WorldWideScience

Sample records for supou stochastic volatility

  1. The multivariate supOU stochastic volatility model

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole; Stelzer, Robert

    Using positive semidefinite supOU (superposition of Ornstein-Uhlenbeck type) processes to describe the volatility, we introduce a multivariate stochastic volatility model for financial data which is capable of modelling long range dependence effects. The finiteness of moments and the second order...... structure of the volatility, the log returns, as well as their "squares" are discussed in detail. Moreover, we give several examples in which long memory effects occur and study how the model as well as the simple Ornstein-Uhlenbeck type stochastic volatility model behave under linear transformations....... In particular, the models are shown to be preserved under invertible linear transformations. Finally, we discuss how (sup)OU stochastic volatility models can be combined with a factor modelling approach....

  2. Multivariate supOU processes

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Stelzer, Robert

    Univariate superpositions of Ornstein-Uhlenbeck (OU) type processes, called supOU processes, provide a class of continuous time processes capable of exhibiting long memory behaviour. This paper introduces multivariate supOU processes and gives conditions for their existence and finiteness...... of moments. Moreover, the second order moment structure is explicitly calculated, and examples exhibit the possibility of long range dependence. Our supOU processes are defined via homogeneous and factorisable Lévy bases. We show that the behaviour of supOU processes is particularly nice when the mean...... reversion parameter is restricted to normal matrices and especially to strictly negative definite ones.For finite variation Lévy bases we are able to give conditions for supOU processes to have locally bounded càdlàg paths of finite variation and to show an analogue of the stochastic differential equation...

  3. Multivariate supOU processes

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Stelzer, Robert

    2011-01-01

    Univariate superpositions of Ornstein–Uhlenbeck-type processes (OU), called supOU processes, provide a class of continuous time processes capable of exhibiting long memory behavior. This paper introduces multivariate supOU processes and gives conditions for their existence and finiteness of moments....... Moreover, the second-order moment structure is explicitly calculated, and examples exhibit the possibility of long-range dependence. Our supOU processes are defined via homogeneous and factorizable Lévy bases. We show that the behavior of supOU processes is particularly nice when the mean reversion...... parameter is restricted to normal matrices and especially to strictly negative definite ones. For finite variation Lévy bases we are able to give conditions for supOU processes to have locally bounded càdlàg paths of finite variation and to show an analogue of the stochastic differential equation of OU...

  4. Stochastic volatility and stochastic leverage

    DEFF Research Database (Denmark)

    Veraart, Almut; Veraart, Luitgard A. M.

    This paper proposes the new concept of stochastic leverage in stochastic volatility models. Stochastic leverage refers to a stochastic process which replaces the classical constant correlation parameter between the asset return and the stochastic volatility process. We provide a systematic...... treatment of stochastic leverage and propose to model the stochastic leverage effect explicitly, e.g. by means of a linear transformation of a Jacobi process. Such models are both analytically tractable and allow for a direct economic interpretation. In particular, we propose two new stochastic volatility...... models which allow for a stochastic leverage effect: the generalised Heston model and the generalised Barndorff-Nielsen & Shephard model. We investigate the impact of a stochastic leverage effect in the risk neutral world by focusing on implied volatilities generated by option prices derived from our new...

  5. Stochastic volatility of volatility in continuous time

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole; Veraart, Almut

    This paper introduces the concept of stochastic volatility of volatility in continuous time and, hence, extends standard stochastic volatility (SV) models to allow for an additional source of randomness associated with greater variability in the data. We discuss how stochastic volatility...... of volatility can be defined both non-parametrically, where we link it to the quadratic variation of the stochastic variance process, and parametrically, where we propose two new SV models which allow for stochastic volatility of volatility. In addition, we show that volatility of volatility can be estimated...

  6. Alternative Asymmetric Stochastic Volatility Models

    NARCIS (Netherlands)

    M. Asai (Manabu); M.J. McAleer (Michael)

    2010-01-01

    textabstractThe stochastic volatility model usually incorporates asymmetric effects by introducing the negative correlation between the innovations in returns and volatility. In this paper, we propose a new asymmetric stochastic volatility model, based on the leverage and size effects. The model is

  7. American options under stochastic volatility

    NARCIS (Netherlands)

    Chockalingam, A.; Muthuraman, K.

    2011-01-01

    The problem of pricing an American option written on an underlying asset with constant price volatility has been studied extensively in literature. Real-world data, however, demonstrate that volatility is not constant, and stochastic volatility models are used to account for dynamic volatility

  8. A Fractionally Integrated Wishart Stochastic Volatility Model

    NARCIS (Netherlands)

    M. Asai (Manabu); M.J. McAleer (Michael)

    2013-01-01

    textabstractThere has recently been growing interest in modeling and estimating alternative continuous time multivariate stochastic volatility models. We propose a continuous time fractionally integrated Wishart stochastic volatility (FIWSV) process. We derive the conditional Laplace transform of

  9. Stochastic Volatility and DSGE Models

    DEFF Research Database (Denmark)

    Andreasen, Martin Møller

    This paper argues that a specification of stochastic volatility commonly used to analyze the Great Moderation in DSGE models may not be appropriate, because the level of a process with this specification does not have conditional or unconditional moments. This is unfortunate because agents may...

  10. CAM Stochastic Volatility Model for Option Pricing

    Directory of Open Access Journals (Sweden)

    Wanwan Huang

    2016-01-01

    Full Text Available The coupled additive and multiplicative (CAM noises model is a stochastic volatility model for derivative pricing. Unlike the other stochastic volatility models in the literature, the CAM model uses two Brownian motions, one multiplicative and one additive, to model the volatility process. We provide empirical evidence that suggests a nontrivial relationship between the kurtosis and skewness of asset prices and that the CAM model is able to capture this relationship, whereas the traditional stochastic volatility models cannot. We introduce a control variate method and Monte Carlo estimators for some of the sensitivities (Greeks of the model. We also derive an approximation for the characteristic function of the model.

  11. Stochastic volatility models and Kelvin waves

    Energy Technology Data Exchange (ETDEWEB)

    Lipton, Alex [Merrill Lynch, Mlfc Main, 2 King Edward Street, London EC1A 1HQ (United Kingdom); Sepp, Artur [Merrill Lynch, 4 World Financial Center, New York, NY 10080 (United States)], E-mail: Alex_Lipton@ml.com, E-mail: Artur_Sepp@ml.com

    2008-08-29

    We use stochastic volatility models to describe the evolution of an asset price, its instantaneous volatility and its realized volatility. In particular, we concentrate on the Stein and Stein model (SSM) (1991) for the stochastic asset volatility and the Heston model (HM) (1993) for the stochastic asset variance. By construction, the volatility is not sign definite in SSM and is non-negative in HM. It is well known that both models produce closed-form expressions for the prices of vanilla option via the Lewis-Lipton formula. However, the numerical pricing of exotic options by means of the finite difference and Monte Carlo methods is much more complex for HM than for SSM. Until now, this complexity was considered to be an acceptable price to pay for ensuring that the asset volatility is non-negative. We argue that having negative stochastic volatility is a psychological rather than financial or mathematical problem, and advocate using SSM rather than HM in most applications. We extend SSM by adding volatility jumps and obtain a closed-form expression for the density of the asset price and its realized volatility. We also show that the current method of choice for solving pricing problems with stochastic volatility (via the affine ansatz for the Fourier-transformed density function) can be traced back to the Kelvin method designed in the 19th century for studying wave motion problems arising in fluid dynamics.

  12. Stochastic volatility models and Kelvin waves

    Science.gov (United States)

    Lipton, Alex; Sepp, Artur

    2008-08-01

    We use stochastic volatility models to describe the evolution of an asset price, its instantaneous volatility and its realized volatility. In particular, we concentrate on the Stein and Stein model (SSM) (1991) for the stochastic asset volatility and the Heston model (HM) (1993) for the stochastic asset variance. By construction, the volatility is not sign definite in SSM and is non-negative in HM. It is well known that both models produce closed-form expressions for the prices of vanilla option via the Lewis-Lipton formula. However, the numerical pricing of exotic options by means of the finite difference and Monte Carlo methods is much more complex for HM than for SSM. Until now, this complexity was considered to be an acceptable price to pay for ensuring that the asset volatility is non-negative. We argue that having negative stochastic volatility is a psychological rather than financial or mathematical problem, and advocate using SSM rather than HM in most applications. We extend SSM by adding volatility jumps and obtain a closed-form expression for the density of the asset price and its realized volatility. We also show that the current method of choice for solving pricing problems with stochastic volatility (via the affine ansatz for the Fourier-transformed density function) can be traced back to the Kelvin method designed in the 19th century for studying wave motion problems arising in fluid dynamics.

  13. Stochastic volatility models and Kelvin waves

    International Nuclear Information System (INIS)

    Lipton, Alex; Sepp, Artur

    2008-01-01

    We use stochastic volatility models to describe the evolution of an asset price, its instantaneous volatility and its realized volatility. In particular, we concentrate on the Stein and Stein model (SSM) (1991) for the stochastic asset volatility and the Heston model (HM) (1993) for the stochastic asset variance. By construction, the volatility is not sign definite in SSM and is non-negative in HM. It is well known that both models produce closed-form expressions for the prices of vanilla option via the Lewis-Lipton formula. However, the numerical pricing of exotic options by means of the finite difference and Monte Carlo methods is much more complex for HM than for SSM. Until now, this complexity was considered to be an acceptable price to pay for ensuring that the asset volatility is non-negative. We argue that having negative stochastic volatility is a psychological rather than financial or mathematical problem, and advocate using SSM rather than HM in most applications. We extend SSM by adding volatility jumps and obtain a closed-form expression for the density of the asset price and its realized volatility. We also show that the current method of choice for solving pricing problems with stochastic volatility (via the affine ansatz for the Fourier-transformed density function) can be traced back to the Kelvin method designed in the 19th century for studying wave motion problems arising in fluid dynamics

  14. American option pricing with stochastic volatility processes

    Directory of Open Access Journals (Sweden)

    Ping LI

    2017-12-01

    Full Text Available In order to solve the problem of option pricing more perfectly, the option pricing problem with Heston stochastic volatility model is considered. The optimal implementation boundary of American option and the conditions for its early execution are analyzed and discussed. In view of the fact that there is no analytical American option pricing formula, through the space discretization parameters, the stochastic partial differential equation satisfied by American options with Heston stochastic volatility is transformed into the corresponding differential equations, and then using high order compact finite difference method, numerical solutions are obtained for the option price. The numerical experiments are carried out to verify the theoretical results and simulation. The two kinds of optimal exercise boundaries under the conditions of the constant volatility and the stochastic volatility are compared, and the results show that the optimal exercise boundary also has stochastic volatility. Under the setting of parameters, the behavior and the nature of volatility are analyzed, the volatility curve is simulated, the calculation results of high order compact difference method are compared, and the numerical option solution is obtained, so that the method is verified. The research result provides reference for solving the problems of option pricing under stochastic volatility such as multiple underlying asset option pricing and barrier option pricing.

  15. Oil and stock market volatility: A multivariate stochastic volatility perspective

    International Nuclear Information System (INIS)

    Vo, Minh

    2011-01-01

    This paper models the volatility of stock and oil futures markets using the multivariate stochastic volatility structure in an attempt to extract information intertwined in both markets for risk prediction. It offers four major findings. First, the stock and oil futures prices are inter-related. Their correlation follows a time-varying dynamic process and tends to increase when the markets are more volatile. Second, conditioned on the past information, the volatility in each market is very persistent, i.e., it varies in a predictable manner. Third, there is inter-market dependence in volatility. Innovations that hit either market can affect the volatility in the other market. In other words, conditioned on the persistence and the past volatility in their respective markets, the past volatility of the stock (oil futures) market also has predictive power over the future volatility of the oil futures (stock) market. Finally, the model produces more accurate Value-at-Risk estimates than other benchmarks commonly used in the financial industry. - Research Highlights: → This paper models the volatility of stock and oil futures markets using the multivariate stochastic volatility model. → The correlation between the two markets follows a time-varying dynamic process which tends to increase when the markets are more volatile. → The volatility in each market is very persistent. → Innovations that hit either market can affect the volatility in the other market. → The model produces more accurate Value-at-Risk estimates than other benchmarks commonly used in the financial industry.

  16. Portfolio Optimization with Stochastic Dividends and Stochastic Volatility

    Science.gov (United States)

    Varga, Katherine Yvonne

    2015-01-01

    We consider an optimal investment-consumption portfolio optimization model in which an investor receives stochastic dividends. As a first problem, we allow the drift of stock price to be a bounded function. Next, we consider a stochastic volatility model. In each problem, we use the dynamic programming method to derive the Hamilton-Jacobi-Bellman…

  17. Some recent developments in stochastic volatility modelling

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Nicolato, Elisa; Shephard, N.

    2002-01-01

    This paper reviews and puts in context some of our recent work on stochastic volatility (SV) modelling for financial economics. Here our main focus is on: (i) the relationship between subordination and SV, (ii) OU based volatility models, (iii) exact option pricing, (iv) realized power variation...

  18. News Impact Curve for Stochastic Volatility Models

    OpenAIRE

    Makoto Takahashi; Yasuhiro Omori; Toshiaki Watanabe

    2012-01-01

    This paper proposes a new method to compute the news impact curve for stochastic volatility (SV) models. The new method incorporates the joint movement of return and volatility, which has been ignored by the extant literature, by simply adding a couple of steps to the Bayesian MCMC estimation procedures for SV models. This simple procedure is versatile and applicable to various SV type models. Contrary to the monotonic news impact functions in the extant literature, the new method gives a U-s...

  19. Testing for Volatility Co-movement in Bivariate Stochastic Volatility Models

    OpenAIRE

    Chen, Jinghui; Kobayashi, Masahito; McAleer, Michael

    2017-01-01

    markdownabstractThe paper considers the problem of volatility co-movement, namely as to whether two financial returns have perfectly correlated common volatility process, in the framework of multivariate stochastic volatility models and proposes a test which checks the volatility co-movement. The proposed test is a stochastic volatility version of the co-movement test proposed by Engle and Susmel (1993), who investigated whether international equity markets have volatility co-movement using t...

  20. Pricing long-dated insurance contracts with stochastic interest rates and stochastic volatility

    NARCIS (Netherlands)

    van Haastrecht, A.; Lord, R.; Pelsser, A.; Schrager, D.

    2009-01-01

    We consider the pricing of long-dated insurance contracts under stochastic interest rates and stochastic volatility. In particular, we focus on the valuation of insurance options with long-term equity or foreign exchange exposures. Our modeling framework extends the stochastic volatility model of

  1. Bias-reduced estimation of long memory stochastic volatility

    DEFF Research Database (Denmark)

    Frederiksen, Per; Nielsen, Morten Ørregaard

    We propose to use a variant of the local polynomial Whittle estimator to estimate the memory parameter in volatility for long memory stochastic volatility models with potential nonstation- arity in the volatility process. We show that the estimator is asymptotically normal and capable of obtaining...

  2. Testing for Volatility Co-movement in Bivariate Stochastic Volatility Models

    NARCIS (Netherlands)

    J. Chen (Jinghui); M. Kobayashi (Masahito); M.J. McAleer (Michael)

    2017-01-01

    markdownabstractThe paper considers the problem of volatility co-movement, namely as to whether two financial returns have perfectly correlated common volatility process, in the framework of multivariate stochastic volatility models and proposes a test which checks the volatility co-movement. The

  3. Essays on nonparametric econometrics of stochastic volatility

    NARCIS (Netherlands)

    Zu, Y.

    2012-01-01

    Volatility is a concept that describes the variation of financial returns. Measuring and modelling volatility dynamics is an important aspect of financial econometrics. This thesis is concerned with nonparametric approaches to volatility measurement and volatility model validation.

  4. A multiscale extension of the Margrabe formula under stochastic volatility

    International Nuclear Information System (INIS)

    Kim, Jeong-Hoon; Park, Chang-Rae

    2017-01-01

    Highlights: • Fast-mean-reverting stochastic volatility model is chosen to extend the classical Margrabe formula. • The resultant formula is explicitly given by the greeks of Margrabe price itself. • We show how the stochastic volatility corrects the Margrabe price behavior. - Abstract: The pricing of financial derivatives based on stochastic volatility models has been a popular subject in computational finance. Although exact or approximate closed form formulas of the prices of many options under stochastic volatility have been obtained so that the option prices can be easily computed, such formulas for exchange options leave much to be desired. In this paper, we consider two different risky assets with two different scales of mean-reversion rate of volatility and use asymptotic analysis to extend the classical Margrabe formula, which corresponds to a geometric Brownian motion model, and obtain a pricing formula under a stochastic volatility. The resultant formula can be computed easily, simply by taking derivatives of the Margrabe price itself. Based on the formula, we show how the stochastic volatility corrects the Margrabe price behavior depending on the moneyness and the correlation coefficient between the two asset prices.

  5. Estimation of Stochastic Volatility Models by Nonparametric Filtering

    DEFF Research Database (Denmark)

    Kanaya, Shin; Kristensen, Dennis

    2016-01-01

    /estimated volatility process replacing the latent process. Our estimation strategy is applicable to both parametric and nonparametric stochastic volatility models, and can handle both jumps and market microstructure noise. The resulting estimators of the stochastic volatility model will carry additional biases...... and variances due to the first-step estimation, but under regularity conditions we show that these vanish asymptotically and our estimators inherit the asymptotic properties of the infeasible estimators based on observations of the volatility process. A simulation study examines the finite-sample properties...

  6. Investment timing under hybrid stochastic and local volatility

    International Nuclear Information System (INIS)

    Kim, Jeong-Hoon; Lee, Min-Ku; Sohn, So Young

    2014-01-01

    Highlights: • The effects of hybrid stochastic volatility on real option prices are studied. • The stochastic volatility consists of a fast mean-reverting component and a CEV type one. • A fast mean-reverting factor lowers real option prices and investment thresholds. • The increase of elasticity raises real option prices and investment thresholds. • The effects of the addition of a slowly varying factor depend upon the project value. - Abstract: We consider an investment timing problem under a real option model where the instantaneous volatility of the project value is given by a combination of a hidden stochastic process and the project value itself. The stochastic volatility part is given by a function of a fast mean-reverting process as well as a slowly varying process and the local volatility part is a power (the elasticity parameter) of the project value itself. The elasticity parameter controls directly the correlation between the project value and the volatility. Knowing that the project value represents the market price of a real asset in many applications and the value of the elasticity parameter depends on the asset, the elasticity parameter should be treated with caution for investment decision problems. Based on the hybrid structure of volatility, we investigate the simultaneous impact of the elasticity and the stochastic volatility on the real option value as well as the investment threshold

  7. On Volatility Induced Stationarity for Stochastic Differential Equations

    DEFF Research Database (Denmark)

    Albin, J.M.P.; Astrup Jensen, Bjarne; Muszta, Anders

    2006-01-01

    This article deals with stochastic differential equations with volatility induced stationarity. We study of theoretical properties of such equations, as well as numerical aspects, together with a detailed study of three examples.......This article deals with stochastic differential equations with volatility induced stationarity. We study of theoretical properties of such equations, as well as numerical aspects, together with a detailed study of three examples....

  8. On changes of measure in stochastic volatility models

    Directory of Open Access Journals (Sweden)

    Bernard Wong

    2006-01-01

    models. This had led many researchers to “assume the condition away,” even though the condition is not innocuous, and nonsensical results can occur if it is in fact not satisfied. We provide an applicable theorem to check the conditions for a general class of Markovian stochastic volatility models. As an example we will also provide a detailed analysis of the Stein and Stein and Heston stochastic volatility models.

  9. The Pricing of Options on Assets with Stochastic Volatilities.

    OpenAIRE

    Hull, John C; White, Alan D

    1987-01-01

    One option-pricing problem which has hitherto been unsolved is the pricing of European call on an asset which has a stochastic volatility. This paper examines this problem. The option price is determined in series form for the case in which the stochastic volatility is independent of the stock price. Numerical solutions are also produced for the case in which the volatility is correlated with the stock price. It is found that the Black-Scholes price frequently overprices options and that the ...

  10. Maximum likelihood approach for several stochastic volatility models

    International Nuclear Information System (INIS)

    Camprodon, Jordi; Perelló, Josep

    2012-01-01

    Volatility measures the amplitude of price fluctuations. Despite it being one of the most important quantities in finance, volatility is not directly observable. Here we apply a maximum likelihood method which assumes that price and volatility follow a two-dimensional diffusion process where volatility is the stochastic diffusion coefficient of the log-price dynamics. We apply this method to the simplest versions of the expOU, the OU and the Heston stochastic volatility models and we study their performance in terms of the log-price probability, the volatility probability, and its Mean First-Passage Time. The approach has some predictive power on the future returns amplitude by only knowing the current volatility. The assumed models do not consider long-range volatility autocorrelation and the asymmetric return-volatility cross-correlation but the method still yields very naturally these two important stylized facts. We apply the method to different market indices and with a good performance in all cases. (paper)

  11. Jumps and stochastic volatility in oil prices: Time series evidence

    International Nuclear Information System (INIS)

    Larsson, Karl; Nossman, Marcus

    2011-01-01

    In this paper we examine the empirical performance of affine jump diffusion models with stochastic volatility in a time series study of crude oil prices. We compare four different models and estimate them using the Markov Chain Monte Carlo method. The support for a stochastic volatility model including jumps in both prices and volatility is strong and the model clearly outperforms the others in terms of a superior fit to data. Our estimation method allows us to obtain a detailed study of oil prices during two periods of extreme market stress included in our sample; the Gulf war and the recent financial crisis. We also address the economic significance of model choice in two option pricing applications. The implied volatilities generated by the different estimated models are compared and we price a real option to develop an oil field. Our findings indicate that model choice can have a material effect on the option values.

  12. Bias correction in the realized stochastic volatility model for daily volatility on the Tokyo Stock Exchange

    Science.gov (United States)

    Takaishi, Tetsuya

    2018-06-01

    The realized stochastic volatility model has been introduced to estimate more accurate volatility by using both daily returns and realized volatility. The main advantage of the model is that no special bias-correction factor for the realized volatility is required a priori. Instead, the model introduces a bias-correction parameter responsible for the bias hidden in realized volatility. We empirically investigate the bias-correction parameter for realized volatilities calculated at various sampling frequencies for six stocks on the Tokyo Stock Exchange, and then show that the dynamic behavior of the bias-correction parameter as a function of sampling frequency is qualitatively similar to that of the Hansen-Lunde bias-correction factor although their values are substantially different. Under the stochastic diffusion assumption of the return dynamics, we investigate the accuracy of estimated volatilities by examining the standardized returns. We find that while the moments of the standardized returns from low-frequency realized volatilities are consistent with the expectation from the Gaussian variables, the deviation from the expectation becomes considerably large at high frequencies. This indicates that the realized stochastic volatility model itself cannot completely remove bias at high frequencies.

  13. Optimal investment models with stochastic volatility: the time ...

    African Journals Online (AJOL)

    Therefore, a transform is primordial to express the value function in terms of a semilinear PDE with quadratic growth on the derivative term. Some proofs for the existence of smooth solution to this equation have been provided for this equation by Pham [11]. In that paper they illustrated some common stochastic volatility ...

  14. Estimating and Forecasting Generalized Fractional Long Memory Stochastic Volatility Models

    NARCIS (Netherlands)

    S. Peiris (Shelton); M. Asai (Manabu); M.J. McAleer (Michael)

    2016-01-01

    textabstractIn recent years fractionally differenced processes have received a great deal of attention due to its flexibility in financial applications with long memory. This paper considers a class of models generated by Gegenbauer polynomials, incorporating the long memory in stochastic volatility

  15. Volatility smile and stochastic arbitrage returns

    OpenAIRE

    Sergei Fedotov; Stephanos Panayides

    2004-01-01

    The purpose of this work is to explore the role that random arbitrage opportunities play in pricing financial derivatives. We use a non-equilibrium model to set up a stochastic portfolio, and for the random arbitrage return, we choose a stationary ergodic random process rapidly varying in time. We exploit the fact that option price and random arbitrage returns change on different time scales which allows us to develop an asymptotic pricing theory involving the central limit theorem for random...

  16. Option Pricing with Stochastic Volatility and Jump Diffusion Processes

    Directory of Open Access Journals (Sweden)

    Radu Lupu

    2006-03-01

    Full Text Available Option pricing by the use of Black Scholes Merton (BSM model is based on the assumption that asset prices have a lognormal distribution. In spite of the use of these models on a large scale, both by practioners and academics, the assumption of lognormality is rejected by the history of returns. The objective of this article is to present the methods that developed after the Black Scholes Merton environment and deals with the option pricing model adjustment to the empirical properties of asset returns. The main models that appeared after BSM allowed for special changes of the returns that materialized in jump-diffusion and stochastic volatility processes. The article presents the foundations of risk neutral options evaluation and the empirical evidence that fed the amendment of the lognormal assumption in the first part and shows the evaluation procedure under the assumption of stock prices following the jump-diffusion process and the stochastic volatility process.

  17. Asymptotic Behavior of the Stock Price Distribution Density and Implied Volatility in Stochastic Volatility Models

    International Nuclear Information System (INIS)

    Gulisashvili, Archil; Stein, Elias M.

    2010-01-01

    We study the asymptotic behavior of distribution densities arising in stock price models with stochastic volatility. The main objects of our interest in the present paper are the density of time averages of the squared volatility process and the density of the stock price process in the Stein-Stein and the Heston model. We find explicit formulas for leading terms in asymptotic expansions of these densities and give error estimates. As an application of our results, sharp asymptotic formulas for the implied volatility in the Stein-Stein and the Heston model are obtained.

  18. Index Option Pricing Models with Stochastic Volatility and Stochastic Interest Rates

    NARCIS (Netherlands)

    Jiang, G.J.; van der Sluis, P.J.

    2000-01-01

    This paper specifies a multivariate stochastic volatility (SV) model for the S&P500 index and spot interest rate processes. We first estimate the multivariate SV model via the efficient method of moments (EMM) technique based on observations of underlying state variables, and then investigate the

  19. GPU Computing in Bayesian Inference of Realized Stochastic Volatility Model

    International Nuclear Information System (INIS)

    Takaishi, Tetsuya

    2015-01-01

    The realized stochastic volatility (RSV) model that utilizes the realized volatility as additional information has been proposed to infer volatility of financial time series. We consider the Bayesian inference of the RSV model by the Hybrid Monte Carlo (HMC) algorithm. The HMC algorithm can be parallelized and thus performed on the GPU for speedup. The GPU code is developed with CUDA Fortran. We compare the computational time in performing the HMC algorithm on GPU (GTX 760) and CPU (Intel i7-4770 3.4GHz) and find that the GPU can be up to 17 times faster than the CPU. We also code the program with OpenACC and find that appropriate coding can achieve the similar speedup with CUDA Fortran

  20. Large deviations and stochastic volatility with jumps: asymptotic implied volatility for affine models

    OpenAIRE

    Antoine Jacquier; Martin Keller-Ressel; Aleksandar Mijatovic

    2011-01-01

    Let $\\sigma_t(x)$ denote the implied volatility at maturity $t$ for a strike $K=S_0 e^{xt}$, where $x\\in\\bbR$ and $S_0$ is the current value of the underlying. We show that $\\sigma_t(x)$ has a uniform (in $x$) limit as maturity $t$ tends to infinity, given by the formula $\\sigma_\\infty(x)=\\sqrt{2}(h^*(x)^{1/2}+(h^*(x)-x)^{1/2})$, for $x$ in some compact neighbourhood of zero in the class of affine stochastic volatility models. The function $h^*$ is the convex dual of the limiting cumulant gen...

  1. Estimating and Forecasting Generalized Fractional Long Memory Stochastic Volatility Models

    Directory of Open Access Journals (Sweden)

    Shelton Peiris

    2017-12-01

    Full Text Available This paper considers a flexible class of time series models generated by Gegenbauer polynomials incorporating the long memory in stochastic volatility (SV components in order to develop the General Long Memory SV (GLMSV model. We examine the corresponding statistical properties of this model, discuss the spectral likelihood estimation and investigate the finite sample properties via Monte Carlo experiments. We provide empirical evidence by applying the GLMSV model to three exchange rate return series and conjecture that the results of out-of-sample forecasts adequately confirm the use of GLMSV model in certain financial applications.

  2. Estimating Stochastic Volatility Models using Prediction-based Estimating Functions

    DEFF Research Database (Denmark)

    Lunde, Asger; Brix, Anne Floor

    to the performance of the GMM estimator based on conditional moments of integrated volatility from Bollerslev and Zhou (2002). The case where the observed log-price process is contaminated by i.i.d. market microstructure (MMS) noise is also investigated. First, the impact of MMS noise on the parameter estimates from......In this paper prediction-based estimating functions (PBEFs), introduced in Sørensen (2000), are reviewed and PBEFs for the Heston (1993) stochastic volatility model are derived. The finite sample performance of the PBEF based estimator is investigated in a Monte Carlo study, and compared...... to correctly account for the noise are investigated. Our Monte Carlo study shows that the estimator based on PBEFs outperforms the GMM estimator, both in the setting with and without MMS noise. Finally, an empirical application investigates the possible challenges and general performance of applying the PBEF...

  3. Bayesian Option Pricing Framework with Stochastic Volatility for FX Data

    Directory of Open Access Journals (Sweden)

    Ying Wang

    2016-12-01

    Full Text Available The application of stochastic volatility (SV models in the option pricing literature usually assumes that the market has sufficient option data to calibrate the model’s risk-neutral parameters. When option data are insufficient or unavailable, market practitioners must estimate the model from the historical returns of the underlying asset and then transform the resulting model into its risk-neutral equivalent. However, the likelihood function of an SV model can only be expressed in a high-dimensional integration, which makes the estimation a highly challenging task. The Bayesian approach has been the classical way to estimate SV models under the data-generating (physical probability measure, but the transformation from the estimated physical dynamic into its risk-neutral counterpart has not been addressed. Inspired by the generalized autoregressive conditional heteroskedasticity (GARCH option pricing approach by Duan in 1995, we propose an SV model that enables us to simultaneously and conveniently perform Bayesian inference and transformation into risk-neutral dynamics. Our model relaxes the normality assumption on innovations of both return and volatility processes, and our empirical study shows that the estimated option prices generate realistic implied volatility smile shapes. In addition, the volatility premium is almost flat across strike prices, so adding a few option data to the historical time series of the underlying asset can greatly improve the estimation of option prices.

  4. Modeling energy price dynamics: GARCH versus stochastic volatility

    International Nuclear Information System (INIS)

    Chan, Joshua C.C.; Grant, Angelia L.

    2016-01-01

    We compare a number of GARCH and stochastic volatility (SV) models using nine series of oil, petroleum product and natural gas prices in a formal Bayesian model comparison exercise. The competing models include the standard models of GARCH(1,1) and SV with an AR(1) log-volatility process, as well as more flexible models with jumps, volatility in mean, leverage effects, and t distributed and moving average innovations. We find that: (1) SV models generally compare favorably to their GARCH counterparts; (2) the jump component and t distributed innovations substantially improve the performance of the standard GARCH, but are unimportant for the SV model; (3) the volatility feedback channel seems to be superfluous; (4) the moving average component markedly improves the fit of both GARCH and SV models; and (5) the leverage effect is important for modeling crude oil prices—West Texas Intermediate and Brent—but not for other energy prices. Overall, the SV model with moving average innovations is the best model for all nine series. - Highlights: • We compare a variety of GARCH and SV models for fitting nine series of energy prices. • We find that SV models generally compare favorably to their GARCH counterparts. • The SV model with moving average innovations is the best model for all nine series.

  5. Empirical Analysis of Stochastic Volatility Model by Hybrid Monte Carlo Algorithm

    International Nuclear Information System (INIS)

    Takaishi, Tetsuya

    2013-01-01

    The stochastic volatility model is one of volatility models which infer latent volatility of asset returns. The Bayesian inference of the stochastic volatility (SV) model is performed by the hybrid Monte Carlo (HMC) algorithm which is superior to other Markov Chain Monte Carlo methods in sampling volatility variables. We perform the HMC simulations of the SV model for two liquid stock returns traded on the Tokyo Stock Exchange and measure the volatilities of those stock returns. Then we calculate the accuracy of the volatility measurement using the realized volatility as a proxy of the true volatility and compare the SV model with the GARCH model which is one of other volatility models. Using the accuracy calculated with the realized volatility we find that empirically the SV model performs better than the GARCH model.

  6. Latent Integrated Stochastic Volatility, Realized Volatility, and Implied Volatility: A State Space Approach

    DEFF Research Database (Denmark)

    Bach, Christian; Christensen, Bent Jesper

    process is downward biased. Implied volatility performs better than any of the alternative realized measures when forecasting future integrated volatility. The results are largely similar across the stock market (S&P 500), bond market (30-year U.S. T-bond), and foreign currency exchange market ($/£ )....

  7. Regime-switching stochastic volatility. Evidence from the crude oil market

    International Nuclear Information System (INIS)

    Vo, Minh T.

    2009-01-01

    This paper incorporates regime-switching into the stochastic volatility (SV) framework in an attempt to explain the behavior of crude oil prices in order to forecast their volatility. More specifically, it models the volatility of oil return as a stochastic volatility process whose mean is subject to shifts in regime. The shift is governed by a two-state first-order Markov process. The Bayesian Markov Chain Monte Carlo method is used to estimate the models. The main findings are: first, there is clear evidence of regime-switching in the oil market. Ignoring it will lead to a false impression that the volatility is highly persistent and therefore highly predictable. Second, incorporating regime-switching into the SV framework significantly enhances the forecasting power of the SV model. Third, the regime-switching stochastic volatility model does a good job in capturing major events affecting the oil market. (author)

  8. Estimation of Dynamic Panel Data Models with Stochastic Volatility Using Particle Filters

    Directory of Open Access Journals (Sweden)

    Wen Xu

    2016-10-01

    Full Text Available Time-varying volatility is common in macroeconomic data and has been incorporated into macroeconomic models in recent work. Dynamic panel data models have become increasingly popular in macroeconomics to study common relationships across countries or regions. This paper estimates dynamic panel data models with stochastic volatility by maximizing an approximate likelihood obtained via Rao-Blackwellized particle filters. Monte Carlo studies reveal the good and stable performance of our particle filter-based estimator. When the volatility of volatility is high, or when regressors are absent but stochastic volatility exists, our approach can be better than the maximum likelihood estimator which neglects stochastic volatility and generalized method of moments (GMM estimators.

  9. Estimation of stochastic volatility by using Ornstein-Uhlenbeck type models

    Science.gov (United States)

    Mariani, Maria C.; Bhuiyan, Md Al Masum; Tweneboah, Osei K.

    2018-02-01

    In this study, we develop a technique for estimating the stochastic volatility (SV) of a financial time series by using Ornstein-Uhlenbeck type models. Using the daily closing prices from developed and emergent stock markets, we conclude that the incorporation of stochastic volatility into the time varying parameter estimation significantly improves the forecasting performance via Maximum Likelihood Estimation. Furthermore, our estimation algorithm is feasible with large data sets and have good convergence properties.

  10. An Empirical Application of a Two-Factor Model of Stochastic Volatility

    Czech Academy of Sciences Publication Activity Database

    Kuchyňka, Alexandr

    2008-01-01

    Roč. 17, č. 3 (2008), s. 243-253 ISSN 1210-0455 R&D Projects: GA ČR GA402/07/1113; GA MŠk(CZ) LC06075 Institutional research plan: CEZ:AV0Z10750506 Keywords : stochastic volatility * Kalman filter Subject RIV: AH - Economics http://library.utia.cas.cz/separaty/2008/E/kuchynka-an empirical application of a two-factor model of stochastic volatility.pdf

  11. A low-bias simulation scheme for the SABR stochastic volatility model

    NARCIS (Netherlands)

    B. Chen (Bin); C.W. Oosterlee (Cornelis); J.A.M. van der Weide

    2012-01-01

    htmlabstractThe Stochastic Alpha Beta Rho Stochastic Volatility (SABR-SV) model is widely used in the financial industry for the pricing of fixed income instruments. In this paper we develop an lowbias simulation scheme for the SABR-SV model, which deals efficiently with (undesired)

  12. On cross-currency models with stochastic volatility and correlated interest rates

    NARCIS (Netherlands)

    Grzelak, L.A.; Oosterlee, C.W.

    2010-01-01

    We construct multi-currency models with stochastic volatility and correlated stochastic interest rates with a full matrix of correlations. We first deal with a foreign exchange (FX) model of Heston-type, in which the domestic and foreign interest rates are generated by the short-rate process of

  13. Extreme-Strike and Small-time Asymptotics for Gaussian Stochastic Volatility Models

    OpenAIRE

    Zhang, Xin

    2016-01-01

    Asymptotic behavior of implied volatility is of our interest in this dissertation. For extreme strike, we consider a stochastic volatility asset price model in which the volatility is the absolute value of a continuous Gaussian process with arbitrary prescribed mean and covariance. By exhibiting a Karhunen-Loève expansion for the integrated variance, and using sharp estimates of the density of a general second-chaos variable, we derive asymptotics for the asset price density for large or smal...

  14. A Jump-Diffusion Model with Stochastic Volatility and Durations

    DEFF Research Database (Denmark)

    Wei, Wei; Pelletier, Denis

    jumps in two ways: as exogenous sampling intervals, and through the interaction with volatility. We adopt a bivariate Ornstein-Ulenbeck process to model intraday volatility and conditional duration. We develop a MCMC algorithm for the inference on irregularly spaced multivariate processes with jumps...

  15. Recent advances in ambit stochastics with a view towards tempo-spatial stochastic volatility/intermittency

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole E.; Benth, Fred Espen; Veraart, Almut

    Ambit stochastics is the name for the theory and applications of ambit fields and ambit processes and constitutes a new research area in stochastics for tempo-spatial phenomena. This paper gives an overview of the main findings in ambit stochastics up to date and establishes new results on genera...

  16. AN EXAMINATION OF THE LEVERAGE EFFECT IN THE ISE WITH STOCHASTIC VOLATILITY MODEL

    Directory of Open Access Journals (Sweden)

    YELİZ YALÇIN

    2013-06-01

    Full Text Available The purpose of this paper is the asses the leverage effect of the Istanbul Stock Exchange within the Stochastic Volatility framework in the period 01.01.1990 – 11.08.2006. The relationship between risk and return is a well established phenomenon in Financial Econometerics. Both positive and negative relationship has been reported in the empirical literature. That use the conditional variance the empirical evidence provided in this paper from the Stochastic Volatility is to be negative feed back effect and statistically insignificant leverage effect.

  17. Decoupling the short- and long-term behavior of stochastic volatility

    DEFF Research Database (Denmark)

    Bennedsen, Mikkel; Lunde, Asger; Pakkanen, Mikko

    behavior) from long memory and persistence (long-term behavior) in a simple and parsimonious way, which allows us to successfully model volatility at all intraday time scales. Our prime model is based on the so-called Brownian semistationary process and we derive a number of theoretical properties...... measures of close to two thousand individual US equities, we find that both roughness and persistence appear to be universal properties of volatility. Inspired by the empirical findings, we introduce a new class of continuous-time stochastic volatility models, capable of decoupling roughness (short-term...

  18. A contribution to the systematics of stochastic volatility models

    Czech Academy of Sciences Publication Activity Database

    Slanina, František

    2010-01-01

    Roč. 389, č. 16 (2010), s. 3230-3239 ISSN 0378-4371 R&D Projects: GA MŠk OC09078 Institutional research plan: CEZ:AV0Z10100520 Keywords : fluctuations * econophysics * stochastic differential equations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.521, year: 2010

  19. Stochastic volatility and multi-dimensional modeling in the European energy market

    Energy Technology Data Exchange (ETDEWEB)

    Vos, Linda

    2012-07-01

    In energy prices there is evidence for stochastic volatility. Stochastic volatility has effect on the price of path-dependent options and therefore has to be modeled properly. We introduced a multi-dimensional non-Gaussian stochastic volatility model with leverage which can be used in energy pricing. It captures special features of energy prices like price spikes, mean-reversion, stochastic volatility and inverse leverage. Moreover it allows modeling dependencies between different commodities.The derived forward price dynamics based on this multi-variate spot price model, provides a very flexible structure. It includes cotango, backwardation and hump shape forward curves.Alternatively energy prices could be modeled by a 2-factor model consisting of a non-Gaussian stable CARMA process and a non-stationary trend models by a Levy process. Also this model is able to capture special features like price spikes, mean reversion and the low frequency dynamics in the market. An robust L1-filter is introduced to filter out the states of the CARMA process. When applying to German electricity EEX exchange data an overall negative risk-premium is found. However close to delivery a positive risk-premium is observed.(Author)

  20. Pricing European option with transaction costs under the fractional long memory stochastic volatility model

    Science.gov (United States)

    Wang, Xiao-Tian; Wu, Min; Zhou, Ze-Min; Jing, Wei-Shu

    2012-02-01

    This paper deals with the problem of discrete time option pricing using the fractional long memory stochastic volatility model with transaction costs. Through the 'anchoring and adjustment' argument in a discrete time setting, a European call option pricing formula is obtained.

  1. Pricing stock options under stochastic volatility and interest rates with efficient method of moments estimation

    NARCIS (Netherlands)

    Jiang, George J.; Sluis, Pieter J. van der

    1999-01-01

    While the stochastic volatility (SV) generalization has been shown to improve the explanatory power over the Black-Scholes model, empirical implications of SV models on option pricing have not yet been adequately tested. The purpose of this paper is to first estimate a multivariate SV model using

  2. The Risk-Return Tradeoff and Leverage Effect in a Stochastic Volatility-in-Mean Model

    DEFF Research Database (Denmark)

    Christensen, Bent Jesper; Posedel, Petra

    We study the risk premium and leverage effect in the S&P500 market using the stochastic volatility-in-mean model of Barndor¤-Nielsen & Shephard (2001). The Merton (1973, 1980) equilibrium asset pricing condition linking the conditional mean and conditional variance of discrete time returns is rei...

  3. On the source of stochastic volatility: Evidence from CAC40 index options during the subprime crisis

    Science.gov (United States)

    Slim, Skander

    2016-12-01

    This paper investigates the performance of time-changed Lévy processes with distinct sources of return volatility variation for modeling cross-sectional option prices on the CAC40 index during the subprime crisis. Specifically, we propose a multi-factor stochastic volatility model: one factor captures the diffusion component dynamics and two factors capture positive and negative jump variations. In-sample and out-of-sample tests show that our full-fledged model significantly outperforms nested lower-dimensional specifications. We find that all three sources of return volatility variation, with different persistence, are needed to properly account for market pricing dynamics across moneyness, maturity and volatility level. Besides, the model estimation reveals negative risk premium for both diffusive volatility and downward jump intensity whereas a positive risk premium is found to be attributed to upward jump intensity.

  4. Smooth Solutions to Optimal Investment Models with Stochastic Volatilities and Portfolio Constraints

    International Nuclear Information System (INIS)

    Pham, H.

    2002-01-01

    This paper deals with an extension of Merton's optimal investment problem to a multidimensional model with stochastic volatility and portfolio constraints. The classical dynamic programming approach leads to a characterization of the value function as a viscosity solution of the highly nonlinear associated Bellman equation. A logarithmic transformation expresses the value function in terms of the solution to a semilinear parabolic equation with quadratic growth on the derivative term. Using a stochastic control representation and some approximations, we prove the existence of a smooth solution to this semilinear equation. An optimal portfolio is shown to exist, and is expressed in terms of the classical solution to this semilinear equation. This reduction is useful for studying numerical schemes for both the value function and the optimal portfolio. We illustrate our results with several examples of stochastic volatility models popular in the financial literature

  5. Value-at-Risk for South-East Asian Stock Markets: Stochastic Volatility vs. GARCH

    Directory of Open Access Journals (Sweden)

    Paul Bui Quang

    2018-04-01

    Full Text Available This study compares the performance of several methods to calculate the Value-at-Risk of the six main ASEAN stock markets. We use filtered historical simulations, GARCH models, and stochastic volatility models. The out-of-sample performance is analyzed by various backtesting procedures. We find that simpler models fail to produce sufficient Value-at-Risk forecasts, which appears to stem from several econometric properties of the return distributions. With stochastic volatility models, we obtain better Value-at-Risk forecasts compared to GARCH. The quality varies over forecasting horizons and across markets. This indicates that, despite a regional proximity and homogeneity of the markets, index volatilities are driven by different factors.

