired from biographical information hinders updating of expectations after interactions via top down modulation of reward circuitry. An outstanding question is whether initial impressions formed through experience similarly modulate the ability to update social impressions at the behavioral and neural level. We investigated the role of experienced social information on trust behavior and reward-related BOLD activity. Participants played a computerized ball-tossing game with three fictional partners manipulated to be perceived as good, bad, or neutral. Participants then played an iterated trust game as investors with these same partners while undergoing fMRI. Unbeknownst to participants, partner behavior in the trust game was random and unrelated to their ball-tossing behavior. Participants’ trust decisions were influenced by their prior experience in the ball-tossing game, investing less often with the bad partner compared to the good and neutral. Reinforcement learning models revealed that participants were more sensitive to updating their beliefs about good and bad partners when experiencing outcomes consistent with initial experience. Increased striatal and anterior cingulate BOLD activity for positive versus negative trust game outcomes emerged, which further correlated with model-derived prediction error learning signals. These results suggest that initial impressions formed from direct social experience can be continually shaped by consistent information through reward learning mechanisms. PMID:23087604

  15. Serotonergic modulation of reward and punishment: evidence from pharmacological fMRI studies.

    Science.gov (United States)

    Macoveanu, Julian

    2014-03-27

    Until recently, the bulk of research on the human reward system was focused on studying the dopaminergic and opioid neurotransmitter systems. However, extending the initial data from animal studies on reward, recent pharmacological brain imaging studies on human participants bring a new line of evidence on the key role serotonin plays in reward processing. The reviewed research has revealed how central serotonin availability and receptor specific transmission modulates the neural response to both appetitive (rewarding) and aversive (punishing) stimuli in putative reward-related brain regions. Thus, serotonin is suggested to be involved in behavioral control when there is a prospect of reward or punishment. The new findings may have implications in understanding psychiatric disorders such as major depression which is characterized by abnormal serotonergic function and reward-related processing and may also provide a neural correlated for the emotional blunting observed in the clinical treatment of psychiatric disorders with selective serotonin reuptake inhibitors. Given the unique profile of action of each serotonergic receptor subtype, future pharmacological studies may favor receptor specific investigations to complement present research mainly focused on global serotonergic manipulations. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Burnout among psychosocial oncologists: an application and extension of the effort–reward imbalance model

    Science.gov (United States)

    Rasmussen, Victoria; Turnell, Adrienne; Butow, Phyllis; Juraskova, Ilona; Kirsten, Laura; Wiener, Lori; Patenaude, Andrea; Hoekstra-Weebers, Josette; Grassi, Luigi

    2016-01-01

    Objectives Burnout is a significant problem among healthcare professionals working within the oncology setting. This study aimed to investigate predictors of emotional exhaustion (EE) and depersonalisation (DP) in psychosocial oncologists, through the application of the effort–reward imbalance (ERI) model with an additional focus on the role of meaningful work in the burnout process. Methods Psychosocial oncology clinicians (n = 417) in direct patient contact who were proficient in English were recruited from 10 international psychosocial oncology societies. Participants completed an online questionnaire, which included measures of demographic and work characteristics, EE and DP subscales of the Maslach Burnout Inventory-Human Services Survey, the Short Version ERI Questionnaire and the Work and Meaning Inventory. Results Higher effort and lower reward were both significantly associated with greater EE, although not DP. The interaction of higher effort and lower reward did not predict greater EE or DP. Overcommitment predicted both EE and DP but did not moderate the impact of effort and reward on burnout. Overall, the ERI model accounted for 33% of the variance in EE. Meaningful work significantly predicted both EE and DP but accounted for only 2% more of the variance in EE above and beyond the ERI model. Conclusions The ERI was only partially supported as a useful framework for investigating burnout in psychosocial oncology professionals. Meaningful work may be a viable extension of the ERI model. Burnout among health professionals may be reduced by interventions aimed at increasing self-efficacy and changes to the supportive work environment. PMID:26239424

  17. Abnormal Social Reward Responses in Anorexia Nervosa: An fMRI Study.

    Science.gov (United States)

    Via, Esther; Soriano-Mas, Carles; Sánchez, Isabel; Forcano, Laura; Harrison, Ben J; Davey, Christopher G; Pujol, Jesús; Martínez-Zalacaín, Ignacio; Menchón, José M; Fernández-Aranda, Fernando; Cardoner, Narcís

    2015-01-01

    Patients with anorexia nervosa (AN) display impaired social interactions, implicated in the development and prognosis of the disorder. Importantly, social behavior is modulated by reward-based processes, and dysfunctional at-brain-level reward responses have been involved in AN neurobiological models. However, no prior evidence exists of whether these neural alterations would be equally present in social contexts. In this study, we conducted a cross-sectional social-judgment functional magnetic resonance imaging (fMRI) study of 20 restrictive-subtype AN patients and 20 matched healthy controls. Brain activity during acceptance and rejection was investigated and correlated with severity measures (Eating Disorder Inventory -EDI-2) and with personality traits of interest known to modulate social behavior (The Sensitivity to Punishment and Sensitivity to Reward Questionnaire). Patients showed hypoactivation of the dorsomedial prefrontal cortex (DMPFC) during social acceptance and hyperactivation of visual areas during social rejection. Ventral striatum activation during rejection was positively correlated in patients with clinical severity scores. During acceptance, activation of the frontal opercula-anterior insula and dorsomedial/dorsolateral prefrontal cortices was differentially associated with reward sensitivity between groups. These results suggest an abnormal motivational drive for social stimuli, and involve overlapping social cognition and reward systems leading to a disruption of adaptive responses in the processing of social reward. The specific association of reward-related regions with clinical and psychometric measures suggests the putative involvement of reward structures in the maintenance of pathological behaviors in AN.

  18. Abnormal Social Reward Responses in Anorexia Nervosa: An fMRI Study.

    Directory of Open Access Journals (Sweden)

    Esther Via

    Full Text Available Patients with anorexia nervosa (AN display impaired social interactions, implicated in the development and prognosis of the disorder. Importantly, social behavior is modulated by reward-based processes, and dysfunctional at-brain-level reward responses have been involved in AN neurobiological models. However, no prior evidence exists of whether these neural alterations would be equally present in social contexts. In this study, we conducted a cross-sectional social-judgment functional magnetic resonance imaging (fMRI study of 20 restrictive-subtype AN patients and 20 matched healthy controls. Brain activity during acceptance and rejection was investigated and correlated with severity measures (Eating Disorder Inventory -EDI-2 and with personality traits of interest known to modulate social behavior (The Sensitivity to Punishment and Sensitivity to Reward Questionnaire. Patients showed hypoactivation of the dorsomedial prefrontal cortex (DMPFC during social acceptance and hyperactivation of visual areas during social rejection. Ventral striatum activation during rejection was positively correlated in patients with clinical severity scores. During acceptance, activation of the frontal opercula-anterior insula and dorsomedial/dorsolateral prefrontal cortices was differentially associated with reward sensitivity between groups. These results suggest an abnormal motivational drive for social stimuli, and involve overlapping social cognition and reward systems leading to a disruption of adaptive responses in the processing of social reward. The specific association of reward-related regions with clinical and psychometric measures suggests the putative involvement of reward structures in the maintenance of pathological behaviors in AN.

  19. Reward, dopamine and the control of food intake: implications for obesity

    Energy Technology Data Exchange (ETDEWEB)

    Volkow N. D.; Wang G.; Volkow, N.D.; Wang, G.-J.; Baler, R.D.

    2011-10-01

    The ability to resist the urge to eat requires the proper functioning of neuronal circuits involved in top-down control to oppose the conditioned responses that predict reward from eating the food and the desire to eat the food. Imaging studies show that obese subjects might have impairments in dopaminergic pathways that regulate neuronal systems associated with reward sensitivity, conditioning and control. It is known that the neuropeptides that regulate energy balance (homeostatic processes) through the hypothalamus also modulate the activity of dopamine cells and their projections into regions involved in the rewarding processes underlying food intake. It is postulated that this could also be a mechanism by which overeating and the resultant resistance to homoeostatic signals impairs the function of circuits involved in reward sensitivity, conditioning and cognitive control.

  20. Reward, dopamine and the control of food intake: implications for obesity

    International Nuclear Information System (INIS)

    Volkow, N.D.; Wang, G.J.; Baler, R.D.

    2011-01-01

    The ability to resist the urge to eat requires the proper functioning of neuronal circuits involved in top-down control to oppose the conditioned responses that predict reward from eating the food and the desire to eat the food. Imaging studies show that obese subjects might have impairments in dopaminergic pathways that regulate neuronal systems associated with reward sensitivity, conditioning and control. It is known that the neuropeptides that regulate energy balance (homeostatic processes) through the hypothalamus also modulate the activity of dopamine cells and their projections into regions involved in the rewarding processes underlying food intake. It is postulated that this could also be a mechanism by which overeating and the resultant resistance to homoeostatic signals impairs the function of circuits involved in reward sensitivity, conditioning and cognitive control.

  1. Neurogenetic Impairments of Brain Reward Circuitry Links to Reward Deficiency Syndrome (RDS): Potential Nutrigenomic Induced Dopaminergic Activation

    Science.gov (United States)

    Blum, K; Oscar-Berman, M; Giordano, J; Downs, BW; Simpatico, T; Han, D; Femino, John

    2012-01-01

    Work from our laboratory in both in-patient and outpatient facilities utilizing the Comprehensive Analysis of Reported Drugs (CARD)™ found a significant lack of compliance to prescribed treatment medications and a lack of abstinence from drugs of abuse during active recovery. This unpublished, ongoing research provides an impetus to develop accurate genetic diagnosis and holistic approaches that will safely activate brain reward circuitry in the mesolimbic dopamine system. This editorial focuses on the neurogenetics of brain reward systems with particular reference to genes related to dopaminergic function. The terminology “Reward Deficiency Syndrome” (RDS), used to describe behaviors found to have an association with gene-based hypodopaminergic function, is a useful concept to help expand our understanding of Substance Use Disorder (SUD), process addictions, and other obsessive, compulsive and impulsive behaviors. This editorial covers the neurological basis of pleasure and the role of natural and unnatural reward in motivating and reinforcing behaviors. Additionally, it briefly describes the concept of natural dopamine D2 receptor agonist therapy coupled with genetic testing of a panel of reward genes, the Genetic Addiction Risk Score (GARS). It serves as a spring-board for this combination of novel approaches to the prevention and treatment of RDS that was developed from fundamental genomic research. We encourage further required studies. PMID:23264886

  2. Perceived organizational support: a review of the literature.

    Science.gov (United States)

    Rhoades, Linda; Eisenberger, Robert

    2002-08-01

    The authors reviewed more than 70 studies concerning employees' general belief that their work organization values their contribution and cares about their well-being (perceived organizational support; POS). A meta-analysis indicated that 3 major categories of beneficial treatment received by employees (i.e., fairness, supervisor support, and organizational rewards and favorable job conditions) were associated with POS. POS, in turn, was related to outcomes favorable to employees (e.g., job satisfaction, positive mood) and the organization (e.g., affective commitment, performance, and lessened withdrawal behavior). These relationships depended on processes assumed by organizational support theory: employees' belief that the organization's actions were discretionary, feeling of obligation to aid the organization, fulfillment of socioemotional needs, and performance-reward expectancies.

  3. Reward mechanisms in the brain and their role in dependence : evidence from neurophysiological and neuroimaging studies

    NARCIS (Netherlands)

    Martin-Soelch, C; Leenders, KL; Chevalley, AF; Missimer, J; Kunig, G; Magyar, S; Mino, A; Schultz, W

    2001-01-01

    This article reviews neuronal activity related to reward processing in primate and human brains. In the primate brain, neurophysiological methods provide a differentiated view of reward processing in a limited number of brain structures. Dopamine neurons respond to unpredictable rewards and produce

  4. The rewarding value of good motor performance in the context of monetary incentives.

    Science.gov (United States)

    Lutz, Kai; Pedroni, Andreas; Nadig, Karin; Luechinger, Roger; Jäncke, Lutz

    2012-07-01

    Whether an agent receives positive task feedback or a monetary reward, neural activity in their striatum increases. In the latter case striatal activity reflects extrinsic reward processing, while in the former, striatal activity reflects the intrinsically rewarding effects of performing well. There can be a "hidden cost of reward", which is a detrimental effect of extrinsic on intrinsic reward value. This raises the question how these two types of reward interact. To address this, we applied a monetary incentive delay task: in all trials participants received feedback depending on their performance. In half of the trials they could additionally receive monetary reward if they performed well. This resulted in high performance trials, which were monetarily rewarded and high performance trials that were not. This made it possible to dissociate the neural correlates of performance feedback from the neural correlates of monetary reward that comes with high performance. Performance feedback alone elicits activation increases in the ventral striatum. This activation increases due to additional monetary reward. Neural response in the dorsal striatum on the other hand is only significantly increased by feedback when a monetary incentive is present. The quality of performance does not significantly influence dorsal striatum activity. In conclusion, our results indicate that the dorsal striatum is primarily sensitive to optional or actually received external rewards, whereas the ventral striatum may be coding intrinsic reward due to positive performance feedback. Thus the ventral striatum is suggested to be involved in the processing of intrinsically motivated behavior. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Paying for performance: Performance incentives increase desire for the reward object.

    Science.gov (United States)

    Hur, Julia D; Nordgren, Loran F

    2016-09-01

    The current research examines how exposure to performance incentives affects one's desire for the reward object. We hypothesized that the flexible nature of performance incentives creates an attentional fixation on the reward object (e.g., money), which leads people to become more desirous of the rewards. Results from 5 laboratory experiments and 1 large-scale field study provide support for this prediction. When performance was incentivized with monetary rewards, participants reported being more desirous of money (Study 1), put in more effort to earn additional money in an ensuing task (Study 2), and were less willing to donate money to charity (Study 4). We replicated the result with nonmonetary rewards (Study 5). We also found that performance incentives increased attention to the reward object during the task, which in part explains the observed effects (Study 6). A large-scale field study replicated these findings in a real-world setting (Study 7). One laboratory experiment failed to replicate (Study 3). (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  6. Job satisfaction and social rewards in the social services

    Directory of Open Access Journals (Sweden)

    Jorunn Theresia Jessen

    2015-03-01

    Full Text Available This article investigates the sources of job satisfaction among practitioners and managers employed in the Norwegian public social services and the professionals ´ perception of social rewards in particular. Being valued, receiving praise and positive feedback are considered to be important aspects of job satisfaction. Nevertheless the expertise and competence of social workers is not always acknowledged. A central question raised is whether the workers ´ job satisfaction is influenced by their opportunities for support and recognition, compared to other (intrinsic and organisational rewarding aspects available to social service workers. The empirical data come from a 2004 quantitative survey among social workers in local welfare agencies. Despite conflicting demands and lack of resources in the front line services, findings indicate that managers and practitioners perceive their work as overall equally satisfying. Still, the managers find their job more interesting and challenging due to their position, reporting higher feelings of accomplishment and control over work. Receiving public approval and co-worker support are positively associated with job satisfaction within both work positions, while superior support and client recognition were found to be significantly rewarding aspects to the practitioners only. The final discussion addresses the challenges for an organizational climate that sustain the worth and contribution of social professionals.

  7. Embedding reward signals into perception and cognition

    Directory of Open Access Journals (Sweden)

    Luiz Pessoa

    2010-09-01

    Full Text Available Despite considerable interest in the neural basis of valuation, how valuation affects cognitive processing has received relatively less attention. Here, we review evidence from recent behavioral and neuroimaging studies supporting the notion that motivation can enhance perceptual and executive control processes to achieve more efficient goal-directed behavior. Specifically, in the context of cognitive tasks offering monetary gains, improved behavioral performance has been repeatedly observed in conjunction with elevated neural activations in task-relevant perceptual, cognitive, and reward-related regions. We address the neural basis of motivation-cognition interactions by suggesting various modes of communication between relevant neural networks: (1 global hub regions may integrate information from multiple inputs providing a communicative link between specialized networks, (2 point-to-point interactions allow for more specific cross-network communication, and (3 diffuse neuromodulatory systems can relay motivational signals to cortex and enhance signal processing. Together, these modes of communication allow information regarding motivational significance to reach relevant brain regions and shape behavior.

  8. Reward devaluation disrupts latent inhibition in fear conditioning.

    Science.gov (United States)

    De la Casa, Luís Gonzalo; Mena, Auxiliadora; Ruiz-Salas, Juán Carlos; Quintero, Esperanza; Papini, Mauricio R

    2018-03-01

    Three experiments explored the link between reward shifts and latent inhibition (LI). Using consummatory procedures, rewards were either downshifted from 32% to 4% sucrose (Experiments 1-2), or upshifted from 4% to 32% sucrose (Experiment 3). In both cases, appropriate unshifted controls were also included. LI was implemented in terms of fear conditioning involving a single tone-shock pairing after extensive tone-only preexposure. Nonpreexposed controls were also included. Experiment 1 demonstrated a typical LI effect (i.e., disruption of fear conditioning after preexposure to the tone) in animals previously exposed only to 4% sucrose. However, the LI effect was eliminated by preexposure to a 32%-to-4% sucrose devaluation. Experiment 2 replicated this effect when the LI protocol was administered immediately after the reward devaluation event. However, LI was restored when preexposure was administered after a 60-min retention interval. Finally, Experiment 3 showed that a reward upshift did not affect LI. These results point to a significant role of negative emotion related to reward devaluation in the enhancement of stimulus processing despite extensive nonreinforced preexposure experience.

  9. Regulation of brain reward by the endocannabinoid system: a critical review of behavioral studies in animals.

    Science.gov (United States)

    Vlachou, S; Panagis, G

    2014-01-01

    The endocannabinoid system has been implicated in the regulation of a variety of physiological processes, including a crucial involvement in brain reward systems and the regulation of motivational processes. Behavioral studies have shown that cannabinoid reward may involve the same brain circuits and similar brain mechanisms with other drugs of abuse, such as nicotine, cocaine, alcohol and heroin, as well as natural rewards, such as food, water and sucrose, although the conditions under which cannabinoids exert their rewarding effects may be more limited. The purpose of the present review is to briefly describe and evaluate the behavioral and pharmacological research concerning the major components of the endocannabinoid system and reward processes. Special emphasis is placed on data received from four procedures used to test the effects of the endocannabinoid system on brain reward in animals; namely, the intracranial self-stimulation paradigm, the self-administration procedure, the conditioned place preference procedure and the drug-discrimination procedure. The effects of cannabinoid 1 (CB1) and cannabinoid 2 (CB2) receptor agonists, antagonists and endocannabinoid modulators in these procedures are examined. Further, the involvement of CB1 and CB2 receptors, as well the fatty acid amid hydrolase (FAAH) enzyme in reward processes is investigated through presentation of respective genetic ablation studies in mice. We suggest that the endocannabinoid system plays a major role in modulating motivation and reward processes. Further research will provide us with a better understanding of these processes and, thus, could lead to the development of potential therapeutic compounds for the treatment of reward-related disorders.

  10. An empirical study of the reward preferences of South African employees

    Directory of Open Access Journals (Sweden)

    Robin J. Snelgar

    2013-04-01

    preferences, which is lacking in a South African context. It also provides support for segmentation of rewards based on certain demographic variables.

  11. Neural evidence reveals the rapid effects of reward history on selective attention.

    Science.gov (United States)

    MacLean, Mary H; Giesbrecht, Barry

    2015-05-05

    Selective attention is often framed as being primarily driven by two factors: task-relevance and physical salience. However, factors like selection and reward history, which are neither currently task-relevant nor physically salient, can reliably and persistently influence visual selective attention. The current study investigated the nature of the persistent effects of irrelevant, physically non-salient, reward-associated features. These features affected one of the earliest reliable neural indicators of visual selective attention in humans, the P1 event-related potential, measured one week after the reward associations were learned. However, the effects of reward history were moderated by current task demands. The modulation of visually evoked activity supports the hypothesis that reward history influences the innate salience of reward associated features, such that even when no longer relevant, nor physically salient, these features have a rapid, persistent, and robust effect on early visual selective attention. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Placebo analgesia and reward processing: integrating genetics, personality, and intrinsic brain activity.

    Science.gov (United States)

    Yu, Rongjun; Gollub, Randy L; Vangel, Mark; Kaptchuk, Ted; Smoller, Jordan W; Kong, Jian

    2014-09-01

    Our expectations about an event can strongly shape our subjective evaluation and actual experience of events. This ability, applied to the modulation of pain, has the potential to affect therapeutic analgesia substantially and constitutes a foundation for non-pharmacological pain relief. A typical example of such modulation is the placebo effect. Studies indicate that placebo may be regarded as a reward, and brain activity in the reward system is involved in this modulation process. In the present study, we combined resting-state functional magnetic resonance imaging (rs-fMRI) measures, genotype at a functional COMT polymorphism (Val158Met), and personality measures in a model to predict the magnitude of placebo conditioning effect indicated by subjective pain rating reduction to calibrated noxious stimuli. We found that the regional homogeneity (ReHo), an index of local neural coherence, in the ventral striatum, was significantly associated with conditioning effects on pain rating changes. We also found that the number of Met alleles at the COMT polymorphism was linearly correlated to the suppression of pain. In a fitted regression model, we found the ReHo in the ventral striatum, COMT genotype, and Openness scores accounted for 59% of the variance in the change in pain ratings. The model was further tested using a separate data set from the same study. Our findings demonstrate the potential of combining resting-state connectivity, genetic information, and personality to predict placebo effect. Copyright © 2014 Wiley Periodicals, Inc.

