WorldWideScience

Sample records for support accelerator commissioning

  1. Molr - A delegation framework for accelerator commissioning

    CERN Document Server

    Valliappan, Nachiappan

    2017-01-01

    Accelerator commissioning is the process of preparing an accelerator for beam operations. A typical commissioning period at CERN involves running thousands of tests on many complex systems and machinery to ensure smooth beam operations and correct functioning of the machine protection systems. AccTesting is a software framework which helps orchestrate the commissioning of CERN’s accelerators and it’s equipment systems. This involves running and managing tests provided by various commissioning tools and analyzing their outcomes. Currently, AccTesting only supports a specific set of commissioning tools. In this project, we aim to widen the spectrum of commissioning tools supported by AccTesting by developing a generic and programmable integration framework called Molr, which would enable the integration of more commissioning tools with AccTesting. In this report, we summarize the work done during the summer student project and lay out a brief overview of the current status and next steps for Molr.

  2. Commissioning of the Ground Test Accelerator RFQ

    International Nuclear Information System (INIS)

    Johnson, K.F.; Sander, O.R.; Atkins, W.H.; Bolme, G.O.; Brown, S.; Connolly, R.; Garnett, R.; Gilpatrick, J.D.; Guy, F.W.; Ingalls, W.B.; Little, C.; Lohson, R.A.; Lloyd, S.; Neuschaefer, G.; Power, J.; Saadatmand, K.; Sandoval, D.P.; Stevens, R.R.; Vaughn, G.; Wadlinger, E.A.; Weiss, R.; Yuan, V.

    1992-01-01

    The Ground Test Accelerator (GTA) has the objective of verifying much of the technology (physics and engineering) required for producing high-brightness, high-current H - beams. GTA commissioning is staged to verify the beam dynamics design of each major accelerator component as it is brought on-line. The commissioning stages are the 35 key H - injector, the 2.5 MeV Radio Frequency Quadrupole (RFQ), the Intertank Matching Section (IMS), the 3.2 MeV first 2βγ Drift Tube Linac (DTL-1) module, the 8.7 MeV 2βγ DTL (modules 1--5), and the 24 MeV GTA; all 10 DTL modules. Commissioning results from the RFQ beam experiments will be presented along with comparisons to simulations

  3. Commissioning of the ground test accelerator RFQ

    International Nuclear Information System (INIS)

    Johnson, K.F.; Sander, O.R.; Atkins, W.H.; Bolme, G.O.; Brown, S.; Garnott, R.; Gilpatrick, J.D.; Guy, F.W.; Ingalls, W.B.; Little, C.; Lohsen, R.A.; Lloyd, S.; Neuschaefer, G.; Power, J.; Sandoval, D.P.; Saadatmand, K.; Stevens, R.R.Jr.; Vaughn, G.; Wadlinger, E.A.; Yuan, V.; Connolly, R.; Weiss, R.

    1992-01-01

    The Ground Test Accelerator (GTA) has the objective of verifying much of the technology (physics and engineering) required for producing high-brightness, high-current H - beams. GTA commissioning is staged to verify the beam dynamics design of each major accelerator component as it is brought on line. The commissioning stages are the 35-keV H - injector, the 2.5-MeV radio-frequency quadrupole (RFQ), the intertank matching section (IMS), the 3.2-MeV first 2-βλ drift tube linac (DTL-1) module, the 8.7-MeV 2-βλDTL (modules 1-5), and the 24-MeV GTA (all 10 DTL modules). Commissioning results from the RFQ beam experiments are presented along with comparisons with simulations. (Author) 8 refs., 9 figs

  4. Commissioning of the Ground Test Accelerator Intertank Matching Section

    International Nuclear Information System (INIS)

    Johnson, K.F.; Sander, O.R.; Atkins, W.H.; Bolme, G.O.; Cole, R.; Connolly, R.; Gilpatrick, J.D.; Ingalls, W.B.; Kersteins, D.; Little, C.; Lohsen, R.A.; Lysenko, W.P.; Mottershead, C.T.; Power, J.; Rusthoi, D.P.; Sandoval, D.P.; Stevens, R.R.; Vaughn, G.; Wadlinger, E.A.; Weiss, R.; Yuan, V.

    1992-01-01

    The Ground Test Accelerator (GTA) has the objective of verifying much of the technology (physics and engineering) required for producing high-brightness, high-current H - beams. GTA commissioning is staged to verify the beam dynamics design of each major accelerator component as it is brought on-line. The commissioning stages are the 35 keV H - injector, the 2.5 MeV Radio Frequency Quadrupole (RFQ), the Intertank Matching Section (IMS), the 3.2 MeV first 2βγ Drift Tube Linac (DTL-1) module, the 8.7 MeV 2βγ DTL (modules 1--5), and the 24 MeV GTA; all 10 DTL modules. Commissioning results from the IMS beam experiments will be presented

  5. Commissioning the GTA accelerator

    International Nuclear Information System (INIS)

    Sander, O.R.; Atkins, W.H.; Bolme, G.O.; Bowling, S.; Brown, S.; Cole, R.; Gilpatrick, J.D.; Garnett, R.; Guy, F.W.; Ingalls, W.B.; Johnson, K.F.; Kerstiens, D.; Little, C.; Lohsen, R.A.; Lloyd, S.; Lysenko, W.P.; Mottershead, C.T.; Neuschaefer, G.; Power, J.; Rusthoi, D.P.; Sandoval, D.P.; Stevens, R.R.; Vaughn, G.; Wadlinger, E.A.; Connolly, R.; Weiss, R.; Saadatmand, K.

    1992-01-01

    The Ground Test Accelerator (GTA) is being used to resolve the physics and engineering issues related to accelerating, focusing, and steering a high-brightness, high-current H - beam and then neutralizing it. The goal is to produce a 24 MeV, 50 mA device with a 2% duty factor. Specific features of the GTA -- injector, beam optics, rf linac structures, diagnostics, control and rf power systems are described. The first four steps in commissioning have been completed. The RFQ predicted and measured performances are in good agreement; however, the transmission is lower than specifications. Input emittance is larger than design specifications and increases the effects of image charge and multipoles. Displacement of steering magnets in either the horizontal or vertical plane caused beam displacements in both planes. It is suspected that quadrupole rotation is the cause of the coupled motion. 9 figs., 5 tabs., 11 refs

  6. Construction, commissioning and operational experience of the Advanced Photon Source (APS) linear accelerator

    International Nuclear Information System (INIS)

    White, M.; Arnold, N.; Berg, W.

    1996-01-01

    The Advanced Photon Source linear accelerator system consists of a 200 MeV, 2856 MHz S-Band electron linac and a 2-radiation-thick tungsten target followed by a 450 MeV positron linac. The linac system has operated 24 hours per day for the past year to support accelerator commissioning and beam studies and to provide beam for the user experimental program. It achieves the design goal for positron current of 8 mA and produces electron energies up to 650 MeV without the target in place. The linac is described and its operation and performance are discussed

  7. Construction, commissioning and operational experience of the Advanced Photon Source (APS) linear accelerator

    International Nuclear Information System (INIS)

    White, M.; Arnold, N.; Berg, W.; Cours, A.; Fuja, R.; Grelick, A. E.; Sereno, N.; Wesolowski, W.; Ko, K.; Qian, Y.L.; Russell, T.

    1996-01-01

    The Advanced Photon Source linear accelerator system consists of a 200-MeV, 2856-MHz S-band electron linac and a 2-radiation-thick tungsten target followed by a 450-MeV positron linac. The linac system has operated 24 hours per day for the past year to support accelerator commissioning and beam studies and to provide beam for the user experimental program. It achieves the design goal for positron current of 8 mA and produces electron energies up to 650 MeV without the target in place. The linac is described and its operation and performance are discussed. (author)

  8. Photon beam commissioning of an Elekta Synergy linear accelerator

    Science.gov (United States)

    Al Mashud, Md Abdullah; Tariquzzaman, M.; Jahangir Alam, M.; Zakaria, GA

    2017-12-01

    The aim of this study is to present the results of commissioning of Elekta Synergy linear accelerator (linac). The acceptance test and commissioning were performed for three photon beams energies 4 MV, 6 MV and 15 MV and for the multileaf collimator (MLC). The percent depth doses (PDDs), in-plane and cross-plane beam profiles, head scatter factors (Sc), relative photon output factors (Scp), universal wedge transmission factor and MLC transmission factors were measured. The size of gantry, collimator, and couch isocenter were also measured.

  9. Commissioning of accelerator based boron neutron capture therapy system

    International Nuclear Information System (INIS)

    Nakamura, S.; Wakita, A.; Okamoto, H.; Igaki, H.; Itami, J.; Ito, M.; Abe, Y.; Imahori, Y.

    2017-01-01

    Boron neutron capture therapy (BNCT) is a treatment method using a nuclear reaction of 10 B(n, α) 7 Li. BNCT can be deposited the energy to a tumor since the 10 B which has a higher cross-section to a neutron is high is concentrated on the tumor. It is different from conventional radiation therapies that BNCT expects higher treatment effect to radiation resistant tumors since the generated alpha and lithium particles have higher radiological biological effectiveness. In general, BNCT has been performed in research nuclear reactor. Thus, BNCT is not widely applied in a clinical use. According to recent development of accelerator-based boron neutron capture therapy system, the system has an adequate flux of neutrons. Therefore, National Cancer Canter Hospital, Tokyo, Japan is planning to install accelerator based BNCT system. Protons with 2.5 MeV are irradiated to a lithium target system to generate neutrons. As a result, thermal load of the target is 50 kW since current of the protons is 20.0 mA. Additionally, when the accelerator-based BNCT system is installed in a hospital, the facility size is disadvantage in term of neutron measurements. Therefore, the commissioning of the BNCT system is being performed carefully. In this article, we report about the commissioning. (author)

  10. Dosimetry measurements during the commissioning of the GJ-2 electron accelerator

    DEFF Research Database (Denmark)

    Chosdu, R.; Hilmy, N.; Tobing, R.

    1995-01-01

    The GJ-2 electron accelerator (made in China, Sanghai) was put into operation at the Centre for Application of Isotopes and Radiation in Jakarta, Indonesia. In the course of the commissioning of the machine its main technical parameters were measured under different operating conditions. The elec......The GJ-2 electron accelerator (made in China, Sanghai) was put into operation at the Centre for Application of Isotopes and Radiation in Jakarta, Indonesia. In the course of the commissioning of the machine its main technical parameters were measured under different operating conditions......, ethanol-chlorobenzene dosimeter solution and FWT-60 film dosimeters. The applicability of polystyrene calorimeters designed for low electron energies at Ris phi National Laboratory was also tested for nominal dose determination....

  11. Preparing accelerator systems for the RHIC sextant commissioning

    International Nuclear Information System (INIS)

    Trbojevic, D.; Pilat, F.; Ahrens, L.

    1997-01-01

    The Relativistic Heavy Ion Collider (RHIC) construction is progressing steadily towards completion in 1999 when beams will circulate in both collider rings. One of the major tests of the RHIC project was the commissioning of the first sextant with gold ion beams in early 1997. This is a report on preparation of the RHIC accelerator systems for the first sextant test. It includes beam position monitors, timing, injection correction through the magnetic septum and kickers, current transformers, flags and the ionization beam profile monitors, beam loss monitors, beam and quench permit link system, power supply controls, and the configuration database system. The software and hardware development and coordination of the different systems before commissioning were regularly checked during bi-weekly, and (later) weekly, progress report meetings

  12. Commissioning the GTA accelerator

    International Nuclear Information System (INIS)

    Sander, O.R.; Atkins, W.H.; Bolme, G.O.; Bowling, S.; Brown, S.; Cole, R.; Gilpatrick, J.D.; Garnett, R.; Guy, F.W.; Ingalls, W.B.; Johnson, K.F.; Kerstiens, D.; Little, C.; Lohsen, R.A.; Lloyd, S.; Lysenko, W.P.; Mottershead, C.T.; Neuschaefer, G.; Power, J.; Rusthoi, D.P.; Sandoval, D.P. Stevens, R.R. Jr.; Vaughn, G.; Wadlinger, E.A.; Yuan, V.; Connolly, R.; Weiss, R.; Saadatmand, K.

    1992-01-01

    The Ground Test Accelerator (GTA) is supported by the Strategic Defense command as part of their Neutral Particle Beam (NPB) program. Neutral particles have the advantage that in space they are unaffected by the earth's magnetic field and travel in straight lines unless they enter the earth's atmosphere and become charged by stripping. Heavy particles are difficult to stop and can probe the interior of space vehicles; hence, NPB can function as a discriminator between warheads and decoys. We are using GTA to resolve the physics and engineering issues related to accelerating, focusing, and steering a high-brightness, high-current H - beam and then neutralizing it. Our immediate goal is to produce a 24-MeV, 50mA device with a 2% duty factor

  13. Beam commissioning of the 3-GeV rapid cycling synchrotron of the Japan Proton Accelerator Research Complex

    Directory of Open Access Journals (Sweden)

    H. Hotchi

    2009-04-01

    Full Text Available The 3-GeV rapid cycling synchrotron (RCS of the Japan Proton Accelerator Research Complex (J-PARC was commissioned in October 2007, and successfully accomplished 3 GeV acceleration on October 31. Six run cycles through February 2008 were dedicated to commissioning the RCS, for which the initial machine parameter tuning and various underlying beam studies were completed. Then since May 2008 the RCS beam has been delivered to the downstream facilities for their beam commissioning. In this paper we describe beam tuning and study results following our beam commissioning scenario and a beam performance and operational experience obtained in the first commissioning phase through June 2008.

  14. SU-E-T-186: Cloud-Based Quality Assurance Application for Linear Accelerator Commissioning

    International Nuclear Information System (INIS)

    Rogers, J

    2015-01-01

    Purpose: To identify anomalies and safety issues during data collection and modeling for treatment planning systems Methods: A cloud-based quality assurance system (AQUIRE - Automated QUalIty REassurance) has been developed to allow the uploading and analysis of beam data aquired during the treatment planning system commissioning process. In addition to comparing and aggregating measured data, tools have also been developed to extract dose from the treatment planning system for end-to-end testing. A gamma index is perfomed on the data to give a dose difference and distance-to-agreement for validation that a beam model is generating plans consistent with the beam data collection. Results: Over 20 linear accelerators have been commissioning using this platform, and a variety of errors and potential saftey issues have been caught through the validation process. For example, the gamma index of 2% dose, 2mm DTA is quite sufficient to see curves not corrected for effective point of measurement. Also, data imported into the database is analyzed against an aggregate of similar linear accelerators to show data points that are outliers. The resulting curves in the database exhibit a very small standard deviation and imply that a preconfigured beam model based on aggregated linear accelerators will be sufficient in most cases. Conclusion: With the use of this new platform for beam data commissioning, errors in beam data collection and treatment planning system modeling are greatly reduced. With the reduction in errors during acquisition, the resulting beam models are quite similar, suggesting that a common beam model may be possible in the future. Development is ongoing to create routine quality assurance tools to compare back to the beam data acquired during commissioning. I am a medical physicist for Alzyen Medical Physics, and perform commissioning services

  15. SU-E-T-186: Cloud-Based Quality Assurance Application for Linear Accelerator Commissioning

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, J [Alyzen Medical Physics, Paragould, AR (United States)

    2015-06-15

    Purpose: To identify anomalies and safety issues during data collection and modeling for treatment planning systems Methods: A cloud-based quality assurance system (AQUIRE - Automated QUalIty REassurance) has been developed to allow the uploading and analysis of beam data aquired during the treatment planning system commissioning process. In addition to comparing and aggregating measured data, tools have also been developed to extract dose from the treatment planning system for end-to-end testing. A gamma index is perfomed on the data to give a dose difference and distance-to-agreement for validation that a beam model is generating plans consistent with the beam data collection. Results: Over 20 linear accelerators have been commissioning using this platform, and a variety of errors and potential saftey issues have been caught through the validation process. For example, the gamma index of 2% dose, 2mm DTA is quite sufficient to see curves not corrected for effective point of measurement. Also, data imported into the database is analyzed against an aggregate of similar linear accelerators to show data points that are outliers. The resulting curves in the database exhibit a very small standard deviation and imply that a preconfigured beam model based on aggregated linear accelerators will be sufficient in most cases. Conclusion: With the use of this new platform for beam data commissioning, errors in beam data collection and treatment planning system modeling are greatly reduced. With the reduction in errors during acquisition, the resulting beam models are quite similar, suggesting that a common beam model may be possible in the future. Development is ongoing to create routine quality assurance tools to compare back to the beam data acquired during commissioning. I am a medical physicist for Alzyen Medical Physics, and perform commissioning services.

  16. Control system user interface for accelerator commissioning and operation

    International Nuclear Information System (INIS)

    Dobrott, D.; Keeley, D.; Kolte, G.; Mikic, Z.; Lee, M.; Corbett, J.; Howry, S.; King, A.

    1991-01-01

    An Interactive Accelerator Interface Module (AIM) has been developed in a workstation environment for the purposes of assisting in the commissioning and operation of any storage ring/collider system. The function of AIM is to integrate modeling and simulation codes into accelerator and beamline control systems for the purpose of rapid on-line data analysis and error-correction, resulting in significant time-saving. A system dependent module provides for the translation of specific control system data files to appropriate input format for application programs within AIM. Interactive screen graphics, including system function diagrams, menus, beamline element status and update information are standard in AIM. AIM is currently connected to the Stanford Linear Collider (SLC) control system, but is easily transportable to other facilities. This paper describes the development of AIM and its applications on SLC

  17. Report of promotion expert commission for radiation application on 'Promotion of accelerator application study'

    International Nuclear Information System (INIS)

    1997-01-01

    This is a report published on June, 1996, by promotion expert commission for radiation application of the Atomic Energy Commission. Japanese research and development in the fields of forming and application techniques of radiation beams using accelerator is at comparatively high level in the world, and it seems to be important for Japan not only to maintain these research and development level but also to contribute to creation of worldwide intelligent welfare due to scientific technology. In this report, some investigations are conducted on present state and future view of the radiation application study using accelerator, accelerator facility necessary to promote such application study and a procedure to execute its smooth application. However, objects of the study are not limited only for physical study on elementary particle and atomic nucleus, but expanded to photon, electron, positron, muon, proton, neutron, various inonic beams and RI beams for radiations, which are widely applied to industries such as materials science, material engineering, bio-and life-science, medical science, technical engineering, and so forth, and which will be expected for large contribution to development of these industries. The following items are discussed here; 1) present state and future view of radiation application study using accelerator, 2) Accelerator to be prepared and its executing method, and 3) Promotion method of the accelerator application study. (G.K.)

  18. Overview of the Beam diagnostics in the Medaustron Accelerator:Design choices and test Beam commissioning

    CERN Document Server

    Osmic, F; Gyorgy, A; Kerschbaum, A; Repovz, M; Schwarz, S; Neustadt, W; Burtin, G

    2012-01-01

    The MedAustron centre is a synchrotron based accelerator complex for cancer treatment and clinical and non-clinical research with protons and light ions, currently under construction in Wiener Neustadt, Austria. The accelerator complex is based on the CERN-PIMMS study [1] and its technical implementation by the Italian CNAO foundation in Pavia [2]. The MedAustron beam diagnostics system is based on sixteen different monitor types (153 devices in total) and will allow measuring all relevant beam parameters from the source to the irradiation rooms. The monitors will have to cope with large intensities and energy ranges. Currently, one ion source, the low energy beam transfer line and the RFQ are being commissioned in the Injector Test Stand (ITS) at CERN. This paper gives an overview of all beam monitors foreseen for the MedAustron accelerator, elaborates some of the design choices and reports the first beam commissioning results from the ITS.

  19. Role of the team of scientific and technical commissioning support (TSTCS) during Mochovce NPP unit 3 and 4 commissioning

    International Nuclear Information System (INIS)

    Hermansky, J.; Prachar, M.; Sedlacek, M.; Petenyi, V.

    2011-01-01

    The Team of Scientific and Technical Commissioning Support (TSTCS) shall provide an independent support for the Mochovce NPP 3 and 4 Commissioning Department during Mochovce Units 3 and 4 commissioning. This independent support will be in line with the Mochovce NPP 3 and 4 Directive 'Non-active tests and commissioning' and it will be carried out in form of professional and expert works focusing on supervision of fulfilment of requirements for nuclear safety observance. The TSTCS duty to provide for such services during NPP commissioning is specified by Slovak Regulatory Body legislation. The independent TSTCS will supervise; - fulfilment of requirements for nuclear safety during preparation and implementation of commissioning tests; -scientific and technical level of commissioning programmes, and reflection on nuclear safety requirements in commissioning programmes,- commissioning process and test results. Main standpoints of the Team activities for individual unit commissioning stages will be; - assesment of the selected programs of functional tests in installations having an impact on nuclear safety and evaluation of the results of these tests; - assesment of the programs of physics and power commissioning, - assesment of the unit preparedness before fuel loading start; - assesment of the unit preparedness for performing initial criticality and low power commissioning and power commissioning stages; - evaluation of the results of physics and power commissioning stages and sub-stages; - final evaluation of the results from implementing the physics and power commissioning stages. The paper also presents a short description of the Team scope activities, the Team organisation, and a procedure for issuing of standpoints to individual unit commissioning stages. (Authors)

  20. Commissioning experiences on high voltage generator of 750 KeV DC accelerator at RRCAT, Indore

    International Nuclear Information System (INIS)

    Banwari, R.; Kasliwal, A.; Pandit, T.G.

    2009-01-01

    Design approach of high voltage generator for 750 keV DC accelerator, developed at RRCAT Indore, inculcates a unique feature of high frequency operation of symmetrical Cockcroft-Walton voltage generator. Apart from design simplicity and feasibility of modular construction, the high frequency use of symmetrical Cockcroft-Walton circuit gives added advantages of less ripple, better regulation, faster response and low stored energy in the system. Additionally the scheme allows us the use of low voltage, light weight components thus improving the overall economy of the system. The accelerator has been commissioned and made operational at its rated energy of 750 keV in the recent past. With brief introduction on design aspects of high voltage generator and filament power supply of this accelerator, the paper presented here describes the developmental steps of various components with focus on challenges encountered and solutions implemented. Development of high frequency inverter, high voltage ferrite core transformer, compensating inductors, interface bushings, voltage multiplier stack, and filament transformer along with floating power supply for electron emitter of the accelerator has been dealt in detail. The failures encountered during commissioning stages of the accelerator have been reported with measures taken for improvement of the specific components. Intricacies of the reflected capacitance of the multiplier stack and arc-current ground return are also described with their effects on system operation and reliability. (author)

  1. Challenges encountered during an accelerated cogeneration plant construction and commissioning schedule

    International Nuclear Information System (INIS)

    Good, R.L.; Cox, T.P.; Vallejo, J.M.

    1988-01-01

    A decision was made in 1986 to proceed with a 110 magawatt grassroots cogeneration plant to supply the steam and electrical requirements of a large, integrated petrochemical manufacturing facility. Though some preliminary engineering had been done and long delivery equipment purchase orders had been let in the summer of 1986, detailed engineering did not commence until late October and construction until mid-December, 1986. Federal income tax consideration required that the project be in service prior to the end of 1987. This eleven month construction, commissioning, and start up schedule was achieved with 100 per cent operation occurring on December 22, 1987. Numerous challenges were met by the lean Project Team during this accelerated schedule. This paper discusses the development of: Project Team Staffing, Operator and Maintenance Staffing and Training, Commissioning Schedules and Staffing, solutions to Significant Technical Problems

  2. Views of NHS commissioners on commissioning support provision. Evidence from a qualitative study examining the early development of clinical commissioning groups in England.

    Science.gov (United States)

    Petsoulas, Christina; Allen, Pauline; Checkland, Kath; Coleman, Anna; Segar, Julia; Peckham, Stephen; Mcdermott, Imelda

    2014-10-15

    The 2010 healthcare reform in England introduced primary care-led commissioning in the National Health Service (NHS) by establishing clinical commissioning groups (CCGs). A key factor for the success of the reform is the provision of excellent commissioning support services to CCGs. The Government's aim is to create a vibrant market of competing providers of such services (from both for-profit and not-for-profit sectors). Until this market develops, however, commissioning support units (CSUs) have been created from which CCGs are buying commissioning support functions. This study explored the attitudes of CCGs towards outsourcing commissioning support functions during the initial stage of the reform. The research took place between September 2011 and June 2012. We used a case study research design in eight CCGs, conducting in-depth interviews, observation of meetings and analysis of policy documents. We conducted 96 interviews and observed 146 meetings (a total of approximately 439 h). Many CCGs were reluctant to outsource core commissioning support functions (such as contracting) for fear of losing local knowledge and trusted relationships. Others were disappointed by the absence of choice and saw CSUs as monopolies and a recreation of the abolished PCTs. Many expressed doubts about the expectation that outsourcing of commissioning support functions will result in lower administrative costs. Given the nature of healthcare commissioning, outsourcing vital commissioning support functions may not be the preferred option of CCGs. Considerations of high transaction costs, and the risk of fragmentation of services and loss of trusted relationships involved in short-term contracting, may lead most CCGs to decide to form long-term partnerships with commissioning support suppliers in the future. This option, however, limits competition by creating 'network closure' and calls into question the Government's intention to create a vibrant market of commissioning support

  3. How to Commission, Operate and Maintain a Large Future Accelerator Complex From Far Remote Sites

    International Nuclear Information System (INIS)

    Phinney, Nan

    2001-01-01

    A study on future large accelerators [1] has considered a facility, which is designed, built and operated by a worldwide collaboration of equal partner institutions, and which is remote from most of these institutions. The full range of operation was considered including commissioning, machine development, maintenance, trouble shooting and repair. Experience from existing accelerators confirms that most of these activities are already performed remotely. The large high-energy physics experiments and astronomy projects, already involve international collaborations of distant institutions. Based on this experience, the prospects for a machine operated remotely from far sites are encouraging. Experts from each laboratory would remain at their home institution but continue to participate in the operation of the machine after construction. Experts are required to be on site only during initial commissioning and for particularly difficult problems. Repairs require an on-site non-expert maintenance crew. Most of the interventions can be made without an expert and many of the rest resolved with remote assistance. There appears to be no technical obstacle to controlling an accelerator from a distance. The major challenge is to solve the complex management and communication problems

  4. How to Commission, Operate and Maintain a Large Future Accelerator Complex From Far Remote Sites

    Energy Technology Data Exchange (ETDEWEB)

    Phinney, Nan

    2001-12-07

    A study on future large accelerators [1] has considered a facility, which is designed, built and operated by a worldwide collaboration of equal partner institutions, and which is remote from most of these institutions. The full range of operation was considered including commissioning, machine development, maintenance, troubleshooting and repair. Experience from existing accelerators confirms that most of these activities are already performed 'remotely'. The large high-energy physics experiments and astronomy projects, already involve international collaborations of distant institutions. Based on this experience, the prospects for a machine operated remotely from far sites are encouraging. Experts from each laboratory would remain at their home institution but continue to participate in the operation of the machine after construction. Experts are required to be on site only during initial commissioning and for particularly difficult problems. Repairs require an on-site non-expert maintenance crew. Most of the interventions can be made without an expert and many of the rest resolved with remote assistance. There appears to be no technical obstacle to controlling an accelerator from a distance. The major challenge is to solve the complex management and communication problems.

  5. SU-F-T-475: An Evaluation of the Overlap Between the Acceptance Testing and Commissioning Processes for Conventional Medical Linear Accelerators

    International Nuclear Information System (INIS)

    Morrow, A; Rangaraj, D; Perez-Andujar, A; Krishnamurthy, N

    2016-01-01

    Purpose: This work’s objective is to determine the overlap of processes, in terms of sub-processes and time, between acceptance testing and commissioning of a conventional medical linear accelerator and to evaluate the time saved by consolidating the two processes. Method: A process map for acceptance testing for medical linear accelerators was created from vendor documentation (Varian and Elekta). Using AAPM TG-106 and inhouse commissioning procedures, a process map was created for commissioning of said accelerators. The time to complete each sub-process in each process map was evaluated. Redundancies in the processes were found and the time spent on each were calculated. Results: Mechanical testing significantly overlaps between the two processes - redundant work here amounts to 9.5 hours. Many beam non-scanning dosimetry tests overlap resulting in another 6 hours of overlap. Beam scanning overlaps somewhat - acceptance tests include evaluating PDDs and multiple profiles but for only one field size while commissioning beam scanning includes multiple field sizes and depths of profiles. This overlap results in another 6 hours of rework. Absolute dosimetry, field outputs, and end to end tests are not done at all in acceptance testing. Finally, all imaging tests done in acceptance are repeated in commissioning, resulting in about 8 hours of rework. The total time overlap between the two processes is about 30 hours. Conclusion: The process mapping done in this study shows that there are no tests done in acceptance testing that are not also recommended to do for commissioning. This results in about 30 hours of redundant work when preparing a conventional linear accelerator for clinical use. Considering these findings in the context of the 5000 linacs in the United states, consolidating acceptance testing and commissioning would have allowed for the treatment of an additional 25000 patients using no additional resources.

  6. SU-F-T-475: An Evaluation of the Overlap Between the Acceptance Testing and Commissioning Processes for Conventional Medical Linear Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Morrow, A [Scott & White Hospital Temple, TX (United States); Rangaraj, D [Baylor Scott & White Health, Temple, TX (United States); Perez-Andujar, A [University of California San Francisco, San Francisco, CA (United States); Krishnamurthy, N [Baylor Scott & White Healthcare, Temple, TX (United States)

    2016-06-15

    Purpose: This work’s objective is to determine the overlap of processes, in terms of sub-processes and time, between acceptance testing and commissioning of a conventional medical linear accelerator and to evaluate the time saved by consolidating the two processes. Method: A process map for acceptance testing for medical linear accelerators was created from vendor documentation (Varian and Elekta). Using AAPM TG-106 and inhouse commissioning procedures, a process map was created for commissioning of said accelerators. The time to complete each sub-process in each process map was evaluated. Redundancies in the processes were found and the time spent on each were calculated. Results: Mechanical testing significantly overlaps between the two processes - redundant work here amounts to 9.5 hours. Many beam non-scanning dosimetry tests overlap resulting in another 6 hours of overlap. Beam scanning overlaps somewhat - acceptance tests include evaluating PDDs and multiple profiles but for only one field size while commissioning beam scanning includes multiple field sizes and depths of profiles. This overlap results in another 6 hours of rework. Absolute dosimetry, field outputs, and end to end tests are not done at all in acceptance testing. Finally, all imaging tests done in acceptance are repeated in commissioning, resulting in about 8 hours of rework. The total time overlap between the two processes is about 30 hours. Conclusion: The process mapping done in this study shows that there are no tests done in acceptance testing that are not also recommended to do for commissioning. This results in about 30 hours of redundant work when preparing a conventional linear accelerator for clinical use. Considering these findings in the context of the 5000 linacs in the United states, consolidating acceptance testing and commissioning would have allowed for the treatment of an additional 25000 patients using no additional resources.

  7. Commissioning measurements for photon beam data on three TrueBeam linear accelerators, and comparison with Trilogy and Clinac 2100 linear accelerators

    Science.gov (United States)

    2013-01-01

    This study presents the beam data measurement results from the commissioning of three TrueBeam linear accelerators. An additional evaluation of the measured beam data within the TrueBeam linear accelerators contrasted with two other linear accelerators from the same manufacturer (i.e., Clinac and Trilogy) was performed to identify and evaluate any differences in the beam characteristics between the machines and to evaluate the possibility of beam matching for standard photon energies. We performed a comparison of commissioned photon beam data for two standard photon energies (6 MV and 15 MV) and one flattening filter‐free (“FFF”) photon energy (10 FFF) between three different TrueBeam linear accelerators. An analysis of the beam data was then performed to evaluate the reproducibility of the results and the possibility of “beam matching” between the TrueBeam linear accelerators. Additionally, the data from the TrueBeam linear accelerator was compared with comparable data obtained from one Clinac and one Trilogy linear accelerator models produced by the same manufacturer to evaluate the possibility of “beam matching” between the TrueBeam linear accelerators and the previous models. The energies evaluated between the linear accelerator models are the 6 MV for low energy and the 15 MV for high energy. PDD and output factor data showed less than 1% variation and profile data showed variations within 1% or 2 mm between the three TrueBeam linear accelerators. PDD and profile data between the TrueBeam, the Clinac, and Trilogy linear accelerators were almost identical (less than 1% variation). Small variations were observed in the shape of the profile for 15 MV at shallow depths (linear accelerators; the TrueBeam data resulted in a slightly greater penumbra width. The diagonal scans demonstrated significant differences in the profile shapes at a distance greater than 20 cm from the central axis, and this was more notable for the 15 MV energy. Output factor

  8. Future Accelerator Challenges in Support of High-Energy Physics

    International Nuclear Information System (INIS)

    Zisman, Michael S.; Zisman, M.S.

    2008-01-01

    Historically, progress in high-energy physics has largely been determined by development of more capable particle accelerators. This trend continues today with the imminent commissioning of the Large Hadron Collider at CERN, and the worldwide development effort toward the International Linear Collider. Looking ahead, there are two scientific areas ripe for further exploration--the energy frontier and the precision frontier. To explore the energy frontier, two approaches toward multi-TeV beams are being studied, an electron-positron linear collider based on a novel two-beam powering system (CLIC), and a Muon Collider. Work on the precision frontier involves accelerators with very high intensity, including a Super-BFactory and a muon-based Neutrino Factory. Without question, one of the most promising approaches is the development of muon-beam accelerators. Such machines have very high scientific potential, and would substantially advance the state-of-the-art in accelerator design. The challenges of the new generation of accelerators, and how these can be accommodated in the accelerator design, are described. To reap their scientific benefits, all of these frontier accelerators will require sophisticated instrumentation to characterize the beam and control it with unprecedented precision

  9. Future Accelerator Challenges in Support of High-Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Zisman, Michael S.; Zisman, M.S.

    2008-05-03

    Historically, progress in high-energy physics has largely been determined by development of more capable particle accelerators. This trend continues today with the imminent commissioning of the Large Hadron Collider at CERN, and the worldwide development effort toward the International Linear Collider. Looking ahead, there are two scientific areas ripe for further exploration--the energy frontier and the precision frontier. To explore the energy frontier, two approaches toward multi-TeV beams are being studied, an electron-positron linear collider based on a novel two-beam powering system (CLIC), and a Muon Collider. Work on the precision frontier involves accelerators with very high intensity, including a Super-BFactory and a muon-based Neutrino Factory. Without question, one of the most promising approaches is the development of muon-beam accelerators. Such machines have very high scientific potential, and would substantially advance the state-of-the-art in accelerator design. The challenges of the new generation of accelerators, and how these can be accommodated in the accelerator design, are described. To reap their scientific benefits, all of these frontier accelerators will require sophisticated instrumentation to characterize the beam and control it with unprecedented precision.

  10. Daily life support for older adults evaluated by commissioned welfare volunteers

    OpenAIRE

    Onishi, Joji

    2016-01-01

    Japan has a unique system of commissioned welfare volunteers who are familiar with neighborhoods and can identify the households requiring assistance and connect them to public support. In the present study, an anonymous self-rated questionnaire was delivered to commissioned welfare volunteers to clarify the daily life supports provided for elderly households requiring assistance, and 2270 data were collected. The questionnaires included information about elderly households requiring assistan...

  11. Commissioning and Acceptance Testing of the existing linear accelerator upgraded to volumetric modulated arc therapy

    Science.gov (United States)

    Varadharajan, Ekambaram; Ramasubramanian, Velayudham

    2013-01-01

    Aim The RapidArc commissioning and Acceptance Testing program will test and ensure accuracy in DMLC position, precise dose-rate control during gantry rotation and accurate control of gantry speed. Background Recently, we have upgraded our linear accelerator capable of performing IMRT which was functional from 2007 with image guided RapidArc facility. The installation of VMAT in the existing linear accelerator is a tedious process which requires many quality assurance procedures before the proper commissioning of the facility and these procedures are discussed in this study. Materials and methods Output of the machine at different dose rates was measured to verify its consistency at different dose rates. Monitor and chamber linearity at different dose rates were checked. DMLC QA comprising of MLC transmission factor measurement and dosimetric leaf gap measurements were performed using 0.13 cm3 and 0.65 cm3 Farmer type ionization chamber, dose 1 dosimeter, and IAEA 30 cm × 30 cm × 30 cm water phantom. Picket fence test, garden fence test, tests to check leaf positioning accuracy due to carriage movement, calibration of the leaves, leaf speed stability effects due to the acceleration and deceleration of leaves, accuracy and calibration of leaves in producing complex fields, effects of interleaf friction, etc. were verified using EDR2 therapy films, Vidar scanner, Omnipro accept software, amorphous silicon based electronic portal imaging device and EPIQA software.1–8 Results All the DMLC related quality assurance tests were performed and evaluated by film dosimetry, portal dosimetry and EPIQA.7 Conclusion Results confirmed that the linear accelerator is capable of performing accurate VMAT. PMID:24416566

  12. Commissioning and Acceptance Testing of the existing linear accelerator upgraded to volumetric modulated arc therapy.

    Science.gov (United States)

    Varadharajan, Ekambaram; Ramasubramanian, Velayudham

    2013-01-01

    The RapidArc commissioning and Acceptance Testing program will test and ensure accuracy in DMLC position, precise dose-rate control during gantry rotation and accurate control of gantry speed. Recently, we have upgraded our linear accelerator capable of performing IMRT which was functional from 2007 with image guided RapidArc facility. The installation of VMAT in the existing linear accelerator is a tedious process which requires many quality assurance procedures before the proper commissioning of the facility and these procedures are discussed in this study. Output of the machine at different dose rates was measured to verify its consistency at different dose rates. Monitor and chamber linearity at different dose rates were checked. DMLC QA comprising of MLC transmission factor measurement and dosimetric leaf gap measurements were performed using 0.13 cm(3) and 0.65 cm(3) Farmer type ionization chamber, dose 1 dosimeter, and IAEA 30 cm × 30 cm × 30 cm water phantom. Picket fence test, garden fence test, tests to check leaf positioning accuracy due to carriage movement, calibration of the leaves, leaf speed stability effects due to the acceleration and deceleration of leaves, accuracy and calibration of leaves in producing complex fields, effects of interleaf friction, etc. were verified using EDR2 therapy films, Vidar scanner, Omnipro accept software, amorphous silicon based electronic portal imaging device and EPIQA software.(1-8.) All the DMLC related quality assurance tests were performed and evaluated by film dosimetry, portal dosimetry and EPIQA.(7.) Results confirmed that the linear accelerator is capable of performing accurate VMAT.

  13. High performance proton accelerators

    International Nuclear Information System (INIS)

    Favale, A.J.

    1989-01-01

    In concert with this theme this paper briefly outlines how Grumman, over the past 4 years, has evolved from a company that designed and fabricated a Radio Frequency Quadrupole (RFQ) accelerator from the Los Alamos National Laboratory (LANL) physics and specifications to a company who, as prime contractor, is designing, fabricating, assembling and commissioning the US Army Strategic Defense Commands (USA SDC) Continuous Wave Deuterium Demonstrator (CWDD) accelerator as a turn-key operation. In the case of the RFQ, LANL scientists performed the physics analysis, established the specifications supported Grumman on the mechanical design, conducted the RFQ tuning and tested the RFQ at their laboratory. For the CWDD Program Grumman has the responsibility for the physics and engineering designs, assembly, testing and commissioning albeit with the support of consultants from LANL, Lawrence Berkeley Laboratory (LBL) and Brookhaven National laboratory. In addition, Culham Laboratory and LANL are team members on CWDD. LANL scientists have reviewed the physics design as well as a USA SDC review board. 9 figs

  14. Improving Internet Governance: Support to the Global Commission ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    This project provides continued support to the Global Commission on Internet Governance (GCIG) to engage the developing world in important Internet governance discussions. The funds will allow the GCIG to conduct research on the Internet-related dimensions of public policy to inform recommendations for the future of ...

  15. Commissioning for the European XFEL facility

    Science.gov (United States)

    Nölle, D.

    2017-06-01

    The European XFEL is a 4th generation light source based on the Self Amplified Spontaneous Emission (SASE) FreeElectron-Laser concept. It is currently being commissioned in North- Germany. The core installation is a 17.5 GeV superconducting accelerator driving 3 SASE lines with photon energies from 1 to beyond 20 keV range with a maximum of 27.000 pulses per second. The international facility is organized as a limited liability company with shareholders from the contributing countries. DESY has taken over the leadership of the accelerator construction consortium, and will be in charge of the operation of the accelerator complex. The facility was set up with contributions from the 11 shareholder countries, either being hardware systems and/or staff or cash contributions. The construction is almost complete, and the commissioning phase has started by the end of 2015. This contribution will report the status of the accelerator complex with emphasis on the commissioning of the accelerator and an outlook to the commissioning of the SASE 1 FEL line.

  16. Final Commissioning of the Superconducting Heavy Ion Linear Accelerator at IUAC, Delhi

    Science.gov (United States)

    Datta, Tripti Sekhar; Choudhury, Anup; Chacko, Jacob; Kar, Soumen; Antony, Joby; Babu, Suresh; Kumar, Manoj; Mathuria, D. S.; Sahu, Santosh; Kanjilal, Dinakar

    The superconducting linac as a booster of the 15UD Pelletron accelerator was partly commissioned with one linac module housing eight quarter wave bulk niobium cavities along with the superbuncher and rebuncher cryomodules. Subsequently two more linac cryomodules were added to have in total 24 cavities for acceleration. In addition, a new Linde helium refrigerator of capacity 750 W @ 4.2 K was installed in parallel to the earlier CCI refrigerator. The new refrigerator was integrated with the earlier cryogenics network system through a specially designed liquid helium distribution line without any valve box. The cooling philosophy with this new system is modified to have a faster cool down rate in the critical zone (150 - 70 K) to avoid Q disease. The helium gas pressure fluctuation in the cavities is reduced significantly to have stable RF locking. The full linac is being operated and beams with higher energy are being delivered to the users. The present paper will highlight the performance of the new cryogenic system with respect to cool down rate, and helium pressure fluctuation.

  17. Accelerator beam data commissioning equipment and procedures: Report of the TG-106 of the Therapy Physics Committee of the AAPM

    International Nuclear Information System (INIS)

    Das, Indra J.; Cheng, C.-W.; Watts, Ronald J.; Ahnesjoe, Anders; Gibbons, John; Li, X. Allen; Lowenstein, Jessica; Mitra, Raj K.; Simon, William E.; Zhu, Timothy C.

    2008-01-01

    For commissioning a linear accelerator for clinical use, medical physicists are faced with many challenges including the need for precision, a variety of testing methods, data validation, the lack of standards, and time constraints. Since commissioning beam data are treated as a reference and ultimately used by treatment planning systems, it is vitally important that the collected data are of the highest quality to avoid dosimetric and patient treatment errors that may subsequently lead to a poor radiation outcome. Beam data commissioning should be performed with appropriate knowledge and proper tools and should be independent of the person collecting the data. To achieve this goal, Task Group 106 (TG-106) of the Therapy Physics Committee of the American Association of Physicists in Medicine was formed to review the practical aspects as well as the physics of linear accelerator commissioning. The report provides guidelines and recommendations on the proper selection of phantoms and detectors, setting up of a phantom for data acquisition (both scanning and no-scanning data), procedures for acquiring specific photon and electron beam parameters and methods to reduce measurement errors (<1%), beam data processing and detector size convolution for accurate profiles. The TG-106 also provides a brief discussion on the emerging trend in Monte Carlo simulation techniques in photon and electron beam commissioning. The procedures described in this report should assist a qualified medical physicist in either measuring a complete set of beam data, or in verifying a subset of data before initial use or for periodic quality assurance measurements. By combining practical experience with theoretical discussion, this document sets a new standard for beam data commissioning

  18. Coupling and decoupling of the accelerating units for pulsed synchronous linear accelerator

    Science.gov (United States)

    Shen, Yi; Liu, Yi; Ye, Mao; Zhang, Huang; Wang, Wei; Xia, Liansheng; Wang, Zhiwen; Yang, Chao; Shi, Jinshui; Zhang, Linwen; Deng, Jianjun

    2017-12-01

    A pulsed synchronous linear accelerator (PSLA), based on the solid-state pulse forming line, photoconductive semiconductor switch, and high gradient insulator technologies, is a novel linear accelerator. During the prototype PSLA commissioning, the energy gain of proton beams was found to be much lower than expected. In this paper, the degradation of the energy gain is explained by the circuit and cavity coupling effect of the accelerating units. The coupling effects of accelerating units are studied, and the circuit topologies of these two kinds of coupling effects are presented. Two methods utilizing inductance and membrane isolations, respectively, are proposed to reduce the circuit coupling effects. The effectiveness of the membrane isolation method is also supported by simulations. The decoupling efficiency of the metal drift tube is also researched. We carried out the experiments on circuit decoupling of the multiple accelerating cavity. The result shows that both circuit decoupling methods could increase the normalized voltage.

  19. BROOKHAVEN: Booster commissioned

    Energy Technology Data Exchange (ETDEWEB)

    Bleser, Ed

    1992-03-15

    The construction and first commissioning phase of the Booster synchrotron to inject into Brookhaven's veteran Alternating Gradient Synchrotron (AGS) were completed last year. Scheduled to come into operation this year, the new Booster will extend the research capabilities AGS, and with its ability to accelerate partially stripped heavy ions will play an essential role in the chain of accelerators serving the Relativistic Heavy Ion Collider (RHIC)

  20. Advanced Beamline Design for Fermilab's Advanced Superconducting Test Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Prokop, Christopher [Northern Illinois Univ., DeKalb, IL (United States)

    2014-01-01

    The Advanced Superconducting Test Accelerator (ASTA) at Fermilab is a new electron accelerator currently in the commissioning stage. In addition to testing superconducting accelerating cavities for future accelerators, it is foreseen to support a variety of Advanced Accelerator R&D (AARD) experiments. Producing the required electron bunches with the expected flexibility is challenging. The goal of this dissertation is to explore via numerical simulations new accelerator beamlines that can enable the advanced manipulation of electron bunches. The work especially includes the design of a low-energy bunch compressor and a study of transverse-to-longitudinal phase space exchangers.

  1. The Commissioning of the LHC Technical Systems

    CERN Document Server

    Saban, R; Baggiolini, V; Ballarino, A; Barbero-Soto, E; Bellesia, B; Bordry, Frederick; Bozzini, D; Casas-Lino, M-P; Chareyre, V; Claudet, S; Coelingh, G-J; Dahlerup-Petersen, K; Denz, R; Fehér, S; Flora, R; Gruwé, M; Kain, V; Kirby, G; Koratzinos, M; Lauckner, R; Le Naour, S; Mess, K-H; Millet, F; Montabonnet, V; Nisbet, D; Perea-Solano, B; Pojer, M; Principe, R; Rabehl, R; Rijllart, A; Redaelli, S; Rodríguez-Mateos, F; Schmidt, R; Serio, L; Siemko, A; Solfaroli-Camillocci, M; Thiesen, H; Venturini, W; Vergara-Fernandez, A; Verweij, A; Zerlauth, M

    2007-01-01

    The LHC is an accelerator with unprecedented complexity where the energy stored in magnets and the beams exceeds other accelerators by one-to-two orders of magnitude. To ensure a safe and efficient machine start-up without being plagued by technical problems, a phase of "hardware commissioning" was introduced: a thorough commissioning of technical systems without beam. This activity started in June 2005 with the commissioning of individual systems, followed by operating a full sector, one eighth of the machine; the commissioning is expected to last until spring 2008 when commissioning with beam will start. The LHC architecture allows the commissioning of each of the eight sectors independently from the others, before the installation of other sectors is complete. An important effort went into the definition of the programme and the organization of the coordination in the field, as well as in the preparation of the tools to record and analyze test results. This paper discusses the experience with this approach...

  2. Commissioning of the helium cryogenic system for the HIE- ISOLDE accelerator upgrade at CERN

    International Nuclear Information System (INIS)

    Delruelle, N; Inglese, V; Leclercq, Y; Pirotte, O; Williams, L

    2015-01-01

    The High Intensity and Energy ISOLDE (HIE-ISOLDE) project is a major upgrade of the existing ISOLDE and REX-ISOLDE facilities at CERN. The most significant improvement will come from replacing the existing REX accelerating structure by a superconducting linear accelerator (SC linac) composed ultimately of six cryo-modules installed in series, each containing superconducting RF cavities and solenoids operated at 4.5 K. In order to provide the cooling capacity at all temperature levels between 300 K and 4.5 K for the six cryo-modules, an existing helium refrigerator, manufactured in 1986 and previously used to cool the ALEPH magnet during LEP operation from 1989 to 2000, has been refurbished, reinstalled and recommissioned in a dedicated building located next to the HIE-ISOLDE experimental hall. This helium refrigerator has been connected to a new cryogenic distribution line, consisting of a 30-meter long vacuum-insulated transfer line, a 2000-liter storage dewar and six interconnecting valve boxes, one for each cryo-module. This paper describes the whole cryogenic system and presents the commissioning results including the preliminary operation at 4.5 K of the first cryo- module in the experimental hall. (paper)

  3. Commissioning of the LHC Cryogenic System Subsystems Cold Commissioning in Preparation of Full Sector Tests

    CERN Document Server

    Serio, L; Ferlin, G; Gilbert, N; Gruehagen, Henning; Knoops, S; Parente, C; Sanmartí, M

    2006-01-01

    The cryogenic system for the Large Hadron Collider accelerator is presently in its final phase of installation and commissioning at nominal operating temperatures. The refrigeration capacity for the LHC will be produced using eight large cryogenic plants installed on five technical sites and distributed around the 26.7-km circumference ring located in a deep underground tunnel. The status of the cryogenic system commissioning is presented together with the experience gained in operating and commissioning it.

  4. Dosimetric commissioning and system for stereotactic radiation treatments based on linear accelerators with dynamic micromultilaminas collimators

    International Nuclear Information System (INIS)

    Ascension, Yudy; Alfonso, Rodolfo; Silvestre, Ileana

    2009-01-01

    Once installed and accepted, a system for stereotactic radiosurgery / stereotactic radiotherapy (CERs / RTE) requires, before starting to be used clinically in patients undergoing a process of commissioning dosimetry, which evaluates all geometric parameters, physical, Dosimetric and technical impact on the precision and accuracy of treatment to administer, and therefore its effectiveness. This process includes training and familiarization of the multidisciplinary team (medical physicists, radiation oncologists, neurosurgeons, dosimetrists, biomedical engineers) with the equipment and techniques used, the quality assurance program and special radiation protection standards for this technology. The aim of this work is to prepare the pre-clinical dosimetric conditions to ensure the quality and radiation safety of treatment with CER RTE. Treatment with CER RTE INOR has a linear accelerator equipped with a micro-multileaf collimator dynamic tertiary (dMLC 3Dline). The system aceleradordMLC geometric and dosimetric was calibrated, using ionization chambers miniature, diode and film dosimetry. The immobilization of the patient and location of the lesion is made by both invasive stereotactic frames and relocatable. The computerized planning of the CER / TEN is done with the ERGO system, for which commissioning is designed test cases of increasing complexity, using planes and anthropomorphic dummies, which help assess the accuracy of the dosimetric calculations and accuracy of the system as a whole. We compared the results of the planning system with measurements, showing that the discrepancies are within tolerances, so it is concluded that from the standpoint of physical dosimetry, the system-under-ERGO accelerator MLC is eligible for clinical use. (author)

  5. RHIC sextant test: Accelerator systems and performance

    Energy Technology Data Exchange (ETDEWEB)

    Pilat, F.; Trbojevic, D.; Ahrens, L. [and others

    1997-08-01

    One sextant of the RHIC Collider was commissioned in early 1997 with beam. We describe here the performance of the accelerator systems, instrumentation subsystems and application software. We also describe a ramping test without beam that took place after the commissioning with beam. Finally, we analyze the implications of accelerator systems performance and their impact on the planning for RHIC installation and commissioning.

  6. RHIC sextant test: Accelerator systems and performance

    International Nuclear Information System (INIS)

    Pilat, F.; Trbojevic, D.; Ahrens, L.

    1997-01-01

    One sextant of the RHIC Collider was commissioned in early 1997 with beam. We describe here the performance of the accelerator systems, instrumentation subsystems and application software. We also describe a ramping test without beam that took place after the commissioning with beam. Finally, we analyze the implications of accelerator systems performance and their impact on the planning for RHIC installation and commissioning

  7. Increasing break-down strength of the support colomn of high-voltage accelerators

    International Nuclear Information System (INIS)

    Rezvykh, K.A.; Romanov, V.A.

    1981-01-01

    Calculation results of strength of electric field of the EG-2.5 electrostatic accelerator for the support colomn with electrodes of circular and elliptical transverse cross sections are presented. Conducted is the choice of constructing the column under the condition that the dimensions of the tank, high-voltage electrode, step between the sections and internal diameter of the colomn electrodes are not changed. The potential at the high-voltage electrode equals 2.5 MV while the average longitudinal gradient of the colomn field equals 1.25 MV/m. The support insulation colomn of the high-voltage accelerator screened by rings with transverse cross section in the form of orientation oval in some accelerators promotes obtaining higher operating voltage and at the same time increase of operation reliability at the rest unchanged dimensions of the plant because the probability of break-down between the support colomn and the tank wall decreases. The latter is especially significant for most high-energy accelerators as well as for accelerators used in national economy [ru

  8. Commissioning of self-management support for people with long-term conditions: an exploration of commissioning aspirations and processes.

    Science.gov (United States)

    Reidy, Claire; Kennedy, Anne; Pope, Catherine; Ballinger, Claire; Vassilev, Ivo; Rogers, Anne

    2016-07-15

    To explore how self-management support (SMS) is considered and conceptualised by Clinical Commissioning Groups (CCGs) and whether this is reflected in strategic planning and commissioning. SMS is an essential element of long-term condition (LTC) management and CCGs are responsible for commissioning services that are coordinated, integrated and link into patient's everyday lives. This focus provides a good test and exemplar for how commissioners communicate with their local population to find out what they need. A multisite, quasi-ethnographic exploration of 9 CCGs. National Health Service (NHS) CCGs in southern England, representing varied socioeconomic status, practice sizes and rural and urban areas. Content analysis of CCG forward plans for mention of SMS. Semistructured interviews with commissioners (n=10) explored understanding of SMS and analysed thematically. The practice of commissioning explored through the observations of Service User Researchers (n=5) attending Governing Body meetings (n=10, 30 hours). Observations illuminate the relative absence of SMS and gateways to active engagement with patient and public voices. Content analysis of plans point to tensions between local aspirations and those identified by NHS England for empowering patients by enhancing SMS services ('person-centred', whole systems). Interview data highlight disparities in the process of translating the forward plans into practice. Commissioners reference SMS as a priority yet details of local initiatives are notably absent with austerity (cost-containment) and nationally measured biomedical outcomes taking precedence. Commissioners conceptualise locally sensitive SMS as a means to improve health and reduce service use, but structural and financial constraints result in prioritisation of nationally driven outcome measures and payments relating to biomedical targets. Ultimately, there is little evidence of local needs driving SMS in CCGs. CCGs need to focus more on early strategic

  9. CERN-LHC accelerator superconducting magnet. Development and international cooperation

    International Nuclear Information System (INIS)

    Yamamoto, Akira; Nakamoto, Tatsushi; Sasaki, Ken-ichi

    2009-01-01

    CERN-LHC accelerator superconducting magnets and a cooperative work for interaction region quadrupole magnets are introduced. The accelerator commissioning and the incident happened during the commissioning in 2008 is also briefly discussed. (author)

  10. SSCL Commissioning and Operations

    International Nuclear Information System (INIS)

    1992-01-01

    The SSC, with an energy of 20 TeV/Beam, requires a sequence of individual accelerators of increasing energy in the injector chain. These are the Linac, Low Energy Booster, Medium Energy Booster, and High Energy Booster. Each accelerator system must be completed in sequence in order to provide beam to the next higher energy accelerator. The collider itself is comprised of ten sectors, each of which in terms of superconducting magnet bending strength, is equivalent to two HEB injectors. The completion of all injectors and collider sectors is required before stored beams can circulate in preparation for colliding beam operation. Four experimental halls are planned for the detector systems. Each major detector will be assembled in one of the halls by a world-wide collaboration of scientists. In addition, above ground facilities provide shops and test facilities for accelerator technical systems, superconducting magnet and materials research and development, and for detector assembly and operations. The purpose of this report is to present a plan for the sequential commissioning and operation of these individual accelerators and other technical facilities of the SSC. A central objective of this plan is to describe the activities at the SSCL that are not included as part of the construction project TPC, even though they occur during the overall project construction time-frame. Examples of such activities include the operation of general laboratory facilities and services not specifically related to construction, the operating costs for the individual accelerators in the injector chain once these facilities have been commissioned, and the costs of SSCL physics research groups. The Department of Energy has provided the following decision with regard to these operations categories for the SSCL

  11. Increasing the energy of the Fermilab Tevatron accelerator

    International Nuclear Information System (INIS)

    Fuerst, J.D.; Theilacker, J.C.

    1994-07-01

    The superconducting Tevatron accelerator at Fermilab has reached its eleventh year of operation since being commissioned in 1983. Last summer, four significant upgrades to the cryogenic system became operational which allow Tevatron operation at higher energy. This came after many years of R ampersand D, power testing in sectors (one sixth) of the Tevatron, and final system installation. The improvements include the addition of cold helium vapor compressors, supporting hardware for subatmospheric operation, a new satellite refrigerator control system, and a higher capacity central helium liquefier. A description of each cryogenic upgrade, commissioning experience, and attempts to increase the energy of the Tevatron are presented

  12. Emittance reconstruction technique for the Linac4 high energy commissioning

    CERN Document Server

    Lallement, JB; Posocco, PA

    2012-01-01

    Linac4 is a new 160 MeV linear accelerator for negative Hydrogen ions (H-) presently under construction which will replace the 50 MeV proton Linac2 as injector for the CERN proton accelerator complex. Linac4 is 80 meters long and comprises a Low Energy Beam Transport line, a 3 MeV RFQ, a MEBT, a 50 MeV DTL, a 100 MeV CCDTL and a PIMS up to 160 MeV. The commissioning of the Linac is scheduled to start in 2013. It will be divided into several steps corresponding to the commissioning of the different accelerating structures. A temporary measurement bench will be dedicated to the high energy commissioning from 30 to 100 MeV (DTL tanks 2 and 3, and CCDTL). The commissioning of the PIMS will be done using the permanent equipment installed in between the end of the Linac and the main dump. This note describes the technique we will use for reconstructing the transverse emittances and the expected results.

  13. Commissioning and early experience with a new-generation low-energy linear accelerator with advanced delivery and imaging functionalities

    Directory of Open Access Journals (Sweden)

    Fogliata Antonella

    2011-09-01

    Full Text Available Abstract Background A new-generation low-energy linear accelerator (UNIQUE was introduced in the clinical arena during 2009 by Varian Medical Systems. The world's first UNIQUE was installed at Oncology Institute of Southern Switzerland and put into clinical operation in June 2010. The aim of the present contribution was to report experience about its commissioning and first year results from clinical operation. Methods Commissioning data, beam characteristics and the modeling into the treatment planning system were summarized. Imaging system of UNIQUE included a 2D-2D matching capability and tests were performed to identify system repositioning capability. Finally, since the system is capable of delivering volumetric modulated arc therapy with RapidArc, a summary of the tests performed for such modality to assess its performance in preclinical settings and during clinical usage was included. Results Isocenter virtual diameter was measured as less than 0.2 mm. Observed accuracy of isocenter determination and repositioning for 2D-2D matching procedures in image guidance was Conclusions The results of the commissioning tests and of the first period of clinical operation, resulted meeting specifications and having good margins respect to tolerances. UNIQUE was put into operation for all delivery techniques; in particular, as shown by the pre-treatment quality assurance results, it enabled accurate and safe delivery of RapidArc plans.

  14. The Spallation Neutron Source Beam Commissioning and Initial Operations

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Stuart [Argonne National Lab. (ANL), Argonne, IL (United States); Aleksandrov, Alexander V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Allen, Christopher K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Assadi, Saeed [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bartoski, Dirk [University of Texas, Houston, TX (United States). Anderson Cancer Center; Blokland, Willem [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Casagrande, F. [Michigan State Univ., East Lansing, MI (United States); Campisi, I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chu, C. [Michigan State Univ., East Lansing, MI (United States); Cousineau, Sarah M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Crofford, Mark T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Danilov, Viatcheslav [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Deibele, Craig E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dodson, George W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Feshenko, A. [Inst. for Nuclear Research (INR), Moscow (Russian Federation); Galambos, John D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Han, Baoxi [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hardek, T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holmes, Jeffrey A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holtkamp, N. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Howell, Matthew P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jeon, D. [Inst. for Basic Science, Daejeon (Korea); Kang, Yoon W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kasemir, Kay [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kim, Sang-Ho [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kravchuk, L. [Institute for Nuclear Research (INR), Moscow (Russian Federation); Long, Cary D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McManamy, T. [McManamy Consulting, Inc., Middlesex, MA (United States); Pelaia, II, Tom [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Piller, Chip [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Plum, Michael A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pogge, James R. [Tennessee Technological Univ., Cookeville, TN (United States); Purcell, John David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shea, T. [European Spallation Source, Lund (Sweden); Shishlo, Andrei P [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sibley, C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Stockli, Martin P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Stout, D. [Michigan State Univ., East Lansing, MI (United States); Tanke, E. [European Spallation Source, Lund (Sweden); Welton, Robert F [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zhang, Y. [Michigan State Univ., East Lansing, MI (United States); Zhukov, Alexander P [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    The Spallation Neutron Source (SNS) accelerator delivers a one mega-Watt beam to a mercury target to produce neutrons used for neutron scattering materials research. It delivers ~ 1 GeV protons in short (< 1 us) pulses at 60 Hz. At an average power of ~ one mega-Watt, it is the highest-powered pulsed proton accelerator. The accelerator includes the first use of superconducting RF acceleration for a pulsed protons at this energy. The storage ring used to create the short time structure has record peak particle per pulse intensity. Beam commissioning took place in a staged manner during the construction phase of SNS. After the construction, neutron production operations began within a few months, and one mega-Watt operation was achieved within three years. The methods used to commission the beam and the experiences during initial operation are discussed.