  6. CO_2 volatility impact on energy portfolio choice: A fully stochastic LCOE theory analysis

    International Nuclear Information System (INIS)

    Lucheroni, Carlo; Mari, Carlo

    2017-01-01

    Highlights: • Stochastic LCOE theory is an extension of the levelized cost of electricity analysis. • The fully stochastic analysis include stochastic processes for fossil fuels prices and CO_2 prices. • The nuclear asset is risky through uncertainty about construction times and it is used as a hedge. • Volatility of CO_2 prices has a strong influence on CO_2 emissions reduction. - Abstract: Market based pricing of CO_2 was designed to control CO_2 emissions by means of the price level, since high CO_2 price levels discourage emissions. In this paper, it will be shown that the level of uncertainty on CO_2 market prices, i.e. the volatility of CO_2 prices itself, has a strong influence not only on generation portfolio risk management but also on CO_2 emissions abatement. A reduction of emissions can be obtained when rational power generation capacity investors decide that the capacity expansion cost risk induced jointly by CO_2 volatility and fossil fuels prices volatility can be efficiently hedged adding to otherwise fossil fuel portfolios some nuclear power as a carbon free asset. This intriguing effect will be discussed using a recently introduced economic analysis tool, called stochastic LCOE theory. The stochastic LCOE theory used here was designed to investigate diversification effects on energy portfolios. In previous papers this theory was used to study diversification effects on portfolios composed of carbon risky fossil technologies and a carbon risk-free nuclear technology in a risk-reward trade-off frame. In this paper the stochastic LCOE theory will be extended to include uncertainty about nuclear power plant construction times, i.e. considering nuclear risky as well, this being the main uncertainty source of financial risk in nuclear technology. Two measures of risk will be used, standard deviation and CVaR deviation, to derive efficient frontiers for generation portfolios. Frontier portfolios will be analyzed in their implications on emissions

  7. Estimation of stochastic volatility with long memory for index prices of FTSE Bursa Malaysia KLCI

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Kho Chia; Kane, Ibrahim Lawal; Rahman, Haliza Abd [Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Johor Bahru (Malaysia); Bahar, Arifah [UTM Centre for Industrial and Applied Mathematics (UTM-CIAM), Universiti Teknologi Malaysia, 81310, Johor Bahru and Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Johor Bahru (Malaysia); Ting, Chee-Ming [Center for Biomedical Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru (Malaysia)

    2015-02-03

    In recent years, modeling in long memory properties or fractionally integrated processes in stochastic volatility has been applied in the financial time series. A time series with structural breaks can generate a strong persistence in the autocorrelation function, which is an observed behaviour of a long memory process. This paper considers the structural break of data in order to determine true long memory time series data. Unlike usual short memory models for log volatility, the fractional Ornstein-Uhlenbeck process is neither a Markovian process nor can it be easily transformed into a Markovian process. This makes the likelihood evaluation and parameter estimation for the long memory stochastic volatility (LMSV) model challenging tasks. The drift and volatility parameters of the fractional Ornstein-Unlenbeck model are estimated separately using the least square estimator (lse) and quadratic generalized variations (qgv) method respectively. Finally, the empirical distribution of unobserved volatility is estimated using the particle filtering with sequential important sampling-resampling (SIR) method. The mean square error (MSE) between the estimated and empirical volatility indicates that the performance of the model towards the index prices of FTSE Bursa Malaysia KLCI is fairly well.

  8. Estimation of stochastic volatility with long memory for index prices of FTSE Bursa Malaysia KLCI

    Science.gov (United States)

    Chen, Kho Chia; Bahar, Arifah; Kane, Ibrahim Lawal; Ting, Chee-Ming; Rahman, Haliza Abd

    2015-02-01

    In recent years, modeling in long memory properties or fractionally integrated processes in stochastic volatility has been applied in the financial time series. A time series with structural breaks can generate a strong persistence in the autocorrelation function, which is an observed behaviour of a long memory process. This paper considers the structural break of data in order to determine true long memory time series data. Unlike usual short memory models for log volatility, the fractional Ornstein-Uhlenbeck process is neither a Markovian process nor can it be easily transformed into a Markovian process. This makes the likelihood evaluation and parameter estimation for the long memory stochastic volatility (LMSV) model challenging tasks. The drift and volatility parameters of the fractional Ornstein-Unlenbeck model are estimated separately using the least square estimator (lse) and quadratic generalized variations (qgv) method respectively. Finally, the empirical distribution of unobserved volatility is estimated using the particle filtering with sequential important sampling-resampling (SIR) method. The mean square error (MSE) between the estimated and empirical volatility indicates that the performance of the model towards the index prices of FTSE Bursa Malaysia KLCI is fairly well.

  9. Estimation of stochastic volatility with long memory for index prices of FTSE Bursa Malaysia KLCI

    International Nuclear Information System (INIS)

    Chen, Kho Chia; Kane, Ibrahim Lawal; Rahman, Haliza Abd; Bahar, Arifah; Ting, Chee-Ming

    2015-01-01

    In recent years, modeling in long memory properties or fractionally integrated processes in stochastic volatility has been applied in the financial time series. A time series with structural breaks can generate a strong persistence in the autocorrelation function, which is an observed behaviour of a long memory process. This paper considers the structural break of data in order to determine true long memory time series data. Unlike usual short memory models for log volatility, the fractional Ornstein-Uhlenbeck process is neither a Markovian process nor can it be easily transformed into a Markovian process. This makes the likelihood evaluation and parameter estimation for the long memory stochastic volatility (LMSV) model challenging tasks. The drift and volatility parameters of the fractional Ornstein-Unlenbeck model are estimated separately using the least square estimator (lse) and quadratic generalized variations (qgv) method respectively. Finally, the empirical distribution of unobserved volatility is estimated using the particle filtering with sequential important sampling-resampling (SIR) method. The mean square error (MSE) between the estimated and empirical volatility indicates that the performance of the model towards the index prices of FTSE Bursa Malaysia KLCI is fairly well

  10. The Pricing of European Options Under the Constant Elasticity of Variance with Stochastic Volatility

    Science.gov (United States)

    Bock, Bounghun; Choi, Sun-Yong; Kim, Jeong-Hoon

    This paper considers a hybrid risky asset price model given by a constant elasticity of variance multiplied by a stochastic volatility factor. A multiscale analysis leads to an asymptotic pricing formula for both European vanilla option and a Barrier option near the zero elasticity of variance. The accuracy of the approximation is provided in a rigorous manner. A numerical experiment for implied volatilities shows that the hybrid model improves some of the well-known models in view of fitting the data for different maturities.

  11. Bayesian estimation of realized stochastic volatility model by Hybrid Monte Carlo algorithm

    International Nuclear Information System (INIS)

    Takaishi, Tetsuya

    2014-01-01

    The hybrid Monte Carlo algorithm (HMCA) is applied for Bayesian parameter estimation of the realized stochastic volatility (RSV) model. Using the 2nd order minimum norm integrator (2MNI) for the molecular dynamics (MD) simulation in the HMCA, we find that the 2MNI is more efficient than the conventional leapfrog integrator. We also find that the autocorrelation time of the volatility variables sampled by the HMCA is very short. Thus it is concluded that the HMCA with the 2MNI is an efficient algorithm for parameter estimations of the RSV model

  12. A closed form solution for vulnerable options with Heston’s stochastic volatility

    International Nuclear Information System (INIS)

    Lee, Min-Ku; Yang, Sung-Jin; Kim, Jeong-Hoon

    2016-01-01

    Over-the-counter stock markets in the world have been growing rapidly and vulnerability to default risks of option holders traded in the over-the-counter markets became an important issue, in particular, since the global finance crisis and Eurozone crisis. This paper studies the pricing of European-type vulnerable options when the underlying asset follows the Heston dynamics. In this paper, we obtain a closed form analytic formula of the option price as a stochastic volatility extension of the classical Heston formula and find how the stochastic volatility effect on the Black–Scholes price as well as on the decreasing speed of the option price with credit risk depends on moneyness.

  13. Volatility Degree Forecasting of Stock Market by Stochastic Time Strength Neural Network

    Directory of Open Access Journals (Sweden)

    Haiyan Mo

    2013-01-01

    Full Text Available In view of the applications of artificial neural networks in economic and financial forecasting, a stochastic time strength function is introduced in the backpropagation neural network model to predict the fluctuations of stock price changes. In this model, stochastic time strength function gives a weight for each historical datum and makes the model have the effect of random movement, and then we investigate and forecast the behavior of volatility degrees of returns for the Chinese stock market indexes and some global market indexes. The empirical research is performed in testing the prediction effect of SSE, SZSE, HSI, DJIA, IXIC, and S&P 500 with different selected volatility degrees in the established model.

  14. Realizing stock market crashes: stochastic cusp catastrophe model of returns under time-varying volatility

    Czech Academy of Sciences Publication Activity Database

    Baruník, Jozef; Kukačka, Jiří

    2015-01-01

    Roč. 15, č. 6 (2015), s. 959-973 ISSN 1469-7688 R&D Projects: GA ČR GA402/09/0965; GA ČR GA13-32263S EU Projects: European Commission 612955 - FINMAP Institutional support: RVO:67985556 Keywords : Stochastic cusp catastrophe model * Realized volatility * Bifurcations * Stock market crash Subject RIV: AH - Economics Impact factor: 0.794, year: 2015 http://library.utia.cas.cz/separaty/2014/E/barunik-0434202.pdf

  15. Portfolio Optimization under Local-Stochastic Volatility: Coefficient Taylor Series Approximations & Implied Sharpe Ratio

    OpenAIRE

    Lorig, Matthew; Sircar, Ronnie

    2015-01-01

    We study the finite horizon Merton portfolio optimization problem in a general local-stochastic volatility setting. Using model coefficient expansion techniques, we derive approximations for the both the value function and the optimal investment strategy. We also analyze the `implied Sharpe ratio' and derive a series approximation for this quantity. The zeroth-order approximation of the value function and optimal investment strategy correspond to those obtained by Merton (1969) when the risky...

  16. The Short-Time Behaviour of VIX Implied Volatilities in a Multifactor Stochastic Volatility Framework

    DEFF Research Database (Denmark)

    Barletta, Andrea; Nicolato, Elisa; Pagliarani, Stefano

    error bounds for VIX futures, options and implied volatilities. In particular, we derive exact asymptotic results for VIX implied volatilities, and their sensitivities, in the joint limit of short time-to-maturity and small log-moneyness. The obtained expansions are explicit, based on elementary...... approximations of equity (SPX) options. However, the generalizations needed to cover the case of VIX options are by no means straightforward as the dynamics of the underlying VIX futures are not explicitly known. To illustrate the accuracy of our technique, we provide numerical implementations for a selection...... functions and they neatly uncover how the VIX skew depends on the specific choice of the volatility and the vol-of-vol processes. Our results are based on perturbation techniques applied to the infinitesimal generator of the underlying process. This methodology has been previously adopted to derive...

  17. A Generic Decomposition Formula for Pricing Vanilla Options under Stochastic Volatility Models

    Directory of Open Access Journals (Sweden)

    Raúl Merino

    2015-01-01

    Full Text Available We obtain a decomposition of the call option price for a very general stochastic volatility diffusion model, extending a previous decomposition formula for the Heston model. We realize that a new term arises when the stock price does not follow an exponential model. The techniques used for this purpose are nonanticipative. In particular, we also see that equivalent results can be obtained by using Functional Itô Calculus. Using the same generalizing ideas, we also extend to nonexponential models the alternative call option price decomposition formula written in terms of the Malliavin derivative of the volatility process. Finally, we give a general expression for the derivative of the implied volatility under both the anticipative and the nonanticipative cases.

  18. Joint Pricing of VIX and SPX Options with Stochastic Volatility and Jump models

    DEFF Research Database (Denmark)

    Kokholm, Thomas; Stisen, Martin

    2015-01-01

    to existing literature, we derive numerically simpler VIX option and futures pricing formulas in the case of the SVJ model. Moreover, the paper is the first to study the pricing performance of three widely used models to SPX options and VIX derivatives.......With the existence of active markets for volatility derivatives and options on the underlying instrument, the need for models that are able to price these markets consistently has increased. Although pricing formulas for VIX and vanilla options are now available for commonly employed models...... and variance (SVJJ) are jointly calibrated to market quotes on SPX and VIX options together with VIX futures. The full flexibility of having jumps in both returns and volatility added to a stochastic volatility model is essential. Moreover, we find that the SVJJ model with the Feller condition imposed...

  19. Stochastic reactive power market with volatility of wind power considering voltage security

    International Nuclear Information System (INIS)

    Kargarian, A.; Raoofat, M.

    2011-01-01

    While wind power generation is growing rapidly around the globe; its stochastic nature affects the system operation in many different aspects. In this paper, the impact of wind power volatility on the reactive power market is taken into account. The paper presents a novel stochastic method for optimal reactive power market clearing considering voltage security and volatile nature of the wind. The proposed optimization algorithm uses a multiobjective nonlinear programming technique to minimize market payment and simultaneously maximize voltage security margin. Considering a set of probable wind speeds, in the first stage, the proposed algorithm seeks to minimize expected system payment which is summation of reactive power payment and transmission loss cost. The object of the second stage is maximization of expected voltage security margin to increase the system loadability and security. Finally, in the last stage, a multiobjective function is presented to schedule the stochastic reactive power market using results of two previous stages. The proposed algorithm is applied to IEEE 14-bus test system. As a benchmark, Monte Carlo Simulation method is utilized to simulate the actual market of given period of time to evaluate results of the proposed algorithm, and satisfactory results are achieved. -- Highlights: →The paper proposes a new algorithm for stochastic reactive power market clearing. →The stochastic nature of the wind which impacts the system operation and market clearing process, is taken into account. →The paper suggests an expected voltage stability margin and optimizes it in conjunction with expected total market payment. →To clear the market with two mentioned objective functions, a three-stage multiobjective nonlinear programming is implemented. →Also, a simple method is suggested to determine a suitable priority coefficient between two individual objective functions.

  20. A DG approach to the numerical solution of the Stein-Stein stochastic volatility option pricing model

    Science.gov (United States)

    Hozman, J.; Tichý, T.

    2017-12-01

    Stochastic volatility models enable to capture the real world features of the options better than the classical Black-Scholes treatment. Here we focus on pricing of European-style options under the Stein-Stein stochastic volatility model when the option value depends on the time, on the price of the underlying asset and on the volatility as a function of a mean reverting Orstein-Uhlenbeck process. A standard mathematical approach to this model leads to the non-stationary second-order degenerate partial differential equation of two spatial variables completed by the system of boundary and terminal conditions. In order to improve the numerical valuation process for a such pricing equation, we propose a numerical technique based on the discontinuous Galerkin method and the Crank-Nicolson scheme. Finally, reference numerical experiments on real market data illustrate comprehensive empirical findings on options with stochastic volatility.

  1. On multilevel RBF collocation to solve nonlinear PDEs arising from endogenous stochastic volatility models

    Science.gov (United States)

    Bastani, Ali Foroush; Dastgerdi, Maryam Vahid; Mighani, Abolfazl

    2018-06-01

    The main aim of this paper is the analytical and numerical study of a time-dependent second-order nonlinear partial differential equation (PDE) arising from the endogenous stochastic volatility model, introduced in [Bensoussan, A., Crouhy, M. and Galai, D., Stochastic equity volatility related to the leverage effect (I): equity volatility behavior. Applied Mathematical Finance, 1, 63-85, 1994]. As the first step, we derive a consistent set of initial and boundary conditions to complement the PDE, when the firm is financed by equity and debt. In the sequel, we propose a Newton-based iteration scheme for nonlinear parabolic PDEs which is an extension of a method for solving elliptic partial differential equations introduced in [Fasshauer, G. E., Newton iteration with multiquadrics for the solution of nonlinear PDEs. Computers and Mathematics with Applications, 43, 423-438, 2002]. The scheme is based on multilevel collocation using radial basis functions (RBFs) to solve the resulting locally linearized elliptic PDEs obtained at each level of the Newton iteration. We show the effectiveness of the resulting framework by solving a prototypical example from the field and compare the results with those obtained from three different techniques: (1) a finite difference discretization; (2) a naive RBF collocation and (3) a benchmark approximation, introduced for the first time in this paper. The numerical results confirm the robustness, higher convergence rate and good stability properties of the proposed scheme compared to other alternatives. We also comment on some possible research directions in this field.

  2. A discontinuous Galerkin method for numerical pricing of European options under Heston stochastic volatility

    Science.gov (United States)

    Hozman, J.; Tichý, T.

    2016-12-01

    The paper is based on the results from our recent research on multidimensional option pricing problems. We focus on European option valuation when the price movement of the underlying asset is driven by a stochastic volatility following a square root process proposed by Heston. The stochastic approach incorporates a new additional spatial variable into this model and makes it very robust, i.e. it provides a framework to price a variety of options that is closer to reality. The main topic is to present the numerical scheme arising from the concept of discontinuous Galerkin methods and applicable to the Heston option pricing model. The numerical results are presented on artificial benchmarks as well as on reference market data.

  3. Equilibrium Asset and Option Pricing under Jump-Diffusion Model with Stochastic Volatility

    Directory of Open Access Journals (Sweden)

    Xinfeng Ruan

    2013-01-01

    Full Text Available We study the equity premium and option pricing under jump-diffusion model with stochastic volatility based on the model in Zhang et al. 2012. We obtain the pricing kernel which acts like the physical and risk-neutral densities and the moments in the economy. Moreover, the exact expression of option valuation is derived by the Fourier transformation method. We also discuss the relationship of central moments between the physical measure and the risk-neutral measure. Our numerical results show that our model is more realistic than the previous model.

  4. Stochastic model of financial markets reproducing scaling and memory in volatility return intervals

    Science.gov (United States)

    Gontis, V.; Havlin, S.; Kononovicius, A.; Podobnik, B.; Stanley, H. E.

    2016-11-01

    We investigate the volatility return intervals in the NYSE and FOREX markets. We explain previous empirical findings using a model based on the interacting agent hypothesis instead of the widely-used efficient market hypothesis. We derive macroscopic equations based on the microscopic herding interactions of agents and find that they are able to reproduce various stylized facts of different markets and different assets with the same set of model parameters. We show that the power-law properties and the scaling of return intervals and other financial variables have a similar origin and could be a result of a general class of non-linear stochastic differential equations derived from a master equation of an agent system that is coupled by herding interactions. Specifically, we find that this approach enables us to recover the volatility return interval statistics as well as volatility probability and spectral densities for the NYSE and FOREX markets, for different assets, and for different time-scales. We find also that the historical S&P500 monthly series exhibits the same volatility return interval properties recovered by our proposed model. Our statistical results suggest that human herding is so strong that it persists even when other evolving fluctuations perturbate the financial system.

  5. Volatility in energy prices

    International Nuclear Information System (INIS)

    Duffie, D.

    1999-01-01

    This chapter with 58 references reviews the modelling and empirical behaviour of volatility in energy prices. Constant volatility and stochastic volatility are discussed. Markovian models of stochastic volatility are described and the different classes of Markovian stochastic volatility model are examined including auto-regressive volatility, option implied and forecasted volatility, Garch volatility, Egarch volatility, multivariate Garch volatility, and stochastic volatility and dynamic hedging policies. Other volatility models and option hedging are considered. The performance of several stochastic volatility models as applied to heating oil, light oil, natural gas, electricity and light crude oil are compared

  6. Homotopy Analysis Method for Boundary-Value Problem of Turbo Warrant Pricing under Stochastic Volatility

    Directory of Open Access Journals (Sweden)

    Hoi Ying Wong

    2013-01-01

    Full Text Available Turbo warrants are liquidly traded financial derivative securities in over-the-counter and exchange markets in Asia and Europe. The structure of turbo warrants is similar to barrier options, but a lookback rebate will be paid if the barrier is crossed by the underlying asset price. Therefore, the turbo warrant price satisfies a partial differential equation (PDE with a boundary condition that depends on another boundary-value problem (BVP of PDE. Due to the highly complicated structure of turbo warrants, their valuation presents a challenging problem in the field of financial mathematics. This paper applies the homotopy analysis method to construct an analytic pricing formula for turbo warrants under stochastic volatility in a PDE framework.

  7. A Hull and White Formula for a General Stochastic Volatility Jump-Diffusion Model with Applications to the Study of the Short-Time Behavior of the Implied Volatility

    Directory of Open Access Journals (Sweden)

    Elisa Alòs

    2008-01-01

    Full Text Available We obtain a Hull and White type formula for a general jump-diffusion stochastic volatility model, where the involved stochastic volatility process is correlated not only with the Brownian motion driving the asset price but also with the asset price jumps. Towards this end, we establish an anticipative Itô's formula, using Malliavin calculus techniques for Lévy processes on the canonical space. As an application, we show that the dependence of the volatility process on the asset price jumps has no effect on the short-time behavior of the at-the-money implied volatility skew.

  8. Pricing of American Put Option under a Jump Diffusion Process with Stochastic Volatility in an Incomplete Market

    Directory of Open Access Journals (Sweden)

    Shuang Li

    2014-01-01

    Full Text Available We study the pricing of American options in an incomplete market in which the dynamics of the underlying risky asset is driven by a jump diffusion process with stochastic volatility. By employing a risk-minimization criterion, we obtain the Radon-Nikodym derivative for the minimal martingale measure and consequently a linear complementarity problem (LCP for American option price. An iterative method is then established to solve the LCP problem for American put option price. Our numerical results show that the model and numerical scheme are robust in capturing the feature of incomplete finance market, particularly the influence of market volatility on the price of American options.

  9. Stochastic price modeling of high volatility, mean-reverting, spike-prone commodities: The Australian wholesale spot electricity market

    International Nuclear Information System (INIS)

    Higgs, Helen; Worthington, Andrew

    2008-01-01

    It is commonly known that wholesale spot electricity markets exhibit high price volatility, strong mean-reversion and frequent extreme price spikes. This paper employs a basic stochastic model, a mean-reverting model and a regime-switching model to capture these features in the Australian national electricity market (NEM), comprising the interconnected markets of New South Wales, Queensland, South Australia and Victoria. Daily spot prices from 1 January 1999 to 31 December 2004 are employed. The results show that the regime-switching model outperforms the basic stochastic and mean-reverting models. Electricity prices are also found to exhibit stronger mean-reversion after a price spike than in the normal period, and price volatility is more than fourteen times higher in spike periods than in normal periods. The probability of a spike on any given day ranges between 5.16% in NSW and 9.44% in Victoria

  10. Volatile decision dynamics: experiments, stochastic description, intermittency control and traffic optimization

    Science.gov (United States)

    Helbing, Dirk; Schönhof, Martin; Kern, Daniel

    2002-06-01

    The coordinated and efficient distribution of limited resources by individual decisions is a fundamental, unsolved problem. When individuals compete for road capacities, time, space, money, goods, etc, they normally make decisions based on aggregate rather than complete information, such as TV news or stock market indices. In related experiments, we have observed a volatile decision dynamics and far-from-optimal payoff distributions. We have also identified methods of information presentation that can considerably improve the overall performance of the system. In order to determine optimal strategies of decision guidance by means of user-specific recommendations, a stochastic behavioural description is developed. These strategies manage to increase the adaptibility to changing conditions and to reduce the deviation from the time-dependent user equilibrium, thereby enhancing the average and individual payoffs. Hence, our guidance strategies can increase the performance of all users by reducing overreaction and stabilizing the decision dynamics. These results are highly significant for predicting decision behaviour, for reaching optimal behavioural distributions by decision support systems and for information service providers. One of the promising fields of application is traffic optimization.

  11. Option pricing under stochastic volatility: the exponential Ornstein–Uhlenbeck model

    International Nuclear Information System (INIS)

    Perelló, Josep; Masoliver, Jaume; Sircar, Ronnie

    2008-01-01

    We study the pricing problem for a European call option when the volatility of the underlying asset is random and follows the exponential Ornstein–Uhlenbeck model. The random diffusion model proposed is a two-dimensional market process that takes a log-Brownian motion to describe price dynamics and an Ornstein–Uhlenbeck subordinated process describing the randomness of the log-volatility. We derive an approximate option price that is valid when (i) the fluctuations of the volatility are larger than its normal level, (ii) the volatility presents a slow driving force, toward its normal level and, finally, (iii) the market price of risk is a linear function of the log-volatility. We study the resulting European call price and its implied volatility for a range of parameters consistent with daily Dow Jones index data

  12. "An Asymptotic Expansion Approach to Currency Options with a Market Model of Interest Rates under Stochastic Volatility Processes of Spot Exchange Rates"

    OpenAIRE

    Akihiko Takahashi; Kohta Takehara

    2007-01-01

    This paper proposes an asymptotic expansion scheme of currency options with a libor market model of interest rates and stochastic volatility models of spot exchange rates. In particular, we derive closed-form approximation formulas for the density functions of the underlying assets and for pricing currency options based on the third order asymptotic expansion scheme; we do not model a foreign exchange rate's variance such as in Heston[1993], but its volatility that follows a general time-inho...

  13. ABC of SV: Limited Information Likelihood Inference in Stochastic Volatility Jump-Diffusion Models

    DEFF Research Database (Denmark)

    Creel, Michael; Kristensen, Dennis

    and latent variables. We show how the methods can incorporate intra-daily information to improve on the estimation and filtering. In particular, the availability of realized volatility measures help us in learning about parameters and latent states. The method is employed in the estimation of a flexible...

  14. ALGORITHM FOR GENERALIZED GARMAN EQUATION IN OPTION PRICING OF A FINANCIAL DERIVATIVES WITH STOCHASTIC VOLATILITY MODELS

    Directory of Open Access Journals (Sweden)

    Maxim Ioan

    2009-05-01

    Full Text Available In our paper we build a reccurence from generalized Garman equation and discretization of 3-dimensional domain. From reccurence we build an algorithm for computing values of an option based on time, momentan volatility of support and value of support on a

  15. On stochastic integration for volatility modulated Brownian-driven Volterra processes via white noise analysis

    DEFF Research Database (Denmark)

    E. Barndorff-Nielsen, Ole; Benth, Fred Espen; Szozda, Benedykt

    This paper generalizes the integration theory for volatility modulated Brownian-driven Volterra processes onto the space G* of Potthoff-Timpel distributions. Sufficient conditions for integrability of generalized processes are given, regularity results and properties of the integral are discussed...

  16. On stochastic integration for volatility modulated Brownian-driven Volterra processes via white noise analysis

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole E.; Benth, Fred Espen; Szozda, Benedykt

    This paper generalizes the integration theory for volatility modulated Brownian-driven Volterra processes onto the space G∗ of Potthoff--Timpel distributions. Sufficient conditions for integrability of generalized processes are given, regularity results and properties of the integral are discusse...

  17. Model-based Estimation of High Frequency Jump Diffusions with Microstructure Noise and Stochastic Volatility

    NARCIS (Netherlands)

    Bos, Charles S.

    2008-01-01

    When analysing the volatility related to high frequency financial data, mostly non-parametric approaches based on realised or bipower variation are applied. This article instead starts from a continuous time diffusion model and derives a parametric analog at high frequency for it, allowing

  18. Valuing a gas-fired power plant: A comparison of ordinary linear models, regime-switching approaches, and models with stochastic volatility

    International Nuclear Information System (INIS)

    Heydari, Somayeh; Siddiqui, Afzal

    2010-01-01

    Energy prices are often highly volatile with unexpected spikes. Capturing these sudden spikes may lead to more informed decision-making in energy investments, such as valuing gas-fired power plants, than ignoring them. In this paper, non-linear regime-switching models and models with mean-reverting stochastic volatility are compared with ordinary linear models. The study is performed using UK electricity and natural gas daily spot prices and suggests that with the aim of valuing a gas-fired power plant with and without operational flexibility, non-linear models with stochastic volatility, specifically for logarithms of electricity prices, provide better out-of-sample forecasts than both linear models and regime-switching models.

  19. Volatility Discovery

    DEFF Research Database (Denmark)

    Dias, Gustavo Fruet; Scherrer, Cristina; Papailias, Fotis

    The price discovery literature investigates how homogenous securities traded on different markets incorporate information into prices. We take this literature one step further and investigate how these markets contribute to stochastic volatility (volatility discovery). We formally show...... that the realized measures from homogenous securities share a fractional stochastic trend, which is a combination of the price and volatility discovery measures. Furthermore, we show that volatility discovery is associated with the way that market participants process information arrival (market sensitivity......). Finally, we compute volatility discovery for 30 actively traded stocks in the U.S. and report that Nyse and Arca dominate Nasdaq....

  20. New approach of financial volatility duration dynamics by stochastic finite-range interacting voter system.

    Science.gov (United States)

    Wang, Guochao; Wang, Jun

    2017-01-01

    We make an approach on investigating the fluctuation behaviors of financial volatility duration dynamics. A new concept of volatility two-component range intensity (VTRI) is developed, which constitutes the maximal variation range of volatility intensity and shortest passage time of duration, and can quantify the investment risk in financial markets. In an attempt to study and describe the nonlinear complex properties of VTRI, a random agent-based financial price model is developed by the finite-range interacting biased voter system. The autocorrelation behaviors and the power-law scaling behaviors of return time series and VTRI series are investigated. Then, the complexity of VTRI series of the real markets and the proposed model is analyzed by Fuzzy entropy (FuzzyEn) and Lempel-Ziv complexity. In this process, we apply the cross-Fuzzy entropy (C-FuzzyEn) to study the asynchrony of pairs of VTRI series. The empirical results reveal that the proposed model has the similar complex behaviors with the actual markets and indicate that the proposed stock VTRI series analysis and the financial model are meaningful and feasible to some extent.

  1. On the effects of world stock market and oil price shocks on food prices: An empirical investigation based on TVP-VAR models with stochastic volatility

    International Nuclear Information System (INIS)

    Jebabli, Ikram; Arouri, Mohamed; Teulon, Frédéric

    2014-01-01

    Transmission of price shocks from one market to another one has long been investigated in the economic literature. However, studies have namely dealt with the relationship between financial and energy markets. With the recent changes in market conditions, investors, policy-makers and interest groups are giving special attention to food market. This paper aims at analyzing shock transmission between international food, energy and financial markets and to provide some insights into the volatility behavior during the past years and discuss its implications for portfolio management. To do this, we present a new time varying parameter VAR (TVP-VAR) model with stochastic volatility approach which provides extreme flexibility with a parsimonious specification. We resort also to a generalized vector autoregressive framework in which forecast-error variance decompositions are invariant to the variable ordering for the assessment of total and directional volatility spillovers. Our main findings suggest that volatility spillovers increase considerably during crisis and, namely after mid-2008, when stock markets become net transmitter of volatility shocks while crude oil becomes a net receiver. Shocks to crude oil or MSCI markets have immediate and short-term impacts on food markets which are emphasized during the financial crisis period. Moreover, we show that augmenting a diversified portfolio of food commodities with crude oil or stocks significantly increases its risk-adjusted performance. - Highlights: • We study shock transmission between food, energy and financial markets. • We use a new time-varying parameter VAR model with stochastic volatility. • There is volatility spillover from oil and stock markets to food. • Volatility spillovers increase considerably during crisis, namely after mid-2008. • Augmenting a portfolio of foods with oil or stocks increases its performance

  2. Volatility

    Directory of Open Access Journals (Sweden)

    María Sánchez

    2016-11-01

    Full Text Available The action consists of moving with small kicks a tin of cola refresh -without Brand-from a point of the city up to other one. During the path I avoid bollards, the slope differences between sidewalks, pedestrians, parked motorcycles, etc. Volatility wants to say exactly that the money is getting lost. That the money is losing by gentlemen and by ladies who are neither financial sharks, nor big businessmen… or similarly, but ingenuous people, as you or as me, who walk down the street.

  3. Medical imaging technology shock and volatility of macro economics: Analysis using a three-sector dynamical stochastic general equilibrium REC model.

    Science.gov (United States)

    Han, Shurong; Huang, Yeqing

    2017-07-07

    The study analysed the medical imaging technology business cycle from 1981 to 2009 and found that the volatility of consumption in Chinese medical imaging business was higher than that of the developed countries. The volatility of gross domestic product (GDP) and the correlation between consumption and GDP is also higher than that of the developed countries. Prior to the early 1990s the volatility of consumption is even higher than GDP. This fact makes it difficult to explain the volatile market using the standard one sector real economic cycle (REC) model. Contrary to the other domestic studies, this study considers a three-sector dynamical stochastic general equilibrium REC model. In this model there are two consumption sectors, whereby one is labour intensive and another is capital intensive. The more capital intensive investment sector only introduces technology shocks in the medical imaging market. Our response functions and Monte-Carlo simulation results show that the model can explain 90% of the volatility of consummation relative to GDP, and explain the correlation between consumption and GDP. The results demonstrated the significant correlation between the technological reform in medical imaging and volatility in the labour market on Chinese macro economy development.

  4. Virtual volatility

    Science.gov (United States)

    Silva, A. Christian; Prange, Richard E.

    2007-03-01

    We introduce the concept of virtual volatility. This simple but new measure shows how to quantify the uncertainty in the forecast of the drift component of a random walk. The virtual volatility also is a useful tool in understanding the stochastic process for a given portfolio. In particular, and as an example, we were able to identify mean reversion effect in our portfolio. Finally, we briefly discuss the potential practical effect of the virtual volatility on an investor asset allocation strategy.

  5. Pricing Volatility Referenced Assets

    Directory of Open Access Journals (Sweden)

    Alan De Genaro Dario

    2006-12-01

    Full Text Available Volatility swaps are contingent claims on future realized volatility. Variance swaps are similar instruments on future realized variance, the square of future realized volatility. Unlike a plain vanilla option, whose volatility exposure is contaminated by its asset price dependence, volatility and variance swaps provide a pure exposure to volatility alone. This article discusses the risk-neutral valuation of volatility and variance swaps based on the framework outlined in the Heston (1993 stochastic volatility model. Additionally, the Heston (1993 model is calibrated for foreign currency options traded at BMF and its parameters are used to price swaps on volatility and variance of the BRL / USD exchange rate.

  6. The Shape and Term Structure of the Index Option Smirk: Why Multifactor Stochastic Volatility Models Work so Well

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Heston, Steven; Jacobs, Kris

    variation in the smirk, the model also provides more flexible modeling of the volatility term structure. Our empirical results indicate that the model improves on the benchmark Heston model by 24% in-sample and 23% out-of-sample. The better fit results from improvements in the modeling of the term structure...... dimension as well as the moneyness dimension....

  7. Nonparametric methods for volatility density estimation

    NARCIS (Netherlands)

    Es, van Bert; Spreij, P.J.C.; Zanten, van J.H.

    2009-01-01

    Stochastic volatility modelling of financial processes has become increasingly popular. The proposed models usually contain a stationary volatility process. We will motivate and review several nonparametric methods for estimation of the density of the volatility process. Both models based on

  8. Stochastic volatility and leverage effect

    OpenAIRE

    Josep Perello; Jaume Masoliver

    2002-01-01

    We prove that Brownian market models with random diffusion coefficients provide an exact measure of the leverage effect [J-P. Bouchaud et al., Phys. Rev. Lett. 87, 228701 (2001)]. This empirical fact asserts that past returns are anticorrelated with future diffusion coefficient. Several models with random diffusion have been suggested but without a quantitative study of the leverage effect. Our analysis lets us to fully estimate all parameters involved and allows a deeper study of correlated ...

  9. MÉTODOS DISCRETOS Y CONTINUOS PARA MODELAR LA DENSIDAD DE PROBABILIDAD DE LA VOLATILIDAD ESTOCÁSTICA DE LOS RENDIMIENTOS DE SERIES FINANCIERAS DISCRETE AND CONTINUOUS METHODS FOR MODELING FINANCIAL SERIES YIELDING STOCHASTIC VOLATILITY PROBABILITY DENSITY

    Directory of Open Access Journals (Sweden)

    Carlos Alexánder Grajales Correa

    2007-07-01

    Full Text Available En este trabajo se consideran los rendimientos diarios de un activo financiero con el propósito de modelar y comparar la densidad de probabilidad de la volatilidad estocástica de los retornos. Para tal fin, se proponen los modelos ARCH y sus extensiones, que son en tiempo discreto, así como un modelo empírico de volatilidad estocástica, desarrollado por Paul Wilmott. Para el caso discreto se muestran los modelos que permiten estimar la volatilidad condicional heterocedástica en un instante t del tiempo, t∈[1,T]. En el caso continuo se asocia un proceso de difusión de Itô a la volatilidad estocástica de la serie financiera, lo cual posibilita discretizar dicho proceso y simularlo para obtener densidades de probabilidad empíricas de la volatilidad. Finalmente se ilustran y se comparan los resultados obtenidos con las metodologías expuestas para el caso de las series financieras S&P 500 de EEUU, el Índice de Precios y Cotizaciones de la Bolsa Mexicana de Valores (IPC y el IGBC de Colombia.This work considers daily yields of financial assets in order to model and compare returns stochastic volatility probability density. For such aim, ARCH models and its extensions are proposed - they are in discrete time- as well as an Empirical Stochastic Volatility Model, developed by Paul Wilmott. For the discrete case, models that allow to estimate heteroscedasticity conditional volatility in a time, t, t,t∈[1,T], are shown. In the continuous case, there is an association of an Itô diffusion process to stochastic volatility of the financial series, which allows to write a discretization of this process and to simulate it to obtain empirical probabilistic densities from the volatility. Finally the results are illustrated and compared with methodologies exposed by the case of the financial series S&P 500 of the U.S.A., Index of Prices and Quotations of stock-market Mexican of Values (IPC and IGBC of Colombia.

  10. Numerical Simulation of the Heston Model under Stochastic Correlation

    Directory of Open Access Journals (Sweden)

    Long Teng

    2017-12-01

    Full Text Available Stochastic correlation models have become increasingly important in financial markets. In order to be able to price vanilla options in stochastic volatility and correlation models, in this work, we study the extension of the Heston model by imposing stochastic correlations driven by a stochastic differential equation. We discuss the efficient algorithms for the extended Heston model by incorporating stochastic correlations. Our numerical experiments show that the proposed algorithms can efficiently provide highly accurate results for the extended Heston by including stochastic correlations. By investigating the effect of stochastic correlations on the implied volatility, we find that the performance of the Heston model can be proved by including stochastic correlations.

  11. Volatility Mean Reversion and the Market Price of Volatility Risk

    NARCIS (Netherlands)

    Boswijk, H.P.

    2001-01-01

    This paper analyzes sources of derivative pricing errors in a stochastic volatility model estimated on stock return data. It is shown that such pricing errors may reflect the existence of a market price of volatility risk, but also may be caused by estimation errors due to a slow mean reversion in

  12. It’s all about volatility of volatility

    DEFF Research Database (Denmark)

    Grassi, Stefano; Santucci de Magistris, Paolo

    2015-01-01

    The persistent nature of equity volatility is investigated by means of a multi-factor stochastic volatility model with time varying parameters. The parameters are estimated by means of a sequential matching procedure which adopts as auxiliary model a time-varying generalization of the HAR model f...

  13. Understanding Interest Rate Volatility

    DEFF Research Database (Denmark)

    Volker, Desi

    This thesis is the result of my Ph.D. studies at the Department of Finance of the Copenhagen Business School. It consists of three essays covering topics related to the term structure of interest rates, monetary policy and interest rate volatility. The rst essay, \\Monetary Policy Uncertainty...... and Interest Rates", examines the role of monetary policy uncertainty on the term structure of interest rates. The second essay, \\A Regime-Switching A ne Term Structure Model with Stochastic Volatility" (co-authored with Sebastian Fux), investigates the ability of the class of regime switching models...... with and without stochastic volatility to capture the main stylized features of U.S. interest rates. The third essay, \\Variance Risk Premia in the Interest Rate Swap Market", investigates the time-series and cross-sectional properties of the compensation demanded for holding interest rate variance risk. The essays...

  14. Understanding Interest Rate Volatility

    OpenAIRE

    Volker, Desi

    2016-01-01

    This thesis is the result of my Ph.D. studies at the Department of Finance of the Copenhagen Business School. It consists of three essays covering topics related to the term structure of interest rates, monetary policy and interest rate volatility. The rst essay, \\Monetary Policy Uncertainty and Interest Rates", examines the role of monetary policy uncertainty on the term structure of interest rates. The second essay, \\A Regime-Switching A ne Term Structure Model with Stochast...

  15. Testing for a Common Volatility Process and Information Spillovers in Bivariate Financial Time Series Models

    NARCIS (Netherlands)

    J. Chen (Jinghui); M. Kobayashi (Masahito); M.J. McAleer (Michael)

    2016-01-01

    textabstractThe paper considers the problem as to whether financial returns have a common volatility process in the framework of stochastic volatility models that were suggested by Harvey et al. (1994). We propose a stochastic volatility version of the ARCH test proposed by Engle and Susmel (1993),

  16. Dynamic Estimation of Volatility Risk Premia and Investor Risk Aversion from Option-Implied and Realized Volatilities

    DEFF Research Database (Denmark)

    Bollerslev, Tim; Gibson, Michael; Zhou, Hao

    experiment confirms that the procedure works well in practice. Implementing the procedure with actual S&P500 option-implied volatilities and high-frequency five-minute-based realized volatilities indicates significant temporal dependencies in the estimated stochastic volatility risk premium, which we in turn...

  17. Interest Rate Derivative Pricing with Stochastic Volatility

    NARCIS (Netherlands)

    Chen, B.

    2012-01-01

    One purpose of exotic derivative pricing models is to enable financial institutions to quantify and manage their financial risk, arising from large books of portfolios. These portfolios consist of many non-standard exotic financial products. Risk is managed by means of the evaluation of sensitivity

  18. Iodine volatility

    International Nuclear Information System (INIS)

    Beahm, E.C.; Shockley, W.E.

    1984-01-01

    The ultimate aim of this program is to couple experimental aqueous iodine volatilities to a fission product release model. Iodine partition coefficients, for inorganic iodine, have been measured during hydrolysis and radiolysis. The hydrolysis experiments have illustrated the importance of reaction time on iodine volatility. However, radiolysis effects can override hydrolysis in determining iodine volatility. In addition, silver metal in radiolysis samples can react to form silver iodide accompanied by a decrease in iodine volatility. Experimental data are now being coupled to an iodine transport and release model that was developed in the Federal Republic of Germany

  19. Stochastic processes

    CERN Document Server

    Parzen, Emanuel

    1962-01-01

    Well-written and accessible, this classic introduction to stochastic processes and related mathematics is appropriate for advanced undergraduate students of mathematics with a knowledge of calculus and continuous probability theory. The treatment offers examples of the wide variety of empirical phenomena for which stochastic processes provide mathematical models, and it develops the methods of probability model-building.Chapter 1 presents precise definitions of the notions of a random variable and a stochastic process and introduces the Wiener and Poisson processes. Subsequent chapters examine

  20. Stochastic quantization

    International Nuclear Information System (INIS)

    Klauder, J.R.

    1983-01-01

    The author provides an introductory survey to stochastic quantization in which he outlines this new approach for scalar fields, gauge fields, fermion fields, and condensed matter problems such as electrons in solids and the statistical mechanics of quantum spins. (Auth.)

  1. Weather Derivatives and Stochastic Modelling of Temperature

    Directory of Open Access Journals (Sweden)

    Fred Espen Benth

    2011-01-01

    Full Text Available We propose a continuous-time autoregressive model for the temperature dynamics with volatility being the product of a seasonal function and a stochastic process. We use the Barndorff-Nielsen and Shephard model for the stochastic volatility. The proposed temperature dynamics is flexible enough to model temperature data accurately, and at the same time being analytically tractable. Futures prices for commonly traded contracts at the Chicago Mercantile Exchange on indices like cooling- and heating-degree days and cumulative average temperatures are computed, as well as option prices on them.

  2. STOCHASTIC ASSESSMENT OF NIGERIAN STOCHASTIC ...

    African Journals Online (AJOL)

    eobe

    STOCHASTIC ASSESSMENT OF NIGERIAN WOOD FOR BRIDGE DECKS ... abandoned bridges with defects only in their decks in both rural and urban locations can be effectively .... which can be seen as the detection of rare physical.

  3. Unstable volatility

    DEFF Research Database (Denmark)

    Casas, Isabel; Gijbels, Irène

    2012-01-01

    The objective of this paper is to introduce the break-preserving local linear (BPLL) estimator for the estimation of unstable volatility functions for independent and asymptotically independent processes. Breaks in the structure of the conditional mean and/or the volatility functions are common...... in Finance. Nonparametric estimators are well suited for these events due to the flexibility of their functional form and their good asymptotic properties. However, the local polynomial kernel estimators are not consistent at points where the volatility function has a break. The estimator presented...

  4. The memory of volatility

    Directory of Open Access Journals (Sweden)

    Kai R. Wenger

    2018-03-01

    Full Text Available The focus of the volatility literature on forecasting and the predominance of theconceptually simpler HAR model over long memory stochastic volatility models has led to the factthat the actual degree of memory estimates has rarely been considered. Estimates in the literaturerange roughly between 0.4 and 0.6 - that is from the higher stationary to the lower non-stationaryregion. This difference, however, has important practical implications - such as the existence or nonexistenceof the fourth moment of the return distribution. Inference on the memory order is complicatedby the presence of measurement error in realized volatility and the potential of spurious long memory.In this paper we provide a comprehensive analysis of the memory in variances of international stockindices and exchange rates. On the one hand, we find that the variance of exchange rates is subject tospurious long memory and the true memory parameter is in the higher stationary range. Stock indexvariances, on the other hand, are free of low frequency contaminations and the memory is in the lowernon-stationary range. These results are obtained using state of the art local Whittle methods that allowconsistent estimation in presence of perturbations or low frequency contaminations.

