WorldWideScience

Sample records for supervisory control closed-loop

  1. Staying competitive with advanced technologies for closed loop supervisory control

    Energy Technology Data Exchange (ETDEWEB)

    Radl, B.J.; Roland, W.B. [Pegasus Technologies Corp., Painesville, OH (United States); Kish, B. [Penn Power, New Castle, PA (United States)

    1996-05-01

    The following paper discusses the experience gained from installing a neural network-based supervisory control system for selected combustion parameters at Penn Power`s New Castle station. The primary goal of the program was to reduce NO{sub x} emissions, while maintaining or improving unit heat rate. The advanced technologies used to implement supervisory control include: Neural Networks, Genetic Algorithms, Pattern Recognition and Data Visualization. The program was jointly funded by Ohio Edison, U.S. Department of Energy (DOE), Environmental Protection Agency (EPA) and Pegasus Technologies Corporation, under a National Industrial Competitiveness through Energy, Environment and Economics (NICE) grant program. The system is installed on a 1950s vintage Babcock & Wilcox front-fired (four levels) drum unit with a gross generation capacity of 146 MW The program linked a Unix workstation, where the supervisory control system resides, with a Network 90 Digital Control System (DCS). The system uses a neural network-based nonlinear model of the combustion process to interactively adjust setpoints and bias settings in the DCS. The system performs many {open_quotes}what if{close_quotes} simulations to optimize setpoints for the current operating conditions. The neural network model is updated periodically, learning from the most recent data. New setpoints are generated accordingly and downloaded into the DCS. Setpoint and bias adjustments are constrained within the original control system limits. Conditioning algorithms were developed to handle the inherently {open_quote}noisy{close_quote} input data and to provide stable output recommendations. Test results and parameters used for combustion optimization are summarized in this paper.

  2. Laser welding closed-loop power control

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove

    2003-01-01

    A closed-loop control system is developed to maintain an even seam width on the root side of a laser weld by continually controlling the output laser power of a 1500 W CO2 laser.......A closed-loop control system is developed to maintain an even seam width on the root side of a laser weld by continually controlling the output laser power of a 1500 W CO2 laser....

  3. Laser welding closed-loop power control

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove

    2003-01-01

    A closed-loop control system is developed to maintain an even seam width on the root side of a laser weld by continually controlling the output laser power of a 1500 W CO2 laser.......A closed-loop control system is developed to maintain an even seam width on the root side of a laser weld by continually controlling the output laser power of a 1500 W CO2 laser....

  4. Closed-loop control of magnetotactic bacteria

    NARCIS (Netherlands)

    Khalil, I.S.M.; Pichel, M.P.; Abelmann, L.; Misra, S.

    2013-01-01

    Realization of point-to-point positioning of a magnetotactic bacterium (MTB) necessitates the application of a relatively large magnetic field gradients to decrease its velocity in the vicinity of a reference position. We investigate an alternative closed-loop control approach to position the MTB. T

  5. Closed-loop control of magnetotactic bacteria

    NARCIS (Netherlands)

    Khalil, I.S.M.; Pichel, Marc Philippe; Pichel, M.P.; Abelmann, Leon; Misra, Sarthak

    Realization of point-to-point positioning of a magnetotactic bacterium (MTB) necessitates the application of a relatively large magnetic field gradients to decrease its velocity in the vicinity of a reference position. We investigate an alternative closed-loop control approach to position the MTB.

  6. Closed-Loop Tension Control System for Injection Moulding Machine

    African Journals Online (AJOL)

    Closed-Loop Tension Control System for Injection Moulding Machine. ... Open Access DOWNLOAD FULL TEXT ... it demonstrated a new technological advancement and the theory of moulding which prevents possible spillage occurrences.

  7. Iterative LQG Controller Design Through Closed-Loop Identification

    Science.gov (United States)

    Hsiao, Min-Hung; Huang, Jen-Kuang; Cox, David E.

    1996-01-01

    This paper presents an iterative Linear Quadratic Gaussian (LQG) controller design approach for a linear stochastic system with an uncertain open-loop model and unknown noise statistics. This approach consists of closed-loop identification and controller redesign cycles. In each cycle, the closed-loop identification method is used to identify an open-loop model and a steady-state Kalman filter gain from closed-loop input/output test data obtained by using a feedback LQG controller designed from the previous cycle. Then the identified open-loop model is used to redesign the state feedback. The state feedback and the identified Kalman filter gain are used to form an updated LQC controller for the next cycle. This iterative process continues until the updated controller converges. The proposed controller design is demonstrated by numerical simulations and experiments on a highly unstable large-gap magnetic suspension system.

  8. Closed Loop Control of Soft Switched Interleaved Buck Converter

    Directory of Open Access Journals (Sweden)

    R. Shenbagalakshmi

    2012-06-01

    Full Text Available Design, Modeling and Simulation of a closed loop control is presented for Interleaved Buck Converter with Soft Switching. The features of the closed loop system are to reduce the switching losses and load current sharing among the parallel connected converters. The control system of the converter is designed using PWM technique. In order to improve the transient response and dynamic stability of the converters, the controller parameters are designed based on current mode control. Resonant components thus designed enable the application of zero current switching for both the converters connected in parallel thereby maintaining greater efficiency and minimizing voltage and current oscillations. The system analysis, design and performance are verified through simulation using MATLAB/Simulink environment. The simulation approach reveals the high speed dynamic performance of the closed loop system designed using robust PID controller. The laboratory prototype of the Buck converter is developed to verify the controller platform using PIC16F877A microcontroller.

  9. Virtual grasping: closed-loop force control using electrotactile feedback.

    Science.gov (United States)

    Jorgovanovic, Nikola; Dosen, Strahinja; Djozic, Damir J; Krajoski, Goran; Farina, Dario

    2014-01-01

    Closing the control loop by providing somatosensory feedback to the user of a prosthesis is a well-known, long standing challenge in the field of prosthetics. Various approaches have been investigated for feedback restoration, ranging from direct neural stimulation to noninvasive sensory substitution methods. Although there are many studies presenting closed-loop systems, only a few of them objectively evaluated the closed-loop performance, mostly using vibrotactile stimulation. Importantly, the conclusions about the utility of the feedback were partly contradictory. The goal of the current study was to systematically investigate the capability of human subjects to control grasping force in closed loop using electrotactile feedback. We have developed a realistic experimental setup for virtual grasping, which operated in real time, included a set of real life objects, as well as a graphical and dynamical model of the prosthesis. We have used the setup to test 10 healthy, able bodied subjects to investigate the role of training, feedback and feedforward control, robustness of the closed loop, and the ability of the human subjects to generalize the control to previously "unseen" objects. Overall, the outcomes of this study are very optimistic with regard to the benefits of feedback and reveal various, practically relevant, aspects of closed-loop control.

  10. Closed Loop Controlled ER-Actuator

    Science.gov (United States)

    Wolff, C.

    The results of the investigation regarding the suitability of ERF when applied in hydraulics have shown so far that constructing electrorheological flow resistors for the control of pressure and volume flow is possible in principle. One of the main advantages when using the ER-technology in hydraulic systems can be seen in the high reaction rate of the ER-effect. The investigations presented in this article document the dynamic qualities of ER-fluids by means of a practical exploitation for the control of a cylinder actuator. Due to the particular possibilities for design of ER-control resistors a compact cylinder has resulted which differs considerably from traditional cylinder actuators in its construction and dynamic behaviour.

  11. A method for closed loop automatic tuning of PID controllers

    Directory of Open Access Journals (Sweden)

    Tor S. Schei

    1992-07-01

    Full Text Available A simple method for the automatic tuning of PID controllers in closed loop is proposed. A limit cycle is generated through a nonlinear feedback path from the process output to the controller reference signal. The frequency of this oscillation is above the crossover frequency and below the critical frequency of the loop transfer function. The amplitude and frequency of the oscillation are estimated and the control parameters are adjusted iteratively such that the closed loop transfer function from the controller reference to the process output attains a specified amplitude at the oscillation frequency.

  12. Closed Loop Control and Turbulent Flows

    Science.gov (United States)

    2005-10-01

    first described in some detail by Ingard [8], but re-discovered, developed, and applied to problems in flow control by Glezer and co-workers [19, 20... Ingard . On the theory and design of acoustic resonators. J. Acoustical Soc. of America, 25(6):1037-1060, 1953. [9] J. Kim, P. Moin, and R. Moser

  13. Closed-Loop Control of MEMS Variable Optical Attenuator (VOA)

    Institute of Scientific and Technical Information of China (English)

    H.Cai; X.; M.; Zhang; A.; Q.; Liu; Y.; X.; Wang; C.; Lu

    2003-01-01

    This paper reports the development of an optical power regulator based on surface-micromachined variable optical attenuators (VOAs). By use of closed-loop control circuits, each VOA module implements the functions of power setpoint tracking, disturbance rejection and ripple suppression.

  14. An Architectural Style for Closed-loop Process-Control

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak

    This report describes an architectural style for distributed closed-loop process control systems with high performance and hard real-time constraints. The style strikes a good balance between the architectural qualities of performance and modifiability/maintainability that traditionally are often...

  15. An Architectural Style for Closed-loop Process-Control

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak; Eriksen, Ole

    2003-01-01

    This report describes an architectural style for distributed closed-loop process control systems with high performance and hard real-time constraints. The style strikes a good balance between the architectural qualities of performance and modifiability/maintainability that traditionally are often...

  16. Ammonia sensor for closed-loop SCR control

    NARCIS (Netherlands)

    Wang, D.Y.; Yao, S.; Shost, M.; Yoo, J.H.; Cabush, D.; Racine, D.; Cloudt, R.P.M.; Willems, F.P.T.

    2009-01-01

    Selective Catalytic Reduction (SCR) is the dominant solution for meeting future NOx reduction regulations for heavy-duty diesel powertrains. SCR systems benefit from closed-loop control if an appropriate exhaust gas sensor were available. An ammonia sensor has recently been developed for use as a fe

  17. Closed-loop and robust control of quantum systems.

    Science.gov (United States)

    Chen, Chunlin; Wang, Lin-Cheng; Wang, Yuanlong

    2013-01-01

    For most practical quantum control systems, it is important and difficult to attain robustness and reliability due to unavoidable uncertainties in the system dynamics or models. Three kinds of typical approaches (e.g., closed-loop learning control, feedback control, and robust control) have been proved to be effective to solve these problems. This work presents a self-contained survey on the closed-loop and robust control of quantum systems, as well as a brief introduction to a selection of basic theories and methods in this research area, to provide interested readers with a general idea for further studies. In the area of closed-loop learning control of quantum systems, we survey and introduce such learning control methods as gradient-based methods, genetic algorithms (GA), and reinforcement learning (RL) methods from a unified point of view of exploring the quantum control landscapes. For the feedback control approach, the paper surveys three control strategies including Lyapunov control, measurement-based control, and coherent-feedback control. Then such topics in the field of quantum robust control as H(∞) control, sliding mode control, quantum risk-sensitive control, and quantum ensemble control are reviewed. The paper concludes with a perspective of future research directions that are likely to attract more attention.

  18. Closed-Loop and Robust Control of Quantum Systems

    Directory of Open Access Journals (Sweden)

    Chunlin Chen

    2013-01-01

    Full Text Available For most practical quantum control systems, it is important and difficult to attain robustness and reliability due to unavoidable uncertainties in the system dynamics or models. Three kinds of typical approaches (e.g., closed-loop learning control, feedback control, and robust control have been proved to be effective to solve these problems. This work presents a self-contained survey on the closed-loop and robust control of quantum systems, as well as a brief introduction to a selection of basic theories and methods in this research area, to provide interested readers with a general idea for further studies. In the area of closed-loop learning control of quantum systems, we survey and introduce such learning control methods as gradient-based methods, genetic algorithms (GA, and reinforcement learning (RL methods from a unified point of view of exploring the quantum control landscapes. For the feedback control approach, the paper surveys three control strategies including Lyapunov control, measurement-based control, and coherent-feedback control. Then such topics in the field of quantum robust control as H∞ control, sliding mode control, quantum risk-sensitive control, and quantum ensemble control are reviewed. The paper concludes with a perspective of future research directions that are likely to attract more attention.

  19. Closed-Loop and Activity-Guided Optogenetic Control

    Science.gov (United States)

    Grosenick, Logan; Marshel, James H.; Deisseroth, Karl

    2016-01-01

    Advances in optical manipulation and observation of neural activity have set the stage for widespread implementation of closed-loop and activity-guided optical control of neural circuit dynamics. Closing the loop optogenetically (i.e., basing optogenetic stimulation on simultaneously observed dynamics in a principled way) is a powerful strategy for causal investigation of neural circuitry. In particular, observing and feeding back the effects of circuit interventions on physiologically relevant timescales is valuable for directly testing whether inferred models of dynamics, connectivity, and causation are accurate in vivo. Here we highlight technical and theoretical foundations as well as recent advances and opportunities in this area, and we review in detail the known caveats and limitations of optogenetic experimentation in the context of addressing these challenges with closed-loop optogenetic control in behaving animals. PMID:25856490

  20. Simulation of closed loop controlled boost converter for solar installation

    Directory of Open Access Journals (Sweden)

    Kalirasu Athimulam

    2010-01-01

    Full Text Available With the shortage of the energy and ever increasing of the oil price, research on the renewable and green energy sources, especially the solar arrays and the fuel cells, becomes more and more important. How to achieve high stepup and high efficiency DC/DC converters is the major consideration in the renewable power applications due to the low voltage of PV arrays and fuel cells. In this paper digital simulation of closed loop controlled boost converter for solar installation is presented. Circuit models for open loop and closed loop controlled systems are developed using the blocks of simulink. The simulation results are compared with the theoretical results. This converter has advantages like improved power factor, fast response and reduced hardware. .

  1. An open plus nonlinear closed loop control of chaotic oscillators

    Institute of Scientific and Technical Information of China (English)

    陈立群

    2002-01-01

    An open plus nonlinear closed loop control law is presented for chaotic oscillations described by a set of non-autonomous second-order ordinary differential equations. It is proven that the basins of entrainment are global whenthe right-hand sides of the equations are given by arbitrary polynomial functions. The forced Duffing oscillator and theforced van der Pol oscillator are treated as numerical examples to demonstrate the applications of the method.

  2. Gain Scheduling Control based on Closed-Loop System Identification

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, Klaus

    This paper deals with system identification and gain scheduling control of multi-variable nonlinear systems. We propose a novel scheme where a linear approximation of the system model is obtained in an operating point; then, a Youla-Kucera (YJBK) parameter specifying the difference between...... the first and a second operating point is identified in closed-loop using system identification methods with open-loop properties. Next, a linear controller is designed for this linearised model, and gain scheduling control can subsequently be achieved by interpolating between each controller...

  3. Online Learning ARMA Controllers With Guaranteed Closed-Loop Stability.

    Science.gov (United States)

    Sahin, Savas; Guzelis, Cuneyt

    2016-11-01

    This paper presents a novel online block adaptive learning algorithm for autoregressive moving average (ARMA) controller design based on the real data measured from the plant. The method employs ARMA input-output models both for the plant and the resulting closed-loop system. In a sliding window, the plant model parameters are identified first offline using a supervised learning algorithm minimizing an ε -insensitive and regularized identification error, which is the window average of the distances between the measured plant output and the model output for the input provided by the controller. The optimal controller parameters are then determined again offline for another sliding window as the solution to a constrained optimization problem, where the cost is the ε -insensitive and regularized output tracking error and the constraints that are linear inequalities of the controller parameters are imposed for ensuring the closed-loop system to be Schur stable. Not only the identification phase but also the controller design phase uses the input-output samples measured from the plant during online learning. In the developed online controller design method, the controller parameters can always be kept in a parameter region providing Schur stability for the closed-loop system. The ε -insensitiveness provides robustness against disturbances, so does the regularization better generalization performance in the identification and the control. The method is tested on benchmark plants, including the inverted pendulum and dc motor models. The method is also tested on an emulated and also a real dc motor by online block adaptive learning ARMA controllers, in particular, Proportional-Integral-Derivative controllers.

  4. Closed-loop separation control using machine learning

    CERN Document Server

    Gautier, Nicolas; Aider, Jean-Luc; Noack, Bernd; Segond, Marc; Abel, Markus

    2014-01-01

    A novel, model free, approach to experimental closed-loop flow control is implemented on a separated flow. Feedback control laws are generated using genetic programming where they are optimized using replication, mutation and cross-over of best performing laws to produce a new generation of candidate control laws. This optimization process is applied automatically to a backward-facing step flow at Re=1350, controlled by a slotted jet, yielding an effective control law. Convergence criterion are suggested. The law is able to produce effective action even with major changes in the flow state, demonstrating its robustness. The underlying physical mechanisms leveraged by the law are analyzed and discussed. Contrary to traditional periodic forcing of the shear layer, this new control law plays on the physics of the recirculation area downstream the step. While both control actions are fundamentally different they still achieve the same level of effectiveness. Furthermore the new law is also potentially easier and ...

  5. Closed-Loop Turbulence Control Using Machine Learning

    CERN Document Server

    Duriez, Thomas; Cordier, Laurent; Noack, Bernd R; Delville, Joël; Bonnet, Jean-Paul; Segond, Marc; Abel, Markus

    2014-01-01

    We propose a general model-free strategy for feedback control design of turbulent flows. This strategy called 'machine learning control' (MLC) is capable of exploiting nonlinear mechanisms in a systematic unsupervised manner. It relies on an evolutionary algorithm that is used to evolve an ensemble of feedback control laws until minimization of a targeted cost function. This methodology can be applied to any non-linear multiple-input multiple-output (MIMO) system to derive an optimal closed-loop control law. MLC is successfully applied to the stabilization of nonlinearly coupled oscillators exhibiting frequency cross-talk, to the maximization of the largest Lyapunov exponent of a forced Lorenz system, and to the mixing enhancement in an experimental mixing layer flow. We foresee numerous potential applications to most nonlinear MIMO control problems, particularly in experiments.

  6. Passive Identification is Non Stationary Objects With Closed Loop Control

    Science.gov (United States)

    Dyadik, Valeriy F.; Nadezhdin, Igor S.; Goryunov, Alexey G.; Manenti, Flavio

    2016-08-01

    Typically chemical processes have significant nonlinear dynamics, but despite this, industry is conventionally still using PID-based regulatory control systems. Moreover, process units are interconnected, in terms of inlet and outlet material/energy flows, to other neighbouring units, thus their dynamic behaviour is strongly influenced by these connections and, as a consequence, conventional control systems performance often proves to be poor. However, there a hybrid fuzzy PID control logic, whose tuning parameters are provided in real time. The fuzzy controller tuning is made on the basis of Mamdani controller, also exploiting the results coming from an identification procedure that is carried on when an unmeasured step disturbance of any shape affects the process behaviour. This paper presents procedure for identifying technological object control in a closed loop, i. e. that operates the automated control system. The variation in the controlled variable, caused by the change of the nonmeasurable disturbance, is considered the initial signal for the identification procedure. The parameters of the control object are found by optimization method Levenberg-Marquardt.

  7. Sensor enabled closed-loop bending control of soft beams

    Science.gov (United States)

    Case, Jennifer C.; White, Edward L.; Kramer, Rebecca K.

    2016-04-01

    Control of soft-bodied systems is challenging, as the absence of rigidity typically implies distributed deformations and infinite degrees-of-freedom. In this paper, we demonstrate closed-loop control of three elastomer beams that vary in bending stiffness. The most stiff beam is comprised of a single prismatic structure made from a single elastomer. In the next beam, increased flexibility is introduced via an indentation in the elastomer, forming a joint. The most flexible beam uses a softer elastomer in the joint section, along with an indentation. An antagonistic pair of actuators bend the joint while a pair of liquid-metal-embedded strain sensors provide angle feedback to a control loop. We were able to achieve control of the system with a proportional-integral-derivative control algorithm. The procedure we demonstrate in this work is not dependent on actuator and sensor choice and could be applied to to other hardware systems, as well as more complex multi-joint robotic structures in the future.

  8. Closed-loop control for power tower heliostats

    Science.gov (United States)

    Convery, Mark R.

    2011-10-01

    In a Power Tower solar thermal power plant, alignment and control of the heliostats constitutes one of the largest costs of both time and money. This is especially the case in systems where individual heliostats are small (~1m2). I describe a closed-loop control system that generates the required feedback by inducing small mechanical vibrations in the heliostat reflector surface using piezoelectric actuators. These vibrations induce time-dependent changes in the reflected wavefront that can be detected by photosensors surrounding the thermal receiver target. Time and frequency encoding of the vibrations allows identification of a misaligned heliostat from among the thousands in the system. Corrections can then be applied to bring the reflected beam onto the receiver target. This technique can, in principle, control thousands of heliostats simultaneously.Outdoor testing of a small-scale model of this system has confirmed that such a system is effective and can achieve milliradian tracking accuracy. If such a system were implemented in a commercial plant, it could relax the accuracy specification required of the heliostats as well as provide an automated alignment and calibration system. This could significantly reduce the installed cost of the heliostat field.

  9. Exercise in Closed-Loop Control : A Major Hurdle

    NARCIS (Netherlands)

    Bon, Arianne C. van; Verbitskiy, Eugeny; Basum, Golo von; Hoekstra, Joost B.L.; Vries, J. Hans de

    2011-01-01

    Background: People with type 1 diabetes mellitus (T1DM) are at risk for exercise-induced hypoglycemia. Prevention of such hypoglycemia in a closed-loop setting is a major challenge. Markers for automated detection of physical activity could be heart rate (HR) and body acceleration counts (AC).

  10. Production planning and control of closed-loop supply chains

    NARCIS (Netherlands)

    K. Inderfurth (Karl); R.H. Teunter (Ruud)

    2001-01-01

    textabstractMore and more supply chains emerge that include a return flow of materials. Many original equipment manufacturers are nowadays engaged in the remanufacturing business. In many process industries, production defectives and by-products are reworked. These closed-loop supply chains deserve

  11. Properties of Closed-Loop Reference Models in Adaptive Control: Part I Full States Accessible

    CERN Document Server

    Gibson, Travis E; Lavretsky, Eugene

    2012-01-01

    This paper explores the properties of adaptive systems with closed-loop reference models. Historically, reference models in adaptive systems run open-loop in parallel with the plant and controller, using no information from the plant or controller to alter the trajectory of the reference system. Closed-loop reference models on the other hand use information from the plant to alter the reference trajectory. We show that closed-loop reference models have one more free design parameter as compared to their open-loop counterparts. Using the extra design freedom, we study closed--loop reference models and their impact on transient response and robustness in adaptive systems.

  12. A theory of desynchronisable closed loop system

    Directory of Open Access Journals (Sweden)

    Harsh Beohar

    2010-10-01

    Full Text Available The task of implementing a supervisory controller is non-trivial, even though different theories exist that allow automatic synthesis of these controllers in the form of automata. One of the reasons for this discord is due to the asynchronous interaction between a plant and its controller in implementations, whereas the existing supervisory control theories assume synchronous interaction. As a consequence the implementation suffer from the so-called inexact synchronisation problem. In this paper we address the issue of inexact synchronisation in a process algebraic setting, by solving a more general problem of refinement. We construct an asynchronous closed loop system by introducing a communication medium in a given synchronous closed loop system. Our goal is to find sufficient conditions under which a synchronous closed loop system is branching bisimilar to its corresponding asynchronous closed loop system.

  13. Performance Evaluation of Uplink Closed Loop Power Control for LTE System

    DEFF Research Database (Denmark)

    Bilal, Muhammad; Mohamed, Abbas

    Uplink power control is a key radio resource management feature in the 3GPP Long Term Evolution (LTE). In order to adapt to changes in the inter-cell interference situation or to correct power amplifier errors, closed-loop adjustments should be applied. In this paper the performance of closed loop...... power control combined with fractional path loss compensation factor is studied, and an optimal value for the path loss compensation factor is investigated. The closed loop power control with fractional path loss compensation factor is found to improve the system performance in terms of mean bit rate...... by 68% and utilizes the battery power more effectively....

  14. Clinical requirements for closed-loop control systems.

    Science.gov (United States)

    Clarke, William L; Renard, Eric

    2012-03-01

    Closed-loop (CL) therapy systems should be safe, efficacious, and easily manageable for type 1 diabetes mellitus patient use. For the first two clinical requirements, noninferiority and superiority criteria must be determined based on current conventional and intensive therapy outcomes. Current frequencies of hypoglycemia and diabetic ketoacidosis are reviewed and safety expectations for CL therapy systems are proposed. Glycosylated hemoglobin levels lower than current American Diabetes Association recommendations for different age groups are proposed as superiority criteria. Measures of glycemic variability are described and the recording of blood glucose levels as percentages within, above, and below a target range are suggested as reasonable alternatives to sophisticated statistical analyses. It is also suggested that Diabetes Quality of Life and Fear of Hypoglycemia surveys should be used to track psychobehavioral outcomes. Manageability requirements for safe and effective clinical management of CL systems are worth being underscored. The weakest part of the infusion system remains the catheter, which is exposed to variable and under-delivery incidents. Detection methods are needed to warn both the system and the patient about altered insulin delivery, including internal pressure and flow alarms. Glucose monitor sensor accuracy is another requirement; it includes the definition of conditions that lead to capillary glucose measurement, eventually followed by sensor recalibration or replacement. The crucial clinical requirement will be a thorough definition of the situations when the patient needs to move from CL to manual management of insulin delivery, or inversely can switch back to CL after a requested interruption. Instructions about these actions will constitute a major part of the education process of the patients before using CL systems and contribute to the manageability of these systems.

  15. H2-optimal control of an adaptive optics system: part II, closed-loop controller design

    NARCIS (Netherlands)

    Hinnen, K.; Doelman, N.; Verhaegen, M.

    2005-01-01

    The problem of finding the closed-loop optimal controller is formulated in an H2-optimal control framework. This provides a natural way to account for the fact that in many AO systems the wavefront phase cannot be measured directly. Given a multi-variable disturbance model of both wavefront slopes a

  16. A Novel Dynamic Co-Simulation Analysis for Overall Closed Loop Operation Control of a Large Wind Turbine

    Directory of Open Access Journals (Sweden)

    Ching-Sung Wang

    2016-08-01

    Full Text Available A novel dynamic co-simulation methodology of overall wind turbine systems is presented. This methodology combines aerodynamics, mechanism dynamics, control system dynamics, and subsystems dynamics. Aerodynamics and turbine properties were modeled in FAST (Fatigue, Aerodynamic, Structures, and Turbulence, and ADAMS (Automatic Dynamic Analysis of Mechanical Systems performed the mechanism dynamics; control system dynamics and subsystem dynamics such as generator, pitch control system, and yaw control system were modeled and built in MATLAB/SIMULINK. Thus, this comprehensive integration of methodology expands both the flexibility and controllability of wind turbines. The dynamic variations of blades, rotor dynamic response, and tower vibration can be performed under different inputs of wind profile, and the control strategies can be verified in the different closed loop simulation. Besides, the dynamic simulation results are compared with the measuring results of SCADA (Supervisory Control and Data Acquisition of a 2 MW wind turbine for ensuring the novel dynamic co-simulation methodology.

  17. An optimal open/closed-loop control method with application to a pre-stressed thin duralumin plate

    Science.gov (United States)

    Nadimpalli, Sruthi Raju

    The excessive vibrations of a pre-stressed duralumin plate, suppressed by a combination of open-loop and closed-loop controls, also known as open/closed-loop control, is studied in this thesis. The two primary steps involved in this process are: Step (I) with an assumption that the closed-loop control law is proportional, obtain the optimal open-loop control by direct minimization of the performance measure consisting of energy at terminal time and a penalty on open-loop control force via calculus of variations. If the performance measure also involves a penalty on closed-loop control effort then a Fourier based method is utilized. Step (II) the energy at terminal time is minimized numerically to obtain optimal values of feedback gains. The optimal closed-loop control gains obtained are used to describe the displacement and the velocity of open-loop, closed-loop and open/closed-loop controlled duralumin plate.

  18. A closed loop controller for electron-beam evaporators

    Science.gov (United States)

    Band, Alan; Stroscio, Joseph A.

    1996-06-01

    A simple instrument for automatically controlling the deposition rate of an electron-beam evaporator is described. The design incorporates a commercially available, microprocessor based, proportional-integral-differential process controller that provides loop control and automatic determination of optimal proportional, integral, and differential loop constants. A logarithmic amplifier is used to linearize the overall loop response. The controller is used in conjunction with a compact electron-beam heated evaporator.

  19. Optimal closed-loop identification test design for internal model control

    Institute of Scientific and Technical Information of China (English)

    张立群; 邵惠鹤; 戴丹

    2004-01-01

    In this paper, optimal cloeed-loop test design for control is studied. The identified model is used for controller design. The control scheme used is internal model control (IMC) and the design constraint is the power of the process output or that of the reference signal. The measure of performance is the variance of the error between the output of the ideal closed-loop system (with the ideal controller) and that of the actual closed-loop system (with the controller computed from the identified model). Optimal spectrum formulae can be used to determine the PRBS signal in industrious identification.

  20. Closed loop control of the sawtooth instability in nuclear fusion

    NARCIS (Netherlands)

    Witvoet, G.; Steinbuch, M.; Westerhof, E.; Doelman, N.J.; Baar, M.R. de

    2010-01-01

    In nuclear fusion the sawtooth instability is an important plasma phenomenon, having both positive and negative effects on the tokamak plasma. Control of its period is essential in future nuclear fusion reactors. This paper presents a control oriented model of the sawtooth instability, with current

  1. Closed loop control of the sawtooth instability in nuclear fusion

    NARCIS (Netherlands)

    Witvoet, G.; Steinbuch, M.; Westerhof, E.; Doelman, N.J.; Baar, M.R. de

    2010-01-01

    In nuclear fusion the sawtooth instability is an important plasma phenomenon, having both positive and negative effects on the tokamak plasma. Control of its period is essential in future nuclear fusion reactors. This paper presents a control oriented model of the sawtooth instability, with current

  2. Microprocessor Controller in Closed Loop Angular Position Servo System P.

    Directory of Open Access Journals (Sweden)

    P. B. Deshpande

    1989-07-01

    Full Text Available Integrated command, control and copmunication systems are based on the use of computers for digital data processing. The weapon system platforms like missile launchers are given input command for accurate and quick positioning in azimuth and elevation. The technologies of sensors, signal conditioning and associated solid state electronics have moved from analog to digital. Therefore, a position controller has to be designed around a microprocessor in embedded form for usage in such servo control systems. This paper highlights the basic approach for such design and problems which need to be tackled during actual implementation.

  3. Implementation of Close Loop Speed Control with VVVF Control and Slip Regulation on LIM

    Directory of Open Access Journals (Sweden)

    K. Aditya

    2014-04-01

    Full Text Available Open loop VVVF control has the disadvantage of low output torque when working at low frequency and poor speed precision at different load conditions.Various performance-improving schemes have been proposed for the basic VVVF control by compensating slips occurring in the low frequency range and slips caused by changing loads. Numerous papers have been published on the close loop speed control of rotary induction motor. In this paper a close loop speed control with VVVF control and slip regulation has been implemented for LIM based conveyor belt test Rig which compensates the disadvantages of traditional Volts/Hz control. SIMULINK results are presented to validate the effectiveness of proposed scheme.

  4. Closed-loop control of an experimental mixing layer using machine learning control

    CERN Document Server

    Parezanović, Vladimir; Cordier, Laurent; Noack, Bernd R; Delville, Joël; Bonnet, Jean-Paul; Segond, Marc; Abel, Markus; Brunton, Steven L

    2014-01-01

    A novel framework for closed-loop control of turbulent flows is tested in an experimental mixing layer flow. This framework, called Machine Learning Control (MLC), provides a model-free method of searching for the best function, to be used as a control law in closed-loop flow control. MLC is based on genetic programming, a function optimization method of machine learning. In this article, MLC is benchmarked against classical open-loop actuation of the mixing layer. Results show that this method is capable of producing sensor-based control laws which can rival or surpass the best open-loop forcing, and be robust to changing flow conditions. Additionally, MLC can detect non-linear mechanisms present in the controlled plant, and exploit them to find a better type of actuation than the best periodic forcing.

  5. Closed-Loop HIRF Experiments Performed on a Fault Tolerant Flight Control Computer

    Science.gov (United States)

    Belcastro, Celeste M.

    1997-01-01

    ABSTRACT Closed-loop HIRF experiments were performed on a fault tolerant flight control computer (FCC) at the NASA Langley Research Center. The FCC used in the experiments was a quad-redundant flight control computer executing B737 Autoland control laws. The FCC was placed in one of the mode-stirred reverberation chambers in the HIRF Laboratory and interfaced to a computer simulation of the B737 flight dynamics, engines, sensors, actuators, and atmosphere in the Closed-Loop Systems Laboratory. Disturbances to the aircraft associated with wind gusts and turbulence were simulated during tests. Electrical isolation between the FCC under test and the simulation computer was achieved via a fiber optic interface for the analog and discrete signals. Closed-loop operation of the FCC enabled flight dynamics and atmospheric disturbances affecting the aircraft to be represented during tests. Upset was induced in the FCC as a result of exposure to HIRF, and the effect of upset on the simulated flight of the aircraft was observed and recorded. This paper presents a description of these closed- loop HIRF experiments, upset data obtained from the FCC during these experiments, and closed-loop effects on the simulated flight of the aircraft.

  6. Closed-Loop Optimal Control Implementations for Space Applications

    Science.gov (United States)

    2016-12-01

    orientation keep-in zones (e.g., minimum illumination of solar panels ), etc. The complete optimal control problem formulation includes the definition of...torque capacity of a reaction wheel), attitude orientation keep-out zones (e.g., the solar keep-out zone for an optical payload), or attitude...rotation theorem, any rotation or sequence of rotations of a rigid body can be 97 described by a single rotation by an angle about a specific

  7. Closed loop control of sedation for colonoscopy using the Bispectral Index

    NARCIS (Netherlands)

    Leslie, K.; Absalom, A.; Kenny, G. N. C.

    Sixteen patients undergoing colonoscopy were sedated with propofol using a closed-loop control system guided by the Bispectral Index (BIS). Propofol administration, via a target-controlled infusion, was controlled by a proportional-integral-differential control algorithm. The median (range) propofol

  8. Closed-Loop Learning of Visual Control Policies

    CERN Document Server

    Jodogne, S R; 10.1613/jair.2110

    2011-01-01

    In this paper we present a general, flexible framework for learning mappings from images to actions by interacting with the environment. The basic idea is to introduce a feature-based image classifier in front of a reinforcement learning algorithm. The classifier partitions the visual space according to the presence or absence of few highly informative local descriptors that are incrementally selected in a sequence of attempts to remove perceptual aliasing. We also address the problem of fighting overfitting in such a greedy algorithm. Finally, we show how high-level visual features can be generated when the power of local descriptors is insufficient for completely disambiguating the aliased states. This is done by building a hierarchy of composite features that consist of recursive spatial combinations of visual features. We demonstrate the efficacy of our algorithms by solving three visual navigation tasks and a visual version of the classical Car on the Hill control problem.

  9. An open-plus-closed-loop control for chaotic Mathieu-Duffing oscillator

    Institute of Scientific and Technical Information of China (English)

    Jian-he SHEN; Shu-hui CHEN

    2009-01-01

    By using the idea of open-plus-closed-loop(OPCL) control, a controller com-posed of an external excitation and a linear feedback is designed to entrain chaotic tra-jectories of Mathieu-Duffing oscillator to its periodic and higher periodic orbits. The global basin of entrainment of this open-plus-closed-loop control is proved by combining the Lyapunov stability theory with a comparative theorem of initial value problems for second-order ordinary differential equations. Numerical simulations are performed to ver-ify the theoretical results.

  10. A closed-loop photon beam control study for the Advanced Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Portmann, G.; Bengtsson, J.

    1993-05-01

    The third generation Advanced Light Source (ALS) will produce extremely bright photon beams using undulators and wigglers. In order to position the photon beams accurate to the micron level, a closed-loop feedback system is being developed. Using photon position monitors and dipole corrector magnets, a closed-loop system can automatically compensate for modeling uncertainties and exogenous disturbances. The following paper will present a dynamics model for the perturbations of the closed orbit of the electron beam in the ALS storage ring including the vacuum chamber magnetic field penetration effects. Using this reference model, two closed-loop feedback algorithms will be compared -- a classical PI controller and a two degree-of-freedom approach. The two degree-of-freedom method provides superior disturbance rejection while maintaining the desired performance goals. Both methods will address the need to gain schedule the controller due to the time varying dynamics introduced by changing field strengths when scanning the insertion devices.

  11. Indoor SLAM Using Laser and Camera with Closed-Loop Controller for NAO Humanoid Robot

    Directory of Open Access Journals (Sweden)

    Shuhuan Wen

    2014-01-01

    Full Text Available We present a SLAM with closed-loop controller method for navigation of NAO humanoid robot from Aldebaran. The method is based on the integration of laser and vision system. The camera is used to recognize the landmarks whereas the laser provides the information for simultaneous localization and mapping (SLAM . K-means clustering method is implemented to extract data from different objects. In addition, the robot avoids the obstacles by the avoidance function. The closed-loop controller reduces the error between the real position and estimated position. Finally, simulation and experiments show that the proposed method is efficient and reliable for navigation in indoor environments.

  12. Implementation of closed loop control technique for improving the performances of PWM inverter-A review

    Directory of Open Access Journals (Sweden)

    V. M. Deshmukh

    2014-10-01

    Full Text Available this review paper presents closed loop control techniques for controlling the inverter working under different load or KVA ratings. The control strategy of the inverter must guarantee its output waveforms to be sinusoidal with fundamental harmonic. For this purpose, close loop current control strategies such as H∞ repetitive controller, dual closed-loop feedback control, Adaptive Voltage Control, SRFPI controller, Optimal Neural Controller, etc. have been used to meet the power quality requirements imposed by IEEE Interconnection Standards. Based on present scenario regarding energy crises, immediate action is the use of different renewable energy sources (RESs . Out of RESs, solar is gaining more attention. It is very important to design and developed a system which should be efficient enough to utilize the extracted energy for different types of load and feeding of energy into utility grid. Since experimentation and comparison of such inverter models on hardware being relatively expensive, the latest computing tool like MATLAB are considered to be a better alternative to simulate the outcomes of such expensive systems. The proposed closed loop control technique for the inverter working under linear and nonlinear system will be implemented in MATLAB/SIMULINK working platform and results will be analyzed to check its benefits.

  13. Lidar-based wake tracking for closed-loop wind farm control

    Science.gov (United States)

    Raach, Steffen; Schlipf, David; Cheng, Po Wen

    2016-09-01

    This work presents two advancements towards closed-loop wake redirecting of a wind turbine. First, a model-based estimation approach is presented which uses a nacelle-based lidar system facing downwind to obtain information about the wake. A reduced order wake model is described which is then used in the estimation to track the wake. The tracking is demonstrated with lidar measurement data from an offshore campaign and with simulated lidar data from a SOWFA simulation. Second, a controller for closed-loop wake steering is presented. It uses the wake tracking information to set the yaw actuator of the wind turbine to redirect the wake to a desired position. Altogether, this paper aims to present the concept of closed-loop wake redirecting and gives a possible solution to it.

  14. Fuzzy PID controller combines with closed-loop optimal fuzzy reasoning for pitch control system

    Science.gov (United States)

    Li, Yezi; Xiao, Cheng; Sun, Jinhao

    2013-03-01

    PID and fuzzy PID controller are applied into the pitch control system. PID control has simple principle and its parameters setting are rather easy. Fuzzy control need not to establish the mathematical of the control system and has strong robustness. The advantages of fuzzy PID control are simple, easy in setting parameters and strong robustness. Fuzzy PID controller combines with closed-loop optimal fuzzy reasoning (COFR), which can effectively improve the robustness, when the robustness is special requirement. MATLAB software is used for simulations, results display that fuzzy PID controller which combines with COFR has better performances than PID controller when errors exist.

  15. Numerical static state feedback laws for closed-loop singular optimal control

    NARCIS (Netherlands)

    Graaf, de S.C.; Stigter, J.D.; Straten, van G.