  15. Commissioning of the TRIUMF ISAC RF system

    International Nuclear Information System (INIS)

    Fong, K.; Fang, S.; Laverty, M.; Lu, J.; Poirier, R.L.

    2001-09-01

    The ISAC RF system at present consists of a Radio Frequency Quadrupole accelerator, five Drift Tube Linear Accelerators, six bunchers, two choppers and a bunch rotator. The RFQ operates at the fundamental frequency of 35.36 MHz, while the DTLs operate at the third harmonic frequency of 106.08 MHz. The operating power ranges from 45 W to 120 W for the choppers, 1 kW to 20 kW for the DTLs and bunchers, and 80 kW for the RFQ. These cavities have been commissioned to operate synchronously with both closed-loop amplitude and phase regulation, as well as automatic tuning of the cavities. This paper gives a brief summary of the commissioning experience. (author)

  16. Commissioning of the CEBAF cryomodules

    International Nuclear Information System (INIS)

    Drury, M.; Lee, T.; Marshall, J.; Preble, J.; Saulter, Q.; Schneider, W.; Spata, M.; Wiseman, M.

    1993-01-01

    When complete, the Continuous Electron Beam Accelerator Facility will house a 4 GeV recirculating linear accelerator containing 42 1/4 cryomodules arrayed in two antiparallel linacs and an injector. Currently, over half of the cryomodules have been installed. Each cryomodule contains eight superconducting niobium 5-cell rf cavities that operate at 1.497 GHz. A cryomodule must provide an energy gain of 20 MeV to the 200 μA beam. The resultant dynamic heat load must be less than 45 W. The cavity parameters that are measured during the commissioning process include the external Q's of the cavity ports, the unloaded Q (Q 0 ) of the cavity as a function of accelerating gradient, and the maximum operating gradient of the cavity. The sensitivity of the resonant frequency to changes in pressure and gradient is also measured. Finally, the mechanical tuners are cycled and characterized. In all cases, the performance of CEBAF cryomodules has exceeded the design requirements. A portable test stand allows local control of the rf system and provides automated data acquisition. This paper describes the cryomodule commissioning hardware, software, and measurements

  17. NSLS-II injector commissioning and initial operation

    Energy Technology Data Exchange (ETDEWEB)

    Bacha, B.; Blum, E.; Bassi, B.; Bengtsson, J.; Blednykh, A.; Buda, S.; Cheng, W.; Choi, J.; Cuppolo, J.; D Alsace, R.; Davidsaver, M.; DeLong, J.; Doom, L.; Durfee, d.; fliller, R.; Fulkerson, M.; Ganetis, G.; Gao, F.; Gardner, C.; Guo, W.; Heese, R.; Hidaka, Y.; Hu, Y.; Johanson, M.; Kosciuk, B.; Kowalski, S.; Dramer, S.; Krinsky, S.; Li, Y.; Louie, W.; Maggipinto, M.; Marino, P.; Mead, J.; Oliva, G.; Padrazo, D.; Pedersen, K.; Podobedov, B.; Rainer, R.; Rose, J.; Santana, M.; Seletskiy, S.; Shaftan, T.; Singh, O.; Singh, P.; Smalyuk, V.; Smith, R.; Summers, T.; Tagger, J.; Tian, Y.; Wahl, W.; Wang, G.; Weiner, G.; Willeke, F.; Yang, L.; Yang, X.; Zeitler, E.; Zitvogel, E.; Zuhoski, P.

    2015-05-03

    The injector for the National Synchrotron Light Source II (NSLS-II) storage ring consists of a 3 GeV booster synchrotron and a 200 MeV S-band linac. The linac was designed to produce either a single bunch with a charge of 0.5 nC of electrons or a train of bunches up to 300 ns long containing a total charge of 15 nC. The booster was designed to accelerate up to 15 nC each cycle in a train of bunches up to 300 ns long. Linac commissioning was completed in April 2012. Booster commissioning was started in November 2013 and completed in March 2014. All of the significant design goals were satisfied including beam emittance, energy spread, and transport efficiency. While the maximum booster charge accelerated was only 10 nC, this has proven to be more than sufficient for storage ring commissioning and operation. The injector has operated reliably during storage ring operation since then. Results will be presented showing measurements of linac and booster operating parameters achieved during commissioning and initial operation. Operating experience and reliability during the first year of NSLS-II operation will be discussed.

  18. CEBAF Cryomodule Commissioning in the South Linac

    International Nuclear Information System (INIS)

    M. Drury; H. Lankford; T. Lee; J. Marshall; J. Preble; Q. Saulter; W. Schneider; Michael Spata; Mark Wiseman

    1993-01-01

    When complete, the Continuous Electron Beam Accelerator Facility will house a 4 GeV recirculating linear accelerator containing 42 1/4 cryomodules arrayed in two antiparallel linacs and an injector. Currently, 38 1/4 cryomodules have been installed. Each cryomodule contains eight superconducting niobium 5-cell rf cavities that operate at 1.497 GHz[1]. A cryomodule must provide an energy gain of 20 MeV to the 200 mu-A beam[2]. The resultant dynamic heat load must be less than 45 W. The cavity parameters that are measured during the commissioning process include the external Q's (Q(sub ext)) of the cavity ports, the unloaded Q (Q(sub 0)) of the cavity as a function of accelerating gradient, and the maximum operating gradient of the cavity[3]. Finally, the mechanical tuners are cycled and characterized. A portable test stand allows local control of the rf system and provides automated data acquisition. During the period from April 1993 through September 1993, 16 of the 20 cryomodules installed in the South Linac were commissioned. All cryomodules tested in the South Linac meet or exceed the CEBAF specifications. This paper describes the results of the commissioning of the first 10 cryomodules in the South Linac

  19. Commissioning and operating experience with the LISA superconducting accelerator

    International Nuclear Information System (INIS)

    Castellano, M.; Ferrario, M.; Minestrini, M.; Patteri, P.; Tazzioli, F.; Kulinski, S.

    1996-06-01

    The commissioning of the LISA superconducting (SC) RF electron linac at INFN Frascati Laboratories has been concluded although, due to a change in program priorities, the full possibilities of the machine have not been exploited. In this report the authors illustrate the results achieved so far and the difficulties encountered in commissioning, with the hope that this material might be some of help to those who intend to start the enterprise of building a SC linac in a non specialized environment. The part concerning the SC system is particularly stressed, but a relevant attention is also devoted to the traditional room temperature injector, the proper setting of which is fundamental to achieving the high beam quality that such a machine allows

  20. The TAO Accelerator Simulation Program

    CERN Document Server

    Sagan, David

    2005-01-01

    A new accelerator design and analysis simulation environment based on the BMAD relativistic charged particle dynamics library is in development at Cornell University. Called TAO (Tool for Accelerator Optimization), it is a machine independent program that implements the essential ingredients needed to solve simulation problems. This includes the ability to: 1. Design lattices subject to constraints, 2. Simulate errors and changes in machine parameters, and 3. Simulate machine commissioning including simulating data measurement and correction. TAO is designed to be easily customizable so that extending it to solve new and different problems is straight forward. The capability to simultaneously model multiple accelerator lattices, both linacs and storage rings, and injection from one lattice to another allows for the design and commissioning of large multi stage accelerators. It can also simultaneously model multiple configurations of a single lattice. Single particle, particle beam and macroparticle tracking i...

  1. Commissioning status of the Continuous Wave Deuterium Demonstrator

    International Nuclear Information System (INIS)

    Hartog, P.D.; Dooling, J.; Lorello, M.; Rathke, J.; Carwardine, J.; Godden, D.; Pile, G.; Yule, T.; Zinneman, T.

    1993-01-01

    Grumman Aerospace Corporation, Argonne National Laboratory, and Culham Laboratory are commissioning the Continuous Wave Deuterium Demonstrator (CWDD) in a facility at Argonne National Laboratory. CWDD is a high-brightness, high-current, 7.5-MeV negative deuterium accelerator. The 352-MHz rf accelerating cavities are cryogenically cooled with supercritical neon to reduce the rf power requirements. Installation of the accelerator into the Argonne facility began in May 1991, and first beam from the injector was extracted in February 1992. The accelerator and facility and described, and current status and future plans are discussed

  2. Membrane support of accelerated fuel capsules for inertial fusion energy reactors

    International Nuclear Information System (INIS)

    Petzoldt, R.W.; Moir, R.W.

    1993-01-01

    The use of a thin membrane to suspend an (inertial fusion energy) fuel capsule in a holder for injection into a reactor chamber is investigated. Capsule displacement and membrane deformation angle are calculated for an axisymmetric geometry for a range of membrane strain and capsule size. This information is used to calculate maximum target accelerations. Membranes must be thin (perhaps of order one micron) to minimize their effect on capsule implosion symmetry. For example, a 5 μm thick cryogenic mylar membrane is calculated to allow 1,000 m/s 2 acceleration of a 3 mm radius, 100 mg capsule. Vibration analysis (for a single membrane support) shows that if membrane vibration is not deliberately minimized, allowed acceleration may be reduced by a factor of four. A two membrane alternative geometry would allow several times greater acceleration. Therefore, alternative membrane geometry's should be used to provide greater target acceleration potential and reduce capsule displacement within the holder (for a given membrane thickness)

  3. Acceleration of radioactive ions

    International Nuclear Information System (INIS)

    Laxdal, R.E.

    2003-01-01

    There is an intense interest world-wide in the use of radioactive ion beams (RIBs) for experiment. In many existing or proposed facilities ions are produced or collected at source potential, ionized and re-accelerated. Within the past year three new ISOL based facilities have added dedicated post-accelerators to deliver accelerated RIBs to experiment. The paper gives an overview of RIB accelerators present and future, and explores the inherent features in the various acceleration methods with an emphasis on heavy ion linacs. The ISAC-I and ISAC-II post-accelerators are discussed as examples. Commissioning results and initial operating experience with ISAC-I will be presented

  4. Acceleration (Deceleration Model Supporting Time Delays to Refresh Data

    Directory of Open Access Journals (Sweden)

    José Gerardo Carrillo González

    2018-04-01

    Full Text Available This paper proposes a mathematical model to regulate the acceleration (deceleration applied by self-driving vehicles in car-following situations. A virtual environment is designed to test the model in different circumstances: (1 the followers decelerate in time if the leader decelerates, considering a time delay of up to 5 s to refresh data (vehicles position coordinates required by the model, (2 with the intention of optimizing space, the vehicles are grouped in platoons, where 3 s of time delay (to update data is supported if the vehicles have a centre-to-centre spacing of 20 m and a time delay of 1 s is supported at a spacing of 6 m (considering a maximum speed of 20 m/s in both cases, and (3 an algorithm is presented to manage the vehicles’ priority at a traffic intersection, where the model regulates the vehicles’ acceleration (deceleration and a balance in the number of vehicles passing from each side is achieved.

  5. Recent developments at French atomic energy commission relating to non destructive nuclear waste assay by using electron accelerator

    International Nuclear Information System (INIS)

    Lvoussi, A.; Romeyer-Dhebey, J.; Jallu, F.; Passard, C.; Mariani, A.; Recroix, H.; Payan, E.; Denis, C.; Loridon, J.; Buisson, A.; Nurdin, G.; Allano, J.; Jaureguy, J.C.

    2000-01-01

    An important program is currently in progress at several laboratories over the world for the development of sensitive, practical non-destructive assay techniques for the quantification of low level transuranics (TRU) in solid wastes. The wide variety of materials and contaminants, the low concentrations and large volumes involve, all make this kind of assay a complicated affair. Over the last few years, considerable progress has been made in the field of assay techniques for low level contaminated wastes. This report describes the methods being developed at French Atomic Energy Commission (C.E.A.) in Cadarache to assay high density TRU waste packages by using photon, neutron or both photon and neutron as interrogating particles. All of these particles are produced by using a pulsed electron linear accelerator from which the photons are produced following Bremsstrahlung phenomena on a heavy metallic converter and the neutrons are generated in appropriate low level photoneutron threshold target (e.g. Beryllium). The dynamic of photonuclear interactions and photoneutron production, use of an electron linear accelerator as a particle source, experimental and electronics details, experimental results, simulation to experiment performances and future experimental and theoretical studies are discussed. (authors)

  6. CERN Linac4 - The Space Charge Challenge Design and Commission

    CERN Document Server

    Hein, Lutz Matthias; Holzer, Bernhard

    In the first phase of the upgrade program of the CERN accelerator complex the proton injector Linac2 will be replaced by a new, normal-conducting $H^-$ ion Linac, Linac4, allowing a significant increase of the proton flux intensity along the downstream accelerator complex. In the design of Linac4 three beam transport sections are implemented to match the beam between the different accelerator elements and to model the longitudinal pulse structure. These three beam transport sections, which are the most critical locations in terms of beam quality preservation, are in the focus of this thesis. During the work of this thesis the low energy beam transport (LEBT), which is required to match the source beam to the radiofrequency quadrupole (RFQ), has been commissioned and its beam dynamics re-constructed. The measurement campaign used to re-construct the LEBT beam dynamics was performed with the aim to prepare the RFQ commissioning and to maximise the LEBT performance. Downstream of the Linac4 accelerator the beam...

  7. Acceleration and support post deformation measurements during surface and tunnel transport of a LHC Short Straight Section

    CERN Document Server

    Capatina, O; CERN. Geneva. TS Department

    2004-01-01

    This technical note is a complement to the technical note [1]. The former technical note dealt with the experimental modal analysis and the road transport with transport restraints and special suspension. The present note describes the measured accelerations and support post deformations during road transport at reduced speed without end restraints or special suspension. This note also reports the accelerations and support post deformations during handling and tunnel transport with the dedicated tunnel vehicle. The measured accelerations are compared with the specified acceleration limits.

  8. Construction and Commissioning of PAL-XFEL Facility

    Directory of Open Access Journals (Sweden)

    In Soo Ko

    2017-05-01

    Full Text Available The construction of Pohang Accelerator Laboratory X-ray Free-Electron Laser (PAL-XFEL, a 0.1-nm hard X-ray free-electron laser (FEL facility based on a 10-GeV S-band linear accelerator (LINAC, is achieved in Pohang, Korea by the end of 2016. The construction of the 1.11 km-long building was completed by the end of 2014, and the installation of the 10-GeV LINAC and undulators started in January 2015. The installation of the 10-GeV LINAC, together with the undulators and beamlines, was completed by the end of 2015. The commissioning began in April 2016, and the first lasing of the hard X-ray FEL line was achieved on 14 June 2016. The progress of the PAL-XFEL construction and its commission are reported here.

  9. Recent progress in accelerator activities at Raja Ramanna Centre for Advanced Technology, Indore

    International Nuclear Information System (INIS)

    Gupta, P.D.

    2013-01-01

    Raja Ramanna Centre for Advanced Technology, Indore is a premier national institute engaged in R and D work in front-line areas of accelerator science, technology, and applications. The Centre has designed, developed, and commissioned two synchrotron radiation sources: Indus-1 and Indus-2, serving as national facilities. The Centre is pursuing various other accelerator activities viz. development of a high energy proton accelerator for a spallation neutron source, electron accelerators for food irradiation and industrial applications and free electron lasers (FEL) in THz and IR spectral region, study of innovative schemes of laser driven electron acceleration, and development of advanced technologies to support these activities such as superconducting RF (SCRF) technology, cryogenics, RF power, magnets, ultra high vacuum and control instrumentation. In this talk, an overview of the progress made in accelerator activities at Raja Ramanna Centre for Advanced Technology in recent years is be presented

  10. Audit of the Federal Energy Regulatory Commission`s Office of Chief Accountant

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-07

    The Federal Energy Regulatory Commission`s (Commission) mission is to oversee America`s natural gas and oil pipeline transportation, electric utility, and hydroelectric power industries to ensure that consumers receive adequate energy supplies at just and reasonable rates. To carry out this mission, the Commission issues regulations covering the accounting, reporting, and rate-making requirements of the regulated utility companies. The Commission`s Office of Chief Accountant performs financial related audits at companies to ensure compliance with these regulations. The purpose of this audit was to evaluate the office of Chief Accountant`s audit performance. Specifically, the objectives were to determine if the most appropriate audit approach was used and if a quality assurance process was in place to ensure reports were accurate and supported by the working papers.

  11. The design and commissioning of large particle accelerators

    International Nuclear Information System (INIS)

    Wilson, E.J.N.

    1981-01-01

    The design and development of synchrotrons and storage rings for proton and electron acceleration are discussed. Having traced the evolution of designs from those for the early cyclotrons, the present generation of synchrotrons are described and the running in of such component systems is considered. (U.K.)

  12. Safety Commission databases support

    CERN Document Server

    Petit, S; CERN. Geneva. TS Department

    2005-01-01

    A collaboration project between the Safety Commission (SC) and the Controls, Safety and Engineering databases group (TS/CSE) started last year. The aim of this collaboration is to transfer several SC applications from their local environments onto the D7i-MTF EDMS framework, for which the TS/CSE group is responsible. Different domains of activity and projects have been defined in the areas of equipment management, safety inspections, accidents and risks management. Priorities have been established in collaboration with SC. This paper presents the new Safety Inspections Management system (SIM) which will be put in production before the summer 2005 and reviews the constraints of both the users and the development and operational framework that needed to be taken into account. The technical solutions adopted to assure a successful production start-up and operation of the SIM system are described. Progress on other on-going projects and plans for the next year are also reported.

  13. Accelerator-based techniques for the support of senior-level undergraduate physics laboratories

    International Nuclear Information System (INIS)

    Williams, J.R.; Clark, J.C.; Isaacs-Smith, T.

    2001-01-01

    Approximately three years ago, Auburn University replaced its aging Dynamitron accelerator with a new 2MV tandem machine (Pelletron) manufactured by the National Electrostatics Corporation (NEC). This new machine is maintained and operated for the University by Physics Department personnel, and the accelerator supports a wide variety of materials modification/analysis studies. Computer software is available that allows the NEC Pelletron to be operated from a remote location, and an Internet link has been established between the Accelerator Laboratory and the Upper-Level Undergraduate Teaching Laboratory in the Physics Department. Additional software supplied by Canberra Industries has also been used to create a second Internet link that allows live-time data acquisition in the Teaching Laboratory. Our senior-level undergraduates and first-year graduate students perform a number of experiments related to radiation detection and measurement as well as several standard accelerator-based experiments that have been added recently. These laboratory exercises will be described, and the procedures used to establish the Internet links between our Teaching Laboratory and the Accelerator Laboratory will be discussed

  14. Commissioning and quality assurance of the x-ray volume imaging system of an image-guided radiotherapy capable linear accelerator

    International Nuclear Information System (INIS)

    Muralidhar, K.R.; Narayana Murthy, P.; Kumar, Rajneesh

    2008-01-01

    An Image-Guided Radiotherapy-capable linear accelerator (Elekta Synergy) was installed at our hospital, which is equipped with a kV x-ray volume imaging (XVI) system and electronic portal imaging device (iViewGT). The objective of this presentation is to describe the results of commissioning measurements carried out on the XVI facility to verify the manufacturer's specifications and also to evolve a QA schedule which can be used to test its performance routinely. The QA program consists of a series of tests (safety features, geometric accuracy, and image quality). These tests were found to be useful to assess the performance of the XVI system and also proved that XVI system is very suitable for image-guided high-precision radiation therapy. (author)

  15. Commissioning and quality assurance of the X-ray volume Imaging system of an image-guided radiotherapy capable linear accelerator

    Directory of Open Access Journals (Sweden)

    Muralidhar K

    2008-01-01

    Full Text Available An Image-Guided Radiotherapy-capable linear accelerator (Elekta Synergy was installed at our hospital, which is equipped with a kV x-ray volume imaging (XVI system and electronic portal imaging device (iViewGT. The objective of this presentation is to describe the results of commissioning measurements carried out on the XVI facility to verify the manufacturer′s specifications and also to evolve a QA schedule which can be used to test its performance routinely. The QA program consists of a series of tests (safety features, geometric accuracy, and image quality. These tests were found to be useful to assess the performance of the XVI system and also proved that XVI system is very suitable for image-guided high-precision radiation therapy.

  16. Accelerator Technology Division progress report, FY 1993

    International Nuclear Information System (INIS)

    Schriber, S.O.; Hardekopf, R.A.; Heighway, E.A.

    1993-01-01

    This report discusses the following topics: A Next-Generation Spallation-Neutron Source; Accelerator Performance Demonstration Facility; APEX Free-Electron Laser Project; The Ground Test Accelerator (GTA) Program; Intense Neutron Source for Materials Testing; Linac Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Radio-Frequency Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operation

  17. ARIEL E-linac Cryogenic System: Commissioning and First Operational Experience

    International Nuclear Information System (INIS)

    Koveshnikov, A; Bylinskii, I; Hodgson, G; Kishi, D; Laxdal, R; Ma, Y; Nagimov, R; Yosifov, D

    2015-01-01

    The Advanced Rare IsotopE Laboratory (ARIEL) is a major expansion of the Isotope Separator and Accelerator (ISAC) facility at TRIUMF. A key part of the ARIEL project is a 10 mA 50 MeV continuous-wave superconducting radiofrequency (SRF) electron linear accelerator (e-linac). The 1.3 GHz SRF cavities are operated at 2 K. HELIAL LL helium liquefier by Air Liquide Advanced Technologies (ALAT) with a tuneable liquid helium (LHe) production was installed and commissioned in Q4’2013 [1]. It provides 4 K liquid helium to one injector and one accelerator cryomodules that were installed and tested in 2014. The 4 K to 2 K liquid helium transition is achieved on-board of each cryomodule. The cryoplant, LHe and LN2 distributions, sub-atmospheric (S/A) system and cryomodules were successfully commissioned and integrated into the e-linac cryogenic system. Required pressure regulation for both 4 K cryoplant in the Dewar and 2 K with the S/A system was achieved under simulated load. Final integration tests confirmed overall stable performance of the cryogenic system with two cryomodules installed. The paper presents details of the cryogenic system commissioning tests as well as highlights of the initial operational experience. (paper)

  18. Consumer support for a public utilities commission in Hong Kong

    International Nuclear Information System (INIS)

    Woo, C.K.; Cheng, Y.S.; Law, A.; Zarnikau, J.; Ho, S.T.; Leung, H.Y.

    2015-01-01

    Hong Kong's electricity service is superbly reliable and price-reasonable when compared to those of the major cities in the OECD countries. Based on the rate of return regulation in the U.S., the current scheme of control agreement (SCA) regulating the two local integrated investor-owned utilities (IOUs) will expire in 2018 (or in 2023 after an optional 5-year extension), thus offering an opportune time to consider proposals with long lead time to modify or replace the SCA. The proposals made to date range from modifications of the SCA to electricity market restructure. These proposals, however, overlook two important aspects of regulatory governance: transparency and public involvement. This paper estimates consumer support for the proposal to establish a Hong Kong public utilities commission (HKPUC) to improve the current regulatory process. Based on the responses collected in mid-2014 via a face-to-face survey of 1100 Hong Kong residents, we find that at the 1.5% bill surcharge, about 70% the respondents are estimated to support an HKPUC. Thus, there is sufficient consumer support for a financially viable HKPUC, implying that Hong Kong should consider the possibility of establishing an HKPUC, notwithstanding the substantial challenges to be overcome prior to its implementation. - Highlights: • Hong Kong's regulatory process lacks transparency and public involvement. • A survey data analysis indicates a majority support for a Hong Kong PUC. • A Hong Kong PUC can be financially viable without public funding. • A Hong Kong PUC proposal deserves further consideration

  19. SU-E-E-01: Commissiong of Linear Accelerator and Beam Modeling in Treatment Planning Systems.

    Science.gov (United States)

    Pella, S; Chilukuri, M; Smith, C; Bacala, A; Dumitru, N

    2012-06-01

    Sooner or later every medical physicist is involved with commissioning and beam modeling of a new linear accelerator (linac) and a new treatment planning system (TPS). In spite of all instructions and training offered by the vendors, at the time a new linac is being purchased and added to the present ones the outside help is not so complete. The physicist who has to perform the commissioning job may not even be the one who was trained for that. What we are missing is a good comprehensive set of information and instructions on how to do's. From shielding calculation verifications, surveys, to collecting the beam data, modeling, entering the data into the TPS, and verifications of the goodness of the data we need a lot of support and we don't have it. I will provide a step by step description of the required work with the results we are looking for. Presentation of the shielding calculations, survey required, tools needed to perform them. Detailed beam data collections, scanning system needed, machine set of specs needed, applicator details needed. Importing beam data from the scanning system and beam calculations. Algorithms used in dose calculation, IMRT optimization, heterogeneity corrections presented to be understood before modeling the beam data. At the completion of this course the medical physicist will be able to commission a linear accelerator and a treatment planning system with confidence and very little help from the outside. This compendium of detailed instructions on commissioning a linear accelerator will provide good uidance to every physicist who will be involved with the installation and bringing into safe use for treatment of a new linear accelerator. © 2012 American Association of Physicists in Medicine.

  20. Status of the ISAC-II Accelerator at TRIUMF

    CERN Document Server

    Laxdal, Robert E; Bricault, Pierre; Bylinskii, Iouri; Fong, Ken; Marchetto, Marco; Mitra, Amiya K; Poirier, Roger L; Rawnsley, William R; Schmor, Paul; Sekachev, Igor; Stanford, Guy; Stinson, Glen; Zviagintsev, Vladimir

    2005-01-01

    A heavy ion superconducting linac is being installed at TRIUMF to increase the final energy of radioactive beams at ISAC. A first stage of 20MV consisting of five medium beta cryomodules each with four quarter wave bulk niobium cavities and a superconducting solenoid is being installed with initial beam commissioning scheduled for Dec. 2005. The initial cryomodule has met cryogenic and rf performance specifications. In addition we have demonstrated acceleration of alpha particles in an off-line test. A 500W refrigerator system has been installed and commissioned in Jan. 2005 with cold distribution due for commissioning in Sept. 2005. A transfer beamline from the ISAC accelerator and beam transport to a first experimental station are being installed. The status of the project will be presented.

  1. Commissioning of the RFQ1 injector

    International Nuclear Information System (INIS)

    Arbique, G.M.; Sheikh, J.Y.; Taylor, T.; Birney, L.F.; Davidson, A.D.; Wills, J.S.C.

    1987-01-01

    The RFQ1 accelerator is being developed at Chalk River to test the limits of the cw RFQ technology. A 50 kV injector has been built and is now being commissioned as the first phase of the program. This paper describes some of the innovative features of the RFQ1 injector and reports on initial operating experience

  2. CEBAF SRF Performance during Initial 12 GeV Commissioning

    International Nuclear Information System (INIS)

    Bachimanchi, Ramakrishna; Allison, Trent; Daly, Edward; Drury, Michael; Hovater, J; Lahti, George; Mounts, Clyde; Nelson, Richard; Plawski, Tomasz

    2015-09-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) energy upgrade from 6 GeV to 12 GeV includes the installation of eleven new 100 MV cryomodules (88 cavities). The superconducting RF cavities are designed to operate CW at an accelerating gradient of 19.3 MV/m with a Q L of 3x10 7 . Not all the cavities were operated at the minimum gradient of 19.3 MV/m with the beam. Though the initial 12 GeV milestones were achieved during the initial commissioning of CEBAF, there are still some issues to be addressed for long term reliable operation of these modules. This paper reports the operational experiences during the initial commissioning and the path forward to improve the performance of C100 (100 MV) modules.

  3. SERPUKHOV: UNK transfer beamline commissioned

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    At the end of the 1000 hour February-March run of the 70 GeV proton synchrotron at the Institute for High Energy Physics (IHEP), Serpukhov, near Moscow, the new 2.7-kilometre UNK Beam Transfer Line (BTL) was commissioned with proton beam. BTL will eventually transfer beam from the existing U70 proton accelerator to the first stage of the UNK (UNK-1, now under construction) where it will be accelerated in the 21- kilometre ring up to 600 GeV. BTL was designed for proton energies between 60 and 70 GeV, momentum spread ± 2 x 10 -3 and beam emittance 2 mm.mrad, with systems for fast ejection, beam transfer and injection into UNK-1

  4. Accelerator Technology Division annual report, FY 1991

    International Nuclear Information System (INIS)

    1992-04-01

    This report discusses the following programs: The Ground Test Accelerator Program; APLE Free-Electron Laser Program; Accelerator Transmutation of Waste; JAERI, OMEGA Project, and Intense Neutron Source for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Super Collider; The High-Power Microwave Program; Φ Factory Collaboration; Neutral Particle Beam Power System Highlights; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations

  5. PIP-II Injector Test’s Low Energy Beam Transport: Commissioning and Selected Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Shemyakin, A. [Fermilab; Alvarez, M. [Fermilab; Andrews, R. [Fermilab; Carneiro, J.-P. [Fermilab; Chen, A. [Fermilab; Hanna, B. [Fermilab; Prost, L. [Fermilab; Scarpine, V. [Fermilab; D' Arcy, R. [University Coll. London; Wiesner, C. [Goethe U., Frankfurt (main)

    2016-09-16

    The PIP2IT test accelerator is under construction at Fermilab. Its ion source and Low Energy Beam Transport (LEBT) in its initial (straight) configuration have been commissioned to full specification parameters. This paper introduces the LEBT design and summarizes the outcome of the commissioning activities.

  6. Illinois Accelerator Research Center

    Science.gov (United States)

    Kroc, Thomas K.; Cooper, Charlie A.

    The Illinois Accelerator Research Center (IARC) hosts a new accelerator development program at Fermi National Accelerator Laboratory. IARC provides access to Fermi's state-of-the-art facilities and technologies for research, development and industrialization of particle accelerator technology. In addition to facilitating access to available existing Fermi infrastructure, the IARC Campus has a dedicated 36,000 ft2 Heavy Assembly Building (HAB) with all the infrastructure needed to develop, commission and operate new accelerators. Connected to the HAB is a 47,000 ft2 Office, Technology and Engineering (OTE) building, paid for by the state, that has office, meeting, and light technical space. The OTE building, which contains the Accelerator Physics Center, and nearby Accelerator and Technical divisions provide IARC collaborators with unique access to world class expertise in a wide array of accelerator technologies. At IARC scientists and engineers from Fermilab and academia work side by side with industrial partners to develop breakthroughs in accelerator science and translate them into applications for the nation's health, wealth and security.

  7. A Pencil Beam for the Linac4 commissioning

    CERN Document Server

    Lallement, JB

    2010-01-01

    In order to characterize the different accelerating structures and transport lines of Linac4 and to proceed to its commissioning, we need to produce a low current, low emittance beam. This note describes the generation of two pencil beams and their dynamic through the Linac.

  8. Construction and early commissioning results of the AGS Booster

    International Nuclear Information System (INIS)

    Weng, W.T.; Ahrens, L.; Damm, R.; McNerney, A.J.

    1991-01-01

    The AGS Booster synchrotron has been designed to accelerate protons from 200 MeV to 1.5 GeV and heavy ions from several MeV per nucleon to several hundred MeV per nucleon for all the nuclei up to gold. The design requirements and measurements results of major accelerator components and systems are presented. The early commissioning results of the injection is also presented. 12 refs., 9 figs., 2 tabs

  9. Modifications of thick-target model: re-acceleration of electron beams by static and stochastic electric fields

    Czech Academy of Sciences Publication Activity Database

    Varady, Michal; Karlický, Marian; Moravec, Z.; Kašparová, Jana

    2014-01-01

    Roč. 563, March (2014), A51/1-A51/15 ISSN 0004-6361 R&D Projects: GA ČR GAP209/10/1680; GA ČR GAP209/12/0103 EU Projects: European Commission(XE) 263340 - SWIFF Institutional support: RVO:67985815 Keywords : Sun * flares * acceleration of particles Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.378, year: 2014

  10. Technical support to the Nuclear Regulatory Commission for the boiling water reactor blowdown heat transfer program

    International Nuclear Information System (INIS)

    Rice, R.E.

    1976-09-01

    Results are presented of studies conducted by Aerojet Nuclear Company (ANC) in FY 1975 to support the Nuclear Regulatory Commission (NRC) on the boiling water reactor blowdown heat transfer (BWR-BDHT) program. The support provided by ANC is that of an independent assessor of the program to ensure that the data obtained are adequate for verification of analytical models used for predicting reactor response to a postulated loss-of-coolant accident. The support included reviews of program plans, objectives, measurements, and actual data. Additional activity included analysis of experimental system performance and evaluation of the RELAP4 computer code as applied to the experiments

  11. NSLS-II commissioning and operation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, G., E-mail: gwang@bnl.gov; Shaftan, T.; Bassi, G.; Bengtsson, J.; Blednykh, A.; Blum, E.; Cheng, W.; Choi, J.; Davidsaver, M.; Doom, L.; Fliller, R.; Ganetis, G.; Guo, W.; Hidaka, Y.; Kramer, S.; Li, Y.; Podobedov, B.; Qian, K.; Rose, J.; Seletskiy, S. [Brookhaven National Laboratory, Upton, NY 11973 (United States); and others

    2016-07-27

    The National Synchrotron Light Source II at Brookhaven National Lab is a third-generation synchrotron radiation facility that has been commissioned in 2014. The facility is based on a 3 GeV electron storage ring, which will circulate 500 mA of beam current at 1 nm rad horizontal emittance. The storage ring is 792 meters in circumference and will accommodate more than 60 beamlines in the final built-out. The beamline sources range from insertion-devices located in straight sections, bending magnets or three-pole-wigglers configured in multiple branches. The NSLS-II storage ring commissioning was successfully completed in July 2014 and the facility delivered the first user light on October 23, 2014. Currently the storage ring reached 300 mA beam current and achieved 1 nm rad of horizontal emittance with 3 sets of Damping Wigglers. At this point six NSLS-II project beamlines are routinely taking photons with beam current at 150 mA. This paper reviews the NSLS-II accelerator design and commissioning experience.

  12. Commissioning of a linear accelerator to execute volumetric modulated arc therapy; Comissionamento de um acelerador linear para realizacao da radioterapia em arco modulada volumetricamente

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Leandro R.; Santos, Gabriela R.; Menegussi, Gisela; Silva, Marco A.; Passaro, Anderson M.; Rodrigues, Laura N., E-mail: leandrorg11@hotmail.com [Instituto do Cancer do Estado de Sao Paulo (ICESP), Sao Paulo, SP (Brazil)

    2013-08-15

    Radiotherapy techniques like VMAT allow complex dose distributions modulating the beam intensity within the irradiation field from the handling of multi-blade collimators, variations in dose rate, different speeds of rotation of the gantry and collimator angle allowing greater conformation of the dose to the tumor volume and a lower dose to healthy tissues. To ensure proper dose delivery, the linear particle accelerator must be able to monitor and perform all the variation in these parameters simultaneously. In this work dosimetric tests obtained in the literature that aims to commission, implement and ensure the quality of VMAT treatments were performed performed in the Institute of Cancer of Sao Paulo State (ICESP). From the results obtained it was established a program of quality control for the linear accelerator studied. The linearity and stability response of ionization chamber monitoring, leafs accuracy positioning, flatness and symmetry of beam to VMAT irradiations were evaluated. The obtained results are in agreement with the literature. It can be concluded that the accelerator studied is able to satisfactorily control the variation of all necessary parameters to perform the VMAT treatments. (author)

  13. Accelerator Technology Division progress report, FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    Schriber, S.O.; Hardekopf, R.A.; Heighway, E.A.

    1993-07-01

    This report briefly discusses the following topics: The Ground Test Accelerator Program; Defense Free-Electron Lasers; AXY Programs; A Next Generation High-Power Neutron-Scattering Facility; JAERI OMEGA Project and Intense Neutron Sources for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Supercollider; The High-Power Microwave (HPM) Program; Neutral Particle Beam (NPB) Power Systems Highlights; Industrial Partnering; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Accelerator Theory and Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

  14. Accelerator Technology Division progress report, FY 1992

    International Nuclear Information System (INIS)

    Schriber, S.O.; Hardekopf, R.A.; Heighway, E.A.

    1993-07-01

    This report briefly discusses the following topics: The Ground Test Accelerator Program; Defense Free-Electron Lasers; AXY Programs; A Next Generation High-Power Neutron-Scattering Facility; JAERI OMEGA Project and Intense Neutron Sources for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Supercollider; The High-Power Microwave (HPM) Program; Neutral Particle Beam (NPB) Power Systems Highlights; Industrial Partnering; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Accelerator Theory and Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations

  15. Characterization of solvents containing CyMe4-BTPhen in selected cyclohexanone-based diluents after irradiation by accelerated electrons

    Czech Academy of Sciences Publication Activity Database

    Distler, P.; Kondé, J.; John, J.; Hájková, Zuzana; Švehla, Jaroslav; Grüner, Bohumír

    2015-01-01

    Roč. 60, č. 4 (2015), s. 885-891 ISSN 0029-5922 R&D Projects: GA MŠk(CZ) 7G13003 EU Projects: European Commission(XE) 323282 - SACSESS Institutional support: RVO:61388980 Keywords : accelerated electrons * CyMe4-BTPhen * irradiation * radiation stability * solvent extraction Subject RIV: CA - Inorganic Chemistry Impact factor: 0.546, year: 2015

  16. Development of a commissioning plan for the APT linac

    International Nuclear Information System (INIS)

    Funk, L.W.; Crandall, K.R.; Gilpatrick, J.D.; Gray, E.R.; Regan, A.H.; Rohlev, A.; Rybarcyk, L.J.; Wangler, T.P.

    1998-01-01

    The Accelerator Production of Tritium (APT) facility is based on a linac which incorporates both normal-conducting and superconducting RF technology and accelerates a 100-mA cw proton beam to an energy of 1,030 MeV or higher, depending on the desired production rate. Commissioning plans to achieve full power operation with minimum beam-induced activation of components have been evolving. This paper presents the main issues and the basic approaches that are now being discussed

  17. Hamburg Accelerator Conference

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Edmund J.N. [CERN Accelerator School (Switzerland)

    1992-10-15

    From 20-24 July, Hamburg welcomed the Fifteenth International Conference on High Energy Accelerators (HEACC). A natural highlight was the recent commissioning success of the HERA electron-proton collider at Hamburg's DESY Laboratory and its first high energy electron-proton collision data. This gave the meeting the feel of a family event celebrating a newborn.

  18. Experience in commissioning and scientific support of nuclear power plant operation in the German Democratic Republic

    International Nuclear Information System (INIS)

    Ackermann, G.; Endler, A.; Loth, K.H.

    1983-01-01

    In the German Democratic Republic two nuclear power plants equipped with four pressurized-water WWER-440-type reactors were commissioned in the years 1973-1979 and have since been in routine operation. The nuclear power plants (NPPs) in the GDR were constructed on the basis of projects developed and tested in the Soviet Union. Their main equipment was also supplied by the USSR. Under the technical supervision of USSR scientific institutions and design organizations, the construction, commissioning and operation of NPPs had to be prepared and organized by the design organizations, scientific institutions and the prospective user in the German Democratic Republic. To this effect, and to ensure nuclear safety, availability and maximum exploitation of nuclear fuel, it was necessary to develop national scientific capacities. The organizations of the USSR supply basic and supplementary documents prescribing the required extent of investigations to prove that the equipment and systems will meet the projected and operational conditions from loading to commercial operation. Concrete test programmes for commissioning and operational instructions are elaborated by national organizations. Pre-operational and initial startup tests are performed by the personnel of the plant, of enterprises and scientific institutions under the technical supervision of the design organizations of the USSR and the German Democratic Republic. Proceeding from experience gained for more than 15 years in the scientific support of commissioning and operation, the required training and disciplines of personnel are reported. The tasks to be met by the various disciplines are described. Furthermore, information is given on the main stages of commissioning and on a number of results. Finally, selected results of work in connection with operational assistance are reported

  19. ARIEL e-LINAC: Commissioning and Development

    Science.gov (United States)

    Laxdal, R. E.; Zvyagintsev, V.

    2016-09-01

    A superconducting electron Linac (e-Linac) will be a part of the ARIEL facility for the production of radioactive ion beams (RIB) at TRIUMF. The e-Linac will consist of five 1.3GHz 9-cell cavities in three cryomodules delivering a 50MeV 10mA beam. The baseline operation will be single pass but a re-circulating ring is planned to allow either energy boost or energy recovery operation. The first stage of the accelerator which consists of two cryomodules has been successfully commissioned in 2014. The paper will discuss the superconducting radio-frequency (SRF) challenges of the accelerator. Cavities, crymodules and RF system design, preparation, and performance will be presented.

  20. ARIEL e-LINAC: Commissioning and Development

    International Nuclear Information System (INIS)

    Laxdal, R.E.; Zvyagintsev, V.

    2016-01-01

    A superconducting electron Linac (e-Linac) will be a part of the ARIEL facility for the production of radioactive ion beams (RIB) at TRIUMF. The e-Linac will consist of five 1.3GHz 9-cell cavities in three cryomodules delivering a 50MeV 10mA beam. The baseline operation will be single pass but a re-circulating ring is planned to allow either energy boost or energy recovery operation. The first stage of the accelerator which consists of two cryomodules has been successfully commissioned in 2014. The paper will discuss the superconducting radio-frequency (SRF) challenges of the accelerator. Cavities, crymodules and RF system design, preparation, and performance will be presented. (paper)

  1. Hamburg Accelerator Conference

    International Nuclear Information System (INIS)

    Wilson, Edmund J.N.

    1992-01-01

    From 20-24 July, Hamburg welcomed the Fifteenth International Conference on High Energy Accelerators (HEACC). A natural highlight was the recent commissioning success of the HERA electron-proton collider at Hamburg's DESY Laboratory and its first high energy electron-proton collision data. This gave the meeting the feel of a family event celebrating a newborn

  2. Overview of Accelerator Physics Studies and High Level Software for the Diamond Light Source

    CERN Document Server

    Bartolini, Riccardo; Belgroune, Mahdia; Christou, Chris; Holder, David J; Jones, James; Kempson, Vince; Martin, Ian; Rowland, James H; Singh, Beni; Smith, Susan L; Varley, Jennifer Anne; Wyles, Naomi

    2005-01-01

    DIAMOND is a 3 GeV synchrotron light source under construction at Rutherford Appleton Laboratory in Oxfordshire (UK). The accelerators complex consists of a 100 MeV LINAC, a full energy booster and a 3GeV storage ring with 22 straight sections available for IDs. Installation of all three accelerators has begun, and LINAC commissioning is due to start in Spring 2005. This paper will give an overview of the accelerator physics activity to produce final layouts and prepare for the commissioning of the accelerator complex. The DIAMOND facility is expected to be operational for users in 2007

  3. Folded tandem ion accelerator facility at BARC

    International Nuclear Information System (INIS)

    Agarwal, Arun; Padmakumar, Sapna; Subrahmanyam, N.B.V.; Singh, V.P.; Bhatt, J.P.; Ware, Shailaja V.; Pol, S.S; Basu, A.; Singh, S.K.; Krishnagopal, S.; Bhagwat, P.V.

    2017-01-01

    The 5.5 MV single stage Van de Graaff (VDG) accelerator was in continuous operation at Nuclear Physics Division (NPD), Bhabha Atomic Research Centre (BARC) since its inception in 1962. During 1993-96, VDG accelerator was converted to a Folded Tandem Ion Accelerator (FOTIA). The scientists and engineers of NPD, IADD (then a part of NPD) along with several other divisions of BARC joined hands together in designing, fabrication, installation and commissioning of the FOTIA for the maximum terminal voltage of 6 MV. After experiencing the first accelerated ion beam on the target from FOTIA during April 2000, different ion species were accelerated and tested. Now this accelerator FOTIA is in continuous use for different kind of experiments

  4. Detection of the Acceleration Site in a Solar Flare

    Science.gov (United States)

    Fleishman, Gregory D.; Kontar, E. P.; Nita, G. M.; Gary, D. E.

    2011-05-01

    We report the observation of an unusual cold, tenuous solar flare (ApJL, v. 731, p. L19, 2011), which reveals itself via numerous and prominent non-thermal manifestations, while lacking any noticeable thermal emission signature. RHESSI hard X-rays and 0.1-18 GHz radio data from OVSA and Phoenix-2 show copious electron acceleration (1035 electrons per second above 10 keV) typical for GOES M-class flares with electrons energies up to 100 keV, but GOES temperatures not exceeding 6.1 MK. The HXR footpoints and coronal radio sources belong, supposedly, to a single magnetic loop, which departs strongly from the corresponding potential loop (obtained from a photospheric extrapolation) in agreement with the apparent need of a non-potential magnetic field structure to produce a flare. The imaging, temporal, and spectral characteristics of the flare have led us to a firm conclusion that the bulk of the microwave continuum emission from this flare was produced directly in the acceleration region. We found that the electron acceleration efficiency is very high in the flare, so almost all available thermal electrons are eventually accelerated. However, given a relatively small flaring volume and rather low thermal density at the flaring loop, the total energy release turned out to be insufficient for a significant heating of the coronal plasma or for a prominent chromospheric response giving rise to chromospheric evaporation. Some sort of stochastic acceleration process is needed to account for an approximately energy-independent lifetime of about 3 s for the electrons in the acceleration region. This work was supported in part by NSF grants AGS-0961867, AST-0908344, and NASA grants NNX10AF27G and NNX11AB49G to New Jersey Institute of Technology. This work was supported by a UK STFC rolling grant, STFC/PPARC Advanced Fellowship, and the Leverhulme Trust, UK. Financial support by the European Commission through the SOLAIRE and HESPE Networks is gratefully acknowledged.

  5. Nuclear Regulatory Commission Issuances: February 1995. Volume 41, Number 2

    International Nuclear Information System (INIS)

    1995-02-01

    This book contains an issuance of the Nuclear Regulatory Commission and a Director's Decision. The issuance concerns consideration by the Commission of appeals from both the Initial Decision and a Reconsideration Order issued by the Presiding Officer involving two materials license amendment applications filed by the University of Missouri. The Director's Decision from the Office of Enforcement denies petitions filed by Northeast Utilities employees requesting that accelerated enforcement action be taken against Northeast Utilities for activities concerned with NU's fitness-for-duty program

  6. Neutron production and dose rate in the IFMIF/EVEDA LIPAc injector beam commissioning

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, Keitaro, E-mail: kondo.keitaro@jaea.go.jp [Rokkasho Fusion Institute, Japan Atomic Energy Agency, Rokkasho-mura, Kamikita-gun, Aomori (Japan); Narita, Takahiro; Usami, Hiroki; Takahashi, Hiroki; Ochiai, Kentaro; Shinto, Katsuhiro; Kasugai, Atsushi [Rokkasho Fusion Institute, Japan Atomic Energy Agency, Rokkasho-mura, Kamikita-gun, Aomori (Japan); Okumura, Yoshikazu [IFMIF/EVEDA Project Team, Rokkasho-mura, Kamikita-gun, Aomori (Japan)

    2016-11-01

    Highlights: • A dedicated neutron production yield monitoring system for LIPAc has been developed. • The biological dose rate during operation of the LIPAc injector was analyzed. • The neutron streaming effect due to penetrations in the shielding wall was investigated. - Abstract: The construction of the Linear IFMIF Prototype Accelerator (LIPAc) is in progress in Rokkasho, Japan, and the deuteron beam commissioning of the injector began in July 2015. Due to the huge beam current of 125 mA, a large amount of d-D neutrons are produced in the commissioning. The neutron streaming effect through pipe penetrations and underground pits may dominate the radiation dose at the outside of the accelerator vault during the injector operation. In the present study the effective dose rate expected during the injector commissioning was analyzed by a Monte Carlo calculation and compared with the measured value. For the comparison it is necessary to know the total neutron production yield in the accelerator vault, thus a dedicated neutron production yield monitoring system was developed. The yield obtained was smaller than that previously reported in a literature by a factor of a few and seems to depend on some beam conditions. From the comparison it was proved that the calculation always provides a conservative estimate and the dose rates in places where occupational works can always access and the controlled area boundary are expected to be far less than the legal criteria throughout the injector commissioning.

  7. Tic-Tac: Accelerating a Skateboard from Rest without Touching an External Support

    Science.gov (United States)

    Kunesch, M.; Usunov, A.

    2010-01-01

    This paper outlines the solution that the Team of Austria found to problem number 7, "skateboarder", presented in the finals of the 22nd International Young Physicists' Tournament (IYPT) in Tianjin, China. We investigated how a skateboarder can accelerate from rest on a horizontal surface without touching an external support. The focus was laid on…

  8. SU-E-T-194: Commissioning of Monaco Treatment Planning System On An Elekta VersaHD Linear Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Narayanasamy, G; Bosse, C; Saenz, D; Cruz, W; Papanikolaou, N; Stathakis, S [University of Texas Health Science Center at San Antonio, TX (United States); Mavroidis, P [University of North Carolina, Chapel Hill, NC (United States)

    2015-06-15

    Purpose: The Monaco treatment planning system (TPS) uses a Monte-Carlo algorithm based dose computation engine to model the photon beams of a linear accelerator. The aim is to perform verification of Monaco TPS beam modeling of a Elekta VersaHD linac with 6MV, 6MV FFF, 10 MV, 10MV FFF, 18MV photon beams and 160 multileaf collimators (MLC) with a projected width of 5-mm at the isocenter. Methods: A series of dosimetric tests were performed to validate Monaco calculated beams including point dose measurement in water with and without heterogeneity and 2-dimensional dose distributions on a Delta4 bi-planar diode dosimeter array (Scandidos, Uppsala, Sweden). 3D conformal beams of different field sizes, source-to-surface distances, wedges, and gantry angles were delivered onto a phantom consisting of several plastic water and Styrofoam slabs. Point dose measurements were verified with a PTW 31013 Semiflex 0.3 cc ionization chamber (PTW, Freiburg, Germany). In addition, 8 step and shoot intensity modulated radiotherapy (IMRT) and volumetric modulated arc radiotherapy (VMAT) beams included in the Monaco TPS commissioning suite were verified against measurements on Delta4 to test and fine tune parameters in the beam model. IMRT verification was computed using gamma analysis with dose difference and distance-to-agreement criteria of 3%/3mm with a dose threshold of 10%. Results: Point dose measurements agreed within 2% in the homogeneous phantom and within 3% in the heterogeneous phantom for all photon energies. IMRT beams yielded a passing percentage of 99.1±1.1% in the gamma analysis which is well above the institutional passing threshold of 90%. Conclusion: Monaco TPS commissioning was successfully performed for all the photon energies on the Elekta VersaHD linac prior to clinical usage.

  9. SU-E-T-194: Commissioning of Monaco Treatment Planning System On An Elekta VersaHD Linear Accelerator

    International Nuclear Information System (INIS)

    Narayanasamy, G; Bosse, C; Saenz, D; Cruz, W; Papanikolaou, N; Stathakis, S; Mavroidis, P

    2015-01-01

    Purpose: The Monaco treatment planning system (TPS) uses a Monte-Carlo algorithm based dose computation engine to model the photon beams of a linear accelerator. The aim is to perform verification of Monaco TPS beam modeling of a Elekta VersaHD linac with 6MV, 6MV FFF, 10 MV, 10MV FFF, 18MV photon beams and 160 multileaf collimators (MLC) with a projected width of 5-mm at the isocenter. Methods: A series of dosimetric tests were performed to validate Monaco calculated beams including point dose measurement in water with and without heterogeneity and 2-dimensional dose distributions on a Delta4 bi-planar diode dosimeter array (Scandidos, Uppsala, Sweden). 3D conformal beams of different field sizes, source-to-surface distances, wedges, and gantry angles were delivered onto a phantom consisting of several plastic water and Styrofoam slabs. Point dose measurements were verified with a PTW 31013 Semiflex 0.3 cc ionization chamber (PTW, Freiburg, Germany). In addition, 8 step and shoot intensity modulated radiotherapy (IMRT) and volumetric modulated arc radiotherapy (VMAT) beams included in the Monaco TPS commissioning suite were verified against measurements on Delta4 to test and fine tune parameters in the beam model. IMRT verification was computed using gamma analysis with dose difference and distance-to-agreement criteria of 3%/3mm with a dose threshold of 10%. Results: Point dose measurements agreed within 2% in the homogeneous phantom and within 3% in the heterogeneous phantom for all photon energies. IMRT beams yielded a passing percentage of 99.1±1.1% in the gamma analysis which is well above the institutional passing threshold of 90%. Conclusion: Monaco TPS commissioning was successfully performed for all the photon energies on the Elekta VersaHD linac prior to clinical usage

  10. The 16-MV pelletron accelerator at NSC

    International Nuclear Information System (INIS)

    Narayanan, M.M.; Chopra, S.; Kanjilal, D.

    1994-01-01

    A 15-UD 16-MV Pelletron accelerator was commissioned at Nuclear Science Centre (NSC) in July 1991. It is a large tandem Van de Graaff type electrostatic accelerator capable of accelerating almost any ion beam from hydrogen to uranium to energies from a few tens of MeV (Million electron Volts) to hundreds of MeV. The availability of the various beams having widely variable energy, good energy resolution and excellent quality makes this accelerator an extremely versatile machine. This gives rise to the possibilities of basic and applied research in various disciplines of science. The principle of operation of a tandem accelerator and the salient features of the accelerator system at NSC are described. (author). 2 refs., 4 figs

  11. Co-operation Agreement relating to LHC Commissioning

    CERN Multimedia

    2005-01-01

    CERN Director-General Robert Aymar and Ryszard Tadeusiewicz, the Rector of the AGH University of Science and Technology in Cracow, after signing the agreement. On 29 July, the Rector of the AGH University of Science and Technology in Cracow, Ryszard Tadeusiewicz, and CERN Director-General Robert Aymar signed a collaboration agreement relating to the commissioning of the instrumentation and monitoring equipment for the LHC cryogenic system. Under the agreement, a team consisting of a dozen physicists, engineers and technicians from the AGH University in Cracow will lend a helping hand to the teams at CERN for the commissioning of the cryogenic system in the tunnel. This is the first in what will be a series of agreements relating to the commissioning of the LHC's various systems. From the end of this year until the summer of 2007, CERN will require reinforcements of physicists, engineers and technicians in order to complete the many tasks associated with the start-up of the accelerator. CERN is therefore pre...

  12. Beam dynamics and commissioning of low and medium energy H- beam at Linac4

    CERN Document Server

    Satri, Masoomeh Yarmohammadi; Lombardi, Alessandra; Lamehi-Rachti , Mohammad

    The First step of the CERN Large Hadron Collider injectors upgrade (LIU) project is Linac4. It accelerates H- ions to 160 MeV in an 80 m long accelerator housed in a tunnel 12 m underground, presently under construction. It will replace the present 50 MeV proton Linac2 as injector of the proton accelerator complex to increase the LHC luminosity. It consists of a 45 keV RF volume source, a twosolenoid Low Energy Beam Transport (LEBT), a 352.2 MHz Radio Frequency Quadrupole (RFQ) accelerating the beam to 3 MeV, a Medium Energy Beam Transport (MEBT) line. The MEBT houses a fast chopper to selectively remove unwanted micro-bunches in the 352 MHz sequence and avoid losses at capture in the CERN PSB (1 MHz). After chopping, the beam acceleration continues by a 50 MeV Drift Tube Linac (DTL), a 100 MeV Cell-Coupled Drift Tube Linac and a Pi-Mode Structure bringing the beam to the final energy of 160 MeV. Linac4 has been commissioned with a temporary source up to 12 MeV. The beam commissioning stages of Linac4 in LEBT...

  13. Medical Isotope Production With The Accelerator Production of Tritium (APT) Facility

    International Nuclear Information System (INIS)

    Buckner, M.; Cappiello, M.; Pitcher, E.; O'Brien, H.

    1998-01-01

    In order to meet US tritium needs to maintain the nuclear weapons deterrent, the Department of Energy (DOE) is pursuing a dual track program to provide a new tritium source. A record of decision is planned for late in 1998 to select either the Accelerator Production of Tritium (APT) or the Commercial Light Water Reactor (CLWR) as the technology for new tritium production in the next century. To support this decision, an APT Project was undertaken to develop an accelerator design capable of producing 3 kg of tritium per year by 2007 (START I requirements). The Los Alamos National Laboratory (LANL) was selected to lead this effort with Burns and Roe Enterprises, Inc. (BREI) / General Atomics (GA) as the prime contractor for design, construction, and commissioning of the facility. If chosen in the downselect, the facility will be built at the Savannah River Site (SRS) and operated by the SRS Maintenance and Operations (M ampersand O) contractor, the Westinghouse Savannah River Company (WSRC), with long-term technology support from LANL. These three organizations (LANL, BREI/GA, and WSRC) are working together under the direction of the APT National Project Office which reports directly to the DOE Office of Accelerator Production which has program authority and responsibility for the APT Project

  14. Charged particle accelerators for practice

    International Nuclear Information System (INIS)

    Arzumanov, A.A.

    1988-01-01

    Characteristics of some accelerators operating in the world are given, capabilities of accelerator technique are demonstrated. Examples of wide application of accelerators in radiation-chemical technology as well as for defectoscopy of massive metal products and impurity ion implantation when producing semiconductor elements are presented. Works on nuclear filter production are characterized by high efficiency. Wide application of synchrotron radiation is described. Various accelerators can be applied during element analysis in geology, metallurgy, ecology. Application of accelerators ''in particular, cyclotrons for radioisotope production as well as in radiotherapy in medicine appears to be important. An isochronous cyclotron with controlled ion energy, at which applied works concerning a number of considered trends in the field of radiation physics and radiation physical metallurgy, element analysis, radiation resistance of electronic circuits and components are conducted, is in operation at the IYaPh of the Kazakh Academy of Sciences. Production of tallium-201 for cardiologic invstigations deserves a special attention. An electrostatic heavy ion accelerator which allows one to produce the beams of accelerated ions of elements from hydrogen to uranium is under commissioning

  15. LINEAR LATTICE AND TRAJECTORY RECONSTRUCTION AND CORRECTION AT FAST LINEAR ACCELERATOR

    Energy Technology Data Exchange (ETDEWEB)

    Romanov, A. [Fermilab; Edstrom, D. [Fermilab; Halavanau, A. [Northern Illinois U.

    2017-07-16

    The low energy part of the FAST linear accelerator based on 1.3 GHz superconducting RF cavities was successfully commissioned [1]. During commissioning, beam based model dependent methods were used to correct linear lattice and trajectory. Lattice correction algorithm is based on analysis of beam shape from profile monitors and trajectory responses to dipole correctors. Trajectory responses to field gradient variations in quadrupoles and phase variations in superconducting RF cavities were used to correct bunch offsets in quadrupoles and accelerating cavities relative to their magnetic axes. Details of used methods and experimental results are presented.

  16. 50 MeV Run of the IOTA / FAST Electron Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Edstrom Jr., D.; et al.

    2017-02-02

    The low-energy section of the photoinjector-based electron linear accelerator at the Fermilab Accelerator Science & Technology (FAST) facility was recently commissioned to an energy of 50 MeV. This linear accelerator relies primarily upon pulsed SRF acceleration and an optional bunch compressor to produce a stable beam within a large operational regime in terms of bunch charge, total average charge, bunch length, and beam energy. Various instrumentation was used to characterize fundamental properties of the electron beam including the intensity, stability, emittance, and bunch length. While much of this instrumentation was commissioned in a 20 MeV running period prior, some (including a new Martin- Puplett interferometer) was in development or pending installation at that time. All instrumentation has since been recommissioned over the wide operational range of beam energies up to 50 MeV, intensities up to 4 nC/pulse, and bunch structures from ~1 ps to more than 50 ps in length.

  17. Design, Fabrication, Installation and Commissioning of the Helium Refrigeration system Supporting Superconducting Radio Frequency Testing at Facility for Rare Isotope Beams at Michigan State University

    Science.gov (United States)

    Casagrande, F.; Fila, A.; Nguyen, C.; Tatsumoto, H.

    2017-12-01

    The Facility for Rare Isotope Beams (FRIB) will be a scientific user facility for the Office of Nuclear Physics in the U.S. Department of Energy Office of Science (DOE-SC). The FRIB linear accelerator (LINAC) will be comprised of cryomodules each with multiple Superconducting Radio Frequency (SRF) cavities operating at 2 K. A helium refrigeration system was designed, fabricated, installed and commissioned in the SRF high bay building to test and certify these cavities and cryomodules before installation in the FRIB LINAC tunnel. The helium refrigeration system includes a helium refrigerator which has nominal capacity of 900 W at 4 K, 5000 L liquid helium storage Dewar, helium gas storage, two room temperature vacuum pumps capable of 2.5 g/s each for 2 K testing, purifier, purifier recovery compressor, and the distribution system for liquid nitrogen and helium. The helium refrigeration system is now operational supporting three below grade cavity testing Dewars and one cryomodule testing bunker meeting the required throughput of 1 cavity per day.

  18. LHC Damper Beam commissioning in 2010

    CERN Document Server

    Höfle, W; Schokker, M; Valuch, D

    2011-01-01

    The LHC transverse dampers were commissioned in 2010 with beam and their use at injection energy of 450 GeV, during the ramp and in collisions at 3.5 TeV for Physics has become part of the standard operations pro- cedure. The system proved important to limit emittance blow-up at injection and to maintain smaller than nominal emittances throughout the accelerating cycle. We describe the commissioning of the system step-by-step as done in 2010 and summarize its performance as achieved for pro- ton as well as ion beams in 2010. Although its principle function is to keep transverse oscillations under control, the system has also been used as an exciter for abort gap clean- ing and tune measurement. The dedicated beam position measurement system with its low noise properties provides additional possibilities for diagnostics.

  19. Engineering a large application software project: the controls of the CERN PS accelerator complex

    International Nuclear Information System (INIS)

    Benincasa, G.P.; Daneels, A.; Heymans, P.; Serre, Ch.

    1985-01-01

    The CERN PS accelerator complex has been progressively converted to full computer controls without interrupting its full-time operation (more than 6000 hours per year with on average not more than 1% of the total down-time due to controls). The application software amounts to 120 man-years and 450'000 instructions: it compares with other large software projects, also outside the accelerator world: e.g. Skylab's ground support software. This paper outlines the application software structure which takes into account technical requirements and constraints (resulting from the complexity of the process and its operation) and economical and managerial ones. It presents the engineering and management techniques used to promote implementation, testing and commissioning within budget, manpower and time constraints and concludes with experience gained

  20. Guidelines for residential commissioning

    Energy Technology Data Exchange (ETDEWEB)

    Wray, Craig P.; Walker, Iain S.; Sherman, Max H.