  5. Chasing volatility

    DEFF Research Database (Denmark)

    Caporin, Massimiliano; Rossi, Eduardo; Santucci de Magistris, Paolo

    The realized volatility of financial returns is characterized by persistence and occurrence of unpreditable large increments. To capture those features, we introduce the Multiplicative Error Model with jumps (MEM-J). When a jump component is included in the multiplicative specification, the condi......The realized volatility of financial returns is characterized by persistence and occurrence of unpreditable large increments. To capture those features, we introduce the Multiplicative Error Model with jumps (MEM-J). When a jump component is included in the multiplicative specification...... estimate alternative specifications of the model using a set of daily bipower measures for 7 stock indexes and 16 individual NYSE stocks. The estimates of the jump component confirm that the probability of jumps dramatically increases during the financial crisis. Compared to other realized volatility...... models, the introduction of the jump component provides a sensible improvement in the fit, as well as for in-sample and out-of-sample volatility tail forecasts....

  6. Quantum stochastics

    CERN Document Server

    Chang, Mou-Hsiung

    2015-01-01

    The classical probability theory initiated by Kolmogorov and its quantum counterpart, pioneered by von Neumann, were created at about the same time in the 1930s, but development of the quantum theory has trailed far behind. Although highly appealing, the quantum theory has a steep learning curve, requiring tools from both probability and analysis and a facility for combining the two viewpoints. This book is a systematic, self-contained account of the core of quantum probability and quantum stochastic processes for graduate students and researchers. The only assumed background is knowledge of the basic theory of Hilbert spaces, bounded linear operators, and classical Markov processes. From there, the book introduces additional tools from analysis, and then builds the quantum probability framework needed to support applications to quantum control and quantum information and communication. These include quantum noise, quantum stochastic calculus, stochastic quantum differential equations, quantum Markov semigrou...

  7. Forecasting prices and price volatility in the Nordic electricity market

    International Nuclear Information System (INIS)

    2001-01-01

    We develop a stochastic model for long term price forecasting in a competitive electricity market environment. It is demonstrated both theoretically and through model simulations that non-stochastic models may give biased forecasts both with respect to price level and volatility. In the paper, the model concept is applied on the restructured Nordic electricity market. It is specially in peak load hours that a stochastic model formulation provides significantly different results than an expected value model. (author)

  8. Electricity price modeling with stochastic time change

    International Nuclear Information System (INIS)

    Borovkova, Svetlana; Schmeck, Maren Diane

    2017-01-01

    In this paper, we develop a novel approach to electricity price modeling, based on the powerful technique of stochastic time change. This technique allows us to incorporate the characteristic features of electricity prices (such as seasonal volatility, time varying mean reversion and seasonally occurring price spikes) into the model in an elegant and economically justifiable way. The stochastic time change introduces stochastic as well as deterministic (e.g., seasonal) features in the price process' volatility and in the jump component. We specify the base process as a mean reverting jump diffusion and the time change as an absolutely continuous stochastic process with seasonal component. The activity rate of the stochastic time change can be related to the factors that influence supply and demand. Here we use the temperature as a proxy for the demand and hence, as the driving factor of the stochastic time change, and show that this choice leads to realistic price paths. We derive properties of the resulting price process and develop the model calibration procedure. We calibrate the model to the historical EEX power prices and apply it to generating realistic price paths by Monte Carlo simulations. We show that the simulated price process matches the distributional characteristics of the observed electricity prices in periods of both high and low demand. - Highlights: • We develop a novel approach to electricity price modeling, based on the powerful technique of stochastic time change. • We incorporate the characteristic features of electricity prices, such as seasonal volatility and spikes into the model. • We use the temperature as a proxy for the demand and hence, as the driving factor of the stochastic time change • We derive properties of the resulting price process and develop the model calibration procedure. • We calibrate the model to the historical EEX power prices and apply it to generating realistic price paths.

  9. A novel Monte Carlo approach to hybrid local volatility models

    NARCIS (Netherlands)

    A.W. van der Stoep (Anton); L.A. Grzelak (Lech Aleksander); C.W. Oosterlee (Cornelis)

    2017-01-01

    textabstractWe present in a Monte Carlo simulation framework, a novel approach for the evaluation of hybrid local volatility [Risk, 1994, 7, 18–20], [Int. J. Theor. Appl. Finance, 1998, 1, 61–110] models. In particular, we consider the stochastic local volatility model—see e.g. Lipton et al. [Quant.

  10. A Range-Based Multivariate Model for Exchange Rate Volatility

    NARCIS (Netherlands)

    B. Tims (Ben); R.J. Mahieu (Ronald)

    2003-01-01

    textabstractIn this paper we present a parsimonious multivariate model for exchange rate volatilities based on logarithmic high-low ranges of daily exchange rates. The multivariate stochastic volatility model divides the log range of each exchange rate into two independent latent factors, which are

  11. Modelling of volatility in monetary transmission mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Dobešová, Anna; Klepáč, Václav; Kolman, Pavel [Department of Statistics and Operation Analysis, Faculty of Business and Economics, Mendel University in Brno, Zemědělská 1, 61300, Brno (Czech Republic); Bednářová, Petra [Institute of Technology and Business, Okružní 517/10, 370 01, České Budějovice (Czech Republic)

    2015-03-10

    The aim of this paper is to compare different approaches to modeling of volatility in monetary transmission mechanism. For this purpose we built time-varying parameter VAR (TVP-VAR) model with stochastic volatility and VAR-DCC-GARCH model with conditional variance. The data from three European countries are included in the analysis: the Czech Republic, Germany and Slovakia. Results show that VAR-DCC-GARCH system captures higher volatility of observed variables but main trends and detected breaks are generally identical in both approaches.

  12. Modelling of volatility in monetary transmission mechanism

    International Nuclear Information System (INIS)

    Dobešová, Anna; Klepáč, Václav; Kolman, Pavel; Bednářová, Petra

    2015-01-01

    The aim of this paper is to compare different approaches to modeling of volatility in monetary transmission mechanism. For this purpose we built time-varying parameter VAR (TVP-VAR) model with stochastic volatility and VAR-DCC-GARCH model with conditional variance. The data from three European countries are included in the analysis: the Czech Republic, Germany and Slovakia. Results show that VAR-DCC-GARCH system captures higher volatility of observed variables but main trends and detected breaks are generally identical in both approaches

  13. Stochastic cooling

    International Nuclear Information System (INIS)

    Bisognano, J.; Leemann, C.

    1982-03-01

    Stochastic cooling is the damping of betatron oscillations and momentum spread of a particle beam by a feedback system. In its simplest form, a pickup electrode detects the transverse positions or momenta of particles in a storage ring, and the signal produced is amplified and applied downstream to a kicker. The time delay of the cable and electronics is designed to match the transit time of particles along the arc of the storage ring between the pickup and kicker so that an individual particle receives the amplified version of the signal it produced at the pick-up. If there were only a single particle in the ring, it is obvious that betatron oscillations and momentum offset could be damped. However, in addition to its own signal, a particle receives signals from other beam particles. In the limit of an infinite number of particles, no damping could be achieved; we have Liouville's theorem with constant density of the phase space fluid. For a finite, albeit large number of particles, there remains a residue of the single particle damping which is of practical use in accumulating low phase space density beams of particles such as antiprotons. It was the realization of this fact that led to the invention of stochastic cooling by S. van der Meer in 1968. Since its conception, stochastic cooling has been the subject of much theoretical and experimental work. The earliest experiments were performed at the ISR in 1974, with the subsequent ICE studies firmly establishing the stochastic cooling technique. This work directly led to the design and construction of the Antiproton Accumulator at CERN and the beginnings of p anti p colliding beam physics at the SPS. Experiments in stochastic cooling have been performed at Fermilab in collaboration with LBL, and a design is currently under development for a anti p accumulator for the Tevatron

  14. Stochastic thermodynamics

    Science.gov (United States)

    Eichhorn, Ralf; Aurell, Erik

    2014-04-01

    'Stochastic thermodynamics as a conceptual framework combines the stochastic energetics approach introduced a decade ago by Sekimoto [1] with the idea that entropy can consistently be assigned to a single fluctuating trajectory [2]'. This quote, taken from Udo Seifert's [3] 2008 review, nicely summarizes the basic ideas behind stochastic thermodynamics: for small systems, driven by external forces and in contact with a heat bath at a well-defined temperature, stochastic energetics [4] defines the exchanged work and heat along a single fluctuating trajectory and connects them to changes in the internal (system) energy by an energy balance analogous to the first law of thermodynamics. Additionally, providing a consistent definition of trajectory-wise entropy production gives rise to second-law-like relations and forms the basis for a 'stochastic thermodynamics' along individual fluctuating trajectories. In order to construct meaningful concepts of work, heat and entropy production for single trajectories, their definitions are based on the stochastic equations of motion modeling the physical system of interest. Because of this, they are valid even for systems that are prevented from equilibrating with the thermal environment by external driving forces (or other sources of non-equilibrium). In that way, the central notions of equilibrium thermodynamics, such as heat, work and entropy, are consistently extended to the non-equilibrium realm. In the (non-equilibrium) ensemble, the trajectory-wise quantities acquire distributions. General statements derived within stochastic thermodynamics typically refer to properties of these distributions, and are valid in the non-equilibrium regime even beyond the linear response. The extension of statistical mechanics and of exact thermodynamic statements to the non-equilibrium realm has been discussed from the early days of statistical mechanics more than 100 years ago. This debate culminated in the development of linear response

  15. A Range-Based Multivariate Model for Exchange Rate Volatility

    OpenAIRE

    Tims, Ben; Mahieu, Ronald

    2003-01-01

    textabstractIn this paper we present a parsimonious multivariate model for exchange rate volatilities based on logarithmic high-low ranges of daily exchange rates. The multivariate stochastic volatility model divides the log range of each exchange rate into two independent latent factors, which are interpreted as the underlying currency specific components. Due to the normality of logarithmic volatilities the model can be estimated conveniently with standard Kalman filter techniques. Our resu...

  16. Stochastic Analysis 2010

    CERN Document Server

    Crisan, Dan

    2011-01-01

    "Stochastic Analysis" aims to provide mathematical tools to describe and model high dimensional random systems. Such tools arise in the study of Stochastic Differential Equations and Stochastic Partial Differential Equations, Infinite Dimensional Stochastic Geometry, Random Media and Interacting Particle Systems, Super-processes, Stochastic Filtering, Mathematical Finance, etc. Stochastic Analysis has emerged as a core area of late 20th century Mathematics and is currently undergoing a rapid scientific development. The special volume "Stochastic Analysis 2010" provides a sa

  17. Stochastic processes

    CERN Document Server

    Borodin, Andrei N

    2017-01-01

    This book provides a rigorous yet accessible introduction to the theory of stochastic processes. A significant part of the book is devoted to the classic theory of stochastic processes. In turn, it also presents proofs of well-known results, sometimes together with new approaches. Moreover, the book explores topics not previously covered elsewhere, such as distributions of functionals of diffusions stopped at different random times, the Brownian local time, diffusions with jumps, and an invariance principle for random walks and local times. Supported by carefully selected material, the book showcases a wealth of examples that demonstrate how to solve concrete problems by applying theoretical results. It addresses a broad range of applications, focusing on concrete computational techniques rather than on abstract theory. The content presented here is largely self-contained, making it suitable for researchers and graduate students alike.

  18. Stochastic kinetics

    International Nuclear Information System (INIS)

    Colombino, A.; Mosiello, R.; Norelli, F.; Jorio, V.M.; Pacilio, N.

    1975-01-01

    A nuclear system kinetics is formulated according to a stochastic approach. The detailed probability balance equations are written for the probability of finding the mixed population of neutrons and detected neutrons, i.e. detectrons, at a given level for a given instant of time. Equations are integrated in search of a probability profile: a series of cases is analyzed through a progressive criterium. It tends to take into account an increasing number of physical processes within the chosen model. The most important contribution is that solutions interpret analytically experimental conditions of equilibrium (moise analysis) and non equilibrium (pulsed neutron measurements, source drop technique, start up procedures)

  19. Stochastic Jeux

    Directory of Open Access Journals (Sweden)

    Romanu Ekaterini

    2006-01-01

    Full Text Available This article shows the similarities between Claude Debussy’s and Iannis Xenakis’ philosophy of music and work, in particular the formers Jeux and the latter’s Metastasis and the stochastic works succeeding it, which seem to proceed parallel (with no personal contact to what is perceived as the evolution of 20th century Western music. Those two composers observed the dominant (German tradition as outsiders, and negated some of its elements considered as constant or natural by "traditional" innovators (i.e. serialists: the linearity of musical texture, its form and rhythm.

  20. Neuro-Inspired Computing with Stochastic Electronics

    KAUST Repository

    Naous, Rawan

    2016-01-06

    The extensive scaling and integration within electronic systems have set the standards for what is addressed to as stochastic electronics. The individual components are increasingly diverting away from their reliable behavior and producing un-deterministic outputs. This stochastic operation highly mimics the biological medium within the brain. Hence, building on the inherent variability, particularly within novel non-volatile memory technologies, paves the way for unconventional neuromorphic designs. Neuro-inspired networks with brain-like structures of neurons and synapses allow for computations and levels of learning for diverse recognition tasks and applications.

  1. Stochastic modeling

    CERN Document Server

    Lanchier, Nicolas

    2017-01-01

    Three coherent parts form the material covered in this text, portions of which have not been widely covered in traditional textbooks. In this coverage the reader is quickly introduced to several different topics enriched with 175 exercises which focus on real-world problems. Exercises range from the classics of probability theory to more exotic research-oriented problems based on numerical simulations. Intended for graduate students in mathematics and applied sciences, the text provides the tools and training needed to write and use programs for research purposes. The first part of the text begins with a brief review of measure theory and revisits the main concepts of probability theory, from random variables to the standard limit theorems. The second part covers traditional material on stochastic processes, including martingales, discrete-time Markov chains, Poisson processes, and continuous-time Markov chains. The theory developed is illustrated by a variety of examples surrounding applications such as the ...

  2. STOCHASTIC FLOWS OF MAPPINGS

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper, the stochastic flow of mappings generated by a Feller convolution semigroup on a compact metric space is studied. This kind of flow is the generalization of superprocesses of stochastic flows and stochastic diffeomorphism induced by the strong solutions of stochastic differential equations.

  3. Stochastic Averaging and Stochastic Extremum Seeking

    CERN Document Server

    Liu, Shu-Jun

    2012-01-01

    Stochastic Averaging and Stochastic Extremum Seeking develops methods of mathematical analysis inspired by the interest in reverse engineering  and analysis of bacterial  convergence by chemotaxis and to apply similar stochastic optimization techniques in other environments. The first half of the text presents significant advances in stochastic averaging theory, necessitated by the fact that existing theorems are restricted to systems with linear growth, globally exponentially stable average models, vanishing stochastic perturbations, and prevent analysis over infinite time horizon. The second half of the text introduces stochastic extremum seeking algorithms for model-free optimization of systems in real time using stochastic perturbations for estimation of their gradients. Both gradient- and Newton-based algorithms are presented, offering the user the choice between the simplicity of implementation (gradient) and the ability to achieve a known, arbitrary convergence rate (Newton). The design of algorithms...

  4. Estimation and prediction under local volatility jump-diffusion model

    Science.gov (United States)

    Kim, Namhyoung; Lee, Younhee

    2018-02-01

    Volatility is an important factor in operating a company and managing risk. In the portfolio optimization and risk hedging using the option, the value of the option is evaluated using the volatility model. Various attempts have been made to predict option value. Recent studies have shown that stochastic volatility models and jump-diffusion models reflect stock price movements accurately. However, these models have practical limitations. Combining them with the local volatility model, which is widely used among practitioners, may lead to better performance. In this study, we propose a more effective and efficient method of estimating option prices by combining the local volatility model with the jump-diffusion model and apply it using both artificial and actual market data to evaluate its performance. The calibration process for estimating the jump parameters and local volatility surfaces is divided into three stages. We apply the local volatility model, stochastic volatility model, and local volatility jump-diffusion model estimated by the proposed method to KOSPI 200 index option pricing. The proposed method displays good estimation and prediction performance.

  5. Explaining output volatility: The case of taxation

    DEFF Research Database (Denmark)

    Posch, Olaf

    the second moment of output growth rates without (long-run) effects on the first moment. Taking the model to the data, we exploit observed heterogeneity patterns to estimate effects of tax rates on macro volatility using panel estimation, explicitly modeling the unobserved variance process. We find a strong......This paper studies the effects of taxation on output volatility in OECD countries to shed light on the sources of observed heterogeneity over time and across countries. To this end, we derive tax effects on macro aggregates in a stochastic neoclassical model. As a result, taxes are shown to affect...... positive effects....

  6. Precificação de Opções com Volatilidade EstocásticaOption pricing with stochastic volatilityPrecificación de Opciones con Volatilidad Estocástica

    Directory of Open Access Journals (Sweden)

    MARTIN, Diógenes Manoel Leiva

    2004-01-01

    Full Text Available RESUMOEntre as suposições subjacentes do modelo Black-Scholes-Merton, as maiores polarizações empíricas são causadas por aquelas com uma volatilidade fixa do recurso subjacente. Este artigo discute as aproximações principais deste modelo.ABSTRACTAmong the underlying assumptions of the Black-Scholes option pricing model, the largest empirical biases are caused by those with a fixed volatility of the underlying asset. This article discusses the main approaches of this issue.RESUMENEntre las suposiciones subyacentes al modelo Black-Scholes-Merton, las mayores polarizaciones empíricas las provocan las que poseen una volatilidad fija del recurso adyacente.Este artículo trata de las principales aproximaciones a este modelo.

  7. Altruism in a volatile world.

    Science.gov (United States)

    Kennedy, Patrick; Higginson, Andrew D; Radford, Andrew N; Sumner, Seirian

    2018-03-15

    The evolution of altruism-costly self-sacrifice in the service of others-has puzzled biologists since The Origin of Species. For half a century, attempts to understand altruism have developed around the concept that altruists may help relatives to have extra offspring in order to spread shared genes. This theory-known as inclusive fitness-is founded on a simple inequality termed Hamilton's rule. However, explanations of altruism have typically not considered the stochasticity of natural environments, which will not necessarily favour genotypes that produce the greatest average reproductive success. Moreover, empirical data across many taxa reveal associations between altruism and environmental stochasticity, a pattern not predicted by standard interpretations of Hamilton's rule. Here we derive Hamilton's rule with explicit stochasticity, leading to new predictions about the evolution of altruism. We show that altruists can increase the long-term success of their genotype by reducing the temporal variability in the number of offspring produced by their relatives. Consequently, costly altruism can evolve even if it has a net negative effect on the average reproductive success of related recipients. The selective pressure on volatility-suppressing altruism is proportional to the coefficient of variation in population fitness, and is therefore diminished by its own success. Our results formalize the hitherto elusive link between bet-hedging and altruism, and reveal missing fitness effects in the evolution of animal societies.

  8. Mellin Transform Method for European Option Pricing with Hull-White Stochastic Interest Rate

    Directory of Open Access Journals (Sweden)

    Ji-Hun Yoon

    2014-01-01

    Full Text Available Even though interest rates fluctuate randomly in the marketplace, many option-pricing models do not fully consider their stochastic nature owing to their generally limited impact on option prices. However, stochastic dynamics in stochastic interest rates may have a significant impact on option prices as we take account of issues of maturity, hedging, or stochastic volatility. In this paper, we derive a closed form solution for European options in Black-Scholes model with stochastic interest rate using Mellin transform techniques.

  9. Stochastic resonance

    International Nuclear Information System (INIS)

    Wellens, Thomas; Shatokhin, Vyacheslav; Buchleitner, Andreas

    2004-01-01

    We are taught by conventional wisdom that the transmission and detection of signals is hindered by noise. However, during the last two decades, the paradigm of stochastic resonance (SR) proved this assertion wrong: indeed, addition of the appropriate amount of noise can boost a signal and hence facilitate its detection in a noisy environment. Due to its simplicity and robustness, SR has been implemented by mother nature on almost every scale, thus attracting interdisciplinary interest from physicists, geologists, engineers, biologists and medical doctors, who nowadays use it as an instrument for their specific purposes. At the present time, there exist a lot of diversified models of SR. Taking into account the progress achieved in both theoretical understanding and practical application of this phenomenon, we put the focus of the present review not on discussing in depth technical details of different models and approaches but rather on presenting a general and clear physical picture of SR on a pedagogical level. Particular emphasis will be given to the implementation of SR in generic quantum systems-an issue that has received limited attention in earlier review papers on the topic. The major part of our presentation relies on the two-state model of SR (or on simple variants thereof), which is general enough to exhibit the main features of SR and, in fact, covers many (if not most) of the examples of SR published so far. In order to highlight the diversity of the two-state model, we shall discuss several examples from such different fields as condensed matter, nonlinear and quantum optics and biophysics. Finally, we also discuss some situations that go beyond the generic SR scenario but are still characterized by a constructive role of noise

  10. The Role of Permanent and Transitory Components in Business Cycle Volatility Moderation

    OpenAIRE

    Korenok, Oleg; Radchenko, Stanislav

    2004-01-01

    The paper examines the processes underlying economic fluctuations by investigating the volatility moderation of U.S. economy in the early 1980's. We decompose the volatility decline using a dynamic factor framework into a common stochastic trend, common transitory component and idiosyncratic components. We find that the moderation of business cycle was a result of the moderation in transitory and idiosyncratic components. Our results suggest that important part of stochastic process that driv...

  11. LEFT-WING ASYMPTOTICS OF THE IMPLIED VOLATILITY IN THE PRESENCE OF ATOMS

    OpenAIRE

    ARCHIL GULISASHVILI

    2015-01-01

    The paper considers the asymptotic behavior of the implied volatility in stochastic asset price models with atoms. In such models, the asset price distribution has a singular component at zero. Examples of models with atoms include the constant elasticity of variance (CEV) model, jump-to-default models, and stochastic models described by processes stopped at the first hitting time of zero. For models with atoms, the behavior of the implied volatility at large strikes is similar to that in mod...

  12. Forecasting volatility for options valuation

    International Nuclear Information System (INIS)

    Belaifa, M.; Morimune, K.

    2006-01-01

    The petroleum sector plays a neuralgic role in the basement of world economies, and market actors (producers, intermediates, as well as consumers) are continuously subjected to the dynamics of unstable oil market. Huge amounts are being invested along the production chain to make one barrel of crude oil available to the end user. Adding to that are the effect of geopolitical dynamics as well as geological risks as expressed in terms of low chances of successful discoveries. In addition, fiscal regimes and regulations, technology and environmental concerns are also among some of the major factors that contribute to the substantial risk in the oil industry and render the market structure vulnerable to crises. The management of these vulnerabilities require modern tools to reduce risk to a certain level, which unfortunately is a non-zero value. The aim of this paper is, therefore, to provide a modern technique to capture the oil price stochastic volatility that can be implemented to value the exposure of an investor, a company, a corporate or a Government. The paper first analyses the regional dependence on oil prices, through a historical perspective and then looks at the evolution of pricing environment since the large price jumps of the 1970s. The main causes of oil prices volatility are treated in the third part of the paper. The rest of the article deals with volatility models and forecasts used in risk management, with an implication for pricing derivatives. (author)

  13. Stochastic tools in turbulence

    CERN Document Server

    Lumey, John L

    2012-01-01

    Stochastic Tools in Turbulence discusses the available mathematical tools to describe stochastic vector fields to solve problems related to these fields. The book deals with the needs of turbulence in relation to stochastic vector fields, particularly, on three-dimensional aspects, linear problems, and stochastic model building. The text describes probability distributions and densities, including Lebesgue integration, conditional probabilities, conditional expectations, statistical independence, lack of correlation. The book also explains the significance of the moments, the properties of the

  14. Endogenous Lunar Volatiles

    Science.gov (United States)

    McCubbin, F. M.; Liu, Y.; Barnes, J. J.; Boyce, J. W.; Day, J. M. D.; Elardo, S. M.; Hui, H.; Magna, T.; Ni, P.; Tartese, R.; hide

    2017-01-01

    The chapter will begin with an introduction that defines magmatic volatiles (e.g., H, F, Cl, S) versus geochemical volatiles (e.g., K, Rb, Zn). We will discuss our approach of understanding both types of volatiles in lunar samples and lay the ground work for how we will determine the overall volatile budget of the Moon. We will then discuss the importance of endogenous volatiles in shaping the "Newer Views of the Moon", specifically how endogenous volatiles feed forward into processes such as the origin of the Moon, magmatic differentiation, volcanism, and secondary processes during surface and crustal interactions. After the introduction, we will include a re-view/synthesis on the current state of 1) apatite compositions (volatile abundances and isotopic compositions); 2) nominally anhydrous mineral phases (moderately to highly volatile); 3) volatile (moderately to highly volatile) abundances in and isotopic compositions of lunar pyroclastic glass beads; 4) volatile (moderately to highly volatile) abundances in and isotopic compositions of lunar basalts; 5) volatile (moderately to highly volatile) abundances in and isotopic compositions of melt inclusions; and finally 6) experimental constraints on mineral-melt partitioning of moderately to highly volatile elements under lunar conditions. We anticipate that each section will summarize results since 2007 and focus on new results published since the 2015 Am Min review paper on lunar volatiles [9]. The next section will discuss how to use sample abundances of volatiles to understand the source region and potential caveats in estimating source abundances of volatiles. The following section will include our best estimates of volatile abundances and isotopic compositions (where permitted by available data) for each volatile element of interest in a number of important lunar reservoirs, including the crust, mantle, KREEP, and bulk Moon. The final section of the chapter will focus upon future work, outstanding questions

  15. No-arbitrage, leverage and completeness in a fractional volatility model

    Science.gov (United States)

    Vilela Mendes, R.; Oliveira, M. J.; Rodrigues, A. M.

    2015-02-01

    When the volatility process is driven by fractional noise one obtains a model which is consistent with the empirical market data. Depending on whether the stochasticity generators of log-price and volatility are independent or are the same, two versions of the model are obtained with different leverage behaviors. Here, the no-arbitrage and completeness properties of the models are rigorously studied.

  16. Stochastic control with rough paths

    International Nuclear Information System (INIS)

    Diehl, Joscha; Friz, Peter K.; Gassiat, Paul

    2017-01-01

    We study a class of controlled differential equations driven by rough paths (or rough path realizations of Brownian motion) in the sense of Lyons. It is shown that the value function satisfies a HJB type equation; we also establish a form of the Pontryagin maximum principle. Deterministic problems of this type arise in the duality theory for controlled diffusion processes and typically involve anticipating stochastic analysis. We make the link to old work of Davis and Burstein (Stoch Stoch Rep 40:203–256, 1992) and then prove a continuous-time generalization of Roger’s duality formula [SIAM J Control Optim 46:1116–1132, 2007]. The generic case of controlled volatility is seen to give trivial duality bounds, and explains the focus in Burstein–Davis’ (and this) work on controlled drift. Our study of controlled rough differential equations also relates to work of Mazliak and Nourdin (Stoch Dyn 08:23, 2008).

  17. Stochastic control with rough paths

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, Joscha [University of California San Diego (United States); Friz, Peter K., E-mail: friz@math.tu-berlin.de [TU & WIAS Berlin (Germany); Gassiat, Paul [CEREMADE, Université Paris-Dauphine, PSL Research University (France)

    2017-04-15

    We study a class of controlled differential equations driven by rough paths (or rough path realizations of Brownian motion) in the sense of Lyons. It is shown that the value function satisfies a HJB type equation; we also establish a form of the Pontryagin maximum principle. Deterministic problems of this type arise in the duality theory for controlled diffusion processes and typically involve anticipating stochastic analysis. We make the link to old work of Davis and Burstein (Stoch Stoch Rep 40:203–256, 1992) and then prove a continuous-time generalization of Roger’s duality formula [SIAM J Control Optim 46:1116–1132, 2007]. The generic case of controlled volatility is seen to give trivial duality bounds, and explains the focus in Burstein–Davis’ (and this) work on controlled drift. Our study of controlled rough differential equations also relates to work of Mazliak and Nourdin (Stoch Dyn 08:23, 2008).

  18. Asymmetric Realized Volatility Risk

    Directory of Open Access Journals (Sweden)

    David E. Allen

    2014-06-01

    Full Text Available In this paper, we document that realized variation measures constructed from high-frequency returns reveal a large degree of volatility risk in stock and index returns, where we characterize volatility risk by the extent to which forecasting errors in realized volatility are substantive. Even though returns standardized by ex post quadratic variation measures are nearly Gaussian, this unpredictability brings considerably more uncertainty to the empirically relevant ex ante distribution of returns. Explicitly modeling this volatility risk is fundamental. We propose a dually asymmetric realized volatility model, which incorporates the fact that realized volatility series are systematically more volatile in high volatility periods. Returns in this framework display time varying volatility, skewness and kurtosis. We provide a detailed account of the empirical advantages of the model using data on the S&P 500 index and eight other indexes and stocks.

  19. Noncausal stochastic calculus

    CERN Document Server

    Ogawa, Shigeyoshi

    2017-01-01

    This book presents an elementary introduction to the theory of noncausal stochastic calculus that arises as a natural alternative to the standard theory of stochastic calculus founded in 1944 by Professor Kiyoshi Itô. As is generally known, Itô Calculus is essentially based on the "hypothesis of causality", asking random functions to be adapted to a natural filtration generated by Brownian motion or more generally by square integrable martingale. The intention in this book is to establish a stochastic calculus that is free from this "hypothesis of causality". To be more precise, a noncausal theory of stochastic calculus is developed in this book, based on the noncausal integral introduced by the author in 1979. After studying basic properties of the noncausal stochastic integral, various concrete problems of noncausal nature are considered, mostly concerning stochastic functional equations such as SDE, SIE, SPDE, and others, to show not only the necessity of such theory of noncausal stochastic calculus but ...

  20. Volatility smile as relativistic effect

    Science.gov (United States)

    Kakushadze, Zura

    2017-06-01

    We give an explicit formula for the probability distribution based on a relativistic extension of Brownian motion. The distribution (1) is properly normalized and (2) obeys the tower law (semigroup property), so we can construct martingales and self-financing hedging strategies and price claims (options). This model is a 1-constant-parameter extension of the Black-Scholes-Merton model. The new parameter is the analog of the speed of light in Special Relativity. However, in the financial context there is no ;speed limit; and the new parameter has the meaning of a characteristic diffusion speed at which relativistic effects become important and lead to a much softer asymptotic behavior, i.e., fat tails, giving rise to volatility smiles. We argue that a nonlocal stochastic description of such (Lévy) processes is inadequate and discuss a local description from physics. The presentation is intended to be pedagogical.

  1. Estimation of volatility of selected oil production projects

    International Nuclear Information System (INIS)

    Costa Lima, Gabriel A.; Suslick, Saul B.

    2006-01-01

    In oil project valuation and investment decision-making, volatility is a key parameter, but it is difficult to estimate. From a traditional investment viewpoint, volatility reduces project value because it increases its discount rate via a higher risk premium. Contrarily, according to the real-option pricing theory, volatility may aggregate value to the project, since the downside potential is limited whereas the upside is theoretically unbounded. However, the estimation of project volatility is very complicated since there is not a historical series of project values. In such cases, many analysts assume that oil price volatility is equal to that of project. In order to overcome such problems, in this paper an alternative numerical method based on present value of future cash flows and Monte Carlo simulation is proposed to estimate the volatility of projects. This method is applied to estimate the volatility of 12 deep-water offshore oil projects considering that oil price will evolve according to one of two stochastic processes: Geometric Brownian Motion and Mean-Reverting Motion. Results indicate that the volatility of commodity usually undervalue that of project. For the set of offshore projects analyzed in this paper, project volatility is at least 79% higher than that of oil prices and increases dramatically in those cases of high capital expenditures and low price. (author)

  2. Endogenous Lunar Volatiles

    Science.gov (United States)

    McCubbin, F. M.; Liu, Y.; Barnes, J. J.; Anand, M.; Boyce, J. W.; Burney, D.; Day, J. M. D.; Elardo, S. M.; Hui, H.; Klima, R. L.; Magna, T.; Ni, P.; Steenstra, E.; Tartèse, R.; Vander Kaaden, K. E.

    2018-04-01

    This abstract discusses numerous outstanding questions on the topic of endogenous lunar volatiles that will need to be addressed in the coming years. Although substantial insights into endogenous lunar volatiles have been gained, more work remains.

  3. Nonvolatile, semivolatile, or volatile: redefining volatile for volatile organic compounds.

    Science.gov (United States)

    Võ, Uyên-Uyén T; Morris, Michael P

    2014-06-01

    Although widely used in air quality regulatory frameworks, the term "volatile organic compound" (VOC) is poorly defined. Numerous standardized tests are currently used in regulations to determine VOC content (and thus volatility), but in many cases the tests do not agree with each other, nor do they always accurately represent actual evaporation rates under ambient conditions. The parameters (time, temperature, reference material, column polarity, etc.) used in the definitions and the associated test methods were created without a significant evaluation of volatilization characteristics in real world settings. Not only do these differences lead to varying VOC content results, but occasionally they conflict with one another. An ambient evaporation study of selected compounds and a few formulated products was conducted and the results were compared to several current VOC test methodologies: SCAQMD Method 313 (M313), ASTM Standard Test Method E 1868-10 (E1868), and US. EPA Reference Method 24 (M24). The ambient evaporation study showed a definite distinction between nonvolatile, semivolatile, and volatile compounds. Some low vapor pressure (LVP) solvents, currently considered exempt as VOCs by some methods, volatilize at ambient conditions nearly as rapidly as the traditional high-volatility solvents they are meant to replace. Conversely, bio-based and heavy hydrocarbons did not readily volatilize, though they often are calculated as VOCs in some traditional test methods. The study suggests that regulatory standards should be reevaluated to more accurately reflect real-world emission from the use of VOC containing products. The definition of VOC in current test methods may lead to regulations that exclude otherwise viable alternatives or allow substitutions of chemicals that may limit the environmental benefits sought in the regulation. A study was conducted to examine volatility of several compounds and a few formulated products under several current VOC test

  4. Normalization for Implied Volatility

    OpenAIRE

    Fukasawa, Masaaki

    2010-01-01

    We study specific nonlinear transformations of the Black-Scholes implied volatility to show remarkable properties of the volatility surface. Model-free bounds on the implied volatility skew are given. Pricing formulas for the European options which are written in terms of the implied volatility are given. In particular, we prove elegant formulas for the fair strikes of the variance swap and the gamma swap.

  5. Realized Volatility Risk

    NARCIS (Netherlands)

    D.E. Allen (David); M.J. McAleer (Michael); M. Scharth (Marcel)

    2013-01-01

    textabstractIn this paper we document that realized variation measures constructed from highfrequency returns reveal a large degree of volatility risk in stock and index returns, where we characterize volatility risk by the extent to which forecasting errors in realized volatility are substantive.

  6. Elitism and Stochastic Dominance

    OpenAIRE

    Bazen, Stephen; Moyes, Patrick

    2011-01-01

    Stochastic dominance has typically been used with a special emphasis on risk and inequality reduction something captured by the concavity of the utility function in the expected utility model. We claim that the applicability of the stochastic dominance approach goes far beyond risk and inequality measurement provided suitable adpations be made. We apply in the paper the stochastic dominance approach to the measurment of elitism which may be considered the opposite of egalitarianism. While the...

  7. Singular stochastic differential equations

    CERN Document Server

    Cherny, Alexander S

    2005-01-01

    The authors introduce, in this research monograph on stochastic differential equations, a class of points termed isolated singular points. Stochastic differential equations possessing such points (called singular stochastic differential equations here) arise often in theory and in applications. However, known conditions for the existence and uniqueness of a solution typically fail for such equations. The book concentrates on the study of the existence, the uniqueness, and, what is most important, on the qualitative behaviour of solutions of singular stochastic differential equations. This is done by providing a qualitative classification of isolated singular points, into 48 possible types.

  8. Stochastic analytic regularization

    International Nuclear Information System (INIS)

    Alfaro, J.

    1984-07-01

    Stochastic regularization is reexamined, pointing out a restriction on its use due to a new type of divergence which is not present in the unregulated theory. Furthermore, we introduce a new form of stochastic regularization which permits the use of a minimal subtraction scheme to define the renormalized Green functions. (author)

  9. Instantaneous stochastic perturbation theory

    International Nuclear Information System (INIS)

    Lüscher, Martin

    2015-01-01

    A form of stochastic perturbation theory is described, where the representative stochastic fields are generated instantaneously rather than through a Markov process. The correctness of the procedure is established to all orders of the expansion and for a wide class of field theories that includes all common formulations of lattice QCD.

  10. Stochastic climate theory

    NARCIS (Netherlands)

    Gottwald, G.A.; Crommelin, D.T.; Franzke, C.L.E.; Franzke, C.L.E.; O'Kane, T.J.

    2017-01-01

    In this chapter we review stochastic modelling methods in climate science. First we provide a conceptual framework for stochastic modelling of deterministic dynamical systems based on the Mori-Zwanzig formalism. The Mori-Zwanzig equations contain a Markov term, a memory term and a term suggestive of

  11. On Stochastic Dependence

    Science.gov (United States)

    Meyer, Joerg M.

    2018-01-01

    The contrary of stochastic independence splits up into two cases: pairs of events being favourable or being unfavourable. Examples show that both notions have quite unexpected properties, some of them being opposite to intuition. For example, transitivity does not hold. Stochastic dependence is also useful to explain cases of Simpson's paradox.

  12. Incomplete Continuous-time Securities Markets with Stochastic Income Volatility

    DEFF Research Database (Denmark)

    Christensen, Peter Ove; Larsen, Kasper

    2014-01-01

    We derive closed-form solutions for the equilibrium interest rate and market price of risk processes in an incomplete continuous-time market with uncertainty generated by Brownian motions. The economy has a finite number of heterogeneous exponential utility investors, who receive partially...

  13. Incomplete Continuous-Time Securities Markets with Stochastic Income Volatility

    DEFF Research Database (Denmark)

    Christensen, Peter Ove; Larsen, Kasper

    In an incomplete continuous-time securities market governed by Brownian motions, we derive closed-form solutions for the equilibrium risk-free rate and equity premium processes. The economy has a finite number of heterogeneous exponential utility investors, who receive partially unspanned income ...

  14. Cross sectional efficient estimation of stochastic volatility short rate models

    NARCIS (Netherlands)

    Danilov, Dmitri; Mandal, Pranab K.

    2001-01-01

    We consider the problem of estimation of term structure of interest rates. Filtering theory approach is very natural here with the underlying setup being non-linear and non-Gaussian. Earlier works make use of Extended Kalman Filter (EKF). However, as indicated by de Jong (2000), the EKF in this

  15. Cross sectional efficient estimation of stochastic volatility short rate models

    NARCIS (Netherlands)

    Danilov, Dmitri; Mandal, Pranab K.

    2002-01-01

    We consider the problem of estimation of term structure of interest rates. Filtering theory approach is very natural here with the underlying setup being non-linear and non-Gaussian. Earlier works make use of Extended Kalman Filter (EKF). However, the EKF in this situation leads to inconsistent

  16. Stochastic quantization and gravity

    International Nuclear Information System (INIS)

    Rumpf, H.

    1984-01-01

    We give a preliminary account of the application of stochastic quantization to the gravitational field. We start in Section I from Nelson's formulation of quantum mechanics as Newtonian stochastic mechanics and only then introduce the Parisi-Wu stochastic quantization scheme on which all the later discussion will be based. In Section II we present a generalization of the scheme that is applicable to fields in physical (i.e. Lorentzian) space-time and treat the free linearized gravitational field in this manner. The most remarkable result of this is the noncausal propagation of conformal gravitons. Moreover the concept of stochastic gauge-fixing is introduced and a complete discussion of all the covariant gauges is given. A special symmetry relating two classes of covariant gauges is exhibited. Finally Section III contains some preliminary remarks on full nonlinear gravity. In particular we argue that in contrast to gauge fields the stochastic gravitational field cannot be transformed to a Gaussian process. (Author)

  17. Stochastic neuron models

    CERN Document Server

    Greenwood, Priscilla E

    2016-01-01

    This book describes a large number of open problems in the theory of stochastic neural systems, with the aim of enticing probabilists to work on them. This includes problems arising from stochastic models of individual neurons as well as those arising from stochastic models of the activities of small and large networks of interconnected neurons. The necessary neuroscience background to these problems is outlined within the text, so readers can grasp the context in which they arise. This book will be useful for graduate students and instructors providing material and references for applying probability to stochastic neuron modeling. Methods and results are presented, but the emphasis is on questions where additional stochastic analysis may contribute neuroscience insight. An extensive bibliography is included. Dr. Priscilla E. Greenwood is a Professor Emerita in the Department of Mathematics at the University of British Columbia. Dr. Lawrence M. Ward is a Professor in the Department of Psychology and the Brain...

  18. Speculation and volatility spillover in the crude oil and agricultural commodity markets: A Bayesian analysis

    International Nuclear Information System (INIS)

    Du Xiaodong; Yu, Cindy L.; Hayes, Dermot J.

    2011-01-01

    This paper assesses factors that potentially influence the volatility of crude oil prices and the possible linkage between this volatility and agricultural commodity markets. Stochastic volatility models are applied to weekly crude oil, corn, and wheat futures prices from November 1998 to January 2009. Model parameters are estimated using Bayesian Markov Chain Monte Carlo methods. Speculation, scalping, and petroleum inventories are found to be important in explaining the volatility of crude oil prices. Several properties of crude oil price dynamics are established, including mean-reversion, an asymmetry between returns and volatility, volatility clustering, and infrequent compound jumps. We find evidence of volatility spillover among crude oil, corn, and wheat markets after the fall of 2006. This can be largely explained by tightened interdependence between crude oil and these commodity markets induced by ethanol production.

  19. Hedging electricity price volatility using nuclear power

    International Nuclear Information System (INIS)

    Mari, Carlo

    2014-01-01

    Highlights: • Nuclear power is an important asset to reduce the volatility of electricity prices. • Unpredictability of fossil fuels and carbon prices makes power prices very volatile. • The dynamics of fossil fuels and carbon prices is described by Brownian motions. • LCOE values, volatilities and correlations are obtained via Monte Carlo simulations. • Optimal portfolios of generating technologies are get using a mean–variance approach. - Abstract: The analysis presented in this paper aims to put in some evidence the role of nuclear power as hedging asset against the volatility of electricity prices. The unpredictability of natural gas and coal market prices as well as the uncertainty in environmental policies may affect power generating costs, thus enhancing volatility in electricity market prices. The nuclear option, allowing to generate electricity without carbon emissions, offers the possibility to reduce the volatility of electricity prices through optimal diversification of power generating technologies. This paper provides a methodological scheme to plan well diversified “portfolios” of generating capacity that minimize the electricity price risk induced by random movements of fossil fuels market prices and by unpredictable fluctuations of carbon credits prices. The analysis is developed within a stochastic environment in which the dynamics of fuel prices as well as the dynamics of carbon credits prices is assumed to evolve in time according to well defined Brownian processes. Starting from market data and using Monte Carlo techniques to simulate generating cost values, the hedging argument is developed by selecting optimal portfolio of power generating technologies using a mean–variance approach

  20. Modeling volatility using state space models.

    Science.gov (United States)

    Timmer, J; Weigend, A S

    1997-08-01

    In time series problems, noise can be divided into two categories: dynamic noise which drives the process, and observational noise which is added in the measurement process, but does not influence future values of the system. In this framework, we show that empirical volatilities (the squared relative returns of prices) exhibit a significant amount of observational noise. To model and predict their time evolution adequately, we estimate state space models that explicitly include observational noise. We obtain relaxation times for shocks in the logarithm of volatility ranging from three weeks (for foreign exchange) to three to five months (for stock indices). In most cases, a two-dimensional hidden state is required to yield residuals that are consistent with white noise. We compare these results with ordinary autoregressive models (without a hidden state) and find that autoregressive models underestimate the relaxation times by about two orders of magnitude since they do not distinguish between observational and dynamic noise. This new interpretation of the dynamics of volatility in terms of relaxators in a state space model carries over to stochastic volatility models and to GARCH models, and is useful for several problems in finance, including risk management and the pricing of derivative securities. Data sets used: Olsen & Associates high frequency DEM/USD foreign exchange rates (8 years). Nikkei 225 index (40 years). Dow Jones Industrial Average (25 years).

  1. Stochastic Modelling, Analysis, and Simulations of the Solar Cycle Dynamic Process

    Science.gov (United States)

    Turner, Douglas C.; Ladde, Gangaram S.

    2018-03-01

    Analytical solutions, discretization schemes and simulation results are presented for the time delay deterministic differential equation model of the solar dynamo presented by Wilmot-Smith et al. In addition, this model is extended under stochastic Gaussian white noise parametric fluctuations. The introduction of stochastic fluctuations incorporates variables affecting the dynamo process in the solar interior, estimation error of parameters, and uncertainty of the α-effect mechanism. Simulation results are presented and analyzed to exhibit the effects of stochastic parametric volatility-dependent perturbations. The results generalize and extend the work of Hazra et al. In fact, some of these results exhibit the oscillatory dynamic behavior generated by the stochastic parametric additative perturbations in the absence of time delay. In addition, the simulation results of the modified stochastic models influence the change in behavior of the very recently developed stochastic model of Hazra et al.

  2. Volatility in Equilibrium

    DEFF Research Database (Denmark)

    Bollerslev, Tim; Sizova, Natalia; Tauchen, George

    Stock market volatility clusters in time, carries a risk premium, is fractionally inte- grated, and exhibits asymmetric leverage effects relative to returns. This paper develops a first internally consistent equilibrium based explanation for these longstanding empirical facts. The model is cast i......, and the dynamic cross-correlations of the volatility measures with the returns calculated from actual high-frequency intra-day data on the S&P 500 aggregate market and VIX volatility indexes....