  13. Neurogenetics of depression: a focus on reward processing and stress sensitivity.

    Science.gov (United States)

    Bogdan, Ryan; Nikolova, Yuliya S; Pizzagalli, Diego A

    2013-04-01

    Major depressive disorder (MDD) is etiologically complex and has a heterogeneous presentation. This heterogeneity hinders the ability of molecular genetic research to reliably detect the small effects conferred by common genetic variation. As a result, significant research efforts have been directed at investigating more homogenous intermediate phenotypes believed to be more proximal to gene function and lie between genes and/or environmental effects and disease processes. In the current review we survey and integrate research on two promising intermediate phenotypes linked to depression: reward processing and stress sensitivity. A synthesis of this burgeoning literature indicates that a molecular genetic approach focused on intermediate phenotypes holds significant promise to fundamentally improve our understanding of the pathophysiology and etiology of depression, which will be required for improved diagnostic definitions and the development of novel and more efficacious treatment and prevention strategies. We conclude by highlighting challenges facing intermediate phenotype research and future development that will be required to propel this pivotal research into new directions. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Mindfulness meditation modulates reward prediction errors in the striatum in a passive conditioning task

    Directory of Open Access Journals (Sweden)

    Ulrich eKirk

    2015-02-01

    Full Text Available Reinforcement learning models have demonstrated that phasic activity of dopamine neurons during reward expectation encodes information about the predictability of rewards and cues that predict reward. Evidence indicates that mindfulness-based approaches reduce reward anticipation signal in the striatum to negative and positive incentives suggesting the hypothesis that such training influence basic reward processing. Using a passive conditioning task and fMRI in a group of experienced mindfulness meditators and age-matched controls, we tested the hypothesis that mindfulness meditation influence reward and reward prediction error signals. We found diminished positive and negative prediction error-related blood-oxygen level-dependent (BOLD responses in the putamen in meditators compared with controls. In the meditators, this decrease in striatal BOLD responses to reward prediction was paralleled by increased activity in posterior insula, a primary interoceptive region. Critically, responses in the putamen during early trials of the conditioning procedure (run 1 were elevated in both meditators and controls. These results provide evidence that experienced mindfulness meditators show attenuated reward prediction signals to valenced stimuli, which may be related to interoceptive processes encoded in the posterior insula.

  15. Motivation and reward systems

    NARCIS (Netherlands)

    van Eerde, W.; Vodosek, M.; den Hartog, D.N.; McNett, J.M.

    2014-01-01

    Reward systems are identified as one of the human resource management (HRM) practices that may impact motivation. Reward systems may consist of several components, including financial and nonfinancial rewards, in fixed and variable amounts. Reinforcement, expectancy, and equity principles are

  16. Blunted responses to reward in remitted post-traumatic stress disorder.

    Science.gov (United States)

    Kalebasi, Nilufer; Kuelen, Eveline; Schnyder, Ulrich; Schumacher, Sonja; Mueller-Pfeiffer, Christoph; Wilhelm, Frank H; Athilingam, Jegath; Moergeli, Hanspeter; Martin-Soelch, Chantal

    2015-08-01

    Recent evidence suggests blunted responses to rewarding stimuli in patients with post-traumatic stress disorder (PTSD). However, it is not clear whether these alterations in reward processing normalize in remitted PTSD patients. We tested behavioral and physiological responses to monetary reward in a spatial memory task in 13 accident survivors with remitted PTSD, 14 accident survivors who never had PTSD, and 16 nontrauma-exposed subjects. All accident survivors were recruited from two samples of severely physically injured patients, who had participated in previous prospective studies on the incidence of PTSD after accidental injury approximately 10 years ago. Reaction time, accuracy, skin conductance responses, and self-reported mood were assessed during the task. Accident survivors who never had PTSD and nontrauma exposed controls reported significantly higher positive mood in the reinforced versus nonreinforced condition (P PTSD subjects. Our findings suggest an alteration of the reward system in remitted PTSD. Further research is needed to investigate whether altered reward processing is a residual characteristic in PTSD after remission of symptoms or, alternatively, a preexisting risk factor for the development of PTSD after a traumatic event.

  17. Major depressive disorder is characterized by greater reward network activation to monetary than pleasant image rewards.

    Science.gov (United States)

    Smoski, Moria J; Rittenberg, Alison; Dichter, Gabriel S

    2011-12-30

    Anhedonia, the loss of interest or pleasure in normally rewarding activities, is a hallmark feature of unipolar Major Depressive Disorder (MDD). A growing body of literature has identified frontostriatal dysfunction during reward anticipation and outcomes in MDD. However, no study to date has directly compared responses to different types of rewards such as pleasant images and monetary rewards in MDD. To investigate the neural responses to monetary and pleasant image rewards in MDD, a modified Monetary Incentive Delay task was used during functional magnetic resonance imaging to assess neural responses during anticipation and receipt of monetary and pleasant image rewards. Participants included nine adults with MDD and 13 affectively healthy controls. The MDD group showed lower activation than controls when anticipating monetary rewards in right orbitofrontal cortex and subcallosal cortex, and when anticipating pleasant image rewards in paracingulate and supplementary motor cortex. The MDD group had relatively greater activation in right putamen when anticipating monetary versus pleasant image rewards, relative to the control group. Results suggest reduced reward network activation in MDD when anticipating rewards, as well as relatively greater hypoactivation to pleasant image than monetary rewards. 2011 Elsevier Ireland Ltd. All rights reserved.

  18. Influence of promised rewards on conflict resolution in healthy participants and patients with Parkinson's disease.

    Science.gov (United States)

    Houvenaghel, Jean-François; Duprez, Joan; Naudet, Florian; Argaud, Soizic; Dondaine, Thibaut; Drapier, Sophie; Robert, Gabriel Hadrien; Drapier, Dominique; Vérin, Marc; Sauleau, Paul

    2016-08-15

    The influence of promised rewards on conflict resolution processes is not clearly defined in the literature, and the underlying mechanisms are poorly understood. Some studies have shown no effect of reward, while others have demonstrated a beneficial influence. In addition, although the basal ganglia are known to play a critical role in the association between motivation and cognition, the influence of promised rewards on conflict resolution processes in Parkinson's disease (PD) has received little attention. In this context, we assessed the influence of promised rewards on both impulse activation and suppression in 36 healthy participants and 36 patients with PD, using a rewarded Simon task. Analysis of performances revealed that promised rewards worsened the overall congruence effect, but only in healthy participants. Although the incentive context did not modulate the congruence effect in patients, by using the activation-suppression model, we were able to show that promised rewards did influence impulse suppression in patients-but not in healthy participants. Suppressing inappropriate response activation in an incentive context appears to be harder in medically treated Parkinson's disease. This indicates that incentive motivation can modulate at least one cognitive process involved in cognitive action control in patients with medically treated PD. The activation-suppression model provides essential additional information concerning the influence of promised rewards on conflict resolution processes in a pathological population. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Individual Differences in the Habitual Use of Cognitive Reappraisal Predict the Reward-related Feedback Negativity

    Directory of Open Access Journals (Sweden)

    Liyang eSai

    2015-09-01

    Full Text Available Recent studies have shown that instructed cognitive reappraisal can regulate the neural processing of reward. However, it is still unclear whether the habitual use of cognitive reappraisal in everyday life can influence brain activity associated with reward processing. In the present study, participant’s neural responses to reward were measured using electroencephalography (EEG recorded during a gambling task, while their tendency to use cognitive reappraisal was assessed using the Emotion Regulation Questionnaire (ERQ. Event-related potential (ERP results indicated that losses on the gambling task elicited greater negative reward-related feedback negativity (FN than gains. The differential FN between losses and gains was significantly correlated with cognitive reappraisal scores across participants, such that individuals with a higher tendency to use cognitive reappraisal showed stronger reward processing (i.e. amplified FN difference between losses and gains. This correlation remained significant after controlling for expressive suppression scores. However, expressive suppression per se was not correlated with FN differences. Taken together, these results suggest that the habitual use of cognitive reappraisal influences the neural processing of reward.

  20. Multiple reward-cue contingencies favor expectancy over uncertainty in shaping the reward-cue attentional salience.

    Science.gov (United States)

    De Tommaso, Matteo; Mastropasqua, Tommaso; Turatto, Massimo

    2018-01-25

    Reward-predicting cues attract attention because of their motivational value. A debated question regards the conditions under which the cue's attentional salience is governed more by reward expectancy rather than by reward uncertainty. To help shedding light on this relevant issue, here, we manipulated expectancy and uncertainty using three levels of reward-cue contingency, so that, for example, a high level of reward expectancy (p = .8) was compared with the highest level of reward uncertainty (p = .5). In Experiment 1, the best reward-cue during conditioning was preferentially attended in a subsequent visual search task. This result was replicated in Experiment 2, in which the cues were matched in terms of response history. In Experiment 3, we implemented a hybrid procedure consisting of two phases: an omission contingency procedure during conditioning, followed by a visual search task as in the previous experiments. Crucially, during both phases, the reward-cues were never task relevant. Results confirmed that, when multiple reward-cue contingencies are explored by a human observer, expectancy is the major factor controlling both the attentional and the oculomotor salience of the reward-cue.

  1. Processing of continuously provided punishment and reward in children with ADHD and the modulating effects of stimulant medication: an ERP study.

    Directory of Open Access Journals (Sweden)

    Yvonne Groen

    Full Text Available OBJECTIVES: Current models of ADHD suggest abnormal reward and punishment sensitivity, but the exact mechanisms are unclear. This study aims to investigate effects of continuous reward and punishment on the processing of performance feedback in children with ADHD and the modulating effects of stimulant medication. METHODS: 15 Methylphenidate (Mph-treated and 15 Mph-free children of the ADHD-combined type and 17 control children performed a selective attention task with three feedback conditions: no-feedback, gain and loss. Event Related Potentials (ERPs time-locked to feedback and errors were computed. RESULTS: All groups performed more accurately with gain and loss than without feedback. Feedback-related ERPs demonstrated no group differences in the feedback P2, but an enhanced late positive potential (LPP to feedback stimuli (both gains and losses for Mph-free children with ADHD compared to controls. Feedback-related ERPs in Mph-treated children with ADHD were similar to controls. Correlational analyses in the ADHD groups revealed that the severity of inattention problems correlated negatively with the feedback P2 amplitude and positively with the LPP to losses and omitted gains. CONCLUSIONS: The early selective attention for rewarding and punishing feedback was relatively intact in children with ADHD, but the late feedback processing was deviant (increased feedback LPP. This may explain the often observed positive effects of continuous reinforcement on performance and behaviour in children with ADHD. However, these group findings cannot be generalised to all individuals with the ADHD, because the feedback-related ERPs were associated with the severity of the inattention problems. Children with ADHD-combined type with more inattention problems showed both deviant early attentional selection of feedback stimuli, and deviant late processing of non-reward and punishment.

  2. Aversive counterconditioning attenuates reward signalling in the ventral striatum

    Directory of Open Access Journals (Sweden)

    Anne Marije Kaag

    2016-08-01

    Full Text Available Appetitive conditioning refers to the process of learning cue-reward associations and is mediated by the mesocorticolimbic system. Appetitive conditioned responses are difficult to extinguish, especially for highly salient rewards such as food and drugs. We investigate whether aversive counterconditioning can alter reward reinstatement in the ventral striatum in healthy volunteers using functional Magnetic Resonance Imaging (fMRI. In the initial conditioning phase, two different stimuli were reinforced with a monetary reward. In the subsequent counterconditioning phase, one of these stimuli was paired with an aversive shock to the wrist. In the following extinction phase, none of the stimuli were reinforced. In the final reinstatement phase, reward was reinstated by informing the participants that the monetary gain could be doubled. Our fMRI data revealed that reward signalling in the ventral striatum and ventral tegmental area following reinstatement was smaller for the stimulus that was counterconditioned with an electrical shock, compared to the non-counterconditioned stimulus. A functional connectivity analysis showed that aversive counterconditioning strengthened striatal connectivity with the hippocampus and insula. These results suggest that reward signalling in the ventral striatum can be attenuated through aversive counterconditioning, possibly by concurrent retrieval of the aversive association through enhanced connectivity with hippocampus and insula.

  3. Changes in reward-induced brain activation in opiate addicts.

    Science.gov (United States)

    Martin-Soelch, C; Chevalley, A F; Künig, G; Missimer, J; Magyar, S; Mino, A; Schultz, W; Leenders, K L

    2001-10-01

    Many studies indicate a role of the cerebral dopaminergic reward system in addiction. Motivated by these findings, we examined in opiate addicts whether brain regions involved in the reward circuitry also react to human prototypical rewards. We measured regional cerebral blood flow (rCBF) with H(2)(15)O positron emission tomography (PET) during a visuo-spatial recognition task with delayed response in control subjects and in opiate addicts participating in a methadone program. Three conditions were defined by the types of feedback: nonsense feedback; nonmonetary reinforcement; or monetary reward, received by the subjects for a correct response. We found in the control subjects rCBF increases in regions associated with the meso-striatal and meso-corticolimbic circuits in response to both monetary reward and nonmonetary reinforcement. In opiate addicts, these regions were activated only in response to monetary reward. Furthermore, nonmonetary reinforcement elicited rCBF increases in limbic regions of the opiate addicts that were not activated in the control subjects. Because psychoactive drugs serve as rewards and directly affect regions of the dopaminergic system like the striatum, we conclude that the differences in rCBF increases between controls and addicts can be attributed to an adaptive consequence of the addiction process.

  4. Decision-making patterns and sensitivity to reward and punishment in children with attention-deficit hyperactivity disorder.

    Science.gov (United States)

    Masunami, Taiji; Okazaki, Shinji; Maekawa, Hisao

    2009-06-01

    Earlier studies have demonstrated that attention-deficit hyperactivity disorder (ADHD) is associated with aberrant sensitivity to rewards and punishments. Although some studies have focused on real-life decision making in children with ADHD using the Iowa gambling task, the number of good deck choices, a frequently used index of decision-making ability in the gambling task, is insufficient for investigating the complex decision-making strategies in subjects. In the present study, we investigated decision-making strategies in ADHD children, analyzing T-patterns with rewards, with punishments, and without rewards and punishments during the gambling task, and examined the relationship between decision-making strategies and skin conductance responses (SCRs) to rewards and punishments. We hypothesized that ADHD children and normal children would employ different decision-making strategies depending on their sensitivity to rewards and punishments in the gambling task. Our results revealed that ADHD children had fewer T-patterns with punishments and exhibited a significant tendency to have many T-patterns with rewards, thus supporting our hypothesis. Moreover, in contrast to normal children, ADHD children failed to demonstrate differences between reward and punishment SCRs, supporting the idea that they had an aberrant sensitivity to rewards and punishments. Therefore, we concluded that ADHD children would be impaired in decision-making strategies depending on their aberrant sensitivity to rewards and punishments. However, we were unable to specify whether large reward SCRs or small punishment SCRs is generated in ADHD children.

  5. Reward modulation of hippocampal subfield activation during successful associative encoding and retrieval

    Science.gov (United States)

    Wolosin, Sasha M.; Zeithamova, Dagmar; Preston, Alison R.

    2012-01-01

    Emerging evidence suggests that motivation enhances episodic memory formation through interactions between medial temporal lobe (MTL) structures and dopaminergic midbrain. In addition, recent theories propose that motivation specifically facilitates hippocampal associative binding processes, resulting in more detailed memories that are readily reinstated from partial input. Here, we used high-resolution functional magnetic resonance imaging to determine how motivation influences associative encoding and retrieval processes within human MTL subregions and dopaminergic midbrain. Participants intentionally encoded object associations under varying conditions of reward and performed a retrieval task during which studied associations were cued from partial input. Behaviorally, cued recall performance was superior for high-value relative to low-value associations; however, participants differed in the degree to which rewards influenced memory. The magnitude of behavioral reward modulation was associated with reward-related activation changes in dentate gyrus/CA2,3 during encoding and enhanced functional connectivity between dentate gyrus/CA2,3 and dopaminergic midbrain during both the encoding and retrieval phases of the task. These findings suggests that within the hippocampus, reward-based motivation specifically enhances dentate gyrus/CA2,3 associative encoding mechanisms through interactions with dopaminergic midbrain. Furthermore, within parahippocampal cortex and dopaminergic midbrain regions, activation associated with successful memory formation was modulated by reward across the group. During the retrieval phase, we also observed enhanced activation in hippocampus and dopaminergic midbrain for high-value associations that occurred in the absence of any explicit cues to reward. Collectively, these findings shed light on fundamental mechanisms through which reward impacts associative memory formation and retrieval through facilitation of MTL and VTA/SN processing

  6. Designing for psychological change: individuals' reward and cost valuations in weight management.

    Science.gov (United States)

    Hsu, Anne; Blandford, Ann

    2014-06-26

    Knowledge of the psychological constructs that underlie behavior offers valuable design opportunities for persuasive systems. We use the decision theory, which describes how behavior is underpinned by reward-cost valuations, as a framework for investigating such psychological constructs to deliver design objectives for weight management technologies. We applied a decision theory-based analysis in the domain of weight management to understand the rewards and costs that surround individuals' weight management behaviors, with the aim of uncovering design opportunities for weight management technologies. We conducted qualitative interviews with 15 participants who were or had been trying to lose weight. Thematic analysis was used to extract themes that covered the rewards and costs surrounding weight management behaviors. We supplemented our qualitative study with a quantitative survey of 100 respondents investigating the extent to which they agreed with statements reflecting themes from the qualitative study. The primary obstacles to weight management were the rewards associated with unhealthy choices, such as the pleasures of unhealthy foods and unrestricted consumption in social situations, and the significant efforts required to change habits, plan, and exercise. Psychological constructs that supported positive weight management included feeling good after making healthy choices, being good to oneself, experiencing healthy yet still delicious foods, and receiving social support and encouraging messages (although opinions about encouraging messages was mixed). A rewards-costs driven enquiry revealed a wide range of psychological constructs that contribute to discouraging and supporting weight management. The constructs extracted from our qualitative study were verified by our quantitative survey, in which the majority of respondents also reported similar thoughts and feelings. This understanding of the rewards and costs surrounding weight management offers a range

  7. Addictive drugs and brain stimulation reward.

    Science.gov (United States)

    Wise, R A

    1996-01-01

    Direct electrical or chemical stimulation of specific brain regions can establish response habits similar to those established by natural rewards such as food or sexual contact. Cocaine, mu and delta opiates, nicotine, phencyclidine, and cannabis each have actions that summate with rewarding electrical stimulation of the medial forebrain bundle (MFB). The reward-potentiating effects of amphetamine and opiates are associated with central sites of action where these drugs also have their direct rewarding effects, suggesting common mechanisms for drug reward per se and for drug potentiation of brain stimulation reward. The central sites at which these and perhaps other drugs of abuse potentiate brain stimulation reward and are rewarding in their own right are consistent with the hypothesis that the laboratory reward of brain stimulation and the pharmacological rewards of addictive drugs are habit forming because they act in the brain circuits that subserve more natural and biologically significant rewards.

  8. Learning to Cooperate: The Evolution of Social Rewards in Repeated Interactions.

    Science.gov (United States)

    Dridi, Slimane; Akçay, Erol

    2018-01-01

    Understanding the behavioral and psychological mechanisms underlying social behaviors is one of the major goals of social evolutionary theory. In particular, a persistent question about animal cooperation is to what extent it is supported by other-regarding preferences-the motivation to increase the welfare of others. In many situations, animals adjust their behaviors through learning by responding to the rewards they experience as a consequence of their actions. Therefore, we may ask whether learning in social situations can be driven by evolved other-regarding rewards. Here we develop a mathematical model in order to ask whether the mere act of cooperating with a social partner will evolve to be inherently rewarding. Individuals interact repeatedly in pairs and adjust their behaviors through reinforcement learning. We assume that individuals associate with each game outcome an internal reward value. These perceived rewards are genetically evolving traits. We find that conditionally cooperative rewards that value mutual cooperation positively but the sucker's outcome negatively tend to be evolutionarily stable. Purely other-regarding rewards can evolve only under special parameter combinations. On the other hand, selfish rewards that always lead to pure defection are also evolutionarily successful. These findings are consistent with empirical observations showing that humans tend to display conditionally cooperative behavior and also exhibit a diversity of preferences. Our model also demonstrates the need to further integrate multiple levels of biological causation of behavior.

  9. Dorsal-CA1 Hippocampal Neuronal Ensembles Encode Nicotine-Reward Contextual Associations.

    Science.gov (United States)

    Xia, Li; Nygard, Stephanie K; Sobczak, Gabe G; Hourguettes, Nicholas J; Bruchas, Michael R

    2017-06-06

    Natural and drug rewards increase the motivational valence of stimuli in the environment that, through Pavlovian learning mechanisms, become conditioned stimuli that directly motivate behavior in the absence of the original unconditioned stimulus. While the hippocampus has received extensive attention for its role in learning and memory processes, less is known regarding its role in drug-reward associations. We used in vivo Ca 2+ imaging in freely moving mice during the formation of nicotine preference behavior to examine the role of the dorsal-CA1 region of the hippocampus in encoding contextual reward-seeking behavior. We show the development of specific neuronal ensembles whose activity encodes nicotine-reward contextual memories and that are necessary for the expression of place preference. Our findings increase our understanding of CA1 hippocampal function in general and as it relates to reward processing by identifying a critical role for CA1 neuronal ensembles in nicotine place preference. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Longitudinal Changes in Behavioral Approach System Sensitivity and Brain Structures Involved in Reward Processing during Adolescence

    OpenAIRE

    Urošević, Snežana; Collins, Paul; Muetzel, Ryan; Lim, Kelvin; Luciana, Monica

    2012-01-01

    Adolescence is a period of radical normative changes and increased risk for substance use, mood disorders, and physical injury. Researchers have proposed that increases in reward sensitivity, i.e., sensitivity of the behavioral approach system (BAS), and/or increases in reactivity to all emotional stimuli (i.e., reward and threat sensitivities) lead to these phenomena. The present study is the first longitudinal investigation of changes in reward (i.e., BAS) sensitivity in 9 to 23-year-olds a...

  11. Differential reward coding in the subdivisions of the primate caudate during an oculomotor task.

    Science.gov (United States)

    Nakamura, Kae; Santos, Gustavo S; Matsuzaki, Ryuichi; Nakahara, Hiroyuki

    2012-11-07

    The basal ganglia play a pivotal role in reward-oriented behavior. The striatum, an input channel of the basal ganglia, is composed of subdivisions that are topographically connected with different cortical and subcortical areas. To test whether reward information is differentially processed in the different parts of the striatum, we compared reward-related neuronal activity along the dorsolateral-ventromedial axis in the caudate nucleus of monkeys performing an asymmetrically rewarded oculomotor task. In a given block, a target in one position was associated with a large reward, whereas the other target was associated with a small reward. The target position-reward value contingency was switched between blocks. We found the following: (1) activity that reflected the block-wise reward contingency emerged before the appearance of a visual target, and it was more prevalent in the dorsal, rather than central and ventral, caudate; (2) activity that was positively related to the reward size of the current trial was evident, especially after reward delivery, and it was more prevalent in the ventral and central, rather than dorsal, caudate; and (3) activity that was modulated by the memory of the outcomes of the previous trials was evident in the dorsal and central caudate. This multiple reward information, together with the target-direction information, was represented primarily by individual caudate neurons, and the different reward information was represented in caudate subpopulations with distinct electrophysiological properties, e.g., baseline firing and spike width. These results suggest parallel processing of different reward information by the basal ganglia subdivisions defined by extrinsic connections and intrinsic properties.