    2003-01-31

    Currently, houses do not perform optimally or even as many codes and forecasts predict, largely because they are field assembled and there is no consistent process to identify problems or to correct them. Residential commissioning is a solution to this problem. This guide is the culmination of a 30-month project that began in September 1999. The ultimate objective of the project is to increase the number of houses that undergo commissioning, which will improve the quality, comfort, and safety of homes for California citizens. The project goal is to lay the groundwork for a residential commissioning industry in California focused on end-use energy and non-energy issues. As such, we intend this guide to be a beginning and not an end. Our intent is that the guide will lead to the programmatic integration of commissioning with other building industry processes, which in turn will provide more value to a single site visit for people such as home energy auditors and raters, home inspectors, and building performance contractors. Project work to support the development of this guide includes: a literature review and annotated bibliography, which facilitates access to 469 documents related to residential commissioning published over the past 20 years (Wray et al. 2000), an analysis of the potential benefits one can realistically expect from commissioning new and existing California houses (Matson et al. 2002), and an assessment of 107 diagnostic tools for evaluating residential commissioning metrics (Wray et al. 2002). In this guide, we describe the issues that non-experts should consider in developing a commissioning program to achieve the benefits we have identified. We do this by providing specific recommendations about: how to structure the commissioning process, which diagnostics to use, and how to use them to commission new and existing houses. Using examples, we also demonstrate the potential benefits of applying the recommended whole-house commissioning approach to

  1. LIPAc personnel protection system for realizing radiation licensing conditions on injector commissioning with deuteron beam

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hiroki, E-mail: takahashi.hiroki@jaea.go.jp [IFMIF/EVEDA Accelerator Group, Japan Atomic Energy Agency (JAEA), Rokkasho, Aomori (Japan); Narita, Takahiro; Kasugai, Atsushi [IFMIF/EVEDA Accelerator Group, Japan Atomic Energy Agency (JAEA), Rokkasho, Aomori (Japan); Kojima, Toshiyuki [Gitec Co. Ltd., Hachinohe, Aomori (Japan); Marqueta, Alvaro; Nishiyama, Koichi [IFMIF/EVEDA Project Team, Rokkasho, Aomori (Japan); Sakaki, Hironao [Quantum Beam Science Center, JAEA, Kizu, Kyoto (Japan); Gobin, Raphael [Commissariat à l’Energie Atomique et aux Energies Alternatives, CEA/Saclay, DSM/IRFU, Gif/Yvette (France)

    2016-11-01

    Highlights: • Personnel Protection System (PPS) is developed to adapt the radiation licensing. • PPS achieves the target performance to secure the personnel safety. • Pulse Duty Management System (PDMS) is developed to manage the beam-operation-time. • Satisfying performance of PDMS is confirmed by injector operation with H+ beam. • By the result of PPS and PDMS tests, the radiation license was successfully obtained. - Abstract: The performance validation of the Linear IFMIF Prototype Accelerator (LIPAc), up to the energy of 9 MeV deuteron beam with 125 mA continuous wave (CW), is planned in Rokkasho, Japan. There are three main phases of LIPAc performance validation: Injector commissioning, RFQ commissioning and LIPAc commissioning. Injector commissioning was started by H{sup +} and D{sup +} beam. To apply the radiation licensing for the Injector commissioning, the entering/leaving to/from accelerator vault should be under control, and access to the accelerator vault has to be prohibited for any person during the beam operation. The Personnel Protection System (PPS) was developed to adapt the radiation licensing conditions. The licensing requests that PPS must manage the accumulated D{sup +} current. So, to manage the overall D{sup +} beam time during injector operation, Pulse Duty Management System (PDMS) was developed as a configurable subsystem as part of the PPS. The PDMS was tested during H{sup +} beam (as simulated D{sup +}) operation, to confirm that it can handle the beam inhibit from Injector before the beam accumulation is above the threshold value specified in the radiation licensing condition. In this paper, the design and configuration of these systems and the result of the tests are presented.

  2. Regional and International Networking to Support the Energy Regulatory Commission of Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Lavansiri, Direk; Bull, Trevor

    2010-09-15

    The Energy Regulatory Commission of Thailand is a new regulatory agency. The structure of the energy sector; the tradition of administration; and, the lack of access to experienced personnel in Thailand all pose particular challenges. The Commission is meeting these challenges through regional and international networking to assist in developing policies and procedures that allow it to meet international benchmarks.

  3. CRASH - Community Road Accident System Homepage : feasibility study on a European Road Safety Information System, financially supported by the European Commission.

    NARCIS (Netherlands)

    Brouwer, M. Poppe, F. Blokpoel, A. & Kars, V.

    2000-01-01

    This report is the result of a feasibility study, financially supported by the European Commission. The study investigated the possibilities for the development and maintenance of a European Road Safety Information System with relevant and internationally comparable information. Recommendations on

  4. Commissioning software tools at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Emery, L.

    1995-01-01

    A software tool-oriented approach has been adopted in the commissioning of the Advanced Photon Source (APS) at Argonne National Laboratory, particularly in the commissioning of the Positron Accumulator Ring (PAR). The general philosophy is to decompose a complicated procedure involving measurement, data processing, and control into a series of simpler steps, each accomplished by a generic toolkit program. The implementation is greatly facilitated by adopting the SDDS (self-describing data set protocol), which comes with its own toolkit. The combined toolkit has made accelerator physics measurements easier. For instance, the measurement of the optical functions of the PAR and the beamlines connected to it have been largely automated. Complicated measurements are feasible with a combination of tools running independently

  5. Accelerator simulation using computers

    International Nuclear Information System (INIS)

    Lee, M.; Zambre, Y.; Corbett, W.

    1992-01-01

    Every accelerator or storage ring system consists of a charged particle beam propagating through a beam line. Although a number of computer programs exits that simulate the propagation of a beam in a given beam line, only a few provide the capabilities for designing, commissioning and operating the beam line. This paper shows how a ''multi-track'' simulation and analysis code can be used for these applications

  6. Safety managements of the linear IFMIF/EVEDA prototype accelerator

    International Nuclear Information System (INIS)

    Takahashi, Hiroki; Maebara, Sunao; Kojima, Toshiyuki; Narita, Takahiro; Tsutsumi, Kazuyoshi; Sakaki, Hironao; Suzuki, Hiromitsu; Sugimoto, Masayoshi

    2014-01-01

    Highlights: •Safety management is needed to secure the personnel safety from high dose rate. •The management of access to the accelerator vault is mainly performed by PPS. •The operation management is needed for safety during Injector and RFQ commissioning. •Pulse Duty Management system is newly developed for Injector commissioning for operation management. •PDM system is useful to reduce the radioactivation of equipment and the radiation exposure during and after beam operation. -- Abstract: On the Linear IFMIF/EVEDA Prototype Accelerator (LIPAc), the validation up to 9 MeV deuteron beam with 125 mA continuous wave is planned in Rokkasho, Aomori, Japan. Since the deuteron beam power exceeds 1 MW, safety issue related to γ-ray and neutron production is critical. To establish the safety management indispensable to reduce radiation exposure for personnel and activation of accelerator equipment, Personnel Protection System (PPS) of LIPAc control system, which works together with Radiation Monitoring System and Access Control System, was developed for LIPAc. The management of access to the accelerator vault by PPS and the beam duty management of PPS are presented in details

  7. Future Accelerators Seminar in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1984-10-15

    ICFA, the International Committee for Future Accelerators, was set up by the Particles and Fields Commission of the International Union of Pure and Applied Physics (IUPAP) in 1976. Its mandate was 'To organize workshops for the study of problems related to an international super-high energy accelerator complex (VBA) and to elaborate the framework of its construction and of its use. To organize meetings for the exchange of information on future plans of regional facilities and for the formulation of advice on joint studies and uses.' In the seven years of its existence (it first met in August 1977), ICFA has organized three workshops on the first topic — t w o on 'Possibilities and Limitations of Accelerators and Detectors' (Fermilab, 1978 and Les Diablerets, 1979) and one on 'Possibilities and Limitations for Superconducting Accelerator Magnets' (Protvino, 1981). At an ICFA meeting at Fermilab in August 1983, it was realized that the second topic had been somewhat neglected. It was therefore decided to postpone a fourth workshop scheduled at the Japanese National Laboratory for High Energy Physics (KEK) and to organize instead a Seminar on 'Future Perspectives in High Energy Physics' similar to that held in New Orleans in 1975, which had in fact led to the creation of ICFA.The Seminar (jointly hosted by the Institute of Nuclear Study of Tokyo University and KEK, with support from the Ministry of Education, Science and Culture, the Yamada Science Foundation and the Nishina Memorial Foundation) took place from 14-20 May. There were about a hundred participants, mostly senior scientists from Western and Eastern Europe, USA, USSR and Japan (including the Directors of almost all the major high energy physics Laboratories) and representatives from Australia, Canada, China, India, Mexico, South Korea and Vietnam.

  8. Future Accelerators Seminar in Japan

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    ICFA, the International Committee for Future Accelerators, was set up by the Particles and Fields Commission of the International Union of Pure and Applied Physics (IUPAP) in 1976. Its mandate was 'To organize workshops for the study of problems related to an international super-high energy accelerator complex (VBA) and to elaborate the framework of its construction and of its use. To organize meetings for the exchange of information on future plans of regional facilities and for the formulation of advice on joint studies and uses.' In the seven years of its existence (it first met in August 1977), ICFA has organized three workshops on the first topic — t w o on 'Possibilities and Limitations of Accelerators and Detectors' (Fermilab, 1978 and Les Diablerets, 1979) and one on 'Possibilities and Limitations for Superconducting Accelerator Magnets' (Protvino, 1981). At an ICFA meeting at Fermilab in August 1983, it was realized that the second topic had been somewhat neglected. It was therefore decided to postpone a fourth workshop scheduled at the Japanese National Laboratory for High Energy Physics (KEK) and to organize instead a Seminar on 'Future Perspectives in High Energy Physics' similar to that held in New Orleans in 1975, which had in fact led to the creation of ICFA.The Seminar (jointly hosted by the Institute of Nuclear Study of Tokyo University and KEK, with support from the Ministry of Education, Science and Culture, the Yamada Science Foundation and the Nishina Memorial Foundation) took place from 14-20 May. There were about a hundred participants, mostly senior scientists from Western and Eastern Europe, USA, USSR and Japan (including the Directors of almost all the major high energy physics Laboratories) and representatives from Australia, Canada, China, India, Mexico, South Korea and Vietnam

  9. First results from the commissioning of the BGO-OD experiment at ELSA

    Science.gov (United States)

    Bella, Andreas

    2014-11-01

    The BGO-OD experiment at the ELSA accelerator facility in Bonn combines the highly segmented BGO calorimeter with a particle tracking magnetic spectrometer at forward angles. An extensive physics program using an energy tagged Bremsstrahlung photon beam is planned. The commissioning phase of the experiment is recently complete, enhancements for the BGO-OD experiment are nevertheless in development. Recent results from the analysis of the commissioning data, which includes particle track reconstruction in the forward spectrometer and momentum reconstruction with the BGO calorimeter are presented.

  10. Development and commissioning of decision support tools for sewerage management.

    Science.gov (United States)

    Manic, G; Printemps, C; Zug, M; Lemoine, C

    2006-01-01

    Managing sewerage systems is a highly complex task due to the dynamic nature of the facilities. Their performance strongly depends on the know-how applied by the operators. In order to define optimal operational settings, two decision support tools based on mathematical models have been developed. Moreover, easy-to-use interfaces have been created as well, aiding operators who presumably do not have the necessary skills to use modelling software. The two developed programs simulate the behaviour of both wastewater treatment plants (WWTP) and sewer network systems, respectively. They have essentially the same structure, including raw data management and statistical analysis, a simulation layer using the application programming interface of the applied software and a layer responsible for the representation of the obtained results. Four user modes are provided in the two software including the simulation of historical data using the applied and novel operational settings, as well as modes concerning prediction of possible operation periods and updates. Concerning the WWTP software, it was successfully installed in Nantes (France) in June 2004. Moreover, the one managing sewer networks has been deployed in Saint-Malo (France) in January 2005. This paper presents the structure of the developed software and the first results obtained during the commissioning phase.

  11. Breakdowns and solutions in 15 UD pelletron ion accelerator facility at Inter-University Accelerator Centre, New Delhi

    International Nuclear Information System (INIS)

    Joshi, R.; Singh, P.; Suraj; Nishal, S.M.; Panwar, N.S.; Singh, M.P.; Kumar, R.; Prasad, J.; Sota, M.; Patel, V.P.; Sharma, R.P.; Kumar, Pankaj; Devi, K.D.; Ojha, S.; Gargari, S.; Chopra, S.; Kanjilal, D.

    2013-01-01

    15UD Pelletron accelerator, installed in Inter-University Accelerator Centre (IUAC), New Delhi, is a tandem ion accelerator and is performing well since its commissioning. Constant efforts have been put to keep high uptime and better performance of the accelerator for more than two decades. In recent years, the facility was improved by many modifications and up gradations. It has also gone through a few major breakdowns related to charging system and fiber optic cables. Out of two charging systems, one system failed and devices housed in tank stopped working due to the damage of fiber optic cables. The reasons for both of these breakdowns were studied thoroughly. The entire charging system and fiber optic cable network have been rebuilt and tested. The diagnostic techniques and maintenance methods for these two breakdowns will be discussed in this paper. (author)

  12. SU-F-T-213: Commissioning Results of the Prototype Active Scanning Irradiation System of Korea Heavy Ion Medical Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C; Seduk, J; Yang, T [Korea Institute of Radiological And Medical Sciences, Seoul, Seoul (Korea, Republic of)

    2016-06-15

    Purpose: A prototype actives scanning beam delivery system was designed, manufactured and installed as a part of the Korea Heavy Ion Medical Accelerator Project. The prototype system includes the most components for steering, modulating, detecting incident beam to patient. The system was installed in MC-50 cyclotron beam line and tested to extract the normal operation conditions. Methods: The commissioning process was completed by using 45 MeV of proton beam. To measure the beam position accuracy along the scanning magnet power supply current, 25 different spots were scanning and measured. The scanning results on GaF film were compared with the irradiation plan. Also, the beam size variation and the intensity reduction using range shifter were measured and analyzed. The results will be used for creating a conversion factors for asymmetric behavior of scanning magnets and a dose compensation factor for longitudinal direction. Results: The results show asymmetry operations on both scanning × and y magnet. In case of scanning magnet × operation, the current to position conversion factors were measured 1.69 mm/A for positive direction and 1.74 mm/A for negative direction. The scanning magnet y operation shows 1.38mm/A and 1.48 mm/A for both directions. The size of incoming beam which was 18 mm as sigma becomes larger up to 55 mm as sigma while using 10 mm of the range shifter plate. As the beam size becomes large, the maximum intensity of the was decreased. In case of using 10 mm of range shifter, the maximum intensity was only 52% compared with no range shifter insertion. Conclusion: For the appropriate operation of the prototype active scanning system, the commissioning process were performed to measure the beam characteristics variation. The obtained results would be applied on the irradiation planning software for more precise dose delivery using the active scanning system.

  13. LHC Report: Rehearsing the LHC accelerator systems for the Run 2 start-up with beam

    CERN Multimedia

    Reyes Alemany Fernandez

    2015-01-01

    While the commissioning of the superconducting circuits is ongoing, great care is also being taken to make sure that the other key LHC accelerator systems are qualified for beam. Since spring 2014, small-scale integration tests on the accelerator systems have been scheduled and carried out successfully to exercise them fully and thoroughly debug their multiple interfaces. The LHC Operations team leads this activity in tight collaboration with the equipment experts and the essential support of the Accelerator Controls group. The tests start once individual system qualification has been performed by the equipment owners and they are ready to be handed over to operations. These tests performed by Operations are called dry runs – dry because they are performed without beam – and they are carried out from the CERN Control Centre (CCC) using the same high-level software applications that will be used during beam operation. The dry runs are the first step towards a global integration test ...

  14. Theoretical evaluation of the biological shielding sufficiency for the Pelletron NEC Particle Accelerator at the Ghana Atomic Energy Commission

    International Nuclear Information System (INIS)

    Amoah, P. A.

    2012-01-01

    Theoretical evaluation of the biological shielding sufficiency provided for 1.7MV Pelletron NEC Particle Accelerator yet to be installed at the Accelerator Research Centre of the Ghana Atomic Energy Commission (GAEC) has been done. Using the Beer Lambert law attenuation of radiation dose outside the walls of the facility was made for protons of energy 1.7MeV. Simulation of charged particle-matter interactions leading to bremsstrahlung radiation using Monte Carlo code (MCNP5) have been carried out. Neutron Activation Analysis (NAA) technique has also been used to identify the composition of the concrete material used during the construction of the Accelerator Research Centre (ARC) building. The NAA analysis revealed that the elemental constituents of the ordinary concrete of density 2.3g/cm 3 used for the construction of the walls included Na, Al, and Ca. Background radiation levels within and outside the facility was measured with the aid of a Sodium Iodide (NaI) identifinder and a Rados detector so as to have a practical reference datum. The weekly background radiation measurements yielded an average dose rate value of 0.05μSv/hr from recorded value range of 0.01μSv/hr to 0.07μSv/hr for an eight month period. Modeling and simulation of charged particle-matter interactions at different beam energies using Monte Carlo code (MCNP5) have yielded the dose rate of 1.58E-07μSv/hr, 1.98E-07μSv/h and 2.20E-05μSv/h outside the 22.86cm (9.0 inch) thick wall of the accelerator facility, for the beam energy range of 0.5-3.0MeV for Titanium, iron and Zirconium target samples respectively. From the Beer-Lambert law, the operational energy of 1.7MeV was used to evaluate theoretically the radiation dose rate of 1.178E-05μSv/hr, 2.656E-05μSv/hr and 4.787E-05μSv/hr outside the 22.86cm thick wall of the accelerator facility for Titanium, Iron and Zirconium targets respectively. At the operational energy energy of 3.0 MeV, the dose rate values obtained were 4.382E-05μSv/h, 9

  15. Commissioning the cryogenic system of the first LHC sector

    International Nuclear Information System (INIS)

    Millet, F.; Claudet, S.; Ferlin, G.; Perin, A.; Riddone, G.; Serio, L.; Soubiran, M.; Tavian, L.; CERN; Ronayette, L.; GHMFL, Grenoble; Rabehl, R.; Fermilab

    2007-01-01

    The LHC machine, composed of eight sectors with superconducting magnets and accelerating cavities, requires a complex cryogenic system providing high cooling capacities (18 kW equivalent at 4.5 K and 2.4 W at 1.8 K per sector produced in large cold boxes and distributed via 3.3-km cryogenic transfer lines). After individual reception tests of the cryogenic subsystems (cryogen storages, refrigerators, cryogenic transfer lines and distribution boxes) performed since 2000, the commissioning of the cryogenic system of the first LHC sector has been under way since November 2006. After a brief introduction to the LHC cryogenic system and its specificities, the commissioning is reported detailing the preparation phase (pressure and leak tests, circuit conditioning and flushing), the cool-down sequences including the handling of cryogenic fluids, the magnet powering phase and finally the warm-up. Preliminary conclusions on the commissioning of the first LHC sector will be drawn with the review of the critical points already solved or still pending. The last part of the paper reports on the first operational experience of the LHC cryogenic system in the perspective of the commissioning of the remaining LHC sectors and the beam injection test

  16. The Care Accelerator R&D Programme in Europe

    NARCIS (Netherlands)

    Napoly, O.; Aleksan, A.; Devred, A.; den Ouden, A.

    CARE, an ambitious and coordinated programme of accelerator research and developments oriented towards high energy physics projects, has been launched in January 2004 by the main European laboratories and the European Commission. This project aims at improving existing infrastructures dedicated to

  17. Commissioning of the JAERI free electron laser

    International Nuclear Information System (INIS)

    Minehara, E.J.; Nagai, R.; Sawamura, M.

    1993-01-01

    We have developed, and constructed a prototype for a quasi-cw, and high-average power free electron laser driven by a 15MeV superconducting rf linac at Tokai, JAERI. In designing a high power FEL, there are many available design options to generate the required power output. By applying the superconducting rf linac driver, some of the options relating to the FEL itself may be relaxed by transferring design difficulties to the driver. Because wall losses become minimal in the superconducting accelerator cavity, very long pulse or quasi-cw, and resultant high average power may be readily attained at the JAERI superconducting rf linac FEL. In 1992 Japanese fiscal year, we have successfully demonstrated better cryogenic (stand-by loss<3.5W at 4.5K) and accelerating fields' performances (Eacc=7-9.4MV/m and Q=1-2x10+9) of four JAERI superconducting accelerator modules, and installed them in the FEL accelerator vault. In 1993, Optical resonators and beam transport systems, which have been already assembled, are now under commissioning. A description and the latest results of the JAERI super-conducting rf linac FEL will be discussed in comparison with a normal-conducting one, and reported in the symposium. (author)

  18. Decommissioning and radioactive waste management. The European Commission overview

    International Nuclear Information System (INIS)

    Rehak, M

    2010-01-01

    In this lecture author deals with the European Commission overview on the decommissioning and radioactive waste management. Financial support of European Commission of decommissioning of the Ignalina NPP, Bohunice V1 NPP and Kozloduy Units 1 and 2 is presented.

  19. Accelerated creep in solid oxide fuel cell anode supports during reduction

    DEFF Research Database (Denmark)

    Frandsen, Henrik Lund; Makowska, Malgorzata Grazyna; Greco, Fabio

    2016-01-01

    To evaluate the reliability of solid oxide fuel cell (SOFC) stacks during operation, the stress field in the stack must be known. During operation the stress field will depend on time as creep processes relax stresses. The creep of reduced Ni-YSZ anode support at operating conditions has been...... studied previously. In this work a newly discovered creep phenomenon taking place during the reduction is reported. This relaxes stresses at a much higher rate (∼ x104) than creep during operation. The phenomenon was studied both in three-point bending and uniaxial tension. Differences between the two...... the NiO and the YSZ phases occurs during reduction. The accelerated creep should practically eliminate any residual stress in the anode support in an SOFC stack, as has previously been indirectly observed. This phenomenon has to be taken into account both in the production of stacks and in the simulation...

  20. Department of Accelerator Physics and Technology: Overview

    International Nuclear Information System (INIS)

    Pachan, M.

    1999-01-01

    Full text: As presented at the overview seminar held on December 98, the activities of the Department were shared among several directions of accelerator applications, as well as research and development works on new accelerator techniques and technologies. In the group of proton and ion accelerators, two main tasks were advanced. The first was a further step in the optimization of operational parameters of multicusp ion-source, prepared for axial injection system in C-30 cyclotron. Another one is the participation in important modifications of r.f. acceleration system in heavy-ion accelerator C-200 of Warsaw University. In the broad field of electron accelerators our main attention was directed at medical applications. Most important of them was the designing and construction of a full scale technological model of a high-gradient accelerating structure for low-energy radiotherapy unit CO-LINE 1000. Microwave measurements, and tuning were accomplished, and the technical documentation for construction of radiation unit completed. This work was supported by the State Committee for Scientific Research. Preparatory work was continued to undertake in the year 1999 the design of two new medical accelerators. First is a new generation radiotherapy unit, with 15 MeV electron beam and two selected energies of X-ray photons. This accelerator should in future replace the existing Neptun 10 MeV units. The work will be executed in the frame of the Project-Ordered commissioned by the State Committee for Scientific Research. The next type of accelerators in preparation is the mobile, self-shielded electron-beam unit for inter operative irradiation. The specification of parameters was completed and study of possible solutions advanced. The programme of medical accelerator development is critically dependent on the existence of a metrological and experimental basis. Therefore the building of a former proton linear accelerator was adopted to the new function as electron accelerators

  1. 6 MV Folded Tandem Ion Accelerator facility at BARC

    International Nuclear Information System (INIS)

    Gupta, S.K.

    2010-01-01

    The 6 MV Folded Tandem Ion Accelerator (FOTIA) facility is operational round the clock and accelerated beams of both light and heavy ions are being used extensively by various divisions of BARC, Universities, lIT Bombay and other R and D labs across the country. The FOTIA is an upgraded version of the old 5.5 MV single stage Van-de-Graaff accelerator (1962-1992). Since its commissioning in the year 2000, the poor beam transmission through the 180 deg folding magnet was a matter of concern. A systematic study for beam transmission through the accelerator was carried out and progressive modifications in folding magnet chamber, foil stripper holder and improvement in average vacuum level through the accelerator have resulted in large improvement of beam transmission leading to up to 2.0 micro-amp analyzed proton beams on target. Now the utilization of the beams from the accelerator has increased many folds for basic and applied research in the fields of atomic and nuclear physics, material science and radiation biology etc. Few new beam lines after the indigenously developed 5-port switching magnet are added and the experimental setup for PIXE, PIGE, External PIXE, 4 neutron detector, Proton Induced Positron Annihilation Spectroscopy (PIPAS) setup and the general purpose scattering chamber etc have been commissioned in the beam hall. The same team has developed a Low Energy Accelerator Facility (LEAF) which delivers negative ions of light and heavy ions for application in implantation, irradiation damage studies in semiconductor devices and testing of new beam line components being developed for Low Energy High Intensity Proton Accelerator (LEHIPA) programme at BARC. The LEAF has been developed as stand alone facility and can deliver beam quickly with minimum intervention of the operator. Few more features are being planned to deliver uniform scanned beams on large targets. (author)

  2. Library Support for Resource Constrained Accelerators

    DEFF Research Database (Denmark)

    Brock-Nannestad, Laust; Karlsson, Sven

    2014-01-01

    . In this paper, we present a lightweight system where an accelerator can remotely execute library functions on a host processor. The implementation takes up 750 bytes but can replace arbitrary library calls leading to significant savings in memory foot print. We evaluate with a set of SPLASH-2 applications...

  3. Safety guidance and inspection program for particle accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Do Whey [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of); Lee, Hee Seock; Yeo, In Whan [Pohang Accelerator Laboratory, Pohang (Korea, Republic of)] (and others)

    2001-03-15

    The inspection program and the safety guidance were developed to enhance the radiation protection for the use of particle accelerators. First the classification of particle accelerators was conducted to develop the safety inspection protocol efficiently. The status of particle accelerators which were operated at the inside and outside of the country, and their safety programs were surveyed. The characteristics of radiation production was researched for each type of particle accelerators. Two research teams were launched for industrial and research accelerators and for medical accelerators, respectively. In each stages of a design, a fabrication, an installation, a commissioning, and normal operation of accelerators, those safety inspection protocols were developed. Because all protocols resulted from employing safety experts, doing the questionnaire, and direct facility surveys, it can be applicable to present safety problem directly. The detail improvement concepts were proposed to revise the domestic safety rule. This results might also be useful as a practical guidance for the radiation safety officer of an accelerator facility, and as the detail standard for the governmental inspection authorities.

  4. PAL-XFEL soft X-ray scientific instruments and X-ray optics: First commissioning results

    Science.gov (United States)

    Park, Sang Han; Kim, Minseok; Min, Changi-Ki; Eom, Intae; Nam, Inhyuk; Lee, Heung-Soo; Kang, Heung-Sik; Kim, Hyeong-Do; Jang, Ho Young; Kim, Seonghan; Hwang, Sun-min; Park, Gi-Soo; Park, Jaehun; Koo, Tae-Yeong; Kwon, Soonnam

    2018-05-01

    We report an overview of soft X-ray scientific instruments and X-ray optics at the free electron laser (FEL) of the Pohang Accelerator Laboratory, with selected first-commissioning results. The FEL exhibited a pulse energy of 200 μJ/pulse, a pulse width of power of 10 500 was achieved. The estimated total time resolution between optical laser and X-ray pulses was <270 fs. A resonant inelastic X-ray scattering spectrometer was set up; its commissioning results are also reported.

  5. Hardware Commissioning of the LHC Quality Assurance, follow-up and storing of the test results

    CERN Document Server

    Barbero, E

    2005-01-01

    During the commissioning of the LHC technical systems [1] (the so-called Hardware Commissioning) a large number of test sequences and procedures will be applied to the different systems and components of the accelerator. All the information related to the coordination of the Hardware Commissioning will be structured and managed towards the final objective of integrating all the data produced in the Manufacturing and Test Folders (MTF) [2] at both equipment level (i.e. individual system tests) and commissioning level (i.e.Hardware Commissioning). The MTF for Hardware Commissioning will be mainly used to archive the results of the tests (i.e. status, parameters and waveforms) which will be used later as reference during the operation with beam. Also it is an indispensable tool for monitoring the progress of the different tests and ensuring the proper follow-up of the procedures described in the engineering specifications; in this way, the Quality Assurance process will be completed. This paper describes the spe...

  6. Off-site emergency preparedness activities within the European Commission

    International Nuclear Information System (INIS)

    Kelly, G.N.

    1998-01-01

    Increasing attention is being given by the European Commission to off-site emergency preparedness as part of its broader contribution to improving nuclear safety in Eastern Europe. The main initiatives being taken or planned by the Commission in this area are summarised. Particular attention is given to two topics: Firstly, the development of the RODOS (Real-time On-line DecisiOn Support) system for supporting off-site emergency management in the event of a nuclear accident; and, secondly, the work of an Inter-Service Group on nuclear Off-Site Emergency Preparedness (OSEP) in Eastern Europe that has been established within the Commission. The contribution that each is making to improving emergency preparedness, both in Eastern Europe and in Europe more widely, is described. (orig.)

  7. European commission contribution to improving off-site emergency preparedness

    International Nuclear Information System (INIS)

    Kelly, G.N.

    1996-01-01

    Increasing attention is being given by the European Commission to off-site emergency preparedness as part of its broader contribution to improving nuclear safety in Eastern Europe. The main initiatives being taken or planned by the Commission in this area are summarized. Particular attention is given to two topics: firstly, the development of the RODOS (Real-time On-line Decision Support) system for supporting off-site emergency management in the event of a nuclear accident; and, secondly, the work of an Inter-Service Group on nuclear Off-Site Emergency Preparedness (OSEP) in Eastern Europe that has recently been established within the Commission. The contribution that each is making to improving emergency preparedness, both in Eastern Europe and in Europe more widely, is described

  8. Acceptance, commissioning and quality control in radiosurgery

    International Nuclear Information System (INIS)

    Toreti, Dalila Luzia

    2009-01-01

    Stereotactic Radiosurgery is a treatment technique that uses narrow beams of radiation focused with great accuracy in a small lesion. The introduction of micro multi leaf collimators (mMLC) allows this technique to reach a higher degree of dose conformation of the target lesion allowing a smaller irradiation of critical structures and normal tissues. This paper presents the results of the acceptance tests and commissioning of a Varian 6EX linear accelerator dedicated to radiosurgery associated with the BrainLab micro multi leaf collimator installed in the Hospital das Clinicas da Faculdade de Medicina da USP (HC-FMUSP) and establish feasible quality assurance program for the services that employ this special technique. The results of the acceptance tests were satisfactory and are willing with the specifications provided by the manufacturer and the commissioning tests were within the international recommendations. The tests and measures that are part of quality control process should be specific to each treatment unit, and the need, frequency and levels of tolerance

  9. Proposal for an Accelerator R&D User Facility at Fermilab's Advanced Superconducting Test Accelerator (ASTA)

    Energy Technology Data Exchange (ETDEWEB)

    Church, M. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Edwards, H. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Harms, E. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Henderson, S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Holmes, S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Lumpkin, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Kephart, R. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Levedev, V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Leibfritz, J. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Nagaitsev, S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Piot, P. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Northern Illinois Univ., DeKalb, IL (United States); Prokop, C. [Northern Illinois Univ., DeKalb, IL (United States); Shiltsev, V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Sun, Y. E. [Argonne National Lab. (ANL), Argonne, IL (United States); Valishev, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2013-10-01

    Fermilab is the nation’s particle physics laboratory, supported by the DOE Office of High Energy Physics (OHEP). Fermilab is a world leader in accelerators, with a demonstrated track-record— spanning four decades—of excellence in accelerator science and technology. We describe the significant opportunity to complete, in a highly leveraged manner, a unique accelerator research facility that supports the broad strategic goals in accelerator science and technology within the OHEP. While the US accelerator-based HEP program is oriented toward the Intensity Frontier, which requires modern superconducting linear accelerators and advanced highintensity storage rings, there are no accelerator test facilities that support the accelerator science of the Intensity Frontier. Further, nearly all proposed future accelerators for Discovery Science will rely on superconducting radiofrequency (SRF) acceleration, yet there are no dedicated test facilities to study SRF capabilities for beam acceleration and manipulation in prototypic conditions. Finally, there are a wide range of experiments and research programs beyond particle physics that require the unique beam parameters that will only be available at Fermilab’s Advanced Superconducting Test Accelerator (ASTA). To address these needs we submit this proposal for an Accelerator R&D User Facility at ASTA. The ASTA program is based on the capability provided by an SRF linac (which provides electron beams from 50 MeV to nearly 1 GeV) and a small storage ring (with the ability to store either electrons or protons) to enable a broad range of beam-based experiments to study fundamental limitations to beam intensity and to develop transformative approaches to particle-beam generation, acceleration and manipulation which cannot be done elsewhere. It will also establish a unique resource for R&D towards Energy Frontier facilities and a test-bed for SRF accelerators and high brightness beam applications in support of the OHEP

  10. Dissemination and support of ARGUS for accelerator applications

    International Nuclear Information System (INIS)

    1992-01-01

    The ARGUS code is a three-dimensional code system for simulating for interactions between charged particles, electric and magnetic fields, and complex structure. It is a system of modules that share common utilities for grid and structure input, data handling, memory management, diagnostics, and other specialized functions. The code includes the fields due to the space charge and current density of the particles to achieve a self-consistent treatment of the particle dynamics. The physic modules in ARGUS include three-dimensional field solvers for electrostatics and electromagnetics, a three-dimensional electromagnetic frequency-domain module, a full particle-in-cell (PIC) simulation module, and a steady-state PIC model. These are described in the Appendix to this report. This project has a primary mission of developing the capabilities of ARGUS in accelerator modeling of release to the accelerator design community. Five major activities are being pursued in parallel during the first year of the project. To improve the code and/or add new modules that provide capabilities needed for accelerator design. To produce a User's Guide that documents the use of the code for all users. To release the code and the User's Guide to accelerator laboratories for their own use, and to obtain feed-back from the. To build an interactive user interface for setting up ARGUS calculations. To explore the use of ARGUS on high-power workstation platforms

  11. LHC(ATLAS, CMS, LHCb) Run 2 commissioning status

    CERN Document Server

    Zimmermann, Stephanie; The ATLAS collaboration

    2015-01-01

    After a very successful run-1, the LHC accelerator and the LHC experiments had undergone intensive consolidation, maintenance and upgrade activities during the last 2 years in what has become known as Long-Shutdown-1 (LS1). LS1 ended in February this year, with beams back in the LHC since Easter. This talk will give a summary on the major shutdown activities of ATLAS, CMS and LHCb and review the status of commissioning for run-2 physics data taking.

  12. AECL's participation in the commissioning of Point Lepreau generating station unit 1

    International Nuclear Information System (INIS)

    Chawla, S.; Singh, K.; Yerramilli, S.

    1983-05-01

    Support from Atomic Energy of Canada Ltd. (AECL) to Point Lepreau during the commissioning program has been in the form of: seconded staff for commissioning program management, preparation of commissioning procedures, and hands-on commissioning of several systems; analysis of test results; engineering service for problem solving and modifications; design engineering for changes and additions; procurement of urgently-needed parts and materials; technological advice; review of operational limits; interpretation of design manuals and assistance with and preparation of submissions to regulatory authorities; and development of equipment and procedures for inspection and repairs. This, together with AECL's experience in the commissioning of other 600 MWe stations, Douglas Point and Ontario Hydro stations, provides AECL with a wide range of expertise for providing operating station support services for CANDU stations

  13. Accelerator development

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Because the use of accelerated heavy ions would provide many opportunities for new and important studies in nuclear physics and nuclear chemistry, as well as other disciplines, both the Chemistry and Physics Divisions are supporting the development of a heavy-ion accelerator. The design of greatest current interest includes a tandem accelerator with a terminal voltage of approximately 25 MV injecting into a linear accelerator with rf superconducting resonators. This combined accelerator facility would be capable of accelerating ions of masses ranging over the entire periodic table to an energy corresponding to approximately 10 MeV/nucleon. This approach, as compared to other concepts, has the advantages of lower construction costs, lower operating power, 100 percent duty factor, and high beam quality (good energy resolution, good timing resolution, small beam size, and small beam divergence). The included sections describe the concept of the proposed heavy-ion accelerator, and the development program aiming at: (1) investigation of the individual questions concerning the superconducting accelerating resonators; (2) construction and testing of prototype accelerator systems; and (3) search for economical solutions to engineering problems. (U.S.)

  14. Commissioning and quality assurances of the CMS XIO radiotherapy treatment planning system for external beam photons

    International Nuclear Information System (INIS)

    Muralidhar, K.R.; Anurupa; Soubhagya; Sudhakar; Shiva; Krishnam Raju, A.; Narayana Murthy, P.

    2008-01-01

    The commissioning of XIO treatment planning system (TPS) was carried out by Computerized Medical Devices, USA for Siemens and Elekta linear accelerators. The Commissioning and quality assurance of the CMS XIO radiotherapy treatment planning system involves many steps, beginning from beam data acquisition and entry into the computerized TPS, through patient data acquisition, to treatment plan generation and the final transfer of data to the treatment machine and quality assurance of TPS

  15. New upgradations for 15 UD Pelletron accelerator at IUAC, New Delhi

    International Nuclear Information System (INIS)

    Joshi, Rajan; Singh, P.; Kumar, S.

    2011-01-01

    Several major modifications were performed for up gradation of 15 UD Pelletron accelerator since its commissioning. Recently, two numbers of new 50 position stripper foil assemblies were installed in high energy section. A new chiller system, for SF 6 gas inside accelerator tank, is designed and installed outside accelerator tank. One out of two of the charging chains, has completed 1,00,000 hours of operation. A major maintenance work for charging system was also performed recently. Other up gradations which enhanced the performance of accelerator are foil stripper position read back, area interlocking for proton beam runs. Recent up gradations and other important activities for the Pelletron accelerator are being reported in the present paper. (author)

  16. Auxiliary accelerating system for TRIUMF cyclotron

    International Nuclear Information System (INIS)

    Zach, M.; Fong, K.; Laxdal, R.; Mackenzie, G.H.; Pacak, V.; Pearson, J.; Richardson, J.R.; Stanford, G.; Worsham, R.

    1990-06-01

    A 92 MHz auxiliary accelerating cavity has been designed and manufactured for installation in the TRIUMF cyclotron. Operating at the fourth harmonic of the RF with a peak voltage of 150 kV, it almost doubles the present energy gain per turn in the 400-500 MeV range, and reduces by ∼50% the stripping loss of the H - beam. This significant improvement will allow a substantial increase in the extracted current above the present routine level of 150μA while maintaining the same levels of residual radioactivity. The system is completed and being commissioned. A description of the design and commissioning procedures is presented, and results of beam tests given. (Author) 7 refs., 5 figs

  17. Establishment of a radiotherapy service with a linear accelerator (photons): acceptance tests, dosimetry and quality control

    International Nuclear Information System (INIS)

    Berdaky, Mafalda Feliciano

    2000-01-01

    This work presents the operational part of the final process of the establishment of a radiotherapy service with a linear accelerator (6 MeV photon beams), including the acceptance tests, commissioning tests and the implementation of a quality control program through routine mechanical and radiation tests. All acceptance tests were satisfactory, showing results below the allowed limits of the manufacturer, the commissioning tests presented results within those of the international recommendations. The quality control program was performed during 34 months and showed an excellent stability of this accelerator. (author)

  18. Design, fabrication, commissioning, and testing of a 250 g/s, 2-K helium cold compressor system

    International Nuclear Information System (INIS)

    V. Ganni; D. M. Arenius; B. S. Bevins; W. C. Chronis; J. D. Creel; J. D. Wilson Jr.

    2002-01-01

    In June 1999 the Thomas Jefferson National Accelerator Facility (TJNAF) Cryogenic Systems Group had completed the design, fabrication, and commissioning of a cold compressor system capable of pumping 250 g/s of 2-K helium vapor to a pressure above 1 bar. The 2-K cold box consists of five stages of centrifugal variable speed compressors with LN2 cooled drive motors and magnetic bearings, a plate fin heat exchanger, and an LN2 shield system. The new 2-K cold box (referred to as the SCN) was built as a redundant system to an existing four stage cold compressor SCM cold box that was commissioned in May 1994. The SCN has been in continuous service supporting the facility experiments since commissioning. This system has achieved a significant improvement in the total 2-K refrigeration system capacity and stability and has substantially increased the operating envelope both in cold compressor flow and operating pressure range. This paper describes the cold box configuration and the experience s in the design, fabrication, commissioning and performance evaluation. The capacity of the system for various operating pressures (0.040 to 0.025 bar at the load corresponding to a total compressor pressure ratio of 28 to 54) is presented. An effort is made to characterize the components and their operating data over the tested range. This includes the return side pressure drop in the distribution system, the heat exchanger, and the cold compressor characteristics. The system design parameters and their effects on performance are outlined

  19. Accelerator Physics Section progress report

    International Nuclear Information System (INIS)

    Coote, G.E.

    1986-05-01

    This report summarizes the work of the Accelerator Physics Section of the Institute of Nuclear Sciences during the period January-December 1985. Applications of the EN-tandem accelerator included 13 N production for tracer experiments in plants and animals, hydrogen profiling with a 19 F beam and direct detection of heavy ions with a surface barrier detector. Preparations for accelerator mass spectrometry continued steadily, with the commissioning of the pulsed EHT supply which selects the isotope to be accelerated, routine detection of 14 C ions, and completion of a sputter ion source with an eight position target wheel. It was shown that the hydrogen content of a material could be derived from a simultaneous measurement of the transmission of neutrons and gamma rays from a neutron source or accelerator target. The 11 CO 2 produced at the 3 MV accelerator was used in two studies of translocation in a large number of plant species: the effects of small quantities of SO 2 in the air, and the effect of cooling a short length of the stem. The nuclear microprobe was applied to studies of carbon pickup during welding of stainless steel, determination of trace elements in soil and vegetation and the measurement of sodium depth profiles in obsidian - in particular the effect of rastering the incident proton beams

  20. Conceptual design of a commercial accelerator driven thorium reactor

    International Nuclear Information System (INIS)

    Fuller, C. G.; Ashworth, R. W.

    2010-01-01

    This paper describes the substantial work done in underpinning and developing the concept design for a commercial 600 MWe, accelerator driven, thorium fuelled, lead cooled, power producing, fast reactor. The Accelerator Driven Thorium Reactor (ADTR TM) has been derived from original work by Carlo Rubbia. Over the period 2007 to 2009 Aker Solutions commissioned this concept design work and, in close collaboration with Rubbia, developed the physics, engineering and business model. Much has been published about the Energy Amplifier concept and accelerator driven systems. This paper concentrates on the unique physics developed during the concept study of the ADTR TM power station and the progress made in engineering and design of the system. Particular attention is paid to where the concept design has moved significantly beyond published material. Description of challenges presented for the engineering and safety of a commercial system and how they will be addressed is included. This covers the defining system parameters, accelerator sizing, core and fuel design issues and, perhaps most importantly, reactivity control. The paper concludes that the work undertaken supports the technical viability of the ADTR TM power station. Several unique features of the reactor mean that it can be deployed in countries with aspirations to gain benefit from nuclear power and, at 600 MWe, it fits a size gap for less mature grid systems. It can provide a useful complement to Generation III, III+ and IV systems through its ability to consume actinides whilst at the same time providing useful power. (authors)

  1. High intensity proton operation at the Brookhaven AGS accelerator complex

    International Nuclear Information System (INIS)

    Ahrens, L.A.; Blaskiewicz, M.; Bleser, E.; Brennan, J.M.; Gardner, C.; Glenn, J.W.; Onillon, E.; Reece, R.K.; Roser, T.; Soukas, A.

    1994-01-01

    With the completion of the AGS rf upgrade, and the implementation of a transition open-quotes jumpclose quotes, all of accelerator systems were in place in 1994 to allow acceleration of the proton intensity available from the AGS Booster injector to AGS extraction energy and delivery to the high energy users. Beam commissioning results with these new systems are presented. Progress in identifying and overcoming other obstacles to higher intensity are given. These include a careful exploration of the stopband strengths present on the AGS injection magnetic porch, and implementation of the AGS single bunch transverse dampers throughout the acceleration cycle

  2. Prospects for an Accelerator Program in Mexico Focused on Photon Science

    Energy Technology Data Exchange (ETDEWEB)

    Carlos Hernandez-Garcia, Mauro Napsuciale

    2011-05-01

    Recent interest in developing an accelerator-based light source in Mexico has driven several actions by the Division of Particles and Fields in Mexico, and by the electron accelerator community in the United States. We report on activities over the past two years that are very encouraging and offer a variety of possibilities to start the development of an accelerator program in Mexico. A suggested path towards this goal that would eventually lead to building, commissioning and operating a third or fourth generation light source will also be presented

  3. Accelerating Value Creation with Accelerators

    DEFF Research Database (Denmark)

    Jonsson, Eythor Ivar

    2015-01-01

    and developing the best business ideas and support the due diligence process. Even universities are noticing that the learning experience of the action learning approach is an effective way to develop capabilities and change cultures. Accelerators related to what has historically been associated...

  4. Support for the LHC experiments

    CERN Document Server

    Butin, François; Gastal, M; Lacarrère, D; Macina, D; Perrot, A L; Tsesmelis, E; Wilhelmsson, M; CERN. Geneva. TS Department

    2008-01-01

    Experimental Area Teams have been put in place and charged with the general co-ordination and management of the LHC experimental areas and of the zones in the LHC tunnel hosting near-beam detectors of the experiments. This organization is responsible for the in situ co-ordination of work with the aim of providing a structure that enables the experiment collaborations and accelerator groups to carry out their work effectively and safely. This presentation will review some key elements in the support given to the LHC experimental areas and, given the track record and successful implementation during the LHC installation and commissioning phase, will argue that such an organization structure will be required also for the period of LHC exploitation for physics.

  5. Review of the Initial Phases of the LHC Power Converter Commissioning

    CERN Document Server

    Nisbet, D

    2008-01-01

    The LHC requires more than 1700 power converter systems that supply between 60A and 13kA of precisely regulated current to the superconducting magnets. For the first time at CERN these converters have been installed underground in close proximity to many other accelerator systems. In addition to the power converters themselves, many utilities such as air and water cooling, electrical power, communication networks and magnet safety systems needed to be installed and commissioned as a single system. Due to the complexity of installing and commissioning such a large infrastructure, with inevitable interaction between the different systems, a three phase test strategy was developed. The first phase comprised the manufacture, integration and reception tests of all converter sub-systems necessary for powering. The second phase covered the commissioning of all the power converters installed in their final environment with the utilities. The third phase will add the superconducting magnets and will not be covered by ...

  6. CLAWS. Beam background monitoring in the commissioning of SuperKEKB

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel, Miroslav; Windel, Hendrik; Kolk, Naomi van der; Simon, Frank [Max Planck Institute for Physics (Germany)

    2016-07-01

    The background levels, in particular those originating from the continuous injection to maximize luminosity, are a concern for the inner vertex detector of Belle-II at the SuperKEKB accelerator. To better understand this background, and in particular its time dependence, dedicated measurements will be made during the commissioning phase of the accelerator, scheduled to begin in February 2016. One of the detectors for these measurements, CLAWS, is based on scintillators coupled to SiPMs which were originally developed for timing measurements of hadronic showers in the CALICE calorimeters. The data acquisition is based on digitizers with very deep buffers allowing the continuous recording of more than 1000 revolutions of the accelerator to provide a detailed analysis of the evolution of the background levels after injection. In this contribution, we present the overall CLAWS setup, the technical solutions adopted for the data acquisition and analysis, and discuss the performance of the detector elements.

  7. TIARA: Toward accelerator R&D coordination

    CERN Multimedia

    Anaïs Schaeffer

    2011-01-01

    The preparatory phase of the TIARA (Test Infrastructure and Accelerator Research Area) project has begun. In January, members from 11 research institutes in 8 European countries began a three-year collaboration intended to enhance, improve and structure R&D efforts in the area of accelerator science and technology in Europe.   Partly funded by the European Commission under its Seventh Framework Programme (FP7), the TIARA project is being coordinated by the CEA (Commissariat à l’Énergie Atomique et aux Energies Alternatives). “The aim of the project is to arrive at an organisational structure that will provide coordination for R&D efforts and associated infrastructures in the field of particle accelerators in Europe,” explains the CEA’s Céline Tanguy, project coordinator assistant. “The new structure, which we hope will be a durable one, will be set up at the end of the project’s preparatory phase....

  8. 78 FR 70959 - Commission on Indian Trust Administration and Reform

    Science.gov (United States)

    2013-11-27

    ... DEPARTMENT OF THE INTERIOR Office of the Secretary [DR.5A311.IA000514] Commission on Indian Trust Administration and Reform AGENCY: Office of the Secretary, Interior. ACTION: Notice of Renewal of the Commission... administration system to support a reasoned and factually based set of options for potential management...

  9. Separations technology development to support accelerator-driven transmutation concepts

    International Nuclear Information System (INIS)

    Venneri, F.; Arthur, E.; Bowman, C.

    1996-01-01

    This is the final report of a one-year Laboratory-Directed Research and Development (LDRD) Project at the Los Alamos National Laboratory (LANL). This project investigated separations technology development needed for accelerator-driven transmutation technology (ADTT) concepts, particularly those associated with plutonium disposition (accelerator-based conversion, ABC) and high-level radioactive waste transmutation (accelerator transmutation of waste, ATW). Specific focus areas included separations needed for preparation of feeds to ABC and ATW systems, for example from spent reactor fuel sources, those required within an ABC/ATW system for material recycle and recovery of key long-lived radionuclides for further transmutation, and those required for reuse and cleanup of molten fluoride salts. The project also featured beginning experimental development in areas associated with a small molten-salt test loop and exploratory centrifugal separations systems

  10. Dissemination and support of ARGUS for accelerator applications. Final report, April 24, 1991--April 14, 1995

    International Nuclear Information System (INIS)

    Kostas, C.; Krueger, W.A.; Mankofsky, A.; Mondelli, A.A.; Petillo, J.J.

    1995-01-01

    The effort has two broad goals, which have been prioritized by DOE, as follows: to enhance the ARGUS code for use in practical accelerator design simulations; to release ARGUS to the accelerator community through the Los Alamos Accelerator Code Group (LAACG). During the contract period, ARGUS versions 24 and 25 have been released. An upgraded version 25 (ARGUS v.25c) will be released in July, 1995, and will include all of the features that are tested and working at the conclusion of the DOE-funded effort. The effort that consolidated version 24 established a set of core capabilities that all ARGUS modules could access. Version 25 incorporated several major improvements: (1) a new frequency-domain module was incorporated into ARGUS that can handle degenerate modes, lossy materials, and periodic boundary conditions with sub-phase specification, and that can utilize the ARGUS data handling machinery for multiblock operation; (2) HDF output was implemented to allow ARGUS to send data to visualization tools; (3) a plasma chemistry capability was included in the steady-state PIC module to allow ionization, stripping, electron attachment, charge exchange, and other ion rate processes to occur within the PIC calculation; (4) new structure input options for figures of translation (extrusion) and figures of revolution were implemented. This ARGUS release is supported on all Cray platforms and on the IBM RS6000 Unix workstation platform. Version 25 was released in February 1994. The ARGUS dissemination and support activities have proceeded in parallel with code enhancement. On-line ARGUS support is available at NERSC through ARGUS man pages, and at the SAIC ftp node at mclapo.saic.com, through the SAIC MOSAIC home page, and through ARGUS bulletin boards maintained at SAIC and at NERSC

  11. Philippine Atomic Energy Commission: Annual report 1983

    International Nuclear Information System (INIS)

    1984-01-01

    This publication gives the highlights of the research and development projects of the Philippine Atomic Energy Commission in agriculture and food, nuclear fuels and power system technology, medicine, public health and nutrition, environmental surveillance, supportive basic research, social response to nuclear technology, nuclear licensing and safeguards, supportive technology and international and local linkages including manpower development. (ELC)

  12. Status and plans for Linac4 installation and commissioning

    CERN Document Server

    Vretenar, M; Arnaudon, L; Baudrenghien, P; Bellodi, G; Broere, J; Brunner, O; Comblin, J F; Coupard, J; Dimov, V A; Fuchs, J F; Funken, A; Gerigk, F; Granemann Souza, E; Hanke, K; Hansen, J; Yarmohammadi Satri, M; Kozsar, I; Lallement, J B; Lenardon, F; Lettry, J; Lombardi, A M; Maglioni, C; Midtun, O; Mikulec, B; Nisbet, D; Paoluzzi, M; Raich, U; Ramberger, S; Roncarolo, F; Rossi, C; Sanchez Alvarez, J L; Scrivens, R; Tan, J; Valerio-Lizarraga, C A; Vollaire, J; Wegner, R; Weisz, S; Zocca, F

    2014-01-01

    Linac4 is a normal conducting 160 MeV Hˉ linear accelerator presently being installed and progressively commissioned at CERN. It will replace the ageing 50 MeV Linac2 as injector of the PS Booster (PSB), increasing at the same time its brightness by a factor of two thanks to the higher injection energy. This will be the first step of a program to increase the beam brightness in the LHC injectors for the needs of the High-Luminosity LHC project. After a series of beam measurements on a dedicated test stand the 3 MeV Linac4 front-end, including ion source, RFQ and a beam chopping line, has been recommissioned at its final position in the Linac4 tunnel. Commissioning of the following section, the Drift Tube Linac, is starting. Beam commissioning will take place in steps of increasing energy, to reach the final 160 MeV in 2015. An extended beam measurement phase including testing of stripping equipment for the PSB and a year-long test run to assess and improve Linac4 reliability will take place in 2016, prior to...

  13. 500 keV, 10 kW DC electron accelerator at BRIT, Vashi

    International Nuclear Information System (INIS)

    Sharma, D.K.; Rajan, R.N.; Bakhtsingh, R.I.; Acharya, S.; Rajawat, R.K.

    2017-01-01

    The 500 keV DC accelerator was indigenously designed and developed by Accelerator and Pulse Power Division, BARC during 1994-97 and commissioned at REPF Hall, BRIT, Vashi on 10"t"h August, 1998. The accelerator operation at 3kW beam power for 8 hour shifts was established in February 2001, confirming to industrial standards for EB treatment of plastic sheets as well as various surface-treatment processes for value addition of the products and materials. Since then, this EB facility is functional and being regularly utilized for various applications

  14. Accelerator breeder concept

    International Nuclear Information System (INIS)

    Bartholomew, G.A.; Fraser, J.S.; Garvey, P.M.

    1978-10-01

    The principal components and functions of an accelerator breeder are described. The role of the accelerator breeder as a possible long-term fissile production support facility for CANDU (Canada Deuterium Uranium) thorium advanced fuel cycles and the Canadian research and development program leading to such a facility are outlined. (author)

  15. Heavy ion accelerating structure

    International Nuclear Information System (INIS)

    Pottier, Jacques.

    1977-01-01

    The heavy ion accelerating structure concerned in this invention is of the kind that have a resonance cavity inside which are located at least two longitudinal conducting supports electrically connected to the cavity by one of their ends in such a way that they are in quarter-wavelength resonance and in phase opposition. Slide tubes are electrically connected alternatively to one or the other of the two supports, they being electrically connected respectively to one or the other end of the side wall of the cavity. The feature of the structure is that it includes two pairs of supports symmetrically placed with respect to the centre line of the cavity, the supports of one pair fitted overhanging being placed symmetrically with respect to the centre line of the cavity, each slide tube being connected to the two supports of one pair. These support are connected to the slide wall of the cavity by an insulator located at their electrically free end. The accelerator structure composed of several structures placed end to end, the last one of which is fed by a high frequency field of adjustable amplitude and phase, enables a heavy ion linear accelerator to be built [fr

  16. Commissioning and Operational Experience With an Intermediate Upgrade Cryomodule for the CEBAF 12 GeV Upgrade

    International Nuclear Information System (INIS)

    Thomas Powers; Davis, G.; Michael Drury; Christiana Grenoble; Hovater, J.; Lawrence King; Tomasz Plawski; Joseph Preble

    2005-01-01

    Three cryomodules have been designed and built as intermediate prototypes for the CEBAF 12 GeV upgrade. This paper will discuss the commissioning and operational experience with the second of these cryomodules, which was installed and commissioned in the Jefferson Lab 10 kW Free Electron Laser Facility. Within the cryomodule are eight 7-cell, 1497 MHz cavities. It was designed to accelerate 1 mA of beam in excess of 70 MV and to have the same footprint as a standard CEBAF cryomodule. The cryomodule was installed in parallel with the FEL beam line in the spring of 2004 and characterized simultaneous with beam delivery. It was installed in the beam line in the early summer of 2004 and has since been operated as part of an energy recovered linac with 5 mA of beam current and 75 MV accelerating gradient for extended periods of time. Additionally, it was operated at 1 mA of beam current and 80 MV of accelerating gradient for several hours without a trip. In the latter operating mode the beam current was limited by the injector setup

  17. Commissioning of Japanese x-ray free electron laser, SACLA and achieved laser performance

    International Nuclear Information System (INIS)

    Tanaka, Hitoshi; Amselem, Arnaud; Aoyagi, Hideki

    2012-01-01

    After 8 months of beam commissioning of SPring-8 Angstrom Compact free electron LAser, SACLA reached the primary target performance, i.e., a shortest laser wavelength of ∼0.6 Angstrom and a laser pulse energy value of sub-mJ at a wavelength of 1.2 Angstrom. This success was due to the following four factors; (1) performance estimation of each component of SACLA required for the target laser performance and its achievement, (2) elaboration of beam diagnostics and control systems enabling precise accelerator and undulator tuning, (3) a rational and strategic commissioning plan, (4) most adequate response to various accidental events during the beam commissioning period. This article, in order to light up the above four factors leading us to the success, starts with the features of SACLA and critical tolerance for the sub-system components, and then, explains our approach to achieve the target laser performance and how the beam commissioning of SACLA proceeded. At last, the article summarizes the present laser and operational status. (author)

  18. LEP superconducting accelerating cavity module

    CERN Multimedia

    1995-01-01

    With its 27-kilometre circumference, the Large Electron-Positron (LEP) collider was the largest electron-positron accelerator ever built. The excavation of the LEP tunnel was Europe’s largest civil-engineering project prior to the Channel Tunnel. Three tunnel-boring machines started excavating the tunnel in February 1985 and the ring was completed three years later. In its first phase of operation, LEP consisted of 5176 magnets and 128 accelerating cavities. CERN’s accelerator complex provided the particles and four enormous detectors, ALEPH, DELPHI, L3 and OPAL, observed the collisions. LEP was commissioned in July 1989 and the first beam circulated in the collider on 14 July. The collider's initial energy was chosen to be around 91 GeV, so that Z bosons could be produced. The Z boson and its charged partner the W boson, both discovered at CERN in 1983, are responsible for the weak force, which drives the Sun, for example. Observing the creation and decay of the short-lived Z boson was a critical test of...

  19. First results with the novel petawatt laser acceleration facility in Dresden

    International Nuclear Information System (INIS)

    Schramm, U; Bussmann, M; Irman, A; Siebold, M; Zeil, K; Albach, D; Bernert, C; Bock, S; Brack, F; Branco, J; Couperus, JP; Cowan, TE; Debus, A; Eisenmann, C; Garten, M; Gebhardt, R; Grams, S; Helbig, U; Huebl, A; Kluge, T

    2017-01-01

    We report on first commissioning results of the DRACO Petawatt ultra-short pulse laser system implemented at the ELBE center for high power radiation sources of Helmholtz-Zentrum Dresden-Rossendorf. Key parameters of the laser system essential for efficient and reproducible performance of plasma accelerators are presented and discussed with the demonstration of 40 MeV proton acceleration under TNSA conditions as well as peaked electron spectra with unprecedented bunch charge in the 0.5 nC range. (paper)

  20. The operational status of the Booster injector for the AGS accelerator complex at BNL

    International Nuclear Information System (INIS)

    Ahrens, L.; Bleser, E.; Brennan, J.M.; Gardner, C.; Gill, E.; Glenn, J.W.; Reece, K.; Roser, T.; van Asselt, W.; Weng, W.T.

    1992-01-01

    The Booster synchrotron at Brookhaven National Laboratory has been incorporated into the accelerator chain at the Alternating Gradient Synchrotron (AGS) complex. After a successful first commissioning effort in the spring of 1991, the Booster has been part of this year's silicon, gold and proton physics runs. After a brief review of the Booster design goals, and of the early commissioning, this paper will summarize this year's activities

  1. Realtime tune measurements in slow-cycling accelerators

    International Nuclear Information System (INIS)

    Herrup, D.

    1997-01-01

    Measurement and control of the tunes, coupling, and chromaticities in storage rings is essential to efficient operation of these accelerators. Yet it has been very difficult to make reliable realtime measurements of these quantities. We have built and commissioned the microprocessor-based Generic Finite State Data Acquisition (GFSDA) system. GFSDA provides turn-by-turn data acquisition and analysis of accelerator signals in a way that can be easily related to accelerator operations. The microprocessor is capable of calculating FFTs and correlations in real time. Both the Fermilab Main Ring and Tevatron use open loop tune, chromaticity, and coupling control, and the GFSDA measurements can easily be used to improve the open loop tables. We can add realtime feedback control with simple extensions of the system. We have used this system to make tune measurements closely spaced in time over an entire Tevatron ramp cycle

  2. Systems and methods for the magnetic insulation of accelerator electrodes in electrostatic accelerators

    Science.gov (United States)

    Grisham, Larry R

    2013-12-17

    The present invention provides systems and methods for the magnetic insulation of accelerator electrodes in electrostatic accelerators. Advantageously, the systems and methods of the present invention improve the practically obtainable performance of these electrostatic accelerators by addressing, among other things, voltage holding problems and conditioning issues. The problems and issues are addressed by flowing electric currents along these accelerator electrodes to produce magnetic fields that envelope the accelerator electrodes and their support structures, so as to prevent very low energy electrons from leaving the surfaces of the accelerator electrodes and subsequently picking up energy from the surrounding electric field. In various applications, this magnetic insulation must only produce modest gains in voltage holding capability to represent a significant achievement.