  3. Sequential stochastic optimization

    CERN Document Server

    Cairoli, Renzo

    1996-01-01

    Sequential Stochastic Optimization provides mathematicians and applied researchers with a well-developed framework in which stochastic optimization problems can be formulated and solved. Offering much material that is either new or has never before appeared in book form, it lucidly presents a unified theory of optimal stopping and optimal sequential control of stochastic processes. This book has been carefully organized so that little prior knowledge of the subject is assumed; its only prerequisites are a standard graduate course in probability theory and some familiarity with discrete-paramet

  4. Remarks on stochastic acceleration

    International Nuclear Information System (INIS)

    Graeff, P.

    1982-12-01

    Stochastic acceleration and turbulent diffusion are strong turbulence problems since no expansion parameter exists. Hence the problem of finding rigorous results is of major interest both for checking approximations and for reference models. Since we have found a way of constructing such models in the turbulent diffusion case the question of the extension to stochastic acceleration now arises. The paper offers some possibilities illustrated by the case of 'stochastic free fall' which may be particularly interesting in the context of linear response theory. (orig.)

  5. Humps in the volatility structure of the crude oil futures market: New evidence

    International Nuclear Information System (INIS)

    Chiarella, Carl; Kang, Boda; Nikitopoulos, Christina Sklibosios; Tô, Thuy-Duong

    2013-01-01

    This paper analyses the volatility structure of commodity derivatives markets. The model encompasses hump-shaped, unspanned stochastic volatility, which entails a finite-dimensional affine model for the commodity futures curve and quasi-analytical prices for options on commodity futures. Using an extensive database of crude oil futures and futures options spanning 21 years, we find the presence of hump-shaped, partially spanned stochastic volatility in the crude oil market. The hump shaped feature is more pronounced when the market is more volatile, and delivers better pricing as well as hedging performance under various dynamic factor hedging schemes. - Highlights: • This paper analyses the volatility structure of commodity derivatives markets. • 21-years of data on crude oil futures and futures options is used. • The crude oil futures market has hump-shaped, unspanned stochastic volatility. • The hump shaped feature is more pronounced when the market is more volatile. • Hump shape delivers better pricing and hedging compared to exponential decay

  6. Stochastic processes inference theory

    CERN Document Server

    Rao, Malempati M

    2014-01-01

    This is the revised and enlarged 2nd edition of the authors’ original text, which was intended to be a modest complement to Grenander's fundamental memoir on stochastic processes and related inference theory. The present volume gives a substantial account of regression analysis, both for stochastic processes and measures, and includes recent material on Ridge regression with some unexpected applications, for example in econometrics. The first three chapters can be used for a quarter or semester graduate course on inference on stochastic processes. The remaining chapters provide more advanced material on stochastic analysis suitable for graduate seminars and discussions, leading to dissertation or research work. In general, the book will be of interest to researchers in probability theory, mathematical statistics and electrical and information theory.

  7. Introduction to stochastic calculus

    CERN Document Server

    Karandikar, Rajeeva L

    2018-01-01

    This book sheds new light on stochastic calculus, the branch of mathematics that is most widely applied in financial engineering and mathematical finance. The first book to introduce pathwise formulae for the stochastic integral, it provides a simple but rigorous treatment of the subject, including a range of advanced topics. The book discusses in-depth topics such as quadratic variation, Ito formula, and Emery topology. The authors briefly address continuous semi-martingales to obtain growth estimates and study solution of a stochastic differential equation (SDE) by using the technique of random time change. Later, by using Metivier–Pellumail inequality, the solutions to SDEs driven by general semi-martingales are discussed. The connection of the theory with mathematical finance is briefly discussed and the book has extensive treatment on the representation of martingales as stochastic integrals and a second fundamental theorem of asset pricing. Intended for undergraduate- and beginning graduate-level stud...

  8. Stochastic coalgebraic logic

    CERN Document Server

    Doberkat, Ernst-Erich

    2009-01-01

    Combining coalgebraic reasoning, stochastic systems and logic, this volume presents the principles of coalgebraic logic from a categorical perspective. Modal logics are also discussed, including probabilistic interpretations and an analysis of Kripke models.

  9. Understanding Financial Market Volatility

    NARCIS (Netherlands)

    A. Opschoor (Anne)

    2014-01-01

    markdownabstract__Abstract__ Volatility has been one of the most active and successful areas of research in time series econometrics and economic forecasting in recent decades. Loosely speaking, volatility is defined as the average magnitude of fluctuations observed in some phenomenon over

  10. Improving Garch Volatility Forecasts

    NARCIS (Netherlands)

    Klaassen, F.J.G.M.

    1998-01-01

    Many researchers use GARCH models to generate volatility forecasts. We show, however, that such forecasts are too variable. To correct for this, we extend the GARCH model by distinguishing two regimes with different volatility levels. GARCH effects are allowed within each regime, so that our model

  11. Asymmetric Realized Volatility Risk

    NARCIS (Netherlands)

    D.E. Allen (David); M.J. McAleer (Michael); M. Scharth (Marcel)

    2014-01-01

    markdownabstract__Abstract__ In this paper we document that realized variation measures constructed from high-frequency returns reveal a large degree of volatility risk in stock and index returns, where we characterize volatility risk by the extent to which forecasting errors in realized

  12. Approximating Preemptive Stochastic Scheduling

    OpenAIRE

    Megow Nicole; Vredeveld Tjark

    2009-01-01

    We present constant approximative policies for preemptive stochastic scheduling. We derive policies with a guaranteed performance ratio of 2 for scheduling jobs with release dates on identical parallel machines subject to minimizing the sum of weighted completion times. Our policies as well as their analysis apply also to the recently introduced more general model of stochastic online scheduling. The performance guarantee we give matches the best result known for the corresponding determinist...

  13. The stochastic goodwill problem

    OpenAIRE

    Marinelli, Carlo

    2003-01-01

    Stochastic control problems related to optimal advertising under uncertainty are considered. In particular, we determine the optimal strategies for the problem of maximizing the utility of goodwill at launch time and minimizing the disutility of a stream of advertising costs that extends until the launch time for some classes of stochastic perturbations of the classical Nerlove-Arrow dynamics. We also consider some generalizations such as problems with constrained budget and with discretionar...

  14. BRST stochastic quantization

    International Nuclear Information System (INIS)

    Hueffel, H.

    1990-01-01

    After a brief review of the BRST formalism and of the Parisi-Wu stochastic quantization method we introduce the BRST stochastic quantization scheme. It allows the second quantization of constrained Hamiltonian systems in a manifestly gauge symmetry preserving way. The examples of the relativistic particle, the spinning particle and the bosonic string are worked out in detail. The paper is closed by a discussion on the interacting field theory associated to the relativistic point particle system. 58 refs. (Author)

  15. The volatility of HOL

    International Nuclear Information System (INIS)

    Wren, D.J.; Sanipelli, G.

    1985-01-01

    The volatility of HOI has been measured using a mass spectrometer to analyze the gas phase above an aqueous solution. The HOI in solution was generated continuously in a flow reactor that combined I/sup -/ and OCl/sup -/ solutions. The analysis has resulted in a lower limit of 6X10/sup 3/ mol . dm/sup -3/ . atm/sup -1/ for the equilibrium constant for the reaction HOI(g)/equilibrium/HOI(aq). This value is a factor 30 greater than the best previous estimate. This new limit for HOI volatility results in higher total iodine partition coefficients, particularly for solutions with pH>8. The upper limit for the equilibrium constant is consistent with essentially zero volatility for HOI. The effect of HOI volatility on total iodine volatility is briefly discussed as a function of solution chemistry and kinetics

  16. Interior Volatile Reservoirs in Mercury

    Science.gov (United States)

    Anzures, B. A.; Parman, S. W.; Milliken, R. E.; Head, J. W.

    2018-05-01

    More measurements of 1) surface volatiles, and 2) pyroclastic deposits paired with experimental volatile analyses in silicate minerals can constrain conditions of melting and subsequent eruption on Mercury.

  17. Pricing long-term options with stochastic volatility and stochastic interest rates

    NARCIS (Netherlands)

    van Haastrecht, A.

    2010-01-01

    The markets for long-term options have expanded tremendously over the last decade. Nowadays many of these derivatives along with pension schemes and insurance products depend on joint changes in stock prices, interest rates and inflation. As a result the dependencies between the underlying assets

  18. Pluto's Volatile Transport

    Science.gov (United States)

    Young, Leslie

    2012-10-01

    Pluto's varying subsolar latitude and heliocentric distance leads to large variations in the surface volatile distribution and surface pressure. I present results of new volatile transport models (Young 2012a, b). The models include insolation, thermal emission, subsurface conduction, heating of a volatile slab, internal heat flux, latent heat of sublimation, and strict global mass balance. Numeric advances include initial conditions that allow for rapid convergence, efficient computation with matrix arithmetic, and stable Crank-Nicholson timesteps for both bare and volatile-covered areas. Runs of the model show six distinct seasons on Pluto. (1) As Pluto approaches perihelion, the volatiles on the old winter pole (the Rotational North Pole, RNP) becomes more directly illuminated , and the pressure and albedo rise rapidly. (2) When a new ice cap forms on the Rotational South Pole, RSP, volatiles are exchanged between poles. The pressure and albedo change more slowly. (3) When all volatiles have sublimed from the RNP, the albedo and pressure drop rapidly. (4-6) A similar pattern is repeated near aphelion with a reversal of the roles and the poles. I will compare results with earlier Pluto models of Hansen and Paige (1996), show the dependence on parameters such as substrate inertia, and make predictions for the New Horizons flyby of Pluto in 2015. This work was supported, in part, by funding from NASA Planetary Atmospheres Grant NNG06GF32G and the Spitzer project (JPL research support Agreement 1368573). Hansen, C. J. and D. A. Paige 1996. Seasonal Nitrogen Cycles on Pluto. Icarus 120, 247-265. Young, L. A. 2012a. Volatile transport on inhomogeneous surfaces: I - Analytic expressions, with application to Pluto’s day. Icarus, in press Young, L. A. 2012b. Volatile transport on inhomogeneous surfaces: II. Numerical calculations, with application to Pluto's season. In preparation.

  19. Estimating volatility and model parameters of stochastic volatility models with jumps using particle filter

    NARCIS (Netherlands)

    Aihara, ShinIchi; Bagchi, Arunabha; Saha, S.

    Despite the success of particle filter, there are two factors which cause difficulties in its implementation. The first one is the choice of importance functions commonly used in the literature which are far from being optimal. The second one is the combined state and parameter estimation problem.

  20. Transport in Stochastic Media

    International Nuclear Information System (INIS)

    Haran, O.; Shvarts, D.; Thieberger, R.

    1998-01-01

    Classical transport of neutral particles in a binary, scattering, stochastic media is discussed. It is assumed that the cross-sections of the constituent materials and their volume fractions are known. The inner structure of the media is stochastic, but there exist a statistical knowledge about the lump sizes, shapes and arrangement. The transmission through the composite media depends on the specific heterogeneous realization of the media. The current research focuses on the averaged transmission through an ensemble of realizations, frm which an effective cross-section for the media can be derived. The problem of one dimensional transport in stochastic media has been studied extensively [1]. In the one dimensional description of the problem, particles are transported along a line populated with alternating material segments of random lengths. The current work discusses transport in two-dimensional stochastic media. The phenomenon that is unique to the multi-dimensional description of the problem is obstacle bypassing. Obstacle bypassing tends to reduce the opacity of the media, thereby reducing its effective cross-section. The importance of this phenomenon depends on the manner in which the obstacles are arranged in the media. Results of transport simulations in multi-dimensional stochastic media are presented. Effective cross-sections derived from the simulations are compared against those obtained for the one-dimensional problem, and against those obtained from effective multi-dimensional models, which are partially based on a Markovian assumption

  1. Non-volatile memories

    CERN Document Server

    Lacaze, Pierre-Camille

    2014-01-01

    Written for scientists, researchers, and engineers, Non-volatile Memories describes the recent research and implementations in relation to the design of a new generation of non-volatile electronic memories. The objective is to replace existing memories (DRAM, SRAM, EEPROM, Flash, etc.) with a universal memory model likely to reach better performances than the current types of memory: extremely high commutation speeds, high implantation densities and retention time of information of about ten years.

  2. Stochastic approach to microphysics

    Energy Technology Data Exchange (ETDEWEB)

    Aron, J.C.

    1987-01-01

    The presently widespread idea of ''vacuum population'', together with the quantum concept of vacuum fluctuations leads to assume a random level below that of matter. This stochastic approach starts by a reminder of the author's previous work, first on the relation of diffusion laws with the foundations of microphysics, and then on hadron spectrum. Following the latter, a random quark model is advanced; it gives to quark pairs properties similar to those of a harmonic oscillator or an elastic string, imagined as an explanation to their asymptotic freedom and their confinement. The stochastic study of such interactions as electron-nucleon, jets in e/sup +/e/sup -/ collisions, or pp -> ..pi../sup 0/ + X, gives form factors closely consistent with experiment. The conclusion is an epistemological comment (complementarity between stochastic and quantum domains, E.P.R. paradox, etc...).

  3. Stochastic dynamics and irreversibility

    CERN Document Server

    Tomé, Tânia

    2015-01-01

    This textbook presents an exposition of stochastic dynamics and irreversibility. It comprises the principles of probability theory and the stochastic dynamics in continuous spaces, described by Langevin and Fokker-Planck equations, and in discrete spaces, described by Markov chains and master equations. Special concern is given to the study of irreversibility, both in systems that evolve to equilibrium and in nonequilibrium stationary states. Attention is also given to the study of models displaying phase transitions and critical phenomema both in thermodynamic equilibrium and out of equilibrium. These models include the linear Glauber model, the Glauber-Ising model, lattice models with absorbing states such as the contact process and those used in population dynamic and spreading of epidemic, probabilistic cellular automata, reaction-diffusion processes, random sequential adsorption and dynamic percolation. A stochastic approach to chemical reaction is also presented.The textbook is intended for students of ...

  4. Stochastic optimization methods

    CERN Document Server

    Marti, Kurt

    2005-01-01

    Optimization problems arising in practice involve random parameters. For the computation of robust optimal solutions, i.e., optimal solutions being insensitive with respect to random parameter variations, deterministic substitute problems are needed. Based on the distribution of the random data, and using decision theoretical concepts, optimization problems under stochastic uncertainty are converted into deterministic substitute problems. Due to the occurring probabilities and expectations, approximative solution techniques must be applied. Deterministic and stochastic approximation methods and their analytical properties are provided: Taylor expansion, regression and response surface methods, probability inequalities, First Order Reliability Methods, convex approximation/deterministic descent directions/efficient points, stochastic approximation methods, differentiation of probability and mean value functions. Convergence results of the resulting iterative solution procedures are given.

  5. Stochastic quantum gravity

    International Nuclear Information System (INIS)

    Rumpf, H.

    1987-01-01

    We begin with a naive application of the Parisi-Wu scheme to linearized gravity. This will lead into trouble as one peculiarity of the full theory, the indefiniteness of the Euclidean action, shows up already at this level. After discussing some proposals to overcome this problem, Minkowski space stochastic quantization will be introduced. This will still not result in an acceptable quantum theory of linearized gravity, as the Feynman propagator turns out to be non-causal. This defect will be remedied only after a careful analysis of general covariance in stochastic quantization has been performed. The analysis requires the notion of a metric on the manifold of metrics, and a natural candidate for this is singled out. With this a consistent stochastic quantization of Einstein gravity becomes possible. It is even possible, at least perturbatively, to return to the Euclidean regime. 25 refs. (Author)

  6. Separable quadratic stochastic operators

    International Nuclear Information System (INIS)

    Rozikov, U.A.; Nazir, S.

    2009-04-01

    We consider quadratic stochastic operators, which are separable as a product of two linear operators. Depending on properties of these linear operators we classify the set of the separable quadratic stochastic operators: first class of constant operators, second class of linear and third class of nonlinear (separable) quadratic stochastic operators. Since the properties of operators from the first and second classes are well known, we mainly study the properties of the operators of the third class. We describe some Lyapunov functions of the operators and apply them to study ω-limit sets of the trajectories generated by the operators. We also compare our results with known results of the theory of quadratic operators and give some open problems. (author)

  7. Stochastic cooling at Fermilab

    International Nuclear Information System (INIS)

    Marriner, J.

    1986-08-01

    The topics discussed are the stochastic cooling systems in use at Fermilab and some of the techniques that have been employed to meet the particular requirements of the anti-proton source. Stochastic cooling at Fermilab became of paramount importance about 5 years ago when the anti-proton source group at Fermilab abandoned the electron cooling ring in favor of a high flux anti-proton source which relied solely on stochastic cooling to achieve the phase space densities necessary for colliding proton and anti-proton beams. The Fermilab systems have constituted a substantial advance in the techniques of cooling including: large pickup arrays operating at microwave frequencies, extensive use of cryogenic techniques to reduce thermal noise, super-conducting notch filters, and the development of tools for controlling and for accurately phasing the system

  8. Stochastic Feedforward Control Technique

    Science.gov (United States)

    Halyo, Nesim

    1990-01-01

    Class of commanded trajectories modeled as stochastic process. Advanced Transport Operating Systems (ATOPS) research and development program conducted by NASA Langley Research Center aimed at developing capabilities for increases in capacities of airports, safe and accurate flight in adverse weather conditions including shear, winds, avoidance of wake vortexes, and reduced consumption of fuel. Advances in techniques for design of modern controls and increased capabilities of digital flight computers coupled with accurate guidance information from Microwave Landing System (MLS). Stochastic feedforward control technique developed within context of ATOPS program.

  9. Markov stochasticity coordinates

    International Nuclear Information System (INIS)

    Eliazar, Iddo

    2017-01-01

    Markov dynamics constitute one of the most fundamental models of random motion between the states of a system of interest. Markov dynamics have diverse applications in many fields of science and engineering, and are particularly applicable in the context of random motion in networks. In this paper we present a two-dimensional gauging method of the randomness of Markov dynamics. The method–termed Markov Stochasticity Coordinates–is established, discussed, and exemplified. Also, the method is tweaked to quantify the stochasticity of the first-passage-times of Markov dynamics, and the socioeconomic equality and mobility in human societies.

  10. Stochastic Switching Dynamics

    DEFF Research Database (Denmark)

    Simonsen, Maria

    This thesis treats stochastic systems with switching dynamics. Models with these characteristics are studied from several perspectives. Initially in a simple framework given in the form of stochastic differential equations and, later, in an extended form which fits into the framework of sliding...... mode control. It is investigated how to understand and interpret solutions to models of switched systems, which are exposed to discontinuous dynamics and uncertainties (primarily) in the form of white noise. The goal is to gain knowledge about the performance of the system by interpreting the solution...

  11. Stochastic dynamics and control

    CERN Document Server

    Sun, Jian-Qiao; Zaslavsky, George

    2006-01-01

    This book is a result of many years of author's research and teaching on random vibration and control. It was used as lecture notes for a graduate course. It provides a systematic review of theory of probability, stochastic processes, and stochastic calculus. The feedback control is also reviewed in the book. Random vibration analyses of SDOF, MDOF and continuous structural systems are presented in a pedagogical order. The application of the random vibration theory to reliability and fatigue analysis is also discussed. Recent research results on fatigue analysis of non-Gaussian stress proc

  12. Stochastic singular optics

    CSIR Research Space (South Africa)

    Roux, FS

    2013-09-01

    Full Text Available Roux Presented at the International Conference on Correlation Optics 2013 Chernivtsi, Ukraine 18-20 September 2013 CSIR National Laser Centre, Pretoria, South Africa – p. 1/24 Contents ⊲ Defining Stochastic Singular Optics (SSO) ⊲ Tools of Stochastic... of vortices: topological charge ±1 (higher order are unstable). Positive and negative vortex densities np(x, y, z) and nn(x, y, z) ⊲ Vortex density: V = np + nn ⊲ Topological charge density: T = np − nn – p. 4/24 Subfields of SSO ⊲ Homogeneous, normally...

  13. Foundations of stochastic analysis

    CERN Document Server

    Rao, M M; Lukacs, E

    1981-01-01

    Foundations of Stochastic Analysis deals with the foundations of the theory of Kolmogorov and Bochner and its impact on the growth of stochastic analysis. Topics covered range from conditional expectations and probabilities to projective and direct limits, as well as martingales and likelihood ratios. Abstract martingales and their applications are also discussed. Comprised of five chapters, this volume begins with an overview of the basic Kolmogorov-Bochner theorem, followed by a discussion on conditional expectations and probabilities containing several characterizations of operators and mea

  14. Markov stochasticity coordinates

    Energy Technology Data Exchange (ETDEWEB)

    Eliazar, Iddo, E-mail: iddo.eliazar@intel.com

    2017-01-15

    Markov dynamics constitute one of the most fundamental models of random motion between the states of a system of interest. Markov dynamics have diverse applications in many fields of science and engineering, and are particularly applicable in the context of random motion in networks. In this paper we present a two-dimensional gauging method of the randomness of Markov dynamics. The method–termed Markov Stochasticity Coordinates–is established, discussed, and exemplified. Also, the method is tweaked to quantify the stochasticity of the first-passage-times of Markov dynamics, and the socioeconomic equality and mobility in human societies.

  15. Bootstrapping pre-averaged realized volatility under market microstructure noise

    DEFF Research Database (Denmark)

    Hounyo, Ulrich; Goncalves, Sílvia; Meddahi, Nour

    The main contribution of this paper is to propose a bootstrap method for inference on integrated volatility based on the pre-averaging approach of Jacod et al. (2009), where the pre-averaging is done over all possible overlapping blocks of consecutive observations. The overlapping nature of the pre......-averaged returns implies that these are kn-dependent with kn growing slowly with the sample size n. This motivates the application of a blockwise bootstrap method. We show that the "blocks of blocks" bootstrap method suggested by Politis and Romano (1992) (and further studied by Bühlmann and Künsch (1995......)) is valid only when volatility is constant. The failure of the blocks of blocks bootstrap is due to the heterogeneity of the squared pre-averaged returns when volatility is stochastic. To preserve both the dependence and the heterogeneity of squared pre-averaged returns, we propose a novel procedure...

  16. Stochastic models, estimation, and control

    CERN Document Server

    Maybeck, Peter S

    1982-01-01

    This volume builds upon the foundations set in Volumes 1 and 2. Chapter 13 introduces the basic concepts of stochastic control and dynamic programming as the fundamental means of synthesizing optimal stochastic control laws.

  17. Stochastic quantisation: theme and variation

    International Nuclear Information System (INIS)

    Klauder, J.R.; Kyoto Univ.

    1987-01-01

    The paper on stochastic quantisation is a contribution to the book commemorating the sixtieth birthday of E.S. Fradkin. Stochastic quantisation reformulates Euclidean quantum field theory in the language of Langevin equations. The generalised free field is discussed from the viewpoint of stochastic quantisation. An artificial family of highly singular model theories wherein the space-time derivatives are dropped altogether is also examined. Finally a modified form of stochastic quantisation is considered. (U.K.)

  18. Stochastic quantization of Proca field

    International Nuclear Information System (INIS)

    Lim, S.C.

    1981-03-01

    We discuss the complications that arise in the application of Nelson's stochastic quantization scheme to classical Proca field. One consistent way to obtain spin-one massive stochastic field is given. It is found that the result of Guerra et al on the connection between ground state stochastic field and the corresponding Euclidean-Markov field extends to the spin-one case. (author)

  19. Stochastic Estimation via Polynomial Chaos

    Science.gov (United States)

    2015-10-01

    AFRL-RW-EG-TR-2015-108 Stochastic Estimation via Polynomial Chaos Douglas V. Nance Air Force Research...COVERED (From - To) 20-04-2015 – 07-08-2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Stochastic Estimation via Polynomial Chaos ...This expository report discusses fundamental aspects of the polynomial chaos method for representing the properties of second order stochastic

  20. Static vs stochastic optimization: A case study of FTSE Bursa Malaysia sectorial indices

    Science.gov (United States)

    Mamat, Nur Jumaadzan Zaleha; Jaaman, Saiful Hafizah; Ahmad, Rokiah@Rozita

    2014-06-01

    Traditional portfolio optimization methods in the likes of Markowitz' mean-variance model and semi-variance model utilize static expected return and volatility risk from historical data to generate an optimal portfolio. The optimal portfolio may not truly be optimal in reality due to the fact that maximum and minimum values from the data may largely influence the expected return and volatility risk values. This paper considers distributions of assets' return and volatility risk to determine a more realistic optimized portfolio. For illustration purposes, the sectorial indices data in FTSE Bursa Malaysia is employed. The results show that stochastic optimization provides more stable information ratio.

  1. Static vs stochastic optimization: A case study of FTSE Bursa Malaysia sectorial indices

    Energy Technology Data Exchange (ETDEWEB)

    Mamat, Nur Jumaadzan Zaleha; Jaaman, Saiful Hafizah; Ahmad, Rokiah Rozita [School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2014-06-19

    Traditional portfolio optimization methods in the likes of Markowitz' mean-variance model and semi-variance model utilize static expected return and volatility risk from historical data to generate an optimal portfolio. The optimal portfolio may not truly be optimal in reality due to the fact that maximum and minimum values from the data may largely influence the expected return and volatility risk values. This paper considers distributions of assets' return and volatility risk to determine a more realistic optimized portfolio. For illustration purposes, the sectorial indices data in FTSE Bursa Malaysia is employed. The results show that stochastic optimization provides more stable information ratio.

  2. Static vs stochastic optimization: A case study of FTSE Bursa Malaysia sectorial indices

    International Nuclear Information System (INIS)

    Mamat, Nur Jumaadzan Zaleha; Jaaman, Saiful Hafizah; Ahmad, Rokiah Rozita

    2014-01-01

    Traditional portfolio optimization methods in the likes of Markowitz' mean-variance model and semi-variance model utilize static expected return and volatility risk from historical data to generate an optimal portfolio. The optimal portfolio may not truly be optimal in reality due to the fact that maximum and minimum values from the data may largely influence the expected return and volatility risk values. This paper considers distributions of assets' return and volatility risk to determine a more realistic optimized portfolio. For illustration purposes, the sectorial indices data in FTSE Bursa Malaysia is employed. The results show that stochastic optimization provides more stable information ratio

  3. Elementary stochastic cooling

    Energy Technology Data Exchange (ETDEWEB)

    Tollestrup, A.V.; Dugan, G

    1983-12-01

    Major headings in this review include: proton sources; antiproton production; antiproton sources and Liouville, the role of the Debuncher; transverse stochastic cooling, time domain; the accumulator; frequency domain; pickups and kickers; Fokker-Planck equation; calculation of constants in the Fokker-Planck equation; and beam feedback. (GHT)

  4. Affine stochastic mortality

    NARCIS (Netherlands)

    Schrager, D.F.

    2006-01-01

    We propose a new model for stochastic mortality. The model is based on the literature on affine term structure models. It satisfies three important requirements for application in practice: analytical tractibility, clear interpretation of the factors and compatibility with financial option pricing

  5. Composite stochastic processes

    NARCIS (Netherlands)

    Kampen, N.G. van

    Certain problems in physics and chemistry lead to the definition of a class of stochastic processes. Although they are not Markovian they can be treated explicitly to some extent. In particular, the probability distribution for large times can be found. It is shown to obey a master equation. This

  6. Entropy Production in Stochastics

    Directory of Open Access Journals (Sweden)

    Demetris Koutsoyiannis

    2017-10-01

    Full Text Available While the modern definition of entropy is genuinely probabilistic, in entropy production the classical thermodynamic definition, as in heat transfer, is typically used. Here we explore the concept of entropy production within stochastics and, particularly, two forms of entropy production in logarithmic time, unconditionally (EPLT or conditionally on the past and present having been observed (CEPLT. We study the theoretical properties of both forms, in general and in application to a broad set of stochastic processes. A main question investigated, related to model identification and fitting from data, is how to estimate the entropy production from a time series. It turns out that there is a link of the EPLT with the climacogram, and of the CEPLT with two additional tools introduced here, namely the differenced climacogram and the climacospectrum. In particular, EPLT and CEPLT are related to slopes of log-log plots of these tools, with the asymptotic slopes at the tails being most important as they justify the emergence of scaling laws of second-order characteristics of stochastic processes. As a real-world application, we use an extraordinary long time series of turbulent velocity and show how a parsimonious stochastic model can be identified and fitted using the tools developed.

  7. Stochastic modelling of turbulence

    DEFF Research Database (Denmark)

    Sørensen, Emil Hedevang Lohse

    previously been shown to be closely connected to the energy dissipation. The incorporation of the small scale dynamics into the spatial model opens the door to a fully fledged stochastic model of turbulence. Concerning the interaction of wind and wind turbine, a new method is proposed to extract wind turbine...

  8. Research in Stochastic Processes.

    Science.gov (United States)

    1982-10-31

    Office of Scientific Research Grant AFOSR F49620 82 C 0009 Period: 1 Noveber 1981 through 31 October 1982 Title: Research in Stochastic Processes Co...STA4ATIS CAMBANIS The work briefly described here was developed in connection with problems arising from and related to the statistical comunication

  9. Stochastic Control - External Models

    DEFF Research Database (Denmark)

    Poulsen, Niels Kjølstad

    2005-01-01

    This note is devoted to control of stochastic systems described in discrete time. We are concerned with external descriptions or transfer function model, where we have a dynamic model for the input output relation only (i.e.. no direct internal information). The methods are based on LTI systems...

  10. Stochastic nonlinear beam equations

    Czech Academy of Sciences Publication Activity Database

    Brzezniak, Z.; Maslowski, Bohdan; Seidler, Jan

    2005-01-01

    Roč. 132, č. 1 (2005), s. 119-149 ISSN 0178-8051 R&D Projects: GA ČR(CZ) GA201/01/1197 Institutional research plan: CEZ:AV0Z10190503 Keywords : stochastic beam equation * stability Subject RIV: BA - General Mathematics Impact factor: 0.896, year: 2005

  11. The Impact of Jump Distributions on the Implied Volatility of Variance

    DEFF Research Database (Denmark)

    Nicolato, Elisa; Pisani, Camilla; Pedersen, David Sloth

    2017-01-01

    We consider a tractable affine stochastic volatility model that generalizes the seminal Heston (1993) model by augmenting it with jumps in the instantaneous variance process. In this framework, we consider both realized variance options and VIX options, and we examine the impact of the distribution...... of jumps on the associated implied volatility smile. We provide sufficient conditions for the asymptotic behavior of the implied volatility of variance for small and large strikes. In particular, by selecting alternative jump distributions, we show that one can obtain fundamentally different shapes...

  12. Effectiveness of monetary and macroprudential shocks on consumer credit growth and volatility in Turkey

    Directory of Open Access Journals (Sweden)

    Meltem Gulenay Chadwick

    2018-06-01

    Full Text Available This paper proposes a panel VAR model to uncover the effect of monetary policy and macroprudential tightening probability on general purpose loans, housing loans, vehicle loans, credit cards and their respective volatilities in Turkey. To conduct our analysis, first, we compare a number of stochastic volatility models using our loan and credit card series in a formal Bayesian model comparison exercise, in order to determine the best volatility model for our series. Second we disclose the latent probability of macroprudential tightening from the binary information of policy episodes, using an instrumental variable probit model estimated by conditional maximum likelihood with heteroscedasticity robust standard errors. Lastly we estimate the dynamic impact of monetary policy and macroprudential measures using a panel VAR, incorporating the latent probability of tightening episodes, credit growth, industrial production growth, loan rates, inflation and credit growth volatilities into the endogenous system of equations. We conclude that macroprudential tightening is effective in dampening credit growth, credit growth volatility and reducing consumer price inflation. Besides, this effect is more prominent when macroprudential tools are administered in coordination with monetary policy. Keywords: Consumer loans, Monetary policy, Macroprudential policy, Stochastic volatility models, Credit growth volatility, IV probit model, Panel VAR model, JEL classification: C54, E44, E52

  13. Forecasting Co-Volatilities via Factor Models with Asymmetry and Long Memory in Realized Covariance

    NARCIS (Netherlands)

    M. Asai (Manabu); M.J. McAleer (Michael)

    2014-01-01

    markdownabstract__Abstract__ Modelling covariance structures is known to suffer from the curse of dimensionality. In order to avoid this problem for forecasting, the authors propose a new factor multivariate stochastic volatility (fMSV) model for realized covariance measures that accommodates

  14. Volatile liquid storage system

    International Nuclear Information System (INIS)

    Laverman, R.J.; Winters, P.J.; Rinehart, J.K.

    1992-01-01

    This patent describes a method of collecting and abating emission from a volatile liquid in an above ground storage tank. It comprises the liquid storage tank having a bottom, a vertical cylindrical circular wall having a lower edge portion joined to the bottom, and an external fixed roof, the tank having an internal floating roof floating on a volatile liquid stored in the tank, and air vent means in the tank in communication with a vapor space in the tank constituting at least the space above the floating roof when the floating roof floats on a predetermined maximum volume of volatile liquid in the tank; permitting ambient air; pumping emission laden air from the tank vapor space above the floating roof; and by means of the emissions abatement apparatus eliminating most of the emission from the emissions laden air with formation of a gaseous effluent and then discharging the resulting gaseous effluent to the atmosphere

  15. Stochastic processes in cell biology

    CERN Document Server

    Bressloff, Paul C

    2014-01-01

    This book develops the theory of continuous and discrete stochastic processes within the context of cell biology.  A wide range of biological topics are covered including normal and anomalous diffusion in complex cellular environments, stochastic ion channels and excitable systems, stochastic calcium signaling, molecular motors, intracellular transport, signal transduction, bacterial chemotaxis, robustness in gene networks, genetic switches and oscillators, cell polarization, polymerization, cellular length control, and branching processes. The book also provides a pedagogical introduction to the theory of stochastic process – Fokker Planck equations, stochastic differential equations, master equations and jump Markov processes, diffusion approximations and the system size expansion, first passage time problems, stochastic hybrid systems, reaction-diffusion equations, exclusion processes, WKB methods, martingales and branching processes, stochastic calculus, and numerical methods.   This text is primarily...

  16. Pricing Volatility of Stock Returns with Volatile and Persistent Components

    DEFF Research Database (Denmark)

    Zhu, Jie

    2009-01-01

    This paper introduces a two-component volatility model based on first moments of both components to describe the dynamics of speculative return volatility. The two components capture the volatile and the persistent part of volatility, respectively. The model is applied to 10 Asia-Pacific stock ma...... markets. A positive or risk-premium effect exists between the return and the volatile component, yet the persistent component is not significantly priced for the return dynamic process....... markets. Their in-mean effects on returns are tested. The empirical results show that the persistent component is much more important for the volatility dynamic process than is the volatile component. However, the volatile component is found to be a significant pricing factor of asset returns for most...

  17. Pricing Volatility of Stock Returns with Volatile and Persistent Components

    DEFF Research Database (Denmark)

    Zhu, Jie

    In this paper a two-component volatility model based on the component's first moment is introduced to describe the dynamic of speculative return volatility. The two components capture the volatile and persistent part of volatility respectively. Then the model is applied to 10 Asia-Pacific stock m......, a positive or risk-premium effect exists between return and the volatile component, yet the persistent component is not significantly priced for return dynamic process....... markets. Their in-mean effects on return are also tested. The empirical results show that the persistent component accounts much more for volatility dynamic process than the volatile component. However the volatile component is found to be a significant pricing factor of asset returns for most markets...

  18. Stochastic calculus and applications

    CERN Document Server

    Cohen, Samuel N

    2015-01-01

    Completely revised and greatly expanded, the new edition of this text takes readers who have been exposed to only basic courses in analysis through the modern general theory of random processes and stochastic integrals as used by systems theorists, electronic engineers and, more recently, those working in quantitative and mathematical finance. Building upon the original release of this title, this text will be of great interest to research mathematicians and graduate students working in those fields, as well as quants in the finance industry. New features of this edition include: End of chapter exercises; New chapters on basic measure theory and Backward SDEs; Reworked proofs, examples and explanatory material; Increased focus on motivating the mathematics; Extensive topical index. "Such a self-contained and complete exposition of stochastic calculus and applications fills an existing gap in the literature. The book can be recommended for first-year graduate studies. It will be useful for all who intend to wo...

  19. Some illustrations of stochasticity

    International Nuclear Information System (INIS)

    Laslett, L.J.

    1977-01-01

    A complex, and apparently stochastic, character frequently can be seen to occur in the solutions to simple Hamiltonian problems. Such behavior is of interest, and potentially of importance, to designers of particle accelerators--as well as to workers in other fields of physics and related disciplines. Even a slow development of disorder in the motion of particles in a circular accelerator or storage ring could be troublesome, because a practical design requires the beam particles to remain confined in an orderly manner within a narrow beam tube for literally tens of billions of revolutions. The material presented is primarily the result of computer calculations made to investigate the occurrence of ''stochasticity,'' and is organized in a manner similar to that adopted for presentation at a 1974 accelerator conference

  20. Stochastic ice stream dynamics.

    Science.gov (United States)

    Mantelli, Elisa; Bertagni, Matteo Bernard; Ridolfi, Luca

    2016-08-09

    Ice streams are narrow corridors of fast-flowing ice that constitute the arterial drainage network of ice sheets. Therefore, changes in ice stream flow are key to understanding paleoclimate, sea level changes, and rapid disintegration of ice sheets during deglaciation. The dynamics of ice flow are tightly coupled to the climate system through atmospheric temperature and snow recharge, which are known exhibit stochastic variability. Here we focus on the interplay between stochastic climate forcing and ice stream temporal dynamics. Our work demonstrates that realistic climate fluctuations are able to (i) induce the coexistence of dynamic behaviors that would be incompatible in a purely deterministic system and (ii) drive ice stream flow away from the regime expected in a steady climate. We conclude that environmental noise appears to be crucial to interpreting the past behavior of ice sheets, as well as to predicting their future evolution.

  1. Fractional Stochastic Field Theory

    Science.gov (United States)

    Honkonen, Juha

    2018-02-01

    Models describing evolution of physical, chemical, biological, social and financial processes are often formulated as differential equations with the understanding that they are large-scale equations for averages of quantities describing intrinsically random processes. Explicit account of randomness may lead to significant changes in the asymptotic behaviour (anomalous scaling) in such models especially in low spatial dimensions, which in many cases may be captured with the use of the renormalization group. Anomalous scaling and memory effects may also be introduced with the use of fractional derivatives and fractional noise. Construction of renormalized stochastic field theory with fractional derivatives and fractional noise in the underlying stochastic differential equations and master equations and the interplay between fluctuation-induced and built-in anomalous scaling behaviour is reviewed and discussed.

  2. Essentials of stochastic processes

    CERN Document Server

    Durrett, Richard

    2016-01-01

    Building upon the previous editions, this textbook is a first course in stochastic processes taken by undergraduate and graduate students (MS and PhD students from math, statistics, economics, computer science, engineering, and finance departments) who have had a course in probability theory. It covers Markov chains in discrete and continuous time, Poisson processes, renewal processes, martingales, and option pricing. One can only learn a subject by seeing it in action, so there are a large number of examples and more than 300 carefully chosen exercises to deepen the reader’s understanding. Drawing from teaching experience and student feedback, there are many new examples and problems with solutions that use TI-83 to eliminate the tedious details of solving linear equations by hand, and the collection of exercises is much improved, with many more biological examples. Originally included in previous editions, material too advanced for this first course in stochastic processes has been eliminated while treatm...

  3. Dynamic stochastic optimization

    CERN Document Server

    Ermoliev, Yuri; Pflug, Georg

    2004-01-01

    Uncertainties and changes are pervasive characteristics of modern systems involving interactions between humans, economics, nature and technology. These systems are often too complex to allow for precise evaluations and, as a result, the lack of proper management (control) may create significant risks. In order to develop robust strategies we need approaches which explic­ itly deal with uncertainties, risks and changing conditions. One rather general approach is to characterize (explicitly or implicitly) uncertainties by objec­ tive or subjective probabilities (measures of confidence or belief). This leads us to stochastic optimization problems which can rarely be solved by using the standard deterministic optimization and optimal control methods. In the stochastic optimization the accent is on problems with a large number of deci­ sion and random variables, and consequently the focus ofattention is directed to efficient solution procedures rather than to (analytical) closed-form solu­ tions. Objective an...

  4. Stochastic porous media equations

    CERN Document Server

    Barbu, Viorel; Röckner, Michael

    2016-01-01

    Focusing on stochastic porous media equations, this book places an emphasis on existence theorems, asymptotic behavior and ergodic properties of the associated transition semigroup. Stochastic perturbations of the porous media equation have reviously been considered by physicists, but rigorous mathematical existence results have only recently been found. The porous media equation models a number of different physical phenomena, including the flow of an ideal gas and the diffusion of a compressible fluid through porous media, and also thermal propagation in plasma and plasma radiation. Another important application is to a model of the standard self-organized criticality process, called the "sand-pile model" or the "Bak-Tang-Wiesenfeld model". The book will be of interest to PhD students and researchers in mathematics, physics and biology.

  5. Stochastic stacking without filters

    International Nuclear Information System (INIS)

    Johnson, R.P.; Marriner, J.

    1982-12-01

    The rate of accumulation of antiprotons is a critical factor in the design of p anti p colliders. A design of a system to accumulate higher anti p fluxes is presented here which is an alternative to the schemes used at the CERN AA and in the Fermilab Tevatron I design. Contrary to these stacking schemes, which use a system of notch filters to protect the dense core of antiprotons from the high power of the stack tail stochastic cooling, an eddy current shutter is used to protect the core in the region of the stack tail cooling kicker. Without filters one can have larger cooling bandwidths, better mixing for stochastic cooling, and easier operational criteria for the power amplifiers. In the case considered here a flux of 1.4 x 10 8 per sec is achieved with a 4 to 8 GHz bandwidth

  6. Multistage stochastic optimization

    CERN Document Server

    Pflug, Georg Ch

    2014-01-01

    Multistage stochastic optimization problems appear in many ways in finance, insurance, energy production and trading, logistics and transportation, among other areas. They describe decision situations under uncertainty and with a longer planning horizon. This book contains a comprehensive treatment of today’s state of the art in multistage stochastic optimization.  It covers the mathematical backgrounds of approximation theory as well as numerous practical algorithms and examples for the generation and handling of scenario trees. A special emphasis is put on estimation and bounding of the modeling error using novel distance concepts, on time consistency and the role of model ambiguity in the decision process. An extensive treatment of examples from electricity production, asset liability management and inventory control concludes the book

  7. Dynamics of stochastic systems

    CERN Document Server

    Klyatskin, Valery I

    2005-01-01

    Fluctuating parameters appear in a variety of physical systems and phenomena. They typically come either as random forces/sources, or advecting velocities, or media (material) parameters, like refraction index, conductivity, diffusivity, etc. The well known example of Brownian particle suspended in fluid and subjected to random molecular bombardment laid the foundation for modern stochastic calculus and statistical physics. Other important examples include turbulent transport and diffusion of particle-tracers (pollutants), or continuous densities (''''oil slicks''''), wave propagation and scattering in randomly inhomogeneous media, for instance light or sound propagating in the turbulent atmosphere.Such models naturally render to statistical description, where the input parameters and solutions are expressed by random processes and fields.The fundamental problem of stochastic dynamics is to identify the essential characteristics of system (its state and evolution), and relate those to the input parameters of ...

  8. Identifiability in stochastic models

    CERN Document Server

    1992-01-01

    The problem of identifiability is basic to all statistical methods and data analysis, occurring in such diverse areas as Reliability Theory, Survival Analysis, and Econometrics, where stochastic modeling is widely used. Mathematics dealing with identifiability per se is closely related to the so-called branch of ""characterization problems"" in Probability Theory. This book brings together relevant material on identifiability as it occurs in these diverse fields.

  9. Stochastic split determinant algorithms

    International Nuclear Information System (INIS)

    Horvatha, Ivan

    2000-01-01

    I propose a large class of stochastic Markov processes associated with probability distributions analogous to that of lattice gauge theory with dynamical fermions. The construction incorporates the idea of approximate spectral split of the determinant through local loop action, and the idea of treating the infrared part of the split through explicit diagonalizations. I suggest that exact algorithms of practical relevance might be based on Markov processes so constructed

  10. Models for S&P500 Dynamics: Evidence from Realized Volatility, Daily Returns, and Option Prices

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Jacobs, Kris; Mimouni, Karim

    in the search for alternative specifications. We then estimate the models using maximum likelihood on S&P500 returns. Finally, we employ nonlinear least squares on a panel of option data. In comparison with earlier studies that explicitly solve the filtering problem, we analyze a more comprehensive option data......Most recent empirical option valuation studies build on the affine square root (SQR) stochastic volatility model. The SQR model is a convenient choice, because it yields closed-form solutions for option prices. However, relatively little is known about the resulting biases. We investigate...... alternatives to the SQR model, by comparing its empirical performance with that of five different but equally parsimonious stochastic volatility models. We provide empirical evidence from three different sources. We first use realized volatilities to assess the properties of the SQR model and to guide us...

  11. Quantifying requirements volatility effects

    NARCIS (Netherlands)

    Kulk, G.P.; Verhoef, C.

