WorldWideScience

Sample records for support interactive human

  1. Simulating human behavior for national security human interactions.

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, Michael Lewis; Hart, Dereck H.; Verzi, Stephen J.; Glickman, Matthew R.; Wolfenbarger, Paul R.; Xavier, Patrick Gordon

    2007-01-01

    This 3-year research and development effort focused on what we believe is a significant technical gap in existing modeling and simulation capabilities: the representation of plausible human cognition and behaviors within a dynamic, simulated environment. Specifically, the intent of the ''Simulating Human Behavior for National Security Human Interactions'' project was to demonstrate initial simulated human modeling capability that realistically represents intra- and inter-group interaction behaviors between simulated humans and human-controlled avatars as they respond to their environment. Significant process was made towards simulating human behaviors through the development of a framework that produces realistic characteristics and movement. The simulated humans were created from models designed to be psychologically plausible by being based on robust psychological research and theory. Progress was also made towards enhancing Sandia National Laboratories existing cognitive models to support culturally plausible behaviors that are important in representing group interactions. These models were implemented in the modular, interoperable, and commercially supported Umbra{reg_sign} simulation framework.

  2. A Framework for Agent-based Human Interaction Support

    Directory of Open Access Journals (Sweden)

    Axel Bürkle

    2008-10-01

    Full Text Available In this paper we describe an agent-based infrastructure for multimodal perceptual systems which aims at developing and realizing computer services that are delivered to humans in an implicit and unobtrusive way. The framework presented here supports the implementation of human-centric context-aware applications providing non-obtrusive assistance to participants in events such as meetings, lectures, conferences and presentations taking place in indoor "smart spaces". We emphasize on the design and implementation of an agent-based framework that supports "pluggable" service logic in the sense that the service developer can concentrate on coding the service logic independently of the underlying middleware. Furthermore, we give an example of the architecture's ability to support the cooperation of multiple services in a meeting scenario using an intelligent connector service and a semantic web oriented travel service.

  3. Human-computer interaction : Guidelines for web animation

    OpenAIRE

    Galyani Moghaddam, Golnessa; Moballeghi, Mostafa

    2006-01-01

    Human-computer interaction in the large is an interdisciplinary area which attracts researchers, educators, and practioners from many differenf fields. Human-computer interaction studies a human and a machine in communication, it draws from supporting knowledge on both the machine and the human side. This paper is related to the human side of human-computer interaction and focuses on animations. The growing use of animation in Web pages testifies to the increasing ease with which such multim...

  4. Occupational stress in human computer interaction.

    Science.gov (United States)

    Smith, M J; Conway, F T; Karsh, B T

    1999-04-01

    There have been a variety of research approaches that have examined the stress issues related to human computer interaction including laboratory studies, cross-sectional surveys, longitudinal case studies and intervention studies. A critical review of these studies indicates that there are important physiological, biochemical, somatic and psychological indicators of stress that are related to work activities where human computer interaction occurs. Many of the stressors of human computer interaction at work are similar to those stressors that have historically been observed in other automated jobs. These include high workload, high work pressure, diminished job control, inadequate employee training to use new technology, monotonous tasks, por supervisory relations, and fear for job security. New stressors have emerged that can be tied primarily to human computer interaction. These include technology breakdowns, technology slowdowns, and electronic performance monitoring. The effects of the stress of human computer interaction in the workplace are increased physiological arousal; somatic complaints, especially of the musculoskeletal system; mood disturbances, particularly anxiety, fear and anger; and diminished quality of working life, such as reduced job satisfaction. Interventions to reduce the stress of computer technology have included improved technology implementation approaches and increased employee participation in implementation. Recommendations for ways to reduce the stress of human computer interaction at work are presented. These include proper ergonomic conditions, increased organizational support, improved job content, proper workload to decrease work pressure, and enhanced opportunities for social support. A model approach to the design of human computer interaction at work that focuses on the system "balance" is proposed.

  5. The Human-Robot Interaction Operating System

    Science.gov (United States)

    Fong, Terrence; Kunz, Clayton; Hiatt, Laura M.; Bugajska, Magda

    2006-01-01

    In order for humans and robots to work effectively together, they need to be able to converse about abilities, goals and achievements. Thus, we are developing an interaction infrastructure called the "Human-Robot Interaction Operating System" (HRI/OS). The HRI/OS provides a structured software framework for building human-robot teams, supports a variety of user interfaces, enables humans and robots to engage in task-oriented dialogue, and facilitates integration of robots through an extensible API.

  6. Language evolution and human-computer interaction

    Science.gov (United States)

    Grudin, Jonathan; Norman, Donald A.

    1991-01-01

    Many of the issues that confront designers of interactive computer systems also appear in natural language evolution. Natural languages and human-computer interfaces share as their primary mission the support of extended 'dialogues' between responsive entities. Because in each case one participant is a human being, some of the pressures operating on natural languages, causing them to evolve in order to better support such dialogue, also operate on human-computer 'languages' or interfaces. This does not necessarily push interfaces in the direction of natural language - since one entity in this dialogue is not a human, this is not to be expected. Nonetheless, by discerning where the pressures that guide natural language evolution also appear in human-computer interaction, we can contribute to the design of computer systems and obtain a new perspective on natural languages.

  7. Synergistic interactions between Drosophila orthologues of genes spanned by de novo human CNVs support multiple-hit models of autism.

    Science.gov (United States)

    Grice, Stuart J; Liu, Ji-Long; Webber, Caleb

    2015-03-01

    Autism spectrum disorders (ASDs) are highly heritable and characterised by deficits in social interaction and communication, as well as restricted and repetitive behaviours. Although a number of highly penetrant ASD gene variants have been identified, there is growing evidence to support a causal role for combinatorial effects arising from the contributions of multiple loci. By examining synaptic and circadian neurological phenotypes resulting from the dosage variants of unique human:fly orthologues in Drosophila, we observe numerous synergistic interactions between pairs of informatically-identified candidate genes whose orthologues are jointly affected by large de novo copy number variants (CNVs). These CNVs were found in the genomes of individuals with autism, including a patient carrying a 22q11.2 deletion. We first demonstrate that dosage alterations of the unique Drosophila orthologues of candidate genes from de novo CNVs that harbour only a single candidate gene display neurological defects similar to those previously reported in Drosophila models of ASD-associated variants. We then considered pairwise dosage changes within the set of orthologues of candidate genes that were affected by the same single human de novo CNV. For three of four CNVs with complete orthologous relationships, we observed significant synergistic effects following the simultaneous dosage change of gene pairs drawn from a single CNV. The phenotypic variation observed at the Drosophila synapse that results from these interacting genetic variants supports a concordant phenotypic outcome across all interacting gene pairs following the direction of human gene copy number change. We observe both specificity and transitivity between interactors, both within and between CNV candidate gene sets, supporting shared and distinct genetic aetiologies. We then show that different interactions affect divergent synaptic processes, demonstrating distinct molecular aetiologies. Our study illustrates

  8. An ontology for human-like interaction systems

    OpenAIRE

    Albacete García, Esperanza

    2016-01-01

    This report proposes and describes the development of a Ph.D. Thesis aimed at building an ontological knowledge model supporting Human-Like Interaction systems. The main function of such knowledge model in a human-like interaction system is to unify the representation of each concept, relating it to the appropriate terms, as well as to other concepts with which it shares semantic relations. When developing human-like interactive systems, the inclusion of an ontological module can be valuab...

  9. From Human-Computer Interaction to Human-Robot Social Interaction

    OpenAIRE

    Toumi, Tarek; Zidani, Abdelmadjid

    2014-01-01

    Human-Robot Social Interaction became one of active research fields in which researchers from different areas propose solutions and directives leading robots to improve their interactions with humans. In this paper we propose to introduce works in both human robot interaction and human computer interaction and to make a bridge between them, i.e. to integrate emotions and capabilities concepts of the robot in human computer model to become adequate for human robot interaction and discuss chall...

  10. Proxemics in Human-Computer Interaction

    OpenAIRE

    Greenberg, Saul; Honbaek, Kasper; Quigley, Aaron; Reiterer, Harald; Rädle, Roman

    2014-01-01

    In 1966, anthropologist Edward Hall coined the term "proxemics." Proxemics is an area of study that identifies the culturally dependent ways in which people use interpersonal distance to understand and mediate their interactions with others. Recent research has demonstrated the use of proxemics in human-computer interaction (HCI) for supporting users' explicit and implicit interactions in a range of uses, including remote office collaboration, home entertainment, and games. One promise of pro...

  11. Multimodal interaction for human-robot teams

    Science.gov (United States)

    Burke, Dustin; Schurr, Nathan; Ayers, Jeanine; Rousseau, Jeff; Fertitta, John; Carlin, Alan; Dumond, Danielle

    2013-05-01

    Unmanned ground vehicles have the potential for supporting small dismounted teams in mapping facilities, maintaining security in cleared buildings, and extending the team's reconnaissance and persistent surveillance capability. In order for such autonomous systems to integrate with the team, we must move beyond current interaction methods using heads-down teleoperation which require intensive human attention and affect the human operator's ability to maintain local situational awareness and ensure their own safety. This paper focuses on the design, development and demonstration of a multimodal interaction system that incorporates naturalistic human gestures, voice commands, and a tablet interface. By providing multiple, partially redundant interaction modes, our system degrades gracefully in complex environments and enables the human operator to robustly select the most suitable interaction method given the situational demands. For instance, the human can silently use arm and hand gestures for commanding a team of robots when it is important to maintain stealth. The tablet interface provides an overhead situational map allowing waypoint-based navigation for multiple ground robots in beyond-line-of-sight conditions. Using lightweight, wearable motion sensing hardware either worn comfortably beneath the operator's clothing or integrated within their uniform, our non-vision-based approach enables an accurate, continuous gesture recognition capability without line-of-sight constraints. To reduce the training necessary to operate the system, we designed the interactions around familiar arm and hand gestures.

  12. Human-machine interactions

    Science.gov (United States)

    Forsythe, J Chris [Sandia Park, NM; Xavier, Patrick G [Albuquerque, NM; Abbott, Robert G [Albuquerque, NM; Brannon, Nathan G [Albuquerque, NM; Bernard, Michael L [Tijeras, NM; Speed, Ann E [Albuquerque, NM

    2009-04-28

    Digital technology utilizing a cognitive model based on human naturalistic decision-making processes, including pattern recognition and episodic memory, can reduce the dependency of human-machine interactions on the abilities of a human user and can enable a machine to more closely emulate human-like responses. Such a cognitive model can enable digital technology to use cognitive capacities fundamental to human-like communication and cooperation to interact with humans.

  13. Interactive Exploration Robots: Human-Robotic Collaboration and Interactions

    Science.gov (United States)

    Fong, Terry

    2017-01-01

    For decades, NASA has employed different operational approaches for human and robotic missions. Human spaceflight missions to the Moon and in low Earth orbit have relied upon near-continuous communication with minimal time delays. During these missions, astronauts and mission control communicate interactively to perform tasks and resolve problems in real-time. In contrast, deep-space robotic missions are designed for operations in the presence of significant communication delay - from tens of minutes to hours. Consequently, robotic missions typically employ meticulously scripted and validated command sequences that are intermittently uplinked to the robot for independent execution over long periods. Over the next few years, however, we will see increasing use of robots that blend these two operational approaches. These interactive exploration robots will be remotely operated by humans on Earth or from a spacecraft. These robots will be used to support astronauts on the International Space Station (ISS), to conduct new missions to the Moon, and potentially to enable remote exploration of planetary surfaces in real-time. In this talk, I will discuss the technical challenges associated with building and operating robots in this manner, along with lessons learned from research conducted with the ISS and in the field.

  14. Quantifying Engagement: Measuring Player Involvement in Human-Avatar Interactions

    Science.gov (United States)

    Norris, Anne E.; Weger, Harry; Bullinger, Cory; Bowers, Alyssa

    2014-01-01

    This research investigated the merits of using an established system for rating behavioral cues of involvement in human dyadic interactions (i.e., face-to-face conversation) to measure involvement in human-avatar interactions. Gameplay audio-video and self-report data from a Feasibility Trial and Free Choice study of an effective peer resistance skill building simulation game (DRAMA-RAMA™) were used to evaluate reliability and validity of the rating system when applied to human-avatar interactions. The Free Choice study used a revised game prototype that was altered to be more engaging. Both studies involved girls enrolled in a public middle school in Central Florida that served a predominately Hispanic (greater than 80%), low-income student population. Audio-video data were coded by two raters, trained in the rating system. Self-report data were generated using measures of perceived realism, predictability and flow administered immediately after game play. Hypotheses for reliability and validity were supported: Reliability values mirrored those found in the human dyadic interaction literature. Validity was supported by factor analysis, significantly higher levels of involvement in Free Choice as compared to Feasibility Trial players, and correlations between involvement dimension sub scores and self-report measures. Results have implications for the science of both skill-training intervention research and game design. PMID:24748718

  15. Movement coordination in applied human-human and human-robot interaction

    DEFF Research Database (Denmark)

    Schubö, Anna; Vesper, Cordula; Wiesbeck, Mathey

    2007-01-01

    and describing human-human interaction in terms of goal-oriented movement coordination is considered an important and necessary step for designing and describing human-robot interaction. In the present scenario, trajectories of hand and finger movements were recorded while two human participants performed......The present paper describes a scenario for examining mechanisms of movement coordination in humans and robots. It is assumed that coordination can best be achieved when behavioral rules that shape movement execution in humans are also considered for human-robot interaction. Investigating...... coordination were affected. Implications for human-robot interaction are discussed....

  16. Duplicability of self-interacting human genes.

    LENUS (Irish Health Repository)

    Pérez-Bercoff, Asa

    2010-01-01

    BACKGROUND: There is increasing interest in the evolution of protein-protein interactions because this should ultimately be informative of the patterns of evolution of new protein functions within the cell. One model proposes that the evolution of new protein-protein interactions and protein complexes proceeds through the duplication of self-interacting genes. This model is supported by data from yeast. We examined the relationship between gene duplication and self-interaction in the human genome. RESULTS: We investigated the patterns of self-interaction and duplication among 34808 interactions encoded by 8881 human genes, and show that self-interacting proteins are encoded by genes with higher duplicability than genes whose proteins lack this type of interaction. We show that this result is robust against the system used to define duplicate genes. Finally we compared the presence of self-interactions amongst proteins whose genes have duplicated either through whole-genome duplication (WGD) or small-scale duplication (SSD), and show that the former tend to have more interactions in general. After controlling for age differences between the two sets of duplicates this result can be explained by the time since the gene duplication. CONCLUSIONS: Genes encoding self-interacting proteins tend to have higher duplicability than proteins lacking self-interactions. Moreover these duplicate genes have more often arisen through whole-genome rather than small-scale duplication. Finally, self-interacting WGD genes tend to have more interaction partners in general in the PIN, which can be explained by their overall greater age. This work adds to our growing knowledge of the importance of contextual factors in gene duplicability.

  17. Audio Technology and Mobile Human Computer Interaction

    DEFF Research Database (Denmark)

    Chamberlain, Alan; Bødker, Mads; Hazzard, Adrian

    2017-01-01

    Audio-based mobile technology is opening up a range of new interactive possibilities. This paper brings some of those possibilities to light by offering a range of perspectives based in this area. It is not only the technical systems that are developing, but novel approaches to the design...... and understanding of audio-based mobile systems are evolving to offer new perspectives on interaction and design and support such systems to be applied in areas, such as the humanities....

  18. Predicting catalyst-support interactions between metal nanoparticles and amorphous silica supports

    Science.gov (United States)

    Ewing, Christopher S.; Veser, Götz; McCarthy, Joseph J.; Lambrecht, Daniel S.; Johnson, J. Karl

    2016-10-01

    Metal-support interactions significantly affect the stability and activity of supported catalytic nanoparticles (NPs), yet there is no simple and reliable method for estimating NP-support interactions, especially for amorphous supports. We present an approach for rapid prediction of catalyst-support interactions between Pt NPs and amorphous silica supports for NPs of various sizes and shapes. We use density functional theory calculations of 13 atom Pt clusters on model amorphous silica supports to determine linear correlations relating catalyst properties to NP-support interactions. We show that these correlations can be combined with fast discrete element method simulations to predict adhesion energy and NP net charge for NPs of larger sizes and different shapes. Furthermore, we demonstrate that this approach can be successfully transferred to Pd, Au, Ni, and Fe NPs. This approach can be used to quickly screen stability and net charge transfer and leads to a better fundamental understanding of catalyst-support interactions.

  19. Human-Robot Interaction

    Science.gov (United States)

    Sandor, Aniko; Cross, E. Vincent, II; Chang, Mai Lee

    2015-01-01

    Human-robot interaction (HRI) is a discipline investigating the factors affecting the interactions between humans and robots. It is important to evaluate how the design of interfaces affect the human's ability to perform tasks effectively and efficiently when working with a robot. By understanding the effects of interface design on human performance, workload, and situation awareness, interfaces can be developed to appropriately support the human in performing tasks with minimal errors and with appropriate interaction time and effort. Thus, the results of research on human-robot interfaces have direct implications for the design of robotic systems. For efficient and effective remote navigation of a rover, a human operator needs to be aware of the robot's environment. However, during teleoperation, operators may get information about the environment only through a robot's front-mounted camera causing a keyhole effect. The keyhole effect reduces situation awareness which may manifest in navigation issues such as higher number of collisions, missing critical aspects of the environment, or reduced speed. One way to compensate for the keyhole effect and the ambiguities operators experience when they teleoperate a robot is adding multiple cameras and including the robot chassis in the camera view. Augmented reality, such as overlays, can also enhance the way a person sees objects in the environment or in camera views by making them more visible. Scenes can be augmented with integrated telemetry, procedures, or map information. Furthermore, the addition of an exocentric (i.e., third-person) field of view from a camera placed in the robot's environment may provide operators with the additional information needed to gain spatial awareness of the robot. Two research studies investigated possible mitigation approaches to address the keyhole effect: 1) combining the inclusion of the robot chassis in the camera view with augmented reality overlays, and 2) modifying the camera

  20. A Preliminary Study of Peer-to-Peer Human-Robot Interaction

    Science.gov (United States)

    Fong, Terrence; Flueckiger, Lorenzo; Kunz, Clayton; Lees, David; Schreiner, John; Siegel, Michael; Hiatt, Laura M.; Nourbakhsh, Illah; Simmons, Reid; Ambrose, Robert

    2006-01-01

    The Peer-to-Peer Human-Robot Interaction (P2P-HRI) project is developing techniques to improve task coordination and collaboration between human and robot partners. Our work is motivated by the need to develop effective human-robot teams for space mission operations. A central element of our approach is creating dialogue and interaction tools that enable humans and robots to flexibly support one another. In order to understand how this approach can influence task performance, we recently conducted a series of tests simulating a lunar construction task with a human-robot team. In this paper, we describe the tests performed, discuss our initial results, and analyze the effect of intervention on task performance.

  1. A Human-Robot Interaction Perspective on Assistive and Rehabilitation Robotics.

    Science.gov (United States)

    Beckerle, Philipp; Salvietti, Gionata; Unal, Ramazan; Prattichizzo, Domenico; Rossi, Simone; Castellini, Claudio; Hirche, Sandra; Endo, Satoshi; Amor, Heni Ben; Ciocarlie, Matei; Mastrogiovanni, Fulvio; Argall, Brenna D; Bianchi, Matteo

    2017-01-01

    Assistive and rehabilitation devices are a promising and challenging field of recent robotics research. Motivated by societal needs such as aging populations, such devices can support motor functionality and subject training. The design, control, sensing, and assessment of the devices become more sophisticated due to a human in the loop. This paper gives a human-robot interaction perspective on current issues and opportunities in the field. On the topic of control and machine learning, approaches that support but do not distract subjects are reviewed. Options to provide sensory user feedback that are currently missing from robotic devices are outlined. Parallels between device acceptance and affective computing are made. Furthermore, requirements for functional assessment protocols that relate to real-world tasks are discussed. In all topic areas, the design of human-oriented frameworks and methods is dominated by challenges related to the close interaction between the human and robotic device. This paper discusses the aforementioned aspects in order to open up new perspectives for future robotic solutions.

  2. Human-Robot Interaction and Human Self-Realization

    DEFF Research Database (Denmark)

    Nørskov, Marco

    2014-01-01

    is to test the basis for this type of discrimination when it comes to human-robot interaction. Furthermore, the paper will take Heidegger's warning concerning technology as a vantage point and explore the possibility of human-robot interaction forming a praxis that might help humans to be with robots beyond...

  3. Gaze-and-brain-controlled interfaces for human-computer and human-robot interaction

    Directory of Open Access Journals (Sweden)

    Shishkin S. L.

    2017-09-01

    Full Text Available Background. Human-machine interaction technology has greatly evolved during the last decades, but manual and speech modalities remain single output channels with their typical constraints imposed by the motor system’s information transfer limits. Will brain-computer interfaces (BCIs and gaze-based control be able to convey human commands or even intentions to machines in the near future? We provide an overview of basic approaches in this new area of applied cognitive research. Objective. We test the hypothesis that the use of communication paradigms and a combination of eye tracking with unobtrusive forms of registering brain activity can improve human-machine interaction. Methods and Results. Three groups of ongoing experiments at the Kurchatov Institute are reported. First, we discuss the communicative nature of human-robot interaction, and approaches to building a more e cient technology. Specifically, “communicative” patterns of interaction can be based on joint attention paradigms from developmental psychology, including a mutual “eye-to-eye” exchange of looks between human and robot. Further, we provide an example of “eye mouse” superiority over the computer mouse, here in emulating the task of selecting a moving robot from a swarm. Finally, we demonstrate a passive, noninvasive BCI that uses EEG correlates of expectation. This may become an important lter to separate intentional gaze dwells from non-intentional ones. Conclusion. The current noninvasive BCIs are not well suited for human-robot interaction, and their performance, when they are employed by healthy users, is critically dependent on the impact of the gaze on selection of spatial locations. The new approaches discussed show a high potential for creating alternative output pathways for the human brain. When support from passive BCIs becomes mature, the hybrid technology of the eye-brain-computer (EBCI interface will have a chance to enable natural, fluent, and the

  4. A Physical Interaction Network of Dengue Virus and Human Proteins*

    Science.gov (United States)

    Khadka, Sudip; Vangeloff, Abbey D.; Zhang, Chaoying; Siddavatam, Prasad; Heaton, Nicholas S.; Wang, Ling; Sengupta, Ranjan; Sahasrabudhe, Sudhir; Randall, Glenn; Gribskov, Michael; Kuhn, Richard J.; Perera, Rushika; LaCount, Douglas J.

    2011-01-01

    Dengue virus (DENV), an emerging mosquito-transmitted pathogen capable of causing severe disease in humans, interacts with host cell factors to create a more favorable environment for replication. However, few interactions between DENV and human proteins have been reported to date. To identify DENV-human protein interactions, we used high-throughput yeast two-hybrid assays to screen the 10 DENV proteins against a human liver activation domain library. From 45 DNA-binding domain clones containing either full-length viral genes or partially overlapping gene fragments, we identified 139 interactions between DENV and human proteins, the vast majority of which are novel. These interactions involved 105 human proteins, including six previously implicated in DENV infection and 45 linked to the replication of other viruses. Human proteins with functions related to the complement and coagulation cascade, the centrosome, and the cytoskeleton were enriched among the DENV interaction partners. To determine if the cellular proteins were required for DENV infection, we used small interfering RNAs to inhibit their expression. Six of 12 proteins targeted (CALR, DDX3X, ERC1, GOLGA2, TRIP11, and UBE2I) caused a significant decrease in the replication of a DENV replicon. We further showed that calreticulin colocalized with viral dsRNA and with the viral NS3 and NS5 proteins in DENV-infected cells, consistent with a direct role for calreticulin in DENV replication. Human proteins that interacted with DENV had significantly higher average degree and betweenness than expected by chance, which provides additional support for the hypothesis that viruses preferentially target cellular proteins that occupy central position in the human protein interaction network. This study provides a valuable starting point for additional investigations into the roles of human proteins in DENV infection. PMID:21911577

  5. A physical interaction network of dengue virus and human proteins.

    Science.gov (United States)

    Khadka, Sudip; Vangeloff, Abbey D; Zhang, Chaoying; Siddavatam, Prasad; Heaton, Nicholas S; Wang, Ling; Sengupta, Ranjan; Sahasrabudhe, Sudhir; Randall, Glenn; Gribskov, Michael; Kuhn, Richard J; Perera, Rushika; LaCount, Douglas J

    2011-12-01

    Dengue virus (DENV), an emerging mosquito-transmitted pathogen capable of causing severe disease in humans, interacts with host cell factors to create a more favorable environment for replication. However, few interactions between DENV and human proteins have been reported to date. To identify DENV-human protein interactions, we used high-throughput yeast two-hybrid assays to screen the 10 DENV proteins against a human liver activation domain library. From 45 DNA-binding domain clones containing either full-length viral genes or partially overlapping gene fragments, we identified 139 interactions between DENV and human proteins, the vast majority of which are novel. These interactions involved 105 human proteins, including six previously implicated in DENV infection and 45 linked to the replication of other viruses. Human proteins with functions related to the complement and coagulation cascade, the centrosome, and the cytoskeleton were enriched among the DENV interaction partners. To determine if the cellular proteins were required for DENV infection, we used small interfering RNAs to inhibit their expression. Six of 12 proteins targeted (CALR, DDX3X, ERC1, GOLGA2, TRIP11, and UBE2I) caused a significant decrease in the replication of a DENV replicon. We further showed that calreticulin colocalized with viral dsRNA and with the viral NS3 and NS5 proteins in DENV-infected cells, consistent with a direct role for calreticulin in DENV replication. Human proteins that interacted with DENV had significantly higher average degree and betweenness than expected by chance, which provides additional support for the hypothesis that viruses preferentially target cellular proteins that occupy central position in the human protein interaction network. This study provides a valuable starting point for additional investigations into the roles of human proteins in DENV infection.

  6. Peer-to-Peer Human-Robot Interaction for Space Exploration

    Science.gov (United States)

    Fong, Terrence; Nourbakhsh, Illah

    2004-01-01

    NASA has embarked on a long-term program to develop human-robot systems for sustained, affordable space exploration. To support this mission, we are working to improve human-robot interaction and performance on planetary surfaces. Rather than building robots that function as glorified tools, our focus is to enable humans and robots to work as partners and peers. In this paper. we describe our approach, which includes contextual dialogue, cognitive modeling, and metrics-based field testing.

  7. Human-Robot Interaction Directed Research Project

    Science.gov (United States)

    Rochlis, Jennifer; Ezer, Neta; Sandor, Aniko

    2011-01-01

    Human-robot interaction (HRI) is about understanding and shaping the interactions between humans and robots (Goodrich & Schultz, 2007). It is important to evaluate how the design of interfaces and command modalities affect the human s ability to perform tasks accurately, efficiently, and effectively (Crandall, Goodrich, Olsen Jr., & Nielsen, 2005) It is also critical to evaluate the effects of human-robot interfaces and command modalities on operator mental workload (Sheridan, 1992) and situation awareness (Endsley, Bolt , & Jones, 2003). By understanding the effects of interface design on human performance, workload, and situation awareness, interfaces can be developed that support the human in performing tasks with minimal errors and with appropriate interaction time and effort. Thus, the results of research on human-robot interfaces have direct implications for design. Because the factors associated with interfaces and command modalities in HRI are too numerous to address in 3 years of research, the proposed research concentrates on three manageable areas applicable to National Aeronautics and Space Administration (NASA) robot systems. These topic areas emerged from the Fiscal Year (FY) 2011 work that included extensive literature reviews and observations of NASA systems. The three topic areas are: 1) video overlays, 2) camera views, and 3) command modalities. Each area is described in detail below, along with relevance to existing NASA human-robot systems. In addition to studies in these three topic areas, a workshop is proposed for FY12. The workshop will bring together experts in human-robot interaction and robotics to discuss the state of the practice as applicable to research in space robotics. Studies proposed in the area of video overlays consider two factors in the implementation of augmented reality (AR) for operator displays during teleoperation. The first of these factors is the type of navigational guidance provided by AR symbology. In the proposed

  8. Proceedings of the Third International Conference on Intelligent Human Computer Interaction

    CERN Document Server

    Pokorný, Jaroslav; Snášel, Václav; Abraham, Ajith

    2013-01-01

    The Third International Conference on Intelligent Human Computer Interaction 2011 (IHCI 2011) was held at Charles University, Prague, Czech Republic from August 29 - August 31, 2011. This conference was third in the series, following IHCI 2009 and IHCI 2010 held in January at IIIT Allahabad, India. Human computer interaction is a fast growing research area and an attractive subject of interest for both academia and industry. There are many interesting and challenging topics that need to be researched and discussed. This book aims to provide excellent opportunities for the dissemination of interesting new research and discussion about presented topics. It can be useful for researchers working on various aspects of human computer interaction. Topics covered in this book include user interface and interaction, theoretical background and applications of HCI and also data mining and knowledge discovery as a support of HCI applications.

  9. Implementing Lumberjacks and Black Swans Into Model-Based Tools to Support Human-Automation Interaction.

    Science.gov (United States)

    Sebok, Angelia; Wickens, Christopher D

    2017-03-01

    The objectives were to (a) implement theoretical perspectives regarding human-automation interaction (HAI) into model-based tools to assist designers in developing systems that support effective performance and (b) conduct validations to assess the ability of the models to predict operator performance. Two key concepts in HAI, the lumberjack analogy and black swan events, have been studied extensively. The lumberjack analogy describes the effects of imperfect automation on operator performance. In routine operations, an increased degree of automation supports performance, but in failure conditions, increased automation results in more significantly impaired performance. Black swans are the rare and unexpected failures of imperfect automation. The lumberjack analogy and black swan concepts have been implemented into three model-based tools that predict operator performance in different systems. These tools include a flight management system, a remotely controlled robotic arm, and an environmental process control system. Each modeling effort included a corresponding validation. In one validation, the software tool was used to compare three flight management system designs, which were ranked in the same order as predicted by subject matter experts. The second validation compared model-predicted operator complacency with empirical performance in the same conditions. The third validation compared model-predicted and empirically determined time to detect and repair faults in four automation conditions. The three model-based tools offer useful ways to predict operator performance in complex systems. The three tools offer ways to predict the effects of different automation designs on operator performance.

  10. Interaction of an atypical Plasmodium falciparum ETRAMP with human apolipoproteins

    Directory of Open Access Journals (Sweden)

    Sahasrabudhe Sudhir

    2008-10-01

    Full Text Available Abstract Background In order to establish a successful infection in the human host, the malaria parasite Plasmodium falciparum must establish interactions with a variety of human proteins on the surface of different cell types, as well as with proteins inside the host cells. To better understand this aspect of malaria pathogenesis, a study was conducted with the goal of identifying interactions between proteins of the parasite and those of its human host. Methods A modified yeast two-hybrid methodology that preferentially selects protein fragments that can be expressed in yeast was used to conduct high-throughput screens with P. falciparum protein fragments against human liver and cerebellum libraries. The resulting dataset was analyzed to exclude interactions that are not likely to occur in the human host during infection. Results An initial set of 2,200 interactions was curated to remove proteins that are unlikely to play a role in pathogenesis based on their annotation or localization, and proteins that behave promiscuously in the two-hybrid assay, resulting in a final dataset of 456 interactions. A cluster that implicates binding between P. falciparum PFE1590w/ETRAMP5, a putative parasitophorous vacuole membrane protein, and human apolipoproteins ApoA, ApoB and ApoE was selected for further analysis. Different isoforms of ApoE, which are associated with different outcomes of malaria infection, were shown to display differential interactions with PFE1590w. Conclusion A dataset of interactions between proteins of P. falciparum and those of its human host was generated. The preferential interaction of the P. falciparum PFE1590w protein with the human ApoE ε3 and ApoE ε4 isoforms, but not the ApoE ε2 isoform, supports the hypothesis that ApoE genotype affects risk of malaria infection. The dataset contains other interactions of potential relevance to disease that may identify possible vaccine candidates and drug targets.

  11. The Self-Organization of Human Interaction

    DEFF Research Database (Denmark)

    Dale, Rick; Fusaroli, Riccardo; Duran, Nicholas

    2013-01-01

    We describe a “centipede’s dilemma” that faces the sciences of human interaction. Research on human interaction has been involved in extensive theoretical debate, although the vast majority of research tends to focus on a small set of human behaviors, cognitive processes, and interactive contexts...

  12. Measuring Multimodal Synchrony for Human-Computer Interaction

    NARCIS (Netherlands)

    Reidsma, Dennis; Nijholt, Antinus; Tschacher, Wolfgang; Ramseyer, Fabian; Sourin, A.

    2010-01-01

    Nonverbal synchrony is an important and natural element in human-human interaction. It can also play various roles in human-computer interaction. In particular this is the case in the interaction between humans and the virtual humans that inhabit our cyberworlds. Virtual humans need to adapt their

  13. Information flow between interacting human brains: Identification, validation, and relationship to social expertise.

    Science.gov (United States)

    Bilek, Edda; Ruf, Matthias; Schäfer, Axel; Akdeniz, Ceren; Calhoun, Vince D; Schmahl, Christian; Demanuele, Charmaine; Tost, Heike; Kirsch, Peter; Meyer-Lindenberg, Andreas

    2015-04-21

    Social interactions are fundamental for human behavior, but the quantification of their neural underpinnings remains challenging. Here, we used hyperscanning functional MRI (fMRI) to study information flow between brains of human dyads during real-time social interaction in a joint attention paradigm. In a hardware setup enabling immersive audiovisual interaction of subjects in linked fMRI scanners, we characterize cross-brain connectivity components that are unique to interacting individuals, identifying information flow between the sender's and receiver's temporoparietal junction. We replicate these findings in an independent sample and validate our methods by demonstrating that cross-brain connectivity relates to a key real-world measure of social behavior. Together, our findings support a central role of human-specific cortical areas in the brain dynamics of dyadic interactions and provide an approach for the noninvasive examination of the neural basis of healthy and disturbed human social behavior with minimal a priori assumptions.

  14. Emotion based human-robot interaction

    Directory of Open Access Journals (Sweden)

    Berns Karsten

    2018-01-01

    Full Text Available Human-machine interaction is a major challenge in the development of complex humanoid robots. In addition to verbal communication the use of non-verbal cues such as hand, arm and body gestures or mimics can improve the understanding of the intention of the robot. On the other hand, by perceiving such mechanisms of a human in a typical interaction scenario the humanoid robot can adapt its interaction skills in a better way. In this work, the perception system of two social robots, ROMAN and ROBIN of the RRLAB of the TU Kaiserslautern, is presented in the range of human-robot interaction.

  15. Interaction debugging : an integral approach to analyze human-robot interaction

    NARCIS (Netherlands)

    Kooijmans, T.; Kanda, T.; Bartneck, C.; Ishiguro, H.; Hagita, N.

    2006-01-01

    Along with the development of interactive robots, controlled experiments and field trials are regularly conducted to stage human-robot interaction. Experience in this field has shown that analyzing human-robot interaction for evaluation purposes fosters the development of improved systems and the

  16. Modeling multimodal human-computer interaction

    NARCIS (Netherlands)

    Obrenovic, Z.; Starcevic, D.

    2004-01-01

    Incorporating the well-known Unified Modeling Language into a generic modeling framework makes research on multimodal human-computer interaction accessible to a wide range off software engineers. Multimodal interaction is part of everyday human discourse: We speak, move, gesture, and shift our gaze

  17. Towards quantifying dynamic human-human physical interactions for robot assisted stroke therapy.

    Science.gov (United States)

    Mohan, Mayumi; Mendonca, Rochelle; Johnson, Michelle J

    2017-07-01

    Human-Robot Interaction is a prominent field of robotics today. Knowledge of human-human physical interaction can prove vital in creating dynamic physical interactions between human and robots. Most of the current work in studying this interaction has been from a haptic perspective. Through this paper, we present metrics that can be used to identify if a physical interaction occurred between two people using kinematics. We present a simple Activity of Daily Living (ADL) task which involves a simple interaction. We show that we can use these metrics to successfully identify interactions.

  18. Interactive analysis of human error factors in NPP operation events

    International Nuclear Information System (INIS)

    Zhang Li; Zou Yanhua; Huang Weigang

    2010-01-01

    Interactive of human error factors in NPP operation events were introduced, and 645 WANO operation event reports from 1999 to 2008 were analyzed, among which 432 were found relative to human errors. After classifying these errors with the Root Causes or Causal Factors, and then applying SPSS for correlation analysis,we concluded: (1) Personnel work practices are restricted by many factors. Forming a good personnel work practices is a systematic work which need supports in many aspects. (2)Verbal communications,personnel work practices, man-machine interface and written procedures and documents play great roles. They are four interaction factors which often come in bundle. If some improvements need to be made on one of them,synchronous measures are also necessary for the others.(3) Management direction and decision process, which are related to management,have a significant interaction with personnel factors. (authors)

  19. Human Work Interaction Design for Pervasive and Smart Workplaces

    DEFF Research Database (Denmark)

    Campos, Pedro F.; Lopes, Arminda; Clemmensen, Torkil

    2014-01-01

    ' experience and outputs? This workshop focuses on answering this question to support professionals, academia, national labs, and industry engaged in human work analysis and interaction design for the workplace. Conversely, tools, procedures, and professional competences for designing human......Pervasive and smart technologies have pushed workplace configuration beyond linear logic and physical boundaries. As a result, workers' experience of and access to technology is increasingly pervasive, and their agency constantly reconfigured. While this in certain areas of work is not new (e.......g., technology mediation and decision support in air traffic control), more recent developments in other domains such as healthcare (e.g., Augmented Reality in Computer Aided Surgery) have raised challenging issues for HCI researchers and practitioners. The question now is: how to improve the quality of workers...

  20. Personality and social skills in human-dog interaction

    DEFF Research Database (Denmark)

    Meyer, Iben Helene Coakley

    developing a social tool set that makes it very successful in interacting and communicating with humans. Human evolution has similarly resulted in the development of complex social cognition in humans. This enables humans to form bonded relationships, besides pair-bonding, and it seems that humans are also...... of this thesis was to attain a better understanding of some of the factors related to the inter-action between humans and dogs. This aim was addressed by focusing on dog personality and hu-man social skills in relation to human-dog interaction. Two studies investigated dog personality and how it a) affects...... the relationship with the owner, and b) is affected by human breeding goals. Two studies investigated how human social skills affect the communication and interaction between hu-man and dog. As part of these studies it was also investigated how experience with dogs interacts with human social skills, perception...

  1. Intestinal subepithelial myofibroblasts support in vitro and in vivo growth of human small intestinal epithelium.

    Directory of Open Access Journals (Sweden)

    Nicholas Lahar

    Full Text Available The intestinal crypt-niche interaction is thought to be essential to the function, maintenance, and proliferation of progenitor stem cells found at the bases of intestinal crypts. These stem cells are constantly renewing the intestinal epithelium by sending differentiated cells from the base of the crypts of Lieberkühn to the villus tips where they slough off into the intestinal lumen. The intestinal niche consists of various cell types, extracellular matrix, and growth factors and surrounds the intestinal progenitor cells. There have recently been advances in the understanding of the interactions that regulate the behavior of the intestinal epithelium and there is great interest in methods for isolating and expanding viable intestinal epithelium. However, there is no method to maintain primary human small intestinal epithelium in culture over a prolonged period of time. Similarly no method has been published that describes isolation and support of human intestinal epithelium in an in vivo model. We describe a technique to isolate and maintain human small intestinal epithelium in vitro from surgical specimens. We also describe a novel method to maintain human intestinal epithelium subcutaneously in a mouse model for a prolonged period of time. Our methods require various growth factors and the intimate interaction between intestinal sub-epithelial myofibroblasts (ISEMFs and the intestinal epithelial cells to support the epithelial in vitro and in vivo growth. Absence of these myofibroblasts precluded successful maintenance of epithelial cell formation and proliferation beyond just a few days, even in the presence of supportive growth factors. We believe that the methods described here can be used to explore the molecular basis of human intestinal stem cell support, maintenance, and growth.

  2. Learning to Detect Human-Object Interactions

    KAUST Repository

    Chao, Yu-Wei; Liu, Yunfan; Liu, Xieyang; Zeng, Huayi; Deng, Jia

    2017-01-01

    In this paper we study the problem of detecting human-object interactions (HOI) in static images, defined as predicting a human and an object bounding box with an interaction class label that connects them. HOI detection is a fundamental problem in computer vision as it provides semantic information about the interactions among the detected objects. We introduce HICO-DET, a new large benchmark for HOI detection, by augmenting the current HICO classification benchmark with instance annotations. We propose Human-Object Region-based Convolutional Neural Networks (HO-RCNN), a novel DNN-based framework for HOI detection. At the core of our HO-RCNN is the Interaction Pattern, a novel DNN input that characterizes the spatial relations between two bounding boxes. We validate the effectiveness of our HO-RCNN using HICO-DET. Experiments demonstrate that our HO-RCNN, by exploiting human-object spatial relations through Interaction Patterns, significantly improves the performance of HOI detection over baseline approaches.

  3. Learning to Detect Human-Object Interactions

    KAUST Repository

    Chao, Yu-Wei

    2017-02-17

    In this paper we study the problem of detecting human-object interactions (HOI) in static images, defined as predicting a human and an object bounding box with an interaction class label that connects them. HOI detection is a fundamental problem in computer vision as it provides semantic information about the interactions among the detected objects. We introduce HICO-DET, a new large benchmark for HOI detection, by augmenting the current HICO classification benchmark with instance annotations. We propose Human-Object Region-based Convolutional Neural Networks (HO-RCNN), a novel DNN-based framework for HOI detection. At the core of our HO-RCNN is the Interaction Pattern, a novel DNN input that characterizes the spatial relations between two bounding boxes. We validate the effectiveness of our HO-RCNN using HICO-DET. Experiments demonstrate that our HO-RCNN, by exploiting human-object spatial relations through Interaction Patterns, significantly improves the performance of HOI detection over baseline approaches.

  4. Kernel Method Based Human Model for Enhancing Interactive Evolutionary Optimization

    Science.gov (United States)

    Zhao, Qiangfu; Liu, Yong

    2015-01-01

    A fitness landscape presents the relationship between individual and its reproductive success in evolutionary computation (EC). However, discrete and approximate landscape in an original search space may not support enough and accurate information for EC search, especially in interactive EC (IEC). The fitness landscape of human subjective evaluation in IEC is very difficult and impossible to model, even with a hypothesis of what its definition might be. In this paper, we propose a method to establish a human model in projected high dimensional search space by kernel classification for enhancing IEC search. Because bivalent logic is a simplest perceptual paradigm, the human model is established by considering this paradigm principle. In feature space, we design a linear classifier as a human model to obtain user preference knowledge, which cannot be supported linearly in original discrete search space. The human model is established by this method for predicting potential perceptual knowledge of human. With the human model, we design an evolution control method to enhance IEC search. From experimental evaluation results with a pseudo-IEC user, our proposed model and method can enhance IEC search significantly. PMID:25879050

  5. Discourse with Visual Health Data: Design of Human-Data Interaction

    Directory of Open Access Journals (Sweden)

    Oluwakemi Ola

    2018-03-01

    Full Text Available Previous work has suggested that large repositories of data can revolutionize healthcare activities; however, there remains a disconnection between data collection and its effective usage. The way in which users interact with data strongly impacts their ability to not only complete tasks but also capitalize on the purported benefits of such data. Interactive visualizations can provide a means by which many data-driven tasks can be performed. Recent surveys, however, suggest that many visualizations mostly enable users to perform simple manipulations, thus limiting their ability to complete tasks. Researchers have called for tools that allow for richer discourse with data. Nonetheless, systematic design of human-data interaction for visualization tools is a non-trivial task. It requires taking into consideration a myriad of issues. Creation of visualization tools that incorporate rich human-data discourse would benefit from the use of design frameworks. In this paper, we examine and present a design process that is based on a conceptual human-data interaction framework. We discuss and describe the design of interaction for a visualization tool intended for sensemaking of public health data. We demonstrate the utility of systematic interaction design in two ways. First, we use scenarios to highlight how our design approach supports a rich and meaningful discourse with data. Second, we present results from a study that details how users were able to perform various tasks with health data and learn about global health trends.

  6. Interactive CaringTV® supporting elderly living at home.

    Science.gov (United States)

    Lehto, Paula

    2013-01-01

    Interactive CaringTV® is a Finnish innovation that was developed by Laurea University of Applied Sciences in 2006. CaringTV was developed through action research during three research projects. The aim of interactive CaringTV is to support the health and well-being of elderly people living in their own homes. The Safe Home project was based on action research, userdriven methods, and a case study. User-driven methods were applied in planning, implementing and evaluating the programme and eServices e.g. testing and evaluating peer support, including eConsultation as the methods for supporting clients´ coping with life in their own homes. Costeffectiveness and process modelling were studied through the case study. The user-driven approach and the collected data formed the basis for the interactive programme. The online CaringTV programme included content to: support everyday life for the elderly, safety, and activities of daily living, support social relationships, participate in rehabilitation and physical exercises, manage self-care, and health issues. Active participation in the CaringTV programme provided functional ability and everyday coping as well as a meaningful activity in everyday life. CaringTV is an interactive platform to support elderly in their everyday life and help them cope at home. User-driven methods enable participants´ active involvement in planning interactive and online programmes and eServices via CaringTV. The ultimate goal of the CaringTV is to support elderly´s health, wellbeing and interaction. CaringTV empowers elderly people to take responsibility for their own health care as part of healthy ageing.

  7. Human-computer interaction and management information systems

    CERN Document Server

    Galletta, Dennis F

    2014-01-01

    ""Human-Computer Interaction and Management Information Systems: Applications"" offers state-of-the-art research by a distinguished set of authors who span the MIS and HCI fields. The original chapters provide authoritative commentaries and in-depth descriptions of research programs that will guide 21st century scholars, graduate students, and industry professionals. Human-Computer Interaction (or Human Factors) in MIS is concerned with the ways humans interact with information, technologies, and tasks, especially in business, managerial, organizational, and cultural contexts. It is distinctiv

  8. Human Robot Interaction for Hybrid Collision Avoidance System for Indoor Mobile Robots

    Directory of Open Access Journals (Sweden)

    Mazen Ghandour

    2017-06-01

    Full Text Available In this paper, a novel approach for collision avoidance for indoor mobile robots based on human-robot interaction is realized. The main contribution of this work is a new technique for collision avoidance by engaging the human and the robot in generating new collision-free paths. In mobile robotics, collision avoidance is critical for the success of the robots in implementing their tasks, especially when the robots navigate in crowded and dynamic environments, which include humans. Traditional collision avoidance methods deal with the human as a dynamic obstacle, without taking into consideration that the human will also try to avoid the robot, and this causes the people and the robot to get confused, especially in crowded social places such as restaurants, hospitals, and laboratories. To avoid such scenarios, a reactive-supervised collision avoidance system for mobile robots based on human-robot interaction is implemented. In this method, both the robot and the human will collaborate in generating the collision avoidance via interaction. The person will notify the robot about the avoidance direction via interaction, and the robot will search for the optimal collision-free path on the selected direction. In case that no people interacted with the robot, it will select the navigation path autonomously and select the path that is closest to the goal location. The humans will interact with the robot using gesture recognition and Kinect sensor. To build the gesture recognition system, two models were used to classify these gestures, the first model is Back-Propagation Neural Network (BPNN, and the second model is Support Vector Machine (SVM. Furthermore, a novel collision avoidance system for avoiding the obstacles is implemented and integrated with the HRI system. The system is tested on H20 robot from DrRobot Company (Canada and a set of experiments were implemented to report the performance of the system in interacting with the human and avoiding

  9. Effects of interactions between humans and domesticated animals

    NARCIS (Netherlands)

    Bokkers, E.A.M.

    2006-01-01

    Humans have many kinds of relationships with domesticated animals. To maintain relationships interactions are needed. Interactions with animals may be beneficial for humans but may also be risky. Scientific literature on effects of human¿animal relationships and interactions in a workplace,

  10. Human – Computer Systems Interaction Backgrounds and Applications 2 Part 1

    CERN Document Server

    Kulikowski, Juliusz; Mroczek, Teresa

    2012-01-01

    The main contemporary human-system interaction (H-SI) problems consist in design and/or improvement of the tools for effective exchange of information between individual humans or human groups and technical systems created for humans aiding in reaching their vital goals. This book is a second issue in a series devoted to the novel in H-SI results and contributions reached for the last years by many research groups in European and extra-European countries. The preliminary (usually shortened) versions of the chapters  were presented as conference papers at the 3rd International Conference on H-SI held in Rzeszow, Poland, in 2010. A  large number of valuable papers  selected for publication caused a necessity to publish the book in two volumes. The given, 1st Volume  consists of sections devoted to: I. Decision Supporting Systems, II. Distributed Knowledge Bases and WEB Systems and III. Impaired Persons  Aiding Systems. The decision supporting systems concern various application areas, like enterprises mana...

  11. Social Psychology Of Persuasion Applied To Human-agent Interaction

    Directory of Open Access Journals (Sweden)

    Shenghua Liu

    2008-01-01

    Full Text Available This paper discusses and evaluates the application of a social psychologically enriched, user-centered approach to agent architecture design. The major aim is to facilitate human-agent interaction (HAI by making agents not only algorithmically more intelligent but also socially more skillful in communicating with the user. A decision-making model and communicative argumentation strategies have been incorporated into the agent architecture. In the presented content resource management experiments, enhancement of human task performance is demonstrated for users that are supported by a persuasive agent. This superior performance seems to be rooted in a more trusting collaborative relationship between the user and the agent, rather than in the appropriateness of the agent's decision-making suggestions alone. In particular, the second experiment demonstrated that interface interaction design should follow the principles of task-orientation and implicitness. Making the influence of the agent too salient can trigger counterintentional effects, such as users' discomfort and psychological reactance.

  12. Human-Robot Interaction Directed Research Project

    Science.gov (United States)

    Sandor, Aniko; Cross, Ernest V., II; Chang, Mai Lee

    2014-01-01

    Human-robot interaction (HRI) is a discipline investigating the factors affecting the interactions between humans and robots. It is important to evaluate how the design of interfaces and command modalities affect the human's ability to perform tasks accurately, efficiently, and effectively when working with a robot. By understanding the effects of interface design on human performance, workload, and situation awareness, interfaces can be developed to appropriately support the human in performing tasks with minimal errors and with appropriate interaction time and effort. Thus, the results of research on human-robot interfaces have direct implications for the design of robotic systems. This DRP concentrates on three areas associated with interfaces and command modalities in HRI which are applicable to NASA robot systems: 1) Video Overlays, 2) Camera Views, and 3) Command Modalities. The first study focused on video overlays that investigated how Augmented Reality (AR) symbology can be added to the human-robot interface to improve teleoperation performance. Three types of AR symbology were explored in this study, command guidance (CG), situation guidance (SG), and both (SCG). CG symbology gives operators explicit instructions on what commands to input, whereas SG symbology gives operators implicit cues so that operators can infer the input commands. The combination of CG and SG provided operators with explicit and implicit cues allowing the operator to choose which symbology to utilize. The objective of the study was to understand how AR symbology affects the human operator's ability to align a robot arm to a target using a flight stick and the ability to allocate attention between the symbology and external views of the world. The study evaluated the effects type of symbology (CG and SG) has on operator tasks performance and attention allocation during teleoperation of a robot arm. The second study expanded on the first study by evaluating the effects of the type of

  13. Interactive Genetic Algorithm - An Adaptive and Interactive Decision Support Framework for Design of Optimal Groundwater Monitoring Plans

    Science.gov (United States)

    Babbar-Sebens, M.; Minsker, B. S.

    2006-12-01

    In the water resources management field, decision making encompasses many kinds of engineering, social, and economic constraints and objectives. Representing all of these problem dependant criteria through models (analytical or numerical) and various formulations (e.g., objectives, constraints, etc.) within an optimization- simulation system can be a very non-trivial issue. Most models and formulations utilized for discerning desirable traits in a solution can only approximate the decision maker's (DM) true preference criteria, and they often fail to consider important qualitative and incomputable phenomena related to the management problem. In our research, we have proposed novel decision support frameworks that allow DMs to actively participate in the optimization process. The DMs explicitly indicate their true preferences based on their subjective criteria and the results of various simulation models and formulations. The feedback from the DMs is then used to guide the search process towards solutions that are "all-rounders" from the perspective of the DM. The two main research questions explored in this work are: a) Does interaction between the optimization algorithm and a DM assist the system in searching for groundwater monitoring designs that are robust from the DM's perspective?, and b) How can an interactive search process be made more effective when human factors, such as human fatigue and cognitive learning processes, affect the performance of the algorithm? The application of these frameworks on a real-world groundwater long-term monitoring (LTM) case study in Michigan highlighted the following salient advantages: a) in contrast to the non-interactive optimization methodology, the proposed interactive frameworks were able to identify low cost monitoring designs whose interpolation maps respected the expected spatial distribution of the contaminants, b) for many same-cost designs, the interactive methodologies were able to propose multiple alternatives

  14. Quantitative heartbeat coupling measures in human-horse interaction.

    Science.gov (United States)

    Lanata, Antonio; Guidi, Andrea; Valenza, Gaetano; Baragli, Paolo; Scilingo, Enzo Pasquale

    2016-08-01

    We present a study focused on a quantitative estimation of a human-horse dynamic interaction. A set of measures based on magnitude and phase coupling between heartbeat dynamics of both humans and horses in three different conditions is reported: no interaction, visual/olfactory interaction and grooming. Specifically, Magnitude Squared Coherence (MSC), Mean Phase Coherence (MPC) and Dynamic Time Warping (DTW) have been used as estimators of the amount of coupling between human and horse through the analysis of their heart rate variability (HRV) time series in a group of eleven human subjects, and one horse. The rationale behind this study is that the interaction of two complex biological systems go towards a coupling process whose dynamical evolution is modulated by the kind and time duration of the interaction itself. We achieved a congruent and consistent statistical significant difference for all of the three indices. Moreover, a Nearest Mean Classifier was able to recognize the three classes of interaction with an accuracy greater than 70%. Although preliminary, these encouraging results allow a discrimination of three distinct phases in a real human-animal interaction opening to the characterization of the empirically proven relationship between human and horse.

  15. Human System Simulation in Support of Human Performance Technical Basis at NPPs

    Energy Technology Data Exchange (ETDEWEB)

    David Gertman; Katya Le Blanc; alan mecham; william phoenix; Magdy Tawfik; Jeffrey Joe

    2010-06-01

    This paper focuses on strategies and progress toward establishing the Idaho National Laboratory’s (INL’s) Human Systems Simulator Laboratory at the Center for Advanced Energy Studies (CAES), a consortium of Idaho State Universities. The INL is one of the National Laboratories of the US Department of Energy. One of the first planned applications for the Human Systems Simulator Laboratory is implementation of a dynamic nuclear power plant simulation (NPP) where studies of operator workload, situation awareness, performance and preference will be carried out in simulated control rooms including nuclear power plant control rooms. Simulation offers a means by which to review operational concepts, improve design practices and provide a technical basis for licensing decisions. In preparation for the next generation power plant and current government and industry efforts in support of light water reactor sustainability, human operators will be attached to a suite of physiological measurement instruments and, in combination with traditional Human Factors Measurement techniques, carry out control room tasks in simulated advanced digital and hybrid analog/digital control rooms. The current focus of the Human Systems Simulator Laboratory is building core competence in quantitative and qualitative measurements of situation awareness and workload. Of particular interest is whether introduction of digital systems including automated procedures has the potential to reduce workload and enhance safety while improving situation awareness or whether workload is merely shifted and situation awareness is modified in yet to be determined ways. Data analysis is carried out by engineers and scientists and includes measures of the physical and neurological correlates of human performance. The current approach supports a user-centered design philosophy (see ISO 13407 “Human Centered Design Process for Interactive Systems, 1999) wherein the context for task performance along with the

  16. Modelling dynamic human-device interaction in healthcare

    OpenAIRE

    Niezen, Gerrit

    2013-01-01

    Errors are typically blamed on human factors, forgetting that the system should have been designed to take them into account and minimise these problems. In our research we are developing tools to design interactive medical devices using human-in-the-loop modelling. Manual control theory is used to describe and analyse the dynamic aspects of human-device interaction.

  17. Safe physical human robot interaction- past, present and future

    International Nuclear Information System (INIS)

    Pervez, Aslam; Ryu, Jeha

    2008-01-01

    When a robot physically interacts with a human user, the requirements should be drastically changed. The most important requirement is the safety of the human user in the sense that robot should not harm the human in any situation. During the last few years, research has been focused on various aspects of safe physical human robot interaction. This paper provides a review of the work on safe physical interaction of robotic systems sharing their workspace with human users (especially elderly people). Three distinct areas of research are identified: interaction safety assessment, interaction safety through design, and interaction safety through planning and control. The paper then highlights the current challenges and available technologies and points out future research directions for realization of a safe and dependable robotic system for human users

  18. A Novel Bioinspired Vision System: A Step toward Real-Time Human-Robot Interactions

    Directory of Open Access Journals (Sweden)

    Abdul Rahman Hafiz

    2011-01-01

    Full Text Available Building a human-like robot that could be involved in our daily lives is a dream of many scientists. Achieving a sophisticated robot's vision system, which can enhance the robot's real-time interaction ability with the human, is one of the main keys toward realizing such an autonomous robot. In this work, we are suggesting a bioinspired vision system that helps to develop an advanced human-robot interaction in an autonomous humanoid robot. First, we enhance the robot's vision accuracy online by applying a novel dynamic edge detection algorithm abstracted from the rules that the horizontal cells play in the mammalian retina. Second, in order to support the first algorithm, we improve the robot's tracking ability by designing a variant photoreceptors distribution corresponding to what exists in the human vision system. The experimental results verified the validity of the model. The robot could have a clear vision in real time and build a mental map that assisted it to be aware of the frontal users and to develop a positive interaction with them.

  19. Effects of interactions between humans and domesticated animals

    OpenAIRE

    Bokkers, E.A.M.

    2006-01-01

    Humans have many kinds of relationships with domesticated animals. To maintain relationships interactions are needed. Interactions with animals may be beneficial for humans but may also be risky. Scientific literature on effects of human¿animal relationships and interactions in a workplace, health-care and residential context has been reviewed to develop ideas about the effects farm animals can have on humans. Although there are quite a few studies, the variety of methods, the complexity of t...

  20. Fundamentals of human-computer interaction

    CERN Document Server

    Monk, Andrew F

    1985-01-01

    Fundamentals of Human-Computer Interaction aims to sensitize the systems designer to the problems faced by the user of an interactive system. The book grew out of a course entitled """"The User Interface: Human Factors for Computer-based Systems"""" which has been run annually at the University of York since 1981. This course has been attended primarily by systems managers from the computer industry. The book is organized into three parts. Part One focuses on the user as processor of information with studies on visual perception; extracting information from printed and electronically presented

  1. Socially intelligent robots: dimensions of human-robot interaction.

    Science.gov (United States)

    Dautenhahn, Kerstin

    2007-04-29

    Social intelligence in robots has a quite recent history in artificial intelligence and robotics. However, it has become increasingly apparent that social and interactive skills are necessary requirements in many application areas and contexts where robots need to interact and collaborate with other robots or humans. Research on human-robot interaction (HRI) poses many challenges regarding the nature of interactivity and 'social behaviour' in robot and humans. The first part of this paper addresses dimensions of HRI, discussing requirements on social skills for robots and introducing the conceptual space of HRI studies. In order to illustrate these concepts, two examples of HRI research are presented. First, research is surveyed which investigates the development of a cognitive robot companion. The aim of this work is to develop social rules for robot behaviour (a 'robotiquette') that is comfortable and acceptable to humans. Second, robots are discussed as possible educational or therapeutic toys for children with autism. The concept of interactive emergence in human-child interactions is highlighted. Different types of play among children are discussed in the light of their potential investigation in human-robot experiments. The paper concludes by examining different paradigms regarding 'social relationships' of robots and people interacting with them.

  2. Prospectively Isolated Human Bone Marrow Cell-Derived MSCs Support Primitive Human CD34-Negative Hematopoietic Stem Cells.

    Science.gov (United States)

    Matsuoka, Yoshikazu; Nakatsuka, Ryusuke; Sumide, Keisuke; Kawamura, Hiroshi; Takahashi, Masaya; Fujioka, Tatsuya; Uemura, Yasushi; Asano, Hiroaki; Sasaki, Yutaka; Inoue, Masami; Ogawa, Hiroyasu; Takahashi, Takayuki; Hino, Masayuki; Sonoda, Yoshiaki

    2015-05-01

    Hematopoietic stem cells (HSCs) are maintained in a specialized bone marrow (BM) niche, which consists of osteoblasts, endothelial cells, and a variety of mesenchymal stem/stromal cells (MSCs). However, precisely what types of MSCs support human HSCs in the BM remain to be elucidated because of their heterogeneity. In this study, we succeeded in prospectively isolating/establishing three types of MSCs from human BM-derived lineage- and CD45-negative cells, according to their cell surface expression of CD271 and stage-specific embryonic antigen (SSEA)-4. Among them, the MSCs established from the Lineage(-) CD45(-) CD271(+) SSEA-4(+) fraction (DP MSC) could differentiate into osteoblasts and chondrocytes, but they lacked adipogenic differentiation potential. The DP MSCs expressed significantly higher levels of well-characterized HSC-supportive genes, including IGF-2, Wnt3a, Jagged1, TGFβ3, nestin, CXCL12, and Foxc1, compared with other MSCs. Interestingly, these osteo-chondrogenic DP MSCs possessed the ability to support cord blood-derived primitive human CD34-negative severe combined immunodeficiency-repopulating cells. The HSC-supportive actions of DP MSCs were partially carried out by soluble factors, including IGF-2, Wnt3a, and Jagged1. Moreover, contact between DP MSCs and CD34-positive (CD34(+) ) as well as CD34-negative (CD34(-) ) HSCs was important for the support/maintenance of the CD34(+/-) HSCs in vitro. These data suggest that DP MSCs might play an important role in the maintenance of human primitive HSCs in the BM niche. Therefore, the establishment of DP MSCs provides a new tool for the elucidation of the human HSC/niche interaction in vitro as well as in vivo. © 2014 AlphaMed Press.

  3. User localization during human-robot interaction.

    Science.gov (United States)

    Alonso-Martín, F; Gorostiza, Javi F; Malfaz, María; Salichs, Miguel A

    2012-01-01

    This paper presents a user localization system based on the fusion of visual information and sound source localization, implemented on a social robot called Maggie. One of the main requisites to obtain a natural interaction between human-human and human-robot is an adequate spatial situation between the interlocutors, that is, to be orientated and situated at the right distance during the conversation in order to have a satisfactory communicative process. Our social robot uses a complete multimodal dialog system which manages the user-robot interaction during the communicative process. One of its main components is the presented user localization system. To determine the most suitable allocation of the robot in relation to the user, a proxemic study of the human-robot interaction is required, which is described in this paper. The study has been made with two groups of users: children, aged between 8 and 17, and adults. Finally, at the end of the paper, experimental results with the proposed multimodal dialog system are presented.