    2005-01-01

    Singular and non-singular control trajectories of agricultural and (bio) chemical processes may need to be recalculated from time to time for use in closed-loop optimal control, because of unforeseen changes in state values and noise. This is time consuming. As an alternative, in this paper,

  16. Nanometer range closed-loop control of a stepper micro-motor for data storage

    NARCIS (Netherlands)

    Patrascu, Mihail; Stramigioli, Stefano; Boer, de Meint; Krijnen, Gijs

    2007-01-01

    We present a nanometer range, closed-loop control study for MEMS stepper actuators. Although generically applicable to other types of stepper motors, the control design presented here was particularly intended for one dimensional shuffle actuators fabricated by surface micromachining technology. The

  17. 25m2 target-aligned heliostat with closed-loop control

    CSIR Research Space (South Africa)

    Roos, TH

    2007-09-01

    Full Text Available A 252m target-aligned research heliostat with closed-loop control, with a theoretical concentration of 80 suns, has been built at CSIR in South Africa. The heliostat has four degrees of freedom: Azimuth, Elevation, Rotation and Pitch. A control...

  18. A closed-loop control system for stabilization of MHD events on TEXTOR

    NARCIS (Netherlands)

    Hennen, B.A.; Westerhof, E.; Oosterbeek, J. W.; Nuij, Pwjm; De Lazzari, D.; Spakman, G. W.; de M. Baar,; Steinbuch, M.

    2009-01-01

    This paper presents an integrated installation that facilitates closed-loop control of magnetohydrodynamic (MHD) events in a tokamak by means of electron cyclotron resonance heating and current drive. Model-based control of an elect ro-mechanical launcher, diagnosis and identification of mode featur

  19. A closed-loop control system for stabilization of MHD events on TEXTOR

    NARCIS (Netherlands)

    Hennen, B.A.; Westerhof, E.; Oosterbeek, J. W.; Nuij, Pwjm; De Lazzari, D.; Spakman, G. W.; de M. Baar,; Steinbuch, M.

    2009-01-01

    This paper presents an integrated installation that facilitates closed-loop control of magnetohydrodynamic (MHD) events in a tokamak by means of electron cyclotron resonance heating and current drive. Model-based control of an elect ro-mechanical launcher, diagnosis and identification of mode featur

  20. Open-loop versus closed-loop control of MEMS devices: choices and issues

    Science.gov (United States)

    Borovic, B.; Liu, A. Q.; Popa, D.; Cai, H.; Lewis, F. L.

    2005-10-01

    From a controls point of view, micro electromechanical systems (MEMS) can be driven in an open-loop and closed-loop fashion. Commonly, these devices are driven open-loop by applying simple input signals. If these input signals become more complex by being derived from the system dynamics, we call such control techniques pre-shaped open-loop driving. The ultimate step for improving precision and speed of response is the introduction of feedback, e.g. closed-loop control. Unlike macro mechanical systems, where the implementation of the feedback is relatively simple, in the MEMS case the feedback design is quite problematic, due to the limited availability of sensor data, the presence of sensor dynamics and noise, and the typically fast actuator dynamics. Furthermore, a performance comparison between open-loop and closed-loop control strategies has not been properly explored for MEMS devices. The purpose of this paper is to present experimental results obtained using both open- and closed-loop strategies and to address the comparative issues of driving and control for MEMS devices. An optical MEMS switching device is used for this study. Based on these experimental results, as well as computer simulations, we point out advantages and disadvantages of the different control strategies, address the problems that distinguish MEMS driving systems from their macro counterparts, and discuss criteria to choose a suitable control driving strategy.

  1. Sensory feedback in prosthetics: a standardized test bench for closed-loop control.

    Science.gov (United States)

    Dosen, Strahinja; Markovic, Marko; Hartmann, Cornelia; Farina, Dario

    2015-03-01

    Closing the control loop by providing sensory feedback to the user of a prosthesis is an important challenge, with major impact on the future of prosthetics. Developing and comparing closed-loop systems is a difficult task, since there are many different methods and technologies that can be used to implement each component of the system. Here, we present a test bench developed in Matlab Simulink for configuring and testing the closed-loop human control system in standardized settings. The framework comprises a set of connected generic blocks with normalized inputs and outputs, which can be customized by selecting specific implementations from a library of predefined components. The framework is modular and extensible and it can be used to configure, compare and test different closed-loop system prototypes, thereby guiding the development towards an optimal system configuration. The use of the test bench was demonstrated by investigating two important aspects of closed-loop control: performance of different electrotactile feedback interfaces (spatial versus intensity coding) during a pendulum stabilization task and feedforward methods (joystick versus myocontrol) for force control. The first experiment demonstrated that in the case of trained subjects the intensity coding might be superior to spatial coding. In the second experiment, the control of force was rather poor even with a stable and precise control interface (joystick), demonstrating that inherent characteristics of the prosthesis can be an important limiting factor when considering the overall effectiveness of the closed-loop control. The presented test bench is an important instrument for investigating different aspects of human manual control with sensory feedback.

  2. Closed-loop controller for chest compressions based on coronary perfusion pressure: a computer simulation study.

    Science.gov (United States)

    Wang, Chunfei; Zhang, Guang; Wu, Taihu; Zhan, Ningbo; Wang, Yaling

    2016-03-01

    High-quality cardiopulmonary resuscitation contributes to cardiac arrest survival. The traditional chest compression (CC) standard, which neglects individual differences, uses unified standards for compression depth and compression rate in practice. In this study, an effective and personalized CC method for automatic mechanical compression devices is provided. We rebuild Charles F. Babbs' human circulation model with a coronary perfusion pressure (CPP) simulation module and propose a closed-loop controller based on a fuzzy control algorithm for CCs, which adjusts the CC depth according to the CPP. Compared with a traditional proportion-integration-differentiation (PID) controller, the performance of the fuzzy controller is evaluated in computer simulation studies. The simulation results demonstrate that the fuzzy closed-loop controller results in shorter regulation time, fewer oscillations and smaller overshoot than traditional PID controllers and outperforms the traditional PID controller for CPP regulation and maintenance.

  3. A Method for Precision Closed-Loop Irrigation Using a Modified PID Control Algorithm

    Science.gov (United States)

    Goodchild, Martin; Kühn, Karl; Jenkins, Malcolm; Burek, Kazimierz; Dutton, Andrew

    2016-04-01

    The benefits of closed-loop irrigation control have been demonstrated in grower trials which show the potential for improved crop yields and resource usage. Managing water use by controlling irrigation in response to soil moisture changes to meet crop water demands is a popular approach but requires knowledge of closed-loop control practice. In theory, to obtain precise closed-loop control of a system it is necessary to characterise every component in the control loop to derive the appropriate controller parameters, i.e. proportional, integral & derivative (PID) parameters in a classic PID controller. In practice this is often difficult to achieve. Empirical methods are employed to estimate the PID parameters by observing how the system performs under open-loop conditions. In this paper we present a modified PID controller, with a constrained integral function, that delivers excellent regulation of soil moisture by supplying the appropriate amount of water to meet the needs of the plant during the diurnal cycle. Furthermore, the modified PID controller responds quickly to changes in environmental conditions, including rainfall events which can result in: controller windup, under-watering and plant stress conditions. The experimental work successfully demonstrates the functionality of a constrained integral PID controller that delivers robust and precise irrigation control. Coir substrate strawberry growing trial data is also presented illustrating soil moisture control and the ability to match water deliver to solar radiation.

  4. Closed-loop analysis and control of a non-inverting buck-boost converter

    Science.gov (United States)

    Chen, Zengshi; Hu, Jiangang; Gao, Wenzhong

    2010-11-01

    In this article, a cascade controller is designed and analysed for a non-inverting buck-boost converter. The fast inner current loop uses sliding mode control. The slow outer voltage loop uses the proportional-integral (PI) control. Stability analysis and selection of PI gains are based on the nonlinear closed-loop error dynamics incorporating both the inner and outer loop controllers. The closed-loop system is proven to have a nonminimum phase structure. The voltage transient due to step changes of input voltage or resistance is predictable. The operating range of the reference voltage is discussed. The controller is validated by a simulation circuit. The simulation results show that the reference output voltage is well-tracked under system uncertainties or disturbances, confirming the validity of the proposed controller.

  5. A review of control strategies in closed-loop neuroprosthetic systems

    Directory of Open Access Journals (Sweden)

    James Wright

    2016-07-01

    Full Text Available It has been widely recognized that closed-loop neuroprosthetic systems achieve more favorable outcomes for users then equivalent open-loop devices. Improved performance of tasks, better usability and greater embodiment have all been reported in systems utilizing some form of feedback. However the interdisciplinary work on neuroprosthetic systems can lead to miscommunication due to similarities in well established nomenclature in different fields. Here we present a review of control strategies in existing experimental, investigational and clinical neuroprosthetic systems in order to establish a baseline and promote a common understanding of different feedback modes and closed-loop controllers. The first section provides a brief discussion of feedback control and control theory. The second section reviews the control strategies of recent Brain Machine Interfaces, neuromodulatory implants, neuroprosthetic systems and assistive neurorobotic devices. The final section examines the different approaches to feedback in current neuroprosthetic and neurorobotic systems.

  6. A closed-loop particle swarm optimizer for multivariable process controller design

    Institute of Scientific and Technical Information of China (English)

    Kai HAN; Jun ZHAO; Zu-hua XU; Ji-xin QIAN

    2008-01-01

    Design of general multivariable process controllers is an attractive and practical alternative to optimizing design by evolutionary algorithms (EAs) since it can be formulated as an optimization problem.A closed-loop particle swarm optimization (CLPSO) algorithm is proposed by mapping PSO elements into the closed-loop system based on control theories.At each time step,a proportional integral (PI) controller is used to calculate an updated inertia weight for each particle in swarms from its last fitness.With this modification,limitations caused by a uniform inertia weight for the whole population are avoided,and the particles have enough diversity.After the effectiveness,efficiency and robustness are tested by benchmark functions,CLPSO is applied to design a multivariable proportional-integral-derivative (PID) controller for a solvent dehydration tower in a chemical plant and has improved its performances.

  7. A closed-loop control scheme for steering steady states of glycolysis and glycogenolysis pathway.

    Science.gov (United States)

    Panja, Surajit; Patra, Sourav; Mukherjee, Anirban; Basu, Madhumita; Sengupta, Sanghamitra; Dutta, Pranab K

    2013-01-01

    Biochemical networks normally operate in the neighborhood of one of its multiple steady states. It may reach from one steady state to other within a finite time span. In this paper, a closed-loop control scheme is proposed to steer states of the glycolysis and glycogenolysis (GG) pathway from one of its steady states to other. The GG pathway is modeled in the synergism and saturation system formalism, known as S-system. This S-system model is linearized into the controllable Brunovsky canonical form using a feedback linearization technique. For closed-loop control, the linear-quadratic regulator (LQR) and the linear-quadratic gaussian (LQG) regulator are invoked to design a controller for tracking prespecified steady states. In the feedback linearization technique, a global diffeomorphism function is proposed that facilitates in achieving the regulation requirement. The robustness of the regulated GG pathway is studied considering input perturbation and with measurement noise.

  8. Double closed-loop cascade control for lower limb exoskeleton with elastic actuation.

    Science.gov (United States)

    Zhu, Yanhe; Zheng, Tianjiao; Jin, Hongzhe; Yang, Jixing; Zhao, Jie

    2015-01-01

    Unlike traditional rigid actuators, the significant features of Series Elastic Actuator (SEA) are stable torque control, lower output impedance, impact resistance and energy storage. Recently, SEA has been applied in many exoskeletons. In such applications, a key issue is how to realize the human-exoskeleton movement coordination. In this paper, double closed-loop cascade control for lower limb exoskeleton with SEA is proposed. This control method consists of inner SEA torque loop and outer contact force loop. Utilizing the SEA torque control with a motor velocity loop, actuation performances of SEA are analyzed. An integrated exoskeleton control system is designed, in which joint angles are calculated by internal encoders and resolvers and contact forces are gathered by external pressure sensors. The double closed-loop cascade control model is established based on the feedback signals of internal and external sensor. Movement experiments are accomplished in our prototype of lower limb exoskeleton. Preliminary results indicate the exoskeleton movements with pilot can be realized stably by utilizing this double closed-loop cascade control method. Feasibility of the SEA in our exoskeleton robot and effectiveness of the control method are verified.

  9. Closed Loop Control of Penetration Depth during CO2 Laser Lap Welding Processes

    Directory of Open Access Journals (Sweden)

    Antonio Ancona

    2012-08-01

    Full Text Available In this paper we describe a novel spectroscopic closed loop control system capable of stabilizing the penetration depth during laser welding processes by controlling the laser power. Our novel approach is to analyze the optical emission from the laser generated plasma plume above the keyhole, to calculate its electron temperature as a process-monitoring signal. Laser power has been controlled by using a quantitative relationship between the penetration depth and the plasma electron temperature. The sensor is able to correlate in real time the difference between the measured electron temperature and its reference value for the requested penetration depth. Accordingly the closed loop system adjusts the power, thus maintaining the penetration depth.

  10. Closed Loop Control of Penetration Depth during CO2 Laser Lap Welding Processes

    Science.gov (United States)

    Sibillano, Teresa; Rizzi, Domenico; Mezzapesa, Francesco P.; Lugarà, Pietro Mario; Konuk, Ali Riza; Aarts, Ronald; Veld, Bert Huis in 't; Ancona, Antonio

    2012-01-01

    In this paper we describe a novel spectroscopic closed loop control system capable of stabilizing the penetration depth during laser welding processes by controlling the laser power. Our novel approach is to analyze the optical emission from the laser generated plasma plume above the keyhole, to calculate its electron temperature as a process-monitoring signal. Laser power has been controlled by using a quantitative relationship between the penetration depth and the plasma electron temperature. The sensor is able to correlate in real time the difference between the measured electron temperature and its reference value for the requested penetration depth. Accordingly the closed loop system adjusts the power, thus maintaining the penetration depth. PMID:23112646

  11. Design and simulation of a sensor for heliostat field closed loop control

    Science.gov (United States)

    Collins, Mike; Potter, Daniel; Burton, Alex

    2017-06-01

    Significant research has been completed in pursuit of capital cost reductions for heliostats [1],[2]. The camera array closed loop control concept has potential to radically alter the way heliostats are controlled and installed by replacing high quality open loop targeting systems with low quality targeting devices that rely on measurement of image position to remove tracking errors during operation. Although the system could be used for any heliostat size, the system significantly benefits small heliostats by reducing actuation costs, enabling large numbers of heliostats to be calibrated simultaneously, and enabling calibration of heliostats that produce low irradiance (similar or less than ambient light images) on Lambertian calibration targets, such as small heliostats that are far from the tower. A simulation method for the camera array has been designed and verified experimentally. The simulation tool demonstrates that closed loop calibration or control is possible using this device.

  12. Androgynous, Reconfigurable Closed Loop Feedback Controlled Low Impact Docking System With Load Sensing Electromagnetic Capture Ring

    Science.gov (United States)

    Lewis, James L. (Inventor); Carroll, Monty B. (Inventor); Morales, Ray H. (Inventor); Le, Thang D. (Inventor)

    2002-01-01

    The present invention relates to a fully androgynous, reconfigurable closed loop feedback controlled low impact docking system with load sensing electromagnetic capture ring. The docking system of the present invention preferably comprises two Docking- assemblies, each docking assembly comprising a load sensing ring having an outer face, one of more electromagnets, one or more load cells coupled to said load sensing ring. The docking assembly further comprises a plurality of actuator arms coupled to said load sensing ring and capable of dynamically adjusting the orientation of said load sensing ring and a reconfigurable closed loop control system capable of analyzing signals originating from said plurality of load cells and of outputting real time control for each of the actuators. The docking assembly of the present invention incorporates an active load sensing system to automatically dynamically adjust the load sensing ring during capture instead of requiring significant force to push and realign the ring.

  13. Closed-Loop Process Control for Electron Beam Freeform Fabrication and Deposition Processes

    Science.gov (United States)

    Taminger, Karen M. (Inventor); Hafley, Robert A. (Inventor); Martin, Richard E. (Inventor); Hofmeister, William H. (Inventor)

    2013-01-01

    A closed-loop control method for an electron beam freeform fabrication (EBF(sup 3)) process includes detecting a feature of interest during the process using a sensor(s), continuously evaluating the feature of interest to determine, in real time, a change occurring therein, and automatically modifying control parameters to control the EBF(sup 3) process. An apparatus provides closed-loop control method of the process, and includes an electron gun for generating an electron beam, a wire feeder for feeding a wire toward a substrate, wherein the wire is melted and progressively deposited in layers onto the substrate, a sensor(s), and a host machine. The sensor(s) measure the feature of interest during the process, and the host machine continuously evaluates the feature of interest to determine, in real time, a change occurring therein. The host machine automatically modifies control parameters to the EBF(sup 3) apparatus to control the EBF(sup 3) process in a closed-loop manner.

  14. Real-time closed-loop control for micro mirrors with quasistatic comb drives

    Science.gov (United States)

    Schroedter, Richard; Sandner, Thilo; Janschek, Klaus; Roth, Matthias; Hruschka, Clemens

    2016-03-01

    This paper presents the application of a real-time closed-loop control for the quasistatic axis of electrostatic micro scanning mirrors. In comparison to resonantly driven mirrors, the quasistatic comb drive allows arbitrary motion profiles with frequencies up to its eigenfrequency. A current mirror setup at Fraunhofer IPMS is manufactured with a staggered vertical comb (SVC) drive and equipped with an integrated piezo-resistive deflection sensor, which can potentially be used as position feedback sensor. The control design is accomplished based on a nonlinear mechatronic system model and the preliminary parameter characterization. In previous papers [1, 2] we have shown that jerk-limited trajectories, calculated offline, provide a suitable method for parametric trajectory design, taking into account physical limitations given by the electrostatic comb and thus decreasing the dynamic requirements. The open-loop control shows in general unfavorable residual eigenfrequency oscillations leading to considerable tracking errors for desired triangle trajectories [3]. With real-time closed-loop control, implemented on a dSPACE system using an optical feedback, we can significantly reduce these errors and stabilize the mirror motion against external disturbances. In this paper we compare linear and different nonlinear closed-loop control strategies as well as two observer variants for state estimation. Finally, we evaluate the simulation and experimental results in terms of steady state accuracy and the concept feasibility for a low-cost realization.

  15. Closed-Loop Control System for Friction Stir Welding Retractable Pin Tool

    Science.gov (United States)

    Ding, R. Jeffrey; Romine, Peter L.; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    NASA invention disclosure, NASA Case No. MFS-31413, entitled "System for Controlling the Stirring Pin of a Friction Stir Welding Apparatus", (Patent Pending) authored by Jeff Ding, Dr Peter Romine and Pete Oelgoetz, addresses the precision control of the friction stir welding process. The closed-loop control system automatically adjusts the spinning welding pin, real-time, to maintain a precise penetration ligament (i.e., distance between pin-tip and weld panel backside surface). A specific pin length can be maintained while welding constant thickness or tapered material thickness weld panels. The closed-loop control system provides operator data and information relative to the exact position of the welding pin inside the weld joint. This paper presents the closed-loop RPT control system that operates using the auto-feedback of force signals sensed by the tip and shoulder of the welding pin. Significance: The FSW process can be successfully used in a production environment only if there is a method or technique that informs the FSW operator the precise location of the welding pin inside the weld joint. This is essential for applications in aerospace, automotive, pressure vessel, commercial aircraft and other industries.

  16. Closed-loop Identification for Control of Linear Parameter Varying Systems

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, Klaus

    2014-01-01

    , closed- loop system identification is more difficult than open-loop identification. In this paper we prove that the so-called Hansen Scheme, a technique known from linear time-invariant systems theory for transforming closed-loop system identification problems into open-loop-like problems, can......This paper deals with system identification for control of linear parameter varying systems. In practical applications, it is often important to be able to identify small plant changes in an incremental manner without shutting down the system and/or disconnecting the controller; unfortunately...... be extended to accommodate linear parameter varying systems as well. We investigate the identified subsystem’s parameter dependency and observe that, under mild assumptions, the identified subsystem is affine in the parameter vector. Various identification methods are compared in direct and Hansen Scheme...

  17. An error criterion for determining sampling rates in closed-loop control systems

    Science.gov (United States)

    Brecher, S. M.

    1972-01-01

    The determination of an error criterion which will give a sampling rate for adequate performance of linear, time-invariant closed-loop, discrete-data control systems was studied. The proper modelling of the closed-loop control system for characterization of the error behavior, and the determination of an absolute error definition for performance of the two commonly used holding devices are discussed. The definition of an adequate relative error criterion as a function of the sampling rate and the parameters characterizing the system is established along with the determination of sampling rates. The validity of the expressions for the sampling interval was confirmed by computer simulations. Their application solves the problem of making a first choice in the selection of sampling rates.

  18. Artificial Pancreas Device Systems for the Closed-Loop Control of Type 1 Diabetes

    Science.gov (United States)

    Trevitt, Sara; Simpson, Sue; Wood, Annette

    2015-01-01

    Background: Closed-loop artificial pancreas device (APD) systems are externally worn medical devices that are being developed to enable people with type 1 diabetes to regulate their blood glucose levels in a more automated way. The innovative concept of this emerging technology is that hands-free, continuous, glycemic control can be achieved by using digital communication technology and advanced computer algorithms. Methods: A horizon scanning review of this field was conducted using online sources of intelligence to identify systems in development. The systems were classified into subtypes according to their level of automation, the hormonal and glycemic control approaches used, and their research setting. Results: Eighteen closed-loop APD systems were identified. All were being tested in clinical trials prior to potential commercialization. Six were being studied in the home setting, 5 in outpatient settings, and 7 in inpatient settings. It is estimated that 2 systems may become commercially available in the EU by the end of 2016, 1 during 2017, and 2 more in 2018. Conclusions: There are around 18 closed-loop APD systems progressing through early stages of clinical development. Only a few of these are currently in phase 3 trials and in settings that replicate real life. PMID:26589628

  19. SIMULATION AND EXPERIMENTAL RESULTS FOR THE CLOSED LOOP CONTROLLED DC TO DC FORWARD CONVERTER

    Directory of Open Access Journals (Sweden)

    A. Palamalai VIJAYAKUMAR

    2017-06-01

    Full Text Available A Closed loop controlled DC to DC forward converter is a requisite for the server SMPS system. High efficiency, Isolation, Steady state voltage, Transient response, High switching frequency, reduced noises and range of steady state are all necessary requirements for the forward converter. In this paper, a 40 V forward converter for charging the battery of server SMPS is proposed. The proposed converter consists of a NPC-ARS circuit for soft switching on the primary side and an isolation transformer and a rectifier structure on the secondary side. With this modified NPC-ARS circuit topology, soft switching occurs during conversion and reduces the switching loss in this system. This paper proposed the simulation of closed loop controlled circuit, for the forward converter with RCD snubber, double forward converter and the Modified forward converter are analyzed and discussed in this paper. From comparison of performance in the closed loop model, a suitable converter is proposed for the sever SMPS system. The proposed circuit achieves steady state voltage, when the disturbance occurs. A 40 V proposed circuit is designed as experimental model to verify and compare the simulation and experimental results. This paper proposed the simulation and experimental results of the forward converter.

  20. Fuzzy control for closed-loop, patient-specific hypnosis in intraoperative patients: a simulation study.

    Science.gov (United States)

    Moore, Brett L; Pyeatt, Larry D; Doufas, Anthony G

    2009-01-01

    Research has demonstrated the efficacy of closed-loop control of anesthesia using bispectral index (BIS) as the controlled variable, and the recent development of model-based, patient-adaptive systems has considerably improved anesthetic control. To further explore the use of model-based control in anesthesia, we investigated the application of fuzzy control in the delivery of patient-specific propofol-induced hypnosis. In simulated intraoperative patients, the fuzzy controller demonstrated clinically acceptable performance, suggesting that further study is warranted.

  1. Closed loop control of ZVS half bridge DC-DC converter with DCS PWM Control

    Directory of Open Access Journals (Sweden)

    JANAPATI SIVAVARA PRASAD

    2012-10-01

    Full Text Available

    The main drawback of the conventional symmetric control is that both primary switches in the converter operate at hard switching condition. Moreover, during the off-time period of two switches, the oscillation between the transformer leakage inductance and junction capacitance of the switches results in energy dissipation and electromagnetic interference (EMI emissions due to reverse recovery of MOSFETs body diodes. The asymmetric (complementary control was proposed to achieve ZVS operation for HB switches. However, asymmetric stresses distribution on the corresponding components may occur due to the asymmetric duty cycle distribution for the two primary switches. A new control scheme, to be known as duty-cycle shifted PWM (DCS PWM control, is proposed and applied to the conventional HB dc–dc converters to achieve ZVS for both the  switches without adding extra components and without adding asymmetric penalties of the complementary control. The concept of this new control scheme is shifting one of the two symmetric PWM driving signals close to the other, such that ZVS may be achieved for the lagging switch due to the shortened resonant interval. Moreover, based on the DCS PWM control, a new half-bridge topology is proposed to achieve ZVS for both the main switches and auxiliary switch by adding an auxiliary switch and diode in the proposed half bridge. ZVS for the  switch is achieved by utilizing the energy trapped in the leakage inductance. There are two control schemes. One is open loop and the other is closed loop. In open loop scheme, the given dc-dc converter is operating under disturbance. This disturbance effect is eliminated in closed loop scheme.

     

  2. Temperature Control System with Multi-closed Loops for Lithography Projection Lens

    Institute of Scientific and Technical Information of China (English)

    NIE Hongfei; LI Xiaoping; HE yan

    2009-01-01

    Image quality is one of the most important specifications of optical lithography tool and is affected notably by temperature, vibration, and contamination of projection lens(PL). Traditional method of local temperature control is easier to introduce vibration and contamination, so temperature control system with multi-closed loops is developed to control the temperature inside the PL, and to isolate the influence of vibration and contamination. A new remote indirect-temperature-control(RITC) method is proposed in which cooling water is circulated to perform indirect-temperature-control of the PL. Heater and cooler embedded temperature control unit(TCU) is used to condition the temperature of the cooling water, and the TCU must be kept away from the PL so that the influence of vibration and contamination can be avoided. A new multi-closed loops control structure incorporating an internal cascade control structnre(CCS) and an external parallel cascade control structure(PCCS) is designed tO prevent large inertia, multi-delay, and multi-disturbance of the RITC system. A nonlinear proportioual-integral(Pl) algorithm is applied to further enhance the convergence rate and precision of the control process. Contrast experiments of different control loops and algorithms were implemented to verify the impact on the control performance. It is shown that the temperature control system with multi-closed loops reaches a precision specification at ±0.006 ℃ with fast convergence rate, strong robustness, and self-adaptability. This method has been successfully used in an optical lithography tool which produces a pattern of 100 nm critical dimeusion(CD), and its performances are satisfactory.

  3. Scenario-based, closed-loop model predictive control with application to emergency vehicle scheduling

    Science.gov (United States)

    Goodwin, Graham. C.; Medioli, Adrian. M.

    2013-08-01

    Model predictive control has been a major success story in process control. More recently, the methodology has been used in other contexts, including automotive engine control, power electronics and telecommunications. Most applications focus on set-point tracking and use single-sequence optimisation. Here we consider an alternative class of problems motivated by the scheduling of emergency vehicles. Here disturbances are the dominant feature. We develop a novel closed-loop model predictive control strategy aimed at this class of problems. We motivate, and illustrate, the ideas via the problem of fluid deployment of ambulance resources.

  4. Day and Night Closed-Loop Control Using the Integrated Medtronic Hybrid Closed-Loop System in Type 1 Diabetes at Diabetes Camp.

    Science.gov (United States)

    Ly, Trang T; Roy, Anirban; Grosman, Benyamin; Shin, John; Campbell, Alex; Monirabbasi, Salman; Liang, Bradley; von Eyben, Rie; Shanmugham, Satya; Clinton, Paula; Buckingham, Bruce A

    2015-07-01

    To evaluate the feasibility and efficacy of a fully integrated hybrid closed-loop (HCL) system (Medtronic MiniMed Inc., Northridge, CA), in day and night closed-loop control in subjects with type 1 diabetes, both in an inpatient setting and during 6 days at diabetes camp. The Medtronic MiniMed HCL system consists of a fourth generation (4S) glucose sensor, a sensor transmitter, and an insulin pump using a modified proportional-integral-derivative (PID) insulin feedback algorithm with safety constraints. Eight subjects were studied over 48 h in an inpatient setting. This was followed by a study of 21 subjects for 6 days at diabetes camp, randomized to either the closed-loop control group using the HCL system or to the group using the Medtronic MiniMed 530G with threshold suspend (control group). The overall mean sensor glucose percent time in range 70-180 mg/dL was similar between the groups (73.1% vs. 69.9%, control vs. HCL, respectively) (P = 0.580). Meter glucose values between 70 and 180 mg/dL were also similar between the groups (73.6% vs. 63.2%, control vs. HCL, respectively) (P = 0.086). The mean absolute relative difference of the 4S sensor was 10.8 ± 10.2%, when compared with plasma glucose values in the inpatient setting, and 12.6 ± 11.0% compared with capillary Bayer CONTOUR NEXT LINK glucose meter values during 6 days at camp. In the first clinical study of this fully integrated system using an investigational PID algorithm, the system did not demonstrate improved glucose control compared with sensor-augmented pump therapy alone. The system demonstrated good connectivity and improved sensor performance. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  5. Continuous Drug Infusion for Diabetes Therapy: A Closed-Loop Control System Design

    Directory of Open Access Journals (Sweden)

    Jiming Chen

    2008-03-01

    Full Text Available While a typical way for diabetes therapy is discrete insulin infusion based on long-time interval measurement, in this paper, we design a closed-loop control system for continuous drug infusion to improve the traditional discrete methods and make diabetes therapy automatic in practice. By exploring the accumulative function of drug to insulin, a continuous injection model is proposed. Based on this model, proportional-integral-derivative (PID and fuzzy logic controllers are designed to tackle a control problem of the resulting highly nonlinear plant. Even with serious disturbance of glucose, such as nutrition absorption at meal time, the proposed scheme can perform well in simulation experiments.

  6. Continuous Drug Infusion for Diabetes Therapy: A Closed-Loop Control System Design

    Directory of Open Access Journals (Sweden)

    Xiao Yang

    2008-01-01

    Full Text Available Abstract While a typical way for diabetes therapy is discrete insulin infusion based on long-time interval measurement, in this paper, we design a closed-loop control system for continuous drug infusion to improve the traditional discrete methods and make diabetes therapy automatic in practice. By exploring the accumulative function of drug to insulin, a continuous injection model is proposed. Based on this model, proportional-integral-derivative (PID and fuzzy logic controllers are designed to tackle a control problem of the resulting highly nonlinear plant. Even with serious disturbance of glucose, such as nutrition absorption at meal time, the proposed scheme can perform well in simulation experiments.

  7. Vision of the Arc for Quality Documentation and for Closed Loop Control of the Welding Process

    DEFF Research Database (Denmark)

    Kristiansen, Morten; Kristiansen, Ewa; Jensen, Casper Houmann;

    2014-01-01

    For gas metal arc welding a vision system was developed, which was robust to monitor the position of the arc. The monitoring documents the welding quality indirectly and a closed loop fuzzy control was implemented to control an even excess penetration. For welding experiments on a butt......-joint with a V-groove with varying root gapthe system demonstrated increased welding quality compared to the system with no control. The system was implemented with a low cost vision system, which makes the system interesting to apply in industrial welding automation systems....

  8. Determination of Close Loop System Stability in Automobile Adaptive Cruise Control Systems

    Directory of Open Access Journals (Sweden)

    Owunna Ikechukwu

    2016-07-01

    Full Text Available The beginning of the 21st century sees auto makers pursuing research in advanced features like collision warning and avoidance system into their product. Automotive cruise control system has been undergoing development in EU since the PROMETHEUS programme in the late 1980’s, and has currently metamorphous into Adaptive Cruise Control (ACC technology which is presently emerging in the automotive market as a convenience function intended to reduce driver workload. Adaptive cruise control is the first of the new generation of advanced driver’s assistance devices to reach the market, which partially automates the driver’s task and bringing the drivers comfort into perspective. It allows the host vehicle to maintain a set speed and distance from preceding vehicles by a forward object detection sensor. The forward object detection sensor is the focal point of the ACC system, which determines and regulates vehicle acceleration and deceleration through a powertrain torque control system and an automatic brake control system. This study presents overview of adaptive cruise control system, operation principles and the advantages of integrating ACC system in automobiles. Also, the system must be stable for optimum performance, and stability of a close loop system which the cruise system is an example, was determined by calculating the controller gain (K1, K2, K3 and substituting into the characteristic equations. The stability of a close loop system for the values of K1, K2 and K3 when substituted into the characteristic equation produced a negative real part. To achieve stability in close loop systems, all the poles must have negative real values and this is in line with the values obtain for p1, p2 and p3. From the pole zero plots of 1 = (-7 ± 7.14, 2 = (-7± 11.60 and 3 = (-0.08 and -13.91, stability of the system was achieved

  9. Wind tunnel testing of a closed-loop wake deflection controller for wind farm power maximization

    Science.gov (United States)

    Campagnolo, Filippo; Petrović, Vlaho; Schreiber, Johannes; Nanos, Emmanouil M.; Croce, Alessandro; Bottasso, Carlo L.

    2016-09-01

    This paper presents results from wind tunnel tests aimed at evaluating a closed- loop wind farm controller for wind farm power maximization by wake deflection. Experiments are conducted in a large boundary layer wind tunnel, using three servo-actuated and sensorized wind turbine scaled models. First, we characterize the impact on steady-state power output of wake deflection, achieved by yawing the upstream wind turbines. Next, we illustrate the capability of the proposed wind farm controller to dynamically driving the upstream wind turbines to the optimal yaw misalignment setting.

  10. A 25m{sup 2} target-aligned heliostat with closed-loop control

    Energy Technology Data Exchange (ETDEWEB)

    Roos, Thomas; Ndumiso, Zwane; Kruger, Eu' odia [Council for Scientific and Industrial Research (CSIR), Pretoria (South Africa); Cathro, Robert [Denel Saab Aerostructures, Kempton Park (South Africa); Perumal, Strinivasan [Univ. of KwaZulu-Natal, Durban (South Africa). Dept. of Electronic Engineering

    2008-07-01

    A 25m{sup 2} target-aligned research heliostat with closed-loop control, with a theoretical concentration of 80 suns, has been built at CSIR in South Africa. The heliostat has four degrees of freedom: Azimuth, Elevation, Rotation and Pitch. A control system making use of a solar tracker has been developed and tested on a 1.25m{sup 2} target-aligned miniheliostat. A tracking accuracy of 3.3 milliradians was obtained. A good focal spot has been obtained with the 25m{sup 2} target-aligned research heliostat. (orig.)

  11. Closed-loop step response for tuning PID-fractional-order-filter controllers.

    Science.gov (United States)

    Amoura, Karima; Mansouri, Rachid; Bettayeb, Maâmar; Al-Saggaf, Ubaid M

    2016-09-01

    Analytical methods are usually applied for tuning fractional controllers. The present paper proposes an empirical method for tuning a new type of fractional controller known as PID-Fractional-Order-Filter (FOF-PID). Indeed, the setpoint overshoot method, initially introduced by Shamsuzzoha and Skogestad, has been adapted for tuning FOF-PID controller. Based on simulations for a range of first order with time delay processes, correlations have been derived to obtain PID-FOF controller parameters similar to those obtained by the Internal Model Control (IMC) tuning rule. The setpoint overshoot method requires only one closed-loop step response experiment using a proportional controller (P-controller). To highlight the potential of this method, simulation results have been compared with those obtained with the IMC method as well as other pertinent techniques. Various case studies have also been considered. The comparison has revealed that the proposed tuning method performs as good as the IMC. Moreover, it might offer a number of advantages over the IMC tuning rule. For instance, the parameters of the fractional controller are directly obtained from the setpoint closed-loop response data without the need of any model of the plant to be controlled.

  12. Bio-Inspired Controller on an FPGA Applied to Closed-Loop Diaphragmatic Stimulation.

    Science.gov (United States)

    Zbrzeski, Adeline; Bornat, Yannick; Hillen, Brian; Siu, Ricardo; Abbas, James; Jung, Ranu; Renaud, Sylvie

    2016-01-01

    Cervical spinal cord injury can disrupt connections between the brain respiratory network and the respiratory muscles which can lead to partial or complete loss of ventilatory control and require ventilatory assistance. Unlike current open-loop technology, a closed-loop diaphragmatic pacing system could overcome the drawbacks of manual titration as well as respond to changing ventilation requirements. We present an original bio-inspired assistive technology for real-time ventilation assistance, implemented in a digital configurable Field Programmable Gate Array (FPGA). The bio-inspired controller, which is a spiking neural network (SNN) inspired by the medullary respiratory network, is as robust as a classic controller while having a flexible, low-power and low-cost hardware design. The system was simulated in MATLAB with FPGA-specific constraints and tested with a computational model of rat breathing; the model reproduced experimentally collected respiratory data in eupneic animals. The open-loop version of the bio-inspired controller was implemented on the FPGA. Electrical test bench characterizations confirmed the system functionality. Open and closed-loop paradigm simulations were simulated to test the FPGA system real-time behavior using the rat computational model. The closed-loop system monitors breathing and changes in respiratory demands to drive diaphragmatic stimulation. The simulated results inform future acute animal experiments and constitute the first step toward the development of a neuromorphic, adaptive, compact, low-power, implantable device. The bio-inspired hardware design optimizes the FPGA resource and time costs while harnessing the computational power of spike-based neuromorphic hardware. Its real-time feature makes it suitable for in vivo applications.

  13. Study on a Closed-Loop Air-Fuel Control System of Gasoline Engines by Simulation

    Institute of Scientific and Technical Information of China (English)

    张付军; 赵长禄; 黄英; 郝利军

    2003-01-01

    In order to study the factors that influence the air-fuel ratio(A/F), the amplitude and frequency of A/F fluctuation, to reform the control strategy, and to improve the efficiency of three-way catalyst(TWC), a model of closed-loop control system including the engine, air-fuel mixing and transportation, oxygen sensor and controller, etc., is developed. Various factors that influence the A/F control are studied by simulation. The simulation results show that the reference voltage of oxygen sensor will influence the mean value of A/F ratio, the controller parameters will influence the amplitude of A/F fluctuation, and the operating conditions of the engine determine the frequency of A/F fluctuations, the amplitude of A/F fluctuation can be reduced to within demanded values by logical selection of the signal acquisition method and controller parameters. Higher A/F fluctuation frequency under high speed and load can be reduced through software delay in the controller. The A/F closed-loop control system based on the simulation results, accompanied with a rare-earth element TWC, gives a better efficiency of conversion against harmful emissions.

  14. Closed loop statistical performance analysis of N-K knock controllers

    Science.gov (United States)

    Peyton Jones, James C.; Shayestehmanesh, Saeed; Frey, Jesse

    2017-09-01

    The closed loop performance of engine knock controllers cannot be rigorously assessed from single experiments or simulations because knock behaves as a random process and therefore the response belongs to a random distribution also. In this work a new method is proposed for computing the distributions and expected values of the closed loop response, both in steady state and in response to disturbances. The method takes as its input the control law, and the knock propensity characteristic of the engine which is mapped from open loop steady state tests. The method is applicable to the 'n-k' class of knock controllers in which the control action is a function only of the number of cycles n since the last control move, and the number k of knock events that have occurred in this time. A Cumulative Summation (CumSum) based controller falls within this category, and the method is used to investigate the performance of the controller in a deeper and more rigorous way than has previously been possible. The results are validated using onerous Monte Carlo simulations, which confirm both the validity of the method and its high computational efficiency.