    2008-01-01

    In an organization operating in the bancassurance sector we identified a low-risk IT subportfolio of 84 IT projects comprising together 16,500 function points, each project varying in size and duration, for which we were able to quantify its requirements volatility. This representative portfolio

  12. Idiosyncratic Volatility Puzzle

    DEFF Research Database (Denmark)

    Aslanidis, Nektarios; Christiansen, Charlotte; Lambertides, Neophytos

    from a large pool of macroeconomic and Önancial variables. Cleaning for macro-Önance e§ects reverses the puzzling negative relation between returns and idiosyncratic volatility documented previously. Portfolio analysis shows that the e§ects from macro-Önance factors are economically strong...

  13. Stochasticity Modeling in Memristors

    KAUST Repository

    Naous, Rawan; Al-Shedivat, Maruan; Salama, Khaled N.

    2015-01-01

    Diverse models have been proposed over the past years to explain the exhibiting behavior of memristors, the fourth fundamental circuit element. The models varied in complexity ranging from a description of physical mechanisms to a more generalized mathematical modeling. Nonetheless, stochasticity, a widespread observed phenomenon, has been immensely overlooked from the modeling perspective. This inherent variability within the operation of the memristor is a vital feature for the integration of this nonlinear device into the stochastic electronics realm of study. In this paper, experimentally observed innate stochasticity is modeled in a circuit compatible format. The model proposed is generic and could be incorporated into variants of threshold-based memristor models in which apparent variations in the output hysteresis convey the switching threshold shift. Further application as a noise injection alternative paves the way for novel approaches in the fields of neuromorphic engineering circuits design. On the other hand, extra caution needs to be paid to variability intolerant digital designs based on non-deterministic memristor logic.

  14. Stochasticity Modeling in Memristors

    KAUST Repository

    Naous, Rawan

    2015-10-26

    Diverse models have been proposed over the past years to explain the exhibiting behavior of memristors, the fourth fundamental circuit element. The models varied in complexity ranging from a description of physical mechanisms to a more generalized mathematical modeling. Nonetheless, stochasticity, a widespread observed phenomenon, has been immensely overlooked from the modeling perspective. This inherent variability within the operation of the memristor is a vital feature for the integration of this nonlinear device into the stochastic electronics realm of study. In this paper, experimentally observed innate stochasticity is modeled in a circuit compatible format. The model proposed is generic and could be incorporated into variants of threshold-based memristor models in which apparent variations in the output hysteresis convey the switching threshold shift. Further application as a noise injection alternative paves the way for novel approaches in the fields of neuromorphic engineering circuits design. On the other hand, extra caution needs to be paid to variability intolerant digital designs based on non-deterministic memristor logic.

  15. Stochastic quantization of instantons

    International Nuclear Information System (INIS)

    Grandati, Y.; Berard, A.; Grange, P.

    1996-01-01

    The method of Parisi and Wu to quantize classical fields is applied to instanton solutions var-phi I of euclidian non-linear theory in one dimension. The solution var-phi var-epsilon of the corresponding Langevin equation is built through a singular perturbative expansion in var-epsilon=h 1/2 in the frame of the center of the mass of the instanton, where the difference var-phi var-epsilon -var-phi I carries only fluctuations of the instanton form. The relevance of the method is shown for the stochastic K dV equation with uniform noise in space: the exact solution usually obtained by the inverse scattering method is retrieved easily by the singular expansion. A general diagrammatic representation of the solution is then established which makes a thorough use of regrouping properties of stochastic diagrams derived in scalar field theory. Averaging over the noise and in the limit of infinite stochastic time, the authors obtain explicit expressions for the first two orders in var-epsilon of the pertrubed instanton of its Green function. Specializing to the Sine-Gordon and var-phi 4 models, the first anaharmonic correction is obtained analytically. The calculation is carried to second order for the var-phi 4 model, showing good convergence. 21 refs., 5 fig

  16. An adaptive stochastic model for financial markets

    International Nuclear Information System (INIS)

    Hernández, Juan Antonio; Benito, Rosa Marı´a; Losada, Juan Carlos

    2012-01-01

    An adaptive stochastic model is introduced to simulate the behavior of real asset markets. The model adapts itself by changing its parameters automatically on the basis of the recent historical data. The basic idea underlying the model is that a random variable uniformly distributed within an interval with variable extremes can replicate the histograms of asset returns. These extremes are calculated according to the arrival of new market information. This adaptive model is applied to the daily returns of three well-known indices: Ibex35, Dow Jones and Nikkei, for three complete years. The model reproduces the histograms of the studied indices as well as their autocorrelation structures. It produces the same fat tails and the same power laws, with exactly the same exponents, as in the real indices. In addition, the model shows a great adaptation capability, anticipating the volatility evolution and showing the same volatility clusters observed in the assets. This approach provides a novel way to model asset markets with internal dynamics which changes quickly with time, making it impossible to define a fixed model to fit the empirical observations.

  17. Manure application and ammonia volatilization

    NARCIS (Netherlands)

    Huijsmans, J.F.M.

    2003-01-01

    Keywords: manure application, ammonia volatilization, environmental conditions, application technique, incorporation technique, draught force, work organization, costs Livestock manure applied on farmland is an important source of ammonia (NH3) volatilization, and NH3 is a major atmospheric

  18. Stochastic and non-stochastic effects - a conceptual analysis

    International Nuclear Information System (INIS)

    Karhausen, L.R.

    1980-01-01

    The attempt to divide radiation effects into stochastic and non-stochastic effects is discussed. It is argued that radiation or toxicological effects are contingently related to radiation or chemical exposure. Biological effects in general can be described by general laws but these laws never represent a necessary connection. Actually stochastic effects express contingent, or empirical, connections while non-stochastic effects represent semantic and non-factual connections. These two expressions stem from two different levels of discourse. The consequence of this analysis for radiation biology and radiation protection is discussed. (author)

  19. The exploitation of volatile oil

    Institute of Scientific and Technical Information of China (English)

    MENG Teng; ZHANG Da; TENG Xiangjin; LINing; HAO Zaibin

    2007-01-01

    Rose is a kind of favorite ornamental plant. This article briefly introduced the cultivation and the use of rose around the world both in ancient time and nowadays. Today, volatile oil becomes the mainstream of the rose industry. People pay attention to the effect of volatile oil; meanwhile, they speed up their research on extracting volatile oil and the ingredients.

  20. A retrodictive stochastic simulation algorithm

    International Nuclear Information System (INIS)

    Vaughan, T.G.; Drummond, P.D.; Drummond, A.J.

    2010-01-01

    In this paper we describe a simple method for inferring the initial states of systems evolving stochastically according to master equations, given knowledge of the final states. This is achieved through the use of a retrodictive stochastic simulation algorithm which complements the usual predictive stochastic simulation approach. We demonstrate the utility of this new algorithm by applying it to example problems, including the derivation of likely ancestral states of a gene sequence given a Markovian model of genetic mutation.

  1. Stochastic processes and quantum theory

    International Nuclear Information System (INIS)

    Klauder, J.R.

    1975-01-01

    The author analyses a variety of stochastic processes, namely real time diffusion phenomena, which are analogues of imaginary time quantum theory and convariant imaginary time quantum field theory. He elaborates some standard properties involving probability measures and stochastic variables and considers a simple class of examples. Finally he develops the fact that certain stochastic theories actually exhibit divergences that simulate those of covariant quantum field theory and presents examples of both renormaizable and unrenormalizable behavior. (V.J.C.)

  2. Application of stochastic differential geometry to the term structure of interst rates in developed markets

    Energy Technology Data Exchange (ETDEWEB)

    Taranenko, Y.; Barnes, C.

    1996-12-31

    This paper deals with further developments of the new theory that applies stochastic differential geometry (SDG) to dynamics of interest rates. We examine mathematical constraints on the evolution of interest rate volatilities that arise from stochastic differential calculus under assumptions of an arbitrage free evolution of zero coupon bonds and developed markets (i.e., none of the party/factor can drive the whole market). The resulting new theory incorporates the Heath-Jarrow-Morton (HJM) model of interest rates and provides new equations for volatilities which makes the system of equations for interest rates and volatilities complete and self consistent. It results in much smaller amount of volatility data that should be guessed for the SDG model as compared to the HJM model. Limited analysis of the market volatility data suggests that the assumption of the developed market is violated around maturity of two years. Such maturities where the assumptions of the SDG model are violated are suggested to serve as boundaries at which volatilities should be specified independently from the model. Our numerical example with two boundaries (two years and five years) qualitatively resembles the market behavior. Under some conditions solutions of the SDG model become singular that may indicate market crashes. More detail comparison with the data is needed before the theory can be established or refuted.

  3. Stochastic Analysis with Financial Applications

    CERN Document Server

    Kohatsu-Higa, Arturo; Sheu, Shuenn-Jyi

    2011-01-01

    Stochastic analysis has a variety of applications to biological systems as well as physical and engineering problems, and its applications to finance and insurance have bloomed exponentially in recent times. The goal of this book is to present a broad overview of the range of applications of stochastic analysis and some of its recent theoretical developments. This includes numerical simulation, error analysis, parameter estimation, as well as control and robustness properties for stochastic equations. This book also covers the areas of backward stochastic differential equations via the (non-li

  4. The Impact of Tax Shocks and Oil Price Volatility on Risk - A Study of North Sea Oilfield Projects

    OpenAIRE

    Kretzschmar, Gavin Lee; Moles, Peter

    2006-01-01

    We examine the impact of market volatility and increased fiscal take on risk in strategic natural resource projects. An increase in 2006 UK oilfield taxation is used as a natural experiment for assessing the impact of a fiscal increase on oilfield projects comprising 73% of UK reserves. Stochastic cash flow at risk models combine market volatility and tax-take at the oilfield level to extend earlier North Sea studies. We demonstrate that a 10% Secondary tax increase in a composite UKCS fiscal...

  5. Volatile metabolites from actinomycetes

    DEFF Research Database (Denmark)

    Scholler, C.E.G.; Gurtler, H.; Pedersen, R.

    2002-01-01

    Twenty-six Streptomyces spp. were screened for their volatile production capacity on yeast starch agar. The volatile organic compounds (VOCs) were concentrated on a porous polymer throughout an 8-day growth period. VOCs were analyzed by gas chromatography with flame ionization detection...... and identified or characterized by gas chromatography-mass spectrometry. A total of 120 VOCs were characterized by retention index and mass spectra. Fifty-three compounds were characterized as terpenoid compounds, among which 18 could be identified. Among the VOCs were alkanes, alkenes, alcohols, esters, ketones....... The relationship between the excretion of geosmin and the production of spores was examined for one isolate. A good correlation between headspace geosmin and the number of spores was observed, suggesting that VOCs could be used to indicate the activity of these microorganisms in heterogeneous substrates....

  6. The stochastic spectator

    Energy Technology Data Exchange (ETDEWEB)

    Hardwick, Robert J.; Vennin, Vincent; Wands, David [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth, PO1 3FX (United Kingdom); Byrnes, Christian T.; Torrado, Jesús, E-mail: robert.hardwick@port.ac.uk, E-mail: vincent.vennin@port.ac.uk, E-mail: c.byrnes@sussex.ac.uk, E-mail: jesus.torrado@sussex.ac.uk, E-mail: david.wands@port.ac.uk [Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH (United Kingdom)

    2017-10-01

    We study the stochastic distribution of spectator fields predicted in different slow-roll inflation backgrounds. Spectator fields have a negligible energy density during inflation but may play an important dynamical role later, even giving rise to primordial density perturbations within our observational horizon today. During de-Sitter expansion there is an equilibrium solution for the spectator field which is often used to estimate the stochastic distribution during slow-roll inflation. However slow roll only requires that the Hubble rate varies slowly compared to the Hubble time, while the time taken for the stochastic distribution to evolve to the de-Sitter equilibrium solution can be much longer than a Hubble time. We study both chaotic (monomial) and plateau inflaton potentials, with quadratic, quartic and axionic spectator fields. We give an adiabaticity condition for the spectator field distribution to relax to the de-Sitter equilibrium, and find that the de-Sitter approximation is never a reliable estimate for the typical distribution at the end of inflation for a quadratic spectator during monomial inflation. The existence of an adiabatic regime at early times can erase the dependence on initial conditions of the final distribution of field values. In these cases, spectator fields acquire sub-Planckian expectation values. Otherwise spectator fields may acquire much larger field displacements than suggested by the de-Sitter equilibrium solution. We quantify the information about initial conditions that can be obtained from the final field distribution. Our results may have important consequences for the viability of spectator models for the origin of structure, such as the simplest curvaton models.

  7. The stochastic spectator

    International Nuclear Information System (INIS)

    Hardwick, Robert J.; Vennin, Vincent; Wands, David; Byrnes, Christian T.; Torrado, Jesús

    2017-01-01

    We study the stochastic distribution of spectator fields predicted in different slow-roll inflation backgrounds. Spectator fields have a negligible energy density during inflation but may play an important dynamical role later, even giving rise to primordial density perturbations within our observational horizon today. During de-Sitter expansion there is an equilibrium solution for the spectator field which is often used to estimate the stochastic distribution during slow-roll inflation. However slow roll only requires that the Hubble rate varies slowly compared to the Hubble time, while the time taken for the stochastic distribution to evolve to the de-Sitter equilibrium solution can be much longer than a Hubble time. We study both chaotic (monomial) and plateau inflaton potentials, with quadratic, quartic and axionic spectator fields. We give an adiabaticity condition for the spectator field distribution to relax to the de-Sitter equilibrium, and find that the de-Sitter approximation is never a reliable estimate for the typical distribution at the end of inflation for a quadratic spectator during monomial inflation. The existence of an adiabatic regime at early times can erase the dependence on initial conditions of the final distribution of field values. In these cases, spectator fields acquire sub-Planckian expectation values. Otherwise spectator fields may acquire much larger field displacements than suggested by the de-Sitter equilibrium solution. We quantify the information about initial conditions that can be obtained from the final field distribution. Our results may have important consequences for the viability of spectator models for the origin of structure, such as the simplest curvaton models.

  8. Minimum Tracking Error Volatility

    OpenAIRE

    Luca RICCETTI

    2010-01-01

    Investors assign part of their funds to asset managers that are given the task of beating a benchmark. The risk management department usually imposes a maximum value of the tracking error volatility (TEV) in order to keep the risk of the portfolio near to that of the selected benchmark. However, risk management does not establish a rule on TEV which enables us to understand whether the asset manager is really active or not and, in practice, asset managers sometimes follow passively the corres...

  9. Recovering volatile liquids

    Energy Technology Data Exchange (ETDEWEB)

    Bregeat, J H

    1925-07-30

    The products of hydrogenation of alicyclic compounds, such as terpenes, for example, pinene or oil of turpentine, are used as washing liquids for absorbing vapours of volatile liquids from gases, such as natural gases from petroliferous regions, gases from the distillation of coal, lignite, schist, peat, etc. or from the cracking of heavy oils. Other liquids such as tar oils vaseline oils, cresols, etc. may be added.

  10. Stochastic ontogenetic growth model

    Science.gov (United States)

    West, B. J.; West, D.

    2012-02-01

    An ontogenetic growth model (OGM) for a thermodynamically closed system is generalized to satisfy both the first and second law of thermodynamics. The hypothesized stochastic ontogenetic growth model (SOGM) is shown to entail the interspecies allometry relation by explicitly averaging the basal metabolic rate and the total body mass over the steady-state probability density for the total body mass (TBM). This is the first derivation of the interspecies metabolic allometric relation from a dynamical model and the asymptotic steady-state distribution of the TBM is fit to data and shown to be inverse power law.

  11. Stochastic calculus in physics

    International Nuclear Information System (INIS)

    Fox, R.F.

    1987-01-01

    The relationship of Ito-Stratonovich stochastic calculus to studies of weakly colored noise is explained. A functional calculus approach is used to obtain an effective Fokker-Planck equation for the weakly colored noise regime. In a smooth limit, this representation produces the Stratonovich version of the Ito-Stratonovich calculus for white noise. It also provides an approach to steady state behavior for strongly colored noise. Numerical simulation algorithms are explored, and a novel suggestion is made for efficient and accurate simulation of white noise equations

  12. The stochastic quality calculus

    DEFF Research Database (Denmark)

    Zeng, Kebin; Nielson, Flemming; Nielson, Hanne Riis

    2014-01-01

    We introduce the Stochastic Quality Calculus in order to model and reason about distributed processes that rely on each other in order to achieve their overall behaviour. The calculus supports broadcast communication in a truly concurrent setting. Generally distributed delays are associated...... with the outputs and at the same time the inputs impose constraints on the waiting times. Consequently, the expected inputs may not be available when needed and therefore the calculus allows to express the absence of data.The communication delays are expressed by general distributions and the resulting semantics...

  13. Stochastic conditional intensity processes

    DEFF Research Database (Denmark)

    Bauwens, Luc; Hautsch, Nikolaus

    2006-01-01

    model allows for a wide range of (cross-)autocorrelation structures in multivariate point processes. The model is estimated by simulated maximum likelihood (SML) using the efficient importance sampling (EIS) technique. By modeling price intensities based on NYSE trading, we provide significant evidence......In this article, we introduce the so-called stochastic conditional intensity (SCI) model by extending Russell’s (1999) autoregressive conditional intensity (ACI) model by a latent common dynamic factor that jointly drives the individual intensity components. We show by simulations that the proposed...... for a joint latent factor and show that its inclusion allows for an improved and more parsimonious specification of the multivariate intensity process...

  14. Stochastic cooling for beginners

    International Nuclear Information System (INIS)

    Moehl, D.

    1984-01-01

    These two lectures have been prepared to give a simple introduction to the principles. In Part I we try to explain stochastic cooling using the time-domain picture which starts from the pulse response of the system. In Part II the discussion is repeated, looking more closely at the frequency-domain response. An attempt is made to familiarize the beginners with some of the elementary cooling equations, from the 'single particle case' up to equations which describe the evolution of the particle distribution. (orig.)

  15. Trajectory averaging for stochastic approximation MCMC algorithms

    KAUST Repository

    Liang, Faming

    2010-01-01

    to the stochastic approximation Monte Carlo algorithm [Liang, Liu and Carroll J. Amer. Statist. Assoc. 102 (2007) 305-320]. The application of the trajectory averaging estimator to other stochastic approximationMCMC algorithms, for example, a stochastic

  16. Stochastic Blind Motion Deblurring

    KAUST Repository

    Xiao, Lei

    2015-05-13

    Blind motion deblurring from a single image is a highly under-constrained problem with many degenerate solutions. A good approximation of the intrinsic image can therefore only be obtained with the help of prior information in the form of (often non-convex) regularization terms for both the intrinsic image and the kernel. While the best choice of image priors is still a topic of ongoing investigation, this research is made more complicated by the fact that historically each new prior requires the development of a custom optimization method. In this paper, we develop a stochastic optimization method for blind deconvolution. Since this stochastic solver does not require the explicit computation of the gradient of the objective function and uses only efficient local evaluation of the objective, new priors can be implemented and tested very quickly. We demonstrate that this framework, in combination with different image priors produces results with PSNR values that match or exceed the results obtained by much more complex state-of-the-art blind motion deblurring algorithms.

  17. Simple stochastic simulation.

    Science.gov (United States)

    Schilstra, Maria J; Martin, Stephen R

    2009-01-01

    Stochastic simulations may be used to describe changes with time of a reaction system in a way that explicitly accounts for the fact that molecules show a significant degree of randomness in their dynamic behavior. The stochastic approach is almost invariably used when small numbers of molecules or molecular assemblies are involved because this randomness leads to significant deviations from the predictions of the conventional deterministic (or continuous) approach to the simulation of biochemical kinetics. Advances in computational methods over the three decades that have elapsed since the publication of Daniel Gillespie's seminal paper in 1977 (J. Phys. Chem. 81, 2340-2361) have allowed researchers to produce highly sophisticated models of complex biological systems. However, these models are frequently highly specific for the particular application and their description often involves mathematical treatments inaccessible to the nonspecialist. For anyone completely new to the field to apply such techniques in their own work might seem at first sight to be a rather intimidating prospect. However, the fundamental principles underlying the approach are in essence rather simple, and the aim of this article is to provide an entry point to the field for a newcomer. It focuses mainly on these general principles, both kinetic and computational, which tend to be not particularly well covered in specialist literature, and shows that interesting information may even be obtained using very simple operations in a conventional spreadsheet.

  18. AA, stochastic precooling pickup

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    The freshly injected antiprotons were subjected to fast stochastic "precooling". In this picture of a precooling pickup, the injection orbit is to the left, the stack orbit to the far right. After several seconds of precooling with the system's kickers (in momentum and in the vertical plane), the precooled antiprotons were transferred, by means of RF, to the stack tail, where they were subjected to further stochastic cooling in momentum and in both transverse planes, until they ended up, deeply cooled, in the stack core. During precooling, a shutter near the central orbit shielded the pickups from the signals emanating from the stack-core, whilst the stack-core was shielded from the violent action of the precooling kickers by a shutter on these. All shutters were opened briefly during transfer of the precooled antiprotons to the stack tail. Here, the shutter is not yet mounted. Precooling pickups and kickers had the same design, except that the kickers had cooling circuits and the pickups had none. Peering th...

  19. Behavioral Stochastic Resonance

    Science.gov (United States)

    Freund, Jan A.; Schimansky-Geier, Lutz; Beisner, Beatrix; Neiman, Alexander; Russell, David F.; Yakusheva, Tatyana; Moss, Frank

    2001-03-01

    Zooplankton emit weak electric fields into the surrounding water that originate from their own muscular activities associated with swimming and feeding. Juvenile paddlefish prey upon single zooplankton by detecting and tracking these weak electric signatures. The passive electric sense in the fish is provided by an elaborate array of electroreceptors, Ampullae Lorenzini, spread over the surface of an elongated rostrum. We have previously shown that the fish use stochastic resonance to enhance prey capture near the detection threshold of their sensory system. But stochastic resonance requires an external source of electrical noise in order to function. The required noise can be provided by a swarm of plankton, for example Daphnia. Thus juvenile paddlefish can detect and attack single Daphnia as outliers in the vicinity of the swarm by making use of noise from the swarm itself. From the power spectral density of the noise plus the weak signal from a single Daphnia we calculate the signal-to-noise ratio and the Fisher information at the surface of the paddlefish's rostrum. The results predict a specific attack pattern for the paddlefish that appears to be experimentally testable.

  20. Leverage effect in financial markets: the retarded volatility model.

    Science.gov (United States)

    Bouchaud, J P; Matacz, A; Potters, M

    2001-11-26

    We investigate quantitatively the so-called "leverage effect," which corresponds to a negative correlation between past returns and future volatility. For individual stocks this correlation is moderate and decays over 50 days, while for stock indices it is much stronger but decays faster. For individual stocks the magnitude of this correlation has a universal value that can be rationalized in terms of a new "retarded" model which interpolates between a purely additive and a purely multiplicative stochastic process. For stock indices a specific amplification phenomenon seems to be necessary to account for the observed amplitude of the effect.

  1. Market structure and the stability and volatility of electricity prices

    International Nuclear Information System (INIS)

    Bask, Mikael; Widerberg, Anna

    2009-01-01

    By using a novel approach in this paper, (λ,σ 2 )-analysis, we have found that electricity prices most of the time have increased in stability and decreased in volatility when the Nordic power market has expanded and the degree of competition has increased. That electricity prices at Nord Pool have been generated by a stochastic dynamic system that most often has become more stable during the step-wise integration of the Nordic power market means that this market is less sensitive to shocks after the integration process than it was before this process. This is good news

  2. Stochastic programming with integer recourse

    NARCIS (Netherlands)

    van der Vlerk, Maarten Hendrikus

    1995-01-01

    In this thesis we consider two-stage stochastic linear programming models with integer recourse. Such models are at the intersection of two different branches of mathematical programming. On the one hand some of the model parameters are random, which places the problem in the field of stochastic

  3. Thermal mixtures in stochastic mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Guerra, F [Rome Univ. (Italy). Ist. di Matematica; Loffredo, M I [Salerno Univ. (Italy). Ist. di Fisica

    1981-01-17

    Stochastic mechanics is extended to systems in thermal equilibrium. The resulting stochastic processes are mixtures of Nelson processes. Their Markov property is investigated in some simple cases. It is found that in order to inforce Markov property the algebra of observable associated to the present must be suitably enlarged.

  4. Stochastic Pi-calculus Revisited

    DEFF Research Database (Denmark)

    Cardelli, Luca; Mardare, Radu Iulian

    2013-01-01

    We develop a version of stochastic Pi-calculus with a semantics based on measure theory. We dene the behaviour of a process in a rate environment using measures over the measurable space of processes induced by structural congruence. We extend the stochastic bisimulation to include the concept of...

  5. Stochastic ferromagnetism analysis and numerics

    CERN Document Server

    Brzezniak, Zdzislaw; Neklyudov, Mikhail; Prohl, Andreas

    2013-01-01

    This monograph examines magnetization dynamics at elevated temperatures which can be described by the stochastic Landau-Lifshitz-Gilbert equation (SLLG). Comparative computational studies with the stochastic model are included. Constructive tools such as e.g. finite element methods are used to derive the theoretical results, which are then used for computational studies.

  6. Variance decomposition in stochastic simulators.

    Science.gov (United States)

    Le Maître, O P; Knio, O M; Moraes, A

    2015-06-28

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  7. Variance decomposition in stochastic simulators

    Science.gov (United States)

    Le Maître, O. P.; Knio, O. M.; Moraes, A.

    2015-06-01

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  8. Brownian motion and stochastic calculus

    CERN Document Server

    Karatzas, Ioannis

    1998-01-01

    This book is designed as a text for graduate courses in stochastic processes. It is written for readers familiar with measure-theoretic probability and discrete-time processes who wish to explore stochastic processes in continuous time. The vehicle chosen for this exposition is Brownian motion, which is presented as the canonical example of both a martingale and a Markov process with continuous paths. In this context, the theory of stochastic integration and stochastic calculus is developed. The power of this calculus is illustrated by results concerning representations of martingales and change of measure on Wiener space, and these in turn permit a presentation of recent advances in financial economics (option pricing and consumption/investment optimization). This book contains a detailed discussion of weak and strong solutions of stochastic differential equations and a study of local time for semimartingales, with special emphasis on the theory of Brownian local time. The text is complemented by a large num...

  9. Variance decomposition in stochastic simulators

    Energy Technology Data Exchange (ETDEWEB)

    Le Maître, O. P., E-mail: olm@limsi.fr [LIMSI-CNRS, UPR 3251, Orsay (France); Knio, O. M., E-mail: knio@duke.edu [Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708 (United States); Moraes, A., E-mail: alvaro.moraesgutierrez@kaust.edu.sa [King Abdullah University of Science and Technology, Thuwal (Saudi Arabia)

    2015-06-28

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  10. Variance decomposition in stochastic simulators

    KAUST Repository

    Le Maî tre, O. P.; Knio, O. M.; Moraes, Alvaro

    2015-01-01

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  11. Volatility Spillovers in Capesize Forward Freight Agreement Markets

    Directory of Open Access Journals (Sweden)

    Xiaoxing Gong

    2016-01-01

    Full Text Available This paper is to investigate spillovers in the Capesize forward freight agreements (FFAs markets before and after the global financial crisis. The paper chooses four Capesize voyage routes FFAs (C3, C4, C5, and C7, two time-charter routes FFAs (BCIT/C average, BPI T/C average, and spot rates as research subjects, covering the periods 3 January 2006 to 24 December 2015. This paper applies Volatility Spillover Multivariate Stochastic Volatility (VS-MSV model to analyze volatility spillover effects and estimates the parameters via software of Bayesian inference using Gibbs Sampling (BUGS, the deviance information criterion (DIC used for goodness-of-fit model. The results suggest that there are volatility spillover effects in certain Capesize FFAs routes, and the effects from spot rates to FFAs take place before crisis, yet they are bilateral after crisis. With the development of shipping markets, the correlations between FFAs and spot rate are enhanced, and it seems that the effects depend on market information and traders’ behavior. So practitioners could make decisions according to the spillovers.

  12. Monitoring volatile anaesthetic agents

    International Nuclear Information System (INIS)

    Russell, W.J.

    2000-01-01

    Full text: The methods that have been used for monitoring volatile anaesthetic agents depend on some physical property such as Density, Refractometry, Mass, Solubility, Raman scattering, or Infra-red absorption. Today, refractometry and infra-red techniques are the most common. Refractometry is used for the calibration of vaporizers. All anaesthetic agents increase the refractive index of the carrier gas. Provided the mixture is known then the refractive change measures the concentration of the volatile anaesthetic agent. Raman Scattering is when energy hits a molecule a very small fraction of the energy is absorbed and re-emitted at one or more lower frequencies. The shift in frequency is a function of the chemical bonds and is a fingerprint of the substance irradiated. Electromagnetic (Infra-red) has been the commonest method of detection of volatile agents. Most systems use a subtractive system, i.e. the agent in the sampling cell absorbed some of the infrared energy and the photo-detector therefore received less energy. A different approach is where the absorbed energy is converted into a pressure change and detected as sound (Acoustic monitor). This gives a more stable zero reference. More recently, the detector systems have used multiple narrow-band wavelengths in the infrared bands and by shape matching or matrix computing specific agent identification is achieved and the concentration calculated. In the early Datex AS3 monitors, a spectral sweep across the 3 micron infrared band was used to create spectral fingerprints. The recently released AS3 monitors use a different system with five very narrow band filters in the 8-10 micron region. The transmission through each of these filters is a value in a matrix which is solved by a micro computer to identify the agent and its concentration. These monitors can assist in improving the safety and efficiency of our anaesthetics but do not ensure that the patient is completely anaesthetized. Copyright (2000

  13. Monitoring volatile anaesthetic agents

    Energy Technology Data Exchange (ETDEWEB)

    Russell, W J [Royal Adelaide Hospital, SA (Australia). Department of Anaesthesia and Intensive Care

    2000-12-01

    Full text: The methods that have been used for monitoring volatile anaesthetic agents depend on some physical property such as Density, Refractometry, Mass, Solubility, Raman scattering, or Infra-red absorption. Today, refractometry and infra-red techniques are the most common. Refractometry is used for the calibration of vaporizers. All anaesthetic agents increase the refractive index of the carrier gas. Provided the mixture is known then the refractive change measures the concentration of the volatile anaesthetic agent. Raman Scattering is when energy hits a molecule a very small fraction of the energy is absorbed and re-emitted at one or more lower frequencies. The shift in frequency is a function of the chemical bonds and is a fingerprint of the substance irradiated. Electromagnetic (Infra-red) has been the commonest method of detection of volatile agents. Most systems use a subtractive system, i.e. the agent in the sampling cell absorbed some of the infrared energy and the photo-detector therefore received less energy. A different approach is where the absorbed energy is converted into a pressure change and detected as sound (Acoustic monitor). This gives a more stable zero reference. More recently, the detector systems have used multiple narrow-band wavelengths in the infrared bands and by shape matching or matrix computing specific agent identification is achieved and the concentration calculated. In the early Datex AS3 monitors, a spectral sweep across the 3 micron infrared band was used to create spectral fingerprints. The recently released AS3 monitors use a different system with five very narrow band filters in the 8-10 micron region. The transmission through each of these filters is a value in a matrix which is solved by a micro computer to identify the agent and its concentration. These monitors can assist in improving the safety and efficiency of our anaesthetics but do not ensure that the patient is completely anaesthetized. Copyright (2000

  14. Ambient Volatility of Triethyl Phosphate

    Science.gov (United States)

    2017-08-01

    of materials is predictable using Raoult’s law. This report details the measurement of the effect of water vapor partial pressure on the volatility...empirical correlation taking into account nonideal behavior was developed to enable estimation of TEPO volatility at any combination of ambient...of the second component is expected to be one-half as much as in the absence of water vapor. Similarly, the measured volatility of the second

  15. Applied stochastic modelling

    CERN Document Server

    Morgan, Byron JT; Tanner, Martin Abba; Carlin, Bradley P

    2008-01-01

    Introduction and Examples Introduction Examples of data sets Basic Model Fitting Introduction Maximum-likelihood estimation for a geometric model Maximum-likelihood for the beta-geometric model Modelling polyspermy Which model? What is a model for? Mechanistic models Function Optimisation Introduction MATLAB: graphs and finite differences Deterministic search methods Stochastic search methods Accuracy and a hybrid approach Basic Likelihood ToolsIntroduction Estimating standard errors and correlations Looking at surfaces: profile log-likelihoods Confidence regions from profiles Hypothesis testing in model selectionScore and Wald tests Classical goodness of fit Model selection biasGeneral Principles Introduction Parameterisation Parameter redundancy Boundary estimates Regression and influence The EM algorithm Alternative methods of model fitting Non-regular problemsSimulation Techniques Introduction Simulating random variables Integral estimation Verification Monte Carlo inference Estimating sampling distributi...

  16. Stochastic population theories

    CERN Document Server

    Ludwig, Donald

    1974-01-01

    These notes serve as an introduction to stochastic theories which are useful in population biology; they are based on a course given at the Courant Institute, New York, in the Spring of 1974. In order to make the material. accessible to a wide audience, it is assumed that the reader has only a slight acquaintance with probability theory and differential equations. The more sophisticated topics, such as the qualitative behavior of nonlinear models, are approached through a succession of simpler problems. Emphasis is placed upon intuitive interpretations, rather than upon formal proofs. In most cases, the reader is referred elsewhere for a rigorous development. On the other hand, an attempt has been made to treat simple, useful models in some detail. Thus these notes complement the existing mathematical literature, and there appears to be little duplication of existing works. The authors are indebted to Miss Jeanette Figueroa for her beautiful and speedy typing of this work. The research was supported by the Na...

  17. Propagator of stochastic electrodynamics

    International Nuclear Information System (INIS)

    Cavalleri, G.

    1981-01-01

    The ''elementary propagator'' for the position of a free charged particle subject to the zero-point electromagnetic field with Lorentz-invariant spectral density proportionalω 3 is obtained. The nonstationary process for the position is solved by the stationary process for the acceleration. The dispersion of the position elementary propagator is compared with that of quantum electrodynamics. Finally, the evolution of the probability density is obtained starting from an initial distribution confined in a small volume and with a Gaussian distribution in the velocities. The resulting probability density for the position turns out to be equal, to within radiative corrections, to psipsi* where psi is the Kennard wave packet. If the radiative corrections are retained, the present result is new since the corresponding expression in quantum electrodynamics has not yet been found. Besides preceding quantum electrodynamics for this problem, no renormalization is required in stochastic electrodynamics

  18. RES: Regularized Stochastic BFGS Algorithm

    Science.gov (United States)

    Mokhtari, Aryan; Ribeiro, Alejandro

    2014-12-01

    RES, a regularized stochastic version of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method is proposed to solve convex optimization problems with stochastic objectives. The use of stochastic gradient descent algorithms is widespread, but the number of iterations required to approximate optimal arguments can be prohibitive in high dimensional problems. Application of second order methods, on the other hand, is impracticable because computation of objective function Hessian inverses incurs excessive computational cost. BFGS modifies gradient descent by introducing a Hessian approximation matrix computed from finite gradient differences. RES utilizes stochastic gradients in lieu of deterministic gradients for both, the determination of descent directions and the approximation of the objective function's curvature. Since stochastic gradients can be computed at manageable computational cost RES is realizable and retains the convergence rate advantages of its deterministic counterparts. Convergence results show that lower and upper bounds on the Hessian egeinvalues of the sample functions are sufficient to guarantee convergence to optimal arguments. Numerical experiments showcase reductions in convergence time relative to stochastic gradient descent algorithms and non-regularized stochastic versions of BFGS. An application of RES to the implementation of support vector machines is developed.

  19. Volatiles from solids

    Energy Technology Data Exchange (ETDEWEB)

    Loughrey, C T

    1939-08-24

    To remove volatiles from solids, such as oil shale, gases, and/or vapours are passed through a mass of the materials, the vapours and gases separated, and the vapours condensed. The volatile-containing solid materials are fed to a retort, and a shaft is driven to rotate an impeller so as to displace the liquid and create a vortex tube, which draws in gas from the atmosphere through an intake, twyer, interstices in the material in the retort, a conduit, chamber, tubes, another chamber and cylinder. This gas is carried outwardly and upwardly by the vortices in the liquid and is carried to discharge through three conduits. The vapours entrained by the gas are part condensed in the liquid and the remainder directed to a condenser. Steam may be delivered to the twyer through a nozzle of a pipe, with or without air, and combustible hydrocarbon fuel may be fed through the burner nozzle or solid fuel may be directed from feeder and combusted in the twyer.

  20. Molecular plant volatile communication.

    Science.gov (United States)

    Holopainen, Jarmo K; Blande, James D

    2012-01-01

    Plants produce a wide array of volatile organic compounds (VOCs) which have multiple functions as internal plant hormones (e.g., ethylene, methyl jasmonate and methyl salicylate), in communication with conspecific and heterospecific plants and in communication with organisms of second (herbivores and pollinators) and third (enemies of herbivores) trophic levels. Species specific VOCs normally repel polyphagous herbivores and those specialised on other plant species, but may attract specialist herbivores and their natural enemies, which use VOCs as host location cues. Attraction of predators and parasitoids by VOCs is considered an evolved indirect defence, whereby plants are able to indirectly reduce biotic stress caused by damaging herbivores. In this chapter we review these interactions where VOCs are known to play a crucial role. We then discuss the importance of volatile communication in self and nonself detection. VOCs are suggested to appear in soil ecosystems where distinction of own roots from neighbours roots is essential to optimise root growth, but limited evidence of above-ground plant self-recognition is available.

  1. Stochastic estimation of electricity consumption

    International Nuclear Information System (INIS)

    Kapetanovic, I.; Konjic, T.; Zahirovic, Z.

    1999-01-01

    Electricity consumption forecasting represents a part of the stable functioning of the power system. It is very important because of rationality and increase of control process efficiency and development planning of all aspects of society. On a scientific basis, forecasting is a possible way to solve problems. Among different models that have been used in the area of forecasting, the stochastic aspect of forecasting as a part of quantitative models takes a very important place in applications. ARIMA models and Kalman filter as stochastic estimators have been treated together for electricity consumption forecasting. Therefore, the main aim of this paper is to present the stochastic forecasting aspect using short time series. (author)

  2. Linear stochastic neutron transport theory

    International Nuclear Information System (INIS)

    Lewins, J.

    1978-01-01

    A new and direct derivation of the Bell-Pal fundamental equation for (low power) neutron stochastic behaviour in the Boltzmann continuum model is given. The development includes correlation of particle emission direction in induced and spontaneous fission. This leads to generalizations of the backward and forward equations for the mean and variance of neutron behaviour. The stochastic importance for neutron transport theory is introduced and related to the conventional deterministic importance. Defining equations and moment equations are derived and shown to be related to the backward fundamental equation with the detector distribution of the operational definition of stochastic importance playing the role of an adjoint source. (author)

  3. Stochasticity in the Josephson map

    International Nuclear Information System (INIS)

    Nomura, Y.; Ichikawa, Y.H.; Filippov, A.T.

    1996-04-01

    The Josephson map describes nonlinear dynamics of systems characterized by standard map with the uniform external bias superposed. The intricate structures of the phase space portrait of the Josephson map are examined on the basis of the tangent map associated with the Josephson map. Numerical observation of the stochastic diffusion in the Josephson map is examined in comparison with the renormalized diffusion coefficient calculated by the method of characteristic function. The global stochasticity of the Josephson map occurs at the values of far smaller stochastic parameter than the case of the standard map. (author)

  4. Introduction to stochastic dynamic programming

    CERN Document Server

    Ross, Sheldon M; Lukacs, E

    1983-01-01

    Introduction to Stochastic Dynamic Programming presents the basic theory and examines the scope of applications of stochastic dynamic programming. The book begins with a chapter on various finite-stage models, illustrating the wide range of applications of stochastic dynamic programming. Subsequent chapters study infinite-stage models: discounting future returns, minimizing nonnegative costs, maximizing nonnegative returns, and maximizing the long-run average return. Each of these chapters first considers whether an optimal policy need exist-providing counterexamples where appropriate-and the

  5. Functional Abstraction of Stochastic Hybrid Systems

    NARCIS (Netherlands)

    Bujorianu, L.M.; Blom, Henk A.P.; Hermanns, H.

    2006-01-01

    The verification problem for stochastic hybrid systems is quite difficult. One method to verify these systems is stochastic reachability analysis. Concepts of abstractions for stochastic hybrid systems are needed to ease the stochastic reachability analysis. In this paper, we set up different ways

  6. An introduction to probability and stochastic processes

    CERN Document Server

    Melsa, James L

    2013-01-01

    Geared toward college seniors and first-year graduate students, this text is designed for a one-semester course in probability and stochastic processes. Topics covered in detail include probability theory, random variables and their functions, stochastic processes, linear system response to stochastic processes, Gaussian and Markov processes, and stochastic differential equations. 1973 edition.

  7. An Hilbert space approach for a class of arbitrage free implied volatilities models

    OpenAIRE

    Brace, A.; Fabbri, G.; Goldys, B.

    2007-01-01

    We present an Hilbert space formulation for a set of implied volatility models introduced in \\cite{BraceGoldys01} in which the authors studied conditions for a family of European call options, varying the maturing time and the strike price $T$ an $K$, to be arbitrage free. The arbitrage free conditions give a system of stochastic PDEs for the evolution of the implied volatility surface ${\\hat\\sigma}_t(T,K)$. We will focus on the family obtained fixing a strike $K$ and varying $T$. In order to...

  8. Political institutions and economic volatility

    NARCIS (Netherlands)

    Klomp, Jeroen; de Haan, Jakob

    We examine the effect of political 'institutions' on economic growth volatility, using data from more than 100 countries over the period 1960 to 2005, taking into account various control variables as suggested in previous studies. Our indicator of volatility is the relative standard deviation of the

  9. Fundamental volatility is regime specific

    NARCIS (Netherlands)

    Arnold, I.J.M.; MacDonald, R.; Vries, de C.G.

    2006-01-01

    A widely held notion holds that freely floating exchange rates are excessively volatile when judged against fundamentals and when moving from fixed to floating exchange rates. We re-examine the data and conclude that the disparity between the fundamentals and exchange rate volatility is more

  10. Stochastic backgrounds of gravitational waves

    International Nuclear Information System (INIS)

    Maggiore, M.

    2001-01-01

    We review the motivations for the search for stochastic backgrounds of gravitational waves and we compare the experimental sensitivities that can be reached in the near future with the existing bounds and with the theoretical predictions. (author)

  11. Stochastic theories of quantum mechanics

    International Nuclear Information System (INIS)

    De la Pena, L.; Cetto, A.M.

    1991-01-01

    The material of this article is organized into five sections. In Sect. I the basic characteristics of quantum systems are briefly discussed, with emphasis on their stochastic properties. In Sect. II a version of stochastic quantum mechanics is presented, to conclude that the quantum formalism admits an interpretation in terms of stochastic processes. In Sect. III the elements of stochastic electrodynamics are described, and its possibilities and limitations as a fundamental theory of quantum systems are discussed. Section IV contains a recent reformulation that overcomes the limitations of the theory discussed in the foregoing section. Finally, in Sect. V the theorems of EPR, Von Neumann and Bell are discussed briefly. The material is pedagogically presented and includes an ample list of references, but the details of the derivations are generally omitted. (Author)

  12. A stochastic picture of spin

    International Nuclear Information System (INIS)

    Faris, W.G.

    1981-01-01

    Dankel has shown how to incorporate spin into stochastic mechanics. The resulting non-local hidden variable theory gives an appealing picture of spin correlation experiments in which Bell's inequality is violated. (orig.)

  13. Statistical inference for stochastic processes

    National Research Council Canada - National Science Library

    Basawa, Ishwar V; Prakasa Rao, B. L. S

    1980-01-01

    The aim of this monograph is to attempt to reduce the gap between theory and applications in the area of stochastic modelling, by directing the interest of future researchers to the inference aspects...

  14. Stochastic singular optics (Conference paper)

    CSIR Research Space (South Africa)

    Roux, FS

    2014-09-01

    Full Text Available The study of optical vortices in stochastic optical fields involves various quantities, including the vortex density and topological charge density, that are defined in terms of local expectation values of distributions of optical vortices...

  15. Stochastic massless fields I: Integer spin

    International Nuclear Information System (INIS)

    Lim, S.C.

    1981-04-01

    Nelson's stochastic quantization scheme is applied to classical massless tensor potential in ''Coulomb'' gauge. The relationship between stochastic potential field in various gauges is discussed using the case of vector potential as an illustration. It is possible to identify the Euclidean tensor potential with the corresponding stochastic field in physical Minkowski space-time. Stochastic quantization of massless fields can also be carried out in terms of field strength tensors. An example of linearized stochastic gravitational field in vacuum is given. (author)

  16. Empirical method to measure stochasticity and multifractality in nonlinear time series

    Science.gov (United States)

    Lin, Chih-Hao; Chang, Chia-Seng; Li, Sai-Ping

    2013-12-01

    An empirical algorithm is used here to study the stochastic and multifractal nature of nonlinear time series. A parameter can be defined to quantitatively measure the deviation of the time series from a Wiener process so that the stochasticity of different time series can be compared. The local volatility of the time series under study can be constructed using this algorithm, and the multifractal structure of the time series can be analyzed by using this local volatility. As an example, we employ this method to analyze financial time series from different stock markets. The result shows that while developed markets evolve very much like an Ito process, the emergent markets are far from efficient. Differences about the multifractal structures and leverage effects between developed and emergent markets are discussed. The algorithm used here can be applied in a similar fashion to study time series of other complex systems.