  4. Motor contagion during human-human and human-robot interaction.

    Directory of Open Access Journals (Sweden)

    Ambra Bisio

    Full Text Available Motor resonance mechanisms are known to affect humans' ability to interact with others, yielding the kind of "mutual understanding" that is the basis of social interaction. However, it remains unclear how the partner's action features combine or compete to promote or prevent motor resonance during interaction. To clarify this point, the present study tested whether and how the nature of the visual stimulus and the properties of the observed actions influence observer's motor response, being motor contagion one of the behavioral manifestations of motor resonance. Participants observed a humanoid robot and a human agent move their hands into a pre-specified final position or put an object into a container at various velocities. Their movements, both in the object- and non-object- directed conditions, were characterized by either a smooth/curvilinear or a jerky/segmented trajectory. These trajectories were covered with biological or non-biological kinematics (the latter only by the humanoid robot. After action observation, participants were requested to either reach the indicated final position or to transport a similar object into another container. Results showed that motor contagion appeared for both the interactive partner except when the humanoid robot violated the biological laws of motion. These findings suggest that the observer may transiently match his/her own motor repertoire to that of the observed agent. This matching might mediate the activation of motor resonance, and modulate the spontaneity and the pleasantness of the interaction, whatever the nature of the communication partner.

  5. Motor contagion during human-human and human-robot interaction.

    Science.gov (United States)

    Bisio, Ambra; Sciutti, Alessandra; Nori, Francesco; Metta, Giorgio; Fadiga, Luciano; Sandini, Giulio; Pozzo, Thierry

    2014-01-01

    Motor resonance mechanisms are known to affect humans' ability to interact with others, yielding the kind of "mutual understanding" that is the basis of social interaction. However, it remains unclear how the partner's action features combine or compete to promote or prevent motor resonance during interaction. To clarify this point, the present study tested whether and how the nature of the visual stimulus and the properties of the observed actions influence observer's motor response, being motor contagion one of the behavioral manifestations of motor resonance. Participants observed a humanoid robot and a human agent move their hands into a pre-specified final position or put an object into a container at various velocities. Their movements, both in the object- and non-object- directed conditions, were characterized by either a smooth/curvilinear or a jerky/segmented trajectory. These trajectories were covered with biological or non-biological kinematics (the latter only by the humanoid robot). After action observation, participants were requested to either reach the indicated final position or to transport a similar object into another container. Results showed that motor contagion appeared for both the interactive partner except when the humanoid robot violated the biological laws of motion. These findings suggest that the observer may transiently match his/her own motor repertoire to that of the observed agent. This matching might mediate the activation of motor resonance, and modulate the spontaneity and the pleasantness of the interaction, whatever the nature of the communication partner.

  6. Model-based acquisition and analysis of multimodal interactions for improving human-robot interaction

    OpenAIRE

    Renner, Patrick; Pfeiffer, Thies

    2014-01-01

    For solving complex tasks cooperatively in close interaction with robots, they need to understand natural human communication. To achieve this, robots could benefit from a deeper understanding of the processes that humans use for successful communication. Such skills can be studied by investigating human face-to-face interactions in complex tasks. In our work the focus lies on shared-space interactions in a path planning task and thus 3D gaze directions and hand movements are of particular in...

  7. Comparative Proteomic Analysis of Supportive and Unsupportive Extracellular Matrix Substrates for Human Embryonic Stem Cell Maintenance*

    Science.gov (United States)

    Soteriou, Despina; Iskender, Banu; Byron, Adam; Humphries, Jonathan D.; Borg-Bartolo, Simon; Haddock, Marie-Claire; Baxter, Melissa A.; Knight, David; Humphries, Martin J.; Kimber, Susan J.

    2013-01-01

    Human embryonic stem cells (hESCs) are pluripotent cells that have indefinite replicative potential and the ability to differentiate into derivatives of all three germ layers. hESCs are conventionally grown on mitotically inactivated mouse embryonic fibroblasts (MEFs) or feeder cells of human origin. In addition, feeder-free culture systems can be used to support hESCs, in which the adhesive substrate plays a key role in the regulation of stem cell self-renewal or differentiation. Extracellular matrix (ECM) components define the microenvironment of the niche for many types of stem cells, but their role in the maintenance of hESCs remains poorly understood. We used a proteomic approach to characterize in detail the composition and interaction networks of ECMs that support the growth of self-renewing hESCs. Whereas many ECM components were produced by supportive and unsupportive MEF and human placental stromal fibroblast feeder cells, some proteins were only expressed in supportive ECM, suggestive of a role in the maintenance of pluripotency. We show that identified candidate molecules can support attachment and self-renewal of hESCs alone (fibrillin-1) or in combination with fibronectin (perlecan, fibulin-2), in the absence of feeder cells. Together, these data highlight the importance of specific ECM interactions in the regulation of hESC phenotype and provide a resource for future studies of hESC self-renewal. PMID:23658023

  8. Themes in human work interaction design

    DEFF Research Database (Denmark)

    Ørngreen, Rikke; Mark Pejtersen, Annelise; Clemmensen, Torkil

    2008-01-01

    Design (name HWID) through the last two and half years since the commencement of this Working Group. The paper thus provides an introduction to the theory and empirical evidence that lie behind the combination of empirical work studies and interaction design. It also recommends key topics for future......Abstract. This paper raises themes that are seen as some of the challenges facing the emerging practice and research field of Human Work Interaction Design. The paper has its offset in the discussions and writings that have been dominant within the IFIP Working Group on Human Work Interaction...

  9. Eyeblink Synchrony in Multimodal Human-Android Interaction.

    Science.gov (United States)

    Tatsukawa, Kyohei; Nakano, Tamami; Ishiguro, Hiroshi; Yoshikawa, Yuichiro

    2016-12-23

    As the result of recent progress in technology of communication robot, robots are becoming an important social partner for humans. Behavioral synchrony is understood as an important factor in establishing good human-robot relationships. In this study, we hypothesized that biasing a human's attitude toward a robot changes the degree of synchrony between human and robot. We first examined whether eyeblinks were synchronized between a human and an android in face-to-face interaction and found that human listeners' eyeblinks were entrained to android speakers' eyeblinks. This eyeblink synchrony disappeared when the android speaker spoke while looking away from the human listeners but was enhanced when the human participants listened to the speaking android while touching the android's hand. These results suggest that eyeblink synchrony reflects a qualitative state in human-robot interactions.

  10. A conceptual framework to evaluate human-wildlife interactions within coupled human and natural systems

    Directory of Open Access Journals (Sweden)

    Anita T. Morzillo

    2014-09-01

    Full Text Available Landscape characteristics affect human-wildlife interactions. However, there is a need to better understand mechanisms that drive those interactions, particularly feedbacks that exist between wildlife-related impacts, human reaction to and behavior as a result of those impacts, and how land use and landscape characteristics may influence those components within coupled human and natural systems. Current conceptual models of human-wildlife interactions often focus on species population size as the independent variable driving those interactions. Such an approach potentially overlooks important feedbacks among and drivers of human-wildlife interactions that result from mere wildlife presence versus absence. We describe an emerging conceptual framework that focuses on wildlife as a driver of human behavior and allows us to better understand linkages between humans, wildlife, and the broader landscape. We also present results of a pilot analysis related to our own ongoing study of urban rodent control behavior to illustrate one application of this framework within a study of urban landscapes.

  11. Visual exploration and analysis of human-robot interaction rules

    Science.gov (United States)

    Zhang, Hui; Boyles, Michael J.

    2013-01-01

    We present a novel interaction paradigm for the visual exploration, manipulation and analysis of human-robot interaction (HRI) rules; our development is implemented using a visual programming interface and exploits key techniques drawn from both information visualization and visual data mining to facilitate the interaction design and knowledge discovery process. HRI is often concerned with manipulations of multi-modal signals, events, and commands that form various kinds of interaction rules. Depicting, manipulating and sharing such design-level information is a compelling challenge. Furthermore, the closed loop between HRI programming and knowledge discovery from empirical data is a relatively long cycle. This, in turn, makes design-level verification nearly impossible to perform in an earlier phase. In our work, we exploit a drag-and-drop user interface and visual languages to support depicting responsive behaviors from social participants when they interact with their partners. For our principal test case of gaze-contingent HRI interfaces, this permits us to program and debug the robots' responsive behaviors through a graphical data-flow chart editor. We exploit additional program manipulation interfaces to provide still further improvement to our programming experience: by simulating the interaction dynamics between a human and a robot behavior model, we allow the researchers to generate, trace and study the perception-action dynamics with a social interaction simulation to verify and refine their designs. Finally, we extend our visual manipulation environment with a visual data-mining tool that allows the user to investigate interesting phenomena such as joint attention and sequential behavioral patterns from multiple multi-modal data streams. We have created instances of HRI interfaces to evaluate and refine our development paradigm. As far as we are aware, this paper reports the first program manipulation paradigm that integrates visual programming

  12. Interactive visual supports for children with autism

    OpenAIRE

    Hayes, Gillian R.; Hirano, Sen; Marcu, Gabriela; Monibi, Mohamad; Nguyen, David H.; Yeganyan, Michael

    2010-01-01

    Interventions to support children with autism often include the use of visual supports, which are cognitive tools to enable learning and the production of language. Although visual supports are effective in helping to diminish many of the challenges of autism, they are difficult and time-consuming to create, distribute, and use. In this paper, we present the results of a qualitative study focused on uncovering design guidelines for interactive visual supports that would address the many chall...

  13. Validating cognitive support for operators of complex human-machine systems

    International Nuclear Information System (INIS)

    O'Hara, J.; Wachtel, J.

    1995-01-01

    Modem nuclear power plants (NPPs) are complex systems whose performance is the result of an intricate interaction of human and system control. A complex system may be defined as one which supports a dynamic process involving a large number of elements that interact in many different ways. Safety is addressed through defense-in-depth design and preplanning; i.e., designers consider the types of failures that are most likely to occur and those of high consequence, and design their solutions in advance. However, complex interactions and their failure modes cannot always be anticipated by the designer and may be unfamiliar to plant personnel. These situations may pose cognitive demands on plant personnel, both individually and as a crew. Other factors may contribute to the cognitive challenges of NPP operation as well, including hierarchal processes, dynamic pace, system redundancy and reliability, and conflicting objectives. These factors are discussed in this paper

  14. Sphericall: A Human/Artificial Intelligence interaction experience

    Directory of Open Access Journals (Sweden)

    Frack Gechter

    2014-12-01

    Full Text Available Multi-agent systems are now wide spread in scientific works and in industrial applications. Few applications deal with the Human/Multi-agent system interaction. Multi-agent systems are characterized by individual entities, called agents, in interaction with each other and with their environment. Multi-agent systems are generally classified into complex systems categories since the global emerging phenomenon cannot be predicted even if every component is well known. The systems developed in this paper are named reactive because they behave using simple interaction models. In the reactive approach, the issue of Human/system interaction is hard to cope with and is scarcely exposed in literature. This paper presents Sphericall, an application aimed at studying Human/Complex System interactions and based on two physics inspired multi-agent systems interacting together. The Sphericall device is composed of a tactile screen and a spherical world where agents evolve. This paper presents both the technical background of Sphericall project and a feedback taken from the demonstration performed during OFFF Festival in La Villette (Paris.

  15. Supporting collaborative computing and interaction

    International Nuclear Information System (INIS)

    Agarwal, Deborah; McParland, Charles; Perry, Marcia

    2002-01-01

    To enable collaboration on the daily tasks involved in scientific research, collaborative frameworks should provide lightweight and ubiquitous components that support a wide variety of interaction modes. We envision a collaborative environment as one that provides a persistent space within which participants can locate each other, exchange synchronous and asynchronous messages, share documents and applications, share workflow, and hold videoconferences. We are developing the Pervasive Collaborative Computing Environment (PCCE) as such an environment. The PCCE will provide integrated tools to support shared computing and task control and monitoring. This paper describes the PCCE and the rationale for its design

  16. Evaluation of the Humanity Research Paradigms based on Analysis of Human – Environment Interaction

    Directory of Open Access Journals (Sweden)

    Reza Sameh

    2015-09-01

    Full Text Available As claimed by many behavioral scientists, designing should be based on the knowledge of interaction between human and environment. Environmental quality is also created in the context in which humans interact with their environment. To achieve such quality, designers should develop appropriate models for explaining this relationship, and this requires an understanding of human nature and the environment. Criticisms on the Modern Movement have shown that architects have often used incomplete and simplistic models in this regard, while most of design ideas are based on the definitions of human and environment and the interaction between them. However, the most important question that is raised is that how understanding of human nature and the environment and their interaction, which depends on foundations of different views, can affect the pursuit of quality in designing? Therefore, the present paper, in addition to introduction and comparison of common paradigms in humanities as the and methodological foundation of human sciences, aims to deal with the relationship of human and the environment from the perspective of objectivist, relativist, and critical paradigms in order to identify the characteristics and differences in their views on the analysis of the quality of this interaction. This is the most important step that paves the way for understanding the qualitative foundations of the environment and human life quality and also the quality of interaction between them.

  17. Human-Robot Interaction: Status and Challenges.

    Science.gov (United States)

    Sheridan, Thomas B

    2016-06-01

    The current status of human-robot interaction (HRI) is reviewed, and key current research challenges for the human factors community are described. Robots have evolved from continuous human-controlled master-slave servomechanisms for handling nuclear waste to a broad range of robots incorporating artificial intelligence for many applications and under human supervisory control. This mini-review describes HRI developments in four application areas and what are the challenges for human factors research. In addition to a plethora of research papers, evidence of success is manifest in live demonstrations of robot capability under various forms of human control. HRI is a rapidly evolving field. Specialized robots under human teleoperation have proven successful in hazardous environments and medical application, as have specialized telerobots under human supervisory control for space and repetitive industrial tasks. Research in areas of self-driving cars, intimate collaboration with humans in manipulation tasks, human control of humanoid robots for hazardous environments, and social interaction with robots is at initial stages. The efficacy of humanoid general-purpose robots has yet to be proven. HRI is now applied in almost all robot tasks, including manufacturing, space, aviation, undersea, surgery, rehabilitation, agriculture, education, package fetch and delivery, policing, and military operations. © 2016, Human Factors and Ergonomics Society.

  18. Extended sequence diagram for human system interaction

    International Nuclear Information System (INIS)

    Hwang, Jong Rok; Choi, Sun Woo; Ko, Hee Ran; Kim, Jong Hyun

    2012-01-01

    Unified Modeling Language (UML) is a modeling language in the field of object oriented software engineering. The sequence diagram is a kind of interaction diagram that shows how processes operate with one another and in what order. It is a construct of a message sequence chart. It depicts the objects and classes involved in the scenario and the sequence of messages exchanged between the objects needed to carry out the functionality of the scenario. This paper proposes the Extended Sequence Diagram (ESD), which is capable of depicting human system interaction for nuclear power plants, as well as cognitive process of operators analysis. In the conventional sequence diagram, there is a limit to only identify the activities of human and systems interactions. The ESD is extended to describe operators' cognitive process in more detail. The ESD is expected to be used as a task analysis method for describing human system interaction. The ESD can also present key steps causing abnormal operations or failures and diverse human errors based on cognitive condition

  19. Human-Bat Interactions in Rural West Africa.

    Science.gov (United States)

    Anti, Priscilla; Owusu, Michael; Agbenyega, Olivia; Annan, Augustina; Badu, Ebenezer Kofi; Nkrumah, Evans Ewald; Tschapka, Marco; Oppong, Samuel; Adu-Sarkodie, Yaw; Drosten, Christian

    2015-08-01

    Because some bats host viruses with zoonotic potential, we investigated human-bat interactions in rural Ghana during 2011-2012. Nearly half (46.6%) of respondents regularly visited bat caves; 37.4% had been bitten, scratched, or exposed to bat urine; and 45.6% ate bat meat. Human-bat interactions in rural Ghana are frequent and diverse.

  20. Mapping Protein Interactions between Dengue Virus and Its Human and Insect Hosts

    Science.gov (United States)

    Doolittle, Janet M.; Gomez, Shawn M.

    2011-01-01

    Background Dengue fever is an increasingly significant arthropod-borne viral disease, with at least 50 million cases per year worldwide. As with other viral pathogens, dengue virus is dependent on its host to perform the bulk of functions necessary for viral survival and replication. To be successful, dengue must manipulate host cell biological processes towards its own ends, while avoiding elimination by the immune system. Protein-protein interactions between the virus and its host are one avenue through which dengue can connect and exploit these host cellular pathways and processes. Methodology/Principal Findings We implemented a computational approach to predict interactions between Dengue virus (DENV) and both of its hosts, Homo sapiens and the insect vector Aedes aegypti. Our approach is based on structural similarity between DENV and host proteins and incorporates knowledge from the literature to further support a subset of the predictions. We predict over 4,000 interactions between DENV and humans, as well as 176 interactions between DENV and A. aegypti. Additional filtering based on shared Gene Ontology cellular component annotation reduced the number of predictions to approximately 2,000 for humans and 18 for A. aegypti. Of 19 experimentally validated interactions between DENV and humans extracted from the literature, this method was able to predict nearly half (9). Additional predictions suggest specific interactions between virus and host proteins relevant to interferon signaling, transcriptional regulation, stress, and the unfolded protein response. Conclusions/Significance Dengue virus manipulates cellular processes to its advantage through specific interactions with the host's protein interaction network. The interaction networks presented here provide a set of hypothesis for further experimental investigation into the DENV life cycle as well as potential therapeutic targets. PMID:21358811

  1. Mapping protein interactions between Dengue virus and its human and insect hosts.

    Directory of Open Access Journals (Sweden)

    Janet M Doolittle

    Full Text Available BACKGROUND: Dengue fever is an increasingly significant arthropod-borne viral disease, with at least 50 million cases per year worldwide. As with other viral pathogens, dengue virus is dependent on its host to perform the bulk of functions necessary for viral survival and replication. To be successful, dengue must manipulate host cell biological processes towards its own ends, while avoiding elimination by the immune system. Protein-protein interactions between the virus and its host are one avenue through which dengue can connect and exploit these host cellular pathways and processes. METHODOLOGY/PRINCIPAL FINDINGS: We implemented a computational approach to predict interactions between Dengue virus (DENV and both of its hosts, Homo sapiens and the insect vector Aedes aegypti. Our approach is based on structural similarity between DENV and host proteins and incorporates knowledge from the literature to further support a subset of the predictions. We predict over 4,000 interactions between DENV and humans, as well as 176 interactions between DENV and A. aegypti. Additional filtering based on shared Gene Ontology cellular component annotation reduced the number of predictions to approximately 2,000 for humans and 18 for A. aegypti. Of 19 experimentally validated interactions between DENV and humans extracted from the literature, this method was able to predict nearly half (9. Additional predictions suggest specific interactions between virus and host proteins relevant to interferon signaling, transcriptional regulation, stress, and the unfolded protein response. CONCLUSIONS/SIGNIFICANCE: Dengue virus manipulates cellular processes to its advantage through specific interactions with the host's protein interaction network. The interaction networks presented here provide a set of hypothesis for further experimental investigation into the DENV life cycle as well as potential therapeutic targets.

  2. PreBIND and Textomy – mining the biomedical literature for protein-protein interactions using a support vector machine

    Directory of Open Access Journals (Sweden)

    Baskin Berivan

    2003-03-01

    Full Text Available Abstract Background The majority of experimentally verified molecular interaction and biological pathway data are present in the unstructured text of biomedical journal articles where they are inaccessible to computational methods. The Biomolecular interaction network database (BIND seeks to capture these data in a machine-readable format. We hypothesized that the formidable task-size of backfilling the database could be reduced by using Support Vector Machine technology to first locate interaction information in the literature. We present an information extraction system that was designed to locate protein-protein interaction data in the literature and present these data to curators and the public for review and entry into BIND. Results Cross-validation estimated the support vector machine's test-set precision, accuracy and recall for classifying abstracts describing interaction information was 92%, 90% and 92% respectively. We estimated that the system would be able to recall up to 60% of all non-high throughput interactions present in another yeast-protein interaction database. Finally, this system was applied to a real-world curation problem and its use was found to reduce the task duration by 70% thus saving 176 days. Conclusions Machine learning methods are useful as tools to direct interaction and pathway database back-filling; however, this potential can only be realized if these techniques are coupled with human review and entry into a factual database such as BIND. The PreBIND system described here is available to the public at http://bind.ca. Current capabilities allow searching for human, mouse and yeast protein-interaction information.

  3. Pantomimic gestures for human-robot interaction

    CSIR Research Space (South Africa)

    Burke, Michael G

    2015-10-01

    Full Text Available -1 IEEE TRANSACTIONS ON ROBOTICS 1 Pantomimic Gestures for Human-Robot Interaction Michael Burke, Student Member, IEEE, and Joan Lasenby Abstract This work introduces a pantomimic gesture interface, which classifies human hand gestures using...

  4. Prediction of protein-protein interactions between viruses and human by an SVM model

    Directory of Open Access Journals (Sweden)

    Cui Guangyu

    2012-05-01

    Full Text Available Abstract Background Several computational methods have been developed to predict protein-protein interactions from amino acid sequences, but most of those methods are intended for the interactions within a species rather than for interactions across different species. Methods for predicting interactions between homogeneous proteins are not appropriate for finding those between heterogeneous proteins since they do not distinguish the interactions between proteins of the same species from those of different species. Results We developed a new method for representing a protein sequence of variable length in a frequency vector of fixed length, which encodes the relative frequency of three consecutive amino acids of a sequence. We built a support vector machine (SVM model to predict human proteins that interact with virus proteins. In two types of viruses, human papillomaviruses (HPV and hepatitis C virus (HCV, our SVM model achieved an average accuracy above 80%, which is higher than that of another SVM model with a different representation scheme. Using the SVM model and Gene Ontology (GO annotations of proteins, we predicted new interactions between virus proteins and human proteins. Conclusions Encoding the relative frequency of amino acid triplets of a protein sequence is a simple yet powerful representation method for predicting protein-protein interactions across different species. The representation method has several advantages: (1 it enables a prediction model to achieve a better performance than other representations, (2 it generates feature vectors of fixed length regardless of the sequence length, and (3 the same representation is applicable to different types of proteins.

  5. Supportive and non-supportive interactions in families with a type 2 diabetes patient

    DEFF Research Database (Denmark)

    Bennich, Birgitte B; Røder, Michael E; Overgaard, Dorthe

    2017-01-01

    changes and diabetes self-management. The purpose of this integrative review was to summarise and assess published studies on the intra-family perspective of supportive and non-supportive interactions in families with a type 2 diabetes patient. METHODS: Included in the review were published qualitative......BACKGROUND: Type 2 diabetes and its management affect the patient and the close family potentially causing either psychological distress or increased sense of responsibility and collaboration in these families. Interactions between patient and family play an important role in maintaining lifestyle...... of reference lists. Quality assessment, data extraction and analysis were undertaken on all included studies. RESULTS: We identified five eligible research papers. Employing content analysis three categories describing interactions were refined: Impact of practical action, impact of emotional involvement...

  6. Human Work Interaction Design

    DEFF Research Database (Denmark)

    Lopes, Arminda; Ørngreen, Rikke

    This book constitutes the thoroughly refereed post-conference proceedings of the Third IFIP WG 13.6 Working Conference on Human Work Interaction Design, HWID 2012, held in Copenhagen, Denmark, in December 2012. The 16 revised papers presented were carefully selected for inclusion in this volume...

  7. Human-Human Interaction Forces and Interlimb Coordination During Side-by-Side Walking With Hand Contact.

    Science.gov (United States)

    Sylos-Labini, Francesca; d'Avella, Andrea; Lacquaniti, Francesco; Ivanenko, Yury

    2018-01-01

    Handholding can naturally occur between two walkers. When people walk side-by-side, either with or without hand contact, they often synchronize their steps. However, despite the importance of haptic interaction in general and the natural use of hand contact between humans during walking, few studies have investigated forces arising from physical interactions. Eight pairs of adult subjects participated in this study. They walked on side-by-side treadmills at 4 km/h independently and with hand contact. Only hand contact-related sensory information was available for unintentional synchronization, while visual and auditory communication was obstructed. Subjects walked at their natural cadences or following a metronome. Limb kinematics, hand contact 3D interaction forces and EMG activity of 12 upper limb muscles were recorded. Overall, unintentional step frequency locking was observed during about 40% of time in 88% of pairs walking with hand contact. On average, the amplitude of contact arm oscillations decreased while the contralateral (free) arm oscillated in the same way as during normal walking. Interestingly, EMG activity of the shoulder muscles of the contact arm did not decrease, and their synergistic pattern remained similar. The amplitude of interaction forces and of trunk oscillations was similar for synchronized and non-synchronized steps, though the synchronized steps were characterized by significantly more regular orientations of interaction forces. Our results further support the notion that gait synchronization during natural walking is common, and that it may occur through interaction forces. Conservation of the proximal muscle activity of the contact (not oscillating) arm is consistent with neural coupling between cervical and lumbosacral pattern generation circuitries ("quadrupedal" arm-leg coordination) during human gait. Overall, the findings suggest that individuals might integrate force interaction cues to communicate and coordinate steps during

  8. Human-Human Interaction Forces and Interlimb Coordination During Side-by-Side Walking With Hand Contact

    Directory of Open Access Journals (Sweden)

    Francesca Sylos-Labini

    2018-03-01

    Full Text Available Handholding can naturally occur between two walkers. When people walk side-by-side, either with or without hand contact, they often synchronize their steps. However, despite the importance of haptic interaction in general and the natural use of hand contact between humans during walking, few studies have investigated forces arising from physical interactions. Eight pairs of adult subjects participated in this study. They walked on side-by-side treadmills at 4 km/h independently and with hand contact. Only hand contact-related sensory information was available for unintentional synchronization, while visual and auditory communication was obstructed. Subjects walked at their natural cadences or following a metronome. Limb kinematics, hand contact 3D interaction forces and EMG activity of 12 upper limb muscles were recorded. Overall, unintentional step frequency locking was observed during about 40% of time in 88% of pairs walking with hand contact. On average, the amplitude of contact arm oscillations decreased while the contralateral (free arm oscillated in the same way as during normal walking. Interestingly, EMG activity of the shoulder muscles of the contact arm did not decrease, and their synergistic pattern remained similar. The amplitude of interaction forces and of trunk oscillations was similar for synchronized and non-synchronized steps, though the synchronized steps were characterized by significantly more regular orientations of interaction forces. Our results further support the notion that gait synchronization during natural walking is common, and that it may occur through interaction forces. Conservation of the proximal muscle activity of the contact (not oscillating arm is consistent with neural coupling between cervical and lumbosacral pattern generation circuitries (“quadrupedal” arm-leg coordination during human gait. Overall, the findings suggest that individuals might integrate force interaction cues to communicate and

  9. Interacting With Robots to Investigate the Bases of Social Interaction.

    Science.gov (United States)

    Sciutti, Alessandra; Sandini, Giulio

    2017-12-01

    Humans show a great natural ability at interacting with each other. Such efficiency in joint actions depends on a synergy between planned collaboration and emergent coordination, a subconscious mechanism based on a tight link between action execution and perception. This link supports phenomena as mutual adaptation, synchronization, and anticipation, which cut drastically the delays in the interaction and the need of complex verbal instructions and result in the establishment of joint intentions, the backbone of social interaction. From a neurophysiological perspective, this is possible, because the same neural system supporting action execution is responsible of the understanding and the anticipation of the observed action of others. Defining which human motion features allow for such emergent coordination with another agent would be crucial to establish more natural and efficient interaction paradigms with artificial devices, ranging from assistive and rehabilitative technology to companion robots. However, investigating the behavioral and neural mechanisms supporting natural interaction poses substantial problems. In particular, the unconscious processes at the basis of emergent coordination (e.g., unintentional movements or gazing) are very difficult-if not impossible-to restrain or control in a quantitative way for a human agent. Moreover, during an interaction, participants influence each other continuously in a complex way, resulting in behaviors that go beyond experimental control. In this paper, we propose robotics technology as a potential solution to this methodological problem. Robots indeed can establish an interaction with a human partner, contingently reacting to his actions without losing the controllability of the experiment or the naturalness of the interactive scenario. A robot could represent an "interactive probe" to assess the sensory and motor mechanisms underlying human-human interaction. We discuss this proposal with examples from our

  10. Support for Multitasking and background Awareness Using Interactive Peripheral Displays

    DEFF Research Database (Denmark)

    MacIntyre, Blair; Mynatt, Elizabeth Diane; Voida, Stephen

    2001-01-01

    n this paper, we describe Kimura, an augmented office environment to support common multitasking practices. Previous systems, such as Rooms, limit users by constraining the interaction to the desktop monitor. In Kimura, we leverage interactive projected peripheral displays to support the perusal...

  11. Cognitive Human-Machine Interface Applied in Remote Support for Industrial Robot Systems

    Directory of Open Access Journals (Sweden)

    Tomasz Kosicki

    2013-10-01

    Full Text Available An attempt is currently being made to widely introduce industrial robots to Small-Medium Enterprises (SMEs. Since the enterprises usually employ too small number of robot units to afford specialized departments for robot maintenance, they must be provided with inexpensive and immediate support remotely. This paper evaluates whether the support can be provided by means of Cognitive Info-communication – communication in which human cognitive capabilities are extended irrespectively of geographical distances. The evaluations are given with an aid of experimental system that consists of local and remote rooms, which are physically separated – a six-degree-of-freedom NACHI SH133-03 industrial robot is situated in the local room, while the operator, who supervises the robot by means of audio-visual Cognitive Human-Machine Interface, is situated in the remote room. The results of simple experiments show that Cognitive Info-communication is not only efficient mean to provide the support remotely, but is probably also a powerful tool to enhance interaction with any data-rich environment that require good conceptual understanding of system's state and careful attention management. Furthermore, the paper discusses data presentation and reduction methods for data-rich environments, as well as introduces the concepts of Naturally Acquired Data and Cognitive Human-Machine Interfaces.

  12. A human protein interaction network shows conservation of aging processes between human and invertebrate species.

    Directory of Open Access Journals (Sweden)

    Russell Bell

    2009-03-01

    Full Text Available We have mapped a protein interaction network of human homologs of proteins that modify longevity in invertebrate species. This network is derived from a proteome-scale human protein interaction Core Network generated through unbiased high-throughput yeast two-hybrid searches. The longevity network is composed of 175 human homologs of proteins known to confer increased longevity through loss of function in yeast, nematode, or fly, and 2,163 additional human proteins that interact with these homologs. Overall, the network consists of 3,271 binary interactions among 2,338 unique proteins. A comparison of the average node degree of the human longevity homologs with random sets of proteins in the Core Network indicates that human homologs of longevity proteins are highly connected hubs with a mean node degree of 18.8 partners. Shortest path length analysis shows that proteins in this network are significantly more connected than would be expected by chance. To examine the relationship of this network to human aging phenotypes, we compared the genes encoding longevity network proteins to genes known to be changed transcriptionally during aging in human muscle. In the case of both the longevity protein homologs and their interactors, we observed enrichments for differentially expressed genes in the network. To determine whether homologs of human longevity interacting proteins can modulate life span in invertebrates, homologs of 18 human FRAP1 interacting proteins showing significant changes in human aging muscle were tested for effects on nematode life span using RNAi. Of 18 genes tested, 33% extended life span when knocked-down in Caenorhabditis elegans. These observations indicate that a broad class of longevity genes identified in invertebrate models of aging have relevance to human aging. They also indicate that the longevity protein interaction network presented here is enriched for novel conserved longevity proteins.

  13. A tabletop interactive storytelling system: designing for social interaction

    NARCIS (Netherlands)

    Alofs, Thijs; Theune, Mariet; Swartjes, I.M.T.

    This paper presents the Interactive Storyteller, a multi-user interface for AI-based interactive storytelling, where stories emerge from the interaction of human players with intelligent characters in a simulated story world. To support face-to-face contact and social interaction, we position users

  14. Supportive Accountability: A model for providing human support for internet and ehealth interventions

    NARCIS (Netherlands)

    Mohr, D.C.; Cuijpers, P.; Lehman, K.A.

    2011-01-01

    The effectiveness of and adherence to eHealth interventions is enhanced by human support. However, human support has largely not been manualized and has usually not been guided by clear models. The objective of this paper is to develop a clear theoretical model, based on relevant empirical

  15. Human Work Interaction Design

    DEFF Research Database (Denmark)

    Gonçalves, Frederica; Campos, Pedro; Clemmensen, Torkil

    2015-01-01

    In this paper, we review research in the emerging practice and research field of Human Work Interaction Design (HWID). We present a HWID frame-work, and a sample of 54 papers from workshops, conferences and journals from the period 2009-2014. We group the papers into six topical groups, and then ...

  16. Two Equals One: Two Human Actions During Social Interaction Are Grouped as One Unit in Working Memory.

    Science.gov (United States)

    Ding, Xiaowei; Gao, Zaifeng; Shen, Mowei

    2017-09-01

    Every day, people perceive other people performing interactive actions. Retaining these actions of human agents in working memory (WM) plays a pivotal role in a normal social life. However, whether the semantic knowledge embedded in the interactive actions has a pervasive impact on the storage of the actions in WM remains unknown. In the current study, we investigated two opposing hypotheses: (a) that WM stores the interactions individually (the individual-storage hypothesis) and (b) that WM stores the interactions as chunks (the chunk-storage hypothesis). We required participants to memorize a set of individual actions while ignoring the underlying social interactions. We found that although the social-interaction aspect was task irrelevant, the interactive actions were stored in WM as chunks that were not affected by memory load (Experiments 1 and 2); however, inverting the human actions vertically abolished this chunking effect (Experiment 3). These results suggest that WM automatically and efficiently used semantic knowledge about interactive actions to store them and support the chunk-storage hypothesis.

  17. Interaction between Saikosaponin D, Paeoniflorin, and Human Serum Albumin.

    Science.gov (United States)

    Liang, Guo-Wu; Chen, Yi-Cun; Wang, Yi; Wang, Hong-Mei; Pan, Xiang-Yu; Chen, Pei-Hong; Niu, Qing-Xia

    2018-01-27

    Saikosaponin D (SSD) and paeoniflorin (PF) are the major active constituents of Bupleuri Radix and Paeonia lactiflora Pall , respectively, and have been widely used in China to treat liver and other diseases for many centuries. We explored the binding of SSD/PF to human serum albumin (HSA) by using fluorospectrophotometry, circular dichroism (CD) and molecular docking. Both SSD and PF produced a conformational change in HSA. Fluorescence quenching was accompanied by a blue shift in the fluorescence spectra. Co-binding of PF and SSD also induced quenching and a conformational change in HSA. The Stern-Volmer equation showed that quenching was dominated by static quenching. The binding constant for ternary interaction was below that for binary interaction. Site-competitive experiments demonstrated that SSD/PF bound to site I (subdomain IIA) and site II (subdomain IIIA) in HSA. Analysis of thermodynamic parameters indicated that hydrogen bonding and van der Waals forces were mostly responsible for the binary association. Also, there was energy transfer upon binary interaction. Molecular docking supported the experimental findings in conformation, binding sites and binding forces.

  18. Requirements for user interaction support in future CACE environments

    DEFF Research Database (Denmark)

    Ravn, Ole; Szymkat, M.

    1994-01-01

    Based on a review of user interaction modes and the specific needs of the CACE domain the paper describes requirements for user interaction in future CACE environments. Taking another look at the design process in CACE key areas in need of more user interaction support are pointed out. Three...

  19. Social interactions through the eyes of macaques and humans.

    Directory of Open Access Journals (Sweden)

    Richard McFarland

    Full Text Available Group-living primates frequently interact with each other to maintain social bonds as well as to compete for valuable resources. Observing such social interactions between group members provides individuals with essential information (e.g. on the fighting ability or altruistic attitude of group companions to guide their social tactics and choice of social partners. This process requires individuals to selectively attend to the most informative content within a social scene. It is unclear how non-human primates allocate attention to social interactions in different contexts, and whether they share similar patterns of social attention to humans. Here we compared the gaze behaviour of rhesus macaques and humans when free-viewing the same set of naturalistic images. The images contained positive or negative social interactions between two conspecifics of different phylogenetic distance from the observer; i.e. affiliation or aggression exchanged by two humans, rhesus macaques, Barbary macaques, baboons or lions. Monkeys directed a variable amount of gaze at the two conspecific individuals in the images according to their roles in the interaction (i.e. giver or receiver of affiliation/aggression. Their gaze distribution to non-conspecific individuals was systematically varied according to the viewed species and the nature of interactions, suggesting a contribution of both prior experience and innate bias in guiding social attention. Furthermore, the monkeys' gaze behavior was qualitatively similar to that of humans, especially when viewing negative interactions. Detailed analysis revealed that both species directed more gaze at the face than the body region when inspecting individuals, and attended more to the body region in negative than in positive social interactions. Our study suggests that monkeys and humans share a similar pattern of role-sensitive, species- and context-dependent social attention, implying a homologous cognitive mechanism of

  20. Neural correlate of human reciprocity in social interactions.

    Science.gov (United States)

    Sakaiya, Shiro; Shiraito, Yuki; Kato, Junko; Ide, Hiroko; Okada, Kensuke; Takano, Kouji; Kansaku, Kenji

    2013-01-01

    Reciprocity plays a key role maintaining cooperation in society. However, little is known about the neural process that underpins human reciprocity during social interactions. Our neuroimaging study manipulated partner identity (computer, human) and strategy (random, tit-for-tat) in repeated prisoner's dilemma games and investigated the neural correlate of reciprocal interaction with humans. Reciprocal cooperation with humans but exploitation of computers by defection was associated with activation in the left amygdala. Amygdala activation was also positively and negatively correlated with a preference change for human partners following tit-for-tat and random strategies, respectively. The correlated activation represented the intensity of positive feeling toward reciprocal and negative feeling toward non-reciprocal partners, and so reflected reciprocity in social interaction. Reciprocity in social interaction, however, might plausibly be misinterpreted and so we also examined the neural coding of insight into the reciprocity of partners. Those with and without insight revealed differential brain activation across the reward-related circuitry (i.e., the right middle dorsolateral prefrontal cortex and dorsal caudate) and theory of mind (ToM) regions [i.e., ventromedial prefrontal cortex (VMPFC) and precuneus]. Among differential activations, activation in the precuneus, which accompanied deactivation of the VMPFC, was specific to those without insight into human partners who were engaged in a tit-for-tat strategy. This asymmetric (de)activation might involve specific contributions of ToM regions to the human search for reciprocity. Consequently, the intensity of emotion attached to human reciprocity was represented in the amygdala, whereas insight into the reciprocity of others was reflected in activation across the reward-related and ToM regions. This suggests the critical role of mentalizing, which was not equated with reward expectation during social interactions.

  1. Neural correlate of human reciprocity in social interactions

    Directory of Open Access Journals (Sweden)

    Shiro eSakaiya

    2013-12-01

    Full Text Available Reciprocity plays a key role maintaining cooperation in society. However, little is known about the neural process that underpins human reciprocity during social interactions. Our neuroimaging study manipulated partner identity (computer, human and strategy (random, tit-for-tat in repeated prisoner’s dilemma games and investigated the neural correlate of reciprocal interaction with humans. Reciprocal cooperation with humans but exploitation of computers by defection was associated with activation in the left amygdala. Amygdala activation was also positively and negatively correlated with a preference change for human partners following tit-for-tat and random strategies, respectively. The correlated activation represented the intensity of positive feeling toward reciprocal and negative feeling toward non-reciprocal partners, and so reflected reciprocity in social interaction. Reciprocity in social interaction, however, might plausibly be misinterpreted and so we also examined the neural coding of insight into the reciprocity of partners. Those with and without insight revealed differential brain activation across the reward-related circuitry (i.e., the right middle dorsolateral prefrontal cortex and dorsal caudate and theory of mind (ToM regions (i.e., ventromedial prefrontal cortex [VMPFC] and precuneus. Among differential activations, activation in the precuneus, which accompanied deactivation of the VMPFC, was specific to those without insight into human partners who were engaged in a tit-for-tat strategy. This asymmetric (deactivation might involve specific contributions of ToM regions to the human search for reciprocity. Consequently, the intensity of emotion attached to human reciprocity was represented in the amygdala, whereas insight into the reciprocity of others was reflected in activation across the reward-related and ToM regions. This suggests the critical role of mentalizing, which was not equated with reward expectation during

  2. Interaction of Citrinin with Human Serum Albumin

    Directory of Open Access Journals (Sweden)

    Miklós Poór

    2015-12-01

    Full Text Available Citrinin (CIT is a mycotoxin produced by several Aspergillus, Penicillium, and Monascus species. CIT occurs worldwide in different foods and drinks and causes health problems for humans and animals. Human serum albumin (HSA is the most abundant plasma protein in human circulation. Albumin forms stable complexes with many drugs and xenobiotics; therefore, HSA commonly plays important role in the pharmacokinetics or toxicokinetics of numerous compounds. However, the interaction of CIT with HSA is poorly characterized yet. In this study, the complex formation of CIT with HSA was investigated using fluorescence spectroscopy and ultrafiltration techniques. For the deeper understanding of the interaction, thermodynamic, and molecular modeling studies were performed as well. Our results suggest that CIT forms stable complex with HSA (logK ~ 5.3 and its primary binding site is located in subdomain IIA (Sudlow’s Site I. In vitro cell experiments also recommend that CIT-HSA interaction may have biological relevance. Finally, the complex formations of CIT with bovine, porcine, and rat serum albumin were investigated, in order to test the potential species differences of CIT-albumin interactions.

  3. Spectral asymptotics of a strong δ′ interaction supported by a surface

    International Nuclear Information System (INIS)

    Exner, Pavel; Jex, Michal

    2014-01-01

    Highlights: • Attractive δ ′ interactions supported by a smooth surface are considered. • Surfaces can be either infinite and asymptotically planar, or compact and closed. • Spectral asymptotics is determined by the geometry of the interaction support. - Abstract: We derive asymptotic expansion for the spectrum of Hamiltonians with a strong attractive δ ′ interaction supported by a smooth surface in R 3 , either infinite and asymptotically planar, or compact and closed. Its second term is found to be determined by a Schrödinger type operator with an effective potential expressed in terms of the interaction support curvatures

  4. Humans, computers and wizards human (simulated) computer interaction

    CERN Document Server

    Fraser, Norman; McGlashan, Scott; Wooffitt, Robin

    2013-01-01

    Using data taken from a major European Union funded project on speech understanding, the SunDial project, this book considers current perspectives on human computer interaction and argues for the value of an approach taken from sociology which is based on conversation analysis.

  5. Supportive Accountability: A Model for Providing Human Support to Enhance Adherence to eHealth Interventions

    Science.gov (United States)

    2011-01-01

    The effectiveness of and adherence to eHealth interventions is enhanced by human support. However, human support has largely not been manualized and has usually not been guided by clear models. The objective of this paper is to develop a clear theoretical model, based on relevant empirical literature, that can guide research into human support components of eHealth interventions. A review of the literature revealed little relevant information from clinical sciences. Applicable literature was drawn primarily from organizational psychology, motivation theory, and computer-mediated communication (CMC) research. We have developed a model, referred to as “Supportive Accountability.” We argue that human support increases adherence through accountability to a coach who is seen as trustworthy, benevolent, and having expertise. Accountability should involve clear, process-oriented expectations that the patient is involved in determining. Reciprocity in the relationship, through which the patient derives clear benefits, should be explicit. The effect of accountability may be moderated by patient motivation. The more intrinsically motivated patients are, the less support they likely require. The process of support is also mediated by the communications medium (eg, telephone, instant messaging, email). Different communications media each have their own potential benefits and disadvantages. We discuss the specific components of accountability, motivation, and CMC medium in detail. The proposed model is a first step toward understanding how human support enhances adherence to eHealth interventions. Each component of the proposed model is a testable hypothesis. As we develop viable human support models, these should be manualized to facilitate dissemination. PMID:21393123

  6. Ordinary Social Interaction and the Main Effect Between Perceived Support and Affect.

    Science.gov (United States)

    Lakey, Brian; Vander Molen, Randy J; Fles, Elizabeth; Andrews, Justin

    2016-10-01

    Relational regulation theory hypothesizes that (a) the main effect between perceived support and mental health primarily reflects ordinary social interaction rather than conversations about stress and how to cope with it, and (b) the extent to which a provider regulates a recipient's mental health primarily reflects the recipient's personal taste (i.e., is relational), rather than the provider's objective supportiveness. In three round-robin studies, participants rated each other on supportiveness and the quality of ordinary social interaction, as well as their own affect when interacting with each other. Samples included marines about to deploy to Afghanistan (N = 100; 150 dyads), students sharing apartments (N = 64; 96 dyads), and strangers (N = 48; 72 dyads). Perceived support and ordinary social interaction were primarily relational, and most of perceived support's main effect on positive affect was redundant with ordinary social interaction. The main effect between perceived support and affect emerged among strangers after brief text conversations, and these links were partially verified by independent observers. Findings for negative affect were less consistent with theory. Ordinary social interaction appears to be able to explain much of the main effect between perceived support and positive affect. © 2015 Wiley Periodicals, Inc.

  7. Human-Computer Interaction in Smart Environments

    Science.gov (United States)

    Paravati, Gianluca; Gatteschi, Valentina

    2015-01-01

    Here, we provide an overview of the content of the Special Issue on “Human-computer interaction in smart environments”. The aim of this Special Issue is to highlight technologies and solutions encompassing the use of mass-market sensors in current and emerging applications for interacting with Smart Environments. Selected papers address this topic by analyzing different interaction modalities, including hand/body gestures, face recognition, gaze/eye tracking, biosignal analysis, speech and activity recognition, and related issues.

  8. Human interactions with sirenians (manatees and dugongs)

    Science.gov (United States)

    Bonde, Robert K.; Flint, Mark

    2017-01-01

    There are three extant sirenian species of the Trichechidae family and one living Dugongidae family member. Given their close ties to coastal and often urbanized habitats, sirenians are exposed to many types of anthropogenic activities that result in challenges to their well-being, poor health, and even death. In the wild, they are exposed to direct and indirect local pressures as well as subject to large-scale stressors such as global climate change acting on regions or entire genetic stocks. In captivity, they are subject to husbandry and management practices based on our collective knowledge, or in some cases lack thereof, of their needs and welfare. It is therefore reasonable to consider that their current imperiled status is very closely linked to our actions. In this chapter, we identify and define human interactions that may impact dugongs and manatees, including hunting, fisheries, boat interactions, negative interactions with man-made structures, disease and contaminants, and global climate change. We examine techniques used to investigate these impacts and the influence of sirenian biology and of changing human behaviors on potential outcomes. We examine how this differs for dugongs and manatees in the wild and for those held in captivity. Finally, we provide possible mitigation strategies and ways to assess the efforts we are making to improve the welfare of individuals and to conserve these species. This chapter identifies how the welfare of these species is intrinsically linked to the human interactions these animals experience, and how the nature of these interactions has changed with societal shifts. We proffer suggested ways to minimize negative impacts. Current knowledge should be used to minimize negative human interactions and impacts, to promote positive impacts, and to protect these animals for the future.

  9. Pet ownership and older women: the relationships among loneliness, pet attachment support, human social support, and depressed mood.

    Science.gov (United States)

    Krause-Parello, Cheryl A

    2012-01-01

    Pets can play a positive role in the both the physical and psychological health of older adults. This cross sectional study investigated the relationships among loneliness, pet attachment support, human social support, and depressed mood in a convenience sample of 159 pet-owning older women residing in the community. Participants completed loneliness, pet attachment support, human social support, and depressed mood scales. The results supported significant relationships between loneliness, pet attachment support, human social support, and depressed mood. No relationship was found between human social support and depressed mood. Pet attachment support, but not human social support, influenced the relationship between loneliness and depressed mood indicating the importance of pet attachment as a greater form of support in this sample. Clinical and social implications for nurses working with the geriatric population were identified and discussed. Copyright © 2012 Mosby, Inc. All rights reserved.

  10. Type 2 Diabetes Education and Support in a Virtual Environment: A Secondary Analysis of Synchronously Exchanged Social Interaction and Support.

    Science.gov (United States)

    Lewinski, Allison A; Anderson, Ruth A; Vorderstrasse, Allison A; Fisher, Edwin B; Pan, Wei; Johnson, Constance M

    2018-02-21

    Virtual environments (VEs) facilitate interaction and support among individuals with chronic illness, yet the characteristics of these VE interactions remain unknown. The objective of this study was to describe social interaction and support among individuals with type 2 diabetes (T2D) who interacted in a VE. Data included VE-mediated synchronous conversations and text-chat and asynchronous emails and discussion board posts from a study that facilitated interaction among individuals with T2D and diabetes educators (N=24) in 2 types of sessions: education and support. VE interactions consisted of communication techniques (how individuals interact in the VE), expressions of self-management (T2D-related topics), depth (personalization of topics), and breadth (number of topics discussed). Individuals exchanged support more often in the education (723/1170, 61.79%) than in the support (406/1170, 34.70%) sessions or outside session time (41/1170, 3.50%). Of all support exchanges, 535/1170 (45.73%) were informational, 377/1170 (32.22%) were emotional, 217/1170 (18.55%) were appraisal, and 41/1170 (3.50%) were instrumental. When comparing session types, education sessions predominately provided informational support (357/723, 49.4%), and the support sessions predominately provided emotional (159/406, 39.2%) and informational (159/406, 39.2%) support. VE-mediated interactions resemble those in face-to-face environments, as individuals in VEs engage in bidirectional exchanges with others to obtain self-management education and support. Similar to face-to-face environments, individuals in the VE revealed personal information, sought information, and exchanged support during the moderated education sessions and unstructured support sessions. With this versatility, VEs are able to contribute substantially to support for those with diabetes and, very likely, other chronic diseases. ©Allison A Lewinski, Ruth A Anderson, Allison A Vorderstrasse, Edwin B Fisher, Wei Pan, Constance

  11. A New Application for Albumin Dialysis in Extracorporeal Organ Support: Characterization of a Putative Interaction Between Human Albumin and Proinflammatory Cytokines IL-6 and TNFα.

    Science.gov (United States)

    Pfensig, Claudia; Dominik, Adrian; Borufka, Luise; Hinz, Michael; Stange, Jan; Eggert, Martin

    2016-04-01

    Albumin dialysis in extracorporeal organ support is often performed in the treatment of liver failure as it facilitates the removal of toxic components from the blood. Here, we describe a possible effect of albumin dialysis on proinflammatory cytokine levels in vitro. Initially, albumin samples were incubated with different amounts of cytokines and analyzed by enzyme-linked immunosorbent assay (ELISA). Analysis of interleukin 6 (IL-6) and tumor necrosis factor alpha (TNFα) levels indicated that increased concentrations of albumin reduce the measureable amount of the respective cytokines. This led to the hypothesis that the used proinflammatory cytokines may interact with albumin. Size exclusion chromatography of albumin spiked with cytokines was carried out using high-performance liquid chromatography analysis. The corresponding fractions were evaluated by immunoblotting. We detected albumin and cytokines in the same fractions indicating an interaction of the small-sized cytokines IL-6 and TNFα with the larger-sized albumin. Finally, a two-compartment albumin dialysis in vitro model was used to analyze the effect of albumin on proinflammatory cytokines in the recirculation circuit during 6-h treatment. These in vitro albumin dialysis experiments indicated a significant decrease of IL-6, but not of TNFα, when albumin was added to the dialysate solution. Taken together, we were able to show a putative in vitro interaction of human albumin with the proinflammatory cytokine IL-6, but with less evidence for TNFα, and demonstrated an additional application for albumin dialysis in liver support therapy where IL-6 removal might be indicated. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  12. Singular interactions supported by embedded curves

    International Nuclear Information System (INIS)

    Kaynak, Burak Tevfik; Turgut, O Teoman

    2012-01-01

    In this work, singular interactions supported by embedded curves on Riemannian manifolds are discussed from a more direct and physical perspective, via the heat kernel approach. We show that the renormalized problem is well defined, the ground state is finite and the corresponding wavefunction is positive. The renormalization group invariance of the model is also discussed. (paper)

  13. Human-Computer Interaction in Smart Environments

    Directory of Open Access Journals (Sweden)

    Gianluca Paravati

    2015-08-01

    Full Text Available Here, we provide an overview of the content of the Special Issue on “Human-computer interaction in smart environments”. The aim of this Special Issue is to highlight technologies and solutions encompassing the use of mass-market sensors in current and emerging applications for interacting with Smart Environments. Selected papers address this topic by analyzing different interaction modalities, including hand/body gestures, face recognition, gaze/eye tracking, biosignal analysis, speech and activity recognition, and related issues.

  14. Interactively human: Sharing time, constructing materiality.

    Science.gov (United States)

    Roepstorff, Andreas

    2013-06-01

    Predictive processing models of cognition are promising an elegant way to unite action, perception, and learning. However, in the current formulations, they are species-unspecific and have very little particularly human about them. I propose to examine how, in this framework, humans can be able to massively interact and to build shared worlds that are both material and symbolic.

  15. A scored human protein-protein interaction network to catalyze genomic interpretation

    DEFF Research Database (Denmark)

    Li, Taibo; Wernersson, Rasmus; Hansen, Rasmus B

    2017-01-01

    Genome-scale human protein-protein interaction networks are critical to understanding cell biology and interpreting genomic data, but challenging to produce experimentally. Through data integration and quality control, we provide a scored human protein-protein interaction network (InWeb_InBioMap,......Genome-scale human protein-protein interaction networks are critical to understanding cell biology and interpreting genomic data, but challenging to produce experimentally. Through data integration and quality control, we provide a scored human protein-protein interaction network (In...

  16. Association with humans and seasonality interact to reverse predictions for animal space use.

    Science.gov (United States)

    Laver, Peter N; Alexander, Kathleen A

    2018-01-01

    Variation in animal space use reflects fitness trade-offs associated with ecological constraints. Associated theories such as the metabolic theory of ecology and the resource dispersion hypothesis generate predictions about what drives variation in animal space use. But, metabolic theory is usually tested in macro-ecological studies and is seldom invoked explicitly in within-species studies. Full evaluation of the resource dispersion hypothesis requires testing in more species. Neither have been evaluated in the context of anthropogenic landscape change. In this study, we used data for banded mongooses ( Mungos mungo ) in northeastern Botswana, along a gradient of association with humans, to test for effects of space use drivers predicted by these theories. We used Bayesian parameter estimation and inference from linear models to test for seasonal differences in space use metrics and to model seasonal effects of space use drivers. Results suggest that space use is strongly associated with variation in the level of overlap that mongoose groups have with humans. Seasonality influences this association, reversing seasonal space use predictions historically-accepted by ecologists. We found support for predictions of the metabolic theory when moderated by seasonality, by association with humans and by their interaction. Space use of mongooses living in association with humans was more concentrated in the dry season than the wet season, when historically-accepted ecological theory predicted more dispersed space use. Resource richness factors such as building density were associated with space use only during the dry season. We found negligible support for predictions of the resource dispersion hypothesis in general or for metabolic theory where seasonality and association with humans were not included. For mongooses living in association with humans, space use was not associated with patch dispersion or group size over both seasons. In our study, living in association

  17. Human-machine interaction in nuclear power plants

    International Nuclear Information System (INIS)

    Yoshikawa, Hidekazu

    2005-01-01

    Advanced nuclear power plants are generally large complex systems automated by computers. Whenever a rate plant emergency occurs the plant operators must cope with the emergency under severe mental stress without committing any fatal errors. Furthermore, the operators must train to improve and maintain their ability to cope with every conceivable situation, though it is almost impossible to be fully prepared for an infinite variety of situations. In view of the limited capability of operators in emergency situations, there has been a new approach to preventing the human error caused by improper human-machine interaction. The new approach has been triggered by the introduction of advanced information systems that help operators recognize and counteract plant emergencies. In this paper, the adverse effect of automation in human-machine systems is explained. The discussion then focuses on how to configure a joint human-machine system for ideal human-machine interaction. Finally, there is a new proposal on how to organize technologies that recognize the different states of such a joint human-machine system

  18. A VR Based Interactive Genetic Algorithm Framework For Design of Support Schemes to Deep Excavations

    International Nuclear Information System (INIS)

    Wei, Riyu; Wu, Heng

    2002-01-01

    An interactive genetic algorithm (IGA) framework for the design of support schemes to deep excavations is proposed in this paper, in which virtual reality (VR) is used as an aid to the evaluation of design schemes that is performed interactively. The fitness of a scheme individual is evaluated by two steps. Firstly a fitness value is automatically assigned to a scheme individual according to the the estimated construction cost of the individual. And the human evaluation is introduced to modify the fitness value by taking into account other factors, such as the feasibility factor. The design scheme is composed of four basic categories, i. e., cantilever walls, reinforced soil walls, tieback systems and bracing systems, each of which is encoded by a binary string. To assist human evaluation, 3D models of design schemes are created and visualized in a virtual reality environment, providing designers with a reality sense of various schemes

  19. Evidence Report: Risk of Inadequate Human-Computer Interaction

    Science.gov (United States)

    Holden, Kritina; Ezer, Neta; Vos, Gordon

    2013-01-01

    Human-computer interaction (HCI) encompasses all the methods by which humans and computer-based systems communicate, share information, and accomplish tasks. When HCI is poorly designed, crews have difficulty entering, navigating, accessing, and understanding information. HCI has rarely been studied in an operational spaceflight context, and detailed performance data that would support evaluation of HCI have not been collected; thus, we draw much of our evidence from post-spaceflight crew comments, and from other safety-critical domains like ground-based power plants, and aviation. Additionally, there is a concern that any potential or real issues to date may have been masked by the fact that crews have near constant access to ground controllers, who monitor for errors, correct mistakes, and provide additional information needed to complete tasks. We do not know what types of HCI issues might arise without this "safety net". Exploration missions will test this concern, as crews may be operating autonomously due to communication delays and blackouts. Crew survival will be heavily dependent on available electronic information for just-in-time training, procedure execution, and vehicle or system maintenance; hence, the criticality of the Risk of Inadequate HCI. Future work must focus on identifying the most important contributing risk factors, evaluating their contribution to the overall risk, and developing appropriate mitigations. The Risk of Inadequate HCI includes eight core contributing factors based on the Human Factors Analysis and Classification System (HFACS): (1) Requirements, policies, and design processes, (2) Information resources and support, (3) Allocation of attention, (4) Cognitive overload, (5) Environmentally induced perceptual changes, (6) Misperception and misinterpretation of displayed information, (7) Spatial disorientation, and (8) Displays and controls.

  20. Predictive Mechanisms Are Not Involved the Same Way during Human-Human vs. Human-Machine Interactions: A Review

    Directory of Open Access Journals (Sweden)

    Aïsha Sahaï

    2017-10-01

    Full Text Available Nowadays, interactions with others do not only involve human peers but also automated systems. Many studies suggest that the motor predictive systems that are engaged during action execution are also involved during joint actions with peers and during other human generated action observation. Indeed, the comparator model hypothesis suggests that the comparison between a predicted state and an estimated real state enables motor control, and by a similar functioning, understanding and anticipating observed actions. Such a mechanism allows making predictions about an ongoing action, and is essential to action regulation, especially during joint actions with peers. Interestingly, the same comparison process has been shown to be involved in the construction of an individual's sense of agency, both for self-generated and observed other human generated actions. However, the implication of such predictive mechanisms during interactions with machines is not consensual, probably due to the high heterogeneousness of the automata used in the experimentations, from very simplistic devices to full humanoid robots. The discrepancies that are observed during human/machine interactions could arise from the absence of action/observation matching abilities when interacting with traditional low-level automata. Consistently, the difficulties to build a joint agency with this kind of machines could stem from the same problem. In this context, we aim to review the studies investigating predictive mechanisms during social interactions with humans and with automated artificial systems. We will start by presenting human data that show the involvement of predictions in action control and in the sense of agency during social interactions. Thereafter, we will confront this literature with data from the robotic field. Finally, we will address the upcoming issues in the field of robotics related to automated systems aimed at acting as collaborative agents.

  1. The Past, Present and Future of Human Computer Interaction

    KAUST Repository

    Churchill, Elizabeth

    2018-01-16

    Human Computer Interaction (HCI) focuses on how people interact with, and are transformed by computation. Our current technology landscape is changing rapidly. Interactive applications, devices and services are increasingly becoming embedded into our environments. From our homes to the urban and rural spaces, we traverse everyday. We are increasingly able toヨoften required toヨmanage and configure multiple, interconnected devices and program their interactions. Artificial intelligence (AI) techniques are being used to create dynamic services that learn about us and others, that make conclusions about our intents and affiliations, and that mould our digital interactions based in predictions about our actions and needs, nudging us toward certain behaviors. Computation is also increasingly embedded into our bodies. Understanding human interactions in the everyday digital and physical context. During this lecture, Elizabeth Churchill -Director of User Experience at Google- will talk about how an emerging landscape invites us to revisit old methods and tactics for understanding how people interact with computers and computation, and how it challenges us to think about new methods and frameworks for understanding the future of human-centered computation.

  2. Human-Computer Interaction The Agency Perspective

    CERN Document Server

    Oliveira, José

    2012-01-01

    Agent-centric theories, approaches and technologies are contributing to enrich interactions between users and computers. This book aims at highlighting the influence of the agency perspective in Human-Computer Interaction through a careful selection of research contributions. Split into five sections; Users as Agents, Agents and Accessibility, Agents and Interactions, Agent-centric Paradigms and Approaches, and Collective Agents, the book covers a wealth of novel, original and fully updated material, offering:   ü  To provide a coherent, in depth, and timely material on the agency perspective in HCI ü  To offer an authoritative treatment of the subject matter presented by carefully selected authors ü  To offer a balanced and broad coverage of the subject area, including, human, organizational, social, as well as technological concerns. ü  To offer a hands-on-experience by covering representative case studies and offering essential design guidelines   The book will appeal to a broad audience of resea...

  3. Human work interaction design meets international development

    DEFF Research Database (Denmark)

    Campos, P.; Clemmensen, T.; Barricelli, B.R.

    2017-01-01

    opportunity to observe technology-mediated innovative work practices in informal settings that may be related to the notion of International Development. In this unique context, this workshop proposes to analyze findings related to opportunities for design research in this type of work domains: a) human......Over the last decade, empirical relationships between work domain analysis and HCI design have been identified by much research in the field of Human Work Interaction Design (HWID) across five continents. Since this workshop takes place at the Interact Conference in Mumbai, there is a unique...

  4. Study on Human-structure Dynamic Interaction in Civil Engineering

    Science.gov (United States)

    Gao, Feng; Cao, Li Lin; Li, Xing Hua

    2018-06-01

    The research of human-structure dynamic interaction are reviewed. Firstly, the influence of the crowd load on structural dynamic characteristics is introduced and the advantages and disadvantages of different crowd load models are analyzed. Then, discussing the influence of structural vibration on the human-induced load, especially the influence of different stiffness structures on the crowd load. Finally, questions about human-structure interaction that require further study are presented.

  5. Metabolic interaction between toluene, trichloroethylene and n-hexane in humans

    DEFF Research Database (Denmark)

    Bælum, Jesper; Mølhave, Lars; Hansen, S H

    1998-01-01

    This human experimental study describes the mutual metabolic interaction between toluene, trichloroethylene, and n-hexane.......This human experimental study describes the mutual metabolic interaction between toluene, trichloroethylene, and n-hexane....

  6. Neural Signatures of Trust During Human-Automation Interactions

    Science.gov (United States)

    2016-04-01

    also automated devices such as a Global Positioning System. For instance, to provide advanced safety measures, the Transportation Safety...AFRL-AFOSR-VA-TR-2016-0160 Neural Signatures of Trust during Human- Automation Interactions Frank Krueger GEORGE MASON UNIVERSITY Final Report 04/01...SUBTITLE Neural Signatures of Trust during Human- Automation Interactions 5a. CONTRACT NUMBER FA9550-13-1-0017 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  7. Advancements in Violin-Related Human-Computer Interaction

    DEFF Research Database (Denmark)

    Overholt, Daniel

    2014-01-01

    of human intelligence and emotion is at the core of the Musical Interface Technology Design Space, MITDS. This is a framework that endeavors to retain and enhance such traits of traditional instruments in the design of interactive live performance interfaces. Utilizing the MITDS, advanced Human...