  15. Closed-loop response properties of a visual interneuron involved in fly optomotor control

    Directory of Open Access Journals (Sweden)

    Naveed eEjaz

    2013-03-01

    Full Text Available Due to methodological limitations neural function is mostly studied under open-loop conditions. Normally, however, nervous systems operate in closed-loop where sensory input is processed to generate behavioural outputs, which again change the sensory input. Here, we investigate the closed-loop responses of an identified visual interneuron, the blowfly H1-cell, that is part of a neural circuit involved in optomotor flight and gaze control. Those behaviours may be triggered by attitude changes during flight in turbulent air. The fly analyses the resulting retinal image shifts and performs compensatory body and head rotations to regain its default attitude. We developed a fly-robot interface to study H1-cell responses in a 1 degree-of-freedom image stabilization task. Image shifts, induced by externally forced rotations, modulate the cell’s spike rate that controls counter rotations of a mobile robot to minimize relative motion between the robot and its visual surroundings. A feedback controller closed the loop between neural activity and the rotation of the robot. Under these conditions we found the following H1-cell response properties: (i the peak spike rate decreases when the mean image velocity is increased, (ii the relationship between spike rate and image velocity depends on the standard deviation of the image velocities suggesting adaptive scaling of the cell’s signalling range, and (iii the cell’s gain decreases linearly with increasing image accelerations.Our results reveal a remarkable qualitative similarity between the response dynamics of the H1-cell under closed-loop conditions with those obtained in previous open-loop experiments. Finally, we show that the adaptive scaling of the H1-cell’s responses, while maximizing information on image velocity, decreases the cell’s sensitivity to image accelerations. Understanding such trade-offs in biological vision systems may advance the design of smart vision sensors for autonomous

  16. Closed-loop response properties of a visual interneuron involved in fly optomotor control.

    Science.gov (United States)

    Ejaz, Naveed; Krapp, Holger G; Tanaka, Reiko J

    2013-01-01

    Due to methodological limitations neural function is mostly studied under open-loop conditions. Normally, however, nervous systems operate in closed-loop where sensory input is processed to generate behavioral outputs, which again change the sensory input. Here, we investigate the closed-loop responses of an identified visual interneuron, the blowfly H1-cell, that is part of a neural circuit involved in optomotor flight and gaze control. Those behaviors may be triggered by attitude changes during flight in turbulent air. The fly analyses the resulting retinal image shifts and performs compensatory body and head rotations to regain its default attitude. We developed a fly robot interface to study H1-cell responses in a 1 degree-of-freedom image stabilization task. Image shifts, induced by externally forced rotations, modulate the cell's spike rate that controls counter rotations of a mobile robot to minimize relative motion between the robot and its visual surroundings. A feedback controller closed the loop between neural activity and the rotation of the robot. Under these conditions we found the following H1-cell response properties: (i) the peak spike rate decreases when the mean image velocity is increased, (ii) the relationship between spike rate and image velocity depends on the standard deviation of the image velocities suggesting adaptive scaling of the cell's signaling range, and (iii) the cell's gain decreases linearly with increasing image accelerations. Our results reveal a remarkable qualitative similarity between the response dynamics of the H1-cell under closed-loop conditions with those obtained in previous open-loop experiments. Finally, we show that the adaptive scaling of the H1-cell's responses, while maximizing information on image velocity, decreases the cell's sensitivity to image accelerations. Understanding such trade-offs in biological vision systems may advance the design of smart vision sensors for autonomous robots.

  17. Closed-loop prevention and control research of coal mine safety management

    Institute of Scientific and Technical Information of China (English)

    LI Xing-dong; ZHAO Yun-xia; ZHAO Xing-qiang; LU Ying

    2009-01-01

    According to the current problems of safety management processes in coal mine enterprises, we introduced barrel theory to coal mine safety management, con-structed the closed-loop structure of a coal mine safety management system, and pointed out that efficient safety management lies in three factors: safety quality of all of the staff in coal mine enterprises, weak links in security management systems, and co-operation among departments. After conducting detailed analysis of these three factors, we proposed concrete ways of preventing and controlling potential safety hazards during the process of coal mine production.

  18. Inverse synchronization of coupled fractional-order systems through open-plus-closed-loop control

    Indian Academy of Sciences (India)

    Junwei Wang; Li Zeng; Qinghua Ma

    2011-03-01

    In this paper, the inverse synchronization problem of fractional-order dynamical systems is investigated. A general explicit coupling via an open-plus-closed-loop control for inverse synchronization of two arbitrary unidirectionally or bidirectionally coupled fractional-order systems is proposed. The inverse synchronization is proved analytically based on the stability theorem of the fractional differential equations. A key feature of this proposed scheme is that it can be applied not only to nonchaotic but also to chaotic fractional-order systems whenever they exhibit regular or irregular oscillations. Feasibility of the proposed inverse synchronization scheme is illustrated through numerical simulations.

  19. Stereovision and augmented reality for closed-loop control of grasping in hand prostheses

    Science.gov (United States)

    Markovic, Marko; Dosen, Strahinja; Cipriani, Christian; Popovic, Dejan; Farina, Dario

    2014-08-01

    Objective. Technologically advanced assistive devices are nowadays available to restore grasping, but effective and effortless control integrating both feed-forward (commands) and feedback (sensory information) is still missing. The goal of this work was to develop a user friendly interface for the semi-automatic and closed-loop control of grasping and to test its feasibility. Approach. We developed a controller based on stereovision to automatically select grasp type and size and augmented reality (AR) to provide artificial proprioceptive feedback. The system was experimentally tested in healthy subjects using a dexterous hand prosthesis to grasp a set of daily objects. The subjects wore AR glasses with an integrated stereo-camera pair, and triggered the system via a simple myoelectric interface. Main results. The results demonstrated that the subjects got easily acquainted with the semi-autonomous control. The stereovision grasp decoder successfully estimated the grasp type and size in realistic, cluttered environments. When allowed (forced) to correct the automatic system decisions, the subjects successfully utilized the AR feedback and achieved close to ideal system performance. Significance. The new method implements a high level, low effort control of complex functions in addition to the low level closed-loop control. The latter is achieved by providing rich visual feedback, which is integrated into the real life environment. The proposed system is an effective interface applicable with small alterations for many advanced prosthetic and orthotic/therapeutic rehabilitation devices.

  20. Closed-loop dynamic control allocation for aircraft with multiple actuators

    Institute of Scientific and Technical Information of China (English)

    Gai Wendong; Wang Honglun

    2013-01-01

    A closed-loop control allocation method is proposed for a class of aircraft with multiple actuators.Nonlinear dynamic inversion is used to design the baseline attitude controller and derive the desired moment increment.And a feedback loop for the moment increment produced by the deflections of actuators is added to the angular rate loop,then the error between the desired and actual moment increment is the input of the dynamic control allocation.Subsequently,the stability of the closed-loop dynamic control allocation system is analyzed in detail.Especially,the closedloop system stability is also analyzed in the presence of two types of actuator failures:loss of effectiveness and lock-in-place actuator failures,where a fault detection subsystem to identify the actuator failures is absent.Finally,the proposed method is applied to a canard rotor/wing (CRW)aircraft model in fixed-wing mode,which has multiple actuators for flight control.The nonlinear simulation demonstrates that this method can guarantee the stability and tracking performance whether the actuators are healthy or fail.

  1. Distributed flow sensing for closed-loop speed control of a flexible fish robot.

    Science.gov (United States)

    Zhang, Feitian; Lagor, Francis D; Yeo, Derrick; Washington, Patrick; Paley, Derek A

    2015-10-23

    Flexibility plays an important role in fish behavior by enabling high maneuverability for predator avoidance and swimming in turbulent flow. This paper presents a novel flexible fish robot equipped with distributed pressure sensors for flow sensing. The body of the robot is molded from soft, hyperelastic material, which provides flexibility. Its Joukowski-foil shape is conducive to modeling the fluid analytically. A quasi-steady potential-flow model is adopted for real-time flow estimation, whereas a discrete-time vortex-shedding flow model is used for higher-fidelity simulation. The dynamics for the flexible fish robot yield a reduced model for one-dimensional swimming. A recursive Bayesian filter assimilates pressure measurements to estimate flow speed, angle of attack, and foil camber. The closed-loop speed-control strategy combines an inverse-mapping feedforward controller based on an average model derived for periodic actuation of angle-of-attack and a proportional-integral feedback controller utilizing the estimated flow information. Simulation and experimental results are presented to show the effectiveness of the estimation and control strategy. The paper provides a systematic approach to distributed flow sensing for closed-loop speed control of a flexible fish robot by regulating the flapping amplitude.

  2. Closed-loop control of spinal cord stimulation to restore hand function after paralysis

    Directory of Open Access Journals (Sweden)

    Jonas B Zimmermann

    2014-05-01

    Full Text Available As yet, no cure exists for upper-limb paralysis resulting from the damage to motor pathways after spinal cord injury or stroke. Recently, neural activity from the motor cortex of paralyzed individuals has been used to control the movements of a robot arm but restoring function to patients’ actual limbs remains a considerable challenge. Previously we have shown that electrical stimulation of the cervical spinal cord in anesthetized monkeys can elicit functional upper-limb movements like reaching and grasping. Here we show that stimulation can be controlled using cortical activity in awake animals to bypass disruption of the corticospinal system, restoring their ability to perform a simple upper-limb task. Monkeys were trained to grasp and pull a spring-loaded handle. After temporary paralysis of the hand was induced by reversible inactivation of primary motor cortex using muscimol, grasp-related single-unit activity from the ventral premotor cortex was converted into stimulation patterns delivered in real-time to the cervical spinal grey matter. During periods of closed-loop stimulation, task-modulated electromyogram, movement amplitude and task success rate were improved relative to interleaved control periods without stimulation. In some sessions, single motor unit activity from weakly active muscles was also used successfully to control stimulation. These results are the first use of a neural prosthesis to improve the hand function of primates after motor cortex disruption, and demonstrate the potential for closed-loop cortical control of spinal cord stimulation to reanimate paralyzed limbs.

  3. Research on Open-Closed-Loop Iterative Learning Control with Variable Forgetting Factor of Mobile Robots

    Directory of Open Access Journals (Sweden)

    Hongbin Wang

    2016-01-01

    Full Text Available We propose an iterative learning control algorithm (ILC that is developed using a variable forgetting factor to control a mobile robot. The proposed algorithm can be categorized as an open-closed-loop iterative learning control, which produces control instructions by using both previous and current data. However, introducing a variable forgetting factor can weaken the former control output and its variance in the control law while strengthening the robustness of the iterative learning control. If it is applied to the mobile robot, this will reduce position errors in robot trajectory tracking control effectively. In this work, we show that the proposed algorithm guarantees tracking error bound convergence to a small neighborhood of the origin under the condition of state disturbances, output measurement noises, and fluctuation of system dynamics. By using simulation, we demonstrate that the controller is effective in realizing the prefect tracking.

  4. Closed-loop control concept for kinematic 3D-profile bending

    Science.gov (United States)

    Staupendahl, Daniel; Chatti, Sami; Tekkaya, A. Erman

    2016-10-01

    Kinematic tube and profile bending processes produce bending contours by the relative movement of single process axes. Tools only need to be adapted to fit the cross-section of the tubular material. While offering a great flexibility in production, kinematic bending processes cause a high part springback and as a result, compensatory methods are needed to achieve target contours. These compensatory methods are generally embedded in bending tables or analytical calculations that in turn are embedded into the process control software. This procedure can cope with known material behavior, as for instance gained through a tensile test of the material batch prior to the bending process. Material variations inside a batch cannot be detected however and cause contour deviations. To counter this error, a closed-loop control system can be used, which can quickly adapt axes' movements to produce target shapes and thus reduce scrap. In this paper, two methods to apply closed-loop control to 3D profile bending will be presented. An indirect approach, using the bending force and torque, and a direct approach, by measuring the profile contour after bending.

  5. Physiological closed-loop control in intelligent oxygen therapy: A review.

    Science.gov (United States)

    Sanchez-Morillo, Daniel; Olaby, Osama; Fernandez-Granero, Miguel Angel; Leon-Jimenez, Antonio

    2017-07-01

    Oxygen therapy has become a standard care for the treatment of patients with chronic obstructive pulmonary disease and other hypoxemic chronic lung diseases. In current systems, manually continuous adjustment of O2 flow rate is a time-consuming task, often unsuccessful, that requires experienced staff. The primary aim of this systematic review is to collate and report on the principles, algorithms and accuracy of autonomous physiological close-loop controlled oxygen devices as well to present recommendations for future research and studies in this area. A literature search was performed on medical database MEDLINE, engineering database IEEE-Xplore and wide-raging scientific databases Scopus and Web of Science. A narrative synthesis of the results was carried out. A summary of the findings of this review suggests that when compared to the conventional manual practice, the closed-loop controllers maintain higher saturation levels, spend less time below the target saturation, and save oxygen resources. Nonetheless, despite of their potential, autonomous oxygen therapy devices are scarce in real clinical applications. Robustness of control algorithms, fail-safe mechanisms, limited reliability of sensors, usability issues and the need for standardized evaluating methods of assessing risks can be among the reasons for this lack of matureness and need to be addressed before the wide spreading of a new generation of automatic oxygen devices. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Closed Loop Sawtooth Period Control Using Variable Eccd Injection Angles on Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Lennholm, M.; Eriksson, L.G.; Turco, F.; Bouquey, F.; Darbos, C.; Dumont, R.; Giruzzi, G.; Jung, M.; Lambert, R.; Magne, R.; Molina, D.; Moreau, P.; Rimini, F.; Segui, J.L.; Song, S.; Traisnel, E. [CEA Cadarache, Assoc EURATOM CEA, DSM IRFM, F-13108 St Paul Les Durance, (France)

    2009-07-01

    Closed loop control of the period of fast ion stabilized sawtooth has been demonstrated for the first time on Tore Supra by varying the electron cyclotron current drive (ECCD) injection angles in real time. Fast ions generated by up to 4 MW of central ion cyclotron resonance heating (ICRH) increased the sawtooth period from the ohmic value of 25 ms to 60 to 100 ms. This sawtooth period was reduced to 30 ms by the addition of only 300 kW of ECCD. In ICRH heated shots where the normalized minor radius of the ECCD absorption location was swept from 0.4 to 0.05 in 4 s, the sawtooth period showed an abrupt change from 70 to 30 ms when the ECCD deposition normalized minor radius reached {approx} 0.2. This short period was then maintained until the absorption location moved well inside the sawtooth inversion radius at which point it abruptly returned to 70 ins. A closed loop controller was implemented that allowed the sawtooth period to be switched in real time between short and long sawteeth with a response time of the order of 1 s. (authors)

  7. A wirelessly-powered homecage with animal behavior analysis and closed-loop power control.

    Science.gov (United States)

    Yaoyao Jia; Zheyuan Wang; Canales, Daniel; Tinkler, Morgan; Chia-Chun Hsu; Madsen, Teresa E; Mirbozorgi, S Abdollah; Rainnie, Donald; Ghovanloo, Maysam

    2016-08-01

    This paper presents a new EnerCage-homecage system, EnerCage-HC2, for longitudinal electrophysiology data acquisition experiments on small freely moving animal subjects, such as rodents. EnerCage-HC2 is equipped with multi-coil wireless power transmission (WPT), closed-loop power control, bidirectional data communication via Bluetooth Low Energy (BLE), and Microsoft Kinect® based animal behavior tracking and analysis. The EnerCage-HC2 achieves a homogeneous power transfer efficiency (PTE) of 14% on average, with ~42 mW power delivered to the load (PDL) at a nominal height of 7 cm by the closed-loop power control mechanism. The Microsoft Kinect® behavioral analysis algorithm can not only track the animal position in real-time but also classify 5 different types of rodent behaviors: standstill, walking, grooming, rearing, and rotating. A proof-of-concept in vivo experiment was conducted on two awake freely behaving rats while successfully operating a one-channel stimulator and generating an ethogram.

  8. A statistical learning strategy for closed-loop control of fluid flows

    Science.gov (United States)

    Guéniat, Florimond; Mathelin, Lionel; Hussaini, M. Yousuff

    2016-12-01

    This work discusses a closed-loop control strategy for complex systems utilizing scarce and streaming data. A discrete embedding space is first built using hash functions applied to the sensor measurements from which a Markov process model is derived, approximating the complex system's dynamics. A control strategy is then learned using reinforcement learning once rewards relevant with respect to the control objective are identified. This method is designed for experimental configurations, requiring no computations nor prior knowledge of the system, and enjoys intrinsic robustness. It is illustrated on two systems: the control of the transitions of a Lorenz'63 dynamical system, and the control of the drag of a cylinder flow. The method is shown to perform well.

  9. A statistical learning strategy for closed-loop control of fluid flows

    CERN Document Server

    Guéniat, Florimond; Hussaini, M Yousuff

    2016-01-01

    This work discusses a closed-loop control strategy for complex systems utilizing scarce and streaming data. A discrete embedding space is first built using hash functions applied to the sensor measurements from which a Markov process model is derived, approximating the complex system's dynamics. A control strategy is then learned using reinforcement learning once rewards relevant with respect to the control objective are identified. This method is designed for experimental configurations, requiring no computations nor prior knowledge of the system, and enjoys intrinsic robustness. It is illustrated on two systems: the control of the transitions of a Lorenz 63 dynamical system, and the control of the drag of a cylinder flow. The method is shown to perform well.

  10. Model-based drug administration : current status of target-controlled infusion and closed-loop control

    NARCIS (Netherlands)

    Kuizenga, Merel H.; Vereecke, Hugo E. M.; Struys, Michel M. R. F.

    2016-01-01

    Purpose of review Drug administration might be optimized by incorporating pharmacokinetic-dynamic (PK/PD) principles and control engineering theories. This review gives an update of the actual status of target-controlled infusion (TCI) and closed-loop computer-controlled drug administration and the

  11. Proportional Insulin Infusion in Closed-Loop Control of Blood Glucose

    Science.gov (United States)

    Grasman, Johan

    2017-01-01

    A differential equation model is formulated that describes the dynamics of glucose concentration in blood circulation. The model accounts for the intake of food, expenditure of calories and the control of glucose levels by insulin and glucagon. These and other hormones affect the blood glucose level in various ways. In this study only main effects are taken into consideration. Moreover, by making a quasi-steady state approximation the model is reduced to a single nonlinear differential equation of which parameters are fit to data from healthy subjects. Feedback provided by insulin plays a key role in the control of the blood glucose level. Reduced β-cell function and insulin resistance may hamper this process. With the present model it is shown how by closed-loop control these defects, in an organic way, can be compensated with continuous infusion of exogenous insulin. PMID:28060898

  12. Decentralized closed-loop identification and controller design for a kind of cascade processes

    Institute of Scientific and Technical Information of China (English)

    Chen Qing; Li Shaoyuan; Xi Yugeng

    2005-01-01

    A new decentralized closed-loop identification and predictive controller design method for a kind of cascade processes composed of several sub-processes is studied. This kind of cascade processes has the characteristics of one-way connection. The process is divided into several two-input-two-output (TITO) sub-systems. The parameters of the first-order plus dead-time models for the transfer function matrices can be obtained using least squares method. Hence a distributed model predictive controller is designed based on the coupling models of each sub-process. Simulation results on the temperature control of a reheating furnace are given to show the efficiency of the algorithm.

  13. Evaluation of a novel artificial pancreas: closed loop glycemic control system with continuous blood glucose monitoring.

    Science.gov (United States)

    Tsukamoto, Yuuki; Kinoshita, Yoshihiko; Kitagawa, Hiroyuki; Munekage, Masaya; Munekage, Eri; Takezaki, Yuka; Yatabe, Tomoaki; Yamashita, Koichi; Yamazaki, Rie; Okabayashi, Takehiro; Tarumi, Masatoshi; Kobayashi, Masaki; Mishina, Suguru; Hanazaki, Kazuhiro

    2013-04-01

    A closed-loop glycemic control system using an artificial pancreas has been applied with many clinical benefits in Japan since 1987. To update this system incorporating user-friendly features, we developed a novel artificial pancreas (STG-55). The purpose of this study was to evaluate STG-55 for device usability, performance of blood glucose measurement, glycemic control characteristics in vivo in animal experiments, and evaluate its clinical feasibility. There are several features for usability improvement based on the design concepts, such as compactness, display monitor, batteries, guidance function, and reduction of the preparation time. All animal study data were compared with a clinically available artificial pancreas system in Japan (control device: STG-22). We examined correlations of both blood glucose levels between two groups (STG-55 vs. control) using Clarke's error grid analysis, and also compared mean glucose infusion rate (GIR) during glucose clamp. The results showed strong correlation in blood glucose concentrations (Pearson's product-moment correlation coefficient: 0.97; n = 1636). Clarke's error grid analysis showed that 98.4% of the data fell in Zones A and B, which represent clinically accurate or benign errors, respectively. The difference in mean GIRs was less than 0.2 mg/kg/min, which was considered not significant. Clinical feasibility study demonstrated sufficient glycemic control maintaining target glucose range between 80 and 110 (mg/dL), and between 140 and 160 without any hypoglycemia. In conclusion, STG-55 was a clinically acceptable artificial pancreas with improved interface and usability. A closed-loop glycemic control system with STG-55 would be a useful tool for surgical and critical patients in intensive care units, as well as diabetic patients.

  14. Active harmonic filtering using current-controlled, grid-connected DG units with closed-loop power control

    DEFF Research Database (Denmark)

    He, Jinwei; Li, Yun Wei; Blaabjerg, Frede

    2014-01-01

    voltage detection are not necessary for the proposed harmonic compensation method. Moreover, a closed-loop power control scheme is employed to directly derive the fundamental current reference without using any phase-locked loops (PLL). The proposed power control scheme effectively eliminates the impacts...

  15. Closed-loop control for global coverage and equatorial hovering about an asteroid

    Science.gov (United States)

    Guelman, Mauricio M.

    2017-08-01

    The purpose of this work is to develop a simple control law to implement stable orbits about a small rotating celestial body to achieve global coverage as well as fixed-body hovering on the equatorial plane. The celestial body is assumed to be rotating about a principal axis, with constant rotational velocity along the largest moment of inertia. A simple three dimensional closed-loop guidance law function of position and velocity is defined and analyzed, enabling the determination of the guidance constants to assure convergence to any desired circular orbit about the irregular celestial body, controlling independently five orbital parameters: inclination, right ascension of the ascending node, orbital radius, orbital rate and equatorial longitude. Representative numerical results are presented for an Eros type asteroid.

  16. Closed-loop control of weld penetration in keyhole plasma arc welding

    Institute of Scientific and Technical Information of China (English)

    陈强; 孙振国; 孙久文; 王耀文

    2004-01-01

    To improve the penetrating ability and the welding quality of keyhole plasma arc welding, a novel penetration closed-loop control system was established. In the system, welding current and plasma gas flow rate were selected as adjusting variables. The wavelet method was used to detect penetration status from welding arc voltage in real-time. The control strategy of one-keyhole-per-pulse was adapted to fulfill stable and high quality welding process. Experimental results show that the developed system can apparently increase the penetrating force of plasma arc and keyhole plasma arc welding is realized successfully in stainless steel with 10 mm in thickness. Moreover,the disturbances of gradual change and break change from 3 mm to 6 mm in thickness are come over due to the good response property of the developed system.

  17. Closed-loop control of renal perfusion pressure in physiological experiments.

    Science.gov (United States)

    Campos-Delgado, D U; Bonilla, I; Rodríguez-Martínez, M; Sánchez-Briones, M E; Ruiz-Hernández, E

    2013-07-01

    This paper presents the design, experimental modeling, and control of a pump-driven renal perfusion pressure (RPP)-regulatory system to implement precise and relatively fast RPP regulation in rats. The mechatronic system is a simple, low-cost, and reliable device to automate the RPP regulation process based on flow-mediated occlusion. Hence, the regulated signal is the RPP measured in the left femoral artery of the rat, and the manipulated variable is the voltage applied to a dc motor that controls the occlusion of the aorta. The control system is implemented in a PC through the LabView software, and a data acquisition board NI USB-6210. A simple first-order linear system is proposed to approximate the dynamics in the experiment. The parameters of the model are chosen to minimize the error between the predicted and experimental output averaged from eight input/output datasets at different RPP operating conditions. A closed-loop servocontrol system based on a pole-placement PD controller plus dead-zone compensation was proposed for this purpose. First, the feedback structure was validated in simulation by considering parameter uncertainty, and constant and time-varying references. Several experimental tests were also conducted to validate in real time the closed-loop performance for stepwise and fast switching references, and the results show the effectiveness of the proposed automatic system to regulate the RPP in the rat, in a precise, accurate (mean error less than 2 mmHg) and relatively fast mode (10-15 s of response time).

  18. Outpatient Closed-Loop Control with Unannounced Moderate Exercise in Adolescents Using Zone Model Predictive Control.

    Science.gov (United States)

    Huyett, Lauren M; Ly, Trang T; Forlenza, Gregory P; Reuschel-DiVirgilio, Suzette; Messer, Laurel H; Wadwa, R Paul; Gondhalekar, Ravi; Doyle, Francis J; Pinsker, Jordan E; Maahs, David M; Buckingham, Bruce A; Dassau, Eyal

    2017-06-01

    The artificial pancreas (AP) has the potential to improve glycemic control in adolescents. This article presents the first evaluation in adolescents of the Zone Model Predictive Control and Health Monitoring System (ZMPC+HMS) AP algorithms, and their first evaluation in a supervised outpatient setting with frequent exercise. Adolescents with type 1 diabetes underwent 3 days of closed-loop control (CLC) in a hotel setting with the ZMPC+HMS algorithms on the Diabetes Assistant platform. Subjects engaged in twice-daily exercise, including soccer, tennis, and bicycling. Meal size (unrestricted) was estimated and entered into the system by subjects to trigger a bolus, but exercise was not announced. Ten adolescents (11.9-17.7 years) completed 72 h of CLC, with data on 95 ± 14 h of sensor-augmented pump (SAP) therapy before CLC as a comparison to usual therapy. The percentage of time with continuous glucose monitor (CGM) 70-180 mg/dL was 71% ± 10% during CLC, compared to 57% ± 16% during SAP (P = 0.012). Nocturnal control during CLC was safe, with 0% (0%, 0.6%) of time with CGM meals (estimated up to 120 g carbohydrate), only 8.0% ± 6.9% of time during CLC was spent with CGM >250 mg/dL (16% ± 14% during SAP). The system remained connected in CLC for 97% ± 2% of the total study time. No adverse events or severe hypoglycemia occurred. The use of the ZMPC+HMS algorithms is feasible in the adolescent outpatient environment and achieved significantly more time in the desired glycemic range than SAP in the face of unannounced exercise and large announced meal challenges.

  19. A neurochemical closed-loop controller for deep brain stimulation: toward individualized smart neuromodulation therapies.

    Directory of Open Access Journals (Sweden)

    Peter Jonas Grahn

    2014-06-01

    Full Text Available Current strategies for optimizing deep brain stimulation (DBS therapy involve multiple postoperative visits. During each visit, stimulation parameters are adjusted until desired therapeutic effects are achieved and adverse effects are minimized. However, the efficacy of these therapeutic parameters may decline with time due at least in part to disease progression, interactions between the host environment and the electrode, and lead migration. As such, development of closed-loop control systems that can respond to changing neurochemical environments, tailoring DBS therapy to individual patients, is paramount for improving the therapeutic efficacy of DBS.Evidence obtained using electrophysiology and imaging techniques in both animals and humans suggests that DBS works by modulating neural network activity. Recently, animal studies have shown that stimulation-evoked changes in neurotransmitter release that mirror normal physiology are associated with the therapeutic benefits of DBS. Therefore, to fully understand the neurophysiology of DBS and optimize its efficacy, it may be necessary to look beyond conventional electrophysiological analyses and characterize the neurochemical effects of therapeutic and non-therapeutic stimulation. By combining electrochemical monitoring and mathematical modeling techniques, we can potentially replace the trial-and-error process used in clinical programming with deterministic approaches that help attain optimal and stable neurochemical profiles. In this manuscript, we summarize the current understanding of electrophysiological and electrochemical processing for control of neuromodulation therapies. Additionally, we describe a proof-of-principle closed-loop controller that characterizes DBS-evoked dopamine changes to adjust stimulation parameters in a rodent model of DBS. The work described herein represents the initial steps toward achieving a smart neuroprosthetic system for treatment of neurologic and

  20. Modelling and closed loop control of near-field acoustically levitated objects

    CERN Document Server

    Ilssar, Dotan; Flashner, Henryk

    2016-01-01

    The present paper introduces a novel approach for modelling the governing, slow dynamics of near-field acoustically levitated objects. This model is sufficiently simple and concise to enable designing a closed-loop controller, capable of accurate vertical positioning of a carried object. The near-field acoustic levitation phenomenon exploits the compressibility, the nonlinearity and the viscosity of the gas trapped between a rapidly oscillating surface and a freely suspended planar object, to elevate its time averaged pressure above the ambient pressure. By these means, the vertical position of loads weighing up to several kilograms can be varied between dozens and hundreds of micrometers. The simplified model developed in this paper is a second order ordinary differential equation where the height-dependent stiffness and damping terms of the gas layer are derived explicitly. This simplified model replaces a traditional model consisting of the equation of motion of the levitated object, coupled to a nonlinear...

  1. A randomized controlled trial demonstrates that a novel closed-loop propofol system performs better hypnosis control than manual administration.

    Science.gov (United States)

    Hemmerling, Thomas M; Charabati, Samer; Zaouter, Cedrick; Minardi, Carmelo; Mathieu, Pierre A

    2010-08-01

    The purpose of this randomized control trial was to determine the performance of a novel rule-based adaptive closed-loop system for propofol administration using the bispectral index (BIS(R)) and to compare the system's performance with manual administration. The effectiveness of the closed-loop system to maintain BIS close to a target of 45 was determined and compared with manual administration. After Institutional Review Board approval and written consent, 40 patients undergoing major surgery in a tertiary university hospital were allocated to two groups using computer-generated block randomization. In the Closed-loop group (n = 20), closed-loop control was used to maintain anesthesia at a target BIS of 45, and in the Control group (n = 20), propofol was administered manually to maintain the same BIS target. To evaluate each technique's performance in maintaining a steady level of hypnosis, the BIS values obtained during the surgical procedure were stratified into four clinical performance categories relative to the target BIS: 30% defined as excellent, good, poor, or inadequate control of hypnosis, respectively. The controller performance was compared using Varvel's controller performance indices. Data were compared using Fisher's exact test and the Mann-Whitney U test, P performance error and the median absolute performance error were significantly lower in the Closed-loop group compared with the Control group (-1.1 +/- 5.3% vs -10.7 +/- 13.1%; P = 0.004 and 9.1 +/- 1.9% vs 15.7 +/- 7.4%; P performance than manual administration of propofol. (Clinical Trials gov. NCT 01019746).

  2. Pre-frontal control of closed-loop limbic neurostimulation by rodents using a brain-computer interface

    Science.gov (United States)

    Widge, Alik S.; Moritz, Chet T.

    2014-04-01

    Objective. There is great interest in closed-loop neurostimulators that sense and respond to a patient's brain state. Such systems may have value for neurological and psychiatric illnesses where symptoms have high intraday variability. Animal models of closed-loop stimulators would aid preclinical testing. We therefore sought to demonstrate that rodents can directly control a closed-loop limbic neurostimulator via a brain-computer interface (BCI). Approach. We trained rats to use an auditory BCI controlled by single units in prefrontal cortex (PFC). The BCI controlled electrical stimulation in the medial forebrain bundle, a limbic structure involved in reward-seeking. Rigorous offline analyses were performed to confirm volitional control of the neurostimulator. Main results. All animals successfully learned to use the BCI and neurostimulator, with closed-loop control of this challenging task demonstrated at 80% of PFC recording locations. Analysis across sessions and animals confirmed statistically robust BCI control and specific, rapid modulation of PFC activity. Significance. Our results provide a preliminary demonstration of a method for emotion-regulating closed-loop neurostimulation. They further suggest that activity in PFC can be used to control a BCI without pre-training on a predicate task. This offers the potential for BCI-based treatments in refractory neurological and mental illness.

  3. Closed-Loop Control of Chemical Injection Rate for a Direct Nozzle Injection System

    Directory of Open Access Journals (Sweden)

    Xiang Cai

    2016-01-01

    Full Text Available To realize site-specific and variable-rate application of agricultural pesticides, accurately metering and controlling the chemical injection rate is necessary. This study presents a prototype of a direct nozzle injection system (DNIS by which chemical concentration transport lag was greatly reduced. In this system, a rapid-reacting solenoid valve (RRV was utilized for injecting chemicals, driven by a pulse-width modulation (PWM signal at 100 Hz, so with varying pulse width the chemical injection rate could be adjusted. Meanwhile, a closed-loop control strategy, proportional-integral-derivative (PID method, was applied for metering and stabilizing the chemical injection rate. In order to measure chemical flow rates and input them into the controller as a feedback in real-time, a thermodynamic flowmeter that was independent of chemical viscosity was used. Laboratory tests were conducted to assess the performance of DNIS and PID control strategy. Due to the nonlinear input–output characteristics of the RRV, a two-phase PID control process obtained better effects as compared with single PID control strategy. Test results also indicated that the set-point chemical flow rate could be achieved within less than 4 s, and the output stability was improved compared to the case without control strategy.

  4. Development of spin coater with close loop control system using ATMega8535 microcontroller

    Science.gov (United States)

    Pratama, Iqbal; Mindara, Jajat Yuda; Maulana, Dwindra W.; Panatarani, C.; Joni, I. Made

    2016-02-01

    Spin coater usually applied in preparation of a thin layer in industrial coatings and advanced material functionalization in various applications. This paper reports the development of spin coater with a closed loop control system using ATMega8535 microcontroller. The thickness of the thin film layer depend on the rotation of spin coater in which usually controlled by open-loop type. In long-term utilization of the spin coater, the performance of the motor usually degraded and caused the speed of the rotation is no longer accurate. Therefore to resolve the drawback, a close-loop system is applied in currently developed spin coater. The speed range of the spin coater was designed in between 450-6000 rpm, equipped with user interface through push button and LCD display. The rotary encoder transducer was applied to sense the speed of the dc motor. The pulse width modulation (PWM) method is applied to control the speed of the dc motor. The performance of the control system were evaluated based on the applied voltage to the PWM driver (L298) versus speed of the motor and also the rise time, overshoot, and settling time of the control system. The result shows that in the setting of low speed (450 rpm), the settling time is very fast about 12 seconds and very high overshoot about 225 rpm, contrary for the high speed (5550 rpm) the setting time is 71 seconds and very low overshot about 30 rpm. In addition, to evaluate the stability of the mechanical system, the spin coater was tested to prepare a ZnO thin film in various speed of rotations and at various concentrations of the solution, i.e. 10 wt.% and 15 wt.%. It is concluded that the spin coater can be utilized for thin film coating after pass the maximum of the settling time (71 seconds). The currently developed spin coater produce a film with common characteristics of the spin coater where thicker film was obtained when higher concentration was used and thinner the film was obtained when higher speed of the rotation

  5. Glucose control in non-critically ill inpatients with diabetes: towards closed-loop.

    Science.gov (United States)

    Thabit, H; Hovorka, R

    2014-06-01

    Inpatient glycaemic control remains an important issue due to the increasing number of patients with diabetes admitted to hospital. Morbidity and mortality in hospital are associated with poor glucose control, and cost of hospitalization is higher compared to non-diabetes patients. Guidelines for inpatient glycaemic control in the non-critical care setting have been published. Current recommendations include basal-bolus insulin therapy, regular glucose monitoring, as well as enhancing healthcare provider's role and knowledge. In spite of growing focus, implementation in practice is limited, mainly due to increasing workload burden on staff and fear of hypoglycaemia. Advances in healthcare technology may contribute to an improvement of inpatient diabetes care. Integration of glucose measurements with healthcare records and computerized glycaemic control protocols are currently being used in some institutions. Recent interests in continuous glucose monitoring have led to studies assessing its utilization in inpatients. Automation of glucose monitoring and insulin delivery may provide a safe and efficacious tool for hospital staff to manage inpatient hyperglycaemia, whilst reducing staff workload. This review summarizes the evidence on current approaches to managing inpatient glycaemic control; its utility and limitations. We conclude by discussing the evidence from feasibility studies to date, on the potential use of closed loop in the non-critical care setting and its implication for future studies.

  6. Closed-loop separation control over a sharp edge ramp using Genetic Programming

    CERN Document Server

    Debien, Antoine; Mazellier, Nicolas; Duriez, Thomas; Cordier, Laurent; Noack, Bernd R; Abel, Markus W; Kourta, Azeddine

    2015-01-01

    We experimentally perform open and closed-loop control of a separating turbulent boundary layer downstream from a sharp edge ramp. The turbulent boundary layer just above the separation point has a Reynolds number $Re_{\\theta}\\approx 3\\,500$ based on momentum thickness. The goal of the control is to mitigate separation and early re-attachment. The forcing employs a spanwise array of active vortex generators. The flow state is monitored with skin-friction sensors downstream of the actuators. The feedback control law is obtained using model-free genetic programming control (GPC) (Gautier et al. 2015). The resulting flow is assessed using the momentum coefficient, pressure distribution and skin friction over the ramp and stereo PIV. The PIV yields vector field statistics, e.g. shear layer growth, the backflow area and vortex region. GPC is benchmarked against the best periodic forcing. While open-loop control achieves separation reduction by locking-on the shedding mode, GPC gives rise to similar benefits by acc...

  7. Liveness Problem of Petri Nets Supervisory Control Theory for Discrete Event Systems

    Institute of Scientific and Technical Information of China (English)

    Hong-Ye SU; Wei-Min WU; Jian CHU

    2005-01-01

    A quite great progress of the supervisory control theory for discrete event systems (DES)has been made in the past nearly twenty years, and now, automata, formal language and Petri nets become the main research tools. This paper focus on the Petri nets based supervisory control theory of DES. Firstly, we review the research results in this field, and claim that there generally exists a problem in Petri nets based supervisory control theory of DES, that is, the deadlock caused by the controller introduced to enforce the given specification occurs in the closed-loop systems, especially the deadlock occurs in the closed-loop system in which the original plant is live. Finally, a possible research direction is presented for the solution of this problem.

  8. The Response Clamp: Functional characterization of neural systems using closed-loop control

    Directory of Open Access Journals (Sweden)

    Avner eWallach

    2013-01-01

    Full Text Available The voltage clamp method, pioneered by Hodgkin, Huxley and Katz, laid the foundations to neurophysiological research. Its core rationale is the use of closed-loop control as a tool for system characterization. A recently introduced method, the response clamp, extends the voltage clamp rationale to the functional, phenomenological level. The method consists of on-line estimation of a response variable of interest (e.g. the probability of response or its latency and a simple feedback control mechanism designed to tightly converge this variable towards a desired trajectory. In the present contribution I offer a perspective on this novel method and its applications in the broader context of system identification and characterization. First, I demonstrate how internal state variables are exposed using the method, and how the use of several controllers may allow for a detailed, multi-variable characterization of the system. Second, I discuss three different categories of applications of the method: (i exploration of intrinsically generated dynamics, (ii exploration of extrinsically generated dynamics and (iii generation of input-output trajectories. The relation of these categories to similar uses in the voltage clamp and other techniques is also discussed. Finally, I discuss the method’s limitations, as well as its possible synthesis with existing complementary approaches.

  9. A Closed-Loop Smart Control System Driving RGB Light Emitting Diodes

    KAUST Repository

    Al-Saggaf, Abeer

    2015-05-01

    The demand for control systems that are highly capable of driving solid-state optoelectronic devices has significantly increased with the advancement of their efficiency and elevation of their current consumption. This work presents a closed-loop control system that is based on a microcontroller embedded system capable of driving high power optoelectronic devices. In this version of the system, the device in the center of control is a high-power red, green, and blue light emitting diode package. The system features a graphical user interface, namely an Android mobile phone application, in which the user can easily use to vary the light color and intensity of the light-emitting device wirelessly via Bluetooth. Included in the system is a feedback mechanism constituted by a red, green, and blue color sensor through which the user can use to observe feedback color information about the emitted light. The system has many commercial application including in-door lighting and research application including plant agriculture research fields.

  10. Woofer-tweeter deformable mirror control for closed-loop adaptive optics: theory and practice

    CERN Document Server

    Gavel, Donald

    2014-01-01

    Deformable mirrors with very high order correction generally have smaller dynamic range of motion than what is required to correct seeing over large aperture telescopes. As a result, systems will need to have an architecture that employs two deformable mirrors in series, one for the low-order but large excursion parts of the wavefront and one for the finer and smaller excursion components. The closed-loop control challenge is to a) keep the overall system stable, b) avoid the two mirrors using control energy to cancel each other's correction, c) resolve actuator saturations stably, d) assure that on average the mirrors are each correcting their assigned region of spatial frequency space. We present the control architecture and techniques for assuring that it is linear and stable according to the above criteria. We derived the analytic forms for stability and performance and show results from simulations and on-sky testing using the new ShaneAO system on the Lick 3-meter telescope.