  17. Volatile organic compounds

    International Nuclear Information System (INIS)

    Silseth, May Liss

    1998-01-01

    The goal is: Not more emission of volatile organic compounds (VOCs) than necessary. The items discussed in this presentation are the VOCs, how to calculate emission of VOCs, how to reduce or avoid them, and different recovery processes. The largest source of Norwegian emissions of non methane VOCs (NMVOCs) is offshore loading of raw petroleum. Emissions of VOCs should be reduced mainly for two reasons: (1) on sunny days NMVOCs may react with NOx to form ozon and smog close to the surface, (2) ozone and smog close to the surface may be harmful to plants and animals, and they are hazardous to human health. As for the calculation of VOC emissions, the VOCON project will release the calculation program HCGASS in 1999. This project is a cooperative project headed by SINTEF/Marintek

  18. Governmentally amplified output volatility

    Science.gov (United States)

    Funashima, Yoshito

    2016-11-01

    Predominant government behavior is decomposed by frequency into several periodic components: updating cycles of infrastructure, Kuznets cycles, fiscal policy over business cycles, and election cycles. Little is known, however, about the theoretical impact of such cyclical behavior in public finance on output fluctuations. Based on a standard neoclassical growth model, this study intends to examine the frequency at which public investment cycles are relevant to output fluctuations. We find an inverted U-shaped relationship between output volatility and length of cycle in public investment. This implies that periodic behavior in public investment at a certain frequency range can cause aggravated output resonance. Moreover, we present an empirical analysis to test the theoretical implication, using the U.S. data in the period from 1968 to 2015. The empirical results suggest that such resonance phenomena change from low to high frequency.

  19. Jakartans, Institutionally Volatile

    Directory of Open Access Journals (Sweden)

    Masaaki OKAMOTO

    2014-01-01

    Full Text Available Jakarta recently has gained even more central political attention in Indonesia since Joko Widodo (Jokowi and Basuki Purnama (Ahok became, respectively, the province’s governor and vice-governor in 2012. They started a series of eye-catching and populist programmes, drawing popular support from not only the people of Jakarta, but also among Indonesians in general. Jokowi is now even the most popular candidate for the presidential election in 2014. Their rise is phenomenal in this sense, but it is understandable if we look at Jakartan voters’ behaviour and the institutional arrangement that leads to it. Jakarta, as the national capital, has a unique arrangement in that the province has no autonomous regency or city. This paper argues that this arrangement causes Jakartans to be more politically volatile and describes how this institutional arrangement was created by analysing the minutes of the meeting to discuss the laws concerning Jakarta Province.

  20. Stochastic theory of fatigue corrosion

    Science.gov (United States)

    Hu, Haiyun

    1999-10-01

    A stochastic theory of corrosion has been constructed. The stochastic equations are described giving the transportation corrosion rate and fluctuation corrosion coefficient. In addition the pit diameter distribution function, the average pit diameter and the most probable pit diameter including other related empirical formula have been derived. In order to clarify the effect of stress range on the initiation and growth behaviour of pitting corrosion, round smooth specimen were tested under cyclic loading in 3.5% NaCl solution.

  1. Stochastic quantization and gauge theories

    International Nuclear Information System (INIS)

    Kolck, U. van.

    1987-01-01

    Stochastic quantization is presented taking the Flutuation-Dissipation Theorem as a guide. It is shown that the original approach of Parisi and Wu to gauge theories fails to give the right results to gauge invariant quantities when dimensional regularization is used. Although there is a simple solution in an abelian theory, in the non-abelian case it is probably necessary to start from a BRST invariant action instead of a gauge invariant one. Stochastic regularizations are also discussed. (author) [pt

  2. Stochasticity induced by coherent wavepackets

    International Nuclear Information System (INIS)

    Fuchs, V.; Krapchev, V.; Ram, A.; Bers, A.

    1983-02-01

    We consider the momentum transfer and diffusion of electrons periodically interacting with a coherent longitudinal wavepacket. Such a problem arises, for example, in lower-hybrid current drive. We establish the stochastic threshold, the stochastic region δv/sub stoch/ in velocity space, the associated momentum transfer j, and the diffusion coefficient D. We concentrate principally on the weak-field regime, tau/sub autocorrelation/ < tau/sub bounce/

  3. Stochastic runaway of dynamical systems

    International Nuclear Information System (INIS)

    Pfirsch, D.; Graeff, P.

    1984-10-01

    One-dimensional, stochastic, dynamical systems are well studied with respect to their stability properties. Less is known for the higher dimensional case. This paper derives sufficient and necessary criteria for the asymptotic divergence of the entropy (runaway) and sufficient ones for the moments of n-dimensional, stochastic, dynamical systems. The crucial implication is the incompressibility of their flow defined by the equations of motion in configuration space. Two possible extensions to compressible flow systems are outlined. (orig.)

  4. Stochastic Models of Polymer Systems

    Science.gov (United States)

    2016-01-01

    Distribution Unlimited Final Report: Stochastic Models of Polymer Systems The views, opinions and/or findings contained in this report are those of the...ADDRESS. Princeton University PO Box 0036 87 Prospect Avenue - 2nd floor Princeton, NJ 08544 -2020 14-Mar-2014 ABSTRACT Number of Papers published in...peer-reviewed journals: Number of Papers published in non peer-reviewed journals: Final Report: Stochastic Models of Polymer Systems Report Title

  5. Stochastic efficiency: five case studies

    International Nuclear Information System (INIS)

    Proesmans, Karel; Broeck, Christian Van den

    2015-01-01

    Stochastic efficiency is evaluated in five case studies: driven Brownian motion, effusion with a thermo-chemical and thermo-velocity gradient, a quantum dot and a model for information to work conversion. The salient features of stochastic efficiency, including the maximum of the large deviation function at the reversible efficiency, are reproduced. The approach to and extrapolation into the asymptotic time regime are documented. (paper)

  6. Optimal Liquidation under Stochastic Liquidity

    OpenAIRE

    Becherer, Dirk; Bilarev, Todor; Frentrup, Peter

    2016-01-01

    We solve explicitly a two-dimensional singular control problem of finite fuel type for infinite time horizon. The problem stems from the optimal liquidation of an asset position in a financial market with multiplicative and transient price impact. Liquidity is stochastic in that the volume effect process, which determines the inter-temporal resilience of the market in spirit of Predoiu, Shaikhet and Shreve (2011), is taken to be stochastic, being driven by own random noise. The optimal contro...

  7. Memory effects on stochastic resonance

    Science.gov (United States)

    Neiman, Alexander; Sung, Wokyung

    1996-02-01

    We study the phenomenon of stochastic resonance (SR) in a bistable system with internal colored noise. In this situation the system possesses time-dependent memory friction connected with noise via the fluctuation-dissipation theorem, so that in the absence of periodic driving the system approaches the thermodynamic equilibrium state. For this non-Markovian case we find that memory usually suppresses stochastic resonance. However, for a large memory time SR can be enhanced by the memory.

  8. Stochastic optimization: beyond mathematical programming

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Stochastic optimization, among which bio-inspired algorithms, is gaining momentum in areas where more classical optimization algorithms fail to deliver satisfactory results, or simply cannot be directly applied. This presentation will introduce baseline stochastic optimization algorithms, and illustrate their efficiency in different domains, from continuous non-convex problems to combinatorial optimization problem, to problems for which a non-parametric formulation can help exploring unforeseen possible solution spaces.

  9. Stochastic quantization and gauge invariance

    International Nuclear Information System (INIS)

    Viana, R.L.

    1987-01-01

    A survey of the fundamental ideas about Parisi-Wu's Stochastic Quantization Method, with applications to Scalar, Gauge and Fermionic theories, is done. In particular, the Analytic Stochastic Regularization Scheme is used to calculate the polarization tensor for Quantum Electrodynamics with Dirac bosons or Fermions. The regularization influence is studied for both theories and an extension of this method for some supersymmetrical models is suggested. (author)

  10. Stochastic Analysis and Related Topics

    CERN Document Server

    Ustunel, Ali

    1988-01-01

    The Silvri Workshop was divided into a short summer school and a working conference, producing lectures and research papers on recent developments in stochastic analysis on Wiener space. The topics treated in the lectures relate to the Malliavin calculus, the Skorohod integral and nonlinear functionals of white noise. Most of the research papers are applications of these subjects. This volume addresses researchers and graduate students in stochastic processes and theoretical physics.

  11. Emerging non-volatile memories

    CERN Document Server

    Hong, Seungbum; Wouters, Dirk

    2014-01-01

    This book is an introduction to the fundamentals of emerging non-volatile memories and provides an overview of future trends in the field. Readers will find coverage of seven important memory technologies, including Ferroelectric Random Access Memory (FeRAM), Ferromagnetic RAM (FMRAM), Multiferroic RAM (MFRAM), Phase-Change Memories (PCM), Oxide-based Resistive RAM (RRAM), Probe Storage, and Polymer Memories. Chapters are structured to reflect diffusions and clashes between different topics. Emerging Non-Volatile Memories is an ideal book for graduate students, faculty, and professionals working in the area of non-volatile memory. This book also: Covers key memory technologies, including Ferroelectric Random Access Memory (FeRAM), Ferromagnetic RAM (FMRAM), and Multiferroic RAM (MFRAM), among others. Provides an overview of non-volatile memory fundamentals. Broadens readers' understanding of future trends in non-volatile memories.

  12. Phenomenology of stochastic exponential growth

    Science.gov (United States)

    Pirjol, Dan; Jafarpour, Farshid; Iyer-Biswas, Srividya

    2017-06-01

    Stochastic exponential growth is observed in a variety of contexts, including molecular autocatalysis, nuclear fission, population growth, inflation of the universe, viral social media posts, and financial markets. Yet literature on modeling the phenomenology of these stochastic dynamics has predominantly focused on one model, geometric Brownian motion (GBM), which can be described as the solution of a Langevin equation with linear drift and linear multiplicative noise. Using recent experimental results on stochastic exponential growth of individual bacterial cell sizes, we motivate the need for a more general class of phenomenological models of stochastic exponential growth, which are consistent with the observation that the mean-rescaled distributions are approximately stationary at long times. We show that this behavior is not consistent with GBM, instead it is consistent with power-law multiplicative noise with positive fractional powers. Therefore, we consider this general class of phenomenological models for stochastic exponential growth, provide analytical solutions, and identify the important dimensionless combination of model parameters, which determines the shape of the mean-rescaled distribution. We also provide a prescription for robustly inferring model parameters from experimentally observed stochastic growth trajectories.

  13. Stochastic Effects in Microstructure

    Directory of Open Access Journals (Sweden)

    Glicksman M.E.

    2002-01-01

    Full Text Available We are currently studying microstructural responses to diffusion-limited coarsening in two-phase materials. A mathematical solution to late-stage multiparticle diffusion in finite systems is formulated with account taken of particle-particle interactions and their microstructural correlations, or "locales". The transition from finite system behavior to that for an infinite microstructure is established analytically. Large-scale simulations of late-stage phase coarsening dynamics show increased fluctuations with increasing volume fraction, Vv, of the mean flux entering or leaving particles of a given size class. Fluctuations about the mean flux were found to depend on the scaled particle size, R/, where R is the radius of a particle and is the radius of the dispersoid averaged over the population within the microstructure. Specifically, small (shrinking particles tend to display weak fluctuations about their mean flux, whereas particles of average, or above average size, exhibit strong fluctuations. Remarkably, even in cases of microstructures with a relatively small volume fraction (Vv ~ 10-4, the particle size distribution is broader than that for the well-known Lifshitz-Slyozov limit predicted at zero volume fraction. The simulation results reported here provide some additional surprising insights into the effect of diffusion interactions and stochastic effects during evolution of a microstructure, as it approaches its thermodynamic end-state.

  14. Adaptation in stochastic environments

    CERN Document Server

    Clark, Colib

    1993-01-01

    The classical theory of natural selection, as developed by Fisher, Haldane, and 'Wright, and their followers, is in a sense a statistical theory. By and large the classical theory assumes that the underlying environment in which evolution transpires is both constant and stable - the theory is in this sense deterministic. In reality, on the other hand, nature is almost always changing and unstable. We do not yet possess a complete theory of natural selection in stochastic environ­ ments. Perhaps it has been thought that such a theory is unimportant, or that it would be too difficult. Our own view is that the time is now ripe for the development of a probabilistic theory of natural selection. The present volume is an attempt to provide an elementary introduction to this probabilistic theory. Each author was asked to con­ tribute a simple, basic introduction to his or her specialty, including lively discussions and speculation. We hope that the book contributes further to the understanding of the roles of "Cha...

  15. Stochastic Methods in Biology

    CERN Document Server

    Kallianpur, Gopinath; Hida, Takeyuki

    1987-01-01

    The use of probabilistic methods in the biological sciences has been so well established by now that mathematical biology is regarded by many as a distinct dis­ cipline with its own repertoire of techniques. The purpose of the Workshop on sto­ chastic methods in biology held at Nagoya University during the week of July 8-12, 1985, was to enable biologists and probabilists from Japan and the U. S. to discuss the latest developments in their respective fields and to exchange ideas on the ap­ plicability of the more recent developments in stochastic process theory to problems in biology. Eighteen papers were presented at the Workshop and have been grouped under the following headings: I. Population genetics (five papers) II. Measure valued diffusion processes related to population genetics (three papers) III. Neurophysiology (two papers) IV. Fluctuation in living cells (two papers) V. Mathematical methods related to other problems in biology, epidemiology, population dynamics, etc. (six papers) An important f...

  16. Stochastic partial differential equations

    CERN Document Server

    Lototsky, Sergey V

    2017-01-01

    Taking readers with a basic knowledge of probability and real analysis to the frontiers of a very active research discipline, this textbook provides all the necessary background from functional analysis and the theory of PDEs. It covers the main types of equations (elliptic, hyperbolic and parabolic) and discusses different types of random forcing. The objective is to give the reader the necessary tools to understand the proofs of existing theorems about SPDEs (from other sources) and perhaps even to formulate and prove a few new ones. Most of the material could be covered in about 40 hours of lectures, as long as not too much time is spent on the general discussion of stochastic analysis in infinite dimensions. As the subject of SPDEs is currently making the transition from the research level to that of a graduate or even undergraduate course, the book attempts to present enough exercise material to fill potential exams and homework assignments. Exercises appear throughout and are usually directly connected ...

  17. AA, stochastic precooling kicker

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    The freshly injected antiprotons were subjected to fast stochastic "precooling", while a shutter shielded the deeply cooled antiproton stack from the violent action of the precooling kicker. In this picture, the injection orbit is to the left, the stack orbit to the far right, the separating shutter is in open position. After several seconds of precooling (in momentum and in the vertical plane), the shutter was opened briefly, so that by means of RF the precooled antiprotons could be transferred to the stack tail, where they were subjected to further cooling in momentum and both transverse planes, until they ended up, deeply cooled, in the stack core. The fast shutter, which had to open and close in a fraction of a second was an essential item of the cooling scheme and a mechanical masterpiece. Here the shutter is in the open position. The precooling pickups were of the same design, with the difference that the kickers had cooling circuits and the pickups not. 8401150 shows a precooling pickup with the shutte...

  18. Volatility Exposure for Strategic Asset Allocation

    OpenAIRE

    Briere, Marie; Burgues, Alexandre; Signori, Ombretta

    2008-01-01

    This paper examines the advantages of incorporating strategic exposure to equity volatility into the investment-opportunity set of a long-term equity investor. We consider two standard volatility investments: implied volatility and volatility risk premium strategies. To calibrate and assess the risk/return profile of the portfolio, we present an analytical framework offering pragmatic solutions for long-term investors seeking exposure to volatility. The benefit of volatility exposure for a co...

  19. Parallel Prediction of Stock Volatility

    Directory of Open Access Journals (Sweden)

    Priscilla Jenq

    2017-10-01

    Full Text Available Volatility is a measurement of the risk of financial products. A stock will hit new highs and lows over time and if these highs and lows fluctuate wildly, then it is considered a high volatile stock. Such a stock is considered riskier than a stock whose volatility is low. Although highly volatile stocks are riskier, the returns that they generate for investors can be quite high. Of course, with a riskier stock also comes the chance of losing money and yielding negative returns. In this project, we will use historic stock data to help us forecast volatility. Since the financial industry usually uses S&P 500 as the indicator of the market, we will use S&P 500 as a benchmark to compute the risk. We will also use artificial neural networks as a tool to predict volatilities for a specific time frame that will be set when we configure this neural network. There have been reports that neural networks with different numbers of layers and different numbers of hidden nodes may generate varying results. In fact, we may be able to find the best configuration of a neural network to compute volatilities. We will implement this system using the parallel approach. The system can be used as a tool for investors to allocating and hedging assets.

  20. Volatiles in the Martian regolith

    International Nuclear Information System (INIS)

    Clark, B.C.; Baird, A.K.

    1979-01-01

    An inventory of released volatiles on Mars has been derived based upon Viking measurements of atmospheric and surface chemical composition, and upon the inferred mineralogy of a ubiquitous regolith, assumed to average 200m in depth. This model is consistent with the relative abundances of volatiles (except for S) on the Earth's surface, but implies one-fifteenth of the volatile release of Earth if starting materials were comparable. All constituents are accommodated as chemical components of, or absorbed phases on, regolith materials--without the necessity of invoking unobservable deposits of carbonates, nitrates, or permafrost ice

  1. Consistent ranking of volatility models

    DEFF Research Database (Denmark)

    Hansen, Peter Reinhard; Lunde, Asger

    2006-01-01

    We show that the empirical ranking of volatility models can be inconsistent for the true ranking if the evaluation is based on a proxy for the population measure of volatility. For example, the substitution of a squared return for the conditional variance in the evaluation of ARCH-type models can...... variance in out-of-sample evaluations rather than the squared return. We derive the theoretical results in a general framework that is not specific to the comparison of volatility models. Similar problems can arise in comparisons of forecasting models whenever the predicted variable is a latent variable....

  2. Stochastic models: theory and simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Field, Richard V., Jr.

    2008-03-01

    Many problems in applied science and engineering involve physical phenomena that behave randomly in time and/or space. Examples are diverse and include turbulent flow over an aircraft wing, Earth climatology, material microstructure, and the financial markets. Mathematical models for these random phenomena are referred to as stochastic processes and/or random fields, and Monte Carlo simulation is the only general-purpose tool for solving problems of this type. The use of Monte Carlo simulation requires methods and algorithms to generate samples of the appropriate stochastic model; these samples then become inputs and/or boundary conditions to established deterministic simulation codes. While numerous algorithms and tools currently exist to generate samples of simple random variables and vectors, no cohesive simulation tool yet exists for generating samples of stochastic processes and/or random fields. There are two objectives of this report. First, we provide some theoretical background on stochastic processes and random fields that can be used to model phenomena that are random in space and/or time. Second, we provide simple algorithms that can be used to generate independent samples of general stochastic models. The theory and simulation of random variables and vectors is also reviewed for completeness.

  3. Stochastic Still Water Response Model

    DEFF Research Database (Denmark)

    Friis-Hansen, Peter; Ditlevsen, Ove Dalager

    2002-01-01

    In this study a stochastic field model for the still water loading is formulated where the statistics (mean value, standard deviation, and correlation) of the sectional forces are obtained by integration of the load field over the relevant part of the ship structure. The objective of the model is...... out that an important parameter of the stochastic cargo field model is the mean number of containers delivered by each customer.......In this study a stochastic field model for the still water loading is formulated where the statistics (mean value, standard deviation, and correlation) of the sectional forces are obtained by integration of the load field over the relevant part of the ship structure. The objective of the model...... is to establish the stochastic load field conditional on a given draft and trim of the vessel. The model contributes to a realistic modelling of the stochastic load processes to be used in a reliability evaluation of the ship hull. Emphasis is given to container vessels. The formulation of the model for obtaining...

  4. Stochastic quantization and topological theories

    International Nuclear Information System (INIS)

    Fainberg, V.Y.; Subbotin, A.V.; Kuznetsov, A.N.

    1992-01-01

    In the last two years topological quantum field theories (TQFT) have attached much attention. This paper reports that from the very beginning it was realized that due to a peculiar BRST-like symmetry these models admitted so-called Nicolai mapping: the Nicolai variables, in terms of which actions of the theories become gaussian, are nothing but (anti-) selfduality conditions or their generalizations. This fact became a starting point in the quest of possible stochastic interpretation to topological field theories. The reasons behind were quite simple and included, in particular, the well-known relations between stochastic processes and supersymmetry. The main goal would have been achieved, if it were possible to construct stochastic processes governed by Langevin or Fokker-Planck equations in a real Euclidean time leading to TQFT's path integrals (equivalently: to reformulate TQFTs as non-equilibrium phase dynamics of stochastic processes). Further on, if it would appear that these processes correspond to the stochastic quantization of theories of some definite kind, one could expect (d + 1)-dimensional TQFTs to share some common properties with d-dimensional ones

  5. Stochastic quantization of Einstein gravity

    International Nuclear Information System (INIS)

    Rumpf, H.

    1986-01-01

    We determine a one-parameter family of covariant Langevin equations for the metric tensor of general relativity corresponding to DeWitt's one-parameter family of supermetrics. The stochastic source term in these equations can be expressed in terms of a Gaussian white noise upon the introduction of a stochastic tetrad field. The only physically acceptable resolution of a mathematical ambiguity in the ansatz for the source term is the adoption of Ito's calculus. By taking the formal equilibrium limit of the stochastic metric a one-parameter family of covariant path-integral measures for general relativity is obtained. There is a unique parameter value, distinguished by any one of the following three properties: (i) the metric is harmonic with respect to the supermetric, (ii) the path-integral measure is that of DeWitt, (iii) the supermetric governs the linearized Einstein dynamics. Moreover the Feynman propagator corresponding to this parameter is causal. Finally we show that a consistent stochastic perturbation theory gives rise to a new type of diagram containing ''stochastic vertices.''

  6. Rainfall Stochastic models

    Science.gov (United States)

    Campo, M. A.; Lopez, J. J.; Rebole, J. P.

    2012-04-01

    This work was carried out in north of Spain. San Sebastian A meteorological station, where there are available precipitation records every ten minutes was selected. Precipitation data covers from October of 1927 to September of 1997. Pulse models describe the temporal process of rainfall as a succession of rainy cells, main storm, whose origins are distributed in time according to a Poisson process and a secondary process that generates a random number of cells of rain within each storm. Among different pulse models, the Bartlett-Lewis was used. On the other hand, alternative renewal processes and Markov chains describe the way in which the process will evolve in the future depending only on the current state. Therefore they are nor dependant on past events. Two basic processes are considered when describing the occurrence of rain: the alternation of wet and dry periods and temporal distribution of rainfall in each rain event, which determines the rainwater collected in each of the intervals that make up the rain. This allows the introduction of alternative renewal processes and Markov chains of three states, where interstorm time is given by either of the two dry states, short or long. Thus, the stochastic model of Markov chains tries to reproduce the basis of pulse models: the succession of storms, each one composed for a series of rain, separated by a short interval of time without theoretical complexity of these. In a first step, we analyzed all variables involved in the sequential process of the rain: rain event duration, event duration of non-rain, average rainfall intensity in rain events, and finally, temporal distribution of rainfall within the rain event. Additionally, for pulse Bartlett-Lewis model calibration, main descriptive statistics were calculated for each month, considering the process of seasonal rainfall in each month. In a second step, both models were calibrated. Finally, synthetic series were simulated with calibration parameters; series

  7. Stacking with stochastic cooling

    Energy Technology Data Exchange (ETDEWEB)

    Caspers, Fritz E-mail: Fritz.Caspers@cern.ch; Moehl, Dieter

    2004-10-11

    Accumulation of large stacks of antiprotons or ions with the aid of stochastic cooling is more delicate than cooling a constant intensity beam. Basically the difficulty stems from the fact that the optimized gain and the cooling rate are inversely proportional to the number of particles 'seen' by the cooling system. Therefore, to maintain fast stacking, the newly injected batch has to be strongly 'protected' from the Schottky noise of the stack. Vice versa the stack has to be efficiently 'shielded' against the high gain cooling system for the injected beam. In the antiproton accumulators with stacking ratios up to 10{sup 5} the problem is solved by radial separation of the injection and the stack orbits in a region of large dispersion. An array of several tapered cooling systems with a matched gain profile provides a continuous particle flux towards the high-density stack core. Shielding of the different systems from each other is obtained both through the spatial separation and via the revolution frequencies (filters). In the 'old AA', where the antiproton collection and stacking was done in one single ring, the injected beam was further shielded during cooling by means of a movable shutter. The complexity of these systems is very high. For more modest stacking ratios, one might use azimuthal rather than radial separation of stack and injected beam. Schematically half of the circumference would be used to accept and cool new beam and the remainder to house the stack. Fast gating is then required between the high gain cooling of the injected beam and the low gain stack cooling. RF-gymnastics are used to merge the pre-cooled batch with the stack, to re-create free space for the next injection, and to capture the new batch. This scheme is less demanding for the storage ring lattice, but at the expense of some reduction in stacking rate. The talk reviews the 'radial' separation schemes and also gives some

  8. Fundamentals of stochastic nature sciences

    CERN Document Server

    Klyatskin, Valery I

    2017-01-01

    This book addresses the processes of stochastic structure formation in two-dimensional geophysical fluid dynamics based on statistical analysis of Gaussian random fields, as well as stochastic structure formation in dynamic systems with parametric excitation of positive random fields f(r,t) described by partial differential equations. Further, the book considers two examples of stochastic structure formation in dynamic systems with parametric excitation in the presence of Gaussian pumping. In dynamic systems with parametric excitation in space and time, this type of structure formation either happens – or doesn’t! However, if it occurs in space, then this almost always happens (exponentially quickly) in individual realizations with a unit probability. In the case considered, clustering of the field f(r,t) of any nature is a general feature of dynamic fields, and one may claim that structure formation is the Law of Nature for arbitrary random fields of such type. The study clarifies the conditions under wh...

  9. Stochastic models of cell motility

    DEFF Research Database (Denmark)

    Gradinaru, Cristian

    2012-01-01

    Cell motility and migration are central to the development and maintenance of multicellular organisms, and errors during this process can lead to major diseases. Consequently, the mechanisms and phenomenology of cell motility are currently under intense study. In recent years, a new...... interdisciplinary field focusing on the study of biological processes at the nanoscale level, with a range of technological applications in medicine and biological research, has emerged. The work presented in this thesis is at the interface of cell biology, image processing, and stochastic modeling. The stochastic...... models introduced here are based on persistent random motion, which I apply to real-life studies of cell motility on flat and nanostructured surfaces. These models aim to predict the time-dependent position of cell centroids in a stochastic manner, and conversely determine directly from experimental...

  10. Stochastic Modelling of Hydrologic Systems

    DEFF Research Database (Denmark)

    Jonsdottir, Harpa

    2007-01-01

    In this PhD project several stochastic modelling methods are studied and applied on various subjects in hydrology. The research was prepared at Informatics and Mathematical Modelling at the Technical University of Denmark. The thesis is divided into two parts. The first part contains...... an introduction and an overview of the papers published. Then an introduction to basic concepts in hydrology along with a description of hydrological data is given. Finally an introduction to stochastic modelling is given. The second part contains the research papers. In the research papers the stochastic methods...... are described, as at the time of publication these methods represent new contribution to hydrology. The second part also contains additional description of software used and a brief introduction to stiff systems. The system in one of the papers is stiff....

  11. Stochastic quantization of general relativity

    International Nuclear Information System (INIS)

    Rumpf, H.

    1986-01-01

    Following an elementary exposition of the basic mathematical concepts used in the theory of stochastic relaxation processes the stochastic quantization method of Parisi and Wu is briefly reviewed. The method is applied to Einstein's theory of gravitation using a formalism that is manifestly covariant with respect to field redefinitions. This requires the adoption of Ito's calculus and the introduction of a metric in field configuration space, for which there is a unique candidate. Due to the indefiniteness of the Euclidean Einstein-Hilbert action stochastic quantization is generalized to the pseudo-Riemannian case. It is formally shown to imply the DeWitt path integral measure. Finally a new type of perturbation theory is developed. (Author)

  12. Applied probability and stochastic processes

    CERN Document Server

    Sumita, Ushio

    1999-01-01

    Applied Probability and Stochastic Processes is an edited work written in honor of Julien Keilson. This volume has attracted a host of scholars in applied probability, who have made major contributions to the field, and have written survey and state-of-the-art papers on a variety of applied probability topics, including, but not limited to: perturbation method, time reversible Markov chains, Poisson processes, Brownian techniques, Bayesian probability, optimal quality control, Markov decision processes, random matrices, queueing theory and a variety of applications of stochastic processes. The book has a mixture of theoretical, algorithmic, and application chapters providing examples of the cutting-edge work that Professor Keilson has done or influenced over the course of his highly-productive and energetic career in applied probability and stochastic processes. The book will be of interest to academic researchers, students, and industrial practitioners who seek to use the mathematics of applied probability i...

  13. Analysis of model implied volatility for jump diffusion models: Empirical evidence from the Nordpool market

    International Nuclear Information System (INIS)

    Nomikos, Nikos K.; Soldatos, Orestes A.

    2010-01-01

    In this paper we examine the importance of mean reversion and spikes in the stochastic behaviour of the underlying asset when pricing options on power. We propose a model that is flexible in its formulation and captures the stylized features of power prices in a parsimonious way. The main feature of the model is that it incorporates two different speeds of mean reversion to capture the differences in price behaviour between normal and spiky periods. We derive semi-closed form solutions for European option prices using transform analysis and then examine the properties of the implied volatilities that the model generates. We find that the presence of jumps generates prominent volatility skews which depend on the sign of the mean jump size. We also show that mean reversion reduces the volatility smile as time to maturity increases. In addition, mean reversion induces volatility skews particularly for ITM options, even in the absence of jumps. Finally, jump size volatility and jump intensity mainly affect the kurtosis and thus the curvature of the smile with the former having a more important role in making the volatility smile more pronounced and thus increasing the kurtosis of the underlying price distribution.

  14. Neglected chaos in international stock markets: Bayesian analysis of the joint return-volatility dynamical system

    Science.gov (United States)

    Tsionas, Mike G.; Michaelides, Panayotis G.

    2017-09-01

    We use a novel Bayesian inference procedure for the Lyapunov exponent in the dynamical system of returns and their unobserved volatility. In the dynamical system, computation of largest Lyapunov exponent by traditional methods is impossible as the stochastic nature has to be taken explicitly into account due to unobserved volatility. We apply the new techniques to daily stock return data for a group of six countries, namely USA, UK, Switzerland, Netherlands, Germany and France, from 2003 to 2014, by means of Sequential Monte Carlo for Bayesian inference. The evidence points to the direction that there is indeed noisy chaos both before and after the recent financial crisis. However, when a much simpler model is examined where the interaction between returns and volatility is not taken into consideration jointly, the hypothesis of chaotic dynamics does not receive much support by the data ("neglected chaos").

  15. Stochastic geometry for image analysis

    CERN Document Server

    Descombes, Xavier

    2013-01-01

    This book develops the stochastic geometry framework for image analysis purpose. Two main frameworks are  described: marked point process and random closed sets models. We derive the main issues for defining an appropriate model. The algorithms for sampling and optimizing the models as well as for estimating parameters are reviewed.  Numerous applications, covering remote sensing images, biological and medical imaging, are detailed.  This book provides all the necessary tools for developing an image analysis application based on modern stochastic modeling.

  16. Stochastic methods in quantum mechanics

    CERN Document Server

    Gudder, Stanley P

    2005-01-01

    Practical developments in such fields as optical coherence, communication engineering, and laser technology have developed from the applications of stochastic methods. This introductory survey offers a broad view of some of the most useful stochastic methods and techniques in quantum physics, functional analysis, probability theory, communications, and electrical engineering. Starting with a history of quantum mechanics, it examines both the quantum logic approach and the operational approach, with explorations of random fields and quantum field theory.The text assumes a basic knowledge of fun

  17. STOCHASTIC METHODS IN RISK ANALYSIS

    Directory of Open Access Journals (Sweden)

    Vladimíra OSADSKÁ

    2017-06-01

    Full Text Available In this paper, we review basic stochastic methods which can be used to extend state-of-the-art deterministic analytical methods for risk analysis. We can conclude that the standard deterministic analytical methods highly depend on the practical experience and knowledge of the evaluator and therefore, the stochastic methods should be introduced. The new risk analysis methods should consider the uncertainties in input values. We present how large is the impact on the results of the analysis solving practical example of FMECA with uncertainties modelled using Monte Carlo sampling.

  18. Stochastic dynamics of new inflation

    International Nuclear Information System (INIS)

    Nakao, Ken-ichi; Nambu, Yasusada; Sasaki, Misao.

    1988-07-01

    We investigate thoroughly the dynamics of an inflation-driving scalar field in terms of an extended version of the stochastic approach proposed by Starobinsky and discuss the spacetime structure of the inflationary universe. To avoid any complications which might arise due to quantum gravity, we concentrate our discussions on the new inflationary universe scenario in which all the energy scales involved are well below the planck mass. The investigation is done both analytically and numerically. In particular, we present a full numerical analysis of the stochastic scalar field dynamics on the phase space. Then implications of the results are discussed. (author)

  19. Stochastic mechanics and quantum theory

    International Nuclear Information System (INIS)

    Goldstein, S.

    1987-01-01

    Stochastic mechanics may be regarded as both generalizing classical mechanics to processes with intrinsic randomness, as well as providing the sort of detailed description of microscopic events declared impossible under the traditional interpretation of quantum mechanics. It avoids the many conceptual difficulties which arise from the assumption that quantum mechanics, i.e., the wave function, provides a complete description of (microscopic) physical reality. Stochastic mechanics presents a unified treatment of the microscopic and macroscopic domains, in which the process of measurement plays no special physical role and which reduces to Newtonian mechanics in the macroscopic limit

  20. Probability, Statistics, and Stochastic Processes

    CERN Document Server

    Olofsson, Peter

    2011-01-01

    A mathematical and intuitive approach to probability, statistics, and stochastic processes This textbook provides a unique, balanced approach to probability, statistics, and stochastic processes. Readers gain a solid foundation in all three fields that serves as a stepping stone to more advanced investigations into each area. This text combines a rigorous, calculus-based development of theory with a more intuitive approach that appeals to readers' sense of reason and logic, an approach developed through the author's many years of classroom experience. The text begins with three chapters that d

  1. QB1 - Stochastic Gene Regulation

    Energy Technology Data Exchange (ETDEWEB)

    Munsky, Brian [Los Alamos National Laboratory

    2012-07-23

    Summaries of this presentation are: (1) Stochastic fluctuations or 'noise' is present in the cell - Random motion and competition between reactants, Low copy, quantization of reactants, Upstream processes; (2) Fluctuations may be very important - Cell-to-cell variability, Cell fate decisions (switches), Signal amplification or damping, stochastic resonances; and (3) Some tools are available to mode these - Kinetic Monte Carlo simulations (SSA and variants), Moment approximation methods, Finite State Projection. We will see how modeling these reactions can tell us more about the underlying processes of gene regulation.

  2. Stochastic geometry and its applications

    CERN Document Server

    Chiu, Sung Nok; Kendall, Wilfrid S; Mecke, Joseph

    2013-01-01

    An extensive update to a classic text Stochastic geometry and spatial statistics play a fundamental role in many modern branches of physics, materials sciences, engineering, biology and environmental sciences. They offer successful models for the description of random two- and three-dimensional micro and macro structures and statistical methods for their analysis. The previous edition of this book has served as the key reference in its field for over 18 years and is regarded as the best treatment of the subject of stochastic geometry, both as a subject with vital a

  3. Algebraic and stochastic coding theory

    CERN Document Server

    Kythe, Dave K

    2012-01-01

    Using a simple yet rigorous approach, Algebraic and Stochastic Coding Theory makes the subject of coding theory easy to understand for readers with a thorough knowledge of digital arithmetic, Boolean and modern algebra, and probability theory. It explains the underlying principles of coding theory and offers a clear, detailed description of each code. More advanced readers will appreciate its coverage of recent developments in coding theory and stochastic processes. After a brief review of coding history and Boolean algebra, the book introduces linear codes, including Hamming and Golay codes.

  4. Stochastic and infinite dimensional analysis

    CERN Document Server

    Carpio-Bernido, Maria; Grothaus, Martin; Kuna, Tobias; Oliveira, Maria; Silva, José

    2016-01-01

    This volume presents a collection of papers covering applications from a wide range of systems with infinitely many degrees of freedom studied using techniques from stochastic and infinite dimensional analysis, e.g. Feynman path integrals, the statistical mechanics of polymer chains, complex networks, and quantum field theory. Systems of infinitely many degrees of freedom create their particular mathematical challenges which have been addressed by different mathematical theories, namely in the theories of stochastic processes, Malliavin calculus, and especially white noise analysis. These proceedings are inspired by a conference held on the occasion of Prof. Ludwig Streit’s 75th birthday and celebrate his pioneering and ongoing work in these fields.

  5. Exact Algorithms for Solving Stochastic Games

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Arnsfelt; Koucky, Michal; Lauritzen, Niels

    2012-01-01

    Shapley's discounted stochastic games, Everett's recursive games and Gillette's undiscounted stochastic games are classical models of game theory describing two-player zero-sum games of potentially infinite duration. We describe algorithms for exactly solving these games....

  6. Transport properties of stochastic Lorentz models

    NARCIS (Netherlands)

    Beijeren, H. van

    Diffusion processes are considered for one-dimensional stochastic Lorentz models, consisting of randomly distributed fixed scatterers and one moving light particle. In waiting time Lorentz models the light particle makes instantaneous jumps between scatterers after a stochastically distributed

  7. Theory, technology, and technique of stochastic cooling

    International Nuclear Information System (INIS)

    Marriner, J.

    1993-10-01

    The theory and technological implementation of stochastic cooling is described. Theoretical and technological limitations are discussed. Data from existing stochastic cooling systems are shown to illustrate some useful techniques

  8. Stochastic modeling and analysis of telecoms networks

    CERN Document Server

    Decreusefond, Laurent

    2012-01-01

    This book addresses the stochastic modeling of telecommunication networks, introducing the main mathematical tools for that purpose, such as Markov processes, real and spatial point processes and stochastic recursions, and presenting a wide list of results on stability, performances and comparison of systems.The authors propose a comprehensive mathematical construction of the foundations of stochastic network theory: Markov chains, continuous time Markov chains are extensively studied using an original martingale-based approach. A complete presentation of stochastic recursions from an

  9. Dynamical and hamiltonian dilations of stochastic processes

    International Nuclear Information System (INIS)

    Baumgartner, B.; Gruemm, H.-R.

    1982-01-01

    This is a study of the problem, which stochastic processes could arise from dynamical systems by loss of information. The notions of ''dilation'' and ''approximate dilation'' of a stochastic process are introduced to give exact definitions of this particular relationship. It is shown that every generalized stochastic process is approximately dilatable by a sequence of dynamical systems, but for stochastic processes in full generality one needs nets. (Author)

  10. Environmental vs Demographic Stochasticity in Population Growth

    OpenAIRE

    Braumann, C. A.

    2010-01-01

    Compares the effect on population growth of envinonmental stochasticity (random environmental variations described by stochastic differential equations) with demographic stochasticity (random variations in births and deaths described by branching processes and birth-and-death processes), in the density-independent and the density-dependent cases.

  11. Stochastic diffusion models for substitutable technological innovations

    NARCIS (Netherlands)

    Wang, L.; Hu, B.; Yu, X.

    2004-01-01

    Based on the analysis of firms' stochastic adoption behaviour, this paper first points out the necessity to build more practical stochastic models. And then, stochastic evolutionary models are built for substitutable innovation diffusion system. Finally, through the computer simulation of the

  12. Volatility Properties of Polonium

    International Nuclear Information System (INIS)

    Eichler, B.

    2002-06-01

    Thermodynamical constants to describe evaporation processes of polonium are summarized and critically discussed. Additionally, systematic changes of the properties of the chalcogenes are analyzed, empirical correlations are proofed and cyclic processes are balanced. Accordingly, the existing values of entropies for polonium are acceptable. Questionable, however, are those values of enthalpies, which have been deduced from results of the experimental investigations of the vapor pressure temperature dependency, of the melting point, and of the boiling temperatures. Technical difficulties and possible error sources of the measurements resulting from the radioactive decay properties of 210 Po are discussed. Using extrapolative standard enthalpies and entropies as well as their temperature dependency, the equilibrium partial pressure of the monomeric and dimeric polonium above the pure condensed phase and the equilibrium constant of the dimerization reaction in the gas phase are calculated: log p/pa Po (g) = (11.797 ± 0.024) -(9883.4 ± 9.5)/T (for T = 298-600 K); = (10.661 ± 0.057) - (9328.4 ± 4.9)/T (for T = 500-1300 K); log p/pa Po 2 (g) = (13.698 ± 0.049) - (8592.3 ± 19.6)/T (for T = 298-600 K); = (11.424 ± 0.124) - (7584.1 ± 98.1)/T (for T = 500-1300 K); log K (dim) = (-4.895 ± 0.012) + (11071 ± 6)/T. According to these calculations and in contrast to other works, polonium evaporates in the entire temperature range between 298 and 1300 K in the dimeric state. Hence, 'latent heats' of the volatilization processes are clearly larger compared to literature data. Especially in the temperature range of the solid polonium the calculated vapor pressure curve shifts significantly to lower values, whereas the boiling point was almost reproduced by the calculation. The results of the extrapolation for the standard enthalpy of the gaseous monomeric polonium and the dimerization enthalpy ΔH 0 298 Po (g) = 188.9 kJ/mol and ΔH 0 298 (form) Po 2 (g) = 211.5 kJ/mol are

  13. Perturbation theory from stochastic quantization

    International Nuclear Information System (INIS)

    Hueffel, H.

    1984-01-01

    By using a diagrammatical method it is shown that in scalar theories the stochastic quantization method of Parisi and Wu gives the usual perturbation series in Feynman diagrams. It is further explained how to apply the diagrammatical method to gauge theories, discussing the origin of ghost effects. (Author)

  14. Stochastic Modelling of River Geometry

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Schaarup-Jensen, K.

    1996-01-01

    Numerical hydrodynamic river models are used in a large number of applications to estimate critical events for rivers. These estimates are subject to a number of uncertainties. In this paper, the problem to evaluate these estimates using probabilistic methods is considered. Stochastic models for ...... for river geometries are formulated and a coupling between hydraulic computational methods and numerical reliability methods is presented....

  15. Stochastic Processes in Epidemic Theory

    CERN Document Server

    Lefèvre, Claude; Picard, Philippe

    1990-01-01

    This collection of papers gives a representative cross-selectional view of recent developments in the field. After a survey paper by C. Lefèvre, 17 other research papers look at stochastic modeling of epidemics, both from a theoretical and a statistical point of view. Some look more specifically at a particular disease such as AIDS, malaria, schistosomiasis and diabetes.

  16. Stochastic theory of grain growth

    International Nuclear Information System (INIS)

    Hu Haiyun; Xing Xiusan.

    1990-11-01

    The purpose of this note is to set up a stochastic theory of grain growth and to derive the statistical distribution function and the average value of the grain radius so as to match them with the experiment further. 8 refs, 1 fig

  17. Stochastic vehicle routing with recourse

    DEFF Research Database (Denmark)

    Gørtz, Inge Li; Nagarajan, Viswanath; Saket, Rishi

    2012-01-01

    instantiations, a recourse route is computed - but costs here become more expensive by a factor λ. We present an O(log2n ·log(nλ))-approximation algorithm for this stochastic routing problem, under arbitrary distributions. The main idea in this result is relating StochVRP to a special case of submodular...

  18. Universality in stochastic exponential growth.

    Science.gov (United States)

    Iyer-Biswas, Srividya; Crooks, Gavin E; Scherer, Norbert F; Dinner, Aaron R

    2014-07-11

    Recent imaging data for single bacterial cells reveal that their mean sizes grow exponentially in time and that their size distributions collapse to a single curve when rescaled by their means. An analogous result holds for the division-time distributions. A model is needed to delineate the minimal requirements for these scaling behaviors. We formulate a microscopic theory of stochastic exponential growth as a Master Equation that accounts for these observations, in contrast to existing quantitative models of stochastic exponential growth (e.g., the Black-Scholes equation or geometric Brownian motion). Our model, the stochastic Hinshelwood cycle (SHC), is an autocatalytic reaction cycle in which each molecular species catalyzes the production of the next. By finding exact analytical solutions to the SHC and the corresponding first passage time problem, we uncover universal signatures of fluctuations in exponential growth and division. The model makes minimal assumptions, and we describe how more complex reaction networks can reduce to such a cycle. We thus expect similar scalings to be discovered in stochastic processes resulting in exponential growth that appear in diverse contexts such as cosmology, finance, technology, and population growth.