  8. Human-wildlife interaction in Serengeti and Ngorongoro districts

    African Journals Online (AJOL)

    Mgina

    animals for reptile farms, ecologically focused small mammal management ... Magige - Human-wildlife interaction in Serengeti and Ngorongoro districts of Tanzania … 96 ... Information about attitudes of ..... interface: Interactions around Tilden.

  9. Inferring high-confidence human protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Yu Xueping

    2012-05-01

    Full Text Available Abstract Background As numerous experimental factors drive the acquisition, identification, and interpretation of protein-protein interactions (PPIs, aggregated assemblies of human PPI data invariably contain experiment-dependent noise. Ascertaining the reliability of PPIs collected from these diverse studies and scoring them to infer high-confidence networks is a non-trivial task. Moreover, a large number of PPIs share the same number of reported occurrences, making it impossible to distinguish the reliability of these PPIs and rank-order them. For example, for the data analyzed here, we found that the majority (>83% of currently available human PPIs have been reported only once. Results In this work, we proposed an unsupervised statistical approach to score a set of diverse, experimentally identified PPIs from nine primary databases to create subsets of high-confidence human PPI networks. We evaluated this ranking method by comparing it with other methods and assessing their ability to retrieve protein associations from a number of diverse and independent reference sets. These reference sets contain known biological data that are either directly or indirectly linked to interactions between proteins. We quantified the average effect of using ranked protein interaction data to retrieve this information and showed that, when compared to randomly ranked interaction data sets, the proposed method created a larger enrichment (~134% than either ranking based on the hypergeometric test (~109% or occurrence ranking (~46%. Conclusions From our evaluations, it was clear that ranked interactions were always of value because higher-ranked PPIs had a higher likelihood of retrieving high-confidence experimental data. Reducing the noise inherent in aggregated experimental PPIs via our ranking scheme further increased the accuracy and enrichment of PPIs derived from a number of biologically relevant data sets. These results suggest that using our high

  10. Humor in Human-Computer Interaction : A Short Survey

    NARCIS (Netherlands)

    Nijholt, Anton; Niculescu, Andreea; Valitutti, Alessandro; Banchs, Rafael E.; Joshi, Anirudha; Balkrishan, Devanuj K.; Dalvi, Girish; Winckler, Marco

    2017-01-01

    This paper is a short survey on humor in human-computer interaction. It describes how humor is designed and interacted with in social media, virtual agents, social robots and smart environments. Benefits and future use of humor in interactions with artificial entities are discussed based on

  11. Human-scale interaction for virtual model displays: a clear case for real tools

    Science.gov (United States)

    Williams, George C.; McDowall, Ian E.; Bolas, Mark T.

    1998-04-01

    We describe a hand-held user interface for interacting with virtual environments displayed on a Virtual Model Display. The tool, constructed entirely of transparent materials, is see-through. We render a graphical counterpart of the tool on the display and map it one-to-one with the real tool. This feature, combined with a capability for touch- sensitive, discrete input, results in a useful spatial input device that is visually versatile. We discuss the tool's design and interaction techniques it supports. Briefly, we look at the human factors issues and engineering challenges presented by this tool and, in general, by the class of hand-held user interfaces that are see-through.

  12. Drum-mate: interaction dynamics and gestures in human-humanoid drumming experiments

    Science.gov (United States)

    Kose-Bagci, Hatice; Dautenhahn, Kerstin; Syrdal, Dag S.; Nehaniv, Chrystopher L.

    2010-06-01

    This article investigates the role of interaction kinesics in human-robot interaction (HRI). We adopted a bottom-up, synthetic approach towards interactive competencies in robots using simple, minimal computational models underlying the robot's interaction dynamics. We present two empirical, exploratory studies investigating a drumming experience with a humanoid robot (KASPAR) and a human. In the first experiment, the turn-taking behaviour of the humanoid is deterministic and the non-verbal gestures of the robot accompany its drumming to assess the impact of non-verbal gestures on the interaction. The second experiment studies a computational framework that facilitates emergent turn-taking dynamics, whereby the particular dynamics of turn-taking emerge from the social interaction between the human and the humanoid. The results from the HRI experiments are presented and analysed qualitatively (in terms of the participants' subjective experiences) and quantitatively (concerning the drumming performance of the human-robot pair). The results point out a trade-off between the subjective evaluation of the drumming experience from the perspective of the participants and the objective evaluation of the drumming performance. A certain number of gestures was preferred as a motivational factor in the interaction. The participants preferred the models underlying the robot's turn-taking which enable the robot and human to interact more and provide turn-taking closer to 'natural' human-human conversations, despite differences in objective measures of drumming behaviour. The results are consistent with the temporal behaviour matching hypothesis previously proposed in the literature which concerns the effect that the participants adapt their own interaction dynamics to the robot's.

  13. Haptic Human-Human Interaction Through a Compliant Connection Does Not Improve Motor Learning in a Force Field

    NARCIS (Netherlands)

    Beckers, Niek; Keemink, Arvid; van Asseldonk, Edwin; van der Kooij, Herman; Prattichizzo, Domenico; Shinoda, Hiroyuki; Tan, Hong Z.; Ruffaldi, Emanuele; Frisoli, Antonio

    2018-01-01

    Humans have a natural ability to haptically interact with other humans, for instance during physically assisting a child to learn how to ride a bicycle. A recent study has shown that haptic human-human interaction can improve individual motor performance and motor learning rate while learning to

  14. Minimal mobile human computer interaction

    NARCIS (Netherlands)

    el Ali, A.

    2013-01-01

    In the last 20 years, the widespread adoption of personal, mobile computing devices in everyday life, has allowed entry into a new technological era in Human Computer Interaction (HCI). The constant change of the physical and social context in a user's situation made possible by the portability of

  15. Human sensorimotor communication: a theory of signaling in online social interactions.

    Science.gov (United States)

    Pezzulo, Giovanni; Donnarumma, Francesco; Dindo, Haris

    2013-01-01

    Although the importance of communication is recognized in several disciplines, it is rarely studied in the context of online social interactions and joint actions. During online joint actions, language and gesture are often insufficient and humans typically use non-verbal, sensorimotor forms of communication to send coordination signals. For example, when playing volleyball, an athlete can exaggerate her movements to signal her intentions to her teammates (say, a pass to the right) or to feint an adversary. Similarly, a person who is transporting a table together with a co-actor can push the table in a certain direction to signal where and when he intends to place it. Other examples of "signaling" are over-articulating in noisy environments and over-emphasizing vowels in child-directed speech. In all these examples, humans intentionally modify their action kinematics to make their goals easier to disambiguate. At the moment no formal theory exists of these forms of sensorimotor communication and signaling. We present one such theory that describes signaling as a combination of a pragmatic and a communicative action, and explains how it simplifies coordination in online social interactions. We cast signaling within a "joint action optimization" framework in which co-actors optimize the success of their interaction and joint goals rather than only their part of the joint action. The decision of whether and how much to signal requires solving a trade-off between the costs of modifying one's behavior and the benefits in terms of interaction success. Signaling is thus an intentional strategy that supports social interactions; it acts in concert with automatic mechanisms of resonance, prediction, and imitation, especially when the context makes actions and intentions ambiguous and difficult to read. Our theory suggests that communication dynamics should be studied within theories of coordination and interaction rather than only in terms of the maximization of information

  16. Human sensorimotor communication: a theory of signaling in online social interactions.

    Directory of Open Access Journals (Sweden)

    Giovanni Pezzulo

    Full Text Available Although the importance of communication is recognized in several disciplines, it is rarely studied in the context of online social interactions and joint actions. During online joint actions, language and gesture are often insufficient and humans typically use non-verbal, sensorimotor forms of communication to send coordination signals. For example, when playing volleyball, an athlete can exaggerate her movements to signal her intentions to her teammates (say, a pass to the right or to feint an adversary. Similarly, a person who is transporting a table together with a co-actor can push the table in a certain direction to signal where and when he intends to place it. Other examples of "signaling" are over-articulating in noisy environments and over-emphasizing vowels in child-directed speech. In all these examples, humans intentionally modify their action kinematics to make their goals easier to disambiguate. At the moment no formal theory exists of these forms of sensorimotor communication and signaling. We present one such theory that describes signaling as a combination of a pragmatic and a communicative action, and explains how it simplifies coordination in online social interactions. We cast signaling within a "joint action optimization" framework in which co-actors optimize the success of their interaction and joint goals rather than only their part of the joint action. The decision of whether and how much to signal requires solving a trade-off between the costs of modifying one's behavior and the benefits in terms of interaction success. Signaling is thus an intentional strategy that supports social interactions; it acts in concert with automatic mechanisms of resonance, prediction, and imitation, especially when the context makes actions and intentions ambiguous and difficult to read. Our theory suggests that communication dynamics should be studied within theories of coordination and interaction rather than only in terms of the

  17. Human agency beliefs influence behaviour during virtual social interactions.

    Science.gov (United States)

    Caruana, Nathan; Spirou, Dean; Brock, Jon

    2017-01-01

    In recent years, with the emergence of relatively inexpensive and accessible virtual reality technologies, it is now possible to deliver compelling and realistic simulations of human-to-human interaction. Neuroimaging studies have shown that, when participants believe they are interacting via a virtual interface with another human agent, they show different patterns of brain activity compared to when they know that their virtual partner is computer-controlled. The suggestion is that users adopt an "intentional stance" by attributing mental states to their virtual partner. However, it remains unclear how beliefs in the agency of a virtual partner influence participants' behaviour and subjective experience of the interaction. We investigated this issue in the context of a cooperative "joint attention" game in which participants interacted via an eye tracker with a virtual onscreen partner, directing each other's eye gaze to different screen locations. Half of the participants were correctly informed that their partner was controlled by a computer algorithm ("Computer" condition). The other half were misled into believing that the virtual character was controlled by a second participant in another room ("Human" condition). Those in the "Human" condition were slower to make eye contact with their partner and more likely to try and guide their partner before they had established mutual eye contact than participants in the "Computer" condition. They also responded more rapidly when their partner was guiding them, although the same effect was also found for a control condition in which they responded to an arrow cue. Results confirm the influence of human agency beliefs on behaviour in this virtual social interaction context. They further suggest that researchers and developers attempting to simulate social interactions should consider the impact of agency beliefs on user experience in other social contexts, and their effect on the achievement of the application's goals.

  18. You Look Human, But Act Like a Machine: Agent Appearance and Behavior Modulate Different Aspects of Human-Robot Interaction.

    Science.gov (United States)

    Abubshait, Abdulaziz; Wiese, Eva

    2017-01-01

    Gaze following occurs automatically in social interactions, but the degree to which gaze is followed depends on whether an agent is perceived to have a mind, making its behavior socially more relevant for the interaction. Mind perception also modulates the attitudes we have toward others, and determines the degree of empathy, prosociality, and morality invested in social interactions. Seeing mind in others is not exclusive to human agents, but mind can also be ascribed to non-human agents like robots, as long as their appearance and/or behavior allows them to be perceived as intentional beings. Previous studies have shown that human appearance and reliable behavior induce mind perception to robot agents, and positively affect attitudes and performance in human-robot interaction. What has not been investigated so far is whether different triggers of mind perception have an independent or interactive effect on attitudes and performance in human-robot interaction. We examine this question by manipulating agent appearance (human vs. robot) and behavior (reliable vs. random) within the same paradigm and examine how congruent (human/reliable vs. robot/random) versus incongruent (human/random vs. robot/reliable) combinations of these triggers affect performance (i.e., gaze following) and attitudes (i.e., agent ratings) in human-robot interaction. The results show that both appearance and behavior affect human-robot interaction but that the two triggers seem to operate in isolation, with appearance more strongly impacting attitudes, and behavior more strongly affecting performance. The implications of these findings for human-robot interaction are discussed.

  19. When Humanoid Robots Become Human-Like Interaction Partners: Corepresentation of Robotic Actions

    Science.gov (United States)

    Stenzel, Anna; Chinellato, Eris; Bou, Maria A. Tirado; del Pobil, Angel P.; Lappe, Markus; Liepelt, Roman

    2012-01-01

    In human-human interactions, corepresenting a partner's actions is crucial to successfully adjust and coordinate actions with others. Current research suggests that action corepresentation is restricted to interactions between human agents facilitating social interaction with conspecifics. In this study, we investigated whether action…

  20. Interactions of the NAEG information support project with other projects

    International Nuclear Information System (INIS)

    Pfuderer, H.A.

    1976-01-01

    In the past year the Information Support Project to the Nevada Applied Ecology Group has interacted with many other research projects on the transuranics and other radionuclides. Group interactions through symposiums, workshops, and responding to search requests have proven to be mutually beneficial. The NAEG Information Support Project will draw on the information resources of the Oak Ridge National Laboratory to produce a bibliography of the radionuclides (other than the transuranics) of interest to the Nevada Test Site

  1. Ghost-in-the-Machine reveals human social signals for human-robot interaction.

    Science.gov (United States)

    Loth, Sebastian; Jettka, Katharina; Giuliani, Manuel; de Ruiter, Jan P

    2015-01-01

    We used a new method called "Ghost-in-the-Machine" (GiM) to investigate social interactions with a robotic bartender taking orders for drinks and serving them. Using the GiM paradigm allowed us to identify how human participants recognize the intentions of customers on the basis of the output of the robotic recognizers. Specifically, we measured which recognizer modalities (e.g., speech, the distance to the bar) were relevant at different stages of the interaction. This provided insights into human social behavior necessary for the development of socially competent robots. When initiating the drink-order interaction, the most important recognizers were those based on computer vision. When drink orders were being placed, however, the most important information source was the speech recognition. Interestingly, the participants used only a subset of the available information, focussing only on a few relevant recognizers while ignoring others. This reduced the risk of acting on erroneous sensor data and enabled them to complete service interactions more swiftly than a robot using all available sensor data. We also investigated socially appropriate response strategies. In their responses, the participants preferred to use the same modality as the customer's requests, e.g., they tended to respond verbally to verbal requests. Also, they added redundancy to their responses, for instance by using echo questions. We argue that incorporating the social strategies discovered with the GiM paradigm in multimodal grammars of human-robot interactions improves the robustness and the ease-of-use of these interactions, and therefore provides a smoother user experience.

  2. Autonomy-Supportive Parenting and Autonomy-Supportive Sibling Interactions: The Role of Mothers' and Siblings' Psychological Need Satisfaction.

    Science.gov (United States)

    van der Kaap-Deeder, Jolene; Vansteenkiste, Maarten; Soenens, Bart; Loeys, Tom; Mabbe, Elien; Gargurevich, Rafael

    2015-11-01

    Autonomy-supportive parenting yields manifold benefits. To gain more insight into the family-level dynamics involved in autonomy-supportive parenting, the present study addressed three issues. First, on the basis of self-determination theory, we examined whether mothers' satisfaction of the psychological needs for autonomy, competence, and relatedness related to autonomy-supportive parenting. Second, we investigated maternal autonomy support as an intervening variable in the mother-child similarity in psychological need satisfaction. Third, we examined associations between autonomy-supportive parenting and autonomy-supportive sibling interactions. Participants were 154 mothers (M age = 39.45, SD = 3.96) and their two elementary school-age children (M age = 8.54, SD = 0.89 and M age = 10.38, SD = 0.87). Although mothers' psychological need satisfaction related only to maternal autonomy support in the younger siblings, autonomy-supportive parenting related to psychological need satisfaction in both siblings and to an autonomy-supportive interaction style between siblings. We discuss the importance of maternal autonomy support for family-level dynamics. © 2015 by the Society for Personality and Social Psychology, Inc.

  3. Human-robot interaction assessment using dynamic engagement profiles

    DEFF Research Database (Denmark)

    Drimus, Alin; Poltorak, Nicole

    2017-01-01

    -1] interval, where 0 represents disengaged and 1 fully engaged. The network shows a good accuracy at recognizing the engagement state of humans given positive emotions. A time based analysis of interaction experiments between small humanoid robots and humans provides time series of engagement estimates, which...... and is applicable to humanoid robotics as well as other related contexts.......This paper addresses the use of convolutional neural networks for image analysis resulting in an engagement metric that can be used to assess the quality of human robot interactions. We propose a method based on a pretrained convolutional network able to map emotions onto a continuous [0...

  4. Glycation Contributes to Interaction Between Human Bone Alkaline Phosphatase and Collagen Type I.

    Science.gov (United States)

    Halling Linder, Cecilia; Enander, Karin; Magnusson, Per

    2016-03-01

    Bone is a biological composite material comprised primarily of collagen type I and mineral crystals of calcium and phosphate in the form of hydroxyapatite (HA), which together provide its mechanical properties. Bone alkaline phosphatase (ALP), produced by osteoblasts, plays a pivotal role in the mineralization process. Affinity contacts between collagen, mainly type II, and the crown domain of various ALP isozymes were reported in a few in vitro studies in the 1980s and 1990s, but have not attracted much attention since, although such interactions may have important implications for the bone mineralization process. The objective of this study was to investigate the binding properties of human collagen type I to human bone ALP, including the two bone ALP isoforms B1 and B2. ALP from human liver, human placenta and E. coli were also studied. A surface plasmon resonance-based analysis, supported by electrophoresis and blotting, showed that bone ALP binds stronger to collagen type I in comparison with ALPs expressed in non-mineralizing tissues. Further, the B2 isoform binds significantly stronger to collagen type I in comparison with the B1 isoform. Human bone and liver ALP (with identical amino acid composition) displayed pronounced differences in binding, revealing that post-translational glycosylation properties govern these interactions to a large extent. In conclusion, this study presents the first evidence that glycosylation differences in human ALPs are of crucial importance for protein-protein interactions with collagen type I, although the presence of the ALP crown domain may also be necessary. Different binding affinities among the bone ALP isoforms may influence the mineral-collagen interface, mineralization kinetics, and degree of bone matrix mineralization, which are important factors determining the material properties of bone.

  5. Data on overlapping brain disorders and emerging drug targets in human Dopamine Receptors Interaction Network

    Directory of Open Access Journals (Sweden)

    Avijit Podder

    2017-06-01

    Full Text Available Intercommunication of Dopamine Receptors (DRs with their associate protein partners is crucial to maintain regular brain function in human. Majority of the brain disorders arise due to malfunctioning of such communication process. Hence, contributions of genetic factors, as well as phenotypic indications for various neurological and psychiatric disorders are often attributed as sharing in nature. In our earlier research article entitled “Human Dopamine Receptors Interaction Network (DRIN: a systems biology perspective on topology, stability and functionality of the network” (Podder et al., 2014 [1], we had depicted a holistic interaction map of human Dopamine Receptors. Given emphasis on the topological parameters, we had characterized the functionality along with the vulnerable properties of the network. In support of this, we hereby provide an additional data highlighting the genetic overlapping of various brain disorders in the network. The data indicates the sharing nature of disease genes for various neurological and psychiatric disorders in dopamine receptors connecting protein-protein interactions network. The data also indicates toward an alternative approach to prioritize proteins for overlapping brain disorders as valuable drug targets in the network.

  6. Zoonotic and Non-Zoonotic Diseases in Relation to Human Personality and Societal Values: Support for the Parasite-Stress Model

    Directory of Open Access Journals (Sweden)

    Randy Thornhill

    2010-04-01

    Full Text Available The parasite-stress model of human sociality proposes that humans' ontogenetic experiences with infectious diseases as well as their evolutionary historical interactions with these diseases exert causal influences on human psychology and social behavior. This model has been supported by cross-national relationships between parasite prevalence and human personality traits, and between parasite prevalence and societal values. Importantly, the parasite-stress model emphasizes the causal role of non-zoonotic parasites (which have the capacity for human-to-human transmission, rather than zoonotic parasites (which do not, but previous studies failed to distinguish between these conceptually distinct categories. The present investigation directly tested the differential predictive effects of zoonotic and non-zoonotic (both human-specific and multihost parasite prevalence on personality traits and societal values. Supporting the parasite-stress model, cross-national differences in personality traits (unrestricted sexuality, extraversion, openness to experiences and in societal values (individualism, collectivism, gender equality, democratization are predicted specifically by non-zoonotic parasite prevalence.

  7. Human-technology interaction for standoff IED detection

    Science.gov (United States)

    Zhang, Evan; Zou, Yiyang; Zachrich, Liping; Fulton, Jack

    2011-03-01

    IEDs kill our soldiers and innocent people every day. Lessons learned from Iraq and Afghanistan clearly indicated that IEDs cannot be detected/defeated by technology alone; human-technology interaction must be engaged. In most cases, eye is the best detector, brain is the best computer, and technologies are tools, they must be used by human being properly then can achieve full functionality. In this paper, a UV Raman/fluorescence, CCD and LWIR 3 sensor fusion system for standoff IED detection and a handheld fusion system for close range IED detection are developed and demonstrated. We must train solders using their eyes or CCD/LWIR cameras to do wide area search while on the move to find small suspected area first then use the spectrometer because the laser spot is too small, to scan a one-mile long and 2-meter wide road needs 185 days although our fusion system can detect the IED in 30m with 1s interrogating time. Even if the small suspected area (e.g., 0.5mx0.5m) is found, human eyes still cannot detect the IED, soldiers must use or interact with the technology - laser based spectrometer to scan the area then they are able to detect and identify the IED in 10 minutes not 185 days. Therefore, the human-technology interaction approach will be the best solution for IED detection.

  8. Social support and social interaction ties on internet addiction: integrating online and offline contexts.

    Science.gov (United States)

    Wang, Edward Shih-Tse; Wang, Michael Chih-Hung

    2013-11-01

    This study explores the relationship between social support and social interaction ties on Internet addiction by integrating both online and offline social encounters. A total of 1,642 members of online social communities participated in this research, for which structural equation modeling was used for analysis. The findings show that social support is positively associated with social interaction ties in both online and offline contexts. In addition, online social support and online social interaction ties are positively associated with Internet addiction, whereas offline social support and social interaction ties on Internet addiction are negatively associated. This finding has important implications not only for understanding the cause of Internet addiction but also for understanding the diminishing Internet addiction due to social support and social interaction ties.

  9. What Machines Need to Learn to Support Human Problem-Solving

    Science.gov (United States)

    Vera, Alonso

    2017-01-01

    In the development of intelligent systems that interact with humans, there is often confusion between how the system functions with respect to the humans it interacts with and how it interfaces with those humans. The former is a much deeper challenge than the latter it requires a system-level understanding of evolving human roles as well as an understanding of what humans need to know (and when) in order to perform their tasks. This talk will focus on some of the challenges in getting this right as well as on the type of research and development that results in successful human-autonomy teaming. Brief Bio: Dr. Alonso Vera is Chief of the Human Systems Integration Division at NASA Ames Research Center. His expertise is in human-computer interaction, information systems, artificial intelligence, and computational human performance modeling. He has led the design, development and deployment of mission software systems across NASA robotic and human space flight missions, including Mars Exploration Rovers, Phoenix Mars Lander, ISS, Constellation, and Exploration Systems. Dr. Vera received a Bachelor of Science with First Class Honors from McGill University in 1985 and a Ph.D. from Cornell University in 1991. He went on to a Post-Doctoral Fellowship in the School of Computer Science at Carnegie Mellon University from 1990-93.

  10. Comparison of dogs and humans in visual scanning of social interaction.

    Science.gov (United States)

    Törnqvist, Heini; Somppi, Sanni; Koskela, Aija; Krause, Christina M; Vainio, Outi; Kujala, Miiamaaria V

    2015-09-01

    Previous studies have demonstrated similarities in gazing behaviour of dogs and humans, but comparisons under similar conditions are rare, and little is known about dogs' visual attention to social scenes. Here, we recorded the eye gaze of dogs while they viewed images containing two humans or dogs either interacting socially or facing away: the results were compared with equivalent data measured from humans. Furthermore, we compared the gazing behaviour of two dog and two human populations with different social experiences: family and kennel dogs; dog experts and non-experts. Dogs' gazing behaviour was similar to humans: both species gazed longer at the actors in social interaction than in non-social images. However, humans gazed longer at the actors in dog than human social interaction images, whereas dogs gazed longer at the actors in human than dog social interaction images. Both species also made more saccades between actors in images representing non-conspecifics, which could indicate that processing social interaction of non-conspecifics may be more demanding. Dog experts and non-experts viewed the images very similarly. Kennel dogs viewed images less than family dogs, but otherwise their gazing behaviour did not differ, indicating that the basic processing of social stimuli remains similar regardless of social experiences.

  11. Human Possibilities: The Interaction of Biology and Culture

    Directory of Open Access Journals (Sweden)

    Riane Eisler

    2015-06-01

    Full Text Available This article briefly describes the two main strands of a new unified theory about human nature and human possibilities: cultural transformation theory and bio-culturalism. Bio-culturalism combines findings from neuroscience about how our brains develop in interaction with our environments with findings from the study of relational dynamics, a new method of social analysis focusing on what kinds of relations—from intimate to international—a particular culture or subculture supports. Bio-culturalism recognizes that our species has a vast spectrum of genetic capacities, ranging from consciousness, caring, empathy, cooperation, and creativity to insensitivity, cruelty, exploitation, and destructiveness, and proposes that which of these capacities are expressed or inhibited largely hinges on the nature of our cultural environments. Cultural transformation theory looks at the whole span of human cultural evolution from the perspective of the tension between the contrasting configurations of the partnership system and the domination system as two underlying possibilities for structuring beliefs, institutions, and relationships. The article describes the core components of partnership- and domination-oriented societies, provides examples of each, and proposes that our future hinges on accelerating the cultural transformation from domination to partnership in our time of nuclear and biological weapons and the ever more efficient despoliation of nature, when high technology guided by an ethos of domination and conquest could take us to an evolutionary dead end.

  12. Dynamic perceptions of human-likeness while interacting with a social robot

    NARCIS (Netherlands)

    Ruijten, P.A.M.; Cuijpers, R.H.

    2017-01-01

    In human-robot interaction research, much attention is given to the development of socially assistive robots that can have natural interactions with their users. One crucial aspect of such natural interactions is that the robot is perceived as human-like. Much research already exists that

  13. Human-Computer Interaction, Tourism and Cultural Heritage

    Science.gov (United States)

    Cipolla Ficarra, Francisco V.

    We present a state of the art of the human-computer interaction aimed at tourism and cultural heritage in some cities of the European Mediterranean. In the work an analysis is made of the main problems deriving from training understood as business and which can derail the continuous growth of the HCI, the new technologies and tourism industry. Through a semiotic and epistemological study the current mistakes in the context of the interrelations of the formal and factual sciences will be detected and also the human factors that have an influence on the professionals devoted to the development of interactive systems in order to safeguard and boost cultural heritage.

  14. Tuning metal support interactions enhances the activity and durability of TiO2-supported Pt nanocatalysts

    International Nuclear Information System (INIS)

    Hsieh, Bing-Jen; Tsai, Meng-Che; Pan, Chun-Jern; Su, Wei-Nien; Rick, John; Chou, Hung-Lung; Lee, Jyh-Fu; Hwang, Bing-Joe

    2017-01-01

    Highlights: • The coverage of TiO x on Pt can be modified by thermal and fluoric acid treatments. • Strong metal support interaction (SMSI) can be testified by electrochemical method. • For the first time, the SMSI effect is observed at 200 °C with supporting TEM images. • Increased activity and stability are attributed to stronger SMSI. • This tunable approach is valid for other oxide supported catalysts, e.g. Pt/Nb-TiO 2 . - Abstract: A facile approach to enhance catalytic activity and durability of TiO 2 -supported Pt nanocatalysts by tuning strong metal support interaction (SMSI) is investigated in this work. No need for a high temperature treatment, the strong metal-support interaction (SMSI) in TiO 2 -supported Pt can be induced at 200° C by H 2 reduction. Moreover, electrochemical methods (methanol oxidation reaction and cyclic voltammetry) are first reported ever to be effective characterization tools for the coverage state caused by SMSI. In addition, the SMSI has also been confirmed by X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, and Transmission Electron Microscopy. It is found that the encapsulation of TiO 2-x species on the surface Pt clusters was induced and modified by thermal reduction and fluoric acid treatment. The catalytic activity and durability of the TiO 2 -supported Pt nanocatalysts are strongly dependent of the state of SMSI. The proposed SMSI-tunable approach to enhance the ORR activity and stability is also proved applicable to Pt/Ti 0.9 Nb 0.1 O 2 nanocatalysts. We believe that the reported approach paves the way for manipulating the activity and stability of other TiO 2 -supported metal nanocatalysts. Furthermore, the suggested electrochemical methods offer facile and effective ways to verify the presence of coverage state before combining with other physical analysis.

  15. The Role of the Human Mirror Neuron System in Supporting Communication in a Digital World

    Directory of Open Access Journals (Sweden)

    Kelly Dickerson

    2017-05-01

    Full Text Available Humans use both verbal and non-verbal communication to interact with others and their environment and increasingly these interactions are occurring in a digital medium. Whether live or digital, learning to communicate requires overcoming the correspondence problem: There is no direct mapping, or correspondence between perceived and self-produced signals. Reconciliation of the differences between perceived and produced actions, including linguistic actions, is difficult and requires integration across multiple modalities and neuro-cognitive networks. Recent work on the neural substrates of social learning suggests that there may be a common mechanism underlying the perception-production cycle for verbal and non-verbal communication. The purpose of this paper is to review evidence supporting the link between verbal and non-verbal communications, and to extend the hMNS literature by proposing that recent advances in communication technology, which at times have had deleterious effects on behavioral and perceptual performance, may disrupt the success of the hMNS in supporting social interactions because these technologies are virtual and spatiotemporal distributed nature.

  16. The Role of the Human Mirror Neuron System in Supporting Communication in a Digital World.

    Science.gov (United States)

    Dickerson, Kelly; Gerhardstein, Peter; Moser, Alecia

    2017-01-01

    Humans use both verbal and non-verbal communication to interact with others and their environment and increasingly these interactions are occurring in a digital medium. Whether live or digital, learning to communicate requires overcoming the correspondence problem: There is no direct mapping, or correspondence between perceived and self-produced signals. Reconciliation of the differences between perceived and produced actions, including linguistic actions, is difficult and requires integration across multiple modalities and neuro-cognitive networks. Recent work on the neural substrates of social learning suggests that there may be a common mechanism underlying the perception-production cycle for verbal and non-verbal communication. The purpose of this paper is to review evidence supporting the link between verbal and non-verbal communications, and to extend the hMNS literature by proposing that recent advances in communication technology, which at times have had deleterious effects on behavioral and perceptual performance, may disrupt the success of the hMNS in supporting social interactions because these technologies are virtual and spatiotemporal distributed nature.

  17. Critical interactions between the Global Fund-supported HIV programs and the health system in Ghana.

    Science.gov (United States)

    Atun, Rifat; Pothapregada, Sai Kumar; Kwansah, Janet; Degbotse, D; Lazarus, Jeffrey V

    2011-08-01

    The support of global health initiatives in recipient countries has been vigorously debated. Critics are concerned that disease-specific programs may be creating vertical and parallel service delivery structures that to some extent undermine health systems. This case study of Ghana aimed to explore how the Global Fund-supported HIV program interacts with the health system there and to map the extent and nature of integration of the national disease program across 6 key health systems functions. Qualitative interviews of national stakeholders were conducted to understand the perceptions of the strengths and weaknesses of the relationship between Global Fund-supported activities and the health system and to identify positive synergies and unintended consequences of integration. Ghana has a well-functioning sector-wide approach to financing its health system, with a strong emphasis on integrated care delivery. Ghana has benefited from US $175 million of approved Global Fund support to address the HIV epidemic, accounting for almost 85% of the National AIDS Control Program budget. Investments in infrastructure, human resources, and commodities have enabled HIV interventions to increase exponentially. Global Fund-supported activities have been well integrated into key health system functions to strengthen them, especially financing, planning, service delivery, and demand generation. Yet, with governance and monitoring and evaluation functions, parallel structures to national systems have emerged, leading to inefficiencies. This case study demonstrates that interactions and integration are highly varied across different health system functions, and strong government leadership has facilitated the integration of Global Fund-supported activities within national programs.

  18. A Toolset for Supporting Iterative Human Automation: Interaction in Design

    Science.gov (United States)

    Feary, Michael S.

    2010-01-01

    The addition of automation has greatly extended humans' capability to accomplish tasks, including those that are difficult, complex and safety critical. The majority of Human - Automation Interacton (HAl) results in more efficient and safe operations, ho,,:,ever ertain unpected atomatlon behaviors or "automation surprises" can be frustrating and, In certain safety critical operations (e.g. transporttion, manufacturing control, medicine), may result in injuries or. the loss of life.. (Mellor, 1994; Leveson, 1995; FAA, 1995; BASI, 1998; Sheridan, 2002). This papr describes he development of a design tool that enables on the rapid development and evaluation. of automaton prototypes. The ultimate goal of the work is to provide a design platform upon which automation surprise vulnerability analyses can be integrated.

  19. Interactive domains in the molecular chaperone human alphaB crystallin modulate microtubule assembly and disassembly.

    Directory of Open Access Journals (Sweden)

    Joy G Ghosh

    2007-06-01

    Full Text Available Small heat shock proteins regulate microtubule assembly during cell proliferation and in response to stress through interactions that are poorly understood.Novel functions for five interactive sequences in the small heat shock protein and molecular chaperone, human alphaB crystallin, were investigated in the assembly/disassembly of microtubules and aggregation of tubulin using synthetic peptides and mutants of human alphaB crystallin.The interactive sequence (113FISREFHR(120 exposed on the surface of alphaB crystallin decreased microtubule assembly by approximately 45%. In contrast, the interactive sequences, (131LTITSSLSSDGV(142 and (156ERTIPITRE(164, corresponding to the beta8 strand and the C-terminal extension respectively, which are involved in complex formation, increased microtubule assembly by approximately 34-45%. The alphaB crystallin peptides, (113FISREFHR(120 and (156ERTIPITRE(164, inhibited microtubule disassembly by approximately 26-36%, and the peptides (113FISREFHR(120 and (131LTITSSLSSDGV(142 decreased the thermal aggregation of tubulin by approximately 42-44%. The (131LTITSSLSSDGV(142 and (156ERTIPITRE(164 peptides were more effective than the widely used anti-cancer drug, Paclitaxel, in modulating tubulinmicrotubule dynamics. Mutagenesis of these interactive sequences in wt human alphaB crystallin confirmed the effects of the alphaB crystallin peptides on microtubule assembly/disassembly and tubulin aggregation. The regulation of microtubule assembly by alphaB crystallin varied over a narrow range of concentrations. The assembly of microtubules was maximal at alphaB crystallin to tubulin molar ratios between 1:4 and 2:1, while molar ratios >2:1 inhibited microtubule assembly.Interactive sequences on the surface of human alphaB crystallin collectively modulate microtubule assembly through a dynamic subunit exchange mechanism that depends on the concentration and ratio of alphaB crystallin to tubulin. These are the first

  20. Human-computer systems interaction backgrounds and applications 3

    CERN Document Server

    Kulikowski, Juliusz; Mroczek, Teresa; Wtorek, Jerzy

    2014-01-01

    This book contains an interesting and state-of the art collection of papers on the recent progress in Human-Computer System Interaction (H-CSI). It contributes the profound description of the actual status of the H-CSI field and also provides a solid base for further development and research in the discussed area. The contents of the book are divided into the following parts: I. General human-system interaction problems; II. Health monitoring and disabled people helping systems; and III. Various information processing systems. This book is intended for a wide audience of readers who are not necessarily experts in computer science, machine learning or knowledge engineering, but are interested in Human-Computer Systems Interaction. The level of particular papers and specific spreading-out into particular parts is a reason why this volume makes fascinating reading. This gives the reader a much deeper insight than he/she might glean from research papers or talks at conferences. It touches on all deep issues that ...

  1. UniDA: Uniform Device Access Framework for Human Interaction Environments

    Directory of Open Access Journals (Sweden)

    Santiago Vazquez-Rodriguez

    2011-09-01

    Full Text Available Human interaction environments (HIE must be understood as any place where people carry out their daily life, including their work, family life, leisure and social life, interacting with technology to enhance or facilitate the experience. The integration of technology in these environments has been achieved in a disorderly and incompatible way, with devices operating in isolated islands with artificial edges delimited by the manufacturers. In this paper we are presenting the UniDA framework, an integral solution for the development of systems that require the integration and interoperation of devices and technologies in HIEs. It provides developers and installers with a uniform conceptual framework capable of modelling an HIE, together with a set of libraries, tools and devices to build distributed instrumentation networks with support for transparent integration of other technologies. A series of use case examples and a comparison to many of the existing technologies in the field has been included in order to show the benefits of using UniDA.

  2. Automation and decision support in interactive consumer products.

    OpenAIRE

    Sauer, J.; Rüttinger, B.

    2007-01-01

    This article presents two empirical studies (n=30, n=48) that are concerned with different forms of automation in interactive consumer products. The goal of the studies was to evaluate the effectiveness of two types of automation: perceptual augmentation (i.e. supporting users' action selection and implementation). Furthermore, the effectiveness of non-product information (i.e. labels attached to product) in supporting automation design was evaluated. The findings suggested greater benefits f...

  3. The human dynamic clamp as a paradigm for social interaction.

    Science.gov (United States)

    Dumas, Guillaume; de Guzman, Gonzalo C; Tognoli, Emmanuelle; Kelso, J A Scott

    2014-09-02

    Social neuroscience has called for new experimental paradigms aimed toward real-time interactions. A distinctive feature of interactions is mutual information exchange: One member of a pair changes in response to the other while simultaneously producing actions that alter the other. Combining mathematical and neurophysiological methods, we introduce a paradigm called the human dynamic clamp (HDC), to directly manipulate the interaction or coupling between a human and a surrogate constructed to behave like a human. Inspired by the dynamic clamp used so productively in cellular neuroscience, the HDC allows a person to interact in real time with a virtual partner itself driven by well-established models of coordination dynamics. People coordinate hand movements with the visually observed movements of a virtual hand, the parameters of which depend on input from the subject's own movements. We demonstrate that HDC can be extended to cover a broad repertoire of human behavior, including rhythmic and discrete movements, adaptation to changes of pacing, and behavioral skill learning as specified by a virtual "teacher." We propose HDC as a general paradigm, best implemented when empirically verified theoretical or mathematical models have been developed in a particular scientific field. The HDC paradigm is powerful because it provides an opportunity to explore parameter ranges and perturbations that are not easily accessible in ordinary human interactions. The HDC not only enables to test the veracity of theoretical models, it also illuminates features that are not always apparent in real-time human social interactions and the brain correlates thereof.

  4. Mobile human-computer interaction perspective on mobile learning

    CSIR Research Space (South Africa)

    Botha, Adèle

    2010-10-01

    Full Text Available Applying a Mobile Human Computer Interaction (MHCI) view to the domain of education using Mobile Learning (Mlearning), the research outlines its understanding of the influences and effects of different interactions on the use of mobile technology...

  5. The Science of Human Interaction and Teaching

    Science.gov (United States)

    Yano, Kazuo

    2013-01-01

    There is a missing link between our understanding of teaching as high-level social phenomenon and teaching as a physiological phenomenon of brain activity. We suggest that the science of human interaction is the missing link. Using over one-million days of human-behavior data, we have discovered that "collective activenes" (CA), which indicates…

  6. Pose Estimation and Adaptive Robot Behaviour for Human-Robot Interaction

    DEFF Research Database (Denmark)

    Svenstrup, Mikael; Hansen, Søren Tranberg; Andersen, Hans Jørgen

    2009-01-01

    Abstract—This paper introduces a new method to determine a person’s pose based on laser range measurements. Such estimates are typically a prerequisite for any human-aware robot navigation, which is the basis for effective and timeextended interaction between a mobile robot and a human. The robot......’s pose. The resulting pose estimates are used to identify humans who wish to be approached and interacted with. The interaction motion of the robot is based on adaptive potential functions centered around the person that respect the persons social spaces. The method is tested in experiments...

  7. Prosthetic Leg Control in the Nullspace of Human Interaction.

    Science.gov (United States)

    Gregg, Robert D; Martin, Anne E

    2016-07-01

    Recent work has extended the control method of virtual constraints, originally developed for autonomous walking robots, to powered prosthetic legs for lower-limb amputees. Virtual constraints define desired joint patterns as functions of a mechanical phasing variable, which are typically enforced by torque control laws that linearize the output dynamics associated with the virtual constraints. However, the output dynamics of a powered prosthetic leg generally depend on the human interaction forces, which must be measured and canceled by the feedback linearizing control law. This feedback requires expensive multi-axis load cells, and actively canceling the interaction forces may minimize the human's influence over the prosthesis. To address these limitations, this paper proposes a method for projecting virtual constraints into the nullspace of the human interaction terms in the output dynamics. The projected virtual constraints naturally render the output dynamics invariant with respect to the human interaction forces, which instead enter into the internal dynamics of the partially linearized prosthetic system. This method is illustrated with simulations of a transfemoral amputee model walking with a powered knee-ankle prosthesis that is controlled via virtual constraints with and without the proposed projection.

  8. Calorimetric and spectroscopic studies of the interaction between zidovudine and human serum albumin

    Science.gov (United States)

    Pîrnău, Adrian; Mic, Mihaela; Neamţu, Silvia; Floare, Călin G.; Bogdan, Mircea

    2018-02-01

    A quantitative analysis of the interaction between zidovudine (AZT) and human serum albumin (HSA) was achieved using Isothermal titration calorimetry (ITC) in combination with fluorescence and 1H NMR spectroscopy. ITC directly measure the heat during a biomolecular binding event and gave us thermodynamic parameters and the characteristic association constant. By fluorescence quenching, the binding parameters of AZT-HSA interaction was determined and location to binding site I of HSA was confirmed. Via T1 NMR selective relaxation time measurements the drug-protein binding extent was evaluated as dissociation constants Kd and the involvement of azido moiety of zidovudine in molecular complex formation was put in evidence. All three methods indicated a very weak binding interaction. The association constant determined by ITC (3.58 × 102 M- 1) is supported by fluorescence quenching data (2.74 × 102 M- 1). The thermodynamic signature indicates that at least hydrophobic and electrostatic type interactions played a main role in the binding process.

  9. Human-Computer Interaction and Information Management Research Needs

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — In a visionary future, Human-Computer Interaction HCI and Information Management IM have the potential to enable humans to better manage their lives through the use...

  10. Well-being and human-animal interactions in schools: The case of "Dog Daycare Co-Op"

    Directory of Open Access Journals (Sweden)

    Laura Elizabeth Pinto

    2015-10-01

    Full Text Available This paper draws on Martha Nussbaum’s account of the nature of human well-being to explore the role of animals in formal education settings. Nussbaum equates well-being with human flourishing, and argues that people live well when engaged in essential functions that are particular capabilities, each a necessary but insufficient contributor to well-being. One of these capabilities is the ability to “to have concern for and live with other animals, plants and the environment.” Yet, this condition of well-being remains largely unexplored among in education. In recent years, the benefits of human-animal interaction in education settings has been researched and discussed in the social sciences, particularly  the use of dogs to aid reluctant readers in literacy development, and the use of therapy dogs in universities during final examination blocks. This paper presents findings of one particular research project of the effects of a unique, Canadian school-based cooperative education program, “Under One Woof,” in which students work with animals.  Based on interviews, students’ own stories of the impact of animal interaction – particularly in light of other challenges they faced academically and socially – appear to support other empirical accounts of positive effects of animals in education settings, and offer insight into the nature and effects of human-animal interaction as an element of well-being.

  11. [Affective behavioural responses by dogs to tactile human-dog interactions].

    Science.gov (United States)

    Kuhne, Franziska; Hössler, Johanna C; Struwe, Rainer

    2012-01-01

    The communication of dogs is based on complex, subtle body postures and facial expressions. Some social interaction between dogs includes physical contact. Humans generally use both verbal and tactile signals to communicate with dogs. Hence, interaction between humans and dogs might lead to conflicts because the behavioural responses of dogs to human-dog interaction may be misinterpreted and wrongly assessed. The behavioural responses of dogs to tactile human-dog interactions and human gestures are the focus of this study. The participating dogs (n = 47) were privately owned pets.They were of varying breed and gender.The test consisted of nine randomised test sequences (e. g. petting the dog's head or chest). A test sequence was performed for a period of 30 seconds. The inter-trial interval was set at 60 seconds and the test-retest interval was set at 10 minutes. The frequency and duration of the dogs'behavioural responses were recorded using INTERACT. To examine the behavioural responses of the dogs, a two-way analysis of variance within the linear mixed models procedure of IBM SPSS Statistics 19 was conducted. A significant influence of the test-sequenc order on the dogs' behaviour could be analysed for appeasement gestures (F8,137 = 2.42; p = 0.018), redirected behaviour (F8,161 = 6.31; p = 0.012) and socio-positive behaviour (F8,148 = 6.28; p = 0.012). The behavioural responses of the dogs, which were considered as displacement activities (F8,109 = 2.5; p = 0.014) differed significantly among the test sequences. The response of the dogs, measured as gestures of appeasement, redirected behaviours, and displacement activities, was most obvious during petting around the head and near the paws.The results of this study conspicuously indicate that dogs respond to tactile human-dog interactions with gestures of appeasement and displacement activities. Redirected behaviours, socio-positive behaviours as well displacement activities are behavioural responses which dogs

  12. Design for interaction between humans and intelligent systems during real-time fault management

    Science.gov (United States)

    Malin, Jane T.; Schreckenghost, Debra L.; Thronesbery, Carroll G.

    1992-01-01

    Initial results are reported to provide guidance and assistance for designers of intelligent systems and their human interfaces. The objective is to achieve more effective human-computer interaction (HCI) for real time fault management support systems. Studies of the development of intelligent fault management systems within NASA have resulted in a new perspective of the user. If the user is viewed as one of the subsystems in a heterogeneous, distributed system, system design becomes the design of a flexible architecture for accomplishing system tasks with both human and computer agents. HCI requirements and design should be distinguished from user interface (displays and controls) requirements and design. Effective HCI design for multi-agent systems requires explicit identification of activities and information that support coordination and communication between agents. The effects are characterized of HCI design on overall system design and approaches are identified to addressing HCI requirements in system design. The results include definition of (1) guidance based on information level requirements analysis of HCI, (2) high level requirements for a design methodology that integrates the HCI perspective into system design, and (3) requirements for embedding HCI design tools into intelligent system development environments.

  13. HI-VISUAL: A language supporting visual interaction in programming

    International Nuclear Information System (INIS)

    Monden, N.; Yoshino, Y.; Hirakawa, M.; Tanaka, M.; Ichikawa, T.

    1984-01-01

    This paper presents a language named HI-VISUAL which supports visual interaction in programming. Following a brief description of the language concept, the icon semantics and language primitives characterizing HI-VISUAL are extensively discussed. HI-VISUAL also shows a system extensively discussed. HI-VISUAL also shows a system extendability providing the possibility of organizing a high level application system as an integration of several existing subsystems, and will serve to developing systems in various fields of applications supporting simple and efficient interactions between programmer and computer. In this paper, the authors have presented a language named HI-VISUAL. Following a brief description of the language concept, the icon semantics and language primitives characterizing HI-VISUAL were extensively discussed

  14. Housing / Human Settlements Atlas series: continued support towards more sustainable human settlements

    CSIR Research Space (South Africa)

    Goss, H

    2010-09-01

    Full Text Available an answer to the key question of what (shelter type or model and supportive services) should be built where (in the most suitable location with the highest potential to support sustainable human settlements). The investment potential profile indicator has...

  15. Modeling human dynamics of face-to-face interaction networks

    OpenAIRE

    Starnini, Michele; Baronchelli, Andrea; Pastor-Satorras, Romualdo

    2013-01-01

    Face-to-face interaction networks describe social interactions in human gatherings, and are the substrate for processes such as epidemic spreading and gossip propagation. The bursty nature of human behavior characterizes many aspects of empirical data, such as the distribution of conversation lengths, of conversations per person, or of inter-conversation times. Despite several recent attempts, a general theoretical understanding of the global picture emerging from data is still lacking. Here ...

  16. Turn-Taking Based on Information Flow for Fluent Human-Robot Interaction

    OpenAIRE

    Thomaz, Andrea L.; Chao, Crystal

    2011-01-01

    Turn-taking is a fundamental part of human communication. Our goal is to devise a turn-taking framework for human-robot interaction that, like the human skill, represents something fundamental about interaction, generic to context or domain. We propose a model of turn-taking, and conduct an experiment with human subjects to inform this model. Our findings from this study suggest that information flow is an integral part of human floor-passing behavior. Following this, we implement autonomous ...

  17. The epistemology and ontology of human-computer interaction

    NARCIS (Netherlands)

    Brey, Philip A.E.

    2005-01-01

    This paper analyzes epistemological and ontological dimensions of Human-Computer Interaction (HCI) through an analysis of the functions of computer systems in relation to their users. It is argued that the primary relation between humans and computer systems has historically been epistemic:

  18. Preventive Biomechanics Optimizing Support Systems for the Human Body in the Lying and Sitting Position

    CERN Document Server

    Silber, Gerhard

    2013-01-01

    How can we optimize a bedridden patient’s mattress? How can we make a passenger seat on a long distance flight or ride more comfortable? What qualities should a runner’s shoes have? To objectively address such questions using engineering and scientific methods, adequate virtual human body models for use in computer simulation of loading scenarios are required. The authors have developed a novel method incorporating subject studies, magnetic resonance imaging, 3D-CAD-reconstruction, continuum mechanics, material theory and the finite element method. The focus is laid upon the mechanical in vivo-characterization of human soft tissue, which is indispensable for simulating its mechanical interaction with, for example, medical bedding or automotive and airplane seating systems. Using the examples of arbitrary body support systems, the presented approach provides visual insight into simulated internal mechanical body tissue stress and strain, with the goal of biomechanical optimization of body support systems. ...

  19. In our own image? Emotional and neural processing differences when observing human-human vs human-robot interactions.

    Science.gov (United States)

    Wang, Yin; Quadflieg, Susanne

    2015-11-01

    Notwithstanding the significant role that human-robot interactions (HRI) will play in the near future, limited research has explored the neural correlates of feeling eerie in response to social robots. To address this empirical lacuna, the current investigation examined brain activity using functional magnetic resonance imaging while a group of participants (n = 26) viewed a series of human-human interactions (HHI) and HRI. Although brain sites constituting the mentalizing network were found to respond to both types of interactions, systematic neural variation across sites signaled diverging social-cognitive strategies during HHI and HRI processing. Specifically, HHI elicited increased activity in the left temporal-parietal junction indicative of situation-specific mental state attributions, whereas HRI recruited the precuneus and the ventromedial prefrontal cortex (VMPFC) suggestive of script-based social reasoning. Activity in the VMPFC also tracked feelings of eeriness towards HRI in a parametric manner, revealing a potential neural correlate for a phenomenon known as the uncanny valley. By demonstrating how understanding social interactions depends on the kind of agents involved, this study highlights pivotal sub-routes of impression formation and identifies prominent challenges in the use of humanoid robots. © The Author (2015). Published by Oxford University Press.

  20. Advances in interactive supported electro-catalysis for hydrogen and oxygen electrode reactions

    Energy Technology Data Exchange (ETDEWEB)

    Nedeljko V Krstajic; Ljiljana M Vracar; Jelena M Jaksic; Milan M Jaksic [Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia and Montenegro (Yugoslavia); Stelios G Neophytides; Miranda Labou; Jelena M Jaksic; Milan M Jaksic [Institute of Chemical Engineering and High Temperature Chemical Processes FORTH, and Department of Chemistry, University of Patras, 26500 Patras, (Greece); Reidar Tunold [University of Trondheim, NTNU, Institute of Industrial Electrochemistry, Trondheim, (Norway); Polycarpos Falaras [Institute of Physical Chemistry, NCSR Demokritos, Attikis, Athens, (Greece)

    2006-07-01

    Magneli phases have been introduced as an unique electron conductive and interactive support for electro-catalysis both in hydrogen (HELR) and oxygen (OELR) electrode reactions in water electrolysis and Low Temperature PEM Fuel Cells (LT PEM FC). The Strong Metal-Support Interaction (SMSI) that imposes the former implies: (i) the hypo-hyper-d inter-bonding effect and its catalytic consequences, and (ii) the interactive primary oxide (M-OH) spillover from the hypo-d-oxide support as a dynamic electrocatalytic contribution. The stronger the bonding, the more strained appear d-orbitals, thereby the less strong the intermediate adsorptive strength in the rate determining step (RDS), and consequently, the faster the facilitated catalytic electrode reaction arises. At the same time the primary oxide spillover transferred from the hypo-d-oxide support directly interferes and reacts either individually and directly to contribute to finish the oxygen reduction, or with other interactive species, like CO to contribute to the CO tolerance. In such a respect, the conditions to provide Au to act as the reversible hydrogen electrode have been proved either by its potentiodynamic surface reconstruction in a heavy water solution, or by the nano-structured SMSI Au on anatase titania with characteristic strained d-orbitals in such a hypo-hyper-d-interactive bonding (Au/TiO{sub 2}). In the same context, the monoatomic network dispersion of Pt upon Magneli phases makes it possible to produce an advanced interactive supported electro-catalyst for cathodic oxygen reduction (ORR). The strained hypo-hyper-d-inter-electronic and inter-d-orbital metal/hypo-d-oxide support bonding relative to the strength of the latter, has been inferred to be the basis of the synergistic electrocatalytic effect both in the HELR and ORR. (authors)

  1. Making interactive decision support for patients a reality.

    NARCIS (Netherlands)

    Evans, R.W.; Elwyn, G.; Edwards, A.

    2004-01-01

    Interactive decision support applications might help patients to make difficult decisions about their health care. They lie in the context of traditional decision aids, which are known to have effects on a number of patient outcomes, including knowledge and decisional conflict. The problem of

  2. Supporting Social Interaction in Intelligent Competence Development Systems

    NARCIS (Netherlands)

    Sereno, Bertrand; Boursinou, Eleni; Maxwell, Katrina; Angehrn, Albert

    2007-01-01

    Sereno, B., Boursinou, E., Maxwell, K., & Angehrn, A. A. (2007). Supporting Social Interaction in Intelligent Competence Development Systems. In D. Griffiths, R. Koper & O. Liber (Eds.), Proceedings of the 2nd TENCompetence Open Workshop (pp. 29-35). January, 11-12, 2007, Manchester, United Kingdom.

  3. An Integrated Human System Interaction (HSI) Framework for Human-Agent Team Collaboration, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA commitment to a human presence in space exploration results in the interaction of humans with challenging environments in space, on lunar, and on planetary...

  4. Velocity-curvature patterns limit human-robot physical interaction.

    Science.gov (United States)

    Maurice, Pauline; Huber, Meghan E; Hogan, Neville; Sternad, Dagmar

    2018-01-01

    Physical human-robot collaboration is becoming more common, both in industrial and service robotics. Cooperative execution of a task requires intuitive and efficient interaction between both actors. For humans, this means being able to predict and adapt to robot movements. Given that natural human movement exhibits several robust features, we examined whether human-robot physical interaction is facilitated when these features are considered in robot control. The present study investigated how humans adapt to biological and non-biological velocity patterns in robot movements. Participants held the end-effector of a robot that traced an elliptic path with either biological (two-thirds power law) or non-biological velocity profiles. Participants were instructed to minimize the force applied on the robot end-effector. Results showed that the applied force was significantly lower when the robot moved with a biological velocity pattern. With extensive practice and enhanced feedback, participants were able to decrease their force when following a non-biological velocity pattern, but never reached forces below those obtained with the 2/3 power law profile. These results suggest that some robust features observed in natural human movements are also a strong preference in guided movements. Therefore, such features should be considered in human-robot physical collaboration.

  5. A Review of Verbal and Non-Verbal Human-Robot Interactive Communication

    OpenAIRE

    Mavridis, Nikolaos

    2014-01-01

    In this paper, an overview of human-robot interactive communication is presented, covering verbal as well as non-verbal aspects of human-robot interaction. Following a historical introduction, and motivation towards fluid human-robot communication, ten desiderata are proposed, which provide an organizational axis both of recent as well as of future research on human-robot communication. Then, the ten desiderata are examined in detail, culminating to a unifying discussion, and a forward-lookin...

  6. Human-computer interaction handbook fundamentals, evolving technologies and emerging applications

    CERN Document Server

    Sears, Andrew

    2007-01-01

    This second edition of The Human-Computer Interaction Handbook provides an updated, comprehensive overview of the most important research in the field, including insights that are directly applicable throughout the process of developing effective interactive information technologies. It features cutting-edge advances to the scientific knowledge base, as well as visionary perspectives and developments that fundamentally transform the way in which researchers and practitioners view the discipline. As the seminal volume of HCI research and practice, The Human-Computer Interaction Handbook feature

  7. Interactions of the human MCM-BP protein with MCM complex components and Dbf4.

    Directory of Open Access Journals (Sweden)

    Tin Nguyen

    Full Text Available MCM-BP was discovered as a protein that co-purified from human cells with MCM proteins 3 through 7; results which were recapitulated in frogs, yeast and plants. Evidence in all of these organisms supports an important role for MCM-BP in DNA replication, including contributions to MCM complex unloading. However the mechanisms by which MCM-BP functions and associates with MCM complexes are not well understood. Here we show that human MCM-BP is capable of interacting with individual MCM proteins 2 through 7 when co-expressed in insect cells and can greatly increase the recovery of some recombinant MCM proteins. Glycerol gradient sedimentation analysis indicated that MCM-BP interacts most strongly with MCM4 and MCM7. Similar gradient analyses of human cell lysates showed that only a small amount of MCM-BP overlapped with the migration of MCM complexes and that MCM complexes were disrupted by exogenous MCM-BP. In addition, large complexes containing MCM-BP and MCM proteins were detected at mid to late S phase, suggesting that the formation of specific MCM-BP complexes is cell cycle regulated. We also identified an interaction between MCM-BP and the Dbf4 regulatory component of the DDK kinase in both yeast 2-hybrid and insect cell co-expression assays, and this interaction was verified by co-immunoprecipitation of endogenous proteins from human cells. In vitro kinase assays showed that MCM-BP was not a substrate for DDK but could inhibit DDK phosphorylation of MCM4,6,7 within MCM4,6,7 or MCM2-7 complexes, with little effect on DDK phosphorylation of MCM2. Since DDK is known to activate DNA replication through phosphorylation of these MCM proteins, our results suggest that MCM-BP may affect DNA replication in part by regulating MCM phosphorylation by DDK.

  8. Interactions of the human MCM-BP protein with MCM complex components and Dbf4.

    Science.gov (United States)

    Nguyen, Tin; Jagannathan, Madhav; Shire, Kathy; Frappier, Lori

    2012-01-01

    MCM-BP was discovered as a protein that co-purified from human cells with MCM proteins 3 through 7; results which were recapitulated in frogs, yeast and plants. Evidence in all of these organisms supports an important role for MCM-BP in DNA replication, including contributions to MCM complex unloading. However the mechanisms by which MCM-BP functions and associates with MCM complexes are not well understood. Here we show that human MCM-BP is capable of interacting with individual MCM proteins 2 through 7 when co-expressed in insect cells and can greatly increase the recovery of some recombinant MCM proteins. Glycerol gradient sedimentation analysis indicated that MCM-BP interacts most strongly with MCM4 and MCM7. Similar gradient analyses of human cell lysates showed that only a small amount of MCM-BP overlapped with the migration of MCM complexes and that MCM complexes were disrupted by exogenous MCM-BP. In addition, large complexes containing MCM-BP and MCM proteins were detected at mid to late S phase, suggesting that the formation of specific MCM-BP complexes is cell cycle regulated. We also identified an interaction between MCM-BP and the Dbf4 regulatory component of the DDK kinase in both yeast 2-hybrid and insect cell co-expression assays, and this interaction was verified by co-immunoprecipitation of endogenous proteins from human cells. In vitro kinase assays showed that MCM-BP was not a substrate for DDK but could inhibit DDK phosphorylation of MCM4,6,7 within MCM4,6,7 or MCM2-7 complexes, with little effect on DDK phosphorylation of MCM2. Since DDK is known to activate DNA replication through phosphorylation of these MCM proteins, our results suggest that MCM-BP may affect DNA replication in part by regulating MCM phosphorylation by DDK.

  9. Unmanned systems to support the human exploration of Mars

    Science.gov (United States)

    Gage, Douglas W.

    2010-04-01

    Robots and other unmanned systems will play many critical roles in support of a human presence on Mars, including surveying candidate landing sites, locating ice and mineral resources, establishing power and other infrastructure, performing construction tasks, and transporting equipment and supplies. Many of these systems will require much more strength and power than exploration rovers. The presence of humans on Mars will permit proactive maintenance and repair, and allow teleoperation and operator intervention, supporting multiple dynamic levels of autonomy, so the critical challenges to the use of unmanned systems will occur before humans arrive on Mars. Nevertheless, installed communications and navigation infrastructure should be able to support structured and/or repetitive operations (such as excavation, drilling, or construction) within a "familiar" area with an acceptable level of remote operator intervention. This paper discusses some of the factors involved in developing and deploying unmanned systems to make humans' time on Mars safer and more productive, efficient, and enjoyable.

  10. Exploring cultural factors in human-robot interaction : A matter of personality?

    NARCIS (Netherlands)

    Weiss, Astrid; Evers, Vanessa

    2011-01-01

    This paper proposes an experimental study to investigate task-dependence and cultural-background dependence of the personality trait attribution on humanoid robots. In Human-Robot Interaction, as well as in Human-Agent Interaction research, the attribution of personality traits towards intelligent

  11. Benefits of Subliminal Feedback Loops in Human-Computer Interaction

    OpenAIRE

    Walter Ritter

    2011-01-01

    A lot of efforts have been directed to enriching human-computer interaction to make the user experience more pleasing or efficient. In this paper, we briefly present work in the fields of subliminal perception and affective computing, before we outline a new approach to add analog communication channels to the human-computer interaction experience. In this approach, in addition to symbolic predefined mappings of input to output, a subliminal feedback loop is used that provides feedback in evo...

  12. Characterization of human-dog social interaction using owner report.

    Science.gov (United States)

    Lit, Lisa; Schweitzer, Julie B; Oberbauer, Anita M

    2010-07-01

    Dog owners were surveyed for observations of social behaviors in their dogs, using questions adapted from the human Autism Diagnostic Observation Schedule (ADOS) pre-verbal module. Using 939 responses for purebred and mixed-breed dogs, three factors were identified: initiation of reciprocal social behaviors (INIT), response to social interactions (RSPNS), and communication (COMM). There were small or no effects of sex, age, breed group or training. For six breeds with more than 35 responses (Border Collie, Rough Collie, German Shepherd, Golden Retriever, Labrador Retriever, Standard Poodle), the behaviors eye contact with humans, enjoyment in interactions with human interaction, and name recognition demonstrated little variability across breeds, while asking for objects, giving/showing objects to humans, and attempts to direct humans' attention showed higher variability across these breeds. Breeds with genetically similar backgrounds had similar response distributions for owner reports of dog response to pointing. When considering these breeds according to the broad categories of "herders" and "retrievers," owners reported that the "herders" used more eye contact and vocalization, while the "retrievers" used more body contact. Information regarding social cognitive abilities in dogs provided by owner report suggest that there is variability across many social cognitive abilities in dogs and offers direction for further experimental investigations. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  13. DenHunt - A Comprehensive Database of the Intricate Network of Dengue-Human Interactions.