  12. Reward acts on the pFC to enhance distractor resistance of working memory representations

    NARCIS (Netherlands)

    Fallon, S.J.; Cools, R.

    2014-01-01

    Working memory and reward processing are often thought to be separate, unrelated processes. However, most daily activities involve integrating these two types of information, and the two processes rarely, if ever, occur in isolation. Here, we show that working memory and reward interact in a

  13. Neural evidence for description dependent reward processing in the framing effect.

    Science.gov (United States)

    Yu, Rongjun; Zhang, Ping

    2014-01-01

    Human decision making can be influenced by emotionally valenced contexts, known as the framing effect. We used event-related brain potentials to investigate how framing influences the encoding of reward. We found that the feedback related negativity (FRN), which indexes the "worse than expected" negative prediction error in the anterior cingulate cortex (ACC), was more negative for the negative frame than for the positive frame in the win domain. Consistent with previous findings that the FRN is not sensitive to "better than expected" positive prediction error, the FRN did not differentiate the positive and negative frame in the loss domain. Our results provide neural evidence that the description invariance principle which states that reward representation and decision making are not influenced by how options are presented is violated in the framing effect.

  14. Neural evidence for description dependent reward processing in the framing effect

    Directory of Open Access Journals (Sweden)

    Rongjun eYu

    2014-03-01

    Full Text Available Human decision making can be influenced by emotionally valenced contexts, known as the framing effect. We used event-related brain potentials to investigate how framing influences the encoding of reward. We found that the feedback related negativity (FRN, which indexes the worse than expected negative prediction error in the anterior cingulate cortex, was more negative for the negative frame than for the positive frame in the win domain. Consistent with previous findings that the FRN is not sensitive to better than expected positive prediction error, the FRN did not differentiate the positive and negative frame in the loss domain. Our results provide neural evidence that the description invariance principle which states that reward representation and decision making are not influenced by how options are presented is violated in the framing effect.

  15. Reward and vocal production: song-associated place preference in songbirds.

    Science.gov (United States)

    Riters, Lauren V; Stevenson, Sharon A

    2012-05-15

    Vocal production is crucial for successful social interactions in multiple species. Reward can strongly influence behavior; however, the extent to which reward systems influence vocal behavior is unknown. In songbirds, singing occurs in different contexts. It can be spontaneous and undirected (e.g., song produced alone or as part of a large flock) or directed towards a conspecific (e.g., song used to attract a mate or influence a competitor). In this study, we developed a conditioned place preference paradigm to measure reward associated with different types of singing behavior in two songbird species. Both male zebra finches and European starlings developed a preference for a chamber associated with production of undirected song, suggesting that the production of undirected song is tightly coupled to intrinsic reward. In contrast, neither starlings nor zebra finches developed a place preference in association with directed song; however, male starlings singing directed song that failed to attract a female developed a place aversion. Unsuccessful contact calling behavior was also associated with a place aversion. These findings suggest that directed vocal behavior is not tightly linked to intrinsic reward but may be externally reinforced by social interactions. Data across two species thus support the hypothesis that the production of undirected but not directed song is tightly coupled to intrinsic reward. This study is the first to identify song-associated reward and suggests that reward associated with vocal production differs depending upon the context in which communication occurs. The findings have implications for understanding what motivates animals to engage in social behaviors and ways in which distinct reward mechanisms function to direct socially appropriate behaviors. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Altered reward processing in the orbitofrontal cortex and hippocampus in healthy first-degree relatives of patients with depression

    DEFF Research Database (Denmark)

    Macoveanu, J; Knorr, U; Skimminge, A

    2014-01-01

    BACKGROUND: Healthy first-degree relatives of patients with major depression (rMD+) show brain structure and functional response anomalies and have elevated risk for developing depression, a disorder linked to abnormal serotonergic neurotransmission and reward processing. METHOD: In a two...... intervention compared to placebo. Conversely, for positive outcomes, the left hippocampus showed attenuated response to high wins in the rMD+ compared to the rMD- group. The SSRI intervention reinforced the hippocampal response to large wins. A subsequent structural analysis revealed that the abnormal neural...... responses were not accounted for by changes in gray matter density in rMD+ individuals. CONCLUSIONS: Our study in first-degree relatives of depressive patients showed abnormal brain responses to aversive and rewarding outcomes in regions known to be dysfunctional in depression. We further confirmed...

  17. Premotor and Motor Cortices Encode Reward.

    Directory of Open Access Journals (Sweden)

    Pavan Ramkumar

    Full Text Available Rewards associated with actions are critical for motivation and learning about the consequences of one's actions on the world. The motor cortices are involved in planning and executing movements, but it is unclear whether they encode reward over and above limb kinematics and dynamics. Here, we report a categorical reward signal in dorsal premotor (PMd and primary motor (M1 neurons that corresponds to an increase in firing rates when a trial was not rewarded regardless of whether or not a reward was expected. We show that this signal is unrelated to error magnitude, reward prediction error, or other task confounds such as reward consumption, return reach plan, or kinematic differences across rewarded and unrewarded trials. The availability of reward information in motor cortex is crucial for theories of reward-based learning and motivational influences on actions.

  18. The Effect of Reward on Orienting and Reorienting in Exogenous Cueing

    NARCIS (Netherlands)

    Bucker, B.; Theeuwes, J.

    2014-01-01

    It is thought that reward-induced motivation influences perceptual, attentional, and cognitive control processes to facilitate behavioral performance. In this study, we investigated the effect of reward-induced motivation on exogenous attention orienting and inhibition of return (IOR). Attention was

  19. Deep brain stimulation of nucleus accumbens region in alcoholism affects reward processing.

    Science.gov (United States)

    Heldmann, Marcus; Berding, Georg; Voges, Jürgen; Bogerts, Bernhard; Galazky, Imke; Müller, Ulf; Baillot, Gunther; Heinze, Hans-Jochen; Münte, Thomas F

    2012-01-01

    The influence of bilateral deep brain stimulation (DBS) of the nucleus nucleus (NAcc) on the processing of reward in a gambling paradigm was investigated using H(2)[(15)O]-PET (positron emission tomography) in a 38-year-old man treated for severe alcohol addiction. Behavioral data analysis revealed a less risky, more careful choice behavior under active DBS compared to DBS switched off. PET showed win- and loss-related activations in the paracingulate cortex, temporal poles, precuneus and hippocampus under active DBS, brain areas that have been implicated in action monitoring and behavioral control. Except for the temporal pole these activations were not seen when DBS was deactivated. These findings suggest that DBS of the NAcc may act partially by improving behavioral control.

  20. Impaired reward responsiveness in schizophrenia.

    Science.gov (United States)

    Taylor, Nicholas; Hollis, Jeffrey P; Corcoran, Sarah; Gross, Robin; Cuthbert, Bruce; Swails, Lisette W; Duncan, Erica

    2018-03-08

    Anhedonia is a core negative symptom of schizophrenia. Schizophrenia patients report largely intact pleasure in consuming rewards, but have impairments in generating motivated behavior to pursue rewards, and show reduced fMRI activation of the reward pathway during presentation of rewarded stimuli. A computer based task measuring the development of a response bias in favor of rewarded stimuli permits assessment of reward-induced motivation. We hypothesized that subjects with schizophrenia would be impaired on this task. 58 schizophrenia subjects (SCZ) and 52 healthy controls (CON) were studied with a signal detection task to assess reward responsiveness. In multiple trials over three blocks subjects were asked to correctly identify two stimuli that were paired with unequal chance of monetary reward. The critical outcome variable was response bias, the development of a greater percent correct identification of the stimulus that was rewarded more often. An ANOVA on response bias with Block as a repeated-measures factor and Diagnosis as a between-group factor indicated that SCZ subjects achieved a lower bias to rewarded stimuli than CON subjects (F(1,105)=8.82, p=0.004, η 2 =0.078). Post hoc tests indicated that SCZ subjects had significantly impaired bias in Block 1 (p=0.002) and Block 2 (p=0.05), indicating that SCZ were slower to achieve normal levels of bias during the session. SCZ subjects were slower to develop response bias to rewarded stimuli than CON subjects. This finding is consonant with the hypothesis that people with schizophrenia have a blunted capacity to modify behavior in response to reward. Copyright © 2018. Published by Elsevier B.V.

  1. Monetary rewards modulate inhibitory control

    Directory of Open Access Journals (Sweden)

    Paula Marcela Herrera

    2014-05-01

    Full Text Available The ability to override a dominant response, often referred to as behavioural inhibiton, is considered a key element of executive cognition. Poor behavioural inhibition is a defining characteristic of several neurological and psychiatric populations. Recently, there has been increasing interest in the motivational dimension of behavioural inhibition, with some experiments incorporating emotional contingencies in classical inhibitory paradigms such as the Go/Nogo and Stop Signal Tasks. Several studies have reported a positive modulatory effect of reward on the performance of such tasks in pathological conditions such as substance abuse, pathological gambling, and ADHD. However, experiments that directly investigate the modulatory effects of reward magnitudes on the performance of inhibitory paradigms are rare and consequently, little is known about the finer grained relationship between motivation and self-control. Here, we probed the effect of reward and reward magnitude on behavioural inhibition using two modified version of the widely used Stop Signal Task. The first task compared no reward with reward, whilst the other compared two different reward magnitudes. The reward magnitude effect was confirmed by the second study, whereas it was less compelling in the first study, possibly due to the effect of having no reward in some conditions. In addition, our results showed a kick start effect over global performance measures. More specifically, there was a long lasting improvement in performance throughout the task, when participants received the highest reward magnitudes at the beginning of the protocol. These results demonstrate that individuals’ behavioural inhibition capacities are dynamic not static because they are modulated by the reward magnitude and initial reward history of the task at hand.

  2. Commitment to self-rewards

    DEFF Research Database (Denmark)

    Koch, Alexander; Nafziger, Julia

    People often overcome self-control problems by promising to reward themselves for accomplishing a task. Such strategies based on self-administered rewards however require the person to believe that she would indeed deny herself the reward if she should fail to achieve the desired outcome. Drawing...... on Koszegi and Rabin's (2006) model of endogenous reference point formation, we show how a rational forward-looking individual can achieve such internal commitment. But our results also demonstrate the limitations of self regulation based on self-rewards....

  3. Introduction: Addiction and Brain Reward and Anti-Reward Pathways

    Science.gov (United States)

    Gardner, Eliot L.

    2013-01-01

    Addictive drugs have in common that they are voluntarily self-administered by laboratory animals (usually avidly) and that they enhance the functioning of the reward circuitry of the brain (producing the “high” that the drug-user seeks). The core reward circuitry consists of an “in series” circuit linking the ventral tegmental area, nucleus accumbens, and ventral pallidum - via the medial forebrain bundle. Although originally believed to encode simply the set-point of hedonic tone, these circuits are now believed to be functionally far more complex - also encoding attention, expectancy of reward, disconfirmation of reward expectancy, and incentive motivation. “Hedonic dysregulation” within these circuits may lead to addiction. The “second-stage” dopaminergic component in this reward circuitry is the crucial addictive-drug-sensitive component. All addictive drugs have in common that they enhance (directly or indirectly or even transsynaptically) dopaminergic reward synaptic function in the nucleus accumbens. Drug self-administration is regulated by nucleus accumbens dopamine levels, and is done to keep nucleus accumbens dopamine within a specific elevated range (to maintain a desired hedonic level). For some classes of addictive drugs (e.g., opiates), tolerance to the euphoric effects develops with chronic use. Post-use dysphoria then comes to dominate reward circuit hedonic tone, and addicts no longer use drugs to get “high,” but simply to get back to normal (“get straight”). The brain circuits mediating the pleasurable effects of addictive drugs are anatomically, neurophysiologically, and neurochemically different from those mediating physical dependence, and from those mediating craving and relapse. There are important genetic variations in vulnerability to drug addiction, yet environmental factors such as stress and social defeat also alter brain-reward mechanisms in such a manner as to impart vulnerability to addiction. In short, the

  4. Dopamine selectively remediates 'model-based' reward learning: a computational approach.

    Science.gov (United States)

    Sharp, Madeleine E; Foerde, Karin; Daw, Nathaniel D; Shohamy, Daphna

    2016-02-01

    Patients with loss of dopamine due to Parkinson's disease are impaired at learning from reward. However, it remains unknown precisely which aspect of learning is impaired. In particular, learning from reward, or reinforcement learning, can be driven by two distinct computational processes. One involves habitual stamping-in of stimulus-response associations, hypothesized to arise computationally from 'model-free' learning. The other, 'model-based' learning, involves learning a model of the world that is believed to support goal-directed behaviour. Much work has pointed to a role for dopamine in model-free learning. But recent work suggests model-based learning may also involve dopamine modulation, raising the possibility that model-based learning may contribute to the learning impairment in Parkinson's disease. To directly test this, we used a two-step reward-learning task which dissociates model-free versus model-based learning. We evaluated learning in patients with Parkinson's disease tested ON versus OFF their dopamine replacement medication and in healthy controls. Surprisingly, we found no effect of disease or medication on model-free learning. Instead, we found that patients tested OFF medication showed a marked impairment in model-based learning, and that this impairment was remediated by dopaminergic medication. Moreover, model-based learning was positively correlated with a separate measure of working memory performance, raising the possibility of common neural substrates. Our results suggest that some learning deficits in Parkinson's disease may be related to an inability to pursue reward based on complete representations of the environment. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. The Roles of Dopamine and Hypocretin in Reward: A Electroencephalographic Study.

    Science.gov (United States)

    Mensen, Armand; Poryazova, Rositsa; Huegli, Gordana; Baumann, Christian R; Schwartz, Sophie; Khatami, Ramin

    2015-01-01

    The proper functioning of the mesolimbic reward system is largely dependent on the neurotransmitter dopamine. Recent evidence suggests that the hypocretin system has significant projections to this reward system. We examined the distinct effects of reduced dopamine or reduced hypocretin levels on reward activity in patients with Parkinson's disease, dopamine deficient, as well as patients with narcolepsy-cataplexy, hypocretin depleted, and healthy controls. Participants performed a simple game-like task while high-density electroencephalography was recorded. Topography and timing of event-related potentials for both reward cue, and reward feedback was examined across the entire dataset. While response to reward cue was similar in all groups, two distinct time points were found to distinguish patients and controls for reward feedback. Around 160 ms both patient groups had reduced ERP amplitude compared to controls. Later at 250 ms, both patient groups also showed a clear event-related potential (ERP), which was absent in controls. The initial differences show that both patient groups show a similar, blunted response to reward delivery. The second potential corresponds to the classic feedback-related negativity (FRN) potential which relies on dopamine activity and reflects reward prediction-error signaling. In particular the mismatch between predicted reward and reward subsequently received was significantly higher in PD compared to NC, independent of reward magnitude and valence. The intermediate FRN response in NC highlights the contribution of hypocretin in reward processing, yet also shows that this is not as detrimental to the reward system as in Parkinson's. Furthermore, the inability to generate accurate predictions in NC may explain why hypocretin deficiency mediates cataplexy triggered by both positive and negative emotions.

  6. A Monetary Reward Alters Pacing but Not Performance in Competitive Cyclists.

    Science.gov (United States)

    Skorski, Sabrina; Thompson, Kevin G; Keegan, Richard J; Meyer, Tim; Abbiss, Chris R

    2017-01-01

    Money has frequently been used as an extrinsic motivator since it is assumed that humans are willing to invest more effort for financial reward. However, the influence of a monetary reward on pacing and performance in trained athletes is not well-understood. Therefore, the aim of this study was to analyse the influence of a monetary reward in well-trained cyclists on their pacing and performance during short and long cycling time trials (TT). Twentythree cyclists (6 ♀, 17 ♂) completed 4 self-paced time trials (TTs, 2 short: 4 km and 6 min; 2 long: 20 km and 30 min); in a randomized order. Participants were separated into parallel, non-randomized "rewarded" and "non-rewarded" groups. Cyclists in the rewarded group received a monetary reward based on highest mean power output across all TTs. Cyclists in the non-rewarded group did not receive a monetary reward. Overall performance was not significantly different between groups in short or long TTs ( p > 0.48). Power output showed moderatly lower effect sizes at comencement of the short TTs ( P meandiff = 36.6 W; d > 0.44) and the 20 km TT ( P meandiff = 22.6 W; d = 0.44) in the rewarded group. No difference was observed in pacing during the 30 min TT ( p = 0.95). An external reward seems to have influenced pacing at the commencement of time trials. Participants in the non-rewarded group adopted a typical parabolic shaped pattern, whereas participants in the rewarded group started trials more conservatively. Results raise the possibility that using money as an extrinsic reward may interfere with regulatory processes required for effective pacing.

  7. The Roles of Dopamine and Hypocretin in Reward: A Electroencephalographic Study.

    Directory of Open Access Journals (Sweden)

    Armand Mensen

    Full Text Available The proper functioning of the mesolimbic reward system is largely dependent on the neurotransmitter dopamine. Recent evidence suggests that the hypocretin system has significant projections to this reward system. We examined the distinct effects of reduced dopamine or reduced hypocretin levels on reward activity in patients with Parkinson's disease, dopamine deficient, as well as patients with narcolepsy-cataplexy, hypocretin depleted, and healthy controls. Participants performed a simple game-like task while high-density electroencephalography was recorded. Topography and timing of event-related potentials for both reward cue, and reward feedback was examined across the entire dataset. While response to reward cue was similar in all groups, two distinct time points were found to distinguish patients and controls for reward feedback. Around 160 ms both patient groups had reduced ERP amplitude compared to controls. Later at 250 ms, both patient groups also showed a clear event-related potential (ERP, which was absent in controls. The initial differences show that both patient groups show a similar, blunted response to reward delivery. The second potential corresponds to the classic feedback-related negativity (FRN potential which relies on dopamine activity and reflects reward prediction-error signaling. In particular the mismatch between predicted reward and reward subsequently received was significantly higher in PD compared to NC, independent of reward magnitude and valence. The intermediate FRN response in NC highlights the contribution of hypocretin in reward processing, yet also shows that this is not as detrimental to the reward system as in Parkinson's. Furthermore, the inability to generate accurate predictions in NC may explain why hypocretin deficiency mediates cataplexy triggered by both positive and negative emotions.

  8. Distinct Roles for the Amygdala and Orbitofrontal Cortex in Representing the Relative Amount of Expected Reward.

    Science.gov (United States)

    Saez, Rebecca A; Saez, Alexandre; Paton, Joseph J; Lau, Brian; Salzman, C Daniel

    2017-07-05

    The same reward can possess different motivational meaning depending upon its magnitude relative to other rewards. To study the neurophysiological mechanisms mediating assignment of motivational meaning, we recorded the activity of neurons in the amygdala and orbitofrontal cortex (OFC) of monkeys during a Pavlovian task in which the relative amount of liquid reward associated with one conditioned stimulus (CS) was manipulated by changing the reward amount associated with a second CS. Anticipatory licking tracked relative reward magnitude, implying that monkeys integrated information about recent rewards to adjust the motivational meaning of a CS. Upon changes in relative reward magnitude, neural responses to reward-predictive cues updated more rapidly in OFC than amygdala, and activity in OFC but not the amygdala was modulated by recent reward history. These results highlight a distinction between the amygdala and OFC in assessing reward history to support the flexible assignment of motivational meaning to sensory cues. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Group Decision Process Support

    DEFF Research Database (Denmark)

    Gøtze, John; Hijikata, Masao

    1997-01-01

    Introducing the notion of Group Decision Process Support Systems (GDPSS) to traditional decision-support theorists.......Introducing the notion of Group Decision Process Support Systems (GDPSS) to traditional decision-support theorists....

  10. A balance of activity in brain control and reward systems predicts self-regulatory outcomes

    OpenAIRE

    Lopez, Richard B.; Chen, Pin-Hao A.; Huckins, Jeremy F.; Hofmann, Wilhelm; Kelley, William M.; Heatherton, Todd F.

    2017-01-01

    Abstract Previous neuroimaging work has shown that increased reward-related activity following exposure to food cues is predictive of self-control failure. The balance model suggests that self-regulation failures result from an imbalance in reward and executive control mechanisms. However, an open question is whether the relative balance of activity in brain systems associated with executive control (vs reward) supports self-regulatory outcomes when people encounter tempting cues in daily lif...

  11. Reward and punishment.

    Science.gov (United States)

    Sigmund, K; Hauert, C; Nowak, M A

    2001-09-11

    Minigames capturing the essence of Public Goods experiments show that even in the absence of rationality assumptions, both punishment and reward will fail to bring about prosocial behavior. This result holds in particular for the well-known Ultimatum Game, which emerges as a special case. But reputation can induce fairness and cooperation in populations adapting through learning or imitation. Indeed, the inclusion of reputation effects in the corresponding dynamical models leads to the evolution of economically productive behavior, with agents contributing to the public good and either punishing those who do not or rewarding those who do. Reward and punishment correspond to two types of bifurcation with intriguing complementarity. The analysis suggests that reputation is essential for fostering social behavior among selfish agents, and that it is considerably more effective with punishment than with reward.

  12. Cellular Signal Mechanisms of Reward-Related Plasticity in the Hippocampus

    Directory of Open Access Journals (Sweden)

    Masako Isokawa

    2012-01-01

    Full Text Available The hippocampus has the extraordinary capacity to process and store information. Consequently, there is an intense interest in the mechanisms that underline learning and memory. Synaptic plasticity has been hypothesized to be the neuronal substrate for learning. Ca2+ and Ca2+-activated kinases control cellular processes of most forms of hippocampal synapse plasticity. In this paper, I aim to integrate our current understanding of Ca2+-mediated synaptic plasticity and metaplasticity in motivational and reward-related learning in the hippocampus. I will introduce two representative neuromodulators that are widely studied in reward-related learning (e.g., ghrelin and endocannabinoids and show how they might contribute to hippocampal neuron activities and Ca2+-mediated signaling processes in synaptic plasticity. Additionally, I will discuss functional significance of these two systems and their signaling pathways for its relevance to maladaptive reward learning leading to addiction.