  11. Robust adaptive neural network control with supervisory controller

    Institute of Scientific and Technical Information of China (English)

    张天平; 梅建东

    2004-01-01

    The problem of direct adaptive neural network control for a class of uncertain nonlinear systems with unknown constant control gain is studied in this paper. Based on the supervisory control strategy and the approximation capability of multilayer neural networks (MNNs), a novel design scheme of direct adaptive neural network controller is proposed.The adaptive law of the adjustable parameter vector and the matrix of weights in the neural networks and the gain of sliding mode control term to adaptively compensate for the residual and the approximation error of MNNs is determined by using a Lyapunov method. The approach does not require the optimal approximation error to be square-integrable or the supremum of the optimal approximation error to be known. By theoretical analysis, the closed-loop control system is proven to be globally stable in the sense that all signals involved are bounded, with tracking error converging to zero.Simulation results demonstrate the effectiveness of the approach.

  12. Dynamic control of modeled tonic-clonic seizure states with closed-loop stimulation

    Directory of Open Access Journals (Sweden)

    Bryce eBeverlin II

    2013-02-01

    Full Text Available Seizure control using deep brain stimulation (DBS provides an alternative therapy to patients with intractable and drug resistant epilepsy. This paper presents novel DBS stimulus protocols to disrupt seizures. Two protocols are presented: open-loop stimulation and a closed-loop feedback system utilizing measured firing rates to adjust stimulus frequency. Stimulation suppression is demonstrated in a computational model using 3000 excitatory Morris-Lecar model neurons connected with depressing synapses. Cells are connected using second order network topology to simulate network topologies measured in cortical networks. The network spontaneously switches from tonic to clonic as synaptic strengths and tonic input to the neurons decreases. To this model we add periodic stimulation pulses to simulate DBS. Periodic forcing can synchronize or desynchronize an oscillating population of neurons, depending on the stimulus frequency and amplitude. Therefore, it is possible to either extend or truncate the tonic or clonic phases of the seizure. Stimuli applied at the firing rate of the neuron generally synchronize the population while stimuli slightly slower than the firing rate prevent synchronization. We present an adaptive stimulation algorithm that measures the firing rate of a neuron and adjusts the stimulus to maintain a relative stimulus frequency to firing frequency and demonstrate it in a computational model of a tonic-clonic seizure. This adaptive algorithm can affect the duration of the tonic phase using much smaller stimulus amplitudes than the open-loop control.

  13. Design and implementation of sensor systems for control of a closed-loop life support system

    Science.gov (United States)

    Alnwick, Leslie; Clark, Amy; Debs, Patricia; Franczek, Chris; Good, Tom; Rodrigues, Pedro

    1989-01-01

    The sensing and controlling needs for a Closed-Loop Life Support System (CLLSS) were investigated. The sensing needs were identified in five particular areas and the requirements were defined for workable sensors. The specific areas of interest were atmosphere and temperature, nutrient delivery, plant health, plant propagation and support, and solids processing. The investigation of atmosphere and temperature control focused on the temperature distribution within the growth chamber as well as the possibility for sensing other parameters such as gas concentration, pressure, and humidity. The sensing needs were studied for monitoring the solution level in a porous membrane material along with the requirements for measuring the mass flow rate in the delivery system. The causes and symptoms of plant disease were examined and the various techniques for sensing these health indicators were explored. The study of sensing needs for plant propagation and support focused on monitoring seed viability and measuring seed moisture content as well as defining the requirements for drying and storing the seeds. The areas of harvesting, food processing, and resource recycling, were covered with a main focus on the sensing possibilities for regulating the recycling process.

  14. System identification of closed-loop cardiovascular control: effects of posture and autonomic blockade

    Science.gov (United States)

    Mullen, T. J.; Appel, M. L.; Mukkamala, R.; Mathias, J. M.; Cohen, R. J.

    1997-01-01

    We applied system identification to the analysis of fluctuations in heart rate (HR), arterial blood pressure (ABP), and instantaneous lung volume (ILV) to characterize quantitatively the physiological mechanisms responsible for the couplings between these variables. We characterized two autonomically mediated coupling mechanisms [the heart rate baroreflex (HR baroreflex) and respiratory sinus arrhythmia (ILV-HR)] and two mechanically mediated coupling mechanisms [the blood pressure wavelet generated with each cardiac contraction (circulatory mechanics) and the direct mechanical effects of respiration on blood pressure (ILV-->ABP)]. We evaluated the method in humans studied in the supine and standing postures under control conditions and under conditions of beta-sympathetic and parasympathetic pharmacological blockades. Combined beta-sympathetic and parasympathetic blockade abolished the autonomically mediated couplings while preserving the mechanically mediated coupling. Selective autonomic blockade and postural changes also altered the couplings in a manner consistent with known physiological mechanisms. System identification is an "inverse-modeling" technique that provides a means for creating a closed-loop model of cardiovascular regulation for an individual subject without altering the underlying physiological control mechanisms.

  15. System identification of closed-loop cardiovascular control mechanisms: diabetic autonomic neuropathy

    Science.gov (United States)

    Mukkamala, R.; Mathias, J. M.; Mullen, T. J.; Cohen, R. J.; Freeman, R.

    1999-01-01

    We applied cardiovascular system identification (CSI) to characterize closed-loop cardiovascular regulation in patients with diabetic autonomic neuropathy (DAN). The CSI method quantitatively analyzes beat-to-beat fluctuations in noninvasively measured heart rate, arterial blood pressure (ABP), and instantaneous lung volume (ILV) to characterize four physiological coupling mechanisms, two of which are autonomically mediated (the heart rate baroreflex and the coupling of respiration, measured in terms of ILV, to heart rate) and two of which are mechanically mediated (the coupling of ventricular contraction to the generation of the ABP wavelet and the coupling of respiration to ABP). We studied 37 control and 60 diabetic subjects who were classified as having minimal, moderate, or severe DAN on the basis of standard autonomic tests. The autonomically mediated couplings progressively decreased with increasing severity of DAN, whereas the mechanically mediated couplings were essentially unchanged. CSI identified differences between the minimal DAN and control groups, which were indistinguishable based on the standard autonomic tests. CSI may provide a powerful tool for assessing DAN.

  16. Closed-loop focal plane wavefront control with the SCExAO instrument

    Science.gov (United States)

    Martinache, Frantz; Jovanovic, Nemanja; Guyon, Olivier

    2016-09-01

    Aims: This article describes the implementation of a focal plane based wavefront control loop on the high-contrast imaging instrument SCExAO (Subaru Coronagraphic Extreme Adaptive Optics). The sensor relies on the Fourier analysis of conventional focal-plane images acquired after an asymmetric mask is introduced in the pupil of the instrument. Methods: This absolute sensor is used here in a closed-loop to compensate for the non-common path errors that normally affects any imaging system relying on an upstream adaptive optics system.This specific implementation was used to control low-order modes corresponding to eight zernike modes (from focus to spherical). Results: This loop was successfully run on-sky at the Subaru Telescope and is used to offset the SCExAO deformable mirror shape used as a zero-point by the high-order wavefront sensor. The paper details the range of errors this wavefront-sensing approach can operate within and explores the impact of saturation of the data and how it can be bypassed, at a cost in performance. Conclusions: Beyond this application, because of its low hardware impact, the asymmetric pupil Fourier wavefront sensor (APF-WFS) can easily be ported in a wide variety of wavefront sensing contexts, for ground- as well space-borne telescopes, and for telescope pupils that can be continuous, segmented or even sparse. The technique is powerful because it measures the wavefront where it really matters, at the level of the science detector.

  17. Frequency-induced changes in interlimb interactions: increasing manifestations of closed-loop control.

    Science.gov (United States)

    de Boer, Betteco J; Peper, C Lieke E; Beek, Peter J

    2011-06-20

    In bimanual coordination, interactions between the limbs result in attraction to in-phase and antiphase coordination. Increasing movement frequency leads to decreasing stability of antiphase coordination, often resulting in a transition to the more stable in-phase pattern. It is unknown, however, how this frequency-induced loss of stability is engendered in terms of the interlimb interactions underwriting bimanual coordination. The present study was conducted to help resolve this issue. Using an established method (based on comparison of various unimanual and bimanual tasks involving both passive and active movements), three sources of interlimb interaction were dissociated: (1) integrated timing of feedforward signals, (2) afference-based correction of relative phase errors, and (3) phase entrainment by contralateral afference. Results indicated that phase entrainment strength remained unaffected by frequency and that the stabilizing effects of error correction and integrated timing decreased with increasing frequency. Their contributions, however, reflected an interesting interplay as frequency increased. For moderate frequencies coordinative stability was predominantly secured by integrated timing processes. However, at high frequencies, the stabilization of the antiphase pattern required combined contributions of both integrated timing and error correction. In sum, increasing frequency was found to induce a shift from predominantly open-loop control to more closed-loop control. The results may be accounted for by means of an internal forward model for sensorimotor integration in which the sensory signals are compared to values predicted on the basis of efference copies.

  18. Closed-loop focal plane wavefront control with the SCExAO instrument

    CERN Document Server

    Martinache, Frantz; Guyon, Olivier

    2016-01-01

    This article describes the implementation of a focal plane based wavefront control loop on the high-contrast imaging instrument SCExAO (Subaru Coronagraphic Extreme Adaptive Optics). The sensor relies on the Fourier analysis of conventional focal-plane images acquired after an asymmetric mask is introduced in the pupil of the instrument. This absolute sensor is used here in a closed-loop to compensate the non-common path errors that normally affects any imaging system relying on an upstream adaptive optics system.This specific implementation was used to control low order modes corresponding to eight zernike modes (from focus to spherical). This loop was successfully run on-sky at the Subaru Telescope and is used to offset the SCExAO deformable mirror shape used as a zero-point by the high-order wavefront sensor. The paper precises the range of errors this wavefront sensing approach can operate within and explores the impact of saturation of the data and how it can be bypassed, at a cost in performance. Beyond...

  19. Studies on the closed-loop digital control of multi-modular reactors. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, J.A. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Nuclear Reactor Lab.; Henry, A.F.; Lanning, D.D.; Meyer, J.E. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Nuclear Engineering

    1992-11-01

    This report describes the theoretical development and the evaluation via both experiment and simulation of digital methods for the closed-loop control of power, temperature, and steam generator level in multi-modular reactors. The major conclusion of the research reported here is that the technology is currently available to automate many aspects of the operation of multi-modular plants. This will in turn minimize the number of required personnel and thus contain both operating and personnel costs, allow each module to be operated at a different power level thereby staggering the times at which refuelings would be needed, and maintain the competitiveness of US industry relative to foreign vendors who are developing and applying advanced control concepts. The technology described in this report is appropriate to the proposed multi-modular reactor designs and to present-generation pressurized water reactors. Its extension to boiling water reactors is possible provided that the commitment is made to create a real-time model of a BWR. The work reported here was performed by the Massachusetts Institute of Technology (MIT) under contract to the Oak Ridge National Laboratory (ORNL) and to the United States Department of Energy (Division of Industry and University Programs, Contract No. DE-FG07-90ER12930.)

  20. Studies on the closed-loop digital control of multi-modular reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, J.A. (Massachusetts Inst. of Tech., Cambridge, MA (United States). Nuclear Reactor Lab.); Henry, A.F.; Lanning, D.D.; Meyer, J.E. (Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Nuclear Engineering)

    1992-11-01

    This report describes the theoretical development and the evaluation via both experiment and simulation of digital methods for the closed-loop control of power, temperature, and steam generator level in multi-modular reactors. The major conclusion of the research reported here is that the technology is currently available to automate many aspects of the operation of multi-modular plants. This will in turn minimize the number of required personnel and thus contain both operating and personnel costs, allow each module to be operated at a different power level thereby staggering the times at which refuelings would be needed, and maintain the competitiveness of US industry relative to foreign vendors who are developing and applying advanced control concepts. The technology described in this report is appropriate to the proposed multi-modular reactor designs and to present-generation pressurized water reactors. Its extension to boiling water reactors is possible provided that the commitment is made to create a real-time model of a BWR. The work reported here was performed by the Massachusetts Institute of Technology (MIT) under contract to the Oak Ridge National Laboratory (ORNL) and to the United States Department of Energy (Division of Industry and University Programs, Contract No. DE-FG07-90ER12930.)

  1. Quorum-Quenching Human Designer Cells for Closed-Loop Control of Pseudomonas aeruginosa Biofilms.

    Science.gov (United States)

    Sedlmayer, Ferdinand; Jaeger, Tina; Jenal, Urs; Fussenegger, Martin

    2017-08-09

    Current antibiotics gradually lose their efficacy against chronic Pseudomonas aeruginosa infections due to development of increased resistance mediated by biofilm formation, as well as the large arsenal of microbial virulence factors that are coordinated by the cell density-dependent phenomenon of quorum sensing. Here, we address this issue by using synthetic biology principles to rationally engineer quorum-quencher cells with closed-loop control to autonomously dampen virulence and interfere with biofilm integrity. Pathogen-derived signals dynamically activate a synthetic mammalian autoinducer sensor driving downstream expression of next-generation anti-infectives. Engineered cells were able to sensitively score autoinducer levels from P. aeruginosa clinical isolates and mount a 2-fold defense consisting of an autoinducer-inactivating enzyme to silence bacterial quorum sensing and a bipartite antibiofilm effector to dissolve the biofilm matrix. The self-guided cellular device fully cleared autoinducers, potentiated bacterial antibiotic susceptibility, substantially reduced biofilms, and alleviated cytotoxicity to lung epithelial cells. We believe this strategy of dividing otherwise coordinated pathogens and breaking up their shielded stronghold represents a blueprint for cellular anti-infectives in the postantibiotic era.

  2. Propofol detection and quantification in human blood: the promise of feedback controlled, closed-loop anesthesia.

    Science.gov (United States)

    Kivlehan, Francine; Chaum, Edward; Lindner, Ernő

    2015-01-07

    The performance of a membrane-coated voltammetric sensor for propofol (2,6-diisopropylphenol) has been characterized in long term monitoring experiments using an automated flow analytical system (AFAS) and by analyzing human serum and whole blood samples by standard addition. It is shown that the signal of the membrane-coated electrochemical sensor for propofol is not influenced by the components of the pharmaceutical formulation of propofol (propofol injectable emulsion). The current values recorded with the electrochemical propofol sensor in buffer solutions and human serum samples spiked with propofol injectable emulsion showed excellent correlation with the peak heights recorded with an UV-Vis detector during the HPLC analysis of these samples (R(2) = 0.997 in PBS and R(2) = 0.975 in human serum). However, the determination of propofol using the electrochemical method is simpler, faster and has a better detection limit (0.08 ± 0.05 μM) than the HPLC method (0.4 ± 0.2 μM). As a first step towards feedback controlled closed-loop anesthesia, the membrane-coated electrochemical sensor has been implemented onto surface of an intravenous catheter. The response characteristics of the membrane-coated carbon fiber electrode on the catheter surface were very similar to those seen using a macroelectrode.

  3. A Closed-Loop Imaging Infrared-Based Tracker For Fire Control

    Science.gov (United States)

    Marshall, William C.; Dahl, Peter; Richardson, Russell D.; Klein, Michael D.

    1989-09-01

    This report presents a closed-loop automatic tracker for imaging IR-based fire control. A tank target state estimation filter is discussed and major tradeoffs in the implementation of Kalman filters and tracker rate-aiding are given. Tank target maneuver capabilities are surveyed and results are incorporated in the filter. The developed augmented Kalman filter is based upon nine filter states and three measurements. Simulation studies show acceptable target prediction accuracies for tank targets even for constant Kalman gains. Gain scheduling is performed during filter initialization or when a "target maneuver" is detected from testing the statistics of filter residuals. The augmented Kalman filter uses range and line-of-sight (LOS) angular rate measurements obtained from platform-mounted range and angular rate sensors. Filtered inertial angular rates are used for tracker rate-aiding before and after "breaklock"-if this occurs (e.g., if target gets occluded). During the tracker "coast-until-reacquisition" phase the propagated filter rates are used to command the gimbals.

  4. Very-low speed control of PMSM based on EKF estimation with closed loop optimized parameters.

    Science.gov (United States)

    Xu, Dong; Zhang, Shaoguang; Liu, Jingmeng

    2013-11-01

    When calculating the speed from the position of permanent magnet synchronous motor (PMSM), the accuracy and real-time are limited by the precision of the sensor. This problem causes crawling and jitter at very-low speed. Using the angle from the position sensor, an extended Kalman filter (EKF) designed in dq-coordinate is presented to solve this problem. The usage of position sensor simplifies the model and improves the accuracy of speed estimation. Specially, a closed loop optimal (CLO) method is devised to overcome the difficulty to adjust the parameters of the EKF. The EKF is the feedback link of speed control, CLO method is derived from the perspective of the speed step response to optimize the measurement covariance matrix and the system covariance matrix of EKF. Simulation and experimental results, comparing the low-speed performance of the EKF and sensor feedback methods, prove the effectiveness of the method to adjust the parameters of EKF and the advantages in eliminating the low speed jitter.

  5. Improvement of mechanical performance for vibratory microgyroscope based on sense mode closed-loop control

    Science.gov (United States)

    Xiao, Dingbang; Su, Jianbin; Chen, Zhihua; Hou, Zhanqiang; Wang, Xinghua; Wu, Xuezhong

    2013-04-01

    In order to improve its structural sensitivity, a vibratory microgyroscope is commonly sealed in high vacuum to increase the drive mode quality factor. The sense mode quality factor of the microgyroscope will also increase simultaneously after vacuum sealing, which will lead to a long decay time of free response and even self-oscillation of the sense mode. As a result, the mechanical performance of the microgyroscope will be seriously degraded. In order to solve this problem, a closed-loop control technique is presented to adjust and optimize the sense mode quality factor. A velocity feedback loop was designed to increase the electric damping of the sense mode vibration. A circuit was fabricated based on this technique, and experimental results indicate that the sense mode quality factor of the microgyroscope was adjusted from 8052 to 428. The decay time of the sense mode free response was shortened from 3 to 0.5 s, and the vibration-rejecting ability of the microgyroscope was improved obviously without sensitivity degradation.

  6. Closed-loop control of zebrafish response using a bioinspired robotic-fish in a preference test.

    Science.gov (United States)

    Kopman, Vladislav; Laut, Jeffrey; Polverino, Giovanni; Porfiri, Maurizio

    2013-01-06

    In this paper, we study the response of zebrafish to a robotic-fish whose morphology and colour pattern are inspired by zebrafish. Experiments are conducted in a three-chambered instrumented water tank where a robotic-fish is juxtaposed with an empty compartment, and the preference of live subjects is scored as the mean time spent in the vicinity of the tank's two lateral sides. The tail-beating of the robotic-fish is controlled in real-time based on feedback from fish motion to explore a spectrum of closed-loop systems, including proportional and integral controllers. Closed-loop control systems are complemented by open-loop strategies, wherein the tail-beat of the robotic-fish is independent of the fish motion. The preference space and the locomotory patterns of fish for each experimental condition are analysed and compared to understand the influence of real-time closed-loop control on zebrafish response. The results of this study show that zebrafish respond differently to the pattern of tail-beating motion executed by the robotic-fish. Specifically, the preference and behaviour of zebrafish depend on whether the robotic-fish tail-beating frequency is controlled as a function of fish motion and how such closed-loop control is implemented.

  7. Package architecture and component design for an implanted neural stimulator with closed loop control.

    Science.gov (United States)

    Bjune, Caroline K; Marinis, Thomas F; Brady, Jeanne M; Moran, James; Wheeler, Jesse; Sriram, Tirunelveli S; Parks, Philip D; Widge, Alik S; Dougherty, Darin D; Eskandar, Emad N

    2015-08-01

    An implanted neural stimulator with closed loop control requires electrodes for stimulation pulses and recording neuron activity. Our system features arrays of 64 electrodes. Each electrode can be addressed through a cross bar switch, to enable it to be used for stimulation or recording. This electrode switch, a bank of low noise amplifiers with an integrated analog to digital converter, power conditioning electronics, and a communications and control gate array are co-located with the electrode array in a 14 millimeter diameter satellite package that is designed to be flush mounted in a skull burr hole. Our system features five satellite packages connected to a central hub processor-controller via ten conductor cables that terminate in a custom designed, miniaturized connector. The connector incorporates features of high reliability, military grade devices and utilizes three distinct seals to isolate the contacts from fluid permeation. The hub system is comprised of a connector header, hermetic electronics package, and rechargeable battery pack, which are mounted on and electrically interconnected by a flexible circuit board. The assembly is over molded with a compliant silicone rubber. The electronics package contains two antennas, a large coil, used for recharging the battery and a high bandwidth antenna that is used to download data and update software. The package is assembled from two machined alumina pieces, a flat base with brazed in, electrical feed through pins and a rectangular cover with rounded corners. Titanium seal rings are brazed onto these two pieces so that they can be sealed by laser welding. A third system antenna is incorporated in the flexible circuit board. It is used to communicate with an externally worn control package, which monitors the health of the system and allows both the user and clinician to control or modify various system function parameters.

  8. The role of feed-forward and feedback processes for closed-loop prosthesis control

    Directory of Open Access Journals (Sweden)

    Saunders Ian

    2011-10-01

    Full Text Available Abstract Background It is widely believed that both feed-forward and feed-back mechanisms are required for successful object manipulation. Open-loop upper-limb prosthesis wearers receive no tactile feedback, which may be the cause of their limited dexterity and compromised grip force control. In this paper we ask whether observed prosthesis control impairments are due to lack of feedback or due to inadequate feed-forward control. Methods Healthy subjects were fitted with a closed-loop robotic hand and instructed to grasp and lift objects of different weights as we recorded trajectories and force profiles. We conducted three experiments under different feed-forward and feed-back configurations to elucidate the role of tactile feedback (i in ideal conditions, (ii under sensory deprivation, and (iii under feed-forward uncertainty. Results (i We found that subjects formed economical grasps in ideal conditions. (ii To our surprise, this ability was preserved even when visual and tactile feedback were removed. (iii When we introduced uncertainty into the hand controller performance degraded significantly in the absence of either visual or tactile feedback. Greatest performance was achieved when both sources of feedback were present. Conclusions We have introduced a novel method to understand the cognitive processes underlying grasping and lifting. We have shown quantitatively that tactile feedback can significantly improve performance in the presence of feed-forward uncertainty. However, our results indicate that feed-forward and feed-back mechanisms serve complementary roles, suggesting that to improve on the state-of-the-art in prosthetic hands we must develop prostheses that empower users to correct for the inevitable uncertainty in their feed-forward control.

  9. Day and Night Closed-Loop Control in Adults With Type 1 Diabetes

    Science.gov (United States)

    Luijf, Yoeri M.; DeVries, J. Hans; Zwinderman, Koos; Leelarathna, Lalantha; Nodale, Marianna; Caldwell, Karen; Kumareswaran, Kavita; Elleri, Daniela; Allen, Janet M.; Wilinska, Malgorzata E.; Evans, Mark L.; Hovorka, Roman; Doll, Werner; Ellmerer, Martin; Mader, Julia K.; Renard, Eric; Place, Jerome; Farret, Anne; Cobelli, Claudio; Del Favero, Simone; Dalla Man, Chiara; Avogaro, Angelo; Bruttomesso, Daniela; Filippi, Alessio; Scotton, Rachele; Magni, Lalo; Lanzola, Giordano; Di Palma, Federico; Soru, Paola; Toffanin, Chiara; De Nicolao, Giuseppe; Arnolds, Sabine; Benesch, Carsten; Heinemann, Lutz

    2013-01-01

    OBJECTIVE To compare two validated closed-loop (CL) algorithms versus patient self-control with CSII in terms of glycemic control. RESEARCH DESIGN AND METHODS This study was a multicenter, randomized, three-way crossover, open-label trial in 48 patients with type 1 diabetes mellitus for at least 6 months, treated with continuous subcutaneous insulin infusion. Blood glucose was controlled for 23 h by the algorithm of the Universities of Pavia and Padova with a Safety Supervision Module developed at the Universities of Virginia and California at Santa Barbara (international artificial pancreas [iAP]), by the algorithm of University of Cambridge (CAM), or by patients themselves in open loop (OL) during three hospital admissions including meals and exercise. The main analysis was on an intention-to-treat basis. Main outcome measures included time spent in target (glucose levels between 3.9 and 8.0 mmol/L or between 3.9 and 10.0 mmol/L after meals). RESULTS Time spent in the target range was similar in CL and OL: 62.6% for OL, 59.2% for iAP, and 58.3% for CAM. While mean glucose level was significantly lower in OL (7.19, 8.15, and 8.26 mmol/L, respectively) (overall P = 0.001), percentage of time spent in hypoglycemia (<3.9 mmol/L) was almost threefold reduced during CL (6.4%, 2.1%, and 2.0%) (overall P = 0.001) with less time ≤2.8 mmol/L (overall P = 0.038). There were no significant differences in outcomes between algorithms. CONCLUSIONS Both CAM and iAP algorithms provide safe glycemic control. PMID:24170747

  10. Controlling the oscillation phase through precisely timed closed-loop optogenetic stimulation: a computational study

    Science.gov (United States)

    Witt, Annette; Palmigiano, Agostina; Neef, Andreas; El Hady, Ahmed; Wolf, Fred; Battaglia, Demian

    2013-01-01

    Dynamic oscillatory coherence is believed to play a central role in flexible communication between brain circuits. To test this communication-through-coherence hypothesis, experimental protocols that allow a reliable control of phase-relations between neuronal populations are needed. In this modeling study, we explore the potential of closed-loop optogenetic stimulation for the control of functional interactions mediated by oscillatory coherence. The theory of non-linear oscillators predicts that the efficacy of local stimulation will depend not only on the stimulation intensity but also on its timing relative to the ongoing oscillation in the target area. Induced phase-shifts are expected to be stronger when the stimulation is applied within specific narrow phase intervals. Conversely, stimulations with the same or even stronger intensity are less effective when timed randomly. Stimulation should thus be properly phased with respect to ongoing oscillations (in order to optimally perturb them) and the timing of the stimulation onset must be determined by a real-time phase analysis of simultaneously recorded local field potentials (LFPs). Here, we introduce an electrophysiologically calibrated model of Channelrhodopsin 2 (ChR2)-induced photocurrents, based on fits holding over two decades of light intensity. Through simulations of a neural population which undergoes coherent gamma oscillations—either spontaneously or as an effect of continuous optogenetic driving—we show that precisely-timed photostimulation pulses can be used to shift the phase of oscillation, even at transduction rates smaller than 25%. We consider then a canonic circuit with two inter-connected neural populations oscillating with gamma frequency in a phase-locked manner. We demonstrate that photostimulation pulses applied locally to a single population can induce, if precisely phased, a lasting reorganization of the phase-locking pattern and hence modify functional interactions between the

  11. Controlling the oscillation phase through precisely timed closed-loop optogenetic stimulation: a computational study

    Directory of Open Access Journals (Sweden)

    Annette eWitt

    2013-04-01

    Full Text Available Dynamic oscillatory coherence is believed to play a central role in flexible communication between brain circuits. To test this communication-through-coherence hypothesis, experimental protocols that allow a reliable control of phase-relations between neuronal populations are needed. In this modeling study, we explore the potential of closed-loop optogenetic stimulation for the control of functional interactions mediated by oscillatory coherence. The theory of nonlinear oscillators predicts that the efficacy of local stimulation will depend not only on the stimulation intensity but also on its timing relative to the ongoing oscillation in the target area. Induced phase-shifts are expected to be stronger when the stimulation is applied within specific narrow phase intervals. Conversely, stimulations with the same or even stronger intensity are less effective when timed randomly. Stimulation should thus be properly phased with respect to ongoing oscillations (in order to optimally perturb them and the timing of the stimulation onset must be determined by a real-time phase analysis of simultaneously recorded local field potentials (LFPs.Here, we introduce an electrophysiologically calibrated model of Channelrhodopsin 2 (ChR2-induced photocurrents, based on fits holding over two decades of light intensity. Through simulations of a neural population which undergoes coherent gamma oscillations —either spontaneously or as an effect of continuous optogenetic driving—, we show that precisely-timed photostimulation pulses can be used to shift phase, even at transduction rates smaller than 25%. We consider then a canonic circuit with two inter-connected neural populations oscillating with gamma frequency in a phase-locked manner. We demonstrate that photostimulation pulses applied locally to a single population can induce, if precisely phased, a lasting reorganization of the phase-locking pattern and hence modify functional interactions between the two

  12. Algorithms for a Single Hormone Closed-Loop Artificial Pancreas: Challenges Pertinent to Chemical Process Operations and Control

    Directory of Open Access Journals (Sweden)

    B. Wayne Bequette

    2016-10-01

    Full Text Available The development of a closed-loop artificial pancreas to regulate the blood glucose concentration of individuals with type 1 diabetes has been a focused area of research for over 50 years, with rapid progress during the past decade. The daily control challenges faced by someone with type 1 diabetes include asymmetric objectives and risks, and one-sided manipulated input action with frequent relatively fast disturbances. The major automation steps toward a closed-loop artificial pancreas include (i monitoring and overnight alarms for hypoglycemia (low blood glucose; (ii overnight low glucose suspend (LGS systems to prevent hypoglycemia; and (iii fully closed-loop systems that adjust insulin (and perhaps glucagon to maintain desired blood glucose levels day and night. We focus on the steps that we used to develop and test a probabilistic, risk-based, model predictive control strategy for a fully closed-loop artificial pancreas. We complete the paper by discussing ramifications of lessons learned for chemical process systems applications.

  13. Consumption of Cisatracurium in different age groups, using a closed loop computer controlled system.

    Science.gov (United States)

    Joomye, Shehzaad; Yan, Donglai; Wang, Haiyun; Zhou, Guoqiang; Wang, Guolin

    2014-01-01

    We devised this study to quantify the effect of age on the consumption of cisatracurium under general anaesthesia, using a computer controlled closed loop infusion system. We further investigated this effect on, sufentanil and propofol consumption. 74 patients of physical status I and II, requiring general anaesthesia for elective abdominal surgery, were assigned to three groups. Patients in group 1 were aged from 20 to 45, group 2 were from 46 to 64, and group 3 above 65 years old. General Anesthesia was maintained with propofol and muscle paralysis was maintained using a closed-loop computer controlled infusion of cisatracurium. For analgesia, intermittent bolus of sufentanil 10 μg was given. Cisatracurium consumption in group 1, 2 and 3 were 1.8 ± 0.3, 1.6 ± 0.4 and 1.3 ± 0.4 μg/kg/min respectively. There was significant difference of cisatracurium consumption between group 1 and 3 (P = 0.002), and the consumption of cisatracurium in group 3 was less as compared with group 2 (P = 0.04). The average recovery index of patients in group 1, 2 and 3 were 8.8 ± 2.6, 11.5 ± 2.9 and 12.7 ± 2.5 minutes respectively. There were difference between group 1 and 2 (P = 0.02). As compared with group 1, the recovery index was still longer in group 3 (P = 0.001). Patients in group 1, 2 and 3 consumed an average sufentanil 0.4 ± 0.1, 0.4 ± 0.1 and 0.3 ± 0.1 μg/kg/hr, respectively. There were statistical significant between group 1 and 3 (P < 0.0001), and the same trend was found between group 2 and 3 (P = 0.03). The Consumption of propofol in group 1, 2 and 3 were 5.1 ± 0.4, 4.3 ± 0.6 and 3.1 ± 0.5 mg/kg/hr. The difference in the propofol consumption was found statistically significant when comparing between any two groups. We concluded that the sensitivity of anesthetic agents increased with age. Less medication was required to achieve a desirable effect in older patients specially those

  14. Safety of Outpatient Closed-Loop Control: First Randomized Crossover Trials of a Wearable Artificial Pancreas

    Science.gov (United States)

    Renard, Eric; Cobelli, Claudio; Zisser, Howard C.; Keith-Hynes, Patrick; Anderson, Stacey M.; Brown, Sue A.; Chernavvsky, Daniel R.; Breton, Marc D.; Mize, Lloyd B.; Farret, Anne; Place, Jérôme; Bruttomesso, Daniela; Del Favero, Simone; Boscari, Federico; Galasso, Silvia; Avogaro, Angelo; Magni, Lalo; Di Palma, Federico; Toffanin, Chiara; Messori, Mirko; Dassau, Eyal; Doyle, Francis J.

    2014-01-01

    OBJECTIVE We estimate the effect size of hypoglycemia risk reduction on closed-loop control (CLC) versus open-loop (OL) sensor-augmented insulin pump therapy in supervised outpatient setting. RESEARCH DESIGN AND METHODS Twenty patients with type 1 diabetes initiated the study at the Universities of Virginia, Padova, and Montpellier and Sansum Diabetes Research Institute; 18 completed the entire protocol. Each patient participated in two 40-h outpatient sessions, CLC versus OL, in randomized order. Sensor (Dexcom G4) and insulin pump (Tandem t:slim) were connected to Diabetes Assistant (DiAs)—a smartphone artificial pancreas platform. The patient operated the system through the DiAs user interface during both CLC and OL; study personnel supervised on site and monitored DiAs remotely. There were no dietary restrictions; 45-min walks in town and restaurant dinners were included in both CLC and OL; alcohol was permitted. RESULTS The primary outcome—reduction in risk for hypoglycemia as measured by the low blood glucose (BG) index (LGBI)—resulted in an effect size of 0.64, P = 0.003, with a twofold reduction of hypoglycemia requiring carbohydrate treatment: 1.2 vs. 2.4 episodes/session on CLC versus OL (P = 0.02). This was accompanied by a slight decrease in percentage of time in the target range of 3.9–10 mmol/L (66.1 vs. 70.7%) and increase in mean BG (8.9 vs. 8.4 mmol/L; P = 0.04) on CLC versus OL. CONCLUSIONS CLC running on a smartphone (DiAs) in outpatient conditions reduced hypoglycemia and hypoglycemia treatments when compared with sensor-augmented pump therapy. This was accompanied by marginal increase in average glycemia resulting from a possible overemphasis on hypoglycemia safety. PMID:24929429

  15. Fuzzy Supervisory Control

    DEFF Research Database (Denmark)

    Jantzen, Jan

    1998-01-01

    Control problems in the process industry are dominated by non-linear and time-varying behaviour, many inner loops, and much interaction between the control loops. Fuzzy controllers have in some cases nevertheless mimicked the control actions of a human operator. For high level control and supervi......Control problems in the process industry are dominated by non-linear and time-varying behaviour, many inner loops, and much interaction between the control loops. Fuzzy controllers have in some cases nevertheless mimicked the control actions of a human operator. For high level control...

  16. Decentralized Sliding Mode Observer Based Dual Closed-Loop Fault Tolerant Control for Reconfigurable Manipulator against Actuator Failure.

    Science.gov (United States)

    Zhao, Bo; Li, Chenghao; Liu, Derong; Li, Yuanchun

    2015-01-01

    This paper considers a decentralized fault tolerant control (DFTC) scheme for reconfigurable manipulators. With the appearance of norm-bounded failure, a dual closed-loop trajectory tracking control algorithm is proposed on the basis of the Lyapunov stability theory. Characterized by the modularization property, the actuator failure is estimated by the proposed decentralized sliding mode observer (DSMO). Moreover, the actuator failure can be treated in view of the local joint information, so its control performance degradation is independent of other normal joints. In addition, the presented DFTC scheme is significantly simplified in terms of the structure of the controller due to its dual closed-loop architecture, and its feasibility is highly reflected in the control of reconfigurable manipulators. Finally, the effectiveness of the proposed DFTC scheme is demonstrated using simulations.

  17. Decentralized Sliding Mode Observer Based Dual Closed-Loop Fault Tolerant Control for Reconfigurable Manipulator against Actuator Failure.

    Directory of Open Access Journals (Sweden)

    Bo Zhao

    Full Text Available This paper considers a decentralized fault tolerant control (DFTC scheme for reconfigurable manipulators. With the appearance of norm-bounded failure, a dual closed-loop trajectory tracking control algorithm is proposed on the basis of the Lyapunov stability theory. Characterized by the modularization property, the actuator failure is estimated by the proposed decentralized sliding mode observer (DSMO. Moreover, the actuator failure can be treated in view of the local joint information, so its control performance degradation is independent of other normal joints. In addition, the presented DFTC scheme is significantly simplified in terms of the structure of the controller due to its dual closed-loop architecture, and its feasibility is highly reflected in the control of reconfigurable manipulators. Finally, the effectiveness of the proposed DFTC scheme is demonstrated using simulations.

  18. Decentralized Sliding Mode Observer Based Dual Closed-Loop Fault Tolerant Control for Reconfigurable Manipulator against Actuator Failure

    Science.gov (United States)

    Zhao, Bo; Li, Yuanchun

    2015-01-01

    This paper considers a decentralized fault tolerant control (DFTC) scheme for reconfigurable manipulators. With the appearance of norm-bounded failure, a dual closed-loop trajectory tracking control algorithm is proposed on the basis of the Lyapunov stability theory. Characterized by the modularization property, the actuator failure is estimated by the proposed decentralized sliding mode observer (DSMO). Moreover, the actuator failure can be treated in view of the local joint information, so its control performance degradation is independent of other normal joints. In addition, the presented DFTC scheme is significantly simplified in terms of the structure of the controller due to its dual closed-loop architecture, and its feasibility is highly reflected in the control of reconfigurable manipulators. Finally, the effectiveness of the proposed DFTC scheme is demonstrated using simulations. PMID:26181826

  19. Recurrent-neural-network-based identification of a cascade hydraulic actuator for closed-loop automotive power transmission control

    Energy Technology Data Exchange (ETDEWEB)

    You, Seung Han [Hyundai Motor Company, Seoul (Korea, Republic of); Hahn, Jin Oh [University of Alberta, Edmonton (Canada)

    2012-05-15

    By virtue of its ease of operation compared with its conventional manual counterpart, automatic transmissions are commonly used as automotive power transmission control system in today's passenger cars. In accordance with this trend, research efforts on closed-loop automatic transmission controls have been extensively carried out to improve ride quality and fuel economy. State-of-the-art power transmission control algorithms may have limitations in performance because they rely on the steady-state characteristics of the hydraulic actuator rather than fully exploit its dynamic characteristics. Since the ultimate viability of closed-loop power transmission control is dominated by precise pressure control at the level of hydraulic actuator, closed-loop control can potentially attain superior efficacy in case the hydraulic actuator can be easily incorporated into model-based observer/controller design. In this paper, we propose to use a recurrent neural network (RNN) to establish a nonlinear empirical model of a cascade hydraulic actuator in a passenger car automatic transmission, which has potential to be easily incorporated in designing observers and controllers. Experimental analysis is performed to grasp key system characteristics, based on which a nonlinear system identification procedure is carried out. Extensive experimental validation of the established model suggests that it has superb one-step-ahead prediction capability over appropriate frequency range, making it an attractive approach for model-based observer/controller design applications in automotive systems.

  20. Closed-loop control of grasping with a myoelectric hand prosthesis: which are the relevant feedback variables for force control?

    Science.gov (United States)

    Ninu, Andrei; Dosen, Strahinja; Muceli, Silvia; Rattay, Frank; Dietl, Hans; Farina, Dario

    2014-09-01

    In closed-loop control of grasping by hand prostheses, the feedback information sent to the user is usually the actual controlled variable, i.e., the grasp force. Although this choice is intuitive and logical, the force production is only the last step in the process of grasping. Therefore, this study evaluated the performance in controlling grasp strength using a hand prosthesis operated through a complete grasping sequence while varying the feedback variables (e.g., closing velocity, grasping force), which were provided to the user visually or through vibrotactile stimulation. The experiments were conducted on 13 volunteers who controlled the Otto Bock Sensor Hand Speed prosthesis. Results showed that vibrotactile patterns were able to replace the visual feedback. Interestingly, the experiments demonstrated that direct force feedback was not essential for the control of grasping force. The subjects were indeed able to control the grip strength, predictively, by estimating the grasping force from the prosthesis velocity of closing. Therefore, grasping without explicit force feedback is not completely blind, contrary to what is usually assumed. In our study we analyzed grasping with a specific prosthetic device, but the outcomes are also applicable for other devices, with one or more degrees-of-freedom. The necessary condition is that the electromyography (EMG) signal directly and proportionally controls the velocity/grasp force of the hand, which is a common approach among EMG controlled prosthetic devices. The results provide important indications on the design of closed-loop EMG controlled prosthetic systems.