    Directory of Open Access Journals (Sweden)

    Prashanthi Karyala

    2016-09-01

    Full Text Available Dengue virus (DENV is a human pathogen and its etiology has been widely established. There are many interactions between DENV and human proteins that have been reported in literature. However, no publicly accessible resource for efficiently retrieving the information is yet available. In this study, we mined all publicly available dengue-human interactions that have been reported in the literature into a database called DenHunt. We retrieved 682 direct interactions of human proteins with dengue viral components, 382 indirect interactions and 4120 differentially expressed human genes in dengue infected cell lines and patients. We have illustrated the importance of DenHunt by mapping the dengue-human interactions on to the host interactome and observed that the virus targets multiple host functional complexes of important cellular processes such as metabolism, immune system and signaling pathways suggesting a potential role of these interactions in viral pathogenesis. We also observed that 7 percent of the dengue virus interacting human proteins are also associated with other infectious and non-infectious diseases. Finally, the understanding that comes from such analyses could be used to design better strategies to counteract the diseases caused by dengue virus. The whole dataset has been catalogued in a searchable database, called DenHunt (http://proline.biochem.iisc.ernet.in/DenHunt/.

  14. DenHunt - A Comprehensive Database of the Intricate Network of Dengue-Human Interactions.

    Science.gov (United States)

    Karyala, Prashanthi; Metri, Rahul; Bathula, Christopher; Yelamanchi, Syam K; Sahoo, Lipika; Arjunan, Selvam; Sastri, Narayan P; Chandra, Nagasuma

    2016-09-01

    Dengue virus (DENV) is a human pathogen and its etiology has been widely established. There are many interactions between DENV and human proteins that have been reported in literature. However, no publicly accessible resource for efficiently retrieving the information is yet available. In this study, we mined all publicly available dengue-human interactions that have been reported in the literature into a database called DenHunt. We retrieved 682 direct interactions of human proteins with dengue viral components, 382 indirect interactions and 4120 differentially expressed human genes in dengue infected cell lines and patients. We have illustrated the importance of DenHunt by mapping the dengue-human interactions on to the host interactome and observed that the virus targets multiple host functional complexes of important cellular processes such as metabolism, immune system and signaling pathways suggesting a potential role of these interactions in viral pathogenesis. We also observed that 7 percent of the dengue virus interacting human proteins are also associated with other infectious and non-infectious diseases. Finally, the understanding that comes from such analyses could be used to design better strategies to counteract the diseases caused by dengue virus. The whole dataset has been catalogued in a searchable database, called DenHunt (http://proline.biochem.iisc.ernet.in/DenHunt/).

  15. Social interaction enhances motor resonance for observed human actions.

    Science.gov (United States)

    Hogeveen, Jeremy; Obhi, Sukhvinder S

    2012-04-25

    Understanding the neural basis of social behavior has become an important goal for cognitive neuroscience and a key aim is to link neural processes observed in the laboratory to more naturalistic social behaviors in real-world contexts. Although it is accepted that mirror mechanisms contribute to the occurrence of motor resonance (MR) and are common to action execution, observation, and imitation, questions remain about mirror (and MR) involvement in real social behavior and in processing nonhuman actions. To determine whether social interaction primes the MR system, groups of participants engaged or did not engage in a social interaction before observing human or robotic actions. During observation, MR was assessed via motor-evoked potentials elicited with transcranial magnetic stimulation. Compared with participants who did not engage in a prior social interaction, participants who engaged in the social interaction showed a significant increase in MR for human actions. In contrast, social interaction did not increase MR for robot actions. Thus, naturalistic social interaction and laboratory action observation tasks appear to involve common MR mechanisms, and recent experience tunes the system to particular agent types.

  16. Role of Receptor-Interacting Protein 140 in human fat cells

    Directory of Open Access Journals (Sweden)

    Stenson Britta M

    2010-01-01

    Full Text Available Abstract Background Mice lacking Receptor-interacting protein 140 (RIP140 have reduced body fat which at least partly is mediated through increased lipid and glucose metabolism in adipose tissue. In humans, RIP140 is lower expressed in visceral white adipose tissue (WAT of obese versus lean subjects. We investigated the role of RIP140 in human subcutaneous WAT, which is the major fat depot of the body. Methods Messenger RNA levels of RIP140 were measured in samples of subcutaneous WAT from women with a wide variation in BMI and in different human WAT preparations. RIP140 mRNA was knocked down with siRNA in in vitro differentiated adipocytes and the impact on glucose transport and mRNA levels of target genes determined. Results RIP140 mRNA levels in subcutaneous WAT were decreased among obese compared to lean women and increased by weight-loss, but did not associate with mitochondrial DNA copy number. RIP140 expression increased during adipocyte differentiation in vitro and was higher in isolated adipocytes compared to corresponding pieces of WAT. Knock down of RIP140 increased basal glucose transport and mRNA levels of glucose transporter 4 and uncoupling protein-1. Conclusions Human RIP140 inhibits glucose uptake and the expression of genes promoting energy expenditure in the same fashion as the murine orthologue. Increased levels of human RIP140 in subcutaneous WAT of lean subjects may contribute to economize on energy stores. By contrast, the function and expression pattern does not support that RIP140 regulate human obesity.

  17. The Interaction between Human and Organizational Capital in Strategic Human Resource Management (P.49-62)

    OpenAIRE

    Audia Junita

    2017-01-01

    Studies in strategic human resource management emphasize the contribution of human and human resource management to organizational performance achievement. Human and organizational capitals are strategic capability and mechanism to create value in an organization.This paper seeks to identify an interactive relationship between human and organizational capital in strategic human resource management theoretically, which so far, have not got adequate attention, particularly in a systemic relatio...

  18. Human agency beliefs influence behaviour during virtual social interactions

    Directory of Open Access Journals (Sweden)

    Nathan Caruana

    2017-09-01

    Full Text Available In recent years, with the emergence of relatively inexpensive and accessible virtual reality technologies, it is now possible to deliver compelling and realistic simulations of human-to-human interaction. Neuroimaging studies have shown that, when participants believe they are interacting via a virtual interface with another human agent, they show different patterns of brain activity compared to when they know that their virtual partner is computer-controlled. The suggestion is that users adopt an “intentional stance” by attributing mental states to their virtual partner. However, it remains unclear how beliefs in the agency of a virtual partner influence participants’ behaviour and subjective experience of the interaction. We investigated this issue in the context of a cooperative “joint attention” game in which participants interacted via an eye tracker with a virtual onscreen partner, directing each other’s eye gaze to different screen locations. Half of the participants were correctly informed that their partner was controlled by a computer algorithm (“Computer” condition. The other half were misled into believing that the virtual character was controlled by a second participant in another room (“Human” condition. Those in the “Human” condition were slower to make eye contact with their partner and more likely to try and guide their partner before they had established mutual eye contact than participants in the “Computer” condition. They also responded more rapidly when their partner was guiding them, although the same effect was also found for a control condition in which they responded to an arrow cue. Results confirm the influence of human agency beliefs on behaviour in this virtual social interaction context. They further suggest that researchers and developers attempting to simulate social interactions should consider the impact of agency beliefs on user experience in other social contexts, and their effect

  19. Are Children with Autism More Responsive to Animated Characters? A Study of Interactions with Humans and Human-Controlled Avatars

    Science.gov (United States)

    Carter, Elizabeth J.; Williams, Diane L.; Hodgins, Jessica K.; Lehman, Jill F.

    2014-01-01

    Few direct comparisons have been made between the responsiveness of children with autism to computer-generated or animated characters and their responsiveness to humans. Twelve 4-to 8-year-old children with autism interacted with a human therapist; a human-controlled, interactive avatar in a theme park; a human actor speaking like the avatar; and…

  20. Designing Interactive Applications to Support Novel Activities

    Directory of Open Access Journals (Sweden)

    Hyowon Lee

    2013-01-01

    Full Text Available R&D in media-related technologies including multimedia, information retrieval, computer vision, and the semantic web is experimenting on a variety of computational tools that, if sufficiently matured, could support many novel activities that are not practiced today. Interactive technology demonstration systems produced typically at the end of their projects show great potential for taking advantage of technological possibilities. These demo systems or “demonstrators” are, even if crude or farfetched, a significant manifestation of the technologists’ visions in transforming emerging technologies into novel usage scenarios and applications. In this paper, we reflect on design processes and crucial design decisions made while designing some successful, web-based interactive demonstrators developed by the authors. We identify methodological issues in applying today’s requirement-driven usability engineering method to designing this type of novel applications and solicit a clearer distinction between designing mainstream applications and designing novel applications. More solution-oriented approaches leveraging design thinking are required, and more pragmatic evaluation criteria is needed that assess the role of the system in exploiting the technological possibilities to provoke further brainstorming and discussion. Such an approach will support a more efficient channelling of the technology-to-application transformation which are becoming increasingly crucial in today’s context of rich technological possibilities.

  1. Workshop on cultural usability and human work interaction design

    DEFF Research Database (Denmark)

    Clemmensen, Torkil; Ørngreen, Rikke; Roese, Kerstin

    2008-01-01

    it into interaction design. The workshop will present current research into cultural usability and human work interaction design. Cultural usability is a comprehensive concept, which adheres to all kinds of contexts in which humans are involved (private family, work, public and private organizations, nature......, Workplace observation, Think-Aloud Usability Test, etc. These techniques often give - seemingly - similar results when applied in diverse cultural settings, but experience shows that we need a deep understanding of the cultural, social and organizational context to interpret the results, and to transform...

  2. Toward a unified method for analysing and teaching Human Robot Interaction

    DEFF Research Database (Denmark)

    Dinesen, Jens Vilhelm

    , drawing on key theories and methods from both communications- and interaction-theory. The aim is to provide a single unified method for analysing interaction, through means of video analysis and then applying theories, with proven mutual compatibility, to reach a desired granularity of study.......This abstract aims to present key aspect of a future paper, which outlines the ongoing development ofa unified method for analysing and teaching Human-Robot-Interaction. The paper will propose a novel method for analysing both HRI, interaction with other forms of technologies and fellow humans...

  3. Institutionalizing human-computer interaction for global health.

    Science.gov (United States)

    Gulliksen, Jan

    2017-06-01

    Digitalization is the societal change process in which new ICT-based solutions bring forward completely new ways of doing things, new businesses and new movements in the society. Digitalization also provides completely new ways of addressing issues related to global health. This paper provides an overview of the field of human-computer interaction (HCI) and in what way the field has contributed to international development in different regions of the world. Additionally, it outlines the United Nations' new sustainability goals from December 2015 and what these could contribute to the development of global health and its relationship to digitalization. Finally, it argues why and how HCI could be adopted and adapted to fit the contextual needs, the need for localization and for the development of new digital innovations. The research methodology is mostly qualitative following an action research paradigm in which the actual change process that the digitalization is evoking is equally important as the scientific conclusions that can be drawn. In conclusion, the paper argues that digitalization is fundamentally changing the society through the development and use of digital technologies and may have a profound effect on the digital development of every country in the world. But it needs to be developed based on local practices, it needs international support and to not be limited by any technological constraints. Particularly digitalization to support global health requires a profound understanding of the users and their context, arguing for user-centred systems design methodologies as particularly suitable.

  4. Centrality of Social Interaction in Human Brain Function.

    Science.gov (United States)

    Hari, Riitta; Henriksson, Linda; Malinen, Sanna; Parkkonen, Lauri

    2015-10-07

    People are embedded in social interaction that shapes their brains throughout lifetime. Instead of emerging from lower-level cognitive functions, social interaction could be the default mode via which humans communicate with their environment. Should this hypothesis be true, it would have profound implications on how we think about brain functions and how we dissect and simulate them. We suggest that the research on the brain basis of social cognition and interaction should move from passive spectator science to studies including engaged participants and simultaneous recordings from the brains of the interacting persons. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Socio-hydrology: conceptualising human-flood interactions

    Directory of Open Access Journals (Sweden)

    G. Di Baldassarre

    2013-08-01

    Full Text Available Over history, humankind has tended to settle near streams because of the role of rivers as transportation corridors and the fertility of riparian areas. However, human settlements in floodplains have been threatened by the risk of flooding. Possible responses have been to resettle away and/or modify the river system by building flood control structures. This has led to a complex web of interactions and feedback mechanisms between hydrological and social processes in settled floodplains. This paper is an attempt to conceptualise these interplays for hypothetical human-flood systems. We develop a simple, dynamic model to represent the interactions and feedback loops between hydrological and social processes. The model is then used to explore the dynamics of the human-flood system and the effect of changing individual characteristics, including external forcing such as technological development. The results show that the conceptual model is able to reproduce reciprocal effects between floods and people as well as the emergence of typical patterns. For instance, when levees are built or raised to protect floodplain areas, their presence not only reduces the frequency of flooding, but also exacerbates high water levels. Then, because of this exacerbation, higher flood protection levels are required by society. As a result, more and more flooding events are avoided, but rare and catastrophic events take place.

  6. Rhythm Patterns Interaction - Synchronization Behavior for Human-Robot Joint Action

    Science.gov (United States)

    Mörtl, Alexander; Lorenz, Tamara; Hirche, Sandra

    2014-01-01

    Interactive behavior among humans is governed by the dynamics of movement synchronization in a variety of repetitive tasks. This requires the interaction partners to perform for example rhythmic limb swinging or even goal-directed arm movements. Inspired by that essential feature of human interaction, we present a novel concept and design methodology to synthesize goal-directed synchronization behavior for robotic agents in repetitive joint action tasks. The agents’ tasks are described by closed movement trajectories and interpreted as limit cycles, for which instantaneous phase variables are derived based on oscillator theory. Events segmenting the trajectories into multiple primitives are introduced as anchoring points for enhanced synchronization modes. Utilizing both continuous phases and discrete events in a unifying view, we design a continuous dynamical process synchronizing the derived modes. Inverse to the derivation of phases, we also address the generation of goal-directed movements from the behavioral dynamics. The developed concept is implemented to an anthropomorphic robot. For evaluation of the concept an experiment is designed and conducted in which the robot performs a prototypical pick-and-place task jointly with human partners. The effectiveness of the designed behavior is successfully evidenced by objective measures of phase and event synchronization. Feedback gathered from the participants of our exploratory study suggests a subjectively pleasant sense of interaction created by the interactive behavior. The results highlight potential applications of the synchronization concept both in motor coordination among robotic agents and in enhanced social interaction between humanoid agents and humans. PMID:24752212

  7. Supporting Sensemaking of Complex Objects with Visualizations: Visibility and Complementarity of Interactions

    Directory of Open Access Journals (Sweden)

    Kamran Sedig

    2016-10-01

    Full Text Available Making sense of complex objects is difficult, and typically requires the use of external representations to support cognitive demands while reasoning about the objects. Visualizations are one type of external representation that can be used to support sensemaking activities. In this paper, we investigate the role of two design strategies in making the interactive features of visualizations more supportive of users’ exploratory needs when trying to make sense of complex objects. These two strategies are visibility and complementarity of interactions. We employ a theoretical framework concerned with human–information interaction and complex cognitive activities to inform, contextualize, and interpret the effects of the design strategies. The two strategies are incorporated in the design of Polyvise, a visualization tool that supports making sense of complex four-dimensional geometric objects. A mixed-methods study was conducted to evaluate the design strategies and the overall usability of Polyvise. We report the findings of the study, discuss some implications for the design of visualization tools that support sensemaking of complex objects, and propose five design guidelines. We anticipate that our results are transferrable to other contexts, and that these two design strategies can be used broadly in visualization tools intended to support activities with complex objects and information spaces.

  8. Studying human-automation interactions: methodological lessons learned from the human-centred automation experiments 1997-2001

    International Nuclear Information System (INIS)

    Massaiu, Salvatore; Skjerve, Ann Britt Miberg; Skraaning, Gyrd Jr.; Strand, Stine; Waeroe, Irene

    2004-04-01

    This report documents the methodological lessons learned from the Human Centred Automation (HCA) programme both in terms of psychometric evaluation of the measurement techniques developed for human-automation interaction study, and in terms of the application of advanced statistical methods for analysis of experiments. The psychometric evaluation is based on data from the four experiments performed within the HCA programme. The result is a single-source reference text of measurement instruments for the study of human-automation interaction, part of which were specifically developed by the programme. The application of advanced statistical techniques is exemplified by additional analyses performed on the IPSN-HCA experiment of 1998. Special importance is given to the statistical technique Structural Equation Modeling, for the possibility it offers to advance, and empirically test, comprehensive explanations about human-automation interactions. The additional analyses of the IPSN-HCA experiment investigated how the operators formed judgments about their own performance. The issue is of substantive interest for human automation interaction research because the operators' over- or underestimation of their own performance could be seen as a symptom of human-machine mismatch, and a potential latent failure. These analyses concluded that it is the interplay between (1) the level of automation and several factors that determines the operators' bias in performance self-estimation: (2) the nature of the task, (3) the level of scenario complexity, and (4) the level of trust in the automatic system. A structural model that expresses the interplay of all these factors was empirically evaluated and was found able to provide a concise and elegant explanation of the intricate pattern of relationships between the identified factors. (Author)

  9. Multimodal Information Presentation for High-Load Human Computer Interaction

    NARCIS (Netherlands)

    Cao, Y.

    2011-01-01

    This dissertation addresses multimodal information presentation in human computer interaction. Information presentation refers to the manner in which computer systems/interfaces present information to human users. More specifically, the focus of our work is not on which information to present, but

  10. Intrinsic interactive reinforcement learning - Using error-related potentials for real world human-robot interaction.

    Science.gov (United States)

    Kim, Su Kyoung; Kirchner, Elsa Andrea; Stefes, Arne; Kirchner, Frank

    2017-12-14

    Reinforcement learning (RL) enables robots to learn its optimal behavioral strategy in dynamic environments based on feedback. Explicit human feedback during robot RL is advantageous, since an explicit reward function can be easily adapted. However, it is very demanding and tiresome for a human to continuously and explicitly generate feedback. Therefore, the development of implicit approaches is of high relevance. In this paper, we used an error-related potential (ErrP), an event-related activity in the human electroencephalogram (EEG), as an intrinsically generated implicit feedback (rewards) for RL. Initially we validated our approach with seven subjects in a simulated robot learning scenario. ErrPs were detected online in single trial with a balanced accuracy (bACC) of 91%, which was sufficient to learn to recognize gestures and the correct mapping between human gestures and robot actions in parallel. Finally, we validated our approach in a real robot scenario, in which seven subjects freely chose gestures and the real robot correctly learned the mapping between gestures and actions (ErrP detection (90% bACC)). In this paper, we demonstrated that intrinsically generated EEG-based human feedback in RL can successfully be used to implicitly improve gesture-based robot control during human-robot interaction. We call our approach intrinsic interactive RL.

  11. Sense of presence and anxiety during virtual social interactions between a human and virtual humans

    OpenAIRE

    Morina, Nexhmedin; Brinkman, Willem-Paul; Hartanto, Dwi; Emmelkamp, Paul M.G.

    2014-01-01

    Virtual reality exposure therapy (VRET) has been shown to be effective in treatment of anxiety disorders. Yet, there is lack of research on the extent to which interaction between the individual and virtual humans can be successfully implanted to increase levels of anxiety for therapeutic purposes. This proof-of-concept pilot study aimed at examining levels of the sense of presence and anxiety during exposure to virtual environments involving social interaction with virtual humans and using d...

  12. Human Metabolism and Interactions of Deployment-Related Chemicals

    National Research Council Canada - National Science Library

    Hodgson, Ernest

    2003-01-01

    This study examines the human-metabolism and metabolic interactions of a subset of deployment-related chemicals, including chlorpyrifos, DEET, permethrin, pyridostigmine bromide, and sulfur mustard metabolites...

  13. Disruption of PH–kinase domain interactions leads to oncogenic activation of AKT in human cancers

    Science.gov (United States)

    Parikh, Chaitali; Janakiraman, Vasantharajan; Wu, Wen-I; Foo, Catherine K.; Kljavin, Noelyn M.; Chaudhuri, Subhra; Stawiski, Eric; Lee, Brian; Lin, Jie; Li, Hong; Lorenzo, Maria N.; Yuan, Wenlin; Guillory, Joseph; Jackson, Marlena; Rondon, Jesus; Franke, Yvonne; Bowman, Krista K.; Sagolla, Meredith; Stinson, Jeremy; Wu, Thomas D.; Wu, Jiansheng; Stokoe, David; Stern, Howard M.; Brandhuber, Barbara J.; Lin, Kui; Skelton, Nicholas J.; Seshagiri, Somasekar

    2012-01-01

    The protein kinase v-akt murine thymoma viral oncogene homolog (AKT), a key regulator of cell survival and proliferation, is frequently hyperactivated in human cancers. Intramolecular pleckstrin homology (PH) domain–kinase domain (KD) interactions are important in maintaining AKT in an inactive state. AKT activation proceeds after a conformational change that dislodges the PH from the KD. To understand these autoinhibitory interactions, we generated mutations at the PH–KD interface and found that most of them lead to constitutive activation of AKT. Such mutations are likely another mechanism by which activation may occur in human cancers and other diseases. In support of this likelihood, we found somatic mutations in AKT1 at the PH–KD interface that have not been previously described in human cancers. Furthermore, we show that the AKT1 somatic mutants are constitutively active, leading to oncogenic signaling. Additionally, our studies show that the AKT1 mutants are not effectively inhibited by allosteric AKT inhibitors, consistent with the requirement for an intact PH–KD interface for allosteric inhibition. These results have important implications for therapeutic intervention in patients with AKT mutations at the PH–KD interface. PMID:23134728

  14. Support patient search on pathology reports with interactive online learning based data extraction.

    Science.gov (United States)

    Zheng, Shuai; Lu, James J; Appin, Christina; Brat, Daniel; Wang, Fusheng

    2015-01-01

    Structural reporting enables semantic understanding and prompt retrieval of clinical findings about patients. While synoptic pathology reporting provides templates for data entries, information in pathology reports remains primarily in narrative free text form. Extracting data of interest from narrative pathology reports could significantly improve the representation of the information and enable complex structured queries. However, manual extraction is tedious and error-prone, and automated tools are often constructed with a fixed training dataset and not easily adaptable. Our goal is to extract data from pathology reports to support advanced patient search with a highly adaptable semi-automated data extraction system, which can adjust and self-improve by learning from a user's interaction with minimal human effort. We have developed an online machine learning based information extraction system called IDEAL-X. With its graphical user interface, the system's data extraction engine automatically annotates values for users to review upon loading each report text. The system analyzes users' corrections regarding these annotations with online machine learning, and incrementally enhances and refines the learning model as reports are processed. The system also takes advantage of customized controlled vocabularies, which can be adaptively refined during the online learning process to further assist the data extraction. As the accuracy of automatic annotation improves overtime, the effort of human annotation is gradually reduced. After all reports are processed, a built-in query engine can be applied to conveniently define queries based on extracted structured data. We have evaluated the system with a dataset of anatomic pathology reports from 50 patients. Extracted data elements include demographical data, diagnosis, genetic marker, and procedure. The system achieves F-1 scores of around 95% for the majority of tests. Extracting data from pathology reports could enable

  15. See You See Me: the Role of Eye Contact in Multimodal Human-Robot Interaction.

    Science.gov (United States)

    Xu, Tian Linger; Zhang, Hui; Yu, Chen

    2016-05-01

    We focus on a fundamental looking behavior in human-robot interactions - gazing at each other's face. Eye contact and mutual gaze between two social partners are critical in smooth human-human interactions. Therefore, investigating at what moments and in what ways a robot should look at a human user's face as a response to the human's gaze behavior is an important topic. Toward this goal, we developed a gaze-contingent human-robot interaction system, which relied on momentary gaze behaviors from a human user to control an interacting robot in real time. Using this system, we conducted an experiment in which human participants interacted with the robot in a joint attention task. In the experiment, we systematically manipulated the robot's gaze toward the human partner's face in real time and then analyzed the human's gaze behavior as a response to the robot's gaze behavior. We found that more face looks from the robot led to more look-backs (to the robot's face) from human participants and consequently created more mutual gaze and eye contact between the two. Moreover, participants demonstrated more coordinated and synchronized multimodal behaviors between speech and gaze when more eye contact was successfully established and maintained.

  16. Trends in Human-Computer Interaction to Support Future Intelligence Analysis Capabilities

    Science.gov (United States)

    2011-06-01

    Oblong Industries Inc. (Oblong, 2011). In addition to the camera-based gesture interaction (Figure 4), this system offers a management capability...EyeTap Lumus Eyewear LOE FogScreen HP LiM PC Microvision PEK and SHOWWX Pico Projectors Head Mounted Display Chinese Holo Screen 10 Advanced Analyst

  17. Modelling human interactions in the assessment of man-made hazards

    International Nuclear Information System (INIS)

    Nitoi, M.; Farcasiu, M.; Apostol, M.

    2016-01-01

    The human reliability assessment tools are not currently capable to model adequately the human ability to adapt, to innovate and to manage under extreme situations. The paper presents the results obtained by ICN PSA team in the frame of FP7 Advanced Safety Assessment Methodologies: extended PSA (ASAMPSA_E) project regarding the investigation of conducting HRA in human-made hazards. The paper proposes to use a 4-steps methodology for the assessment of human interactions in the external events (Definition and modelling of human interactions; Quantification of human failure events; Recovery analysis; Review). The most relevant factors with respect to HRA for man-made hazards (response execution complexity; existence of procedures with respect to the scenario in question; time available for action; timing of cues; accessibility of equipment; harsh environmental conditions) are presented and discussed thoroughly. The challenges identified in relation to man-made hazards HRA are highlighted. (authors)

  18. Human Capital Variables and Economic Growth in Nigeria: An Interactive Effect

    Directory of Open Access Journals (Sweden)

    Adenike Mosunmola Osoba

    2017-05-01

    Full Text Available Various studies have focused on the relationship between human capital and economic growth all over the world. However, there is still a missing gap on the joint influence of human capital investment components on economic growth particularly in Nigeria. This study therefore examines the interactive effects of the relationship between human capital investment components and economic growth in Nigeria for the period of 1986 – 2014. The study employed secondary annual data on education expenditure, health expenditure, real gross domestic product and gross capital formation obtained from the Central Bank Statistical bulletin, 2014. The data were analyzed using Fully Modified Ordinary Least Squares (FMOLS technique. The results of the study showed that there was positive and significant relationship between the interactive effects of human capital components and growth in Nigeria. The study concluded that the interactive effect of the human capital variables was also in conformity with the theoretical proposition that increase in human capital will enhance growth as stipulated in the modified Solow growth model by Mankiw, Romer & Weil (1992.

  19. Tactile interactions activate mirror system regions in the human brain.

    Science.gov (United States)

    McKyton, Ayelet

    2011-12-07

    Communicating with others is essential for the development of a society. Although types of communications, such as language and visual gestures, were thoroughly investigated in the past, little research has been done to investigate interactions through touch. To study this we used functional magnetic resonance imaging. Twelve participants were scanned with their eyes covered while stroking four kinds of items, representing different somatosensory stimuli: a human hand, a realistic rubber hand, an object, and a simple texture. Although the human and the rubber hands had the same overall shape, in three regions there was significantly more blood oxygen level dependent activation when touching the real hand: the anterior medial prefrontal cortex, the ventral premotor cortex, and the posterior superior temporal cortex. The last two regions are part of the mirror network and are known to be activated through visual interactions such as gestures. Interestingly, in this study, these areas were activated through a somatosensory interaction. A control experiment was performed to eliminate confounds of temperature, texture, and imagery, suggesting that the activation in these areas was correlated with the touch of a human hand. These results reveal the neuronal network working behind human tactile interactions, and highlight the participation of the mirror system in such functions.

  20. Formation of Human Subjectivity in Psychological Interactions with Nature

    Directory of Open Access Journals (Sweden)

    S A Mudrak

    2014-12-01

    Full Text Available The article outlines the current trends in the environmental psychological research of the peculiarities of developing the subject-subjective human relationship with nature: considering human habitat environment as a set of natural objects; studying certain natural sites as psychologically attributive elements of the environment; determining the psychological meaning of the «Human Habitat Environment»; giving the analysis of the problem of the subjectivity development in human interaction with the natural objects.

  1. Biochemical and biophysical investigations of the interaction between human glucokinase and pro-apoptotic BAD.

    Science.gov (United States)

    Rexford, Alix; Zorio, Diego A R; Miller, Brian G

    2017-01-01

    The glycolytic enzyme glucokinase (GCK) and the pro-apoptotic protein BAD reportedly reside within a five-membered complex that localizes to the mitochondria of mammalian hepatocytes and pancreatic β-cells. Photochemical crosslinking studies using a synthetic analog of BAD's BH3 domain and in vitro transcription/translation experiments support a direct interaction between BAD and GCK. To investigate the biochemical and biophysical consequences of the BAD:GCK interaction, we developed a method for the production of recombinant human BAD. Consistent with published reports, recombinant BAD displays high affinity for Bcl-xL (KD = 7 nM), and phosphorylation of BAD at S118, within the BH3 domain, abolishes this interaction. Unexpectedly, we do not detect association of recombinant, full-length BAD with recombinant human pancreatic GCK over a range of protein concentrations using various biochemical methods including size-exclusion chromatography, chemical cross-linking, analytical ultracentrifugation, and isothermal titration calorimetry. Furthermore, fluorescence polarization assays and isothermal titration calorimetry detect no direct interaction between GCK and BAD BH3 peptides. Kinetic characterization of GCK in the presence of high concentrations of recombinant BAD show modest (BAD BH3 peptides. These results raise questions as to the mechanism of action of stapled peptide analogs modeled after the BAD BH3 domain, which reportedly enhance the Vmax value of GCK and stimulate insulin release in BAD-deficient islets. Based on our results, we postulate that the BAD:GCK interaction, and any resultant regulatory effect(s) upon GCK activity, requires the participation of additional members of the mitochondrial complex.

  2. Approximation of Schrodinger operators with delta-interactions supported on hypersurfaces

    Czech Academy of Sciences Publication Activity Database

    Behrndt, J.; Exner, Pavel; Holzmann, M.; Lotoreichik, Vladimir

    2017-01-01

    Roč. 290, 8-9 (2017), s. 1215-1248 ISSN 0025-584X R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : Schrodinger operators * delta-interactions supported on hypersurfaces * approximation by scaled regular potentials * norm resolvent convergence * spectral convergence Subject RIV: BE - Theoretical Physics OBOR OECD: Pure mathematics Impact factor: 0.742, year: 2016

  3. Rethinking Human-Centered Computing: Finding the Customer and Negotiated Interactions at the Airport

    Science.gov (United States)

    Wales, Roxana; O'Neill, John; Mirmalek, Zara

    2003-01-01

    The breakdown in the air transportation system over the past several years raises an interesting question for researchers: How can we help improve the reliability of airline operations? In offering some answers to this question, we make a statement about Huuman-Centered Computing (HCC). First we offer the definition that HCC is a multi-disciplinary research and design methodology focused on supporting humans as they use technology by including cognitive and social systems, computational tools and the physical environment in the analysis of organizational systems. We suggest that a key element in understanding organizational systems is that there are external cognitive and social systems (customers) as well as internal cognitive and social systems (employees) and that they interact dynamically to impact the organization and its work. The design of human-centered intelligent systems must take this outside-inside dynamic into account. In the past, the design of intelligent systems has focused on supporting the work and improvisation requirements of employees but has often assumed that customer requirements are implicitly satisfied by employee requirements. Taking a customer-centric perspective provides a different lens for understanding this outside-inside dynamic, the work of the organization and the requirements of both customers and employees In this article we will: 1) Demonstrate how the use of ethnographic methods revealed the important outside-inside dynamic in an airline, specifically the consequential relationship between external customer requirements and perspectives and internal organizational processes and perspectives as they came together in a changing environment; 2) Describe how taking a customer centric perspective identifies places where the impact of the outside-inside dynamic is most critical and requires technology that can be adaptive; 3) Define and discuss the place of negotiated interactions in airline operations, identifying how these

  4. Human-nature interactions and the consequences and drivers of provisioning wildlife.

    Science.gov (United States)

    Cox, Daniel T C; Gaston, Kevin J

    2018-05-05

    Many human populations are undergoing an extinction of experience, with a progressive decline in interactions with nature. This is a consequence both of a loss of opportunity for, and orientation towards, such experiences. The trend is of concern in part because interactions with nature can be good for human health and wellbeing. One potential means of redressing these losses is through the intentional provision of resources to increase wildlife populations in close proximity to people, thereby increasing the potential for positive human-nature experiences, and thence the array of benefits that can result. In this paper, we review the evidence that these resource subsidies have such a cascade of effects. In some Westernized countries, the scale of provision is extraordinarily high, and doubtless leads to both positive and negative impacts for wildlife. In turn, these impacts often lead to more frequent, reliable and closer human-nature interactions, with a greater variety of species. The consequences for human wellbeing remain poorly understood, although benefits documented in the context of human-nature interactions more broadly seem likely to apply. There are also some important feedback loops that need to be better characterized if resource provisioning is to contribute effectively towards averting the extinction of experience.This article is part of the theme issue 'Anthropogenic resource subsidies and host-parasite dynamics in wildlife'. © 2018 The Authors.

  5. Hypoxia-controlled EphA3 marks a human endometrium-derived multipotent mesenchymal stromal cell that supports vascular growth.

    Directory of Open Access Journals (Sweden)

    Catherine To

    Full Text Available Eph and ephrin proteins are essential cell guidance cues that orchestrate cell navigation and control cell-cell interactions during developmental tissue patterning, organogenesis and vasculogenesis. They have been extensively studied in animal models of embryogenesis and adult tissue regeneration, but less is known about their expression and function during human tissue and organ regeneration. We discovered the hypoxia inducible factor (HIF-1α-controlled expression of EphA3, an Eph family member with critical functions during human tumour progression, in the vascularised tissue of regenerating human endometrium and on isolated human endometrial multipotent mesenchymal stromal cells (eMSCs, but not in other highly vascularised human organs. EphA3 affinity-isolation from human biopsy tissue yielded multipotent CD29+/CD73+/CD90+/CD146+ eMSCs that can be clonally propagated and respond to EphA3 agonists with EphA3 phosphorylation, cell contraction, cell-cell segregation and directed cell migration. EphA3 silencing significantly inhibited the ability of transplanted eMSCs to support neovascularisation in immunocompromised mice. In accord with established roles of Eph receptors in mediating interactions between endothelial and perivascular stromal cells during mouse development, our findings suggest that HIF-1α-controlled expression of EphA3 on human MSCs functions during the hypoxia-initiated early stages of adult blood vessel formation.

  6. The Human-Computer Interaction of Cross-Cultural Gaming Strategy

    Science.gov (United States)

    Chakraborty, Joyram; Norcio, Anthony F.; Van Der Veer, Jacob J.; Andre, Charles F.; Miller, Zachary; Regelsberger, Alexander

    2015-01-01

    This article explores the cultural dimensions of the human-computer interaction that underlies gaming strategies. The article is a desktop study of existing literature and is organized into five sections. The first examines the cultural aspects of knowledge processing. The social constructs technology interaction is discussed. Following this, the…

  7. Effect of cognitive biases on human-robot interaction: a case study of robot's misattribution

    OpenAIRE

    Biswas, Mriganka; Murray, John

    2014-01-01

    This paper presents a model for developing long-term human-robot interactions and social relationships based on the principle of 'human' cognitive biases applied to a robot. The aim of this work is to study how a robot influenced with human ‘misattribution’ helps to build better human-robot interactions than unbiased robots. The results presented in this paper suggest that it is important to know the effect of cognitive biases in human characteristics and interactions in order to better u...

  8. Drug interactions at the human placenta: what is the evidence?

    Directory of Open Access Journals (Sweden)

    Miriam eRubinchik-Stern

    2012-07-01

    Full Text Available Pregnant women (and their fetuses are treated with a significant number of prescription and nonprescription medications. Interactions among those drugs may affect their efficacy and toxicity in both mother and fetus. Whereas interactions that result in altered drug concentrations in maternal plasma are detectable, those involving modulation of placental transfer mechanisms are rarely reflected by altered drug concentrations in maternal plasma. Therefore, they are often overlooked. Placental-mediated interactions are possible because the placenta is not only a passive diffusional barrier, but also expresses a variety of influx and efflux transporters and drug metabolizing enzymes. Current data on placental-mediated drug interactions are limited. In rodents, pharmacological or genetic manipulations of placental transporters significantly affect fetal drug exposure. In contrast, studies in human placentae suggest that the magnitude of such interactions is modest in most cases. Nevertheless, under certain circumstances, such interactions may be of clinical significance. This review describes currently known mechanisms of placental-mediated drug interactions and the potential implications of such interactions in humans. Better understanding of those mechanisms is important for minimizing fetal toxicity from drugs while improving their efficacy when directed to treat the fetus.

  9. Human cognitive task distribution model for maintenance support system of a nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Ho

    2007-02-15

    In human factors research, more attention has been devoted to the operation of nuclear power plants (NPPs) than to their maintenance. However, human error related to maintenance is 45% among the total human errors from 1990 to 2005 in Korean nuclear power plants. Therefore, it is necessary to study human factors in the maintenance of an NPP. There is a current trend toward introducing digital technology into both safety and non-safety systems in NPPs. A variety of information about plant conditions can be used digitally. In the future, maintenance support systems will be developed based on an information-oriented NPP. In this context, it is necessary to study the cognitive tasks of the personnel involved in maintenance and the interaction between the personnel and maintenance support systems. The fundamental purpose of this work is how to distribute the cognitive tasks of the personnel involved in the maintenance in order to develop a maintenance support system that considers human factors. The second purpose is to find the causes of errors due to engineers or maintainers and propose system functions that are countermeasures to reduce these errors. In this paper, a cognitive task distribution model of the personnel involved in maintenance is proposed using Rasmussen's decision making model. First, the personnel were divided into three groups: the operators (inspectors), engineers, and maintainers. Second, human cognitive tasks related to maintenance were distributed based on these groups. The operators' cognitive tasks are detection and observation; the engineers' cognitive tasks are identification, evaluation, target state, select target, and procedure: and the maintainers' cognitive task is execution. The case study is an analysis of failure reports related to human error in maintenance over a period of 15years. By using error classification based on the information processing approach, the human errors involved in maintenance were classified

  10. Human cognitive task distribution model for maintenance support system of a nuclear power plant

    International Nuclear Information System (INIS)

    Park, Young Ho

    2007-02-01

    In human factors research, more attention has been devoted to the operation of nuclear power plants (NPPs) than to their maintenance. However, human error related to maintenance is 45% among the total human errors from 1990 to 2005 in Korean nuclear power plants. Therefore, it is necessary to study human factors in the maintenance of an NPP. There is a current trend toward introducing digital technology into both safety and non-safety systems in NPPs. A variety of information about plant conditions can be used digitally. In the future, maintenance support systems will be developed based on an information-oriented NPP. In this context, it is necessary to study the cognitive tasks of the personnel involved in maintenance and the interaction between the personnel and maintenance support systems. The fundamental purpose of this work is how to distribute the cognitive tasks of the personnel involved in the maintenance in order to develop a maintenance support system that considers human factors. The second purpose is to find the causes of errors due to engineers or maintainers and propose system functions that are countermeasures to reduce these errors. In this paper, a cognitive task distribution model of the personnel involved in maintenance is proposed using Rasmussen's decision making model. First, the personnel were divided into three groups: the operators (inspectors), engineers, and maintainers. Second, human cognitive tasks related to maintenance were distributed based on these groups. The operators' cognitive tasks are detection and observation; the engineers' cognitive tasks are identification, evaluation, target state, select target, and procedure: and the maintainers' cognitive task is execution. The case study is an analysis of failure reports related to human error in maintenance over a period of 15years. By using error classification based on the information processing approach, the human errors involved in maintenance were classified

  11. Natural and human land-sea interactions: Burgas Case Study, Bulgaria

    Science.gov (United States)

    Stancheva, Margarita; Stanchev, Hristo; Palazov, Atanas; Krastev, Anton

    2017-04-01

    The Directive 2014/89/ of the European Parliament and of the Council of 23 July 2014 establishing a framework for maritime spatial planning sets the land-sea interactions as one of the minimum requirements for Maritime Spatial Planning (MSP). Coastal areas are interconnected with the sea in both human use and natural values and many human activities on marine areas are functionally linked to the coast and vice versa. This research was elaborated in the frame of MARSPLAN-BS Project (DG MARE EU Commission) focused on a case study of land-sea interactions in Burgas Bay, south Bulgarian coast. The main goal of the project is to support the implementation of MSP for Black Sea. Burgas is one of the most important ports at the Black Sea with significant infrastructure for supporting the economic activities and it is the largest Bulgarian Black Sea harbour. Burgas has a modern international airport, which handles most of the tourist flow during the peak summer season. The city is a center of culture, science and art of national importance and is distinguished with rapid developments over the recent years. In the surroundings of the study area there are valuable natural protected areas (Natura 2000) and wetlands, important Ramsar sites, such as: lakes of Atanasovsko, Burgas and Mandra. These lakes, together with the Pomorie Lake (adjacent in north direction) form the largest wetland in the country with exceptional conservation value of international and national importance. The intensity of both coastal and maritime activities in the study area have been constantly increased and new activities have been initiated or planned over the recent years, that area is often in conflict with other activities or the objectives of environmental protection. In this context, the necessity of performing such an investigation at the area of Burgas comes up as a current challenge for sustainable economic development and protection of all wetlands and effective use of natural resources

  12. A Social Cognitive Neuroscience Stance on Human-Robot Interactions

    Directory of Open Access Journals (Sweden)

    Chaminade Thierry

    2011-12-01

    Full Text Available Robotic devices, thanks to the controlled variations in their appearance and behaviors, provide useful tools to test hypotheses pertaining to social interactions. These agents were used to investigate one theoretical framework, resonance, which is defined, at the behavioral and neural levels, as an overlap between first- and third- person representations of mental states such as motor intentions or emotions. Behaviorally, we found a reduced, but significant, resonance towards a humanoid robot displaying biological motion, compared to a human. Using neuroimaging, we've reported that while perceptual processes in the human occipital and temporal lobe are more strongly engaged when perceiving a humanoid robot than a human action, activity in areas involved in motor resonance depends on attentional modulation for artificial agent more strongly than for human agents. Altogether, these studies using artificial agents offer valuable insights into the interaction of bottom-up and top-down processes in the perception of artificial agents.

  13. A Human Variant of Glucose-Regulated Protein 94 That Inefficiently Supports IGF Production

    DEFF Research Database (Denmark)

    Marzec, Michal; Hawkes, Colin P; Eletto, Davide

    2016-01-01

    IGFs are critical for normal intrauterine and childhood growth and sustaining health throughout life. We showed previously that the production of IGF-1 and IGF-2 requires interaction with the chaperone glucose-regulated protein 94 (GRP94) and that the amount of secreted IGFs is proportional...... in a child with primary IGF deficiency and was later shown to be a noncommon single-nucleotide polymorphism with frequencies of 1%-4% in various populations. When tested in the grp94(-/-) cell-based complementation assay, P300L supported only approximately 58% of IGF secretion relative to wild-type GRP94....... Furthermore, recombinant P300L showed impaired nucleotide binding activity. These in vitro data strongly support a causal relationship between the GRP94 variant and the decreased concentration of circulating IGF-1, as observed in human carriers of P300L. Thus, mutations in GRP94 that affect its IGF chaperone...

  14. Research on operation and maintenance support system adaptive to human recognition and understanding in human-centered plant

    International Nuclear Information System (INIS)

    Numano, Masayoshi; Matsuoka, Takeshi; Mitomo, N.

    2004-01-01

    As a human-centered plant, advanced nuclear power plant needs appropriate role sharing between human and mobile intelligent agents. Human-machine cooperation for plant operation and maintenance activities is also required with an advanced interface. Plant's maintenance is programmed using mobile robots working under the radiation environments instead of human beings. Operation and maintenance support system adaptive to human recognition and understanding should be developed to establish adequate human and machine interface so as to induce human capabilities to the full and enable human to take responsibility for plan's operation. Plant's operation and maintenance can be cooperative activities between human and intelligent automonous agents having surveillance and control functions. Infrastructure of multi-agent simulation system for the support system has been investigated and developed based on work plans derived from the scheduler. (T. Tanaka)

  15. Conflict to Coexistence: Human – Leopard Interactions in a Plantation Landscape in Anamalai Hills, India

    Directory of Open Access Journals (Sweden)

    Swati Sidhu

    2017-01-01

    Full Text Available When leopards are found in human-dominated landscapes, conflicts may arise due to attacks on people or livestock loss or when people retaliate following real and perceived threats. In the plantation landscape of the Valparai plateau, we studied incidents of injury and loss of life of people and livestock over time (15 – 25 y and carried out questionnaire surveys in 29 plantation colonies and eight tribal villages to study correlates of livestock depredation, people's perception of leopards, and preferred management options for human – leopard interactions. Leopards were implicated in an average of 1.3 (± 0.4 SE incidents/year (1990 – 2014 involving humans and 3.6 (± 0.8 SE incidents/year (1999 – 2014 involving livestock, with no statistically significant increasing trend over time. Most incidents of injury or loss of life involved young children or unattended livestock, and occurred between afternoon and night. At the colony level, livestock depredation was positively related to the number of livestock, but decreased with the distance from protected area and number of residents. Half the respondents reported seeing a leopard in a neutral situation, under conditions that resulted in no harm. All tribal and 52% of estate respondents had neutral perceptions of leopards and most (81.9%, n = 161 respondents indicated changing their own behaviour as a preferred option to manage negative interactions with leopards, rather than capture or removal of leopards. Perception was unrelated to livestock depredation, but tended to be more negative when human attacks had occurred in a colony. A combination of measures including safety precautions for adults and children at night, better livestock herding and cattle-sheds, and building on people's neutral perception and tolerance can mitigate negative interactions and support continued human – leopard coexistence.

  16. Human-computer interaction for alert warning and attention allocation systems of the multimodal watchstation

    Science.gov (United States)

    Obermayer, Richard W.; Nugent, William A.

    2000-11-01

    The SPAWAR Systems Center San Diego is currently developing an advanced Multi-Modal Watchstation (MMWS); design concepts and software from this effort are intended for transition to future United States Navy surface combatants. The MMWS features multiple flat panel displays and several modes of user interaction, including voice input and output, natural language recognition, 3D audio, stylus and gestural inputs. In 1999, an extensive literature review was conducted on basic and applied research concerned with alerting and warning systems. After summarizing that literature, a human computer interaction (HCI) designer's guide was prepared to support the design of an attention allocation subsystem (AAS) for the MMWS. The resultant HCI guidelines are being applied in the design of a fully interactive AAS prototype. An overview of key findings from the literature review, a proposed design methodology with illustrative examples, and an assessment of progress made in implementing the HCI designers guide are presented.

  17. Cognitive engineering models: A prerequisite to the design of human-computer interaction in complex dynamic systems

    Science.gov (United States)

    Mitchell, Christine M.

    1993-01-01

    This chapter examines a class of human-computer interaction applications, specifically the design of human-computer interaction for the operators of complex systems. Such systems include space systems (e.g., manned systems such as the Shuttle or space station, and unmanned systems such as NASA scientific satellites), aviation systems (e.g., the flight deck of 'glass cockpit' airplanes or air traffic control) and industrial systems (e.g., power plants, telephone networks, and sophisticated, e.g., 'lights out,' manufacturing facilities). The main body of human-computer interaction (HCI) research complements but does not directly address the primary issues involved in human-computer interaction design for operators of complex systems. Interfaces to complex systems are somewhat special. The 'user' in such systems - i.e., the human operator responsible for safe and effective system operation - is highly skilled, someone who in human-machine systems engineering is sometimes characterized as 'well trained, well motivated'. The 'job' or task context is paramount and, thus, human-computer interaction is subordinate to human job interaction. The design of human interaction with complex systems, i.e., the design of human job interaction, is sometimes called cognitive engineering.

  18. The human-bacterial pathogen protein interaction networks of Bacillus anthracis, Francisella tularensis, and Yersinia pestis.

    Directory of Open Access Journals (Sweden)

    Matthew D Dyer

    2010-08-01

    Full Text Available Bacillus anthracis, Francisella tularensis, and Yersinia pestis are bacterial pathogens that can cause anthrax, lethal acute pneumonic disease, and bubonic plague, respectively, and are listed as NIAID Category A priority pathogens for possible use as biological weapons. However, the interactions between human proteins and proteins in these bacteria remain poorly characterized leading to an incomplete understanding of their pathogenesis and mechanisms of immune evasion.In this study, we used a high-throughput yeast two-hybrid assay to identify physical interactions between human proteins and proteins from each of these three pathogens. From more than 250,000 screens performed, we identified 3,073 human-B. anthracis, 1,383 human-F. tularensis, and 4,059 human-Y. pestis protein-protein interactions including interactions involving 304 B. anthracis, 52 F. tularensis, and 330 Y. pestis proteins that are uncharacterized. Computational analysis revealed that pathogen proteins preferentially interact with human proteins that are hubs and bottlenecks in the human PPI network. In addition, we computed modules of human-pathogen PPIs that are conserved amongst the three networks. Functionally, such conserved modules reveal commonalities between how the different pathogens interact with crucial host pathways involved in inflammation and immunity.These data constitute the first extensive protein interaction networks constructed for bacterial pathogens and their human hosts. This study provides novel insights into host-pathogen interactions.

  19. Temporal stability in human interaction networks

    Science.gov (United States)

    Fabbri, Renato; Fabbri, Ricardo; Antunes, Deborah Christina; Pisani, Marilia Mello; de Oliveira, Osvaldo Novais

    2017-11-01

    This paper reports on stable (or invariant) properties of human interaction networks, with benchmarks derived from public email lists. Activity, recognized through messages sent, along time and topology were observed in snapshots in a timeline, and at different scales. Our analysis shows that activity is practically the same for all networks across timescales ranging from seconds to months. The principal components of the participants in the topological metrics space remain practically unchanged as different sets of messages are considered. The activity of participants follows the expected scale-free trace, thus yielding the hub, intermediary and peripheral classes of vertices by comparison against the Erdös-Rényi model. The relative sizes of these three sectors are essentially the same for all email lists and the same along time. Typically, 45% are peripheral vertices. Similar results for the distribution of participants in the three sectors and for the relative importance of the topological metrics were obtained for 12 additional networks from Facebook, Twitter and ParticipaBR. These properties are consistent with the literature and may be general for human interaction networks, which has important implications for establishing a typology of participants based on quantitative criteria.

  20. On the application of motivation theory to human factors/ergonomics: motivational design principles for human-technology interaction.

    Science.gov (United States)

    Szalma, James L

    2014-12-01

    Motivation is a driving force in human-technology interaction. This paper represents an effort to (a) describe a theoretical model of motivation in human technology interaction, (b) provide design principles and guidelines based on this theory, and (c) describe a sequence of steps for the. evaluation of motivational factors in human-technology interaction. Motivation theory has been relatively neglected in human factors/ergonomics (HF/E). In both research and practice, the (implicit) assumption has been that the operator is already motivated or that motivation is an organizational concern and beyond the purview of HF/E. However, technology can induce task-related boredom (e.g., automation) that can be stressful and also increase system vulnerability to performance failures. A theoretical model of motivation in human-technology interaction is proposed, based on extension of the self-determination theory of motivation to HF/E. This model provides the basis for both future research and for development of practical recommendations for design. General principles and guidelines for motivational design are described as well as a sequence of steps for the design process. Human motivation is an important concern for HF/E research and practice. Procedures in the design of both simple and complex technologies can, and should, include the evaluation of motivational characteristics of the task, interface, or system. In addition, researchers should investigate these factors in specific human-technology domains. The theory, principles, and guidelines described here can be incorporated into existing techniques for task analysis and for interface and system design.

  1. Intelligent Interaction for Human-Friendly Service Robot in Smart House Environment

    Directory of Open Access Journals (Sweden)

    Z. Zenn Bien

    2008-01-01

    Full Text Available The smart house under consideration is a service-integrated complex system to assist older persons and/or people with disabilities. The primary goal of the system is to achieve independent living by various robotic devices and systems. Such a system is treated as a human-in-the loop system in which human- robot interaction takes place intensely and frequently. Based on our experiences of having designed and implemented a smart house environment, called Intelligent Sweet Home (ISH, we present a framework of realizing human-friendly HRI (human-robot interaction module with various effective techniques of computational intelligence. More specifically, we partition the robotic tasks of HRI module into three groups in consideration of the level of specificity, fuzziness or uncertainty of the context of the system, and present effective interaction method for each case. We first show a task planning algorithm and its architecture to deal with well-structured tasks autonomously by a simplified set of commands of the user instead of inconvenient manual operations. To provide with capability of interacting in a human-friendly way in a fuzzy context, it is proposed that the robot should make use of human bio-signals as input of the HRI module as shown in a hand gesture recognition system, called a soft remote control system. Finally we discuss a probabilistic fuzzy rule-based life-long learning system, equipped with intention reading capability by learning human behavioral patterns, which is introduced as a solution in uncertain and time-varying situations.

  2. Human-robot interaction strategies for walker-assisted locomotion

    CERN Document Server

    Cifuentes, Carlos A

    2016-01-01

    This book presents the development of a new multimodal human-robot interface for testing and validating control strategies applied to robotic walkers for assisting human mobility and gait rehabilitation. The aim is to achieve a closer interaction between the robotic device and the individual, empowering the rehabilitation potential of such devices in clinical applications. A new multimodal human-robot interface for testing and validating control strategies applied to robotic walkers for assisting human mobility and gait rehabilitation is presented. Trends and opportunities for future advances in the field of assistive locomotion via the development of hybrid solutions based on the combination of smart walkers and biomechatronic exoskeletons are also discussed. .

  3. Enhancing Perception with Tactile Object Recognition in Adaptive Grippers for Human-Robot Interaction.

    Science.gov (United States)

    Gandarias, Juan M; Gómez-de-Gabriel, Jesús M; García-Cerezo, Alfonso J

    2018-02-26

    The use of tactile perception can help first response robotic teams in disaster scenarios, where visibility conditions are often reduced due to the presence of dust, mud, or smoke, distinguishing human limbs from other objects with similar shapes. Here, the integration of the tactile sensor in adaptive grippers is evaluated, measuring the performance of an object recognition task based on deep convolutional neural networks (DCNNs) using a flexible sensor mounted in adaptive grippers. A total of 15 classes with 50 tactile images each were trained, including human body parts and common environment objects, in semi-rigid and flexible adaptive grippers based on the fin ray effect. The classifier was compared against the rigid configuration and a support vector machine classifier (SVM). Finally, a two-level output network has been proposed to provide both object-type recognition and human/non-human classification. Sensors in adaptive grippers have a higher number of non-null tactels (up to 37% more), with a lower mean of pressure values (up to 72% less) than when using a rigid sensor, with a softer grip, which is needed in physical human-robot interaction (pHRI). A semi-rigid implementation with 95.13% object recognition rate was chosen, even though the human/non-human classification had better results (98.78%) with a rigid sensor.

  4. Adaptive interaction a utility maximization approach to understanding human interaction with technology

    CERN Document Server

    Payne, Stephen J

    2013-01-01

    This lecture describes a theoretical framework for the behavioural sciences that holds high promise for theory-driven research and design in Human-Computer Interaction. The framework is designed to tackle the adaptive, ecological, and bounded nature of human behaviour. It is designed to help scientists and practitioners reason about why people choose to behave as they do and to explain which strategies people choose in response to utility, ecology, and cognitive information processing mechanisms. A key idea is that people choose strategies so as to maximise utility given constraints. The frame

  5. Interaction patterns of nurturant support exchanged in online health social networking.

    Science.gov (United States)

    Chuang, Katherine Y; Yang, Christopher C

    2012-05-03

    Expressing emotion in online support communities is an important aspect of enabling e-patients to connect with each other and expand their social resources. Indirectly it increases the amount of support for coping with health issues. Exploring the supportive interaction patterns in online health social networking would help us better understand how technology features impacts user behavior in this context. To build on previous research that identified different types of social support in online support communities by delving into patterns of supportive behavior across multiple computer-mediated communication formats. Each format combines different architectural elements, affecting the resulting social spaces. Our research question compared communication across different formats of text-based computer-mediated communication provided on the MedHelp.org health social networking environment. We identified messages with nurturant support (emotional, esteem, and network) across three different computer-mediated communication formats (forums, journals, and notes) of an online support community for alcoholism using content analysis. Our sample consisted of 493 forum messages, 423 journal messages, and 1180 notes. Nurturant support types occurred frequently among messages offering support (forum comments: 276/412 messages, 67.0%; journal posts: 65/88 messages, 74%; journal comments: 275/335 messages, 82.1%; and notes: 1002/1180 messages, 84.92%), but less often among messages requesting support. Of all the nurturing supports, emotional (ie, encouragement) appeared most frequently, with network and esteem support appearing in patterns of varying combinations. Members of the Alcoholism Community appeared to adapt some traditional face-to-face forms of support to their needs in becoming sober, such as provision of encouragement, understanding, and empathy to one another. The computer-mediated communication format may have the greatest influence on the supportive interactions

  6. Vocal Interactivity in-and-between Humans, Animals and Robots

    Directory of Open Access Journals (Sweden)

    Roger K Moore

    2016-10-01

    Full Text Available Almost all animals exploit vocal signals for a range of ecologically-motivated purposes: detecting predators prey and marking territory, expressing emotions, establishing social relations and sharing information. Whether it is a bird raising an alarm, a whale calling to potential partners,a dog responding to human commands, a parent reading a story with a child, or a business-person accessing stock prices using emph{Siri}, vocalisation provides a valuable communication channel through which behaviour may be coordinated and controlled, and information may be distributed and acquired.Indeed, the ubiquity of vocal interaction has led to research across an extremely diverse array of fields, from assessing animal welfare, to understanding the precursors of human language, to developing voice-based human-machine interaction. Opportunities for cross-fertilisation between these fields abound; for example, using artificial cognitive agents to investigate contemporary theories of language grounding, using machine learning to analyse different habitats or adding vocal expressivity to the next generation of language-enabled autonomous social agents. However, much of the research is conducted within well-defined disciplinary boundaries, and many fundamental issues remain. This paper attempts to redress the balance by presenting a comparative review of vocal interaction within-and-between humans, animals and artificial agents (such as robots, and it identifies a rich set of open research questions that may benefit from an inter-disciplinary analysis.

  7. Chasing Ecological Interactions.

    Science.gov (United States)

    Jordano, Pedro

    2016-09-01

    Basic research on biodiversity has concentrated on individual species-naming new species, studying distribution patterns, and analyzing their evolutionary relationships. Yet biodiversity is more than a collection of individual species; it is the combination of biological entities and processes that support life on Earth. To understand biodiversity we must catalog it, but we must also assess the ways species interact with other species to provide functional support for the Tree of Life. Ecological interactions may be lost well before the species involved in those interactions go extinct; their ecological functions disappear even though they remain. Here, I address the challenges in studying the functional aspects of species interactions and how basic research is helping us address the fast-paced extinction of species due to human activities.

  8. Interactive inverse kinematics for human motion estimation

    DEFF Research Database (Denmark)

    Engell-Nørregård, Morten Pol; Hauberg, Søren; Lapuyade, Jerome

    2009-01-01

    We present an application of a fast interactive inverse kinematics method as a dimensionality reduction for monocular human motion estimation. The inverse kinematics solver deals efficiently and robustly with box constraints and does not suffer from shaking artifacts. The presented motion...... to significantly speed up the particle filtering. It should be stressed that the observation part of the system has not been our focus, and as such is described only from a sense of completeness. With our approach it is possible to construct a robust and computationally efficient system for human motion estimation....

  9. Applying systemic-structural activity theory to design of human-computer interaction systems

    CERN Document Server

    Bedny, Gregory Z; Bedny, Inna

    2015-01-01

    Human-Computer Interaction (HCI) is an interdisciplinary field that has gained recognition as an important field in ergonomics. HCI draws on ideas and theoretical concepts from computer science, psychology, industrial design, and other fields. Human-Computer Interaction is no longer limited to trained software users. Today people interact with various devices such as mobile phones, tablets, and laptops. How can you make such interaction user friendly, even when user proficiency levels vary? This book explores methods for assessing the psychological complexity of computer-based tasks. It also p

  10. Two is better than one: Physical interactions improve motor performance in humans

    Science.gov (United States)

    Ganesh, G.; Takagi, A.; Osu, R.; Yoshioka, T.; Kawato, M.; Burdet, E.

    2014-01-01

    How do physical interactions with others change our own motor behavior? Utilizing a novel motor learning paradigm in which the hands of two - individuals are physically connected without their conscious awareness, we investigated how the interaction forces from a partner adapt the motor behavior in physically interacting humans. We observed the motor adaptations during physical interactions to be mutually beneficial such that both the worse and better of the interacting partners improve motor performance during and after interactive practice. We show that these benefits cannot be explained by multi-sensory integration by an individual, but require physical interaction with a reactive partner. Furthermore, the benefits are determined by both the interacting partner's performance and similarity of the partner's behavior to one's own. Our results demonstrate the fundamental neural processes underlying human physical interactions and suggest advantages of interactive paradigms for sport-training and physical rehabilitation.

  11. Vocabulary development at home: A multimedia elaborated picture supporting parent-toddler interaction

    NARCIS (Netherlands)

    Gremmen, M.C.; Molenaar, I.; Teepe, R.C.

    2016-01-01

    Some children enter elementary school with large vocabulary delays, which negatively influence their later school performance.A rich home language environment can support vocabulary development through frequent high-quality parent–toddler interaction. Elaborated picture home activities can support

  12. Vocabulary development at home: A multimedia elaborated picture supporting parent-toddler interaction

    NARCIS (Netherlands)

    Gremmen, M.C.; Molenaar, I.; Teepe, R.C.