  13. Neural evidence for description dependent reward processing in the framing effect

    Science.gov (United States)

    Yu, Rongjun; Zhang, Ping

    2014-01-01

    Human decision making can be influenced by emotionally valenced contexts, known as the framing effect. We used event-related brain potentials to investigate how framing influences the encoding of reward. We found that the feedback related negativity (FRN), which indexes the “worse than expected” negative prediction error in the anterior cingulate cortex (ACC), was more negative for the negative frame than for the positive frame in the win domain. Consistent with previous findings that the FRN is not sensitive to “better than expected” positive prediction error, the FRN did not differentiate the positive and negative frame in the loss domain. Our results provide neural evidence that the description invariance principle which states that reward representation and decision making are not influenced by how options are presented is violated in the framing effect. PMID:24733998

  14. Glutamatergic transmission in drug reward: implications for drug addiction.

    Science.gov (United States)

    D'Souza, Manoranjan S

    2015-01-01

    Individuals addicted to drugs of abuse such as alcohol, nicotine, cocaine, and heroin are a significant burden on healthcare systems all over the world. The positive reinforcing (rewarding) effects of the above mentioned drugs play a major role in the initiation and maintenance of the drug-taking habit. Thus, understanding the neurochemical mechanisms underlying the reinforcing effects of drugs of abuse is critical to reducing the burden of drug addiction in society. Over the last two decades, there has been an increasing focus on the role of the excitatory neurotransmitter glutamate in drug addiction. In this review, pharmacological and genetic evidence supporting the role of glutamate in mediating the rewarding effects of the above described drugs of abuse will be discussed. Further, the review will discuss the role of glutamate transmission in two complex heterogeneous brain regions, namely the nucleus accumbens (NAcc) and the ventral tegmental area (VTA), which mediate the rewarding effects of drugs of abuse. In addition, several medications approved by the Food and Drug Administration that act by blocking glutamate transmission will be discussed in the context of drug reward. Finally, this review will discuss future studies needed to address currently unanswered gaps in knowledge, which will further elucidate the role of glutamate in the rewarding effects of drugs of abuse.

  15. Psychological processes in chronic pain: Influences of reward and fear learning as key mechanisms - Behavioral evidence, neural circuits, and maladaptive changes.

    Science.gov (United States)

    Nees, Frauke; Becker, Susanne

    2017-09-07

    In the understanding of chronic pain, hypotheses derived from psychological theories, together with insights from physiological assessments and brain imaging, highlight the importance of mechanistically driven approaches. Physical system changes, for example following injury, can result in alterations of psychological processes and are accompanied by changes in corticolimbic circuits, which have been shown to be essential in emotional learning and memory, as well as reward processing and related behavior. In the present review, we thus highlight the importance of motivational, reward/pain relief, and fear learning processes in the context of chronic pain and discuss the potential of a mechanistic understanding of chronic pain within a clinical perspective, for example for the development of therapeutic strategies. We argue that changes in these mechanisms are not only characteristic for chronic pain, reflecting consequences of the disorder, but are also critically involved in the transition from acute to chronic pain states. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Modulation of neural activity by reward in medial intraparietal cortex is sensitive to temporal sequence of reward

    Science.gov (United States)

    Rajalingham, Rishi; Stacey, Richard Greg; Tsoulfas, Georgios

    2014-01-01

    To restore movements to paralyzed patients, neural prosthetic systems must accurately decode patients' intentions from neural signals. Despite significant advancements, current systems are unable to restore complex movements. Decoding reward-related signals from the medial intraparietal area (MIP) could enhance prosthetic performance. However, the dynamics of reward sensitivity in MIP is not known. Furthermore, reward-related modulation in premotor areas has been attributed to behavioral confounds. Here we investigated the stability of reward encoding in MIP by assessing the effect of reward history on reward sensitivity. We recorded from neurons in MIP while monkeys performed a delayed-reach task under two reward schedules. In the variable schedule, an equal number of small- and large-rewards trials were randomly interleaved. In the constant schedule, one reward size was delivered for a block of trials. The memory period firing rate of most neurons in response to identical rewards varied according to schedule. Using systems identification tools, we attributed the schedule sensitivity to the dependence of neural activity on the history of reward. We did not find schedule-dependent behavioral changes, suggesting that reward modulates neural activity in MIP. Neural discrimination between rewards was less in the variable than in the constant schedule, degrading our ability to decode reach target and reward simultaneously. The effect of schedule was mitigated by adding Haar wavelet coefficients to the decoding model. This raises the possibility of multiple encoding schemes at different timescales and reinforces the potential utility of reward information for prosthetic performance. PMID:25008408

  17. Modulation of neural activity by reward in medial intraparietal cortex is sensitive to temporal sequence of reward.

    Science.gov (United States)

    Rajalingham, Rishi; Stacey, Richard Greg; Tsoulfas, Georgios; Musallam, Sam

    2014-10-01

    To restore movements to paralyzed patients, neural prosthetic systems must accurately decode patients' intentions from neural signals. Despite significant advancements, current systems are unable to restore complex movements. Decoding reward-related signals from the medial intraparietal area (MIP) could enhance prosthetic performance. However, the dynamics of reward sensitivity in MIP is not known. Furthermore, reward-related modulation in premotor areas has been attributed to behavioral confounds. Here we investigated the stability of reward encoding in MIP by assessing the effect of reward history on reward sensitivity. We recorded from neurons in MIP while monkeys performed a delayed-reach task under two reward schedules. In the variable schedule, an equal number of small- and large-rewards trials were randomly interleaved. In the constant schedule, one reward size was delivered for a block of trials. The memory period firing rate of most neurons in response to identical rewards varied according to schedule. Using systems identification tools, we attributed the schedule sensitivity to the dependence of neural activity on the history of reward. We did not find schedule-dependent behavioral changes, suggesting that reward modulates neural activity in MIP. Neural discrimination between rewards was less in the variable than in the constant schedule, degrading our ability to decode reach target and reward simultaneously. The effect of schedule was mitigated by adding Haar wavelet coefficients to the decoding model. This raises the possibility of multiple encoding schemes at different timescales and reinforces the potential utility of reward information for prosthetic performance. Copyright © 2014 the American Physiological Society.

  18. Sleep spindles during a nap correlate with post sleep memory performance for highly rewarded word-pairs.

    Science.gov (United States)

    Studte, Sara; Bridger, Emma; Mecklinger, Axel

    2017-04-01

    The consolidation of new associations is thought to depend in part on physiological processes engaged during non-REM (NREM) sleep, such as slow oscillations and sleep spindles. Moreover, NREM sleep is thought to selectively benefit associations that are adaptive for the future. In line with this, the current study investigated whether different reward cues at encoding are associated with changes in sleep physiology and memory retention. Participants' associative memory was tested after learning a list of arbitrarily paired words both before and after taking a 90-min nap. During learning, word-pairs were preceded by a cue indicating either a high or a low reward for correct memory performance at test. The motivation manipulation successfully impacted retention such that memory declined to a greater extent from pre- to post sleep for low rewarded than for high rewarded word-pairs. In line with previous studies, positive correlations between spindle density during NREM sleep and general memory performance pre- and post-sleep were found. In addition to this, however, a selective positive relationship between memory performance for highly rewarded word-pairs at posttest and spindle density during NREM sleep was also observed. These results support the view that motivationally salient memories are preferentially consolidated and that sleep spindles may be an important underlying mechanism for selective consolidation. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Altered Patterns of Reward Activation in a Large Cohort of Antipsychotic Naïve First Episode Schizophrenia Patients

    DEFF Research Database (Denmark)

    Nielsen, Mette Ødegaard; Rostrup, Egill; Wulff, Sanne

    2014-01-01

    BACKGROUND Disturbances of the brain reward system are suggested to play an important role in the development of central psychopathological symptoms in schizophrenia. Several studies have been published by know looking at dysfunctions of the reward system. Often these studies are driven by specific...... hypotheses trying to link a certain aspect of reward processing to specific symptoms. However, reward processing is a complex mechanism, as it consists of several phases which interact. Thus deficit found in one part of the reward process might be secondary to other mechanism and aspects, which might...... not have been caught by the focused analyses. By using a multivariate approach we want to confirm previous findings in a smaller group of patients, and further we expect this method to reveal other important alterations in reward processing. METHODS 53 antipsychotic-naïve first-episode patients...

  20. Intrinsic rewards and work engagement in the South African retail industry

    Directory of Open Access Journals (Sweden)

    Sara Jacobs

    2014-11-01

    Research purpose: The purpose of this research was to determine whether there is a relationship between intrinsic rewards and work engagement in the South African retail industry. Furthermore, it sought to validate an instrument to measure intrinsic rewards within the South African context. Motivation for the study: There is currently a paucity of research exploring intrinsic rewards, specifically their importance for work engagement. Furthermore, there is a lack of instruments validated in South Africa that can be used to measure intrinsic rewards. Research approach, design and method: This quantitative study was conducted using a cross-sectional design and non-probability sampling of 181 employees from a South African retail organisation. The questionnaire included a demographic section, the Utrecht Work Engagement Scale and the Work Engagement Profile. Main findings: Statistically significant, positive relationships were found between all subscales of the two instruments. There were significant differences in the means for intrinsic rewards and work engagement for gender and age. Notably, the exploratory factor analysis for both instruments did not support the factor structure indicated in the literature. Practical/managerial implications: South African retail organisations should create work environments that provide intrinsic rewards as part of their reward package, to encourage work engagement. Contribution/value-add: These findings add to the current body of literature regarding intrinsic rewards and work engagement and provide insight into variables that promote work engagement within the South African retail context.

  1. Rare Neural Correlations Implement Robotic Conditioning with Delayed Rewards and Disturbances

    Science.gov (United States)

    Soltoggio, Andrea; Lemme, Andre; Reinhart, Felix; Steil, Jochen J.

    2013-01-01

    Neural conditioning associates cues and actions with following rewards. The environments in which robots operate, however, are pervaded by a variety of disturbing stimuli and uncertain timing. In particular, variable reward delays make it difficult to reconstruct which previous actions are responsible for following rewards. Such an uncertainty is handled by biological neural networks, but represents a challenge for computational models, suggesting the lack of a satisfactory theory for robotic neural conditioning. The present study demonstrates the use of rare neural correlations in making correct associations between rewards and previous cues or actions. Rare correlations are functional in selecting sparse synapses to be eligible for later weight updates if a reward occurs. The repetition of this process singles out the associating and reward-triggering pathways, and thereby copes with distal rewards. The neural network displays macro-level classical and operant conditioning, which is demonstrated in an interactive real-life human-robot interaction. The proposed mechanism models realistic conditioning in humans and animals and implements similar behaviors in neuro-robotic platforms. PMID:23565092

  2. Data from ‘Placebo Enhances Reward Learning in Healthy Individuals’

    Directory of Open Access Journals (Sweden)

    Zsolt Turi

    2018-04-01

    Full Text Available This dataset contains three repeated measures of a standard reward-based reinforcement-learning task from 29 healthy male individuals who participated in three experimental sessions exploring cognitive placebo effects on reward learning. The dataset includes behavioural data (accuracy, reaction times during learning and transfer, estimates of model-free computational analysis, self-reported arousal values, and expectations about the interventions’ efficacy. The data were collected in 2014 at the Department of Clinical Neurophysiology, University Medical Center Goettingen, Germany. The data collection and formal analysis used a triple-blind study design as participants, operator and analyst were unaware of conditions. A github repository contains data and analyses for the paper “Placebo Intervention Enhances Reward Learning in Healthy Individuals”. The dataset can be used for further analysis, reference, validation studies, teaching purposes, and collaborative research. Funding statement: This study was supported by the DFG (PA 419/15-1 awarded to WP. The preparation of this manuscript was supported by the “Research program, University Medical Center, University of Goettingen” awarded to Z.T.

  3. Marijuana and cannabinoid regulation of brain reward circuits

    OpenAIRE

    Lupica, Carl R; Riegel, Arthur C; Hoffman, Alexander F

    2004-01-01

    The reward circuitry of the brain consists of neurons that synaptically connect a wide variety of nuclei. Of these brain regions, the ventral tegmental area (VTA) and the nucleus accumbens (NAc) play central roles in the processing of rewarding environmental stimuli and in drug addiction. The psychoactive properties of marijuana are mediated by the active constituent, Δ9-THC, interacting primarily with CB1 cannabinoid receptors in a large number of brain areas. However, it is the activation o...

  4. Motivation and timing: clues for modeling the reward system.

    Science.gov (United States)

    Galtress, Tiffany; Marshall, Andrew T; Kirkpatrick, Kimberly

    2012-05-01

    There is growing evidence that a change in reward magnitude or value alters interval timing, indicating that motivation and timing are not independent processes as was previously believed. The present paper reviews several recent studies, as well as presenting some new evidence with further manipulations of reward value during training vs. testing on a peak procedure. The combined results cannot be accounted for by any of the current psychological timing theories. However, in examining the neural circuitry of the reward system, it is not surprising that motivation has an impact on timing because the motivation/valuation system directly interfaces with the timing system. A new approach is proposed for the development of the next generation of timing models, which utilizes knowledge of the neuroanatomy and neurophysiology of the reward system to guide the development of a neurocomputational model of the reward system. The initial foundation along with heuristics for proceeding with developing such a model is unveiled in an attempt to stimulate new theoretical approaches in the field. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Motivation and timing: Clues for modeling the reward system

    Science.gov (United States)

    Galtress, Tiffany; Marshall, Andrew T.; Kirkpatrick, Kimberly

    2012-01-01

    There is growing evidence that a change in reward magnitude or value alters interval timing, indicating that motivation and timing are not independent processes as was previously believed. The present paper reviews several recent studies, as well as presenting some new evidence with further manipulations of reward value during training vs. testing on a peak procedure. The combined results cannot be accounted for by any of the current psychological timing theories. However, in examining the neural circuitry of the reward system, it is not surprising that motivation has an impact on timing because the motivation/valuation system directly interfaces with the timing system. A new approach is proposed for the development of the next generation of timing models, which utilizes knowledge of the neuroanatomy and neurophysiology of the reward system to guide the development of a neurocomputational model of the reward system. The initial foundation along with heuristics for proceeding with developing such a model is unveiled in an attempt to stimulate new theoretical approaches in the field. PMID:22421220

  6. BOLD responses in reward regions to hypothetical and imaginary monetary rewards.

    OpenAIRE

    Miyapuram Krishna P; Tobler Philippe N; Gregorios-Pippas Lucy; Schultz Wolfram

    2012-01-01

    Monetary rewards are uniquely human. Because money is easy to quantify and present visually, it is the reward of choice for most fMRI studies, even though it cannot be handed over to participants inside the scanner. A typical fMRI study requires hundreds of trials and thus small amounts of monetary rewards per trial (e.g. 5p) if all trials are to be treated equally. However, small payoffs can have detrimental effects on performance due to their limited buying power. Hypothetical monetary rewa...

  7. Monetary reward magnitude effects on behavior and brain function during goal-directed behavior.

    Science.gov (United States)

    Rosell-Negre, P; Bustamante, J C; Fuentes-Claramonte, P; Costumero, V; Benabarre, S; Barrós-Loscertales, A

    2017-08-01

    Reward may modulate the cognitive processes required for goal achievement, while individual differences in personality may affect reward modulation. Our aim was to test how different monetary reward magnitudes modulate brain activation and performance during goal-directed behavior, and whether individual differences in reward sensitivity affect this modulation. For this purpose, we scanned 37 subjects with a parametric design in which we varied the magnitude of monetary rewards (€0, €0.01, €0.5, €1 or €1.5) in a blocked fashion while participants performed an interference counting-Stroop condition. The results showed that the brain activity of left dorsolateral prefrontal cortex (DLPFC) and the striatum were modulated by increasing and decreasing reward magnitudes, respectively. Behavioral performance improved as the magnitude of monetary reward increased while comparing the non reward (€0) condition to any other reward condition, or the lower €0.01 to any other reward condition, and this improvement was related with individual differences in reward sensitivity. In conclusion, the locus of influence of monetary incentives overlaps the activity of the regions commonly involved in cognitive control.

  8. [Psychosocial factors at work and cardiovascular diseases: contribution of the Effort-Reward Imbalance model].

    Science.gov (United States)

    Niedhammer, I; Siegrist, J

    1998-11-01

    The effect of psychosocial factors at work on health, especially cardiovascular health, has given rise to growing concern in occupational epidemiology over the last few years. Two theoretical models, Karasek's model and the Effort-Reward Imbalance model, have been developed to evaluate psychosocial factors at work within specific conceptual frameworks in an attempt to take into account the serious methodological difficulties inherent in the evaluation of such factors. Karasek's model, the most widely used model, measures three factors: psychological demands, decision latitude and social support at work. Many studies have shown the predictive effects of these factors on cardiovascular diseases independently of well-known cardiovascular risk factors. More recently, the Effort-Reward Imbalance model takes into account the role of individual coping characteristics which was neglected in the Karasek model. The effort-reward imbalance model focuses on the reciprocity of exchange in occupational life where high-cost/low-gain conditions are considered particularly stressful. Three dimensions of rewards are distinguished: money, esteem and gratifications in terms of promotion prospects and job security. Some studies already support that high-effort/low reward-conditions are predictive of cardiovascular diseases.

  9. Neural sensitivity to social reward and punishment anticipation in Social Anxiety Disorder.

    Directory of Open Access Journals (Sweden)

    Henk eCremers

    2015-01-01

    Full Text Available An imbalance in the neural motivational system may underlie Social Anxiety Disorder (SAD. This study examines social reward and punishment anticipation in SAD, predicting a valence-specific effect: increased striatal activity for punishment avoidance compared to obtaining a reward. Individuals with SAD (n=20 and age, gender, and education case-matched controls (n=20 participated in a functional magnetic resonance imaging (fMRI study. During fMRI scanning, participants performed a Social Incentive Delay task to measure the anticipation of social reward and punishment. The left putamen (part of the striatum showed a valence-specific interaction with group after correcting for medication use and comorbidity. The control group showed a relatively stronger activation for reward vs. punishment trials, compared to the social anxiety group. However, post-hoc pairwise comparisons were not significant, indicating that the effect is driven by a relative difference. A connectivity analysis (Psychophysiological interaction further revealed a general salience effect: SAD patients showed decreased putamen-ACC connectivity compared to controls for both reward and punishment trials. Together these results suggest that the usual motivational preference for social reward is absent in SAD. In addition, cortical control processes during social incentive anticipation may be disrupted in SAD. These results provide initial evidence for altered striatal involvement in both valence-specific and valence nonspecific processing of social incentives, and stress the relevance of taking motivational processes into account when studying social anxiety.

  10. Missing motoric manipulations: rethinking the imaging of the ventral striatum and dopamine in human reward.

    Science.gov (United States)

    Kareken, David A

    2018-01-26

    Human neuroimaging studies of natural rewards and drugs of abuse frequently assay the brain's response to stimuli that, through Pavlovian learning, have come to be associated with a drug's rewarding properties. This might be characterized as a 'sensorial' view of the brain's reward system, insofar as the paradigms are designed to elicit responses to a reward's (drug's) sight, aroma, or flavor. A different field of research nevertheless suggests that the mesolimbic dopamine system may also be critically involved in the motor behaviors provoked by such stimuli. This brief review and commentary surveys some of the preclinical data supporting this more "efferent" (motoric) view of the brain's reward system, and discusses what such findings might mean for how human brain imaging studies of natural rewards and drugs of abuse are designed.

  11. The effects of intranasal oxytocin on reward circuitry responses in children with autism spectrum disorder.

    Science.gov (United States)

    Greene, R K; Spanos, M; Alderman, C; Walsh, E; Bizzell, J; Mosner, M G; Kinard, J L; Stuber, G D; Chandrasekhar, T; Politte, L C; Sikich, L; Dichter, G S

    2018-03-27

    Intranasal oxytocin (OT) has been shown to improve social communication functioning of individuals with autism spectrum disorder (ASD) and, thus, has received considerable interest as a potential ASD therapeutic agent. Although preclinical research indicates that OT modulates the functional output of the mesocorticolimbic dopamine system that processes rewards, no clinical brain imaging study to date has examined the effects of OT on this system using a reward processing paradigm. To address this, we used an incentive delay task to examine the effects of a single dose of intranasal OT, versus placebo (PLC), on neural responses to social and nonsocial rewards in children with ASD. In this placebo-controlled double-blind study, 28 children and adolescents with ASD (age: M = 13.43 years, SD = 2.36) completed two fMRI scans, one after intranasal OT administration and one after PLC administration. During both scanning sessions, participants completed social and nonsocial incentive delay tasks. Task-based neural activation and connectivity were examined to assess the impact of OT relative to PLC on mesocorticolimbic brain responses to social and nonsocial reward anticipation and outcomes. Central analyses compared the OT and PLC conditions. During nonsocial reward anticipation, there was greater activation in the right nucleus accumbens (NAcc), left anterior cingulate cortex (ACC), bilateral orbital frontal cortex (OFC), left superior frontal cortex, and right frontal pole (FP) during the OT condition relative to PLC. Alternatively, during social reward anticipation and outcomes, there were no significant increases in brain activation during the OT condition relative to PLC. A Treatment Group × Reward Condition interaction revealed relatively greater activation in the right NAcc, right caudate nucleus, left ACC, and right OFC during nonsocial relative to social reward anticipation during the OT condition relative to PLC. Additionally, these analyses revealed

  12. Differences between Dorsal and Ventral Striatum in the Sensitivity of Tonically Active Neurons to Rewarding Events

    Directory of Open Access Journals (Sweden)

    Kevin Marche

    2017-07-01

    Full Text Available Within the striatum, cholinergic interneurons, electrophysiologically identified as tonically active neurons (TANs, represent a relatively homogeneous group in terms of their functional properties. They display typical pause in tonic firing in response to rewarding events which are of crucial importance for reinforcement learning. These responses are uniformly distributed throughout the dorsal striatum (i.e., motor and associative striatum, but it is unknown, at least in monkeys, whether differences in the modulation of TAN activity exist in the ventral striatum (i.e., limbic striatum, a region specialized for processing of motivational information. To address this issue, we examined the activity of dorsal and ventral TANs in two monkeys trained on a Pavlovian conditioning task in which a visual stimulus preceded the delivery of liquid reward by a fixed time interval. We found that the proportion of TANs responding to the stimulus predictive of reward did not vary significantly across regions (58%–80%, whereas the fraction of TANs responding to reward was higher in the limbic striatum (100% compared to the motor (65% and associative striatum (52%. By examining TAN modulation at the level of both the population and the individual neurons, we showed that the duration of pause responses to the stimulus and reward was longer in the ventral than in the dorsal striatal regions. Also, the magnitude of the pause was greater in ventral than dorsal striatum for the stimulus predictive of reward but not for the reward itself. We found similar region-specific differences in pause response duration to the stimulus when the timing of reward was less predictable (fixed replaced by variable time interval. Regional variations in the duration and magnitude of the pause response were transferred from the stimulus to reward when reward was delivered in the absence of any predictive stimulus. It therefore appears that ventral TANs exhibit stronger responses to

  13. Dopaminergic circuitry and risk/reward decision making: implications for schizophrenia.

    Science.gov (United States)

    Stopper, Colin M; Floresco, Stan B

    2015-01-01

    Abnormal reinforcement learning and representations of reward value are present in schizophrenia, and these impairments can manifest as deficits in risk/reward decision making. These abnormalities may be due in part to dopaminergic dysfunction within cortico-limbic-striatal circuitry. Evidence from studies with laboratory animal have revealed that normal DA activity within different nodes of these circuits is critical for mediating dissociable processes that can refine decision biases. Moreover, both phasic and tonic dopamine transmission appear to play separate yet complementary roles in these processes. Tonic dopamine release within the prefrontal cortex and nucleus accumbens, serves as a "running rate-meter" of reward and reflects contextual information such as reward uncertainty and overt choice behavior. On the other hand, manipulations of outcome-related phasic dopamine bursts and dips suggest these signals provide rapid feedback to allow for quick adjustments in choice as reward contingencies change. The lateral habenula is a key input to the DA system that phasic signals is necessary for expressing subjective decision biases; as suppression of activity within this nucleus leads to catastrophic impairments in decision making and random patterns of choice behavior. As schizophrenia is characterized by impairments in using positive and negative feedback to appropriately guide decision making, these findings suggest that these deficits in these processes may be mediated, at least in part, by abnormalities in both tonic and phasic dopamine transmission. © The Author 2014. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. Rewards boost sustained attention through higher effort: A value-based decision making approach.