  1. The real-time measurement of welding temperature field and closed-loop control of isotherm width

    Institute of Scientific and Technical Information of China (English)

    张华; 潘际銮; 廖宝剑

    1999-01-01

    The real-time measurement of welding temperature field by colorimetric method is described, and with the data acquired from it closed-loop control system of the parameters of temperature field is developed and tested. Experimental results prove that it has high measurement speed (time of a field within 0.5s) and good dynamic response quality. Weld penetration can be controlled satisfactorily under unstable welding condition.

  2. A biological micro actuator: graded and closed-loop control of insect leg motion by electrical stimulation of muscles.

    Science.gov (United States)

    Cao, Feng; Zhang, Chao; Vo Doan, Tat Thang; Li, Yao; Sangi, Daniyal Haider; Koh, Jie Sheng; Huynh, Ngoc Anh; Bin Aziz, Mohamed Fareez; Choo, Hao Yu; Ikeda, Kazuo; Abbeel, Pieter; Maharbiz, Michel M; Sato, Hirotaka

    2014-01-01

    In this study, a biological microactuator was demonstrated by closed-loop motion control of the front leg of an insect (Mecynorrhina torquata, beetle) via electrical stimulation of the leg muscles. The three antagonistic pairs of muscle groups in the front leg enabled the actuator to have three degrees of freedom: protraction/retraction, levation/depression, and extension/flexion. We observed that the threshold amplitude (voltage) required to elicit leg motions was approximately 1.0 V; thus, we fixed the stimulation amplitude at 1.5 V to ensure a muscle response. The leg motions were finely graded by alternation of the stimulation frequencies: higher stimulation frequencies elicited larger leg angular displacement. A closed-loop control system was then developed, where the stimulation frequency was the manipulated variable for leg-muscle stimulation (output from the final control element to the leg muscle) and the angular displacement of the leg motion was the system response. This closed-loop control system, with an optimized proportional gain and update time, regulated the leg to set at predetermined angular positions. The average electrical stimulation power consumption per muscle group was 148 µW. These findings related to and demonstrations of the leg motion control offer promise for the future development of a reliable, low-power, biological legged machine (i.e., an insect-machine hybrid legged robot).

  3. A biological micro actuator: graded and closed-loop control of insect leg motion by electrical stimulation of muscles.

    Directory of Open Access Journals (Sweden)

    Feng Cao

    Full Text Available In this study, a biological microactuator was demonstrated by closed-loop motion control of the front leg of an insect (Mecynorrhina torquata, beetle via electrical stimulation of the leg muscles. The three antagonistic pairs of muscle groups in the front leg enabled the actuator to have three degrees of freedom: protraction/retraction, levation/depression, and extension/flexion. We observed that the threshold amplitude (voltage required to elicit leg motions was approximately 1.0 V; thus, we fixed the stimulation amplitude at 1.5 V to ensure a muscle response. The leg motions were finely graded by alternation of the stimulation frequencies: higher stimulation frequencies elicited larger leg angular displacement. A closed-loop control system was then developed, where the stimulation frequency was the manipulated variable for leg-muscle stimulation (output from the final control element to the leg muscle and the angular displacement of the leg motion was the system response. This closed-loop control system, with an optimized proportional gain and update time, regulated the leg to set at predetermined angular positions. The average electrical stimulation power consumption per muscle group was 148 µW. These findings related to and demonstrations of the leg motion control offer promise for the future development of a reliable, low-power, biological legged machine (i.e., an insect-machine hybrid legged robot.

  4. Optimal Design of DC to DC Boost Converter with Closed Loop Control PID Mechanism for High Voltage Photovoltaic Application

    Directory of Open Access Journals (Sweden)

    R. Arulmurugan

    2012-10-01

    Full Text Available This paper proposes a new dc to dc boost converter using closed loop control proportional Integral and Derivative mechanism for photovoltaic (PV standalone high voltage applications. The boost converter is composed of MOSFETs which are driven by closed loop PWM control. Many advantages including high efficiency, minimum number of switch, high voltage and power, low cost. This converter is attractive for high voltage and high power applications. The analysis and design considerations of the converter are presented. A prototype was implemented for an application requiring a 410W output power, input voltage range from 17.1-V, and a 317-V output voltage. The proposed system efficiency is about 90%.

  5. Optimal Design of DC to DC Boost Converter with Closed Loop Control PID Mechanism for High Voltage Photovoltaic Application

    Directory of Open Access Journals (Sweden)

    R. Arulmurugan

    2013-07-01

    Full Text Available This paper proposes a new dc to dc boost converter using closed loop control proportional Integral and Derivative mechanism for photovoltaic (PV standalone high voltage applications. The boost converter is composed of MOSFETs which are driven by closed loop PWM control. Many advantages including high efficiency, minimum number of switch, high voltage and power, low cost. This converter is attractive for high voltage and high power applications. The analysis and design considerations of the converter are presented. A prototype was implemented for an application requiring a 410W output power, input voltage range from 17.1-V, and a 317-V output voltage. The proposed system efficiency is about 90%.

  6. PDCI Wide-Area Damping Control: PSLF Simulations of the 2016 Open and Closed Loop Test Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wilches Bernal, Felipe [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pierre, Brian Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Elliott, Ryan Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schoenwald, David A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Byrne, Raymond H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Neely, Jason C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Trudnowski, Daniel J. [Montana Tech of the Univ. of Montana, Butte, MT (United States); Donnelly, Matthew K. [Montana Tech of the Univ. of Montana, Butte, MT (United States)

    2017-03-01

    To demonstrate and validate the performance of the wide-are a damping control system, the project plans to conduct closed-loop tests on the PDCI in summer/fall 2016. A test plan details the open and closed loop tests to be conducted on the P DCI using the wide-area damping control system. To ensure the appropriate level of preparedness, simulations were performed in order to predict and evaluate any possible unsafe operations before hardware experiments are attempted. This report contains the result s from these simulations using the power system dynamics software PSLF (Power System Load Flow, trademark of GE). The simulations use the WECC (Western Electricity Coordinating Council) 2016 light summer and heavy summer base cases.

  7. SIMULATION ANALYSIS ON PROPORTIONAL INTEGRAL AND DERIVATIVE CONTROL OF CLOSED LOOP DC MOTOR DRIVE WITH BIPOLAR VOLTAGE SWITCHING

    Directory of Open Access Journals (Sweden)

    P. Karpagavalli

    2013-01-01

    Full Text Available This study presents the performance of a new four quadrant single phase DC drive closed loop system controlled by proportional integral and derivative controller with Pulse Width Modulation (PWM full bridge DC-DC converter using bipolar voltage switching. The proposed method is found to be more efficient in improving the step response characteristics such as reducing the settling time, rise time, steady state error and maximum overshoot in speed response of the closed loop DC motor drive and also reduced total harmonics distortion in the AC line current when compared to open loop system. The proposed topologies were simulated using MATLAB/Simulink software package and the results were obtained.

  8. A Real-Time and Closed-Loop Control Algorithm for Cascaded Multilevel Inverter Based on Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Libing Wang

    2014-01-01

    Full Text Available In order to control the cascaded H-bridges (CHB converter with staircase modulation strategy in a real-time manner, a real-time and closed-loop control algorithm based on artificial neural network (ANN for three-phase CHB converter is proposed in this paper. It costs little computation time and memory. It has two steps. In the first step, hierarchical particle swarm optimizer with time-varying acceleration coefficient (HPSO-TVAC algorithm is employed to minimize the total harmonic distortion (THD and generate the optimal switching angles offline. In the second step, part of optimal switching angles are used to train an ANN and the well-designed ANN can generate optimal switching angles in a real-time manner. Compared with previous real-time algorithm, the proposed algorithm is suitable for a wider range of modulation index and results in a smaller THD and a lower calculation time. Furthermore, the well-designed ANN is embedded into a closed-loop control algorithm for CHB converter with variable direct voltage (DC sources. Simulation results demonstrate that the proposed closed-loop control algorithm is able to quickly stabilize load voltage and minimize the line current’s THD (<5% when subjecting the DC sources disturbance or load disturbance. In real design stage, a switching angle pulse generation scheme is proposed and experiment results verify its correctness.

  9. System identification of dynamic closed-loop control of total peripheral resistance by arterial and cardiopulmonary baroreceptors

    Science.gov (United States)

    Aljuri, A. N.; Bursac, N.; Marini, R.; Cohen, R. J.

    2001-01-01

    Prolonged exposure to microgravity in space flight missions (days) impairs the mechanisms responsible for defense of arterial blood pressure (ABP) and cardiac output (CO) against orthostatic stress in the post-flight period. The mechanisms responsible for the observed orthostatic intolerance are not yet completely understood. Additionally, effective counter measures to attenuate this pathophysiological response are not available. The aim of this study was to investigate the ability of our proposed system identification method to predict closed-loop dynamic changes in TPR induced by changes in mean arterial pressure (MAP) and right atrial pressure (RAP). For this purpose we designed and employed a novel experimental animal model for the examination of arterial and cardiopulmonary baroreceptors in the dynamic closed-loop control of total peripheral resistance (TPR), and applied system identification to the analysis of beat-to-beat fluctuations in the measured signals. Grant numbers: NAG5-4989. c 2001. Elsevier Science Ltd. All rights reserved.

  10. An Approach to Polynomial NARX/NARMAX Systems Identification in a Closed-loop with Variable Structure Control

    Institute of Scientific and Technical Information of China (English)

    O. M. Mohamed Vall; R. M'hiri

    2008-01-01

    Many physical processes have nonlinear behavior which can be well represented by a polynomial NARX or NARMAX model. The identification of such models has been widely explored in literature. The majority of these approaches are for the open-loop identification. However, for reasons such as safety and production restrictions, open-loop identification cannot always be done. In such cases, closed-loop identification is necessary. This paper presents a two-step approach to closed-loop identification of the polynomial NARX/NARMAX systems with variable structure control (VSC). First, a genetic algorithm (GA) is used to maximize the similarity of VSC signal to white noise by tuning the switching function parameters. Second, the system is simulated again and its parameters are estimated by an algorithm of the least square (LS) family. Finally, simulation examples are given to show the validity of the proposed approach.

  11. Design of a Closed-Loop, Bidirectional Brain Machine Interface System With Energy Efficient Neural Feature Extraction and PID Control.

    Science.gov (United States)

    Liu, Xilin; Zhang, Milin; Richardson, Andrew G; Lucas, Timothy H; Van der Spiegel, Jan

    2016-12-16

    This paper presents a bidirectional brain machine interface (BMI) microsystem designed for closed-loop neuroscience research, especially experiments in freely behaving animals. The system-on-chip (SoC) consists of 16-channel neural recording front-ends, neural feature extraction units, 16-channel programmable neural stimulator back-ends, in-channel programmable closed-loop controllers, global analog-digital converters (ADC), and peripheral circuits. The proposed neural feature extraction units includes 1) an ultra low-power neural energy extraction unit enabling a 64-step natural logarithmic domain frequency tuning, and 2) a current-mode action potential (AP) detection unit with time-amplitude window discriminator. A programmable proportional-integral-derivative (PID) controller has been integrated in each channel enabling a various of closed-loop operations. The implemented ADCs include a 10-bit voltage-mode successive approximation register (SAR) ADC for the digitization of the neural feature outputs and/or local field potential (LFP) outputs, and an 8-bit current-mode SAR ADC for the digitization of the action potential outputs. The multi-mode stimulator can be programmed to perform monopolar or bipolar, symmetrical or asymmetrical charge balanced stimulation with a maximum current of 4 mA in an arbitrary channel configuration. The chip has been fabricated in 0.18 μ m CMOS technology, occupying a silicon area of 3.7 mm (2). The chip dissipates 56 μW/ch on average. General purpose low-power microcontroller with Bluetooth module are integrated in the system to provide wireless link and SoC configuration. Methods, circuit techniques and system topology proposed in this work can be used in a wide range of relevant neurophysiology research, especially closed-loop BMI experiments.

  12. PRINCIPLE TO CLOSED LOOP CONTROL DIFFERENTIAL CYLINDER WITH DOUBLE SPEED VARIABLE PUMPS AND SINGLE LOOP CONTROL SIGNAL

    Institute of Scientific and Technical Information of China (English)

    Quan Long; Neubert T; Helduser S

    2004-01-01

    To control the position of differential cylinder closed loop without using any throttle elements, a new idea that two speed variable pumps are used to compensate the non-symmetric flow of differential cylinder is carried out.According to the leaking property of the system, a speed offset principle is also proposed to eliminate the cavitation and tension caused by the leakage and condensation of oil, which makes the system be in the same state as a valve controlled circuit.This principle is explained theoretically and experimentally.Further the relationship that the pressures in cylinder chambers change with load and leakage, and the relationship between biasing speed and pre-load pressures in cylinder chambers are established.The research has proved that the new system has similar technique features as those of controlled with servo valves, but due to the elimination of all the throttle lose the efficiency of system can be improved greatly.

  13. Closed Loop Speed Control of a BLDC Motor Drive Using Adaptive Fuzzy Tuned PI Controller

    Directory of Open Access Journals (Sweden)

    Sri Latha Eti

    2014-11-01

    Full Text Available Brushless DC Motors are widely used for many industrial applications because of their high efficiency, high torque and low volume. This paper proposed an improved Adaptive Fuzzy PI controller to control the speed of BLDC motor. This paper provides an overview of different tuning methods of PID Controller applied to control the speed of the transfer function model of the BLDC motor drive and then to the mathematical model of the BLDC motor drive. It is difficult to tune the parameters and get satisfied control characteristics by using normal conventional PI controller. The experimental results verify that Adaptive Fuzzy PI controller has better control performance than the conventional PI controller. The modeling, control and simulation of the BLDC motor have been done using the MATLAB/SIMULINK software. Also, the dynamic characteristics of the BLDC motor (i.e. speed and torque as well as currents and voltages of the inverter components are observed by using the developed model.

  14. Neural signal processing and closed-loop control algorithm design for an implanted neural recording and stimulation system.

    Science.gov (United States)

    Hamilton, Lei; McConley, Marc; Angermueller, Kai; Goldberg, David; Corba, Massimiliano; Kim, Louis; Moran, James; Parks, Philip D; Sang Chin; Widge, Alik S; Dougherty, Darin D; Eskandar, Emad N

    2015-08-01

    A fully autonomous intracranial device is built to continually record neural activities in different parts of the brain, process these sampled signals, decode features that correlate to behaviors and neuropsychiatric states, and use these features to deliver brain stimulation in a closed-loop fashion. In this paper, we describe the sampling and stimulation aspects of such a device. We first describe the signal processing algorithms of two unsupervised spike sorting methods. Next, we describe the LFP time-frequency analysis and feature derivation from the two spike sorting methods. Spike sorting includes a novel approach to constructing a dictionary learning algorithm in a Compressed Sensing (CS) framework. We present a joint prediction scheme to determine the class of neural spikes in the dictionary learning framework; and, the second approach is a modified OSort algorithm which is implemented in a distributed system optimized for power efficiency. Furthermore, sorted spikes and time-frequency analysis of LFP signals can be used to generate derived features (including cross-frequency coupling, spike-field coupling). We then show how these derived features can be used in the design and development of novel decode and closed-loop control algorithms that are optimized to apply deep brain stimulation based on a patient's neuropsychiatric state. For the control algorithm, we define the state vector as representative of a patient's impulsivity, avoidance, inhibition, etc. Controller parameters are optimized to apply stimulation based on the state vector's current state as well as its historical values. The overall algorithm and software design for our implantable neural recording and stimulation system uses an innovative, adaptable, and reprogrammable architecture that enables advancement of the state-of-the-art in closed-loop neural control while also meeting the challenges of system power constraints and concurrent development with ongoing scientific research designed

  15. Viscoelastic phenomenology based structure assignment for closed-loop vibration control of a beam with sensors and actuators

    Science.gov (United States)

    Vadiraja, G. K.; Mahapatra, D. Roy

    2009-03-01

    In this paper we incorporate a novel approach to synthesize a class of closed-loop feedback control, based on the variational structure assignment. Properties of a viscoelastic system are used to design an active feedback controller for an undamped structural system with distributed sensor, actuator and controller. Wave dispersion properties of onedimensional beam system have been studied. Efficiency of the chosen viscoelastic model in enhancing damping and stability properties of one-dimensional viscoelastic bar have been analyzed. The variational structure is projected on a solution space of a closed-loop system involving a weakly damped structure with distributed sensor and actuator with controller. These assign the phenomenology based internal strain rate damping parameter of a viscoelastic system to the usual elastic structure but with active control. In the formulation a model of cantilever beam with non-collocated actuator and sensor has been considered. The formulation leads to the matrix identification problem of two dynamic stiffness matrices. The method has been simplified to obtain control system gains for the free vibration control of a cantilever beam system with collocated actuator-sensor, using quadratic optimal control and pole-placement methods.

  16. Analysis and Design of a 3rd Order Velocity-Controlled Closed-Loop for MEMS Vibratory Gyroscopes

    Directory of Open Access Journals (Sweden)

    Ji-wei Jiao

    2013-09-01

    Full Text Available The time-average method currently available is limited to analyzing the specific performance of the automatic gain control-proportional and integral (AGC-PI based velocity-controlled closed-loop in a micro-electro-mechanical systems (MEMS vibratory gyroscope, since it is hard to solve nonlinear functions in the time domain when the control loop reaches to 3rd order. In this paper, we propose a linearization design approach to overcome this limitation by establishing a 3rd order linear model of the control loop and transferring the analysis to the frequency domain. Order reduction is applied on the built linear model’s transfer function by constructing a zero-pole doublet, and therefore mathematical expression of each control loop’s performance specification is obtained. Then an optimization methodology is summarized, which reveals that a robust, stable and swift control loop can be achieved by carefully selecting the system parameters following a priority order. Closed-loop drive circuits are designed and implemented using 0.35 μm complementary metal oxide semiconductor (CMOS process, and experiments carried out on a gyroscope prototype verify the optimization methodology that an optimized stability of the control loop can be achieved by constructing the zero-pole doublet, and disturbance rejection capability (D.R.C of the control loop can be improved by increasing the integral term.

  17. Analysis and design of a 3rd order velocity-controlled closed-loop for MEMS vibratory gyroscopes.

    Science.gov (United States)

    Wu, Huan-ming; Yang, Hai-gang; Yin, Tao; Jiao, Ji-wei

    2013-09-18

    The time-average method currently available is limited to analyzing the specific performance of the automatic gain control-proportional and integral (AGC-PI) based velocity-controlled closed-loop in a micro-electro-mechanical systems (MEMS) vibratory gyroscope, since it is hard to solve nonlinear functions in the time domain when the control loop reaches to 3rd order. In this paper, we propose a linearization design approach to overcome this limitation by establishing a 3rd order linear model of the control loop and transferring the analysis to the frequency domain. Order reduction is applied on the built linear model's transfer function by constructing a zero-pole doublet, and therefore mathematical expression of each control loop's performance specification is obtained. Then an optimization methodology is summarized, which reveals that a robust, stable and swift control loop can be achieved by carefully selecting the system parameters following a priority order. Closed-loop drive circuits are designed and implemented using 0.35 μm complementary metal oxide semiconductor (CMOS) process, and experiments carried out on a gyroscope prototype verify the optimization methodology that an optimized stability of the control loop can be achieved by constructing the zero-pole doublet, and disturbance rejection capability (D.R.C) of the control loop can be improved by increasing the integral term.

  18. Stability of Closed Loop Controlled Repetitive Periodic System applied to control of CD-Player

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob; Andersen, Palle

    2005-01-01

    In this paper a criterion for stability of specific control scheme for handling linear dynamic control systems with repetitive periodic sensor faults is derived. The given system and control scheme are described and defined. By combining these with the lifting technique a necessary and sufficient...... the repetitive sensor faults (surface faults). The fault approximations are subsequently subtracted from the measurements, and the influence from these repetitive sensor faults are thereby removed from the computed control signals....... stability criterion is derived. This criterion is following applied to an example on a feature based control scheme for handling CD-players playing CDs with surface faults. This feature based control scheme is handling repetitive periodic sensor faults. The feature based control scheme approximates...

  19. Comparison of Conventional Closed-Loop Controller with an Adaptive Controller for a Disturbed Thermodynamic System

    DEFF Research Database (Denmark)

    Alphinas, Robert A.; Hansen, Hans Henrik; Tambo, Torben

    2017-01-01

    Non-adaptive proportional controllers suffer from the ability to handle a system disturbance leading to a large steady-state error and undesired transient behavior. On the other hand, they are easy to implement and tune. This article examines whether an adaptive controller based on the MIT and Ly...... and Lyapunov principle leads to a more robust and accurate regulation. Both controllers have been tested on a thermodynamic system exposed to a disturbance. The experiment shows that the adaptive controller handles the disturbance faster and more accurate....

  20. Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks

    Directory of Open Access Journals (Sweden)

    De Momi Elena

    2006-10-01

    Full Text Available Abstract Background The design of an optimal neuroprostheses controller and its clinical use presents several challenges. First, the physiological system is characterized by highly inter-subjects varying properties and also by non stationary behaviour with time, due to conditioning level and fatigue. Secondly, the easiness to use in routine clinical practice requires experienced operators. Therefore, feedback controllers, avoiding long setting procedures, are required. Methods The error mapping controller (EMC here proposed uses artificial neural networks (ANNs both for the design of an inverse model and of a feedback controller. A neuromuscular model is used to validate the performance of the controllers in simulations. The EMC performance is compared to a Proportional Integral Derivative (PID included in an anti wind-up scheme (called PIDAW and to a controller with an ANN as inverse model and a PID in the feedback loop (NEUROPID. In addition tests on the EMC robustness in response to variations of the Plant parameters and to mechanical disturbances are carried out. Results The EMC shows improvements with respect to the other controllers in tracking accuracy, capability to prolong exercise managing fatigue, robustness to parameter variations and resistance to mechanical disturbances. Conclusion Different from the other controllers, the EMC is capable of balancing between tracking accuracy and mapping of fatigue during the exercise. In this way, it avoids overstressing muscles and allows a considerable prolongation of the movement. The collection of the training sets does not require any particular experimental setting and can be introduced in routine clinical practice.

  1. Controllable Optical Bistability and Multistability in a Four-Level Atomic System with Closed-Loop Configuration

    Institute of Scientific and Technical Information of China (English)

    L(U) Xin-You; LI Jia-Hua; LIU Ji-Bing

    2007-01-01

    @@ We theoretically investigate optical bistability (OB) and multistability (OM) behaviour of a closed-loop configuration atomic system driven by a degenerate coupling field and a degenerate probe field inside a unidirectional ring cavity. It is found that the OB and OM behaviour can be controlled by adjusting the intensity and the frequency detuning of the coupling field, respectively. Interestingly, our numerical results show that it is easy to realize the transition from OB to OM or vice versa by adjusting the intensity of the coupling field under a appropriate frequency detuning. The effect of the atomic cooperation parameter on the OB behaviour is also discussed.

  2. Dynamics and adaptive control of a dual-arm space robot with closed-loop constraints and uncertain inertial parameters

    Science.gov (United States)

    Jia, Ying-Hong; Hu, Quan; Xu, Shi-Jie

    2014-02-01

    A dynamics-based adaptive control approach is proposed for a planar dual-arm space robot in the presence of closed-loop constraints and uncertain inertial parameters of the payload. The controller is capable of controlling the position and attitude of both the satellite base and the payload grasped by the manipulator end effectors. The equations of motion in reduced-order form for the constrained system are derived by incorporating the constraint equations in terms of accelerations into Kane's equations of the unconstrained system. Model analysis shows that the resulting equations perfectly meet the requirement of adaptive controller design. Consequently, by using an indirect approach, an adaptive control scheme is proposed to accomplish position/attitude trajectory tracking control with the uncertain parameters being estimated on-line. The actuator redundancy due to the closed-loop constraints is utilized to minimize a weighted norm of the joint torques. Global asymptotic stability is proven by using Lyapunov's method, and simulation results are also presented to demonstrate the effectiveness of the proposed approach. [Figure not available: see fulltext.

  3. Disturbance-rejection-based tuning of proportional-integral-derivative controllers by exploiting closed-loop plant data.

    Science.gov (United States)

    Jeng, Jyh-Cheng; Ge, Guo-Ping

    2016-05-01

    A systematic data-based design method for tuning proportional-integral-derivative (PID) controllers for disturbance attenuation is proposed. In this method, a set of closed-loop plant data are directly exploited without using a process model. PID controller parameters for a control system that behaves as closely as possible to the reference model for disturbance rejection are derived. Two algorithms are developed to calculate the PID parameters. One algorithm determines the optimal time delay in the reference model by solving an optimization problem, whereas the other algorithm avoids the nonlinear optimization by using a simple approximation for the time delay term, enabling derivation of analytical PID tuning formulas. Because plant data integrals are used in the regression equations for calculating PID parameters, the two proposed algorithms are robust against measurement noises. Moreover, the controller tuning involves an adjustable design parameter that enables the user to achieve a trade-off between performance and robustness. Because of its closed-loop tuning capability, the proposed method can be applied online to improve (retune) existing underperforming controllers for stable, integrating, and unstable plants. Simulation examples covering a wide variety of process dynamics, including two examples related to reactor systems, are presented to demonstrate the effectiveness of the proposed tuning method.

  4. A Review of Closed-Loop Algorithms for Glycemic Control in the Treatment of Type 1 Diabetes

    Directory of Open Access Journals (Sweden)

    Joseph El Youssef

    2009-03-01

    Full Text Available With the discovery of insulin came a deeper understanding of therapeutic options for one of the most devastating chronic diseases of the modern era, diabetes mellitus. The use of insulin in the treatment of diabetes, especially in those with severe insulin deficiency (type 1 diabetes, with multiple injections or continuous subcutaneous infusion, has been largely successful, but the risk for short term and long term complications remains substantial. Insulin treatment decisions are based on the patient’s knowledge of meal size, exercise plans and the intermittent knowledge of blood glucose values. As such, these are open loop methods that require human input. The idea of closed loop control of diabetes treatment is quite different: automated control of a device that delivers insulin (and possibly glucagon or other medications and is based on continuous or very frequent glucose measurements. Closed loop insulin control for type 1 diabetes is not new but is far from optimized. The goal of such a system is to avoid short-term complications (hypoglycemia and long-term complications (diseases of the eyes, kidneys, nerves and cardiovascular system by mimicking the normal insulin secretion pattern of the pancreatic beta cell. A control system for automated diabetes treatment consists of three major components, (1 a glucose sensing device that serves as the afferent limb of the system; (2 an automated control unit that uses algorithms which acquires sensor input and generates treatment outputs; and (3 a drug delivery device (primarily for delivery of insulin, which serves as the system’s efferent limb. There are several major issues that highlight the difficulty of interacting with the complex unknowns of the biological world. For example, development of accurate continuous glucose monitors is crucial; the state of the art in 2009 is that such devices sometimes experience drift and are intended only to supplement information received from standard

  5. Combined Discrete Space Voltage Vector with Direct Torque Control for Bearingless Brushless DC Motor and Closed-Loop Suspended Force Control

    Directory of Open Access Journals (Sweden)

    Weiran Wang

    2013-06-01

    Full Text Available In order to improve the performance of bearingless brushless DC motor, a closed-loop suspended force controller combining the discrete space voltage vector modulation is applied and the direct torque control is presented in this paper. Firstly, we increase the number of the control vector to reduce the torque ripple. Then, the suspending equation is constructed which is spired by the direct torque control algorithm. As a result, the closed-loop suspended force controller is built. The simulated and experimental results evaluate the performance of the proposed method. The more advantage is that the proposed algorithm can achieve the fast torque response, reduce the torque ripple, and follow ideal stator flux track. Furthermore, the motor which implants the closed-loop suspended force controller cannot onlyobtain the dynamic response rapidly and displacement control accurately, but also has the characteristics of bearingless brushless DC motor (such as simple structure, high energy efficiency, small volume and low failure rate.

  6. Current topics in glycemic control by wearable artificial pancreas or bedside artificial pancreas with closed-loop system.

    Science.gov (United States)

    Hanazaki, Kazuhiro; Munekage, Masaya; Kitagawa, Hiroyuki; Yatabe, Tomoaki; Munekage, Eri; Shiga, Mai; Maeda, Hiromichi; Namikawa, Tsutomu

    2016-09-01

    The incidence of diabetes is increasing at an unprecedented pace and has become a serious health concern worldwide during the last two decades. Despite this, adequate glycemic control using an artificial pancreas has not been established, although the 21st century has seen rapid developments in this area. Herein, we review current topics in glycemic control for both the wearable artificial pancreas for type 1 and type 2 diabetic patients and the bedside artificial pancreas for surgical diabetic patients. In type 1 diabetic patients, nocturnal hypoglycemia associated with insulin therapy remains a serious problem that could be addressed by the recent development of a wearable artificial pancreas. This smart phone-like device, comprising a real-time, continuous glucose monitoring system and insulin pump system, could potentially significantly reduce nocturnal hypoglycemia compared with conventional glycemic control. Of particular interest in this space are the recent inventions of a low-glucose suspend feature in the portable systems that automatically stops insulin delivery 2 h following a glucose sensor value artificial pancreas with the closed-loop system has also proved safe and effective for not only avoiding hypoglycemia, but also for reducing blood glucose level variability resulting in good surgical outcomes. We hope that a more sophisticated artificial pancreas with closed-loop system will now be taken up for routine use worldwide, providing enormous relief for patients suffering from uncontrolled hyperglycemia, hypoglycemia, and/or variability in blood glucose concentrations.

  7. Open and closed-loop control of transonic buffet on 3D turbulent wings using fluidic devices

    Science.gov (United States)

    Dandois, Julien; Lepage, Arnaud; Dor, Jean-Bernard; Molton, Pascal; Ternoy, Frédéric; Geeraert, Arnaud; Brunet, Vincent; Coustols, Éric

    2014-06-01

    This paper presents an overview of the work performed recently at ONERA on the control of the buffet phenomenon. This aerodynamic instability induces strong wall pressure fluctuations and as such limits aircraft envelope; consequently, it is interesting to try to delay its onset, in order to enlarge aircraft flight envelop, but also to provide more flexibility during the design phase. Several types of flow control have been investigated, either passive (mechanical vortex generators) or active (fluidic VGs, fluidic trailing-edge device (TED)). It is shown than mechanical and fluidic VGs are able to delay buffet onset in the angle-of-attack domain by suppressing the separation downstream of the shock. The effect of the fluidic TED is different, the separation is not suppressed, but the rear wing loading is increased and consequently the buffet onset is not delayed to higher angles of attack, but only to higher lift coefficient. Then, a closed loop control methodology based on a quasi-static approach is defined and several architectures are tested for various parameters such as the input signal, the objective function or, the tuning of the feedback gain. All closed loop methods are implemented on a dSPACE device calculating in real time the fluidic actuators command from the unsteady pressure sensors data.

  8. Physical Activity Capture Technology With Potential for Incorporation Into Closed-Loop Control for Type 1 Diabetes.

    Science.gov (United States)

    Dadlani, Vikash; Levine, James A; McCrady-Spitzer, Shelly K; Dassau, Eyal; Kudva, Yogish C

    2015-10-18

    Physical activity is an important determinant of glucose variability in type 1 diabetes (T1D). It has been incorporated as a nonglucose input into closed-loop control (CLC) protocols for T1D during the last 4 years mainly by 3 research groups in single center based controlled clinical trials involving a maximum of 18 subjects in any 1 study. Although physical activity data capture may have clinical benefit in patients with T1D by impacting cardiovascular fitness and optimal body weight achievement and maintenance, limited number of such studies have been conducted to date. Clinical trial registries provide information about a single small sample size 2 center prospective study incorporating physical activity data input to modulate closed-loop control in T1D that are seeking to build on prior studies. We expect an increase in such studies especially since the NIH has expanded support of this type of research with additional grants starting in the second half of 2015. Studies (1) involving patients with other disorders that have lasted 12 weeks or longer and tracked physical activity and (2) including both aerobic and resistance activity may offer insights about the user experience and device optimization even as single input CLC heads into real-world clinical trials over the next few years and nonglucose input is introduced as the next advance.

  9. D evelopment and Testing of a Closed Loop Feedback Controlled Magnetorheological Fluid Anti-vibration Mount for Onboard Naval Applications

    Directory of Open Access Journals (Sweden)

    Reji John

    2016-06-01

    Full Text Available An intelligent semi-active anti-vibration mount using a magnetorheological (MR fluid is designed and developed for onboard applications. The mount consists of a load bearing elastomer, MR fluid chamber; MEMS based vibration sensor and a controller for closed loop feedback mechanism. The controller regulates the solenoid current in the MR fluid chamber, which in turn regulates the flow of MR fluid through the valve. Comparison of the performance of MR mount with a passive resilient rubber mount shows that the former provides 7 dB extra damping at resonance compared to the later and the isolation of MR mount starts at 10 Hz compared to 50 Hz by rubber mount. This mount can operate in real time, passive and active modes by using a closed loop feedback control mechanism. The efficacy of the mount for outdoor applications is evaluated by characterizing the mechanical, environmental, electrical and electromagnetic properties as per MIL-17185, JSS-55555 and IEC 61000 standards and found to be superior compared to passive mounts. The mount is being evaluated for onboard applications in INS Ranvijay.

  10. A Closed-Loop Proportional-Integral (PI) Control Software for Fully Mechanically Controlled Automated Electron Microscopic Tomography

    Energy Technology Data Exchange (ETDEWEB)

    2016-06-23

    A closed-loop proportional-integral (PI) control software is provided for fully mechanically controlled automated electron microscopic tomography. The software is developed based on Gatan DigitalMicrograph�, and is compatible with Zeiss LIBRA� 120 transmission electron microscope. However, it can be expanded to other TEM instrument with modification. The software consists of a graphical user interface, a digital PI controller, an image analyzing unit, and other drive units (i.e.: image acquire unit and goniometer drive unit). During a tomography data collection process, the image analyzing unit analyzes both the accumulated shift and defocus value of the latest acquired image, and provides the results to the digital PI controller. The digital PI control compares the results with the preset values and determines the optimum adjustments of the goniometer. The goniometer drive unit adjusts the spatial position of the specimen according to the instructions given by the digital PI controller for the next tilt angle and image acquisition. The goniometer drive unit achieves high precision positioning by using a backlash elimination method. The major benefits of the software are: 1) the goniometer drive unit keeps pre-aligned/optimized beam conditions unchanged and achieves position tracking solely through mechanical control; 2) the image analyzing unit relies on only historical data and therefore does not require additional images/exposures; 3) the PI controller enables the system to dynamically track the imaging target with extremely low system error.

  11. Anticipating behaviour in supervisory vehicle control

    NARCIS (Netherlands)

    Breda, L. van

    1999-01-01

    Vehicle control may be considered as a hierarchically structured set of functions. Plan conception and plan selection activities are performed in the navigation function, verification and adjustment of the short-term voyage progress are performed in the guidance function, and typical closed-loop con

  12. Supervisory control of a pilot-scale cooling loop

    Energy Technology Data Exchange (ETDEWEB)

    Kris Villez; Venkat Venkatasubramanian; Humberto Garcia

    2011-08-01

    We combine a previously developed strategy for Fault Detection and Identification (FDI) with a supervisory controller in closed loop. The combined method is applied to a model of a pilot-scale cooling loop of a nuclear plant, which includes Kalman filters and a model-based predictive controller as part of normal operation. The system has two valves available for flow control meaning that some redundancy is available. The FDI method is based on likelihood ratios for different fault scenarios which in turn are derived from the application of the Kalman filter. A previously introduced extension of the FDI method is used here to enable detection and identification of non-linear faults like stuck valve problems and proper accounting of the time of fault introduction. The supervisory control system is designed so to take different kinds of actions depending on the status of the fault diagnosis task and on the type of identified fault once diagnosis is complete. Some faults, like sensor bias and drift, are parametric in nature and can be adjusted without need for reconfiguration of the regulatory control system. Other faults, like a stuck valve problem, require reconfiguration of the regulatory control system. The whole strategy is demonstrated for several scenarios.

  13. Modelling supervisory controller for hybrid power systems

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, A.; Bindner, H.; Lundsager, P. [Risoe National Lab., Roskilde (Denmark); Jannerup, O. [Technical Univ. of Denmark, Dept. of Automation, Lyngby (Denmark)

    1999-03-01

    Supervisory controllers are important to achieve optimal operation of hybrid power systems. The performance and economics of such systems depend mainly on the control strategy for switching on/off components. The modular concept described in this paper is an attempt to design standard supervisory controllers that could be used in different applications, such as village power and telecommunication applications. This paper presents some basic aspects of modelling and design of modular supervisory controllers using the object-oriented modelling technique. The functional abstraction hierarchy technique is used to formulate the control requirements and identify the functions of the control system. The modular algorithm is generic and flexible enough to be used with any system configuration and several goals (different applications). The modularity includes accepting modification of system configuration and goals during operation with minor or no changes in the supervisory controller. (au)

  14. System identification and closed-loop control of end-tidal CO2 in mechanically ventilated patients.

    Science.gov (United States)

    Hahn, Jin-Oh; Dumont, Guy A; Anersmino, J Mark

    2012-11-01

    This paper presents a systematic approach to system identification and closed-loop control of end-tidal carbon dioxide partial pressure (PETCO2) in mechanically ventilated patients. An empirical model consisting of a linear dynamic system followed by an affine transform is proposed to derive a low-order and high-fidelity representation that can reproduce the positive and inversely proportional dynamic input-output relationship between PETCO2 and minute ventilation (MV) in mechanically ventilated patients. The predictive capability of the empirical model was evaluated using experimental respiratory data collected from eighteen mechanically ventilated human subjects. The model predicted PETCO2 response accurately with a root-mean-squared error (RMSE) of 0.22+/-0.16 mmHg and a coefficient of determination (r2) of 0.81+/-0.18 (mean+/-SD) when a second-order rational transfer function was used as its linear dynamic component. Using the proposed model, a closedloop control method for PETCO2 based on a proportionalintegral (PI) compensator was proposed by systematic analysis of the system root locus. For the eighteen mechanically ventilated patient models identified, the PI compensator exhibited acceptable closed-loop response with a settling time of 1.27+/- 0.20 min and a negligible overshoot (0.51+/-1.17%), in addition to zero steady-state PETCO2 set point tracking. The physiologic implication of the proposed empirical model was analyzed by comparing it with the traditional multi-compartmental model widely used in pharmacological modeling.

  15. Using an improved SIFT algorithm and fuzzy closed-loop control strategy for object recognition in cluttered scenes.

    Science.gov (United States)

    Nie, Haitao; Long, Kehui; Ma, Jun; Yue, Dan; Liu, Jinguo

    2015-01-01

    Partial occlusions, large pose variations, and extreme ambient illumination conditions generally cause the performance degradation of object recognition systems. Therefore, this paper presents a novel approach for fast and robust object recognition in cluttered scenes based on an improved scale invariant feature transform (SIFT) algorithm and a fuzzy closed-loop control method. First, a fast SIFT algorithm is proposed by classifying SIFT features into several clusters based on several attributes computed from the sub-orientation histogram (SOH), in the feature matching phase only features that share nearly the same corresponding attributes are compared. Second, a feature matching step is performed following a prioritized order based on the scale factor, which is calculated between the object image and the target object image, guaranteeing robust feature matching. Finally, a fuzzy closed-loop control strategy is applied to increase the accuracy of the object recognition and is essential for autonomous object manipulation process. Compared to the original SIFT algorithm for object recognition, the result of the proposed method shows that the number of SIFT features extracted from an object has a significant increase, and the computing speed of the object recognition processes increases by more than 40%. The experimental results confirmed that the proposed method performs effectively and accurately in cluttered scenes.

  16. Closed-loop control of ankle plantarflexors and dorsiflexors using an inverted pendulum apparatus: A pilot study

    Directory of Open Access Journals (Sweden)

    Same Michael B.