    2016-01-01

    Some children enter elementary school with large vocabulary delays, which negatively influence their later school performance. A rich home language environment can support vocabulary development through frequent high-quality parent-toddler interaction. Elaborated picture home activities can support

  13. Development of a Human Performance Evaluation Support System for Human Factors Validation of MCR MMI Design in APR-1400

    International Nuclear Information System (INIS)

    Ha, Jun Su; Seong, Poong Hyun

    2005-01-01

    As CRT-based display and advanced information technology were applied to advanced reactors such as APR-1400 (Advanced Power Reactor-1400), human operators' tasks became more cognitive works. As a results, Human Factors Engineering (HFE) became more important in designing the MCR (Main Control Room) MMI (Man-Machine Interface) of an advanced reactor. According to the Human Factors Engineering Program Review Model, human factors validation of MCR MMI design should be performed through performance-based tests to determine whether it acceptably supports safe operation of the plant. In order to support the evaluation of the performance, a HUman Performance Evaluation Support System (HUPESS) is in development

  14. See You See Me: the Role of Eye Contact in Multimodal Human-Robot Interaction

    Science.gov (United States)

    XU, TIAN (LINGER); ZHANG, HUI; YU, CHEN

    2016-01-01

    We focus on a fundamental looking behavior in human-robot interactions – gazing at each other’s face. Eye contact and mutual gaze between two social partners are critical in smooth human-human interactions. Therefore, investigating at what moments and in what ways a robot should look at a human user’s face as a response to the human’s gaze behavior is an important topic. Toward this goal, we developed a gaze-contingent human-robot interaction system, which relied on momentary gaze behaviors from a human user to control an interacting robot in real time. Using this system, we conducted an experiment in which human participants interacted with the robot in a joint attention task. In the experiment, we systematically manipulated the robot’s gaze toward the human partner’s face in real time and then analyzed the human’s gaze behavior as a response to the robot’s gaze behavior. We found that more face looks from the robot led to more look-backs (to the robot’s face) from human participants and consequently created more mutual gaze and eye contact between the two. Moreover, participants demonstrated more coordinated and synchronized multimodal behaviors between speech and gaze when more eye contact was successfully established and maintained. PMID:28966875

  15. Extending NGOMSL Model for Human-Humanoid Robot Interaction in the Soccer Robotics Domain

    Directory of Open Access Journals (Sweden)

    Rajesh Elara Mohan

    2008-01-01

    Full Text Available In the field of human-computer interaction, the Natural Goals, Operators, Methods, and Selection rules Language (NGOMSL model is one of the most popular methods for modelling knowledge and cognitive processes for rapid usability evaluation. The NGOMSL model is a description of the knowledge that a user must possess to operate the system represented as elementary actions for effective usability evaluations. In the last few years, mobile robots have been exhibiting a stronger presence in commercial markets and very little work has been done with NGOMSL modelling for usability evaluations in the human-robot interaction discipline. This paper focuses on extending the NGOMSL model for usability evaluation of human-humanoid robot interaction in the soccer robotics domain. The NGOMSL modelled human-humanoid interaction design of Robo-Erectus Junior was evaluated and the results of the experiments showed that the interaction design was able to find faults in an average time of 23.84 s. Also, the interaction design was able to detect the fault within the 60 s in 100% of the cases. The Evaluated Interaction design was adopted by our Robo-Erectus Junior version of humanoid robots in the RoboCup 2007 humanoid soccer league.

  16. Supporting human performance in operations - principles for new nuclear build

    International Nuclear Information System (INIS)

    Lane, L.; Davey, E.

    2006-01-01

    Operational experience worldwide continues to demonstrate that human performance is a key factor in the ongoing safety, production, and protection of investment in operation of nuclear plants for electricity generation. Human performance in support of plant operational objectives can be influenced by a range of factors, for example: organizational culture and expectations; role assignments, training, and individual and team behaviours; and the support offered by the workplace environment, tools, and task design. This paper outlines a perspective on some of the principles that should be considered for application in the design of new nuclear build to facilitate support for human performance in plant operations. The principles identified focus on but are not limited to the tasks of shift staff, and are derived from the observations and experience of the authors who are experienced with control room operations in current plants. (author)

  17. Supporting human performance in operations - principles for new nuclear build

    Energy Technology Data Exchange (ETDEWEB)

    Lane, L. [Ontario Power Generation, Darlington Nuclear Div., Bowmanville, Ontario (Canada); Davey, E. [Crew Systems Solutions, Deep River, Ontario (Canada)

    2006-07-01

    Operational experience worldwide continues to demonstrate that human performance is a key factor in the ongoing safety, production, and protection of investment in operation of nuclear plants for electricity generation. Human performance in support of plant operational objectives can be influenced by a range of factors, for example: organizational culture and expectations; role assignments, training, and individual and team behaviours; and the support offered by the workplace environment, tools, and task design. This paper outlines a perspective on some of the principles that should be considered for application in the design of new nuclear build to facilitate support for human performance in plant operations. The principles identified focus on but are not limited to the tasks of shift staff, and are derived from the observations and experience of the authors who are experienced with control room operations in current plants. (author)

  18. ICT tools as support fort he management of human talent

    Directory of Open Access Journals (Sweden)

    Sandra Cristina Riascos Erazo

    2011-12-01

    Full Text Available The use of Information and Communication Technologies (ICT within the organizational context has revolutionized management and administrative thought; this is evidenced through various aspects, one is how human talent is managed. This article seeks to show the results of research related to the evaluation of ICT used as support to human talent management and its essential objective was to characterize the main ICT tools used in the operational processes involved in managing human talent. The research was developed in two phases; first, identification of ICT tools that support human management processes, and second, determination of software used for human talent management in 60 companies in the Industrial, Commercial, and Service sectors in the city of Santiago de Cali. The research results indicate that diverse tools are available that facilitate the activities in the area of human talent management and which are mostly used in the commercial and service sectors

  19. Accelerating Robot Development through Integral Analysis of Human-Robot Interaction

    NARCIS (Netherlands)

    Kooijmans, T.; Kanda, T.; Bartneck, C.; Ishiguro, H.; Hagita, N.

    2007-01-01

    The development of interactive robots is a complicated process, involving a plethora of psychological, technical, and contextual influences. To design a robot capable of operating "intelligently" in everyday situations, one needs a profound understanding of human-robot interaction (HRI). We propose

  20. Aviation Safety: Modeling and Analyzing Complex Interactions between Humans and Automated Systems

    Science.gov (United States)

    Rungta, Neha; Brat, Guillaume; Clancey, William J.; Linde, Charlotte; Raimondi, Franco; Seah, Chin; Shafto, Michael

    2013-01-01

    The on-going transformation from the current US Air Traffic System (ATS) to the Next Generation Air Traffic System (NextGen) will force the introduction of new automated systems and most likely will cause automation to migrate from ground to air. This will yield new function allocations between humans and automation and therefore change the roles and responsibilities in the ATS. Yet, safety in NextGen is required to be at least as good as in the current system. We therefore need techniques to evaluate the safety of the interactions between humans and automation. We think that current human factor studies and simulation-based techniques will fall short in front of the ATS complexity, and that we need to add more automated techniques to simulations, such as model checking, which offers exhaustive coverage of the non-deterministic behaviors in nominal and off-nominal scenarios. In this work, we present a verification approach based both on simulations and on model checking for evaluating the roles and responsibilities of humans and automation. Models are created using Brahms (a multi-agent framework) and we show that the traditional Brahms simulations can be integrated with automated exploration techniques based on model checking, thus offering a complete exploration of the behavioral space of the scenario. Our formal analysis supports the notion of beliefs and probabilities to reason about human behavior. We demonstrate the technique with the Ueberligen accident since it exemplifies authority problems when receiving conflicting advices from human and automated systems.

  1. Introduction to human-computer interaction

    CERN Document Server

    Booth, Paul

    2014-01-01

    Originally published in 1989 this title provided a comprehensive and authoritative introduction to the burgeoning discipline of human-computer interaction for students, academics, and those from industry who wished to know more about the subject. Assuming very little knowledge, the book provides an overview of the diverse research areas that were at the time only gradually building into a coherent and well-structured field. It aims to explain the underlying causes of the cognitive, social and organizational problems typically encountered when computer systems are introduced. It is clear and co

  2. The Interaction Network Ontology-supported modeling and mining of complex interactions represented with multiple keywords in biomedical literature.

    Science.gov (United States)

    Özgür, Arzucan; Hur, Junguk; He, Yongqun

    2016-01-01

    The Interaction Network Ontology (INO) logically represents biological interactions, pathways, and networks. INO has been demonstrated to be valuable in providing a set of structured ontological terms and associated keywords to support literature mining of gene-gene interactions from biomedical literature. However, previous work using INO focused on single keyword matching, while many interactions are represented with two or more interaction keywords used in combination. This paper reports our extension of INO to include combinatory patterns of two or more literature mining keywords co-existing in one sentence to represent specific INO interaction classes. Such keyword combinations and related INO interaction type information could be automatically obtained via SPARQL queries, formatted in Excel format, and used in an INO-supported SciMiner, an in-house literature mining program. We studied the gene interaction sentences from the commonly used benchmark Learning Logic in Language (LLL) dataset and one internally generated vaccine-related dataset to identify and analyze interaction types containing multiple keywords. Patterns obtained from the dependency parse trees of the sentences were used to identify the interaction keywords that are related to each other and collectively represent an interaction type. The INO ontology currently has 575 terms including 202 terms under the interaction branch. The relations between the INO interaction types and associated keywords are represented using the INO annotation relations: 'has literature mining keywords' and 'has keyword dependency pattern'. The keyword dependency patterns were generated via running the Stanford Parser to obtain dependency relation types. Out of the 107 interactions in the LLL dataset represented with two-keyword interaction types, 86 were identified by using the direct dependency relations. The LLL dataset contained 34 gene regulation interaction types, each of which associated with multiple keywords. A

  3. Literature review of human microbes' interaction with plants

    Science.gov (United States)

    Maguire, B., Jr.

    1980-01-01

    Human carried microorganisms, which cannot practically be excluded from human supporting agricultural systems of extra terrestrial stations, are considered. These microorganisms damage the plants on which the people depend for oxygen and food. The inclusion of carefully screened or constructed, but more or less normal, phylloplane and rhizosphere microbial communities is studied.

  4. Common Metrics for Human-Robot Interaction

    Science.gov (United States)

    Steinfeld, Aaron; Lewis, Michael; Fong, Terrence; Scholtz, Jean; Schultz, Alan; Kaber, David; Goodrich, Michael

    2006-01-01

    This paper describes an effort to identify common metrics for task-oriented human-robot interaction (HRI). We begin by discussing the need for a toolkit of HRI metrics. We then describe the framework of our work and identify important biasing factors that must be taken into consideration. Finally, we present suggested common metrics for standardization and a case study. Preparation of a larger, more detailed toolkit is in progress.

  5. Temporal interaction between an artificial orchestra conductor and human musicians

    NARCIS (Netherlands)

    Reidsma, Dennis; Nijholt, Antinus; Bos, Pieter

    2008-01-01

    The Virtual Conductor project concerns the development of the first properly interactive virtual orchestra conductor—a Virtual Human that can conduct a piece of music through interaction with musicians, leading and following them while they are playing. This article describes our motivation for

  6. Structure of the human chromosome interaction network.

    Directory of Open Access Journals (Sweden)

    Sergio Sarnataro

    Full Text Available New Hi-C technologies have revealed that chromosomes have a complex network of spatial contacts in the cell nucleus of higher organisms, whose organisation is only partially understood. Here, we investigate the structure of such a network in human GM12878 cells, to derive a large scale picture of nuclear architecture. We find that the intensity of intra-chromosomal interactions is power-law distributed. Inter-chromosomal interactions are two orders of magnitude weaker and exponentially distributed, yet they are not randomly arranged along the genomic sequence. Intra-chromosomal contacts broadly occur between epigenomically homologous regions, whereas inter-chromosomal contacts are especially associated with regions rich in highly expressed genes. Overall, genomic contacts in the nucleus appear to be structured as a network of networks where a set of strongly individual chromosomal units, as envisaged in the 'chromosomal territory' scenario derived from microscopy, interact with each other via on average weaker, yet far from random and functionally important interactions.

  7. The Creation of a Multi-Human, Multi-Robot Interactive Jam Session

    OpenAIRE

    Weinberg, Gil; Blosser, Brian; Mallikarjuna, Trishul; Raman, Aparna

    2009-01-01

    This paper presents an interactive and improvisational jam session, including human players and two robotic musicians. The project was developed in an effort to create novel and inspiring music through human-robot collaboration. The jam session incorporates Shimon, a newly-developed socially-interactive robotic marimba player, and Haile, a perceptual robotic percussionist developed in previous work. The paper gives an overview of the musical perception modules, adaptive improvisation modes an...

  8. The Role of Cognitive and Affective Empathy in Spouses' Support Interactions: An Observational Study

    Science.gov (United States)

    Verhofstadt, Lesley; Devoldre, Inge; Buysse, Ann; Stevens, Michael; Hinnekens, Céline; Ickes, William; Davis, Mark

    2016-01-01

    The present study examined how support providers’ empathic dispositions (dispositional perspective taking, empathic concern, and personal distress) as well as their situational empathic reactions (interaction-based perspective taking, empathic concern, and personal distress) relate to the provision of spousal support during observed support interactions. Forty-five committed couples provided questionnaire data and participated in two ten-minute social support interactions designed to assess behaviors when partners are offering and soliciting social support. A video-review task was used to assess situational forms of perspective taking (e.g., empathic accuracy), empathic concern and personal distress. Data were analyzed by means of the multi-level Actor-Partner Interdependence Model. Results revealed that providers scoring higher on affective empathy (i.e., dispositional empathic concern), provided lower levels of negative support. In addition, for male partners, scoring higher on cognitive empathy (i.e., situational perspective taking) was related to lower levels of negative support provision. For both partners, higher scores on cognitive empathy (i.e., situational perspective taking) correlated with more instrumental support provision. Male providers scoring higher on affective empathy (i.e., situational personal distress) provided higher levels of instrumental support. Dispositional perspective taking was related to higher scores on emotional support provision for male providers. The current study furthers our insight into the empathy-support link, by revealing differential effects (a) for men and women, (b) of both cognitive and affective empathy, and (c) of dispositional as well as situational empathy, on different types of support provision. PMID:26910769

  9. Modelling Engagement in Multi-Party Conversations : Data-Driven Approaches to Understanding Human-Human Communication Patterns for Use in Human-Robot Interactions

    OpenAIRE

    Oertel, Catharine

    2016-01-01

    The aim of this thesis is to study human-human interaction in order to provide virtual agents and robots with the capability to engage into multi-party-conversations in a human-like-manner. The focus lies with the modelling of conversational dynamics and the appropriate realization of multi-modal feedback behaviour. For such an undertaking, it is important to understand how human-human communication unfolds in varying contexts and constellations over time. To this end, multi-modal human-human...

  10. Measurement of dynamic interaction between a vibrating fuel element and its support

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, N.J.; Tromp, J.H.; Smith, B.A.W. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada). Chalk River Labs.

    1996-12-01

    Flow-induced vibration of CANDU{reg_sign} fuel can result in fretting damage of the fuel and its support. A WOrk-Rate Measuring Station (WORMS) was developed to measure the relative motion and contact forces between a vibrating fuel element and its support. The fixture consists of a small piece of support structure mounted on a micrometer stage. This arrangement permits position of the support relative to the fuel element to be controlled to within {+-} {micro}m. A piezoelectric triaxial load washer is positioned between the support and micrometer stage to measure contact forces, and a pair of miniature eddy-current displacement probes are mounted on the stage to measure fuel element-to-support relative motion. WORMS has been utilized to measure dynamic contact forces, relative displacements and work-rates between a vibrating fuel element and its support. For these tests, the fuel element was excited with broadband random force excitation to simulate flow-induced vibration due to axial flow. The relationship between fuel element-to-support gap or preload (i.e., interference or negative gap) and dynamic interaction (i.e., relative motion, contact forces and work-rates) was derived. These measurements confirmed numerical simulations of in-reactor interaction predicted earlier using the VIBIC code.

  11. INTESTINAL VIROME AND NORMAL MICROFLORA OF HUMAN: FEATURES OF INTERACTION

    Directory of Open Access Journals (Sweden)

    Bobyr V.V.

    2015-05-01

    Full Text Available Summary: Intestinal bacteria defend the host organism and narrow pathogenic bacterial colonization. However, the microbiome effect to enteric viruses is unexplored largely as well as role of microbiota in the pathogenesis of viral infections in general. This review focuses on precisely these issues. Keywords: microbiome, virome, normal microflora, enteric viruses, contagiousness. In this review article, facts about viral persistence in the human gut are summarized. It is described the role of viral populations during health and diseases. After analyzing of the literary facts it was concluded that the gastrointestinal tract is an environment for one from the most complex microbial ecosystems, which requires of more deeper study of its composition, role in physiological processes, as well as the dynamics of changes under influence of the environment. Normal microflora performs a different important functions providing the physiological homeostasis of the human body, including, in particular, an important role in the human metabolic processes, supporting of homeostasis, limiting of colonization by infectious bacteria. The multifactorial significance of the normal gastrointestinal microflora can be divided into immunological, structural and metabolic functions. At the same time, interaction between intestinal microflora and enteric viruses has not been studied largely. In recent years, much attention is paid to study of viruses-bacteria associations, and it is possible, obtained results should change our understanding of microbiota role in the systematic pathogenesis of the diseases with viral etiology. In contrast to the well-known benefits of normal microflora to the host, the viruses can use intestinal microflora as a trigger for replication at the optimal region. Recent studies give a reason for assumption that depletion of normal microflora with antibiotics can determining the antiviral effect. Thus, the role of commensal bacteria in viral

  12. An Experimental Study of Embodied Interaction and Human Perception of Social Presence for Interactive Robots in Public Settings

    DEFF Research Database (Denmark)

    Jochum, Elizabeth Ann; Heath, Damith; Vlachos, Evgenios

    2018-01-01

    The human perception of cognitive robots as social depends on many factors, including those that do not necessarily pertain to a robot’s cognitive functioning. Experience Design offers a useful framework for evaluating when participants interact with robots as products or tools and when they regard...... them as social actors. This study describes a between-participants experiment conducted at a science museum, where visitors were invited to play a game of noughts and crosses with a Baxter robot. The goal is to foster meaningful interactions that promote engagement between the human and robot...... in a museum context. Using an Experience Design framework, we tested the robot in three different conditions to better understand which factors contribute to the perception of robots as social. The experiment also outlines best practices for conducting human-robot interaction research in museum exhibitions...

  13. Development and use of interactive displays in real-time ground support research facilities

    Science.gov (United States)

    Rhea, Donald C.; Hammons, Kvin R.; Malone, Jacqueline C.; Nesel, Michael C.

    1989-01-01

    The NASA Western Aeronautical Test Range (WATR) is one of the world's most advanced aeronautical research flight test support facilities. A variety of advanced and often unique real-time interactive displays has been developed for use in the mission control centers (MCC) to support research flight and ground testing. These dispalys consist of applications operating on systems described as real-time interactive graphics super workstations and real-time interactive PC/AT compatible workstations. This paper reviews these two types of workstations and the specific applications operating on each display system. The applications provide examples that demonstrate overall system capability applicable for use in other ground-based real-time research/test facilities.

  14. Comparing human-Salmonella with plant-Salmonella protein-protein interaction predictions

    Directory of Open Access Journals (Sweden)

    Sylvia eSchleker

    2015-01-01

    Full Text Available Salmonellosis is the most frequent food-borne disease world-wide and can be transmitted to humans by a variety of routes, especially via animal and plant products. Salmonella bacteria are believed to use not only animal and human but also plant hosts despite their evolutionary distance. This raises the question if Salmonella employs similar mechanisms in infection of these diverse hosts. Given that most of our understanding comes from its interaction with human hosts, we investigate here to what degree knowledge of Salmonella-human interactions can be transferred to the Salmonella-plant system. Reviewed are recent publications on analysis and prediction of Salmonella-host interactomes. Putative protein-protein interactions (PPIs between Salmonella and its human and Arabidopsis hosts were retrieved utilizing purely interolog-based approaches in which predictions were inferred based on available sequence and domain information of known PPIs, and machine learning approaches that integrate a larger set of useful information from different sources. Transfer learning is an especially suitable machine learning technique to predict plant host targets from the knowledge of human host targets. A comparison of the prediction results with transcriptomic data shows a clear overlap between the host proteins predicted to be targeted by PPIs and their gene ontology enrichment in both host species and regulation of gene expression. In particular, the cellular processes Salmonella interferes with in plants and humans are catabolic processes. The details of how these processes are targeted, however, are quite different between the two organisms, as expected based on their evolutionary and habitat differences. Possible implications of this observation on evolution of host-pathogen communication are discussed.

  15. Pragmatic Frames for Teaching and Learning in Human-Robot Interaction: Review and Challenges.

    Science.gov (United States)

    Vollmer, Anna-Lisa; Wrede, Britta; Rohlfing, Katharina J; Oudeyer, Pierre-Yves

    2016-01-01

    One of the big challenges in robotics today is to learn from human users that are inexperienced in interacting with robots but yet are often used to teach skills flexibly to other humans and to children in particular. A potential route toward natural and efficient learning and teaching in Human-Robot Interaction (HRI) is to leverage the social competences of humans and the underlying interactional mechanisms. In this perspective, this article discusses the importance of pragmatic frames as flexible interaction protocols that provide important contextual cues to enable learners to infer new action or language skills and teachers to convey these cues. After defining and discussing the concept of pragmatic frames, grounded in decades of research in developmental psychology, we study a selection of HRI work in the literature which has focused on learning-teaching interaction and analyze the interactional and learning mechanisms that were used in the light of pragmatic frames. This allows us to show that many of the works have already used in practice, but not always explicitly, basic elements of the pragmatic frames machinery. However, we also show that pragmatic frames have so far been used in a very restricted way as compared to how they are used in human-human interaction and argue that this has been an obstacle preventing robust natural multi-task learning and teaching in HRI. In particular, we explain that two central features of human pragmatic frames, mostly absent of existing HRI studies, are that (1) social peers use rich repertoires of frames, potentially combined together, to convey and infer multiple kinds of cues; (2) new frames can be learnt continually, building on existing ones, and guiding the interaction toward higher levels of complexity and expressivity. To conclude, we give an outlook on the future research direction describing the relevant key challenges that need to be solved for leveraging pragmatic frames for robot learning and teaching.

  16. Interactive Distance Learning and Job Support Strategies for Soft Skills.

    Science.gov (United States)

    Campbell, J. Olin; And Others

    1996-01-01

    Discusses the development of soft skills such as management and sales or collaborative problem solving through the use of interactive distance education. Highlights include performance support, including interpersonal skills; long-term cognitive restructuring; and linking training to organizational goals. (Author/LRW)

  17. Vocabulary Development at Home: A Multimedia Elaborated Picture Supporting Parent-Toddler Interaction

    Science.gov (United States)

    Gremmen, M. C.; Molenaar, I.; Teepe, R. C.

    2016-01-01

    Some children enter elementary school with large vocabulary delays, which negatively influence their later school performance. A rich home language environment can support vocabulary development through frequent high-quality parent-toddler interaction. Elaborated picture home activities can support this rich home language environment. This study…

  18. Quantifying human-environment interactions using videography in the context of infectious disease transmission.

    Science.gov (United States)

    Julian, Timothy R; Bustos, Carla; Kwong, Laura H; Badilla, Alejandro D; Lee, Julia; Bischel, Heather N; Canales, Robert A

    2018-05-08

    Quantitative data on human-environment interactions are needed to fully understand infectious disease transmission processes and conduct accurate risk assessments. Interaction events occur during an individual's movement through, and contact with, the environment, and can be quantified using diverse methodologies. Methods that utilize videography, coupled with specialized software, can provide a permanent record of events, collect detailed interactions in high resolution, be reviewed for accuracy, capture events difficult to observe in real-time, and gather multiple concurrent phenomena. In the accompanying video, the use of specialized software to capture humanenvironment interactions for human exposure and disease transmission is highlighted. Use of videography, combined with specialized software, allows for the collection of accurate quantitative representations of human-environment interactions in high resolution. Two specialized programs include the Virtual Timing Device for the Personal Computer, which collects sequential microlevel activity time series of contact events and interactions, and LiveTrak, which is optimized to facilitate annotation of events in real-time. Opportunities to annotate behaviors at high resolution using these tools are promising, permitting detailed records that can be summarized to gain information on infectious disease transmission and incorporated into more complex models of human exposure and risk.

  19. Plant diversity to support humans in a CELSS ground based demonstrator

    Science.gov (United States)

    Howe, J. M.; Hoff, J. E.

    1981-01-01

    A controlled ecological life support system (CELSS) for human habitation in preparation for future long duration space flights is considered. The success of such a system depends upon the feasibility of revitalization of food resources and the human nutritional needs which are to be met by these food resources. Edible higher plants are prime candidates for the photoautotrophic components of this system if nutritionally adequate diets can be derived from these plant sources to support humans. Human nutritional requirements information based on current knowledge are developed for inhabitants envisioned in the CELSS ground based demonstrator. Groups of plant products that can provide the nutrients are identified.

  20. Interaction of Staphylococci with Human B cells.

    Directory of Open Access Journals (Sweden)

    Tyler K Nygaard

    Full Text Available Staphylococcus aureus is a leading cause of human infections worldwide. The pathogen produces numerous molecules that can interfere with recognition and binding by host innate immune cells, an initial step required for the ingestion and subsequent destruction of microbes by phagocytes. To better understand the interaction of this pathogen with human immune cells, we compared the association of S. aureus and S. epidermidis with leukocytes in human blood. We found that a significantly greater proportion of B cells associated with S. epidermidis relative to S. aureus. Complement components and complement receptors were important for the binding of B cells with S. epidermidis. Experiments using staphylococci inactivated by ultraviolet radiation and S. aureus isogenic deletion mutants indicated that S. aureus secretes molecules regulated by the SaeR/S two-component system that interfere with the ability of human B cells to bind this bacterium. We hypothesize that the relative inability of B cells to bind S. aureus contributes to the microbe's success as a human pathogen.

  1. Phosphoinositide-interacting regulator of TRP (PIRT) has opposing effects on human and mouse TRPM8 ion channels.

    Science.gov (United States)

    Hilton, Jacob K; Salehpour, Taraneh; Sisco, Nicholas J; Rath, Parthasarathi; Van Horn, Wade D

    2018-05-03

    Transient receptor potential melastatin 8 (TRPM8) is a cold-sensitive ion channel with diverse physiological roles. TRPM8 activity is modulated by many mechanisms, including an interaction with the small membrane protein phosphoinositide-interacting regulator of TRP (PIRT). Here, using comparative electrophysiology experiments, we identified species-dependent differences between the human and mouse TRPM8-PIRT complexes. We found that human PIRT attenuated human TPRM8 conductance, unlike mouse PIRT, which enhanced mouse TRPM8 conductance. Quantitative western blot analysis demonstrates that this effect does not arise from decreased trafficking of TRPM8 to the plasma membrane. Chimeric human/mouse TRPM8 channels were generated to probe the molecular basis of the PIRT modulation, and the effect was recapitulated in a pore domain chimera, demonstrating the importance of this region for PIRT-mediated regulation of TRPM8. Moreover, recombinantly expressed and purified human TRPM8 S1-S4 domain (comprising transmembrane helices S1-S4, also known as the sensing domain, ligand-sensing domain, or voltage sensing-like domain) and full-length human PIRT were used to investigate binding between the proteins. NMR experiments, supported by a pulldown assay, indicated that PIRT binds directly and specifically to the TRPM8 S1-S4 domain. Binding became saturated as the S1-S4:PIRT mole ratio approached 1. Our results have uncovered species-specific TRPM8 modulation by PIRT. They provide evidence for a direct interaction between PIRT and the TRPM8 S1-S4 domain with a 1:1 binding stoichiometry, suggesting that a functional tetrameric TRPM8 channel has four PIRT-binding sites. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Optimal design method to minimize users' thinking mapping load in human-machine interactions.

    Science.gov (United States)

    Huang, Yanqun; Li, Xu; Zhang, Jie

    2015-01-01

    The discrepancy between human cognition and machine requirements/behaviors usually results in serious mental thinking mapping loads or even disasters in product operating. It is important to help people avoid human-machine interaction confusions and difficulties in today's mental work mastered society. Improving the usability of a product and minimizing user's thinking mapping and interpreting load in human-machine interactions. An optimal human-machine interface design method is introduced, which is based on the purpose of minimizing the mental load in thinking mapping process between users' intentions and affordance of product interface states. By analyzing the users' thinking mapping problem, an operating action model is constructed. According to human natural instincts and acquired knowledge, an expected ideal design with minimized thinking loads is uniquely determined at first. Then, creative alternatives, in terms of the way human obtains operational information, are provided as digital interface states datasets. In the last, using the cluster analysis method, an optimum solution is picked out from alternatives, by calculating the distances between two datasets. Considering multiple factors to minimize users' thinking mapping loads, a solution nearest to the ideal value is found in the human-car interaction design case. The clustering results show its effectiveness in finding an optimum solution to the mental load minimizing problems in human-machine interaction design.

  3. The Study on Human-Computer Interaction Design Based on the Users’ Subconscious Behavior

    Science.gov (United States)

    Li, Lingyuan

    2017-09-01

    Human-computer interaction is human-centered. An excellent interaction design should focus on the study of user experience, which greatly comes from the consistence between design and human behavioral habit. However, users’ behavioral habits often result from subconsciousness. Therefore, it is smart to utilize users’ subconscious behavior to achieve design's intention and maximize the value of products’ functions, which gradually becomes a new trend in this field.

  4. User's manual of a support system for human reliability analysis

    International Nuclear Information System (INIS)

    Yokobayashi, Masao; Tamura, Kazuo.

    1995-10-01

    Many kinds of human reliability analysis (HRA) methods have been developed. However, users are required to be skillful so as to use them, and also required complicated works such as drawing event tree (ET) and calculation of uncertainty bounds. Moreover, each method is not so complete that only one method of them is not enough to evaluate human reliability. Therefore, a personal computer (PC) based support system for HRA has been developed to execute HRA practically and efficiently. The system consists of two methods, namely, simple method and detailed one. The former uses ASEP that is a simplified THERP-technique, and combined method of OAT and HRA-ET/DeBDA is used for the latter. Users can select a suitable method for their purpose. Human error probability (HEP) data were collected and a database of them was built to use for the support system. This paper describes outline of the HRA methods, support functions and user's guide of the system. (author)

  5. A spectroscopic and catalytic investigation of active phase-support interactions

    Energy Technology Data Exchange (ETDEWEB)

    Haller, G.L.

    1991-01-01

    Active catalytic phases (metal, mixed metals, oxide or mixed oxides) interacting with oxide support on which the active phase is dispersed can affect the percentage exposed, the morphology of supported particles, the degree of reducibility of cations, etc., in a variety of ways. Our objective is to characterize the physical chemistry of the active phase-oxide support by spectroscopic methods and to correlate this structure with catalytic function. The three systems discussed in this progress report are Ag/TiO{sub 2}, Ru-Cu/SiO{sub 2} and SiO{sub 2}/Al{sub 2}O{sub 3}. 24 refs., 3 figs., 2 tabs.

  6. Panta Rhei-Everything flows: Global Hotspots of Human-Water Interactions

    Science.gov (United States)

    Di Baldassarre, G.; Srinivasan, V.; Tian, F.; Mohamed, Y.; Krueger, T.; Kreibich, H.; Liu, J.; Troy, T. J.; AghaKouchak, A.

    2017-12-01

    Panta Rhei-Everything Flows is the scientific decade (2013-2022) of the International Association of Hydrological Sciences (IAHS). This initiative aims to reach an improved interpretation of the processes governing the water cycle by focusing on their changing dynamics in connection with rapidly changing human systems (Montanari et al., 2013; McMillan et al., 2016). More than 400 water scientists have been involved in Panta Rhei so far, and several working groups have produced significant outcomes. In this presentation, we first summarize some key achievements of this initiative by showing how they have advanced our understanding of the way in which humans impact on, and respond to, hydrological change. Then, we suggest simple indicators to characterize interactions between water and human systems. These indicators aim to capture the relevance of human-water interactions and their potential to generate negative effects, such as water crises or unintended consequences. Finally, we show an application of these indicators to global hotspots, i.e. contrasting case studies from around the world. Our goal is to facilitate a community-wide effort in collecting and sharing essential data to map the role of human-water interactions across social and hydrological conditions. ReferencesMontanari et al. (2013) Panta Rhei—Everything Flows: Change in hydrology and society—The IAHS Scientific Decade 2013-2022, Hydrological Sciences Journal, 58(6), 1256-1275. McMillan et al. (2016) Panta Rhei 2013-2015: Global perspectives on hydrology, society and change. Hydrological sciences journal 61(7), 1174-1191.

  7. Human milk blocks DC-SIGN - pathogen interaction via MUC1

    Directory of Open Access Journals (Sweden)

    Nathalie eKoning

    2015-03-01

    Full Text Available Beneficial effects of breastfeeding are well-recognized and include both immediate neonatal protection against pathogens, as well as long term protection against allergies and autoimmune diseases. Although several proteins have been identified to have anti-viral or anti-bacterial effects like secretory IgA or lactoferrin, the mechanisms of immune modulation are not fully understood. Recent studies identified important beneficial effects of glycans in human milk, such as those expressed in oligosaccharides or on glycoproteins. Glycans are recognized by the carbohydrate receptors C-type lectins on DC and specific tissue macrophages, which exert important functions in immune modulation and immune homeostasis. A well-characterized C-type lectin is DC-SIGN, which binds terminal fucose. The present study shows that in human milk, MUC1 is the major milk glycoprotein that binds to the lectin domain of DC-SIGN and prevents pathogen interaction through the presence of Lewis x-type oligosaccharides. Surprisingly, this was specific for human milk, as formula, bovine or camel milk did not show any presence of proteins that interacted with DC-SIGN. The expression of DC-SIGN is found in young infants along the entire gastro-intestinal tract. Our data thus suggest the importance of human milk glycoproteins for blocking pathogen interaction to DC in young children. Moreover, a potential benefit of human milk later in life in shaping the infants immune system through DC-SIGN cannot be ruled out.

  8. Structure-Interaction Theory: Conceptual, Contextual and Strategic Influences on Human Communication

    Directory of Open Access Journals (Sweden)

    Стивен А Биби

    2015-12-01

    Full Text Available This paper addresses Structure-Interaction Theory (SIT, a theoretical framework that both describes communication messages as well as assists in making predictions about how human communication can be improved based on listener preferences for message structure or interaction. Communication messages may be characterized as existing on a continuum of structure-interaction. Communication structure is the inherent way information in a message is organized. A highly structured message is one in which the message is strategically organized using a planned arrangement of symbols to create meaning. Communication interaction is a way of viewing a message with give-and-take, less sustained “notes,” more change in note sequence and briefer notes. SIT seeks to provide a framework to assist communicators in appropriately adapting a message for maximum effectiveness. Although Structure-Interaction Theory newly articulated here, it is anchored in both classic ways of describing communication, such as rhetoric and dialectic (Aristotle, 1959, as well as more contemporary communication theories (Salem, 2012; Littlejohn & Foss, 2008. Specifically, the paper provides an overview of the theory and its conceptual assumptions, identifies how the theory can help explain and predict communication in several communication contexts (interpersonal, group, public communication, and suggests how SIT may help identify strategies to enhance human development. Structure-Interaction Theory is based on an assumption that a human communication message which is understood, achieves the intended effect of the communicator, and is ethical, requires an appropriate balance of two things: structure and interaction. Communication structure is the inherent way a message is constructed to provide a sustained direction to present information to another person. In linking structure and interaction to Aristotle’s description of messages, rhetoric is a more structured, sustained speech

  9. Abstract robots with an attitude : applying interpersonal relation models to human-robot interaction

    NARCIS (Netherlands)

    Hiah, J.L.; Beursgens, L.; Haex, R.; Perez Romero, L.M.; Teh, Y.; Bhomer, ten M.; Berkel, van R.E.A.; Barakova, E.I.

    2013-01-01

    This paper explores new possibilities for social interaction between a human user and a robot with an abstract shape. The social interaction takes place by simulating behaviors such as submissiveness and dominance and analyzing the corresponding human reactions. We used an object that has no

  10. A digital interactive human brain atlas based on Chinese visible human datasets for anatomy teaching.

    Science.gov (United States)

    Li, Qiyu; Ran, Xu; Zhang, Shaoxiang; Tan, Liwen; Qiu, Mingguo

    2014-01-01

    As we know, the human brain is one of the most complicated organs in the human body, which is the key and difficult point in neuroanatomy and sectional anatomy teaching. With the rapid development and extensive application of imaging technology in clinical diagnosis, doctors are facing higher and higher requirement on their anatomy knowledge. Thus, to cultivate medical students to meet the needs of medical development today and to improve their ability to read and understand radiographic images have become urgent challenges for the medical teachers. In this context, we developed a digital interactive human brain atlas based on the Chinese visible human datasets for anatomy teaching (available for free download from http://www.chinesevisiblehuman.com/down/DHBA.rar). The atlas simultaneously provides views in all 3 primary planes of section. The main structures of the human brain have been anatomically labeled in all 3 views. It is potentially useful for anatomy browsing, user self-testing, and automatic student assessment. In a word, it is interactive, 3D, user friendly, and free of charge, which can provide a new, intuitive means for anatomy teaching.

  11. Pathways of understanding: The interactions of humanity and global environmental change

    International Nuclear Information System (INIS)

    Jacobson, H.K.; Katzenberger, J.; Lousma, J.; Mooney, H.A.; Moss, R.H.; Kuhn, W.; Luterbacher, U.; Wiegandt, E.

    1992-01-01

    How humans, interacting within social systems, affect and are affected by global change is explored. Recognizing the impact human activities have on the environment and responding to the need to document the interactions among human activities, the Consortium for International Earth Science Information Network (CIESIN) commissioned a group of 12 scientists to develop a framework illustrating the key human systems that contribute to global change. This framework, called the Social Process Diagram, will help natural and social scientists, educators, resource managers and policy makers envision and analyze how human systems interact among themselves and with the natural system. The Social Process Diagram consists of the following blocks that constitute the Diagram's structural framework: (1) fund of knowledge and experience; (2) preferences and expectations; (3) factors of production and technology; (4) population and social structure; (5) economic systems; (6) political systems and institutions; and (7) global scale environmental processes. To demonstrate potential ways the Diagram can be used, this document includes 3 hypothetical scenarios of global change issues: global warming and sea level rise; the environmental impact of human population migration; and energy and the environment. These scenarios demonstrate the Diagram's usefulness for visualizing specific processes that might be studied to evaluate a particular global change issues. The scenario also shows that interesting and unanticipated questions may emerge as links are explored between categories on the Diagram

  12. Pathways of Understanding: the Interactions of Humanity and Global Environmental Change

    Science.gov (United States)

    Jacobson, Harold K.; Katzenberger, John; Lousma, Jack; Mooney, Harold A.; Moss, Richard H.; Kuhn, William; Luterbacher, Urs; Wiegandt, Ellen

    1992-01-01

    How humans, interacting within social systems, affect and are affected by global change is explored. Recognizing the impact human activities have on the environment and responding to the need to document the interactions among human activities, the Consortium for International Earth Science Information Network (CIESIN) commissioned a group of 12 scientists to develop a framework illustrating the key human systems that contribute to global change. This framework, called the Social Process Diagram, will help natural and social scientists, educators, resource managers and policy makers envision and analyze how human systems interact among themselves and with the natural system. The Social Process Diagram consists of the following blocks that constitute the Diagram's structural framework: (1) fund of knowledge and experience; (2) preferences and expectations; (3) factors of production and technology; (4) population and social structure; (5) economic systems; (6) political systems and institutions; and (7) global scale environmental processes. To demonstrate potential ways the Diagram can be used, this document includes 3 hypothetical scenarios of global change issues: global warming and sea level rise; the environmental impact of human population migration; and energy and the environment. These scenarios demonstrate the Diagram's usefulness for visualizing specific processes that might be studied to evaluate a particular global change issues. The scenario also shows that interesting and unanticipated questions may emerge as links are explored between categories on the Diagram.

  13. Human body micro-environment: The benefits of controlling airflow interaction

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor

    2015-01-01

    This paper focuses on the micro-environment around a human body, and especially on its interaction with the surrounding environment. Research on the free convection flow generated by a human body (including the convective boundary layer around the body and the thermal plume above the body), its...

  14. Interactive Graph Layout of a Million Nodes

    Directory of Open Access Journals (Sweden)

    Peng Mi

    2016-12-01

    Full Text Available Sensemaking of large graphs, specifically those with millions of nodes, is a crucial task in many fields. Automatic graph layout algorithms, augmented with real-time human-in-the-loop interaction, can potentially support sensemaking of large graphs. However, designing interactive algorithms to achieve this is challenging. In this paper, we tackle the scalability problem of interactive layout of large graphs, and contribute a new GPU-based force-directed layout algorithm that exploits graph topology. This algorithm can interactively layout graphs with millions of nodes, and support real-time interaction to explore alternative graph layouts. Users can directly manipulate the layout of vertices in a force-directed fashion. The complexity of traditional repulsive force computation is reduced by approximating calculations based on the hierarchical structure of multi-level clustered graphs. We evaluate the algorithm performance, and demonstrate human-in-the-loop layout in two sensemaking case studies. Moreover, we summarize lessons learned for designing interactive large graph layout algorithms on the GPU.

  15. Motivating forces of human actions. Neuroimaging reward and social interaction.

    Science.gov (United States)

    Walter, Henrik; Abler, Birgit; Ciaramidaro, Angela; Erk, Susanne

    2005-11-15

    In neuroeconomics, reward and social interaction are central concepts to understand what motivates human behaviour. Both concepts are investigated in humans using neuroimaging methods. In this paper, we provide an overview about these results and discuss their relevance for economic behaviour. For reward it has been shown that a system exists in humans that is involved in predicting rewards and thus guides behaviour, involving a circuit including the striatum, the orbitofrontal cortex and the amygdala. Recent studies on social interaction revealed a mentalizing system representing the mental states of others. A central part of this system is the medial prefrontal cortex, in particular the anterior paracingulate cortex. The reward as well as the mentalizing system is engaged in economic decision-making. We will discuss implications of this study for neuromarketing as well as general implications of these results that may help to provide deeper insights into the motivating forces of human behaviour.

  16. Muscle-tendon interaction and elastic energy usage in human walking

    DEFF Research Database (Denmark)

    Ishikawa, Masaki; Komi, Paavo V.; Grey, Michael James

    2005-01-01

    The present study was designed to explore how the interaction between the fascicles and tendinous tissues is involved in storage and utilization of elastic energy during human walking. Eight male subjects walked with a natural cadence (1.4 +/- 0.1 m/s) on a 10-m-long force plate system. In vivo......-stance phase. In contrast, the soleus fascicles were lengthened until the end of the single-stance phase. These findings suggest that the elastic recoil takes place not as a spring-like bouncing but as a catapult action in natural human walking. The interaction between the muscle fascicles and tendinous...

  17. Earthquake analysis with nonlinear soil-structure interaction and nonlinear supports of components

    International Nuclear Information System (INIS)

    Hansson, V.

    1990-01-01

    For the determination of the seismic response of a structure the soil-structure interaction in most cases is modelled by a mass-spring-damper-system. Normally design concepts for components and piping are based on linear calculations and stress limitations. A concept for a reactor building for the HTR 100 consisted of a relatively high structure compared with the dimensions of the foundation. The structure was comparatively deep embedded in the soil, so here the embedment influences significantly the soil-structure interaction. The assembly of reactor vessel, heat exchanger and circulators has a height of about 37 m. Supports are arranged at different levels. Due to temperature deformations of the vessel and of the support constructions small gaps at the supports may only be avoided by complicated constructions of the supports. Nonlinear analyses were performed for soil, building and component with all supports. The finite element analyses used time histories. In order to describe the radiation damping the hysteresis of the soil with 1 percent material damping was considered. Nonlinearities in the interface of soil and foundation and due to gaps and friction at the supports were taken into account. The stiffness of the support constructions influences reactions and accelerations to a high extent. Properly chosen stiffnesses of the support constructions lead to a behaviour similar to linear elastic behaviour. 13 figs

  18. A study on the application of voice interaction in automotive human machine interface experience design

    Science.gov (United States)

    Huang, Zhaohui; Huang, Xiemin

    2018-04-01

    This paper, firstly, introduces the application trend of the integration of multi-channel interactions in automotive HMI ((Human Machine Interface) from complex information models faced by existing automotive HMI and describes various interaction modes. By comparing voice interaction and touch screen, gestures and other interaction modes, the potential and feasibility of voice interaction in automotive HMI experience design are concluded. Then, the related theories of voice interaction, identification technologies, human beings' cognitive models of voices and voice design methods are further explored. And the research priority of this paper is proposed, i.e. how to design voice interaction to create more humane task-oriented dialogue scenarios to enhance interactive experiences of automotive HMI. The specific scenarios in driving behaviors suitable for the use of voice interaction are studied and classified, and the usability principles and key elements for automotive HMI voice design are proposed according to the scenario features. Then, through the user participatory usability testing experiment, the dialogue processes of voice interaction in automotive HMI are defined. The logics and grammars in voice interaction are classified according to the experimental results, and the mental models in the interaction processes are analyzed. At last, the voice interaction design method to create the humane task-oriented dialogue scenarios in the driving environment is proposed.

  19. Human Work Interaction Design. Work Analysis and HCI

    DEFF Research Database (Denmark)

    Paasch, Kasper

    2013-01-01

    . The papers reflect many different areas and address many complex and diverse work domains, ranging from medical user interfaces, work and speech interactions at elderly care facilities, greenhouse climate control, navigating through large oil industry engineering models, crisis management, library usability......This book constitutes the thoroughly refereed post-conference proceedings of the Third IFIP WG 13.6 Working Conference on Human Work Interaction Design, HWID 2012, held in Copenhagen, Denmark, in December 2012. The 16 revised papers presented were carefully selected for inclusion in this volume...

  20. A review of over three decades of research on cat-human and human-cat interactions and relationships.

    Science.gov (United States)

    Turner, Dennis C

    2017-08-01

    This review article covers research conducted over the last three decades on cat-human and human-cat interactions and relationships, especially from an ethological point of view. It includes findings on cat-cat and cat-human communication, cat personalities and cat-owner personalities, the effects of cats on humans, and problems caused by cats. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Self-Supporting Nanodiamond Gels: Elucidating Colloidal Interactions Through Rheology_

    Science.gov (United States)

    Adhikari, Prajesh; Tripathi, Anurodh; Vogel, Nancy A.; Rojas, Orlando J.; Raghavan, Sriunivasa R.; Khan, Saad A.

    This work investigates the colloidal interactions and rheological behavior of nanodiamond (ND) dispersions. While ND represents a promising class of nanofiller due to its high surface area, superior mechanical strength, tailorable surface functionality and biocompatibility, much remains unknown about the behavior of ND dispersions. We hypothesize that controlling interactions in ND dispersions will lead to highly functional systems with tunable modulus and shear response. Steady and dynamic rheology techniques are thus employed to systematically investigate nanodiamonds dispersed in model polar and non-polar media. We find that low concentrations of ND form gels almost instantaneously in a non-polar media. In contrast, ND's in polar media show a time-dependent behavior with the modulus increasing with time. We attribute the difference in behavior to variations in inter-particle interactions as well as the interaction of the ND with the media. Large steady and oscillatory strains are applied to ND colloidal gels to investigate the role of shear in gel microstructure breakdown and recovery. For colloidal gels in non-polar medium, the incomplete recovery of elastic modulus at high strain amplitudes indicates dominance of particle-particle interactions; however, in polar media the complete recovery of elastic modulus even at high strain amplitudes indicates dominance of particle-solvent interactions. These results taken together provide a platform to develop self-supporting gels with tunable properties in terms of ND concentration, and solvent type.

  2. Choice of Human-Computer Interaction Mode in Stroke Rehabilitation.

    Science.gov (United States)

    Mousavi Hondori, Hossein; Khademi, Maryam; Dodakian, Lucy; McKenzie, Alison; Lopes, Cristina V; Cramer, Steven C

    2016-03-01

    Advances in technology are providing new forms of human-computer interaction. The current study examined one form of human-computer interaction, augmented reality (AR), whereby subjects train in the real-world workspace with virtual objects projected by the computer. Motor performances were compared with those obtained while subjects used a traditional human-computer interaction, that is, a personal computer (PC) with a mouse. Patients used goal-directed arm movements to play AR and PC versions of the Fruit Ninja video game. The 2 versions required the same arm movements to control the game but had different cognitive demands. With AR, the game was projected onto the desktop, where subjects viewed the game plus their arm movements simultaneously, in the same visual coordinate space. In the PC version, subjects used the same arm movements but viewed the game by looking up at a computer monitor. Among 18 patients with chronic hemiparesis after stroke, the AR game was associated with 21% higher game scores (P = .0001), 19% faster reaching times (P = .0001), and 15% less movement variability (P = .0068), as compared to the PC game. Correlations between game score and arm motor status were stronger with the AR version. Motor performances during the AR game were superior to those during the PC game. This result is due in part to the greater cognitive demands imposed by the PC game, a feature problematic for some patients but clinically useful for others. Mode of human-computer interface influences rehabilitation therapy demands and can be individualized for patients. © The Author(s) 2015.

  3. Human-inspired feedback synergies for environmental interaction with a dexterous robotic hand.

    Science.gov (United States)

    Kent, Benjamin A; Engeberg, Erik D

    2014-11-07

    Effortless control of the human hand is mediated by the physical and neural couplings inherent in the structure of the hand. This concept was explored for environmental interaction tasks with the human hand, and a novel human-inspired feedback synergy (HFS) controller was developed for a robotic hand which synchronized position and force feedback signals to mimic observed human hand motions. This was achieved by first recording the finger joint motion profiles of human test subjects, where it was observed that the subjects would extend their fingers to maintain a natural hand posture when interacting with different surfaces. The resulting human joint angle data were used as inspiration to develop the HFS controller for the anthropomorphic robotic hand, which incorporated finger abduction and force feedback in the control laws for finger extension. Experimental results showed that by projecting a broader view of the tasks at hand to each specific joint, the HFS controller produced hand motion profiles that closely mimic the observed human responses and allowed the robotic manipulator to interact with the surfaces while maintaining a natural hand posture. Additionally, the HFS controller enabled the robotic hand to autonomously traverse vertical step discontinuities without prior knowledge of the environment, visual feedback, or traditional trajectory planning techniques.

  4. Human-inspired feedback synergies for environmental interaction with a dexterous robotic hand

    International Nuclear Information System (INIS)

    Kent, Benjamin A; Engeberg, Erik D

    2014-01-01

    Effortless control of the human hand is mediated by the physical and neural couplings inherent in the structure of the hand. This concept was explored for environmental interaction tasks with the human hand, and a novel human-inspired feedback synergy (HFS) controller was developed for a robotic hand which synchronized position and force feedback signals to mimic observed human hand motions. This was achieved by first recording the finger joint motion profiles of human test subjects, where it was observed that the subjects would extend their fingers to maintain a natural hand posture when interacting with different surfaces. The resulting human joint angle data were used as inspiration to develop the HFS controller for the anthropomorphic robotic hand, which incorporated finger abduction and force feedback in the control laws for finger extension. Experimental results showed that by projecting a broader view of the tasks at hand to each specific joint, the HFS controller produced hand motion profiles that closely mimic the observed human responses and allowed the robotic manipulator to interact with the surfaces while maintaining a natural hand posture. Additionally, the HFS controller enabled the robotic hand to autonomously traverse vertical step discontinuities without prior knowledge of the environment, visual feedback, or traditional trajectory planning techniques. (paper)

  5. The interactive evolution of human communication systems.

    Science.gov (United States)

    Fay, Nicolas; Garrod, Simon; Roberts, Leo; Swoboda, Nik

    2010-04-01

    This paper compares two explanations of the process by which human communication systems evolve: iterated learning and social collaboration. It then reports an experiment testing the social collaboration account. Participants engaged in a graphical communication task either as a member of a community, where they interacted with seven different partners drawn from the same pool, or as a member of an isolated pair, where they interacted with the same partner across the same number of games. Participants' horizontal, pair-wise interactions led "bottom up" to the creation of an effective and efficient shared sign system in the community condition. Furthermore, the community-evolved sign systems were as effective and efficient as the local sign systems developed by isolated pairs. Finally, and as predicted by a social collaboration account, and not by an iterated learning account, interaction was critical to the creation of shared sign systems, with different isolated pairs establishing different local sign systems and different communities establishing different global sign systems. Copyright © 2010 Cognitive Science Society, Inc.

  6. Poster Abstract: A Practical Model for Human-Smart Appliances Interaction

    DEFF Research Database (Denmark)

    Fürst, Jonathan; Fruergaard, Andreas; Johannesen, Marco Høvinghof

    2016-01-01

    for human-smart appliance interaction. We present a prototype implementation with an off-the-shelf smart lighting and heating system in a shared office space. Our approach minimizes the need for location metadata. It relies on a human-feedback loop (both sensor based and manual) to identify the optimal...

  7. The Systems Engineering Process for Human Support Technology Development

    Science.gov (United States)

    Jones, Harry

    2005-01-01

    Systems engineering is designing and optimizing systems. This paper reviews the systems engineering process and indicates how it can be applied in the development of advanced human support systems. Systems engineering develops the performance requirements, subsystem specifications, and detailed designs needed to construct a desired system. Systems design is difficult, requiring both art and science and balancing human and technical considerations. The essential systems engineering activity is trading off and compromising between competing objectives such as performance and cost, schedule and risk. Systems engineering is not a complete independent process. It usually supports a system development project. This review emphasizes the NASA project management process as described in NASA Procedural Requirement (NPR) 7120.5B. The process is a top down phased approach that includes the most fundamental activities of systems engineering - requirements definition, systems analysis, and design. NPR 7120.5B also requires projects to perform the engineering analyses needed to ensure that the system will operate correctly with regard to reliability, safety, risk, cost, and human factors. We review the system development project process, the standard systems engineering design methodology, and some of the specialized systems analysis techniques. We will discuss how they could apply to advanced human support systems development. The purpose of advanced systems development is not directly to supply human space flight hardware, but rather to provide superior candidate systems that will be selected for implementation by future missions. The most direct application of systems engineering is in guiding the development of prototype and flight experiment hardware. However, anticipatory systems engineering of possible future flight systems would be useful in identifying the most promising development projects.

  8. Quantifying Trust, Distrust, and Suspicion in Human-System Interactions

    Science.gov (United States)

    2015-10-26

    communication, psychology , human factors, management, marketing, information technology, and brain/neurology. We first developed a generic model of state...task classification based upon topographic EEG data. Biological Psychology , 1995. 40: p. 239-250. 5. Gevins, A., et al., High-Resolution EEG...Interaction (submitted), 2013. 15. Pouliota, P., et al., Nonlinear hemodynamic responses in human epilepsy : A multimodal analysis with fNIRS-EEG and fMRI

  9. Quantifying human-environment interactions using videography in the context of infectious disease transmission

    Directory of Open Access Journals (Sweden)

    Timothy R. Julian

    2018-05-01

    Full Text Available Quantitative data on human-environment interactions are needed to fully understand infectious disease transmission processes and conduct accurate risk assessments. Interaction events occur during an individual’s movement through, and contact with, the environment, and can be quantified using diverse methodologies. Methods that utilize videography, coupled with specialized software, can provide a permanent record of events, collect detailed interactions in high resolution, be reviewed for accuracy, capture events difficult to observe in real-time, and gather multiple concurrent phenomena. In the accompanying video, the use of specialized software to capture humanenvironment interactions for human exposure and disease transmission is highlighted. Use of videography, combined with specialized software, allows for the collection of accurate quantitative representations of human-environment interactions in high resolution. Two specialized programs include the Virtual Timing Device for the Personal Computer, which collects sequential microlevel activity time series of contact events and interactions, and LiveTrak, which is optimized to facilitate annotation of events in real-time. Opportunities to annotate behaviors at high resolution using these tools are promising, permitting detailed records that can be summarized to gain information on infectious disease transmission and incorporated into more complex models of human exposure and risk.

  10. The Theoretical Study of the Beams Supported on a Straining Environment as an Interaction Problem Soil - Structure - Infrastructure Interaction

    Directory of Open Access Journals (Sweden)

    Ana-Raluca Chiriac

    2006-01-01

    Full Text Available Between structure, infrastructure (foundation and soil there is an effective interaction, which has to be taken into account as correctly as possible every time we do the calculation. This effective interaction can be analysed in a global form, considering on one hand the entire building, and on the other hand the soil -- establishment surface, or in an analytical form: we consider first the soil -- infrastructure (foundation interaction and then the structure -- infrastructure one. Without considering the interaction, we cannot make neither the calculation (for the soil according to the limiting deformation state which has to be compatible with the structure’s resistance system, nor calculation for the limiting resistance state, because the correct distribution of efforts along the contact surface between the soil and the structure is unknown, so we cannot determine the zones of plastical equilibrium in the soil massive and the conditions of limited equilibrium. Also, without considering the infrastructure, we cannot correctly calculate the efforts and the deformations which may occur in all resistance elements of the building. Therefore, we cannot talk about limiting state calculation without considering the interaction between the soil and the structure itself. The problem of interaction between building, on one hand and soil foundation, on the other hand, is not approached very much in the specialized literature, because of the big difficulties raised by summarizing all the factors that describe the structure and the environment, which would be more accessible to a practical calculation. A lot of buildings or elements of buildings standing on the soil or on another environment with finite rigidity can be taken into account as beams supported on a straining environment, (continuous foundations, resistance walls, longitudinal and transversal membranes of civil and industrial buildings, hydrotechnic works. Therefore, in the present paper we

  11. Hydrogen Doping into MoO3 Supports toward Modulated Metal-Support Interactions and Efficient Furfural Hydrogenation on Iridium Nanocatalysts.

    Science.gov (United States)

    Xie, Lifang; Chen, Ting; Chan, Hang Cheong; Shu, Yijin; Gao, Qingsheng

    2018-03-16

    As promising supports, reducible metal oxides afford strong metal-support interactions to achieve efficient catalysis, which relies on their band states and surface stoichiometry. In this study, in situ and controlled hydrogen doping (H doping) by means of H 2 spillover was employed to engineer the metal-support interactions in hydrogenated MoO x -supported Ir (Ir/H-MoO x ) catalysts and thus promote furfural hydrogenation to furfuryl alcohol. By easily varying the reduction temperature, the resulting H doping in a controlled manner tailors low-valence Mo species (Mo 5+ and Mo 4+ ) on H-MoO x supports, thereby promoting charge redistribution on Ir and H-MoO x interfaces. This further leads to clear differences in H 2 chemisorption on Ir, which illustrates its potential for catalytic hydrogenation. As expected, the optimal Ir/H-MoO x with controlled H doping afforded high activity (turnover frequency: 4.62 min -1 ) and selectivity (>99 %) in furfural hydrogenation under mild conditions (T=30 °C, PH2 =2 MPa), which means it performs among the best of current catalysts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Interaction between demand-control and social support in the occurrence of common mental disorders

    Directory of Open Access Journals (Sweden)

    Amália Ivine Santana Mattos

    Full Text Available ABSTRACT OBJECTIVE To analyze the interaction between the psychosocial aspects of work and the occurrence of common mental disorders among health workers. METHODS This is a cross-sectional study conducted with a representative sample of workers of the primary health care of five municipalities of the State of Bahia, Brazil, in 2012. The variable of outcome were the common mental disorders evaluated by the SRQ-20, and the variables of exposure were high demand (high psychological demand and low control over the work and low social support in the workplace. Interaction was checked by the deviation of the additivity of the effects for the factors studied from the calculation of excess risk from interaction, proportion of cases attributed to interaction, and the synergy index. RESULTS The global prevalence of common mental disorders was 21%. The group of combined exposure has shown higher magnitude (high demand and low social support, reaching 28% when compared to the 17% in the situation of no exposure (low demand and high social support. CONCLUSIONS The results strengthen the hypothesis of interaction between the factors investigated, directing to the synergy of the effects.

  13. Interaction of rocuronium with human liver cytochromes P450

    OpenAIRE

    Anzenbacherova, Eva; Spicakova, Alena; Jourova, Lenka; Ulrichova, Jitka; Adamus, Milan; Bachleda, Petr; Anzenbacher, Pavel

    2015-01-01

    Rocuronium is a neuromuscular blocking agent acting as a competitive antagonist of acetylcholine. Results of an inhibition of eight individual liver microsomal cytochromes P450 (CYP) are presented. As the patients are routinely premedicated with diazepam, possible interaction of diazepam with rocuronium has been also studied. Results indicated that rocuronium interacts with human liver microsomal CYPs by binding to the substrate site. Next, concentration dependent inhibition of liver micro...

  14. A definitional framework for the human/biometric sensor interaction model

    Science.gov (United States)

    Elliott, Stephen J.; Kukula, Eric P.

    2010-04-01

    Existing definitions for biometric testing and evaluation do not fully explain errors in a biometric system. This paper provides a definitional framework for the Human Biometric-Sensor Interaction (HBSI) model. This paper proposes six new definitions based around two classifications of presentations, erroneous and correct. The new terms are: defective interaction (DI), concealed interaction (CI), false interaction (FI), failure to detect (FTD), failure to extract (FTX), and successfully acquired samples (SAS). As with all definitions, the new terms require a modification to the general biometric model developed by Mansfield and Wayman [1].

  15. The effect of tube-support interaction on the dynamic response of heat exchanger tubes

    International Nuclear Information System (INIS)

    Shin, Y.S.; Jendrzejczyk, J.A.; Wambsganss, M.W.

    1977-01-01

    To avoid detrimental tube vibration in heat exchangers, resonant conditions and instabilitites must be avoided, and/or peak dynamic amplitudes must not exceed allowable limits. In attempting a theoretical analysis, questions arise as to the effects of tube/support interaction on tube vibrational characteristics (i.e. resonant frequencies, modes, damping) and response amplitude. As a part of ANL's Flow-Induced Vibration Program in support of the Clinch River Breeder Reactor Plant (CRBRP) steam generator design activity, tube/support interaction experiments are being performed not only to gain the insight into the dynamic behavior of CRBRP steam generator tubes, but also to provide the basis for developing design guidance. Test results were compared with anaytical results based on multispan tube with 'knife-edge' supports at the support locations. (Auth.)

  16. Observations on human-technology interaction aspects in remote handling for fusion

    International Nuclear Information System (INIS)

    Salminen, Karoliina

    2009-01-01

    Remote handling can been seen as cooperation between human and machine. One of the characteristics of remote handling is that there is always a human involved in the technique: there is always a human guiding and supervising the movements and deciding the actions of the machine. Unlike many other fields of remote handling for fusion, the human-technology interaction side has not been studied carefully recently. The state-of-the-art research about different kinds of remote handling systems shows that there is a lot of information available in this subject, but there is a clear need for studies where the special needs of ITER are taken into account. During the PREFIT programme, the human-interaction aspects of remote handling have been studied, and the goal has been to find solutions compatible with ITER. Some of the aspects that make ITER a unique system are its new technology combining state-of-the-art knowledge from several different fields, and its very international working environment. When discussing the human aspects, the fact of the multinational cooperation cannot be neglected. Since the majority of the information found in the literature review is not about remote handling, references need to be taken from other industries, like aviation. This article consists of ITER remote handling relevant findings in state-of-the-art research and information and knowledge gained during the PREFIT programme, especially during the training periods at JET in Culham and at CEA in Fontenay-aux-Roses. It also discusses the importance of human-technology interaction field in remote handling, especially in ITER.

  17. Probing cocaine-antibody interactions in buffer and human serum.

    Directory of Open Access Journals (Sweden)

    Muthu Ramakrishnan

    Full Text Available Despite progress in cocaine immunotherapy, the kinetic and thermodynamic properties of antibodies which bind to cocaine and its metabolites are not well understood. It is also not clear how the interactions between them differ in a complex matrix such as the serum present in the human body. In the present study, we have used microscale thermophoresis (MST, isothermal titration calorimetry (ITC, and surface plasmon resonance (SPR we have evaluated the affinity properties of a representative mouse monoclonal (mAb08 as well as those of polyclonal antibodies purified from vaccinated mouse and human patient serum.MST analysis of fluorescently tagged mAb08 binding to cocaine reveals an approximately 15 fold decrease in its equilibrium dissociation constant in 20-50% human serum compared with that in saline buffer. A similar trend was also found using enriched polyclonal antibodies purified from vaccinated mice and patient serum, for which we have used fluorescently tagged bovine serum albumin conjugated to succinyl norcocaine (BSA-SNC. This conjugate closely mimics both cocaine and the hapten used to raise these antibodies. The ITC data also revealed that cocaine has a moderate affinity of about 2 µM to 20% human serum and very little interaction with human serum albumin or nonspecific human IgG at that concentration range. In a SPR inhibition experiment, the binding of mAb08 to immobilized BSA-SNC was inhibited by cocaine and benzoylecgonine in a highly competitive manner, whereas the purified polyclonal antibodies from vaccinated humans and mice, revealed preferential selectivity to pharmacologically active cocaine but not to the inactive metabolite benzoylecgonine. We have also developed a simple binding model to simulate the challenges associated with cocaine immunotherapy using the variable quantitative and kinetic properties of the antibodies.High sensitivity calorimetric determination of antibody binding to cocaine and its metabolites provide

  18. DISTRIBUTED SYSTEM FOR HUMAN MACHINE INTERACTION IN VIRTUAL ENVIRONMENTS

    Directory of Open Access Journals (Sweden)

    Abraham Obed Chan-Canche

    2017-07-01

    Full Text Available The communication networks built by multiple devices and sensors are becoming more frequent. These device networks allow human-machine interaction development which aims to improve the human performance generating an adaptive environment in response to the information provided by it. The problem of this work is the quick integration of a device network that allows the development of a flexible immersive environment for different uses.