  3. Performance of the Argonne Wakefield Accelerator Facility and initial experimental results

    International Nuclear Information System (INIS)

    Gai, W.; Conde, M.; Cox, G.; Konecny, R.; Power, J.; Schoessow, P.; Simpson, J.; Barov, N.

    1996-01-01

    The Argonne Wakefield Accelerator facility has begun its experimental program. It is designed to address advanced acceleration research requiring very short, intense electron bunches. It incorporates two photocathode based electron sources. One produces up to 100 nC, multi-kiloamp 'drive' bunches which are used to excite wakefields in dielectric loaded structures and in plasma. The second source produces much lower intensity 'witness' pulses which are used to probe the fields produced by the drive. The drive and witness pulses can be precisely timed as well as laterally positioned with respect to each other. This paper discusses commissioning, initial experiments, and outline plans for a proposed 1 GeV demonstration accelerator

  4. The CARE accelerator R&D programme in Europe

    CERN Document Server

    Napoly, Olivier; den Ouden, Andres; Devred, Arnaud; Garoby, Roland; Garvey, Terence; Ghigo, Andrea; Gschwendtner, Edda; Losito, Roberto; Mais, Helmut; Palladino, V; Proch, Dieter; Richard, F; Rinolfi, Louis; Ruggiero, Francesco; Scandale, Walter; Schulte, Daniel; Vretenar, Maurizio

    2005-01-01

    CARE, an ambitious and coordinated programme of accelerator research and developments oriented towards high energy physics projects, has been launched in January 2004 by the main European laboratories and the European Commission. This project aims at improving existing infrastructures dedicated to future projects such as linear colliders, upgrades of hadron colliders and high intensity proton drivers. We describe the CARE R&D plans, mostly devoted to advancing the performance of the superconducting technology, both in the fields of RF cavities for electron or proton acceleration and of high field magnets, as well as to developing high intensity electron and proton injectors. We highlight some results and progress obtained so far.

  5. THE STAFF ASSOCIATION'S INTERNAL COMMISSIONS A source of innovative ideas

    CERN Multimedia

    STAFF ASSOCIATION

    2010-01-01

    In the heart of the Staff Association, internal commissions carry out preparatory work which is indispensable for productive discussions in Staff Council and Executive Committee meetings. These working groups, composed of staff delegates and interested staff members, are think tanks for all subjects in the area assigned to them. Five commissions are active in 2010 : The “In-Form-Action” Commission develops a communication strategy (Information), organizes staff mobilization and action (Action) and promotes delegate training (Formation [training]), in order to enhance, support and professionalize the activities of the Staff Association. The Commission for “Employment Conditions” deals with remuneration, the advancement system, working hours, recruitment, and retention, among other things. It gives its opinion on proposals by the Management or elaborates its own proposals. The Commission for “Health and Safety” examines all aspec...

  6. High-performance modeling of plasma-based acceleration and laser-plasma interactions

    Science.gov (United States)

    Vay, Jean-Luc; Blaclard, Guillaume; Godfrey, Brendan; Kirchen, Manuel; Lee, Patrick; Lehe, Remi; Lobet, Mathieu; Vincenti, Henri

    2016-10-01

    Large-scale numerical simulations are essential to the design of plasma-based accelerators and laser-plasma interations for ultra-high intensity (UHI) physics. The electromagnetic Particle-In-Cell (PIC) approach is the method of choice for self-consistent simulations, as it is based on first principles, and captures all kinetic effects, and also scale favorably to many cores on supercomputers. The standard PIC algorithm relies on second-order finite-difference discretization of the Maxwell and Newton-Lorentz equations. We present here novel formulations, based on very high-order pseudo-spectral Maxwell solvers, which enable near-total elimination of the numerical Cherenkov instability and increased accuracy over the standard PIC method for standard laboratory frame and Lorentz boosted frame simulations. We also present the latest implementations in the PIC modules Warp-PICSAR and FBPIC on the Intel Xeon Phi and GPU architectures. Examples of applications will be given on the simulation of laser-plasma accelerators and high-harmonic generation with plasma mirrors. Work supported by US-DOE Contracts DE-AC02-05CH11231 and by the European Commission through the Marie Slowdoska-Curie fellowship PICSSAR Grant Number 624543. Used resources of NERSC.

  7. Beam shaping assembly optimization for (7)Li(p,n)(7)Be accelerator based BNCT.

    Science.gov (United States)

    Minsky, D M; Kreiner, A J

    2014-06-01

    Within the framework of accelerator-based BNCT, a project to develop a folded Tandem-ElectroStatic-Quadrupole accelerator is under way at the Atomic Energy Commission of Argentina. The proposed accelerator is conceived to deliver a proton beam of 30mA at about 2.5MeV. In this work we explore a Beam Shaping Assembly (BSA) design based on the (7)Li(p,n)(7)Be neutron production reaction to obtain neutron beams to treat deep seated tumors. © 2013 Elsevier Ltd. All rights reserved.

  8. H.V. support structure of 3MVDC generator and its protection from HV discharges in vacuum and SF6 gas for DC electron accelerator

    International Nuclear Information System (INIS)

    Sharma, D.K.; Rajan, R.N.; Srivastava, S.K.; Dewangan, S.; Jayaprakash, D.; Bakhtsingh, R.I.; Acharya, S.; Gantayet, L.M.

    2014-01-01

    Accelerator and Pulse Power Division of BARC has developed a DC electron accelerator for cross linking of polymers, medical sterilisation, preservation of food. The demonstration of stack-gas cleanup for green power generation has been demonstrated successfully. The support structure of the 3MVDC voltage generator is made of Perspex for high dielectric strength, easy availability of raw material, excellent radiation resistance and long term dimensional stability. This paper describes the salient design features of the High voltage support structure in brief. (author)

  9. H.V. support structure of 3MVDC generator and its protection from HV discharges in vacuum and SF6 gas for DC electron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, D.K.; Rajan, R.N.; Srivastava, S.K.; Dewangan, S.; Jayaprakash, D.; Bakhtsingh, R.I.; Acharya, S.; Gantayet, L.M., E-mail: dksharma@barc.gov.in [Accelerator and Pulse Power Division, Bhabha Atomic Research Centre, Mumbai (India)

    2014-07-01

    Accelerator and Pulse Power Division of BARC has developed a DC electron accelerator for cross linking of polymers, medical sterilisation, preservation of food. The demonstration of stack-gas cleanup for green power generation has been demonstrated successfully. The support structure of the 3MVDC voltage generator is made of Perspex for high dielectric strength, easy availability of raw material, excellent radiation resistance and long term dimensional stability. This paper describes the salient design features of the High voltage support structure in brief. (author)

  10. Design and development of 3 MeV, 30 kW DC industrial electron accelerator at Electron Beam Centre, Kharghar

    International Nuclear Information System (INIS)

    Mittal, K.C.; Nanu, K.; Jain, A.

    2006-01-01

    High power electron beam accelerators are becoming an important tool for industrial radiation process applications. Keeping this in mind, a 3 MeV, 10 mA, 30 kW DC industrial electron accelerator has been designed and is in advanced stage of development at Electron Beam Center, Kharghar, Navi Mumbai. The operating range of this accelerator is 1 MeV to 3 MeV with maximum beam current of 10 mA. Electron beam at 5 keV is generated in electron gun with LaB 6 cathode and is injected into accelerating column at a vacuum of 10 -7 torr. After acceleration the beam is scanned and taken out in air through a 100 cm X 7 cm titanium window for radiation processing applications. The high voltage accelerating power supply is based on a capacitive coupled parallel fed voltage multiplier scheme operating at 120 kHz. A 50 kW oscillator feeds power to high voltage multiplier column. The electron gun, accelerating column and high voltage multiplier column are housed in accelerator tank filled with SF 6 gas insulation at 6 kg/cm 2 . The accelerator is located in a RCC building with product conveyor for handling products. A central computerized control system is adopted for operation of the accelerator. Accelerator is in the advance stage of commissioning. Many of the subsystems have been commissioned and tested. This paper describes the design details and current status of the accelerator and various subsystems. (author)

  11. Accelerator R and D: Research for Science - Science for Society

    International Nuclear Information System (INIS)

    Holtkamp, N.R.; Biedron, S.; Milton, S.V.; Boeh, L.; Clayton, J.E.; Zdasiuk, G.; Gourlay, S.A.; Zisman, M.S.; Hamm, R.W.; Henderson, S.; Hoffstaetter, G.H.; Merminga, L.; Ozaki, S.; Pilat, F.C.; White, M.

    2012-01-01

    In September 2011 the US Senate Appropriations Committee requested a ten-year strategic plan from the Department of Energy (DOE) that would describe how accelerator R and D today could advance applications directly relevant to society. Based on the 2009 workshop 'Accelerators for America's Future' an assessment was made on how accelerator technology developed by the nation's laboratories and universities could directly translate into a competitive strength for industrial partners and a variety of government agencies in the research, defense and national security sectors. The Office of High Energy Physics, traditionally the steward for advanced accelerator R and D within DOE, commissioned a task force under its auspices to generate and compile ideas on how best to implement strategies that would help fulfill the needs of industry and other agencies, while maintaining focus on its core mission of fundamental science investigation.

  12. Status of the Advanced Photon Source (APS) linear accelerator

    International Nuclear Information System (INIS)

    White, M.; Berg, W.; Fuja, R.; Grelick, A.; Mavrogenes, G.; Nassiri, A.; Russell, T.; Wesolowski, W.

    1993-01-01

    A 2856-MHz S-band, 450-MeV electron/positron linear accelerator is the first part of the injector for the Advanced Photon Source (APS) 7-GeV storage ring. Construction of the APS linac is currently nearing completion, and commissioning will begin in July 1993. The linac and its current status are discussed in this paper

  13. Thirty years of physics at the Bucharest tandem accelerator

    International Nuclear Information System (INIS)

    Dobrescu, S.; Marinescu, L.; Dumitru, G.; Cata-Danil, Gh.

    2003-01-01

    The main parameters of the Bucharest tandem accelerator, as well as the main milestones of its history since March 1973 when it was commissioned are shortly presented. A general presentation of the main basic and applied physics research so far undertaken at the tandem is given, ending with some ideas related with the future perspectives of the tandem. (authors)

  14. Advanced Photon Source experimental beamline Safety Assessment Document: Addendum to the Advanced Photon Source Accelerator Systems Safety Assessment Document (APS-3.2.2.1.0)

    International Nuclear Information System (INIS)

    1995-01-01

    This Safety Assessment Document (SAD) addresses commissioning and operation of the experimental beamlines at the Advanced Photon Source (APS). Purpose of this document is to identify and describe the hazards associated with commissioning and operation of these beamlines and to document the measures taken to minimize these hazards and mitigate the hazard consequences. The potential hazards associated with the commissioning and operation of the APS facility have been identified and analyzed. Physical and administrative controls mitigate identified hazards. No hazard exists in this facility that has not been previously encountered and successfully mitigated in other accelerator and synchrotron radiation research facilities. This document is an updated version of the APS Preliminary Safety Analysis Report (PSAR). During the review of the PSAR in February 1990, the APS was determined to be a Low Hazard Facility. On June 14, 1993, the Acting Director of the Office of Energy Research endorsed the designation of the APS as a Low Hazard Facility, and this Safety Assessment Document supports that designation

  15. The commissioning of the instrumentation for the LHC tunnel cryogenics

    CERN Document Server

    Avramidou, R; Bamis, C; Casas-Cubillos, J; Dragoneas, A; Fampris, X; Fernandez-Penacoba, G; Gomes, P; Gousiou, E; Jeanmonod, N; Karagiannis, F; Koumparos, A; Leontsinis, S; Lopez-Lorente, A; Patsouli, A; Polychroniadis, I; Suraci, A; Theodoropoulos, G; Vauthier, N; Vottis, C

    2007-01-01

    The Large Hadron Collider (LHC) at CERN is a superconducting accelerator and proton-proton collider of circumference of 27 km, lying about 100 m underground. Its operation relies on 1232 superconducting dipoles with a field of 8.3 T and 392 superconducting quadrupoles with a field gradient of 223 T/m powered at 11.8 kA and operating in superfluid helium at 1.9 K. This paper describes the cryogenic instrumentation commissioning, the challenges and the project organization based on our 2.5 years experience.

  16. Commissioning of the Cryogenics of the LHC Long Straight Sections

    CERN Document Server

    Perin, A; Claudet, S; Darve, C; Ferlin, G; Millet, F; Parente, C; Rabehl, R; Soubiran, M; van Weelderen, R; Wagner, U

    2010-01-01

    The LHC is made of eight circular arcs interspaced with eight Long Straight Sections (LSS). Most powering interfaces to the LHC are located in these sections where the particle beams are focused and shaped for collision, cleaning and acceleration. The LSSs are constituted of several unique cryogenic devices and systems like electrical feed-boxes, standalone superconducting magnets, superconducting links, RF cavities and final focusing superconducting magnets. This paper presents the cryogenic commissioning and the main results obtained during the first operation of the LHC Long Straight Sections.

  17. Commissioning of the cryogenics of the LHC long straight sections

    International Nuclear Information System (INIS)

    Perin, A.; Casas-Cubillos, J.; Claudet, S.; Darve, C.; Ferlin, G.; Millet, F.; Parente, C.; Rabehl, R.; Soubiran, M.; van Weelderen, R.; Wagner, U.

    2010-01-01

    The LHC is made of eight circular arcs interspaced with eight Long Straight Sections (LSS). Most powering interfaces to the LHC are located in these sections where the particle beams are focused and shaped for collision, cleaning and acceleration. The LSSs are constituted of several unique cryogenic devices and systems like electrical feed-boxes, standalone superconducting magnets, superconducting links, RF cavities and final focusing superconducting magnets. This paper presents the cryogenic commissioning and the main results obtained during the first operation of the LHC Long Straight Sections.

  18. How are clinical commissioning groups managing conflicts of interest under primary care co-commissioning in England? A qualitative analysis.

    Science.gov (United States)

    Moran, Valerie; Allen, Pauline; McDermott, Imelda; Checkland, Kath; Warwick-Giles, Lynsey; Gore, Oz; Bramwell, Donna; Coleman, Anna

    2017-11-08

    From April 2015, NHS England (NHSE) started to devolve responsibility for commissioning primary care services to clinical commissioning groups (CCGs). The aim of this paper is to explore how CCGs are managing potential conflicts of interest associated with groups of GPs commissioning themselves or their practices to provide services. We carried out two telephone surveys using a sample of CCGs. We also used a qualitative case study approach and collected data using interviews and meeting observations in four sites (CCGs). We conducted 57 telephone interviews and 42 face-to-face interviews with general practitioners (GPs) and CCG staff involved in primary care co-commissioning and observed 74 meetings of CCG committees responsible for primary care co-commissioning. Conflicts of interest were seen as an inevitable consequence of CCGs commissioning primary care. Particular problems arose with obtaining unbiased clinical input for new incentive schemes and providing support to GP provider federations. Participants in meetings concerning primary care co-commissioning declared conflicts of interest at the outset of meetings. Different approaches were pursued regarding GPs involvement in subsequent discussions and decisions with inconsistency in the exclusion of GPs from meetings. CCG senior management felt confident that the new governance structures and policies dealt adequately with conflicts of interest, but we found these arrangements face limitations. While the revised NHSE statutory guidance on managing conflicts of interest (2016) was seen as an improvement on the original (2014), there still remained some confusion over various terms and concepts contained therein. Devolving responsibility for primary care co-commissioning to CCGs created a structural conflict of interest. The NHSE statutory guidance should be refined and clarified so that CCGs can properly manage conflicts of interest. Non-clinician members of committees involved in commissioning primary care

  19. Acceleration of laser-injected electron beams in an electron-beam driven plasma wakefield accelerator

    International Nuclear Information System (INIS)

    Knetsch, Alexander

    2018-03-01

    Plasma wakefields deliver accelerating fields that are approximately a 100 times higher than those in conventional radiofrequency or even superconducting radiofrequency cavities. This opens a transformative path towards novel, compact and potentially ubiquitous accelerators. These prospects, and the increasing demand for electron accelerator beamtime for various applications in natural, material and life sciences, motivate the research and development on novel plasma-based accelerator concepts. However, these electron beam sources need to be understood and controlled. The focus of this thesis is on electron beam-driven plasma wakefield acceleration (PWFA) and the controlled injection and acceleration of secondary electron bunches in the accelerating wake fields by means of a short-pulse near-infrared laser. Two laser-triggered injection methods are explored. The first one is the Trojan Horse Injection, which relies on very good alignment and timing control between electron beam and laser pulse and then promises electron bunches with hitherto unprecedented quality as regards emittance and brightness. The physics of electron injection in the Trojan Horse case is explored with a focus on the final longitudinal bunch length. Then a theoretical and numerical study is presented that examines the physics of Trojan Horse injection when performed in an expanding wake generated by a smooth density down-ramp. The benefits are radically decreased drive-electron bunch requirements and a unique bunch-length control that enables longitudinal electron-bunch shaping. The second laser-triggered injection method is the Plasma Torch Injection, which is a versatile, all-optical laser-plasma-based method capable to realize tunable density downramp injection. At the SLAC National Laboratory, the first proof-of-principle was achieved both for Trojan Horse and Plasma Torch injection. Setup details and results are reported in the experimental part of the thesis along with the commissioning

  20. 16 CFR 1031.6 - Extent and form of Commission involvement in the development of voluntary standards.

    Science.gov (United States)

    2010-01-01

    ..., engineering support, and information and education programs) and administrative assistance (e.g., travel costs... SAFETY COMMISSION GENERAL COMMISSION PARTICIPATION AND COMMISSION EMPLOYEE INVOLVEMENT IN VOLUNTARY... goals and objectives with regard to voluntary standards and improved consumer product safety; responding...

  1. SIRIUS - A new 6 MV accelerator system for IBA and AMS at ANSTO

    Science.gov (United States)

    Pastuovic, Zeljko; Button, David; Cohen, David; Fink, David; Garton, David; Hotchkis, Michael; Ionescu, Mihail; Long, Shane; Levchenko, Vladimir; Mann, Michael; Siegele, Rainer; Smith, Andrew; Wilcken, Klaus

    2016-03-01

    The Centre for Accelerator Science (CAS) facility at ANSTO has been expanded with a new 6 MV tandem accelerator system supplied by the National Electrostatic Corporation (NEC). The beamlines, end-stations and data acquisition software for the accelerator mass spectrometry (AMS) were custom built by NEC for rare isotope mass spectrometry, while the beamlines with end-stations for the ion beam analysis (IBA) are largely custom designed at ANSTO. An overview of the 6 MV system and its performance during testing and commissioning phase is given with emphasis on the IBA end-stations and their applications for materials modification and characterisation.

  2. Scientific management of the commissioning of the Temelin NPP

    International Nuclear Information System (INIS)

    Pazdera, F.; Vasa, I.; Svoboda, C.

    2002-01-01

    A Scientific Supervisory Group (SSG) for the commissioning of the Temelin nuclear power plant was set up by the statutory body of CEZ, a.s. (utility which holds responsibility for the start-up of the plant pursuant to Act No. 18/1997). The SSG provides support to the operator through expertise in nuclear safety assurance and nuclear power plant commissioning. Nuclear Research Institute Rez plc was appointed to this function. The article gives the definition and explains the statute of the SSG, highlights its main tasks and responsibilities, and presents the main results of activities of the SSG. The mission of the International Scientific Council for the Commissioning of the Temelin NPP is also briefly outlined. (author)

  3. The Radiological Research Accelerator Facility

    International Nuclear Information System (INIS)

    Hall, E.J.; Marino, S.A.

    1991-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) -- formerly the Radiological Research Laboratory (RRL) -- of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis, and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. Brief summaries of research experiments are included. Accelerator usage is summarized and development activities are discussed. 8 refs., 8 tabs

  4. Operation of medical accelerator PATRO at Hyogo Ion Beam Medical Center

    International Nuclear Information System (INIS)

    Itano, A.; Akagi, T.; Higashi, A.; Fukushima, S.; Fujita, A.; Honda, Y.; Isa, H.; Nishikigouri, K.

    2004-01-01

    PATRO (Particle Accelerator for Therapy, Radiology and Oncology) is a medical accelerator facility for hadrontherapy of cancer at Hyogo Ion Beam Medical Center (HIBMC). Beam particles are proton (230 MeV) and carbon (320 MeV/u). After the beam commissioning and the tuning of irradiation system in 2000, we performed the clinical trials with proton and carbon beams from May 2001 until July 2002. We operated the accelerator for about 11,000 hours since the beginning of the beam tuning until the end of the clinical trials and for about 5,000 hours during the clinical trials. No serious troubles happened during the clinical trials. The stability and the reproducibility of the beams were well proved. (author)

  5. Performance of the Argonne Wakefield Accelerator facility and initial experimental results

    International Nuclear Information System (INIS)

    Gai, W.; Conde, M.; Cox, G.; Konecny, R.; Power, J.; Schoessow, P.; Simpson, J.; Barov, N.

    1996-01-01

    The Argonne Wakefield Accelerator (AWA) facility has begun its experimental program. This unique facility is designed to address advanced acceleration research which requires very short, intense electron bunches. The facility incorporates two photo-cathode based electron sources. One produces up to 100 nC, multi-kiloamp 'drive' bunches which are used to excite wakefields in dielectric loaded structures and in plasma. The second source produces much lower intensity 'witness' pulses which are used to probe the fields produced by the drive. The drive and witness pulses can be precisely timed as well as laterally positioned with respect to each other. We discuss commissioning, initial experiments, and outline plans for a proposed 1 GeV demonstration accelerator. (author)

  6. Commissioning of Portal Dosimetry and characterization of an EPID

    International Nuclear Information System (INIS)

    Olbi, D.S.; Sales, C.P.; Nakandakari, M.V.N.

    2016-01-01

    The development of technologies compensator blocks, MLC, high dose rate accelerators, treatment planning systems, among others, permitted that new treatment techniques in radiotherapy were created. Such techniques have the capacity to modulate radiation beam fluency (IMRT, VMAT), or to deliver high doses in few fractions or unique fractions (SRS). Following the same tendency, quality control of planning became more complex. It is necessary to evaluate the fluency delivered by the accelerator. Its levels of does and its spatial distribution should co-occur with the fluency calculated by TPS. Acquisition of new detector devices in quality control of treatments is fundamental to apply techniques. Portal Vision is a device EPID has the capacity to operate either in image mode or dosimetry mode, with the allowance of Portal Dosimetry. To evaluated planning in IMRT, the device is irradiated using planning e, therefore, the fluency measured is compared with calculated fluency, through gamma analysis. The aim of this work was to perform tests of commissioning of this device. (author)

  7. Start up of the Tandem Accelerator in the Ezeiza Atomic Center

    International Nuclear Information System (INIS)

    Bianchini, R.; Consorti, S.; Roldan, M.; Llovera, R.; Arenilla, P.; Alvarez, D.E.; Ugarte, R.

    2010-01-01

    A High Voltage tandem electrostatic accelerator FN model was installed and started up by the Nuclear Regulatory Authority (ARN) on the campus of Ezeiza Atomic Center. Subsequently, the facility was transferred to the National Atomic Energy Commission for a new start up, re-engineering, maintenance, and operation [es

  8. Design of the commissioning software for the AGS to RHIC transfer line

    International Nuclear Information System (INIS)

    Trahern, C.G.; Saltmarsh, C.; Satogata, T.; Kewisch, J.; Sathe, S.; D'ottavio, T.; Tepikian, S.; Shea, D.

    1995-01-01

    RHIC accelerator physicists and engineers have collaboratively specified the control system software for the commissioning of the AGS to RHIC transfer line (ATR) to occur in the fall of 1995. This paper summarizes the design and progress to date. The authors discuss the basic physics/engineering device model that they use to understand process and data flows, and describe the architecture and tools they will use to build the application level software

  9. Instabilities of bellows: Dependence on internal pressure, end supports, and interactions in accelerator magnet systems

    International Nuclear Information System (INIS)

    Shutt, R.P.; Rehak, M.L.

    1990-01-01

    For superconducting magnets, one needs many bellows for connection of various helium cooling transfer lines in addition to beam tube bellows. There could be approximately 10,000 magnet interconnection bellows in the SSC exposed to an internal pressure. When axially compressed or internally pressurized, bellows can become unstable, leading to gross distortion or complete failure. If several bellows are contained in an assembly, failure modes might interact. If designed properly, large bellows can be a very feasible possibility for connecting the large tubular shells that support the magnet iron yokes and superconducting coils and contain supercritical helium for magnet cooling. We present here (1) a spring-supported bellows model, in order to develop necessary design features for bellows and end supports so that instabilities will not occur in the bellows pressure operating region, including some margin, (2) a model of three superconducting accelerator magnets connected by two large bellows, in order to ascertain that support requirements are satisfied and in order to study interaction effects between the two bellows. Reliability of bellows for our application will be stressed. 3 refs., 4 figs

  10. Generation of ultra-high-pressure shocks by collision of a fast plasma projectile driven in the laser-induced cavity pressure acceleration scheme with a solid target

    Czech Academy of Sciences Publication Activity Database

    Badziak, J.; Rosinski, M.; Krouský, Eduard; Kucharik, M.; Liska, R.; Ullschmied, Jiří

    2015-01-01

    Roč. 22, č. 3 (2015), s. 1-11, č. článku 032709. ISSN 1070-664X R&D Projects: GA MŠk(CZ) LD14089; GA MŠk LM2010014 EU Projects: European Commission(XE) 284464 - LASERLAB-EUROPE Institutional support: RVO:68378271 ; RVO:61389021 Keywords : laser-produced plasma * ultra-high-pressure shocks * laser-induced cavity pressure acceleration Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.207, year: 2015

  11. Commissioning of the advanced light source dual-axis streak camera

    International Nuclear Information System (INIS)

    Hinkson, J.; Keller, R.; Byrd, J.

    1997-05-01

    A dual-axis camera, Hamamatsu model C5680, has been installed on the Advanced Light Source photon-diagnostics beam-line to investigate electron-beam parameters. During its commissioning process, the camera has been used to measure single-bunch length vs. current, relative bunch charge in adjacent RF buckets, and bunchphase stability. In this paper the authors describe the visible-light branch of the diagnostics beam-line, the streak-camera installation, and the timing electronics. They will show graphical results of beam measurements taken during a variety of accelerator conditions

  12. Compact accelerator for medical therapy

    Science.gov (United States)

    Caporaso, George J.; Chen, Yu-Jiuan; Hawkins, Steven A.; Sampayan, Stephen E.; Paul, Arthur C.

    2010-05-04

    A compact accelerator system having an integrated particle generator-linear accelerator with a compact, small-scale construction capable of producing an energetic (.about.70-250 MeV) proton beam or other nuclei and transporting the beam direction to a medical therapy patient without the need for bending magnets or other hardware often required for remote beam transport. The integrated particle generator-accelerator is actuable as a unitary body on a support structure to enable scanning of a particle beam by direction actuation of the particle generator-accelerator.

  13. Operational experience from a large EPICS-based accelerator facility

    International Nuclear Information System (INIS)

    Ciarlette, D.J.; Gerig, R.

    1995-01-01

    The Advanced Photon Source (APS) at Argonne National Laboratory is a third-generation x-ray light source which uses the Experimental Physics and Industrial Control System (EPICS) to operate its linear accelerator, positron accumulator ring, booster synchrotron, and storage ring equipment. EPICS has been used at the APS since the beginning of installation and commissioning. Currently, EPICS controls approximately 100 VME crates containing over 100,000 process variables. With this complexity, the APS has had to review some of the methods originally employed and make changes as necessary. In addition, due to commissioning and operational needs, higher-level operator software needed to be created. EPICS has been flexible enough to allow this

  14. Collective ion acceleration

    International Nuclear Information System (INIS)

    Godfrey, B.B.; Faehl, R.J.; Newberger, B.S.; Shanahan, W.R.; Thode, L.E.

    1977-01-01

    Progress achieved in the understanding and development of collective ion acceleration is presented. Extensive analytic and computational studies of slow cyclotron wave growth on an electron beam in a helix amplifier were performed. Research included precise determination of linear coupling between beam and helix, suppression of undesired transients and end effects, and two-dimensional simulations of wave growth in physically realizable systems. Electrostatic well depths produced exceed requirements for the Autoresonant Ion Acceleration feasibility experiment. Acceleration of test ions to modest energies in the troughs of such waves was also demonstrated. Smaller efforts were devoted to alternative acceleration mechanisms. Langmuir wave phase velocity in Converging Guide Acceleration was calculated as a function of the ratio of electron beam current to space-charge limiting current. A new collective acceleration approach, in which cyclotron wave phase velocity is varied by modulation of electron beam voltage, is proposed. Acceleration by traveling Virtual Cathode or Localized Pinch was considered, but appears less promising. In support of this research, fundamental investigations of beam propagation in evacuated waveguides, of nonneutral beam linear eigenmodes, and of beam stability were carried out. Several computer programs were developed or enhanced. Plans for future work are discussed

  15. High-power liquid-lithium target prototype for accelerator-based boron neutron capture therapy.

    Science.gov (United States)

    Halfon, S; Paul, M; Arenshtam, A; Berkovits, D; Bisyakoev, M; Eliyahu, I; Feinberg, G; Hazenshprung, N; Kijel, D; Nagler, A; Silverman, I

    2011-12-01

    A prototype of a compact Liquid-Lithium Target (LiLiT), which will possibly constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals, was built. The LiLiT setup is presently being commissioned at Soreq Nuclear Research Center (SNRC). The liquid-lithium target will produce neutrons through the (7)Li(p,n)(7)Be reaction and it will overcome the major problem of removing the thermal power generated using a high-intensity proton beam (>10 kW), necessary for sufficient neutron flux. In off-line circulation tests, the liquid-lithium loop generated a stable lithium jet at high velocity, on a concave supporting wall; the concept will first be tested using a high-power electron beam impinging on the lithium jet. High intensity proton beam irradiation (1.91-2.5 MeV, 2-4 mA) will take place at Soreq Applied Research Accelerator Facility (SARAF) superconducting linear accelerator currently in construction at SNRC. Radiological risks due to the (7)Be produced in the reaction were studied and will be handled through a proper design, including a cold trap and appropriate shielding. A moderator/reflector assembly is planned according to a Monte Carlo simulation, to create a neutron spectrum and intensity maximally effective to the treatment and to reduce prompt gamma radiation dose risks. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. The Control System of CERN Accelerators Vacuum (Current Status and Recent Improvements)

    CERN Document Server

    Gomes, P; Blanchard, S; Boccioli, M; Girardot, G; Vestergard, H; Kopylov, L; Mikheev, M

    2011-01-01

    The vacuum control system of most of the CERN accelerators is based on Siemens PLCs and on PVSS SCADA. After the transition from the LHC commissioning phase to its regular operation, there has been a number of additions and improvements to the vacuum control system. They were driven by new technical requirements and by feedback from the accelerator operators and vacuum specialists. New control functions have been implemented in the PLCs; new tools have been developed for the SCADA, while its ergonomics and navigation have been enhanced.

  17. Plasma based accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Caldwell, Allen [Max-Planck-Institut fuer Physik, Muenchen (Germany)

    2015-05-01

    The concept of laser-induced plasma wakefields as a technique to accelerate charged particles was introduced 35 years ago as a means to go beyond the accelerating gradients possible with metallic cavities supporting radio frequency electromagnetic fields. Significant developments in laser technology have made possible the pulse intensity needed to realize this concept, and rapid progress is now underway in the realization of laser-driven plasma wakefield acceleration. It has also been realized that similar accelerating gradients can be produced by particle beams propagating in plasmas, and experimental programs have also been undertaken to study this possibility. Positive results have been achieved with electron-driven plasma wakefields, and a demonstration experiment with proton-driven wakefields is under construction at CERN. The concepts behind these different schemes and their pros and cons are described, as well as the experimental results achieved. An outlook for future practical uses of plasma based accelerators will also be given.

  18. Multipactor Physics, Acceleration, and Breakdown in Dielectric-Loaded Accelerating Structures

    International Nuclear Information System (INIS)

    Fischer, Richard P.; Gold, Steven H.

    2016-01-01

    The objective of this 3-year program is to study the physics issues associated with rf acceleration in dielectric-loaded accelerating (DLA) structures, with a focus on the key issue of multipactor loading, which has been found to cause very significant rf power loss in DLA structures whenever the rf pulsewidth exceeds the multipactor risetime (~10 ns). The experiments are carried out in the X-band magnicon laboratory at the Naval Research Laboratory (NRL) in collaboration with Argonne National Laboratory (ANL) and Euclid Techlabs LLC, who develop the test structures with support from the DoE SBIR program. There are two main elements in the research program: (1) high-power tests of DLA structures using the magnicon output (20 MW @11.4 GHz), and (2) tests of electron acceleration in DLA structures using relativistic electrons from a compact X-band accelerator. The work during this period has focused on a study of the use of an axial magnetic field to suppress multipactor in DLA structures, with several new high power tests carried out at NRL, and on preparation of the accelerator for the electron acceleration experiments.

  19. Commissioning report on the RFQ of the HITRAP decelerator

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Michael; Herfurth, Frank; Yaramishev, Stepan; Neidherr, Dennis; Vorobyev, Gleb; Kotovskiy, Nikita [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Repnow, Roland [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

    2012-07-01

    Commissioning of the HITRAP decelerator behind the experimental storage ring (ESR) has been difficult and not fully successful yet. According to simulations the present RFQ design requires beam with an input energy of 530 keV/u. This is above the limit of the IH decelerator which has been designed for 500 keV/u output energy. In order to verify the simulation results the RFQ has been set up together with a test bench behind a pelletron accelerator at the Max Planck Institute for nuclear physics in Heidelberg. This pelletron provides DC beam with A/q<3 in the desired energy range of 450-550 keV/u. This setup allows for a rapid scan through this otherwise difficult to reach parameter space. Additionally it will serve a second time as a commissioning setup for the next RFQ electrode design matched to the IH output energy. In this contribution the simulations and the experimental results of this test are compared as well as a first design study for a new RFQ decelerator structure is presented.

  20. Status of the MIT-Bates South Hall Ring commissioning

    International Nuclear Information System (INIS)

    Flanz, J.B.; Jacobs, K.D.; McAllister, B.; Averill, R.; Bradley, S.; Carter, A.; Dow, K.; Farkondeh, M.; Ihloff, E.; Kowalski, S.

    1993-01-01

    The MIT-Bates South Hall Ring construction project is now nearly complete. At this time the Energy Compression System, the SHR Injection Line and the South Hall Ring itself are complete. The SHR Extraction Line is complete but has not been connected to the ring. Commissioning with beam of the completed beam lines has been started. The MIT-Bates South Hall Ring (SHR) is an electron storage ring used with the 1 GeV Bates electron accelerator to increase the effective duty factor and luminosity. A beam can be stored for use with an internal target, thus allowing for high duty factor, high luminosity experiments. External beams with high duty factor can be obtained using resonant extraction. The new systems associated with the SHR include the Energy Compression System (ECS), the Injection line, and the Extraction line. The authors have commissioned the ECS, the new injection line and the SHR without RF. This includes transporting beam, measuring beam phase space parameters using critical injection elements including a high voltage electrostatic septum, a fast beam kicker, and storing a beam in the SHR

  1. SIRIUS – A new 6 MV accelerator system for IBA and AMS at ANSTO

    Energy Technology Data Exchange (ETDEWEB)

    Pastuovic, Zeljko, E-mail: zkp@ansto.gov.au; Button, David; Cohen, David; Fink, David; Garton, David; Hotchkis, Michael; Ionescu, Mihail; Long, Shane; Levchenko, Vladimir; Mann, Michael; Siegele, Rainer; Smith, Andrew; Wilcken, Klaus

    2016-03-15

    The Centre for Accelerator Science (CAS) facility at ANSTO has been expanded with a new 6 MV tandem accelerator system supplied by the National Electrostatic Corporation (NEC). The beamlines, end-stations and data acquisition software for the accelerator mass spectrometry (AMS) were custom built by NEC for rare isotope mass spectrometry, while the beamlines with end-stations for the ion beam analysis (IBA) are largely custom designed at ANSTO. An overview of the 6 MV system and its performance during testing and commissioning phase is given with emphasis on the IBA end-stations and their applications for materials modification and characterisation.

  2. Commission of the European Communities - Review of fast reactor activities, March 1979

    International Nuclear Information System (INIS)

    Balz, W.

    1979-01-01

    The Commission of the European Communities pursued its activities on the lines described earlier. Besides the execution of a research programme in its Joint Research Centre the Commission endeavoured to support the development and demonstration of fast reactors. Most of the latter activities were performed in the frame of the Fast Reactor Coordinating Committee

  3. Commissioning and Operation of the FNAL Front end Injection Line and Ion Sources.

    Energy Technology Data Exchange (ETDEWEB)

    Karns, Patrick R. [Indiana Univ., Bloomington, IN (United States)

    2015-09-01

    This thesis documents the efforts made in commissioning and operating the RFQ Injection Line (RIL) as a replacement for the Cockcroft Walton front end. The Low Energy Beam Transport (LEBT) was assembled and tested with multiwire position and emittance monitor measurements. The Radio Frequency Quadrupole (RFQ) commissioning was completed with the same measurements as well as output beam energy measurements that showed it initially accelerated beam only to 700 keV, which was 50 keV lower than the design energy. Working with the manufacturer solutions were found and instituted to continue testing. The Medium Energy Beam Transport (MEBT) was then connected as the RIL was installed as the new front end of Linac. Testing gave way to operation when the new front end was used as the source of all High Energy Physics (HEP) beam for Fermi National Accelerator Laboratory (FNAL). The magnetron ion source that provides the H- beam for the front end required several changes and eventual upgrades to operate well; such as new source operating points for vacuum pressure and cesium admixture, and new materials for critical source components. Further research was conducted on the cathode geometry and nitrogen doping of the hydrogen gas as well as using solid state switches for the extractor system high voltage.

  4. Accelerator Technology Program: Status report, October 1985--March 1986: Volume 1

    International Nuclear Information System (INIS)

    Jameson, R.A.; Schriber, S.O.

    1988-07-01

    This report presents highlights of the major projects in the Accelerator Technology (AT) Division of the Los Alamos National Laboratory. The first section details progress associated with the accelerator test stand. Following sections cover achievements in accelerator theory and simulation, LAMPF II accomplishments, and updates on BEAR, beam dynamics, the rf laboratory, p-bar gravity experiment, University of Illinois racetrack microtron, and NBS microtron. Also included are results from the Proton Storage Ring commissioning, developments in very high microwave systems, and advances in the Fusion Materials Irradiation Test rf technology. In addition, the Phoenix Project and the Krypton Fluoride Project are discussed. The report concludes with a listing of papers published by AT-Division personnel during this reporting period. 42 figs., 5 tabs

  5. Commissioning of the helium cryogenic system for the HIE- ISOLDE accelerator upgrade at CERN

    CERN Document Server

    Delruelle, N; Leclercq, Y; Pirotte, O; Williams, L

    2015-01-01

    The High Intensity and Energy ISOLDE (HIE-ISOLDE) project is a major upgrade of the existing ISOLDE and REX-ISOLDE facilities at CERN. The most significant improvement will come from replacing the existing REX accelerating structure by a superconducting linear accelerator (SC linac) composed ultimately of six cryo-modules installed in series, each containing superconducting RF cavities and solenoids operated at 4.5 K. In order to provide the cooling capacity at all temperature levels between 300 K and 4.5 K for the six cryo-modules, an existing helium refrigerator, manufactured in 1986 and previously used to cool the ALEPH magnet during LEP operation from 1989 to 2000, has been refurbished, reinstalled and recommissioned in a dedicated building located next to the HIE-ISOLDE experimental hall. This helium refrigerator has been connected to a new cryogenic distribution line, consisting of a 30-meter long vacuum-insulated transfer line, a 2000-liter storage dewar and six interconnecting valve boxes, one for eac...

  6. Installation of the Ion Accelerator for the Surface Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyeok-Jung; Kim, Han-Sung; Chung, Bo-Hyun; Ahn, Tae-Sung; Kim, Dae-Il; Kim, Cho-Rong; Cho, Yong-Sub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In this paper, an introduction to the accelerator, an installation status at KOMAC and the operation plan of the accelerator are discussed. A pelletron, which has been used over 25 years at KIGAM, is moved and installed at KOMAC in order to supply a qualified service to ion beam users. The system will be installed in September and component tests will be carried. The operation of the system starts in 2016 after it gets operation license from Nuclear Safety and Security Commission. Korea Multi-purpose Accelerator Complex (KOMAC) is operating several ion beam accelerators to provide various ion beams to users. Those are a 100 MeV proton linear accelerator, a 220 keV ion implanter for gaseous ion beams, a 150 keV metal ion implanter and a 20 keV high-current ion implanter. All of those are the machine for user service and it is important to qualify the results of the irradiation conditions for user service. For this reason, an electrostatic tandem accelerator, which has been operating over 25 years at Korea Institute of Geoscience and Mineral Resources (KIGAM), is moved to KOMAC in order to supply the qualified and quantified data on the irradiation species.

  7. Primary care-led commissioning: applying lessons from the past to the early development of clinical commissioning groups in England.

    Science.gov (United States)

    Checkland, Kath; Coleman, Anna; McDermott, Imelda; Segar, Julia; Miller, Rosalind; Petsoulas, Christina; Wallace, Andrew; Harrison, Stephen; Peckham, Stephen

    2013-09-01

    The current reorganisation of the English NHS is one of the most comprehensive ever seen. This study reports early evidence from the development of clinical commissioning groups (CCGs), a key element in the new structures. To explore the development of CCGs in the context of what is known from previous studies of GP involvement in commissioning. Case study analysis from sites chosen to provide maximum variety across a number of dimensions, from September 2011 to June 2012. A case study analysis was conducted using eight detailed qualitative case studies supplemented by descriptive information from web surveys at two points in time. Data collection involved observation of a variety of meetings, and interviews with key participants. Previous research shows that clinical involvement in commissioning is most effective when GPs feel able to act autonomously. Complicated internal structures, alongside developing external accountability relationships mean that CCGs' freedom to act may be subject to considerable constraint. Effective GP engagement is also important in determining outcomes of clinical commissioning, and there are a number of outstanding issues for CCGs, including: who feels 'ownership' of the CCG; how internal communication is conceptualised and realised; and the role and remit of locality groups. Previous incarnations of GP-led commissioning have tended to focus on local and primary care services. CCGs are keen to act to improve quality in their constituent practices, using approaches that many developed under practice-based commissioning. Constrained managerial support and the need to maintain GP engagement may have an impact. CCGs are new organisations, faced with significant new responsibilities. This study provides early evidence of issues that CCGs and those responsible for CCG development may wish to address.

  8. Plasma particle accelerators

    International Nuclear Information System (INIS)

    Dawson, J.M.

    1988-01-01

    The Superconducting Supercollider (SSC) will require an 87-kilometer accelerator ring to boost particles to 40 TeV. The SSC's size is due in part to the fact that its operating principle is the same one that has dominated accelerator design for 50 years: it guides particles by means of magnetic fields and propels them by strong electric fields. If one were to build an equally powerful but smaller accelerator, one would need to increase the strength of the guiding and propelling fields. Actually, however, conventional technology may not be able to provide significant increases in field strength. There are two reasons. First, the forces from magnetic fields are becoming greater than the structural forces that hold a magnetic material together; the magnets that produce these fields would themselves be torn apart. Second, the energy from electric fields is reaching the energies that bind electrons to atoms; it would tear electrons from nuclei in the accelerator's support structures. It is the electric field problem that plasma accelerators can overcome. Plasma particle accelerators are based on the principle that particles can be accelerated by the electric fields generated within a plasma. Because the plasma has already been ionized, plasma particle accelerators are not susceptible to electron dissociation. They can in theory sustain accelerating fields thousands of times stronger that conventional technologies. So far two methods for creating plasma waves for accelerators have been proposed and tested: the wakefield and the beat wave. Although promising electric fields have been produced, more research is necessary to determine whether plasma particle accelerators can compete with the existing accelerators. 7 figs

  9. Commission on Legal Matters

    CERN Multimedia

    Staff Association

    2016-01-01

    What is a commission within the Staff Association (SA)? A commission is a working group of the CERN Staff Council, led by a staff representative. The commission is composed mainly of staff representatives, but interested members of the SA can apply to participate in the work of a commission. What is the commission on legal matters? The commission on legal matters works on texts governing the employment conditions of staff (Employed Members of Personnel and Associated Members of Personnel). This covers legal documents such as the Staff Rules and Regulations, administrative and operational circulars, as well as any other document relating to employment conditions. How is the work organised in this commission? The revision process of the text is generally done along following lines: The HR department, and its legal experts, proposes new texts or modifications to existing texts. A schedule for the study of these texts is established each year and this calendar by the commission to plan its work. The new or modi...

  10. Commissioning MMS

    Science.gov (United States)

    Wood, Paul; Gramling, Cheryl; Stone, John; Smith, Patrick; Reiter, Jenifer

    2016-01-01

    This paper discusses commissioning of NASAs Magnetospheric MultiScale (MMS) Mission. The mission includes four identical spacecraft with a large, complex set of instrumentation. The planning for and execution of commissioning for this mission is described. The paper concludes by discussing lessons learned.

  11. Report on the Workshop on Accelerated Nuclear Energy Materials Development

    Energy Technology Data Exchange (ETDEWEB)

    King, Wayne E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Allen, Todd [Univ. of Wisconsin, Madison, WI (United States); Arsenlis, Tom [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bench, Graham [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bulatov, Vasily [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fluss, Michael [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Klein, Richard [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McMahon, Donn [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Middleton, Carolin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Morley, Maureen [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pasamehmetoglu, Kemal [Idaho National Lab. (INL), Idaho Falls, ID (United States); Turchi, Patrice [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Was, Gary [Univ. of Michigan, Ann Arbor, MI (United States)

    2010-05-11

    This document reports on the Office of Nuclear Energy’s (NE’s) Workshop on Accelerated Nuclear Energy Materials Development held May 11, 2010, in Washington, DC. The purpose of the workshop was twofold: (1) to provide feedback on an initiative to use uncertainty quantification (UQ) to integrate theory, simulation, and modeling with accelerated experimentation to predict the behavior of materials and fuels in an irradiation environment and thereby accelerate the lengthy materials design and qualification process; and (2) to provide feedback on and refinement to five topical areas to develop predictive models for fuels and cladding and new radiation-tolerant materials. The goal of the workshop was to gather technical feedback with respect to the Office of Nuclear Energy’s research and development while also identifying and highlighting crosscutting capability and applicability of the initiative to other federal offices, including the Department of Energy’s (DOE’s) National Nuclear Security Administration (NNSA), Nuclear Regulatory Commission (NRC), DOE Office of Basic Energy Sciences (BES), DOE Office of Fusion Energy Sciences (FES), and Naval Reactors. The goals of the initiative are twofold: (1) develop time- and length-scale transcending models that predict material properties using UQ to effectively integrate theory, simulation, and modeling with accelerated experiments; and (2) design and develop new radiation-tolerant materials using the knowledge gained and methodologies created to shorten the development and qualification time and reduce cost. The initiative is crosscutting and has synergy with industry and other federal offices including Naval Reactors, NRC, FES, BES, and the Office of Advanced Scientific Computing Research (ASCR). It is distinguished by its use of uncertainty quantification to effectively integrate theory, simulation, and modeling with high-dose experimental capabilities. The initiative aims to bring the methodology that is being

  12. The control system of CERN accelerators vacuum (current status and recent improvements)

    International Nuclear Information System (INIS)

    Gomes, P.; Antoniotti, F.; Blanchard, S.; Boccioli, M.; Girardot, G.; Vestergard, H.; Kopylov, L.; Mikheev, M.

    2012-01-01

    The vacuum control system of most of the CERN accelerators is based on Siemens PLCs and on PVSS SCADA. After the transition from the LHC commissioning phase to its regular operation, there has been a number of additions and improvements to the vacuum control system. They were driven by new technical requirements and by feedback from the accelerator operators and vacuum specialists. New control functions have been implemented in the PLCs; new tools have been developed for the SCADA, while its ergonomic and navigation have been enhanced. (authors)

  13. RF-Plasma Source Commissioning in Indian Negative Ion Facility

    International Nuclear Information System (INIS)

    Singh, M. J.; Bandyopadhyay, M.; Yadava, Ratnakar; Chakraborty, A. K.; Bansal, G.; Gahlaut, A.; Soni, J.; Kumar, Sunil; Pandya, K.; Parmar, K. G.; Sonara, J.; Kraus, W.; Heinemann, B.; Riedl, R.; Obermayer, S.; Martens, C.; Franzen, P.; Fantz, U.

    2011-01-01

    The Indian program of the RF based negative ion source has started off with the commissioning of ROBIN, the inductively coupled RF based negative ion source facility under establishment at Institute for Plasma research (IPR), India. The facility is being developed under a technology transfer agreement with IPP Garching. It consists of a single RF driver based beam source (BATMAN replica) coupled to a 100 kW, 1 MHz RF generator with a self excited oscillator, through a matching network, for plasma production and ion extraction and acceleration. The delivery of the RF generator and the RF plasma source without the accelerator, has enabled initiation of plasma production experiments. The recent experimental campaign has established the matching circuit parameters that result in plasma production with density in the range of 0.5-1x10 18 /m 3 , at operational gas pressures ranging between 0.4-1 Pa. Various configurations of the matching network have been experimented upon to obtain a stable operation of the set up for RF powers ranging between 25-85 kW and pulse lengths ranging between 4-20 s. It has been observed that the range of the parameters of the matching circuit, over which the frequency of the power supply is stable, is narrow and further experiments with increased number of turns in the coil are in the pipeline to see if the range can be widened. In this paper, the description of the experimental system and the commissioning data related to the optimisation of the various parameters of the matching network, to obtain stable plasma of required density, are presented and discussed.

  14. RF-Plasma Source Commissioning in Indian Negative Ion Facility

    Science.gov (United States)

    Singh, M. J.; Bandyopadhyay, M.; Bansal, G.; Gahlaut, A.; Soni, J.; Kumar, Sunil; Pandya, K.; Parmar, K. G.; Sonara, J.; Yadava, Ratnakar; Chakraborty, A. K.; Kraus, W.; Heinemann, B.; Riedl, R.; Obermayer, S.; Martens, C.; Franzen, P.; Fantz, U.

    2011-09-01

    The Indian program of the RF based negative ion source has started off with the commissioning of ROBIN, the inductively coupled RF based negative ion source facility under establishment at Institute for Plasma research (IPR), India. The facility is being developed under a technology transfer agreement with IPP Garching. It consists of a single RF driver based beam source (BATMAN replica) coupled to a 100 kW, 1 MHz RF generator with a self excited oscillator, through a matching network, for plasma production and ion extraction and acceleration. The delivery of the RF generator and the RF plasma source without the accelerator, has enabled initiation of plasma production experiments. The recent experimental campaign has established the matching circuit parameters that result in plasma production with density in the range of 0.5-1×1018/m3, at operational gas pressures ranging between 0.4-1 Pa. Various configurations of the matching network have been experimented upon to obtain a stable operation of the set up for RF powers ranging between 25-85 kW and pulse lengths ranging between 4-20 s. It has been observed that the range of the parameters of the matching circuit, over which the frequency of the power supply is stable, is narrow and further experiments with increased number of turns in the coil are in the pipeline to see if the range can be widened. In this paper, the description of the experimental system and the commissioning data related to the optimisation of the various parameters of the matching network, to obtain stable plasma of required density, are presented and discussed.

  15. Division XII / Commission 41 / Working Group Historical Instruments

    Science.gov (United States)

    Pigatto, Luisa; Il-Seong, Nha; Hamel, Jürgen; Johnson, Kevin; Kochhar, Rajesh K.; Nakamura, Tsuko; Orchiston, Wayne; Pettersen, Bjørn R.; Schechner, Sara J.; Yunli, Shi

    The Historical Instruments Working Group (WG-HI) and Commission 41 started planning an interdisciplinary conference titled Astronomy and its instruments before and after Galileo since January 2007. This conference, as an IYA2009 initiative, aims “to highlight mankind's path toward an improved knowledge of the sky using mathematical and mechanical tools as well as monuments and buildings, giving rise, in doing so, to scientific astronomy”. Commission 46 and Commission 55 also support this conference, to be held on the Isle of San Servolo, Venice (Italy), 27 September 3 October 2009. As a fact of history, it was in Venice that Galileo was advised and got material (glass) to make his telescope, and in Venice he presented an working instrument to Venetian Doge in August 1609. The conference is co-sponsored by IAU as a Joint Symposium with the INAF Astronomical Observatory of Padova, Italy.

  16. Preliminary accelerator plans for maximizing the integrated LHC luminosity

    CERN Document Server

    Benedikt, Michael; Ruggiero, F; Ostojic, R; Scandale, Walter; Shaposhnikova, Elena; Wenninger, J

    2006-01-01

    A working group on "Proton Accelerators for the Future" (PAF) has been created in May 2005 by the CERN direction to elaborate a baseline scenario of the possible development and upgrade of the present Proton Accelerator Complex. This report is the result of the investigation conducted until the end of 2005, in close connection with the working group on "Physics Opportunities with Future Proton Accelerators" (POFPA) and is consistent with their recommendations. Focused on the goal of maximizing the integrated luminosity for the LHC experiments, a scenario of evolution is proposed, subject to further refinement using the future experience of commissioning and running-in the collider and its injector complex. The actions to be taken in terms of consolidation, R & D and improvement are outlined. The benefits for other types of physics are mentioned and will be investigated in more detail in the future.

  17. Federal guide for a radiological response: Supporting the Nuclear Regulatory Commission during the initial hours of a serious accident

    International Nuclear Information System (INIS)

    Hogan, R.T.

    1993-11-01

    This document is a planning guide for those Federal agencies that work with the Nuclear Regulatory commission (NRC) during the initial hours of response to a serious radiological emergency in which the NRC is the Lead Federal Agency (LFA). These Federal agencies are: DOE, EPA, USDA, HHS, NOAA, and FEMA. This guide is intended to help these agencies prepare for a prompt response. Instructions are provided on receiving the initial notification, the type of person to send to the scene, the facility at which people are needed, how to get them to that facility, and what they should do when they arrive. Federal agencies not specifically mentioned in this guide may also be asked to support the NRC

  18. Auroral electron acceleration

    International Nuclear Information System (INIS)

    Bryant, D.A.

    1989-10-01

    Two theories of auroral electron acceleration are discussed. Part 1 examines the currently widely held view that the acceleration is an ordered process in a quasi-static electric field. It is suggested that, although there are many factors seeming to support this theory, the major qualifications and uncertainties that have been identified combine to cast serious doubt over its validity. Part 2 is devoted to a relatively new interpretation in terms of stochastic acceleration in turbulent electric fields. This second theory, which appears to account readily for most known features of the electron distribution function, is considered to provide a more promising approach to this central question in magnetospheric plasma physics. (author)

  19. Acceleration of a compact torus

    International Nuclear Information System (INIS)

    Hartmann, C.W.; Eddleman, J.L.; Hammer, J.H.; Kusse, B.

    1987-01-01

    The authors report the first results of a study of acceleration of spheromak-type compact toruses in the RACE experiment (plasma Ring ACceleration Experiment). The RACE apparatus consists of (1) a magnetized, coaxial plasma gun 50 cm long, 35 cm OD, 20 cm ID, (2) 600 cm long coaxial acceleration electrodes 50 cm OD, 20 cm ID, (3) a 250 kJ electrolytic capacitor bank to drive the gun solenoid for initial magnetization, (4) a 200 kJ gun bank, (5) a 260 kJ accelerator bank, and (6) magnetic probes and other diagnostics, and vacuum apparatus. To outer acceleration electrode is an extension, at larger OD, of the gun outer electrode, and the inner acceleration electrode is supported and fed by a coaxial insert in the gun center electrode as shown

  20. Physical-dosimetric enabling a dual linear accelerator 3D planning systems for radiotherapy

    International Nuclear Information System (INIS)

    Alfonso, Rodolfo; Martinez, William; Arelis, Lores; Morales, Jorge

    2009-01-01

    The process of commissioning clinical linear accelerator requires a dual comprehensive study of the therapeutic beam parameters, both photons Electron. All information gained by measuring physical and dosimetric these beams must be analyzed, processed and refined for further modeling in computer-based treatment planning (RTPS). Of professionalism of this process will depend on the accuracy and precision of the calculations the prescribed doses. This paper aims to demonstrate availability clinical linear accelerator system-RTPS with late radiotherapy treatments shaped beam of photons and electrons. (author)

  1. Testing Quality and Metrics for the LHC Magnet Powering System throughout Past and Future Commissioning

    CERN Document Server

    Anderson, D; Charifoulline, Z; Dragu, M; Fuchsberger, K; Garnier, JC; Gorzawski, AA; Koza, M; Krol, K; Rowan, S; Stamos, K; Zerlauth, M

    2014-01-01

    The LHC magnet powering system is composed of thousands of individual components to assure a safe operation when operating with stored energies as high as 10GJ in the superconducting LHC magnets. Each of these components has to be thoroughly commissioned following interventions and machine shutdown periods to assure their protection function in case of powering failures. As well as having dependable tracking of test executions it is vital that the executed commissioning steps and applied analysis criteria adequately represent the operational state of each component. The Accelerator Testing (AccTesting) framework in combination with a domain specific analysis language provides the means to quantify and improve the quality of analysis for future campaigns. Dedicated tools were developed to analyse in detail the reasons for failures and success of commissioning steps in past campaigns and to compare the results with newly developed quality metrics. Observed shortcomings and discrepancies are used to propose addi...

  2. Nuclear safety research at the European Commission's Joint Research Centre

    International Nuclear Information System (INIS)

    Toerroenen, K.

    2003-01-01

    Nuclear power plants currently generate some 35 % of electricity used in the European Union and applicant countries. Nuclear safety will therefore remain a priority for the EU, particularly in view of enlargement, the need to monitor ageing nuclear installations and the licencing of advanced new reactor systems. The European Commission's Joint Research Centre (JRC), with its long involvement and recognised competence in nuclear safety related activities, provides direct support to the European Commission services responsible for nuclear safety and civil protection. (author)

  3. SuperB Progress Report for Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Biagini, M.E.; Boni, R.; Boscolo, M.; Buonomo, B.; Demma, T.; Drago, A.; Esposito, M.; Guiducci, S.; Mazzitelli, G.; Pellegrino, L.; Preger, M.A.; Raimondi, P.; Ricci, R.; Rotundo, U.; Sanelli, C.; Serio, M.; Stella, A.; Tomassini, S.; Zobov, M.; /Frascati; Bertsche, K.; Brachman, A.; /SLAC /Novosibirsk, IYF /INFN, Pisa /Pisa U. /Orsay, LAL /Annecy, LAPP /LPSC, Grenoble /IRFU, SPP, Saclay /DESY /Cockroft Inst. Accel. Sci. Tech. /U. Liverpool /CERN

    2012-02-14

    universities and national laboratories. In Italy these may include INFN Frascati and the University of Pisa, in the United States SLAC, LBNL, BNL and several universities, in France IN2P3, LAPP, and Grenoble, in Russia BINP, in Poland Krakow University, and in the UK the Cockcroft Institute. The construction time for this collider is a total of about four years. The new tunnel can be bored in about a year. The new accelerator components can be built and installed in about 4 years. The shipping of components from PEP-II at SLAC to Italy will take about a year. A new linac and damping ring complex for the injector for the rings can be built in about three years. The commissioning of this new accelerator will take about a year including the new electron and positron sources, new linac, new damping ring, new beam transport lines, two new collider rings and the Interaction Region. The new particle physics detector can be commissioned simultaneously with the accelerator. Once beam collisions start for particle physics, the luminosity will increase with time, likely reaching full design specifications after about two to three years of operation. After construction, the operation of the collider will be the responsibility of the Italian INFN governmental agency. The intent is to run this accelerator about ten months each year with about one month for accelerator turn-on and nine months for colliding beams. The collider will need to operate for about 10 years to provide the required 50 ab{sup -1} requested by the detector collaboration. Both beams as anticipated in this collider will have properties that are excellent for use as sources for synchrotron radiation (SR). The expected photon properties are comparable to those of PETRA-3 or NSLS-II. The beam lines and user facilities needed to carry out this SR program are being investigated.

  4. Commissioning of the First Klystron-Based X-Band Power Source at CERN

    CERN Document Server

    Kovermann, J; Curt, S; Doebert, S; Naon, M; McMonagle, G; Paju, E; Rey, S; Riddone, G; Schirm, K; Syratchev, I; Timeo, L; Wuensch, W; Hamdi, A; Peauger, FF; Eichner, J; Haase, A; Sprehn, D

    2012-01-01

    A new klystron based X-band rf power source operating at 11.994 GHz has been installed and started to be commissioned at CERN in collaboration with CEA Saclay and SLAC for CLIC accelerating structure tests. The system comprises a solid state high voltage modulator, an XL5 klystron developed by SLAC, a cavity based SLED type pulse compressor, the necessary low level rf system including rf diagnostics and interlocks and the surrounding vacuum, cooling and controls infrastructure. The system is designed to produce up to 50 MW rf pulses of 1500 ns pulse width and 50 Hz repetition rate. After pulse compression, up to 100 MW of rf power at 250 ns pulse width will be available in the structure test bunker. This paper describes in more detail this setup and the process of commissioning which is necessary to arrive at the design performance.

  5. A Study on the Efficient Operating Management of Atomic Energy Commission

    International Nuclear Information System (INIS)

    Yun, Sungwon; Chung, W. S.; Lee, D. S.; Park, S. J.