    Science.gov (United States)

    Massar, Stijn A A; Lim, Julian; Sasmita, Karen; Chee, Michael W L

    2016-10-01

    Maintaining sustained attention over time is an effortful process limited by finite cognitive resources. Recent theories describe the role of motivation in the allocation of such resources as a decision process: the costs of effortful performance are weighed against its gains. We examined this hypothesis by combining methods from attention research and decision neuroscience. Participants first performed a sustained attention task at different levels of reward. They then performed a reward-discounting task, measuring the subjective costs of performance. Results demonstrated that higher rewards led to improved performance (Exp 1-3), and enhanced attentional effort (i.e. pupil diameter; Exp 2 & 3). Moreover, discounting curves constructed from the choice task indicated that subjects devalued rewards that came at the cost of staying vigilant for a longer duration (Exp 1 & 2). Motivation can thus boost sustained attention through increased effort, while sustained performance is regarded as a cost against which rewards are discounted. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  15. System identification to characterize human use of ethanol based on generative point-process models of video games with ethanol rewards.

    Science.gov (United States)

    Ozil, Ipek; Plawecki, Martin H; Doerschuk, Peter C; O'Connor, Sean J

    2011-01-01

    The influence of family history and genetics on the risk for the development of abuse or dependence is a major theme in alcoholism research. Recent research have used endophenotypes and behavioral paradigms to help detect further genetic contributions to this disease. Electronic tasks, essentially video games, which provide alcohol as a reward in controlled environments and with specified exposures have been developed to explore some of the behavioral and subjective characteristics of individuals with or at risk for alcohol substance use disorders. A generative model (containing parameters with unknown values) of a simple game involving a progressive work paradigm is described along with the associated point process signal processing that allows system identification of the model. The system is demonstrated on human subject data. The same human subject completing the task under different circumstances, e.g., with larger and smaller alcohol reward values, is assigned different parameter values. Potential meanings of the different parameter values are described.

  16. A Monetary Reward Alters Pacing but Not Performance in Competitive Cyclists

    Directory of Open Access Journals (Sweden)

    Sabrina Skorski

    2017-09-01

    Full Text Available Money has frequently been used as an extrinsic motivator since it is assumed that humans are willing to invest more effort for financial reward. However, the influence of a monetary reward on pacing and performance in trained athletes is not well-understood. Therefore, the aim of this study was to analyse the influence of a monetary reward in well-trained cyclists on their pacing and performance during short and long cycling time trials (TT. Twentythree cyclists (6 ♀, 17 ♂ completed 4 self-paced time trials (TTs, 2 short: 4 km and 6 min; 2 long: 20 km and 30 min; in a randomized order. Participants were separated into parallel, non-randomized “rewarded” and “non-rewarded” groups. Cyclists in the rewarded group received a monetary reward based on highest mean power output across all TTs. Cyclists in the non-rewarded group did not receive a monetary reward. Overall performance was not significantly different between groups in short or long TTs (p > 0.48. Power output showed moderatly lower effect sizes at comencement of the short TTs (Pmeandiff = 36.6 W; d > 0.44 and the 20 km TT (Pmeandiff = 22.6 W; d = 0.44 in the rewarded group. No difference was observed in pacing during the 30 min TT (p = 0.95. An external reward seems to have influenced pacing at the commencement of time trials. Participants in the non-rewarded group adopted a typical parabolic shaped pattern, whereas participants in the rewarded group started trials more conservatively. Results raise the possibility that using money as an extrinsic reward may interfere with regulatory processes required for effective pacing.

  17. Reward-based spatial learning in unmedicated adults with obsessive-compulsive disorder.

    Science.gov (United States)

    Marsh, Rachel; Tau, Gregory Z; Wang, Zhishun; Huo, Yuankai; Liu, Ge; Hao, Xuejun; Packard, Mark G; Peterson, Bradley S; Simpson, H Blair

    2015-04-01

    The authors assessed the functioning of mesolimbic and striatal areas involved in reward-based spatial learning in unmedicated adults with obsessive-compulsive disorder (OCD). Functional MRI blood-oxygen-level-dependent response was compared in 33 unmedicated adults with OCD and 33 healthy, age-matched comparison subjects during a reward-based learning task that required learning to use extramaze cues to navigate a virtual eight-arm radial maze to find hidden rewards. The groups were compared in their patterns of brain activation associated with reward-based spatial learning versus a control condition in which rewards were unexpected because they were allotted pseudorandomly to experimentally prevent learning. Both groups learned to navigate the maze to find hidden rewards, but group differences in neural activity during navigation and reward processing were detected in mesolimbic and striatal areas. During navigation, the OCD group, unlike the healthy comparison group, exhibited activation in the left posterior hippocampus. Unlike healthy subjects, participants in the OCD group did not show activation in the left ventral putamen and amygdala when anticipating rewards or in the left hippocampus, amygdala, and ventral putamen when receiving unexpected rewards (control condition). Signal in these regions decreased relative to baseline during unexpected reward receipt among those in the OCD group, and the degree of activation was inversely associated with doubt/checking symptoms. Participants in the OCD group displayed abnormal recruitment of mesolimbic and ventral striatal circuitry during reward-based spatial learning. Whereas healthy comparison subjects exhibited activation in this circuitry in response to the violation of reward expectations, unmedicated OCD participants did not and instead over-relied on the posterior hippocampus during learning. Thus, dopaminergic innervation of reward circuitry may be altered, and future study of anterior/posterior hippocampal

  18. Monetary reward speeds up voluntary saccades.

    Science.gov (United States)

    Chen, Lewis L; Chen, Y Mark; Zhou, Wu; Mustain, William D

    2014-01-01

    Past studies have shown that reward contingency is critical for sensorimotor learning, and reward expectation speeds up saccades in animals. Whether monetary reward speeds up saccades in human remains unknown. Here we addressed this issue by employing a conditional saccade task, in which human subjects performed a series of non-reflexive, visually-guided horizontal saccades. The subjects were (or were not) financially compensated for making a saccade in response to a centrally-displayed visual congruent (or incongruent) stimulus. Reward modulation of saccadic velocities was quantified independently of the amplitude-velocity coupling. We found that reward expectation significantly sped up voluntary saccades up to 30°/s, and the reward modulation was consistent across tests. These findings suggest that monetary reward speeds up saccades in human in a fashion analogous to how juice reward sped up saccades in monkeys. We further noticed that the idiosyncratic nasal-temporal velocity asymmetry was highly consistent regardless of test order, and its magnitude was not correlated with the magnitude of reward modulation. This suggests that reward modulation and the intrinsic velocity asymmetry may be governed by separate mechanisms that regulate saccade generation.

  19. Dual mechanisms governing reward-driven perceptual learning [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Dongho Kim

    2015-09-01

    Full Text Available In this review, we explore how reward signals shape perceptual learning in animals and humans. Perceptual learning is the well-established phenomenon by which extensive practice elicits selective improvement in one’s perceptual discrimination of basic visual features, such as oriented lines or moving stimuli. While perceptual learning has long been thought to rely on ‘top-down’ processes, such as attention and decision-making, a wave of recent findings suggests that these higher-level processes are, in fact, not necessary.  Rather, these recent findings indicate that reward signals alone, in the absence of the contribution of higher-level cognitive processes, are sufficient to drive the benefits of perceptual learning. Here, we will review the literature tying reward signals to perceptual learning. Based on these findings, we propose dual underlying mechanisms that give rise to perceptual learning: one mechanism that operates ‘automatically’ and is tied directly to reward signals, and another mechanism that involves more ‘top-down’, goal-directed computations.

  20. Modulation of Food Reward by Endocrine and Environmental Factors: Update and Perspective.

    Science.gov (United States)

    Figlewicz, Dianne P

    2015-01-01

    Palatable foods are frequently high in energy density. Chronic consumption of high-energy density foods can contribute to the development of cardiometabolic pathology including obesity, diabetes, and cardiovascular disease. This article reviews the contributions of extrinsic and intrinsic factors that influence the reward components of food intake. A narrative review was conducted to determine the behavioral and central nervous system (CNS) related processes involved in the reward components of high-energy density food intake. The rewarding aspects of food, particularly palatable and preferred foods, are regulated by CNS circuitry. Overlaying this regulation is modulation by intrinsic endocrine systems and metabolic hormones relating to energy homeostasis, developmental stage, or gender. It is now recognized that extrinsic or environmental factors, including ambient diet composition and the provocation of stress or anxiety, also contribute substantially to the expression of food reward behaviors such as motivation for, and seeking of, preferred foods. High-energy density food intake is influenced by both physiological and pathophysiological processes. Contextual, behavioral, and psychological factors and CNS-related processes represent potential targets for multiple types of therapeutic intervention.

  1. Selectivity in Postencoding Connectivity with High-Level Visual Cortex Is Associated with Reward-Motivated Memory

    OpenAIRE

    Murty, Vishnu P.; Tompary, Alexa; Adcock, R. Alison; Davachi, Lila

    2017-01-01

    Reward motivation has been demonstrated to enhance declarative memory by facilitating systems-level consolidation. Although high-reward information is often intermixed with lower reward information during an experience, memory for high value information is prioritized. How is this selectivity achieved? One possibility is that postencoding consolidation processes bias memory strengthening to those representations associated with higher reward. To test this hypothesis, we investigated the influ...

  2. Glutamatergic transmission in drug reward: Implications for drug addiction

    Directory of Open Access Journals (Sweden)

    Manoranjan S Dsouza

    2015-11-01

    Full Text Available Individuals addicted to drugs of abuse such as alcohol, nicotine, cocaine, and heroin are a significant burden on healthcare systems all over the world. The positive reinforcing (rewarding effects of the above mentioned drugs play a major role in the initiation and maintenance of the drug-taking habit. Thus, understanding the neurochemical mechanisms underlying the reinforcing effects of drugs of abuse is critical to reducing the burden of drug addiction in society. Over the last two decades, there has been an increasing focus on the role of the excitatory neurotransmitter glutamate in drug addiction. In this review, pharmacological and genetic evidence supporting the role of glutamate in mediating the rewarding effects of the above described drugs of abuse will be discussed. Further, the review will discuss the role of glutamate transmission in two complex heterogeneous brain regions, namely the nucleus accumbens (NAcc and the ventral tegmental area (VTA, which mediate the rewarding effects of drugs of abuse. In addition, several medications approved by the Food and Drug Administration that act by blocking glutamate transmission will be discussed in the context of drug reward. Finally, this review will discuss future studies needed to address currently unanswered gaps in knowledge, which will further elucidate the role of glutamate in the rewarding effects of drugs of abuse.

  3. Random reward priming is task-contingent

    DEFF Research Database (Denmark)

    Ásgeirsson, Árni Gunnar; Kristjánsson, Árni

    2014-01-01

    Consistent financial reward of particular features influences the allocation of visual attention in many ways. More surprising are 1-trial reward priming effects on attention where reward schedules are random and reward on one trial influences attentional allocation on the next. Those findings...

  4. Neural responses during the anticipation and receipt of olfactory reward and punishment in human.

    Science.gov (United States)

    Zou, Lai-Quan; Zhou, Han-Yu; Zhuang, Yuan; van Hartevelt, Tim J; Lui, Simon S Y; Cheung, Eric F C; Møller, Arne; Kringelbach, Morten L; Chan, Raymond C K

    2018-03-01

    Pleasure experience is an important part of normal healthy life and is essential for general and mental well-being. Many neuroimaging studies have investigated the underlying neural processing of verbal and visual modalities of reward. However, how the brain processes rewards in the olfactory modality is not fully understood. This study aimed to examine the neural basis of olfactory rewards in 25 healthy participants using functional magnetic resonance imaging (fMRI). We developed an Olfactory Incentive Delay (OLID) imaging task distinguishing between the anticipation and receipt of olfactory rewards and punishments. We found that the pallidum was activated during the anticipation of both olfactory rewards and punishments. The bilateral insula was activated independently from the odours' hedonic valence during the receipt phase. In addition, right caudate activation during the anticipation of unpleasant odours was correlated with self-reported anticipatory hedonic traits, whereas bilateral insular activation during the receipt of pleasant odours was correlated with self-reported consummatory hedonic traits. These findings suggest that activity in the insula and the caudate may be biomarkers of anhedonia. These findings also highlight a useful and valid paradigm to study the neural circuitry underlying reward processing in people with anhedonia. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Underconnectivity between voice-selective cortex and reward circuitry in children with autism.

    Science.gov (United States)

    Abrams, Daniel A; Lynch, Charles J; Cheng, Katherine M; Phillips, Jennifer; Supekar, Kaustubh; Ryali, Srikanth; Uddin, Lucina Q; Menon, Vinod

    2013-07-16

    Individuals with autism spectrum disorders (ASDs) often show insensitivity to the human voice, a deficit that is thought to play a key role in communication deficits in this population. The social motivation theory of ASD predicts that impaired function of reward and emotional systems impedes children with ASD from actively engaging with speech. Here we explore this theory by investigating distributed brain systems underlying human voice perception in children with ASD. Using resting-state functional MRI data acquired from 20 children with ASD and 19 age- and intelligence quotient-matched typically developing children, we examined intrinsic functional connectivity of voice-selective bilateral posterior superior temporal sulcus (pSTS). Children with ASD showed a striking pattern of underconnectivity between left-hemisphere pSTS and distributed nodes of the dopaminergic reward pathway, including bilateral ventral tegmental areas and nucleus accumbens, left-hemisphere insula, orbitofrontal cortex, and ventromedial prefrontal cortex. Children with ASD also showed underconnectivity between right-hemisphere pSTS, a region known for processing speech prosody, and the orbitofrontal cortex and amygdala, brain regions critical for emotion-related associative learning. The degree of underconnectivity between voice-selective cortex and reward pathways predicted symptom severity for communication deficits in children with ASD. Our results suggest that weak connectivity of voice-selective cortex and brain structures involved in reward and emotion may impair the ability of children with ASD to experience speech as a pleasurable stimulus, thereby impacting language and social skill development in this population. Our study provides support for the social motivation theory of ASD.

  6. Reward and aversion in a heterogeneous midbrain dopamine system.

    Science.gov (United States)

    Lammel, Stephan; Lim, Byung Kook; Malenka, Robert C

    2014-01-01

    The ventral tegmental area (VTA) is a heterogeneous brain structure that serves a central role in motivation and reward processing. Abnormalities in the function of VTA dopamine (DA) neurons and the targets they influence are implicated in several prominent neuropsychiatric disorders including addiction and depression. Recent studies suggest that the midbrain DA system is composed of anatomically and functionally heterogeneous DA subpopulations with different axonal projections. These findings may explain a number of previously confusing observations that suggested a role for DA in processing both rewarding as well as aversive events. Here we will focus on recent advances in understanding the neural circuits mediating reward and aversion in the VTA and how stress as well as drugs of abuse, in particular cocaine, alter circuit function within a heterogeneous midbrain DA system. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. When goals conflict with values: counterproductive attentional and oculomotor capture by reward-related stimuli.

    Science.gov (United States)

    Le Pelley, Mike E; Pearson, Daniel; Griffiths, Oren; Beesley, Tom

    2015-02-01

    Attention provides the gateway to cognition, by selecting certain stimuli for further analysis. Recent research demonstrates that whether a stimulus captures attention is not determined solely by its physical properties, but is malleable, being influenced by our previous experience of rewards obtained by attending to that stimulus. Here we show that this influence of reward learning on attention extends to task-irrelevant stimuli. In a visual search task, certain stimuli signaled the magnitude of available reward, but reward delivery was not contingent on responding to those stimuli. Indeed, any attentional capture by these critical distractor stimuli led to a reduction in the reward obtained. Nevertheless, distractors signaling large reward produced greater attentional and oculomotor capture than those signaling small reward. This counterproductive capture by task-irrelevant stimuli is important because it demonstrates how external reward structures can produce patterns of behavior that conflict with task demands, and similar processes may underlie problematic behavior directed toward real-world rewards.

  8. Effects of motivation on reward and attentional networks: an fMRI study.

    Science.gov (United States)

    Ivanov, Iliyan; Liu, Xun; Clerkin, Suzanne; Schulz, Kurt; Friston, Karl; Newcorn, Jeffrey H; Fan, Jin

    2012-11-01

    Existing evidence suggests that reward and attentional networks function in concert and that activation in one system influences the other in a reciprocal fashion; however, the nature of these influences remains poorly understood. We therefore developed a three-component task to assess the interaction effects of reward anticipation and conflict resolution on the behavioral performance and the activation of brain reward and attentional systems. Sixteen healthy adult volunteers aged 21-45 years were scanned with functional magnetic resonance imaging (fMRI) while performing the task. A two-way repeated measures analysis of variance (ANOVA) with cue (reward vs. non-reward) and target (congruent vs. incongruent) as within-subjects factors was used to test for main and interaction effects. Neural responses to anticipation, conflict, and reward outcomes were tested. Behaviorally there were main effects of both reward cue and target congruency on reaction time. Neuroimaging results showed that reward anticipation and expected reward outcomes activated components of the attentional networks, including the inferior parietal and occipital cortices, whereas surprising non-rewards activated the frontoinsular cortex bilaterally and deactivated the ventral striatum. In turn, conflict activated a broad network associated with cognitive control and motor functions. Interaction effects showed decreased activity in the thalamus, anterior cingulated gyrus, and middle frontal gyrus bilaterally when difficult conflict trials (e.g., incongruent targets) were preceded by reward cues; in contrast, the ventral striatum and orbitofrontal cortex showed greater activation during congruent targets preceded by reward cues. These results suggest that reward anticipation is associated with lower activation in attentional networks, possibly due to increased processing efficiency, whereas more difficult, conflict trials are associated with lower activity in regions of the reward system, possibly

  9. Incremental effects of reward on creativity.

    Science.gov (United States)

    Eisenberger, R; Rhoades, L

    2001-10-01

    The authors examined 2 ways reward might increase creativity. First, reward contingent on creativity might increase extrinsic motivation. Studies 1 and 2 found that repeatedly giving preadolescent students reward for creative performance in 1 task increased their creativity in subsequent tasks. Study 3 reported that reward promised for creativity increased college students' creative task performance. Second, expected reward for high performance might increase creativity by enhancing perceived self-determination and, therefore, intrinsic task interest. Study 4 found that employees' intrinsic job interest mediated a positive relationship between expected reward for high performance and creative suggestions offered at work. Study 5 found that employees' perceived self-determination mediated a positive relationship between expected reward for high performance and the creativity of anonymous suggestions for helping the organization.

  10. Expected reward value and reward uncertainty have temporally dissociable effects on memory formation

    OpenAIRE

    Adcock, R; Clement, Nathaniel; Chiew, Kimberly; Dickerson, Kathryn; Stanek, Jessica

    2018-01-01

    Anticipating rewards has been shown to enhance memory formation. While substantial evidence implicates dopamine in this behavioral effect, the precise mechanisms remain ambiguous. Because dopamine nuclei show two distinct physiological signatures of reward prediction, we hypothesized two dissociable effects on memory formation. These two signatures are a phasic dopamine response immediately following a reward cue that encodes its expected value, and a sustained, ramping dopamine response that...

  11. Social reward shapes attentional biases.

    Science.gov (United States)

    Anderson, Brian A

    2016-01-01

    Paying attention to stimuli that predict a reward outcome is important for an organism to survive and thrive. When visual stimuli are associated with tangible, extrinsic rewards such as money or food, these stimuli acquire high attentional priority and come to automatically capture attention. In humans and other primates, however, many behaviors are not motivated directly by such extrinsic rewards, but rather by the social feedback that results from performing those behaviors. In the present study, I examine whether positive social feedback can similarly influence attentional bias. The results show that stimuli previously associated with a high probability of positive social feedback elicit value-driven attentional capture, much like stimuli associated with extrinsic rewards. Unlike with extrinsic rewards, however, such stimuli also influence task-specific motivation. My findings offer a potential mechanism by which social reward shapes the information that we prioritize when perceiving the world around us.

  12. Probability differently modulating the effects of reward and punishment on visuomotor adaptation.

    Science.gov (United States)

    Song, Yanlong; Smiley-Oyen, Ann L

    2017-12-01

    Recent human motor learning studies revealed that punishment seemingly accelerated motor learning but reward enhanced consolidation of motor memory. It is not evident how intrinsic properties of reward and punishment modulate the potentially dissociable effects of reward and punishment on motor learning and motor memory. It is also not clear what causes the dissociation of the effects of reward and punishment. By manipulating probability of distribution, a critical property of reward and punishment, the present study demonstrated that probability had distinct modulation on the effects of reward and punishment in adapting to a sudden visual rotation and consolidation of the adaptation memory. Specifically, two probabilities of monetary reward and punishment distribution, 50 and 100%, were applied during young adult participants adapting to a sudden visual rotation. Punishment and reward showed distinct effects on motor adaptation and motor memory. The group that received punishments in 100% of the adaptation trials adapted significantly faster than the other three groups, but the group that received rewards in 100% of the adaptation trials showed marked savings in re-adapting to the same rotation. In addition, the group that received punishments in 50% of the adaptation trials that were randomly selected also had savings in re-adapting to the same rotation. Sensitivity to sensory prediction error or difference in explicit process induced by reward and punishment may likely contribute to the distinct effects of reward and punishment.