  19. Human-wildlife interactions in urban areas: a review of conflicts, benefits and opportunities

    OpenAIRE

    Soulsbury, Carl D.; White, Piran C. L.

    2015-01-01

    Wildlife has existed in urban areas since records began. However, the discipline of urban ecology is relatively new and one that is undergoing rapid growth. All wildlife in urban areas will interact with humans to some degree. With rates of urbanisation increasing globally, there is a pressing need to understand the type and nature of human-wildlife interactions within urban environments, to help manage, mitigate or even promote these interactions. Much research attention has focussed on th...

  20. Intrinsically motivated reinforcement learning for human-robot interaction in the real-world.

    Science.gov (United States)

    Qureshi, Ahmed Hussain; Nakamura, Yutaka; Yoshikawa, Yuichiro; Ishiguro, Hiroshi

    2018-03-26

    For a natural social human-robot interaction, it is essential for a robot to learn the human-like social skills. However, learning such skills is notoriously hard due to the limited availability of direct instructions from people to teach a robot. In this paper, we propose an intrinsically motivated reinforcement learning framework in which an agent gets the intrinsic motivation-based rewards through the action-conditional predictive model. By using the proposed method, the robot learned the social skills from the human-robot interaction experiences gathered in the real uncontrolled environments. The results indicate that the robot not only acquired human-like social skills but also took more human-like decisions, on a test dataset, than a robot which received direct rewards for the task achievement. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. CHI 2013 Human Work Interaction Design (HWID) SIG

    DEFF Research Database (Denmark)

    Clemmensen, Torkil; Campos, Pedro F.; Katre, Dinesh S.

    2013-01-01

    In this SIG we aim to introduce the IFIP 13.6 Human Work Interaction Design (HWID) approach to the CHI audience. The HWID working group aims at establishing relationships between extensive empirical work-domain studies and HCI design. We invite participants from industry and academia with an inte...

  2. Characterization of Endothelial Progenitor Cell Interactions with Human Tropoelastin.

    Directory of Open Access Journals (Sweden)

    Young Yu

    Full Text Available The deployment of endovascular implants such as stents in the treatment of cardiovascular disease damages the vascular endothelium, increasing the risk of thrombosis and promoting neointimal hyperplasia. The rapid restoration of a functional endothelium is known to reduce these complications. Circulating endothelial progenitor cells (EPCs are increasingly recognized as important contributors to device re-endothelialization. Extracellular matrix proteins prominent in the vessel wall may enhance EPC-directed re-endothelialization. We examined attachment, spreading and proliferation on recombinant human tropoelastin (rhTE and investigated the mechanism and site of interaction. EPCs attached and spread on rhTE in a dose dependent manner, reaching a maximal level of 56±3% and 54±3%, respectively. EPC proliferation on rhTE was comparable to vitronectin, fibronectin and collagen. EDTA, but not heparan sulfate or lactose, reduced EPC attachment by 81±3%, while full attachment was recovered after add-back of manganese, inferring a classical integrin-mediated interaction. Integrin αVβ3 blocking antibodies decreased EPC adhesion and spreading on rhTE by 39±3% and 56±10% respectively, demonstrating a large contribution from this specific integrin. Attachment of EPCs on N-terminal rhTE constructs N25 and N18 accounted for most of this interaction, accompanied by comparable spreading. In contrast, attachment and spreading on N10 was negligible. αVβ3 blocking antibodies reduced EPC spreading on both N25 and N18 by 45±4% and 42±14%, respectively. In conclusion, rhTE supports EPC binding via an integrin mechanism involving αVβ3. N25 and N18, but not N10 constructs of rhTE contribute to EPC binding. The regulation of EPC activity by rhTE may have implications for modulation of the vascular biocompatibility of endovascular implants.

  3. PVA matches human liver in needle-tissue interaction.

    Science.gov (United States)

    de Jong, Tonke L; Pluymen, Loes H; van Gerwen, Dennis J; Kleinrensink, Gert-Jan; Dankelman, Jenny; van den Dobbelsteen, John J

    2017-05-01

    Medical phantoms can be used to study needle-tissue interaction and to train medical residents. The purpose of this research is to study the suitability of polyvinyl alcohol (PVA) as a liver tissue mimicking material in terms of needle-tissue interaction. Insertions into ex-vivo human livers were used for reference. Six PVA samples were created by varying the mass percentage of PVA to water (4m% and 7m%) and the number of freeze-thaw cycles (1, 2 and 3 cycles, 16hours of freezing at -19°C, 8hours of thawing). The inner needle of an 18 Gauge trocar needle with triangular tip was inserted 13 times into each of the samples, using an insertion velocity of 5 mm/s. In addition, 39 insertions were performed in two ex-vivo human livers. Axial forces on the needle were captured during insertion and retraction and characterized by friction along the needle shaft, peak forces, and number of peak forces per unit length. The concentration of PVA and the number of freeze-thaw cycles both influenced the mechanical interaction between needle and specimen. Insertions into 4m% PVA phantoms with 2 freeze-thaw cycles were comparable to human liver in terms of estimated friction along the needle shaft and the number of peak forces. Therefore, these phantoms are considered to be suitable liver mimicking materials for image-guided needle interventions. The mechanical properties of PVA hydrogels can be influenced in a controlled manner by varying the concentration of PVA and the number of freeze-thaw cycles, to mimic liver tissue characteristics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Human-Structure Dynamic Interaction during Short-Distance Free Falls

    Directory of Open Access Journals (Sweden)

    E. Shahabpoor

    2016-01-01

    Full Text Available The dynamic interactions of falling human bodies with civil structures, regardless of their potentially critical effects, have sparsely been researched in contact biomechanics. The physical contact models suggested in the existing literature, particularly for short-distant falls in home settings, assume the human body falls on a “rigid” (not vibrating ground. A similar assumption is usually made during laboratory-based fall tests, including force platforms. Based on observations from a set of pediatric head-first free fall tests, the present paper shows that the dynamics of the grounded force plate are not always negligible when doing fall test in a laboratory setting. By using a similar analogy for lightweight floor structures, it is shown that ignoring the dynamics of floors in the contact model can result in an up to 35% overestimation of the peak force experienced by a falling human. A nonlinear contact model is suggested, featuring an agent-based modelling approach, where the dynamics of the falling human and the impact object (force plate or a floor structure here are each modelled using a single-degree-of-freedom model to simulate their dynamic interactions. The findings of this research can have wide applications in areas such as impact biomechanics and sports science.

  5. Dynamic nonlinear interaction of elastic plates on discrete supports

    International Nuclear Information System (INIS)

    Coutinho, A.L.G.A.; Landau, L.; Lima, E.C.P. de; Ebecken, N.F.F.

    1984-01-01

    A study on the dynamic nonlinear interaction of elastic plates using the finite element method is presented. The elastic plate is discretized by 4-node isoparametric Mindlin elements. The constitutive relation of the discrete supports can be any nonlinear curve given by pairs of force-displacement points. The nonlinear behaviour is represented by the overlay approach. This model also allows the simulation of a progressive decrease on the supports stiffnesses during load cycles. The dynamic nonlinear incremental movement equations are integrated by the Newmark implicit operator. Two alternatives for the incremental-iterative formulation are compared. The paper ends with a discussion of the advantages and limitations of the presented numerical models. (Author) [pt

  6. Explicable Planning and Replanning for Human-in-the-loop Decision Support

    Data.gov (United States)

    National Aeronautics and Space Administration — For the decision support scenarios that are particularly relevant to NASA, such as planning for human space missions, human operators will need a system that can (i)...

  7. Human cancer protein-protein interaction network: a structural perspective.

    Directory of Open Access Journals (Sweden)

    Gozde Kar

    2009-12-01

    Full Text Available Protein-protein interaction networks provide a global picture of cellular function and biological processes. Some proteins act as hub proteins, highly connected to others, whereas some others have few interactions. The dysfunction of some interactions causes many diseases, including cancer. Proteins interact through their interfaces. Therefore, studying the interface properties of cancer-related proteins will help explain their role in the interaction networks. Similar or overlapping binding sites should be used repeatedly in single interface hub proteins, making them promiscuous. Alternatively, multi-interface hub proteins make use of several distinct binding sites to bind to different partners. We propose a methodology to integrate protein interfaces into cancer interaction networks (ciSPIN, cancer structural protein interface network. The interactions in the human protein interaction network are replaced by interfaces, coming from either known or predicted complexes. We provide a detailed analysis of cancer related human protein-protein interfaces and the topological properties of the cancer network. The results reveal that cancer-related proteins have smaller, more planar, more charged and less hydrophobic binding sites than non-cancer proteins, which may indicate low affinity and high specificity of the cancer-related interactions. We also classified the genes in ciSPIN according to phenotypes. Within phenotypes, for breast cancer, colorectal cancer and leukemia, interface properties were found to be discriminating from non-cancer interfaces with an accuracy of 71%, 67%, 61%, respectively. In addition, cancer-related proteins tend to interact with their partners through distinct interfaces, corresponding mostly to multi-interface hubs, which comprise 56% of cancer-related proteins, and constituting the nodes with higher essentiality in the network (76%. We illustrate the interface related affinity properties of two cancer-related hub

  8. Sources of law, voluntary obedience and human interactions: an ...

    African Journals Online (AJOL)

    Sources of law, voluntary obedience and human interactions: an analysis. ... Nnamdi Azikiwe University Journal of International Law and Jurisprudence ... This paper examines ways in which the various sources of law can be modified in such ...

  9. Mitochondrial nucleoid interacting proteins support mitochondrial protein synthesis.

    Science.gov (United States)

    He, J; Cooper, H M; Reyes, A; Di Re, M; Sembongi, H; Litwin, T R; Gao, J; Neuman, K C; Fearnley, I M; Spinazzola, A; Walker, J E; Holt, I J

    2012-07-01

    Mitochondrial ribosomes and translation factors co-purify with mitochondrial nucleoids of human cells, based on affinity protein purification of tagged mitochondrial DNA binding proteins. Among the most frequently identified proteins were ATAD3 and prohibitin, which have been identified previously as nucleoid components, using a variety of methods. Both proteins are demonstrated to be required for mitochondrial protein synthesis in human cultured cells, and the major binding partner of ATAD3 is the mitochondrial ribosome. Altered ATAD3 expression also perturbs mtDNA maintenance and replication. These findings suggest an intimate association between nucleoids and the machinery of protein synthesis in mitochondria. ATAD3 and prohibitin are tightly associated with the mitochondrial membranes and so we propose that they support nucleic acid complexes at the inner membrane of the mitochondrion.

  10. Layout Design of Human-Machine Interaction Interface of Cabin Based on Cognitive Ergonomics and GA-ACA

    Directory of Open Access Journals (Sweden)

    Li Deng

    2016-01-01

    Full Text Available In order to consider the psychological cognitive characteristics affecting operating comfort and realize the automatic layout design, cognitive ergonomics and GA-ACA (genetic algorithm and ant colony algorithm were introduced into the layout design of human-machine interaction interface. First, from the perspective of cognitive psychology, according to the information processing process, the cognitive model of human-machine interaction interface was established. Then, the human cognitive characteristics were analyzed, and the layout principles of human-machine interaction interface were summarized as the constraints in layout design. Again, the expression form of fitness function, pheromone, and heuristic information for the layout optimization of cabin was studied. The layout design model of human-machine interaction interface was established based on GA-ACA. At last, a layout design system was developed based on this model. For validation, the human-machine interaction interface layout design of drilling rig control room was taken as an example, and the optimization result showed the feasibility and effectiveness of the proposed method.

  11. Layout Design of Human-Machine Interaction Interface of Cabin Based on Cognitive Ergonomics and GA-ACA.

    Science.gov (United States)

    Deng, Li; Wang, Guohua; Yu, Suihuai

    2016-01-01

    In order to consider the psychological cognitive characteristics affecting operating comfort and realize the automatic layout design, cognitive ergonomics and GA-ACA (genetic algorithm and ant colony algorithm) were introduced into the layout design of human-machine interaction interface. First, from the perspective of cognitive psychology, according to the information processing process, the cognitive model of human-machine interaction interface was established. Then, the human cognitive characteristics were analyzed, and the layout principles of human-machine interaction interface were summarized as the constraints in layout design. Again, the expression form of fitness function, pheromone, and heuristic information for the layout optimization of cabin was studied. The layout design model of human-machine interaction interface was established based on GA-ACA. At last, a layout design system was developed based on this model. For validation, the human-machine interaction interface layout design of drilling rig control room was taken as an example, and the optimization result showed the feasibility and effectiveness of the proposed method.

  12. The Error Is the Clue: Breakdown In Human-Machine Interaction

    National Research Council Canada - National Science Library

    Martinovsky, Bilyana; Traum, David

    2006-01-01

    .... Human reactions to these irritating features typically appear in the following order: tiredness, tolerance, anger, confusion, irony, humor, exhaustion, uncertainty, lack of desire to communicate. The studied features of human expressions of irritation in nonface- to-face interaction are: intonation, emphatic speech, elliptic speech, speed of speech, extra-linguistic signs, speed of verbal action, and overlap.

  13. Towards Semantic Analysis of Training-Learning Relationships within Human-Machine Interactions

    DEFF Research Database (Denmark)

    Badie, Farshad

    2016-01-01

    In this article First-Order Predicate Logic (FOL) is employed for analysing some relationships between human beings and machines. Based on FOL, I will be conceptually and logically concerned with semantic analysis of training-learning relationships in human-machine interaction. The central focus...

  14. Multispectroscopic and molecular modeling approach to investigate the interaction of diclofop-methyl enantiomers with human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ping; Liu, Donghui; Li, Zhe; Shen, Zhigang; Wang, Peng [Department of Applied Chemistry, China Agricultural University, Beijing 100193 (China); Zhou, Meng [Business School, University of Bedfordshire, Luton LU1 3JU (United Kingdom); Zhou, Zhiqiang [Department of Applied Chemistry, China Agricultural University, Beijing 100193 (China); Zhu, Wentao, E-mail: wentaozhu@cau.edu.cn [Department of Applied Chemistry, China Agricultural University, Beijing 100193 (China)

    2014-11-15

    Pesticides and related environmental contaminants have always been threated to human health due to their intrinsic toxicity. In the context of this contribution, the interaction between diclofop-methyl (DM) enantiomers and human serum albumin (HSA) has been characterized by steady state and three-dimensional fluorescence, molecular modeling, circular dichroism (CD) and ultraviolet–visible (UV–vis) spectroscopy. The binding constants significantly showed the binding was enantioselective and HSA had higher affinity for S-DM. The thermodynamic parameters of the binding reaction (ΔG, ΔH and ΔS) clearly signified that hydrophobic effects and H-bonds contribute to the formation of DM-HSA complex. The alterations of protein secondary structure in the presence of DM enantiomers were confirmed by CD spectroscopy, UV–vis and three-dimensional fluorescence spectroscopy. In addition, both fluorescence probe study and molecular modeling simulation evidenced the binding of DM enantiomers to HSA primarily took place in subdomain IIIA (Sudlow's site II). This investigation highlights the binding mechanism, specific binding sites and binding region of DM enantiomers on human serum albumin at the first time. Besides, such task can provide important insight to the interaction of the physiological protein HSA with chiral aryloxyphenoxypropionate herbicides and give support to the human health risk assessment. - Highlights: • The binding of DM enantiomers to HSA was enantioselective. • HSA had higher affinity for S-DM than R-DM. • Hydrophobic effects and hydrogen bonds were involved in the DM-HSA interaction. • The binding of DM enantiomers to HSA primarily took place in Sudlow's site II. • DM enantiomers could alter the second structure of HSA.

  15. Multispectroscopic and molecular modeling approach to investigate the interaction of diclofop-methyl enantiomers with human serum albumin

    International Nuclear Information System (INIS)

    Zhang, Ping; Liu, Donghui; Li, Zhe; Shen, Zhigang; Wang, Peng; Zhou, Meng; Zhou, Zhiqiang; Zhu, Wentao

    2014-01-01

    Pesticides and related environmental contaminants have always been threated to human health due to their intrinsic toxicity. In the context of this contribution, the interaction between diclofop-methyl (DM) enantiomers and human serum albumin (HSA) has been characterized by steady state and three-dimensional fluorescence, molecular modeling, circular dichroism (CD) and ultraviolet–visible (UV–vis) spectroscopy. The binding constants significantly showed the binding was enantioselective and HSA had higher affinity for S-DM. The thermodynamic parameters of the binding reaction (ΔG, ΔH and ΔS) clearly signified that hydrophobic effects and H-bonds contribute to the formation of DM-HSA complex. The alterations of protein secondary structure in the presence of DM enantiomers were confirmed by CD spectroscopy, UV–vis and three-dimensional fluorescence spectroscopy. In addition, both fluorescence probe study and molecular modeling simulation evidenced the binding of DM enantiomers to HSA primarily took place in subdomain IIIA (Sudlow's site II). This investigation highlights the binding mechanism, specific binding sites and binding region of DM enantiomers on human serum albumin at the first time. Besides, such task can provide important insight to the interaction of the physiological protein HSA with chiral aryloxyphenoxypropionate herbicides and give support to the human health risk assessment. - Highlights: • The binding of DM enantiomers to HSA was enantioselective. • HSA had higher affinity for S-DM than R-DM. • Hydrophobic effects and hydrogen bonds were involved in the DM-HSA interaction. • The binding of DM enantiomers to HSA primarily took place in Sudlow's site II. • DM enantiomers could alter the second structure of HSA

  16. Athlete social support, negative social interactions and psychological health across a competitive sport season.

    Science.gov (United States)

    DeFreese, J D; Smith, Alan L

    2014-12-01

    Social support and negative social interactions have implications for athlete psychological health, with potential to influence the links of stress-related experiences with burnout and well-being over time. Using a longitudinal design, perceived social support and negative social interactions were examined as potential moderators of the temporal stress-burnout and burnout-well-being relationships. American collegiate athletes (N = 465) completed reliable and valid online assessments of study variables at four time points during the competitive season. After controlling for dispositional and conceptually important variables, social support and negative social interactions did not moderate the stress-burnout or burnout-well-being relationships, respectively, but did simultaneously contribute to burnout and well-being across the competitive season. The results showcase the importance of sport-related social perceptions to athlete psychological outcomes over time and inform development of socially driven interventions to improve the psychological health of competitive athletes.

  17. Real-time face and gesture analysis for human-robot interaction

    Science.gov (United States)

    Wallhoff, Frank; Rehrl, Tobias; Mayer, Christoph; Radig, Bernd

    2010-05-01

    Human communication relies on a large number of different communication mechanisms like spoken language, facial expressions, or gestures. Facial expressions and gestures are one of the main nonverbal communication mechanisms and pass large amounts of information between human dialog partners. Therefore, to allow for intuitive human-machine interaction, a real-time capable processing and recognition of facial expressions, hand and head gestures are of great importance. We present a system that is tackling these challenges. The input features for the dynamic head gestures and facial expressions are obtained from a sophisticated three-dimensional model, which is fitted to the user in a real-time capable manner. Applying this model different kinds of information are extracted from the image data and afterwards handed over to a real-time capable data-transferring framework, the so-called Real-Time DataBase (RTDB). In addition to the head and facial-related features, also low-level image features regarding the human hand - optical flow, Hu-moments are stored into the RTDB for the evaluation process of hand gestures. In general, the input of a single camera is sufficient for the parallel evaluation of the different gestures and facial expressions. The real-time capable recognition of the dynamic hand and head gestures are performed via different Hidden Markov Models, which have proven to be a quick and real-time capable classification method. On the other hand, for the facial expressions classical decision trees or more sophisticated support vector machines are used for the classification process. These obtained results of the classification processes are again handed over to the RTDB, where other processes (like a Dialog Management Unit) can easily access them without any blocking effects. In addition, an adjustable amount of history can be stored by the RTDB buffer unit.

  18. Toward a framework for levels of robot autonomy in human-robot interaction.

    Science.gov (United States)

    Beer, Jenay M; Fisk, Arthur D; Rogers, Wendy A

    2014-07-01

    A critical construct related to human-robot interaction (HRI) is autonomy, which varies widely across robot platforms. Levels of robot autonomy (LORA), ranging from teleoperation to fully autonomous systems, influence the way in which humans and robots may interact with one another. Thus, there is a need to understand HRI by identifying variables that influence - and are influenced by - robot autonomy. Our overarching goal is to develop a framework for levels of robot autonomy in HRI. To reach this goal, the framework draws links between HRI and human-automation interaction, a field with a long history of studying and understanding human-related variables. The construct of autonomy is reviewed and redefined within the context of HRI. Additionally, the framework proposes a process for determining a robot's autonomy level, by categorizing autonomy along a 10-point taxonomy. The framework is intended to be treated as guidelines to determine autonomy, categorize the LORA along a qualitative taxonomy, and consider which HRI variables (e.g., acceptance, situation awareness, reliability) may be influenced by the LORA.

  19. Situated dialog in speech-based human-computer interaction

    CERN Document Server

    Raux, Antoine; Lane, Ian; Misu, Teruhisa

    2016-01-01

    This book provides a survey of the state-of-the-art in the practical implementation of Spoken Dialog Systems for applications in everyday settings. It includes contributions on key topics in situated dialog interaction from a number of leading researchers and offers a broad spectrum of perspectives on research and development in the area. In particular, it presents applications in robotics, knowledge access and communication and covers the following topics: dialog for interacting with robots; language understanding and generation; dialog architectures and modeling; core technologies; and the analysis of human discourse and interaction. The contributions are adapted and expanded contributions from the 2014 International Workshop on Spoken Dialog Systems (IWSDS 2014), where researchers and developers from industry and academia alike met to discuss and compare their implementation experiences, analyses and empirical findings.

  20. Two is better than one: Physical interactions improve motor performance in humans

    OpenAIRE

    G. Ganesh; A. Takagi; R. Osu; T. Yoshioka; M. Kawato; E. Burdet

    2014-01-01

    How do physical interactions with others change our own motor behavior? Utilizing a novel motor learning paradigm in which the hands of two - individuals are physically connected without their conscious awareness, we investigated how the interaction forces from a partner adapt the motor behavior in physically interacting humans. We observed the motor adaptations during physical interactions to be mutually beneficial such that both the worse and better of the interacting partners improve motor...

  1. Nano carbon supported platinum catalyst interaction behavior with perfluorosulfonic acid ionomer and their interface structures

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma

    2016-01-01

    behavior of Nafion ionomer on platinized carbon nano fibers (CNFs), carbon nano tubes (CNTs) and amorphous carbon (Vulcan). The interaction is affected by the catalyst surface oxygen groups as well as porosity. Comparisons between the carbon supports and platinized equivalents are carried out. It reveals......The interaction between perfluorosulfonic acid ionomer and supported platinum catalyst is essential. It directly influences platinum accessibility, stability of carbon support and platinum, proton conductivity and electron conductivity in an electrode. In this study, we compare the adsorption...... that the platinization step modifies the surface nature of the carbon supports in terms of specific surface area, crystallinity and especially porosity; therefore, ionomer adsorption over carbon is not always representative for the ionomer adsorption over carbon supported catalyst, though indicative. Moreover...

  2. In silico modeling of human α2C-adrenoreceptor interaction with filamin-2.

    Directory of Open Access Journals (Sweden)

    Marcin Pawlowski

    Full Text Available Vascular smooth muscle α2C-adrenoceptors (α2C-ARs mediate vasoconstriction of small blood vessels, especially arterioles. Studies of endogenous receptors in human arteriolar smooth muscle cells (referred to as microVSM and transiently transfected receptors in heterologous HEK293 cells show that the α2C-ARs are perinuclear receptors that translocate to the cell surface under cellular stress and elicit a biological response. Recent studies in microVSM unraveled a crucial role of Rap1A-Rho-ROCK-F-actin pathways in receptor translocation, and identified protein-protein interaction of α2C-ARs with the actin binding protein filamin-2 as an essential step in the process. To better understand the molecular nature and specificity of this interaction, in this study, we constructed comparative models of human α2C-AR and human filamin-2 proteins. Finally, we performed in silico protein-protein docking to provide a structural platform for the investigation of human α2C-AR and filamin-2 interactions. We found that electrostatic interactions seem to play a key role in this complex formation which manifests in interactions between the C-terminal arginines of α2C-ARs (particularly R454 and R456 and negatively charged residues from filamin-2 region between residues 1979 and 2206. Phylogenetic and sequence analysis showed that these interactions have evolved in warm-blooded animals.

  3. Estrogen-cholinergic interactions: Implications for cognitive aging.

    Science.gov (United States)

    Newhouse, Paul; Dumas, Julie

    2015-08-01

    This article is part of a Special Issue "Estradiol and Cognition". While many studies in humans have investigated the effects of estrogen and hormone therapy on cognition, potential neurobiological correlates of these effects have been less well studied. An important site of action for estrogen in the brain is the cholinergic system. Several decades of research support the critical role of CNS cholinergic systems in cognition in humans, particularly in learning and memory formation and attention. In humans, the cholinergic system has been implicated in many aspects of cognition including the partitioning of attentional resources, working memory, inhibition of irrelevant information, and improved performance on effort-demanding tasks. Studies support the hypothesis that estradiol helps to maintain aspects of attention and verbal and visual memory. Such cognitive domains are exactly those modulated by cholinergic systems and extensive basic and preclinical work over the past several decades has clearly shown that basal forebrain cholinergic systems are dependent on estradiol support for adequate functioning. This paper will review recent human studies from our laboratories and others that have extended preclinical research examining estrogen-cholinergic interactions to humans. Studies examined include estradiol and cholinergic antagonist reversal studies in normal older women, examinations of the neural representations of estrogen-cholinergic interactions using functional brain imaging, and studies of the ability of selective estrogen receptor modulators such as tamoxifen to interact with cholinergic-mediated cognitive performance. We also discuss the implications of these studies for the underlying hypotheses of cholinergic-estrogen interactions and cognitive aging, and indications for prophylactic and therapeutic potential that may exploit these effects. Published by Elsevier Inc.

  4. User`s manual of a support system for human reliability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yokobayashi, Masao [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Tamura, Kazuo

    1995-10-01

    Many kinds of human reliability analysis (HRA) methods have been developed. However, users are required to be skillful so as to use them, and also required complicated works such as drawing event tree (ET) and calculation of uncertainty bounds. Moreover, each method is not so complete that only one method of them is not enough to evaluate human reliability. Therefore, a personal computer (PC) based support system for HRA has been developed to execute HRA practically and efficiently. The system consists of two methods, namely, simple method and detailed one. The former uses ASEP that is a simplified THERP-technique, and combined method of OAT and HRA-ET/DeBDA is used for the latter. Users can select a suitable method for their purpose. Human error probability (HEP) data were collected and a database of them was built to use for the support system. This paper describes outline of the HRA methods, support functions and user`s guide of the system. (author).

  5. Comparison of dogs and humans in visual scanning of social interaction

    OpenAIRE

    Törnqvist, Heini; Somppi, Sanni; Koskela, Aija; Krause, Christina M.; Vainio, Outi; Kujala, Miiamaaria V.

    2015-01-01

    Previous studies have demonstrated similarities in gazing behaviour of dogs and humans, but comparisons under similar conditions are rare, and little is known about dogs' visual attention to social scenes. Here, we recorded the eye gaze of dogs while they viewed images containing two humans or dogs either interacting socially or facing away: the results were compared with equivalent data measured from humans. Furthermore, we compared the gazing behaviour of two dog and two human populations w...

  6. A decision support system and rule-based algorithm to augment the human interpretation of the 12-lead electrocardiogram.

    Science.gov (United States)

    Cairns, Andrew W; Bond, Raymond R; Finlay, Dewar D; Guldenring, Daniel; Badilini, Fabio; Libretti, Guido; Peace, Aaron J; Leslie, Stephen J

    The 12-lead Electrocardiogram (ECG) has been used to detect cardiac abnormalities in the same format for more than 70years. However, due to the complex nature of 12-lead ECG interpretation, there is a significant cognitive workload required from the interpreter. This complexity in ECG interpretation often leads to errors in diagnosis and subsequent treatment. We have previously reported on the development of an ECG interpretation support system designed to augment the human interpretation process. This computerised decision support system has been named 'Interactive Progressive based Interpretation' (IPI). In this study, a decision support algorithm was built into the IPI system to suggest potential diagnoses based on the interpreter's annotations of the 12-lead ECG. We hypothesise semi-automatic interpretation using a digital assistant can be an optimal man-machine model for ECG interpretation. To improve interpretation accuracy and reduce missed co-abnormalities. The Differential Diagnoses Algorithm (DDA) was developed using web technologies where diagnostic ECG criteria are defined in an open storage format, Javascript Object Notation (JSON), which is queried using a rule-based reasoning algorithm to suggest diagnoses. To test our hypothesis, a counterbalanced trial was designed where subjects interpreted ECGs using the conventional approach and using the IPI+DDA approach. A total of 375 interpretations were collected. The IPI+DDA approach was shown to improve diagnostic accuracy by 8.7% (although not statistically significant, p-value=0.1852), the IPI+DDA suggested the correct interpretation more often than the human interpreter in 7/10 cases (varying statistical significance). Human interpretation accuracy increased to 70% when seven suggestions were generated. Although results were not found to be statistically significant, we found; 1) our decision support tool increased the number of correct interpretations, 2) the DDA algorithm suggested the correct

  7. Interaction Analysis for Supporting Students' Self-Regulation during Blog-Based CSCL Activities

    Science.gov (United States)

    Michailidis, Nikolaos; Kapravelos, Efstathios; Tsiatsos, Thrasyvoulos

    2018-01-01

    Self-regulated learning is an important means of supporting students' self-awareness and self-regulation level so as to enhance their motivation and engagement. Interaction Analysis (IA) contributes to this end, and its use in studying learning dynamics involved in asynchronous Computer-Supported Collaborative Learning (CSCL) activities has…

  8. MCSDSS: A Multi-Criteria Decision Support System for Merging Geoscience Information with Natural User Interfaces, Preference Ranking, and Interactive Data Utilities

    Science.gov (United States)

    Pierce, S. A.; Gentle, J.

    2015-12-01

    The multi-criteria decision support system (MCSDSS) is a newly completed application for touch-enabled group decision support that uses D3 data visualization tools, a geojson conversion utility that we developed, and Paralelex to create an interactive tool. The MCSDSS is a prototype system intended to demonstrate the potential capabilities of a single page application (SPA) running atop a web and cloud based architecture utilizing open source technologies. The application is implemented on current web standards while supporting human interface design that targets both traditional mouse/keyboard interactions and modern touch/gesture enabled interactions. The technology stack for MCSDSS was selected with the goal of creating a robust and dynamic modular codebase that can be adjusted to fit many use cases and scale to support usage loads that range between simple data display to complex scientific simulation-based modelling and analytics. The application integrates current frameworks for highly performant agile development with unit testing, statistical analysis, data visualization, mapping technologies, geographic data manipulation, and cloud infrastructure while retaining support for traditional HTML5/CSS3 web standards. The software lifecylcle for MCSDSS has following best practices to develop, share, and document the codebase and application. Code is documented and shared via an online repository with the option for programmers to see, contribute, or fork the codebase. Example data files and tutorial documentation have been shared with clear descriptions and data object identifiers. And the metadata about the application has been incorporated into an OntoSoft entry to ensure that MCSDSS is searchable and clearly described. MCSDSS is a flexible platform that allows for data fusion and inclusion of large datasets in an interactive front-end application capable of connecting with other science-based applications and advanced computing resources. In addition, MCSDSS

  9. Studying the neurobiology of human social interaction: Making the case for ecological validity.

    Science.gov (United States)

    Hogenelst, Koen; Schoevers, Robert A; aan het Rot, Marije

    2015-01-01

    With this commentary we make the case for an increased focus on the ecological validity of the measures used to assess aspects of human social functioning. Impairments in social functioning are seen in many types of psychopathology, negatively affecting the lives of psychiatric patients and those around them. Yet the neurobiology underlying abnormal social interaction remains unclear. As an example of human social neuroscience research with relevance to biological psychiatry and clinical psychopharmacology, this commentary discusses published experimental studies involving manipulation of the human brain serotonin system that included assessments of social behavior. To date, these studies have mostly been laboratory-based and included computer tasks, observations by others, or single-administration self-report measures. Most laboratory measures used so far inform about the role of serotonin in aspects of social interaction, but the relevance for real-life interaction is often unclear. Few studies have used naturalistic assessments in real life. We suggest several laboratory methods with high ecological validity as well as ecological momentary assessment, which involves intensive repeated measures in naturalistic settings. In sum, this commentary intends to stimulate experimental research on the neurobiology of human social interaction as it occurs in real life.

  10. Virtual reality/ augmented reality technology : the next chapter of human-computer interaction

    OpenAIRE

    Huang, Xing

    2015-01-01

    No matter how many different size and shape the computer has, the basic components of computers are still the same. If we use the user perspective to look for the development of computer history, we can surprisingly find that it is the input output device that leads the development of the industry development, in one word, human-computer interaction changes the development of computer history. Human computer interaction has been gone through three stages, the first stage relies on the inpu...

  11. Scaling identity connects human mobility and social interactions.

    Science.gov (United States)

    Deville, Pierre; Song, Chaoming; Eagle, Nathan; Blondel, Vincent D; Barabási, Albert-László; Wang, Dashun

    2016-06-28

    Massive datasets that capture human movements and social interactions have catalyzed rapid advances in our quantitative understanding of human behavior during the past years. One important aspect affecting both areas is the critical role space plays. Indeed, growing evidence suggests both our movements and communication patterns are associated with spatial costs that follow reproducible scaling laws, each characterized by its specific critical exponents. Although human mobility and social networks develop concomitantly as two prolific yet largely separated fields, we lack any known relationships between the critical exponents explored by them, despite the fact that they often study the same datasets. Here, by exploiting three different mobile phone datasets that capture simultaneously these two aspects, we discovered a new scaling relationship, mediated by a universal flux distribution, which links the critical exponents characterizing the spatial dependencies in human mobility and social networks. Therefore, the widely studied scaling laws uncovered in these two areas are not independent but connected through a deeper underlying reality.

  12. Spectral asymptotics of a strong delta ' interaction supported by a surface

    Czech Academy of Sciences Publication Activity Database

    Exner, Pavel; Jex, M.

    2014-01-01

    Roč. 378, 30-31 (2014), s. 2091-2095 ISSN 0375-9601 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : delta ' surface interaction * strong coupling expansion Subject RIV: BE - Theoretical Physics Impact factor: 1.683, year: 2014

  13. An interactive water indicator assessment tool to support land use planning

    NARCIS (Netherlands)

    Hellegers, P.J.G.J.; Jansen, H.C.; Bastiaanssen, W.G.M.

    2012-01-01

    This paper presents an interactive web-based rapid assessment tool that generates key water related indicators to support decision making by stakeholders in land use planning. The tool is built on a consistent science based method that combines remote sensing with hydrological and socioeconomic

  14. The Human Rights Philosophy: Support and Opposition among Undergraduate Social Work Students

    Science.gov (United States)

    Steen, Julie A.; Mann, Mary; Gryglewicz, Kim

    2016-01-01

    In response to the rising importance of human rights, social work student attitudes toward human rights and the effect of human rights course content on these attitudes were assessed. Descriptive results from a sample of 77 students pointed to a few areas of low support for the human rights philosophy, specifically rights related to mental…

  15. Identification of molecules derived from human fibroblast feeder cells that support the proliferation of human embryonic stem cells

    DEFF Research Database (Denmark)

    Anisimov, Sergey V.; Christophersen, Nicolaj S.; Correia, Ana S.

    2011-01-01

    The majority of human embryonic stem cell lines depend on a feeder cell layer for continuous growth in vitro, so that they can remain in an undifferentiated state. Limited knowledge is available concerning the molecular mechanisms that underlie the capacity of feeder cells to support both...... the proliferation and pluripotency of these cells. Importantly, feeder cells generally lose their capacity to support human embryonic stem cell proliferation in vitro following long-term culture. In this study, we performed large-scale gene expression profiles of human foreskin fibroblasts during early...... foreskin fibroblasts to serve as feeder cells for human embryonic stem cell cultures. Among these, the C-KIT, leptin and pigment epithelium-derived factor (PEDF) genes were the most interesting candidates....

  16. Modelling of spatially complex human-ecosystem, rural-urban and rich-poor interactions

    CSIR Research Space (South Africa)

    Naude, AH

    2008-06-01

    Full Text Available The paper outlines the challenges of modelling and assessing spatially complex human-ecosystem interactions, and the need to simultaneously consider rural-urban and rich-poor interactions. The context for exploring these challenges is South Africa...

  17. Identification of New Protein Interactions between Dengue Fever Virus and Its Hosts, Human and Mosquito

    Science.gov (United States)

    Mairiang, Dumrong; Zhang, Huamei; Sodja, Ann; Murali, Thilakam; Suriyaphol, Prapat; Malasit, Prida; Limjindaporn, Thawornchai; Finley, Russell L.

    2013-01-01

    The four divergent serotypes of dengue virus are the causative agents of dengue fever, dengue hemorrhagic fever and dengue shock syndrome. About two-fifths of the world's population live in areas where dengue is prevalent, and thousands of deaths are caused by the viruses every year. Dengue virus is transmitted from one person to another primarily by the yellow fever mosquito, Aedes aegypti. Recent studies have begun to define how the dengue viral proteins interact with host proteins to mediate viral replication and pathogenesis. A combined analysis of these studies, however, suggests that many virus-host protein interactions remain to be identified, especially for the mosquito host. In this study, we used high-throughput yeast two-hybrid screening to identify mosquito and human proteins that physically interact with dengue proteins. We tested each identified host protein against the proteins from all four serotypes of dengue to identify interactions that are conserved across serotypes. We further confirmed many of the interactions using co-affinity purification assays. As in other large-scale screens, we identified some previously detected interactions and many new ones, moving us closer to a complete host – dengue protein interactome. To help summarize and prioritize the data for further study, we combined our interactions with other published data and identified a subset of the host-dengue interactions that are now supported by multiple forms of evidence. These data should be useful for understanding the interplay between dengue and its hosts and may provide candidates for drug targets and vector control strategies. PMID:23326450

  18. Identification of new protein interactions between dengue fever virus and its hosts, human and mosquito.

    Science.gov (United States)

    Mairiang, Dumrong; Zhang, Huamei; Sodja, Ann; Murali, Thilakam; Suriyaphol, Prapat; Malasit, Prida; Limjindaporn, Thawornchai; Finley, Russell L

    2013-01-01

    The four divergent serotypes of dengue virus are the causative agents of dengue fever, dengue hemorrhagic fever and dengue shock syndrome. About two-fifths of the world's population live in areas where dengue is prevalent, and thousands of deaths are caused by the viruses every year. Dengue virus is transmitted from one person to another primarily by the yellow fever mosquito, Aedes aegypti. Recent studies have begun to define how the dengue viral proteins interact with host proteins to mediate viral replication and pathogenesis. A combined analysis of these studies, however, suggests that many virus-host protein interactions remain to be identified, especially for the mosquito host. In this study, we used high-throughput yeast two-hybrid screening to identify mosquito and human proteins that physically interact with dengue proteins. We tested each identified host protein against the proteins from all four serotypes of dengue to identify interactions that are conserved across serotypes. We further confirmed many of the interactions using co-affinity purification assays. As in other large-scale screens, we identified some previously detected interactions and many new ones, moving us closer to a complete host - dengue protein interactome. To help summarize and prioritize the data for further study, we combined our interactions with other published data and identified a subset of the host-dengue interactions that are now supported by multiple forms of evidence. These data should be useful for understanding the interplay between dengue and its hosts and may provide candidates for drug targets and vector control strategies.

  19. Identification of new protein interactions between dengue fever virus and its hosts, human and mosquito.

    Directory of Open Access Journals (Sweden)

    Dumrong Mairiang

    Full Text Available The four divergent serotypes of dengue virus are the causative agents of dengue fever, dengue hemorrhagic fever and dengue shock syndrome. About two-fifths of the world's population live in areas where dengue is prevalent, and thousands of deaths are caused by the viruses every year. Dengue virus is transmitted from one person to another primarily by the yellow fever mosquito, Aedes aegypti. Recent studies have begun to define how the dengue viral proteins interact with host proteins to mediate viral replication and pathogenesis. A combined analysis of these studies, however, suggests that many virus-host protein interactions remain to be identified, especially for the mosquito host. In this study, we used high-throughput yeast two-hybrid screening to identify mosquito and human proteins that physically interact with dengue proteins. We tested each identified host protein against the proteins from all four serotypes of dengue to identify interactions that are conserved across serotypes. We further confirmed many of the interactions using co-affinity purification assays. As in other large-scale screens, we identified some previously detected interactions and many new ones, moving us closer to a complete host - dengue protein interactome. To help summarize and prioritize the data for further study, we combined our interactions with other published data and identified a subset of the host-dengue interactions that are now supported by multiple forms of evidence. These data should be useful for understanding the interplay between dengue and its hosts and may provide candidates for drug targets and vector control strategies.

  20. Supporting a child with multiple disabilities to participate in social interaction

    DEFF Research Database (Denmark)

    Norén, Niklas; Pilesjö, Maja Sigurd

    2016-01-01

    Asking a question can be a highly challenging task for a person with multiple disabilities, but questions have not received much attention in research on augmentative and alternative communication (AAC). Conversation analysis is employed to examine an instance of multiparty interaction where...... a speech and language therapist supports a child with multiple disabilities to ask a question with a communication board. The question is accomplished through a practice where the action is built as a trajectory of interactional steps. Each step is built using ways of involvement that establish different...

  1. Spectroscopic interaction study of human serum albumin and human hemoglobin with Mersilea quadrifolia leaves extract mediated silver nanoparticles having antibacterial and anticancer activity

    Science.gov (United States)

    Maji, Anukul; Beg, Maidul; Mandal, Amit Kumar; Das, Somnath; Jha, Pradeep K.; Kumar, Anoop; Sarwar, Shamila; Hossain, Maidul; Chakrabarti, Pinak

    2017-08-01

    This study looks into a safe, proficient and low-cost way for the preparation of novel silver nanoparticles by using 5% aqueous leaves extract of a medicinal plant, Marsilea quadrifolia (family: Marsileaceae) without using any external reducing and stabilizing agents. The synthesized AgNPs showed maximum UV-Vis absorbance at 435 nm due to surface plasmon resonance (SPR). The average diameter (∼22.5 nm) of AgNPs was measured from TEM analysis and was also supported by FE-SEM. The existence of a silver signal in EDX spectra supported the AgNPs formation and negative zeta potential value (-18.7 mV) which suggested its stability. FT-IR spectroscopic analysis showed that the functional groups like sbnd Osbnd H, sbnd Nsbnd H and sbnd Cdbnd O were responsible for the synthesis of AgNPs. The antibacterial activity of the AgNPs was tested against E. coli ATCC 25922. The anticancer potential of AgNPs was also assessed using two different cell lines, such as MCF-7 and HeLa. The interaction study of AgNPs with human serum albumin (HSA) and human hemoglobin (Hb) was performed by means of UV-Vis, fluorescence spectroscopy, Circular dichroism (CD) and zeta potential measurement. More negative zeta potential values of AgNPs-HSA/Hb (-21.1/-19.5 mV) complexes than AgNPs (-18.7 mV) indicated corresponding stability of bio-conjugates. The basic structure of HSA/Hb remained unchanged and its secondary structure was slightly changed upon interaction with the AgNPs concluded from Circular dichroism. So, it can be predicted that this AgNPs may be applied in the medical field.

  2. Culture, distress, and oxytocin receptor polymorphism (OXTR) interact to influence emotional support seeking.

    Science.gov (United States)

    Kim, Heejung S; Sherman, David K; Sasaki, Joni Y; Xu, Jun; Chu, Thai Q; Ryu, Chorong; Suh, Eunkook M; Graham, Kelsey; Taylor, Shelley E

    2010-09-07

    Research has demonstrated that certain genotypes are expressed in different forms, depending on input from the social environment. To examine sensitivity to cultural norms regarding emotional support seeking as a type of social environment, we explored the behavioral expression of oxytocin receptor polymorphism (OXTR) rs53576, a gene previously related to socio-emotional sensitivity. Seeking emotional support in times of distress is normative in American culture but not in Korean culture. Consequently, we predicted a three-way interaction of culture, distress, and OXTR genotype on emotional support seeking. Korean and American participants (n = 274) completed assessments of psychological distress and emotional support seeking and were genotyped for OXTR. We found the predicted three-way interaction: among distressed American participants, those with the GG/AG genotypes reported seeking more emotional social support, compared with those with the AA genotype, whereas Korean participants did not differ significantly by genotype; under conditions of low distress, OXTR groups did not differ significantly in either cultural group. These findings suggest that OXTR rs53576 is sensitive to input from the social environment, specifically cultural norms regarding emotional social support seeking. These findings also indicate that psychological distress and culture are important moderators that shape behavioral outcomes associated with OXTR genotypes.

  3. Warning Signals for Poor Performance Improve Human-Robot Interaction

    NARCIS (Netherlands)

    van den Brule, Rik; Bijlstra, Gijsbert; Dotsch, Ron; Haselager, Pim; Wigboldus, Daniel HJ

    2016-01-01

    The present research was aimed at investigating whether human-robot interaction (HRI) can be improved by a robot’s nonverbal warning signals. Ideally, when a robot signals that it cannot guarantee good performance, people could take preventive actions to ensure the successful completion of the

  4. Sense of presence and anxiety during virtual social interactions between a human and virtual humans.

    Science.gov (United States)

    Morina, Nexhmedin; Brinkman, Willem-Paul; Hartanto, Dwi; Emmelkamp, Paul M G

    2014-01-01

    Virtual reality exposure therapy (VRET) has been shown to be effective in treatment of anxiety disorders. Yet, there is lack of research on the extent to which interaction between the individual and virtual humans can be successfully implanted to increase levels of anxiety for therapeutic purposes. This proof-of-concept pilot study aimed at examining levels of the sense of presence and anxiety during exposure to virtual environments involving social interaction with virtual humans and using different virtual reality displays. A non-clinical sample of 38 participants was randomly assigned to either a head-mounted display (HMD) with motion tracker and sterescopic view condition or a one-screen projection-based virtual reality display condition. Participants in both conditions engaged in free speech dialogues with virtual humans controlled by research assistants. It was hypothesized that exposure to virtual social interactions will elicit moderate levels of sense of presence and anxiety in both groups. Further it was expected that participants in the HMD condition will report higher scores of sense of presence and anxiety than participants in the one-screen projection-based display condition. Results revealed that in both conditions virtual social interactions were associated with moderate levels of sense of presence and anxiety. Additionally, participants in the HMD condition reported significantly higher levels of presence than those in the one-screen projection-based display condition (p = .001). However, contrary to the expectations neither the average level of anxiety nor the highest level of anxiety during exposure to social virtual environments differed between the groups (p = .97 and p = .75, respectively). The findings suggest that virtual social interactions can be successfully applied in VRET to enhance sense of presence and anxiety. Furthermore, our results indicate that one-screen projection-based displays can successfully activate levels of anxiety in

  5. Sense of presence and anxiety during virtual social interactions between a human and virtual humans

    Directory of Open Access Journals (Sweden)

    Nexhmedin Morina

    2014-04-01

    Full Text Available Virtual reality exposure therapy (VRET has been shown to be effective in treatment of anxiety disorders. Yet, there is lack of research on the extent to which interaction between the individual and virtual humans can be successfully implanted to increase levels of anxiety for therapeutic purposes. This proof-of-concept pilot study aimed at examining levels of the sense of presence and anxiety during exposure to virtual environments involving social interaction with virtual humans and using different virtual reality displays. A non-clinical sample of 38 participants was randomly assigned to either a head-mounted display (HMD with motion tracker and sterescopic view condition or a one-screen projection-based virtual reality display condition. Participants in both conditions engaged in free speech dialogues with virtual humans controlled by research assistants. It was hypothesized that exposure to virtual social interactions will elicit moderate levels of sense of presence and anxiety in both groups. Further it was expected that participants in the HMD condition will report higher scores of sense of presence and anxiety than participants in the one-screen projection-based display condition. Results revealed that in both conditions virtual social interactions were associated with moderate levels of sense of presence and anxiety. Additionally, participants in the HMD condition reported significantly higher levels of presence than those in the one-screen projection-based display condition (p = .001. However, contrary to the expectations neither the average level of anxiety nor the highest level of anxiety during exposure to social virtual environments differed between the groups (p = .97 and p = .75, respectively. The findings suggest that virtual social interactions can be successfully applied in VRET to enhance sense of presence and anxiety. Furthermore, our results indicate that one-screen projection-based displays can successfully activate levels

  6. 350 Years of Fire-Climate-Human Interactions in a Great Lakes Sandy Outwash Plain

    Directory of Open Access Journals (Sweden)

    Richard P. Guyette

    2016-08-01

    Full Text Available Throughout much of eastern North America, quantitative records of historical fire regimes and interactions with humans are absent. Annual resolution fire scar histories provide data on fire frequency, extent, and severity, but also can be used to understand fire-climate-human interactions. This study used tree-ring dated fire scars from red pines (Pinus resinosa at four sites in the Northern Sands Ecological Landscapes of Wisconsin to quantify the interactions among fire occurrence and seasonality, drought, and humans. New methods for assessing the influence of human ignitions on fire regimes were developed. A temporal and spatial index of wildland fire was significantly correlated (r = 0.48 with drought indices (Palmer Drought Severity Index, PDSI. Fire intervals varied through time with human activities that included early French Jesuit missions, European trade (fur, diseases, war, and land use. Comparisons of historical fire records suggest that annual climate in this region has a broad influence on the occurrence of fire years in the Great Lakes region.

  7. An algorithmic interactive planning framework in support of sustainable technologies

    Science.gov (United States)

    Prica, Marija D.

    This thesis addresses the difficult problem of generation expansion planning that employs the most effective technologies in today's changing electric energy industry. The electrical energy industry, in both the industrialized world and in developing countries, is experiencing transformation in a number of different ways. This transformation is driven by major technological breakthroughs (such as the influx of unconventional smaller-scale resources), by industry restructuring, changing environmental objectives, and the ultimate threat of resource scarcity. This thesis proposes a possible planning framework in support of sustainable technologies where sustainability is viewed as a mix of multiple attributes ranging from reliability and environmental impact to short- and long-term efficiency. The idea of centralized peak-load pricing, which accounts for the tradeoffs between cumulative operational effects and the cost of new investments, is the key concept in support of long-term planning in the changing industry. To start with, an interactive planning framework for generation expansion is posed as a distributed decision-making model. In order to reconcile the distributed sub-objectives of different decision makers with system-wide sustainability objectives, a new concept of distributed interactive peak load pricing is proposed. To be able to make the right decisions, the decision makers must have sufficient information about the estimated long-term electricity prices. The sub-objectives of power plant owners and load-serving entities are profit maximization. Optimized long-term expansion plans based on predicted electricity prices are communicated to the system-wide planning authority as long-run bids. The long-term expansion bids are cleared by the coordinating planner so that the system-wide long-term performance criteria are satisfied. The interactions between generation owners and the coordinating planning authority are repeated annually. We view the proposed

  8. Interaction of rocuronium with human liver cytochromes P450.

    Science.gov (United States)

    Anzenbacherova, Eva; Spicakova, Alena; Jourova, Lenka; Ulrichova, Jitka; Adamus, Milan; Bachleda, Petr; Anzenbacher, Pavel

    2015-02-01

    Rocuronium is a neuromuscular blocking agent acting as a competitive antagonist of acetylcholine. Results of an inhibition of eight individual liver microsomal cytochromes P450 (CYP) are presented. As the patients are routinely premedicated with diazepam, possible interaction of diazepam with rocuronium has been also studied. Results indicated that rocuronium interacts with human liver microsomal CYPs by binding to the substrate site. Next, concentration dependent inhibition of liver microsomal CYP3A4 down to 42% (at rocuronium concentration 189 μM) was found. This effect has been confirmed with two CYP3A4 substrates, testosterone (formation of 6β-hydroxytestosterone) and diazepam (temazepam formation). CYP2C9 and CYP2C19 activities were inhibited down to 75-80% (at the same rocuronium concentration). Activities of other microsomal CYPs have not been inhibited by rocuronium. To prove the possibility of rocuronium interaction with other drugs (diazepam), the effect of rocuronium on formation of main diazepam metabolites, temazepam (by CYP3A4) and desmethyldiazepam, (also known as nordiazepam; formed by CYP2C19) in primary culture of human hepatocytes has been examined. Rocuronium has caused inhibition of both reactions by 20 and 15%, respectively. The results open a possibility that interactions of rocuronium with drugs metabolized by CYP3A4 (and possibly also CYP2C19) may be observed. Copyright © 2014 Japanese Pharmacological Society. Production and hosting by Elsevier B.V. All rights reserved.

  9. Experimental simulation: using generative modelling and palaeoecological data to understand human-environment interactions

    Directory of Open Access Journals (Sweden)

    George Perry

    2016-10-01

    Full Text Available The amount of palaeoecological information available continues to grow rapidly, providing improved descriptions of the dynamics of past ecosystems and enabling them to be seen from new perspectives. At the same time, there has been concern over whether palaeoecological enquiry needs to move beyond descriptive inference to a more hypothesis-focussed or experimental approach; however, the extent to which conventional hypothesis-driven scientific frameworks can be applied to historical contexts (i.e., the past is the subject of ongoing debate. In other disciplines concerned with human-environment interactions, including physical geography and archaeology, there has been growing use of generative simulation models, typified by agent-based approaches. Generative modelling encourages counter-factual questioning (what if…?, a mode of argument that is particularly important in systems and time-periods, such as the Holocene and now the Anthropocene, where the effects of humans and other biophysical processes are deeply intertwined. However, palaeoecologically focused simulation of the dynamics of the ecosystems of the past either seems to be conducted to assess the applicability of some model to the future or treats humans simplistically as external forcing factors. In this review we consider how generative simulation-modelling approaches could contribute to our understanding of past human-environment interactions. We consider two key issues: the need for null models for understanding past dynamics and the need to be able learn more from pattern-based analysis. In this light, we argue that there is considerable scope for palaeocology to benefit from developments in generative models and their evaluation. We discuss the view that simulation is a form of experiment and, by using case studies, consider how the many patterns available to palaeoecologists can support model evaluation in a way that moves beyond simplistic pattern-matching and how such models

  10. Structure and interactions of the human programmed cell death 1 receptor.

    Science.gov (United States)

    Cheng, Xiaoxiao; Veverka, Vaclav; Radhakrishnan, Anand; Waters, Lorna C; Muskett, Frederick W; Morgan, Sara H; Huo, Jiandong; Yu, Chao; Evans, Edward J; Leslie, Alasdair J; Griffiths, Meryn; Stubberfield, Colin; Griffin, Robert; Henry, Alistair J; Jansson, Andreas; Ladbury, John E; Ikemizu, Shinji; Carr, Mark D; Davis, Simon J

    2013-04-26

    PD-1, a receptor expressed by T cells, B cells, and monocytes, is a potent regulator of immune responses and a promising therapeutic target. The structure and interactions of human PD-1 are, however, incompletely characterized. We present the solution nuclear magnetic resonance (NMR)-based structure of the human PD-1 extracellular region and detailed analyses of its interactions with its ligands, PD-L1 and PD-L2. PD-1 has typical immunoglobulin superfamily topology but differs at the edge of the GFCC' sheet, which is flexible and completely lacks a C" strand. Changes in PD-1 backbone NMR signals induced by ligand binding suggest that, whereas binding is centered on the GFCC' sheet, PD-1 is engaged by its two ligands differently and in ways incompletely explained by crystal structures of mouse PD-1 · ligand complexes. The affinities of these interactions and that of PD-L1 with the costimulatory protein B7-1, measured using surface plasmon resonance, are significantly weaker than expected. The 3-4-fold greater affinity of PD-L2 versus PD-L1 for human PD-1 is principally due to the 3-fold smaller dissociation rate for PD-L2 binding. Isothermal titration calorimetry revealed that the PD-1/PD-L1 interaction is entropically driven, whereas PD-1/PD-L2 binding has a large enthalpic component. Mathematical simulations based on the biophysical data and quantitative expression data suggest an unexpectedly limited contribution of PD-L2 to PD-1 ligation during interactions of activated T cells with antigen-presenting cells. These findings provide a rigorous structural and biophysical framework for interpreting the important functions of PD-1 and reveal that potent inhibitory signaling can be initiated by weakly interacting receptors.

  11. HPIminer: A text mining system for building and visualizing human protein interaction networks and pathways.

    Science.gov (United States)

    Subramani, Suresh; Kalpana, Raja; Monickaraj, Pankaj Moses; Natarajan, Jeyakumar

    2015-04-01

    The knowledge on protein-protein interactions (PPI) and their related pathways are equally important to understand the biological functions of the living cell. Such information on human proteins is highly desirable to understand the mechanism of several diseases such as cancer, diabetes, and Alzheimer's disease. Because much of that information is buried in biomedical literature, an automated text mining system for visualizing human PPI and pathways is highly desirable. In this paper, we present HPIminer, a text mining system for visualizing human protein interactions and pathways from biomedical literature. HPIminer extracts human PPI information and PPI pairs from biomedical literature, and visualize their associated interactions, networks and pathways using two curated databases HPRD and KEGG. To our knowledge, HPIminer is the first system to build interaction networks from literature as well as curated databases. Further, the new interactions mined only from literature and not reported earlier in databases are highlighted as new. A comparative study with other similar tools shows that the resultant network is more informative and provides additional information on interacting proteins and their associated networks. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Human Resources practices and workplace environmental support

    Directory of Open Access Journals (Sweden)

    Noel Ngwenya

    2014-01-01

    Full Text Available The key to retaining employees lies on the organization’s capability of supporting employees by understanding and answering to their intrinsic motivators. It is important for employees to perceive a positive and valuing attitude of the organization toward them in order to have greater motivation for staying in the organization. Such condition for employee retention is based on the social exchange theory which holds that the exchange relationship between employer and employee goes beyond exchange of impersonal resources such as money, information, and service. One of the leading challenges in creating attractive and supporting working environment has be implementing effective human development strategies to enhance organizational performance and employee commitment. Therefore, managing human resources plays a crucial role in a process of increasing organization, starting from line managers who need to be aware of factors that motivate their subordinates to make them perform well, ending up with human resources professionals who have to understand motivation to effectively design and implement reward structure and systems. In employment situation, as in personal relationships, commitment is a tow-away street. If employers want committed employees, they need to be committed employers. Committed employees do better work than uncommitted ones and organizations with committed workers do better financially than organizations with uncommitted ones. Employers need to determine what is responsible for this disparity. Many employees perceive that employers do not value loyalty and are willing to sacrifice workers to maintain the financial bottom line. Employees points to decades of downsizing, rightsizing, and re-engineering as the evidence that employers treat them as expendable commodities when times get tough (Bragg, 2002.

  13. Model-Based approaches to Human-Automation Systems Design

    DEFF Research Database (Denmark)

    Jamieson, Greg A.; Andersson, Jonas; Bisantz, Ann

    2012-01-01

    Human-automation interaction in complex systems is common, yet design for this interaction is often conducted without explicit consideration of the role of the human operator. Fortunately, there are a number of modeling frameworks proposed for supporting this design activity. However...... (and reportedly one or two critics) can engage one another on several agreed questions about such frameworks. The goal is to aid non-aligned practitioners in choosing between alternative frameworks for their human-automation interaction design challenges....

  14. RAID: a comprehensive resource for human RNA-associated (RNA–RNA/RNA–protein) interaction

    Science.gov (United States)

    Zhang, Xiaomeng; Wu, Deng; Chen, Liqun; Li, Xiang; Yang, Jinxurong; Fan, Dandan; Dong, Tingting; Liu, Mingyue; Tan, Puwen; Xu, Jintian; Yi, Ying; Wang, Yuting; Zou, Hua; Hu, Yongfei; Fan, Kaili; Kang, Juanjuan; Huang, Yan; Miao, Zhengqiang; Bi, Miaoman; Jin, Nana; Li, Kongning; Li, Xia; Xu, Jianzhen; Wang, Dong

    2014-01-01

    Transcriptomic analyses have revealed an unexpected complexity in the eukaryote transcriptome, which includes not only protein-coding transcripts but also an expanding catalog of noncoding RNAs (ncRNAs). Diverse coding and noncoding RNAs (ncRNAs) perform functions through interaction with each other in various cellular processes. In this project, we have developed RAID (http://www.rna-society.org/raid), an RNA-associated (RNA–RNA/RNA–protein) interaction database. RAID intends to provide the scientific community with all-in-one resources for efficient browsing and extraction of the RNA-associated interactions in human. This version of RAID contains more than 6100 RNA-associated interactions obtained by manually reviewing more than 2100 published papers, including 4493 RNA–RNA interactions and 1619 RNA–protein interactions. Each entry contains detailed information on an RNA-associated interaction, including RAID ID, RNA/protein symbol, RNA/protein categories, validated method, expressing tissue, literature references (Pubmed IDs), and detailed functional description. Users can query, browse, analyze, and manipulate RNA-associated (RNA–RNA/RNA–protein) interaction. RAID provides a comprehensive resource of human RNA-associated (RNA–RNA/RNA–protein) interaction network. Furthermore, this resource will help in uncovering the generic organizing principles of cellular function network. PMID:24803509

  15. Collaboration between Supported Employment and Human Resource Services: Strategies for Success

    Science.gov (United States)

    Post, Michal; Campbell, Camille; Heinz, Tom; Kotsonas, Lori; Montgomery, Joyce; Storey, Keith

    2010-01-01

    The article presents the benefits of successful collaboration between supported employment agencies and human resource managers when working together to secure employment for individuals with disabilities. Two case studies are presented: one involving a successful collaboration with county human resource managers in negotiating a change in the…

  16. Modeling and Simulation for Exploring Human-Robot Team Interaction Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Dudenhoeffer, Donald Dean; Bruemmer, David Jonathon; Davis, Midge Lee

    2001-12-01

    Small-sized and micro-robots will soon be available for deployment in large-scale forces. Consequently, the ability of a human operator to coordinate and interact with largescale robotic forces is of great interest. This paper describes the ways in which modeling and simulation have been used to explore new possibilities for human-robot interaction. The paper also discusses how these explorations have fed implementation of a unified set of command and control concepts for robotic force deployment. Modeling and simulation can play a major role in fielding robot teams in actual missions. While live testing is preferred, limitations in terms of technology, cost, and time often prohibit extensive experimentation with physical multi-robot systems. Simulation provides insight, focuses efforts, eliminates large areas of the possible solution space, and increases the quality of actual testing.