  19. Stochastic control of traffic patterns

    DEFF Research Database (Denmark)

    Gaididei, Yuri B.; Gorria, Carlos; Berkemer, Rainer

    2013-01-01

    A stochastic modulation of the safety distance can reduce traffic jams. It is found that the effect of random modulation on congestive flow formation depends on the spatial correlation of the noise. Jam creation is suppressed for highly correlated noise. The results demonstrate the advantage of h...

  20. The fermion stochastic calculus I

    International Nuclear Information System (INIS)

    Streater, R.F.

    1984-01-01

    The author describes the stochastic calculus of quantum processes with fermions. After a description of the Clifford algebra as the csup(*)-algebra generated by spinor fields the damped harmonic oscillator with quantum noise is considered as example. Then the Clifford process is described. Finally the Ito-Clifford integral and the Ito-Clifford isometry are presented. (HSI)

  1. Stochastic and Chaotic Relaxation Oscillations

    NARCIS (Netherlands)

    Grasman, J.; Roerdink, J.B.T.M.

    1988-01-01

    For relaxation oscillators stochastic and chaotic dynamics are investigated. The effect of random perturbations upon the period is computed. For an extended system with additional state variables chaotic behavior can be expected. As an example, the Van der Pol oscillator is changed into a

  2. Stochastic processes in mechanical engineering

    NARCIS (Netherlands)

    Brouwers, J.J.H.

    2006-01-01

    Stochastic or random vibrations occur in a variety of applications of mechanicalengineering. Examples are: the dynamics of a vehicle on an irregular roadsurface; the variation in time of thermodynamic variables in municipal wasteincinerators due to fluctuations in heating value of the waste; the

  3. Testing for Stochastic Dominance Efficiency

    NARCIS (Netherlands)

    G.T. Post (Thierry); O. Linton; Y-J. Whang

    2005-01-01

    textabstractWe propose a new test of the stochastic dominance efficiency of a given portfolio over a class of portfolios. We establish its null and alternative asymptotic properties, and define a method for consistently estimating critical values. We present some numerical evidence that our

  4. Network Analysis with Stochastic Grammars

    Science.gov (United States)

    2015-09-17

    rules N = 0 //non-terminal index clusters = cluster(W) //number of clusters drive the number S productions //cluster function described in text...Essa, “Recognizing multitasked activities from video using stochastic context-free grammar,” AAAI/IAAI, pp. 770–776, 2002. [18] R. Nevatia, T. Zhao

  5. Stochastic cooling system in COSY

    International Nuclear Information System (INIS)

    Brittner, P.; Hacker, H.U.; Prasuhn, D.; Schug, G.; Singer, H.; Spiess, W.; Stassen, R.

    1994-01-01

    The stochastic cooler system in COSY is designed for proton kinetic energies between 0.8 and 2.5 GeV. Fabrication of the mechanical parts of the system is going on. Test results of the prototype measurements as well as data of the active RF-compontens are presented. (orig.)

  6. Stochastic cooling system in COSY

    Energy Technology Data Exchange (ETDEWEB)

    Brittner, P [Forschungszentrum Juelich GmbH (Germany); Hacker, H U [Forschungszentrum Juelich GmbH (Germany); Prasuhn, D [Forschungszentrum Juelich GmbH (Germany); Schug, G [Forschungszentrum Juelich GmbH (Germany); Singer, H [Forschungszentrum Juelich GmbH (Germany); Spiess, W [Forschungszentrum Juelich GmbH (Germany); Stassen, R [Forschungszentrum Juelich GmbH (Germany)

    1994-09-01

    The stochastic cooler system in COSY is designed for proton kinetic energies between 0.8 and 2.5 GeV. Fabrication of the mechanical parts of the system is going on. Test results of the prototype measurements as well as data of the active RF-compontens are presented. (orig.)

  7. Stochastic-field cavitation model

    International Nuclear Information System (INIS)

    Dumond, J.; Magagnato, F.; Class, A.

    2013-01-01

    Nonlinear phenomena can often be well described using probability density functions (pdf) and pdf transport models. Traditionally, the simulation of pdf transport requires Monte-Carlo codes based on Lagrangian “particles” or prescribed pdf assumptions including binning techniques. Recently, in the field of combustion, a novel formulation called the stochastic-field method solving pdf transport based on Eulerian fields has been proposed which eliminates the necessity to mix Eulerian and Lagrangian techniques or prescribed pdf assumptions. In the present work, for the first time the stochastic-field method is applied to multi-phase flow and, in particular, to cavitating flow. To validate the proposed stochastic-field cavitation model, two applications are considered. First, sheet cavitation is simulated in a Venturi-type nozzle. The second application is an innovative fluidic diode which exhibits coolant flashing. Agreement with experimental results is obtained for both applications with a fixed set of model constants. The stochastic-field cavitation model captures the wide range of pdf shapes present at different locations

  8. Stochastic-field cavitation model

    Science.gov (United States)

    Dumond, J.; Magagnato, F.; Class, A.

    2013-07-01

    Nonlinear phenomena can often be well described using probability density functions (pdf) and pdf transport models. Traditionally, the simulation of pdf transport requires Monte-Carlo codes based on Lagrangian "particles" or prescribed pdf assumptions including binning techniques. Recently, in the field of combustion, a novel formulation called the stochastic-field method solving pdf transport based on Eulerian fields has been proposed which eliminates the necessity to mix Eulerian and Lagrangian techniques or prescribed pdf assumptions. In the present work, for the first time the stochastic-field method is applied to multi-phase flow and, in particular, to cavitating flow. To validate the proposed stochastic-field cavitation model, two applications are considered. First, sheet cavitation is simulated in a Venturi-type nozzle. The second application is an innovative fluidic diode which exhibits coolant flashing. Agreement with experimental results is obtained for both applications with a fixed set of model constants. The stochastic-field cavitation model captures the wide range of pdf shapes present at different locations.

  9. Distance covariance for stochastic processes

    DEFF Research Database (Denmark)

    Matsui, Muneya; Mikosch, Thomas Valentin; Samorodnitsky, Gennady

    2017-01-01

    The distance covariance of two random vectors is a measure of their dependence. The empirical distance covariance and correlation can be used as statistical tools for testing whether two random vectors are independent. We propose an analog of the distance covariance for two stochastic processes...

  10. Research on nonlinear stochastic dynamical price model

    International Nuclear Information System (INIS)

    Li Jiaorui; Xu Wei; Xie Wenxian; Ren Zhengzheng

    2008-01-01

    In consideration of many uncertain factors existing in economic system, nonlinear stochastic dynamical price model which is subjected to Gaussian white noise excitation is proposed based on deterministic model. One-dimensional averaged Ito stochastic differential equation for the model is derived by using the stochastic averaging method, and applied to investigate the stability of the trivial solution and the first-passage failure of the stochastic price model. The stochastic price model and the methods presented in this paper are verified by numerical studies

  11. Stochastic arbitrage return and its implication for option pricing

    Science.gov (United States)

    Fedotov, Sergei; Panayides, Stephanos

    2005-01-01

    The purpose of this work is to explore the role that random arbitrage opportunities play in pricing financial derivatives. We use a non-equilibrium model to set up a stochastic portfolio, and for the random arbitrage return, we choose a stationary ergodic random process rapidly varying in time. We exploit the fact that option price and random arbitrage returns change on different time scales which allows us to develop an asymptotic pricing theory involving the central limit theorem for random processes. We restrict ourselves to finding pricing bands for options rather than exact prices. The resulting pricing bands are shown to be independent of the detailed statistical characteristics of the arbitrage return. We find that the volatility “smile” can also be explained in terms of random arbitrage opportunities.

  12. Brownian motion model with stochastic parameters for asset prices

    Science.gov (United States)

    Ching, Soo Huei; Hin, Pooi Ah

    2013-09-01

    The Brownian motion model may not be a completely realistic model for asset prices because in real asset prices the drift μ and volatility σ may change over time. Presently we consider a model in which the parameter x = (μ,σ) is such that its value x (t + Δt) at a short time Δt ahead of the present time t depends on the value of the asset price at time t + Δt as well as the present parameter value x(t) and m-1 other parameter values before time t via a conditional distribution. The Malaysian stock prices are used to compare the performance of the Brownian motion model with fixed parameter with that of the model with stochastic parameter.

  13. The price of fixed income market volatility

    CERN Document Server

    Mele, Antonio

    2015-01-01

    Fixed income volatility and equity volatility evolve heterogeneously over time, co-moving disproportionately during periods of global imbalances and each reacting to events of different nature. While the methodology for options-based "model-free" pricing of equity volatility has been known for some time, little is known about analogous methodologies for pricing various fixed income volatilities. This book fills this gap and provides a unified evaluation framework of fixed income volatility while dealing with disparate markets such as interest-rate swaps, government bonds, time-deposits and credit. It develops model-free, forward looking indexes of fixed-income volatility that match different quoting conventions across various markets, and uncovers subtle yet important pitfalls arising from naïve superimpositions of the standard equity volatility methodology when pricing various fixed income volatilities. The ultimate goal of the authors´ efforts is to make interest rate volatility standardization a valuable...

  14. Observability of market daily volatility

    Science.gov (United States)

    Petroni, Filippo; Serva, Maurizio

    2016-02-01

    We study the price dynamics of 65 stocks from the Dow Jones Composite Average from 1973 to 2014. We show that it is possible to define a Daily Market Volatility σ(t) which is directly observable from data. This quantity is usually indirectly defined by r(t) = σ(t) ω(t) where the r(t) are the daily returns of the market index and the ω(t) are i.i.d. random variables with vanishing average and unitary variance. The relation r(t) = σ(t) ω(t) alone is unable to give an operative definition of the index volatility, which remains unobservable. On the contrary, we show that using the whole information available in the market, the index volatility can be operatively defined and detected.

  15. Multiscaling and clustering of volatility

    Science.gov (United States)

    Pasquini, Michele; Serva, Maurizio

    1999-07-01

    The dynamics of prices in stock markets has been studied intensively both experimentally (data analysis) and theoretically (models). Nevertheless, while the distribution of returns of the most important indices is known to be a truncated Lévy, the behaviour of volatility correlations is still poorly understood. What is well known is that absolute returns have memory on a long time range, this phenomenon is known in financial literature as clustering of volatility. In this paper we show that volatility correlations are power laws with a non-unique scaling exponent. This kind of multiscale phenomenology is known to be relevant in fully developed turbulence and in disordered systems and it is pointed out here for the first time for a financial series. In our study we consider the New York Stock Exchange (NYSE) daily index, from January 1966 to June 1998, for a total of 8180 working days.

  16. Stochastic Reachability Analysis of Hybrid Systems

    CERN Document Server

    Bujorianu, Luminita Manuela

    2012-01-01

    Stochastic reachability analysis (SRA) is a method of analyzing the behavior of control systems which mix discrete and continuous dynamics. For probabilistic discrete systems it has been shown to be a practical verification method but for stochastic hybrid systems it can be rather more. As a verification technique SRA can assess the safety and performance of, for example, autonomous systems, robot and aircraft path planning and multi-agent coordination but it can also be used for the adaptive control of such systems. Stochastic Reachability Analysis of Hybrid Systems is a self-contained and accessible introduction to this novel topic in the analysis and development of stochastic hybrid systems. Beginning with the relevant aspects of Markov models and introducing stochastic hybrid systems, the book then moves on to coverage of reachability analysis for stochastic hybrid systems. Following this build up, the core of the text first formally defines the concept of reachability in the stochastic framework and then...

  17. Momentum Maps and Stochastic Clebsch Action Principles

    Science.gov (United States)

    Cruzeiro, Ana Bela; Holm, Darryl D.; Ratiu, Tudor S.

    2018-01-01

    We derive stochastic differential equations whose solutions follow the flow of a stochastic nonlinear Lie algebra operation on a configuration manifold. For this purpose, we develop a stochastic Clebsch action principle, in which the noise couples to the phase space variables through a momentum map. This special coupling simplifies the structure of the resulting stochastic Hamilton equations for the momentum map. In particular, these stochastic Hamilton equations collectivize for Hamiltonians that depend only on the momentum map variable. The Stratonovich equations are derived from the Clebsch variational principle and then converted into Itô form. In comparing the Stratonovich and Itô forms of the stochastic dynamical equations governing the components of the momentum map, we find that the Itô contraction term turns out to be a double Poisson bracket. Finally, we present the stochastic Hamiltonian formulation of the collectivized momentum map dynamics and derive the corresponding Kolmogorov forward and backward equations.

  18. Stochastic Analysis : A Series of Lectures

    CERN Document Server

    Dozzi, Marco; Flandoli, Franco; Russo, Francesco

    2015-01-01

    This book presents in thirteen refereed survey articles an overview of modern activity in stochastic analysis, written by leading international experts. The topics addressed include stochastic fluid dynamics and regularization by noise of deterministic dynamical systems; stochastic partial differential equations driven by Gaussian or Lévy noise, including the relationship between parabolic equations and particle systems, and wave equations in a geometric framework; Malliavin calculus and applications to stochastic numerics; stochastic integration in Banach spaces; porous media-type equations; stochastic deformations of classical mechanics and Feynman integrals and stochastic differential equations with reflection. The articles are based on short courses given at the Centre Interfacultaire Bernoulli of the Ecole Polytechnique Fédérale de Lausanne, Switzerland, from January to June 2012. They offer a valuable resource not only for specialists, but also for other researchers and Ph.D. students in the fields o...

  19. Oil Volatility Risk and Expected Stock Returns

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Pan, Xuhui (Nick)

    After the financialization of commodity futures markets in 2004-05 oil volatility has become a strong predictor of returns and volatility of the overall stock market. Furthermore, stocks' exposure to oil volatility risk now drives the cross-section of expected returns. The difference in average...... return between the quintile of stocks with low exposure and high exposure to oil volatility is significant at 0.66% per month, and oil volatility risk carries a significant risk premium of -0.60% per month. In the post-financialization period, oil volatility risk is strongly related with various measures...

  20. DOES ENERGY CONSUMPTION VOLATILITY AFFECT REAL GDP VOLATILITY? AN EMPIRICAL ANALYSIS FOR THE UK

    Directory of Open Access Journals (Sweden)

    Abdul Rashid

    2013-10-01

    Full Text Available This paper empirically examines the relation between energy consumption volatility and unpredictable variations in real gross domestic product (GDP in the UK. Estimating the Markov switching ARCH model we find a significant regime switching in the behavior of both energy consumption and GDP volatility. The results from the Markov regime-switching model show that the variability of energy consumption has a significant role to play in determining the behavior of GDP volatilities. Moreover, the results suggest that the impacts of unpredictable variations in energy consumption on GDP volatility are asymmetric, depending on the intensity of volatility. In particular, we find that while there is no significant contemporaneous relationship between energy consumption volatility and GDP volatility in the first (low-volatility regime, GDP volatility is significantly positively related to the volatility of energy utilization in the second (high-volatility regime.

  1. Verification of Stochastic Process Calculi

    DEFF Research Database (Denmark)

    Skrypnyuk, Nataliya

    algorithms for constructing bisimulation relations, computing (overapproximations of) sets of reachable states and computing the expected time reachability, the last for a linear fragment of IMC. In all the cases we have the complexities of algorithms which are low polynomial in the size of the syntactic....... In support of this claim we have developed analysis methods that belong to a particular type of Static Analysis { Data Flow / Pathway Analysis. These methods have previously been applied to a number of non-stochastic process calculi. In this thesis we are lifting them to the stochastic calculus...... of Interactive Markov Chains (IMC). We have devised the Pathway Analysis of IMC that is not only correct in the sense of overapproximating all possible behaviour scenarios, as is usual for Static Analysis methods, but is also precise. This gives us the possibility to explicitly decide on the trade-o between...

  2. Fourier analysis and stochastic processes

    CERN Document Server

    Brémaud, Pierre

    2014-01-01

    This work is unique as it provides a uniform treatment of the Fourier theories of functions (Fourier transforms and series, z-transforms), finite measures (characteristic functions, convergence in distribution), and stochastic processes (including arma series and point processes). It emphasises the links between these three themes. The chapter on the Fourier theory of point processes and signals structured by point processes is a novel addition to the literature on Fourier analysis of stochastic processes. It also connects the theory with recent lines of research such as biological spike signals and ultrawide-band communications. Although the treatment is mathematically rigorous, the convivial style makes the book accessible to a large audience. In particular, it will be interesting to anyone working in electrical engineering and communications, biology (point process signals) and econometrics (arma models). A careful review of the prerequisites (integration and probability theory in the appendix, Hilbert spa...

  3. Stochastic integration and differential equations

    CERN Document Server

    Protter, Philip E

    2003-01-01

    It has been 15 years since the first edition of Stochastic Integration and Differential Equations, A New Approach appeared, and in those years many other texts on the same subject have been published, often with connections to applications, especially mathematical finance. Yet in spite of the apparent simplicity of approach, none of these books has used the functional analytic method of presenting semimartingales and stochastic integration. Thus a 2nd edition seems worthwhile and timely, though it is no longer appropriate to call it "a new approach". The new edition has several significant changes, most prominently the addition of exercises for solution. These are intended to supplement the text, but lemmas needed in a proof are never relegated to the exercises. Many of the exercises have been tested by graduate students at Purdue and Cornell Universities. Chapter 3 has been completely redone, with a new, more intuitive and simultaneously elementary proof of the fundamental Doob-Meyer decomposition theorem, t...

  4. The dynamics of stochastic processes

    DEFF Research Database (Denmark)

    Basse-O'Connor, Andreas

    In the present thesis the dynamics of stochastic processes is studied with a special attention to the semimartingale property. This is mainly motivated by the fact that semimartingales provide the class of the processes for which it is possible to define a reasonable stochastic calculus due...... to the Bichteler-Dellacherie Theorem. The semimartingale property of Gaussian processes is characterized in terms of their covariance function, spectral measure and spectral representation. In addition, representation and expansion of filtration results are provided as well. Special attention is given to moving...... average processes, and when the driving process is a Lévy or a chaos process the semimartingale property is characterized in the filtration spanned by the driving process and in the natural filtration when the latter is a Brownian motion. To obtain some of the above results an integrability of seminorm...

  5. Modular invariance and stochastic quantization

    International Nuclear Information System (INIS)

    Ordonez, C.R.; Rubin, M.A.; Zwanziger, D.

    1989-01-01

    In Polyakov path integrals and covariant closed-string field theory, integration over Teichmueller parameters must be restricted by hand to a single modular region. This problem has an analog in Yang-Mills gauge theory---namely, the Gribov problem, which can be resolved by the method of stochastic gauge fixing. This method is here employed to quantize a simple modular-invariant system: the Polyakov point particle. In the limit of a large gauge-fixing force, it is shown that suitable choices for the functional form of the gauge-fixing force can lead to a restriction of Teichmueller integration to a single modular region. Modifications which arise when applying stochastic quantization to a system in which the volume of the orbits of the gauge group depends on a dynamical variable, such as a Teichmueller parameter, are pointed out, and the extension to Polyakov strings and covariant closed-string field theory is discussed

  6. Stochastic models for atmospheric dispersion

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager

    2003-01-01

    Simple stochastic differential equation models have been applied by several researchers to describe the dispersion of tracer particles in the planetary atmospheric boundary layer and to form the basis for computer simulations of particle paths. To obtain the drift coefficient, empirical vertical...... positions close to the boundaries. Different rules have been suggested in the literature with justifications based on simulation studies. Herein the relevant stochastic differential equation model is formulated in a particular way. The formulation is based on the marginal transformation of the position...... velocity distributions that depend on height above the ground both with respect to standard deviation and skewness are substituted into the stationary Fokker/Planck equation. The particle position distribution is taken to be uniform *the well/mixed condition( and also a given dispersion coefficient...

  7. Stochastic Generalized Method of Moments

    KAUST Repository

    Yin, Guosheng; Ma, Yanyuan; Liang, Faming; Yuan, Ying

    2011-01-01

    The generalized method of moments (GMM) is a very popular estimation and inference procedure based on moment conditions. When likelihood-based methods are difficult to implement, one can often derive various moment conditions and construct the GMM objective function. However, minimization of the objective function in the GMM may be challenging, especially over a large parameter space. Due to the special structure of the GMM, we propose a new sampling-based algorithm, the stochastic GMM sampler, which replaces the multivariate minimization problem by a series of conditional sampling procedures. We develop the theoretical properties of the proposed iterative Monte Carlo method, and demonstrate its superior performance over other GMM estimation procedures in simulation studies. As an illustration, we apply the stochastic GMM sampler to a Medfly life longevity study. Supplemental materials for the article are available online. © 2011 American Statistical Association.

  8. Stochastic problems in population genetics

    CERN Document Server

    Maruyama, Takeo

    1977-01-01

    These are" notes based on courses in Theoretical Population Genetics given at the University of Texas at Houston during the winter quarter, 1974, and at the University of Wisconsin during the fall semester, 1976. These notes explore problems of population genetics and evolution involving stochastic processes. Biological models and various mathematical techniques are discussed. Special emphasis is given to the diffusion method and an attempt is made to emphasize the underlying unity of various problems based on the Kolmogorov backward equation. A particular effort was made to make the subject accessible to biology students who are not familiar with stochastic processes. The references are not exhaustive but were chosen to provide a starting point for the reader interested in pursuing the subject further. Acknowledgement I would like to use this opportunity to express my thanks to Drs. J. F. Crow, M. Nei and W. J. Schull for their hospitality during my stays at their universities. I am indebted to Dr. M. Kimura...

  9. Stochastic Generalized Method of Moments

    KAUST Repository

    Yin, Guosheng

    2011-08-16

    The generalized method of moments (GMM) is a very popular estimation and inference procedure based on moment conditions. When likelihood-based methods are difficult to implement, one can often derive various moment conditions and construct the GMM objective function. However, minimization of the objective function in the GMM may be challenging, especially over a large parameter space. Due to the special structure of the GMM, we propose a new sampling-based algorithm, the stochastic GMM sampler, which replaces the multivariate minimization problem by a series of conditional sampling procedures. We develop the theoretical properties of the proposed iterative Monte Carlo method, and demonstrate its superior performance over other GMM estimation procedures in simulation studies. As an illustration, we apply the stochastic GMM sampler to a Medfly life longevity study. Supplemental materials for the article are available online. © 2011 American Statistical Association.

  10. Limits for Stochastic Reaction Networks

    DEFF Research Database (Denmark)

    Cappelletti, Daniele

    Reaction systems have been introduced in the 70s to model biochemical systems. Nowadays their range of applications has increased and they are fruitfully used in dierent elds. The concept is simple: some chemical species react, the set of chemical reactions form a graph and a rate function...... is associated with each reaction. Such functions describe the speed of the dierent reactions, or their propensities. Two modelling regimes are then available: the evolution of the dierent species concentrations can be deterministically modelled through a system of ODE, while the counts of the dierent species...... at a certain time are stochastically modelled by means of a continuous-time Markov chain. Our work concerns primarily stochastic reaction systems, and their asymptotic properties. In Paper I, we consider a reaction system with intermediate species, i.e. species that are produced and fast degraded along a path...

  11. Volatility forecasting for interbank offered rate using grey extreme learning machine: The case of China

    International Nuclear Information System (INIS)

    Liu, Xiaoyong; Fu, Hui

    2016-01-01

    Interbank Offered rate is the only direct market rate in China’s currency market. Volatility forecasting of China Interbank Offered Rate (IBOR) has a very important theoretical and practical significance for financial asset pricing and financial risk measure or management. However, IBOR is a dynamics and non-steady time series whose developmental changes have stronger random fluctuation, so it is difficult to forecast the volatility of IBOR. This paper offers a hybrid algorithm using grey model and extreme learning machine (ELM) to forecast volatility of IBOR. The proposed algorithm is composed of three phases. In the first, grey model is used to deal with the original IBOR time series by accumulated generating operation (AGO) and weaken the stochastic volatility in original series. And then, a forecasting model is founded by using ELM to analyze the new IBOR series. Lastly, the predictive value of the original IBOR series can be obtained by inverse accumulated generating operation (IAGO). The new model is applied to forecasting Interbank Offered Rate of China. Compared with the forecasting results of BP and classical ELM, the new model is more efficient to forecasting short- and middle-term volatility of IBOR.

  12. Some Topics in Stochastic Control

    Science.gov (United States)

    2010-10-14

    assimilation problems. (a) Papers published in peer-reviewed journals (N/A for none) 1. R. Atar and A. Budhiraja. A stochastic differential game for...the inhomogeneous infinity-Laplace equation. Ann. Prob., 38 (2010), no. 2, 498--531. 2. R. Atar and A. Budhiraja. On near optimal trajectories for a...G. Aronsson. A mathematical model in sand mechanics: presentation and analysis. SIAM J. Appl. Math., 22 (1972), 437-458 [3] R. Atar and A. Budhiraja

  13. Stochastic background of atmospheric cascades

    International Nuclear Information System (INIS)

    Wilk, G.; Wlodarczyk, Z.

    1993-01-01

    Fluctuations in the atmospheric cascades developing during the propagation of very high energy cosmic rays through the atmosphere are investigated using stochastic branching model of pure birth process with immigration. In particular, we show that the multiplicity distributions of secondaries emerging from gamma families are much narrower than those resulting from hadronic families. We argue that the strong intermittent like behaviour found recently in atmospheric families results from the fluctuations in the cascades themselves and are insensitive to the details of elementary interactions

  14. Foundations of infinitesimal stochastic analysis

    CERN Document Server

    Stroyan, KD

    2011-01-01

    This book gives a complete and elementary account of fundamental results on hyperfinite measures and their application to stochastic processes, including the *-finite Stieltjes sum approximation of martingale integrals. Many detailed examples, not found in the literature, are included. It begins with a brief chapter on tools from logic and infinitesimal (or non-standard) analysis so that the material is accessible to beginning graduate students.

  15. Optimal Advertising with Stochastic Demand

    OpenAIRE

    George E. Monahan

    1983-01-01

    A stochastic, sequential model is developed to determine optimal advertising expenditures as a function of product maturity and past advertising. Random demand for the product depends upon an aggregate measure of current and past advertising called "goodwill," and the position of the product in its life cycle measured by sales-to-date. Conditions on the parameters of the model are established that insure that it is optimal to advertise less as the product matures. Additional characteristics o...

  16. Stochastic cooling technology at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Pasquinelli, R.J. E-mail: pasquin@fnal.gov

    2004-10-11

    The first antiproton cooling systems were installed and commissioned at Fermilab in 1984-1985. In the interim period, there have been several major upgrades, system improvements, and complete reincarnation of cooling systems. This paper will present some of the technology that was pioneered at Fermilab to implement stochastic cooling systems in both the Antiproton Source and Recycler accelerators. Current performance data will also be presented.

  17. Stochastic cooling technology at Fermilab

    Science.gov (United States)

    Pasquinelli, Ralph J.

    2004-10-01

    The first antiproton cooling systems were installed and commissioned at Fermilab in 1984-1985. In the interim period, there have been several major upgrades, system improvements, and complete reincarnation of cooling systems. This paper will present some of the technology that was pioneered at Fermilab to implement stochastic cooling systems in both the Antiproton Source and Recycler accelerators. Current performance data will also be presented.

  18. Stochastic cooling technology at Fermilab

    International Nuclear Information System (INIS)

    Pasquinelli, R.J.

    2004-01-01

    The first antiproton cooling systems were installed and commissioned at Fermilab in 1984-1985. In the interim period, there have been several major upgrades, system improvements, and complete reincarnation of cooling systems. This paper will present some of the technology that was pioneered at Fermilab to implement stochastic cooling systems in both the Antiproton Source and Recycler accelerators. Current performance data will also be presented

  19. Stochastic Gravity: Theory and Applications

    Directory of Open Access Journals (Sweden)

    Hu Bei Lok

    2008-05-01

    Full Text Available Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein–Langevin equation, which has, in addition, sources due to the noise kernel. The noise kernel is the vacuum expectation value of the (operator-valued stress-energy bitensor, which describes the fluctuations of quantum-matter fields in curved spacetimes. A new improved criterion for the validity of semiclassical gravity may also be formulated from the viewpoint of this theory. In the first part of this review we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. The axiomatic approach is useful to see the structure of the theory from the framework of semiclassical gravity, showing the link from the mean value of the stress-energy tensor to the correlation functions. The functional approach uses the Feynman–Vernon influence functional and the Schwinger–Keldysh closed-time-path effective action methods. In the second part, we describe three applications of stochastic gravity. First, we consider metric perturbations in a Minkowski spacetime, compute the two-point correlation functions of these perturbations and prove that Minkowski spacetime is a stable solution of semiclassical gravity. Second, we discuss structure formation from the stochastic-gravity viewpoint, which can go beyond the standard treatment by incorporating the full quantum effect of the inflaton fluctuations. Third, using the Einstein–Langevin equation, we discuss the backreaction of Hawking radiation and the behavior of metric fluctuations for both the quasi-equilibrium condition of a black-hole in a box and the fully nonequilibrium condition of an evaporating black hole spacetime. Finally, we briefly discuss the theoretical structure of stochastic gravity in relation to quantum gravity and point out

  20. Stochastic processes and filtering theory

    CERN Document Server

    Jazwinski, Andrew H

    1970-01-01

    This unified treatment of linear and nonlinear filtering theory presents material previously available only in journals, and in terms accessible to engineering students. Its sole prerequisites are advanced calculus, the theory of ordinary differential equations, and matrix analysis. Although theory is emphasized, the text discusses numerous practical applications as well.Taking the state-space approach to filtering, this text models dynamical systems by finite-dimensional Markov processes, outputs of stochastic difference, and differential equations. Starting with background material on probab

  1. Volatility Spillovers Across Petroleum Markets

    Czech Academy of Sciences Publication Activity Database

    Baruník, Jozef; Kočenda, Evžen; Vácha, Lukáš

    2015-01-01

    Roč. 36, č. 3 (2015), s. 309-329 ISSN 0195-6574 R&D Projects: GA ČR GA14-24129S Keywords : Volatility spillovers * Asymmetry * Petroleum markets Subject RIV: AH - Economics Impact factor: 1.662, year: 2015 http://library.utia.cas.cz/separaty/2014/E/barunik-0438407.pdf

  2. Multiple fields in stochastic inflation

    Energy Technology Data Exchange (ETDEWEB)

    Assadullahi, Hooshyar [Institute of Cosmology & Gravitation, University of Portsmouth,Dennis Sciama Building, Burnaby Road, Portsmouth, PO1 3FX (United Kingdom); Firouzjahi, Hassan [School of Astronomy, Institute for Research in Fundamental Sciences (IPM),P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Noorbala, Mahdiyar [Department of Physics, University of Tehran,P.O. Box 14395-547, Tehran (Iran, Islamic Republic of); School of Astronomy, Institute for Research in Fundamental Sciences (IPM),P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Vennin, Vincent; Wands, David [Institute of Cosmology & Gravitation, University of Portsmouth,Dennis Sciama Building, Burnaby Road, Portsmouth, PO1 3FX (United Kingdom)

    2016-06-24

    Stochastic effects in multi-field inflationary scenarios are investigated. A hierarchy of diffusion equations is derived, the solutions of which yield moments of the numbers of inflationary e-folds. Solving the resulting partial differential equations in multi-dimensional field space is more challenging than the single-field case. A few tractable examples are discussed, which show that the number of fields is, in general, a critical parameter. When more than two fields are present for instance, the probability to explore arbitrarily large-field regions of the potential, otherwise inaccessible to single-field dynamics, becomes non-zero. In some configurations, this gives rise to an infinite mean number of e-folds, regardless of the initial conditions. Another difference with respect to single-field scenarios is that multi-field stochastic effects can be large even at sub-Planckian energy. This opens interesting new possibilities for probing quantum effects in inflationary dynamics, since the moments of the numbers of e-folds can be used to calculate the distribution of primordial density perturbations in the stochastic-δN formalism.

  3. Stochastic processes, slaves and supersymmetry

    International Nuclear Information System (INIS)

    Drummond, I T; Horgan, R R

    2012-01-01

    We extend the work of Tănase-Nicola and Kurchan on the structure of diffusion processes and the associated supersymmetry algebra by examining the responses of a simple statistical system to external disturbances of various kinds. We consider both the stochastic differential equations (SDEs) for the process and the associated diffusion equation. The influence of the disturbances can be understood by augmenting the original SDE with an equation for slave variables. The evolution of the slave variables describes the behaviour of line elements carried along in the stochastic flow. These line elements, together with the associated surface and volume elements constructed from them, provide the basis of the supersymmetry properties of the theory. For ease of visualization, and in order to emphasize a helpful electromagnetic analogy, we work in three dimensions. The results are all generalizable to higher dimensions and can be specialized to one and two dimensions. The electromagnetic analogy is a useful starting point for calculating asymptotic results at low temperature that can be compared with direct numerical evaluations. We also examine the problems that arise in a direct numerical simulation of the stochastic equation together with the slave equations. We pay special attention to the dependence of the slave variable statistics on temperature. We identify in specific models the critical temperature below which the slave variable distribution ceases to have a variance and consider the effect on estimates of susceptibilities. (paper)

  4. Stochastic cooling in muon colliders

    International Nuclear Information System (INIS)

    Barletta, W.A.; Sessler, A.M.

    1993-09-01

    Analysis of muon production techniques for high energy colliders indicates the need for rapid and effective beam cooling in order that one achieve luminosities > 10 30 cm -2 s -1 as required for high energy physics experiments. This paper considers stochastic cooling to increase the phase space density of the muons in the collider. Even at muon energies greater than 100 GeV, the number of muons per bunch must be limited to ∼10 3 for the cooling rate to be less than the muon lifetime. With such a small number of muons per bunch, the final beam emittance implied by the luminosity requirement is well below the thermodynamic limit for beam electronics at practical temperatures. Rapid bunch stacking after the cooling process can raise the number of muons per bunch to a level consistent with both the luminosity goals and with practical temperatures for the stochastic cooling electronics. A major advantage of our stochastic cooling/stacking scheme over scenarios that employ only ionization cooling is that the power on the production target can be reduced below 1 MW

  5. Stochastic analysis of biochemical systems

    CERN Document Server

    Anderson, David F

    2015-01-01

    This book focuses on counting processes and continuous-time Markov chains motivated by examples and applications drawn from chemical networks in systems biology.  The book should serve well as a supplement for courses in probability and stochastic processes.  While the material is presented in a manner most suitable for students who have studied stochastic processes up to and including martingales in continuous time, much of the necessary background material is summarized in the Appendix. Students and Researchers with a solid understanding of calculus, differential equations, and elementary probability and who are well-motivated by the applications will find this book of interest.    David F. Anderson is Associate Professor in the Department of Mathematics at the University of Wisconsin and Thomas G. Kurtz is Emeritus Professor in the Departments of Mathematics and Statistics at that university. Their research is focused on probability and stochastic processes with applications in biology and other ar...

  6. Stochastic inflation and nonlinear gravity

    International Nuclear Information System (INIS)

    Salopek, D.S.; Bond, J.R.

    1991-01-01

    We show how nonlinear effects of the metric and scalar fields may be included in stochastic inflation. Our formalism can be applied to non-Gaussian fluctuation models for galaxy formation. Fluctuations with wavelengths larger than the horizon length are governed by a network of Langevin equations for the physical fields. Stochastic noise terms arise from quantum fluctuations that are assumed to become classical at horizon crossing and that then contribute to the background. Using Hamilton-Jacobi methods, we solve the Arnowitt-Deser-Misner constraint equations which allows us to separate the growing modes from the decaying ones in the drift phase following each stochastic impulse. We argue that the most reasonable choice of time hypersurfaces for the Langevin system during inflation is T=ln(Ha), where H and a are the local values of the Hubble parameter and the scale factor, since T is the natural time for evolving the short-wavelength scalar field fluctuations in an inhomogeneous background

  7. Characterisation of selected volatile organic compounds in ...

    African Journals Online (AJOL)

    GCMS), was used to identify volatile compounds at three different temperatures. Fifty volatile compounds, inclusive of 14 acids, 14 alcohols, and 22 esters were identified and quantified in the two brands of indigenous banana beer samples. Only 12 ...

  8. Time-Varying Periodicity in Intraday Volatility

    DEFF Research Database (Denmark)

    Andersen, Torben Gustav; Thyrsgaard, Martin; Todorov, Viktor

    We develop a nonparametric test for deciding whether return volatility exhibits time-varying intraday periodicity using a long time-series of high-frequency data. Our null hypothesis, commonly adopted in work on volatility modeling, is that volatility follows a stationary process combined...... with a constant time-of-day periodic component. We first construct time-of-day volatility estimates and studentize the high-frequency returns with these periodic components. If the intraday volatility periodicity is invariant over time, then the distribution of the studentized returns should be identical across...... with estimating volatility moments through their sample counterparts. Critical values are computed via easy-to-implement simulation. In an empirical application to S&P 500 index returns, we find strong evidence for variation in the intraday volatility pattern driven in part by the current level of volatility...

  9. Cost Linkages Transmit Volatility Across Markets

    DEFF Research Database (Denmark)

    Nguyen, Daniel Xuyen; Schaur, Georg

    We present and test a model relating a firm's idiosyncratic cost, its exporting status, and the volatilities of its domestic and export sales. In prior models of trade, supply costs for domestic and exports were linear and thus additively separable. We introduce a nonlinear cost function in order...... to link the domestic and export supply costs. This theoretical contribution has two new implications for the exporting firm. First, the demand volatility in the foreign market now directly affects the firm's domestic sales volatility. Second, firms hedge domestic demand volatility with exports. The model...... has several testable predictions. First, larger firms have lower total and domestic sales volatilities. Second, foreign market volatility increases domestic sales volatilities for exporters. Third, exporters allocate output across both markets in order to reduce total sales volatility. We find...

  10. Fluctuation behaviors of financial return volatility duration

    Science.gov (United States)

    Niu, Hongli; Wang, Jun; Lu, Yunfan

    2016-04-01

    It is of significantly crucial to understand the return volatility of financial markets because it helps to quantify the investment risk, optimize the portfolio, and provide a key input of option pricing models. The characteristics of isolated high volatility events above certain threshold in price fluctuations and the distributions of return intervals between these events arouse great interest in financial research. In the present work, we introduce a new concept of daily return volatility duration, which is defined as the shortest passage time when the future volatility intensity is above or below the current volatility intensity (without predefining a threshold). The statistical properties of the daily return volatility durations for seven representative stock indices from the world financial markets are investigated. Some useful and interesting empirical results of these volatility duration series about the probability distributions, memory effects and multifractal properties are obtained. These results also show that the proposed stock volatility series analysis is a meaningful and beneficial trial.

  11. Pyrolysis and volatilization of cocaine

    International Nuclear Information System (INIS)

    Martin, B.R.; Lue, L.P.; Boni, J.P.

    1989-01-01

    The increasing popularity of inhaling cocaine vapor prompted the present study, to determine cocaine's fate during this process. The free base of [3H]cocaine (1 microCi/50 mg) was added to a glass pipe, which was then heated in a furnace to simulate freebasing. Negative pressure was used to draw the vapor through a series of glass wool, ethanol, acidic, and basic traps. Air flow rate and temperature were found to have profound effects on the volatilization and pyrolysis of cocaine. At a temperature of 260 degrees C and a flow rate of 400 mL/min, 37% of the radioactivity remained in the pipe, 39% was found in the glass wool trap, and less than 1% in the remainder of the volatilization apparatus after a 10-min volatilization. Reducing the air flow rate to 100 mL/min reduced the amount of radioactivity collected in the glass wool trap to less than 10% of the starting material and increased the amount that remained in the pipe to 58%. GC/MS analysis of the contents of the glass wool trap after volatilization at 260 degrees C and a flow rate of 400 mL/min revealed that 60% of the cocaine remained intact, while approximately 6 and 2% of the starting material was recovered as benzoic acid and methylecgonidine, respectively. As the temperature was increased to 650 degrees C, benzoic acid and methylecgonidine accounted for 83 and 89% of the starting material, respectively, whereas only 2% of the cocaine remained intact. Quantitation of cocaine in the vapor during the course of volatilization revealed high concentrations during the first two min and low concentrations for the remaining time

  12. A nonparametric approach to forecasting realized volatility

    OpenAIRE

    Adam Clements; Ralf Becker

    2009-01-01

    A well developed literature exists in relation to modeling and forecasting asset return volatility. Much of this relate to the development of time series models of volatility. This paper proposes an alternative method for forecasting volatility that does not involve such a model. Under this approach a forecast is a weighted average of historical volatility. The greatest weight is given to periods that exhibit the most similar market conditions to the time at which the forecast is being formed...

  13. AESS: Accelerated Exact Stochastic Simulation

    Science.gov (United States)

    Jenkins, David D.; Peterson, Gregory D.

    2011-12-01

    The Stochastic Simulation Algorithm (SSA) developed by Gillespie provides a powerful mechanism for exploring the behavior of chemical systems with small species populations or with important noise contributions. Gene circuit simulations for systems biology commonly employ the SSA method, as do ecological applications. This algorithm tends to be computationally expensive, so researchers seek an efficient implementation of SSA. In this program package, the Accelerated Exact Stochastic Simulation Algorithm (AESS) contains optimized implementations of Gillespie's SSA that improve the performance of individual simulation runs or ensembles of simulations used for sweeping parameters or to provide statistically significant results. Program summaryProgram title: AESS Catalogue identifier: AEJW_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJW_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: University of Tennessee copyright agreement No. of lines in distributed program, including test data, etc.: 10 861 No. of bytes in distributed program, including test data, etc.: 394 631 Distribution format: tar.gz Programming language: C for processors, CUDA for NVIDIA GPUs Computer: Developed and tested on various x86 computers and NVIDIA C1060 Tesla and GTX 480 Fermi GPUs. The system targets x86 workstations, optionally with multicore processors or NVIDIA GPUs as accelerators. Operating system: Tested under Ubuntu Linux OS and CentOS 5.5 Linux OS Classification: 3, 16.12 Nature of problem: Simulation of chemical systems, particularly with low species populations, can be accurately performed using Gillespie's method of stochastic simulation. Numerous variations on the original stochastic simulation algorithm have been developed, including approaches that produce results with statistics that exactly match the chemical master equation (CME) as well as other approaches that approximate the CME. Solution

  14. Dynamics Model Applied to Pricing Options with Uncertain Volatility

    Directory of Open Access Journals (Sweden)

    Lorella Fatone

    2012-01-01

    model is proposed. The data used to test the calibration problem included observations of asset prices over a finite set of (known equispaced discrete time values. Statistical tests were used to estimate the statistical significance of the two parameters of the Black-Scholes model: the volatility and the drift. The effects of these estimates on the option pricing problem were investigated. In particular, the pricing of an option with uncertain volatility in the Black-Scholes framework was revisited, and a statistical significance was associated with the price intervals determined using the Black-Scholes-Barenblatt equations. Numerical experiments involving synthetic and real data were presented. The real data considered were the daily closing values of the S&P500 index and the associated European call and put option prices in the year 2005. The method proposed here for calibrating the Black-Scholes dynamics model could be extended to other science and engineering models that may be expressed in terms of stochastic dynamical systems.

  15. Oil Volatility Risk and Expected Stock Returns

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Pan, Xuhui (Nick)

    return between the quintile of stocks with low exposure and high exposure to oil volatility is significant at 0.66% per month, and oil volatility risk carries a significant risk premium of -0.60% per month. In the post-financialization period, oil volatility risk is strongly related with various measures...

  16. Dynamic Factor Models for the Volatility Surface

    DEFF Research Database (Denmark)

    van der Wel, Michel; Ozturk, Sait R.; Dijk, Dick van

    The implied volatility surface is the collection of volatilities implied by option contracts for different strike prices and time-to-maturity. We study factor models to capture the dynamics of this three-dimensional implied volatility surface. Three model types are considered to examine desirable...

  17. Brownian motion, martingales, and stochastic calculus

    CERN Document Server

    Le Gall, Jean-François

    2016-01-01

    This book offers a rigorous and self-contained presentation of stochastic integration and stochastic calculus within the general framework of continuous semimartingales. The main tools of stochastic calculus, including Itô’s formula, the optional stopping theorem and Girsanov’s theorem, are treated in detail alongside many illustrative examples. The book also contains an introduction to Markov processes, with applications to solutions of stochastic differential equations and to connections between Brownian motion and partial differential equations. The theory of local times of semimartingales is discussed in the last chapter. Since its invention by Itô, stochastic calculus has proven to be one of the most important techniques of modern probability theory, and has been used in the most recent theoretical advances as well as in applications to other fields such as mathematical finance. Brownian Motion, Martingales, and Stochastic Calculus provides a strong theoretical background to the reader interested i...

  18. Stochastic synaptic plasticity with memristor crossbar arrays

    KAUST Repository

    Naous, Rawan

    2016-11-01

    Memristive devices have been shown to exhibit slow and stochastic resistive switching behavior under low-voltage, low-current operating conditions. Here we explore such mechanisms to emulate stochastic plasticity in memristor crossbar synapse arrays. Interfaced with integrate-and-fire spiking neurons, the memristive synapse arrays are capable of implementing stochastic forms of spike-timing dependent plasticity which parallel mean-rate models of stochastic learning with binary synapses. We present theory and experiments with spike-based stochastic learning in memristor crossbar arrays, including simplified modeling as well as detailed physical simulation of memristor stochastic resistive switching characteristics due to voltage and current induced filament formation and collapse. © 2016 IEEE.