    2013-01-01

    Full Text Available Considerable demand exists for a device to facilitate hands-free, stable stance in individuals with neurological disorders such as spinal cord injury (SCI and stroke. In this regard, applying functional electrical stimulation (FES to muscles of the lower limbs in closed loop has shown promise. In particular, it has been suggested that a PID control strategy could offer functional benefits to stability by mimicking the neurological control strategy employed in able-bodied stance. In this proof of concept study, we tested this assertion by examining the potential of a PID control strategy with gravity compensation to effectively maintain balance during quiet stance by regulating FES-induced contractions of the ankle plantarflexors and dorsiflexors in able-bodied individuals. A novel Inverted Pendulum Standing Apparatus (IPSA was employed to simulate quiet stance whilst minimizing the voluntary control of able-bodied subjects. Quiet and perturbed standing trials were performed in 3 able-bodied subjects. Performance metrics including those pertaining to stability during quiet stance (root mean square difference, perturbation rejection capabilities (settling time, peak deviation, and ability to transition from an offset initial position (settling time, were examined. For all 3 subjects and for all of the metrics examined, our results showed that the proposed closed-loop controlled FES system improved performance in comparison to voluntary control. These results indicate that the PID plus gravity control strategy used in this study offers meaningful benefits over voluntary control in terms of standing stability. Thus, the controller could potentially be applied to the problem of improving or restoring standing ability in some neurologic patient populations.

  17. DESIGN AND IMPLEMENTATION OF CLOSED LOOP LCL-T RESONANT DC-TO-DC CONVERTER USING LOW COST EMBEDDED CONTROLLER

    Directory of Open Access Journals (Sweden)

    M. Annamalai

    2012-01-01

    Full Text Available The aim of this study is to simulate and implement open loop and closed loop controlled DC-DC converter for stand-alone wind energy system. Wind turbines, however, are not always very efficient in the wind speeds that are most common to a region. Typically, wind energy systems are designed to be highly efficient in high wind speed and have a cut-off wind speed- below which no energy is captured. In remote locations where wind energy is used for battery charging, the energy lost below the cut-off wind speed could be used for trickle charging or maintaining a battery’s fully charged state. Wind turbines are most efficient when they are operated at one specific Tip-Speed to Wind-Speed Ratio (TSR. Therefore, for the efficient capture of wind power, turbine speed should be controlled to follow the ideal TSR, with an optimal operating point, which is different for every wind speed In this system, the DC-DC converter in the DC link with a constant dc voltage to the load, a DC-DC converter will allow the voltage at the output of a diode bridge rectifier to be controlled. In low wind speed conditions, the voltage may be lowered to prevent the dc link from reverse biasing the diode rectifier. Under high wind speed condition, the voltage may be increased, reducing I2R losses. In addition, adjusting the voltage on the dc rectifier will change the generator terminal voltage and thereby provide control over the current flowing out of the generator. The LCL-T resonant inverter system for both open loop and closed loop DC-to-DC converter systems are simulated using MATLAB simulink power system blocks. This converter has advantages like reduced transformer size, reduced filter size and current source characteristics. The simulation studies indicate that LCL-T type for open and closed loop DC-DC converter can be used with stand-alone wind generator. Constant voltage can be maintained at the output of DC-to-DC converter by using a PWM rectifier at the output

  18. Practical Platform for Open and Closed Loop Speed Control of an Inverter Driven Asynchronous Machine Used for Teaching Purposes

    Directory of Open Access Journals (Sweden)

    Dan Claudiu Rus

    2014-09-01

    Full Text Available The paper presents a laboratory setup based on a SIMOVERT MASTER- DRIVES MC Inverter from SIEMENS used for open and closed loop speed control of an induction machine. The platform allows four quadrant operation of the machine using both the classical V/Hz scalar principle and field oriented vector control principle. The rectifier unit consists of a classical three phase diode bridge and two high voltage capacitors in order to obtain a voltage source behavior of the converter. In order to obtain the four quadrant operation of the drive, several methods are investigated out of which one is proposed and implemented. The theoretical aspects of V/Hz scalar principle and field oriented vector control principle are better explained using the proposed experimental platform.

  19. An adaptive and generalizable closed-loop system for control of medically induced coma and other states of anesthesia

    Science.gov (United States)

    Yang, Yuxiao; Shanechi, Maryam M.

    2016-12-01

    Objective. Design of closed-loop anesthetic delivery (CLAD) systems is an important topic, particularly for medically induced coma, which needs to be maintained for long periods. Current CLADs for medically induced coma require a separate offline experiment for model parameter estimation, which causes interruption in treatment and is difficult to perform. Also, CLADs may exhibit bias due to inherent time-variation and non-stationarity, and may have large infusion rate variations at steady state. Finally, current CLADs lack theoretical performance guarantees. We develop the first adaptive CLAD for medically induced coma, which addresses these limitations. Further, we extend our adaptive system to be generalizable to other states of anesthesia. Approach. We designed general parametric pharmacodynamic, pharmacokinetic and neural observation models with associated guidelines, and derived a novel adaptive controller. We further penalized large steady-state drug infusion rate variations in the controller. We derived theoretical guarantees that the adaptive system has zero steady-state bias. Using simulations that resembled real time-varying and noisy environments, we tested the closed-loop system for control of two different anesthetic states, burst suppression in medically induced coma and unconsciousness in general anesthesia. Main results. In 1200 simulations, the adaptive system achieved precise control of both anesthetic states despite non-stationarity, time-variation, noise, and no initial parameter knowledge. In both cases, the adaptive system performed close to a baseline system that knew the parameters exactly. In contrast, a non-adaptive system resulted in large steady-state bias and error. The adaptive system also resulted in significantly smaller steady-state infusion rate variations compared to prior systems. Significance. These results have significant implications for clinically viable CLAD design for a wide range of anesthetic states, with potential cost

  20. The accuracy and clinical feasibility of a new Bayesian-based closed-loop control system for propofol administration using the bispectral index as a controlled variable

    NARCIS (Netherlands)

    De Smet, Tom; Struys, Michel M. R. F.; Neckebroek, Martine M.; Van den Hauwe, Kristof; Bonte, Sjoert; Mortier, Eric P.

    2008-01-01

    BACKGROUND: Closed-loop control of the hypnotic component of anesthesia has been proposed in an attempt to optimize drug delivery. Here, we introduce a newly developed Bayesian-based, patient-individualized, model-based, adaptive control method for bispectral index (BIS) guided propofol infusion

  1. CDMA Closed-loop Power Control in the Presence of Narrowband Interference

    Institute of Scientific and Technical Information of China (English)

    YU Ai; WANG Jiangzhou

    2001-01-01

    Power control is an important issue in the DS-CDMA communication systems. This paper investigates the power control error of a closedloop power controlled CDMA system in the presence of narrowband interference. By use of a simplified loglinear power control model, the power control error,based on a strength-based power control algorithm, is studied in the overlay situation.

  2. Phase-controlled atom-photon entanglement in a three-level ∧-type closed-loop atomic system

    Institute of Scientific and Technical Information of China (English)

    Ali Mortezapour; Zeinab Kordi; Mohammad Mahmoudi

    2013-01-01

    We study the entanglement of dressed atom and its spontaneous emission in a three-level A-type closed-loop atomic system in a multi-photon resonance condition and beyond it.It is shown that the von Neumann entropy in such a system is phase-dependent,and it can be controlled by either the intensity or relative phase of applied fields.It is demonstrated that for the special case of the Rabi frequency of applied fields,the system is disentangled.In addition,we take into account the effect of Doppler broadening on the entanglement and it is found that a suitable choice of laser propagation direction allows us to obtain the steady state degree of entanglement (DEM) even in the presence of the Doppler effect.

  3. A comparison of open-loop and closed-loop adaptive calibration for pattern recognition based myoelectric control.

    Science.gov (United States)

    Jiayuan He; Dingguo Zhang; Xinjun Sheng; Xiangyang Zhu

    2015-08-01

    This study presented a closed-loop adaptive calibration (CLAC) scheme where subjects could get instantaneous feedback of their movements and alter their motions immediately to update the model parameters to enhance its ability. The real-time performance was compared between the conventional open-loop calibration (OLC) and the presented CLAC based on three metrics (motion-selection time, motion-completion time and motion-completion rate). The CLAC performed slightly better than the OLC, but the difference was not significant. This was the first study designed to investigate the effects of CLAC for pattern recognition-based myoelectric control (discrete movement). The CLAC could be potentially applied in the multiuser interface to make the adaptation of the common model to a novel user efficiently and flexibly.

  4. Closed Loop Subspace Identification

    Directory of Open Access Journals (Sweden)

    Geir W. Nilsen

    2005-07-01

    Full Text Available A new three step closed loop subspace identifications algorithm based on an already existing algorithm and the Kalman filter properties is presented. The Kalman filter contains noise free states which implies that the states and innovation are uneorre lated. The idea is that a Kalman filter found by a good subspace identification algorithm will give an output which is sufficiently uncorrelated with the noise on the output of the actual process. Using feedback from the output of the estimated Kalman filter in the closed loop system a subspace identification algorithm can be used to estimate an unbiased model.

  5. Design and Control of a Closed-Loop Brushless Torque Activator

    Science.gov (United States)

    1990-05-01

    BIBLIOGRAPHY 106 [Eppinger 87] Eppinger, S.D., and Seering, W.P., "Understanding Bandwidth Limitations in Robot Force Control ," proc. 1987 IEEE International...ment, and Control, vol. 99, no. 2, June 1977, pp. 91-97. [Whitney 85] Whitney, D.E., "Historical Perspective and State of the Art in Robot Force Control ," proc

  6. Controller Reconfiguration through Terminal Connections  based on Closed-loop System Identification

    DEFF Research Database (Denmark)

    Trangbæk, K

    2009-01-01

     Often, when a controlled plant is modified, e.g. if a new sensor or  actuator becomes available, it is desirable to retain the existing  controllers and apply the new control capabilities in a gradual,  online fashion rather than decommissioning the entire existing system  and replacing it with ...

  7. Singular Differential Game Numerical Technique and Closed Loop Guidance and Control Strategies,

    Science.gov (United States)

    1982-03-01

    25 2.2-b Non-Singular and Singular Controls .......... 26 2.3-a State and Costate Trajectories (Non- Singular Solutions ) . . . . . . . . . .a...are very useful in provid- ing insight to the form of the singular solutions of the problems. In this chapter we define a new class of two-person zero...for optimal control assuming there exists a totally sing- Sular extremal. Singular solutions in optimal control have been thought by many people to

  8. Closed-Loop Acoustic Control of Reverberant Room for Satellite Environmental Testing

    Science.gov (United States)

    Janssens, Karl; Bianciardi, Fabio; Sabbatini, Danilo; Debille, Jan; Carrella, Alex

    2012-07-01

    The full satellite acoustic test is an important milestone in a satellite launch survivability verification campaign. This test is required to verify the satellite’s mechanical design against the high-level acoustic loads induced by the launch vehicle during the atmospheric flight. During the test, the satellite is subjected to a broadband diffuse acoustic field, reproducing the pressure levels observed during launch. The excitation is in most cases provided by a combination of horns for the low frequencies and noise generators for the higher frequencies. Acoustic control tests are commonly performed in reverberant rooms, controlling the sound pressure levels in third octave bands over the specified target spectrum. This paper discusses an automatic feedback control system for acoustic control of large reverberation rooms for satellite environmental testing. The acoustic control system consists of parallel third octave PI (Proportional Integral) feedback controllers that take the reverberation characteristics of the room into consideration. The drive output of the control system is shaped at every control step based on the comparison of the average third octave noise spectrum, measured from a number of microphones in the test room, with the target spectrum. Cross-over filters split the output drive into band- limited signals to feed each of the horns. The control system is realized in several steps. In the first phase, a dynamic process model is developed, including the non-linear characteristics of the horns and the reverberant properties of the room. The model is identified from dynamic experiments using system identification techniques. In the next phase, an adequate control strategy is designed which is capable of reaching the target spectrum in the required time period without overshoots. This control strategy is obtained from model-in-the-loop (MIL) simulations, evaluating the performance of various potential strategies. Finally, the proposed strategy is

  9. Modal domain fiber optic sensor for closed loop vibration control of a flexible beam

    Science.gov (United States)

    Cox, D.; Thomas, D.; Reichard, K.; Lindner, D.; Claus, R. O.

    1990-01-01

    The use of a modal domain sensor in a vibration control experiment is described. An optical fiber is bonded along the length of a flexible beam. A control signal derived from the output of the modal domain sensor is used to suppress vibrations induced in the beam. A distributed effect model for the modal domain sensor is developed and combined with models of the beam and actuator dynamics to produce a system suitable for control design.

  10. Closed-loop torque feedback for a universal field-oriented controller

    Science.gov (United States)

    De Doncker, Rik W. A. A.; King, Robert D.; Sanza, Peter C.; Haefner, Kenneth B.

    1992-01-01

    A torque feedback system is employed in a universal field-oriented (UFO) controller to tune a torque-producing current command and a slip frequency command in order to achieve robust torque control of an induction machine even in the event of current regulator errors and during transitions between pulse width modulated (PWM) and square wave modes of operation.

  11. Closed Loop Quantum Control and Quantum Information Sciences: Concepts and Laboratory Implementations

    Science.gov (United States)

    2007-11-30

    Ohtsuki, K. Nakagami , W. Zhu, and H. Rabitz, Chem. Phys., 287, 197-216 (2003). Quantum Control via Adaptive Tracking, W. Zhu and H. Rabitz, J. Chem...dynamics under the influence of dissipation, Y. Ohtsuki, K. Nakagami , W. Zhu, and H. Rabitz, Chem. Phys., 287, 197-216 (2003). 22. Quantum Control via

  12. Nonlinear closed loop optimal control: a modified state-dependent Riccati equation.

    Science.gov (United States)

    Rafee Nekoo, S

    2013-03-01

    The state-dependent Riccati equation (SDRE), as a controller, has been introduced and implemented since the 90s. In this article, the other aspects of this controller are declared which shows the capability of this technique. First, a general case which has control nonlinearities and time varying weighting matrix Q is solved with three approaches: exact solution (ES), online control update (OCU) and power series approximation (PSA). The proposed PSA in this paper is able to deal with time varying or state-dependent Q in nonlinear systems. As a result of having the solution of nonlinear systems with complex Q containing constraints, using OCU and proposed PSA, a method is introduced to prevent the collision of an end-effector of a robot and an obstacle which shows the adaptability of the SDRE controller. Two examples to support the idea are presented and conferred. Supplementing constraints to the SDRE via matrix Q, this approach is named a modified SDRE.

  13. Supervisory Control of Extended Timed Event Graphs

    Institute of Scientific and Technical Information of China (English)

    Zhi-bing Zhuo; Wen-de Chen

    2003-01-01

    This paper describes the dynamic behavior of extended timed event graphs related to place delay in the dioid framework. By Cofer and Garg's supervisory control theory[3], we address control problems of extended timed event graphs. Supervisory control of extended timed event graphs (a class of discrete event dynamic systems) is studied in the dioid framework, a necessary and sufficient condition for the ideals of the set of firing time sequences of transitions to be controllable is presented. We prove all the strongly controllable subsets can form a complete lattice.

  14. Reducing risk of closed loop control of blood glucose in artificial pancreas using fractional calculus.

    Science.gov (United States)

    Ghorbani, Mahboobeh; Bogdan, Paul

    2014-01-01

    Healthcare costs in the US are among the highest in the world. Chronic diseases such as diabetes significantly contribute to these extensive costs. Despite technological advances to improve sensing and actuation devices, we still lack a coherent theory that facilitates the design and optimization of efficient and robust medical cyber-physical systems for managing chronic diseases. In this paper, we propose a mathematical model for capturing the complex dynamics of blood glucose time series (e.g., time dependent and fractal behavior) observed in real world measurements via fractional calculus concepts. Building upon our time dependent fractal model, we propose a novel model predictive controller for an artificial pancreas that regulates insulin injection. We verify the accuracy of our controller by comparing it to conventional non-fractal models using real world measurements and show how the nonlinear optimal controller based on fractal calculus concepts is superior to non-fractal controllers in terms of average risk index and prediction accuracy.

  15. Feasibility of closed-loop controller for righting seated posture after spinal cord injury

    National Research Council Canada - National Science Library

    Murphy, Julie O; Audu, Musa L; Lombardo, Lisa M; Foglyano, Kevin M; Triolo, Ronald J

    2014-01-01

    .... This study examined the feasibility of a sensor-based threshold controller to automatically modulate stimulation to paralyzed hip and trunk extensor muscles to restore upright sitting from forward leaning postures...

  16. Closed-Loop Control of Constrained Flapping Wing Micro Air Vehicles

    Science.gov (United States)

    2014-03-27

    covered later. The laser also uses a vacuum to provide suction to keep parts flat and remove ablated materials during laser micromachining. The overall...some sort of active control. Monte Carlo simulations 17 were done to analyze any effects of error within the linearized model. Five thousand test cases...dynamics, again minimizing the effects of the insects active control. Both these studies saw the same modes with one unstable complex pair and two

  17. Consensus-based distributed cooperative learning from closed-loop neural control systems.

    Science.gov (United States)

    Chen, Weisheng; Hua, Shaoyong; Zhang, Huaguang

    2015-02-01

    In this paper, the neural tracking problem is addressed for a group of uncertain nonlinear systems where the system structures are identical but the reference signals are different. This paper focuses on studying the learning capability of neural networks (NNs) during the control process. First, we propose a novel control scheme called distributed cooperative learning (DCL) control scheme, by establishing the communication topology among adaptive laws of NN weights to share their learned knowledge online. It is further proved that if the communication topology is undirected and connected, all estimated weights of NNs can converge to small neighborhoods around their optimal values over a domain consisting of the union of all state orbits. Second, as a corollary it is shown that the conclusion on the deterministic learning still holds in the decentralized adaptive neural control scheme where, however, the estimated weights of NNs just converge to small neighborhoods of the optimal values along their own state orbits. Thus, the learned controllers obtained by DCL scheme have the better generalization capability than ones obtained by decentralized learning method. A simulation example is provided to verify the effectiveness and advantages of the control schemes proposed in this paper.

  18. Closed-Loop Control of Satellite Formations Using a Quasi-Rigid Body Formulation

    Science.gov (United States)

    Blake, Christopher; Misra, Arun K.

    2011-04-01

    Satellites in formation work together to fulfill the role of a larger satellite. The purpose of this article is to develop a quasi-rigid body formulation for modeling and controlling such a formation as a single entity. In this article, a definition of a quasi-rigid body coordinate frame is presented, which, when attached to a formation, conveniently describes its orientation in space. Using this formulation, the equations of motion for a satellite formation are recast, and natural circular formations are expressed more succinctly. When the J 2 perturbation is considered, a correction factor on the formation's spin rate is introduced. The control of a satellite formation can effectively be separated into (1) a control torque to maintain the attitude and (2) control forces that maintain the rigidity of the formation. With this in mind, a nonlinear Lyapunov controller is derived using the formulation, which acts on the formation as a whole. Simulations validate this controller and illustrate its utility for maintaining circular formations, in particular, in the presence of gravitational perturbations.

  19. Achieving Closed-Loop Control Simulation of Human-Artefact Interaction: A Comparative Review

    Directory of Open Access Journals (Sweden)

    Wilhelm Frederik van der Vegte

    2011-01-01

    Full Text Available To include user interactions in simulations of product use, the most common approach is to couple human subjects to simulation models, using hardware interfaces to close the simulation-control loop. Testing with virtual human models could offer a low-cost addition to evaluation with human subjects. This paper explores the possibilities for coupling human and artefact models to achieve fully software-based interaction simulations. We have critically reviewed existing partial solutions to simulate or execute control (both human control and product-embedded control and compared solutions from literature with a proof-of-concept we have recently developed. Our concept closes all loops, but it does not rely on validated algorithms to predict human decision making and low-level human motor control. For low-level control, validated solutions are available from other approaches. For human decision making, however, validated algorithms exist only to predict the timing but not the reasoning behind it. To identify decision-making schemes beyond what designers can conjecture, testing with human subjects remains indispensable.

  20. A Closed-Loop Control Strategy for Air Conditioning Loads to Participate in Demand Response

    Directory of Open Access Journals (Sweden)

    Xiaoqing Hu

    2015-08-01

    Full Text Available Thermostatically controlled loads (TCLs, such as air conditioners (ACs, are important demand response resources—they have a certain heat storage capacity. A change in the operating status of an air conditioner in a small range will not noticeably affect the users’ comfort level. Load control of TCLs is considered to be equivalent to a power plant of the same capacity in effect, and it can significantly reduce the system pressure to peak load shift. The thermodynamic model of air conditioning can be used to study the aggregate power of a number of ACs that respond to the step signal of a temperature set point. This paper analyzes the influence of the parameters of each AC in the group to the indoor temperature and the total load, and derives a simplified control model based on the two order linear time invariant transfer function. Then, the stability of the model and designs its Proportional-Integral-Differential (PID controller based on the particle swarm optimization (PSO algorithm is also studied. The case study presented in this paper simulates both scenarios of constant ambient temperature and changing ambient temperature to verify the proposed transfer function model and control strategy can closely track the reference peak load shifting curves. The study also demonstrates minimal changes in the indoor temperature and the users’ comfort level.

  1. Feasibility of closed-loop controller for righting seated posture after spinal cord injury

    Directory of Open Access Journals (Sweden)

    Julie O. Murphy, BSE

    2014-09-01

    Full Text Available Spinal cord injury (SCI can compromise the ability to maintain an erect seated posture. This study examined the feasibility of a sensor-based threshold controller to automatically modulate stimulation to paralyzed hip and trunk extensor muscles to restore upright sitting from forward leaning postures. Forward trunk tilt was estimated from the anterior-posterior component of gravitational acceleration sensed by a sternum-mounted wireless accelerometer. Stimulation increased if trunk tilt exceeded a specified flexion threshold and ceased once upright sitting was resumed. The controller was verified experimentally in five volunteers with SCI and successfully returned all subjects to upright postures from forward leaning positions. Upper-limb effort exerted while returning to erect posture was significantly reduced (to 7.4% +/– 3.7% of body mass pooled across all volunteers while using the controller compared with using continuous and no stimulation (p < 0.03. Controller response times were consistent among subjects when applied while sitting with (0.30 +/– 0.05 s or without (0.34 +/– 0.11 s a backrest. The controller enabled volunteers to lean farther forward (59.7° +/– 16.4° in wheelchairs without upper-limb effort than with no stimulation. Clinical utility of the system for facilitating reach or preventing falls remains to be determined in future studies.

  2. Closed Loop Control of Active Damped Small DC-link Capacitor Based Drive

    DEFF Research Database (Denmark)

    Maheshwari, Ram Krishan; Munk-Nielsen, Stig

    2010-01-01

    A new method of active damping for small DC-link capacitor based drive system is implemented in stator flux oriented control for an induction machine. The active damping technique is based on a detailed model of the drive system which leads to a very simple implementation. The active damping can...

  3. Spectroscopic closed loop control of penetration depth in laser beam welding process

    NARCIS (Netherlands)

    Sibillano, T.; Ancona, A.; Rizzi, D.; Mezzapesa, F.; Konuk, A.R.; Aarts, R.G.K.M.; Huis in 't Veld, A.J.; Lugara, P.M.

    2012-01-01

    In-process monitoring and feedback control are fundamental actions for stable and good quality laser welding process. In particular, penetration depth is one of the most critical features to be monitored. In this research, overlap welding of stainless steel is investigated to stably reproduce a fixe

  4. Closed loop control of a flap exposed to harmonic aerodynamic actuation

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Mikkelsen, Robert Flemming; Sørensen, Jens Nørkær;

    2012-01-01

    vanes placed in front of the main test wing. These were situated symmetrically above and below the airfoil in a way that created a fast turning of the air flow without directly affecting the boundary layer on the test airfoil. The Reynolds number was Re=500.000. The PID-controlled flap was able...

  5. Closed-loop control of boundary layer streaks induced by free-stream turbulence

    Science.gov (United States)

    Papadakis, George; Lu, Liang; Ricco, Pierre

    2016-08-01

    The central aim of the paper is to carry out a theoretical and numerical study of active wall transpiration control of streaks generated within an incompressible boundary layer by free-stream turbulence. The disturbance flow model is based on the linearized unsteady boundary-region (LUBR) equations, studied by Leib, Wundrow, and Goldstein [J. Fluid Mech. 380, 169 (1999), 10.1017/S0022112098003504], which are the rigorous asymptotic limit of the Navier-Stokes equations for low-frequency and long-streamwise wavelength. The mathematical formulation of the problem directly incorporates the random forcing into the equations in a consistent way. Due to linearity, this forcing is factored out and appears as a multiplicative factor. It is shown that the cost function (integral of kinetic energy in the domain) is properly defined as the expectation of a random quadratic function only after integration in wave number space. This operation naturally introduces the free-stream turbulence spectral tensor into the cost function. The controller gains for each wave number are independent of the spectral tensor and, in that sense, universal. Asymptotic matching of the LUBR equations with the free-stream conditions results in an additional forcing term in the state-space system whose presence necessitates the reformulation of the control problem and the rederivation of its solution. It is proved that the solution can be obtained analytically using an extension of the sweep method used in control theory to obtain the standard Riccati equation. The control signal consists of two components, a feedback part and a feed-forward part (that depends explicitly on the forcing term). Explicit recursive equations that provide these two components are derived. It is shown that the feed-forward part makes a negligible contribution to the control signal. We also derive an explicit expression that a priori (i.e., before solving the control problem) leads to the minimum of the objective cost

  6. Closed Loop solar array-ion thruster system with power control circuitry

    Science.gov (United States)

    Gruber, R. P. (Inventor)

    1979-01-01

    A power control circuit connected between a solar array and an ion thruster receives voltage and current signals from the solar array. The control circuit multiplies the voltage and current signals together to produce a power signal which is differentiated with respect to time. The differentiator output is detected by a zero crossing detector and, after suitable shaping, the detector output is phase compared with a clock in a phase demodulator. An integrator receives no output from the phase demodulator when the operating point is at the maximum power but is driven toward the maximum power point for non-optimum operation. A ramp generator provides minor variations in the beam current reference signal produced by the integrator in order to obtain the first derivative of power.

  7. Closed-Loop Control for Squeeze Film Effect in Tactile Stimulator

    OpenAIRE

    Ben Messaoud, Wael; Lemaire-Semail, Betty; Bueno, Marie-Ange; Amberg, Michel; Giraud, Frédéric

    2014-01-01

    International audience; This paper presents a method for controlling the vibration amplitude of a tactile stimulator used to give the sensation to the fingertip that it touches a texture. The active surface of the stimulator is excited by an ultrasonic vibration frequency in order to modulate the friction coefficient with the fingertip. Due to the large size of the tactile display, two types of perturbations may affect the vibration amplitude which are the finger pressure and the temperature ...

  8. A closed-loop automatic control system for high-intensity acoustic test systems.

    Science.gov (United States)

    Slusser, R. A.

    1973-01-01

    Sound at sound pressure levels in the range from 130 to 160 dB is used in the investigation. Random noise is passed through a series of parallel filters, generally 1/3-octave wide. A basic automatic system is investigated because of preadjustment inaccuracies and high costs found in a study of a typical manually controlled acoustic testing system. The unit described has been successfully used in automatic acoustic tests in connection with the spacecraft tests for the Mariner 1971 program.

  9. Closed-Loop Control of Myoelectric Prostheses With Electrotactile Feedback: Influence of Stimulation Artifact and Blanking.

    Science.gov (United States)

    Hartmann, Cornelia; Dosen, Strahinja; Amsuess, Sebastian; Farina, Dario

    2015-09-01

    Electrocutaneous stimulation is a promising approach to provide sensory feedback to amputees, and thus close the loop in upper limb prosthetic systems. However, the stimulation introduces artifacts in the recorded electromyographic (EMG) signals, which may be detrimental for the control of myoelectric prostheses. In this study, artifact blanking with three data segmentation approaches was investigated as a simple method to restore the performance of pattern recognition in prosthesis control (eight motions) when EMG signals are corrupted by stimulation artifacts. The methods were tested over a range of stimulation conditions and using four feature sets, comprising both time and frequency domain features. The results demonstrated that when stimulation artifacts were present, the classification performance improved with blanking in all tested conditions. In some cases, the classification performance with blanking was at the level of the benchmark (artifact-free data). The greatest pulse duration and frequency that allowed a full performance recovery were 400 μs and 150 Hz, respectively. These results show that artifact blanking can be used as a practical solution to eliminate the negative influence of the stimulation artifact on EMG pattern classification in a broad range of conditions, thus allowing to close the loop in myoelectric prostheses using electrotactile feedback.

  10. CLOSED LOOP CONTROL OF THREE PORT CONVERTER WITH HIGH VOLTAGE GAIN

    Directory of Open Access Journals (Sweden)

    Santhi Mary Antony A

    2015-08-01

    Full Text Available Photovoltaic (PV system is one of the best renewable energy sources for power generation system due to their pollution free and low cost properties. The PV cells has less efficiency compared to other source of power generation. The system efficiency is improved by reducing components count, which reduces the losses. In this paper a new three port converter (TPC is proposed for stand-alone renewable power applications. The proposed converter has three switches to achieve the power flow control. Single inductor is used for common energy transfer element for two different sources. The coupled inductor is used to increase the voltage conversion ratio with reasonable duty cycle. Thus the proposed converter has high voltage gain with less components count. The output voltage is regulated through feedback network. The system performance is verified through simulation results.

  11. Designing Closed-Loop Brain-Machine Interfaces Using Model Predictive Control

    Directory of Open Access Journals (Sweden)

    Gautam Kumar

    2016-06-01

    Full Text Available Brain-machine interfaces (BMIs are broadly defined as systems that establish direct communications between living brain tissue and external devices, such as artificial arms. By sensing and interpreting neuronal activities to actuate an external device, BMI-based neuroprostheses hold great promise in rehabilitating motor disabled subjects, such as amputees. In this paper, we develop a control-theoretic analysis of a BMI-based neuroprosthetic system for voluntary single joint reaching task in the absence of visual feedback. Using synthetic data obtained through the simulation of an experimentally validated psycho-physiological cortical circuit model, both the Wiener filter and the Kalman filter based linear decoders are developed. We analyze the performance of both decoders in the presence and in the absence of natural proprioceptive feedback information. By performing simulations, we show that the performance of both decoders degrades significantly in the absence of the natural proprioception. To recover the performance of these decoders, we propose two problems, namely tracking the desired position trajectory and tracking the firing rate trajectory of neurons which encode the proprioception, in the model predictive control framework to design optimal artificial sensory feedback. Our results indicate that while the position trajectory based design can only recover the position and velocity trajectories, the firing rate trajectory based design can recover the performance of the motor task along with the recovery of firing rates in other cortical regions. Finally, we extend our design by incorporating a network of spiking neurons and designing artificial sensory feedback in the form of a charged balanced biphasic stimulating current.

  12. Closed-loop control for cardiopulmonary management and intensive care unit sedation using digital imaging

    Science.gov (United States)

    Gholami, Behnood

    This dissertation introduces a new problem in the delivery of healthcare, which could result in lower cost and a higher quality of medical care as compared to the current healthcare practice. In particular, a framework is developed for sedation and cardiopulmonary management for patients in the intensive care unit. A method is introduced to automatically detect pain and agitation in nonverbal patients, specifically in sedated patients in the intensive care unit, using their facial expressions. Furthermore, deterministic as well as probabilistic expert systems are developed to suggest the appropriate drug dose based on patient sedation level. Patients in the intensive care unit who require mechanical ventilation due to acute respiratory failure also frequently require the administration of sedative agents. The need for sedation arises both from patient anxiety due to the loss of personal control and the unfamiliar and intrusive environment of the intensive care unit, and also due to pain or other variants of noxious stimuli. In this dissertation, we develop a rule-based expert system for cardiopulmonary management and intensive care unit sedation. Furthermore, we use probability theory to quantify uncertainty and to extend the proposed rule-based expert system to deal with more realistic situations. Pain assessment in patients who are unable to verbally communicate is a challenging problem. The fundamental limitations in pain assessment stem from subjective assessment criteria, rather than quantifiable, measurable data. The relevance vector machine (RVM) classification technique is a Bayesian extension of the support vector machine (SVM) algorithm which achieves comparable performance to SVM while providing posterior probabilities for class memberships and a sparser model. In this dissertation, we use the RVM classification technique to distinguish pain from non-pain as well as assess pain intensity levels. We also correlate our results with the pain intensity

  13. Comparison and performance analysis of closed loop controlled nonlinear system connected PWM inverter based on hybrid technique

    Directory of Open Access Journals (Sweden)

    V.M. Deshmukh

    2015-05-01

    Full Text Available This paper proposed closed loop control of nonlinear system connected inverter based on the optimal neural controller (ONC. The novelty of the proposed method rests on the hybrid technique which is the combined performance of both, particle swarm optimization (PSO technique and Radial basis function neural network (RBFNN. It effectively optimizes the feasible solutions by updating the generations, by taking lesser time with greater reliability. In the proposed method, the PSO generates the dataset according to different loading conditions. The RBFNN is trained by using the target control signals along with the corresponding input load voltage error and change in error. Depending on the load variations, the RBFNN predicts the exact control signals of the inverter during the testing time. Since experimentation and comparison of such inverter models on hardware being relatively expensive, the proposed method is implemented in the MATLAB/Simulink platform and the performance has been validated through the comparison analysis with the conventional techniques. The comparison results have proved the superiority of the proposed method.

  14. Supervisory control of remote manipulation: A preliminary evaluation

    Science.gov (United States)

    Starr, G. P.

    1981-01-01

    A system for supervisory control is described, and preliminary results are presented. Supervisory control, where control is traded between man and computer, offers benefits in the control of a remote manipulator. The system has the potential to accomplish sophisticated tasks. It is indicated that supervisory control yields lower task completion times and is preferred over manual control.

  15. Safety and Efficacy of 24-h Closed-Loop Insulin Delivery in Well-Controlled Pregnant Women With Type 1 Diabetes

    Science.gov (United States)

    Murphy, Helen R.; Kumareswaran, Kavita; Elleri, Daniela; Allen, Janet M.; Caldwell, Karen; Biagioni, Martina; Simmons, David; Dunger, David B.; Nodale, Marianna; Wilinska, Malgorzata E.; Amiel, Stephanie A.; Hovorka, Roman

    2011-01-01

    OBJECTIVE To evaluate the safety and efficacy of closed-loop insulin delivery in well-controlled pregnant women with type 1 diabetes treated with continuous subcutaneous insulin infusion (CSII). RESEARCH DESIGN AND METHODS A total of 12 women with type 1 diabetes (aged 32.9 years, diabetes duration 17.6 years, BMI 27.1 kg/m2, and HbA1c 6.4%) were randomly allocated to closed-loop or conventional CSII. They performed normal daily activities (standardized meals, snacks, and exercise) for 24 h on two occasions at 19 and 23 weeks’ gestation. Plasma glucose time in target (63–140 mg/dL) and time spent hypoglycemic were calculated. RESULTS Plasma glucose time in target was comparable for closed-loop and conventional CSII (median [interquartile range]: 81 [59–87] vs. 81% [54–90]; P = 0.75). Less time was spent hypoglycemic (<45 mg/dL [0.0 vs. 0.3%]; P = 0.04), with a lower low blood glucose index (2.4 [0.9–3.5] vs. 3.3 [1.9–5.1]; P = 0.03), during closed-loop insulin delivery. CONCLUSIONS Closed-loop insulin delivery was as effective as conventional CSII, with less time spent in extreme hypoglycemia. PMID:22011408

  16. Robust and Accurate Closed-Loop Control of McKibben Artificial Muscle Contraction with a Linear Single Integral Action

    Directory of Open Access Journals (Sweden)

    Bertrand Tondu

    2014-06-01

    Full Text Available We analyze the possibility of taking advantage of artificial muscle’s own stiffness and damping, and substituting it for a classic proportional-integral-derivative controller (PID controller an I controller. The advantages are that there would only be one parameter to tune and no need for a dynamic model. A stability analysis is proposed from a simple phenomenological artificial muscle model. Step and sinus-wave tracking responses performed with pneumatic McKibben muscles are reported showing the practical efficiency of the method to combine accuracy and load robustness. In the particular case of the McKibben artificial muscle technology, we suggest that the dynamic performances in stability and load robustness would result from the textile nature of its braided sleeve and its internal friction which do not obey Coulomb’s third law, as verified by preliminary reported original friction experiments. Comparisons are reported between three kinds of braided sleeves made of rayon yarns, plastic, and thin metal wires, whose similar closed-loop dynamic performances are highlighted. It is also experimentally shown that a sleeve braided with thin metal wires can give high accuracy performance, in step as in tracking response. This would be due to a low static friction coefficient combined with a kinetic friction exponentially increasing with speed in accordance with hydrodynamic lubrication theory applied to textile physics.

  17. Clinical Decision Support and Closed-Loop Control for Cardiopulmonary Management and Intensive Care Unit Sedation Using Expert Systems.

    Science.gov (United States)

    Gholami, Behnood; Bailey, James M; Haddad, Wassim M; Tannenbaum, Allen R

    2012-03-01

    Patients in the intensive care unit (ICU) who require mechanical ventilation due to acute respiratory failure also frequently require the administration of sedative agents. The need for sedation arises both from patient anxiety due to the loss of personal control and the unfamiliar and intrusive environment of the ICU, and also due to pain or other variants of noxious stimuli. While physicians select the agent(s) used for sedation and cardiovascular function, the actual administration of these agents is the responsibility of the nursing staff. If clinical decision support systems and closed-loop control systems could be developed for critical care monitoring and lifesaving interventions as well as the administration of sedation and cardiopulmonary management, the ICU nurse could be released from the intense monitoring of sedation, allowing her/him to focus on other critical tasks. One particularly attractive strategy is to utilize the knowledge and experience of skilled clinicians, capturing explicitly the rules expert clinicians use to decide on how to titrate drug doses depending on the level of sedation. In this paper, we extend the deterministic rule-based expert system for cardiopulmonary management and ICU sedation framework presented in [1] to a stochastic setting by using probability theory to quantify uncertainty and hence deal with more realistic clinical situations.

  18. Modular supervisory controller for hybrid power systems

    Energy Technology Data Exchange (ETDEWEB)

    Lemos Pereira, A. de

    2000-06-01

    The power supply of remote places has been commonly provided by thermal power plants, usually diesel generators. Although hybrid power systems may constitute the most economical solution in many applications their widespread application to the electrification schemes of remote areas still depends on improvements in the issues of design and operation control. The main limitations of the present hybrid power systems technology, which are identified in this work, are related to the control and supervision of the power system. Therefore this thesis focuses on the modularity of supervisory controllers in order to design cost-competitive and reliable hybrid power systems. The modular supervisory controller created in this project is considered an important part of a system design approach that aims to overcome the technical difficulties of the current engineering practice and contribute to open the market of hybrid power systems. The term modular refers to a set of design characteristics that allows the use of basically the same supervisory controller in different projects. The modularization and standardisation of the controller include several issues such as interfacing components, communication protocols, modelling, programming and control strategies. The modularity can reduce the highly specialised system engineering related to the integration of components, operation and control. It can also avoid the high costs for installation, service and maintenance. A modular algorithm for supervisory controllers has been developed (a Matlab program called SuperCon) using an object-oriented design and it has been tested through several simulations using different hybrid system configurations and different control strategies. This thesis presents a complete control system design process which can be used as the basis for the development and implementation of intelligent and autonomous supervisory controllers for hybrid power systems with modular characteristics. (au)

  19. Progress toward controlling in vivo fibrillating sheep atria using a nonlinear-dynamics-based closed-loop feedback method

    Science.gov (United States)

    Gauthier, Daniel J.; Hall, G. Martin; Oliver, Robert A.; Dixon-Tulloch, Ellen G.; Wolf, Patrick D.; Bahar, Sonya

    2002-09-01

    We describe preliminary experiments on controlling in vivo atrial fibrillation using a closed-loop feedback protocol that measures the dynamics of the right atrium at a single spatial location and applies control perturbations at a single spatial location. This study allows investigation of control of cardiac dynamics in a preparation that is physiologically close to an in vivo human heart. The spatial-temporal response of the fibrillating sheep atrium is measured using a multi-channel electronic recording system to assess the control effectiveness. In an attempt to suppress fibrillation, we implement a scheme that paces occasionally the cardiac muscle with small shocks. When successful, the inter-activation time interval is the same and electrical stimuli are only applied when the controller senses that the dynamics are beginning to depart from the desired periodic rhythm. The shock timing is adjusted in real time using a control algorithm that attempts to synchronize the most recently measured inter-activation interval with the previous interval by inducing an activation at a time projected by the algorithm. The scheme is "single-sided" in that it can only shorten the inter-activation time but not lengthen it. Using probability distributions of the inter-activation time intervals, we find that the feedback protocol is not effective in regularizing the dynamics. One possible reason for the less-than-successful results is that the controller often attempts to stimulate the tissue while it is still in the refractory state and hence it does not induce an activation.