  13. Individual differences in regulatory focus predict neural response to reward.

    Science.gov (United States)

    Scult, Matthew A; Knodt, Annchen R; Hanson, Jamie L; Ryoo, Minyoung; Adcock, R Alison; Hariri, Ahmad R; Strauman, Timothy J

    2017-08-01

    Although goal pursuit is related to both functioning of the brain's reward circuits and psychological factors, the literatures surrounding these concepts have often been separate. Here, we use the psychological construct of regulatory focus to investigate individual differences in neural response to reward. Regulatory focus theory proposes two motivational orientations for personal goal pursuit: (1) promotion, associated with sensitivity to potential gain, and (2) prevention, associated with sensitivity to potential loss. The monetary incentive delay task was used to manipulate reward circuit function, along with instructional framing corresponding to promotion and prevention in a within-subject design. We observed that the more promotion oriented an individual was, the lower their ventral striatum response to gain cues. Follow-up analyses revealed that greater promotion orientation was associated with decreased ventral striatum response even to no-value cues, suggesting that promotion orientation may be associated with relatively hypoactive reward system function. The findings are also likely to represent an interaction between the cognitive and motivational characteristics of the promotion system with the task demands. Prevention orientation did not correlate with ventral striatum response to gain cues, supporting the discriminant validity of regulatory focus theory. The results highlight a dynamic association between individual differences in self-regulation and reward system function.

  14. Deep brain stimulation of the subthalamic nucleus modulates reward processing and action selection in Parkinson patients.

    Science.gov (United States)

    Wagenbreth, Caroline; Zaehle, Tino; Galazky, Imke; Voges, Jürgen; Guitart-Masip, Marc; Heinze, Hans-Jochen; Düzel, Emrah

    2015-06-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for motor impairments in Parkinson's disease (PD) but its effect on the motivational regulation of action control is still not fully understood. We investigated whether DBS of the STN influences the ability of PD patients to act for anticipated reward or loss, or whether DBS improves action execution independent of motivational valence. 16 PD patients (12 male, mean age = 58.5 ± 10.17 years) treated with bilateral STN-DBS and an age- and gender-matched group of healthy controls (HC) performed a go/no-go task whose contingencies explicitly decouple valence and action. Patients were tested with (ON) and without (OFF) active STN stimulation. For HC, there was a benefit in performing rewarded actions when compared to actions that avoided punishment. PD patients showed such a benefit reliably only when STN stimulation was ON. In fact, the relative behavioral benefit for go for reward over go to avoid losing was stronger in the PD patients under DBS ON than in HC. In PD patients, rather than generally improving motor functions independent of motivational valence, modulation of the STN by DBS improves action execution specifically when rewards are anticipated. Thus, STN-DBS establishes a reliable congruency between action and reward ("Pavlovian congruency") and remarkably enhances it over the level observed in HC.

  15. The attention habit: how reward learning shapes attentional selection.

    Science.gov (United States)

    Anderson, Brian A

    2016-04-01

    There is growing consensus that reward plays an important role in the control of attention. Until recently, reward was thought to influence attention indirectly by modulating task-specific motivation and its effects on voluntary control over selection. Such an account was consistent with the goal-directed (endogenous) versus stimulus-driven (exogenous) framework that had long dominated the field of attention research. Now, a different perspective is emerging. Demonstrations that previously reward-associated stimuli can automatically capture attention even when physically inconspicuous and task-irrelevant challenge previously held assumptions about attentional control. The idea that attentional selection can be value driven, reflecting a distinct and previously unrecognized control mechanism, has gained traction. Since these early demonstrations, the influence of reward learning on attention has rapidly become an area of intense investigation, sparking many new insights. The result is an emerging picture of how the reward system of the brain automatically biases information processing. Here, I review the progress that has been made in this area, synthesizing a wealth of recent evidence to provide an integrated, up-to-date account of value-driven attention and some of its broader implications. © 2015 New York Academy of Sciences.

  16. When theory and biology differ: The relationship between reward prediction errors and expectancy.

    Science.gov (United States)

    Williams, Chad C; Hassall, Cameron D; Trska, Robert; Holroyd, Clay B; Krigolson, Olave E

    2017-10-01

    Comparisons between expectations and outcomes are critical for learning. Termed prediction errors, the violations of expectancy that occur when outcomes differ from expectations are used to modify value and shape behaviour. In the present study, we examined how a wide range of expectancy violations impacted neural signals associated with feedback processing. Participants performed a time estimation task in which they had to guess the duration of one second while their electroencephalogram was recorded. In a key manipulation, we varied task difficulty across the experiment to create a range of different feedback expectancies - reward feedback was either very expected, expected, 50/50, unexpected, or very unexpected. As predicted, the amplitude of the reward positivity, a component of the human event-related brain potential associated with feedback processing, scaled inversely with expectancy (e.g., unexpected feedback yielded a larger reward positivity than expected feedback). Interestingly, the scaling of the reward positivity to outcome expectancy was not linear as would be predicted by some theoretical models. Specifically, we found that the amplitude of the reward positivity was about equivalent for very expected and expected feedback, and for very unexpected and unexpected feedback. As such, our results demonstrate a sigmoidal relationship between reward expectancy and the amplitude of the reward positivity, with interesting implications for theories of reinforcement learning. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Longitudinal Changes in Behavioral Approach System Sensitivity and Brain Structures Involved in Reward Processing during Adolescence

    Science.gov (United States)

    Urosevic, Snezana; Collins, Paul; Muetzel, Ryan; Lim, Kelvin; Luciana, Monica

    2012-01-01

    Adolescence is a period of radical normative changes and increased risk for substance use, mood disorders, and physical injury. Researchers have proposed that increases in reward sensitivity (i.e., sensitivity of the behavioral approach system [BAS]) and/or increases in reactivity to all emotional stimuli (i.e., reward and threat sensitivities)…

  18. Discrete-time rewards model-checked

    NARCIS (Netherlands)

    Larsen, K.G.; Andova, S.; Niebert, Peter; Hermanns, H.; Katoen, Joost P.

    2003-01-01

    This paper presents a model-checking approach for analyzing discrete-time Markov reward models. For this purpose, the temporal logic probabilistic CTL is extended with reward constraints. This allows to formulate complex measures – involving expected as well as accumulated rewards – in a precise and

  19. Why the carrot is more effective than the stick: different dynamics of punishment memory and reward memory and its possible biological basis.

    Science.gov (United States)

    Nakatani, Yoshihiro; Matsumoto, Yukihisa; Mori, Yasuhiro; Hirashima, Daisuke; Nishino, Hiroshi; Arikawa, Kentaro; Mizunami, Makoto

    2009-10-01

    One of the most extensively debated topics in educational psychology is whether punishment or reward is more effective for producing short-term and long-term behavioral changes, and it has been proposed that the effect of punishment is less durable than the effect of reward. However, no conclusive evidence to support this proposal has been obtained in any animals. We recently found that punishment memory decayed much faster than reward memory in olfactory learning and visual pattern learning in crickets. We also found that neurotransmitters conveying punishment and reward signals differ in crickets: dopaminergic and octopaminergic neurons play critical roles in conveying punishment and reward signals, respectively. In this study, we investigated whether these features are general features of cricket learning or are specific to olfactory and visual pattern learning. We found that crickets have the capability of color learning and that their color learning has the same features. Based on our findings in crickets and those reported in other species of insects, we conclude that these two features are conserved in many forms of insect learning. In mammals, aminergic neurons are known to convey reward and punishment signals in learning of a variety of sensory stimuli. We propose that the faster decay of punishment memory than reward memory observed in insects and humans reflects different cellular and biochemical processes after activation of receptors for amines conveying punishment and reward signals. The possible adaptive significance of relatively limited durability of punishment memory is proposed.

  20. Effects of lesions of the nucleus accumbens core on choice between small certain rewards and large uncertain rewards in rats

    Directory of Open Access Journals (Sweden)

    Howes Nathan J

    2005-05-01

    Full Text Available Abstract Background Animals must frequently make choices between alternative courses of action, seeking to maximize the benefit obtained. They must therefore evaluate the magnitude and the likelihood of the available outcomes. Little is known of the neural basis of this process, or what might predispose individuals to be overly conservative or to take risks excessively (avoiding or preferring uncertainty, respectively. The nucleus accumbens core (AcbC is known to contribute to rats' ability to choose large, delayed rewards over small, immediate rewards; AcbC lesions cause impulsive choice and an impairment in learning with delayed reinforcement. However, it is not known how the AcbC contributes to choice involving probabilistic reinforcement, such as between a large, uncertain reward and a small, certain reward. We examined the effects of excitotoxic lesions of the AcbC on probabilistic choice in rats. Results Rats chose between a single food pellet delivered with certainty (p = 1 and four food pellets delivered with varying degrees of uncertainty (p = 1, 0.5, 0.25, 0.125, and 0.0625 in a discrete-trial task, with the large-reinforcer probability decreasing or increasing across the session. Subjects were trained on this task and then received excitotoxic or sham lesions of the AcbC before being retested. After a transient period during which AcbC-lesioned rats exhibited relative indifference between the two alternatives compared to controls, AcbC-lesioned rats came to exhibit risk-averse choice, choosing the large reinforcer less often than controls when it was uncertain, to the extent that they obtained less food as a result. Rats behaved as if indifferent between a single certain pellet and four pellets at p = 0.32 (sham-operated or at p = 0.70 (AcbC-lesioned by the end of testing. When the probabilities did not vary across the session, AcbC-lesioned rats and controls strongly preferred the large reinforcer when it was certain, and strongly

  1. Drug-sensitive reward in crayfish: an invertebrate model system for the study of SEEKING, reward, addiction, and withdrawal.

    Science.gov (United States)

    Huber, Robert; Panksepp, Jules B; Nathaniel, Thomas; Alcaro, Antonio; Panksepp, Jaak

    2011-10-01

    days. This work demonstrates that crayfish offer a comparative and complementary approach in addiction research. Serving as an invertebrate animal model for the exposure to mammalian drugs of abuse, modularly organized and experimentally accessible nervous systems render crayfish uniquely suited for studying (1) the basic biological mechanisms of drug effects, (2) to explore how the appetitive/seeking disposition is implemented in a simple neural system, and (3) how such a disposition is related to the rewarding action of drugs of abuse. This work aimed to contribute an evolutionary, comparative context to our understanding of a key component in learning, and of natural reward as an important life-sustaining process. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Ventral tegmental area disruption selectively affects CA1/CA2 but not CA3 place fields during a differential reward working memory task.

    Science.gov (United States)

    Martig, Adria K; Mizumori, Sheri J Y

    2011-02-01

    Hippocampus (HPC) receives dopaminergic (DA) projections from the ventral tegmental area (VTA) and substantia nigra. These inputs appear to provide a modulatory signal that influences HPC dependent behaviors and place fields. We examined how efferent projections from VTA to HPC influence spatial working memory and place fields when the reward context changes. CA1 and CA3 process environmental context changes differently and VTA preferentially innervates CA1. Given these anatomical data and electrophysiological evidence that implicate DA in reward processing, we predicted that CA1 place fields would respond more strongly to both VTA disruption and changes in the reward context than CA3 place fields. Rats (N = 9) were implanted with infusion cannula targeting VTA and recording tetrodes aimed at HPC. Then they were tested on a differential reward, win-shift working memory task. One recording session consisted of 5 baseline and 5 manipulation trials during which place cells in CA1/CA2 (N = 167) and CA3 (N = 94) were recorded. Prior to manipulation trials rats were infused with either baclofen or saline and then subjected to control or reward conditions during which the learned locations of large and small reward quantities were reversed. VTA disruption resulted in an increase in errors, and in CA1/CA2 place field reorganization. There were no changes in any measures of CA3 place field stability during VTA disruption. Reward manipulations did not affect performance or place field stability in CA1/CA2 or CA3; however, changes in the reward locations "rescued" performance and place field stability in CA1/CA2 when VTA activity was compromised, perhaps by trigging compensatory mechanisms. These data support the hypothesis that VTA contributes to spatial working memory performance perhaps by maintaining place field stability selectively in CA1/CA2. Copyright © 2009 Wiley-Liss, Inc.

  3. Learned reward association improves visual working memory.

    Science.gov (United States)

    Gong, Mengyuan; Li, Sheng

    2014-04-01

    Statistical regularities in the natural environment play a central role in adaptive behavior. Among other regularities, reward association is potentially the most prominent factor that influences our daily life. Recent studies have suggested that pre-established reward association yields strong influence on the spatial allocation of attention. Here we show that reward association can also improve visual working memory (VWM) performance when the reward-associated feature is task-irrelevant. We established the reward association during a visual search training session, and investigated the representation of reward-associated features in VWM by the application of a change detection task before and after the training. The results showed that the improvement in VWM was significantly greater for items in the color associated with high reward than for those in low reward-associated or nonrewarded colors. In particular, the results from control experiments demonstrate that the observed reward effect in VWM could not be sufficiently accounted for by attentional capture toward the high reward-associated item. This was further confirmed when the effect of attentional capture was minimized by presenting the items in the sample and test displays of the change detection task with the same color. The results showed significantly larger improvement in VWM performance when the items in a display were in the high reward-associated color than those in the low reward-associated or nonrewarded colors. Our findings suggest that, apart from inducing space-based attentional capture, the learned reward association could also facilitate the perceptual representation of high reward-associated items through feature-based attentional modulation.

  4. BOLD responses in reward regions to hypothetical and imaginary monetary rewards

    NARCIS (Netherlands)

    Miyapuram, K.P.; Tobler, P.N.; Gregorios-Pippas, L.; Schultz, W.

    2012-01-01

    Monetary rewards are uniquely human. Because money is easy to quantify and present visually, it is the reward of choice for most fMRI studies, even though it cannot be handed over to participants inside the scanner. A typical fMRI study requires hundreds of trials and thus small amounts of monetary

  5. Striatal activation and frontostriatal connectivity during non-drug reward anticipation in alcohol dependence.

    Science.gov (United States)

    Becker, Alena; Kirsch, Martina; Gerchen, Martin Fungisai; Kiefer, Falk; Kirsch, Peter

    2017-05-01

    According to prevailing neurobiological theories of addiction, altered function in neural reward circuitry is a central mechanism of alcohol dependence. Growing evidence postulates that the ventral striatum (VS), as well as areas of the prefrontal cortex, contribute to the increased incentive salience of alcohol-associated cues, diminished motivation to pursue non-drug rewards and weakened strength of inhibitory cognitive control, which are central to addiction. The present study aims to investigate the neural response and functional connectivity underlying monetary, non-drug reward processing in alcohol dependence. We utilized a reward paradigm to investigate the anticipation of monetary reward in 32 alcohol-dependent inpatients and 35 healthy controls. Functional magnetic resonance imaging was used to measure task-related brain activation and connectivity. Alcohol-dependent patients showed increased activation of the VS during anticipation of monetary gain compared with healthy controls. Generalized psychophysiological interaction analyses revealed decreased functional connectivity between the VS and the dorsolateral prefrontal cortex in alcohol dependent patients relative to controls. Increased activation of the VS and reduced frontostriatal connectivity were associated with increased craving. These findings provide evidence that alcohol dependence is rather associated with disrupted integration of striatal and prefrontal processes than with a global reward anticipation deficit. © 2016 Society for the Study of Addiction.

  6. Cognitive control and reward/loss processing in Internet gaming disorder: Results from a comparison with recreational Internet game-users.

    Science.gov (United States)

    Dong, G; Li, H; Wang, L; Potenza, M N

    2017-07-01

    Although playing of Internet games may lead to Internet gaming disorder (IGD), most game-users do not develop problems and only a relatively small subset experiences IGD. Game playing may have positive health associations, whereas IGD has been repeatedly associated with negative health measures, and it is thus important to understand differences between individuals with IGD, recreational (non-problematic) game use (RGU) and non-/low-frequency game use (NLFGU). Individuals with IGD have shown differences in neural activations from non-gamers, yet few studies have examined neural differences between individuals with IGD, RGU and NLFGU. Eighteen individuals with IGD, 21 with RGU and 19 with NFLGU performed a color-word Stroop task and a guessing task assessing reward/loss processing. Behavioral and functional imaging data were collected and compared between groups. RGU and NLFGU subjects showed lower Stroop effects as compared with those with IGD. RGU subjects as compared to those with IGD demonstrated less frontal cortical activation brain activation during Stroop performance. During the guessing task, RGU subjects showed greater cortico-striatal activations than IGD subjects during processing of winning outcomes and greater frontal brain during processing of losing outcomes. Findings suggest that RGU as compared with IGD subjects show greater executive control and greater activations of brain regions implicated in motivational processes during reward processing and greater cortical activations during loss processing. These findings suggest neural and behavioral features distinguishing RGU from IGD and mechanisms by which RGU may be motivated to play online games frequently yet avoid developing IGD. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Improved memory for reward cues following acute buprenorphine administration in humans.

    Science.gov (United States)

    Syal, Supriya; Ipser, Jonathan; Terburg, David; Solms, Mark; Panksepp, Jaak; Malcolm-Smith, Susan; Bos, Peter A; Montoya, Estrella R; Stein, Dan J; van Honk, Jack

    2015-03-01

    In rodents, there is abundant evidence for the involvement of the opioid system in the processing of reward cues, but this system has remained understudied in humans. In humans, the happy facial expression is a pivotal reward cue. Happy facial expressions activate the brain's reward system and are disregarded by subjects scoring high on depressive mood who are low in reward drive. We investigated whether a single 0.2mg administration of the mixed mu-opioid agonist/kappa-antagonist, buprenorphine, would influence short-term memory for happy, angry or fearful expressions relative to neutral faces. Healthy human subjects (n38) participated in a randomized placebo-controlled within-subject design, and performed an emotional face relocation task after administration of buprenorphine and placebo. We show that, compared to placebo, buprenorphine administration results in a significant improvement of memory for happy faces. Our data demonstrate that acute manipulation of the opioid system by buprenorphine increases short-term memory for social reward cues. Copyright © 2015. Published by Elsevier Ltd.

  8. Do dopaminergic gene polymorphisms affect mesolimbic reward activation of music listening response? Therapeutic impact on Reward Deficiency Syndrome (RDS).

    Science.gov (United States)

    Blum, Kenneth; Chen, Thomas J H; Chen, Amanda L H; Madigan, Margaret; Downs, B William; Waite, Roger L; Braverman, Eric R; Kerner, Mallory; Bowirrat, Abdalla; Giordano, John; Henshaw, Harry; Gold, Mark S

    2010-03-01

    Using fMRI, Menon and Levitin [9] clearly found for the first time that listening to music strongly modulates activity in a network of mesolimbic structures involved in reward processing including the nucleus accumbens (NAc) and the ventral tegmental area (VTA), as well as the hypothalamus, and insula, which are thought to be involved in regulating autonomic and physiological responses to rewarding and emotional stimuli. Importantly, responses in the NAc and VTA were strongly correlated pointing to an association between dopamine release and NAc response to music. Listing to pleasant music induced a strong response and significant activation of the VTA-mediated interaction of the NAc with the hypothalamus, insula, and orbitofrontal cortex. Blum et al. [10] provided the first evidence that the dopamine D2 receptor gene (DRD2) Taq 1 A1 allele significantly associated with severe alcoholism whereby the author's suggested that they found the first "reward gene" located in the mesolimbic system. The enhanced functional and effective connectivity between brain regions mediating reward, autonomic, and cognitive processing provides insight into understanding why listening to music is one of the most rewarding and pleasurable human experiences. However, little is known about why some people have a more or less powerful mesolimbic experience when they are listening to music. It is well-known that music may induce an endorphinergic response that is blocked by naloxone, a known opioid antagonist (Goldstein [19]). Opioid transmission in the NAc is associated with dopamine release in the VTA. Moreover, dopamine release in the VTA is linked to polymorphisms of the DRD2 gene and even attention-deficit hyperactivity disorder (ADHD), whereby carriers of the DRD2 A1 allele show a reduced NAc release of dopamine (DA). Thus it is conjectured that similar mechanisms in terms of adequate dopamine release and subsequent activation of reward circuitry by listening to music might also be

  9. Waiting to win: elevated striatal and orbitofrontal cortical activity during reward anticipation in euthymic bipolar disorder adults

    Science.gov (United States)

    Nusslock, Robin; Almeida, Jorge RC; Forbes, Erika E; Versace, Amelia; Frank, Ellen; LaBarbara, Edmund J; Klein, Crystal R; Phillips, Mary L

    2012-01-01

    Objective Bipolar disorder may be characterized by a hypersensitivity to reward-relevant stimuli, potentially underlying the emotional lability and dysregulation that characterizes the illness. In parallel, research highlights the predominant role of striatal and orbitofrontal cortical (OFC) regions in reward-processing and approach-related affect. We aimed to examine whether bipolar disorder, relative to healthy, participants displayed elevated activity in these regions during reward processing. Methods Twenty-one euthymic bipolar I disorder and 20 healthy control participants with no lifetime history of psychiatric disorder underwent functional magnetic resonance imaging (fMRI) scanning during a card-guessing paradigm designed to examine reward-related brain function to anticipation and receipt of monetary reward and loss. Data were collected using a 3T Siemens Trio scanner. Results Region-of-interest analyses revealed that bipolar disorder participants displayed greater ventral striatal and right-sided orbitofrontal [Brodmann area (BA) 11] activity during anticipation, but not outcome, of monetary reward, relative to healthy controls (p anticipation (p anticipation may represent a neural mechanism for predisposition to expansive mood and hypo/mania in response to reward-relevant cues that characterizes bipolar disorder. Our findings contrast with research reporting blunted activity in the ventral striatum during reward processing in unipolar depressed individuals, relative to healthy controls. Examination of reward-related neural activity in bipolar disorder is a promising research focus to facilitate identification of biological markers of the illness. PMID:22548898

  10. Differential encoding of factors influencing predicted reward value in monkey rostral anterior cingulate cortex.

    Science.gov (United States)

    Toda, Koji; Sugase-Miyamoto, Yasuko; Mizuhiki, Takashi; Inaba, Kiyonori; Richmond, Barry J; Shidara, Munetaka

    2012-01-01

    The value of a predicted reward can be estimated based on the conjunction of both the intrinsic reward value and the length of time to obtain it. The question we addressed is how the two aspects, reward size and proximity to reward, influence the responses of neurons in rostral anterior cingulate cortex (rACC), a brain region thought to play an important role in reward processing. We recorded from single neurons while two monkeys performed a multi-trial reward schedule task. The monkeys performed 1-4 sequential color discrimination trials to obtain a reward of 1-3 liquid drops. There were two task conditions, a valid cue condition, where the number of trials and reward amount were associated with visual cues, and a random cue condition, where the cue was picked from the cue set at random. In the valid cue condition, the neuronal firing is strongly modulated by the predicted reward proximity during the trials. Information about the predicted reward amount is almost absent at those times. In substantial subpopulations, the neuronal responses decreased or increased gradually through schedule progress to the predicted outcome. These two gradually modulating signals could be used to calculate the effect of time on the perception of reward value. In the random cue condition, little information about the reward proximity or reward amount is encoded during the course of the trial before reward delivery, but when the reward is actually delivered the responses reflect both the reward proximity and reward amount. Our results suggest that the rACC neurons encode information about reward proximity and amount in a manner that is dependent on utility of reward information. The manner in which the information is represented could be used in the moment-to-moment calculation of the effect of time and amount on predicted outcome value.