    2013-04-01

    This study aimed to provide professionals in humanities and social sciences, not only nuclear, with a place for communication by establishing a website of Atomic Energy Commission and people with a place for participation which help the nuclear policy reflect public opinions. By establishing the website of Atomic Energy Commission, experts (including those in humanities and social sciences) can suggest policy agenda and public opinions can be suggested through the place for public participation. Also the website should restrict on indiscreet search by separating sections only for experts and provide experts with a section for active and creative debate on nuclear policy. All the accessible meeting agenda and minutes have been chronologically organized and the findings of the committee have been announced to share with people concerning nuclear policy. In terms of the effective operation of Atomic Energy Commission, research has been conducted for standing committee, regular meeting, activating the commission through system change and expert committee in addition to support for the 2nd meeting of Atomic Energy Committee and the 31st Nuclear Expert Committee. Activation measures to improve the operating system of the commission is proposed as following; changing of the commission's chairman operating system, standing commission regular meeting, activation of subcommittee and expanding and diversifying of agenda

  6. Procedures and Standards for Residential Ventilation System Commissioning: An Annotated Bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Stratton, J. Chris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wray, Craig P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-04-01

    Beginning with the 2008 version of Title 24, new homes in California must comply with ANSI/ASHRAE Standard 62.2-2007 requirements for residential ventilation. Where installed, the limited data available indicate that mechanical ventilation systems do not always perform optimally or even as many codes and forecasts predict. Commissioning such systems when they are installed or during subsequent building retrofits is a step towards eliminating deficiencies and optimizing the tradeoff between energy use and acceptable IAQ. Work funded by the California Energy Commission about a decade ago at Berkeley Lab documented procedures for residential commissioning, but did not focus on ventilation systems. Since then, standards and approaches for commissioning ventilation systems have been an active area of work in Europe. This report describes our efforts to collect new literature on commissioning procedures and to identify information that can be used to support the future development of residential-ventilation-specific procedures and standards. We recommend that a standardized commissioning process and a commissioning guide for practitioners be developed, along with a combined energy and IAQ benefit assessment standard and tool, and a diagnostic guide for estimating continuous pollutant emission rates of concern in residences (including a database that lists emission test data for commercially-available labeled products).

  7. Characterization of the diamond detector for commissioning the Eclipse Planning System

    International Nuclear Information System (INIS)

    Pavan, Guilherme A.; Cardoso, Domingos de O.; Fontes, Gladson S.; Instituto Militar de Engenharia

    2017-01-01

    Diamond detectors are an option in the commissioning of linear accelerators, especially in small field measurements due to characteristics such as: small sensitive volume (0.004mm 3 ) and low energy dependence, desirable attributes for PDP measurements, output factors and profiles. The purpose of this study was to characterize PTW microDiamond 60019 diamond detector in relation to linearity, dependencies: energy, directional and with dose rate; Besides comparing measurements of PDP, output factors and profiles with some ionization and diode chambers. We also analyzed two models of the Eclipse planning system, performed with data from the commissioning of a TrueBeam accelerator obtained with the CC13 camera and with the diamond. Linearity deviations less than 0.5% were obtained in the range of 50cGy to 20Gy for energies of 6,10 and 15MV. Variations smaller than 0.5% for energy dependence and dose rate and angular dependence less than 0.5% in the axial and polar directions were observed. In the small-field output factors the diamond presented higher relative readings to the chambers: CC13, PintPoint3D and CC01 and similar to the diode. In the PDP it showed superiority in the definition of the buildup and surface regions. In the small field profiles it was shown a better definition of the penumbra in relation to the ionization chambers and in relation to the diode was equivalent, being superior in the tail region of large fields. In both models of Eclipse there were no significant differences for 1%3mm gamma analysis for PDP and profiles, although the diamond presented smaller mean gamma errors. The Collimator Backscatter Factors (CBSF) analysis for the two sets of measures showed differences mainly for small fields. The results of this study indicate that the diamond detector is one of the most versatile on the market in different commissioning situations, especially for small field measurements. (author)

  8. 75 FR 11166 - Joint Meeting of the Nuclear Regulatory Commission and the Federal Energy Regulatory Commission...

    Science.gov (United States)

    2010-03-10

    ... the Nuclear Regulatory Commission and the Federal Energy Regulatory Commission; Notice of Joint Meeting of the Nuclear Regulatory Commission and the Federal Energy Regulatory Commission March 2, 2010. The Federal Energy Regulatory Commission (FERC) and the Nuclear Regulatory Commission (NRC) will hold...

  9. Accelerant-related burns and drug abuse: Challenging combination.

    Science.gov (United States)

    Leung, Leslie T F; Papp, Anthony

    2018-05-01

    Accelerants are flammable substances that may cause explosion when added to existing fires. The relationships between drug abuse and accelerant-related burns are not well elucidated in the literature. Of these burns, a portion is related to drug manufacturing, which have been shown to be associated with increased burn complications. 1) To evaluate the demographics and clinical outcomes of accelerant-related burns in a Provincial Burn Centre. 2) To compare the clinical outcomes with a control group of non-accelerant related burns. 3) To analyze a subgroup of patients with history of drug abuse and drug manufacturing. Retrospective case control study. Patient data associated with accelerant-related burns from 2009 to 2014 were obtained from the British Columbia Burn Registry. These patients were compared with a control group of non-accelerant related burns. Clinical outcomes that were evaluated include inhalational injury, ICU length of stay, ventilator support, surgeries needed, and burn complications. Chi-square test was used to evaluate categorical data and Student's t-test was used to evaluate mean quantitative data with the p value set at 0.05. A logistic regression model was used to evaluate factors affecting burn complications. Accelerant-related burns represented 28.2% of all burn admissions (N=532) from 2009 to 2014. The accelerant group had higher percentage of patients with history of drug abuse and was associated with higher TBSA burns, ventilator support, ICU stay and pneumonia rates compared to the non-accelerant group. Within the accelerant group, there was no difference in clinical outcomes amongst people with or without history of drug abuse. Four cases were associated with methamphetamine manufacturing, all of which underwent ICU stay and ventilator support. Accelerant-related burns cause significant burden to the burn center. A significant proportion of these patients have history of drug abuse. Copyright © 2017 Elsevier Ltd and ISBI. All rights

  10. Validation and Performance of the LHC Cryogenic System through Commissioning of the First Sector

    CERN Document Server

    Serio, L; Casas-Cubillos, J; Chakravarty, A; Claudet, S; Gicquel, F; Gomes, P; Kumar, M; Kush, PK; Millet, F; Perin, A; Rabehl, R; Singh, MR; Soubiran, M; Tavian, L

    2008-01-01

    The cryogenic system [1] for the Large Hadron Collider accelerator is presently in its final phase of commissioning at nominal operating conditions. The refrigeration capacity for the LHC is produced using eight large cryogenic plants and eight 1.8 K refrigeration units installed on five cryogenic islands. Machine cryogenic equipment is installed in a 26.7-km circumference ring deep underground tunnel and are maintained at their nominal operating conditions via a distribution system consisting of transfer lines, cold interconnection boxes at each cryogenic island and a cryogenic distribution line. The functional analysis of the whole system during all operating conditions was established and validated during the first sector commissioning in order to maximize the system availability. Analysis, operating modes, main failure scenarios, results and performance of the cryogenic system are presented.

  11. The New World Information Order. [Commission Document] 31.

    Science.gov (United States)

    Masmoudi, Mustapha

    One of a series prepared for the International Commission for the Study of Communication of Unesco, this report elucidates the principal reasons supporting reform of the international information system. Following an introduction that outlines the role of information in developing countries and explains why the current media are inadequate, the…

  12. Results of dose control and measurement plans applied for SPEAR3 commissioning year (FY04)

    Energy Technology Data Exchange (ETDEWEB)

    Khater, Hesham [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)]. E-mail: khater1@llnl.gov; Liu, James [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Prinz, Alyssa [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Allan, Jim [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Rokni, Sayed [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2006-12-15

    Dose control and measurement plans for the SPEAR3 Booster and storage ring have taken place during the SPEAR3 commissioning. The initial commissioning period (SPEAR3 start-up) covered the time period from the beginning of November 2003 to the early part of March 2004. The period from the beginning of March to the beginning of August 2004 has been mostly dedicated to the scientific program. The initial commissioning period was characterized with frequent injection and significantly higher losses. In comparison, the scientific program period was characterized with more stable beam operation with limited number of injections per day and lower beam losses. Three types of dose measurements, passive, active and special measurements, were implemented around the SPEAR3 Booster and storage ring. Based on the expected radiation hazards, several dose control measures were adopted at several stages of the commissioning. In the early stages of commissioning, areas within 4.5 m from the walls of the Booster and storage ring were designated as radiation areas (RA). Areas outside RA were classified as radiologically controlled area (RCA). Access to these areas required less training than the RA. A monthly review of the accelerator operation conditions and radiation measurement results were used to determine the changes needed for the RA classification status and associated dose control measures.

  13. Construction and commissioning of the national synchrotron light source

    International Nuclear Information System (INIS)

    Galayda, J.N.; Blume, M.

    1985-01-01

    The road from conception to completion of a large facility like the National Synchrotron Light Source (NSLS) is a long and tortuous one. More than fifteen years have passed since the first discussions of a synchrotron radiation source at BNL, and there have been many twists and turns in the process. In putting together an accelerator project like this, there are many critical skills that must be assembled, and budgets, schedules and organizations must be properly examined. The lessons learned in design and commissioning of the NSLS rings may be summarized as follows: (1) the damped emittances expected of a Chasman-Green lattice are attainable at high current, if ion trapping problems can be circumvented; (2) there have been no unexpected effects from the rather strong sextupoles required to correct the chromaticities in this type of lattice; (3) the most important beam instabilities are coupled-bunch, and can be counteracted; and (4) commissioning the NSLS rings was mostly an effort to bring the hardware into conformation with the original ring design; achievement of the specified magnetic fields, injection timing, vacuum, RF voltages, etc. led to ring performance which was easily good enough to begin operation

  14. Wake field acceleration experiments

    International Nuclear Information System (INIS)

    Simpson, J.D.

    1988-01-01

    Where and how will wake field acceleration devices find use for other than, possibly, accelerators for high energy physics? I don't know that this can be responsibly answered at this time. What I can do is describe some recent results from an ongoing experimental program at Argonne which support the idea that wake field techniques and devices are potentially important for future accelerators. Perhaps this will spawn expanded interest and even new ideas for the use of this new technology. The Argonne program, and in particular the Advanced Accelerator Test Facility (AATF), has been reported in several fairly recent papers and reports. But because this is a substantially new audience for the subject, I will include a brief review of the program and the facility before describing experiments. 10 refs., 7 figs

  15. Finite element analyses of a linear-accelerator electron gun

    Science.gov (United States)

    Iqbal, M.; Wasy, A.; Islam, G. U.; Zhou, Z.

    2014-02-01

    Thermo-structural analyses of the Beijing Electron-Positron Collider (BEPCII) linear-accelerator, electron gun, were performed for the gun operating with the cathode at 1000 °C. The gun was modeled in computer aided three-dimensional interactive application for finite element analyses through ANSYS workbench. This was followed by simulations using the SLAC electron beam trajectory program EGUN for beam optics analyses. The simulations were compared with experimental results of the assembly to verify its beam parameters under the same boundary conditions. Simulation and test results were found to be in good agreement and hence confirmed the design parameters under the defined operating temperature. The gun is operating continuously since commissioning without any thermal induced failures for the BEPCII linear accelerator.

  16. Finite element analyses of a linear-accelerator electron gun

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, M., E-mail: muniqbal.chep@pu.edu.pk, E-mail: muniqbal@ihep.ac.cn [Centre for High Energy Physics, University of the Punjab, Lahore 45590 (Pakistan); Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Wasy, A. [Department of Mechanical Engineering, Changwon National University, Changwon 641773 (Korea, Republic of); Islam, G. U. [Centre for High Energy Physics, University of the Punjab, Lahore 45590 (Pakistan); Zhou, Z. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2014-02-15

    Thermo-structural analyses of the Beijing Electron-Positron Collider (BEPCII) linear-accelerator, electron gun, were performed for the gun operating with the cathode at 1000 °C. The gun was modeled in computer aided three-dimensional interactive application for finite element analyses through ANSYS workbench. This was followed by simulations using the SLAC electron beam trajectory program EGUN for beam optics analyses. The simulations were compared with experimental results of the assembly to verify its beam parameters under the same boundary conditions. Simulation and test results were found to be in good agreement and hence confirmed the design parameters under the defined operating temperature. The gun is operating continuously since commissioning without any thermal induced failures for the BEPCII linear accelerator.

  17. Finite element analyses of a linear-accelerator electron gun

    International Nuclear Information System (INIS)

    Iqbal, M.; Wasy, A.; Islam, G. U.; Zhou, Z.

    2014-01-01

    Thermo-structural analyses of the Beijing Electron-Positron Collider (BEPCII) linear-accelerator, electron gun, were performed for the gun operating with the cathode at 1000 °C. The gun was modeled in computer aided three-dimensional interactive application for finite element analyses through ANSYS workbench. This was followed by simulations using the SLAC electron beam trajectory program EGUN for beam optics analyses. The simulations were compared with experimental results of the assembly to verify its beam parameters under the same boundary conditions. Simulation and test results were found to be in good agreement and hence confirmed the design parameters under the defined operating temperature. The gun is operating continuously since commissioning without any thermal induced failures for the BEPCII linear accelerator

  18. The Accelerator Markup Language and the Universal Accelerator Parser

    International Nuclear Information System (INIS)

    Sagan, D.; Forster, M.; Cornell U., LNS; Bates, D.A.; LBL, Berkeley; Wolski, A.; Liverpool U.; Cockcroft Inst. Accel. Sci. Tech.; Schmidt, F.; CERN; Walker, N.J.; DESY; Larrieu, T.; Roblin, Y.; Jefferson Lab; Pelaia, T.; Oak Ridge; Tenenbaum, P.; Woodley, M.; SLAC; Reiche, S.; UCLA

    2006-01-01

    A major obstacle to collaboration on accelerator projects has been the sharing of lattice description files between modeling codes. To address this problem, a lattice description format called Accelerator Markup Language (AML) has been created. AML is based upon the standard eXtensible Markup Language (XML) format; this provides the flexibility for AML to be easily extended to satisfy changing requirements. In conjunction with AML, a software library, called the Universal Accelerator Parser (UAP), is being developed to speed the integration of AML into any program. The UAP is structured to make it relatively straightforward (by giving appropriate specifications) to read and write lattice files in any format. This will allow programs that use the UAP code to read a variety of different file formats. Additionally, this will greatly simplify conversion of files from one format to another. Currently, besides AML, the UAP supports the MAD lattice format

  19. Decree no. 2004-48 from January 12, 2004 authorizing the French atomic energy commission to proceed to the definitive decommissioning and dismantling operations of the nuclear facility no. 43, named Saclay linear accelerator (ALS), on the territory of Saint-Aubin town (Essonne)

    International Nuclear Information System (INIS)

    2004-01-01

    The linear accelerator of Saclay (ALS) has been the object of a commissioning permission given by decree by the French prime minister in October 8, 1965. It is submitted to the regime of basic nuclear facilities as defined in the decree no. 63-1228 from December 11, 1963. The French atomic energy commission (CEA) put down a request for the definitive decommissioning and dismantling of this facility on May 30, 2002. The duration foreseen for these operations is of 4 years. After the safety examination of the request by the DGSNR and the institute of radioprotection and nuclear safety (IRSN), a favorable and conformable advice has been given by the different ministries (health, finances and industry, ecology and sustainable development) and has led to this decree which precises the different protection measures to be implemented during the dismantling work. (J.S.)

  20. 50 Years of the Radiological Research Accelerator Facility (RARAF)

    OpenAIRE

    Marino, Stephen A.

    2017-01-01

    The Radiological Research Accelerator Facility (RARAF) is in its 50th year of operation. It was commissioned on April 1, 1967 as a collaboration between the Radiological Research Laboratory (RRL) of Columbia University, and members of the Medical Research Center of Brookhaven National Laboratory (BNL). It was initially funded as a user facility for radiobiology and radiological physics, concentrating on monoenergetic neutrons. Facilities for irradiation with MeV light charged particles were d...

  1. 77 FR 68777 - Information Collection(s) Being Reviewed by the Federal Communications Commission, Comments...

    Science.gov (United States)

    2012-11-16

    ... used to meet the objectives of the Universal Service Fund program. The Commission will also use this... is necessary for the proper performance of the functions of the Commission, including whether the... Control Number: 3060-XXXX. Title: Annual Report for Mobility Fund Phase I Support, FCC Form 690 and Record...

  2. Continuity and enhancement of quality management during commissioning of W7-X

    Energy Technology Data Exchange (ETDEWEB)

    Vilbrandt, Reinhard, E-mail: reinhard.vilbrandt@ipp.mpg.de; Bosch, Hans-Stephan; Feist, Jost-Henrich; Klinger, Thomas

    2015-10-15

    Highlights: • Commissioning follows the W7-X structure into appropriate components, subsystems and systems. • Local and integrated commissioning steps are carried out alternately. • An exact and detailed preparation of all commissioning is absolutely necessary. • Templates support instruction manuals, safety analyses, and commissioning instructions. • Because of safety special attention must be paid to the first putting into service. - Abstract: The commissioning of Wendelstein 7-X, the first numerically optimized stellarator, is a new phase in the project. The general planning and execution of the commissioning of the entire W7-X system follow its structure into appropriate components, subsystems and systems. The approach for taking these systems into operation will lead to so-called local commissioning which is usually executed for individual systems in connection with the necessary peripheral devices and auxiliary systems. The subsequent step-wise testing and commissioning of the systems in connection with the central device of W7-X, including the central safety control, and the central data acquisition system is performed in the second step, the so-called integrated commissioning. This leads directly to the preparation of first plasma operation. New organizational and quality management elements have been added to the running system, or existing, proven tools have been modified. The major new organizational structures and tasks and the quality planning and assurance tools are described in more detail. The experience during the first commissioning steps of the vacuum and cryogenic systems is outlined.

  3. TL Dosimetry on the Tandetron Ion Accelerator area of the ININ

    International Nuclear Information System (INIS)

    Valdovinos A, M.A.; Gonzalez M, P.R.

    2000-01-01

    For the fulfilment of the operation tests of the Positive Ions type Tandetron 4120 MC, 2 MV, it was obtained the permission consented by the National Commission of Nuclear safety and safeguards (CNSNS). During the stage of tests were arranged Tl dosemeters in the Tandetron Accelerator area, as well as toward to the beam exit. In this work, it was presented the results obtained of the measurement of radiation levels, as much in the area as in the beam exit. This Accelerator is useful in different fields of science such as: biology, radiochemistry, materials, solid state physics, archaeology and environmental sciences between others. (Author)

  4. Evaluation of power commissioning of the Mochovce Unit 1 demonstration run

    International Nuclear Information System (INIS)

    Sarvaic, I.; Miskolci, M.

    1998-01-01

    The document contains evaluation of the 144 hour demonstration run of the Mochovce Unit 1. In the document, the courses and results of additional tests in this phase of power commissioning are summarized, evaluation of the performance of important systems and equipment of the unit is carried out, as well as of the compliance with Limits and Conditions in the course of the demonstration run. On this basis, conclusions are drawn and recommendations given for the unit to by ready for trial operation. The evaluation was developed by the scientific management of the Mochovce commissioning providing an independent support for the operators for supervising the commissioning tasks from the point of nuclear safety

  5. Computational tools for cyclotron design, commissioning, and operation

    International Nuclear Information System (INIS)

    Kost, C.J.

    1989-05-01

    Many support systems are required in the design, commissioning, and normal operation of a modern cyclotron. Presented is an overview of the computing environment developed during these various stages at TRIUMF. The current computing environment is also discussed, with emphasis on how one can provide an integrated system which is user-friendly

  6. WE-AB-201-00: Treatment Planning System Commissioning and QA

    International Nuclear Information System (INIS)

    2015-01-01

    Treatment planning systems (TPS) are a cornerstone of modern radiation therapy. Errors in their commissioning or use can have a devastating impact on many patients. To support safe and high quality care, medical physicists must conduct efficient and proper commissioning, good clinical integration, and ongoing quality assurance (QA) of the TPS. AAPM Task Group 53 and related publications have served as seminal benchmarks for TPS commissioning and QA over the past two decades. Over the same time, continuing innovations have made the TPS even more complex and more central to the clinical process. Medical goals are now expressed in terms of the dose and margins around organs and tissues that are delineated from multiple imaging modalities (CT, MR and PET); and even temporally resolved (i.e., 4D) imaging. This information is passed on to optimization algorithms to establish accelerator movements that are programmed directly for IMRT, VMAT and stereotactic treatments. These advances have made commissioning and QA of the TPS much more challenging. This education session reviews up-to-date experience and guidance on this subject; including the recently published AAPM Medical Physics Practice Guideline (MPPG) #5 “Commissioning and QA of Treatment Planning Dose Calculations: Megavoltage Photon and Electron Beams”. Treatment Planning System Commissioning and QA: Challenges and Opportunities (Greg Salomons) This session will provide some key background and review publications describing prominent incidents relating to TPS commissioning and QA. Traditional approaches have been hardware and feature oriented. They aim to establish a functional configuration and establish specifications for regular testing of features (like dose calculation) to assure stable operation and detect failures. With the advent of more complex systems, more patient-specific testing has also been adopted. A number of actual TPS defects will be presented along with heuristics for identifying similar

  7. WE-AB-201-00: Treatment Planning System Commissioning and QA

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    Treatment planning systems (TPS) are a cornerstone of modern radiation therapy. Errors in their commissioning or use can have a devastating impact on many patients. To support safe and high quality care, medical physicists must conduct efficient and proper commissioning, good clinical integration, and ongoing quality assurance (QA) of the TPS. AAPM Task Group 53 and related publications have served as seminal benchmarks for TPS commissioning and QA over the past two decades. Over the same time, continuing innovations have made the TPS even more complex and more central to the clinical process. Medical goals are now expressed in terms of the dose and margins around organs and tissues that are delineated from multiple imaging modalities (CT, MR and PET); and even temporally resolved (i.e., 4D) imaging. This information is passed on to optimization algorithms to establish accelerator movements that are programmed directly for IMRT, VMAT and stereotactic treatments. These advances have made commissioning and QA of the TPS much more challenging. This education session reviews up-to-date experience and guidance on this subject; including the recently published AAPM Medical Physics Practice Guideline (MPPG) #5 “Commissioning and QA of Treatment Planning Dose Calculations: Megavoltage Photon and Electron Beams”. Treatment Planning System Commissioning and QA: Challenges and Opportunities (Greg Salomons) This session will provide some key background and review publications describing prominent incidents relating to TPS commissioning and QA. Traditional approaches have been hardware and feature oriented. They aim to establish a functional configuration and establish specifications for regular testing of features (like dose calculation) to assure stable operation and detect failures. With the advent of more complex systems, more patient-specific testing has also been adopted. A number of actual TPS defects will be presented along with heuristics for identifying similar

  8. Accelerator Data Foundation : How it all fits together

    CERN Document Server

    Billen, R; Peryt, M R; Roderick, C R; Zaharieva, Z R

    2009-01-01

    Since 2003, a coherent data management approach was envisaged for the needs of installing, commissioning, operating and maintaining the LHC. Data repositories in the distinct domains of physical equipment, installed components, controls configuration and operational data have been established to cater for these different aspects. The interdependencies between the domains have been implemented as a distributed database. This approach, based on a very wide data foundation, has been used for the LHC and is being extended to the CERN accelerator complex.

  9. Support Vector Machine Based on Adaptive Acceleration Particle Swarm Optimization

    Science.gov (United States)

    Abdulameer, Mohammed Hasan; Othman, Zulaiha Ali

    2014-01-01

    Existing face recognition methods utilize particle swarm optimizer (PSO) and opposition based particle swarm optimizer (OPSO) to optimize the parameters of SVM. However, the utilization of random values in the velocity calculation decreases the performance of these techniques; that is, during the velocity computation, we normally use random values for the acceleration coefficients and this creates randomness in the solution. To address this problem, an adaptive acceleration particle swarm optimization (AAPSO) technique is proposed. To evaluate our proposed method, we employ both face and iris recognition based on AAPSO with SVM (AAPSO-SVM). In the face and iris recognition systems, performance is evaluated using two human face databases, YALE and CASIA, and the UBiris dataset. In this method, we initially perform feature extraction and then recognition on the extracted features. In the recognition process, the extracted features are used for SVM training and testing. During the training and testing, the SVM parameters are optimized with the AAPSO technique, and in AAPSO, the acceleration coefficients are computed using the particle fitness values. The parameters in SVM, which are optimized by AAPSO, perform efficiently for both face and iris recognition. A comparative analysis between our proposed AAPSO-SVM and the PSO-SVM technique is presented. PMID:24790584

  10. Support Vector Machine Based on Adaptive Acceleration Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Mohammed Hasan Abdulameer

    2014-01-01

    Full Text Available Existing face recognition methods utilize particle swarm optimizer (PSO and opposition based particle swarm optimizer (OPSO to optimize the parameters of SVM. However, the utilization of random values in the velocity calculation decreases the performance of these techniques; that is, during the velocity computation, we normally use random values for the acceleration coefficients and this creates randomness in the solution. To address this problem, an adaptive acceleration particle swarm optimization (AAPSO technique is proposed. To evaluate our proposed method, we employ both face and iris recognition based on AAPSO with SVM (AAPSO-SVM. In the face and iris recognition systems, performance is evaluated using two human face databases, YALE and CASIA, and the UBiris dataset. In this method, we initially perform feature extraction and then recognition on the extracted features. In the recognition process, the extracted features are used for SVM training and testing. During the training and testing, the SVM parameters are optimized with the AAPSO technique, and in AAPSO, the acceleration coefficients are computed using the particle fitness values. The parameters in SVM, which are optimized by AAPSO, perform efficiently for both face and iris recognition. A comparative analysis between our proposed AAPSO-SVM and the PSO-SVM technique is presented.

  11. Nonlinear predictive control in the LHC accelerator

    CERN Document Server

    Blanco, E; Cristea, S; Casas, J

    2009-01-01

    This paper describes the application of a nonlinear model-based control strategy in a real challenging process. A predictive controller based on a nonlinear model derived from physical relationships, mainly heat and mass balances, has been developed and commissioned in the inner triplet heat exchanger unit (IT-HXTU) of the large hadron collider (LHC) particle accelerator at European Center for Nuclear Research (CERN). The advanced regulation\\ maintains the magnets temperature at about 1.9 K. The development includes a constrained nonlinear state estimator with a receding horizon estimation procedure to improve the regulator predictions.

  12. NIST Accelerator Facilities And Programs In Support Of Industrial Radiation Research

    International Nuclear Information System (INIS)

    Bateman, F.B.; Desrosiers, M.F.; Hudson, L.T.; Coursey, B.M.; Bergstrom, P.M. Jr.; Seltzer, S.M.

    2003-01-01

    NIST's Ionizing Radiation Division maintains and operates three electron accelerators used in a number of applications including waste treatment and sterilization, radiation hardness testing, detector calibrations and materials modification studies. These facilities serve a large number of governmental, academic and industrial users as well as an active intramural research program. They include a 500 kV cascaded-rectifier accelerator, a 2.5 MV electron Van de Graaff accelerator and a 7 to 32 MeV electron linac, supplying beams ranging in energy from a few keV up to 32 MeV. In response to the recent anthrax incident, NIST along with the US Postal Service and the Armed Forces Radiobiology Research Institute (AFRRI) are working to develop protocols and testing procedures for the USPS mail sanitization program. NIST facilities and personnel are being employed in a series of quality-assurance measurements for both electron- and photon-beam sanitization. These include computational modeling, dose verification and VOC (volatile organic compounds) testing using megavoltage electron and photon sources

  13. 78 FR 32295 - Commission Meeting

    Science.gov (United States)

    2013-05-29

    ... SUSQUEHANNA RIVER BASIN COMMISSION Commission Meeting AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: The Susquehanna River Basin Commission will hold its regular business meeting on... business meeting are contained in the Supplementary Information section of this notice. DATES: June 20...

  14. 77 FR 10599 - Commission Meeting

    Science.gov (United States)

    2012-02-22

    ... SUSQUEHANNA RIVER BASIN COMMISSION Commission Meeting AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: The Susquehanna River Basin Commission will hold its regular business meeting on... business meeting are contained in the Supplementary Information section of this notice. DATES: March 15...

  15. 78 FR 12412 - Commission Meeting

    Science.gov (United States)

    2013-02-22

    ... SUSQUEHANNA RIVER BASIN COMMISSION Commission Meeting AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: The Susquehanna River Basin Commission will hold its regular business meeting on... business meeting are contained in the Supplementary Information section of this notice. DATES: March 21...

  16. 78 FR 52601 - Commission Meeting

    Science.gov (United States)

    2013-08-23

    ... SUSQUEHANNA RIVER BASIN COMMISSION Commission Meeting AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: The Susquehanna River Basin Commission will hold its regular business meeting on... meeting are contained in the Supplementary Information section of this notice. DATES: September 19, 2013...

  17. 77 FR 70204 - Commission Meeting

    Science.gov (United States)

    2012-11-23

    ... SUSQUEHANNA RIVER BASIN COMMISSION Commission Meeting AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: The Susquehanna River Basin Commission will hold its regular business meeting on... meeting are contained in the SUPPLEMENTARY INFORMATION section of this notice. DATES: December 14, 2012...

  18. 78 FR 69517 - Commission Meeting

    Science.gov (United States)

    2013-11-19

    ... SUSQUEHANNA RIVER BASIN COMMISSION Commission Meeting AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: The Susquehanna River Basin Commission will hold its regular business meeting on... meeting are contained in the Supplementary Information section of this notice. DATES: December 12, 2013...

  19. 77 FR 52106 - Commission Meeting

    Science.gov (United States)

    2012-08-28

    ... SUSQUEHANNA RIVER BASIN COMMISSION Commission Meeting AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: The Susquehanna River Basin Commission will hold its regular business meeting on... business meeting are contained in the Supplementary Information section of this notice. DATES: September 20...

  20. 77 FR 28420 - Commission Meeting

    Science.gov (United States)

    2012-05-14

    ... SUSQUEHANNA RIVER BASIN COMMISSION Commission Meeting AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: The Susquehanna River Basin Commission will hold its regular business meeting on... meeting are contained in the Supplementary Information section of this notice. DATES: June 7, 2012, at 9...

  1. Selected topics in particle accelerators: Proceedings of the CAP meetings. Volume 4

    International Nuclear Information System (INIS)

    Parsa, Z.

    1995-01-01

    This Report includes copies of transparencies and notes from the presentations made at the Center for Accelerator Physics at Brookhaven National Laboratory. Editing and changes to the authors' contributions in this Report were made only to fulfill the publication requirements. This volume includes notes and transparencies on eight presentations: ''Application of Accelerator-Driven Spallation Targets - Including Tritium Production and Nuclear Waste Transmutation'', ''BNL 5 MW Pulsed Spallation Neutron Source Study'', ''Designing and Understanding of Magnets with the Help of Conformal Mapping'', ''Laser - Electron Beam Scattering Coherent Compton X-Ray Sources'', ''The LHC Project'', ''Optimization of the Photocathode-Linac Separation for the ATF [Accelerator Test Facility] Injection System'', ''On CEBAF Commissioning: First Results'', and ''The Proposed Booster Application Facility at BNL''. An Appendix lists dates, topics, and speakers from October 1989 to December 1994

  2. Charged particle accelerators for inertial fusion energy

    International Nuclear Information System (INIS)

    Humphries, S. Jr.

    1991-01-01

    The long history of successful commercial applications of charged-particle accelerators is largely a result of initiative by private industry. The Department of Energy views accelerators mainly as support equipment for particle physicists rather than components of an energy generation program. In FY 91, the DOE spent over 850 M$ on building and supporting accelerators for physics research versus 5 M$ on induction accelerators for fusion energy. The author believes this emphasis is skewed. One must address problems of long-term energy sources to preserve the possibility of basic research by future generations. In this paper, the author reviews the rationale for accelerators as inertial fusion drivers, emphasizing that these devices provide a viable path of fusion energy from viewpoints of both physics and engineering. In this paper, he covered the full range of accelerator fusion applications. Because of space limitations, this paper concentrates on induction linacs for ICF, an approach singled out in recent reports by the National Academy of Sciences and the Fusion Policy Advisory Committee as a promising path to long-term fusion power production. Review papers by Cook, Leung, Franzke, Hofmann and Reiser in these proceedings give details on light ion fusion and RF accelerator studies

  3. Decontamination/decommissioning of the Princeton Pennsylvania Accelerator Facility

    International Nuclear Information System (INIS)

    Bair, W.A.

    1990-01-01

    The Princeton Pennsylvania Accelerator Facility was a 3 GeV proton synchrotron operated jointly by Princeton University and the University of Pennsylvania from 1962 to 1972 on Princeton University's Forrestal Campus. During synchrotron operations, certain portions of the PPA central accelerator chamber and structural members became neutron activated. Upon termination of accelerator operations due to funding problems, Princeton desired to utilize the PPA site for other purposes, and commissioned a study to investigate Decommissioning and Decontamination options and methodologies. The study investigated several methods for in-place, surgically removing the neutron activated from the uncontaminated concrete. Since each technique produced different volumes of removed concrete all methods investigated were studied from the total economics of the problem and the cost of limiting and clean-up of secondary contamination. The decontamination method selected used a diamond wire cutting technique to sever in-place, the activated concrete from the uncontaminated. Large, intact, activated structural segments were cut and removed from the central accelerator chamber's floor, outer walls, internal columns and ceiling. Nonactivated portions of the structure, and the remainder of the central chamber were subsequently razed by conventional demolition methods. The paper describes the decontamination methodology, its effectiveness, disposal economics and radiological safety problems related thereto

  4. European financial support and succesful road PPP Projects

    Energy Technology Data Exchange (ETDEWEB)

    Garrido Maza, G.

    2016-07-01

    The EU has been promoting the use of PPPs in order to accelerate the development of the Trans-European Transport Network (TEN-T) for ensuring economic, social and territorial cohesion and increasing accessibility throughout the Union. To encourage the use of PPPs, the European Commission has put several financing mechanisms at the disposal of the Member States, including a series of innovative financial instruments developed along with the European Investment Bank. The Bank has in turn played a major role in the promotion and financing of PPPs across the EU. The paper undertakes a review of the main financial instruments developed by the EU that are available to PPPs so as to determinate to what extent the European financial support has been channelled to road projects under that scheme in Spain. On the basis of the results obtained, a multiple regression model has been developed to analyse whether the PPP projects which enjoyed the financial support of the European Union tend to be significantly more successful from an economic point of view. The paper concludes that there is a positive correlation between receiving European financial support and the success of the PPP road projects. (Author)

  5. Ground test accelerator control system software

    International Nuclear Information System (INIS)

    Burczyk, L.; Dalesio, R.; Dingler, R.; Hill, J.; Howell, J.A.; Kerstiens, D.; King, R.; Kozubal, A.; Little, C.; Martz, V.; Rothrock, R.; Sutton, J.

    1988-01-01

    This paper reports on the GTA control system that provides an environment in which the automation of a state-of-the-art accelerator can be developed. It makes use of commercially available computers, workstations, computer networks, industrial 110 equipment, and software. This system has built-in supervisory control (like most accelerator control systems), tools to support continuous control (like the process control industry), and sequential control for automatic start-up and fault recovery (like few other accelerator control systems). Several software tools support these levels of control: a real-time operating system (VxWorks) with a real-time kernel (VRTX), a configuration database, a sequencer, and a graphics editor. VxWorks supports multitasking, fast context-switching, and preemptive scheduling. VxWorks/VRTX is a network-based development environment specifically designed to work in partnership with the UNIX operating system. A data base provides the interface to the accelerator components. It consists of a run time library and a database configuration and editing tool. A sequencer initiates and controls the operation of all sequence programs (expressed as state programs). A graphics editor gives the user the ability to create color graphic displays showing the state of the machine in either text or graphics form

  6. An Adiabatic Phase-Matching Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lemery, Francois [DESY; Floettmann, Klaus [DESY; Piot, Philippe [Northern Illinois U.; Kaertner, Franz X. [Hamburg U.; Assmann, Ralph [DESY

    2017-12-22

    We present a general concept to accelerate non-relativistic charged particles. Our concept employs an adiabatically-tapered dielectric-lined waveguide which supports accelerating phase velocities for synchronous acceleration. We propose an ansatz for the transient field equations, show it satisfies Maxwell's equations under an adiabatic approximation and find excellent agreement with a finite-difference time-domain computer simulation. The fields were implemented into the particle-tracking program {\\sc astra} and we present beam dynamics results for an accelerating field with a 1-mm-wavelength and peak electric field of 100~MV/m. The numerical simulations indicate that a $\\sim 200$-keV electron beam can be accelerated to an energy of $\\sim10$~MeV over $\\sim 10$~cm. The novel scheme is also found to form electron beams with parameters of interest to a wide range of applications including, e.g., future advanced accelerators, and ultra-fast electron diffraction.

  7. Social-emotional characteristics of gifted accelerated and non-accelerated students in the Netherlands.

    Science.gov (United States)

    Hoogeveen, Lianne; van Hell, Janet G; Verhoeven, Ludo

    2012-12-01

    In the studies of acceleration conducted so far a multidimensional perspective has largely been neglected. No attempt has been made to relate social-emotional characteristics of accelerated versus non-accelerated students in perspective of environmental factors. In this study, social-emotional characteristics of accelerated gifted students in the Netherlands were examined in relation to personal and environmental factors. Self-concept and social contacts of accelerated (n = 148) and non-accelerated (n = 55) gifted students, aged 4 to 27 (M = 11.22, SD = 4.27) were measured. Self-concept and social contacts of accelerated and non-accelerated gifted students were measured using a questionnaire and a diary, and parents of these students evaluated their behavioural characteristics. Gender and birth order were studied as personal factors and grade, classroom, teachers' gender, teaching experience, and the quality of parent-school contact as environmental factors. The results showed minimal differences in the social-emotional characteristics of accelerated and non-accelerated gifted students. The few differences we found favoured the accelerated students. We also found that multiple grade skipping does not have negative effects on social-emotional characteristics, and that long-term effects of acceleration tend to be positive. As regards the possible modulation of personal and environmental factors, we merely found an impact of such factors in the non-accelerated group. The results of this study strongly suggest that social-emotional characteristics of accelerated gifted students and non-accelerated gifted students are largely similar. These results thus do not support worries expressed by teachers about the acceleration of gifted students. Our findings parallel the outcomes of earlier studies in the United States and Germany in that we observed that acceleration does not harm gifted students, not even in the case of multiple grade skipping. On the contrary, there is a

  8. Acceleration of particles in plasmas

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    The accelerating fields in radio-frequency accelerators are limited to roughly 100 MV/m due to material breakdown which occurs on the walls of the structure. In contrast, a plasma, being already ionized, can support electric fields in excess of 100 GV/m. Such high accelerating gradients hold the promise of compact particle accelerators. Plasma acceleration has been an emerging and fast growing field of research in the past two decades. In this series of lectures, we will review the principles of plasma acceleration. We will see how relativistic plasma waves can be excited using an ultra-intense laser or using a particle beam. We will see how these plasma waves can be used to accelerate electrons to high energy in short distances. Throughout the lectures, we will also review recent experimental results. Current laser-plasma experiments throughout the world have shown that monoenergetic electron beams from 100 MeV to 1 GeV can be obtained in distances ranging from the millimetre to the centimetre. Experiments a...

  9. Announcement of the new version of guidelines for supporting the accelerated market introduction of energy-saving technologies and products. May 22, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-05-01

    For an accelerated market introduction of newly- or further-developed products and methods for rational energy application (projects), companies located in the Fed. Rep. of Germany can be granted funds from the Federal Government according to these guidelines and the household means available; introduction into the market without public help is not possible at all, or only with considerable delay, because of high financial risks. The financial support can be granted to those only who undertake the accelerated introduction of products and methods for rational energy application. Projects started before application cannot be promoted. As far as in a project the pre-conditions set by these guidelines and the guidelines for the Federal Programme for 'Promotion of technological innovations and the development necessary for this' are fulfilled, support takes precedence over other points due to these guidelines, if the project is planned for energy saving only.

  10. AEgIS experiment commissioning at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Krasnicky, D. [University of Genoa, Dept of Physics, Via Dodecaneso 33, 16146 Genova, Italy and Istituto Nazionale di Fisica Nucleare, Sez. di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Aghion, S. [Politecnico di Milano, LNESS and Dept of Physics, Via Anzani 42, 22100 Como, Italy and Istituto Nazionale di Fisica Nucleare, Sez. di Milano, Via Celoria 16, 20133 Milano (Russian Federation); Amsler, C.; Ariga, A.; Ariga, T.; Ereditato, A.; Kawada, J.; Kimura, M.; Pistillo, C.; Scampoli, P.; Storey, J. [Albert Einstein Center for Fundamental Physics, University of Bern, 3012 Bern (Switzerland); Belov, A. S.; Gninenko, S. N. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312 (Russian Federation); Bonomi, G.; Subieta Vasquez, M. A. [University of Brescia, Dept of Mech. and Indust. Engineering, Via Branze 38, 25133 Brescia, Italy and Istituto Nazionale di Fisica Nucleare, Sez. di Pavia, Via Agostino Bassi 6, 27100 Pavia (Italy); Braeunig, P.; Oberthaler, M. K. [University of Heidelberg, Kirchhoff Institute for Physics, Im Neuenheimer Feld 227, 69120 Heidelberg (Germany); Brusa, R. S.; Di Noto, L.; Mariazzi, S. [Dipartimento di Fisica, Universita di Trento and INFN, Gruppo collegato di Trento, Via Sommarive 14, 38050 Povo, Trento (Italy); and others

    2013-03-19

    The AEgIS Experiment is an international collaboration based at CERN whose aim is to perform the first direct measurement of the gravitational acceleration g of antihydrogen in the gravitational field of the Earth. Cold antihydrogen will be produced with a pulsed charge exchange reaction in a cylindrical Penning trap where antiprotons will be cooled to 100mK. The cold antihydrogen will be produced in an excited Rydberg state and subsequently formed into a beam. The deflection of the antihydrogen beam will be measured by using Moire deflectometer gratings. After being approved in late 2008, AEgIS started taking data in a commissioning phase early 2012. This report presents an overview of the AEgIS experiment, describes its current status and shows the first measurements on antiproton catching and cooling in the 5 T Penning catching trap. We will also present details on the techniques needed for the 100mK antihydrogen production, such as pulsed positronium production and its excitation with lasers.

  11. The Radiological Research Accelerator Facility

    International Nuclear Information System (INIS)

    Hall, E.J.

    1992-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) -- formerly the Radiological Research Laboratory (RRL) -- of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis, and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. Experiments performed from May 1991--April 1992 are described

  12. Liberalism, authority, and bioethics commissions.

    Science.gov (United States)

    MacDougall, D Robert

    2013-12-01

    Bioethicists working on national ethics commissions frequently think of themselves as advisors to the government, but distance themselves from any claims to actual authority. Governments however may find it beneficial to appear to defer to the authority of these commissions when designing laws and policies, and might appoint such commissions for exactly this reason. Where does the authority for setting laws and policies come from? This question is best answered from within a normative political philosophy. This paper explains the locus of moral authority as understood within one family of normative political theories--liberal political theories--and argues that most major "liberal" commentators have understood both the source and scope of ethics commissions' authority in a manner at odds with liberalism, rightly interpreted. The author argues that reexamining the implications of liberalism for bioethics commissions would mean changing what are considered valid criticisms of such commissions and also changing the content of national bioethics commission mandates. The author concludes that bioethicists who participate in such commissions ought to carefully examine their own views about the normative limits of governmental authority because such limits have important implications for the contribution that bioethicists can legitimately make to government commissions.

  13. Commission 31: Time

    Science.gov (United States)

    Matsakis, Demetrios; Defraigne, Pascale; Hosokawa, M.; Leschiutta, S.; Petit, G.; Zhai, Z.-C.

    2007-03-01

    The most intensely discussed and controversial issue in time keeping has been the proposal before the International Telecommunications Union (ITU) to redefine Coordinated Universal Time (UTC) so as to replace leap seconds by leap hours. Should this proposal be adopted, the practice of inserting leap seconds would cease after a specific date. Should the Earth's rotation continue to de-accelerate at its historical rate, the next discontinuity in UTC would be an hour inserted several centuries from now. Advocates of this proposal cite the need to synchronize satellite and other systems, such as GPS, Galileo, and GLONASS, which did not exist and were not envisioned when the current system was adopted. They note that leap second insertions can be and have been incorrectly implemented or accounted for. Such errors have to date had localized impact, but they could cause serious mishaps involving loss of life. For example, some GPS receivers have been known to fail simply because there was no leap second after a long enough interval, other GPS receivers failed because the leap second information was broadcast more than three months in advance, and some commercial software used for internet time-transfer Network Time Protocol (NTP) could either discard all data received after a leap second or interpret it as a frequency change. The ambiguity associated with the extra second could also disrupt financial accounting and certain forms of encryption. Those opposed to the proposal question the need for a change, and also point out the costs of adjusting to the proposed change and its inconvenience to amateur astronomers and others who rely upon astronomical calculations published in advance. Reports have been circulated that the cost of checking and correcting software to accommodate the new definition of UTC would be many millions of dollars for some systems. In October 2005 American Astronomical Society asked the ITU for a year's time to study the issue. This commission has

  14. Off-line commissioning of EBIS and plans for its integration into ATLAS and CARIBU

    Energy Technology Data Exchange (ETDEWEB)

    Ostroumov, P. N., E-mail: ostroumov@anl.gov; Barcikowski, A.; Dickerson, C. A.; Mustapha, B.; Perry, A.; Sharamentov, S. I.; Vondrasek, R. C.; Zinkann, G. [Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2016-02-15

    An Electron Beam Ion Source Charge Breeder (EBIS-CB) has been developed at Argonne to breed radioactive beams from the CAlifornium Rare Isotope Breeder Upgrade (CARIBU) facility at Argonne Tandem Linac Accelerator System (ATLAS). The EBIS-CB will replace the existing ECR charge breeder to increase the intensity and significantly improve the purity of reaccelerated radioactive ion beams. The CARIBU EBIS-CB has been successfully commissioned offline with an external singly charged cesium ion source. The performance of the EBIS fully meets the specifications to breed rare isotope beams delivered from CARIBU. The EBIS is being relocated and integrated into ATLAS and CARIBU. A long electrostatic beam transport system including two 180° bends in the vertical plane has been designed. The commissioning of the EBIS and the beam transport system in their permanent location will start at the end of this year.

  15. Off-line commissioning of EBIS and plans for its integration into ATLAS and CARIBU

    Science.gov (United States)

    Ostroumov, P. N.; Barcikowski, A.; Dickerson, C. A.; Mustapha, B.; Perry, A.; Sharamentov, S. I.; Vondrasek, R. C.; Zinkann, G.

    2016-02-01

    An Electron Beam Ion Source Charge Breeder (EBIS-CB) has been developed at Argonne to breed radioactive beams from the CAlifornium Rare Isotope Breeder Upgrade (CARIBU) facility at Argonne Tandem Linac Accelerator System (ATLAS). The EBIS-CB will replace the existing ECR charge breeder to increase the intensity and significantly improve the purity of reaccelerated radioactive ion beams. The CARIBU EBIS-CB has been successfully commissioned offline with an external singly charged cesium ion source. The performance of the EBIS fully meets the specifications to breed rare isotope beams delivered from CARIBU. The EBIS is being relocated and integrated into ATLAS and CARIBU. A long electrostatic beam transport system including two 180° bends in the vertical plane has been designed. The commissioning of the EBIS and the beam transport system in their permanent location will start at the end of this year.

  16. Superconducting accelerator magnet design

    International Nuclear Information System (INIS)

    Wolff, S.

    1994-01-01

    Superconducting dipoles, quadrupoles and correction magnets are necessary to achieve the high magnetic fields required for big accelerators presently in construction or in the design phase. Different designs of superconducting accelerator magnets are described and the designs chosen at the big accelerator laboratories are presented. The most frequently used cosθ coil configuration is discussed in detail. Approaches for calculating the magnetic field quality including coil end fields are presented. Design details of the cables, coils, mechanical structures, yokes, helium vessels and cryostats including thermal radiation shields and support structures used in superconducting magnets are given. Necessary material properties are mentioned. Finally, the main results of magnetic field measurements and quench statistics are presented. (orig.)

  17. High dose-per-pulse electron beam dosimetry: Commissioning of the Oriatron eRT6 prototype linear accelerator for preclinical use.

    Science.gov (United States)

    Jaccard, Maud; Durán, Maria Teresa; Petersson, Kristoffer; Germond, Jean-François; Liger, Philippe; Vozenin, Marie-Catherine; Bourhis, Jean; Bochud, François; Bailat, Claude

    2018-02-01

    The Oriatron eRT6 is an experimental high dose-per-pulse linear accelerator (linac) which was designed to deliver an electron beam with variable dose-rates, ranging from a few Gy/min up to hundreds of Gy/s. It was built to study the radiobiological effects of high dose-per-pulse/dose-rate electron beam irradiation, in the context of preclinical and cognitive studies. In this work, we report on the commissioning and beam monitoring of the Oriatron eRT6 prototype linac. The beam was characterized in different steps. The output stability was studied by performing repeated measurements over a period of 20 months. The relative output variations caused by changing beam parameters, such as the temporal electron pulse width, the pulse repetition frequency and the pulse amplitude were also analyzed. Finally, depth dose curves and field sizes were measured for two different beam settings, resulting in one beam with a conventional radiotherapy dose-rate and one with a much higher dose-rate. Measurements were performed with Gafchromic EBT3 films and with a PTW Advanced Markus ionization chamber. In addition, we developed a beam current monitoring system based on the signals from an induction torus positioned at the beam exit of the waveguide and from a graphite beam collimator. The stability of the output over repeated measurements was found to be good, with a standard deviation smaller than 1%. However, non-negligible day-to-day variations of the beam output were observed. Those output variations showed different trends depending on the dose-rate. The analysis of the relative output variation as a function of various beam parameters showed that in a given configuration, the dose-rate could be reliably varied over three orders of magnitude. Interdependence effects on the output variation between the parameters were also observed. The beam energy and field size were found to be slightly dose-rate-dependent and suitable mainly for small animal irradiation. The beam monitoring

  18. Radiological Research Accelerator Facility

    International Nuclear Information System (INIS)

    Goldhagen, P.; Marino, S.A.; Randers-Pehrson, G.; Hall, E.J.

    1986-01-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which can be used to generate a variety of well-characterized radiation beams for research in radiobiology and radiological physics. It is part of the Radiological Research Laboratory (RRL), and its operation is supported as a National Facility by the US Department of Energy. RARAF is available to all potential users on an equal basis, with priorities based on the recommendations of a Scientific Advisory Committee. Facilities and services are provided to users, but the research projects themselves must be supported separately. This chapter presents a brief description of current experiments being carried out at RARAF and of the operation of the Facility from January through June, 1986. Operation of the Facility for all of 1985 was described in the 1985 Progress Report for RARAF. The experiments described here were supported by various Grants and Contracts from NIH and DOE and by the Statens Stralskyddsinstitut of Sweden

  19. Source of polarized ions for the JINR accelerator complex

    Science.gov (United States)

    Belov, A. S.; Donets, D. E.; Fimushkin, V. V.; Kovalenko, A. D.; Kutuzova, L. V.; Prokofichev, Yu V.; Shutov, V. B.; Turbabin, A. V.; Zubets, V. N.

    2017-12-01

    The JINR atomic beam type polarized ion source is described. Results of tests of the plasma ionizer with a storage cell and of tuning of high frequency transition units are presented. The source was installed in a linac injector hall of NUCLOTRON in May 2016. The source has been commissioned and used in the NUCLOTRON runs in 2016 and February - March 2017. Polarized and unpolarized deuteron beams were produced as well as polarized protons for acceleration in the NUCLOTRON. Polarized deuteron beam with pulsed current up to 2 mA has been produced. Deuteron beam polarization of 0.6-0.9 of theoretical values for different modes of high frequency transition units operation has been measured with the NUCLOTRON ring internal polarimeter for the accelerated deuteron and proton beams.

  20. A status update on the Advanced Photon Source Project--Summer 1993

    International Nuclear Information System (INIS)

    Moncton, D.E.; Fenner, R.B.

    1993-01-01

    The Advanced Photon Source Project has passed the mid-point in its construction. The linac and synchrotron booster enclosures are complete. A portion of the experiment hall has been completed and put into use to support accelerator component assembly, test, and installation. Plans for the user lab/office modules and the central laboratory/office complex are well advanced. Installation of the linac injection system has been completed and commissioning is beginning. Installation and commissioning of the positron accumulator ring, the booster synchrotron, the storage ring, and the rf power systems will follow. Accelerator operations capable of supporting the commissioning of the experimental beamlines is planned for the summer of 1995. A strong research program is continuing to produce results supportive of both accelerator and beamline construction and operations. Collaborative Access Teams have been formed to conduct research with the initial set of 32 beamlines that will be available at the completion of the first phase of construction

  1. Applied Physics Research at the Idaho Accelerator Center

    International Nuclear Information System (INIS)

    Date, D. S.; Hunt, A. W.; Chouffani, K.; Wells, D. P.

    2011-01-01

    The Idaho Accelerator Center, founded in 1996 and based at Idaho State University, supports research, education, and high technology economic development in the United States. The research center currently has eight electron linear accelerators ranging in energy from 6 to 44 MeV with the latter linear accelerator capable of picosecond pulses, a 2 MeV positive-ion Van de Graaff, a 4 MV Nec tandem Pelletron, and a pulsed-power 8 k A, 10 MeV electron induction accelerator. Current research emphases include, accelerator physics research, accelerator based medical isotope production, active interrogation techniques for homeland security and nuclear nonproliferation applications, non destructive testing and materials science studies in support of industry as well as the development of advanced nuclear fuels, pure and applied radio-biology, and medical physics. This talk will highlight three of these areas including the production of the isotopes 99 Tc and 67 Cu for medical diagnostics and therapy, as well as two new technologies currently under development for nuclear safeguards and homeland security - namely laser Compton scattering and the polarized photofission of actinides

  2. Electrostatic accelerator dielectrics

    International Nuclear Information System (INIS)

    Cooke, C.M.

    1989-05-01

    High voltage insulation problems in electrostatic accelerators are discussed. The aim of the analysis is to broaden the knowledge, highlight the characteristics of insulation technology and design strategies to improve use. The basic geometry of the insulation in accelerators is considered. A detailed description of each of the insulation regions is provided. The gas gap insulation of the terminal voltage is found to be sensitive to regions of high electric stress. In order to obtain satisfactory performance from solid support insulation, the attention is focused on the electric stress value and distribution. Potential subjects for discussion and further investigations are given

  3. Design of a beam dump for the IFMIF-EVEDA accelerator

    International Nuclear Information System (INIS)

    Branas, B.; Iglesias, D.; Arranz, F.; Barrera, G.; Casal, N.; Garcia, M.; Gomez, J.; Lopez, D.; Martinez, J.I.; Martin-Fuertes, F.; Ogando, F.; Oliver, C.; Sanz, J.; Sauvan, P.; Ibarra, A.

    2009-01-01

    The IFMIF-EVEDA accelerator will be a 9 MeV, 125 mA cw deuteron accelerator prototype for verifying the validity of the accelerator design for IFMIF. A beam stop will be used for the RFQ and DTL commissioning as well as for the EVEDA accelerator tests. Therefore, this component must be designed to stop 5 MeV and 9 MeV deuteron beams with a maximum power of 1.13 MW. The first step of the design is the beam-facing material selection. The criteria used for this selection are low neutron production, low activation and good thermomechanical behavior. In this paper, the mechanical analysis and radioprotection calculations that have led to the choice of the main beam dump parameters will be described. The present design is based on a conical beam stop (2.5 m length, 30 cm diameter, and 3.5 mm thickness) made of copper plus a cylindrical 0.5 m long beam scraper. The cooling system is based on an axial high velocity flow of water. This design is compliant with the mechanical design rules during full power stationary operation of the accelerator. The radioprotection calculations performed demonstrate that, with an adequate local shielding, doses during beam on/off phases are below the limits.

  4. Overall review strategy for the Nuclear Regulatory Commission's High-Level Waste Repository Program

    International Nuclear Information System (INIS)

    Johnson, R.L.

    1994-11-01

    The Overall Review Strategy gives general guidance to the Nuclear Regulatory Commission staff for conducting it's license application and pre-license application reviews. These reviews are in support of the Commission's construction authorization decision for a geologic repository for the disposal of high-level radioactive waste. Objectives and strategies are defined that focus the staff's reviews on determining compliance with requirements of 10 CFR Part 60. These strategies define how the staff prioritizes its reviews on those key technical uncertainties considered to be most important to repository performance. Strategies also give guidance for developing, in an integrated way, the License Application Review Plan together with supporting performance assessments, analyses, and research

  5. Evaluation of power commissioning of the Mochovce Unit 1 power level up to 100 % Nnom

    International Nuclear Information System (INIS)

    Sarvaic, I.; Mickolci, M.

    1998-01-01

    The document contains an evaluation of the power phase of power commissioning of the Mochovce Unit 1 in the phase up to the power level of 100 % N nom .In the document, the courses and results of tests in this phase of power commissioning are summarized, evaluation of the performance of important systems and equipment of the unit is carried out, and the compliance with Limits and Conditions in the course of the phase is assessed. On this basis, conclusions are drawn and recommendations for the unit to be ready for subsequent phases of the power commissioning. The evaluation was developed by the scientific management of the Mochovce commissioning providing an independent support for the operators for supervising the commissioning tasks from the point of nuclear safety

  6. Automated-process gas-chromatograph system for use in accelerated corrosion testing of HTGR core-support posts

    International Nuclear Information System (INIS)

    Harper, R.E.; Herndon, P.G.

    1982-01-01

    An automated-process gas chromatograph is the heart of a gaseous-impurities-analysis system developed for the Oak Ridge National Laboratory Core Support Performance Test, at which graphite core-support posts for high-temperature gas-cooled fission reactors are being subjected to accelerated corrosion tests under tightly controlled conditions of atmosphere and temperature. Realistic estimation of in-core corrosion rates is critically dependent upon the accurate measurement of low concentrations of CO, CO 2 , CH 4 , H 2 , and O 2 in the predominantly helium atmosphere. In addition, the capital and labor investment associated with each test puts a premium upon the reliability of the analytical system, as excessive downtime or failure to obtain accurate data would result in unacceptable costs and schedule delays. After an extensive survey of available measurement techniques, gas chromatography was chosen for reasons of accuracy, flexibility, good-performance record, and cost

  7. Complex workplace radiation fields at European high-energy accelerators and thermonuclear fusion facilities

    CERN Document Server

    Bilski, P; D'Errico, F; Esposito, A; Fehrenbacher, G; Fernàndez, F; Fuchs, A; Golnik, N; Lacoste, V; Leuschner, A; Sandri, S; Silari, M; Spurny, F; Wiegel, B; Wright, P

    2006-01-01

    This report outlines the research needs and research activities within Europe to develop new and improved methods and techniques for the characterization of complex radiation fields at workplaces around high-energy accelerators and the next generation of thermonuclear fusion facilities under the auspices of the COordinated Network for RAdiation Dosimetry (CONRAD) project funded by the European Commission.

  8. The CARE project - Coordinated Accelerator Research in Europe

    CERN Multimedia

    2003-01-01

    A one-day presentation of the project will take place on Monday February 10th in the CERN Council Chamber. The meeting will start a 9am and is expected to end at 4:30pm. The meeting, which is open to the whole community, will present an initiative on accelerator R&D in Europe, supported by ECFA, with the aim to bid for European Union support through the Framework 6 scheme. This initiative is coordinated by a steering group (ESGARD - European Steering Group on Accelerator Research and Development), which has been set up to coordinate European efforts on accelerator R&D and the submission of such bids. The initial bids have to be submitted by April 15th. All those interested in accelerator R&D are welcome to attend.

  9. A comparison of the basic photon and electron dosimetry data for Neptun 10PC linear accelerators

    International Nuclear Information System (INIS)

    Shokrani, P.; Monadi, S.

    2008-01-01

    In recent years the similarity of dosimetric characteristics of modern linear accelerators with the same make, model and nominal energy, has become more common. The goal of this study was to quantitatively investigate the reproducibility of the basic photon and electron dosimetry data from Neptun 10PC accelerators across the institutions. In the current study, the photon and electron dosimetry data collected during acceptance and initial commissioning of six Neptun 10PC linear accelerators are analyzed. The dates of original installations of these six machines were evenly spread out over a 5 year period and the series of measurements were conducted during an average of 1-2 months after original installations. All units had identical energies and beam modifiers. For photon beams, the collected data include depth dose data, output factors and beam profile data in water. For electron beams, in addition to depth dose data and output factors, the effective source skin distance for 10 x 10 cm field size is also presented. For most beam parameters the variation (one standard deviation), was less than 1.0% (less than 2% for 2 parameters). A variation of this magnitude is expected to be observed during annual calibration of well-maintained accelerators. In conclusion, this study is presenting a consistent set of data for Neptun 10PC linear accelerators. This consistency implies that for this model, a standard data set of basic photon and electron dosimetry could be established, as a guide for future commissioning, beam modeling and quality assurance purposes. (authors)

  10. IOTA (Integrable Optics Test Accelerator): facility and experimental beam physics program

    Science.gov (United States)

    Antipov, S.; Broemmelsiek, D.; Bruhwiler, D.; Edstrom, D.; Harms, E.; Lebedev, V.; Leibfritz, J.; Nagaitsev, S.; Park, C. S.; Piekarz, H.; Piot, P.; Prebys, E.; Romanov, A.; Ruan, J.; Sen, T.; Stancari, G.; Thangaraj, C.; Thurman-Keup, R.; Valishev, A.; Shiltsev, V.

    2017-03-01

    The Integrable Optics Test Accelerator (IOTA) is a storage ring for advanced beam physics research currently being built and commissioned at Fermilab. It will operate with protons and electrons using injectors with momenta of 70 and 150 MeV/c, respectively. The research program includes the study of nonlinear focusing integrable optical beam lattices based on special magnets and electron lenses, beam dynamics of space-charge effects and their compensation, optical stochastic cooling, and several other experiments. In this article, we present the design and main parameters of the facility, outline progress to date and provide the timeline of the construction, commissioning and research. The physical principles, design, and hardware implementation plans for the major IOTA experiments are also discussed.

  11. IOTA (Integrable Optics Test Accelerator): Facility and experimental beam physics program

    International Nuclear Information System (INIS)

    Antipov, Sergei; Broemmelsiek, Daniel; Bruhwiler, David; Edstrom, Dean; Harms, Elvin

    2017-01-01

    The Integrable Optics Test Accelerator (IOTA) is a storage ring for advanced beam physics research currently being built and commissioned at Fermilab. It will operate with protons and electrons using injectors with momenta of 70 and 150 MeV/c, respectively. The research program includes the study of nonlinear focusing integrable optical beam lattices based on special magnets and electron lenses, beam dynamics of space-charge effects and their compensation, optical stochastic cooling, and several other experiments. In this article, we present the design and main parameters of the facility, outline progress to date and provide the timeline of the construction, commissioning and research. Finally, the physical principles, design, and hardware implementation plans for the major IOTA experiments are also discussed.