  19. Stochastic synaptic plasticity with memristor crossbar arrays

    KAUST Repository

    Naous, Rawan; Al-Shedivat, Maruan; Neftci, Emre; Cauwenberghs, Gert; Salama, Khaled N.

    2016-01-01

    Memristive devices have been shown to exhibit slow and stochastic resistive switching behavior under low-voltage, low-current operating conditions. Here we explore such mechanisms to emulate stochastic plasticity in memristor crossbar synapse arrays. Interfaced with integrate-and-fire spiking neurons, the memristive synapse arrays are capable of implementing stochastic forms of spike-timing dependent plasticity which parallel mean-rate models of stochastic learning with binary synapses. We present theory and experiments with spike-based stochastic learning in memristor crossbar arrays, including simplified modeling as well as detailed physical simulation of memristor stochastic resistive switching characteristics due to voltage and current induced filament formation and collapse. © 2016 IEEE.

  20. Modelling electricity futures prices using seasonal path-dependent volatility

    International Nuclear Information System (INIS)

    Fanelli, Viviana; Maddalena, Lucia; Musti, Silvana

    2016-01-01

    Highlights: • A no-arbitrage term structure model is applied to the electricity market. • Volatility parameters of the HJM model are estimated by using German data. • The model captures the seasonal price behaviour. • Electricity futures prices are forecasted. • Call options are evaluated according to different strike prices. - Abstract: The liberalization of electricity markets gave rise to new patterns of futures prices and the need of models that could efficiently describe price dynamics grew exponentially, in order to improve decision making for all of the agents involved in energy issues. Although there are papers focused on modelling electricity as a flow commodity by using Heath et al. (1992) approach in order to price futures contracts, the literature is scarce on attempts to consider a seasonal volatility as input to models. In this paper, we propose a futures price model that allows looking into observed stylized facts in the electricity market, in particular stochastic price variability, and periodic behavior. We consider a seasonal path-dependent volatility for futures returns that are modelled in Heath et al. (1992) framework and we obtain the dynamics of futures prices. We use these series to price the underlying asset of a call option in a risk management perspective. We test the model on the German electricity market, and we find that it is accurate in futures and option value estimates. In addition, the obtained results and the proposed methodology can be useful as a starting point for risk management or portfolio optimization under uncertainty in the current context of energy markets.

  1. SATA II - Stochastic Algebraic Topology and Applications

    Science.gov (United States)

    2017-01-30

    AFRL-AFOSR-UK-TR-2017-0018 SATA II - Stochastic Algebraic Topology and Applications 150032 Robert Adler TECHNION ISRAEL INSTITUTE OF TECHNOLOGY Final...REPORT TYPE Final 3. DATES COVERED (From - To) 15 Dec 2014 to 14 Dec 2016 4. TITLE AND SUBTITLE SATA II - Stochastic Algebraic Topology and Applications... Topology and Applications Continuation of, and associated with SATA: Stochastic Algebraic Topology and Applications FA8655-11-1-3039, 09/1/2011–08/31/2014

  2. Stochastic deformation of a thermodynamic symplectic structure

    OpenAIRE

    Kazinski, P. O.

    2008-01-01

    A stochastic deformation of a thermodynamic symplectic structure is studied. The stochastic deformation procedure is analogous to the deformation of an algebra of observables like deformation quantization, but for an imaginary deformation parameter (the Planck constant). Gauge symmetries of thermodynamics and corresponding stochastic mechanics, which describes fluctuations of a thermodynamic system, are revealed and gauge fields are introduced. A physical interpretation to the gauge transform...

  3. Stochastic temperature and the Nicolai map

    International Nuclear Information System (INIS)

    Hueffel, H.

    1989-01-01

    Just as standard temperature can be related to the time coordinate of Euclidean space, a new concept of 'stochastic temperature' may be introduced by associating it to the Parisi-Wu time of stochastic quantization. The perturbative equilibrium limit for a self-interacting scalar field is studied, and a 'thermal' mass shift to one loop is shown. In addition one may interpret the underlying stochastic process as a Nicolai map at nonzero 'temperature'. 22 refs. (Author)

  4. On Lipschitzian quantum stochastic differential inclusions

    International Nuclear Information System (INIS)

    Ekhaguere, G.O.S.

    1990-12-01

    Quantum stochastic differential inclusions are introduced and studied within the framework of the Hudson-Parthasarathy formulation of quantum stochastic calculus. Results concerning the existence of solutions of a Lipschitzian quantum stochastic differential inclusion and the relationship between the solutions of such an inclusion and those of its convexification are presented. These generalize the Filippov existence theorem and the Filippov-Wazewski Relaxation Theorem for classical differential inclusions to the present noncommutative setting. (author). 9 refs

  5. Ambit processes and stochastic partial differential equations

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole; Benth, Fred Espen; Veraart, Almut

    Ambit processes are general stochastic processes based on stochastic integrals with respect to Lévy bases. Due to their flexible structure, they have great potential for providing realistic models for various applications such as in turbulence and finance. This papers studies the connection betwe...... ambit processes and solutions to stochastic partial differential equations. We investigate this relationship from two angles: from the Walsh theory of martingale measures and from the viewpoint of the Lévy noise analysis....

  6. The Robustness of Stochastic Switching Networks

    OpenAIRE

    Loh, Po-Ling; Zhou, Hongchao; Bruck, Jehoshua

    2009-01-01

    Many natural systems, including chemical and biological systems, can be modeled using stochastic switching circuits. These circuits consist of stochastic switches, called pswitches, which operate with a fixed probability of being open or closed. We study the effect caused by introducing an error of size ∈ to each pswitch in a stochastic circuit. We analyze two constructions – simple series-parallel and general series-parallel circuits – and prove that simple series-parallel circuits are robus...

  7. Sequential neural models with stochastic layers

    DEFF Research Database (Denmark)

    Fraccaro, Marco; Sønderby, Søren Kaae; Paquet, Ulrich

    2016-01-01

    How can we efficiently propagate uncertainty in a latent state representation with recurrent neural networks? This paper introduces stochastic recurrent neural networks which glue a deterministic recurrent neural network and a state space model together to form a stochastic and sequential neural...... generative model. The clear separation of deterministic and stochastic layers allows a structured variational inference network to track the factorization of the model's posterior distribution. By retaining both the nonlinear recursive structure of a recurrent neural network and averaging over...

  8. Stochastic Linear Quadratic Optimal Control Problems

    International Nuclear Information System (INIS)

    Chen, S.; Yong, J.

    2001-01-01

    This paper is concerned with the stochastic linear quadratic optimal control problem (LQ problem, for short) for which the coefficients are allowed to be random and the cost functional is allowed to have a negative weight on the square of the control variable. Some intrinsic relations among the LQ problem, the stochastic maximum principle, and the (linear) forward-backward stochastic differential equations are established. Some results involving Riccati equation are discussed as well

  9. Stochastic Model Checking of the Stochastic Quality Calculus

    DEFF Research Database (Denmark)

    Nielson, Flemming; Nielson, Hanne Riis; Zeng, Kebin

    2015-01-01

    The Quality Calculus uses quality binders for input to express strategies for continuing the computation even when the desired input has not been received. The Stochastic Quality Calculus adds generally distributed delays for output actions and real-time constraints on the quality binders for input....... This gives rise to Generalised Semi-Markov Decision Processes for which few analytical techniques are available. We restrict delays on output actions to be exponentially distributed while still admitting real-time constraints on the quality binders. This facilitates developing analytical techniques based...

  10. Money growth volatility and the demand for money in Germany: Friedman's volatility hypothesis revisited

    OpenAIRE

    Brüggemann, Imke; Nautz, Dieter

    1997-01-01

    Recently, the Bundesbank claimed that monetary targeting has become considerably more diffcult by the increased volatility of short-term money growth. The present paper investigates the impact of German money growth volatility on income velocity and money demand in view of Friedman's money growth volatility hypothesis. Granger-causality tests provide some evidence for a velocity-volatility linkage. However the estimation of volatility-augmented money demand functions reveals that - in contras...

  11. Stochastic quantization of gravity and string fields

    International Nuclear Information System (INIS)

    Rumpf, H.

    1986-01-01

    The stochastic quantization method of Parisi and Wu is generalized so as to make it applicable to Einstein's theory of gravitation. The generalization is based on the existence of a preferred metric in field configuration space, involves Ito's calculus, and introduces a complex stochastic process adapted to Lorentzian spacetime. It implies formally the path integral measure of DeWitt, a causual Feynman propagator, and a consistent stochastic perturbation theory. The lineraized version of the theory is also obtained from the stochastic quantization of the free string field theory of Siegel and Zwiebach. (Author)

  12. Impact of microorganism on polonium volatilization

    International Nuclear Information System (INIS)

    Momoshima, N.; Ishida, A.; Fukuda, A.; Yoshinaga, C.

    2007-01-01

    Volatilization of polonium by microorganisms, Chromobacterium violaceum, Escherichia coli and Bacillus subtilis was examined for pure cultures in LB medium at 30 deg C, showing relative Po emission intensity 100, 10 and 1, respectively. Chromobacterium violaceum pre-cultured in LB medium without Po and suspended in water with Po showed high Po volatilization in spite of poor nutriment condition. Antibiotics inhibit volatilization of Po and cultivation at low temperature greatly reduced volatilization. The results strongly support the biological effects on Po volatilization. (author)

  13. Nonlinear stochastic interacting dynamics and complexity of financial gasket fractal-like lattice percolation

    Science.gov (United States)

    Zhang, Wei; Wang, Jun

    2018-05-01

    A novel nonlinear stochastic interacting price dynamics is proposed and investigated by the bond percolation on Sierpinski gasket fractal-like lattice, aim to make a new approach to reproduce and study the complexity dynamics of real security markets. Fractal-like lattices correspond to finite graphs with vertices and edges, which are similar to fractals, and Sierpinski gasket is a well-known example of fractals. Fractional ordinal array entropy and fractional ordinal array complexity are introduced to analyze the complexity behaviors of financial signals. To deeper comprehend the fluctuation characteristics of the stochastic price evolution, the complexity analysis of random logarithmic returns and volatility are preformed, including power-law distribution, fractional sample entropy and fractional ordinal array complexity. For further verifying the rationality and validity of the developed stochastic price evolution, the actual security market dataset are also studied with the same statistical methods for comparison. The empirical results show that this stochastic price dynamics can reconstruct complexity behaviors of the actual security markets to some extent.

  14. Volatile constituents of Trichothecium roseum.

    Science.gov (United States)

    Vanhaelen, M; Vanhaelen-Fastre, R; Geeraerts, J

    1978-06-01

    In the course of investigation of Trichothecium roseum (Fungi Imperfecti) for its attractancy against Tyrophagus putrescentiae (cheese mite), the twenty following volatile compounds produced at a very low concentration by the microfungus were identified by gc, gc/ms, gc/c.i.ms and tlc: 3-methyl-1-butanol, 3-octanone, 1-octen-3-one, 3-octanol, octa-1,5-dien-3 one, 1-octen-3-ol, 6-methyl-5-hepten-2-ol, octa-1,5-dien-3 ol, furfural, linalool, linalyl acetate, terpineol (alpha and beta) citronellyl acetate, nerol, citronellol, phenylacetaldehyde, benzyl alcohol geranyl acetate, 1-phenyl ethanol and nerolidol. Octa-1,5-dien-3-ol and octa-1,5-dien-3-one have not been previously isolated from fungi; octa-1,5-dien-3-ol is the most potent attractant amount the volatile compounds detected by gc.

  15. Chirospecific analysis of plant volatiles

    International Nuclear Information System (INIS)

    Tkachev, A V

    2007-01-01

    Characteristic features of the analysis of plant volatiles by enantioselective gas (gas-liquid) chromatography and gas chromatography/mass spectrometry are discussed. The most recent advances in the design of enantioselective stationary phases are surveyed. Examples of the preparation of the most efficient phases based on modified cyclodextrins are given. Current knowledge on the successful analytical resolution of different types of plant volatiles (aliphatic and aromatic compounds and mono-, sesqui- and diterpene derivatives) into optical antipodes is systematically described. Chiral stationary phases used for these purposes, temperature conditions and enantiomer separation factors are summarised. Examples of the enantiomeric resolution of fragrance compounds and components of plant extracts, wines and essential oils are given.

  16. Chirospecific analysis of plant volatiles

    Energy Technology Data Exchange (ETDEWEB)

    Tkachev, A V [N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2007-10-31

    Characteristic features of the analysis of plant volatiles by enantioselective gas (gas-liquid) chromatography and gas chromatography/mass spectrometry are discussed. The most recent advances in the design of enantioselective stationary phases are surveyed. Examples of the preparation of the most efficient phases based on modified cyclodextrins are given. Current knowledge on the successful analytical resolution of different types of plant volatiles (aliphatic and aromatic compounds and mono-, sesqui- and diterpene derivatives) into optical antipodes is systematically described. Chiral stationary phases used for these purposes, temperature conditions and enantiomer separation factors are summarised. Examples of the enantiomeric resolution of fragrance compounds and components of plant extracts, wines and essential oils are given.

  17. Forecasting volatility of crude oil markets

    International Nuclear Information System (INIS)

    Kang, Sang Hoon; Kang, Sang-Mok; Yoon, Seong-Min

    2009-01-01

    This article investigates the efficacy of a volatility model for three crude oil markets - Brent, Dubai, and West Texas Intermediate (WTI) - with regard to its ability to forecast and identify volatility stylized facts, in particular volatility persistence or long memory. In this context, we assess persistence in the volatility of the three crude oil prices using conditional volatility models. The CGARCH and FIGARCH models are better equipped to capture persistence than are the GARCH and IGARCH models. The CGARCH and FIGARCH models also provide superior performance in out-of-sample volatility forecasts. We conclude that the CGARCH and FIGARCH models are useful for modeling and forecasting persistence in the volatility of crude oil prices. (author)

  18. Forecasting volatility of crude oil markets

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sang Hoon [Department of Business Administration, Gyeongsang National University, Jinju, 660-701 (Korea); Kang, Sang-Mok; Yoon, Seong-Min [Department of Economics, Pusan National University, Busan, 609-735 (Korea)

    2009-01-15

    This article investigates the efficacy of a volatility model for three crude oil markets - Brent, Dubai, and West Texas Intermediate (WTI) - with regard to its ability to forecast and identify volatility stylized facts, in particular volatility persistence or long memory. In this context, we assess persistence in the volatility of the three crude oil prices using conditional volatility models. The CGARCH and FIGARCH models are better equipped to capture persistence than are the GARCH and IGARCH models. The CGARCH and FIGARCH models also provide superior performance in out-of-sample volatility forecasts. We conclude that the CGARCH and FIGARCH models are useful for modeling and forecasting persistence in the volatility of crude oil prices. (author)

  19. Money, banks and endogenous volatility

    OpenAIRE

    Pere Gomis-Porqueras

    2000-01-01

    In this paper I consider a monetary growth model in which banks provide liquidity, and the government fixes a constant rate of money creation. There are two underlying assets in the economy, money and capital. Money is dominated in rate of return. In contrast to other papers with a larger set of government liabilities, I find a unique equilibrium when agents' risk aversion is moderate. However, indeterminacies and endogenous volatility can be observed when agents are relatively risk averse.

  20. Human skin volatiles: a review.

    Science.gov (United States)

    Dormont, Laurent; Bessière, Jean-Marie; Cohuet, Anna

    2013-05-01

    Odors emitted by human skin are of great interest to biologists in many fields; applications range from forensic studies to diagnostic tools, the design of perfumes and deodorants, and the ecology of blood-sucking insect vectors of human disease. Numerous studies have investigated the chemical composition of skin odors, and various sampling methods have been used for this purpose. The literature shows that the chemical profile of skin volatiles varies greatly among studies, and the use of different sampling procedures is probably responsible for some of these variations. To our knowledge, this is the first review focused on human skin volatile compounds. We detail the different sampling techniques, each with its own set of advantages and disadvantages, which have been used for the collection of skin odors from different parts of the human body. We present the main skin volatile compounds found in these studies, with particular emphasis on the most frequently studied body regions, axillae, hands, and feet. We propose future directions for promising experimental studies on odors from human skin, particularly in relation to the chemical ecology of blood-sucking insects.

  1. Volatilization of gasoline from soil

    International Nuclear Information System (INIS)

    Arthus, P.

    1993-05-01

    Gasoline contaminated soil threatens water resources and air quality. The extent of the threat depends on gasoline behavior in soil, which is affected by various mechanisms such as volatilization. To quantify volatilization, gasoline spills were simulated in the laboratory using a synthetic gasoline and three dry soils. Total gasoline and individual gasoline compound concentrations in soil were monitored as a function of depth and time. The time to reduce overall gasoline concentration in coarse sand, sandy loam, and silt loam to 40% of initial concentration, averaged between surface and a 200-mm depth, ranged from 0.25 d to 10 d. A wicking phenomenon which contributed to gasoline flux toward the atmosphere was indicated by behavior of a low-volatility gasoline compound. Based on separate wicking experiments, this bulk immiscible movement was estimated at an upward velocity of 0.09 m/d for Delhi sandy loam and 0.05 m/d for Elora silt loam. 70 refs., 24 figs., 34 tabs

  2. Spectral representation in stochastic quantization

    International Nuclear Information System (INIS)

    Nakazato, Hiromichi.

    1988-10-01

    A spectral representation of stationary 2-point functions is investigated based on the operator formalism in stochastic quantization. Assuming the existence of asymptotic non-interacting fields, we can diagonalize the total Hamiltonian in terms of asymptotic fields and show that the correlation length along the fictious time is proportional to the physical mass expected in the usual field theory. A relation between renormalization factors in the operator formalism is derived as a byproduct and its validity is checked with the perturbative results calculated in this formalism. (orig.)

  3. Stochastic modeling analysis and simulation

    CERN Document Server

    Nelson, Barry L

    1995-01-01

    A coherent introduction to the techniques for modeling dynamic stochastic systems, this volume also offers a guide to the mathematical, numerical, and simulation tools of systems analysis. Suitable for advanced undergraduates and graduate-level industrial engineers and management science majors, it proposes modeling systems in terms of their simulation, regardless of whether simulation is employed for analysis. Beginning with a view of the conditions that permit a mathematical-numerical analysis, the text explores Poisson and renewal processes, Markov chains in discrete and continuous time, se

  4. Probability, Statistics, and Stochastic Processes

    CERN Document Server

    Olofsson, Peter

    2012-01-01

    This book provides a unique and balanced approach to probability, statistics, and stochastic processes.   Readers gain a solid foundation in all three fields that serves as a stepping stone to more advanced investigations into each area.  The Second Edition features new coverage of analysis of variance (ANOVA), consistency and efficiency of estimators, asymptotic theory for maximum likelihood estimators, empirical distribution function and the Kolmogorov-Smirnov test, general linear models, multiple comparisons, Markov chain Monte Carlo (MCMC), Brownian motion, martingales, and

  5. Excited states in stochastic electrodynamics

    International Nuclear Information System (INIS)

    Franca, H.M.; Marshall, T.W.

    1987-12-01

    It is shown that the set of Wigner functions associated with the excited states of the harmonic oscillator constitute a complete set of functions over the phase space. An arbitraty distribution can be expanded in terms of these Wigner functions. By studying the time evolution, according to Stochastic Electrodynamics, of the expansion coefficients, becomes feasible to separate explicity the contributionsof the radiative reaction and the vaccuum field to the Einsten. A coefficients for this system. A simple semiclassical explanation of the Weisskopf-Heitler phenomenon in resonance fluorescence is also supplied. (author) [pt

  6. Stochastic mechanics of mixed states

    International Nuclear Information System (INIS)

    Jaekel, M.T.; Pignon, D.

    1984-01-01

    Nelson's stochastic interpretation of quantum mechanics is extended from the case of pure states to that of mixed states. It is shown that a pure probabilistic formalism, which applies the Newton-Nelson Law to the initial position and velocity distributions, does not reproduce the time evolution predicted by quantum mechanics. In order to recover the latter, a new notion must be introduced, that of pure quantum states, over which the mixture has to be decomposed, and which then satisfy the Newton-Nelson Law independently. (author)

  7. Mathematical statistics and stochastic processes

    CERN Document Server

    Bosq, Denis

    2013-01-01

    Generally, books on mathematical statistics are restricted to the case of independent identically distributed random variables. In this book however, both this case AND the case of dependent variables, i.e. statistics for discrete and continuous time processes, are studied. This second case is very important for today's practitioners.Mathematical Statistics and Stochastic Processes is based on decision theory and asymptotic statistics and contains up-to-date information on the relevant topics of theory of probability, estimation, confidence intervals, non-parametric statistics and rob

  8. Stochastic Gravity: Theory and Applications

    Directory of Open Access Journals (Sweden)

    Hu Bei Lok

    2004-01-01

    Full Text Available Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein-Langevin equation, which has in addition sources due to the noise kernel. The noise kernel is the vacuum expectation value of the (operator-valued stress-energy bi-tensor which describes the fluctuations of quantum matter fields in curved spacetimes. In the first part, we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. The axiomatic approach is useful to see the structure of the theory from the framework of semiclassical gravity, showing the link from the mean value of the stress-energy tensor to their correlation functions. The functional approach uses the Feynman-Vernon influence functional and the Schwinger-Keldysh closed-time-path effective action methods which are convenient for computations. It also brings out the open systems concepts and the statistical and stochastic contents of the theory such as dissipation, fluctuations, noise, and decoherence. We then focus on the properties of the stress-energy bi-tensor. We obtain a general expression for the noise kernel of a quantum field defined at two distinct points in an arbitrary curved spacetime as products of covariant derivatives of the quantum field's Green function. In the second part, we describe three applications of stochastic gravity theory. First, we consider metric perturbations in a Minkowski spacetime. We offer an analytical solution of the Einstein-Langevin equation and compute the two-point correlation functions for the linearized Einstein tensor and for the metric perturbations. Second, we discuss structure formation from the stochastic gravity viewpoint, which can go beyond the standard treatment by incorporating the full quantum effect of the inflaton fluctuations. Third, we discuss the backreaction

  9. Stochastic resonance for exploration geophysics

    OpenAIRE

    Omerbashich, Mensur

    2008-01-01

    Stochastic resonance (SR) is a phenomenon in which signal to noise (SN) ratio gets improved by noise addition rather than removal as envisaged classically. SR was first claimed in climatology a few decades ago and then in other disciplines as well. The same as it is observed in natural systems, SR is used also for allowable SN enhancements at will. Here I report a proof of principle that SR can be useful in exploration geophysics. For this I perform high frequency GaussVanicek variance spectr...

  10. Volatile and non-volatile/semi-volatile compounds and in vitro bioactive properties of Chilean Ulmo (Eucryphia cordifolia Cav.) honey.

    Science.gov (United States)

    Acevedo, Francisca; Torres, Paulina; Oomah, B Dave; de Alencar, Severino Matias; Massarioli, Adna Prado; Martín-Venegas, Raquel; Albarral-Ávila, Vicenta; Burgos-Díaz, César; Ferrer, Ruth; Rubilar, Mónica

    2017-04-01

    Ulmo honey originating from Eucryphia cordifolia tree, known locally in the Araucania region as the Ulmo tree is a natural product with valuable nutritional and medicinal qualities. It has been used in the Mapuche culture to treat infections. This study aimed to identify the volatile and non-volatile/semi-volatile compounds of Ulmo honey and elucidate its in vitro biological properties by evaluating its antioxidant, antibacterial, antiproliferative and hemolytic properties and cytotoxicity in Caco-2 cells. Headspace volatiles of Ulmo honey were isolated by solid-phase microextraction (SPME); non-volatiles/semi-volatiles were obtained by removing all saccharides with acidified water and the compounds were identified by GC/MS analysis. Ulmo honey volatiles consisted of 50 compounds predominated by 20 flavor components. Two of the volatile compounds, lyrame and anethol have never been reported before as honey compounds. The non-volatile/semi-volatile components of Ulmo honey comprised 27 compounds including 13 benzene derivatives accounting 75% of the total peak area. Ulmo honey exhibited weak antioxidant activity but strong antibacterial activity particularly against gram-negative bacteria and methicillin-resistant Staphylococcus aureus (MRSA), the main strain involved in wounds and skin infections. At concentrations >0.5%, Ulmo honey reduced Caco-2 cell viability, released lactate dehydrogenase (LDH) and increased reactive oxygen species (ROS) production in a dose dependent manner in the presence of foetal bovine serum (FBS). The wide array of volatile and non-volatile/semi-volatile constituents of Ulmo honey rich in benzene derivatives may partly account for its strong antibacterial and antiproliferative properties important for its therapeutic use. Our results indicate that Ulmo honey can potentially inhibit cancer growth at least partly by modulating oxidative stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. On a Corporate Bond Pricing Model with Credit Rating Migration Risksand Stochastic Interest Rate

    Directory of Open Access Journals (Sweden)

    Jin Liang

    2017-10-01

    Full Text Available In this paper we study a corporate bond-pricing model with credit rating migration and astochastic interest rate. The volatility of bond price in the model strongly depends on potential creditrating migration and stochastic change of the interest rate. This new model improves the previousexisting models in which the interest rate is considered to be a constant. The existence, uniquenessand regularity of the solution for the model are established. Moreover, some properties includingthe smoothness of the free boundary are obtained. Furthermore, some numerical computations arepresented to illustrate the theoretical results.

  12. Sensory optimization by stochastic tuning.

    Science.gov (United States)

    Jurica, Peter; Gepshtein, Sergei; Tyukin, Ivan; van Leeuwen, Cees

    2013-10-01

    Individually, visual neurons are each selective for several aspects of stimulation, such as stimulus location, frequency content, and speed. Collectively, the neurons implement the visual system's preferential sensitivity to some stimuli over others, manifested in behavioral sensitivity functions. We ask how the individual neurons are coordinated to optimize visual sensitivity. We model synaptic plasticity in a generic neural circuit and find that stochastic changes in strengths of synaptic connections entail fluctuations in parameters of neural receptive fields. The fluctuations correlate with uncertainty of sensory measurement in individual neurons: The higher the uncertainty the larger the amplitude of fluctuation. We show that this simple relationship is sufficient for the stochastic fluctuations to steer sensitivities of neurons toward a characteristic distribution, from which follows a sensitivity function observed in human psychophysics and which is predicted by a theory of optimal allocation of receptive fields. The optimal allocation arises in our simulations without supervision or feedback about system performance and independently of coupling between neurons, making the system highly adaptive and sensitive to prevailing stimulation. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  13. Quantum noise and stochastic reduction

    International Nuclear Information System (INIS)

    Brody, Dorje C; Hughston, Lane P

    2006-01-01

    In standard nonrelativistic quantum mechanics the expectation of the energy is a conserved quantity. It is possible to extend the dynamical law associated with the evolution of a quantum state consistently to include a nonlinear stochastic component, while respecting the conservation law. According to the dynamics thus obtained, referred to as the energy-based stochastic Schroedinger equation, an arbitrary initial state collapses spontaneously to one of the energy eigenstates, thus describing the phenomenon of quantum state reduction. In this paper, two such models are investigated: one that achieves state reduction in infinite time and the other in finite time. The properties of the associated energy expectation process and the energy variance process are worked out in detail. By use of a novel application of a nonlinear filtering method, closed-form solutions-algebraic in character and involving no integration-are obtained of both these models. In each case, the solution is expressed in terms of a random variable representing the terminal energy of the system and an independent noise process. With these solutions at hand it is possible to simulate explicitly the dynamics of the quantum states of complicated physical systems

  14. Stochastic geometry in PRIZMA code

    International Nuclear Information System (INIS)

    Malyshkin, G. N.; Kashaeva, E. A.; Mukhamadiev, R. F.

    2007-01-01

    The paper describes a method used to simulate radiation transport through random media - randomly placed grains in a matrix material. The method models the medium consequently from one grain crossed by particle trajectory to another. Like in the Limited Chord Length Sampling (LCLS) method, particles in grains are tracked in the actual grain geometry, but unlike LCLS, the medium is modeled using only Matrix Chord Length Sampling (MCLS) from the exponential distribution and it is not necessary to know the grain chord length distribution. This helped us extend the method to media with randomly oriented arbitrarily shaped convex grains. Other extensions include multicomponent media - grains of several sorts, and polydisperse media - grains of different sizes. Sort and size distributions of crossed grains were obtained and an algorithm was developed for sampling grain orientations and positions. Special consideration was given to medium modeling at the boundary of the stochastic region. The method was implemented in the universal 3D Monte Carlo code PRIZMA. The paper provides calculated results for a model problem where we determine volume fractions of modeled components crossed by particle trajectories. It also demonstrates the use of biased sampling techniques implemented in PRIZMA for solving a problem of deep penetration in model random media. Described are calculations for the spectral response of a capacitor dose detector whose anode was modeled with account for its stochastic structure. (authors)

  15. Single-Molecule Stochastic Resonance

    Directory of Open Access Journals (Sweden)

    K. Hayashi

    2012-08-01

    Full Text Available Stochastic resonance (SR is a well-known phenomenon in dynamical systems. It consists of the amplification and optimization of the response of a system assisted by stochastic (random or probabilistic noise. Here we carry out the first experimental study of SR in single DNA hairpins which exhibit cooperatively transitions from folded to unfolded configurations under the action of an oscillating mechanical force applied with optical tweezers. By varying the frequency of the force oscillation, we investigate the folding and unfolding kinetics of DNA hairpins in a periodically driven bistable free-energy potential. We measure several SR quantifiers under varied conditions of the experimental setup such as trap stiffness and length of the molecular handles used for single-molecule manipulation. We find that a good quantifier of the SR is the signal-to-noise ratio (SNR of the spectral density of measured fluctuations in molecular extension of the DNA hairpins. The frequency dependence of the SNR exhibits a peak at a frequency value given by the resonance-matching condition. Finally, we carry out experiments on short hairpins that show how SR might be useful for enhancing the detection of conformational molecular transitions of low SNR.

  16. Geometric integrators for stochastic rigid body dynamics

    KAUST Repository

    Tretyakov, Mikhail

    2016-01-05

    Geometric integrators play an important role in simulating dynamical systems on long time intervals with high accuracy. We will illustrate geometric integration ideas within the stochastic context, mostly on examples of stochastic thermostats for rigid body dynamics. The talk will be mainly based on joint recent work with Rusland Davidchak and Tom Ouldridge.

  17. The Owen Value of Stochastic Cooperative Game

    Directory of Open Access Journals (Sweden)

    Cheng-Guo E

    2014-01-01

    Full Text Available We consider stochastic cooperative game and give it the definition of the Owen value, which is obtained by extending the classical case. Then we provide explicit expression for the Owen value of the stochastic cooperative game and discuss its existence and uniqueness.

  18. Safety Analysis of Stochastic Dynamical Systems

    DEFF Research Database (Denmark)

    Sloth, Christoffer; Wisniewski, Rafael

    2015-01-01

    This paper presents a method for verifying the safety of a stochastic system. In particular, we show how to compute the largest set of initial conditions such that a given stochastic system is safe with probability p. To compute the set of initial conditions we rely on the moment method that via...... that shows how the p-safe initial set is computed numerically....

  19. Multivariate Discrete First Order Stochastic Dominance

    DEFF Research Database (Denmark)

    Tarp, Finn; Østerdal, Lars Peter

    This paper characterizes the principle of first order stochastic dominance in a multivariate discrete setting. We show that a distribution  f first order stochastic dominates distribution g if and only if  f can be obtained from g by iteratively shifting density from one outcome to another...

  20. Geometric integrators for stochastic rigid body dynamics

    KAUST Repository

    Tretyakov, Mikhail

    2016-01-01

    Geometric integrators play an important role in simulating dynamical systems on long time intervals with high accuracy. We will illustrate geometric integration ideas within the stochastic context, mostly on examples of stochastic thermostats for rigid body dynamics. The talk will be mainly based on joint recent work with Rusland Davidchak and Tom Ouldridge.

  1. History-dependent stochastic Petri nets

    NARCIS (Netherlands)

    Schonenberg, H.; Sidorova, N.; Aalst, van der W.M.P.; Hee, van K.M.; Pnueli, A.; Virbitskaite, I.; Voronkov, A.

    2010-01-01

    Stochastic Petri Nets are a useful and well-known tool for performance analysis. However, an implicit assumption in the different types of Stochastic Petri Nets is the Markov property. It is assumed that a choice in the Petri net only depends on the current state and not on earlier choices. For many

  2. Stochasticity and transport in Hamiltonian systems

    International Nuclear Information System (INIS)

    MacKay, R.S.; Meiss, J.D.; Percival, I.C.

    1983-08-01

    The theory of transport in nonlinear dynamics is developed in terms of leaky barriers which remain when invariant tori are destroyed. We describe the organization of stochastic motion by these barriers and give an explanation of long-time correlations in the stochastic regime

  3. Analytic stochastic regularization and gange invariance

    International Nuclear Information System (INIS)

    Abdalla, E.; Gomes, M.; Lima-Santos, A.

    1986-05-01

    A proof that analytic stochastic regularization breaks gauge invariance is presented. This is done by an explicit one loop calculation of the vaccum polarization tensor in scalar electrodynamics, which turns out not to be transversal. The counterterm structure, Langevin equations and the construction of composite operators in the general framework of stochastic quantization, are also analysed. (Author) [pt

  4. Stochastic properties of the Friedman dynamical system

    International Nuclear Information System (INIS)

    Szydlowski, M.; Heller, M.; Golda, Z.

    1985-01-01

    Some mathematical aspects of the stochastic cosmology are discussed in the corresponding ordinary Friedman world models. In particulare, it is shown that if the strong and Lorentz energy conditions are known, or the potential function is given, or a stochastic measure is suitably defined then the structure of the phase plane of the Friedman dynamical system is determined. 11 refs., 2 figs. (author)

  5. High-speed Stochastic Fatigue Testing

    DEFF Research Database (Denmark)

    Brincker, Rune; Sørensen, John Dalsgaard

    1990-01-01

    Good stochastic fatigue tests are difficult to perform. One of the major reasons is that ordinary servohydraulic loading systems realize the prescribed load history accurately at very low testing speeds only. If the speeds used for constant amplitude testing are applied to stochastic fatigue...

  6. Optimal Control for Stochastic Delay Evolution Equations

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Qingxin, E-mail: mqx@hutc.zj.cn [Huzhou University, Department of Mathematical Sciences (China); Shen, Yang, E-mail: skyshen87@gmail.com [York University, Department of Mathematics and Statistics (Canada)

    2016-08-15

    In this paper, we investigate a class of infinite-dimensional optimal control problems, where the state equation is given by a stochastic delay evolution equation with random coefficients, and the corresponding adjoint equation is given by an anticipated backward stochastic evolution equation. We first prove the continuous dependence theorems for stochastic delay evolution equations and anticipated backward stochastic evolution equations, and show the existence and uniqueness of solutions to anticipated backward stochastic evolution equations. Then we establish necessary and sufficient conditions for optimality of the control problem in the form of Pontryagin’s maximum principles. To illustrate the theoretical results, we apply stochastic maximum principles to study two examples, an infinite-dimensional linear-quadratic control problem with delay and an optimal control of a Dirichlet problem for a stochastic partial differential equation with delay. Further applications of the two examples to a Cauchy problem for a controlled linear stochastic partial differential equation and an optimal harvesting problem are also considered.

  7. Stochastic quantization for the axial model

    International Nuclear Information System (INIS)

    Farina, C.; Montani, H.; Albuquerque, L.C.

    1991-01-01

    We use bosonization ideas to solve the axial model in the stochastic quantization framework. We obtain the fermion propagator of the theory decoupling directly the Langevin equation, instead of the Fokker-Planck equation. In the Appendix we calculate explicitly the anomalous divergence of the axial-vector current by using a regularization that does not break the Markovian character of the stochastic process

  8. Consistent Stochastic Modelling of Meteocean Design Parameters

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Sterndorff, M. J.

    2000-01-01

    Consistent stochastic models of metocean design parameters and their directional dependencies are essential for reliability assessment of offshore structures. In this paper a stochastic model for the annual maximum values of the significant wave height, and the associated wind velocity, current...

  9. On the stochastic stability of MHD equilibria

    International Nuclear Information System (INIS)

    Teichmann, J.

    1979-07-01

    The stochastic stability in the large of stationary equilibria of ideal and dissipative magnetohydrodynamics under the influence of stationary random fluctuations is studied using the direct Liapunov method. Sufficient and necessary conditions for stability of the linearized Euler-Lagrangian systems are given. The destabilizing effect of stochastic fluctuations is demonstrated. (orig.)

  10. Modeling the return and volatility of the Greek electricity marginal system price

    International Nuclear Information System (INIS)

    Theodorou, Petros; Karyampas, Dimitrios

    2008-01-01

    Traditional cost based optimization models (WASP) for expansion planning do not allow for mark-to-market valuation and cannot satisfy arbitrage free requirements. This work will fill this gap by developing and estimating models for mark-to-market valuation. Furthermore the present paper examines the return and volatility of the newly born Greek's electricity market's marginal system price. A detailed description of the market mechanism and regulation is used to describe how prices are determined in order to proceed with return and volatility modeling. Continuous time mean reverting and time varying mean reverting stochastic processes have been solved in discrete time processes and estimated econometrically along with ARMAX and GARCH models. It was found that GARCH model gave much better estimation and forecasting ability. Strong persistence in mean has been found giving suspicions of market inefficiency and strong incentives for arbitrage opportunities. Finally, the change in the regulatory framework has been controlled and found to have significant impact. (author)

  11. Uncertainty of Volatility Estimates from Heston Greeks

    Directory of Open Access Journals (Sweden)

    Oliver Pfante

    2018-01-01

    Full Text Available Volatility is a widely recognized measure of market risk. As volatility is not observed it has to be estimated from market prices, i.e., as the implied volatility from option prices. The volatility index VIX making volatility a tradeable asset in its own right is computed from near- and next-term put and call options on the S&P 500 with more than 23 days and less than 37 days to expiration and non-vanishing bid. In the present paper we quantify the information content of the constituents of the VIX about the volatility of the S&P 500 in terms of the Fisher information matrix. Assuming that observed option prices are centered on the theoretical price provided by Heston's model perturbed by additive Gaussian noise we relate their Fisher information matrix to the Greeks in the Heston model. We find that the prices of options contained in the VIX basket allow for reliable estimates of the volatility of the S&P 500 with negligible uncertainty as long as volatility is large enough. Interestingly, if volatility drops below a critical value of roughly 3%, inferences from option prices become imprecise because Vega, the derivative of a European option w.r.t. volatility, and thereby the Fisher information nearly vanishes.

  12. A regime-switching stochastic volatility model for forecasting electricity prices

    DEFF Research Database (Denmark)

    Exterkate, Peter; Knapik, Oskar

    In a recent review paper, Weron (2014) pinpoints several crucial challenges outstanding in the area of electricity price forecasting. This research attempts to address all of them by i) showing the importance of considering fundamental price drivers in modeling, ii) developing new techniques for ...... on explanatory variables. Bayesian inference is explored in order to obtain predictive densities. The main focus of the paper is on shorttime density forecasting in Nord Pool intraday market. We show that the proposed model outperforms several benchmark models at this task....

  13. Asymptotic analysis for a simple explicit estimator in Barndorff-Nielsen and Shephard stochastic volatility models

    DEFF Research Database (Denmark)

    Hubalek, Friedrich; Posedel, Petra

    expressions for the asymptotic covariance matrix. We develop in detail the martingale estimating function approach for a bivariate model, that is not a diffusion, but admits jumps. We do not use ergodicity arguments. We assume that both, logarithmic returns and instantaneous variance are observed...... on a discrete grid of fixed width, and the observation horizon tends to infinity. This anaysis is a starting point and benchmark for further developments concerning optimal martingale estimating functions, and for theoretical and empirical investigations, that replace the (actually unobserved) variance process...

  14. The influences of delay time on the stability of a market model with stochastic volatility

    Science.gov (United States)

    Li, Jiang-Cheng; Mei, Dong-Cheng

    2013-02-01

    The effects of the delay time on the stability of a market model are investigated, by using a modified Heston model with a cubic nonlinearity and cross-correlated noise sources. These results indicate that: (i) There is an optimal delay time τo which maximally enhances the stability of the stock price under strong demand elasticity of stock price, and maximally reduces the stability of the stock price under weak demand elasticity of stock price; (ii) The cross correlation coefficient of noises and the delay time play an opposite role on the stability for the case of the delay time τo. Moreover, the probability density function of the escape time of stock price returns, the probability density function of the returns and the correlation function of the returns are compared with other literatures.

  15. Modelling and application of stochastic processes

    CERN Document Server

    1986-01-01

    The subject of modelling and application of stochastic processes is too vast to be exhausted in a single volume. In this book, attention is focused on a small subset of this vast subject. The primary emphasis is on realization and approximation of stochastic systems. Recently there has been considerable interest in the stochastic realization problem, and hence, an attempt has been made here to collect in one place some of the more recent approaches and algorithms for solving the stochastic realiza­ tion problem. Various different approaches for realizing linear minimum-phase systems, linear nonminimum-phase systems, and bilinear systems are presented. These approaches range from time-domain methods to spectral-domain methods. An overview of the chapter contents briefly describes these approaches. Also, in most of these chapters special attention is given to the problem of developing numerically ef­ ficient algorithms for obtaining reduced-order (approximate) stochastic realizations. On the application side,...

  16. Stochastic spin-one massive field

    International Nuclear Information System (INIS)

    Lim, S.C.

    1984-01-01

    Stochastic quantization schemes of Nelson and Parisi and Wu are applied to a spin-one massive field. Unlike the scalar case Nelson's stochastic spin-one massive field cannot be identified with the corresponding euclidean field even if the fourth component of the euclidean coordinate is taken as equal to the real physical time. In the Parisi-Wu quantization scheme the stochastic Proca vector field has a similar property as the scalar field; which has an asymptotically stationary part and a transient part. The large equal-time limit of the expectation values of the stochastic Proca field are equal to the expectation values of the corresponding euclidean field. In the Stueckelberg formalism the Parisi-Wu scheme gives rise to a stochastic vector field which differs from the massless gauge field in that the gauge cannot be fixed by the choice of boundary condition. (orig.)

  17. Turbulent response in a stochastic regime

    International Nuclear Information System (INIS)

    Molvig, K.; Freidberg, J.P.; Potok, R.; Hirshman, S.P.; Whitson, J.C.; Tajima, T.

    1981-06-01

    The theory for the non-linear, turbulent response in a system with intrinsic stochasticity is considered. It is argued that perturbative Eulerian theories, such as the Direct Interaction Approximation (DIA), are inherently unsuited to describe such a system. The exponentiation property that characterizes stochasticity appears in the Lagrangian picture and cannot even be defined in the Eulerian representation. An approximation for stochastic systems - the Normal Stochastic Approximation - is developed and states that the perturbed orbit functions (Lagrangian fluctuations) behave as normally distributed random variables. This is independent of the Eulerian statistics and, in fact, we treat the Eulerian fluctuations as fixed. A simple model problem (appropriate for the electron response in the drift wave) is subjected to a series of computer experiments. To within numerical noise the results are in agreement with the Normal Stochastic Approximation. The predictions of the DIA for this mode show substantial qualitative and quantitative departures from the observations

  18. Origin of Volatiles in Earth: Indigenous Versus Exogenous Sources Based on Highly Siderophile, Volatile Siderophile, and Light Volatile Elements

    Science.gov (United States)

    Righter, K.; Danielson, L.; Pando, K. M.; Marin, N.; Nickodem, K.

    2015-01-01

    Origin of Earth's volatiles has traditionally been ascribed to late accretion of material after major differentiation events - chondrites, comets, ice or other exogenous sources. A competing theory is that the Earth accreted its volatiles as it was built, thus water and other building blocks were present early and during differentiation and core formation (indigenous). Here we discuss geochemical evidence from three groups of elements that suggests Earth's volatiles were acquired during accretion and did not require additional sources after differentiation.

  19. Inflation Volatility and the Inflation-Growth Tradeoff in India

    OpenAIRE

    Raghbendra Jha; Varsha S. Kulkarni

    2012-01-01

    This paper amends the New Keynesian Phillips curve model to include inflation volatility and tests the determinants of such volatility for India. It provides results on the determinants of inflation volatility and expected inflation volatility for OLS and ARDL (1,1) models and for change in inflation volatility and change in expected inflation volatility using ECM models. Output gap affects change in expected inflation volatility along (in the ECM model) and not in the other models. Major det...

  20. Volatile accretion history of the Earth.

    Science.gov (United States)

    Wood, B J; Halliday, A N; Rehkämper, M

    2010-10-28

    It has long been thought that the Earth had a protracted and complex history of volatile accretion and loss. Albarède paints a different picture, proposing that the Earth first formed as a dry planet which, like the Moon, was devoid of volatile constituents. He suggests that the Earth's complement of volatile elements was only established later, by the addition of a small veneer of volatile-rich material at ∼100 Myr (here and elsewhere, ages are relative to the origin of the Solar System). Here we argue that the Earth's mass balance of moderately volatile elements is inconsistent with Albarède's hypothesis but is well explained by the standard model of accretion from partially volatile-depleted material, accompanied by core formation.