  11. Reward acts on the pFC to enhance distractor resistance of working memory representations.

    Science.gov (United States)

    Fallon, Sean James; Cools, Roshan

    2014-12-01

    Working memory and reward processing are often thought to be separate, unrelated processes. However, most daily activities involve integrating these two types of information, and the two processes rarely, if ever, occur in isolation. Here, we show that working memory and reward interact in a task-dependent manner and that this task-dependent interaction involves modulation of the pFC by the ventral striatum. Specifically, BOLD signal during gains relative to losses in the ventral striatum and pFC was associated not only with enhanced distractor resistance but also with impairment in the ability to update working memory representations. Furthermore, the effect of reward on working memory was accompanied by differential coupling between the ventral striatum and ignore-related regions in the pFC. Together, these data demonstrate that reward-related signals modulate the balance between cognitive stability and cognitive flexibility by altering functional coupling between the ventral striatum and the pFC.

  12. Neural correlates of reward and loss sensitivity in psychopathy.

    Science.gov (United States)

    Pujara, Maia; Motzkin, Julian C; Newman, Joseph P; Kiehl, Kent A; Koenigs, Michael

    2014-06-01

    Psychopathy is a personality disorder associated with callous and impulsive behavior and criminal recidivism. It has long been theorized that psychopaths have deficits in processing reward and punishment. Here, we use structural and functional magnetic resonance imaging to examine the neural correlates of reward and loss sensitivity in a group of criminal psychopaths. Forty-one adult male prison inmates (n = 18 psychopaths and n = 23 non-psychopaths) completed a functional magnetic resonance imaging task involving the gain or loss of money. Across the entire sample of participants, monetary gains elicited robust activation within the ventral striatum (VS). Although psychopaths and non-psychopaths did not significantly differ with respect to overall levels of VS response to reward vs loss, we observed significantly different correlations between VS responses and psychopathy severity within each group. Volumetric analyses of striatal subregions revealed a similar pattern of correlations, specifically for the right accumbens area within VS. In a separate sample of inmates (n = 93 psychopaths and n = 117 non-psychopaths) who completed a self-report measure of appetitive motivation, we again found that the correlation with psychopathy severity differed between groups. These convergent results offer novel insight into the neural substrates of reward and loss processing in psychopathy. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  13. Business process support

    Energy Technology Data Exchange (ETDEWEB)

    Carle, Adriana; Fiducia, Daniel [Transportadora de Gas del Sur S.A. (TGS), Buenos Aires (Argentina)

    2005-07-01

    This paper is about the own development of business support software. The developed applications are used to support two business processes: one of them is the process of gas transportation and the other is the natural gas processing. This software has interphases with the ERP SAP, software SCADA and on line gas transportation simulation software. The main functionalities of the applications are: entrance on line real time of clients transport nominations, transport programming, allocation of the clients transport nominations, transport control, measurements, balanced pipeline, allocation of gas volume to the gas processing plants, calculate of product tons processed in each plant and tons of product distributed to clients. All the developed software generates information to the internal staff, regulatory authorities and clients. (author)

  14. Dynamic integration of reward and stimulus information in perceptual decision-making.

    Science.gov (United States)

    Gao, Juan; Tortell, Rebecca; McClelland, James L

    2011-03-03

    In perceptual decision-making, ideal decision-makers should bias their choices toward alternatives associated with larger rewards, and the extent of the bias should decrease as stimulus sensitivity increases. When responses must be made at different times after stimulus onset, stimulus sensitivity grows with time from zero to a final asymptotic level. Are decision makers able to produce responses that are more biased if they are made soon after stimulus onset, but less biased if they are made after more evidence has been accumulated? If so, how close to optimal can they come in doing this, and how might their performance be achieved mechanistically? We report an experiment in which the payoff for each alternative is indicated before stimulus onset. Processing time is controlled by a "go" cue occurring at different times post stimulus onset, requiring a response within msec. Reward bias does start high when processing time is short and decreases as sensitivity increases, leveling off at a non-zero value. However, the degree of bias is sub-optimal for shorter processing times. We present a mechanistic account of participants' performance within the framework of the leaky competing accumulator model [1], in which accumulators for each alternative accumulate noisy information subject to leakage and mutual inhibition. The leveling off of accuracy is attributed to mutual inhibition between the accumulators, allowing the accumulator that gathers the most evidence early in a trial to suppress the alternative. Three ways reward might affect decision making in this framework are considered. One of the three, in which reward affects the starting point of the evidence accumulation process, is consistent with the qualitative pattern of the observed reward bias effect, while the other two are not. Incorporating this assumption into the leaky competing accumulator model, we are able to provide close quantitative fits to individual participant data.

  15. A reward semi-Markov process with memory for wind speed modeling

    Science.gov (United States)

    Petroni, F.; D'Amico, G.; Prattico, F.

    2012-04-01

    -order Markov chain with different number of states, and Weibull distribution. All this model use Markov chains to generate synthetic wind speed time series but the search for a better model is still open. Approaching this issue, we applied new models which are generalization of Markov models. More precisely we applied semi-Markov models to generate synthetic wind speed time series. The primary goal of this analysis is the study of the time history of the wind in order to assess its reliability as a source of power and to determine the associated storage levels required. In order to assess this issue we use a probabilistic model based on indexed semi-Markov process [4] to which a reward structure is attached. Our model is used to calculate the expected energy produced by a given turbine and its variability expressed by the variance of the process. Our results can be used to compare different wind farms based on their reward and also on the risk of missed production due to the intrinsic variability of the wind speed process. The model is used to generate synthetic time series for wind speed by means of Monte Carlo simulations and backtesting procedure is used to compare results on first and second oder moments of rewards between real and synthetic data. [1] A. Shamshad, M.A. Bawadi, W.M.W. Wan Hussin, T.A. Majid, S.A.M. Sanusi, First and second order Markov chain models for synthetic gen- eration of wind speed time series, Energy 30 (2005) 693-708. [2] H. Nfaoui, H. Essiarab, A.A.M. Sayigh, A stochastic Markov chain model for simulating wind speed time series at Tangiers, Morocco, Re- newable Energy 29 (2004) 1407-1418. [3] F. Youcef Ettoumi, H. Sauvageot, A.-E.-H. Adane, Statistical bivariate modeling of wind using first-order Markov chain and Weibull distribu- tion, Renewable Energy 28 (2003) 1787-1802. [4]F. Petroni, G. D'Amico, F. Prattico, Indexed semi-Markov process for wind speed modeling. To be submitted.

  16. Reward processing dysfunction in ventral striatum and orbitofrontal cortex in Parkinson's disease

    NARCIS (Netherlands)

    du Plessis, Stéfan; Bossert, Meija; Vink, Matthijs; van den Heuvel, Leigh; Bardien, Soraya; Emsley, Robin; Buckle, Chanelle; Seedat, Soraya; Carr, Jonathan

    BACKGROUND: Parkinson's disease is a growing concern as the longevity of the world's population steadily increases. Both ageing and Parkinson's disease have an impact on dopamine neurotransmission. It is therefore important to investigate their relative impact on the fronto-striatal reward system.

  17. From Affective Experience to Motivated Action : Tracking Reward-Seeking and Punishment-Avoidant Behaviour in Real-Life

    NARCIS (Netherlands)

    Wichers, Marieke; Kasanova, Zuzana; Bakker, Jindra; Thiery, Evert; Derom, Catherine; Jacobs, Nele; van Os, Jim

    2015-01-01

    Many of the decisions and actions in everyday life result from implicit learning processes. Important to psychopathology are, for example, implicit reward-seeking and punishment-avoidant learning processes. It is known that when specific actions get associated with a rewarding experience, such as

  18. Measuring and modeling the interaction among reward size, delay to reward, and satiation level on motivation in monkeys.

    Science.gov (United States)

    Minamimoto, Takafumi; La Camera, Giancarlo; Richmond, Barry J

    2009-01-01

    Motivation is usually inferred from the likelihood or the intensity with which behavior is carried out. It is sensitive to external factors (e.g., the identity, amount, and timing of a rewarding outcome) and internal factors (e.g., hunger or thirst). We trained macaque monkeys to perform a nonchoice instrumental task (a sequential red-green color discrimination) while manipulating two external factors: reward size and delay-to-reward. We also inferred the state of one internal factor, level of satiation, by monitoring the accumulated reward. A visual cue indicated the forthcoming reward size and delay-to-reward in each trial. The fraction of trials completed correctly by the monkeys increased linearly with reward size and was hyperbolically discounted by delay-to-reward duration, relations that are similar to those found in free operant and choice tasks. The fraction of correct trials also decreased progressively as a function of the satiation level. Similar (albeit noiser) relations were obtained for reaction times. The combined effect of reward size, delay-to-reward, and satiation level on the proportion of correct trials is well described as a multiplication of the effects of the single factors when each factor is examined alone. These results provide a quantitative account of the interaction of external and internal factors on instrumental behavior, and allow us to extend the concept of subjective value of a rewarding outcome, usually confined to external factors, to account also for slow changes in the internal drive of the subject.

  19. Effort–Reward Imbalance at Work and Incident Coronary Heart Disease

    Science.gov (United States)

    Siegrist, Johannes; Nyberg, Solja T.; Lunau, Thorsten; Fransson, Eleonor I.; Alfredsson, Lars; Bjorner, Jakob B.; Borritz, Marianne; Burr, Hermann; Erbel, Raimund; Fahlén, Göran; Goldberg, Marcel; Hamer, Mark; Heikkilä, Katriina; Jöckel, Karl-Heinz; Knutsson, Anders; Madsen, Ida E. H.; Nielsen, Martin L.; Nordin, Maria; Oksanen, Tuula; Pejtersen, Jan H.; Pentti, Jaana; Rugulies, Reiner; Salo, Paula; Schupp, Jürgen; Singh-Manoux, Archana; Steptoe, Andrew; Theorell, Töres; Vahtera, Jussi; Westerholm, Peter J. M.; Westerlund, Hugo; Virtanen, Marianna; Zins, Marie; Batty, G. David; Kivimäki, Mika

    2017-01-01

    Background: Epidemiologic evidence for work stress as a risk factor for coronary heart disease is mostly based on a single measure of stressful work known as job strain, a combination of high demands and low job control. We examined whether a complementary stress measure that assesses an imbalance between efforts spent at work and rewards received predicted coronary heart disease. Methods: This multicohort study (the “IPD-Work” consortium) was based on harmonized individual-level data from 11 European prospective cohort studies. Stressful work in 90,164 men and women without coronary heart disease at baseline was assessed by validated effort–reward imbalance and job strain questionnaires. We defined incident coronary heart disease as the first nonfatal myocardial infarction or coronary death. Study-specific estimates were pooled by random effects meta-analysis. Results: At baseline, 31.7% of study members reported effort–reward imbalance at work and 15.9% reported job strain. During a mean follow-up of 9.8 years, 1,078 coronary events were recorded. After adjustment for potential confounders, a hazard ratio of 1.16 (95% confidence interval, 1.00–1.35) was observed for effort–reward imbalance compared with no imbalance. The hazard ratio was 1.16 (1.01–1.34) for having either effort–reward imbalance or job strain and 1.41 (1.12–1.76) for having both these stressors compared to having neither effort–reward imbalance nor job strain. Conclusions: Individuals with effort–reward imbalance at work have an increased risk of coronary heart disease, and this appears to be independent of job strain experienced. These findings support expanding focus beyond just job strain in future research on work stress. PMID:28570388

  20. Identity-specific coding of future rewards in the human orbitofrontal cortex.

    Science.gov (United States)

    Howard, James D; Gottfried, Jay A; Tobler, Philippe N; Kahnt, Thorsten

    2015-04-21

    Nervous systems must encode information about the identity of expected outcomes to make adaptive decisions. However, the neural mechanisms underlying identity-specific value signaling remain poorly understood. By manipulating the value and identity of appetizing food odors in a pattern-based imaging paradigm of human classical conditioning, we were able to identify dissociable predictive representations of identity-specific reward in orbitofrontal cortex (OFC) and identity-general reward in ventromedial prefrontal cortex (vmPFC). Reward-related functional coupling between OFC and olfactory (piriform) cortex and between vmPFC and amygdala revealed parallel pathways that support identity-specific and -general predictive signaling. The demonstration of identity-specific value representations in OFC highlights a role for this region in model-based behavior and reveals mechanisms by which appetitive behavior can go awry.

  1. Effects of pulvinar inactivation on spatial decision-making between equal and asymmetric reward options.

    Science.gov (United States)

    Wilke, Melanie; Kagan, Igor; Andersen, Richard A

    2013-08-01

    The ability to selectively process visual inputs and to decide between multiple movement options in an adaptive manner is critical for survival. Such decisions are known to be influenced by factors such as reward expectation and visual saliency. The dorsal pulvinar connects to a multitude of cortical areas that are involved in visuospatial memory and integrate information about upcoming eye movements with expected reward values. However, it is unclear whether the dorsal pulvinar is critically involved in spatial memory and reward-based oculomotor decision behavior. To examine this, we reversibly inactivated the dorsal portion of the pulvinar while monkeys performed a delayed memory saccade task that included choices between equally or unequally rewarded options. Pulvinar inactivation resulted in a delay of saccade initiation toward memorized contralesional targets but did not affect spatial memory. Furthermore, pulvinar inactivation caused a pronounced choice bias toward the ipsilesional hemifield when the reward value in the two hemifields was equal. However, this choice bias could be alleviated by placing a high reward target into the contralesional hemifield. The bias was less affected by the manipulation of relative visual saliency between the two competing targets. These results suggest that the dorsal pulvinar is involved in determining the behavioral desirability of movement goals while being less critical for spatial memory and reward processing.

  2. Effects of reward on the accuracy and dynamics of smooth pursuit eye movements.

    Science.gov (United States)

    Brielmann, Aenne A; Spering, Miriam

    2015-08-01

    Reward modulates behavioral choices and biases goal-oriented behavior, such as eye or hand movements, toward locations or stimuli associated with higher rewards. We investigated reward effects on the accuracy and timing of smooth pursuit eye movements in 4 experiments. Eye movements were recorded in participants tracking a moving visual target on a computer monitor. Before target motion onset, a monetary reward cue indicated whether participants could earn money by tracking accurately, or whether the trial was unrewarded (Experiments 1 and 2, n = 11 each). Reward significantly improved eye-movement accuracy across different levels of task difficulty. Improvements were seen even in the earliest phase of the eye movement, within 70 ms of tracking onset, indicating that reward impacts visual-motor processing at an early level. We obtained similar findings when reward was not precued but explicitly associated with the pursuit target (Experiment 3, n = 16); critically, these results were not driven by stimulus prevalence or other factors such as preparation or motivation. Numerical cues (Experiment 4, n = 9) were not effective. (c) 2015 APA, all rights reserved).

  3. “Liking” and “Wanting” Linked to Reward Deficiency Syndrome (RDS): Hypothesizing Differential Responsivity in Brain Reward Circuitry

    OpenAIRE

    Blum, Kenneth; Gardner, Eliot; Oscar-Berman, Marlene; Gold, Mark

    2012-01-01

    In an attempt to resolve controversy regarding the causal contributions of mesolimbic dopamine (DA) systems to reward, we evaluate the three main competing explanatory categories: “liking,” “learning,” and “wanting” [1]. That is, DA may mediate (a) the hedonic impact of reward (liking), (b) learned predictions about rewarding effects (learning), or (c) the pursuit of rewards by attributing incentive salience to reward-related stimuli (wanting). We evaluate these hypotheses, especially as they...

  4. The Role of Intelligence in the Formation of Well-Being: From Job Rewards to Job Satisfaction

    Science.gov (United States)

    Ganzach, Yoav; Fried, Itzhak

    2012-01-01

    In a longitudinal study, we investigate the moderating role of intelligence on the effects of intrinsic and extrinsic rewards and intrinsic and extrinsic satisfactions on global job satisfaction. The results support our hypotheses that: (1) intrinsic rewards and intrinsic satisfaction are more strongly related to global job satisfaction among…

  5. Registered nurses' perceptions of rewarding and its significance.

    Science.gov (United States)

    Seitovirta, Jaana; Lehtimäki, Aku-Ville; Vehviläinen-Julkunen, Katri; Mitronen, Lasse; Kvist, Tarja

    2017-11-07

    To examine reward type preferences and their relationships with the significance of rewarding perceived by registered nurses in Finland. Previous studies have found relationships between nurses' rewarding and their motivation at work, job satisfaction and organisational commitment. Data were collected in a cross-sectional, descriptive, questionnaire survey from 402 registered nurses using the Registered Nurses' Perceptions of Rewarding Scale in 2015, and analysed with descriptive and multivariate statistical methods. Registered nurses assigned slightly higher values to several non-financial than to financial rewards. The non-financial reward types appreciation and feedback from work community, worktime arrangements, work content, and opportunity to develop, influence and participate were highly related to the significance of rewarding. We identified various rewards that registered nurses value, and indications that providing an appropriate array of rewards, particularly non-financial rewards, is a highly beneficial element of nursing management. It is important to understand the value of rewards for nursing management. Nurse managers should offer diverse rewards to their registered nurses to promote excellent performance and to help efforts to secure and maintain high-quality, safe patient care. The use of appropriate rewards is especially crucial to improving registered nurses' reward satisfaction and job satisfaction globally in the nursing profession. © 2017 John Wiley & Sons Ltd.

  6. Comorbidity of Alcohol Use Disorder and Chronic Pain: Genetic Influences on Brain Reward and Stress Systems.

    Science.gov (United States)

    Yeung, Ellen W; Craggs, Jason G; Gizer, Ian R

    2017-11-01

    Alcohol use disorder (AUD) is highly comorbid with chronic pain (CP). Evidence has suggested that neuroadaptive processes characterized by reward deficit and stress surfeit are involved in the development of AUD and pain chronification. Neurological data suggest that shared genetic architecture associated with the reward and stress systems may contribute to the comorbidity of AUD and CP. This monograph first delineates the prevailing theories of the development of AUD and pain chronification focusing on the reward and stress systems. It then provides a brief summary of relevant neurological findings followed by an evaluation of evidence documented by molecular genetic studies. Candidate gene association studies have provided some initial support for the genetic overlap between AUD and CP; however, these results must be interpreted with caution until studies with sufficient statistical power are conducted and replications obtained. Genomewide association studies have suggested a number of genes (e.g., TBX19, HTR7, and ADRA1A) that are either directly or indirectly related to the reward and stress systems in the AUD and CP literature. Evidence reviewed in this monograph suggests that shared genetic liability underlying the comorbidity between AUD and CP, if present, is likely to be complex. As the advancement in molecular genetic methods continues, future studies may show broader central nervous system involvement in AUD-CP comorbidity. Copyright © 2017 by the Research Society on Alcoholism.

  7. Dopamine reward prediction errors reflect hidden state inference across time

    Science.gov (United States)

    Starkweather, Clara Kwon; Babayan, Benedicte M.; Uchida, Naoshige; Gershman, Samuel J.

    2017-01-01

    Midbrain dopamine neurons signal reward prediction error (RPE), or actual minus expected reward. The temporal difference (TD) learning model has been a cornerstone in understanding how dopamine RPEs could drive associative learning. Classically, TD learning imparts value to features that serially track elapsed time relative to observable stimuli. In the real world, however, sensory stimuli provide ambiguous information about the hidden state of the environment, leading to the proposal that TD learning might instead compute a value signal based on an inferred distribution of hidden states (a ‘belief state’). In this work, we asked whether dopaminergic signaling supports a TD learning framework that operates over hidden states. We found that dopamine signaling exhibited a striking difference between two tasks that differed only with respect to whether reward was delivered deterministically. Our results favor an associative learning rule that combines cached values with hidden state inference. PMID:28263301

  8. Monetary reward modulates task-irrelevant perceptual learning for invisible stimuli.

    Science.gov (United States)

    Pascucci, David; Mastropasqua, Tommaso; Turatto, Massimo

    2015-01-01

    Task Irrelevant Perceptual Learning (TIPL) shows that the brain's discriminative capacity can improve also for invisible and unattended visual stimuli. It has been hypothesized that this form of "unconscious" neural plasticity is mediated by an endogenous reward mechanism triggered by the correct task performance. Although this result has challenged the mandatory role of attention in perceptual learning, no direct evidence exists of the hypothesized link between target recognition, reward and TIPL. Here, we manipulated the reward value associated with a target to demonstrate the involvement of reinforcement mechanisms in sensory plasticity for invisible inputs. Participants were trained in a central task associated with either high or low monetary incentives, provided only at the end of the experiment, while subliminal stimuli were presented peripherally. Our results showed that high incentive-value targets induced a greater degree of perceptual improvement for the subliminal stimuli, supporting the role of reinforcement mechanisms in TIPL.