  12. Hot target assembly at 14 UD Pelletron Accelerator Facility, BARC- TIFR, Mumbai

    International Nuclear Information System (INIS)

    Sharma, S.C.; Ramjilal; Ninawe, N.G.; Bhagwat, P.V.; Ahmeabadhai, P.; Kain, V.

    2005-01-01

    BARC-TIFR 14 UD Pelletron Accelerator Facility at Mumbai is operational since 1989 with progressively increased efficiency. The accelerator has been serving as major facility for heavy ion based research in India. There is an increased demand for high current proton beam, especially on heated targets for reactor physics based experiments. A proton beam setup is commissioned in the tower area of the existing facility itself, which provide proton beam of energy 2 MeV to 26 MeV with maximum 3 μA current. This setup is being used to produce radioisotopes and tracer packets. Proton beam of few MeV in μA current range is also needed to study radiation effects on metals at higher temperature, for use in reactors. For this purpose a hot target assembly has been designed and is being currently used at the Pelletron Accelerator

  13. The Radiological Research Accelerator Facility

    International Nuclear Information System (INIS)

    Hall, E.J.; Marino, S.A.

    1993-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) - formerly the Radiological Research Laboratory of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. This report provides a listing and brief description of experiments performed at RARAF during the May 1, 1992 through April 30, 1993

  14. GenHyPEM: A research program on PEM water electrolysis supported by the European Commission

    Energy Technology Data Exchange (ETDEWEB)

    Millet, Pierre; Dragoe, Diana [Institut de Chimie Moleculaire et des Materiaux d' Orsay, UMR CNRS no 8182, Universite Paris-Sud 11, 15 rue Georges Clemenceau, 91405 Orsay Cedex (France); Grigoriev, Serguey; Fateev, Vladimir [Hydrogen Energy and Plasma Technology, Institute of Russian Research Center, Kurchatov Institute, 1, Kurchatov sq., 123182 Moscow (Russian Federation); Etievant, Claude [Compagnie Europeenne des Technologies de l' Hydrogene (CETH), Innov' Valley Entreprise, Batiment D0, Route de Nozay, 91461 Marcoussis Cedex (France)

    2009-06-15

    GenHyPEM (Generateur d'Hydrogene par electrolyse de l'eau PEM <>) is an STREP programme (no 019802) supported by the European Commission in the course of the 6th framework research programme. This R and D project which started in October 2005, is a 2.6 MEUR research effort over three years. It gathers partners from Belgium, Germany, Romania, Federation of Russia, Armenia and France. The main goal of the project is to develop low-cost and high pressure (50 bar) PEM water electrolysers for the production of up to several Nm{sup 3} H{sub 2}/h. The purpose of this communication is to present the current status of GenHyPEM. Major results and technological achievements obtained so far in the fields of academic (electrocatalysis, polymer electrolyte) and applied (stack development and performances) research are presented. Non-noble electrocatalysts have been identified to replace platinum for the HER and stable performances have been obtained during operation at high (1 A cm{sup -2}) current density, paving the way to substantial cost reductions. Prototype electrolysers producing from 0.1 to 5 Nm{sup 3} H{sub 2}/h have been successfully developed. (author)

  15. Commission Conditions d'emploi

    CERN Multimedia

    Staff Association

    2017-01-01

    Au CERN, nous avons la formidable possibilité d’imaginer nos CONDITIONS D’EMPLOIS. Rendez-vous compte ! Nous avons le pouvoir de proposer des idées et de les défendre pour avoir des conditions d’emplois qui soient les plus attractives possibles pour le personnel en place et à venir. ---------------- L’Association du personnel du CERN, tout le monde connait ou en a entendu parler. Ce qui est moins connu, ce sont les diverses commissions internes qui traitent des sujets propres à défendre les intérêts du personnel. Les publications dans notre journal, l’Echo, sont un des moyens à notre disposition pour vous faire découvrir chacune des commissions internes de l’Association du personnel (voir Echo n°242 sur la commission juridique, et Echo n°255 sur la commission des cas particuliers). Commission Conditions d&...

  16. Automatic commissioning of a GPU-based Monte Carlo radiation dose calculation code for photon radiotherapy

    International Nuclear Information System (INIS)

    Tian, Zhen; Jia, Xun; Jiang, Steve B; Graves, Yan Jiang

    2014-01-01

    Monte Carlo (MC) simulation is commonly considered as the most accurate method for radiation dose calculations. Commissioning of a beam model in the MC code against a clinical linear accelerator beam is of crucial importance for its clinical implementation. In this paper, we propose an automatic commissioning method for our GPU-based MC dose engine, gDPM. gDPM utilizes a beam model based on a concept of phase-space-let (PSL). A PSL contains a group of particles that are of the same type and close in space and energy. A set of generic PSLs was generated by splitting a reference phase-space file. Each PSL was associated with a weighting factor, and in dose calculations the particle carried a weight corresponding to the PSL where it was from. Dose for each PSL in water was pre-computed, and hence the dose in water for a whole beam under a given set of PSL weighting factors was the weighted sum of the PSL doses. At the commissioning stage, an optimization problem was solved to adjust the PSL weights in order to minimize the difference between the calculated dose and measured one. Symmetry and smoothness regularizations were utilized to uniquely determine the solution. An augmented Lagrangian method was employed to solve the optimization problem. To validate our method, a phase-space file of a Varian TrueBeam 6 MV beam was used to generate the PSLs for 6 MV beams. In a simulation study, we commissioned a Siemens 6 MV beam on which a set of field-dependent phase-space files was available. The dose data of this desired beam for different open fields and a small off-axis open field were obtained by calculating doses using these phase-space files. The 3D γ-index test passing rate within the regions with dose above 10% of d max dose for those open fields tested was improved averagely from 70.56 to 99.36% for 2%/2 mm criteria and from 32.22 to 89.65% for 1%/1 mm criteria. We also tested our commissioning method on a six-field head-and-neck cancer IMRT plan. The

  17. Safe LHC beam commissioning

    International Nuclear Information System (INIS)

    Uythoven, J.; Schmidt, R.

    2007-01-01

    Due to the large amount of energy stored in magnets and beams, safety operation of the LHC is essential. The commissioning of the LHC machine protection system will be an integral part of the general LHC commissioning program. A brief overview of the LHC Machine Protection System will be given, identifying the main components: the Beam Interlock System, the Beam Dumping System, the Collimation System, the Beam Loss Monitoring System and the Quench Protection System. An outline is given of the commissioning strategy of these systems during the different commissioning phases of the LHC: without beam, injection and the different phases with stored beam depending on beam intensity and energy. (author)

  18. Commissioning of NSLS-II

    Energy Technology Data Exchange (ETDEWEB)

    Willeke, F.

    2015-05-03

    NSLS-II, the new 3rd generation light source at BNL was designed for a brightness of 1022 photons s-1mm-2mrad-2 (0.1%BW)-1. It was constructed between 2009 and 2014. The storage ring was commissioned in April 2014 which was followed by insertion device and beamline commissioning in the fall of 2014. All ambitious design parameters of the facility have already been achieved except for commissioning the full beam intensity of 500mA which requires more RF installation. This paper reports on the results of commissioning.

  19. The Spallation Neutron Source accelerator system design

    Science.gov (United States)

    Henderson, S.; Abraham, W.; Aleksandrov, A.; Allen, C.; Alonso, J.; Anderson, D.; Arenius, D.; Arthur, T.; Assadi, S.; Ayers, J.; Bach, P.; Badea, V.; Battle, R.; Beebe-Wang, J.; Bergmann, B.; Bernardin, J.; Bhatia, T.; Billen, J.; Birke, T.; Bjorklund, E.; Blaskiewicz, M.; Blind, B.; Blokland, W.; Bookwalter, V.; Borovina, D.; Bowling, S.; Bradley, J.; Brantley, C.; Brennan, J.; Brodowski, J.; Brown, S.; Brown, R.; Bruce, D.; Bultman, N.; Cameron, P.; Campisi, I.; Casagrande, F.; Catalan-Lasheras, N.; Champion, M.; Champion, M.; Chen, Z.; Cheng, D.; Cho, Y.; Christensen, K.; Chu, C.; Cleaves, J.; Connolly, R.; Cote, T.; Cousineau, S.; Crandall, K.; Creel, J.; Crofford, M.; Cull, P.; Cutler, R.; Dabney, R.; Dalesio, L.; Daly, E.; Damm, R.; Danilov, V.; Davino, D.; Davis, K.; Dawson, C.; Day, L.; Deibele, C.; Delayen, J.; DeLong, J.; Demello, A.; DeVan, W.; Digennaro, R.; Dixon, K.; Dodson, G.; Doleans, M.; Doolittle, L.; Doss, J.; Drury, M.; Elliot, T.; Ellis, S.; Error, J.; Fazekas, J.; Fedotov, A.; Feng, P.; Fischer, J.; Fox, W.; Fuja, R.; Funk, W.; Galambos, J.; Ganni, V.; Garnett, R.; Geng, X.; Gentzlinger, R.; Giannella, M.; Gibson, P.; Gillis, R.; Gioia, J.; Gordon, J.; Gough, R.; Greer, J.; Gregory, W.; Gribble, R.; Grice, W.; Gurd, D.; Gurd, P.; Guthrie, A.; Hahn, H.; Hardek, T.; Hardekopf, R.; Harrison, J.; Hatfield, D.; He, P.; Hechler, M.; Heistermann, F.; Helus, S.; Hiatt, T.; Hicks, S.; Hill, J.; Hill, J.; Hoff, L.; Hoff, M.; Hogan, J.; Holding, M.; Holik, P.; Holmes, J.; Holtkamp, N.; Hovater, C.; Howell, M.; Hseuh, H.; Huhn, A.; Hunter, T.; Ilg, T.; Jackson, J.; Jain, A.; Jason, A.; Jeon, D.; Johnson, G.; Jones, A.; Joseph, S.; Justice, A.; Kang, Y.; Kasemir, K.; Keller, R.; Kersevan, R.; Kerstiens, D.; Kesselman, M.; Kim, S.; Kneisel, P.; Kravchuk, L.; Kuneli, T.; Kurennoy, S.; Kustom, R.; Kwon, S.; Ladd, P.; Lambiase, R.; Lee, Y. Y.; Leitner, M.; Leung, K.-N.; Lewis, S.; Liaw, C.; Lionberger, C.; Lo, C. C.; Long, C.; Ludewig, H.; Ludvig, J.; Luft, P.; Lynch, M.; Ma, H.; MacGill, R.; Macha, K.; Madre, B.; Mahler, G.; Mahoney, K.; Maines, J.; Mammosser, J.; Mann, T.; Marneris, I.; Marroquin, P.; Martineau, R.; Matsumoto, K.; McCarthy, M.; McChesney, C.; McGahern, W.; McGehee, P.; Meng, W.; Merz, B.; Meyer, R.; Meyer, R.; Miller, B.; Mitchell, R.; Mize, J.; Monroy, M.; Munro, J.; Murdoch, G.; Musson, J.; Nath, S.; Nelson, R.; Nelson, R.; O`Hara, J.; Olsen, D.; Oren, W.; Oshatz, D.; Owens, T.; Pai, C.; Papaphilippou, I.; Patterson, N.; Patterson, J.; Pearson, C.; Pelaia, T.; Pieck, M.; Piller, C.; Plawski, T.; Plum, M.; Pogge, J.; Power, J.; Powers, T.; Preble, J.; Prokop, M.; Pruyn, J.; Purcell, D.; Rank, J.; Raparia, D.; Ratti, A.; Reass, W.; Reece, K.; Rees, D.; Regan, A.; Regis, M.; Reijonen, J.; Rej, D.; Richards, D.; Richied, D.; Rode, C.; Rodriguez, W.; Rodriguez, M.; Rohlev, A.; Rose, C.; Roseberry, T.; Rowton, L.; Roybal, W.; Rust, K.; Salazer, G.; Sandberg, J.; Saunders, J.; Schenkel, T.; Schneider, W.; Schrage, D.; Schubert, J.; Severino, F.; Shafer, R.; Shea, T.; Shishlo, A.; Shoaee, H.; Sibley, C.; Sims, J.; Smee, S.; Smith, J.; Smith, K.; Spitz, R.; Staples, J.; Stein, P.; Stettler, M.; Stirbet, M.; Stockli, M.; Stone, W.; Stout, D.; Stovall, J.; Strelo, W.; Strong, H.; Sundelin, R.; Syversrud, D.; Szajbler, M.; Takeda, H.; Tallerico, P.; Tang, J.; Tanke, E.; Tepikian, S.; Thomae, R.; Thompson, D.; Thomson, D.; Thuot, M.; Treml, C.; Tsoupas, N.; Tuozzolo, J.; Tuzel, W.; Vassioutchenko, A.; Virostek, S.; Wallig, J.; Wanderer, P.; Wang, Y.; Wang, J. G.; Wangler, T.; Warren, D.; Wei, J.; Weiss, D.; Welton, R.; Weng, J.; Weng, W.-T.; Wezensky, M.; White, M.; Whitlatch, T.; Williams, D.; Williams, E.; Wilson, K.; Wiseman, M.; Wood, R.; Wright, P.; Wu, A.; Ybarrolaza, N.; Young, K.; Young, L.; Yourd, R.; Zachoszcz, A.; Zaltsman, A.; Zhang, S.; Zhang, W.; Zhang, Y.; Zhukov, A.

    2014-11-01

    The Spallation Neutron Source (SNS) was designed and constructed by a collaboration of six U.S. Department of Energy national laboratories. The SNS accelerator system consists of a 1 GeV linear accelerator and an accumulator ring providing 1.4 MW of proton beam power in microsecond-long beam pulses to a liquid mercury target for neutron production. The accelerator complex consists of a front-end negative hydrogen-ion injector system, an 87 MeV drift tube linear accelerator, a 186 MeV side-coupled linear accelerator, a 1 GeV superconducting linear accelerator, a 248-m circumference accumulator ring and associated beam transport lines. The accelerator complex is supported by ~100 high-power RF power systems, a 2 K cryogenic plant, ~400 DC and pulsed power supply systems, ~400 beam diagnostic devices and a distributed control system handling ~100,000 I/O signals. The beam dynamics design of the SNS accelerator is presented, as is the engineering design of the major accelerator subsystems.

  20. Unit Commissioning of “Belene” NPP (Bulgaria)

    International Nuclear Information System (INIS)

    2009-01-01

    This presentations gives detailed information about the following topics about commissioning: principles of NPP commissioning; phases of NPP commissioning; organization of commissioning activities; duties and responsibilities of the parties for carrying out unit commissioning activities; responsibility and obligations of the sides during commissioning of power unit; documentation required for power unit commissioning; quality assurance for commissioning activities

  1. Accelerator programme at CAT

    International Nuclear Information System (INIS)

    Ramamurthi, S.S.

    1991-01-01

    The Accelerator Programme at the Centre for Advanced Technology (CAT), Indore, has very broad based concept under which all types of accelerators are to be taken up for design and fabrication. This centre will be housing a wide variety of accelerators to serve as a common facility for the universities, national laboratories in addition to laboratories under the Department of Atomic Energy. In the first phase of the programme, a series of electron accelerators are designed and fabricated. They are synchrotron radiation sources of 450 MeV (INDUS-I) and of 2 GeV (INDUS-II), microtron upto energy of 20 MeV, linear accelerator upto 20 MeV, and DC Accelerator for industrial irradiation upto 750 KeV and 20 KW. A proton accelerator of 300 MeV with 20 MeV linac injector is also designed. CAT is also developing a strong base for support technologies like ultra high vacuum, radio frequency and microwaves, DC pulsed and superconducting magnets, power supplies and controls etc. These technologies are very useful for other industrial applications also. To develop user groups to utilise INDUS-II synchrotron radiation source, a batch production of rotating Anode X-ray generators with power supplies has been initiated. So also, the sputter ion pumps, electron guns, turbo molecular pumps are brought into batch production. (author)

  2. Virtual commissioning of automated micro-optical assembly

    Science.gov (United States)

    Schlette, Christian; Losch, Daniel; Haag, Sebastian; Zontar, Daniel; Roßmann, Jürgen; Brecher, Christian

    2015-02-01

    In this contribution, we present a novel approach to enable virtual commissioning for process developers in micro-optical assembly. Our approach aims at supporting micro-optics experts to effectively develop assisted or fully automated assembly solutions without detailed prior experience in programming while at the same time enabling them to easily implement their own libraries of expert schemes and algorithms for handling optical components. Virtual commissioning is enabled by a 3D simulation and visualization system in which the functionalities and properties of automated systems are modeled, simulated and controlled based on multi-agent systems. For process development, our approach supports event-, state- and time-based visual programming techniques for the agents and allows for their kinematic motion simulation in combination with looped-in simulation results for the optical components. First results have been achieved for simply switching the agents to command the real hardware setup after successful process implementation and validation in the virtual environment. We evaluated and adapted our system to meet the requirements set by industrial partners-- laser manufacturers as well as hardware suppliers of assembly platforms. The concept is applied to the automated assembly of optical components for optically pumped semiconductor lasers and positioning of optical components for beam-shaping

  3. A Virtual Commissioning Learning Platform

    DEFF Research Database (Denmark)

    Mortensen, Steffen; Madsen, Ole

    2018-01-01

    The introduction of reconfigurable manufacturing systems (RMS), Industry 4.0 and the associated technologies requires the establishment of new competencies. Towards that goal, Aalborg University (AAU) has developed an Industry 4.0 learning factory, the AAU Smart Production Lab. The AAU Smart...... Production Lab integrates a number of Industry 4.0 technologies for learning and research purposes. One of the many techniques is virtual commissioning. Virtual commissioning uses a virtual plant model and real controllers (PLCs) enabling a full emulation of the manufacturing system for verification. Virtual...... commissioning can lower the commissioning time up to 63%, allowing faster time to market. However, virtual commission is still missing industrial impact one of the reasons being lack of competencies and integration experiences. The paper presents the setup of the virtual commissioning learning platform...

  4. Navajo-Hopi Land Commission Renewable Energy Development Project (NREP)

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Benally, Deputy Director,

    2012-05-15

    The Navajo Hopi Land Commission Office (NHLCO), a Navajo Nation executive branch agency has conducted activities to determine capacity-building, institution-building, outreach and management activities to initiate the development of large-scale renewable energy - 100 megawatt (MW) or larger - generating projects on land in Northwestern New Mexico in the first year of a multi-year program. The Navajo Hopi Land Commission Renewable Energy Development Project (NREP) is a one year program that will develop and market a strategic business plan; form multi-agency and public-private project partnerships; compile site-specific solar, wind and infrastructure data; and develop and use project communication and marketing tools to support outreach efforts targeting the public, vendors, investors and government audiences.

  5. Commissioning of a medical accelerator photon beam Monte Carlo simulation using wide-field profiles

    International Nuclear Information System (INIS)

    Pena, J; Franco, L; Gomez, F; Iglesias, A; Lobato, R; Mosquera, J; Pazos, A; Pardo, J; Pombar, M; RodrIguez, A; Sendon, J

    2004-01-01

    A method for commissioning an EGSnrc Monte Carlo simulation of medical linac photon beams through wide-field lateral profiles at moderate depth in a water phantom is presented. Although depth-dose profiles are commonly used for nominal energy determination, our study shows that they are quite insensitive to energy changes below 0.3 MeV (0.6 MeV) for a 6 MV (15 MV) photon beam. Also, the depth-dose profile dependence on beam radius adds an additional uncertainty in their use for tuning nominal energy. Simulated 40 cm x 40 cm lateral profiles at 5 cm depth in a water phantom show greater sensitivity to both nominal energy and radius. Beam parameters could be determined by comparing only these curves with measured data

  6. Commissioning of a medical accelerator photon beam Monte Carlo simulation using wide-field profiles

    Energy Technology Data Exchange (ETDEWEB)

    Pena, J [Departamento de Fisica de PartIculas, Facultade de Fisica, 15782 Santiago de Compostela (Spain); Franco, L [Departamento de Fisica de PartIculas, Facultade de Fisica, 15782 Santiago de Compostela (Spain); Gomez, F [Departamento de Fisica de PartIculas, Facultade de Fisica, 15782 Santiago de Compostela (Spain); Iglesias, A [Departamento de Fisica de PartIculas, Facultade de Fisica, 15782 Santiago de Compostela (Spain); Lobato, R [Hospital ClInico Universitario de Santiago, Santiago de Compostela (Spain); Mosquera, J [Hospital ClInico Universitario de Santiago, Santiago de Compostela (Spain); Pazos, A [Departamento de Fisica de PartIculas, Facultade de Fisica, 15782 Santiago de Compostela (Spain); Pardo, J [Departamento de Fisica de PartIculas, Facultade de Fisica, 15782 Santiago de Compostela (Spain); Pombar, M [Hospital ClInico Universitario de Santiago, Santiago de Compostela (Spain); RodrIguez, A [Departamento de Fisica de PartIculas, Facultade de Fisica, 15782 Santiago de Compostela (Spain); Sendon, J [Hospital ClInico Universitario de Santiago, Santiago de Compostela (Spain)

    2004-11-07

    A method for commissioning an EGSnrc Monte Carlo simulation of medical linac photon beams through wide-field lateral profiles at moderate depth in a water phantom is presented. Although depth-dose profiles are commonly used for nominal energy determination, our study shows that they are quite insensitive to energy changes below 0.3 MeV (0.6 MeV) for a 6 MV (15 MV) photon beam. Also, the depth-dose profile dependence on beam radius adds an additional uncertainty in their use for tuning nominal energy. Simulated 40 cm x 40 cm lateral profiles at 5 cm depth in a water phantom show greater sensitivity to both nominal energy and radius. Beam parameters could be determined by comparing only these curves with measured data.

  7. Design, commissioning and operation of the Swiss Light Source SLS

    International Nuclear Information System (INIS)

    Streun, Andreas

    2003-01-01

    The Swiss Light Source (SLS) at the Paul Scherrer Institute (PSI) is the most recent 3rd generation light source coming to operation. It consists of a 12- TBA storage ring of 288 m circumference providing 5 nm rad emittance at 2.4 GeV, a novel type of full energy booster synchrotron and a 100 MeV linac. The initial four beamlines cover protein X-ray crystallography (PX), materials science (MS), surface and interface spectroscopy (SIS) and microscopy (SIM). We will review the project history, describe the design concepts of the accelerators and the technical subsystems, and report on the commissioning process and the status of operation by end of 2002. (author)

  8. Multi-Mode Cavity Accelerator Structure

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yong [Yale Univ., New Haven, CT (United States); Hirshfield, Jay Leonard [Omega-P R& D, Inc., New Haven, CT (United States)

    2016-11-10

    This project aimed to develop a prototype for a novel accelerator structure comprising coupled cavities that are tuned to support modes with harmonically-related eigenfrequencies, with the goal of reaching an acceleration gradient >200 MeV/m and a breakdown rate <10-7/pulse/meter. Phase I involved computations, design, and preliminary engineering of a prototype multi-harmonic cavity accelerator structure; plus tests of a bimodal cavity. A computational procedure was used to design an optimized profile for a bimodal cavity with high shunt impedance and low surface fields to maximize the reduction in temperature rise ΔT. This cavity supports the TM010 mode and its 2nd harmonic TM011 mode. Its fundamental frequency is at 12 GHz, to benchmark against the empirical criteria proposed within the worldwide High Gradient collaboration for X-band copper structures; namely, a surface electric field Esurmax< 260 MV/m and pulsed surface heating ΔTmax< 56 °K. With optimized geometry, amplitude and relative phase of the two modes, reductions are found in surface pulsed heating, modified Poynting vector, and total RF power—as compared with operation at the same acceleration gradient using only the fundamental mode.

  9. Multi-Mode Cavity Accelerator Structure

    International Nuclear Information System (INIS)

    Jiang, Yong; Hirshfield, Jay Leonard

    2016-01-01

    This project aimed to develop a prototype for a novel accelerator structure comprising coupled cavities that are tuned to support modes with harmonically-related eigenfrequencies, with the goal of reaching an acceleration gradient >200 MeV/m and a breakdown rate <10"-"7/pulse/meter. Phase I involved computations, design, and preliminary engineering of a prototype multi-harmonic cavity accelerator structure; plus tests of a bimodal cavity. A computational procedure was used to design an optimized profile for a bimodal cavity with high shunt impedance and low surface fields to maximize the reduction in temperature rise Δ T. This cavity supports the TM010 mode and its 2nd harmonic TM011 mode. Its fundamental frequency is at 12 GHz, to benchmark against the empirical criteria proposed within the worldwide High Gradient collaboration for X-band copper structures; namely, a surface electric field E_s_u_r"m"a"x< 260 MV/m and pulsed surface heating Δ T"m"a"x< 56 °K. With optimized geometry, amplitude and relative phase of the two modes, reductions are found in surface pulsed heating, modified Poynting vector, and total RF power - as compared with operation at the same acceleration gradient using only the fundamental mode.

  10. Commissioning of indigenous microwave test facility for development and pilot production of 2 MW S-band magnetrons

    International Nuclear Information System (INIS)

    Shrivastava, Purushottam; Wanmode, Y.D.; Hannurkar, P.R.; Prasad, Sharda

    2005-01-01

    To have self reliance in the field of microwave devices and to have consistent supply of pulsed magnetrons for the Indian accelerator programme. CAT initiated development of 2 MW S-Band pulsed magnetrons in collaboration with CEERI, Pilani. The design, development and testing of the microwave test facilities for ageing. conditioning and performance testing of Indian magnetrons, was successfully done by CAT indigenously. After the rigorous testing. the test facility was shifted, installed and commissioned at CEERI, Pilani by CAT. Over a period of 10 years, nine prototypes were aged and tested, two magnetrons were life tested and five magnetrons under production programme have been successfully conditioned and tested. Testing of more numbers is underway. The system details. commissioning aspects are discussed, results are shown. (author)

  11. Beam commission of the high intensity proton source developed at INFN-LNS for the European Spallation Source

    Science.gov (United States)

    Neri, L.; Celona, L.; Gammino, S.; Miraglia, A.; Leonardi, O.; Castro, G.; Torrisi, G.; Mascali, D.; Mazzaglia, M.; Allegra, L.; Amato, A.; Calabrese, G.; Caruso, A.; Chines, F.; Gallo, G.; Longhitano, A.; Manno, G.; Marletta, S.; Maugeri, A.; Passarello, S.; Pastore, G.; Seminara, A.; Spartà, A.; Vinciguerra, S.

    2017-07-01

    At the Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud (INFN-LNS) the beam commissioning of the high intensity Proton Source for the European Spallation Source (PS-ESS) started in November 2016. Beam stability at high current intensity is one of the most important parameter for the first steps of the ongoing commissioning. Promising results were obtained since the first source start with a 6 mm diameter extraction hole. The increase of the extraction hole to 8 mm allowed improving PS-ESS performances and obtaining the values required by the ESS accelerator. In this work, extracted beam current characteristics together with Doppler shift and emittance measurements are presented, as well as the description of the next phases before the installation at ESS in Lund.

  12. Philippine Atomic Energy Commission: Annual report 1982

    International Nuclear Information System (INIS)

    1983-02-01

    This publication enumerates the research and development activities of the Philippine Atomic Energy Commission with priorities geared towards achieving the economic and social upliftment of the Filipinos in the field of agriculture, energy, industry, health and environment. Highlights are summaries of investigations and studies of great importance in crop improvement, animal production, nuclear fuels, nutrition research, not to mention its supportive technology, technical services, nuclear information and public acceptance, and nuclear manpower development. (RTD)

  13. The Radiological Research Accelerator Facility

    International Nuclear Information System (INIS)

    Hall, E.J.; Marino, S.A.

    1990-07-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) -- formerly the Radiological Research Laboratory (RRL) -- of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). Fifteen different experiments were run during these 12 months, approximately the same as the previous two years. Brief summaries of each experiment are included. Accelerator usage is summarized and development activities are discussed. 7 refs., 4 tabs

  14. Reference dosimetry data and modeling challenges for Elekta accelerators based on IROC-Houston site visit data.

    Science.gov (United States)

    Kerns, James R; Followill, David S; Lowenstein, Jessica; Molineu, Andrea; Alvarez, Paola; Taylor, Paige A; Kry, Stephen F

    2018-03-14

    Reference dosimetry data can provide an independent second check of acquired values when commissioning or validating a treatment planning system (TPS). The Imaging and Radiation Oncology Core at Houston (IROC-Houston) has measured numerous linear accelerators throughout its existence. The results of those measurements are given here, comparing accelerators and the agreement of measurement versus institutional TPS calculations. Data from IROC-Houston on-site reviews from 2000 through 2014 were analyzed for all Elekta accelerators, approximately 50. For each, consistent point dose measurements were conducted for several basic parameters in a water phantom, including percentage depth dose, output factors, small-field output factors, off-axis factors, and wedge factors. The results were compared by accelerator type independently for 6, 10, 15, and 18 MV. Distributions of the measurements for each parameter are given, providing the mean and standard deviation. Each accelerator's measurements were also compared to its corresponding TPS calculation from the institution to determine the level of agreement, as well as determining which dosimetric parameters were most often in error. Accelerators were grouped by head type and reference dosimetric values were compiled. No class of linac had better overall agreement with its TPS, but percentage depth dose and output factors commonly agreed well, while small-field output factors, off-axis factors, and wedge factors often disagreed substantially from their TPS calculations. Reference data has been collected and analyzed for numerous Elekta linacs, which provide an independent way for a physicist to double-check their own measurements to prevent gross treatment errors. In addition, treatment planning parameters more often in error have been highlighted, providing practical caution for physicists commissioning treatment planning systems for Elekta linacs. © 2018 American Association of Physicists in Medicine.

  15. Accelerator system model (ASM): A unique tool in exploring accelerator driven transmutation technologies (ADTT) system trade space

    Energy Technology Data Exchange (ETDEWEB)

    Myers, T.J.; Favale, A.J.; Berwald, D.H.; Burger, E.C.; Paulson, C.C.; Peacock, M.A.; Piaszczyk, C.M.; Piechowiak, E.M.; Rathke, J.W. [Northrop Grumman Corp., Bethpage, NY (United States). Advanced Technology and Development Center

    1997-09-01

    To aid in the development and optimization of emerging Accelerator Driven Transmutation Technology (ADTT) concepts, the Northrop Grumman Corporation, working together with G.H. Gillespie Associates and Los Alamos National Laboratory has developed a computational tool which combines both accelerator physics layout/analysis capabilities with engineering analysis capabilities to create a standardized platform to compare and contrast accelerator system configurations. In this context, the accelerator system configuration includes not only the accelerating structures, but also the major support systems such as the vacuum, thermal control, RF power, and cryogenic subsystem (if superconducting accelerator operation is investigated) as well as estimates of the costs for enclosures (accelerating tunnel and RF halls). This paper presents an overview of the Accelerator System Model (ASM) code flow, as well as a discussion of the data and analysis upon which it is based. Also presented is material which addresses the development of the evaluation criteria employed by this code including a presentation of the economic analysis methods, and a discussion of the cost database employed. The paper concludes with examples depicting completed and planned trade studies for both normal and superconducting accelerator applications. 8 figs.

  16. The Los Alamos Laser Acceleration of Particles Workshop and beginning of the advanced accelerator concepts field

    Science.gov (United States)

    Joshi, C.

    2012-12-01

    The first Advanced Acceleration of Particles-AAC-Workshop (actually named Laser Acceleration of Particles Workshop) was held at Los Alamos in January 1982. The workshop lasted a week and divided all the acceleration techniques into four categories: near field, far field, media, and vacuum. Basic theorems of particle acceleration were postulated (later proven) and specific experiments based on the four categories were formulated. This landmark workshop led to the formation of the advanced accelerator R&D program in the HEP office of the DOE that supports advanced accelerator research to this day. Two major new user facilities at Argonne and Brookhaven and several more directed experimental efforts were built to explore the advanced particle acceleration schemes. It is not an exaggeration to say that the intellectual breadth and excitement provided by the many groups who entered this new field provided the needed vitality to then recently formed APS Division of Beams and the new online journal Physical Review Special Topics-Accelerators and Beams. On this 30th anniversary of the AAC Workshops, it is worthwhile to look back at the legacy of the first Workshop at Los Alamos and the fine groundwork it laid for the field of advanced accelerator concepts that continues to flourish to this day.

  17. Model Commissioning Plan and Guide Specifications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The objectives of Model Commissioning Plan and Guide Specifications are to ensure that the design team applies commissioning concepts to the design and prepares commissioning specifications and a commission plan for inclusion in the bid construction documents.

  18. Jules Horowitz Reactor: Organisation for the Preparation of the Commissioning Phase and Normal Operation

    Energy Technology Data Exchange (ETDEWEB)

    Estrade, J.; Fabre, J. L.; Marcille, O. [French Alternative Energies end Atomic Energy Commission, Provence (France)

    2013-07-01

    The Jules Horowitz Reactor (JHR) is a new modern Material Testing Reactor (MTR) currently under construction at CEA Cadarache research centre in the south of France. It will be a major research facility in support to the development and the qualification of materials and fuels under irradiation with sizes and environment conditions relevant for nuclear power plants in order to optimise and demonstrate safe operations of existing power reactors as well as to support future reactors design. It will represent also an important research infrastructure for scientific studies dealing with material and fuel behaviour under irradiation. The JHR will contribute also to secure the production of radioisotope for medical application. This is a key public health stake. The construction of JHR which started in 2007 is going-on with target of commissioning by the end of 2017. The design of the reactor provides modern experimental capacity in support to R and D programs for the nuclear energy for the next 60 years. In parallel to the facility construction, the preparation of the future staff and of the organisation to operate the reactor safely, reliably and efficiently is an important issue. In this framework, many actions are in progress to elaborate: Ο the staffing and the organisational structure for the commissioning test phases and also for normal operation, Ο the documentation in support to the reactor operation (safety analysis report, general operating rules, procedures, instructions, ···), Ο the maintenance, in service and periodic test programs, Ο staff training programs by using dedicated facilities (simulator, ···) Ο commissioning test programs for ensuring that the layout of systems and subcomponents is completed in accordance with the design requirements, the specification performances and the safety criteria. These commissioning tests will also be helpful for transferring the knowledge on the installed systems to the operating group. This paper gives the

  19. Commissioning results of CERN HIE-ISOLDE and INFN ALPI cryogenic control systems

    Science.gov (United States)

    Inglese, V.; Pezzetti, M.; Calore, A.; Modanese, P.; Pengo, R.

    2017-02-01

    The cryogenic systems of both accelerators, namely HIE ISOLDE (High Intensity and Energy Isotope Separator On Line DEvice) at CERN and ALPI (Acceleratore Lineare Per Ioni) at LNL, have been refurbished. HIE ISOLDE is a major upgrade of the existing ISOLDE facilities, which required the construction of a superconducting linear accelerator consisting of six cryomodules, each containing five superconductive RF cavities and superconducting solenoids. The ALPI linear accelerator, similar to HIE ISOLDE, is located at Legnaro National Laboratories (LNL) and became operational in the early 90’s. It is composed of 74 superconducting RF cavities, assembled inside 22 cryostats. The new control systems are equipped with PLC, developed on the CERN UNICOS framework, which include Schneider and Siemens PLCs and various fieldbuses (Profibus DP and PA, WorldFIP). The control systems were developed in synergy between CERN and LNL in order to build, effectively and with an optimized use of resources, control systems allowing to enhance ease of operation, maintainability, and long-term availability. This paper describes (i) the cryogenic systems, with special focus on the design of the control systems hardware and software, (ii) the strategy adopted in order to achieve a synergic approach, and (iii) the commissioning results after the cool-down to 4.5 K of the cryomodules.

  20. The international linear collider. Technical design report. Vol. 3.2. Accelerator baseline design

    International Nuclear Information System (INIS)

    Adolphsen, Chris; Barone, Maura; Barish, Barry

    2013-01-01

    The following topics are dealt with: General parameters with layout and systems overview, main linac and SCRF technology, electron source, damping rings, ring to main linac, beam delivery system and machine detector interface, global accelerator control systems, availability with commissioning and operations, conventional facilities and siting, possible upgrade and staging options, project implementation planning, construction schedule, ILC TDR value estimate. (HSI)

  1. OpenMP for Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, J C; Stotzer, E J; Hart, A; de Supinski, B R

    2011-03-15

    OpenMP [13] is the dominant programming model for shared-memory parallelism in C, C++ and Fortran due to its easy-to-use directive-based style, portability and broad support by compiler vendors. Similar characteristics are needed for a programming model for devices such as GPUs and DSPs that are gaining popularity to accelerate compute-intensive application regions. This paper presents extensions to OpenMP that provide that programming model. Our results demonstrate that a high-level programming model can provide accelerated performance comparable to hand-coded implementations in CUDA.

  2. Nuclear Regulatory Commission information digest

    International Nuclear Information System (INIS)

    1990-03-01

    The Nuclear Regulatory Commission information digest provides summary information regarding the US Nuclear Regulatory Commission, its regulatory responsibilities, and areas licensed by the commission. This is an annual publication for the general use of the NRC Staff and is available to the public. The digest is divided into two parts: the first presents an overview of the US Nuclear Regulatory Commission and the second provides data on NRC commercial nuclear reactor licensees and commercial nuclear power reactors worldwide

  3. A Guide to Building Commissioning

    Energy Technology Data Exchange (ETDEWEB)

    Baechler, Michael C.

    2011-09-01

    Commissioning is the process of verifying that a building's heating, ventilation, and air conditioning (HVAC) and lighting systems perform correctly and efficiently. Without commissioning, system and equipment problems can result in higher than necessary utility bills and unexpected and costly equipment repairs. This report reviews the benefits of commissioning, why it is a requirement for Leadership in Energy and Environmental Design (LEED) certification, and why building codes are gradually adopting commissioning activities into code.

  4. Advanced photoinjector experiment photogun commissioning results

    Science.gov (United States)

    Sannibale, F.; Filippetto, D.; Papadopoulos, C. F.; Staples, J.; Wells, R.; Bailey, B.; Baptiste, K.; Corlett, J.; Cork, C.; De Santis, S.; Dimaggio, S.; Doolittle, L.; Doyle, J.; Feng, J.; Garcia Quintas, D.; Huang, G.; Huang, H.; Kramasz, T.; Kwiatkowski, S.; Lellinger, R.; Moroz, V.; Norum, W. E.; Padmore, H.; Pappas, C.; Portmann, G.; Vecchione, T.; Vinco, M.; Zolotorev, M.; Zucca, F.

    2012-10-01

    The Advanced Photoinjector Experiment (APEX) at the Lawrence Berkeley National Laboratory is dedicated to the development of a high-brightness high-repetition rate (MHz-class) electron injector for x-ray free-electron laser (FEL) and other applications where high repetition rates and high brightness are simultaneously required. The injector is based on a new concept rf gun utilizing a normal-conducting (NC) cavity resonating in the VHF band at 186 MHz, and operating in continuous wave (cw) mode in conjunction with high quantum efficiency photocathodes capable of delivering the required charge at MHz repetition rates with available laser technology. The APEX activities are staged in three phases. In phase 0, the NC cw gun is built and tested to demonstrate the major milestones to validate the gun design and performance. Also, starting in phase 0 and continuing in phase I, different photocathodes are tested at the gun energy and at full repetition rate for validating candidate materials to operate in a high-repetition rate FEL. In phase II, a room-temperature pulsed linac is added for accelerating the beam at several tens of MeV to reduce space charge effects and allow the measurement of the brightness of the beam from the gun when integrated in an injector scheme. The installation of the phase 0 beam line and the commissioning of the VHF gun are completed, phase I components are under fabrication, and initial design and specification of components and layout for phase II are under way. This paper presents the phase 0 commissioning results with emphasis on the experimental milestones that have successfully demonstrated the APEX gun capability of operating at the required performance.

  5. Federal Energy Regulatory Commission`s fiscal year 1996 financial statement audit

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-14

    This report presents the results of the independent certified public accountants` audit of the Federal Energy Regulatory Commission`s (FERC) financial statements as of September 30, 1996. The auditors have expressed an unqualified opinion on the 1996 statement of financial position and the related statements of operations and changes in net position.

  6. Design and fabrication of the 'ITER-like' SINGAP D- acceleration system

    International Nuclear Information System (INIS)

    Massmann, P.; Esch, H.P.L. de; Hemsworth, R.S.; Svensson, L.

    2005-01-01

    To demonstrate ITER NBI (1 MV, 40 A) relevant beam optics in the Cadarache 1 MV, 100 mA test bed, a new D - beam source system has been put into operation. The system retains a maximum of the ITER SINGAP key parameters, e.g. the perveance matched D - current density at 1 MeV is 20 mA/cm 2 . The accelerator parameters are identical to the ITER SINGAP design, aiming at a near parallel 1 MeV beam of 5 mrad divergence. The design is aimed at also demonstrating SINGAP 'on to off-axis' beam steering by a simple transverse displacement of the post-acceleration electrode. First beams up to 850 keV have been obtained after only 4 weeks of commissioning

  7. THE CARE PROJECT - Coordinated Accelerator Research in Europe

    CERN Multimedia

    2003-01-01

    A one-day presentation of the project will take place on Monday February 10th in the CERN Council Chamber. The meeting will start a 9am and is expected to end at 4:30pm. The meeting, which is open to the whole community, will present an initiative on accelerator R&D in Europe, supported by ECFA, with the aim to bid for European Union support through the Framework 6 scheme. This initiative is coordinated by a steering group (ESGARD - European Steering Group on Accelerator Research and Development), which has been set up to coordinate European efforts on accelerator R&D and the submission of such bids. The initial bids have to be submitted by April 15th. All those interested in accelerator R&D are welcome to attend. Presentation of the CARE project (Coordinated Accelerator Research in Europe) to be submitted within FP6 February 10th, at CERN in the council room Agenda Chair : C. Wyss 9:00 General presentation of FP6 and introduction of IA proposal (R. Aleksan) 9:45 Networking activities on e ...

  8. Electron accelerators for environmental protection

    International Nuclear Information System (INIS)

    Zimek, Z.

    1998-01-01

    The primary objective of this publication is to provide information suitable for electron accelerators implementation in facilities applying radiation technology for environmental protection. It should be noticed that radiation processing has been successfully used in the fields of crosslinking polymer curing and medical products sterilization for more than 40 years. Practical application of radiation technology today extends on SO 2 and NO x removal from the flue gas (one of major power intensive radiation processing), destruction and removal of organic chemicals from water, decreasing bacteria content in the irradiated sludge and waste water. On the other hand the increased awareness of environmental pollution hazards and more stringent waste regulations in many countries may open stronger support for environmentally oriented technologies. This publication provides an evaluation of electron accelerators capabilities in respect of environmental applications where technological and economical criteria are now well defined. In order to determine the potential of electron accelerators, the literature data were examined as well visits and meetings with various accelerator manufacturers were performed by the author. Experience of the author in accelerator facilities construction and exploitation including those which were used for environmental protection are significant part of this publication. The principle of accelerator action was described in Chapter 1. Early development, accelerator classification and fields of accelerators application were included to this chapter as well. Details of accelerator construction was described in Chapter 2 to illustrate physical capability of accelerators to perform the function of ionizing radiation source. Electron beam extraction devices, under beam equipment, electron beam parameters and measuring methods were characterized in this chapter as well. Present studies of accelerator technology was described in Chapter 3, where

  9. Accelerating XPath Evaluation in Any RDBMS

    NARCIS (Netherlands)

    Grust, Torsten; Kolaitis, P.; Franklin, M.J.; van Keulen, Maurice; Teubner, J.

    This article is a proposal for a database index structure, the XPath accelerator, that has been specifically designed to support the evaluation of XPath path expressions. As such, the index is capable to support all XPath axes (including ancestor, following, preceding-sibling, descendant-or-self,

  10. SSC accelerator physics

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    Accelerator physicists at LBL began intensive work on the SSC in 1983, in support of the proposed 6.5-T magnet design, which, in turn, became reference design A during the Reference Designs Study. In that same study, LBL physicists formed the core of the accelerator physics group led by Fermilab's Don Edwards. In a period of only a few months, that group established preliminary parameters for a near-optimal design, produced conceptual designs based on three magnet types, addressed all significant beam lifetime and stability issues, and identified areas requiring further R and D. Since the conclusion of the Reference Designs Study, work has focused on the key SSC design issue, namely, single-particle stability in an imperfect magnetic field. At the end of fiscal 1984, much of the LBL accelerator physics group took its place in the SSC Central Design Group, whose headquarters at LBL will be the focus of nationwide SSC R and D efforts over the next several years

  11. Chilean Nuclear Energy Commission dosimetric information system

    International Nuclear Information System (INIS)

    Guerrero Vallejos, Patricia Andrea

    1997-01-01

    This thesis discusses the nuclear radiation that people who work with radioactive material is exposed to and its control by the Chilean Nuclear Energy Commission. A full analysis of the System is presented with information about the Commission and the Department of Nuclear and Radiological Safety which runs the System. Ana analysis of the System is presented in order to obtain requirements. Management flow diagrams, the processes involved and current problems experienced by the users are described. A design logic is modeled producing Data Flow Diagrams (DFD). based on this physical design, or, Model of Physical Data, is prepared including tables, attributes, types of data, primary and foreign keys. A description is presented of how the System is implemented, the tools that are used and how the testing phase is carried out. The Dosimetry System meets the criteria for a Software Engineering project, where the basic cycle was used as a working methodology. The System developed supports the dosimetric control of people exposed to radioactive material. (author)

  12. Analysis of conditions to safety and radiological protection of Brazilian research particle accelerators facilities

    International Nuclear Information System (INIS)

    Lourenco, Manuel Jacinto Martins

    2010-01-01

    Eleven institutions of education and research in Brazil use particle accelerators, which fulfill different functions and activities. Currently, these institutions employ a total of fifteen accelerators. In this paper, the object of study is the radiological protection of occupationally exposed individuals, the general public and the radiation safety of particle accelerators. Research facilities with accelerators are classified in categories I and II according to the International Atomic Energy Agency or groups IX and X in accordance with the Brazilian National Commission of Nuclear Energy. Of the 15 accelerators in use for research in Brazil, four belong to category I or group X and eleven belong to category II or group IX. The methodology presented and developed in this work was made through the inspection and assessment of safety and radiological protection of thirteen particle accelerators facilities, and its main purpose was to promote safer use of this practice by following established guidelines for safety and radiological protection. The results presented in this work showed the need to create a program, in our country, for the control of safety and radiological protection of this ionizing radiation practice. (author)

  13. The CARE project (Coordinated Accelerator Research in Europe)

    International Nuclear Information System (INIS)

    Napoly, Olivier

    2006-01-01

    CARE, an ambitious and coordinated project of accelerator research and developments oriented towards High Energy Physics projects, has been launched in January 2004 by the main European laboratories and the European Commission with the 6th Framework Programme. This project aims at improving existing infrastructures dedicated to future projects such as linear colliders, upgrades of hadron colliders and high intensity proton drivers An important part of this programme is devoted to advancing the performance of the superconducting technology, both in the fields of RF cavities for electron and proton acceleration and of high field magnets, as well as to developing high intensity electron and proton injectors. We describe the plans of the four main Joint Research Activities and report on the results and progress obtained so far. The CARE project also includes three adjacent Networking Activities whose main goal is to organize a forum of discussions and to provide the strategic plans in the fields of the Linear Collider, intense Neutrino Beams, and future Hadron Colliders

  14. 47 CFR 1.1528 - Commission review.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Commission review. 1.1528 Section 1.1528... Commission review. Either the applicant or Bureau counsel may seek Commission review of the initial decision on the application, or the Commission may decide to review the decision on its own initiative, in...

  15. FPGA Acceleration of Information Management Services

    National Research Council Canada - National Science Library

    Linderman, Richard W; Linderman, Mark H; Lin, Chun-Shin

    2005-01-01

    .... However, this paper reports on the ability of FPGAs to greatly accelerate non-numerical applications, particularly fundamental operations supporting publish subscribe information management environments...

  16. Reliability of high power electron accelerators for radiation processing

    Energy Technology Data Exchange (ETDEWEB)

    Zimek, Z. [Department of Radiation Chemistry and Technology, Institute of Nuclear Chemistry and Technology, Warsaw (Poland)

    2011-07-01

    Accelerators applied for radiation processing are installed in industrial facilities where accelerator availability coefficient should be at the level of 95% to fulfill requirements according to industry standards. Usually the exploitation of electron accelerator reviles the number of short and few long lasting failures. Some technical shortages can be overcome by practical implementation the experience gained in accelerator technology development by different accelerator manufactures. The reliability/availability of high power accelerators for application in flue gas treatment process must be dramatically improved to meet industrial standards. Support of accelerator technology dedicated for environment protection should be provided by governmental and international institutions to overcome accelerator reliability/availability problem and high risk and low direct profit in this particular application. (author)

  17. Reliability of high power electron accelerators for radiation processing

    International Nuclear Information System (INIS)

    Zimek, Z.

    2011-01-01

    Accelerators applied for radiation processing are installed in industrial facilities where accelerator availability coefficient should be at the level of 95% to fulfill requirements according to industry standards. Usually the exploitation of electron accelerator reviles the number of short and few long lasting failures. Some technical shortages can be overcome by practical implementation the experience gained in accelerator technology development by different accelerator manufactures. The reliability/availability of high power accelerators for application in flue gas treatment process must be dramatically improved to meet industrial standards. Support of accelerator technology dedicated for environment protection should be provided by governmental and international institutions to overcome accelerator reliability/availability problem and high risk and low direct profit in this particular application. (author)

  18. The practice of commissioning healthcare from a private provider: learning from an in-depth case study.

    Science.gov (United States)

    Chambers, Naomi; Sheaff, Rod; Mahon, Ann; Byng, Richard; Mannion, Russell; Charles, Nigel; Exworthy, Mark; Llewellyn, Sue

    2013-01-01

    The direction of health service policy in England is for more diversification in the design, commissioning and provision of health care services. The case study which is the subject of this paper was selected specifically because of the partnering with a private sector organisation to manage whole system redesign of primary care and to support the commissioning of services for people with long term conditions at risk of unplanned hospital admissions and associated service provision activities. The case study forms part of a larger Department of Health funded project on the practice of commissioning which aims to find the best means of achieving a balance between monitoring and control on the one hand, and flexibility and innovation on the other, and to find out what modes of commissioning are most effective in different circumstances and for different services. A single case study method was adopted to explore multiple perspectives of the complexities and uniqueness of a public-private partnership referred to as the "Livewell project". 10 single depth interviews were carried out with key informants across the GP practices, the PCT and the private provider involved in the initiative. The main themes arising from single depth interviews with the case study participants include a particular understanding about the concept of commissioning in the context of primary care, ambitions for primary care redesign, the importance of key roles and strong relationships, issues around the adoption and spread of innovation, and the impact of the current changes to commissioning arrangements. The findings identified a close and high trust relationship between GPs (the commissioners) and the private commissioning support and provider firm. The antecedents to the contract for the project being signed indicated the importance of leveraging external contacts and influence (resource dependency theory). The study has surfaced issues around innovation adoption in the healthcare context

  19. Application of JLab 12GeV helium refrigeration system for the FRIB accelerator at MSU

    International Nuclear Information System (INIS)

    Ganni, V.; Knudsen, P.; Arenius, D.; Casagrande, F.

    2014-01-01

    The planned approach to have a turnkey helium refrigeration system for the MSU-FRIB accelerator system, encompassing the design, fabrication, installation and commissioning of the 4.5-K refrigerator cold box(es), cold compression system, warm compression system, gas management, oil removal and utility/ancillary systems, was found to be cost prohibitive. Following JLab’s suggestion, MSU-FRIB accelerator management made a formal request to evaluate the applicability of the recently designed 12GeV JLab cryogenic system for this application. The following paper will outline the findings and the planned approach for the FRIB helium refrigeration system

  20. Atomic Energy Commission Act, 1963

    International Nuclear Information System (INIS)

    1963-01-01

    Promulgated in 1963, the Atomic Energy Commission Act (204) established and vested in the Ghana Atomic Energy Commission the sole responsibility for all matters relating to the peaceful uses of atomic energy in the country. Embodied in the Act are provisions relating to the powers, duties, rights and liabilities of the Commission. (EAA)

  1. Radiological and economic impact of decommissioning charged particle accelerators

    International Nuclear Information System (INIS)

    Sonck, M.; Buls, N.; Hermanne, A.; Eggermont, G.

    2000-01-01

    To evaluate the real radiological and economic consequences of future dismantling of particle accelerators, only insufficient information was available in literature or even at the individual accelerator facilities themselves. DGXI of the European Commission hence launched a project with focus on gathering quantitative and scientifically sound data on the number of accelerators in the EU, on the status of activation of the different facilities, on the awareness of the possible problems at dismantling and on cost evacuations for full scale decommissioning. The project was granted to the VUB with subcontracts to NIRAS/ONDRAF, MAN and CEA-Saclay. With the replies received to an extensive questionnaire, a database was set up with the necessary data for evaluating the decommissioning problems to be expected at the different facilities. From this database three accelerators were chosen as reference cases (VUB medium energy cyclotron, IRMM 200 MeV electron linear accelerator and the 6 GeV proton synchrotron Saturne in Saclay). Extensive sampling of their concrete shieldings (more than 200 drill cores) and metal parts of accelerator and infrastructure, followed by accurate γ-spectrometric analysis and custom designed 3D interpolation, yield data on the 3D distribution of the activity in the different rooms of the installations. In addition to the γ-spectrometric analysis, an analysis of the tritium content of the concrete was performed by measuring the water liberated from heating ground concrete samples. These specific activity distributions allow evaluation of both immediate and deferred decommissioning costs using different scenarios (different clearance levels, different waste management prices, different labor costs and different decommissioning techniques) based on real situations in France, Germany and Great Britain. Several important conclusions and recommendations with respect to decommissioning both existing and future accelerator facilities will be presented

  2. First H- beam accelerated at Linac4: 3MeV done, 157 MeV to go!

    CERN Multimedia

    Linac4 Project Team

    2013-01-01

    On 14 November, the first H- (one proton surrounded by two electrons) beam was accelerated to the energy of 3 MeV in the Linac4 - the new linear accelerator that will replace Linac2 as low-energy injector in the LHC accelerator chain.      A view of the Linac4 taken during the recent tests (top image) and the current measured by the instruments at the end of the acceleration line on 14 November (bottom image). Images: Linac4 collaboration. Using the recently installed Radio Frequency Quadrupole (RFQ) accelerator, 13 mA of current were accelerated to the energy of 3 MeV. After the successful commissioning of the Linac4 RFQ at the 3 MeV test stand completed during the first months of 2013, the whole equipment (composed of the RFQ itself, the following Medium Energy Beam Transport line and its diagnostic line) were moved to the Linac4 tunnel during summer and installed in their final position. In the meantime, a new ion source was assembled, installed and successfu...

  3. Properties and practical performance of SC magnets in accelerators

    International Nuclear Information System (INIS)

    Schmueser, P.

    1992-01-01

    A report is given on the properties and performance of superconducting accelerator magnets in the 5-6 Tesla regime. Most of the information stems from the industrially produced HERA magnets which were thoroughly tested both at industry and at DESY; data from prototype magnets for RHIC and SSC are also included. Persistent current effects were studied in detail. During the commissioning of the proton-electron collider HERA the superconducting magnets worked with high reliability and their properties were exactly as predicted from the magnetic measurements. (author) 11 refs.; 8 figs

  4. Enhanced efficiency of plasma acceleration in the laser-induced cavity pressure acceleration scheme

    International Nuclear Information System (INIS)

    Badziak, J; Rosiński, M; Jabłoński, S; Pisarczyk, T; Chodukowski, T; Parys, P; Rączka, P; Krousky, E; Ullschmied, J; Liska, R; Kucharik, M

    2015-01-01

    Among various methods for the acceleration of dense plasmas the mechanism called laser-induced cavity pressure acceleration (LICPA) is capable of achieving the highest energetic efficiency. In the LICPA scheme, a projectile placed in a cavity is accelerated along a guiding channel by the laser-induced thermal plasma pressure or by the radiation pressure of an intense laser radiation trapped in the cavity. This arrangement leads to a significant enhancement of the hydrodynamic or electromagnetic forces driving the projectile, relative to standard laser acceleration schemes. The aim of this paper is to review recent experimental and numerical works on LICPA with the emphasis on the acceleration of heavy plasma macroparticles and dense ion beams. The main experimental part concerns the research carried out at the kilojoule sub-nanosecond PALS laser facility in Prague. Our measurements performed at this facility, supported by advanced two-dimensional hydrodynamic simulations, have demonstrated that the LICPA accelerator working in the long-pulse hydrodynamic regime can be a highly efficient tool for the acceleration of heavy plasma macroparticles to hyper-velocities and the generation of ultra-high-pressure (>100 Mbar) shocks through the collision of the macroparticle with a solid target. The energetic efficiency of the macroparticle acceleration and the shock generation has been found to be significantly higher than that for other laser-based methods used so far. Using particle-in-cell simulations it is shown that the LICPA scheme is highly efficient also in the short-pulse high-intensity regime and, in particular, may be used for production of intense ion beams of multi-MeV to GeV ion energies with the energetic efficiency of tens of per cent, much higher than for conventional laser acceleration schemes. (paper)

  5. Commissioning of the 123 MeV injector for 12 GeV CEBAF

    International Nuclear Information System (INIS)

    Wang, Yan; Hofler, Alicia S.; Kazimi, Reza

    2015-09-01

    The upgrade of CEBAF to 12GeV included modifications to the injector portion of the accelerator. These changes included the doubling of the injection energy and relocation of the final transport elements to accommodate changes in the CEBAF recirculation arcs. This paper will describe the design changes and the modelling of the new 12GeV CEBAF injector. Stray magnetic fields have been a known issue for the 6 GeV CEBAF injector, the results of modelling the new 12GeV injector and the resulting changes implemented to mitigate this issue are described in this paper. The results of beam commissioning of the injector are also presented.

  6. German energy prices top the scale as Commission examines price transparency

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    The results of the price transparency directive indicate clearly that gas and electricity prices to both large and small consumers vary widely between member states. And one message which will hit home to large industrial consumers of gas and electricity when they examine the Commission's recent analysis is that relocating or setting up a subsidiary in Germany is a decision which must be taken with care. The Commission's first attempt to examine the directive's operation reveals that the majority of gas and electricity prices in Germany are higher than those in the bulk of other member states. While the reasons for this are known - for electricity it is mainly due to the Kohlepfennig, a surcharge added to power bills to support the uneconomic coal industry -the Commission's analysis focuses on the price difference between member states rather than the various reasons - tariff policy, taxes, environmental costs - for the difference. (Author)

  7. Beam Position Monitoring in the CSU Accelerator Facility

    Science.gov (United States)

    Einstein, Joshua; Vankeuren, Max; Watras, Stephen

    2014-03-01

    A Beam Position Monitoring (BPM) system is an integral part of an accelerator beamline, and modern accelerators can take advantage of newer technologies and designs when creating a BPM system. The Colorado State University (CSU) Accelerator Facility will include four stripline detectors mounted around the beamline, a low-noise analog front-end, and digitization and interface circuitry. The design will support a sampling rate greater than 10 Hz and sub-100 μm accuracy.

  8. Radiation Protection Institute,Ghana Atomic Energy Commission: Annual Report 2014

    International Nuclear Information System (INIS)

    2014-01-01

    The Radiation Protection Institute of the Ghana Atomic Energy Commission was established to provide scientific and technical support for executing the operational functions of the Radiation Protection Board. The 2014 Annual Report highlights the operational activities of Institutes. Also presented is a list of research projects, publications and abstracts of technical reports.

  9. Using a 2D detector array for meaningful and efficient linear accelerator beam property validations.

    Science.gov (United States)

    Ritter, Timothy A; Gallagher, Ian; Roberson, Peter L

    2014-11-08

    Following linear accelerator commissioning, the qualified medical physicist is responsible for monitoring the machine's ongoing performance, detecting and investigating any changes in beam properties, and assessing the impact of unscheduled repairs. In support of these responsibilities, the authors developed a method of using a 2D ionization chamber array to efficiently test and validate important linear accelerator photon beam properties. A team of three physicists identified critical properties of the accelerator and developed constancy tests that were sensitive to each of the properties. The result was a 14-field test plan. The test plan includes large and small fields at varying depths, a reduced SSD field at shallow depth for sensitivity to extra focal photon and electron components, and analysis of flatness, symmetry, dose, dose profiles, and dose ratios. Constancy tests were repeated five times over a period of six weeks and used to set upper and lower investigation levels at ± 3 SDs. Deliberate variations in output, penumbra, and energy were tested to determine the suitability of the proposed method. Measurements were also performed on a similar, but distinct, machine to assess test sensitivity. The results demonstrated upper and lower investigation levels significantly smaller than the comparable TG-142 annual recommendations, with the exception of the surrogate used for output calibration, which still fell within the TG-142 monthly recommendation. Subtle changes in output, beam energy, and penumbra were swiftly identified for further investigation. The test set identified the distinct nature of the second accelerator. The beam properties of two photon energies can be validated in approximately 1.5 hrs using this method. The test suite can be used to evaluate the impact of minor repairs, detect changes in machine performance over time, and supplement other machine quality assurance testing.

  10. The Danish Welfare Commission

    DEFF Research Database (Denmark)

    Gjerding, Allan Næs

    2006-01-01

    on public services, and install economic incentives for the behaviour of private households. The paper then digs into the proposals of the commission that are broadly grouped into five policy target areas con-cerning (1) the ageing of the population, (2) the incentives for labour market participation, (3......The paper deals with the main report of the Danish Welfare Commission and the one-hundred-and-nine proposals on the structure of the future Danish welfare state that the com-mission has put forward. Following upon a brief review of the discussion on the work of the Danish Welfare Commission......) competitiveness in the global economy, (4) behavioural regulation of the use of public bene-fits and services, and (5) management within tight budgets of an increasing demand on health and care. Finally, the concluding section sums up the discussion and elaborates on the debate on the Welfare Commission’s work...

  11. Thermionic gun control system for the CEBAF [Continuous Electron Beam Accelerator Facility] injector

    International Nuclear Information System (INIS)

    Pico, R.; Diamond, B.; Fugitt, J.; Bork, R.