  17. Support patient search on pathology reports with interactive online learning based data extraction

    Directory of Open Access Journals (Sweden)

    Shuai Zheng

    2015-01-01

    Full Text Available Background: Structural reporting enables semantic understanding and prompt retrieval of clinical findings about patients. While synoptic pathology reporting provides templates for data entries, information in pathology reports remains primarily in narrative free text form. Extracting data of interest from narrative pathology reports could significantly improve the representation of the information and enable complex structured queries. However, manual extraction is tedious and error-prone, and automated tools are often constructed with a fixed training dataset and not easily adaptable. Our goal is to extract data from pathology reports to support advanced patient search with a highly adaptable semi-automated data extraction system, which can adjust and self-improve by learning from a user′s interaction with minimal human effort. Methods : We have developed an online machine learning based information extraction system called IDEAL-X. With its graphical user interface, the system′s data extraction engine automatically annotates values for users to review upon loading each report text. The system analyzes users′ corrections regarding these annotations with online machine learning, and incrementally enhances and refines the learning model as reports are processed. The system also takes advantage of customized controlled vocabularies, which can be adaptively refined during the online learning process to further assist the data extraction. As the accuracy of automatic annotation improves overtime, the effort of human annotation is gradually reduced. After all reports are processed, a built-in query engine can be applied to conveniently define queries based on extracted structured data. Results: We have evaluated the system with a dataset of anatomic pathology reports from 50 patients. Extracted data elements include demographical data, diagnosis, genetic marker, and procedure. The system achieves F-1 scores of around 95% for the majority of

  18. Human eosinophil–airway smooth muscle cell interactions

    Directory of Open Access Journals (Sweden)

    J. Margaret Hughes

    2000-01-01

    Full Text Available Eosinophils are present throughout the airway wall of asthmatics. The nature of the interaction between human airway smooth muscle cells (ASMC and eosinophils was investigated in this study. We demonstrated, using light microscopy, that freshly isolated eosinophils from healthy donors rapidly attach to ASMC in vitro. Numbers of attached eosinophils were highest at 2 h, falling to 50% of maximum by 20 h. Eosinophil attachment at 2 h was reduced to 72% of control by anti-VCAM-1, and to 74% at 20 h by anti-ICAM-1. Pre-treatment of ASMC for 24 h with TNF-α, 10 nM, significantly increased eosinophil adhesion to 149 and 157% of control after 2 and 20 h. These results provide evidence that eosinophil interactions with ASMC involve VCAM-1 and ICAM-1 and are modulated by TNF-α.

  19. Photo-physical and structural interactions between viologen phosphorus-based dendrimers and human serum albumin

    International Nuclear Information System (INIS)

    Ciepluch, Karol; Katir, Nadia; El Kadib, Abdelkrim; Weber, Monika; Caminade, Anne-Marie; Bousmina, Mostapha; Pierre Majoral, Jean; Bryszewska, Maria

    2012-01-01

    This work deals with photo-physical and structural interactions between viologen phosphorus dendrimers and human serum albumin (HSA). Viologens are derivatives of 4,4′-bipyridinium salts. Aiming to rationalize the parameters governing such interactions eight types of these polycationic dendrimers in which the generation, the number of charges, the nature of the core and of the terminal groups vary from one to another, were designed and used. The influence of viologen-based dendrimers' on human serum albumin has been investigated. The photo-physical interactions of the two systems have been monitored by fluorescence quenching of free L-tryptophan and of HSA tryptophan residue. Additionally, using circular dichroism (CD) the effect of dendrimers on the secondary structure of albumin was measured. The obtained results show that viologen dendrimers interact with human serum albumin quenching its fluorescence either by collisional (dynamic) way or by forming complexes in a ground state (static quenching). In some cases the quenching is accompanied by changes of the secondary structure of HSA. - Highlights: ► Photo-physical interactions between viologen phosphorus dendrimers and human serum albumin (HSA) were investigated. ► The viologen dendrimers can quench the fluorescence of tryptophan in HSA. ► CD spectra to explain the changes in secondary structure of albumin after exposition of dendrimers.

  20. Human-robot interaction: kinematics and muscle activity inside a powered compliant knee exoskeleton.

    Science.gov (United States)

    Knaepen, Kristel; Beyl, Pieter; Duerinck, Saartje; Hagman, Friso; Lefeber, Dirk; Meeusen, Romain

    2014-11-01

    Until today it is not entirely clear how humans interact with automated gait rehabilitation devices and how we can, based on that interaction, maximize the effectiveness of these exoskeletons. The goal of this study was to gain knowledge on the human-robot interaction, in terms of kinematics and muscle activity, between a healthy human motor system and a powered knee exoskeleton (i.e., KNEXO). Therefore, temporal and spatial gait parameters, human joint kinematics, exoskeleton kinetics and muscle activity during four different walking trials in 10 healthy male subjects were studied. Healthy subjects can walk with KNEXO in patient-in-charge mode with some slight constraints in kinematics and muscle activity primarily due to inertia of the device. Yet, during robot-in-charge walking the muscular constraints are reversed by adding positive power to the leg swing, compensating in part this inertia. Next to that, KNEXO accurately records and replays the right knee kinematics meaning that subject-specific trajectories can be implemented as a target trajectory during assisted walking. No significant differences in the human response to the interaction with KNEXO in low and high compliant assistance could be pointed out. This is in contradiction with our hypothesis that muscle activity would decrease with increasing assistance. It seems that the differences between the parameter settings of low and high compliant control might not be sufficient to observe clear effects in healthy subjects. Moreover, we should take into account that KNEXO is a unilateral, 1 degree-of-freedom device.

  1. Understanding and Resolving Failures in Human-Robot Interaction: Literature Review and Model Development

    Directory of Open Access Journals (Sweden)

    Shanee Honig

    2018-06-01

    Full Text Available While substantial effort has been invested in making robots more reliable, experience demonstrates that robots operating in unstructured environments are often challenged by frequent failures. Despite this, robots have not yet reached a level of design that allows effective management of faulty or unexpected behavior by untrained users. To understand why this may be the case, an in-depth literature review was done to explore when people perceive and resolve robot failures, how robots communicate failure, how failures influence people's perceptions and feelings toward robots, and how these effects can be mitigated. Fifty-two studies were identified relating to communicating failures and their causes, the influence of failures on human-robot interaction (HRI, and mitigating failures. Since little research has been done on these topics within the HRI community, insights from the fields of human computer interaction (HCI, human factors engineering, cognitive engineering and experimental psychology are presented and discussed. Based on the literature, we developed a model of information processing for robotic failures (Robot Failure Human Information Processing, RF-HIP, that guides the discussion of our findings. The model describes the way people perceive, process, and act on failures in human robot interaction. The model includes three main parts: (1 communicating failures, (2 perception and comprehension of failures, and (3 solving failures. Each part contains several stages, all influenced by contextual considerations and mitigation strategies. Several gaps in the literature have become evident as a result of this evaluation. More focus has been given to technical failures than interaction failures. Few studies focused on human errors, on communicating failures, or the cognitive, psychological, and social determinants that impact the design of mitigation strategies. By providing the stages of human information processing, RF-HIP can be used as a

  2. Emotion model of interactive virtual humans on the basis of MDP

    Institute of Scientific and Technical Information of China (English)

    WANG Guojiang; WANG Zhiliang; TENG Shaodong; XIE Yinggang; WANG Yujie

    2007-01-01

    Emotion plays an essential role in the adaptation and social communication of organisms.Similarly,an appropriately timed and clearly expressed emotion is a central requirement for believable interactive virtual humans.Presently,incorporating emotion into virtual humans has gained increasing attention in the academia and industry.This strong interest is driven by a wide spectrum of promising applications in many areas such as virtual reality,e-learning,entertainment,etc.This paper introduces an emotion model of artificial psychology,in which the transition of emotion can be viewed as a Markov process and the relation of emotion,external incentive and personality can be described by a Markov decision process (MDP).In order to demonstrate the approach,this paper integrates the emotion model into a system composed of voice recognition and a realistic facial model.Thus,the model could be used for generating a variety of emotional expressions of autonomous,interactive virtual human beings.

  3. Physical Forces between Humans and How Humans Attract and Repel Each Other Based on Their Social Interactions in an Online World.

    Directory of Open Access Journals (Sweden)

    Stefan Thurner

    Full Text Available Physical interactions between particles are the result of the exchange of gauge bosons. Human interactions are mediated by the exchange of messages, goods, money, promises, hostilities, etc. While in the physical world interactions and their associated forces have immediate dynamical consequences (Newton's laws the situation is not clear for human interactions. Here we quantify the relative acceleration between humans who interact through the exchange of messages, goods and hostilities in a massive multiplayer online game. For this game we have complete information about all interactions (exchange events between about 430,000 players, and about their trajectories (movements in the metric space of the game universe at any point in time. We use this information to derive "interaction potentials" for communication, trade and attacks and show that they are harmonic in nature. Individuals who exchange messages and trade goods generally attract each other and start to separate immediately after exchange events end. The form of the interaction potential for attacks mirrors the usual "hit-and-run" tactics of aggressive players. By measuring interaction intensities as a function of distance, velocity and acceleration, we show that "forces" between players are directly related to the number of exchange events. We find an approximate power-law decay of the likelihood for interactions as a function of distance, which is in accordance with previous real world empirical work. We show that the obtained potentials can be understood with a simple model assuming an exchange-driven force in combination with a distance-dependent exchange rate.

  4. Supporting interactive visual analytics of energy behavior in buildings through affine visualizations

    DEFF Research Database (Denmark)

    Nielsen, Matthias; Brewer, Robert S.; Grønbæk, Kaj

    2016-01-01

    Domain experts dealing with big data are typically not familiar with advanced data mining tools. This especially holds true for domain experts within energy management. In this paper, we introduce a visual analytics approach that empowers such users to visually analyze energy behavior based......Viz, that interactively maps data from real world buildings. It is an overview +detail inter-active visual analytics tool supporting both rapid ad hoc explorations and structured evaluation of hypotheses about patterns and anomalies in resource consumption data mixed with occupant survey data. We have evaluated...... the approach with five domain experts within energy management, and further with 10 data analytics experts and found that it was easily attainable and that it supported visual analysis of mixed consumption and survey data. Finally, we discuss future perspectives of affine visual analytics for mixed...

  5. Boolean analysis reveals systematic interactions among low-abundance species in the human gut microbiome.

    Directory of Open Access Journals (Sweden)

    Jens Christian Claussen

    2017-06-01

    Full Text Available The analysis of microbiome compositions in the human gut has gained increasing interest due to the broader availability of data and functional databases and substantial progress in data analysis methods, but also due to the high relevance of the microbiome in human health and disease. While most analyses infer interactions among highly abundant species, the large number of low-abundance species has received less attention. Here we present a novel analysis method based on Boolean operations applied to microbial co-occurrence patterns. We calibrate our approach with simulated data based on a dynamical Boolean network model from which we interpret the statistics of attractor states as a theoretical proxy for microbiome composition. We show that for given fractions of synergistic and competitive interactions in the model our Boolean abundance analysis can reliably detect these interactions. Analyzing a novel data set of 822 microbiome compositions of the human gut, we find a large number of highly significant synergistic interactions among these low-abundance species, forming a connected network, and a few isolated competitive interactions.

  6. Adaptive Attention Allocation Support: Effects of System Conservativeness and Human Competence

    NARCIS (Netherlands)

    van Maanen, Peter-Paul; Lucassen, Teun; van Dongen, Kees; Schmorrow, Dylan D.; Fidopiastis, Cali M.

    2011-01-01

    Naval tactical picture compilation is a task for which allocation of attention to the right information at the right time is crucial. Performance on this task can be improved if a support system assists the human operator. However, there is evidence that benefits of support systems are highly

  7. A Method and Support Tool for the Analysis of Human Error Hazards in Digital Devices

    International Nuclear Information System (INIS)

    Lee, Yong Hee; Kim, Seon Soo; Lee, Yong Hee

    2012-01-01

    In recent years, many nuclear power plants have adopted modern digital I and C technologies since they are expected to significantly improve their performance and safety. Modern digital technologies were expected to significantly improve both the economical efficiency and safety of nuclear power plants. However, the introduction of an advanced main control room (MCR) is accompanied with lots of changes in forms and features and differences through virtue of new digital devices. Many user-friendly displays and new features in digital devices are not enough to prevent human errors in nuclear power plants (NPPs). It may be an urgent to matter find the human errors potentials due to digital devices, and their detailed mechanisms. We can then consider them during the design of digital devices and their interfaces. The characteristics of digital technologies and devices may give many opportunities to the interface management, and can be integrated into a compact single workstation in an advanced MCR, such that workers can operate the plant with minimum burden under any operating condition. However, these devices may introduce new types of human errors, and thus we need a means to evaluate and prevent such errors, especially within digital devices for NPPs. This research suggests a new method named HEA-BIS (Human Error Analysis based on Interaction Segment) to confirm and detect human errors associated with digital devices. This method can be facilitated by support tools when used to ensure the safety when applying digital devices in NPPs

  8. Critical interactions between Global Fund-supported programmes and health systems: a case study in Papua New Guinea.

    Science.gov (United States)

    Rudge, James W; Phuanakoonon, Suparat; Nema, K Henry; Mounier-Jack, Sandra; Coker, Richard

    2010-11-01

    In Papua New Guinea, investment by the Global Fund to Fight AIDS, Tuberculosis and Malaria (the Global Fund) has played an important role in scaling up the response to HIV and tuberculosis (TB). As part of a series of case studies on how Global Fund-supported programmes interact with national health systems, we assessed the nature and extent of integration of the Global Fund portfolios within the national HIV and TB programmes, the integration of the HIV and TB programmes within the general health system, and system-wide effects of Global Fund support in Papua New Guinea. The study relied on a literature review and 30 interviews with key stakeholders using the Systemic Rapid Assessment Toolkit and thematic analysis. Global Fund-supported activities were found to be largely integrated, or at least coordinated, with the national HIV and TB programmes. However, this has reinforced the vertical nature of these programmes with respect to the general health system, with parallel systems established to meet the demands of programme scale-up and the performance-based nature of Global Fund investment in the weak health system context of Papua New Guinea. The more parallel functions include monitoring and evaluation, and procurement and supply chain systems, while human resources and infrastructure for service delivery are increasingly integrated at more local levels. Positive synergies of Global Fund support include engagement of civil-society partners, and a reliable supply of high-quality drugs which may have increased patient confidence in the health system. However, the severely limited and overburdened pool of human resources has been skewed towards the three diseases, both at management and service delivery levels. There is also concern surrounding the sustainability of the disease programmes, given their dependence on donors. Increasing Global Fund attention towards health system strengthening was viewed positively, but should acknowledge that system changes are slow

  9. Playte, a tangible interface for engaging human-robot interaction

    DEFF Research Database (Denmark)

    Christensen, David Johan; Fogh, Rune; Lund, Henrik Hautop

    2014-01-01

    This paper describes a tangible interface, Playte, designed for children animating interactive robots. The system supports physical manipulation of behaviors represented by LEGO bricks and allows the user to record and train their own new behaviors. Our objective is to explore several modes of in...

  10. Siderophore biosynthesis coordinately modulated the virulence-associated interactive metabolome of uropathogenic Escherichia coli and human urine.

    Science.gov (United States)

    Su, Qiao; Guan, Tianbing; Lv, Haitao

    2016-04-14

    Uropathogenic Escherichia coli (UPEC) growth in women's bladders during urinary tract infection (UTI) incurs substantial chemical exchange, termed the "interactive metabolome", which primarily accounts for the metabolic costs (utilized metabolome) and metabolic donations (excreted metabolome) between UPEC and human urine. Here, we attempted to identify the individualized interactive metabolome between UPEC and human urine. We were able to distinguish UPEC from non-UPEC by employing a combination of metabolomics and genetics. Our results revealed that the interactive metabolome between UPEC and human urine was markedly different from that between non-UPEC and human urine, and that UPEC triggered much stronger perturbations in the interactive metabolome in human urine. Furthermore, siderophore biosynthesis coordinately modulated the individualized interactive metabolome, which we found to be a critical component of UPEC virulence. The individualized virulence-associated interactive metabolome contained 31 different metabolites and 17 central metabolic pathways that were annotated to host these different metabolites, including energetic metabolism, amino acid metabolism, and gut microbe metabolism. Changes in the activities of these pathways mechanistically pinpointed the virulent capability of siderophore biosynthesis. Together, our findings provide novel insights into UPEC virulence, and we propose that siderophores are potential targets for further discovery of drugs to treat UPEC-induced UTI.

  11. En retorisk forståelsesramme for Computer Supported Collaborative Learning (A Rhetorical Theory on Computer Supported Collaborative Learning)

    DEFF Research Database (Denmark)

    Harlung, Asger

    2003-01-01

    The dissertation explores the potential of rhetorical theories for understanding, analyzing, or planning communication and learning processes, and for integrating the digitized contexts and human interaction and communication proccesses in a single theoretical framework. Based on Cicero's rhetori...... applied to two empirical case studies of Master programs, the dissertation develops and presents a new theory on Computer Supported Collaborative Learning (CSCL).......The dissertation explores the potential of rhetorical theories for understanding, analyzing, or planning communication and learning processes, and for integrating the digitized contexts and human interaction and communication proccesses in a single theoretical framework. Based on Cicero's rhetoric...

  12. Control of a Robot Dancer for Enhancing Haptic Human-Robot Interaction in Waltz.

    Science.gov (United States)

    Hongbo Wang; Kosuge, K

    2012-01-01

    Haptic interaction between a human leader and a robot follower in waltz is studied in this paper. An inverted pendulum model is used to approximate the human's body dynamics. With the feedbacks from the force sensor and laser range finders, the robot is able to estimate the human leader's state by using an extended Kalman filter (EKF). To reduce interaction force, two robot controllers, namely, admittance with virtual force controller, and inverted pendulum controller, are proposed and evaluated in experiments. The former controller failed the experiment; reasons for the failure are explained. At the same time, the use of the latter controller is validated by experiment results.

  13. Signatures of pleiotropy, economy and convergent evolution in a domain-resolved map of human-virus protein-protein interaction networks.

    Science.gov (United States)

    Garamszegi, Sara; Franzosa, Eric A; Xia, Yu

    2013-01-01

    A central challenge in host-pathogen systems biology is the elucidation of general, systems-level principles that distinguish host-pathogen interactions from within-host interactions. Current analyses of host-pathogen and within-host protein-protein interaction networks are largely limited by their resolution, treating proteins as nodes and interactions as edges. Here, we construct a domain-resolved map of human-virus and within-human protein-protein interaction networks by annotating protein interactions with high-coverage, high-accuracy, domain-centric interaction mechanisms: (1) domain-domain interactions, in which a domain in one protein binds to a domain in a second protein, and (2) domain-motif interactions, in which a domain in one protein binds to a short, linear peptide motif in a second protein. Analysis of these domain-resolved networks reveals, for the first time, significant mechanistic differences between virus-human and within-human interactions at the resolution of single domains. While human proteins tend to compete with each other for domain binding sites by means of sequence similarity, viral proteins tend to compete with human proteins for domain binding sites in the absence of sequence similarity. Independent of their previously established preference for targeting human protein hubs, viral proteins also preferentially target human proteins containing linear motif-binding domains. Compared to human proteins, viral proteins participate in more domain-motif interactions, target more unique linear motif-binding domains per residue, and contain more unique linear motifs per residue. Together, these results suggest that viruses surmount genome size constraints by convergently evolving multiple short linear motifs in order to effectively mimic, hijack, and manipulate complex host processes for their survival. Our domain-resolved analyses reveal unique signatures of pleiotropy, economy, and convergent evolution in viral-host interactions that are

  14. A Challenge for Developers: Preserving the Interactivity of Human Relations in a Standalone Application.

    Science.gov (United States)

    Mazur, F. E.

    1993-01-01

    Describes the efforts taken by the Cornell Interactive Theater Ensemble to provide interactive human relations training on date rape using live dramatizations, video with facilitated audience participation, and an electronic multimedia format with decision trees for interactive involvement. (EA)

  15. Urgent Biophilia: Human-Nature Interactions and Biological Attractions in Disaster Resilience

    Directory of Open Access Journals (Sweden)

    Keith G. Tidball

    2012-06-01

    Full Text Available This contribution builds upon contemporary work on principles of biological attraction as well as earlier work on biophilia while synthesizing literatures on restorative environments, community-based ecological restoration, and both community and social-ecological disaster resilience. It suggests that when humans, faced with a disaster, as individuals and as communities and populations, seek engagement with nature to further their efforts to summon and demonstrate resilience in the face of a crisis, they exemplify an urgent biophilia. This urgent biophilia represents an important set of human-nature interactions in SES characterized by hazard, disaster, or vulnerability, often appearing in the 'backloop' of the adaptive cycle. The relationships that human-nature interactions have to other components within interdependent systems at many different scales may be one critical source of resilience in disaster and related contexts. In other words, the affinity we humans have for the rest of nature, the process of remembering that attraction, and the urge to express it through creation of restorative environments, which may also restore or increase ecological function, may confer resilience across multiple scales. In making this argument, the paper also represents a novel contribution to further theorizing alternatives to anthropocentric understandings of human-nature relations, and strongly makes the case for humans as part of, not separate from, ecosystems.

  16. NASA Aerosciences Activities to Support Human Space Flight

    Science.gov (United States)

    LeBeau, Gerald J.

    2011-01-01

    The Lyndon B. Johnson Space Center (JSC) has been a critical element of the United State's human space flight program for over 50 years. It is the home to NASA s Mission Control Center, the astronaut corps, and many major programs and projects including the Space Shuttle Program, International Space Station Program, and the Orion Project. As part of JSC's Engineering Directorate, the Applied Aeroscience and Computational Fluid Dynamics Branch is charted to provide aerosciences support to all human spacecraft designs and missions for all phases of flight, including ascent, exo-atmospheric, and entry. The presentation will review past and current aeroscience applications and how NASA works to apply a balanced philosophy that leverages ground testing, computational modeling and simulation, and flight testing, to develop and validate related products. The speaker will address associated aspects of aerodynamics, aerothermodynamics, rarefied gas dynamics, and decelerator systems, involving both spacecraft vehicle design and analysis, and operational mission support. From these examples some of NASA leading aerosciences challenges will be identified. These challenges will be used to provide foundational motivation for the development of specific advanced modeling and simulation capabilities, and will also be used to highlight how development activities are increasing becoming more aligned with flight projects. NASA s efforts to apply principles of innovation and inclusion towards improving its ability to support the myriad of vehicle design and operational challenges will also be briefly reviewed.

  17. Interface, information, interaction: a narrative review of design and functional requirements for clinical decision support.

    Science.gov (United States)

    Miller, Kristen; Mosby, Danielle; Capan, Muge; Kowalski, Rebecca; Ratwani, Raj; Noaiseh, Yaman; Kraft, Rachel; Schwartz, Sanford; Weintraub, William S; Arnold, Ryan

    2018-05-01

    Provider acceptance and associated patient outcomes are widely discussed in the evaluation of clinical decision support systems (CDSSs), but critical design criteria for tools have generally been overlooked. The objective of this work is to inform electronic health record alert optimization and clinical practice workflow by identifying, compiling, and reporting design recommendations for CDSS to support the efficient, effective, and timely delivery of high-quality care. A narrative review was conducted from 2000 to 2016 in PubMed and The Journal of Human Factors and Ergonomics Society to identify papers that discussed/recommended design features of CDSSs that are associated with the success of these systems. Fourteen papers were included as meeting the criteria and were found to have a total of 42 unique recommendations; 11 were classified as interface features, 10 as information features, and 21 as interaction features. Features are defined and described, providing actionable guidance that can be applied to CDSS development and policy. To our knowledge, no reviews have been completed that discuss/recommend design features of CDSS at this scale, and thus we found that this was important for the body of literature. The recommendations identified in this narrative review will help to optimize design, organization, management, presentation, and utilization of information through presentation, content, and function. The designation of 3 categories (interface, information, and interaction) should be further evaluated to determine the critical importance of the categories. Future work will determine how to prioritize them with limited resources for designers and developers in order to maximize the clinical utility of CDSS. This review will expand the field of knowledge and provide a novel organization structure to identify key recommendations for CDSS.

  18. Concept Representation Analysis in the Context of Human-Machine Interactions

    DEFF Research Database (Denmark)

    Badie, Farshad

    2016-01-01

    an inductive machine learning paradigm). The results will support figuring out the most significant key points for constructing a conceptual linkage between a human learning theory and a machine learning paradigm. Accordingly, I will construct a conceptual ground for expressing and analysing concepts......This article attempts to make a conceptual and epistemological junction between human learning and machine learning. I will be concerned with specifying and analysing the structure of concepts in the common ground between a concept-based human learning theory and a concept-based machine learning...... in the common ground of human and informatics sciences and in the context of human-machine interplays....

  19. Man-machine interactions 3

    CERN Document Server

    Czachórski, Tadeusz; Kozielski, Stanisław

    2014-01-01

    Man-Machine Interaction is an interdisciplinary field of research that covers many aspects of science focused on a human and machine in conjunction.  Basic goal of the study is to improve and invent new ways of communication between users and computers, and many different subjects are involved to reach the long-term research objective of an intuitive, natural and multimodal way of interaction with machines.  The rapid evolution of the methods by which humans interact with computers is observed nowadays and new approaches allow using computing technologies to support people on the daily basis, making computers more usable and receptive to the user's needs.   This monograph is the third edition in the series and presents important ideas, current trends and innovations in  the man-machine interactions area.  The aim of this book is to introduce not only hardware and software interfacing concepts, but also to give insights into the related theoretical background. Reader is provided with a compilation of high...

  20. Photo-physical and structural interactions between viologen phosphorus-based dendrimers and human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Ciepluch, Karol, E-mail: ciepluch@biol.uni.lodz.pl [Department of General Biophysics, University of Lodz, 141/143 Pomorska St., 90-236 Lodz (Poland); Katir, Nadia [Laboratoire de Chimie de Coordination du CNRS (LCC), 205 route de Narbonne, F-31077 Toulouse cedex 4 (France); Institute of Nanomaterials and Nanotechnology (INANOTECH)-MAScIR (Moroccan Foundation for Advanced Science, Innovation and Research), ENSET, Avenue de l' Armee Royale, Madinat El Irfane, 10100 Rabat (Morocco); El Kadib, Abdelkrim [Institute of Nanomaterials and Nanotechnology (INANOTECH)-MAScIR (Moroccan Foundation for Advanced Science, Innovation and Research), ENSET, Avenue de l' Armee Royale, Madinat El Irfane, 10100 Rabat (Morocco); Weber, Monika [Department of General Biophysics, University of Lodz, 141/143 Pomorska St., 90-236 Lodz (Poland); Caminade, Anne-Marie [Laboratoire de Chimie de Coordination du CNRS (LCC), 205 route de Narbonne, F-31077 Toulouse cedex 4 (France); Bousmina, Mostapha [Hassan II Academy of Sciences and Technology, Avenue MVI, Km4, 10220 Rabat (Morocco); Pierre Majoral, Jean [Laboratoire de Chimie de Coordination du CNRS (LCC), 205 route de Narbonne, F-31077 Toulouse cedex 4 (France); Hassan II Academy of Sciences and Technology, Avenue MVI, Km4, 10220 Rabat (Morocco); Bryszewska, Maria [Department of General Biophysics, University of Lodz, 141/143 Pomorska St., 90-236 Lodz (Poland)

    2012-06-15

    This work deals with photo-physical and structural interactions between viologen phosphorus dendrimers and human serum albumin (HSA). Viologens are derivatives of 4,4 Prime -bipyridinium salts. Aiming to rationalize the parameters governing such interactions eight types of these polycationic dendrimers in which the generation, the number of charges, the nature of the core and of the terminal groups vary from one to another, were designed and used. The influence of viologen-based dendrimers' on human serum albumin has been investigated. The photo-physical interactions of the two systems have been monitored by fluorescence quenching of free L-tryptophan and of HSA tryptophan residue. Additionally, using circular dichroism (CD) the effect of dendrimers on the secondary structure of albumin was measured. The obtained results show that viologen dendrimers interact with human serum albumin quenching its fluorescence either by collisional (dynamic) way or by forming complexes in a ground state (static quenching). In some cases the quenching is accompanied by changes of the secondary structure of HSA. - Highlights: Black-Right-Pointing-Pointer Photo-physical interactions between viologen phosphorus dendrimers and human serum albumin (HSA) were investigated. Black-Right-Pointing-Pointer The viologen dendrimers can quench the fluorescence of tryptophan in HSA. Black-Right-Pointing-Pointer CD spectra to explain the changes in secondary structure of albumin after exposition of dendrimers.

  1. Modelling of human-machine interaction in equipment design of manufacturing cells

    Science.gov (United States)

    Cochran, David S.; Arinez, Jorge F.; Collins, Micah T.; Bi, Zhuming

    2017-08-01

    This paper proposes a systematic approach to model human-machine interactions (HMIs) in supervisory control of machining operations; it characterises the coexistence of machines and humans for an enterprise to balance the goals of automation/productivity and flexibility/agility. In the proposed HMI model, an operator is associated with a set of behavioural roles as a supervisor for multiple, semi-automated manufacturing processes. The model is innovative in the sense that (1) it represents an HMI based on its functions for process control but provides the flexibility for ongoing improvements in the execution of manufacturing processes; (2) it provides a computational tool to define functional requirements for an operator in HMIs. The proposed model can be used to design production systems at different levels of an enterprise architecture, particularly at the machine level in a production system where operators interact with semi-automation to accomplish the goal of 'autonomation' - automation that augments the capabilities of human beings.

  2. Prehistoric Human-environment Interactions and Their Impact on Aquatic Ecosystems

    Science.gov (United States)

    Mackay, H.; Henderson, A. C. G.; van Hardenbroek, M.; Cavers, G.; Crone, A.; Davies, K. L.; Fonville, T. R.; Head, K.; Langdon, P. G.; Matton, R.; McCormick, F.; Murray, E.; Whitehouse, N. J.; Brown, A. G.

    2017-12-01

    One of the first widespread human-environment interactions in Scotland and Ireland occurred 3000 years ago when communities first inhabited wetlands, building artificial islands in lakes called crannogs. The reason behind the development and intermittent occupation of crannogs is unclear. We don't know if they were a response to changes in environment or if they were driven by societal influences. Furthermore, the impact of the construction, settlement and human activities on lake ecosystems is unknown, but is a key example of early anthropogenic signatures on the environment. Our research characterises the prehistoric human-environment interactions associated with crannogs by analysing geochemical and biological signals preserved within the crannog and wetland sediments. Records of anthropogenic activities and environmental change have been produced using lipid biomarkers of faecal matter, sedimentary DNA, and the remains of beetles, aquatic invertebrates (chironomids), siliceous algae (diatoms) and pollen. Results of these analyses reveal settlement occupations occurred in phases from the Iron Age to the Medieval Period. The main effects of occupation on the wetland ecosystems are nutrient-driven increases in productivity and shifts in aquatic species from clear water taxa to those associated with more eutrophic conditions. Crannog abandonment reduces nutrient inputs and therefore levels of aquatic productivity, as evidenced by decreases in the abundance of siliceous algae. Despite returns to pre-settlement nutrient and productivity levels, the lake ecosystems do not recover to their previous ecological state: dominant aquatic invertebrate and siliceous algae taxa shift in response to elevated levels of macrophytes within the lakes. Whilst these phase changes in lake ecosystems highlight their adaptive capacity to environmental change, the temporary human interactions associated with crannogs had persisting environmental impacts that shaped the long

  3. From 'automation' to 'autonomy': the importance of trust repair in human-machine interaction.

    Science.gov (United States)

    de Visser, Ewart J; Pak, Richard; Shaw, Tyler H

    2018-04-09

    Modern interactions with technology are increasingly moving away from simple human use of computers as tools to the establishment of human relationships with autonomous entities that carry out actions on our behalf. In a recent commentary, Peter Hancock issued a stark warning to the field of human factors that attention must be focused on the appropriate design of a new class of technology: highly autonomous systems. In this article, we heed the warning and propose a human-centred approach directly aimed at ensuring that future human-autonomy interactions remain focused on the user's needs and preferences. By adapting literature from industrial psychology, we propose a framework to infuse a unique human-like ability, building and actively repairing trust, into autonomous systems. We conclude by proposing a model to guide the design of future autonomy and a research agenda to explore current challenges in repairing trust between humans and autonomous systems. Practitioner Summary: This paper is a call to practitioners to re-cast our connection to technology as akin to a relationship between two humans rather than between a human and their tools. To that end, designing autonomy with trust repair abilities will ensure future technology maintains and repairs relationships with their human partners.

  4. Cognitive Emotional Regulation Model in Human-Robot Interaction

    OpenAIRE

    Liu, Xin; Xie, Lun; Liu, Anqi; Li, Dan

    2015-01-01

    This paper integrated Gross cognitive process into the HMM (hidden Markov model) emotional regulation method and implemented human-robot emotional interaction with facial expressions and behaviors. Here, energy was the psychological driving force of emotional transition in the cognitive emotional model. The input facial expression was translated into external energy by expression-emotion mapping. Robot’s next emotional state was determined by the cognitive energy (the stimulus after cognition...

  5. Probability weighted ensemble transfer learning for predicting interactions between HIV-1 and human proteins.

    Directory of Open Access Journals (Sweden)

    Suyu Mei

    Full Text Available Reconstruction of host-pathogen protein interaction networks is of great significance to reveal the underlying microbic pathogenesis. However, the current experimentally-derived networks are generally small and should be augmented by computational methods for less-biased biological inference. From the point of view of computational modelling, data scarcity, data unavailability and negative data sampling are the three major problems for host-pathogen protein interaction networks reconstruction. In this work, we are motivated to address the three concerns and propose a probability weighted ensemble transfer learning model for HIV-human protein interaction prediction (PWEN-TLM, where support vector machine (SVM is adopted as the individual classifier of the ensemble model. In the model, data scarcity and data unavailability are tackled by homolog knowledge transfer. The importance of homolog knowledge is measured by the ROC-AUC metric of the individual classifiers, whose outputs are probability weighted to yield the final decision. In addition, we further validate the assumption that only the homolog knowledge is sufficient to train a satisfactory model for host-pathogen protein interaction prediction. Thus the model is more robust against data unavailability with less demanding data constraint. As regards with negative data construction, experiments show that exclusiveness of subcellular co-localized proteins is unbiased and more reliable than random sampling. Last, we conduct analysis of overlapped predictions between our model and the existing models, and apply the model to novel host-pathogen PPIs recognition for further biological research.

  6. Optimized Assistive Human-Robot Interaction Using Reinforcement Learning.

    Science.gov (United States)

    Modares, Hamidreza; Ranatunga, Isura; Lewis, Frank L; Popa, Dan O

    2016-03-01

    An intelligent human-robot interaction (HRI) system with adjustable robot behavior is presented. The proposed HRI system assists the human operator to perform a given task with minimum workload demands and optimizes the overall human-robot system performance. Motivated by human factor studies, the presented control structure consists of two control loops. First, a robot-specific neuro-adaptive controller is designed in the inner loop to make the unknown nonlinear robot behave like a prescribed robot impedance model as perceived by a human operator. In contrast to existing neural network and adaptive impedance-based control methods, no information of the task performance or the prescribed robot impedance model parameters is required in the inner loop. Then, a task-specific outer-loop controller is designed to find the optimal parameters of the prescribed robot impedance model to adjust the robot's dynamics to the operator skills and minimize the tracking error. The outer loop includes the human operator, the robot, and the task performance details. The problem of finding the optimal parameters of the prescribed robot impedance model is transformed into a linear quadratic regulator (LQR) problem which minimizes the human effort and optimizes the closed-loop behavior of the HRI system for a given task. To obviate the requirement of the knowledge of the human model, integral reinforcement learning is used to solve the given LQR problem. Simulation results on an x - y table and a robot arm, and experimental implementation results on a PR2 robot confirm the suitability of the proposed method.

  7. Sense of presence and anxiety during virtual social interactions between a human and virtual humans

    NARCIS (Netherlands)

    Morina, N.; Brinkman, W.P.; Hartanto, D.; Emmelkamp, P.M.G.

    2014-01-01

    Virtual reality exposure therapy (VRET) has been shown to be effective in treatment of anxiety disorders. Yet, there is lack of research on the extent to which interaction between the individual and virtual humans can be successfully implanted to increase levels of anxiety for therapeutic purposes.

  8. Estimation of Physical Human-Robot Interaction Using Cost-Effective Pneumatic Padding

    Directory of Open Access Journals (Sweden)

    André Wilkening

    2016-08-01

    Full Text Available The idea to use a cost-effective pneumatic padding for sensing of physical interaction between a user and wearable rehabilitation robots is not new, but until now there has not been any practical relevant realization. In this paper, we present a novel method to estimate physical human-robot interaction using a pneumatic padding based on artificial neural networks (ANNs. This estimation can serve as rough indicator of applied forces/torques by the user and can be applied for visual feedback about the user’s participation or as additional information for interaction controllers. Unlike common mostly very expensive 6-axis force/torque sensors (FTS, the proposed sensor system can be easily integrated in the design of physical human-robot interfaces of rehabilitation robots and adapts itself to the shape of the individual patient’s extremity by pressure changing in pneumatic chambers, in order to provide a safe physical interaction with high user’s comfort. This paper describes a concept of using ANNs for estimation of interaction forces/torques based on pressure variations of eight customized air-pad chambers. The ANNs were trained one-time offline using signals of a high precision FTS which is also used as reference sensor for experimental validation. Experiments with three different subjects confirm the functionality of the concept and the estimation algorithm.

  9. Human UBL5 protein interacts with coilin and meets the Cajal bodies

    International Nuclear Information System (INIS)

    Švéda, Martin; Častorálová, Markéta; Lipov, Jan; Ruml, Tomáš; Knejzlík, Zdeněk

    2013-01-01

    Highlights: •Localization of the UBL5 protein in Hela cells was determined by fluorescence microscopy and biochemical fractionation. •Colocalization of UBL5 with Cajal bodies was observed. •Interaction of UBL5 with coilin was proven by pull-down. -- Abstract: UBL5 protein, a structural homologue of ubiquitin, was shown to be involved in pre-mRNA splicing and transcription regulation in yeast and Caenorhabditis elegans, respectively. However, role of the UBL5 human orthologue is still elusive. In our study, we observed that endogenous human UBL5 that was localized in the nucleus, partially associates with Cajal bodies (CBs), nuclear domains where spliceosomal components are assembled. Simultaneous expression of exogenous UBL5 and coilin resulted in their nuclear colocalization in HeLa cells. The ability of UBL5 to interact with coilin was proved by GST pull-down assay using coilin that was either in vitro translated or extracted from HEK293T cells. Further, our results showed that the UBL5–coilin interaction was not influenced by coilin phosphorylation. These results suggest that UBL5 could be targeted to CBs via its interaction with coilin. Relation between human UBL5 protein and CBs is in the agreement with current observations about yeast orthologue Hub1 playing important role in alternative splicing

  10. Human UBL5 protein interacts with coilin and meets the Cajal bodies

    Energy Technology Data Exchange (ETDEWEB)

    Švéda, Martin; Častorálová, Markéta; Lipov, Jan; Ruml, Tomáš; Knejzlík, Zdeněk, E-mail: knejzliz@vscht.cz

    2013-06-28

    Highlights: •Localization of the UBL5 protein in Hela cells was determined by fluorescence microscopy and biochemical fractionation. •Colocalization of UBL5 with Cajal bodies was observed. •Interaction of UBL5 with coilin was proven by pull-down. -- Abstract: UBL5 protein, a structural homologue of ubiquitin, was shown to be involved in pre-mRNA splicing and transcription regulation in yeast and Caenorhabditis elegans, respectively. However, role of the UBL5 human orthologue is still elusive. In our study, we observed that endogenous human UBL5 that was localized in the nucleus, partially associates with Cajal bodies (CBs), nuclear domains where spliceosomal components are assembled. Simultaneous expression of exogenous UBL5 and coilin resulted in their nuclear colocalization in HeLa cells. The ability of UBL5 to interact with coilin was proved by GST pull-down assay using coilin that was either in vitro translated or extracted from HEK293T cells. Further, our results showed that the UBL5–coilin interaction was not influenced by coilin phosphorylation. These results suggest that UBL5 could be targeted to CBs via its interaction with coilin. Relation between human UBL5 protein and CBs is in the agreement with current observations about yeast orthologue Hub1 playing important role in alternative splicing.

  11. Explaining human uniqueness: genome interactions with environment, behaviour and culture.

    Science.gov (United States)

    Varki, Ajit; Geschwind, Daniel H; Eichler, Evan E

    2008-10-01

    What makes us human? Specialists in each discipline respond through the lens of their own expertise. In fact, 'anthropogeny' (explaining the origin of humans) requires a transdisciplinary approach that eschews such barriers. Here we take a genomic and genetic perspective towards molecular variation, explore systems analysis of gene expression and discuss an organ-systems approach. Rejecting any 'genes versus environment' dichotomy, we then consider genome interactions with environment, behaviour and culture, finally speculating that aspects of human uniqueness arose because of a primate evolutionary trend towards increasing and irreversible dependence on learned behaviours and culture - perhaps relaxing allowable thresholds for large-scale genomic diversity.

  12. Human-Computer Interaction and Sociological Insight: A Theoretical Examination and Experiment in Building Affinity in Small Groups

    Science.gov (United States)

    Oren, Michael Anthony

    2011-01-01

    The juxtaposition of classic sociological theory and the, relatively, young discipline of human-computer interaction (HCI) serves as a powerful mechanism for both exploring the theoretical impacts of technology on human interactions as well as the application of technological systems to moderate interactions. It is the intent of this dissertation…

  13. USING RESEARCH METHODS IN HUMAN COMPUTER INTERACTION TO DESIGN TECHNOLOGY FOR RESILIENCE

    OpenAIRE

    Lopes, Arminda Guerra

    2016-01-01

    ABSTRACT Research in human computer interaction (HCI) covers both technological and human behavioural concerns. As a consequence, the contributions made in HCI research tend to be aware to either engineering or the social sciences. In HCI the purpose of practical research contributions is to reveal unknown insights about human behaviour and its relationship to technology. Practical research methods normally used in HCI include formal experiments, field experiments, field studies, interviews, ...

  14. Understanding guide dog team interactions: design opportunities to support work and play

    NARCIS (Netherlands)

    Hauser, S.; Wakkary, R.L.; Neustaedter, C.

    2014-01-01

    The visually impaired have been a longstanding and well-recognized user group addressed in the field of Human-Computer Interaction (HCI). Recently, the study of sighted dog owners and their pets has gained interest in HCI. Despite this, there is a noticeable gap in the field with regards to research

  15. SFG studies on interactions between antimicrobial peptides and supported lipid bilayers.

    Science.gov (United States)

    Chen, Xiaoyun; Chen, Zhan

    2006-09-01

    The mode of action of antimicrobial peptides (AMPs) in disrupting cell membrane bilayers is of fundamental importance in understanding the efficiency of different AMPs, which is crucial to design antibiotics with improved properties. Recent developments in the field of sum frequency generation (SFG) vibrational spectroscopy have made it a powerful and unique biophysical technique in investigating the interactions between AMPs and a single substrate supported planar lipid bilayer. We will review some of the recent progress in applying SFG to study membrane lipid bilayers and discuss how SFG can provide novel information such as real-time bilayer structure change and AMP orientation during AMP-lipid bilayer interactions in a very biologically relevant manner. Several examples of applying SFG to monitor such interactions between AMPs and a dipalmitoyl phosphatidylglycerol (DPPG) bilayer are presented. Different modes of actions are observed for melittin, tachyplesin I, d-magainin 2, MSI-843, and a synthetic antibacterial oligomer, demonstrating that SFG is very effective in the study of AMPs and AMP-lipid bilayer interactions.

  16. Business and Human Rights

    DEFF Research Database (Denmark)

    Buhmann, Karin

    2015-01-01

    This article analyses the United Nations (UN) Guidelines on Business and Human Rights adopted in 2011 by the UN Human Rights Council from the perspective of transnational business governance interactions (TBGI) analytical framework.1 The article identifies and discusses dimensions of interaction...... and components of regulatory governance which characterize the Guiding Principles, focusing in particular on rule formation and implementation. The article notes that the Guiding Principles actively enrolled other actors for the rule-making process, ensuring support in a politically and legally volatile field...

  17. Human-Interaction Challenges in UAV-Based Autonomous Surveillance

    Science.gov (United States)

    Freed, Michael; Harris, Robert; Shafto, Michael G.

    2004-01-01

    Autonomous UAVs provide a platform for intelligent surveillance in application domains ranging from security and military operations to scientific information gathering and land management. Surveillance tasks are often long duration, requiring that any approach be adaptive to changes in the environment or user needs. We describe a decision- theoretic model of surveillance, appropriate for use on our autonomous helicopter, that provides a basis for optimizing the value of information returned by the UAV. From this approach arise a range of challenges in making this framework practical for use by human operators lacking specialized knowledge of autonomy and mathematics. This paper describes our platform and approach, then describes human-interaction challenges arising from this approach that we have identified and begun to address.

  18. Interactions of the spin-labeled chloroethylnitrosourea SLCNUgly with electrode-supported lipid films

    International Nuclear Information System (INIS)

    Tacheva, Bilyana; Georgieva, Radostina; Karabaliev, Miroslav

    2016-01-01

    The spin-labeled chloroethylnitrosourea containig glycine SLCNUgly is an analogue of the clinically used nitrosourea drug lomustine (1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea, CCNU), showing promising properties and features in vitro as well as in vivo. In this work the interaction of SLCNUgly with a lipid model membrane is investigated. The presented results indicate penetration of the drug in the membranes without causing defects of the lipid structure and reveal the potential of both SLCNUgly and electrode-supported lipid films as models for investigating nitrosourea drugs-membrane interactions.

  19. SHARP - a framework for incorporating human interactions into PRA studies

    International Nuclear Information System (INIS)

    Hannaman, G.W.; Joksimovich, V.; Spurgin, A.J.; Worledge, D.H.

    1985-01-01

    Recently, increased attention has been given to understanding the role of humans in the safe operation of nuclear power plants. By virtue of the ability to combine equipment reliability with human reliability probabilistic risk assessment (PRA) technology was deemed capable of providing significant insights about the contributions of human interations in accident scenarios. EPRI recognized the need to strengthen the methodology for incorporating human interactions into PRAs as one element of their broad research program to improve the credibility of PRAs. This research project lead to the development and detailed description of SHARP (Systematic Human Application Reliability Procedure) in EPRI NP-3583. The objective of this paper is to illustrate the SHARP framework. This should help PRA analysts state more clearly their assumptions and approach no matter which human reliability assessment technique is used. SHARP includes a structure of seven analysis steps which can be formally or informally performed during PRAs. The seven steps are termed definition, screening, breakdown, representation, impact assessment, quantification, and documentation

  20. Signatures of pleiotropy, economy and convergent evolution in a domain-resolved map of human-virus protein-protein interaction networks.

    Directory of Open Access Journals (Sweden)

    Sara Garamszegi

    Full Text Available A central challenge in host-pathogen systems biology is the elucidation of general, systems-level principles that distinguish host-pathogen interactions from within-host interactions. Current analyses of host-pathogen and within-host protein-protein interaction networks are largely limited by their resolution, treating proteins as nodes and interactions as edges. Here, we construct a domain-resolved map of human-virus and within-human protein-protein interaction networks by annotating protein interactions with high-coverage, high-accuracy, domain-centric interaction mechanisms: (1 domain-domain interactions, in which a domain in one protein binds to a domain in a second protein, and (2 domain-motif interactions, in which a domain in one protein binds to a short, linear peptide motif in a second protein. Analysis of these domain-resolved networks reveals, for the first time, significant mechanistic differences between virus-human and within-human interactions at the resolution of single domains. While human proteins tend to compete with each other for domain binding sites by means of sequence similarity, viral proteins tend to compete with human proteins for domain binding sites in the absence of sequence similarity. Independent of their previously established preference for targeting human protein hubs, viral proteins also preferentially target human proteins containing linear motif-binding domains. Compared to human proteins, viral proteins participate in more domain-motif interactions, target more unique linear motif-binding domains per residue, and contain more unique linear motifs per residue. Together, these results suggest that viruses surmount genome size constraints by convergently evolving multiple short linear motifs in order to effectively mimic, hijack, and manipulate complex host processes for their survival. Our domain-resolved analyses reveal unique signatures of pleiotropy, economy, and convergent evolution in viral

  1. Understanding human management of automation errors

    Science.gov (United States)

    McBride, Sara E.; Rogers, Wendy A.; Fisk, Arthur D.

    2013-01-01

    Automation has the potential to aid humans with a diverse set of tasks and support overall system performance. Automated systems are not always reliable, and when automation errs, humans must engage in error management, which is the process of detecting, understanding, and correcting errors. However, this process of error management in the context of human-automation interaction is not well understood. Therefore, we conducted a systematic review of the variables that contribute to error management. We examined relevant research in human-automation interaction and human error to identify critical automation, person, task, and emergent variables. We propose a framework for management of automation errors to incorporate and build upon previous models. Further, our analysis highlights variables that may be addressed through design and training to positively influence error management. Additional efforts to understand the error management process will contribute to automation designed and implemented to support safe and effective system performance. PMID:25383042

  2. Layout Design of Human-Machine Interaction Interface of Cabin Based on Cognitive Ergonomics and GA-ACA

    OpenAIRE

    Deng, Li; Wang, Guohua; Yu, Suihuai

    2016-01-01

    In order to consider the psychological cognitive characteristics affecting operating comfort and realize the automatic layout design, cognitive ergonomics and GA-ACA (genetic algorithm and ant colony algorithm) were introduced into the layout design of human-machine interaction interface. First, from the perspective of cognitive psychology, according to the information processing process, the cognitive model of human-machine interaction interface was established. Then, the human cognitive cha...

  3. Systematic Analysis of Video Data from Different Human-Robot Interaction Studies: A Categorisation of Social Signals During Error Situations

    OpenAIRE

    Manuel eGiuliani; Nicole eMirnig; Gerald eStollnberger; Susanne eStadler; Roland eBuchner; Manfred eTscheligi

    2015-01-01

    Human?robot interactions are often affected by error situations that are caused by either the robot or the human. Therefore, robots would profit from the ability to recognize when error situations occur. We investigated the verbal and non-verbal social signals that humans show when error situations occur in human?robot interaction experiments. For that, we analyzed 201 videos of five human?robot interaction user studies with varying tasks from four independent projects. The analysis shows tha...

  4. Interventions to Support Social Interaction in Children with Autism Spectrum Disorders: A Systematic Review of Single Case Studies

    Science.gov (United States)

    Ozuna, Jennifer; Mavridis, Alexis; Hott, Brittany L.

    2015-01-01

    Social interaction is a core deficit in individuals with autism spectrum disorder (ASD). Therefore, parents and teachers need effective interventions to support students with ASD. This synthesis provides a quantitative analysis of single-subject studies that examine interventions to support social interactions in children with ASD. Results suggest…

  5. Antiviral activity of human lactoferrin: inhibition of alphavirus interaction with heparan sulfate

    International Nuclear Information System (INIS)

    Waarts, Barry-Lee; Aneke, Onwuchekwa J.C.; Smit, Jolanda M.; Kimata, Koji; Bittman, Robert; Meijer, Dirk K.F.; Wilschut, Jan

    2005-01-01

    Human lactoferrin is a component of the non-specific immune system with distinct antiviral properties. We used alphaviruses, adapted to interaction with heparan sulfate (HS), as a tool to investigate the mechanism of lactoferrin's antiviral activity. Lactoferrin inhibited infection of BHK-21 cells by HS-adapted, but not by non-adapted, Sindbis virus (SIN) or Semliki Forest virus (SFV). Lactoferrin also inhibited binding of radiolabeled HS-adapted viruses to BHK-21 cells or liposomes containing lipid-conjugated heparin as a receptor analog. On the other hand, low-pH-induced fusion of the viruses with liposomes, which occurs independently of virus-receptor interaction, was unaffected. Studies involving preincubation of virus or cells with lactoferrin suggested that the protein does not bind to the virus, but rather blocks HS-moieties on the cell surface. Charge-modified human serum albumin, with a net positive charge, had a similar antiviral effect against HS-adapted SIN and SFV, suggesting that the antiviral activity of lactoferrin is related to its positive charge. It is concluded that human lactoferrin inhibits viral infection by interfering with virus-receptor interaction rather than by affecting subsequent steps in the viral cell entry or replication processes

  6. On eigenvalue asymptotics for strong delta-interactions supported by surfaces with boundaries

    Czech Academy of Sciences Publication Activity Database

    Dittrich, Jaroslav; Exner, Pavel; Kuhn, C.; Pankrashkin, K.

    2016-01-01

    Roč. 97, 1-2 (2016), s. 1-25 ISSN 0921-7134 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : singular Schrodinger operator * delta-interaction * strong coupling * eigenvalue Subject RIV: BE - Theoretical Physics Impact factor: 0.933, year: 2016

  7. More playful user interfaces interfaces that invite social and physical interaction

    CERN Document Server

    2015-01-01

    This book covers the latest advances in playful user interfaces – interfaces that invite social and physical interaction. These new developments include the use of audio, visual, tactile and physiological sensors to monitor, provide feedback and anticipate the behavior of human users. The decreasing cost of sensor and actuator technology makes it possible to integrate physical behavior information in human-computer interactions. This leads to many new entertainment and game applications that allow or require social and physical interaction in sensor- and actuator-equipped smart environments. The topics discussed include: human-nature interaction, human-animal interaction and the interaction with tangibles that are naturally integrated in our smart environments. Digitally supported remote audience participation in artistic or sport events is also discussed. One important theme that emerges throughout the book is the involvement of users in the digital-entertainment design process or even design and implement...

  8. Interactive Graph Layout of a Million Nodes

    OpenAIRE

    Peng Mi; Maoyuan Sun; Moeti Masiane; Yong Cao; Chris North

    2016-01-01

    Sensemaking of large graphs, specifically those with millions of nodes, is a crucial task in many fields. Automatic graph layout algorithms, augmented with real-time human-in-the-loop interaction, can potentially support sensemaking of large graphs. However, designing interactive algorithms to achieve this is challenging. In this paper, we tackle the scalability problem of interactive layout of large graphs, and contribute a new GPU-based force-directed layout algorithm that exploits graph to...

  9. Analysis of the binding interaction in uric acid - Human hemoglobin system by spectroscopic techniques

    Science.gov (United States)

    Makarska-Bialokoz, Magdalena

    2017-05-01

    The binding interaction between human hemoglobin and uric acid has been studied for the first time, by UV-vis absorption and steady-state, synchronous and three-dimensional fluorescence techniques. Characteristic effects observed for human hemoglobin intrinsic fluorescence during interaction with uric acid at neutral pH point at the formation of stacking non-covalent and non-fluorescent complexes. All the calculated parameters, the binding, fluorescence quenching and bimolecular quenching rate constants, as well as Förster resonance energy transfer parameters confirm the existence of static quenching. The results of synchronous fluorescence measurements indicate that the fluorescence quenching of human hemoglobin originates both from Trp and Tyr residues and that the addition of uric acid could significantly hinder the physiological functions of human hemoglobin.

  10. How do walkers behave when crossing the way of a mobile robot that replicates human interaction rules?

    Science.gov (United States)

    Vassallo, Christian; Olivier, Anne-Hélène; Souères, Philippe; Crétual, Armel; Stasse, Olivier; Pettré, Julien

    2018-02-01

    Previous studies showed the existence of implicit interaction rules shared by human walkers when crossing each other. Especially, each walker contributes to the collision avoidance task and the crossing order, as set at the beginning, is preserved along the interaction. This order determines the adaptation strategy: the first arrived increases his/her advance by slightly accelerating and changing his/her heading, whereas the second one slows down and moves in the opposite direction. In this study, we analyzed the behavior of human walkers crossing the trajectory of a mobile robot that was programmed to reproduce this human avoidance strategy. In contrast with a previous study, which showed that humans mostly prefer to give the way to a non-reactive robot, we observed similar behaviors between human-human avoidance and human-robot avoidance when the robot replicates the human interaction rules. We discuss this result in relation with the importance of controlling robots in a human-like way in order to ease their cohabitation with humans. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. A Software Environment for an Adaptive Human-Aware Software Agent Supporting Attention-Demanding Tasks

    NARCIS (Netherlands)

    Bosse, T.; Memon, Z.A.; Oorburg, R.; Umair, M.; Treur, J.; de Vos, M.

    2011-01-01

    This paper presents a software environment providing human-aware ambient support for a human performing a task that demands substantial amounts of attention. The agent obtains human attention-awareness in an adaptive manner by use of a dynamical model of human attention, gaze sensoring by an

  12. Crabby Interactions: Fifth Graders Explore Human Impact on the Blue Crab Population

    Science.gov (United States)

    Jeffery, Tonya D.; McCollough, Cherie A.; Moore, Kim

    2016-01-01

    This article describes a two-day lesson in which fifth-grade students took on the role of marine biology scientists, using their critical-thinking and problem-solving skills to explore human impact on the blue crab ecosystem. The purpose of "Crabby Interactions" was to help students understand the impact of human activities on the local…

  13. DrawCompileEvolve: Sparking interactive evolutionary art with human creations

    DEFF Research Database (Denmark)

    Zhang, Jinhong; Taarnby, Rasmus; Liapis, Antonios

    2015-01-01

    This paper presents DrawCompileEvolve, a web-based drawing tool which allows users to draw simple primitive shapes, group them together or define patterns in their groupings (e.g. symmetry, repetition). The user’s vector drawing is then compiled into an indirectly encoded genetic representation......, which can be evolved interactively, allowing the user to change the image’s colors, patterns and ultimately transform it. The human artist has direct control while drawing the initial seed of an evolutionary run and indirect control while interactively evolving it, thus making DrawCompileEvolve a mixed...

  14. Human Skin Is the Largest Epithelial Surface for Interaction with Microbes.

    Science.gov (United States)

    Gallo, Richard L

    2017-06-01

    Human skin contains an abundant and diverse population of microbial organisms. Many of these microbes inhabit follicular structures of the skin. Furthermore, numerous studies have shown that the interaction of some members of the skin microbiome with host cells will result in changes in cell function. However, estimates of the potential for the microbiome to influence human health through skin have ignored the inner follicular surface, and therefore vastly underestimated the potential of the skin microbiome to have a systemic effect on the human body. By calculating the surface area of follicular and the interfollicular epithelial surface it is shown that skin provides a vast interface for interactions with the microbiome. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  15. Electrochemical Studies of Camptothecin and Its Interaction with Human Serum Albumin

    OpenAIRE

    Zhao, Jing; Zheng, Xiaofeng; Xing, Wei; Huang, Junyi; Li, Genxi

    2007-01-01

    Camptothecin, an anticancer component from Camptotheca acuminate, may interact with human serum albumin (HSA) at the subdomain IIA (site I), and then convert to its inactive form(carboxylate form). In this paper, the detailed electrochemical behaviors of camptothecin at a pyrolytic graphite electrode is presented. The interaction between camptothecin and HSA is also studied by electrochemical technique. By comparing with bovine serum albumin (BSA), which is highly homologous to HSA, we prove ...

  16. Interaction of Human Serum Albumin with Metal Protoporphyrins

    Science.gov (United States)

    Hu, Jie; Brancaleon, Lorenzo

    2015-03-01

    Fluorescence spectroscopy is widely used in biotechnology, nanotechnology, and molecular biophysics, since it can provide information on a wide range of molecular processes, e.g. the interactions of solvent molecules with fluorophores, conformational changes, and binding interactions etc. In this study, we present the photophysical properties of the interaction of human serum albumin (HSA) with a series of metal compound of Protoporphyrin IX (PPIX), including ZnPPIX, FePPIX, MgPPIX, MnPPIX and SnPPIX respectively, as well as the free base PPIX. Binding constants were retrieved independently using the Benesi-Hildebrand analysis of the porphyrin emission or absorption spectra and the fluorescence quenching (i.e. Stern-Volmer analysis) and reveal that the two methods yield a difference of approximately one order or magnitude between the two. Fluorescence lifetimes was used to probe whether binding of the porphyrin changes the conformation of the protein or if the interaction places the porphyrin at a location that can prompt resonance energy transfer with the lone Tryptophan residue. In recent years it has been discovered that HSA provides a specific binding site for metal-chelated protoporphyrins in subdomain IA. This has opened a novel field of study over the importance of this site for biomedical applications but it has also created the potential for a series of biotechnological applications of the HSA/protoporphyrin complexes. Our study provides a preliminary investigation of the interaction with metal-chelated protoporphyrins that had not been previously investigated.

  17. Eye Tracking Based Control System for Natural Human-Computer Interaction

    Directory of Open Access Journals (Sweden)

    Xuebai Zhang

    2017-01-01

    Full Text Available Eye movement can be regarded as a pivotal real-time input medium for human-computer communication, which is especially important for people with physical disability. In order to improve the reliability, mobility, and usability of eye tracking technique in user-computer dialogue, a novel eye control system with integrating both mouse and keyboard functions is proposed in this paper. The proposed system focuses on providing a simple and convenient interactive mode by only using user’s eye. The usage flow of the proposed system is designed to perfectly follow human natural habits. Additionally, a magnifier module is proposed to allow the accurate operation. In the experiment, two interactive tasks with different difficulty (searching article and browsing multimedia web were done to compare the proposed eye control tool with an existing system. The Technology Acceptance Model (TAM measures are used to evaluate the perceived effectiveness of our system. It is demonstrated that the proposed system is very effective with regard to usability and interface design.

  18. Eye Tracking Based Control System for Natural Human-Computer Interaction.

    Science.gov (United States)

    Zhang, Xuebai; Liu, Xiaolong; Yuan, Shyan-Ming; Lin, Shu-Fan

    2017-01-01

    Eye movement can be regarded as a pivotal real-time input medium for human-computer communication, which is especially important for people with physical disability. In order to improve the reliability, mobility, and usability of eye tracking technique in user-computer dialogue, a novel eye control system with integrating both mouse and keyboard functions is proposed in this paper. The proposed system focuses on providing a simple and convenient interactive mode by only using user's eye. The usage flow of the proposed system is designed to perfectly follow human natural habits. Additionally, a magnifier module is proposed to allow the accurate operation. In the experiment, two interactive tasks with different difficulty (searching article and browsing multimedia web) were done to compare the proposed eye control tool with an existing system. The Technology Acceptance Model (TAM) measures are used to evaluate the perceived effectiveness of our system. It is demonstrated that the proposed system is very effective with regard to usability and interface design.

  19. Human and machine perception communication, interaction, and integration

    CERN Document Server

    Cantoni, Virginio; Setti, Alessandra

    2005-01-01

    The theme of this book on human and machine perception is communication, interaction, and integration. For each basic topic there are invited lectures, corresponding to approaches in nature and machines, and a panel discussion. The lectures present the state of the art, outlining open questions and stressing synergies among the disciplines related to perception. The panel discussions are forums for open debate. The wide spectrum of topics allows comparison and synergy and can stimulate new approaches.