  9. Girls’ challenging social experiences in early adolescence predict neural response to rewards and depressive symptoms

    Directory of Open Access Journals (Sweden)

    Melynda D. Casement

    2014-04-01

    Full Text Available Developmental models of psychopathology posit that exposure to social stressors may confer risk for depression in adolescent girls by disrupting neural reward circuitry. The current study tested this hypothesis by examining the relationship between early adolescent social stressors and later neural reward processing and depressive symptoms. Participants were 120 girls from an ongoing longitudinal study of precursors to depression across adolescent development. Low parental warmth, peer victimization, and depressive symptoms were assessed when the girls were 11 and 12 years old, and participants completed a monetary reward guessing fMRI task and assessment of depressive symptoms at age 16. Results indicate that low parental warmth was associated with increased response to potential rewards in the medial prefrontal cortex (mPFC, striatum, and amygdala, whereas peer victimization was associated with decreased response to potential rewards in the mPFC. Furthermore, concurrent depressive symptoms were associated with increased reward anticipation response in mPFC and striatal regions that were also associated with early adolescent psychosocial stressors, with mPFC and striatal response mediating the association between social stressors and depressive symptoms. These findings are consistent with developmental models that emphasize the adverse impact of early psychosocial stressors on neural reward processing and risk for depression in adolescence.

  10. The relationship between personality types and reward preferences

    Directory of Open Access Journals (Sweden)

    R. Nienaber

    2011-12-01

    Full Text Available Orientation: Research has shown that total rewards models structured according to individual preferences, positively influence efforts to attract, retain and motivate key employees. Yet, this is seldom done. Structuring total rewards models according to the preferences of employee segments is a viable alternative to accommodate individual preferences. Research purpose: The primary aim of the study was to determine the relationship between personality types and reward preferences. The secondary aim was to determine the reward preferences for different demographic groups. Motivation for the study: An enhanced understanding of reward preferences for different employee segments will enable employers to offer more competitive reward options to their employees. This may, in turn, have a positive impact on retention. Research design, approach and method: Two measuring instruments, the MBTI® Form GRV and the Rewards Preferences Questionnaire, were distributed electronically to 5 000 potential respondents. The results from 589 sets of questionnaires were used in the data analyses. Primary and secondary factor analyses were done on the items in the Rewards Preferences Questionnaire. Main findings/results: The study confirmed that individuals with certain personality types and personality preferences, have different preferences for certain reward categories. There was a stronger relationship between reward preferences and personality preferences than for reward preferences and personality types. Preferences for reward categories by different demographic groups were confirmed. The significant difference in reward preferences between Black and White respondents in particular was noteworthy, with Black respondents indicating significantly higher mean scores for all reward categories than White respondents. Finally, a total rewards framework influenced by the most prominent preferences for reward categories, was designed. Practical/Managerial implications

  11. The relative importance of different types of rewards for employee motivation and commitment in South Africa

    Directory of Open Access Journals (Sweden)

    Aleeshah Nujjoo

    2012-11-01

    Research purpose: The study sought to establish the relationship between intrinsic and different extrinsic rewards with intrinsic motivation and affective commitment. Motivation for the study: South African organisations are grappling with employee retention. Literature shows that employees who are more motivated and committed to their organisation are less likely to quit. Rewards management strategies serve to create a motivated and committed workforce. Using the correct types of rewards can thus provide a competitive advantage. Research design, approach and method: A cross-sectional, correlational study was conducted. Questionnaire data of 399 South African employees were analysed using bivariate correlations and multiple regression. Main findings: Three main findings emerged. Firstly, there is a relationship between all types of rewards investigated and the two outcome variables. Secondly, this relationship is stronger for intrinsic than for extrinsic rewards and thirdly, monetary rewards do not account for the variance in intrinsic motivation above that of non-monetary rewards. Practical/managerial implications: Rewards management strategies should focus on job characteristics and designs to increase staff intrinsic rewards and include non-monetary rewards, such as supportive leadership, to encourage employees’ intrinsic motivation and affective commitment. Contribution/value-add: This research demonstrated the important role different rewards, particularly intrinsic non-monetary rewards, play in creating a committed and motivated workforce. The insights gained from this study can promote organisational effectiveness. Suggestions of how to expand on and refine the current study are addressed.

  12. Implementing a reward and reminder underage drinking prevention program in convenience stores near Southern California American Indian reservations.

    Science.gov (United States)

    Moore, Roland S; Roberts, Jennifer; McGaffigan, Richard; Calac, Daniel; Grube, Joel W; Gilder, David A; Ehlers, Cindy L

    2012-09-01

    Underage drinking is associated with a number of social and public health consequences. Preventing access to alcohol is one approach to reducing underage drinking. This study assesses the efficacy of a culturally tailored "reward and reminder" program aimed at reducing convenience store alcohol sales to youth living on or near nine American Indian reservations. First, tribal council proclamations were sought to support underage drinking prevention, including reward and reminder efforts. Then, decoys (volunteers over 21 years of age but judged to look younger) attempted to purchase alcohol without identification. Clerks who asked for identification were given "rewards" (gift cards and congratulatory letters), whereas clerks who did not were given "reminders" of the law regarding sales to minors. Following an initial baseline of 12 purchase attempts, three repeated reward and reminder visits were made to 13 convenience stores selling alcohol within 10 miles of the reservations (n = 51 total attempts). Five of nine tribal councils passed resolutions in support of the program. The baseline sales rate without requesting ID was 33%. Similarly, 38% of stores in the first reward and reminder visit round failed to request identification. However, in the following two reward and reminder rounds, 0% of the stores failed to request identification. These results indicate that environmental community-level underage drinking prevention strategies to reduce alcohol sales near rural reservations are feasible and can be effective. Environmental prevention strategies within reservation communities support integrated supply and demand reduction models for reducing underage drinking.

  13. Reward-prospect interacts with trial-by-trial preparation for potential distraction.

    Science.gov (United States)

    Marini, Francesco; van den Berg, Berry; Woldorff, Marty G

    2015-02-01

    When attending for impending visual stimuli, cognitive systems prepare to identify relevant information while ignoring irrelevant, potentially distracting input. Recent work (Marini et al., 2013) showed that a supramodal distracter-filtering mechanism is invoked in blocked designs involving expectation of possible distracter stimuli, although this entails a cost ( distraction-filtering cost ) on speeded performance when distracters are expected but not presented. Here we used an arrow-flanker task to study whether an analogous cost, potentially reflecting the recruitment of a specific distraction-filtering mechanism, occurs dynamically when potential distraction is cued trial-to-trial ( cued distracter-expectation cost ). In order to promote the maximal utilization of cue information by participants, in some experimental conditions the cue also signaled the possibility of earning a monetary reward for fast and accurate performance. This design also allowed us to investigate the interplay between anticipation for distracters and anticipation of reward, which is known to engender attentional preparation. Only in reward contexts did participants show a cued distracter-expectation cost, which was larger with higher reward prospect and when anticipation for both distracters and reward were manipulated trial-to-trial. Thus, these results indicate that reward prospect interacts with the distracter expectation during trial-by-trial preparatory processes for potential distraction. These findings highlight how reward guides cue-driven attentional preparation.

  14. The relationship between occupational culture dimensions and reward preferences: A structural equation modelling approach

    Directory of Open Access Journals (Sweden)

    Mark Bussin

    2016-06-01

    Full Text Available Orientation: Reward has links to employee attraction and retention and as such has a role to play in managing talent. However, despite a range of research, there is still lack of clarity on employee preferences relating to reward. Research purpose: The purpose of the research was to recommend and appraise a theoretical model of the relationship between occupational culture dimensions and reward preferences of specific occupational groups in the South African context. Motivation for the study: The motivation for this study was to address the gap that exists with reward preferences and occupational culture with a view to identifying and gaining insight into individual preferences. Research design, approach and method: A structural equation modelling approach was adopted in exploring the proposed relationships. A South African Information, Communication, and Technology (ICT organisation served as the population, and a web-based survey assisted in gathering study data (n = 1362. Main findings: The findings provided support for the relationship between occupational culture dimensions and certain reward preferences. In particular, statistically significant results were obtained with the inclusion of the Environment, Team, and Time occupational culture dimensions as independent variables. Practical implications and value-add: The study provides workable input to organisations and reward professionals in the design of their reward strategies and programmes. Keywords: compensation; employee preferences; occupational culture; remuneration; reward preferences

  15. Brain reward region responsivity of adolescents with and without parental substance use disorders.

    Science.gov (United States)

    Stice, Eric; Yokum, Sonja

    2014-09-01

    The present study tested the competing hypotheses that adolescents at risk for future substance abuse and dependence by virtue of parental substance use disorders show either weaker or stronger responsivity of brain regions implicated in reward relative to youth without parental history of substance use disorders. Adolescents (n = 52) matched on demographics with and without parental substance use disorders, as determined by diagnostic interviews, who denied substance use in the past year were compared on functional MRI (fMRI) paradigms assessing neural response to receipt and anticipated receipt of monetary and food reward. Parental-history-positive versus -negative adolescents showed greater activation in the left dorsolateral prefrontal cortex and bilateral putamen, and less activation in the fusiform gyrus and inferior temporal gyrus in response to anticipating winning money, as well as greater activation in the left midbrain and right paracentral lobule, and less activation in the right middle frontal gyrus in response to milkshake receipt. Results indicate that adolescents at risk for future onset of substance use disorders show elevated responsivity of brain regions implicated in reward, extending results from 2 smaller prior studies that found that individuals with versus without parental alcohol use disorders showed greater reward region response to anticipated monetary reward and pictures of alcohol. Collectively, results provide support for the reward surfeit model of substance use disorders, rather than the reward deficit model.

  16. Novelty enhances visual salience independently of reward in the parietal lobe.

    Science.gov (United States)

    Foley, Nicholas C; Jangraw, David C; Peck, Christopher; Gottlieb, Jacqueline

    2014-06-04

    Novelty modulates sensory and reward processes, but it remains unknown how these effects interact, i.e., how the visual effects of novelty are related to its motivational effects. A widespread hypothesis, based on findings that novelty activates reward-related structures, is that all the effects of novelty are explained in terms of reward. According to this idea, a novel stimulus is by default assigned high reward value and hence high salience, but this salience rapidly decreases if the stimulus signals a negative outcome. Here we show that, contrary to this idea, novelty affects visual salience in the monkey lateral intraparietal area (LIP) in ways that are independent of expected reward. Monkeys viewed peripheral visual cues that were novel or familiar (received few or many exposures) and predicted whether the trial will have a positive or a negative outcome--i.e., end in a reward or a lack of reward. We used a saccade-based assay to detect whether the cues automatically attracted or repelled attention from their visual field location. We show that salience--measured in saccades and LIP responses--was enhanced by both novelty and positive reward associations, but these factors were dissociable and habituated on different timescales. The monkeys rapidly recognized that a novel stimulus signaled a negative outcome (and withheld anticipatory licking within the first few presentations), but the salience of that stimulus remained high for multiple subsequent presentations. Therefore, novelty can provide an intrinsic bonus for attention that extends beyond the first presentation and is independent of physical rewards. Copyright © 2014 the authors 0270-6474/14/347947-11$15.00/0.

  17. Convergence of EEG and fMRI measures of reward anticipation.

    Science.gov (United States)

    Gorka, Stephanie M; Phan, K Luan; Shankman, Stewart A

    2015-12-01

    Deficits in reward anticipation are putative mechanisms for multiple psychopathologies. Research indicates that these deficits are characterized by reduced left (relative to right) frontal electroencephalogram (EEG) activity and blood oxygenation level-dependent (BOLD) signal abnormalities in mesolimbic and prefrontal neural regions during reward anticipation. Although it is often assumed that these two measures capture similar mechanisms, no study to our knowledge has directly examined the convergence between frontal EEG alpha asymmetry and functional magnetic resonance imaging (fMRI) during reward anticipation in the same sample. Therefore, the aim of the current study was to investigate if and where in the brain frontal EEG alpha asymmetry and fMRI measures were correlated in a sample of 40 adults. All participants completed two analogous reward anticipation tasks--once during EEG data collection and the other during fMRI data collection. Results indicated that the two measures do converge and that during reward anticipation, increased relative left frontal activity is associated with increased left anterior cingulate cortex (ACC)/medial prefrontal cortex (mPFC) and left orbitofrontal cortex (OFC) activation. This suggests that the two measures may similarly capture PFC functioning, which is noteworthy given the role of these regions in reward processing and the pathophysiology of disorders such as depression and schizophrenia. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Reward salience and risk aversion underlie differential ACC activity in substance dependence.

    Science.gov (United States)

    Alexander, William H; Fukunaga, Rena; Finn, Peter; Brown, Joshua W

    2015-01-01

    The medial prefrontal cortex, especially the dorsal anterior cingulate cortex (ACC), has long been implicated in cognitive control and error processing. Although the association between ACC and behavior has been established, it is less clear how ACC contributes to dysfunctional behavior such as substance dependence. Evidence from neuroimaging studies investigating ACC function in substance users is mixed, with some studies showing disengagement of ACC in substance dependent individuals (SDs), while others show increased ACC activity related to substance use. In this study, we investigate ACC function in SDs and healthy individuals performing a change signal task for monetary rewards. Using a priori predictions derived from a recent computational model of ACC, we find that ACC activity differs between SDs and controls in factors related to reward salience and risk aversion between SDs and healthy individuals. Quantitative fits of a computational model to fMRI data reveal significant differences in best fit parameters for reward salience and risk preferences. Specifically, the ACC in SDs shows greater risk aversion, defined as concavity in the utility function, and greater attention to rewards relative to reward omission. Furthermore, across participants risk aversion and reward salience are positively correlated. The results clarify the role that ACC plays in both the reduced sensitivity to omitted rewards and greater reward valuation in SDs. Clinical implications of applying computational modeling in psychiatry are also discussed.

  19. Reward system dysfunction in autism spectrum disorders

    Science.gov (United States)

    Schulte-Rüther, Martin; Nehrkorn, Barbara; Müller, Kristin; Fink, Gereon R.; Kamp-Becker, Inge; Herpertz-Dahlmann, Beate; Schultz, Robert T.; Konrad, Kerstin

    2013-01-01

    Although it has been suggested that social deficits of autism spectrum disorders (ASDs) are related to reward circuitry dysfunction, very little is known about the neural reward mechanisms in ASD. In the current functional magnetic resonance imaging study, we investigated brain activations in response to both social and monetary reward in a group of children with ASD, relative to matched controls. Participants with ASD showed the expected hypoactivation in the mesocorticolimbic circuitry in response to both reward types. In particular, diminished activation in the nucleus accumbens was observed when money, but not when social reward, was at stake, whereas the amygdala and anterior cingulate cortex were hypoactivated within the ASD group in response to both rewards. These data indicate that the reward circuitry is compromised in ASD in social as well as in non-social, i.e. monetary conditions, which likely contributes to atypical motivated behaviour. Taken together, with incentives used in this study sample, there is evidence for a general reward dysfunction in ASD. However, more ecologically valid social reward paradigms are needed to fully understand, whether there is any domain specificity to the reward deficit that appears evident in ASD, which would be most consistent with the ASD social phenotype. PMID:22419119

  20. The relative importance of different types of rewards for employee motivation and commitment in South Africa

    Directory of Open Access Journals (Sweden)

    Aleeshah Nujjoo

    2012-02-01

    Full Text Available Orientation: Employees’ perceptions of rewards are related to their affective commitment and intrinsic motivation, which have been associated with staff turnover.Research purpose: The study sought to establish the relationship between intrinsic and different extrinsic rewards with intrinsic motivation and affective commitment.Motivation for the study: South African organisations are grappling with employee retention. Literature shows that employees who are more motivated and committed to their organisation are less likely to quit. Rewards management strategies serve to create a motivated and committed workforce. Using the correct types of rewards can thus provide a competitive advantage.Research design, approach and method: A cross-sectional, correlational study was conducted. Questionnaire data of 399 South African employees were analysed using bivariate correlations and multiple regression.Main findings: Three main findings emerged. Firstly, there is a relationship between all types of rewards investigated and the two outcome variables. Secondly, this relationship is stronger for intrinsic than for extrinsic rewards and thirdly, monetary rewards do not account for the variance in intrinsic motivation above that of non-monetary rewards.Practical/managerial implications: Rewards management strategies should focus on job characteristics and designs to increase staff intrinsic rewards and include non-monetary rewards, such as supportive leadership, to encourage employees’ intrinsic motivation and affective commitment.Contribution/value-add: This research demonstrated the important role different rewards, particularly intrinsic non-monetary rewards, play in creating a committed and motivated workforce. The insights gained from this study can promote organisational effectiveness. Suggestions of how to expand on and refine the current study are addressed.

  1. Reward Merit with Praise.

    Science.gov (United States)

    Andrews, Hans A.

    1987-01-01

    Describes the efforts of two educational institutions to reward teaching excellence using positive feedback rather than merit pay incentives. An Arizona district, drawing on Herzberg's motivation theories, offers highly individualized rewards ranging from computers to conference money, while an Illinois community college bestows engraved plaques…

  2. Distributed hippocampal patterns that discriminate reward context are associated with enhanced associative binding.

    Science.gov (United States)

    Wolosin, Sasha M; Zeithamova, Dagmar; Preston, Alison R

    2013-11-01

    Recent research indicates that reward-based motivation impacts medial temporal lobe (MTL) encoding processes, leading to enhanced memory for rewarded events. In particular, previous functional magnetic resonance imaging (fMRI) studies of motivated learning have shown that MTL activation is greater for highly rewarded events, with the degree of reward-related activation enhancement tracking the corresponding behavioral memory advantage. These studies, however, do not directly address leading theoretical perspectives that propose such reward-based enhancements in MTL encoding activation reflect enhanced discrimination of the motivational context of specific events. In this study, a high-value or low-value monetary cue preceded a pair of objects, indicating the future reward for successfully remembering the pair. Using representational similarity analysis and high-resolution fMRI, we show that MTL activation patterns are more similar for encoding trials preceded by the same versus different reward cues, indicating a distributed code in this region that distinguishes between motivational contexts. Moreover, we show that activation patterns in hippocampus and parahippocampal cortex (PHc) that differentiate reward conditions during anticipatory cues and object pairs relate to successful associative memory. Additionally, the degree to which patterns differentiate reward contexts in dentate gyrus/CA2,3 and PHc is related to individual differences in reward modulation of memory. Collectively, these findings suggest that distributed activation patterns in the human hippocampus and PHc reflect the rewards associated with individual events. Furthermore, we show that these activation patterns-which discriminate between reward conditions--may influence memory through the incorporation of information about motivational contexts into stored memory representations. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  3. A tribute to Charlie Chaplin: Induced positive affect improves reward-based decision-learning in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    K. Richard eRidderinkhof

    2012-06-01

    Full Text Available Reward-based decision-learning refers to the process of learning to select those actions that lead to rewards while avoiding actions that lead to punishments. This process, known to rely on dopaminergic activity in striatal brain regions, is compromised in Parkinson’s disease (PD. We hypothesized that such decision-learning deficits are alleviated by induced positive affect, which is thought to incur transient boosts in midbrain and striatal dopaminergic activity. Computational measures of probabilistic reward-based decision-learning were determined for 51 patients diagnosed with PD. Previous work has shown these measures to rely on the nucleus caudatus (outcome evaluation during the early phases of learning and the putamen (reward prediction during later phases of learning. We observed that induced positive affect facilitated learning, through its effects on reward prediction rather than outcome evaluation. Viewing a few minutes of comedy clips served to remedy dopamine-related problems in putamen-based frontostriatal circuitry and, consequently, in learning to predict which actions will yield reward.

  4. Reward-dependent modulation of movement variability.

    Science.gov (United States)

    Pekny, Sarah E; Izawa, Jun; Shadmehr, Reza

    2015-03-04

    Movement variability is often considered an unwanted byproduct of a noisy nervous system. However, variability can signal a form of implicit exploration, indicating that the nervous system is intentionally varying the motor commands in search of actions that yield the greatest success. Here, we investigated the role of the human basal ganglia in controlling reward-dependent motor variability as measured by trial-to-trial changes in performance during a reaching task. We designed an experiment in which the only performance feedback was success or failure and quantified how reach variability was modulated as a function of the probability of reward. In healthy controls, reach variability increased as the probability of reward decreased. Control of variability depended on the history of past rewards, with the largest trial-to-trial changes occurring immediately after an unrewarded trial. In contrast, in participants with Parkinson's disease, a known example of basal ganglia dysfunction, reward was a poor modulator of variability; that is, the patients showed an impaired ability to increase variability in response to decreases in the probability of reward. This was despite the fact that, after rewarded trials, reach variability in the patients was comparable to healthy controls. In summary, we found that movement variability is partially a form of exploration driven by the recent history of rewards. When the function of the human basal ganglia is compromised, the reward-dependent control of movement variability is impaired, particularly affecting the ability to increase variability after unsuccessful outcomes. Copyright © 2015 the authors 0270-6474/15/354015-10$15.00/0.

  5. A decade of decoding reward-related fMRI signals and where we go from here.

    Science.gov (United States)

    Kahnt, Thorsten

    2017-06-04

    Information about potential rewards in the environment is essential for guiding adaptive behavior, and understanding neural reward processes may provide insights into neuropsychiatric dysfunctions. Over the past 10 years, multivoxel pattern analysis (MVPA) techniques have been used to study brain areas encoding information about expected and experienced outcomes. These studies have identified reward signals throughout the brain, including the striatum, medial prefrontal cortex, orbitofrontal cortex, dorsolateral prefrontal cortex, and parietal cortex. This review article discusses some of the assumptions and models that are used to interpret results from these studies, and how they relate to findings from animal electrophysiology. The article reviews and summarizes some of the key findings from MVPA studies on reward. In particular, it first focuses on studies that, in addition to mapping out the brain areas that process rewards, have provided novel insights into the coding mechanisms of value and reward. Then, it discusses examples of how multivariate imaging approaches are being used more recently to decode features of expected rewards that go beyond value, such as the identity of an expected outcome or the action required to obtain it. The study of such complex and multifaceted reward representations highlights the key advantage of using representational methods, which are uniquely able to reveal these signals and may narrow the gap between animal and human research. Applied in a clinical context, MVPA may advance our understanding of neuropsychiatric disorders and the development of novel treatment strategies. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Impact of rewarding innovation and creativity of employees

    Directory of Open Access Journals (Sweden)

    Polona Sladič

    2016-08-01

    Full Text Available Purpose and Originality: It is important that the organization establish a way of rewarding that largely encourages employees to be innovative. Is it a way of rewarding depends on the sex, marital status and education? Is it a cash prize greatest incentive for employees to innovate? Method: Qualitative method, a questionnaire, which will include 12 questions and results processing with a frequency distribution. Results: The results of the study showed that the method of remuneration depends on the sex, marital status and the level of education, while we can not state with certainty that the prize money the best motivation for innovation and creativity. Society: Opinion employees can change the way reward for innovation within organizations, thereby helping the organization to greater competitiveness. Employees are more satisfied and productivity increases. Limitations/Future Research: The study was conducted in only two organizations and should be carried out even in a few others.