    1989-01-01

    The injector for the CEBAF accelerator must produce a high-quality electron beam to meet the overall accelerator specifications. A Hermosa electron gun with a 2 mm-diameter cathode and a control aperture has been chosen as the electron source. This must be controlled over a wide range of operating conditions to meet the beam specifications and to provide flexibility for accelerator commissioning. The gun is controlled using Computer Automated Measurement and Control (CAMAC IEEE-583) technology. The system employs the CAMAC-based control architecture developed at CEBAF. The control system has been tested, and early operating data on the electron gun and the injector beam transport system has been obtained. This system also allows gun parameters to be stored at the operator location, without paralyzing operation. This paper describes the use of this computer system in the control of the CEBAF electron gun. 2 refs., 6 figs., 1 tab

  12. Advanced photoinjector experiment photogun commissioning results

    Directory of Open Access Journals (Sweden)

    F. Sannibale

    2012-10-01

    Full Text Available The Advanced Photoinjector Experiment (APEX at the Lawrence Berkeley National Laboratory is dedicated to the development of a high-brightness high-repetition rate (MHz-class electron injector for x-ray free-electron laser (FEL and other applications where high repetition rates and high brightness are simultaneously required. The injector is based on a new concept rf gun utilizing a normal-conducting (NC cavity resonating in the VHF band at 186 MHz, and operating in continuous wave (cw mode in conjunction with high quantum efficiency photocathodes capable of delivering the required charge at MHz repetition rates with available laser technology. The APEX activities are staged in three phases. In phase 0, the NC cw gun is built and tested to demonstrate the major milestones to validate the gun design and performance. Also, starting in phase 0 and continuing in phase I, different photocathodes are tested at the gun energy and at full repetition rate for validating candidate materials to operate in a high-repetition rate FEL. In phase II, a room-temperature pulsed linac is added for accelerating the beam at several tens of MeV to reduce space charge effects and allow the measurement of the brightness of the beam from the gun when integrated in an injector scheme. The installation of the phase 0 beam line and the commissioning of the VHF gun are completed, phase I components are under fabrication, and initial design and specification of components and layout for phase II are under way. This paper presents the phase 0 commissioning results with emphasis on the experimental milestones that have successfully demonstrated the APEX gun capability of operating at the required performance.

  13. Modeling and commissioning of a Clinac 600 CD by Monte Carlo method using the BEAMnrc and DOSXYZnrc codes

    Energy Technology Data Exchange (ETDEWEB)

    Junior, Reginaldo G., E-mail: reginaldo.junior@ifmg.edu.br [Instituto Federal de Minas Gerais (IFMG), Formiga, MG (Brazil). Departamento de Engenharia Eletrica; Oliveira, Arno H. de; Sousa, Romulo V., E-mail: arnoheeren@gmail.com, E-mail: romuloverdolin@yahoo.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Mourao, Arnaldo P., E-mail: apratabhz@gmail.com [Centro Federal de Educacao Tecnologica de Minas Gerais, Belo Horizonte, MG (Brazil)

    2015-07-01

    This paper reports the modeling of a linear accelerator Clinac 600 CD with BEAMnrc application, derived from EGSnrc radiation transport code, indicating relevant details of modeling that traditionally involve difficulties imposed on the process. This accelerator was commissioned by the confrontation of experimental dosimetric data with the computer data obtained by DOSXYZnrc application. The information compared in dosimetry process were: field profiles and dose percentage curves obtained in a water phantom with cubic edge of 30 cm. In all comparisons made, the computational data showed satisfactory precision and discrepancies with the experimental data did not exceed 3%, proving the electiveness of the model. Both the accelerator model and the computational dosimetry methodology, revealed the need for adjustments that probably will allow obtaining more accurate data than those obtained in the simulations presented here. These adjustments are mainly associated to improve the resolution of the eld profiles, the voxelization in phantom and optimization of computing time. (author)

  14. Atomic Energy Commission (Amendment) Law, 1993

    International Nuclear Information System (INIS)

    1993-02-01

    The Atomic Energy Commission (Amendment) Law, 1993 (P.N.D.C.L. 308) seeks to amend the Atomic Energy Commission Act of 1963 (Act 204) so as to provide for the establishment of a Radiation Protection Board and other institutes under the Ghana Atomic Energy Commission. The Law further repeats the Atomic Energy Commission (Amendment) Law of 1982 (P.N.D.C.L. 37). (EAA)

  15. Preliminary electrostatic and mechanical design of a SINGAP-MAMuG compatible accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Grando, L. [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy)], E-mail: luca.grando@igi.cnr.it; Dal Bello, S.; De Lorenzi, A. [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy); Pilan, N. [DIE, Universita di Padova, Via Gradenigo 6A, I-35100 Padova (Italy); Rizzolo, A.; Zaccaria, P. [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy)

    2009-06-15

    Each ITER NB injector shall provide 16.5 MW auxiliary power by accelerating a deuterium beam across a voltage of -1 MV. At present two possible alternatives for the accelerator are considered: the reference design, based on MAMuG electrostatic accelerator, where the total voltage is graded using five grids at intermediate steps of 200 kV, and the alternative concept, the SINGAP accelerator, for which the total voltage is held by one single gap. This paper focuses a preliminary feasibility study of integration of SINGAP accelerator grids into the support structure of a MAMuG type accelerator; the review or design of new electrostatic shields to improve the voltage withstanding capability of the system and the preliminary design of electrical and hydraulic connections routing from the bushing to the accelerator are also discussed. Electrostatic and mechanical analyses carried out to support the design are described in detail.

  16. The continuous electron beam accelerator facility

    International Nuclear Information System (INIS)

    Grunder, H.A.

    1989-01-01

    Tunnel construction and accelerator component development, assembly, and testing are under way at the Continuous Electron Beam Accelerator Facility. CEBAF's 4-GeV, 200-μA superconducting recirculating accelerator will provide cw beam to simultaneous experiments in three end stations for studies of the nuclear many-body system, its quark substructure, and the strong and electroweak interactions governing this form of matter. Prototype accelerating cavities, assembled in cryostats and tested on site, continue to exceed performance specifications. An on-site liquid helium capability supports cryostat development and cavity testing. Major elements of the accelerator instrumentation and control hardware and software are in use in cryogenics, rf, and injector tests. Prototype rf systems have been operated and prototype klystrons have been ordered. The initial, 100-keV, room-temperature region of the 45-MeV injector is operational and meets specifications. CEBAF's end stations have been conceptually designed; experimental equipment conceptual designs will be completed in 1989. 2 refs., 5 figs., 2 tabs

  17. A modeling GUI for accelerator physics of the storage ring at SSRF

    International Nuclear Information System (INIS)

    Chen Guangling; Tian Shunqiang; Liu Guimin; Jiang Bocheng

    2009-01-01

    In this paper, we report a MATLAB-based GUI tool, bodgui, which integrates functions of lattice editor, linear match, and nonlinear optimization, and visualized tracking functions for beam optics design. A user can switch his/her design procedures one to another. Flexibilities are provided for adjusting or optimizing the lattice settings in commissioning or operation of the accelerators. The algorithm of the linear match and nonlinear optimization, and the GUI windows including the main functions and running status, are presented. The SSRF storage ring was employed as a test lattice. Several optics modes designed and optimized by the GUI tools were used for commissioning the storage ring. Functions of bodgui tool are machine-independent, and it can be well applied to modern light sources being built in other parts of the world. (authors)

  18. 17 CFR 40.5 - Voluntary submission of rules for Commission review and approval.

    Science.gov (United States)

    2010-04-01

    ... proposed rule and any action taken or anticipated to be taken to adopt the proposed rule by the registered... proposed rule, the submission should include a reasoned analysis supporting the amendment to the Commission...

  19. Development of a tandem-electrostatic-quadrupole accelerator facility for BNCT

    International Nuclear Information System (INIS)

    Kreiner, A.J.; Thatar Vento, V.; Levinas, P.; Bergueiro, J.; Di Paolo, H.; Burlon, A.A.; Kesque, J.M.; Valda, A.A.; Debray, M.E.; Somacal, H.R.; Minsky, D.M.

    2009-01-01

    In this work we describe the present status of an ongoing project to develop a tandem-electrostatic-quadrupole (TESQ) accelerator facility for accelerator-based (AB) BNCT at the Atomic Energy Commission of Argentina in Buenos Aires. The project final goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the 7 Li(p,n) 7 Be reaction slightly beyond its resonance at 2.25 MeV. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the 7 Li(p,n) 7 Be reaction, to perform BNCT treatment for deep-seated tumors in less than an hour. An electrostatic machine is the technologically simplest and cheapest solution for optimized AB-BNCT. The machine being designed and constructed is a folded TESQ with a high-voltage terminal at 1.2 MV intended to work in air. Such a machine is conceptually shown to be capable of transporting and accelerating a 30 mA proton beam to 2.4 MeV. The general geometric layout, its associated electrostatic fields, and the acceleration tube are simulated using a 3D finite element procedure. The design and construction of the ESQ modules is discussed and their electrostatic fields are investigated. Beam transport calculations through the accelerator are briefly mentioned. Likewise, work related to neutron production targets, strippers, beam shaping assembly and patient treatment room is briefly described.

  20. Development of a tandem-electrostatic-quadrupole accelerator facility for BNCT.

    Science.gov (United States)

    Kreiner, A J; Thatar Vento, V; Levinas, P; Bergueiro, J; Di Paolo, H; Burlon, A A; Kesque, J M; Valda, A A; Debray, M E; Somacal, H R; Minsky, D M; Estrada, L; Hazarabedian, A; Johann, F; Suarez Sandin, J C; Castell, W; Davidson, J; Davidson, M; Giboudot, Y; Repetto, M; Obligado, M; Nery, J P; Huck, H; Igarzabal, M; Fernandez Salares, A

    2009-07-01

    In this work we describe the present status of an ongoing project to develop a tandem-electrostatic-quadrupole (TESQ) accelerator facility for accelerator-based (AB) BNCT at the Atomic Energy Commission of Argentina in Buenos Aires. The project final goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the (7)Li(p,n)(7)Be reaction slightly beyond its resonance at 2.25 MeV. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the (7)Li(p,n)(7)Be reaction, to perform BNCT treatment for deep-seated tumors in less than an hour. An electrostatic machine is the technologically simplest and cheapest solution for optimized AB-BNCT. The machine being designed and constructed is a folded TESQ with a high-voltage terminal at 1.2 MV intended to work in air. Such a machine is conceptually shown to be capable of transporting and accelerating a 30 mA proton beam to 2.4 MeV. The general geometric layout, its associated electrostatic fields, and the acceleration tube are simulated using a 3D finite element procedure. The design and construction of the ESQ modules is discussed and their electrostatic fields are investigated. Beam transport calculations through the accelerator are briefly mentioned. Likewise, work related to neutron production targets, strippers, beam shaping assembly and patient treatment room is briefly described.

  1. Bioethics commission to review gene patenting

    Energy Technology Data Exchange (ETDEWEB)

    Rothenburg, L.

    1995-12-01

    In October, in an unexpected development, U.S. President Bill Clinton created a national ethics advisory board, the National Bioethics Advisory Commission (NBAC, Washington, DC), to study both research ethics and the management and use of genetic information. Of particular interest to biotechnology companies and researchers is the fact that the commission`s brief encompasses issues about human gene patenting, a subject not contained in earlier proposals for the commission.

  2. Radio frequency focused interdigital linear accelerator

    Science.gov (United States)

    Swenson, Donald A.; Starling, W. Joel

    2006-08-29

    An interdigital (Wideroe) linear accelerator employing drift tubes, and associated support stems that couple to both the longitudinal and support stem electromagnetic fields of the linac, creating rf quadrupole fields along the axis of the linac to provide transverse focusing for the particle beam. Each drift tube comprises two separate electrodes operating at different electrical potentials as determined by cavity rf fields. Each electrode supports two fingers, pointing towards the opposite end of the drift tube, forming a four-finger geometry that produces an rf quadrupole field distribution along its axis. The fundamental periodicity of the structure is equal to one half of the particle wavelength .beta..lamda., where .beta. is the particle velocity in units of the velocity of light and .lamda. is the free space wavelength of the rf. Particles are accelerated in the gaps between drift tubes. The particle beam is focused in regions inside the drift tubes.

  3. Utilizing Social Network Analysis in Support of Nation Building

    Science.gov (United States)

    2011-03-01

    Commission . . . . . . . . 4-8 IEC Independent Election Commission . . . . . . . . . . . . 4-8 AISA Afghanistan Investment Support Agency...source sample are either in the government or connected to it through the Afghanistan Investment Support Agency ( AISA ). This agency represents an... edition , 1980. 25. Jock Covey, Michael J. Dziedzic, and Leonard R. Hawley. The Quest for Viable Peace: International Intervention and Strategies for

  4. LEGO: A modular accelerator design code

    International Nuclear Information System (INIS)

    Cai, Y.; Donald, M.; Irwin, J.; Yan, Y.

    1997-08-01

    An object-oriented accelerator design code has been designed and implemented in a simple and modular fashion. It contains all major features of its predecessors: TRACY and DESPOT. All physics of single-particle dynamics is implemented based on the Hamiltonian in the local frame of the component. Components can be moved arbitrarily in the three dimensional space. Several symplectic integrators are used to approximate the integration of the Hamiltonian. A differential algebra class is introduced to extract a Taylor map up to arbitrary order. Analysis of optics is done in the same way both for the linear and nonlinear case. Currently, the code is used to design and simulate the lattices of the PEP-II. It will also be used for the commissioning

  5. Establishment of a radiotherapy service with a linear accelerator (photons): acceptance tests, dosimetry and quality control; Implantacao de um servico de radioterapia com acelerador linear (fotons): testes de aceitacao, dosimetria e controle de qualidade

    Energy Technology Data Exchange (ETDEWEB)

    Berdaky, Mafalda Feliciano

    2000-07-01

    This work presents the operational part of the final process of the establishment of a radiotherapy service with a linear accelerator (6 MeV photon beams), including the acceptance tests, commissioning tests and the implementation of a quality control program through routine mechanical and radiation tests. All acceptance tests were satisfactory, showing results below the allowed limits of the manufacturer, the commissioning tests presented results within those of the international recommendations. The quality control program was performed during 34 months and showed an excellent stability of this accelerator. (author)

  6. Acceptance, commissioning and quality control in radiosurgery; Aceite, comissionamento e controle de qualidade em radiocirurgia

    Energy Technology Data Exchange (ETDEWEB)

    Toreti, Dalila Luzia

    2009-07-01

    Stereotactic Radiosurgery is a treatment technique that uses narrow beams of radiation focused with great accuracy in a small lesion. The introduction of micro multi leaf collimators (mMLC) allows this technique to reach a higher degree of dose conformation of the target lesion allowing a smaller irradiation of critical structures and normal tissues. This paper presents the results of the acceptance tests and commissioning of a Varian 6EX linear accelerator dedicated to radiosurgery associated with the BrainLab micro multi leaf collimator installed in the Hospital das Clinicas da Faculdade de Medicina da USP (HC-FMUSP) and establish feasible quality assurance program for the services that employ this special technique. The results of the acceptance tests were satisfactory and are willing with the specifications provided by the manufacturer and the commissioning tests were within the international recommendations. The tests and measures that are part of quality control process should be specific to each treatment unit, and the need, frequency and levels of tolerance.

  7. Laser acceleration

    Science.gov (United States)

    Tajima, T.; Nakajima, K.; Mourou, G.

    2017-02-01

    The fundamental idea of Laser Wakefield Acceleration (LWFA) is reviewed. An ultrafast intense laser pulse drives coherent wakefield with a relativistic amplitude robustly supported by the plasma. While the large amplitude of wakefields involves collective resonant oscillations of the eigenmode of the entire plasma electrons, the wake phase velocity ˜ c and ultrafastness of the laser pulse introduce the wake stability and rigidity. A large number of worldwide experiments show a rapid progress of this concept realization toward both the high-energy accelerator prospect and broad applications. The strong interest in this has been spurring and stimulating novel laser technologies, including the Chirped Pulse Amplification, the Thin Film Compression, the Coherent Amplification Network, and the Relativistic Mirror Compression. These in turn have created a conglomerate of novel science and technology with LWFA to form a new genre of high field science with many parameters of merit in this field increasing exponentially lately. This science has triggered a number of worldwide research centers and initiatives. Associated physics of ion acceleration, X-ray generation, and astrophysical processes of ultrahigh energy cosmic rays are reviewed. Applications such as X-ray free electron laser, cancer therapy, and radioisotope production etc. are considered. A new avenue of LWFA using nanomaterials is also emerging.

  8. Laser acceleration

    International Nuclear Information System (INIS)

    Tajima, T.; Nakajima, K.; Mourou, G.

    2017-01-01

    The fundamental idea of LaserWakefield Acceleration (LWFA) is reviewed. An ultrafast intense laser pulse drives coherent wakefield with a relativistic amplitude robustly supported by the plasma. While the large amplitude of wake fields involves collective resonant oscillations of the eigenmode of the entire plasma electrons, the wake phase velocity ∼ c and ultra fastness of the laser pulse introduce the wake stability and rigidity. A large number of worldwide experiments show a rapid progress of this concept realization toward both the high-energy accelerator prospect and broad applications. The strong interest in this has been spurring and stimulating novel laser technologies, including the Chirped Pulse Amplification, the Thin Film Compression, the Coherent Amplification Network, and the Relativistic Mirror Compression. These in turn have created a conglomerate of novel science and technology with LWFA to form a new genre of high field science with many parameters of merit in this field increasing exponentially lately. This science has triggered a number of worldwide research centers and initiatives. Associated physics of ion acceleration, X-ray generation, and astrophysical processes of ultrahigh energy cosmic rays are reviewed. Applications such as X-ray free electron laser, cancer therapy, and radioisotope production etc. are considered. A new avenue of LWFA using nano materials is also emerging.

  9. Parametric study of emerging high power accelerator applications using Accelerator Systems Model (ASM)

    International Nuclear Information System (INIS)

    Berwald, D.H.; Mendelsohn, S.S.; Myers, T.J.; Paulson, C.C.; Peacock, M.A.; Piaszczyk, CM.; Rathke, J.W.; Piechowiak, E.M.

    1996-01-01

    Emerging applications for high power rf linacs include fusion materials testing, generation of intense spallation neutrons for neutron physics and materials studies, production of nuclear materials and destruction of nuclear waste. Each requires the selection of an optimal configuration and operating parameters for its accelerator, rf power system and other supporting subsystems. Because of the high cost associated with these facilities, economic considerations become paramount, dictating a full evaluation of the electrical and rf performance, system reliability/availability, and capital, operating, and life cycle costs. The Accelerator Systems Model (ASM), expanded and modified by Northrop Grumman during 1993-96, provides a unique capability for detailed layout and evaluation of a wide variety of normal and superconducting accelerator and rf power configurations. This paper will discuss the current capabilities of ASM, including the available models and data base, and types of trade studies that can be performed for the above applications. (author)

  10. The Lhc beam commissioning

    International Nuclear Information System (INIS)

    Redarelli, S.; Bailey, R.

    2008-01-01

    The plans for the Lhc proton beam commissioning are presented. A staged commissioning approach is proposed to satisfy the request of the Lhc experiments while minimizing the machine complexity in early commissioning phases. Machine protection and collimation aspects will be tackled progressively as the performance will be pushed to higher beam intensities. The key parameters are the number of bunches, k b , the proton intensity pe bunch, N, and the β in the various interaction points. All together these parameters determine the total beam power and the complexity of the machine. We will present the proposed trade off between the evolution of these parameters and the Lhc luminosity performance.

  11. Anderson Acceleration for Fixed-Point Iterations

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Homer F. [Worcester Polytechnic Institute, MA (United States)

    2015-08-31

    The purpose of this grant was to support research on acceleration methods for fixed-point iterations, with applications to computational frameworks and simulation problems that are of interest to DOE.

  12. WE-AB-201-03: TPS Commissioning and QA: Incorporating the Entire Planning Process

    International Nuclear Information System (INIS)

    Mutic, S.

    2015-01-01

    Treatment planning systems (TPS) are a cornerstone of modern radiation therapy. Errors in their commissioning or use can have a devastating impact on many patients. To support safe and high quality care, medical physicists must conduct efficient and proper commissioning, good clinical integration, and ongoing quality assurance (QA) of the TPS. AAPM Task Group 53 and related publications have served as seminal benchmarks for TPS commissioning and QA over the past two decades. Over the same time, continuing innovations have made the TPS even more complex and more central to the clinical process. Medical goals are now expressed in terms of the dose and margins around organs and tissues that are delineated from multiple imaging modalities (CT, MR and PET); and even temporally resolved (i.e., 4D) imaging. This information is passed on to optimization algorithms to establish accelerator movements that are programmed directly for IMRT, VMAT and stereotactic treatments. These advances have made commissioning and QA of the TPS much more challenging. This education session reviews up-to-date experience and guidance on this subject; including the recently published AAPM Medical Physics Practice Guideline (MPPG) #5 “Commissioning and QA of Treatment Planning Dose Calculations: Megavoltage Photon and Electron Beams”. Treatment Planning System Commissioning and QA: Challenges and Opportunities (Greg Salomons) This session will provide some key background and review publications describing prominent incidents relating to TPS commissioning and QA. Traditional approaches have been hardware and feature oriented. They aim to establish a functional configuration and establish specifications for regular testing of features (like dose calculation) to assure stable operation and detect failures. With the advent of more complex systems, more patient-specific testing has also been adopted. A number of actual TPS defects will be presented along with heuristics for identifying similar

  13. WE-AB-201-01: Treatment Planning System Commissioning and QA: Challenges and Opportunities

    International Nuclear Information System (INIS)

    Salomons, G.

    2015-01-01

    Treatment planning systems (TPS) are a cornerstone of modern radiation therapy. Errors in their commissioning or use can have a devastating impact on many patients. To support safe and high quality care, medical physicists must conduct efficient and proper commissioning, good clinical integration, and ongoing quality assurance (QA) of the TPS. AAPM Task Group 53 and related publications have served as seminal benchmarks for TPS commissioning and QA over the past two decades. Over the same time, continuing innovations have made the TPS even more complex and more central to the clinical process. Medical goals are now expressed in terms of the dose and margins around organs and tissues that are delineated from multiple imaging modalities (CT, MR and PET); and even temporally resolved (i.e., 4D) imaging. This information is passed on to optimization algorithms to establish accelerator movements that are programmed directly for IMRT, VMAT and stereotactic treatments. These advances have made commissioning and QA of the TPS much more challenging. This education session reviews up-to-date experience and guidance on this subject; including the recently published AAPM Medical Physics Practice Guideline (MPPG) #5 “Commissioning and QA of Treatment Planning Dose Calculations: Megavoltage Photon and Electron Beams”. Treatment Planning System Commissioning and QA: Challenges and Opportunities (Greg Salomons) This session will provide some key background and review publications describing prominent incidents relating to TPS commissioning and QA. Traditional approaches have been hardware and feature oriented. They aim to establish a functional configuration and establish specifications for regular testing of features (like dose calculation) to assure stable operation and detect failures. With the advent of more complex systems, more patient-specific testing has also been adopted. A number of actual TPS defects will be presented along with heuristics for identifying similar

  14. WE-AB-201-01: Treatment Planning System Commissioning and QA: Challenges and Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Salomons, G. [Cancer Center of Southeastern Ontario (Canada)

    2015-06-15

    Treatment planning systems (TPS) are a cornerstone of modern radiation therapy. Errors in their commissioning or use can have a devastating impact on many patients. To support safe and high quality care, medical physicists must conduct efficient and proper commissioning, good clinical integration, and ongoing quality assurance (QA) of the TPS. AAPM Task Group 53 and related publications have served as seminal benchmarks for TPS commissioning and QA over the past two decades. Over the same time, continuing innovations have made the TPS even more complex and more central to the clinical process. Medical goals are now expressed in terms of the dose and margins around organs and tissues that are delineated from multiple imaging modalities (CT, MR and PET); and even temporally resolved (i.e., 4D) imaging. This information is passed on to optimization algorithms to establish accelerator movements that are programmed directly for IMRT, VMAT and stereotactic treatments. These advances have made commissioning and QA of the TPS much more challenging. This education session reviews up-to-date experience and guidance on this subject; including the recently published AAPM Medical Physics Practice Guideline (MPPG) #5 “Commissioning and QA of Treatment Planning Dose Calculations: Megavoltage Photon and Electron Beams”. Treatment Planning System Commissioning and QA: Challenges and Opportunities (Greg Salomons) This session will provide some key background and review publications describing prominent incidents relating to TPS commissioning and QA. Traditional approaches have been hardware and feature oriented. They aim to establish a functional configuration and establish specifications for regular testing of features (like dose calculation) to assure stable operation and detect failures. With the advent of more complex systems, more patient-specific testing has also been adopted. A number of actual TPS defects will be presented along with heuristics for identifying similar

  15. WE-AB-201-03: TPS Commissioning and QA: Incorporating the Entire Planning Process

    Energy Technology Data Exchange (ETDEWEB)

    Mutic, S. [Washington University School of Medicine (United States)

    2015-06-15

    Treatment planning systems (TPS) are a cornerstone of modern radiation therapy. Errors in their commissioning or use can have a devastating impact on many patients. To support safe and high quality care, medical physicists must conduct efficient and proper commissioning, good clinical integration, and ongoing quality assurance (QA) of the TPS. AAPM Task Group 53 and related publications have served as seminal benchmarks for TPS commissioning and QA over the past two decades. Over the same time, continuing innovations have made the TPS even more complex and more central to the clinical process. Medical goals are now expressed in terms of the dose and margins around organs and tissues that are delineated from multiple imaging modalities (CT, MR and PET); and even temporally resolved (i.e., 4D) imaging. This information is passed on to optimization algorithms to establish accelerator movements that are programmed directly for IMRT, VMAT and stereotactic treatments. These advances have made commissioning and QA of the TPS much more challenging. This education session reviews up-to-date experience and guidance on this subject; including the recently published AAPM Medical Physics Practice Guideline (MPPG) #5 “Commissioning and QA of Treatment Planning Dose Calculations: Megavoltage Photon and Electron Beams”. Treatment Planning System Commissioning and QA: Challenges and Opportunities (Greg Salomons) This session will provide some key background and review publications describing prominent incidents relating to TPS commissioning and QA. Traditional approaches have been hardware and feature oriented. They aim to establish a functional configuration and establish specifications for regular testing of features (like dose calculation) to assure stable operation and detect failures. With the advent of more complex systems, more patient-specific testing has also been adopted. A number of actual TPS defects will be presented along with heuristics for identifying similar

  16. Optical beam diagnostics at the Electron Stretcher Accelerator ELSA

    International Nuclear Information System (INIS)

    Zander, Sven

    2013-10-01

    At the ELectron Stretcher Accelerator ELSA, a resonant excitation of the horizontal particle oscillations is used to extract the electrons to the experiments. This so-called resonance extraction influences the properties of the extracted beam. The emittance, as a number of the beam quality, was determined by using synchrotron light monitors. To enable broad investigations of the emittance a system of synchrotron light monitors was set up. This system was used to measure the influence of the extraction method on the emittance. Time resolved measurements were conducted to investigate the development of the emittance during an accelerator cycle. To improve the optical beam diagnostics a new beamline to an external laboratory was constructed. There, a new high resolution synchrotron light monitor was commissioned. In addition, a streak camera has been installed to enable longitudinal diagnostics of the beam profiles. First measurements of the longitudinal charge distribution with a time resolution in the range of a few picoseconds were conducted successfully.

  17. Inverse Free Electron Laser accelerator

    International Nuclear Information System (INIS)

    Fisher, A.; Gallardo, J.; van Steenbergen, A.; Sandweiss, J.

    1992-09-01

    The study of the INVERSE FREE ELECTRON LASER, as a potential mode of electron acceleration, is being pursued at Brookhaven National Laboratory. Recent studies have focussed on the development of a low energy, high gradient, multi stage linear accelerator. The elementary ingredients for the IFEL interaction are the 50 MeV Linac e - beam and the 10 11 Watt CO 2 laser beam of BNL's Accelerator Test Facility (ATF), Center for Accelerator Physics (CAP) and a wiggler. The latter element is designed as a fast excitation unit making use of alternating stacks of Vanadium Permendur (VaP) ferromagnetic laminations, periodically interspersed with conductive, nonmagnetic laminations, which act as eddy current induced field reflectors. Wiggler parameters and field distribution data will be presented for a prototype wiggler in a constant period and in a ∼ 1.5 %/cm tapered period configuration. The CO 2 laser beam will be transported through the IFEL interaction region by means of a low loss, dielectric coated, rectangular waveguide. Short waveguide test sections have been constructed and have been tested using a low power cw CO 2 laser. Preliminary results of guide attenuation and mode selectivity will be given, together with a discussion of the optical issues for the IFEL accelerator. The IFEL design is supported by the development and use of 1D and 3D simulation programs. The results of simulation computations, including also wiggler errors, for a single module accelerator and for a multi-module accelerator will be presented

  18. A 4 MV flattening filter-free beam: commissioning and application to conformal therapy and volumetric modulated arc therapy

    International Nuclear Information System (INIS)

    Stevens, S W; Rosser, K E; Bedford, J L

    2011-01-01

    Recent studies have indicated that radiotherapy treatments undertaken on a flattening filter-free (FFF) linear accelerator have a number of advantages over treatments undertaken on a conventional linear accelerator. In addition, 4 MV photon beams may give improved isodose coverage for some treatment volumes at air/tissue interfaces, compared to when utilizing the clinical standard of 6 MV photons. In order to investigate these benefits, FFF beams were established on an Elekta Beam Modulator linear accelerator for 4 MV photons. Commissioning beam data were obtained for open and wedged fields. The measured data were then imported into a treatment planning system and a beam model was commissioned. The beam model was optimized to improve dose calculations at shallow, clinically relevant depths. Following verification, the beam model was utilized in a treatment planning study, including volumetric modulated arc therapy, for a selection of lung, breast/chest wall and larynx patients. Increased dose rates of around 800 MU min -1 were recorded for open fields (relative to 320 MU min -1 for filtered open fields) and reduced head scatter was inferred from output factor measurements. Good agreement between planned and delivered dose was observed in verification of treatment plans. The planning study indicated that with a FFF beam, equivalent (and in some cases improved) isodose profiles could be achieved for small lung and larynx treatment volumes relative to 4 MV filtered treatments. Furthermore, FFF treatments with wedges could be replicated using open fields together with an 'effective wedge' technique and isocentre shift. Clinical feasibility of a FFF beam was therefore demonstrated, with beam modelling, treatment planning and verification being successfully accomplished.

  19. Nuclear Regulatory Commission 1989 Information Digest

    International Nuclear Information System (INIS)

    1989-03-01

    The Nuclear Regulatory Commission 1989 Information Digest provides summary information regarding the US Nuclear Regulatory Commission, its regulatory responsibilities, and areas licensed by the Commission. This is the first of an annual publication for the general use of the NRC staff and is available to the public. The Digest is divided into two parts: the first presents an overview of the US Nuclear Regulatory Commission and the second provides data on NRC commercial nuclear reactor licensees and commercial nuclear power reactors worldwide

  20. Theoretical and Experimental Studies in Accelerator Physics

    Energy Technology Data Exchange (ETDEWEB)

    Rosenzweig, James [Univ. of California, Los Angeles, CA (United States). Dept. of Physics and Astronomy

    2017-03-08

    This report describes research supported by the US Dept. of Energy Office of High Energy Physics (OHEP), performed by the UCLA Particle Beam Physics Laboratory (PBPL). The UCLA PBPL has, over the last two decades-plus, played a critical role in the development of advanced accelerators, fundamental beam physics, and new applications enabled by these thrusts, such as new types of accelerator-based light sources. As the PBPL mission is broad it is natural that it has been grown within the context of the accelerator science and technology stewardship of the OHEP. Indeed, steady OHEP support for the program has always been central to the success of the PBPL; it has provided stability, and above all has set the over-arching themes for our research directions, which have producing over 500 publications (>120 in high level journals). While other agency support has grown notably in recent years, permitting more vigorous pursuit of the program, it is transient by comparison. Beyond permitting program growth in a time of flat OHEP budgets, the influence of other agency missions is found in push to adapt advanced accelerator methods to applications, in light of the success the field has had in proof-of-principle experiments supported first by the DoE OHEP. This three-pronged PBPL program — advanced accelerators, fundamental beam physics and technology, and revolutionary applications — has produced a generation of students that have had a profound affect on the US accelerator physics community. PBPL graduates, numbering 28 in total, form a significant population group in the accelerator community, playing key roles as university faculty, scientific leaders in national labs (two have been named Panofsky Fellows at SLAC), and vigorous proponents of industrial application of accelerators. Indeed, the development of advanced RF, optical and magnet technology at the PBPL has led directly to the spin-off company, RadiaBeam Technologies, now a leading industrial accelerator firm

  1. SRF Accelerator Technology Transfer Experience from the Achievement of the SNS Cryomodule Production Run

    CERN Document Server

    Hogan, John; Daly, Edward; Drury, Michael A; Fischer, John; Hiatt, Tommy; Kneisel, Peter; Mammosser, John; Preble, Joseph P; Whitlatch, Timothy; Wilson, Katherine; Wiseman, Mark

    2005-01-01

    This paper will discuss the technology transfer aspect of superconducting RF expertise, as it pertains to cryomodule production, beginning with the original design requirements through testing and concluding with product delivery to the end user. The success of future industrialization, of accelerator systems, is dependent upon a focused effort on accelerator technology transfer. Over the past twenty years the Thomas Jefferson National Accelerator Facility (Jefferson Lab) has worked with industry to successfully design, manufacture, test and commission more superconducting RF cryomodules than any other entity in the United States. The most recent accomplishment of Jefferson Lab has been the successful production of twenty-four cryomodules designed for the Spallation Neutron Source (SNS). Jefferson Lab was chosen, by the United States Department of Energy, to provide the superconducting portion of the SNS linac due to its reputation as a primary resource for SRF expertise. The successful partnering with, and d...

  2. Berkeley Proton Linear Accelerator

    Science.gov (United States)

    Alvarez, L. W.; Bradner, H.; Franck, J.; Gordon, H.; Gow, J. D.; Marshall, L. C.; Oppenheimer, F. F.; Panofsky, W. K. H.; Richman, C.; Woodyard, J. R.

    1953-10-13

    A linear accelerator, which increases the energy of protons from a 4 Mev Van de Graaff injector, to a final energy of 31.5 Mev, has been constructed. The accelerator consists of a cavity 40 feet long and 39 inches in diameter, excited at resonance in a longitudinal electric mode with a radio-frequency power of about 2.2 x 10{sup 6} watts peak at 202.5 mc. Acceleration is made possible by the introduction of 46 axial "drift tubes" into the cavity, which is designed such that the particles traverse the distance between the centers of successive tubes in one cycle of the r.f. power. The protons are longitudinally stable as in the synchrotron, and are stabilized transversely by the action of converging fields produced by focusing grids. The electrical cavity is constructed like an inverted airplane fuselage and is supported in a vacuum tank. Power is supplied by 9 high powered oscillators fed from a pulse generator of the artificial transmission line type.

  3. Fuel handling at Cernavoda 1 N.P.S. - commissioning and training philosophy

    Energy Technology Data Exchange (ETDEWEB)

    Standen, G W [AECL-Ansaldo Consortium, Cernavoda (Romania); Tiron, C; Marinescu, S [Regia Nationala de Electricitate (RENEL), Cernavoda (Romania); [Filiala Centrala Nuclearo Electrica (FCNE), Cernavoda (Romania)

    1997-12-31

    Efficient operation of a Candu nuclear power plant depends greatly on the reliable and safe operation of the fuel handling system. Successful commissioning of the system is obviously a key aspect of the reliability of the system and this coupled with a rigorous training programme for the fuel handling staff will ensure the system`s safe operation. This paper describes the philosophy used at Cernavoda 1 N.P.S. for the commissioning of the fuel handling systems and for the training of staff for operation and maintenance of these systems. The paper also reviews the commissioning programme, describing the milestones achieved and discussing some of the more interesting technical aspects which includes some unique Romanian input. In conclusion the paper looks at the organization of the mature fuel handling department from the operations, maintenance and technical support points of view and the long term plans for the future. (author). 1 fig.

  4. Fuel handling at Cernavoda 1 N.P.S. - commissioning and training philosophy

    International Nuclear Information System (INIS)

    Standen, G.W.; Tiron, C.; Marinescu, S.

    1996-01-01

    Efficient operation of a Candu nuclear power plant depends greatly on the reliable and safe operation of the fuel handling system. Successful commissioning of the system is obviously a key aspect of the reliability of the system and this coupled with a rigorous training programme for the fuel handling staff will ensure the system's safe operation. This paper describes the philosophy used at Cernavoda 1 N.P.S. for the commissioning of the fuel handling systems and for the training of staff for operation and maintenance of these systems. The paper also reviews the commissioning programme, describing the milestones achieved and discussing some of the more interesting technical aspects which includes some unique Romanian input. In conclusion the paper looks at the organization of the mature fuel handling department from the operations, maintenance and technical support points of view and the long term plans for the future. (author). 1 fig

  5. Russia in the Arctic. Will the State Commission be its helmsman?

    Directory of Open Access Journals (Sweden)

    Valeriy P. Zhuravel

    2016-06-01

    Full Text Available The article is focused on the analysis of the decisions on the development and exploration of the Arctic. It also reveals the activity of the State Commission on the Development of the Arctic. It notes the slow solution of problems of energy, information, transportation security of the remote settlements in the Russian Arctic. Unresolved issues of legal support of the guarantee and compensation system caused a certain degree of concern for persons working on the territory of the North in the Arctic. This list of existing problems could be extended. Activities of the State Commission confirm the thesis that Russia intends to provide reliable and long-term national interests in the Arctic.

  6. Electron acceleration using laser produced plasmas

    CERN Multimedia

    CERN. Geneva; Landua, Rolf

    2005-01-01

    Low density plasmas have long been of interest as a potential medium for particle acceleration since relativistic plasma waves are capable of supporting electric fields greater than 100 GeV/m. The physics of particle acceleration using plasmas will be reviewed, and new results will be discussed which have demonstrated that relatively narrow energy spread (<3%) beams having energies greater than 100 MeV can be produced from femtosecond laser plasma interactions. Future experiments and potential applications will also be discussed.

  7. Klystron life results in particle accelerator applications

    International Nuclear Information System (INIS)

    Bohlen, Heinz

    2002-01-01

    Based on reports contributed by various particle accelerator sites, among them DESY, CERN, and LANL, Weibull life time characteristics have been calculated for the klystrons used at these institutions. Supported by evaluations of the technologies and the operational conditions involved, the results, sometimes surprising and unexpected, present material that can be valuable for logistic considerations, the planning of future accelerators, and naturally for the design of future klystrons

  8. Experimental and theoretical investigation of high gradient acceleration

    International Nuclear Information System (INIS)

    Wurtele, J.S.; Bekefi, G.; Chen, C.; Chen, S.C.; Temkin, R.J.

    1993-01-01

    This report contains a technical progress summary of the research conducted under the auspices of DOE Grant No. DE-AC02-91-ER40648, ''Experimental and Theoretical Investigations of High Gradient Acceleration''. This grant supports three research tasks: Task A consists of the design, fabrication and testing of a 17GHz RF photocathode gun, which can produce 2ps electron pulses with up to 1nC of charge at 2MeV energy and at a 1OHz repetition rate. Task B supports the testing of high gradient acceleration at 33GHz structure, and Task C comprises theoretical investigations, both in support of the experimental tasks and on critical physics issues for the development of high energy linear colliders

  9. Design of an electromagnetic accelerator for turbulent hydrodynamic mix studies

    International Nuclear Information System (INIS)

    Susoeff, A.R.; Hawke, R.S.; Morrison, J.J.; Dimonte, G.; Remington, B.A.

    1994-03-01

    An electromagnetic accelerator in the form of a linear electric motor (LEM) has been designed to achieve controlled acceleration profiles of a carriage containing hydrodynamically unstable fluids for the investigation of the development of turbulent mix. Key features of the design include: (1) independent control of acceleration, deceleration and augmentation currents to provide a variety of acceleration-time profiles, (2) a robust support structure to minimized deflection and dampen vibration which could create artifacts in the data interfering with the intended study and (3) a compliant, non-arcing solid armature allowing optimum electrical contact. Electromagnetic modeling codes were used to optimize the rail and augmentation coil positions within the support structure framework. Design of the driving armature and the dynamic electromagnetic braking system is based on results of contemporary studies for non-arcing sliding contact of solid armatures. A 0.6MJ electrolytic capacitor bank is used for energy storage to drive the LEM. This report will discuss a LEM and armature design which will accelerate masses of up to 3kg to a maximum of about 3000g o , where g o is acceleration due to gravity

  10. The farthest known supernova: Support for an accelerating universeand a glimpse of the epoch of deceleration

    Energy Technology Data Exchange (ETDEWEB)

    Riess, Adam G.; Nugent, Peter E.; Schmidt, Brian P.; Tonry, John; Dickinson, Mark; Gilliland, Ronald L.; Thompson, Rodger I.; Budavari,Tamas; Casertano, Stefano; Evans, Aaron S.; Filippenko, Alexei V.; Livio,Mario; Sanders, David B.; Shapley, Alice E.; Spinrad, Hyron; Steidel,Charles C.; Stern, Daniel; Surace, Jason; Veilleux, Sylvain

    2001-04-01

    We present photometric observations of an apparent Type Iasupernova (SN Ia) at a redshift of approximately 1.7, the farthest SNobserved to date. The supernova, SN 1997, was discovered in a repeatobservation by the Hubble Space Telescope (HST) of the Hubble DeepField{North (HDF-N), and serendipitously monitored with NICMOS on HSTthroughout the Thompson et al. GTO campaign. The SN type can bedetermined from the host galaxy type: an evolved, red elliptical lackingenough recent star formation to provide a significant population ofcore-collapse supernovae. The classification is further supported bydiagnostics available from the observed colors and temporal behavior ofthe SN, both of which match a typical SN Ia. The photometric record ofthe SN includes a dozen flux measurements in the I, J, and H bandsspanning 35 days in the observed frame. The redshift derived from the SNphotometry, z = 1:7 plus or minus 0:1, is in excellent agreement with theredshift estimate of z = 1:65 plus or minus 0:15 derived from the U_300B_450 V_-606 I_814 J_110 J_125 H_160 H_165 K_s photometry of the galaxy.Optical and near-infrared spectra of the host provide a very tentativespectroscopic redshift of 1.755. Fits to observations of the SN provideconstraints for the redshift-distance relation of SNe Ia and a powerfultest of the current accelerating Universe hypothesis. The apparent SNbrightness is consistent with that expected in the decelerating phase ofthe preferred cosmological model, Omega_M approximately equal to 1/3;Omega_Lambda approximately equal to 2/3. It is inconsistent with greydust or simple luminosity evolution, candidate astrophysical effectswhich could mimic previous evidence for an accelerating Universe from SNeIa at z approximately equal to 0:5. We consider several sources ofpotential systematic error including gravitational lensing, supernovamisclassification, sample selection bias, and luminosity calibrationerrors. Currently, none of these effects alone appears likely

  11. Clearance of materials from accelerator facilities

    Directory of Open Access Journals (Sweden)

    Rokni Sayed H.

    2017-01-01

    Full Text Available A new Technical Standard that supports the clearance of materials and equipment (personal property from U.S. Department of Energy (DOE accelerator facilities has been developed. The Standard focuses on personal property that has the potential to be radiologically impacted by accelerator operations. It addresses material clearance programs and protocols for off-site releases without restriction on use. Common metals with potential volumetric activation are of main interest with technical bases provided in Appendices of the Standard. The clearance protocols in the Standard include three elements: 1 clearance criteria, 2 process knowledge, and 3 measurement methods. This paper presents the technical aspects of the new Standard, discusses operational experience gained in clearance of materials and equipment from several accelerator facilities at SLAC and examples as to how this Standard can be applied to benefit the entirety of the DOE Accelerator Complex.

  12. Gentilly 2: design, construction and commissioning

    International Nuclear Information System (INIS)

    Amyot, Paul; Michel, Benoit.

    1982-06-01

    Construction of the Gentilly 2 power station is essentially complete, and commissioning is proceeding. The main activities during the 1981-82 period have been the completion of the construction and overall testing of the major systems. One cause of delay in the project in 1981 was the discovery of damage to the tubesheet of a steam generator. An internal manhole cover support in the steam generator head had become loose and had caused damage to the tube-to-tubesheet welds. Repairs to the welds were completed in Feb. 1982 after an extensive development program to qualify the welding procedure. Overall project life will be slightly more than 9 years

  13. Commissioning plans for SSC linac

    International Nuclear Information System (INIS)

    Hurd, J.W.; Aprile, R.L.; Chang, C.R.; Crist, C.E.; Cutler, R.I.; Funk, L.W.; Guy, F.W.; Leifeste, G.T.; Raparia, D.; Saadatmand, K.; Sethi, R.C.; Swenson, D.A.; Tooker, J.; Yao, C.G.

    1992-01-01

    Presented are the general description of the SSC linac and the plans for commissioning. Sections of the linac are installed, tested, and beam commissioned in a serial approach. A specialized set of diagnostics is used to characterize the beam through each section. In addition to the standard diagnostic set, plans call for the use of a bunch shape monitor and x-ray spectrometer. Streak camera and digital imaging diagnostics will be developed. The commissioning plan is folded into the general linac project schedule to show the relation between delivery, staging, installation, conditioning, and actual commissioning with beam. These plans form the basis for coordination between the various organizations responsible for different elements of the linac including the technical components, infrastructure, and temporary staging and operation facilities. (Author) 2 figs., 17 refs

  14. New Ways to Consider: Towards a Design Theory for Hybrid Intelligence Accelerators

    OpenAIRE

    Dellermann, Dominik; Lipusch, Nikolaus; Ebel, Philipp; Leimeister, Jan Marco

    2017-01-01

    Setting a new venture is a challenging tasks which leads to dramatic numbers of failures. To support early stage ventures and accelerate their growth support service providers such as business incubators and accelerators gain increasing popularity. Yet, in particular the latter one is still on its rise and current practices of supporting startups have several limitations such as limited capabilities, networks or are faced with the bound rationality of individual mentors. To overcome these def...

  15. 17 CFR 201.57 - Commission review.

    Science.gov (United States)

    2010-04-01

    ... 17 Commodity and Securities Exchanges 2 2010-04-01 2010-04-01 false Commission review. 201.57... Regulations Pertaining to the Equal Access to Justice Act § 201.57 Commission review. In accordance with the... Division of the Commission may seek review of the initial decision on the fee application, or the...

  16. Commissioning of ATLAS

    CERN Document Server

    Thomas, J

    2008-01-01

    The status of the commissioning of the ATLAS experiment as of May 2008 is presented. The subdetector integration in recent milestone weeks is described, especially the cosmic commissioning in milestone week M6, focussing on combined running and track analysis of the muon detector and inner detector. The liquid argon and tile calorimeters have achieved near-full operation, and are integrated with the calorimeter trigger. The High-Level-Trigger infrastructure is installed and algorithms tested in technical runs. Problems with the inner detector cooling compressors are being fixed.

  17. ATF2 Commissioning

    Energy Technology Data Exchange (ETDEWEB)

    Seryi, A.; /SLAC; Christian, G.; /KLTE-ATOMKI; Parker, B.; /BNL; Schulte, D.; Delahaye, J.-P.; Tomas, R.; Zimmermann, F.; /CERN; Wolski, A.; Elsen, E.; /Cockcroft Inst. /DESY; Sanuki, T.; /Tohoku U.; Gianfelice-Wendt, E.; Ross, M.; Wendt, M.; /Fermilab; Takahashi, T.; /Hiroshima U.; Bai, S.; Gao, J.; /Beijing, Inst. High Energy Phys.; Bolzon, B.; Geffroy, N.; Jeremie, A.; /Annecy, LAPP; Apsimon, R.; Burrows, P.; /Oxford U., JAI /Kyoto U., Inst. Chem. Res. /Kyungpook Natl. U. /Orsay, LAL /Phang Accelerator Lab /Royal Holloway, U. of London /SLAC /Daresbury /University Coll. London /Manchester U. /Univ. of Tokyo U.

    2009-10-30

    ATF2 is a final-focus test beam line that aims to focus the low-emittance beam from the ATF damping ring to a beam size of about 37 nm, and at the same time to demonstrate nm beam stability, using numerous advanced beam diagnostics and feedback tools. The construction has been finished at the end of 2008 and the beam commissioning of ATF2 has started in December of 2008. ATF2 is constructed and commissioned by ATF international collaborations with strong US, Asian and European participation.

  18. ATF2 COMMISSIONING

    CERN Document Server

    Seryi, A; Parker, B; Schulte, D; Delahaye, J P; Tomas, R; Zimmermann, F; Wolski, A; Elsen, E; Sanuki, T; Gianfelice-Wendt, E; Ross, M; Wendt, M; Takahashi, T; Bai, S; Gao, J; Bolzon, B; Geffroy, N; Jeremie, A; Apsimon, R; Burrows, P; Constance, B; Perry, C; Resta-Lopez, J; Swinson, C; Araki, S; Aryshev, A; Hayano, H; Honda, Y; Kubo, K; Kume, T; Kuroda, S; Masuzawa, M; Naito, T; Okugi, T; Sugahara, R; Tauchi, T; Terunuma, N; Urakawa, J; Yokoya, K; Iwashita, Y; Sugimoto, T; Heo, A Y; Kim, E S; Kim, H S; Bambade, P; Renier, Y; Rimbault, C; Huang, J Y; Kim, S H; Park, Y J; Hwang, W H; Blair, G; Boogert, S; Karataev, P; Molloy, S; Amann, J; Bellomo, P; Lam, B; McCormick, D; Nelson, J; Paterson, E; Pivi, M; Raubenheimer, T; Spencer, C; Wang, M H; White, G; Wittmer, W; Woodley, M; Yan, Y; Zhou, F; Angal-Kalinin, D; Jones, J; Lyapin, A; Scarfe, A; Kamiya, Y; Komamiya, S; Oroku, M; Suehara, T; Yamanaka, T

    2010-01-01

    ATF2 is a final-focus test beam line that aims to focus the low-emittance beam from the ATF damping ring to a beam size of about 37 nm, and at the same time to demonstrate nm beam stability, using numerous advanced beam diagnostics and feedback tools. The construction has been finished at the end of 2008 and the beam commissioning of ATF2 has started in December of 2008. ATF2 is constructed and commissioned by ATF international collaborations with strong US, Asian and European participation.

  19. Joint Commission

    Science.gov (United States)

    ... for the latest publication of The Joint Commission Journal on Quality and Patient Safety (JQPS). . How We Work Process improvement program breeds quality culture, empowers staff An article in Quality Progress, June ...

  20. Lessons learned from designing and commissioning a versatile data acquisiting system for an accelerator development facility

    International Nuclear Information System (INIS)

    Langlais, C.E.; Watkins, L.M.; Caissie, L.P.; Wachsmann, W.J.; Andison, C.E.

    1977-01-01

    Achieving reliable operation of digital equipment under extreme noise conditions presents special challenges to system designers. Experience with the design and operation of a data acquisition and control system for an accelerator development facility at the Chalk River Nuclear Laboratories is reviewed. It is concluded that, by adhering to a few rules in developing both the hardware and the software, satisfactory performance can be guaranteed. Methods of producing a reliable design are presented

  1. Introducing care pathway commissioning to primary dental care: measuring performance.

    Science.gov (United States)

    Harris, R; Bridgman, C; Ahmad, M; Bowes, L; Haley, R; Saleem, S; Singh, R; Taylor, S

    2011-12-09

    Care pathways have been used in a variety of ways: firstly to support quality improvement through standardising clinical processes, but also for secondary purposes, by purchasers of healthcare, to monitor activity and health outcomes and to commission services. This paper focuses on reporting a secondary use of care pathways: to commission and monitor performance of primary dental care services. Findings of a project involving three dental practices implementing a system based on rating patients according to their risk of disease and need for care are outlined. Data from surgery-based clinical databases and interviews from commissioners and providers are reported. The use of both process and outcome key performance indicators in this context is discussed, as well as issues which arise such as attributability of outcome measures and strategic approaches to improving quality of care.

  2. The charged particle accelerators subsystems modeling

    International Nuclear Information System (INIS)

    Averyanov, G P; Kobylyatskiy, A V

    2017-01-01

    Presented web-based resource for information support the engineering, science and education in Electrophysics, containing web-based tools for simulation subsystems charged particle accelerators. Formulated the development motivation of Web-Environment for Virtual Electrophysical Laboratories. Analyzes the trends of designs the dynamic web-environments for supporting of scientific research and E-learning, within the framework of Open Education concept. (paper)

  3. 2007 2008 ACADEMIC TRAINING PROGRAMME: Tevatron: The Cinderella Story or The Art Of Collider Commissioning

    CERN Multimedia

    2007-01-01

    LECTURE SERIES 01, 03, 04, 05 October 2007 Main Auditorium, bldg. 500 Tevatron: The Cinderella Story or The Art Of Collider Commissioning V. SHILTSEV / Fermi National Accelerator Laboraty, Batavia IL, USA The Tevatron Collider at Fermilab (Batavia, IL, USA) is the world’s highest energy particle collider at 1.8TeV c.m.e. The machine was a centerpiece of the US and world’s High Energy Physics for many years. Currently, the Tevatron is in the last years of its operation in so-called Run II which started 2001 and is tentatively scheduled to end in 2010. In this lecture series, we’ll try to learn from the exciting story of the Tevatron Collider Run II: the story of long preparations, great expectations, initial difficulties, years of "blood and sweat", continuous upgrades, exceeding its goals, high emotions, tune-up of accelerator organization for "combat fighting". The lectures will cover Introduction to the Tevatron, its history and Run II; "Plumbing"...

  4. Development and commissioning of a double-prism spectrometer for the diagnosis of femtosecond electron bunches

    Energy Technology Data Exchange (ETDEWEB)

    Wunderlich, Steffen

    2016-12-15

    Free-electron lasers as accelerator-driven light sources and wakefield-based acceleration in plasmas require the knowledge of the longitudinal extension and the longitudinal current profile of the involved electron bunches. These bunches can yield lengths below 10 μm, or durations shorter than approx. 33 fs, as well as charges less than 30 pC. During this work, transition radiation from relativistic electron bunches was investigated in the mid-infrared wavelength regime. A spectrometer using an arrangement of two consecutive zinc selenide prisms was developed, built and commissioned. The instrument covers the spectral range from 2 μm to 18 μm in a single shot. Measurements with the double-prism spectrometer were conducted at the FEL facilities FLASH at DESY in Hamburg, Germany and FELIX at the Radboud Universiteit in Nijmegen, The Netherlands. The assessment of the spectrometer and comparative studies with established diagnostic devices at FLASH show high signal-to-noise ratios at bunch charges below 10 pC and confirm the obtained results.

  5. Commissioning results of the ReA EBIT charge breeder at the NSCL: First reacceleration of stable-isotope beams

    Energy Technology Data Exchange (ETDEWEB)

    Lapierre, A., E-mail: lapierre@nscl.msu.edu; Schwarz, S.; Kittimanapun, K.; Rodriguez, J.A.; Sumithrarachchi, C.; Barquest, B.; Berryman, E.; Cooper, K.; Fogleman, J.; Krause, S.; Kwarsick, J.; Nash, S.; Perdikakis, G.; Portillo, M.; Rencsok, R.; Skutt, D.; Steiner, M.; Tobos, L.; Wittmer, W.; Bollen, G.; and others

    2013-12-15

    Highlights: • Latest results with the electron-beam ion trap of the ReA post-accelerator at the NSCL. • First reacceleration of stable-isotope beams. • First injection of stable-isotope beams from the NSCL’s beam stopping vault. -- Abstract: ReA is a reaccelerator of rare-isotope beams at the National Superconducting Cyclotron Laboratory (NSCL). The rare isotopes are produced by fast projectile fragmentation. After production, they are separated in-flight and thermalized in a He gas “catcher” cell before being sent to ReA for reacceleration to a few MeV/u. One of its main components is an electron-beam ion trap (EBIT) employed to convert injected singly charged ions to highly charged ions prior to injection into linear-accelerator structures. The ReA EBIT features a high-current electron gun, a long trap structure, and a two-field superconducting magnet to provide both the high electron-beam current density needed for fast charge breeding and high capture probability of injected beams. This paper presents recent commissioning results. In particular, {sup 39}K{sup +} ions have been injected, charge bred to {sup 39}K{sup 16+} and extracted for reacceleration up to 60 MeV. First charge-breeding results of beams injected from a commissioning Rb ion source in the NSCL’s beam “stopping” vault are also presented.

  6. Photonic Crystal Laser-Driven Accelerator Structures

    International Nuclear Information System (INIS)

    Cowan, Benjamin M.

    2007-01-01

    Laser-driven acceleration holds great promise for significantly improving accelerating gradient. However, scaling the conventional process of structure-based acceleration in vacuum down to optical wavelengths requires a substantially different kind of structure. We require an optical waveguide that (1) is constructed out of dielectric materials, (2) has transverse size on the order of a wavelength, and (3) supports a mode with speed-of-light phase velocity in vacuum. Photonic crystals---structures whose electromagnetic properties are spatially periodic---can meet these requirements. We discuss simulated photonic crystal accelerator structures and describe their properties. We begin with a class of two-dimensional structures which serves to illustrate the design considerations and trade-offs involved. We then present a three-dimensional structure, and describe its performance in terms of accelerating gradient and efficiency. We discuss particle beam dynamics in this structure, demonstrating a method for keeping a beam confined to the waveguide. We also discuss material and fabrication considerations. Since accelerating gradient is limited by optical damage to the structure, the damage threshold of the dielectric is a critical parameter. We experimentally measure the damage threshold of silicon for picosecond pulses in the infrared, and determine that our structure is capable of sustaining an accelerating gradient of 300 MV/m at 1550 nm. Finally, we discuss possibilities for manufacturing these structures using common microfabrication techniques

  7. High current, high energy proton beams accelerated by a sub-nanosecond laser

    Czech Academy of Sciences Publication Activity Database

    Margarone, Daniele; Krása, Josef; Picciotto, A.; Torrisi, L.; Láska, Leoš; Velyhan, Andriy; Prokůpek, Jan; Ryc, L.; Parys, P.; Ullschmied, Jiří; Rus, Bedřich

    2011-01-01

    Roč. 653, č. 1 (2011), s. 159-163 ISSN 0168-9002 R&D Projects: GA ČR(CZ) GAP205/11/1165; GA AV ČR IAA100100715; GA MŠk(CZ) 7E09092 EU Projects: European Commission(XE) 212105 - ELI-PP Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z20430508 Keywords : laser-acceleration * proton beam * high ion current * time -of-flight * proton energy distribution Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.207, year: 2011

  8. National Bioethics Commissions as Educators.

    Science.gov (United States)

    Lee, Lisa M

    2017-05-01

    As has become tradition, executive directors of United States' presidential bioethics committees offer reflections about their experience shortly after the orderly shutdown of the commission staff. After the records are filed according to government records regulations; after all the staff members, who are hired into temporary positions that must be renewed every two years, have secured permanent employment; after preparations are made to ensure that the next commission staff (should there be one) has a budget and standard operating procedures in order to begin its work in a timely manner; after the lights are turned out for the last time, the executive director makes the final climb up the stairs into the sunlight and reflects on the whirlwind. There is much about my work with the Presidential Commission for the Study of Bioethical Issues that deserves comment, but one aspect of the commission that has been especially valuable to me is its work to educate the nation on bioethical issues. This is, moreover, a contribution in which the commission staff was central, and it is one that, as an ethics educator myself, I will cherish deeply. © 2017 The Hastings Center.

  9. Nuclear regulatory commission issuances. Volume 40, Number 1

    International Nuclear Information System (INIS)

    1994-07-01

    This report includes issuances concerning the following items. The Commission denies General Atomics' motion seeking to stay discovery in this proceeding until (1) the Commission determines whether it will grant General Atomics' Petition for Review of LBP-94-17 and/or Motion for Directed Certification; and (2) assuming that the commission grants the Petition/Motion, the Commission determines with finality the jurisdictional issues raised in General Atomics' previously filed Motion for Summary Disposition or for an Order of Dismissal. In this proceeding concerning an NRC Staff enforcement order issues in accordance with 10 C.F.R. section 2.202, the Licensing Board concludes that a Native American tribe wishing to participate in the proceeding to support the Staff's enforcement order has established its standing and presented two litigable contentions. This informal adjudicatory proceeding, convened under 10 C.F.R. Part 2, Subpart L, involves an application by the Chemetron Corporation (Licensee) for a license amendment. The proposed amendment concerns the decommissioning of the Licensee's Bert Avenue site in Newburgh Heights, Ohio, and its Harvard Avenue site and associated buildings at the McGean-Rohco property in Cuyahoga Heights, Ohio. In this license suspension and modification enforcement proceeding, the Licensing Board rules on prediscovery dispositive motions regarding ten issues specified by the parties for litigation. The Licensing Board determines that an Intervenor may move to admit into the proceeding a new basis for an already admitted contention. When it does so, the requirements for a late-filed contention are not applicable, but the Intervenor must show that it is timely to consider the new basis, in light of its seriousness and the timelines with which it has been raised. The Licensing Board also permitted Intervenor to file a reply to Applicant's response to his motion to add a new basis to his contention

  10. Commission for Energy regulation (CRE) - Activity report june 2008; Commission de regulation de l'energie (CRE) - Rapport d'activite juin 2008

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    proceedings initiated against France by the European Commission); D - CRE action at national level: Regulation of systems and infrastructures (General information, Electricity grids, Natural gas networks and other infrastructures); Electricity and natural gas markets (Changes in the regulatory and legislative context, Electricity markets, Natural gas markets, Monitoring open market operations); Support measures: electricity generation, vulnerable customers and TaRTAM (Supporting cogeneration and renewable energy sources, Public electricity service costs, Collection of public electricity service contributions (CSPE), TaRTAM-related costs, Costs related to the special solidarity tariff for natural gas supply); E - Appendices: Glossary, Acronyms, Council of European Energy Regulators, Units and conversions.