  20. Compliance control based on PSO algorithm to improve the feeling during physical human-robot interaction.

    Science.gov (United States)

    Jiang, Zhongliang; Sun, Yu; Gao, Peng; Hu, Ying; Zhang, Jianwei

    2016-01-01

    Robots play more important roles in daily life and bring us a lot of convenience. But when people work with robots, there remain some significant differences in human-human interactions and human-robot interaction. It is our goal to make robots look even more human-like. We design a controller which can sense the force acting on any point of a robot and ensure the robot can move according to the force. First, a spring-mass-dashpot system was used to describe the physical model, and the second-order system is the kernel of the controller. Then, we can establish the state space equations of the system. In addition, the particle swarm optimization algorithm had been used to obtain the system parameters. In order to test the stability of system, the root-locus diagram had been shown in the paper. Ultimately, some experiments had been carried out on the robotic spinal surgery system, which is developed by our team, and the result shows that the new controller performs better during human-robot interaction.

  1. From Trust in Automation to Decision Neuroscience: Applying Cognitive Neuroscience Methods to Understand and Improve Interaction Decisions Involved in Human Automation Interaction

    Science.gov (United States)

    Drnec, Kim; Marathe, Amar R.; Lukos, Jamie R.; Metcalfe, Jason S.

    2016-01-01

    Human automation interaction (HAI) systems have thus far failed to live up to expectations mainly because human users do not always interact with the automation appropriately. Trust in automation (TiA) has been considered a central influence on the way a human user interacts with an automation; if TiA is too high there will be overuse, if TiA is too low there will be disuse. However, even though extensive research into TiA has identified specific HAI behaviors, or trust outcomes, a unique mapping between trust states and trust outcomes has yet to be clearly identified. Interaction behaviors have been intensely studied in the domain of HAI and TiA and this has led to a reframing of the issues of problems with HAI in terms of reliance and compliance. We find the behaviorally defined terms reliance and compliance to be useful in their functionality for application in real-world situations. However, we note that once an inappropriate interaction behavior has occurred it is too late to mitigate it. We therefore take a step back and look at the interaction decision that precedes the behavior. We note that the decision neuroscience community has revealed that decisions are fairly stereotyped processes accompanied by measurable psychophysiological correlates. Two literatures were therefore reviewed. TiA literature was extensively reviewed in order to understand the relationship between TiA and trust outcomes, as well as to identify gaps in current knowledge. We note that an interaction decision precedes an interaction behavior and believe that we can leverage knowledge of the psychophysiological correlates of decisions to improve joint system performance. As we believe that understanding the interaction decision will be critical to the eventual mitigation of inappropriate interaction behavior, we reviewed the decision making literature and provide a synopsis of the state of the art understanding of the decision process from a decision neuroscience perspective. We forward

  2. From Trust in Automation to Decision Neuroscience: Applying Cognitive Neuroscience Methods to Understand and Improve Interaction Decisions Involved in Human Automation Interaction.

    Science.gov (United States)

    Drnec, Kim; Marathe, Amar R; Lukos, Jamie R; Metcalfe, Jason S

    2016-01-01

    Human automation interaction (HAI) systems have thus far failed to live up to expectations mainly because human users do not always interact with the automation appropriately. Trust in automation (TiA) has been considered a central influence on the way a human user interacts with an automation; if TiA is too high there will be overuse, if TiA is too low there will be disuse. However, even though extensive research into TiA has identified specific HAI behaviors, or trust outcomes, a unique mapping between trust states and trust outcomes has yet to be clearly identified. Interaction behaviors have been intensely studied in the domain of HAI and TiA and this has led to a reframing of the issues of problems with HAI in terms of reliance and compliance. We find the behaviorally defined terms reliance and compliance to be useful in their functionality for application in real-world situations. However, we note that once an inappropriate interaction behavior has occurred it is too late to mitigate it. We therefore take a step back and look at the interaction decision that precedes the behavior. We note that the decision neuroscience community has revealed that decisions are fairly stereotyped processes accompanied by measurable psychophysiological correlates. Two literatures were therefore reviewed. TiA literature was extensively reviewed in order to understand the relationship between TiA and trust outcomes, as well as to identify gaps in current knowledge. We note that an interaction decision precedes an interaction behavior and believe that we can leverage knowledge of the psychophysiological correlates of decisions to improve joint system performance. As we believe that understanding the interaction decision will be critical to the eventual mitigation of inappropriate interaction behavior, we reviewed the decision making literature and provide a synopsis of the state of the art understanding of the decision process from a decision neuroscience perspective. We forward

  3. Hostility moderates the effects of social support and intimacy on blood pressure in daily social interactions.

    Science.gov (United States)

    Vella, Elizabeth J; Kamarck, Thomas W; Shiffman, Saul

    2008-03-01

    This study sought to determine the role of hostility in moderating the effects of positive social interactions on ambulatory blood pressure (ABP). Participants (341 adults) completed the Cook-Medley Hostility Scale and underwent ABP monitoring, assessed every 45 min during waking hours across 6 days. An electronic diary measuring mood and social interactions was completed at each ABP assessment. The dependent variables from the ABP monitor included systolic blood pressure, diastolic blood pressure, and heart rate. Different patterns of ambulatory diastolic blood pressure (ADBP) responding to social interactions perceived as intimate or supportive among high- versus low-hostile individuals were observed. Higher intimacy ratings were linked to reductions in ADBP among low-hostile but not high-hostile individuals. Conversely, high-hostile, but not low-hostile, individuals showed increases in ADBP to situations rated high in social support. Although findings for ambulatory systolic blood pressure were nonsignificant, the pattern of results was similar to ADBP. Hostile individuals may find offers of support stressful and may fail to benefit from intimacy during daily life. The pathogenic effects of hostility may be mediated in part by responses to social interactions, both positive and negative. (c) 2008 APA, all rights reserved

  4. Dogs and their human companions: the effect of familiarity on dog-human interactions.

    Science.gov (United States)

    Kerepesi, Andrea; Dóka, Antal; Miklósi, Ádám

    2015-01-01

    There are few quantitative examinations of the extent to which dogs discriminate between familiar and unfamiliar persons. In our study we have investigated whether dogs show differential behaviour towards humans of different degrees of familiarity (owner, familiar person, unfamiliar person). Dogs and humans were observed in eight test situations: (1) Three-way strange situation test, (2) Calling in from food, (3) Obedience test, (4) Walking away, (5) Threatening approach, (6) Playful interaction, (7) Food inhibition test and (8) Manipulation of the dog's body. Dogs distinguished between the owner and the two other test partners in those tests which involved separation from the owner (Test 1, 4), were aversive for the dog (Test 5) or involved playing interaction (Test 6). Our results revealed that the owner cannot be replaced by a familiar person in situations provoking elevated anxiety and fear. In contrasts, dogs did not discriminate between the owner and the familiar person in those tests that were based on obedient behaviour or behaviour towards an assertive person (Tests 2, 3, 7 and 8). Dogs' former training experience reduced the difference between their behaviour towards the owner and the familiar person in situations requiring obedience but it did not mask it totally. The dogs' behaviour towards each of the humans participating in the tests was consistent all over the test series. In summary, dogs discriminated between their owner and the unfamiliar person and always preferred the owner to the unfamiliar person. However, the discrimination between the owner and the familiar person is context-specific. This article is part of a Special Issue entitled: Canine Behavior. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Simplified Human-Robot Interaction: Modeling and Evaluation

    Directory of Open Access Journals (Sweden)

    Balazs Daniel

    2013-10-01

    Full Text Available In this paper a novel concept of human-robot interaction (HRI modeling is proposed. Including factors like trust in automation, situational awareness, expertise and expectations a new user experience framework is formed for industrial robots. Service Oriented Robot Operation, proposed in a previous paper, creates an abstract level in HRI and it is also included in the framework. This concept is evaluated with exhaustive tests. Results prove that significant improvement in task execution may be achieved and the new system is more usable for operators with less experience with robotics; personnel specific for small and medium enterprises (SMEs.

  6. Human mammary progenitor cell fate decisions are products of interactions with combinatorial microenvironments

    Energy Technology Data Exchange (ETDEWEB)

    LaBarge, Mark A; Nelson, Celeste M; Villadsen, Rene; Fridriksdottir, Agla; Ruth, Jason R; Stampfer, Martha R; Petersen, Ole W; Bissell, Mina J

    2008-09-19

    In adult tissues, multi-potent progenitor cells are some of the most primitive members of the developmental hierarchies that maintain homeostasis. That progenitors and their more mature progeny share identical genomes, suggests that fate decisions are directed by interactions with extrinsic soluble factors, ECM, and other cells, as well as physical properties of the ECM. To understand regulation of fate decisions, therefore, would require a means of understanding carefully choreographed combinatorial interactions. Here we used microenvironment protein microarrays to functionally identify combinations of cell-extrinsic mammary gland proteins and ECM molecules that imposed specific cell fates on bipotent human mammary progenitor cells. Micropatterned cell culture surfaces were fabricated to distinguish between the instructive effects of cell-cell versus cell-ECM interactions, as well as constellations of signaling molecules; and these were used in conjunction with physiologically relevant 3 dimensional human breast cultures. Both immortalized and primary human breast progenitors were analyzed. We report on the functional ability of those proteins of the mammary gland that maintain quiescence, maintain the progenitor state, and guide progenitor differentiation towards myoepithelial and luminal lineages.

  7. Situated Agents and Humans in Social Interaction for Elderly Healthcare: From Coaalas to AVICENA.

    Science.gov (United States)

    Gómez-Sebastià, Ignasi; Moreno, Jonathan; Álvarez-Napagao, Sergio; Garcia-Gasulla, Dario; Barrué, Cristian; Cortés, Ulises

    2016-02-01

    Assistive Technologies (AT) are an application area where several Artificial Intelligence techniques and tools have been successfully applied to support elderly or impeded people on their daily activities. However, approaches to AT tend to center in the user-tool interaction, neglecting the user's connection with its social environment (such as caretakers, relatives and health professionals) and the possibility to monitor undesired behaviour providing both adaptation to a dynamic environment and early response to potentially dangerous situations. In previous work we have presented COAALAS, an intelligent social and norm-aware device for elderly people that is able to autonomously organize, reorganize and interact with the different actors involved in elderly-care, either human actors or other devices. In this paper we put our work into context, by first examining what are the desirable properties of such a system, analysing the state-of-the-art on the relevant topics, and verifying the validity of our proposal in a larger context that we call AVICENA. AVICENA's aim is develop a semi-autonomous (collaborative) tool to promote monitored, intensive, extended and personalized therapeutic regime adherence at home based on adaptation techniques.

  8. The influence of system interactivity and technical support on learning management system utilization

    Directory of Open Access Journals (Sweden)

    Sousan Baleghi-Zadeh

    2017-03-01

    Full Text Available In recent years, there has been a growing increase in using Learning Management System (LMS by universities. However, its utilization by students is limited in Malaysia. The main purpose of the present study is to develop and test a model that predicts LMS utilization by Malaysian higher education students. Based on the Technology Acceptance Model, the study investigated the relationships among six constructs (system interactivity, technical support, perceived ease of use, perceived usefulness, behavioral intention to use and LMS use through structural equation modelling. The participants were 216 undergraduate students from a local university in Malaysia. The result of the study revealed that system interactivity had a significant effect on perceived usefulness, but not on perceived ease of use; technical support had a significant effect on perceived ease of use, but not on perceived usefulness.

  9. Biological interactions and human health effects of static magnetic fields

    International Nuclear Information System (INIS)

    Tenforde, T.S.

    1994-09-01

    Mechanisms through which static magnetic fields interact with living systems will be described and illustrated by selected experimental observations. These mechanisms include electrodynamic interactions with moving ionic charges (blood flow and nerve impulse conduction), magnetomechanical interactions (orientation and translation of molecular structures and magnetic particles), and interactions with electronic spin states in charge transfer reactions (photo-induced electron transfer in photosynthesis). A general summary will also be presented of the biological effects of static magnetic fields studied in the laboratory and in natural settings. One aspect of magnetic field effects that merits special concern is their influence on implanted medical electronic devices such as cardiac pacemakers. Several extensive studies have demonstrated closure of the reed switch in pacemakers exposed to relatively weak static magnetic fields, thereby causing them to revert to an asynchronous mode of operation that is potentially hazardous. Recommendations for human exposure limits are provided

  10. Interaction of amphiphilic drugs with human and bovine serum albumins.

    Science.gov (United States)

    Khan, Abbul Bashar; Khan, Javed Masood; Ali, Mohd Sajid; Khan, Rizwan Hasan; Kabir-Ud-Din

    2012-11-01

    To know the interaction of amphiphilic drugs nortriptyline hydrochloride (NOT) and promazine hydrochloride (PMZ) with serum albumins (i.e., human serum albumin (HSA) and bovine serum albumin (BSA)), techniques of UV-visible, fluorescence, and circular dichroism (CD) spectroscopies are used. The binding affinity is more in case of PMZ with both the serum albumins. The quenching rate constant (k(q)) values suggest a static quenching process for all the drug-serum albumin interactions. The UV-visible results show that the change in protein conformation of PMZ-serum albumin interactions are more prominent as compared to NOT-serum albumin interactions. The CD results also explain the conformational changes in the serum albumins on binding with the drugs. The increment in %α-helical structure is slightly more for drug-BSA complexes as compared to drug-HSA complexes. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Insight into bacterial virulence mechanisms against host immune response via the Yersinia pestis-human protein-protein interaction network.

    Science.gov (United States)

    Yang, Huiying; Ke, Yuehua; Wang, Jian; Tan, Yafang; Myeni, Sebenzile K; Li, Dong; Shi, Qinghai; Yan, Yanfeng; Chen, Hui; Guo, Zhaobiao; Yuan, Yanzhi; Yang, Xiaoming; Yang, Ruifu; Du, Zongmin

    2011-11-01

    A Yersinia pestis-human protein interaction network is reported here to improve our understanding of its pathogenesis. Up to 204 interactions between 66 Y. pestis bait proteins and 109 human proteins were identified by yeast two-hybrid assay and then combined with 23 previously published interactions to construct a protein-protein interaction network. Topological analysis of the interaction network revealed that human proteins targeted by Y. pestis were significantly enriched in the proteins that are central in the human protein-protein interaction network. Analysis of this network showed that signaling pathways important for host immune responses were preferentially targeted by Y. pestis, including the pathways involved in focal adhesion, regulation of cytoskeleton, leukocyte transendoepithelial migration, and Toll-like receptor (TLR) and mitogen-activated protein kinase (MAPK) signaling. Cellular pathways targeted by Y. pestis are highly relevant to its pathogenesis. Interactions with host proteins involved in focal adhesion and cytoskeketon regulation pathways could account for resistance of Y. pestis to phagocytosis. Interference with TLR and MAPK signaling pathways by Y. pestis reflects common characteristics of pathogen-host interaction that bacterial pathogens have evolved to evade host innate immune response by interacting with proteins in those signaling pathways. Interestingly, a large portion of human proteins interacting with Y. pestis (16/109) also interacted with viral proteins (Epstein-Barr virus [EBV] and hepatitis C virus [HCV]), suggesting that viral and bacterial pathogens attack common cellular functions to facilitate infections. In addition, we identified vasodilator-stimulated phosphoprotein (VASP) as a novel interaction partner of YpkA and showed that YpkA could inhibit in vitro actin assembly mediated by VASP.

  12. PPI finder: a mining tool for human protein-protein interactions.

    Directory of Open Access Journals (Sweden)

    Min He

    Full Text Available BACKGROUND: The exponential increase of published biomedical literature prompts the use of text mining tools to manage the information overload automatically. One of the most common applications is to mine protein-protein interactions (PPIs from PubMed abstracts. Currently, most tools in mining PPIs from literature are using co-occurrence-based approaches or rule-based approaches. Hybrid methods (frame-based approaches by combining these two methods may have better performance in predicting PPIs. However, the predicted PPIs from these methods are rarely evaluated by known PPI databases and co-occurred terms in Gene Ontology (GO database. METHODOLOGY/PRINCIPAL FINDINGS: We here developed a web-based tool, PPI Finder, to mine human PPIs from PubMed abstracts based on their co-occurrences and interaction words, followed by evidences in human PPI databases and shared terms in GO database. Only 28% of the co-occurred pairs in PubMed abstracts appeared in any of the commonly used human PPI databases (HPRD, BioGRID and BIND. On the other hand, of the known PPIs in HPRD, 69% showed co-occurrences in the literature, and 65% shared GO terms. CONCLUSIONS: PPI Finder provides a useful tool for biologists to uncover potential novel PPIs. It is freely accessible at http://liweilab.genetics.ac.cn/tm/.

  13. Brain-Computer Interfaces. Applying our Minds to Human-Computer Interaction

    NARCIS (Netherlands)

    Tan, Desney S.; Nijholt, Antinus

    2010-01-01

    For generations, humans have fantasized about the ability to create devices that can see into a person’s mind and thoughts, or to communicate and interact with machines through thought alone. Such ideas have long captured the imagination of humankind in the form of ancient myths and modern science

  14. Human motion behavior while interacting with an industrial robot.

    Science.gov (United States)

    Bortot, Dino; Ding, Hao; Antonopolous, Alexandros; Bengler, Klaus

    2012-01-01

    Human workers and industrial robots both have specific strengths within industrial production. Advantageously they complement each other perfectly, which leads to the development of human-robot interaction (HRI) applications. Bringing humans and robots together in the same workspace may lead to potential collisions. The avoidance of such is a central safety requirement. It can be realized with sundry sensor systems, all of them decelerating the robot when the distance to the human decreases alarmingly and applying the emergency stop, when the distance becomes too small. As a consequence, the efficiency of the overall systems suffers, because the robot has high idle times. Optimized path planning algorithms have to be developed to avoid that. The following study investigates human motion behavior in the proximity of an industrial robot. Three different kinds of encounters between the two entities under three robot speed levels are prompted. A motion tracking system is used to capture the motions. Results show, that humans keep an average distance of about 0,5m to the robot, when the encounter occurs. Approximation of the workbenches is influenced by the robot in ten of 15 cases. Furthermore, an increase of participants' walking velocity with higher robot velocities is observed.

  15. A RESEARCH AIMED AT DETERMINATION BETWEEN HUMAN RESOURCES PRACTICES AND PERCEIVED ORGANIZATIONAL SUPPORT RELATIONSHIP IN ORGANIZATIONS

    Directory of Open Access Journals (Sweden)

    EBRU AYKAN

    2013-06-01

    Full Text Available Perceived Organizational Support (POS which was popularized in the early 1990s, is conception that may have both positive and negative effect on the staff and organization. In many ways perceived organizational support can determine the continuity of an organization over the long term. This study look at relationship between human resources practices which is taken on five dimensions and perceived organizational support. An investigation has been conduct over bed and supplier industry in Kayseri. The research that was performed with 227 worker is concluded that there are positive relations between training and human resources politics practices and perceived organizational support as of dimensions and between human resource management practices and perceived organizational support as of general.

  16. The aryl hydrocarbon receptor and glucocorticoid receptor interact to activate human metallothionein 2A

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Shoko, E-mail: satosho@rs.tus.ac.jp [Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan); Shirakawa, Hitoshi, E-mail: shirakah@m.tohoku.ac.jp [Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan); Tomita, Shuhei, E-mail: tomita@med.tottori-u.ac.jp [Division of Molecular Pharmacology, Department of Pathophysiological and Therapeutic Science, Yonago 683-8503 (Japan); Tohkin, Masahiro, E-mail: tohkin@phar.nagoya-cu.ac.jp [Department of Medical Safety Science, Graduate School of Pharmaceutical Science, Nagoya City University, Nagoya 267-8603 (Japan); Gonzalez, Frank J., E-mail: gonzalef@mail.nih.gov [Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Komai, Michio, E-mail: mkomai@m.tohoku.ac.jp [Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan)

    2013-11-15

    Although the aryl hydrocarbon receptor (AHR) and glucocorticoid receptor (GR) play essential roles in mammalian development, stress responses, and other physiological events, crosstalk between these receptors has been the subject of much debate. Metallothioneins are classic glucocorticoid-inducible genes that were reported to increase upon treatment with AHR agonists in rodent tissues and cultured human cells. In this study, the mechanism of human metallothionein 2A (MT2A) gene transcription activation by AHR was investigated. Cotreatment with 3-methylcholanthrene and dexamethasone, agonists of AHR and GR respectively, synergistically increased MT2A mRNA levels in HepG2 cells. MT2A induction was suppressed by RNA interference against AHR or GR. Coimmunoprecipitation experiments revealed a physical interaction between AHR and GR proteins. Moreover, chromatin immunoprecipitation assays indicated that AHR was recruited to the glucocorticoid response element in the MT2A promoter. Thus, we provide a novel mechanism whereby AHR modulates expression of human MT2A via the glucocorticoid response element and protein–protein interactions with GR. - Highlights: • Aryl hydrocarbon receptor forms a complex with glucocorticoid receptor in cells. • Human metallothionein gene is regulated by the AHR and GR interaction. • AHR–GR complex binds to glucocorticoid response element in metallothionein gene. • We demonstrated a novel transcriptional mechanism via AHR and GR interaction.

  17. The aryl hydrocarbon receptor and glucocorticoid receptor interact to activate human metallothionein 2A

    International Nuclear Information System (INIS)

    Sato, Shoko; Shirakawa, Hitoshi; Tomita, Shuhei; Tohkin, Masahiro; Gonzalez, Frank J.; Komai, Michio

    2013-01-01

    Although the aryl hydrocarbon receptor (AHR) and glucocorticoid receptor (GR) play essential roles in mammalian development, stress responses, and other physiological events, crosstalk between these receptors has been the subject of much debate. Metallothioneins are classic glucocorticoid-inducible genes that were reported to increase upon treatment with AHR agonists in rodent tissues and cultured human cells. In this study, the mechanism of human metallothionein 2A (MT2A) gene transcription activation by AHR was investigated. Cotreatment with 3-methylcholanthrene and dexamethasone, agonists of AHR and GR respectively, synergistically increased MT2A mRNA levels in HepG2 cells. MT2A induction was suppressed by RNA interference against AHR or GR. Coimmunoprecipitation experiments revealed a physical interaction between AHR and GR proteins. Moreover, chromatin immunoprecipitation assays indicated that AHR was recruited to the glucocorticoid response element in the MT2A promoter. Thus, we provide a novel mechanism whereby AHR modulates expression of human MT2A via the glucocorticoid response element and protein–protein interactions with GR. - Highlights: • Aryl hydrocarbon receptor forms a complex with glucocorticoid receptor in cells. • Human metallothionein gene is regulated by the AHR and GR interaction. • AHR–GR complex binds to glucocorticoid response element in metallothionein gene. • We demonstrated a novel transcriptional mechanism via AHR and GR interaction

  18. Treatment of human-computer interface in a decision support system

    International Nuclear Information System (INIS)

    Heger, A.S.; Duran, F.A.; Cox, R.G.

    1992-01-01

    One of the most challenging applications facing the computer community is development of effective adaptive human-computer interface. This challenge stems from the complex nature of the human part of this symbiosis. The application of this discipline to the environmental restoration and waste management is further complicated due to the nature of environmental data. The information that is required to manage environmental impacts of human activity is fundamentally complex. This paper will discuss the efforts at Sandia National Laboratories in developing the adaptive conceptual model manager within the constraint of the environmental decision-making. A computer workstation, that hosts the Conceptual Model Manager and the Sandia Environmental Decision Support System will also be discussed

  19. Human Exploration System Test-Bed for Integration and Advancement (HESTIA) Support of Future NASA Deep-Space Missions

    Science.gov (United States)

    Marmolejo, Jose; Ewert, Michael

    2016-01-01

    The Engineering Directorate at the NASA - Johnson Space Center is outfitting a 20-Foot diameter hypobaric chamber in Building 7 to support future deep-space Environmental Control & Life Support System (ECLSS) research as part of the Human Exploration System Test-bed for Integration and Advancement (HESTIA) Project. This human-rated chamber is the only NASA facility that has the unique experience, chamber geometry, infrastructure, and support systems capable of conducting this research. The chamber was used to support Gemini, Apollo, and SkyLab Missions. More recently, it was used to conduct 30-, 60-, and 90-day human ECLSS closed-loop testing in the 1990s to support the International Space Station and life support technology development. NASA studies show that both planetary surface and deep-space transit crew habitats will be 3-4 story cylindrical structures driven by human occupancy volumetric needs and launch vehicle constraints. The HESTIA facility offers a 3-story, 20-foot diameter habitat consistent with the studies' recommendations. HESTIA operations follow stringent processes by a certified test team that including human testing. Project management, analysis, design, acquisition, fabrication, assembly and certification of facility build-ups are available to support this research. HESTIA offers close proximity to key stakeholders including astronauts, Human Research Program (who direct space human research for the agency), Mission Operations, Safety & Mission Assurance, and Engineering Directorate. The HESTIA chamber can operate at reduced pressure and elevated oxygen environments including those proposed for deep-space exploration. Data acquisition, power, fluids and other facility resources are available to support a wide range of research. Recently completed HESTIA research consisted of unmanned testing of ECLSS technologies. Eventually, the HESTIA research will include humans for extended durations at reduced pressure and elevated oxygen to demonstrate

  20. SnapAnatomy, a computer-based interactive tool for independent learning of human anatomy.

    Science.gov (United States)

    Yip, George W; Rajendran, Kanagasuntheram

    2008-06-01

    Computer-aided instruction materials are becoming increasing popular in medical education and particularly in the teaching of human anatomy. This paper describes SnapAnatomy, a new interactive program that the authors designed for independent learning of anatomy. SnapAnatomy is primarily tailored for the beginner student to encourage the learning of anatomy by developing a three-dimensional visualization of human structure that is essential to applications in clinical practice and the understanding of function. The program allows the student to take apart and to accurately put together body components in an interactive, self-paced and variable manner to achieve the learning outcome.

  1. Multidisciplinary perspectives on the history of human interactions with life in the ocean

    DEFF Research Database (Denmark)

    MacDiarmid, Alison; MacKenzie, Brian; Ojaveer, Henn

    2016-01-01

    -term changes of affected species and define appropriate and realistic management targets. Second, increased multi-and trans-disciplinary effort is required to better understand the relative importance of different human demographic, technological, economic, and cultural drivers on the patterns, intensities......There is an essentially circular interaction between the human social system and the marine ecosystem. The Oceans Past V Conference "Multidisciplinary perspectives on the history of human interactions with life in the ocean" held in Tallinn, Estonia, in May 2015 was an opportunity...... for the presentation and discussion of papers on a diverse array of topics that examined this socio-ecological system from a historical perspective. Here we provide background to the disciplines participating in the conference and to the conference itself. We summarize the conference papers that appear in this special...

  2. Redesign of a computerized clinical reminder for colorectal cancer screening: a human-computer interaction evaluation

    Directory of Open Access Journals (Sweden)

    Saleem Jason J

    2011-11-01

    Full Text Available Abstract Background Based on barriers to the use of computerized clinical decision support (CDS learned in an earlier field study, we prototyped design enhancements to the Veterans Health Administration's (VHA's colorectal cancer (CRC screening clinical reminder to compare against the VHA's current CRC reminder. Methods In a controlled simulation experiment, 12 primary care providers (PCPs used prototypes of the current and redesigned CRC screening reminder in a within-subject comparison. Quantitative measurements were based on a usability survey, workload assessment instrument, and workflow integration survey. We also collected qualitative data on both designs. Results Design enhancements to the VHA's existing CRC screening clinical reminder positively impacted aspects of usability and workflow integration but not workload. The qualitative analysis revealed broad support across participants for the design enhancements with specific suggestions for improving the reminder further. Conclusions This study demonstrates the value of a human-computer interaction evaluation in informing the redesign of information tools to foster uptake, integration into workflow, and use in clinical practice.

  3. Reliability of a Novel Social Activity Questionnaire: Perceived Social Support and Verbal Interaction in the Wisconsin Registry for Alzheimer's Prevention.

    Science.gov (United States)

    Zuelsdorff, Megan L; Koscik, Rebecca L; Okonkwo, Ozioma C; Peppard, Paul E; Hermann, Bruce P; Sager, Mark A; Johnson, Sterling C; Engelman, Corinne D

    2018-02-01

    Social activity is associated with healthy aging and preserved cognition. Such activity includes a confluence of social support and verbal interaction, each influencing cognition through rarely parsed, mechanistically distinct pathways. We created a novel verbal interaction measure for the Wisconsin Registry for Alzheimer's Prevention (WRAP) and assessed reliability of resultant data, a first step toward mechanism-driven examination of social activity as a modifiable predictor of cognitive health. Two WRAP subsamples completed a test-retest study to determine 8-week stability ( n = 107) and 2-year stability ( n = 136) of verbal interaction, and 2-year stability of perceived social support. Reliability was determined using quadratic-weighted kappa, percent agreement, or correlation coefficients. Reliability was fair to almost perfect. The association between social support and interaction quantity decreased with age. Social activity data demonstrate moderate to excellent temporal stability. Moreover, in older individuals, social support and verbal interaction represent two distinct dimensions of social activity.

  4. Beaming into the rat world: enabling real-time interaction between rat and human each at their own scale.

    Directory of Open Access Journals (Sweden)

    Jean-Marie Normand

    Full Text Available Immersive virtual reality (IVR typically generates the illusion in participants that they are in the displayed virtual scene where they can experience and interact in events as if they were really happening. Teleoperator (TO systems place people at a remote physical destination embodied as a robotic device, and where typically participants have the sensation of being at the destination, with the ability to interact with entities there. In this paper, we show how to combine IVR and TO to allow a new class of application. The participant in the IVR is represented in the destination by a physical robot (TO and simultaneously the remote place and entities within it are represented to the participant in the IVR. Hence, the IVR participant has a normal virtual reality experience, but where his or her actions and behaviour control the remote robot and can therefore have physical consequences. Here, we show how such a system can be deployed to allow a human and a rat to operate together, but the human interacting with the rat on a human scale, and the rat interacting with the human on the rat scale. The human is represented in a rat arena by a small robot that is slaved to the human's movements, whereas the tracked rat is represented to the human in the virtual reality by a humanoid avatar. We describe the system and also a study that was designed to test whether humans can successfully play a game with the rat. The results show that the system functioned well and that the humans were able to interact with the rat to fulfil the tasks of the game. This system opens up the possibility of new applications in the life sciences involving participant observation of and interaction with animals but at human scale.

  5. Beaming into the rat world: enabling real-time interaction between rat and human each at their own scale.

    Science.gov (United States)

    Normand, Jean-Marie; Sanchez-Vives, Maria V; Waechter, Christian; Giannopoulos, Elias; Grosswindhager, Bernhard; Spanlang, Bernhard; Guger, Christoph; Klinker, Gudrun; Srinivasan, Mandayam A; Slater, Mel

    2012-01-01

    Immersive virtual reality (IVR) typically generates the illusion in participants that they are in the displayed virtual scene where they can experience and interact in events as if they were really happening. Teleoperator (TO) systems place people at a remote physical destination embodied as a robotic device, and where typically participants have the sensation of being at the destination, with the ability to interact with entities there. In this paper, we show how to combine IVR and TO to allow a new class of application. The participant in the IVR is represented in the destination by a physical robot (TO) and simultaneously the remote place and entities within it are represented to the participant in the IVR. Hence, the IVR participant has a normal virtual reality experience, but where his or her actions and behaviour control the remote robot and can therefore have physical consequences. Here, we show how such a system can be deployed to allow a human and a rat to operate together, but the human interacting with the rat on a human scale, and the rat interacting with the human on the rat scale. The human is represented in a rat arena by a small robot that is slaved to the human's movements, whereas the tracked rat is represented to the human in the virtual reality by a humanoid avatar. We describe the system and also a study that was designed to test whether humans can successfully play a game with the rat. The results show that the system functioned well and that the humans were able to interact with the rat to fulfil the tasks of the game. This system opens up the possibility of new applications in the life sciences involving participant observation of and interaction with animals but at human scale.

  6. Smart sensor: a platform for an interactive human physiological state recognition study

    Directory of Open Access Journals (Sweden)

    Andrej Gorochovik

    2013-03-01

    Full Text Available This paper describes a concept of making interactive human state recognition systems based on smart sensor design. The token measures on proper ADC signal processing had significantly lowered the interference level. A more reliable way of measuring human skin temperature was offered by using Maxim DS18B20 digital thermometers. They introduced a more sensible response to temperature changes compared to previously used analog LM35 thermometers. An adaptive HR measuring algorithm was introduced to suppress incorrect ECG signal readings caused by human muscular activities. User friendly interactive interface for touch sensitive GLCD screen was developed to present real time physiological data readings both in numerals and graphics. User was granted an ability to dynamically customize data processing methods according to his needs. Specific procedures were developed to simplify physiological state recording for further analysis. The introduced physiological data sampling and preprocessing platform was optimized to be compatible with “ATmega Oscilloscope” PC data collecting and visualizing software.

  7. The human interactome knowledge base (hint-kb): An integrative human protein interaction database enriched with predicted protein–protein interaction scores using a novel hybrid technique

    KAUST Repository

    Theofilatos, Konstantinos A.

    2013-07-12

    Proteins are the functional components of many cellular processes and the identification of their physical protein–protein interactions (PPIs) is an area of mature academic research. Various databases have been developed containing information about experimentally and computationally detected human PPIs as well as their corresponding annotation data. However, these databases contain many false positive interactions, are partial and only a few of them incorporate data from various sources. To overcome these limitations, we have developed HINT-KB (http://biotools.ceid.upatras.gr/hint-kb/), a knowledge base that integrates data from various sources, provides a user-friendly interface for their retrieval, cal-culatesasetoffeaturesofinterest and computesaconfidence score for every candidate protein interaction. This confidence score is essential for filtering the false positive interactions which are present in existing databases, predicting new protein interactions and measuring the frequency of each true protein interaction. For this reason, a novel machine learning hybrid methodology, called (Evolutionary Kalman Mathematical Modelling—EvoKalMaModel), was used to achieve an accurate and interpretable scoring methodology. The experimental results indicated that the proposed scoring scheme outperforms existing computational methods for the prediction of PPIs.

  8. Enhanced health E-decision literacy via interactive multi-criterial support

    DEFF Research Database (Denmark)

    Kaltoft, Mette Kjer; Almeida, J.; Moncho Mas, Vicent

    Healthcare lacks a generic language for decisional communication. We aim to enhance health decision literacy via specific e-decision support. Given the multi-criterial, preference-sensitive nature of decision-making, we implement the Multi-Criteria Decision Analysis (MCDA) technique online...... in an interactive and visual template (Annalisa), developing decision-specific tools at the clinical/personal and group/policy levels. Our current nationally funded project on bone health caters for home-prepared, informed and preference-based consent and taps into existing e-health infrastructures towards person...

  9. Drivers' communicative interactions: on-road observations and modelling for integration in future automation systems.

    Science.gov (United States)

    Portouli, Evangelia; Nathanael, Dimitris; Marmaras, Nicolas

    2014-01-01

    Social interactions with other road users are an essential component of the driving activity and may prove critical in view of future automation systems; still up to now they have received only limited attention in the scientific literature. In this paper, it is argued that drivers base their anticipations about the traffic scene to a large extent on observations of social behaviour of other 'animate human-vehicles'. It is further argued that in cases of uncertainty, drivers seek to establish a mutual situational awareness through deliberate communicative interactions. A linguistic model is proposed for modelling these communicative interactions. Empirical evidence from on-road observations and analysis of concurrent running commentary by 25 experienced drivers support the proposed model. It is suggested that the integration of a social interactions layer based on illocutionary acts in future driving support and automation systems will improve their performance towards matching human driver's expectations. Practitioner Summary: Interactions between drivers on the road may play a significant role in traffic coordination. On-road observations and running commentaries are presented as empirical evidence to support a model of such interactions; incorporation of drivers' interactions in future driving support and automation systems may improve their performance towards matching driver's expectations.

  10. Human processor modelling language (HPML): Estimate working memory load through interaction

    OpenAIRE

    Geisler, J.; Scheben, C.

    2007-01-01

    To operate machines over their user interface may cause high load on human's working memory. This load can decrease performance in the working task significantly if this task is a cognitive challenging one, e. g. diagnosis. With the »Human Processor Modelling Language« (HPML) the interaction activity can be modelled with a directed graph. From such models a condensed indicator value for working memory load can be estimated. Thus different user interface solutions can get compared with respect...

  11. Prediction of the Ebola Virus Infection Related Human Genes Using Protein-Protein Interaction Network.

    Science.gov (United States)

    Cao, HuanHuan; Zhang, YuHang; Zhao, Jia; Zhu, Liucun; Wang, Yi; Li, JiaRui; Feng, Yuan-Ming; Zhang, Ning

    2017-01-01

    Ebola hemorrhagic fever (EHF) is caused by Ebola virus (EBOV). It is reported that human could be infected by EBOV with a high fatality rate. However, association factors between EBOV and host still tend to be ambiguous. According to the "guilt by association" (GBA) principle, proteins interacting with each other are very likely to function similarly or the same. Based on this assumption, we tried to obtain EBOV infection-related human genes in a protein-protein interaction network using Dijkstra algorithm. We hope it could contribute to the discovery of novel effective treatments. Finally, 15 genes were selected as potential EBOV infection-related human genes. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. The interaction of beta 2-microglobulin (beta 2m) with mouse class I major histocompatibility antigens and its ability to support peptide binding. A comparison of human and mouse beta 2m

    DEFF Research Database (Denmark)

    Pedersen, L O; Stryhn, A; Holter, T L

    1995-01-01

    of class I molecules are involved in peptide binding, whereas most of class I molecules are involved in beta 2m binding. We propose that mouse beta 2m interacts with the minor peptide binding (i.e. the "empty") fraction with a lower affinity than human beta 2m does, whereas mouse and human beta 2m interact......The function of major histocompatibility complex (MHC) class I molecules is to sample peptides derived from intracellular proteins and to present these peptides to CD8+ cytotoxic T lymphocytes. In this paper, biochemical assays addressing MHC class I binding of both peptide and beta 2-microglobulin...... (beta 2m) have been used to examine the assembly of the trimolecular MHC class I/beta 2m/peptide complex. Recombinant human beta 2m and mouse beta 2ma have been generated to compare the binding of the two beta 2m to mouse class I. It is frequently assumed that human beta 2m binds to mouse class I heavy...

  13. A HUMAN FACTORS ENGINEERING PROCESS TO SUPPORT HUMAN-SYSTEM INTERFACE DESIGN IN CONTROL ROOM MODERNIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Kovesdi, C.; Joe, J.; Boring, R.

    2017-05-01

    The primary objective of the United States (U.S.) Department of Energy (DOE) Light Water Reactor Sustainability (LWRS) program is to sustain operation of the existing commercial nuclear power plants (NPPs) through a multi-pathway approach in conducting research and development (R&D). The Advanced Instrumentation, Information, and Control (II&C) System Technologies pathway conducts targeted R&D to address aging and reliability concerns with legacy instrumentation and control (I&C) and other information systems in existing U.S. NPPs. Control room modernization is an important part following this pathway, and human factors experts at Idaho National Laboratory (INL) have been involved in conducting R&D to support migration of new digital main control room (MCR) technologies from legacy analog and legacy digital I&C. This paper describes a human factors engineering (HFE) process that supports human-system interface (HSI) design in MCR modernization activities, particularly with migration of old digital to new digital I&C. The process described in this work is an expansion from the LWRS Report INL/EXT-16-38576, and is a requirements-driven approach that aligns with NUREG-0711 requirements. The work described builds upon the existing literature by adding more detail around key tasks and decisions to make when transitioning from HSI Design into Verification and Validation (V&V). The overall objective of this process is to inform HSI design and elicit specific, measurable, and achievable human factors criteria for new digital technologies. Upon following this process, utilities should have greater confidence with transitioning from HSI design into V&V.

  14. Transcriptional interactions suggest niche segregation among microorganisms in the human gut

    DEFF Research Database (Denmark)

    Plichta, Damian Rafal; Juncker, Agnieszka; dos Santos, Marcelo Bertalan Quintanilha

    2016-01-01

    The human gastrointestinal (GI) tract is the habitat for hundreds of microbial species, of which many cannot be cultivated readily, presumably because of the dependencies between species 1. Studies of microbial co-occurrence in the gut have indicated community substructures that may reflect...... functional and metabolic interactions between cohabiting species 2,3. To move beyond species co-occurrence networks, we systematically identified transcriptional interactions between pairs of coexisting gut microbes using metagenomics and microarray-based metatranscriptomics data from 233 stool samples from...

  15. The mixed reality of things: emerging challenges for human-information interaction

    Science.gov (United States)

    Spicer, Ryan P.; Russell, Stephen M.; Rosenberg, Evan Suma

    2017-05-01

    Virtual and mixed reality technology has advanced tremendously over the past several years. This nascent medium has the potential to transform how people communicate over distance, train for unfamiliar tasks, operate in challenging environments, and how they visualize, interact, and make decisions based on complex data. At the same time, the marketplace has experienced a proliferation of network-connected devices and generalized sensors that are becoming increasingly accessible and ubiquitous. As the "Internet of Things" expands to encompass a predicted 50 billion connected devices by 2020, the volume and complexity of information generated in pervasive and virtualized environments will continue to grow exponentially. The convergence of these trends demands a theoretically grounded research agenda that can address emerging challenges for human-information interaction (HII). Virtual and mixed reality environments can provide controlled settings where HII phenomena can be observed and measured, new theories developed, and novel algorithms and interaction techniques evaluated. In this paper, we describe the intersection of pervasive computing with virtual and mixed reality, identify current research gaps and opportunities to advance the fundamental understanding of HII, and discuss implications for the design and development of cyber-human systems for both military and civilian use.

  16. Knowledge-based support for design and operational use of human-machine interfaces

    International Nuclear Information System (INIS)

    Johannsen, G.

    1994-01-01

    The possibilities for knowledge support of different human user classes, namely operators, operational engineers and designers of human-machine interfaces, are discussed. Several human-machine interface functionalities are briefly explained. The paper deals with such questions as which type of knowledge is needed for design and operation, how to represent it, where to get it from, how to process it, and how to consider and use it. The relationships between design and operational use are thereby emphasised. (author)

  17. 'The Loss of My Elderly Patient:' Interactive reflective writing to support medical students' rites of passage.

    Science.gov (United States)

    Wald, Hedy S; Reis, Shmuel P; Monroe, Alicia D; Borkan, Jeffrey M

    2010-01-01

    The fostering of reflective capacity within medical education helps develop critical thinking and clinical reasoning skills and enhances professionalism. Use of reflective narratives to augment reflective practice instruction is well documented. At Warren Alpert Medical School of Brown University (Alpert Med), a narrative medicine curriculum innovation of students' reflective writing (field notes) with individualized feedback from an interdisciplinary faculty team (in pre-clinical years) has been implemented in a Doctoring course to cultivate reflective capacity, empathy, and humanism. Interactive reflective writing (student writer/faculty feedback provider dyad), we propose, can additionally support students with rites of passage at critical educational junctures. At Alpert Med, we have devised a tool to guide faculty in crafting quality feedback, i.e. the Brown Educational Guide to Analysis of Narrative (BEGAN) which includes identifying students' salient quotes, utilizing reflection-inviting questions and close reading, highlighting derived lessons/key concepts, extracting clinical patterns, and providing concrete recommendations as relevant. We provide an example of a student's narrative describing an emotionally powerful and meaningful event - the loss of his first patient - and faculty responses using BEGAN. The provision of quality feedback to students' reflective writing - supported by BEGAN - can facilitate the transformation of student to professional through reflection within medical education.

  18. RELATIVE EFFICACY OF HUMAN SOCIAL INTERACTION AND FOOD AS REINFORCERS FOR DOMESTIC DOGS AND HAND-REARED WOLVES

    Science.gov (United States)

    Feuerbacher, Erica N; Wynne, Clive D. L

    2012-01-01

    Despite the intimate relationship dogs share with humans in Western society, we know relatively little about the variables that produce and maintain dog social behavior towards humans. One possibility is that human social interaction is itself a reinforcer for dog behavior. As an initial assessment of the variables that might maintain dog social behavior, we compared the relative efficacy of brief human social interaction to a small piece of food as a reinforcer for an arbitrary response (nose touch). We investigated this in three populations of canids: shelter dogs, owned dogs, and hand-reared wolves. Across all three canid populations, brief social interaction was a relatively ineffective reinforcer compared to food for most canids, producing lower responding and longer latencies than food. PMID:22851794

  19. You Look Human, But Act Like a Machine: Agent Appearance and Behavior Modulate Different Aspects of Human–Robot Interaction

    Directory of Open Access Journals (Sweden)

    Abdulaziz Abubshait

    2017-08-01

    Full Text Available Gaze following occurs automatically in social interactions, but the degree to which gaze is followed depends on whether an agent is perceived to have a mind, making its behavior socially more relevant for the interaction. Mind perception also modulates the attitudes we have toward others, and determines the degree of empathy, prosociality, and morality invested in social interactions. Seeing mind in others is not exclusive to human agents, but mind can also be ascribed to non-human agents like robots, as long as their appearance and/or behavior allows them to be perceived as intentional beings. Previous studies have shown that human appearance and reliable behavior induce mind perception to robot agents, and positively affect attitudes and performance in human–robot interaction. What has not been investigated so far is whether different triggers of mind perception have an independent or interactive effect on attitudes and performance in human–robot interaction. We examine this question by manipulating agent appearance (human vs. robot and behavior (reliable vs. random within the same paradigm and examine how congruent (human/reliable vs. robot/random versus incongruent (human/random vs. robot/reliable combinations of these triggers affect performance (i.e., gaze following and attitudes (i.e., agent ratings in human–robot interaction. The results show that both appearance and behavior affect human–robot interaction but that the two triggers seem to operate in isolation, with appearance more strongly impacting attitudes, and behavior more strongly affecting performance. The implications of these findings for human–robot interaction are discussed.

  20. Limited communication capacity unveils strategies for human interaction

    Science.gov (United States)

    Miritello, Giovanna; Lara, Rubén; Cebrian, Manuel; Moro, Esteban

    2013-06-01

    Connectivity is the key process that characterizes the structural and functional properties of social networks. However, the bursty activity of dyadic interactions may hinder the discrimination of inactive ties from large interevent times in active ones. We develop a principled method to detect tie de-activation and apply it to a large longitudinal, cross-sectional communication dataset (~19 months, ~20 million people). Contrary to the perception of ever-growing connectivity, we observe that individuals exhibit a finite communication capacity, which limits the number of ties they can maintain active in time. On average men display higher capacity than women, and this capacity decreases for both genders over their lifespan. Separating communication capacity from activity reveals a diverse range of tie activation strategies, from stable to exploratory. This allows us to draw novel relationships between individual strategies for human interaction and the evolution of social networks at global scale.

  1. Brain-Computer Interfaces Applying Our Minds to Human-computer Interaction

    CERN Document Server

    Tan, Desney S

    2010-01-01

    For generations, humans have fantasized about the ability to create devices that can see into a person's mind and thoughts, or to communicate and interact with machines through thought alone. Such ideas have long captured the imagination of humankind in the form of ancient myths and modern science fiction stories. Recent advances in cognitive neuroscience and brain imaging technologies have started to turn these myths into a reality, and are providing us with the ability to interface directly with the human brain. This ability is made possible through the use of sensors that monitor physical p

  2. Learning to Control Advanced Life Support Systems

    Science.gov (United States)

    Subramanian, Devika

    2004-01-01

    Advanced life support systems have many interacting processes and limited resources. Controlling and optimizing advanced life support systems presents unique challenges. In particular, advanced life support systems are nonlinear coupled dynamical systems and it is difficult for humans to take all interactions into account to design an effective control strategy. In this project. we developed several reinforcement learning controllers that actively explore the space of possible control strategies, guided by rewards from a user specified long term objective function. We evaluated these controllers using a discrete event simulation of an advanced life support system. This simulation, called BioSim, designed by Nasa scientists David Kortenkamp and Scott Bell has multiple, interacting life support modules including crew, food production, air revitalization, water recovery, solid waste incineration and power. They are implemented in a consumer/producer relationship in which certain modules produce resources that are consumed by other modules. Stores hold resources between modules. Control of this simulation is via adjusting flows of resources between modules and into/out of stores. We developed adaptive algorithms that control the flow of resources in BioSim. Our learning algorithms discovered several ingenious strategies for maximizing mission length by controlling the air and water recycling systems as well as crop planting schedules. By exploiting non-linearities in the overall system dynamics, the learned controllers easily out- performed controllers written by human experts. In sum, we accomplished three goals. We (1) developed foundations for learning models of coupled dynamical systems by active exploration of the state space, (2) developed and tested algorithms that learn to efficiently control air and water recycling processes as well as crop scheduling in Biosim, and (3) developed an understanding of the role machine learning in designing control systems for

  3. Efficient prediction of human protein-protein interactions at a global scale.

    Science.gov (United States)

    Schoenrock, Andrew; Samanfar, Bahram; Pitre, Sylvain; Hooshyar, Mohsen; Jin, Ke; Phillips, Charles A; Wang, Hui; Phanse, Sadhna; Omidi, Katayoun; Gui, Yuan; Alamgir, Md; Wong, Alex; Barrenäs, Fredrik; Babu, Mohan; Benson, Mikael; Langston, Michael A; Green, James R; Dehne, Frank; Golshani, Ashkan

    2014-12-10

    Our knowledge of global protein-protein interaction (PPI) networks in complex organisms such as humans is hindered by technical limitations of current methods. On the basis of short co-occurring polypeptide regions, we developed a tool called MP-PIPE capable of predicting a global human PPI network within 3 months. With a recall of 23% at a precision of 82.1%, we predicted 172,132 putative PPIs. We demonstrate the usefulness of these predictions through a range of experiments. The speed and accuracy associated with MP-PIPE can make this a potential tool to study individual human PPI networks (from genomic sequences alone) for personalized medicine.

  4. TECHNOLOGICAL DEVELOPMENT OF DRIVING SUPPORT SYSTEMS BASED ON HUMAN BEHAVIORAL CHARACTERISTICS

    Directory of Open Access Journals (Sweden)

    Shunichi DOI

    2006-01-01

    Full Text Available Driving support and cruise assist systems are of growing importance in achieving both road traffic safety and convenience. Such driver support seeks to achieve, with the highest possible quality, nothing less than “driver-vehicle symbiosis under all conditions.” At the same time, many traffic accidents result from improper driver behavior. The author focuses on driver behavior under various driving conditions, conducting detailed measurement and analysis of visual perception and attention characteristics as well as perceptual characteristics involved in driving. The aim in doing so is to support research on driving support systems and driving workload reduction technologies that function as human-vehicle systems and take such characteristics into account.

  5. Instabilities of bellows: Dependence on internal pressure, end supports, and interactions in accelerator magnet systems

    International Nuclear Information System (INIS)

    Shutt, R.P.; Rehak, M.L.

    1990-01-01

    For superconducting magnets, one needs many bellows for connection of various helium cooling transfer lines in addition to beam tube bellows. There could be approximately 10,000 magnet interconnection bellows in the SSC exposed to an internal pressure. When axially compressed or internally pressurized, bellows can become unstable, leading to gross distortion or complete failure. If several bellows are contained in an assembly, failure modes might interact. If designed properly, large bellows can be a very feasible possibility for connecting the large tubular shells that support the magnet iron yokes and superconducting coils and contain supercritical helium for magnet cooling. We present here (1) a spring-supported bellows model, in order to develop necessary design features for bellows and end supports so that instabilities will not occur in the bellows pressure operating region, including some margin, (2) a model of three superconducting accelerator magnets connected by two large bellows, in order to ascertain that support requirements are satisfied and in order to study interaction effects between the two bellows. Reliability of bellows for our application will be stressed. 3 refs., 4 figs

  6. Enhancing Human-Computer Interaction Design Education: Teaching Affordance Design for Emerging Mobile Devices

    Science.gov (United States)

    Faiola, Anthony; Matei, Sorin Adam

    2010-01-01

    The evolution of human-computer interaction design (HCID) over the last 20 years suggests that there is a growing need for educational scholars to consider new and more applicable theoretical models of interactive product design. The authors suggest that such paradigms would call for an approach that would equip HCID students with a better…

  7. Natural Tasking of Robots Based on Human Interaction Cues (CD-ROM)

    National Research Council Canada - National Science Library

    Brooks, Rodney A

    2005-01-01

    ...: 1 CD-ROM; 4 3/4 in.; 207 MB. ABSTRACT: We proposed developing the perceptual and intellectual abilities of robots so that in the field, war-fighters can interact with them in the same natural ways as they do with their human cohorts...

  8. Designing robot embodiments for social interaction: Affordances topple realism and aesthetics

    NARCIS (Netherlands)

    Paauwe, R.A.; Hoorn, J.F.; Konijn, E.A.; Keyson, D.V.

    2015-01-01

    In the near future, human-like social robots will become indispensable for providing support in various social tasks, in particular for healthcare (e.g., assistance, coaching). The perception of realism, in particular human-like features, can help facilitate mediated social interaction. The current

  9. Designing Robot Embodiments for Social Interaction : Affordances Topple Realism and Aesthetics

    NARCIS (Netherlands)

    Paauwe, R.A.; Hoorn, J.F.; Konijn, E.A.; Keyson, D.V.

    2015-01-01

    In the near future, human-like social robots will become indispensable for providing support in various social tasks, in particular for healthcare (e.g., assistance, coaching). The perception of realism, in particular human-like features, can help facilitate mediated social interaction. The current

  10. The antiprogesterone Org 31710 inhibits human blastocyst-endometrial interactions in vitro

    DEFF Research Database (Denmark)

    Petersen, Astrid; Bentin-Ley, Ursula; Ravn, Vibeke

    2005-01-01

    OBJECTIVE: To investigate the effect of the anti-P Org 31710 on human blastocyst attachment to cultured endometrial epithelial cells. DESIGN: Experimental in vitro study. SETTING: University hospital. PATIENT(S): Eleven fertile endometrial donors. INTERVENTION(S): Timed endometrial biopsy for cell...... statistical significance. The presence of swollen microvilli, precursors of endometrial pinopodes, was significantly reduced on cultures with Org 31710 (P=.03). CONCLUSION(S): The study presents a model for human blastocyst-endometrial interactions responding to an anti-P drug. The exact mechanism...

  11. Towards a Pedagogy of Humanizing Child Education in Terms of Teacher-Student Interaction

    Science.gov (United States)

    Shih, Yi-Huang

    2018-01-01

    By reading and analyzing related studies, this article investigates methods for humanizing child education in terms of teacher-student interaction. It is hoped that this study will allow teachers to understand the essence of child education, to become better educators and humanizing child education, so that students can develop a healthy body and…

  12. Development of Methodologies, Metrics, and Tools for Investigating Human-Robot Interaction in Space Robotics

    Science.gov (United States)

    Ezer, Neta; Zumbado, Jennifer Rochlis; Sandor, Aniko; Boyer, Jennifer

    2011-01-01

    Human-robot systems are expected to have a central role in future space exploration missions that extend beyond low-earth orbit [1]. As part of a directed research project funded by NASA s Human Research Program (HRP), researchers at the Johnson Space Center have started to use a variety of techniques, including literature reviews, case studies, knowledge capture, field studies, and experiments to understand critical human-robot interaction (HRI) variables for current and future systems. Activities accomplished to date include observations of the International Space Station s Special Purpose Dexterous Manipulator (SPDM), Robonaut, and Space Exploration Vehicle (SEV), as well as interviews with robotics trainers, robot operators, and developers of gesture interfaces. A survey of methods and metrics used in HRI was completed to identify those most applicable to space robotics. These methods and metrics included techniques and tools associated with task performance, the quantification of human-robot interactions and communication, usability, human workload, and situation awareness. The need for more research in areas such as natural interfaces, compensations for loss of signal and poor video quality, psycho-physiological feedback, and common HRI testbeds were identified. The initial findings from these activities and planned future research are discussed. Human-robot systems are expected to have a central role in future space exploration missions that extend beyond low-earth orbit [1]. As part of a directed research project funded by NASA s Human Research Program (HRP), researchers at the Johnson Space Center have started to use a variety of techniques, including literature reviews, case studies, knowledge capture, field studies, and experiments to understand critical human-robot interaction (HRI) variables for current and future systems. Activities accomplished to date include observations of the International Space Station s Special Purpose Dexterous Manipulator

  13. Supporting secure programming in web applications through interactive static analysis.

    Science.gov (United States)

    Zhu, Jun; Xie, Jing; Lipford, Heather Richter; Chu, Bill

    2014-07-01

    Many security incidents are caused by software developers' failure to adhere to secure programming practices. Static analysis tools have been used to detect software vulnerabilities. However, their wide usage by developers is limited by the special training required to write rules customized to application-specific logic. Our approach is interactive static analysis, to integrate static analysis into Integrated Development Environment (IDE) and provide in-situ secure programming support to help developers prevent vulnerabilities during code construction. No additional training is required nor are there any assumptions on ways programs are built. Our work is motivated in part by the observation that many vulnerabilities are introduced due to failure to practice secure programming by knowledgeable developers. We implemented a prototype interactive static analysis tool as a plug-in for Java in Eclipse. Our technical evaluation of our prototype detected multiple zero-day vulnerabilities in a large open source project. Our evaluations also suggest that false positives may be limited to a very small class of use cases.

  14. THE INFLUENCE OF SOCIAL SUPPORT ON PSYCHOLOGICAL DISTRESS IN OLDER PERSONS: AN EXAMINATION OF INTERACTION PROCESSES IN AUSTRALIA.

    Science.gov (United States)

    Sharpley, Christopher; Hussain, Rafat; Wark, Stuart; Mcevoy, Mark; Attia, John

    2015-12-01

    Social support is proposed as a coping mechanism against anxiety and depression amongst older persons, but few data have examined how this occurs. This study assessed the contributions of two sub-components of social support as mediators against psychological distress-broadly defined as anxiety and depression. 1,560 men and 1,758 women from the Hunter Community Study (Australia) completed the Duke Social Support Scale and the Kessler Psychological Distress Scale. The Duke Social Support Scale examined the amount of social interaction and satisfaction with social interactions. Significant mediating effects of social support were found in the Kessler Psychological Distress Scale items measuring depression but not anxiety. Satisfaction with social support was a significant predictor of Kessler Psychological Distress Scale total score and Sadness items, but the amount of social support was not a predictor of stress. Social support may assist with symptoms of depression, i.e., specific sadness/depressed mood, but not necessarily with anxiety. Implications for policy and service delivery were discussed.

  15. Interacting proteins on human spermatozoa: adaptive evolution of the binding of semenogelin I to EPPIN.

    Directory of Open Access Journals (Sweden)

    Erick J R Silva

    Full Text Available Semenogelin I (SEMG1 is found in human semen coagulum and on the surface of spermatozoa bound to EPPIN. The physiological significance of the SEMG1/EPPIN interaction on the surface of spermatozoa is its capacity to modulate sperm progressive motility. The present study investigates the hypothesis that the interacting surface of SEMG1 and EPPIN co-evolved within the Hominoidea time scale, as a result of adaptive pressures applied by their roles in sperm protection and reproductive fitness. Our results indicate that some amino acid residues of SEMG1 and EPPIN possess a remarkable deficiency of variation among hominoid primates. We observe a distinct residue change unique to humans within the EPPIN sequence containing a SEMG1 interacting surface, namely His92. In addition, Bayes Empirical Bayes analysis for positive selection indicates that the SEMG1 Cys239 residue underwent positive selection in humans, probably as a consequence of its role in increasing the binding affinity of these interacting proteins. We confirm the critical role of Cys239 residue for SEMG1 binding to EPPIN and inhibition of sperm motility by showing that recombinant SEMG1 mutants in which Cys239 residue was changed to glycine, aspartic acid, histidine, serine or arginine have reduced capacity to interact to EPPIN and to inhibit human sperm motility in vitro. In conclusion, our results indicate that EPPIN and SEMG1 rapidly co-evolved in primates due to their critical role in the modulation of sperm motility in the semen coagulum, providing unique insights into the molecular co-evolution of sperm surface interacting proteins.

  16. Folded plate assemblies with branching column supports : Interaction and control of overall shape

    NARCIS (Netherlands)

    Falk, A.; Turrin, M.; von Buelow, P.

    2010-01-01

    The work described in this paper aims at developing the interrelation and overall effects of interaction between a folded plate roof structure and a system of branching column supports. In the context of architectural performance it is of interest to discuss the effects of the material on

  17. Identification of proteins that may directly interact with human RPA.

    Science.gov (United States)

    Nakaya, Ryou; Takaya, Junichiro; Onuki, Takeshi; Moritani, Mariko; Nozaki, Naohito; Ishimi, Yukio

    2010-11-01

    RPA, which consisted of three subunits (RPA1, 2 and 3), plays essential roles in DNA transactions. At the DNA replication forks, RPA binds to single-stranded DNA region to stabilize the structure and to assemble other replication proteins. Interactions between RPA and several replication proteins have been reported but the analysis is not comprehensive. We systematically performed the qualitative analysis to identify RPA interaction partners to understand the protein-protein interaction at the replication forks. We expressed in insect cells the three subunits of human RPA, together with one replication protein, which is present at the forks under normal conditions and/or under the replication stress conditions, to examine the interaction. Among 30 proteins examined in total, it was found that at least 14 proteins interacted with RPA. RPA interacted with MCM3-7, MCM-BP and CDC45 proteins among the proteins that play roles in the initiation and the elongation of the DNA replication. RPA bound with TIPIN, CLASPIN and RAD17, which are involved in the DNA replication checkpoint functions. RPA also bound with cyclin-dependent kinases and an amino-terminal fragment of Rb protein that negatively regulates DNA replication. These results suggest that RPA interacts with the specific proteins among those that play roles in the regulation of the replication fork progression.

  18. Impact of human wildlife conflict on socio-economy of support zone ...

    African Journals Online (AJOL)

    Impact of human wildlife conflict on socio-economy of support zone ... who mostly dependent on natural resources of their immediate environment. ... Most of the victims attack and kill the animals as a management method in both communities.

  19. Understanding Older Adult's Perceptions of Factors that Support Trust in Human and Robot Care Providers.

    Science.gov (United States)

    Stuck, Rachel E; Rogers, Wendy A

    2017-06-01

    As the population of older adults increase so will the need for care providers, both human and robot. Trust is a key aspect to establish and maintain a successful older adult-care provider relationship. However, due to trust volatility it is essential to understand it within specific contexts. This proposed mixed methods study will explore what dimensions of trust emerge as important within the human-human and human-robot dyads in older adults and care providers. First, this study will help identify key qualities that support trust in a care provider relationship. By understanding what older adults perceive as needing to trust humans and robots for various care tasks, we can begin to provide recommendations based on user expectations for design to support trust.

  20. Ghost-in-the-Machine reveals human social signals for human–robot interaction

    Science.gov (United States)

    Loth, Sebastian; Jettka, Katharina; Giuliani, Manuel; de Ruiter, Jan P.

    2015-01-01

    We used a new method called “Ghost-in-the-Machine” (GiM) to investigate social interactions with a robotic bartender taking orders for drinks and serving them. Using the GiM paradigm allowed us to identify how human participants recognize the intentions of customers on the basis of the output of the robotic recognizers. Specifically, we measured which recognizer modalities (e.g., speech, the distance to the bar) were relevant at different stages of the interaction. This provided insights into human social behavior necessary for the development of socially competent robots. When initiating the drink-order interaction, the most important recognizers were those based on computer vision. When drink orders were being placed, however, the most important information source was the speech recognition. Interestingly, the participants used only a subset of the available information, focussing only on a few relevant recognizers while ignoring others. This reduced the risk of acting on erroneous sensor data and enabled them to complete service interactions more swiftly than a robot using all available sensor data. We also investigated socially appropriate response strategies. In their responses, the participants preferred to use the same modality as the customer’s requests, e.g., they tended