  20. Physician-Directed Versus Computerized Closed-Loop Control of Blood Pressure Using Phenylephrine in a Swine Model.

    Science.gov (United States)

    Marques, Nicole Ribeiro; Whitehead, William E; Kallu, Upendar R; Kinsky, Michael P; Funston, Joe S; Wassar, Taoufik; Khan, Muzna N; Milosch, Mindy; Jupiter, Daniel; Grigoriadis, Karolos; Kramer, George C

    2017-07-01

    Vasopressors provide a rapid and effective approach to correct hypotension in the perioperative setting. Our group developed a closed-loop control (CLC) system that titrates phenylephrine (PHP) based on the mean arterial pressure (MAP) during general anesthesia. As a means of evaluating system competence, we compared the performance of the automated CLC with physicians. We hypothesized that our CLC algorithm more effectively maintains blood pressure at a specified target with less blood pressure variability and reduces the dose of PHP required. In a crossover study design, 6 swine under general anesthesia were subjected to a normovolemic hypotensive challenge induced by sodium nitroprusside. The physicians (MD) manually changed the PHP infusion rate, and the CLC system performed this task autonomously, adjusted every 3 seconds to achieve a predetermined MAP. The CLC maintained MAP within 5 mm Hg of the target for (mean ± standard deviation) 93.5% ± 3.9% of the time versus 72.4% ± 26.8% for the MD treatment (P = .054). The mean (standard deviation) percentage of time that the CLC and MD interventions were above target range was 2.1% ± 3.3% and 25.8% ± 27.4% (P = .06), respectively. Control statistics, performance error, median performance error, and median absolute performance error were not different between CLC and MD interventions. PHP infusion rate adjustments by the physician were performed 12 to 80 times in individual studies over a 60-minute period. The total dose of PHP used was not different between the 2 interventions. The CLC system performed as well as an anesthesiologist totally focused on MAP control by infusing PHP. Computerized CLC infusion of PHP provided tight blood pressure control under conditions of experimental vasodilation.

  1. Plant Modeling for Human Supervisory Control

    DEFF Research Database (Denmark)

    Lind, Morten

    1999-01-01

    This paper provides an overview of multilevel flow modelling (MFM) and its application for design of displays for the supervisory control of industrial plant. The problem of designing the inforrrzatian content of sacpervisory displays is discussed and plant representations like MFM using levels...... is also provided by an analysis of the relations between levels of abstraction. It is also described how MFM supparts reazsonin about control actions by defining levels of intervention and by modal distinctions between function enablement and initiation....

  2. Network Security in Remote Supervisory Control

    Institute of Scientific and Technical Information of China (English)

    黄振国

    2001-01-01

    After an introduction to the implementation of supervisory computer control (SCC) through networks and the relevant security issues, this paper centers on the core of network security design: intelligent front-end processor (FEP), encryption/decryption method and authentication protocol. Some other system-specific security measures are also proposed. Although these are examples only, the techniques discussed can also be used in and provide reference for other remote control systems.

  3. A Fuzzy Logic Based Supervisory Hierarchical Control Scheme for Real Time Pressure Control

    Institute of Scientific and Technical Information of China (English)

    N.Kanagaraj; P.Sivashanmugam; S.Paramasivam

    2009-01-01

    This paper describes a supervisory hierarchical fuzzy controller (SHFC) for regulating pressure in a real-time pilot pressure control system.The input scaling factor tuning of a direct expert controller is made using the error and process input parameters in a closed loop system in order to obtain better controller performance for set-point change and load disturbances.This on-line tuning method reduces operator involvement and enhances the controller performance to a wide operating range.The hierarchical control scheme consists of an intelligent upper level supervisory fuzzy controller and a lower level direct fuzzy controller.The upper level controller provides a mechanism to the main goal of the system and the lower level controller delivers the solutions to a particular situation. The control algorithm for the proposed scheme has been developed and tested using an ARM7 microcontroller-based embedded target board for a nonlinear pressure process having dead time.To demonstrate the effectiveness,the results of the proposed hierarchical controller,fuzzy controller and conventional proportional-integral (PI) controller are analyzed.The results prove that the SHFC performance is better in terms of stability and robustness than the conventional control methods.

  4. Inverse Kinematics and Control of a 7-DOF Redundant Manipulator Based on the Closed-Loop Algorithm

    Directory of Open Access Journals (Sweden)

    Jingguo Wang

    2011-01-01

    Full Text Available Closed-loop inverse kinematics (CLIK algorithm mostly resolves the redundancy at the velocity level. In this paper we extend the CLIK algorithm to the acceleration level to meet some applications that require the joint accelerations. The redundancy resolutions at the velocities and acceleration levels via pseudoinverse method are analyzed respectively. The objective function of joint limits avoidance (JLA is combined into the redundancy resolution as an optimization approach of the null space motion. A seven-DOF redundant manipulator is designed to do the computer simulations and the real experiments are carried out on a Powercube modular manipulator. Their results demonstrated the effectiveness of the proposed algorithm.

  5. Velocity control of a secondary controlled closed-loop hydrostatic transmission system using an adaptive fuzzy sliding mode controller

    Energy Technology Data Exchange (ETDEWEB)

    Do, Hoang Thinh; Ahn, Kyoung Kwan [University of Ulsan, Ulsan (Korea, Republic of)

    2013-03-15

    A secondary-controlled hydrostatic transmission system (SC-HST), which considered being an energy-saving system, can recuperate most of the lost vehicle kinetic energy in decelerating and braking time and it shows advantage in fuel economy improvement of vehicle. Almost secondary control units (SCU) in SC-HST inherently contain nonlinear characteristics such as dead-zone input. Therefore, it is difficult to obtain precise position or velocity control by conventional linear controllers. This problem limits the application of SC-HST in industry and mobile vehicle. This paper gives a description of SC-HST and proposes an adaptive fuzzy sliding mode controller (AFSMC) for velocity control of SCU. Experiments were carried out in the condition of disturbance load by using both the proposed controller and PID controller for the comparison and evaluation of the effectiveness of the proposed controller. The experimental results showed that the proposed controller was excellent from the standpoints of performance and stability for the velocity control of SC-HST.

  6. Fault-tolerant Supervisory Control

    DEFF Research Database (Denmark)

    Izadi-Zamanabadi, Roozbeh

    of this work has been to develop and employ concepts and methods that are suitable for use in different automation processes, with applicability in various industrial fields. The requirements for high productivity and quality has resulted in employing additional instrumentation and use of more sophisticated...... could be increased through enhancing control systems' ability to on-line perform fault detection and reconfiguration when a fault occurs and before a safety system shuts-down the entire process. The main contributions of this research effort are development and experimentation with methodologies......, is extended to cope with the important reconfiguration problem. In order to enable a designer to acquire knowledge about reconfiguration possibilities, the structural analysis method is added as an extension to the existing methodology. This extension builds upon the earlier method where fault propagation...

  7. Adaptive supervisory control of remote manipulation

    Science.gov (United States)

    Ferrell, W. R.

    1977-01-01

    The command language by which an operator exerts supervisory control over a general purpose remote manipulator should be designed to accommodate certain characteristics of human performance if there is to be effective communication between the operator and the machine. Some of the ways in which people formulate tasks, use language, learn and make errors are discussed and design implications are drawn. A general approach to command language design is suggested, based on the notion matching the operator's current task schema or context by appropriate program structures or 'frames' in the machine.

  8. Direct Optical Ice Sensing and Closed-Loop Controller Design for Active De-icing of Wind Turbines Using Distributed Heating

    Science.gov (United States)

    Shajiee, Shervin

    Ice accumulation on wind turbines operating in cold regions reduces power generation by degrading aerodynamic efficiency and causes mass imbalance and fatigue loads on the blades. Due to blade rotation and variation of the pitch angle, different locations on the blade experience large variations of Reynolds number, Nusselt number, heat loss, and non-uniform ice distribution. Hence, applying different amounts of heat flux in different blade locations can provide more effective de-icing for the same total power consumption. This large variation of required heat flux motivates using distributed resistive heating, with the capability of locally adjusting thermal power as a function of location on the blade. The main contributions of this research are developing the experimental feasibility of direct ice sensing using an optical sensing technique as well as development of a computational framework for implementation of closed-loop localized active de-icing using distributed sensing. A script-base module was developed in a commercial finite-element software (ANSYS) which provides the capability of (i) Closed-loop de-icing simulations for a distributed network of sensors and actuators, (ii) investigating different closed-loop thermal control schemes and their de-icing efficiency (iii) optimizing thermal actuation for a distributed resistive heating, and (iv) analyzing different faulty scenarios for sensors and thermal actuators under known faults in the network. Different surrogate models were used to enhance the computational efficiency of this approach. The results showed that optimal value of control parameters in a distributed network of heaters depends on convective heat transfer characteristics, layout of heaters and type of closed-loop controller scheme used for thermal actuation. Furthermore, It was shown that closed-loop control provides much faster de-icing than the open-loop constant heat flux thermal actuation. It was observed both experimentally and

  9. Metric Selection for Evaluation of Human Supervisory Control Systems

    Science.gov (United States)

    2009-12-01

    Conceptual model of human-supervisory control (modified from Pina , Cummings et al. (2008...42  4 LIST OF TABLES Table 1. Human supervisory control metric classes ( Pina , Donmez...literature in terms of human- autonomous vehicle interaction (Crandall & Cummings, 2007; Olsen & Goodrich, 2003; Pina , Cummings, Crandall, & Della Penna

  10. Supervisory Control and Data Acquisition Laboratory

    Directory of Open Access Journals (Sweden)

    M. Iacob

    2010-06-01

    Full Text Available This paper presents practical laboratories for teaching purpose in Supervisory Control and Data Acquisition (SCADA systems. A SCADA system is described in terms of architecture, process interfaces, functionality, and application development facilities. These concepts are implemented on an integrated automation system, particularly for digital control of electric drives with a distributed peripheral, i.e., Totally Integrated Automation with Democase from Siemens. Using this system, a wide range of applications can be designed, implemented and tested. A practical labs set is presented to introduce gradually the main SCADA elements, and finally to develop an application to control an induction motor in interlocked manual/automatic mode, with touch-screen Human Machine Interface (HMI. The system employs industrial busses like PROFIBus and industrial Ethernet. The SCADA system also shows trends, alarms, motor frequency and automatic sequence of motor speed profile.

  11. Closed-loop optogenetic control of thalamus as a new tool to interrupt seizures after cortical injury

    Science.gov (United States)

    Paz, Jeanne T.; Davidson, Thomas J.; Frechette, Eric S.; Delord, Bruno; Parada, Isabel; Peng, Kathy; Deisseroth, Karl; Huguenard, John R.

    2013-01-01

    Cerebrocortical injuries, such as stroke, are a major source of disability. Maladaptive consequences can result from post-injury local reorganization of cortical circuits. For example, epilepsy is a common sequela of cortical stroke, yet mechanisms responsible for seizures following cortical injuries remain unknown. In addition to local reorganization, long-range, extra-cortical connections might be critical for seizure maintenance. Here we report in rats the first evidence that the thalamus – a structure remote from but connected to the injured cortex – is required to maintain cortical seizures. Thalamocortical neurons connected to the injured epileptic cortex undergo changes in HCN channel expression and become hyperexcitable. Targeting these neurons with a closed-loop optogenetic strategy demonstrates that reducing their activity in real-time is sufficient to immediately interrupt electrographic and behavioral seizures. This approach is of therapeutic interest for intractable epilepsy, since it spares cortical function between seizures, in contrast to existing treatments such as surgical lesioning or drugs. PMID:23143518

  12. Microcontroller based closed-loop control of a 2D quasi-static/resonant microscanner with on-chip piezo-resistive sensor feedback

    Science.gov (United States)

    Schroedter, Richard; Schwarzenberg, Markus; Dreyhaupt, André; Barth, Robert; Sandner, Thilo; Janschek, Klaus

    2017-02-01

    In this paper we present a 2D raster scanning quasi-static/resonant micro mirror being controlled in both axes in closed-loop with on-chip piezo-resistive sensor feedback. While the resonant axis oscillates with a given frequency, the quasi-static axis allows static as well as dynamic deflection up to its eigenfrequency because of its staggered vertical comb (SVC) drive arrangement. Due to the high quality factor of the very low damped spring-masssystem, an adapted trajectory planning using jerk limitation is applied for the quasi-static axis [1]. Nevertheless, inaccuracies of the applied nonlinear micro mirror model and external disturbances lead to undesired residual oscillation in open-loop control mode. To achieve high precise and fast beam positioning, we implement a flatness-based control algorithm with feedback to on-chip piezo-resistive deflection sensors. In comparison to previous work [2, 3], we developed a micro controller setup for driving the microscanner, that is equipped with an analog Bessel filter increasing the sensor signal quality significantly. In this study we demonstrate a small size and low power micro mirror driver including high-voltage generation and a microcontroller for real-time control as well as a head circuit board for high resolution sensing. We discuss experimental results of open-loop and closed-loop control for 2D raster scanning operation. Finally, the outlook is given to the intrinsic capability to compensate temperature drifts influencing the piezo-resistive sensor signal.

  13. Informative Property of the Data Set in a Single-input Single-output (SISO) Closed-loop System with a Switching Controller%Informative Property of the Data Set in a Single-input Single-output (SISO) Closed-loop System with a Switching Controller

    Institute of Scientific and Technical Information of China (English)

    张聪; 杨帆; 叶昊

    2012-01-01

    Closed-loop identification is important and necessary to various model-based advanced process control strategies, whose performance depends greatly on the informative property of the data set. Switching control is an important method in process control. Therefore, this paper studies the informative property of a data set in a single-input single-output (SISO) closed-loop system with a switching controller. It is proved that this data set is informative if the controller switches among at least two modes (i.e., feedback laws). Our result does not require any assumption on the way of switch and removes the constraints on the switching manner required in some classical literature. Finally, simulation case studies based on a continuous stirred-tank reactor (CSTR) process are given to validate the results.

  14. Indirect Adaptive Fuzzy Output Feedback Control with Supervisory Controller for Uncertain Nonlinear Systems%非线性系统的间接自适应模糊输出反馈监督控制

    Institute of Scientific and Technical Information of China (English)

    佟绍成; 柴天佑

    2005-01-01

    In this paper, an indirect adaptive fuzzy output feedback controller with supervisory mode for a class of unknown nonlinear systems is developed. The proposed approach does not need the availability of the state variables, moreover, a supervisory controller is appended to the adaptive fuzzy controller to force the state to be within the constraint set. Therefore, if the adaptive fuzzy controller cannot maintain the stability, the supervisory controller starts to work to guarantee stability. On the other hand, if the adaptive fuzzy controller works well, the supervisory controller will be de-activated. The overall adaptive fuzzy control scheme guarantees the stability of the whole closed-loop systems. The simulation results confirm the effectiveness of the proposed method.

  15. Enhancing automatic closed-loop glucose control in type 1 diabetes with an adaptive meal bolus calculator - in silico evaluation under intra-day variability.

    Science.gov (United States)

    Herrero, Pau; Bondia, Jorge; Adewuyi, Oloruntoba; Pesl, Peter; El-Sharkawy, Mohamed; Reddy, Monika; Toumazou, Chris; Oliver, Nick; Georgiou, Pantelis

    2017-07-01

    Current prototypes of closed-loop systems for glucose control in type 1 diabetes mellitus, also referred to as artificial pancreas systems, require a pre-meal insulin bolus to compensate for delays in subcutaneous insulin absorption in order to avoid initial post-prandial hyperglycemia. Computing such a meal bolus is a challenging task due to the high intra-subject variability of insulin requirements. Most closed-loop systems compute this pre-meal insulin dose by a standard bolus calculation, as is commonly found in insulin pumps. However, the performance of these calculators is limited due to a lack of adaptiveness in front of dynamic changes in insulin requirements. Despite some initial attempts to include adaptation within these calculators, challenges remain. In this paper we present a new technique to automatically adapt the meal-priming bolus within an artificial pancreas. The technique consists of using a novel adaptive bolus calculator based on Case-Based Reasoning and Run-To-Run control, within a closed-loop controller. Coordination between the adaptive bolus calculator and the controller was required to achieve the desired performance. For testing purposes, the clinically validated Imperial College Artificial Pancreas controller was employed. The proposed system was evaluated against itself but without bolus adaptation. The UVa-Padova T1DM v3.2 system was used to carry out a three-month in silico study on 11 adult and 11 adolescent virtual subjects taking into account inter-and intra-subject variability of insulin requirements and uncertainty on carbohydrate intake. Overall, the closed-loop controller enhanced by an adaptive bolus calculator improves glycemic control when compared to its non-adaptive counterpart. In particular, the following statistically significant improvements were found (non-adaptive vs. adaptive). Adults: mean glucose 142.2 ± 9.4vs. 131.8 ± 4.2mg/dl; percentage time in target [70, 180]mg/dl, 82.0 ± 7.0vs. 89.5 ± 4

  16. 液压系统流量PID闭环控制实验研究%Study on Closed Loop Control Experiment of Hydraulic System Flow PID

    Institute of Scientific and Technical Information of China (English)

    刘永; 杨彬

    2016-01-01

    为了提高液压系统的流量控制精度,消除稳态误差,设计了流量PID闭环控制系统。通过在Labview软件中编制测控程序,将实测流量值与目标值的差值输入PID控制器,通过PID控制器输出的转速控制电压调整伺服电机转速,从而使实际输出流量达到目标设定值。实验结果表明:实际输出流量值能很好地跟随、响应目标流量值变化;流量闭环控制系统对阶跃、正弦、斜坡压力干扰信号的校正能力较强。%In order to improve the flow control precision of hydraulic system and eliminate the steady-state error, the flow PID closed loop control system was designed. Through the measurement and control program written in Labview software, the difference between flow measurement value and the target value was inputted the PID controller. The speed control voltage of servo motor PID controller was outputted through PID controller. By adjusting the rotational speed of servo motor, the actual output flow can reach the set value. The experimental results show that the actual flow value can follow and respond to the change of target flow. The flow closed loop control system has strong anti interference ability for the step, sine and slope pressure disturbance signal.

  17. 智能助老服务机器人开闭环控制%Intelligent Help-age Service Robot Open-closed Loop Control

    Institute of Scientific and Technical Information of China (English)

    赵建伟; 李国晗; 唐兵; 王洪燕

    2015-01-01

    Introduce an intelligent help-age service robot considering its importance in the task of servicing and entertaining the old men. It briefly introduces the overall structure and design of intelligent help-age service robot and the structure and performance characteristics of open and closed loop control system; it does a detailed study on the closed loop control whose core is the PID algorithm, and through the simulation it sets the P, I, D parameters and make intelligent help-age service robot be able to get accurate control. It makes the robot as an experimental object and through many times experimental comparison, the experimental results show that the PID closed loop control system of intelligent help-age service robot can ensure the working accuracy of the robot in complex environment; it is widely used in an occasion whose external environment is complex and accuracy requirement is higher and its help-age service is obviously better than the open loop control system.%针对助老服务机器人在服务以及娱乐老人任务中的重要性,介绍一种智能助老服务机器人.简要介绍智能助老服务机器人的总体结构设计,开、闭环控制系统的结构以及性能特点,详细研究以 PID算法为核心的闭环控制,通过仿真设计P, I, D参数,使智能助老服务机器人能够得到精确控制.并以该机器人为实验对象,进行多次实验对比.实验结果表明:智能助老服务机器人的 PID闭环控制系统能保证机器人在复杂环境下工作的精确性,广泛应用于外界环境复杂、对精度要求较高的场合,其助老服务明显优于开环控制系统.

  18. 果林机器人行走驱动闭环控制分析%Analysis of Motion Drive Closed-loop Control for Fruit-trees Robots

    Institute of Scientific and Technical Information of China (English)

    余嘉傲

    2011-01-01

    This research is conducted to select the reasonable control mode of the robots. Taking the track fruit-trees robot as an example, the fruit-trees robot's dual-motor control system is analyzed. Based on the speed incremental PID closed-loop control algorithm of the step DC motor, the proportional coefficient, integral coefficient and differential coefficient of PID controller is calculated. The stimulation and experiments demonstrates that the speed incremental PID control is better than the open-loop control motor in the response speed and stability when the robot is running in a straight line on the ground at the 3000 rpm. These results indicate that the mode of the speed incremental PID closed-loop control is most reasonable.%该研究旨在选取控制机器人运动的合理方式.以履带式果林机器人为背景,分析了果林机器人运动双电机控制系统.基于步进直流电机转速增量式PID闭环控制算法,计算了PID控制器比例系数、积分系数和微分系数.仿真和试验表明:当机器人左、右电机以3000 r/min的速度在地面上直线运行时,采用转速增量式PID控制比开环控制电机响应速度快,稳定性能好.结果提示,转速增量式PID控制方式是有效合理的.

  19. Closed-loop feedback control and bifurcation analysis of epileptiform activity via optogenetic stimulation in a mathematical model of human cortex

    Science.gov (United States)

    Selvaraj, Prashanth; Sleigh, Jamie W.; Kirsch, Heidi E.; Szeri, Andrew J.

    2016-01-01

    Optogenetics provides a method of neuron stimulation that has high spatial, temporal, and cell-type specificity. Here we present a model of optogenetic feedback control that targets the inhibitory population, which expresses light-sensitive channelrhodopsin-2 channels, in a mean-field model of undifferentiated cortex that is driven to seizures. The inhibitory population is illuminated with an intensity that is a function of electrode measurements obtained via the cortical model. We test the efficacy of this control method on seizurelike activity observed in two parameter spaces of the cortical model that most closely correspond to seizures observed in patients. We also compare the effect of closed-loop and open-loop control on seizurelike activity using a less-complicated ordinary differential equation model of the undifferentiated cortex in parameter space. Seizurelike activity is successfully suppressed in both parameter planes using optimal illumination intensities less likely to have adverse effects on cortical tissue.

  20. Automated closed-loop resuscitation of multiple hemorrhages: a comparison between fuzzy logic and decision table controllers in a sheep model.

    Science.gov (United States)

    Marques, Nicole Ribeiro; Ford, Brent J; Khan, Muzna N; Kinsky, Michael; Deyo, Donald J; Mileski, William J; Ying, Hao; Kramer, George C

    2017-01-01

    Hemorrhagic shock is the leading cause of trauma-related death in the military setting. Definitive surgical treatment of a combat casualty can be delayed and life-saving fluid resuscitation might be necessary in the field. Therefore, improved resuscitation strategies are critically needed for prolonged field and en route care. We developed an automated closed-loop control system capable of titrating fluid infusion to a target endpoint. We used the system to compare the performance of a decision table algorithm (DT) and a fuzzy logic controller (FL) to rescue and maintain the mean arterial pressure (MAP) at a target level during hemorrhages. Fuzzy logic empowered the control algorithm to emulate human expertise. We hypothesized that the FL controller would be more effective and more efficient than the DT algorithm by responding in a more rigid, structured way. Ten conscious sheep were submitted to a hemorrhagic protocol of 25 ml/kg over three separate bleeds. Automated resuscitation with lactated Ringer's was initiated 30 min after the first hemorrhage started. The endpoint target was MAP. Group differences were assessed by two-tailed t test and alpha of 0.05. Both groups maintained MAP at similar levels throughout the study. However, the DT group required significantly more fluid than the FL group, 1745 ± 552 ml (42 ± 11 ml/kg) versus 978 ± 397 ml (26 ± 11 ml/kg), respectively (p = 0.03). The FL controller was more efficient than the DT algorithm and may provide a means to reduce fluid loading. Effectiveness was not different between the two strategies. Automated closed-loop resuscitation can restore and maintain blood pressure in a multi-hemorrhage model of shock.

  1. Modified Projective Synchronization between Different Fractional-Order Systems Based on Open-Plus-Closed-Loop Control and Its Application in Image Encryption

    Directory of Open Access Journals (Sweden)

    Hongjuan Liu

    2014-01-01

    Full Text Available A new general and systematic coupling scheme is developed to achieve the modified projective synchronization (MPS of different fractional-order systems under parameter mismatch via the Open-Plus-Closed-Loop (OPCL control. Based on the stability theorem of linear fractional-order systems, some sufficient conditions for MPS are proposed. Two groups of numerical simulations on the incommensurate fraction-order system and commensurate fraction-order system are presented to justify the theoretical analysis. Due to the unpredictability of the scale factors and the use of fractional-order systems, the chaotic data from the MPS is selected to encrypt a plain image to obtain higher security. Simulation results show that our method is efficient with a large key space, high sensitivity to encryption keys, resistance to attack of differential attacks, and statistical analysis.

  2. Close-loop performance of a high precision deflectometry controlled deformable mirror (DCDM) unit for wavefront correction in adaptive optics system

    Science.gov (United States)

    Huang, Lei; Zhou, Chenlu; Zhao, Wenchuan; Choi, Heejoo; Graves, Logan; Kim, Daewook

    2017-06-01

    We present a high precision deflectometry system (DS) controlled deformable mirror (DM) solution for optical system. Different from wavefront and non-wavefront system, the DS and the DM are set to be an individual integrated DCDM unit and can be installed in one base plate. In the DCDM unit, the DS can directly provide the influence functions and surface shape of the DM to the industrial computer in any adaptive optics system. As an integrated adaptive unit, the DCDM unit could be put into various optical systems to realize aberration compensation. In this paper, the configuration and principle of the DCDM unit is introduced first. Theoretical simulation on the close-loop performance of the DCDM unit is carried out. Finally, a verification experiment is proposed to verify the compensation capability of the DCDM unit.

  3. Closed loop performance of a brushless dc motor powered electromechanical actuator for flight control applications. [computerized simulation for Shuttle Orbiter applications

    Science.gov (United States)

    Demerdash, N. A.; Nehl, T. W.

    1980-01-01

    A comprehensive digital model for the analysis and possible optimization of the closed loop dynamic (instantaneous) performance of a power conditioner fed, brushless dc motor powered, electromechanical actuator system (EMA) is presented. This model was developed for the simulation of the dynamic performance of an actual prototype EMA built for NASA-JSC as a possible alternative to hydraulic actuators for consideration in Space Shuttle Orbiter applications. Excellent correlation was achieved between numerical model simulation and experimental test results obtained from the actual hardware. These results include: various current and voltage waveforms in the machine-power conditioner (MPC) unit, flap position as well as other control loop variables in response to step commands of change of flap position. These results with consequent conclusions are detailed in the paper.

  4. Restoration of motor function following spinal cord injury via optimal control of intraspinal microstimulation: toward a next generation closed-loop neural prosthesis.

    Directory of Open Access Journals (Sweden)

    Peter Jonas Grahn

    2014-09-01

    Full Text Available Movement is planned and coordinated by the brain and carried out by contracting muscles acting on specific joints. Motor commands initiated in the brain travel through descending pathways in the spinal cord to effector motor neurons before reaching target muscles. Damage to these pathways by spinal cord injury (SCI can result in paralysis below the injury level. However, the planning and coordination centers of the brain, as well as peripheral nerves and the muscles that they act upon, remain functional. Neuroprosthetic devices can restore motor function following SCI by direct electrical stimulation of the neuromuscular system. Unfortunately, conventional neuroprosthetic techniques are limited by a myriad of factors that include, but are not limited to, a lack of characterization of non-linear input/output system dynamics, mechanical coupling, limited number of degrees of freedom, high power consumption, large device size, and rapid onset of muscle fatigue. Wireless multi-channel closed-loop neuroprostheses that integrate command signals from the brain with sensor-based feedback from the environment and the system’s state offer the possibility of increasing device performance, ultimately improving quality of life for people with SCI. In this manuscript, we review neuroprosthetic technology for improving functional restoration following SCI and describe brain-machine interfaces suitable for control of neuroprosthetic systems with multiple degrees of freedom. Additionally, we discuss novel stimulation paradigms that can improve synergy with higher planning centers and improve fatigue-resistant activation of paralyzed muscles. In the near future, integration of these technologies will provide SCI survivors with versatile closed-loop neuroprosthetic systems for restoring function to paralyzed muscles.

  5. Restoration of motor function following spinal cord injury via optimal control of intraspinal microstimulation: toward a next generation closed-loop neural prosthesis

    Science.gov (United States)

    Grahn, Peter J.; Mallory, Grant W.; Berry, B. Michael; Hachmann, Jan T.; Lobel, Darlene A.; Lujan, J. Luis

    2014-01-01

    Movement is planned and coordinated by the brain and carried out by contracting muscles acting on specific joints. Motor commands initiated in the brain travel through descending pathways in the spinal cord to effector motor neurons before reaching target muscles. Damage to these pathways by spinal cord injury (SCI) can result in paralysis below the injury level. However, the planning and coordination centers of the brain, as well as peripheral nerves and the muscles that they act upon, remain functional. Neuroprosthetic devices can restore motor function following SCI by direct electrical stimulation of the neuromuscular system. Unfortunately, conventional neuroprosthetic techniques are limited by a myriad of factors that include, but are not limited to, a lack of characterization of non-linear input/output system dynamics, mechanical coupling, limited number of degrees of freedom, high power consumption, large device size, and rapid onset of muscle fatigue. Wireless multi-channel closed-loop neuroprostheses that integrate command signals from the brain with sensor-based feedback from the environment and the system's state offer the possibility of increasing device performance, ultimately improving quality of life for people with SCI. In this manuscript, we review neuroprosthetic technology for improving functional restoration following SCI and describe brain-machine interfaces suitable for control of neuroprosthetic systems with multiple degrees of freedom. Additionally, we discuss novel stimulation paradigms that can improve synergy with higher planning centers and improve fatigue-resistant activation of paralyzed muscles. In the near future, integration of these technologies will provide SCI survivors with versatile closed-loop neuroprosthetic systems for restoring function to paralyzed muscles. PMID:25278830

  6. Restoration of motor function following spinal cord injury via optimal control of intraspinal microstimulation: toward a next generation closed-loop neural prosthesis.

    Science.gov (United States)

    Grahn, Peter J; Mallory, Grant W; Berry, B Michael; Hachmann, Jan T; Lobel, Darlene A; Lujan, J Luis

    2014-01-01

    Movement is planned and coordinated by the brain and carried out by contracting muscles acting on specific joints. Motor commands initiated in the brain travel through descending pathways in the spinal cord to effector motor neurons before reaching target muscles. Damage to these pathways by spinal cord injury (SCI) can result in paralysis below the injury level. However, the planning and coordination centers of the brain, as well as peripheral nerves and the muscles that they act upon, remain functional. Neuroprosthetic devices can restore motor function following SCI by direct electrical stimulation of the neuromuscular system. Unfortunately, conventional neuroprosthetic techniques are limited by a myriad of factors that include, but are not limited to, a lack of characterization of non-linear input/output system dynamics, mechanical coupling, limited number of degrees of freedom, high power consumption, large device size, and rapid onset of muscle fatigue. Wireless multi-channel closed-loop neuroprostheses that integrate command signals from the brain with sensor-based feedback from the environment and the system's state offer the possibility of increasing device performance, ultimately improving quality of life for people with SCI. In this manuscript, we review neuroprosthetic technology for improving functional restoration following SCI and describe brain-machine interfaces suitable for control of neuroprosthetic systems with multiple degrees of freedom. Additionally, we discuss novel stimulation paradigms that can improve synergy with higher planning centers and improve fatigue-resistant activation of paralyzed muscles. In the near future, integration of these technologies will provide SCI survivors with versatile closed-loop neuroprosthetic systems for restoring function to paralyzed muscles.

  7. Model-based rational feedback controller design for closed-loop deep brain stimulation of Parkinson's disease

    Science.gov (United States)

    Gorzelic, P.; Schiff, S. J.; Sinha, A.

    2013-04-01

    Objective. To explore the use of classical feedback control methods to achieve an improved deep brain stimulation (DBS) algorithm for application to Parkinson's disease (PD). Approach. A computational model of PD dynamics was employed to develop model-based rational feedback controller design. The restoration of thalamocortical relay capabilities to patients suffering from PD is formulated as a feedback control problem with the DBS waveform serving as the control input. Two high-level control strategies are tested: one that is driven by an online estimate of thalamic reliability, and another that acts to eliminate substantial decreases in the inhibition from the globus pallidus interna (GPi) to the thalamus. Control laws inspired by traditional proportional-integral-derivative (PID) methodology are prescribed for each strategy and simulated on this computational model of the basal ganglia network. Main Results. For control based upon thalamic reliability, a strategy of frequency proportional control with proportional bias delivered the optimal control achieved for a given energy expenditure. In comparison, control based upon synaptic inhibitory output from the GPi performed very well in comparison with those of reliability-based control, with considerable further reduction in energy expenditure relative to that of open-loop DBS. The best controller performance was amplitude proportional with derivative control and integral bias, which is full PID control. We demonstrated how optimizing the three components of PID control is feasible in this setting, although the complexity of these optimization functions argues for adaptive methods in implementation. Significance. Our findings point to the potential value of model-based rational design of feedback controllers for Parkinson's disease.

  8. Closed Loop System Identification with Genetic Algorithms

    Science.gov (United States)

    Whorton, Mark S.

    2004-01-01

    High performance control design for a flexible space structure is challenging since high fidelity plant models are di.cult to obtain a priori. Uncertainty in the control design models typically require a very robust, low performance control design which must be tuned on-orbit to achieve the required performance. Closed loop system identi.cation is often required to obtain a multivariable open loop plant model based on closed-loop response data. In order to provide an accurate initial plant model to guarantee convergence for standard local optimization methods, this paper presents a global parameter optimization method using genetic algorithms. A minimal representation of the state space dynamics is employed to mitigate the non-uniqueness and over-parameterization of general state space realizations. This control-relevant system identi.cation procedure stresses the joint nature of the system identi.cation and control design problem by seeking to obtain a model that minimizes the di.erence between the predicted and actual closed-loop performance.

  9. Experimental and Numerical Study on the Semi-Closed Loop Control of a Planar Parallel Robot Manipulator

    Directory of Open Access Journals (Sweden)

    Yong-Lin Kuo

    2014-01-01

    Full Text Available This paper implements the model predictive control to fulfill the position control of a 3-DOF 3-RRR planar parallel manipulator. The research work covers experimental and numerical studies. First, an experimental hardware-in-the-loop system to control the manipulator is constructed. The manipulator is driven by three DC motors, and each motor has an encoder to measure the rotating angles of the motors. The entire system is designed as a semiclosed-loop control system. The controller receives the encoder signals as inputs to produce signals driving the motors. Secondly, the motor parameters are obtained by system identification, and the controllers are designed based on these parameters. Finally, the numerical simulations are performed by incorporating the manipulator kinematics and the motor dynamics; the results are compared with those from the experiments. Both results show that they are in good agreement at steady state. There are two main contributions in this paper. One is the application of the model predictive control to the planar parallel manipulator, and the other one is to overcome the effects of the uncertainties of the DC motors and the performance of the position control due to the dynamic behavior of the manipulator.

  10. A Comparison of Closed-Loop Performance of Multirotor Configurations Using Non-Linear Dynamic Inversion Control

    Directory of Open Access Journals (Sweden)

    Murray L. Ireland

    2015-06-01

    Full Text Available Multirotor is the umbrella term for the family of unmanned aircraft, which include the quadrotor, hexarotor and other vertical take-off and landing (VTOL aircraft that employ multiple main rotors for lift and control. Development and testing of novel multirotor designs has been aided by the proliferation of 3D printing and inexpensive flight controllers and components. Different multirotor configurations exhibit specific strengths, while presenting unique challenges with regards to design and control. This article highlights the primary differences between three multirotor platforms: a quadrotor; a fully-actuated hexarotor; and an octorotor. Each platform is modelled and then controlled using non-linear dynamic inversion. The differences in dynamics, control and performance are then discussed.

  11. Building an internal model of a myoelectric prosthesis via closed-loop control for consistent and routine grasping.

    Science.gov (United States)

    Dosen, Strahinja; Markovic, Marko; Wille, Nicola; Henkel, Markus; Koppe, Mario; Ninu, Andrei; Frömmel, Cornelius; Farina, Dario

    2015-06-01

    Prosthesis users usually agree that myoelectric prostheses should be equipped with somatosensory feedback. However, the exact role of feedback and potential benefits are still elusive. The current study investigates the nature of human control processes within a specific context of routine grasping. Although the latter includes a fast feedforward control of the grasping force, the assumption was that the feedback would still be useful; it would communicate the outcome of the grasping trial, which the subjects could use to learn an internal model of feedforward control. Nine able-bodied subjects produced repeatedly a desired level of grasping force using different control configurations: feedback versus no-feedback, virtual versus real prosthetic hand, and joystick versus myocontrol. The outcome measures were the median and dispersion of the relative force errors. The results demonstrated that the feedback was successful in limiting the variability of the routine grasping due to uncertainties in the system and/or the command interface. The internal models of feedforward control could be employed by the subjects to control the prosthesis without the loss of performance even after the force feedback was removed. The models were, however, unstable over time, especially with myocontrol. Overall, the study demonstrates that the prosthesis system can be learned by the subjects using feedback. The feedback is also essential to maintain the model, and it could be delivered intermittently. This approach has practical advantages, but the level to which this mechanism can be truly exploited in practice depends directly on the consistency of the prosthesis control interface.

  12. Design of Electro-hydraulic Closed-loop Control System and Environmental Adaptability Verification%电液闭环控制系统设计和环境适应性验证

    Institute of Scientific and Technical Information of China (English)

    李向阳; 吴林瑞; 李文书; 许进亮

    2015-01-01

    发射车控制系统对环境适应性差,针对这一情况,提出压力闭环控制和角速度闭环控制策略,并在发射车上经过试验验证,表明闭环控制策略能有效地改进发射车控制系统的环境适应性.%Based on the analysis of poor environmental adaptability of launcher control system, pressure closed-loop control and angular velocity closed-loop control strategies were proposed and were verified on the launcher which showed that closed-loop control strategy can improve the environmental adaptability of launcher control system effectively.

  13. Closed-Loop Feedback Computer-Controlled Phenylephrine for Maintenance of Blood Pressure During Spinal Anesthesia for Cesarean Delivery: A Randomized Trial Comparing Automated Boluses Versus Infusion.