  11. SU-E-T-438: Commissioning of An In-Vivo Quality Assurance Method Using the Electronic Portal Imaging Device

    International Nuclear Information System (INIS)

    Morin, O; Held, M; Pouliot, J

    2014-01-01

    Purpose: Patient specific pre-treatment quality assurance (QA) using arrays of detectors or film have been the standard approach to assure the correct treatment is delivered to the patient. This QA approach is expensive, labor intensive and does not guarantee or document that all remaining fractions were treated properly. The purpose of this abstract is to commission and evaluate the performance of a commercially available in-vivo QA software using the electronic portal imaging device (EPID) to record the daily treatments. Methods: The platform EPIgray V2.0.2 (Dosisoft), which machine model compares ratios of TMR with EPID signal to predict dose was commissioned for an Artiste (Siemens Oncology Care Systems) and a Truebeam (Varian medical systems) linear accelerator following the given instructions. The systems were then tested on three different phantoms (homogeneous stack of solid water, anthropomorphic head and pelvis) and on a library of patient cases. Simple and complex fields were delivered at different exposures and for different gantry angles. The effects of the table attenuation and the EPID sagging were evaluated. Gamma analysis of the measured dose was compared to the predicted dose for complex clinical IMRT cases. Results: Commissioning of the EPIgray system for two photon energies took 8 hours. The difference between the dose planned and the dose measured with EPIgray was better than 3% for all phantom scenarios tested. Preliminary results on patients demonstrate an accuracy of 5% is achievable in high dose regions for both 3DCRT and IMRT. Large discrepancies (>5%) were observed due to metallic structures or air cavities and in low dose areas. Flat panel sagging was visible and accounted for in the EPIgray model. Conclusion: The accuracy achieved by EPIgray is sufficient to document the safe delivery of complex IMRT treatments. Future work will evaluate EPIgray for VMAT and high dose rate deliveries. This work is supported by Dosisoft, Cachan, France

  12. Installation and commissioning of instantaneous dose rate monitoring system

    CERN Document Server

    Iaydjiev, Plamen

    2018-01-01

    INRNE-Sofia was working on the installation and commissioning of new instantaneous dose rate monitoring system for the GIF++ facility at CERN. The final device, containing an 8-channels readout board was designed and tested at the CERN facility during November 2017, in an irradiation campaign supported by the AIDA-2020 TA program. The system is designed to be fully integrated in the GIF++ control system and the data measured are available to the users.

  13. Perceptions and misconceptions regarding the Joint Commission's view of quality monitoring.

    Science.gov (United States)

    Patterson, C H

    1989-10-01

    The Joint Commission recently has revised its hospital standards for infection control to reflect more accurately current state-of-the-art practices. In addition, the Joint Commission's Agenda for Change initiatives include the development of clinical indicators; one of the topics that will be included in those clinical indicator sets will be infection control. How the hospital chooses to organize itself to conduct the historically required monitoring and evaluation of clinical patient care currently required by the standards of the Joint Commission is at the option of the hospital. How the hospital will organize and collect data specific to infection control indicators yet to be developed by the Joint Commission has not been determined and will not be defined until specific research and development projects are completed. The hospital is expected to have in place infection prevention, surveillance, and control programs; it also is expected to have in place a quality assurance program that focuses not only on solving identified problems but also on the improvement of patient care quality. How the hospitals organize and/or integrate these activities is also at its option. It is expected that qualified professionals will direct and enforce infection prevention, surveillance, and control practices; indicators for infection control can provide data that will help assess the relative success of those practices and activities. The Joint Commission is not developing the capability to judge, on its own part, the actual quality of care provided by an organization seeking accreditation. Rather, the Joint Commission is committed to developing more accurate means to evaluate the structures, processes, and outcomes of diagnosis and treatment activities, as well as their interrelationships. Clinical excellence is supported by quality in the organizational environment and the managerial and leadership contexts within which patient care is delivered. Both clinical and

  14. Commissioning of the nuclear power plant

    International Nuclear Information System (INIS)

    Furtado, P.M.; Rolf, F.

    1984-01-01

    Nuclear Power Plant Angra 2, located at Itaorna Beach-Angra dos Reis is the first plant of the Brazilian-German Agreement to be commissioned. The Nuclear Power Plant is a pressurized water reactor rated at 3765 Mw thermal/1325 Mw electrical. For commissioning purpose the plant is divided into 110 systems. Plant commissioning objective is to demonstrate the safe and correct operation of each plan component, system and of the whole plant in agreement with design conditions, licensing requirements and contractual obligations. This work gives a description of plant commissioning objectives, activities their time sequence, and documentation. (Author) [pt

  15. The Commission's research action programme on the development of nuclear fission energy

    International Nuclear Information System (INIS)

    1984-01-01

    For its 'Framework Programme 1984-1987' the Commission has defined the major goals for a European Scientific and Technical Strategy. One of the means to reduce the energy dependence of the Community, which is an important objective, is to favour the development of nuclear fission energy. As electricity production by nuclear reactors has reached industrial maturity, the Community activities are directed mainly to safety aspects, in order to ensure the protection of workers and the general public, against hazards linked to operations in the nuclear fuel cycle. A description of the main features of the five sub-programmes on nuclear fission energy is given below; these programmes are: reactor safety; nuclear fuels and actinides research; management of radioactive waste; safeguarding and management of fissile materials; decommissioning of nuclear installations. The research and development work is carried out either by the Commission's Joint Research Center or by organizations and companies of the Member Countries, with the Commission's financial support. (author)

  16. Design of an electromagnetic accelerator for turbulent hydrodynamic mix studies

    Science.gov (United States)

    Susoeff, A. R.; Hawke, R. S.; Morrison, J. J.; Dimonte, G.; Remington, B. A.

    1993-12-01

    An electromagnetic accelerator in the form of a linear electric motor (LEM) has been designed to achieve controlled acceleration profiles of a carriage containing hydrodynamically unstable fluids for the investigation of the development of turbulent mix. The Rayleigh-Taylor instability is investigated by accelerating two dissimilar density fluids using the LEM to achieve a wide variety of acceleration and deceleration profiles. The acceleration profiles are achieved by independent control of rail and augmentation currents. A variety of acceleration-time profiles are possible including: (1) constant, (2) impulsive and (3) shaped. The LEM and support structure are a robust design in order to withstand high loads with deflections and to mitigate operational vibration. Vibration of the carriage during acceleration could create artifacts in the data which would interfere with the intended study of the Rayleigh-Taylor instability. The design allows clear access for diagnostic techniques such as laser induced fluorescence radiography, shadowgraphs and particle imaging velocimetry. Electromagnetic modeling codes were used to optimize the rail and augmentation coil positions within the support structure framework. Results of contemporary studies for non-arcing sliding contact of solid armatures are used for the design of the driving armature and the dynamic electromagnetic braking system. A 0.6MJ electrolytic capacitor bank is used for energy storage to drive the LEM. This report will discuss a LEM design which will accelerate masses of up to 3kg to a maximum of about 3000g(sub o), where g(sub o) is accelerated due to gravity.

  17. Commissioning and operational results of helium refrigeration system at JLab for the 12GeV upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Knudsen, Peter N. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Ganni, Venkatarao [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Dixon, Kelly D. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Norton, Robert O. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Creel, Jonathan D. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2015-12-01

    The new 4.5 K refrigerator system at the Jefferson Lab (JLab) Central Helium Liquefier (CHL-2) for the 12 GeV upgrade was commissioned in late spring of 2013, following the commissioning of the new compressor system, and has been supporting 12 GeV LINAC commissioning since that time. Six design modes were tested during commissioning, consisting of a maximum capacity, nominal capacity, maximum liquefaction, maximum refrigeration, maximum fill and a stand-by/reduced load condition. The maximum capacity was designed to support a 238 g/s, 30 K and 1.16 bar cold compressor return flow, a 15 g/s, 4.5 K liquefaction load and a 12.6 kW, 35-55 K shield load. The other modes were selected to ensure proper component sizing and selection to allow the cold box to operate over a wide range of conditions and capacities. The cold box system is comprised of two physically independent cold boxes with interconnecting transfer-lines. The outside (upper) 300-60 K vertical cold box has no turbines and incorporates a liquid nitrogen pre-cooler and 80-K beds. The inside (lower) 60-4.5 K horizontal cold box houses seven turbines that are configured in four expansion stages including one Joule-Thompson expander and a 20-K bed. The helium compression system has five compressors to support three pressure levels in the cold box. This paper will summarize the analysis of the test data obtained over the wide range of operating conditions and capacities which were tested.

  18. Radiation shielding analysis of a special linear accelerator for electron beam and X-ray.

    Science.gov (United States)

    Kang, W G; Pyo, S H; Alkhuraiji, T S; Han, B S; Kang, C M

    2017-01-01

    The King AbdulAziz City for Science & Technology in the Kingdom of Saudi Arabia plans to build a 10 MeV, 15 kW linear accelerator (LINAC) for electron beam and X-ray. The accelerator will be supplied by EB Tech, Republic of Korea, and the design and construction of the accelerator building will be conducted in the cooperation with EB Tech. This report presents the shielding analysis of the accelerator building using the Monte Carlo N-Particle Transport Code (MCNP). In order to improve the accuracy in estimating deep radiation penetration and to reduce computation time, various variance reduction techniques, including the weight window (WW) method, the deterministic transport (DXTRAN) spheres were considered. Radiation levels were estimated at selected locations in the shielding facility running MCNP6 for particle histories up to 1.0×10+8. The final results indicated that the calculated doses at all selected detector locations met the dose requirement of 50 mSv/yr, which is the United State Nuclear Regulatory Commission (U.S. NRC) requirement.

  19. 78 FR 46329 - Meeting of the National Commission on the Structure of the Air Force

    Science.gov (United States)

    2013-07-31

    ...; (e) maintains a peacetime rotation force to support operational tempo goals of 1:2 for regular... summarize their oral statement in writing and submit with their registration. The Commission's staff will...

  20. An examination of medical linear accelerator ion-chamber performance

    International Nuclear Information System (INIS)

    Karolis, C.; Lee, C.; Rinks, A.

    1996-01-01

    Full text: The company ( Radiation Oncology Physics and Engineering Services Pty Ltd) provides medical physics services to four radiotherapy centres in NSW with a total of 6 high energy medical linear accelerators manufactured by three different companies. As part of the services, the stability of the accelerator ion chamber system is regularly examined for constancy and periodically for absolute calibration. Each accelerator ion chamber has exhibited undesirable behaviour from time to time, sometimes leading to its replacement. This presentation describes the performance of the ion chambers for some of the linacs over a period of 12-18 months and the steps taken by the manufacturer to address the problems encountered. As part of our commissioning procedure of new linacs, an absolute calibration of the accelerator output (photon and electron beams) is repeated several times over the period following examination of the physical properties of the radiation beams. These calibrations were undertaken in water using the groups calibrated ion chamber/electrometer system and were accompanied by constancy checks using an acrylic phantom and field instruments. Constancy checks were performed daily for a period of 8 weeks during the initial life of the accelerator and thereafter weekly. For one accelerator, the ion chamber was replaced 6 times in the first eighteen months of its life due to severe drifts in output, found to be due to pressure changes in one half of the chamber In another accelerator, erratic swings of 2% were observed for a period of nine months, particularly with the electron beams, before the manufacturer offered to change the chamber with another constructed from different materials. In yet another accelerator the ion chamber has shown consistent erratic behaviour, but this has not been addressed by the manufacturer. In another popular accelerator, the dosimetry was found to be very stable until some changes in the tuning were introduced resulting in small

  1. Use of Torness simulator as a design and commissioning tool

    International Nuclear Information System (INIS)

    Hamilton, J.; Hacking, D.

    1989-01-01

    Real-time replica control room simulators are now in general use for the training of nuclear power plant operators, and the almost universal trend towards accurate physics-based plant models and detailed operator interface has opened up interesting and valuable engineering applications. This paper discusses the use of the Torness AGR Simulator in its dual role of commissioning support tool and operator training facility. (author)

  2. Scintillator tiles with SiPM readout for calorimetry and fast timing in SuperKEKB commissioning

    Energy Technology Data Exchange (ETDEWEB)

    Windel, Hendrik [Max-Planck-Institute for Physics (Germany); Collaboration: CALICE-D-Collaboration

    2016-07-01

    The CALICE collaboration is studying plastic scintillators coupled to silicon photomultipliers as sensors for calorimeters for future linear colliders like ILC and CLIC. Current detector concepts foresee up to ten million channels for the hadronic calorimeter. A larger number of different types of SiPMs and scintillator materials exist and their properties have to be investigated to provide best results. For these purposes a dedicated laboratory setup has been developed to provide high resolution scanning of the scintillator tiles with a radioactive source. The data acquisition of this setup as well as a fast online analysis has been implemented in LABVIEW. A modified version of this setup, together with hardware previously used for measuring timing properties of hardronic showers, will be used in the commissioning phase of the SuperKEKB accelerator. This contribution discusses results from detailed investigations of different scintillator tiles, including the study of different materials. Key performance criteria for their application in calorimetry and in background measurements with high time resolution at SuperKEKB are also presented. The CALICE collaboration is studying plastic scintillators coupled to silicon photomultipliers as sensors for calorimeters for future linear colliders like ILC and CLIC. Current detector concepts foresee up two ten million channels for the hadronic calorimeter. In the real detector several thousands of these plastic scintillators will be used. To provide comparability between each of them, investigations of homogeneity for different packaging types and scintillating materials are needed as well as different attempts in tile arrangement to take inter tile crosstalk into account. A larger number of different types of SiPMs and scintillator materials exist and their properties have to be investigated to provide best results. For these purposes a dedicated LABVIEW based setup consistent of data acquisition system (DAQ) and analysis

  3. A 7MeV S-Band 2998MHz Variable Pulse Length Linear Accelerator System

    CERN Document Server

    Hernandez, Michael; Mishin, Andrey V; Saverskiy, Aleksandr J; Skowbo, Dave; Smith, Richard

    2005-01-01

    American Science and Engineering High Energy Systems Division (AS&E HESD) has designed and commissioned a variable pulse length 7 MeV electron accelerator system. The system is capable of delivering a 7 MeV electron beam with a pulse length of 10 nS FWHM and a peak current of 1 ampere. The system can also produce electron pulses with lengths of 20, 50, 100, 200, 400 nS and 3 uS FWHM with corresponding lower peak currents. The accelerator system consists of a gridded electron gun, focusing coil, an electrostatic deflector system, Helmholtz coils, a standing wave side coupled S-band linac, a 2.6 MW peak power magnetron, an RF circulator, a fast toroid, vacuum system and a PLC/PC control system. The system has been operated at repetition rates up to 250pps. The design, simulations and experimental results from the accelerator system are presented in this paper.

  4. Accelerated pavement testing of low-volume paved roads with geocell reinforcement.

    Science.gov (United States)

    2015-03-01

    The Midwest States Accelerated Pavement Testing Pooled-Fund Program, financed by the highway : departments of Kansas, Iowa, Missouri, and New York, has supported an accelerated pavement testing (APT) project : to study the rehabilitation of low-volum...

  5. KWOC [Key-Word-Out-of-Context] Index of US Nuclear Regulatory Commission Regulatory Guide Series

    International Nuclear Information System (INIS)

    Jennings, S.D.

    1990-04-01

    To meet the objectives of the program funded by the Department of Energy (DOE)-Nuclear Energy (NE) Technology Support Programs, the Performance Assurance Project Office (PAPO) administers a Performance Assurance Information Program that collects, compiles, and distributes program-related information, reports, and publications for the benefit of the DOE-NE program participants. THE ''KWOC Index of US Nuclear Regulatory Commission Regulatory Guide Series'' is prepared as an aid in searching for specific topics in the US Nuclear Regulatory Commission, Regulatory Guide Series

  6. Determination of Beam Intensity and Position in a Particle Accelerator

    CERN Document Server

    Kasprowicz, Grzegorz; Raich, Uli

    2011-10-04

    A subject of the thesis is conception, design, implementation, tests and deployment of new position measurement system of particle bunch in the CERN PS circular accelerator. The system is based on novel algorithms of particle position determination. The Proton Synchrotron accelerator (PS), installed at CERN†, although commissioned in 1959, still plays a central role in the production of beams for the Antiproton Decelerator, Super Proton Synchrotron, various experimental areas and for the Large Hadron Collider (LHC)‡. The PS produces beams of different types of particles, mainly protons, but also various species of ions. Almost all these particle beams pass through the PS. The quality of the beams delivered to the LHC has a direct impact on the effective luminosity, and therefore the performance of the instrumentation of the PS is of great importance. The old trajectory and orbit measurement system of the PS is dated back to 1988 and no longer fulfilled present day requirements. It used 40 beam posi...

  7. Determination of beam intensity and position in a particle accelerator

    CERN Document Server

    Kasprowicz, G

    2011-01-01

    A subject of the thesis is conception, design, implementation, tests and deployment of new position measurement system of particle bunch in the CERN PS circular accelerator. The system is based on novel algorithms of particle position determination. The Proton Synchrotron accelerator (PS), installed at CERN, although commissioned in 1959, still plays a central role in the production of beams for the Antiproton Decelerator, Super Proton Synchrotron, various experimental areas and for the Large Hadron Collider (LHC). The PS produces beams of different types of particles, mainly protons, but also various species of ions. Almost all these particle beams pass through the PS. The quality of the beams delivered to the LHC has a direct impact on the effective luminosity, and therefore the performance of the instrumentation of the PS is of great importance. The old trajectory and orbit measurement system of the PS is dated back to 1988 and no longer fulfilled present day requirements. It used 40 beam position monitors...

  8. Accelerated aging tests of liners for uranium mill tailings disposal

    International Nuclear Information System (INIS)

    Barnes, S.M.; Buelt, J.L.; Hale, V.Q.

    1981-11-01

    This document describes the results of accelerated aging tests to determine the long-term effectiveness of selected impoundment liner materials in a uranium mill tailings environment. The study was sponsored by the US Department of Energy under the Uranium Mill Tailings Remedial Action Project. The study was designed to evaluate the need for, and the performance of, several candidate liners for isolating mill tailings leachate in conformance with proposed Environmental Protection Agency and Nuclear Regulatory Commission requirements. The liners were subjected to conditions known to accelerate the degradation mechanisms of the various liners. Also, a test environment was maintained that modeled the expected conditions at a mill tailings impoundment, including ground subsidence and the weight loading of tailings on the liners. A comparison of installation costs was also performed for the candidate liners. The laboratory testing and cost information prompted the selection of a catalytic airblown asphalt membrane and a sodium bentonite-amended soil for fiscal year 1981 field testing

  9. The Industry Commission inquiry into charitable organisations.

    Science.gov (United States)

    Suter, K

    1996-01-01

    The Industry Commission has carried out Australia's largest inquiry into charities. It was, from the point of view of charities, an unsatisfactory operation, all the more so since it was not clear why the task had been given to the commission. This article examines the commission's work in three ways: the overall relationship between government and charities; the commission's proposed major reforms; and the minor reforms.

  10. Nuclear Regulatory Commission issuances, October 1993

    International Nuclear Information System (INIS)

    1993-10-01

    This document contains a Commission issuance in which the Commission denies the petitioners' motion to quash or modify a subpoena issued by the NRC staff in the course of an investigation to determine if the petitioners' have violated NRC regulations and to determine if safety-related problems exist at NRC-licensed facilities. The pertinent regulations and the Commission's Memorandum and Order are included

  11. Commission 1

    African Journals Online (AJOL)

    state" to provide the Commission with information on the measures that they have ...... policies and identify the gaps in ensuring the full realisation of socio- economic .... Boulle L, Harris Band Hoexter C Constitutional and Administrative Law.

  12. Feedback from the decommissioning of two accelerators

    International Nuclear Information System (INIS)

    Aubert, M-C; Damoy, F.; Joly, J-M

    2003-01-01

    Saclay Linear Accelerator (ALS) and Saturne synchrotron, both well known as international research instruments, have definitively stopped operating in 1990 and 1997 respectively. The French Atomic Energy Commission (CEA) has decided proceeding with the appropriate actions in order to dismantle these two nuclear installations (NIs) known as INB 43 (ALS) and INB 48 (Saturne). The SDA (Accelerator Decommissioning Division) was created to be in charge of the dismantling procedure of the above NIs under the following conditions: - to maintain within the team a few employees from the previous exploitation of two NIs, in order not to loose the details and history of accelerator operation; - to import the necessary skills for a good management of dismantling operation such as waste management, ANDRA rules, project AMEC34omelt.com. Learn more about GeoMelt ats-gssr410nuclear safety, radiation protection, ALARA concepts, etc. Presently the dismantling operations are well under way at INB 43 and nearly finished at INB 48. The project organisation established by SDA has allowed meeting both the schedule and cost requirements of the decommissioning. At the beginning, major decommissioning safety characteristics of large research instruments will be presented and dismantling aspects in particular. Afterwards, the organization of both projects will be detailed, emphasizing their statutory aspects (e.g., safety documents, zoning, traceability, etc.) and technical difficulties. Waste characterisation as well as the choice of evacuation paths for each category of the waste will then be described in detail for both accelerators. A number of difficulties met during these procedures will be analysed and proposals will be made in order to improve the statutory framework in particular, both on technical and nuclear safety aspects. The application of the above experience to the dismantling of two fuel cycle installations, namely the research nuclear reactors, is presently under study

  13. CERN: Accelerator school

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Full text: Jyvaskyla, a university town in central Finland, was the setting for last year's General Accelerator School organized by the CERN Accelerator School. Well over a hundred students - more than for some time - followed two weeks of lectures on a broad spectrum of accelerator topics, the first step en route to becoming the designers, builders and operators of the surprisingly large number of, accelerators of all kinds either built or planned throughout Europe and further afield. This was the fifth such school organized by CAS in a biennial cycle which alternates this introductory level with more advanced tuition. The next, advanced, school will be from 20 October - 1 November, hosted by Athens University on the Greek Island of Rhodes. (Application details will become available in Spring but would-be participants should already reserve the dates.) After Finland, the CAS caravan moved to Benalmadena near Malaga in Spain where, together with Seville University, they organized one of the joint US-CERN schools held every two years and focusing on frontier accelerator topics. This time the subject was electron-positron factories - machines for high luminosity experiments in phi, tau-charm, beauty and Z physics. Experts from both sides of the Atlantic and from Japan shared their knowledge with an equally representative audience and probed the many intensity related phenomena which must be mastered to reach design performance. A number of these topics will receive extended coverage in the next specialist CAS School which is a repeat - by public demand - of the highly successful radiofrequency course held in Oxford in 1991. This school will be in Capri, Italy, with the support of the University of Naples from 29 April to 5 May. Details and application forms are now available by e-mail (CASRF@CERNVM.CERN.CH), by fax (+41 22 7824836) or from Suzanne von Wartburg, CERN Accelerator School, 1211 Geneva 23, Switzerland

  14. arXiv Medical Physics Commissioning

    CERN Document Server

    Meer, David

    The medical commissioning is an important step to bring a particle gantry into clinical operation for tumour treatments. This involves the parametrization and characterization of all relevant systems including the beam delivery, the patient table, the imaging systems and the connection to all required software components. This article is limited to necessary tasks for the beam delivery system of a pencil beam scanning system. Usually the commissioning starts with the characterization of the unscanned beam and the calibration of the beam energy. The following steps are the parametrization of the scanning system, the commissioning of the beam position monitoring system and characterization of the spot size, all requiring precisions better than 1 mm. The commissioning effort for these tasks depends also on the gantry topology. Finally, the calibration of the dose measurement system ensures that any dose distribution can be delivered with an absolute precision better than 1%.

  15. Atomic Energy Commission Act, 2000 (Act 588)

    International Nuclear Information System (INIS)

    2000-01-01

    Act 588 of the Republic of Ghana entitled, Atomic Energy Commission Act, 2000, amends and consolidates the Atomic Energy Commission Act, 204 of 1963 relating to the establishment of the Atomic Energy Commission. Act 588 makes provision for the Ghana Atomic Energy Commission to establish more institutes for the purpose of research in furtherance of its functions and also promote the commercialization of its research and development results. (E.A.A.)

  16. Science in the age of accelerators

    International Nuclear Information System (INIS)

    Perl, M.L.

    1989-01-01

    Accelerators have brought the particle physicists to work and live in three worlds: the private world of science, the public world of science, and the world of large accelerators. The private world is the apparatus, the data, the theories, the colleagues, the journals, the meetings, and above all the understanding of elementary particles. The public world of science is how society sees scientists and how scientist want to be seen in newspapers and on TV, how scientist interact with governments, and most important how governments support science. 7 references, 20 figures

  17. 78 FR 46928 - Meeting of the National Commission on the Structure of the Air Force

    Science.gov (United States)

    2013-08-02

    ... Air Force could be recruited; (e) maintains a peacetime rotation force to support operational tempo... registration. The Commission's staff will assign time to oral commenters at the meeting, for no more than 5...

  18. 78 FR 40730 - Meeting of the National Commission on the Structure of the Air Force

    Science.gov (United States)

    2013-07-08

    ... could be recruited; (e) maintains a peacetime rotation force to support operational tempo goals of 1:2... statement in writing and submit with their registration. The Commission's staff will assign time to oral...

  19. Linear accelerator with x-ray absorbing insulators

    International Nuclear Information System (INIS)

    Rose, P.H.

    1975-01-01

    Annular insulators for supporting successive annular electrodes in a linear accelerator have embedded x-ray absorbing shield structures extending around the accelerating path. The shield members are disposed to intercept x-ray radiation without disrupting the insulative effect of the insulator members. In preferred forms, the structure comprises a plurality of annular members of heavy metal disposed in an x-ray blocking array, spaced from each other by the insulating substance of the insulator member. (auth)

  20. Development of a superconducting CH-accelerator-structure for light and heavy ions; Entwicklung einer supraleitenden CH-Beschleuniger-Struktur fuer leichte und schwere Ionen

    Energy Technology Data Exchange (ETDEWEB)

    Liebermann, Holger

    2007-07-01

    This work deals with the development of the prototype of a superconducting CH accelerator structure. The simulations were calculated with the program CST Microwave Studio. It is based on the finite integration theory, which the Maxwell equations in a two-grid matrix form convicted so they can be solved numerically. In another chapter, a method for determining the coupling strength is discussed. The conditions that previously were created for the optimization of the prototype of the superconducting CH structure are described. It was for the optimization of the field distribution on the beam axis by adjusting the end cell design, optimization of support for the magnetic and electric fields, leading to reduction of the quadrupole component of the CH-structure, the coupling and, finally, the possibility of static tuning during the completion of the structure. On the basis of these investigations the completion of an initial prototype superconducting at the company ACCEL in Bergisch Gladbach was commissioned. Finally simulations for an operation accelerator facility, and a look at possible areas of the superconducting CH-structure are presented. The optimizations performed for the high power injector led to a more stable operation of the plant. Through this work it could be shown that the newly-CH structure is very well suited for use in superconducting accelerators. (orig.)

  1. 78 FR 44165 - Nuclear Regulatory Commission Enforcement Policy

    Science.gov (United States)

    2013-07-23

    ... NUCLEAR REGULATORY COMMISSION [NRC-2013-0159] Nuclear Regulatory Commission Enforcement Policy AGENCY: Nuclear Regulatory Commission. ACTION: Enforcement policy; request for comment. SUMMARY: The U.S... Policy. In SRM-SECY-12-0047, ``Revisions to the Nuclear Regulatory Commission Enforcement Policy,'' dated...

  2. Instrumented home energy rating and commissioning

    Energy Technology Data Exchange (ETDEWEB)

    Wray, Craig P.; Walker, Iain S.; Sherman, Max H.

    2003-05-01

    Currently, houses do not perform optimally or even as many codes and forecasts predict, largely because they are field assembled and there is no consistent process to identify deficiencies or to correct them. Solving this problem requires field performance evaluations using appropriate and agreed upon procedures in the form of a new process called residential commissioning. The purpose of this project is to develop and document these procedures and to demonstrate the value that applying them could provide in both new and existing California houses. This project has four specific objectives: to develop metrics and diagnostics for assessing house performance, to provide information on the potential benefits of commissioning using a whole-house approach, to develop programmatic guidelines for commissioning, and to conduct outreach efforts to transfer project results to industry stakeholders. The primary outcomes from this project are the development of residential commissioning guidelines and the analytical confirmation that there are significant potential benefits associated with commissioning California houses, particularly existing ones. In addition, we have made substantial advances in understanding the accuracy and usability of diagnostics for commissioning houses. In some cases, we have been able to work with equipment manufacturers to improve these aspects of their diagnostic tools. These outcomes provide a solid foundation on which to build a residential commissioning program in California. We expect that a concerted effort will be necessary to integrate such a program with existing building industry efforts and to demonstrate its use in the field.

  3. Accelerator and Electrodynamics Capability Review

    International Nuclear Information System (INIS)

    Jones, Kevin W.

    2010-01-01

    Los Alamos National Laboratory (LANL) uses capability reviews to assess the science, technology and engineering (STE) quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). Laboratory Management will use this report for STE assessment and planning. LANL has defined fifteen STE capabilities. Electrodynamics and Accelerators is one of the seven STE capabilities that LANL Management (Director, PADSTE, technical Associate Directors) has identified for review in Fiscal Year (FY) 2010. Accelerators and electrodynamics at LANL comprise a blend of large-scale facilities and innovative small-scale research with a growing focus on national security applications. This review is organized into five topical areas: (1) Free Electron Lasers; (2) Linear Accelerator Science and Technology; (3) Advanced Electromagnetics; (4) Next Generation Accelerator Concepts; and (5) National Security Accelerator Applications. The focus is on innovative technology with an emphasis on applications relevant to Laboratory mission. The role of Laboratory Directed Research and Development (LDRD) in support of accelerators/electrodynamics will be discussed. The review provides an opportunity for interaction with early career staff. Program sponsors and customers will provide their input on the value of the accelerator and electrodynamics capability to the Laboratory mission.

  4. Accelerator and electrodynamics capability review

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Kevin W [Los Alamos National Laboratory

    2010-01-01

    Los Alamos National Laboratory (LANL) uses capability reviews to assess the science, technology and engineering (STE) quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). Laboratory Management will use this report for STE assessment and planning. LANL has defined fifteen STE capabilities. Electrodynamics and Accelerators is one of the seven STE capabilities that LANL Management (Director, PADSTE, technical Associate Directors) has identified for review in Fiscal Year (FY) 2010. Accelerators and electrodynamics at LANL comprise a blend of large-scale facilities and innovative small-scale research with a growing focus on national security applications. This review is organized into five topical areas: (1) Free Electron Lasers; (2) Linear Accelerator Science and Technology; (3) Advanced Electromagnetics; (4) Next Generation Accelerator Concepts; and (5) National Security Accelerator Applications. The focus is on innovative technology with an emphasis on applications relevant to Laboratory mission. The role of Laboratory Directed Research and Development (LDRD) in support of accelerators/electrodynamics will be discussed. The review provides an opportunity for interaction with early career staff. Program sponsors and customers will provide their input on the value of the accelerator and electrodynamics capability to the Laboratory mission.

  5. Nuclear Regulatory Commission Issuances

    International Nuclear Information System (INIS)

    1992-01-01

    This is the thirty-sixth volume of issuances (1-396) of the Nuclear Regulatory Commission and its Atomic Safety and Licensing Boards, Administrative Law Judges, and Office Directors. It covers the period from July 1, 1992-December 31, 1992. Atomic Safety and Licensing Boards are authorized by Section 191 of the Atomic Energy Act of 1954. These Boards, comprised of three members conduct adjudicatory hearings on applications to construct and operate nuclear power plants and related facilities and issue initial decisions which, subject to internal review and appellate procedures, become the final Commission action with respect to those applications. Boards are drawn from the Atomic Safety and Licensing Board Panel, comprised of lawyers, nuclear physicists and engineers, environmentalists, chemists, and economists. The Atomic Energy Commission first established Licensing Boards in 1962 and the Panel in 1967

  6. COMMISSIONING AND DETECTOR PERFORMANCE GROUPS (DPG)

    CERN Multimedia

    Tiziano Camporesi

    Pit commissioning activities The last 4 months have seen various major achievements in hardware commissioning, global data taking, readiness of the DPGs to deal with LHC data flows and alignment and calibration workflows. Since February, the global commissioning has been characterized on the one side by more and more of the final CMS detector becoming available for global readout and triggering and on the other side by consolidation of many of the central software infrastructure and of most of the services infrastructure. The reliability of services like cooling, power, gas has markedly improved with respect to what we observed in the second half of 2007.   Of particular note are the delivery of all low voltage power supplies, the commissioning of the final power distribution, the progressive commissioning ( still ongoing)  of the Detector Safety System and of the associated DCS early warning and alarm system. On the detector side, while already we are used to seeing all of HCAL being exe...

  7. COMMISSIONING AND DETECTOR PERFORMANCE GROUPS

    CERN Multimedia

    D. Acosta

    The commissioning effort is presently addressing two main areas: the commissioning of the hardware components at the pit and the coordination of the activities of the newly constituted Detector Performance groups (DPGs). At point 5, a plan regarding the service cavern and the commissioning of the connections of the off-detector electronics (for the data collection line and trigger primitive generation) to the central DAQ and the central Trigger has been defined. This activity was started early February and will continue until May. It began with Tracker electronics followed so far by HCAL and CSC. The goal is to have by May every detector commission, as much as possible, their data transfer paths from FED to Central DAQ as well as their trigger setups between TPGs and Global Level 1 trigger. The next focus is on connections of front-ends to the service cavern. This depends strongly on the installations of services. Presently the only detector which has its link fibers connected to the off-detector electr...

  8. Distribution uniformity of laser-accelerated proton beams

    Science.gov (United States)

    Zhu, Jun-Gao; Zhu, Kun; Tao, Li; Xu, Xiao-Han; Lin, Chen; Ma, Wen-Jun; Lu, Hai-Yang; Zhao, Yan-Ying; Lu, Yuan-Rong; Chen, Jia-Er; Yan, Xue-Qing

    2017-09-01

    Compared with conventional accelerators, laser plasma accelerators can generate high energy ions at a greatly reduced scale, due to their TV/m acceleration gradient. A compact laser plasma accelerator (CLAPA) has been built at the Institute of Heavy Ion Physics at Peking University. It will be used for applied research like biological irradiation, astrophysics simulations, etc. A beamline system with multiple quadrupoles and an analyzing magnet for laser-accelerated ions is proposed here. Since laser-accelerated ion beams have broad energy spectra and large angular divergence, the parameters (beam waist position in the Y direction, beam line layout, drift distance, magnet angles etc.) of the beamline system are carefully designed and optimised to obtain a radially symmetric proton distribution at the irradiation platform. Requirements of energy selection and differences in focusing or defocusing in application systems greatly influence the evolution of proton distributions. With optimal parameters, radially symmetric proton distributions can be achieved and protons with different energy spread within ±5% have similar transverse areas at the experiment target. Supported by National Natural Science Foundation of China (11575011, 61631001) and National Grand Instrument Project (2012YQ030142)

  9. Accelerator production of tritium authorization basis strategy

    International Nuclear Information System (INIS)

    Miller, L.A.; Edwards, J.; Rose, S.

    1996-01-01

    The Accelerator Production of Tritium (APT) project has proposed a strategy to develop the APT authorization basis and safety case based on DOE orders and fundamental requirements for safe operation. The strategy is viable regardless of whether the APT is regulated by DOE or by an external regulatory body. Currently the operation of Department of Energy (DOE) facilities is authorized by DOE and regulated by DOE orders and regulations while meeting the environmental protection requirements of the Environmental Protection Agency (EPA) and the states. In the spring of 1994, Congress proposed legislation and held hearings related to requiring all DOE operations to be subject to external regulation. On January 25, 1995, DOE, with the support of the White House Council on Environmental Quality, created the Advisory Committee on External Regulation of Department of Energy Nuclear Safety. This committee divided its recommendations into three areas: (1) facility safety, (2) worker safety, and (3) environmental protection. In the area of facility safety the committee recommended external regulation of DOE nuclear facilities by either the Nuclear Regulatory Commission (NRC) or a restructured Defense Nuclear Facilities Safety Board (DNFSB). In the area of worker safety, the committee recommended that the Occupational Safety and Health Administration (OSHA) regulate DOE nuclear facilities. In the environmental protection area, the committee did not recommend a change in the regulation by the EPA and the states of DOE nuclear facilities. If these recommendations are accepted, all DOE nuclear facilities will be impacted to some extent

  10. COSY Control Status. First results with rapid prototyped man-machine interface for accelerator control

    Energy Technology Data Exchange (ETDEWEB)

    Hacker, U [Forschungszentrum Juelich, Postfach 1913, 52425 Juelich (Germany); Haberbosch, C [Forschungszentrum Juelich, Postfach 1913, 52425 Juelich (Germany); Henn, K [Forschungszentrum Juelich, Postfach 1913, 52425 Juelich (Germany); Weinert, A [Forschungszentrum Juelich, Postfach 1913, 52425 Juelich (Germany)

    1994-12-15

    The experience gained with the COSY Control System after a six month commissioning period followed by a six month production period will be presented. The COSY Control System runs approximately 300 VME and VXI target systems using a total of about 1000 CPUs, the systems are driven by the diskless operating environment RT/OS, hosted by eight workcells. Application software is implemented using Object-Orientated programming paradigms. All accelerator components become interface functions as instances of an abstract device model class. Methods defined here present an abstract picture of the accelerator giving immediate access to device states and parameters. Operator interaction is defined by building views and controllers for the model. Higher level functions, such as defining an acceleration cycle, are easily developed and modified with the accelerator connected on-line to the model. In the first year of COSY operation the object based approach for a control system, together with a rapid prototyped man-machine interface has brought to light the potential of new functions such as on-line, real time programming on a running system yielding high programming performance. The advantages of this approach have not been, until now, fully appreciated. ((orig.))

  11. Compact X-ray source at STF (Super Conducting Accelerator Test Facility)

    International Nuclear Information System (INIS)

    Urakawa, J

    2012-01-01

    KEK-STF is a super conducting linear accelerator test facility for developing accelerator technologies for the ILC (International Linear Collider). We are supported in developing advanced accelerator technologies using STF by Japanese Ministry (MEXT) for Compact high brightness X-ray source development. Since we are required to demonstrate the generation of high brightness X-ray based on inverse Compton scattering using super conducting linear accelerator and laser storage cavity technologies by October of next year (2012), the design has been fixed and the installation of accelerator components is under way. The necessary technology developments and the planned experiment are explained.

  12. Towards MRI-guided linear accelerator control: gating on an MRI accelerator.

    Science.gov (United States)

    Crijns, S P M; Kok, J G M; Lagendijk, J J W; Raaymakers, B W

    2011-08-07

    To boost the possibilities of image guidance in radiotherapy by providing images with superior soft-tissue contrast during treatment, we pursue diagnostic quality MRI functionality integrated with a linear accelerator. Large respiration-induced semi-periodic target excursions hamper treatment of cancer of the abdominal organs. Methods to compensate in real time for such motion are gating and tracking. These strategies are most effective in cases where anatomic motion can be visualized directly, which supports the use of an integrated MRI accelerator. We establish here an infrastructure needed to realize gated radiation delivery based on MR feedback and demonstrate its potential as a first step towards more advanced image guidance techniques. The position of a phantom subjected to one-dimensional periodic translation is tracked with the MR scanner. Real-time communication with the MR scanner and control of the radiation beam are established. Based on the time-resolved position of the phantom, gated radiation delivery to the phantom is realized. Dose distributions for dynamic delivery conditions with varying gating windows are recorded on gafchromic film. The similarity between dynamically and statically obtained dose profiles gradually increases as the gating window is decreased. With gating windows of 5 mm, we obtain sharp dose profiles. We validate our gating implementation by comparing measured dose profiles to theoretical profiles calculated using the knowledge of the imposed motion pattern. Excellent correspondence is observed. At the same time, we show that real-time on-line reconstruction of the accumulated dose can be performed using time-resolved target position information. This facilitates plan adaptation not only on a fraction-to-fraction scale but also during one fraction, which is especially valuable in highly accelerated treatment strategies. With the currently established framework and upcoming improvements to our prototype-integrated MRI accelerator

  13. 17 CFR 171.28 - Participation by Commission staff.

    Science.gov (United States)

    2010-04-01

    ... staff. 171.28 Section 171.28 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION..., Membership Denial and Registration Actions § 171.28 Participation by Commission staff. The Division of.... The Commission shall by order establish a supplementary briefing schedule for the Commission staff and...

  14. Point Lepreau G.S. commissioning management experience

    International Nuclear Information System (INIS)

    Alikhan, S.; Walker, W.J.

    1983-05-01

    This paper shares the experience gained by New Brunswick Power in commissioning its first nuclear plant, with particular emphasis on the management techniques that were developed. Some of the areas discussed include: organization of Nuclear Operations Group responsible for commissioning and its interface with construction; outline and scope of documentation required to define, execute and report commissioning to satisfy the licensing requirements, management techniques developed to implement commissioning; and a summary of lessons learned and recommendations for the future

  15. 19 CFR 213.5 - Access to Commission resources.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 3 2010-04-01 2010-04-01 false Access to Commission resources. 213.5 Section 213.5 Customs Duties UNITED STATES INTERNATIONAL TRADE COMMISSION INVESTIGATIONS OF UNFAIR PRACTICES IN IMPORT TRADE TRADE REMEDY ASSISTANCE § 213.5 Access to Commission resources. Commission resources, in...

  16. Alaska Public Offices Commission, Department of Administration, State of

    Science.gov (United States)

    Visiting Alaska State Employees State of Alaska Department of Administration Alaska Public Offices Commission Alaska Department of Administration, Alaska Public Offices Commission APOC Home Commission Filer ; AO's Contact Us Administration > Alaska Public Offices Commission Alaska Public Offices Commission

  17. Λ CDM is Consistent with SPARC Radial Acceleration Relation

    Energy Technology Data Exchange (ETDEWEB)

    Keller, B. W.; Wadsley, J. W., E-mail: kellerbw@mcmaster.ca [Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1 (Canada)

    2017-01-20

    Recent analysis of the Spitzer Photometry and Accurate Rotation Curve (SPARC) galaxy sample found a surprisingly tight relation between the radial acceleration inferred from the rotation curves and the acceleration due to the baryonic components of the disk. It has been suggested that this relation may be evidence for new physics, beyond Λ CDM . In this Letter, we show that 32 galaxies from the MUGS2 match the SPARC acceleration relation. These cosmological simulations of star-forming, rotationally supported disks were simulated with a WMAP3 Λ CDM cosmology, and match the SPARC acceleration relation with less scatter than the observational data. These results show that this acceleration relation is a consequence of dissipative collapse of baryons, rather than being evidence for exotic dark-sector physics or new dynamical laws.

  18. 47 CFR 0.420 - Other Commission publications.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Other Commission publications. 0.420 Section 0... Information Printed Publications § 0.420 Other Commission publications. The following additional Commission publications may be purchased from the Superintendent of Documents: (a) Statistics of Communications Common...

  19. Enhanced efficiency of plasma acceleration in the laser-induced cavity pressure acceleration scheme

    Czech Academy of Sciences Publication Activity Database

    Badziak, J.; Rosinski, M.; Jabłonski, S.; Pisarczyk, T.; Chodukowski, T.; Parys, P.; Raczka, P.; Krouský, Eduard; Ullschmied, Jiří; Liska, R.; Kucharik, M.

    2015-01-01

    Roč. 57, č. 1 (2015), 014007 ISSN 0741-3335 R&D Projects: GA MŠk(CZ) LC528; GA MŠk LM2010014 Institutional support: RVO:68378271 ; RVO:61389021 Keywords : laser ion acceleration * laser plasma * fast ignition * ion diagnostics * LICPA Subject RIV: BL - Plasma and Gas Discharge Physics; BH - Optics, Masers, Lasers (UFP-V) Impact factor: 2.404, year: 2015

  20. National Capital Planning Commission Meeting Transcripts

    Data.gov (United States)

    National Capital Planning Commission — Transcripts of the monthly (with the exception of August) National Capital Planning Commission meeting transcripts are provided for research to confirm actions taken...

  1. Accelerated testing for studying pavement design and performance (FY 2003) : research summary.

    Science.gov (United States)

    2008-01-01

    The Midwest States Accelerated Pavement Testing Pooled Fund Program, financed by : the highway departments of Missouri, Iowa, Kansas and Nebraska, has supported an : accelerated pavement testing (APT) project to compare the performance of stabilized ...

  2. 29 CFR 2200.92 - Review by the Commission.

    Science.gov (United States)

    2010-07-01

    ... Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH REVIEW COMMISSION RULES OF PROCEDURE Posthearing Procedures § 2200.92 Review by the Commission. (a) Jurisdiction of the Commission; issues on... Commission to review the entire case. The issues to be decided on review are within the discretion of the...

  3. MEMS-based, RF-driven, compact accelerators

    Science.gov (United States)

    Persaud, A.; Seidl, P. A.; Ji, Q.; Breinyn, I.; Waldron, W. L.; Schenkel, T.; Vinayakumar, K. B.; Ni, D.; Lal, A.

    2017-10-01

    Shrinking existing accelerators in size can reduce their cost by orders of magnitude. Furthermore, by using radio frequency (RF) technology and accelerating ions in several stages, the applied voltages can be kept low paving the way to new ion beam applications. We make use of the concept of a Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) and have previously shown the implementation of its basic components using printed circuit boards, thereby reducing the size of earlier MEQALACs by an order of magnitude. We now demonstrate the combined integration of these components to form a basic accelerator structure, including an initial beam-matching section. In this presentation, we will discuss the results from the integrated multi-beam ion accelerator and also ion acceleration using RF voltages generated on-board. Furthermore, we will show results from Micro-Electro-Mechanical Systems (MEMS) fabricated focusing wafers, which can shrink the dimension of the system to the sub-mm regime and lead to cheaper fabrication. Based on these proof-of-concept results we outline a scaling path to high beam power for applications in plasma heating in magnetized target fusion and in neutral beam injectors for future Tokamaks. This work was supported by the Office of Science of the US Department of Energy through the ARPA-e ALPHA program under contracts DE-AC02-05CH11231.

  4. Commissioning of the superconducting ECR ion source VENUS

    International Nuclear Information System (INIS)

    Leitner, Daniela; Abbott, Steve R.; Dwinell, Roger D.; Leitner, Matthaeus; Taylor, Clyde; Lyneis, Claude M.

    2003-01-01

    VENUS (Versatile ECR ion source for NUclear Science) is a next generation superconducting ECR ion source, designed to produce high current, high charge state ions for the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory. VENUS also serves as the prototype ion source for the RIA (Rare Isotope Accelerator) front end. The magnetic confinement configuration consists of three superconducting axial coils and six superconducting radial coils in a sextupole configuration. The nominal design fields of the axial magnets are 4T at injection and 3T at extraction; the nominal radial design field strength at the plasma chamber wall is 2T, making VENUS the world most powerful ECR plasma confinement structure. The magnetic field strength has been designed for optimum operation at 28 GHz. The four-year VENUS project has recently achieved two major milestones: The first plasma was ignited in June, the first mass-analyzed high charge state ion beam was extracted in September of 2002. The pa per describes the ongoing commissioning. Initial results including first emittance measurements are presented

  5. TH-AB-201-10: Portal Dosimetry with Elekta IViewDose:Performance of the Simplified Commissioning Approach Versus Full Commissioning

    Energy Technology Data Exchange (ETDEWEB)

    Kydonieos, M; Folgueras, A; Florescu, L; Cybulski, T; Marinos, N; Thompson, G; Sayeed, A [Elekta Limited, Crawley, West Sussex (United Kingdom); Rozendaal, R; Olaciregui-Ruiz, I [Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam, Noord-Holland (Netherlands); Subiel, A; Patallo, I Silvestre [National Physical Laboratory, London (United Kingdom)

    2016-06-15

    Purpose: Elekta recently developed a solution for in-vivo EPID dosimetry (iViewDose, Elekta AB, Stockholm, Sweden) in conjunction with the Netherlands Cancer Institute (NKI). This uses a simplified commissioning approach via Template Commissioning Models (TCMs), consisting of a subset of linac-independent pre-defined parameters. This work compares the performance of iViewDose using a TCM commissioning approach with that corresponding to full commissioning. Additionally, the dose reconstruction based on the simplified commissioning approach is validated via independent dose measurements. Methods: Measurements were performed at the NKI on a VersaHD™ (Elekta AB, Stockholm, Sweden). Treatment plans were generated with Pinnacle 9.8 (Philips Medical Systems, Eindhoven, The Netherlands). A farmer chamber dose measurement and two EPID images were used to create a linac-specific commissioning model based on a TCM. A complete set of commissioning measurements was collected and a full commissioning model was created.The performance of iViewDose based on the two commissioning approaches was compared via a series of set-to-work tests in a slab phantom. In these tests, iViewDose reconstructs and compares EPID to TPS dose for square fields, IMRT and VMAT plans via global gamma analysis and isocentre dose difference. A clinical VMAT plan was delivered to a homogeneous Octavius 4D phantom (PTW, Freiburg, Germany). Dose was measured with the Octavius 1500 array and VeriSoft software was used for 3D dose reconstruction. EPID images were acquired. TCM-based iViewDose and 3D Octavius dose distributions were compared against the TPS. Results: For both the TCM-based and the full commissioning approaches, the pass rate, mean γ and dose difference were >97%, <0.5 and <2.5%, respectively. Equivalent gamma analysis results were obtained for iViewDose (TCM approach) and Octavius for a VMAT plan. Conclusion: iViewDose produces similar results with the simplified and full commissioning

  6. Rayleigh-Taylor mixing with time-dependent acceleration

    Science.gov (United States)

    Abarzhi, Snezhana

    2016-10-01

    We extend the momentum model to describe Rayleigh-Taylor (RT) mixing driven by a time-dependent acceleration. The acceleration is a power-law function of time, similarly to astrophysical and plasma fusion applications. In RT flow the dynamics of a fluid parcel is driven by a balance per unit mass of the rates of momentum gain and loss. We find analytical solutions in the cases of balanced and imbalanced gains and losses, and identify their dependence on the acceleration exponent. The existence is shown of two typical regimes of self-similar RT mixing-acceleration-driven Rayleigh-Taylor-type and dissipation-driven Richtymer-Meshkov-type with the latter being in general non-universal. Possible scenarios are proposed for transitions from the balanced dynamics to the imbalanced self-similar dynamics. Scaling and correlations properties of RT mixing are studied on the basis of dimensional analysis. Departures are outlined of RT dynamics with time-dependent acceleration from canonical cases of homogeneous turbulence as well as blast waves with first and second kind self-similarity. The work is supported by the US National Science Foundation.

  7. Accelerator-driven transmutation of spent fuel elements

    Science.gov (United States)

    Venneri, Francesco; Williamson, Mark A.; Li, Ning

    2002-01-01

    An apparatus and method is described for transmuting higher actinides, plutonium and selected fission products in a liquid-fuel subcritical assembly. Uranium may also be enriched, thereby providing new fuel for use in conventional nuclear power plants. An accelerator provides the additional neutrons required to perform the processes. The size of the accelerator needed to complete fuel cycle closure depends on the neutron efficiency of the supported reactors and on the neutron spectrum of the actinide transmutation apparatus. Treatment of spent fuel from light water reactors (LWRs) using uranium-based fuel will require the largest accelerator power, whereas neutron-efficient high temperature gas reactors (HTGRs) or CANDU reactors will require the smallest accelerator power, especially if thorium is introduced into the newly generated fuel according to the teachings of the present invention. Fast spectrum actinide transmutation apparatus (based on liquid-metal fuel) will take full advantage of the accelerator-produced source neutrons and provide maximum utilization of the actinide-generated fission neutrons. However, near-thermal transmutation apparatus will require lower standing

  8. Accelerator production of tritium plant design and supporting engineering development and demonstration work

    International Nuclear Information System (INIS)

    Lisowski, P.W.

    1997-11-01

    Tritium is an isotope of hydrogen with a half life of 12.3 years. Because it is essential for US thermonuclear weapons to function, tritium must be periodically replenished. Since K reactor at Savannah River Site stopped operating in 1988, tritium has been recycled from dismantled nuclear weapons. This process is possible only as long as many weapons are being retired. Maintaining the stockpile at the level called for in the present Strategic Arms Reduction Treaty (START-I) will require the Department of Energy to have an operational tritium production capability in the 2005--2007 time frame. To make the required amount of tritium using an accelerator based system (APT), neutrons will be produced through high energy proton reactions with tungsten and lead. Those neutrons will be moderated and captured in 3 He to make tritium. The APT plant design will use a 1,700 MeV linear accelerator operated at 100 mA. In preparation for engineering design, starting in October 1997 and subsequent construction, a program of engineering development and demonstration is underway. That work includes assembly and testing of the first 20 MeV of the low energy plant linac at 100 mA, high-energy linac accelerating structure prototyping, radiofrequency power system improvements, neutronic efficiency measurements, and materials qualifications

  9. Current status of accelerator-based boron neutron capture therapy

    International Nuclear Information System (INIS)

    Kreiner, A. J.; Bergueiro, J.; Di Paolo, H.; Castell, W.; Vento, V. Thatar; Cartelli, D.; Kesque, J.M.; Valda, A.A.; Ilardo, J.C.; Baldo, M.; Erhardt, J.; Debray, M.E.; Somacal, H.R.; Estrada, L.; Sandin, J.C. Suarez; Igarzabal, M.; Huck, H.; Padulo, J.; Minsky, D.M.

    2011-01-01

    The direct use of proton and heavy ion beams for radiotherapy is a well established cancer treatment modality, which is becoming increasingly widespread due to its clear advantages over conventional photon-based treatments. This strategy is suitable when the tumor is spatially well localized. Also the use of neutrons has a long tradition. Here Boron Neutron Capture Therapy (BNCT) stands out, though on a much smaller scale, being a second-generation promising alternative for tumors which are diffuse and infiltrating. On this sector, so far only nuclear reactors have been used as neutron sources. In this paper we describe the current situation worldwide as far as the use of accelerator-based neutron sources for BNCT is concerned (so-called Accelerator-Based (AB)-BNCT). In particular we discuss the present status of an ongoing project to develop a folded Tandem-ElectroStatic-Quadrupole (TESQ) accelerator at the Atomic Energy Commission of Argentina. The project goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the 7 Li(p,n) 7 Be reaction. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams to perform BNCT for deep-seated tumors in less than an hour. (author)

  10. National Capital Planning Commission Library contents

    Data.gov (United States)

    National Capital Planning Commission — The National Capital Planning Commission library catalog is a compilation of titles, authors, years of publication and topics of books, reports and NCPC publications.

  11. Analysis of failed ramps during the RHIC FY09 run

    Energy Technology Data Exchange (ETDEWEB)

    Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2014-08-15

    The Relativistic Heavy Ion Collider (RHIC) is a versatile accelerator that supports operation with polarized protons of up to 250 GeV and ions with up to 100 GeV/nucleon. During any running period, various operating scenarios with different particle species, beam energies or accelerator optics are commissioned. In this report the beam commissioning periods for establishing full energy beams (ramp development periods) from the FY09 run are summarized and, for the purpose of motivating further developments, we analyze the reasons for all failed ramps.

  12. Analysis of failed ramps during the RHIC FY09 run

    International Nuclear Information System (INIS)

    Minty, M.

    2014-01-01

    The Relativistic Heavy Ion Collider (RHIC) is a versatile accelerator that supports operation with polarized protons of up to 250 GeV and ions with up to 100 GeV/nucleon. During any running period, various operating scenarios with different particle species, beam energies or accelerator optics are commissioned. In this report the beam commissioning periods for establishing full energy beams (ramp development periods) from the FY09 run are summarized and, for the purpose of motivating further developments, we analyze the reasons for all failed ramps.

  13. 45 CFR 702.12 - Contempt of the Commission.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 3 2010-10-01 2010-10-01 false Contempt of the Commission. 702.12 Section 702.12 Public Welfare Regulations Relating to Public Welfare (Continued) COMMISSION ON CIVIL RIGHTS RULES ON HEARINGS, REPORTS, AND MEETINGS OF THE COMMISSION Hearings and Reports § 702.12 Contempt of the Commission...

  14. Real-time diagnostics of fast light ion beams accelerated by a sub-nanosecond laser

    Czech Academy of Sciences Publication Activity Database

    Margarone, Daniele; Krása, Josef; Picciotto, A.; Prokůpek, Jan

    2011-01-01

    Roč. 56, č. 2 (2011), s. 137-141 ISSN 0029-5922 R&D Projects: GA ČR(CZ) GAP205/11/1165 EU Projects: European Commission(XE) 212105 - ELI-PP Institutional research plan: CEZ:AV0Z10100523 Keywords : laser-driven acceleration * ion beams * real-time diagnostics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.389, year: 2011 http://www.nukleonika.pl/www/back/full/vol56_2011/v56n2p137f.pdf

  15. Commissioning of the Linac4 RFQ at the 3 MeV test stand

    CERN Document Server

    Rossi, C; Bellodi, G; Broere, J; Brunner, O; Lombardi, A M; Balula, J M; Yanez, P M; Noirjean, J; Pasquino, C; Raich, U; Roncarolo, F; Vretenar, M; Desmons, M; France, A; Piquet, O

    2013-01-01

    Linac4, the future 160 MeV Hˉ injector to the CERN Proton Synchrotron Booster, is presently under construction at CERN as a first step of the planned upgrade of the LHC injectors. The low energy section of LINAC4, consisting of an ion source, a 352.2 MHz Radio Frequency Quadrupole (RFQ) and a chopper line is being commissioned in a dedicated test stand before installation in its final position in the tunnel. The RFQ is designed to accelerate a 45 keV, 70 mA, Hˉ beam to 3 MeV, with an efficiency of 95% while preserving the transverse emittance. The RFQ, a four-vane structure 3 m in length, has been designed in collaboration with CEA/IRFU and is has been fabricated at the CERN workshop. The precise fabrication has allowed achieving a field flatness of 1%. The completion of the accelerating structure in September 2012 was followed by a complete series of bead-pull measurements and by high-power conditioning to the nominal power of 0.39 MW corresponding to a voltage of 78 kV across the 3 meters. Measurements wi...

  16. 47 CFR 54.202 - Additional requirements for Commission designation of eligible telecommunications carriers.

    Science.gov (United States)

    2010-10-01

    ... improvement and the estimated amount of investment for each project that is funded by high-cost support; the... reasonable amount of back-up power to ensure functionality without an external power source, is able to... designation. In its creamskimming analysis, the Commission shall consider other factors, such as...

  17. JUELICH: COSY acceleration and cooling

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The COSY cooler synchrotron at the KFA Forschungszentrum Jülich, inaugurated on 1 April, is now well on its way towards precision-defined high energy beams to open new fields for Jülich physics experiments. In two important goals, on 25 May the first beam cooled by electrons circulated inside the accelerator, then on 25 July physicists succeeded in accelerating the beam from the 270 MeV/c injection momentum to 600 MeV. Shortly after, this was pushed well above 1 GeV. Throughout the tuning process the number of stored particles increased steadily, finally peaking at 1.1 x 10 11 , a value compatible with the predicted limit at the injection energy. This success was the result of a painstaking search for the optimum parameter set, the commissioning crew being acutely aware that bringing such a large machine on line was a major experiment in its own right. The 3.3 GeV/c COSY machine belongs to the new class of hadron storage and cooler synchrotrons which started with CERN's LEAR low energy antiproton ring. COSY will 'sharpen' its beams to a narrow momentum spread using both electron and stochastic cooling to control the circulating particles. In addition it will provide space for internal experiments. Both features will allow for novel experimental approaches, and more than 100 physicists are eagerly waiting for the first proton reactions in their detectors

  18. Conception, construction, and taking into operation of a pre-accelerator system at ELSA

    International Nuclear Information System (INIS)

    Klarner, Fabian

    2011-01-01

    In order to enhance the operating capabilities of the Bonn University Accelerator Facility ELSA by a single pulse mode, a new injector was designed, built up and successfully commissioned. In addition, the new injector was designed to provide an unpolarized electron beam with increased current to the external hadron physics experiments. For this purpose, the injector will produce an 1-3 microseconds long pulse of 900 mA beam current or a single electron bunch with 1.5 A pulse current. For single bunch operation, a 1.5 ns long pulse is produced by a thermal electron source, then compressed and pre-accelerated by a subsequent resonator and a four-cell travelling wave buncher. After acceleration of the electrons in the main linac, the natural broadening of the energy distribution in the particle ensemble due to the acceleration process will be reduced by an energy compressor system. By the succeeding optical elements in the transfer beamline, the beam is guided to the synchrotron, taking into account the requirements for injection into the synchrotron including its acceptance. Finally, the first beam of the new LINAC1 section was successfully used to irradiate ammonia for preparation as polarized target material for the COMPASS experiment and to irradiate detector components of the DEPFET project. (orig.)

  19. Commission for Energy regulation (CRE) - Activity report june 2008

    International Nuclear Information System (INIS)

    2008-01-01

    proceedings initiated against France by the European Commission); D - CRE action at national level: Regulation of systems and infrastructures (General information, Electricity grids, Natural gas networks and other infrastructures); Electricity and natural gas markets (Changes in the regulatory and legislative context, Electricity markets, Natural gas markets, Monitoring open market operations); Support measures: electricity generation, vulnerable customers and TaRTAM (Supporting cogeneration and renewable energy sources, Public electricity service costs, Collection of public electricity service contributions (CSPE), TaRTAM-related costs, Costs related to the special solidarity tariff for natural gas supply); E - Appendices: Glossary, Acronyms, Council of European Energy Regulators, Units and conversions

  20. Correction of dispersion and the betatron functions in the CEBAF accelerator

    International Nuclear Information System (INIS)

    Lebedev, V.A.; Bickley, M.; Schaffner, S.; Zeijts, J. van; Krafft, G.A.; Watson, C.

    1996-01-01

    During the commissioning of the CEBAF accelerator, correction of dispersion and momentum compaction, and, to a lesser extent, transverse transfer matrices were essential for robust operation. With changing machine conditions, repeated correction was found necessary. To speed the diagnostic process the authors developed a method which allows one to rapidly track the machine optics. The method is based on measuring the propagation of 30 Hz modulated betatron oscillations downstream of a point of perturbation. Compared to the usual methods of dispersion or difference orbit measurement, synchronous detection of the beam displacement, as measured by beam position monitors, offers significantly improved speed and accuracy of the measurements. The beam optics of the accelerator was altered to decrease lattice sensitivity at critical points and to simplify control of the betatron function match. The calculation of the Courant-Snyder invariant from signals of each pair of nearby beam position monitors has allowed one to perform on-line measurement and correction of the lattice properties