    Science.gov (United States)

    Ngan Kee, Warwick D; Tam, Yuk-Ho; Khaw, Kim S; Ng, Floria F; Lee, Shara W Y

    2017-07-01

    We previously described the use of closed-loop feedback computer-controlled infusion of phenylephrine for maintaining blood pressure (BP) during spinal anesthesia for cesarean delivery. In this study, we report a modified system in which phenylephrine is delivered by intermittent boluses rather than infusion. We hypothesized that the use of computer-controlled boluses would result in more precise control of BP compared with infusions. Two hundred fourteen healthy patients having spinal anesthesia for elective cesarean delivery were randomized to have their systolic BP maintained by phenylephrine administered by computer-controlled continuous infusion or computer-controlled intermittent boluses. From induction of anesthesia until the time of uterine incision, a noninvasive BP monitor was set to cycle at 1-minute intervals. In the infusion group, the infusion rate was automatically adjusted after each BP measurement using a previously described algorithm. In the bolus group, the algorithm was modified so that the mass of drug that would have been delivered over 1 minute was instead injected as a rapid intravenous bolus after each BP measurement. The precision of BP control was assessed using performance error calculations and compared between groups, with the primary outcome defined as median absolute performance error, and the latter being a measure of inaccuracy showing an average of the magnitudes of the differences of measured BP values above or below the target values. The precision of BP control was greater, as shown by smaller values for median absolute performance error, in the bolus group (median 4.38 [quartiles 3.22, 6.25] %) versus the infusion group (5.39 [4.12, 7.04] %, P = .008). In the bolus group, phenylephrine consumption was smaller; this was associated with smaller values for median performance error compared with the continuous infusion group (P control was more precise when computer-controlled phenylephrine was delivered using intermittent

  14. Dynamic Modeling and Control of Nuclear Reactors Coupled to Closed-Loop Brayton Cycle Systems using SIMULINK™

    Science.gov (United States)

    Wright, Steven A.; Sanchez, Travis

    2005-02-01

    The operation of space reactors for both in-space and planetary operations will require unprecedented levels of autonomy and control. Development of these autonomous control systems will require dynamic system models, effective control methodologies, and autonomous control logic. This paper briefly describes the results of reactor, power-conversion, and control models that are implemented in SIMULINK™ (Simulink, 2004). SIMULINK™ is a development environment packaged with MatLab™ (MatLab, 2004) that allows the creation of dynamic state flow models. Simulation modules for liquid metal, gas cooled reactors, and electrically heated systems have been developed, as have modules for dynamic power-conversion components such as, ducting, heat exchangers, turbines, compressors, permanent magnet alternators, and load resistors. Various control modules for the reactor and the power-conversion shaft speed have also been developed and simulated. The modules are compiled into libraries and can be easily connected in different ways to explore the operational space of a number of potential reactor, power-conversion system configurations, and control approaches. The modularity and variability of these SIMULINK™ models provides a way to simulate a variety of complete power generation systems. To date, both Liquid Metal Reactors (LMR), Gas Cooled Reactors (GCR), and electric heaters that are coupled to gas-dynamics systems and thermoelectric systems have been simulated and are used to understand the behavior of these systems. Current efforts are focused on improving the fidelity of the existing SIMULINK™ modules, extending them to include isotopic heaters, heat pipes, Stirling engines, and on developing state flow logic to provide intelligent autonomy. The simulation code is called RPC-SIM (Reactor Power and Control-Simulator).

  15. Comparison between a novel and conventional artificial pancreas for perioperative glycemic control using a closed-loop system.

    Science.gov (United States)

    Namikawa, Tsutomu; Munekage, Masaya; Kitagawa, Hiroyuki; Yatabe, Tomoaki; Maeda, Hiromichi; Tsukamoto, Yuuki; Hirano, Kenichi; Asano, Takuji; Kinoshita, Yoshihiko; Hanazaki, Kazuhiro

    2017-03-01

    This clinical study aimed to compare a novel and conventional artificial pancreas (AP) used in surgical patients for perioperative glycemic control, with respect to usability, blood glucose measurements, and glycemic control characteristics. From July in 2010 to March in 2015, 177 patients underwent perioperative glycemic control using a novel AP. Among them, 166 patients were eligible for inclusion in this study. Intensive insulin therapy (IIT) targeting a blood glucose range of 80-110 mg/dL was implemented in 82 patients (49 %), and the remaining 84 patients (51 %) received a less-intensive regime of insulin therapy. Data were collected prospectively and were reviewed or analyzed retrospectively. A comparison study of 324 patients undergoing IIT for glycemic control using a novel (n = 82) or conventional AP (n = 242) was conducted retrospectively. All patients had no hypoglycemia. The comparison study revealed no significant differences in perioperative mean blood glucose level, achievement rates for target blood glucose range, and variability in blood glucose level achieved with IIT between the novel AP and conventional AP groups. The usability, performance with respect to blood glucose measurement, and glycemic control characteristics of IIT were comparable between novel and conventional AP systems. However, the novel AP was easier to manipulate than the conventional AP due to its smaller size, lower weight, and shorter time for preparation. In the near future, this novel AP system might be accepted worldwide as a safe and useful device for use in perioperative glycemic control.

  16. An Implanted Closed-loop Chip System for Heart Rate Control: System Design and Effects in Conscious Rats.

    Science.gov (United States)

    Zhou, Yuxuan; Yuan, Yuan; Gao, Juan; Yang, Ling; Zhang, Feng; Zhu, Guoqing; Gao, Xingya

    2010-03-01

    To evaluate the efficiency of an implanted chip system for the control of heart rate (HR). The HR was recorded in six conscious Sprague-Dawley (SD) rats. An implanted chip system was designed to regulate the HR by stimulating the right cervical vagus nerve according to the feedback of real time HR. Each rat was subjected to 30-min regulation and 30-min recovery. The change of HR during the regulation period was compared with the control. The ECG was recorded during the experiment for 24 h. The ECG signals were successfully recorded during the experiment. The HR was significantly decreased during the period of regulation compared with control (-79.3 ±34.5, P chip system can regulate the HR to a designated set point.

  17. Closed loop control of laser welding using an optical spectroscopic sensor for Nd:YAG and CO2 lasers

    NARCIS (Netherlands)

    Konuk, A.R.; Aarts, R.G.K.M.; Huis in 't Veld, A.J.; Sibillano, T.; Rizzi, D.; Ancona, A.

    2011-01-01

    Recent developments in laser joining show the applicability of spectral analysis of the plasma plume emission to monitor and control the quality of weld. The analysis of the complete spectra makes it possible to measure specific emission lines which reveal information about the welding process. The

  18. Closed loop control of laser welding using an optical spectroscopic sensor for Nd:YAG and CO2 lasers

    NARCIS (Netherlands)

    Konuk, A.R.; Aarts, R.G.K.M.; Huis in 't Veld, A.J.; Sibillano, T.; Rizzi, D.; Ancona, A.

    2011-01-01

    Recent developments in laser joining show the applicability of spectral analysis of the plasma plume emission to monitor and control the quality of weld. The analysis of the complete spectra makes it possible to measure specific emission lines which reveal information about the welding process. The

  19. Closed Loop Identification Based on the Virtual Reference Feedback Tuning Applied to a Virtual Two-Degree-of-Freedom Control System

    Science.gov (United States)

    Kaneko, Osamu; Beak, Yong Kawn; Ohtsuka, Toshiyuki

    A new identification method with respect to the parameter tuning of a controller is presented. Here, we introduce a virtual two-degree-of-freedom control structure with a feedforward controller described by using a mathematical model of a plant with a tunable parameter. After performing a one-shot experiment, we apply the virtual reference feedback tuning (VRFT), which is a rational and effective tuning method for the parameter of a controller with only one-shot experiment data, to a virtual feedforward controller by using the experimental data obtained in the actual closed loop. We give a condition for a prefilter which is applied to the data to guarantee that the obtained parameter using the VRFT of a controller is close to the desired one. We also show that the prefilter for the identification in the proposed method has a simpler form than that obtained in the normal VRFT for two-degree-of-freedom control scheme. Finally, in order to show the validity of the proposed method, we give an experimental result on the identification of the dynamics of the opening-closing speed of an elevator door.

  20. Supervisory Control of Networked Control Systems

    Science.gov (United States)

    2006-01-15

    REPORT: January 15, 2006 Problem Statement: A networked control system is a control system whose feedback path is realized over a computer...theoretical bounds derived in [Ling03a]. 6. The feedback information in a networked control system is quantized due to the digital nature of

  1. Model-Based Closed-Loop Glucose Control in Type 1 Diabetes: The DiaCon Experience

    DEFF Research Database (Denmark)

    Schmidt, Signe; Boiroux, Dimitri; Duun-Henriksen, Anne Katrine

    2013-01-01

    -specific parameters: insulin sensitivity factor, insulin action time, and basal insulin infusion rate. The stochastic part is identical for all patients but identified from data from a single patient. Results of the first clinical feasibility test of the algorithm are presented. Methods: We conducted two randomized...... mg/dl (117–133 mg/dl) and 69.0% (30.7–77.9%) in CL-Eu and 149 mg/dl (140–193 mg/dl) and 48.2% (34.9–72.5%) in CL-Hyper, respectively. Conclusions: This study suggests that our novel MPC algorithm can safely and effectively control glucose overnight, also when CL control is initiated during...

  2. The novel stable control scheme of the light source power in the closed-loop fiber optic gyroscope

    Energy Technology Data Exchange (ETDEWEB)

    Ji Zhongxiao [Graduate University of the Chinese Academy of Sciences, Beijing (China); Ma Caiwen, E-mail: jzx@opt.ac.cn [Xi' an Institute of Optics and Precision Mechanics of the Chinese Academy of Sciences, NO.17 Xinxi Road, New Industrial Park, Xi' an Hi-Tech Industrial Development Zone, Xi' an, Shaanxi (China)

    2011-02-01

    The light source power stability of the Fiber-Optic Gyroscope (FOG) affects directly the scale factor and bias stability of FOG. The typical control scheme of the light source power employs an additional photodetector to detect the output power of the light source. When the fiber loss of FOG varied due to the temperature change, the light power in the additional photodetector did not indicate this change, which decreased the control effect. The spike pulse overlapping on the gyro signal denotes potentially the change of the light power and fiber loss. In the novel scheme, the spike pulse is extracted from the gyro signal, and is transformed into the square wave by the differential circuit. According to the change of the square wave amplitude, FOG adjusts the bias current of the light source to keep the stable light power in the signal photodetector. It is a simple and low-cost scheme without an additional photodetector.

  3. Distributed cerebellar plasticity implements adaptable gain control in a manipulation task: a closed-loop robotic simulation

    Directory of Open Access Journals (Sweden)

    Jesus A Garrido Alcazar

    2013-10-01

    Full Text Available Adaptable gain regulation is at the core of the forward controller operation performed by the cerebro-cerebellar loops and it allows the intensity of motor acts to be finely tuned in a predictive manner. In order to learn and store information about body-object dynamics and to generate an internal model of movement, the cerebellum is thought to employ long-term synaptic plasticity. LTD at the PF-PC synapse has classically been assumed to subserve this function (Marr, 1969. However, this plasticity alone cannot account for the broad dynamic ranges and time scales of cerebellar adaptation. We therefore tested the role of plasticity distributed over multiple synaptic sites (Gao et al., 2012; Hansel et al., 2001 by generating an analog cerebellar model embedded into a control loop connected to a robotic simulator. The robot used a three-joint arm and performed repetitive fast manipulations with different masses along an 8-shape trajectory. In accordance with biological evidence, the cerebellum model was endowed with both LTD and LTP at the PF-PC, MF-DCN and PC-DCN synapses. This resulted in a network scheme whose effectiveness was extended considerably compared to one including just PF-PC synaptic plasticity. Indeed, the system including distributed plasticity reliably self-adapted to manipulate different masses and to learn the arm-object dynamics over a time course that included fast learning and consolidation, along the lines of what has been observed in behavioral tests. In particular, PF-PC plasticity operated as a time correlator between the actual input state and the system error, while MF-DCN and PC-DCN plasticity played a key role in generating the gain controller. This model suggests that distributed synaptic plasticity allows generation of the complex learning properties of the cerebellum. The incorporation of further plasticity mechanisms and of spiking signal processing will allow this concept to be extended in a more realistic

  4. A Novel Robot System Integrating Biological and Mechanical Intelligence Based on Dissociated Neural Network-Controlled Closed-Loop Environment

    Science.gov (United States)

    Wang, Yuechao; Li, Hongyi; Zheng, Xiongfei

    2016-01-01

    We propose the architecture of a novel robot system merging biological and artificial intelligence based on a neural controller connected to an external agent. We initially built a framework that connected the dissociated neural network to a mobile robot system to implement a realistic vehicle. The mobile robot system characterized by a camera and two-wheeled robot was designed to execute the target-searching task. We modified a software architecture and developed a home-made stimulation generator to build a bi-directional connection between the biological and the artificial components via simple binomial coding/decoding schemes. In this paper, we utilized a specific hierarchical dissociated neural network for the first time as the neural controller. Based on our work, neural cultures were successfully employed to control an artificial agent resulting in high performance. Surprisingly, under the tetanus stimulus training, the robot performed better and better with the increasement of training cycle because of the short-term plasticity of neural network (a kind of reinforced learning). Comparing to the work previously reported, we adopted an effective experimental proposal (i.e. increasing the training cycle) to make sure of the occurrence of the short-term plasticity, and preliminarily demonstrated that the improvement of the robot’s performance could be caused independently by the plasticity development of dissociated neural network. This new framework may provide some possible solutions for the learning abilities of intelligent robots by the engineering application of the plasticity processing of neural networks, also for the development of theoretical inspiration for the next generation neuro-prostheses on the basis of the bi-directional exchange of information within the hierarchical neural networks. PMID:27806074

  5. Closed-loop control of zebrafish response using a bioinspired robotic-fish in a preference test

    OpenAIRE

    Kopman, Vladislav; Laut, Jeffrey; Polverino, Giovanni; Porfiri, Maurizio

    2013-01-01

    In this paper, we study the response of zebrafish to a robotic-fish whose morphology and colour pattern are inspired by zebrafish. Experiments are conducted in a three-chambered instrumented water tank where a robotic-fish is juxtaposed with an empty compartment, and the preference of live subjects is scored as the mean time spent in the vicinity of the tank's two lateral sides. The tail-beating of the robotic-fish is controlled in real-time based on feedback from fish motion to explore a spe...

  6. On the Generation of a Robust Residual for Closed-loopControl systems that Exhibit Sensor Faults

    DEFF Research Database (Denmark)

    Alavi, Seyed Mohammad Mahdi; Izadi-Zamanabadi, Roozbeh; Hayes, Martin J.

    2007-01-01

    This paper presents a novel design methodology, based on shaping the system frequency response, for the generation of an appropriate residual signal that is sensitive to sensor faults in the presence of model uncertainty and exogenous unknown (unmeasured) disturbances. An integrated feedback...... controller design and robust frequency-based fault detection approach is proposed for Single-Input/Single-Output systems. The effciency of the proposed method is demonstrated on a Single Machine Innite Bus (SMIB) power system that achieves a coordinate power system stabilizer with satisfactory sensor fault...

  7. Research on double closed-loop control system of hydrostatic transmission with secondary regulation%二次调节转速系统的双闭环控制研究

    Institute of Scientific and Technical Information of China (English)

    刘宇辉; 蒲红; 姜继海

    2001-01-01

    本文建立了二次调节静液传动系统双闭环控制的数学模型,对系统进行了单、双闭环控制的对比研究。理论分析与试验结果表明:双闭环控制由于提高了系统的阻尼比因而较之单闭环控制具有更好的控制特性。%In this paper, double closed-loop mathematical model ofhydrostatic transmission system with secondary regulation is established. A contrast study is carried out on single and double close-loop control systems. Theoretical analysis and experimental results show that better control results can be achieved with double closed-loop control system than single one due to improving the damping ratio of the system.

  8. Dynamics of the Coupled Human-climate System Resulting from Closed-loop Control of Solar Geoengineering

    Energy Technology Data Exchange (ETDEWEB)

    MacMartin, Douglas; Kravitz, Benjamin S.; Keith, David; Jarvis, Andrew

    2014-07-08

    If solar radiation management (SRM) were ever implemented, feedback of the observed climate state might be used to adjust the radiative forcing of SRM, in order to compensate for uncertainty in either the forcing or the climate response; this would also compensate for unexpected changes in the system, e.g. a nonlinear change in climate sensitivity. This feedback creates an emergent coupled human-climate system, with entirely new dynamics. In addition to the intended response to greenhouse-gas induced changes, the use of feedback would also result in a geoengineering response to natural climate variability. We use a simple box-diffusion dynamic model to understand how changing feedback-control parameters and time delay affect the behavior of this coupled natural-human system, and verify these predictions using the HadCM3L general circulation model. In particular, some amplification of natural variability is unavoidable; any time delay (e.g., to average out natural variability, or due to decision-making) exacerbates this amplification, with oscillatory behavior possible if there is a desire for rapid correction (high feedback gain), but a delayed response needed for decision making. Conversely, the need for feedback to compensate for uncertainty, combined with a desire to avoid excessive amplification, results in a limit on how rapidly SRM could respond to uncertain changes.

  9. Dynamics of the coupled human-climate system resulting from closed-loop control of solar geoengineering

    Science.gov (United States)

    MacMartin, Douglas G.; Kravitz, Ben; Keith, David W.; Jarvis, Andrew

    2014-07-01

    If solar radiation management (SRM) were ever implemented, feedback of the observed climate state might be used to adjust the radiative forcing of SRM in order to compensate for uncertainty in either the forcing or the climate response. Feedback might also compensate for unexpected changes in the system, e.g. a nonlinear change in climate sensitivity. However, in addition to the intended response to greenhouse-gas induced changes, the use of feedback would also result in a geoengineering response to natural climate variability. We use a box-diffusion dynamic model of the climate system to understand how changing the properties of the feedback control affect the emergent dynamics of this coupled human-climate system, and evaluate these predictions using the HadCM3L general circulation model. In particular, some amplification of natural variability is unavoidable; any time delay (e.g., to average out natural variability, or due to decision-making) exacerbates this amplification, with oscillatory behavior possible if there is a desire for rapid correction (high feedback gain). This is a challenge for policy as a delayed response is needed for decision making. Conversely, the need for feedback to compensate for uncertainty, combined with a desire to avoid excessive amplification of natural variability, results in a limit on how rapidly SRM could respond to changes in the observed state of the climate system.

  10. Hydraulic Closed Loop Synchronization Control System and Its Application in the Hydraulic Bending Machine%液压闭环同步控制系统在液压式卷板机中的应用

    Institute of Scientific and Technical Information of China (English)

    宋亚林

    2015-01-01

    This paper discusses the hydraulic open loop and closed loop system and its characteristics of synchronous control. The Application of hydraulic closed loop synchronization control system in hydraulic type three roller symmetrical bending machine was introduced in this paper.%论述了液压开环与闭环同步控制系统及其特点,并对液压闭环同步控制系统在液压式三辊对称卷板机中的应用进行了介绍。

  11. Closed Loop Fire Control System

    Science.gov (United States)

    1976-11-01

    could involve the maintenance of a substantial aircraft velocity to counteract the prolonged exposure to a potential air defense threat. Although the...The resulting subsystem failure rate of 1329. 9 failures per 106 hours (751. 9 hours MTBF) represents a "conservative" predicition . Had detailed

  12. Closed-loop neuromorphic benchmarks

    CSIR Research Space (South Africa)

    Stewart

    2015-11-01

    Full Text Available Benchmarks   Terrence C. Stewart 1* , Travis DeWolf 1 , Ashley Kleinhans 2 , Chris Eliasmith 1   1 University of Waterloo, Canada, 2 Council for Scientific and Industrial Research, South Africa   Submitted to Journal:   Frontiers in Neuroscience   Specialty... the study was exempt from ethical approval procedures.) Did the study presented in the manuscript involve human or animal subjects: No I v i w 1Closed-loop Neuromorphic Benchmarks Terrence C. Stewart 1,∗, Travis DeWolf 1, Ashley Kleinhans 2 and Chris...

  13. Model-driven Migration of Supervisory Machine Control Architectures

    NARCIS (Netherlands)

    Graaf, B.; Weber, S.; Van Deursen, A.

    2006-01-01

    Supervisory machine control is the high-level control in advanced manufacturing machines that is responsible for the coordination of manufacturing activities. Traditionally, the design of such control systems is based on finite state machines. An alternative, more flexible approach is based on

  14. Scale Transformations and Information Presentation in Supervisory Control

    DEFF Research Database (Denmark)

    Petersen, Johannes; May, Michael

    2006-01-01

    It is commonly accepted that designers of supervisory control systems cannot comprehensively anticipate operators' information needs. In order to compensate the lack between the information presented by the Supervisory control system and the information needed, operators tailor the information...... types proposed by Stevens. The scale type of data is determined by how values are assigned to the dimensions of the system being supervised and each scale type specifies a set of operations that can be legitimately applied to data oil this scale type. Based on the concept of scale transformation...

  15. Review of Supervisory Control and Data Acquisition (SCADA) Systems

    Energy Technology Data Exchange (ETDEWEB)

    Reva Nickelson; Briam Johnson; Ken Barnes

    2004-01-01

    A review using open source information was performed to obtain data related to Supervisory Control and Data Acquisition (SCADA) systems used to supervise and control domestic electric power generation, transmission, and distribution. This report provides the technical details for the types of systems used, system disposal, cyber and physical security measures, network connections, and a gap analysis of SCADA security holes.

  16. An Ecological Approach to the Supervisory Control of UAV Swarms

    NARCIS (Netherlands)

    Fuchs, C.; Borst, C.; De Croon, G.C.H.E.; Van Paassen, M.M.; Mulder, M.

    2014-01-01

    This research employs ecological interface design to improve the human machine interface of an existing ground control station for the supervisory control of UAV swarms. As a case study, a general ground surveillance mission with four UAVs is envisioned. An analysis of the swarming work domain is pe

  17. Supervisory Control System Architecture for Advanced Small Modular Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Cetiner, Sacit M [ORNL; Cole, Daniel L [University of Pittsburgh; Fugate, David L [ORNL; Kisner, Roger A [ORNL; Melin, Alexander M [ORNL; Muhlheim, Michael David [ORNL; Rao, Nageswara S [ORNL; Wood, Richard Thomas [ORNL

    2013-08-01

    This technical report was generated as a product of the Supervisory Control for Multi-Modular SMR Plants project within the Instrumentation, Control and Human-Machine Interface technology area under the Advanced Small Modular Reactor (SMR) Research and Development Program of the U.S. Department of Energy. The report documents the definition of strategies, functional elements, and the structural architecture of a supervisory control system for multi-modular advanced SMR (AdvSMR) plants. This research activity advances the state-of-the art by incorporating decision making into the supervisory control system architectural layers through the introduction of a tiered-plant system approach. The report provides a brief history of hierarchical functional architectures and the current state-of-the-art, describes a reference AdvSMR to show the dependencies between systems, presents a hierarchical structure for supervisory control, indicates the importance of understanding trip setpoints, applies a new theoretic approach for comparing architectures, identifies cyber security controls that should be addressed early in system design, and describes ongoing work to develop system requirements and hardware/software configurations.

  18. Supervisory autonomous local-remote control system design: Near-term and far-term applications

    Science.gov (United States)

    Zimmerman, Wayne; Backes, Paul

    1993-01-01

    The JPL Supervisory Telerobotics Laboratory (STELER) has developed a unique local-remote robot control architecture which enables management of intermittent bus latencies and communication delays such as those expected for ground-remote operation of Space Station robotic systems via the TDRSS communication platform. At the local site, the operator updates the work site world model using stereo video feedback and a model overlay/fitting algorithm which outputs the location and orientation of the object in free space. That information is relayed to the robot User Macro Interface (UMI) to enable programming of the robot control macros. The operator can then employ either manual teleoperation, shared control, or supervised autonomous control to manipulate the object under any degree of time-delay. The remote site performs the closed loop force/torque control, task monitoring, and reflex action. This paper describes the STELER local-remote robot control system, and further describes the near-term planned Space Station applications, along with potential far-term applications such as telescience, autonomous docking, and Lunar/Mars rovers.

  19. Generalized modal analysis for closed-loop piezoelectric devices

    Science.gov (United States)

    Giraud-Audine, Christophe; Giraud, Frédéric; Amberg, Michel; Lemaire-Semail, Betty

    2015-08-01

    Stress in a piezoelectric material can be controlled by imposing an electrical field. Thanks to feedback, this electrical field can be a function of some strain-related measurement so as to confer on the piezoelectric device a closed-loop macroscopic behaviour. In this paper we address the modelling of such a system by extending the modal decomposition methods to account for the closed loop. To do so, the boundary conditions are modified to include the electrical feedback circuit, hence allowing a closed-loop modal analysis. A case study is used to illustrate the theory and to validate it. The main advantage of the method is that design issues such as the coupling factor of the device and closed-loop stability are simultaneously captured.

  20. Closed-loop, open-source electrophysiology

    Directory of Open Access Journals (Sweden)

    John D Rolston

    2010-09-01

    Full Text Available Multiple extracellular microelectrodes (multi-electrode arrays, or MEAs effectively record rapidly varying neural signals, and can also be used for electrical stimulation. Multi-electrode recording can serve as artificial output (efferents from a neural system, while complex spatially and temporally targeted stimulation can serve as artificial input (afferents to the neuronal network. Multi-unit or local field potential recordings can not only be used to control real world artifacts, such as prostheses, computers or robots, but can also trigger or alter subsequent stimulation. Real-time feedback stimulation may serve to modulate or normalize aberrant neural activity, to induce plasticity, or to serve as artificial sensory input. Despite promising closed-loop applications, commercial electrophysiology systems do not yet take advantage of the bidirectional capabilities of multi-electrodes, especially for use in freely moving animals. We addressed this lack of tools for closing the loop with NeuroRighter, an open-source system including recording hardware, stimulation hardware, and control software with a graphical user interface. The integrated system is capable of multi-electrode recording and simultaneous patterned microstimulation triggered by recordings with minimal stimulation artifact. The potential applications of closed-loop systems as research tools and clinical treatments are broad; we provide one example where epileptic activity recorded by a multi-electrode probe is used to trigger targeted stimulation, via that probe, to freely moving rodents.

  1. Optimal Discrete Event Supervisory Control of Aircraft Gas Turbine Engines

    Science.gov (United States)

    Litt, Jonathan (Technical Monitor); Ray, Asok

    2004-01-01

    This report presents an application of the recently developed theory of optimal Discrete Event Supervisory (DES) control that is based on a signed real measure of regular languages. The DES control techniques are validated on an aircraft gas turbine engine simulation test bed. The test bed is implemented on a networked computer system in which two computers operate in the client-server mode. Several DES controllers have been tested for engine performance and reliability.

  2. 采用双环控制并联交错模拟PFC的研究%Research on Paralleled Interleaved Analog PFC Using Double Closed Loop Control

    Institute of Scientific and Technical Information of China (English)

    江剑峰; 曹中圣; 杨喜军; 雷淮刚

    2011-01-01

    对于较大输出功率的单相有源功率因数校正器(PFC),其功率电路采用多级并联交错能减少电感容量,简化电感设计,降低网侧纹波电流,从而提高效率和功率密度.这里在单级PFC电压与电流双闭环控制原理和电感电流合成原理基础上,分析了两级并联交错PFC中IGBT占空比与纹波电流的关系,并进行了仿真分析.基于模拟控制器UCC28070设计并实现了额定输出功率为3 kW的两级交错PFC.结果表明,采用双闭环控制、电流合成原理实现高性能和低成本的并联交错PFC是可行的,具有很好的纹波电流抑制效果且性价比高.%In application of large output power single-phase active power factor corrector(PFC),the multi-stage paralleled power circuit can reduce inductance,simplify inductor design and reduce the main ripple current,so as to improve the efficiency and power density.This paper describes the voltage and current closed loop control principle of a single stage PFC and inductor current synthesis, analyzes relationship between duty cycle and ripple current in twostage interleaved paralleled PFC and then makes a comprehensive simulation analysis.Finally,a two-stage parallele interleaved PFC circuit is designed and implemented based on analog control chip UCC28070.The result shows that employing double closed control loop and current synthesis theory to realize high performance and low cost interleaved paralleled PFC is feasible while having a good ripple suppression effect and cost effective.

  3. 连续搅拌反应釜过程的闭环增益成形PID控制器设计%PID controller design of closed-loop gain shaping in CSTR process

    Institute of Scientific and Technical Information of China (English)

    李述清; 张胜修; 张煜东; 胡波

    2011-01-01

    针对连续搅拌反应釜(CSTR)系统控制问题,设计了一种基于闭环增益成形算法的PID控制器,以提高PID控制器设计的简洁性和鲁棒性.首先假设期望闭环回路传递函数有一阶形式,同时将受控对象的一阶传递函数和PID控制器构成实际闭环回路传递函数.然后,比较期望闭环回路传递函数和实际闭环回路传递函数,即可确定PJD参数.最后,以某CSTR系统为例,利用该方法设计了PID控制器,并通过仿真结果比较,检验了该方法所得PID控制器的良好鲁棒稳定性和动态品质.%To solve the control problem of Continuous-Stirred-Tank-Reactor (CSTR), a straightforward PID design based on closed-loop gain shaping algorithm was proposed in this paper to enhance the simplicity and robustness of PID controller.Firstly, the transfer function of the anticipant closed-loop control system was assumed as a 1st order system, and the actual closed-loop transfer function was consisted of the 1 st order transfer function and PID controller.Then, the anticipated closedloop transfer function was compared with that of the actual closed-loop, thus the PID controller coefficients could be calculated.Finally, the robust PID controller was designed in a CSTR system.The simulation results demonstrate that the PID controller has better robust stability and dynamic performance.

  4. Supervisory control experience on large industrial flotation columns

    Energy Technology Data Exchange (ETDEWEB)

    Bergh, L.G.; Yianatos, J.B. [Chemical Engineering Dept., Santa Maria Univ., Valparaiso (Chile)

    1999-07-01

    The industrial experience in developing supervisory control systems for flotation columns is discussed. Procedures for diagnosis of instrumentation calibration and maintenance, prior to the implementation of control schemes on top of the distributed control system, are discussed. This strategy contributes to better control by using data validation, by opportunely detecting measurement and operating problems and by consistently coordinating control actions in managing the local control loop setpoints. Examples based on the control systems developed for El Teniente and Salvador concentrators, from Codelco-Chile, are used to illustrate how to relax some of the constraints on the controllability of the process. (author)

  5. International Symposium on Monitoring Behavior and Supervisory Control

    CERN Document Server

    Johannsen, Gunnar

    1976-01-01

    This book includes all papers presented at the International Symposium on Monitoring Behavior and Supervisory Control held at Berchtesgaden, Federal Republic of Germany, March 8-12, 1976. The Symposium was sponsored by the Scientific Affairs Division of the North Atlantic Treaty Organization, Brussels, and the government of the Federal Republic of Germany, Bonn. We believe the book constitutes an important and timely status report on monitoring behavior and supervisory control by human operators of complex man-machine systems in which the computer is sharing key functions with the man. These systems include aircraft and other vehicles, nuclear and more conventional power plants, and processes for the manu­ facture of chemicals, petroleum, and discrete parts. By "monitoring" we mean the systematic observation by a human operator of mul tiple sources of information, e. g. , ranging from integrated display consoles to disparate "live situations". The monitor's purpose is to determine whether operations are norm...

  6. UUV航迹跟踪的双闭环Terminal滑模控制%A double closed-loop Terminal sliding mode controller for the trajectory tracking of UUV

    Institute of Scientific and Technical Information of China (English)

    严浙平; 段海璞

    2015-01-01

    This paper proposes a double closed-loop Terminal sliding mode control methodology with mod⁃el parameters uncertainty for the trajectory tracking of fully actuated unmanned underwater vehicles under external current disturbances. Firstly,to prevent the problem of large overshoot during the position and ori⁃entation control of UUV,the position and orientation negative feedback is introduced,and the reference velocities are defined in the outer loop,which serves as the virtual control law in stabilizing the tracking er⁃rors of position and orientation. With respect to the inner loop,the virtual control law is taken as the tracked target. Considering the undesirable chattering effects of conventional sliding mode control meth⁃ods,a non-singular Terminal sliding mode controller is adopted,which eliminates the chattering effects as well as ensures the velocities' tracking error on the sliding surface to converge to a steady state within finite time. Finally,the stability of the proposed system is analytically proven using the Lyapunov stability theory, and the simulation results show that the control scheme guarantees precise spatial trajectory tracking of UUV.%针对模型参数不确定及存在外界海流扰动情况下全驱型无人水下航行器(UUV)的航迹跟踪问题,提出了一种双闭环Terminal滑模控制方法。首先,为了防止UUV位置和姿态跟踪控制出现超调量过大的问题,在外环中引入位置和姿态负反馈,设计了UUV的参考速度作为镇定UUV位置和姿态跟踪误差的虚拟控制律。然后,在内环中将虚拟控制律作为跟踪目标。考虑到传统滑模控制会出现“抖振”现象,采用Terminal滑模控制方法,在消除“抖振”的同时,使滑模面上的速度跟踪误差在有限时间内收敛到稳态。最后,运用Lyapunov稳定性理论证明了该双闭环Terminal滑模控制系统的稳定性。仿真结果表明,该控制方法能够实现UUV对空间航迹的精确跟踪。

  7. Design Principles for Closed Loop Supply Chains

    NARCIS (Netherlands)

    H.R. Krikke (Harold); C.P. Pappis (Costas); G.T. Tsoulfas; J.M. Bloemhof-Ruwaard (Jacqueline)

    2001-01-01

    textabstractIn this paper we study design principles for closed loop supply chains. Closed loop supply chains aim at closing material flows thereby limiting emission and residual waste, but also providing customer service at low cost. We study 'traditional' and 'new' design principles known in the l

  8. External Tank CIL Closed Loop Verification System

    Science.gov (United States)

    Hartley, Eugene A., Jr.

    2005-01-01

    Lockheed Martin was requested to develop a closed loop CIL system following the Challenger accident. The system that was developed has proven to be very robust with minimal problems since implementation, having zero escapes in the last 7 years (27 External Tanks). We are currently investigating expansion of the CIL Closed Loop system to include "MI" CILs.

  9. Design Principles for Closed Loop Supply Chains

    NARCIS (Netherlands)

    H.R. Krikke (Harold); C.P. Pappis (Costas); G.T. Tsoulfas; J.M. Bloemhof-Ruwaard (Jacqueline)

    2001-01-01

    textabstractIn this paper we study design principles for closed loop supply chains. Closed loop supply chains aim at closing material flows thereby limiting emission and residual waste, but also providing customer service at low cost. We study 'traditional' and 'new' design principles known in the

  10. Supervisory Control of Fuzzy Discrete Event Systems Based on Agent

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    FDES (fuzzy discrete event systems) can effectively represent a kind of complicated systems involving deterministic uncertainties and vagueness as well as human subjective observation and judgement from the view of discrete events, here the information system is divided into some independent intelligent entitative Agents. The concept of information processing state based on Agents was proposed. The processing state of Agent can be judged by some assistant observation parameters about the Agent and its environment around, and the transition among these states can be represented by FDES based on rules. In order to ensure the harmony of the Agents for information processing, its upstream and downstream buffers are considered in the modeling of the Agent system,and the supervisory controller based on FDES is constructed. The processing state of Agent can be adjusted by the supervisory controller to improve the stability of the system and the efficiency of resource utilization during the process according to the control policies. The result of its application was provided to illustrate the validity of the supervisory adjustment.

  11. Design of an AC Contactor Control Module Started by Closed Loop Chopping%闭环斩波起动交流接触器控制模块设计

    Institute of Scientific and Technical Information of China (English)

    汤龙飞; 许志红

    2013-01-01

    将斩波控制技术引入到交流接触器智能控制中,设计一种闭环斩波起动的交流接触器智能控制模块,使交流接触器具有闭环直流起动、闭环直流保持、抗电压跌落等功能,进一步增强其工作可靠性,满足了企业对大容量抗电压跌落交流接触器的需求:起动闭环采用线圈电流反馈,可以快速调节接触器线圈电流,便于优化控制;保持闭环可以根据接触器线圈电阻自动进行保持电压闭环与保持电流闭环的快速切换,拓展模块的适用范围;对模块工作原理进行瞬态及交流仿真,分析线圈尖峰电流的抑制方法,设计控制回路补偿网络,并结合相关实验验证设计的有效性.%In this paper,the chopper control technology was introduced into the intelligent control of the AC contactor and an AC contactor control module starting with closed loop chopping has been designed.With this control module,the AC contactor has the functions of closed-loop DC starting,closed-loop DC keeping and anti-voltage sag.The proposed control module not only satisfies enterprises for high-capacity AC contactors with the function of anti-voltage sag but also makes it more robust.Starting closed loop uses coil current as feedback and allows the module to adjust the contactor coil current quickly.The optimization of starting process can be realized easier.The keeping closed loop can use coil voltage or coil current as feedback,it depends on the coil resistance.According to the control principle,the transient analysis and the AC analysis have been made,this paper also analyzed the suppression measures of current spike and designed the compensation network.The experimental results verify the validity of the control module.

  12. Software Implementation of Hydraulic Cylinder Position PID Closed Loop Control in Proportional Valve Control System Using PLC%比例阀控液压缸位置PID闭环控制的PLC软件实现

    Institute of Scientific and Technical Information of China (English)

    李艳杰; 崔天宇; 王海; 马鹤; 苗鑫超

    2013-01-01

    A software implementation method of hydraulic cylinder position PID closed loop control in proportional valve control system using Siemens S7-200 was proposed.The block diagram and ladder program was given,and experimental studies in Festo TP701 proportional hydraulic test bed was done.Experimental studies have shown that the proportion of open-loop control system,using software methods can achieve the closed-loop control of position and other physical quantities,to control the performance of precision and anti-jamming capability to meet the demand of general industrial applications.%提出一种利用西门子S7-200实现比例阀控制系统中液压缸位置PID闭环控制的软件实现方法,给出了程序框图及梯形图程序,并在Festo TP701比例液压试验台上进行实验研究.实验研究表明,开环比例控制系统中,利用软件的方法可实现位置等物理量的闭环控制,控制精度和抗干扰能力等性能可满足一般工业应用的需求.

  13. Supervisory Fertigation System Using Interactive Graphical Supervisory Control and Data Acquisition System

    Directory of Open Access Journals (Sweden)

    Fadhli Dzul Mohd Fauzi

    2016-08-01

    Full Text Available Mostly, farmers spent most of their time to supervise wide area of planting and it exhausted. The objective of this project is to develop an advanced monitoring system. In this paper, an attempt has been made by using Interactive Graphical Supervisory Control and Data Acquisition (SCADA System (IGSS software and Programmable Logic Controller (PLC which integrate with a fertigation system to solve the problem. The SCADA monitoring system is built based on Graphical User Interface (GUI by using IGSS software. As a result, the project is able to control and supervise the fertigation system prototype process smoothly. The project operates in two conditions which indicate the water level in tank and detect the humidity in the soil, thus the user can supervise their plant without perforce to the site of planting area. It can support two ways communication system, which is the main uniqueness and the special features of the project compared to today’s technology. The project can be improved by using the analog type device, where user can see a real time data on screen through supervised mode. The idea of making current project to online is also one of the improvements that can be made.

  14. Pareto Efficient Policy for Supervisory Power Management Control

    Energy Technology Data Exchange (ETDEWEB)

    Malikopoulos, Andreas [ORNL

    2015-01-01

    n this paper we address the problem of online optimization of the supervisory power management control in parallel hybrid electric vehicles (HEVs). We model HEV opera- tion as a controlled Markov chain using the long-run expected average cost per unit time criterion, and we show that the control policy yielding the Pareto optimal solution minimizes the average cost criterion online. The effectiveness of the proposed solution is validated through simulation and compared to the solution derived with dynamic programming using the average cost criterion.

  15. A Survey of Research in Supervisory Control and Data Acquisition (SCADA)

    Science.gov (United States)

    2014-09-01

    Army Research Laboratory A Survey of Research in Supervisory Control and Data Acquisition ( SCADA ) by Sidney C Smith ARL-TR-7093 September 2014...Aberdeen Proving Ground, MD 21005-5067 ARL-TR-7093 September 2014 A Survey of Research in Supervisory Control and Data Acquisition ( SCADA ) Sidney C...A Survey of Research in Supervisory Control and Data Acquisition ( SCADA ) ARL-TR-7093 Approved for public release; distribution is unlimited. August

  16. 具有外包选择的闭环供应链切换模型及其鲁棒控制%Closed-loop supply chain switching model with outsourcing selection and its robust control

    Institute of Scientific and Technical Information of China (English)

    葛汝刚; 黄小原

    2009-01-01

    建立了一类具有外包选择的闭环供应链切换系统模型,包括自行同收再制造和外包两个子系统,以及基于成本的切换信号向量.为了抑制闭环供应链系统在自行回收再制造和外包切换过程中产牛的运作波动和牛鞭效应,应用鲁棒控制理论方法给出了供应链切换系统的控制律,分析了闭环供应链切换系统运作过程,并进行了控制律计算和系统仿真,验证了鲁棒控制律的有效性.%A type of closed-loop supply chain switching models with outsourcing selection were proposed, which were consisted of remanufacturing self-recall and outsourcing subsystems as well as a cost-based switching signal vector. To inhibit operation fluctuation caused by inventory switching processes in the supply chain systems and bullwhip effect induced by uncertain parameters and external demand, the control law of the closed-loop supply chain switching system was presented by using robust control theory and method. The operation process of closed-loop supply chain switching system was analyzed. Moreover, computation of the control law and a system simulation were performed. Results verified the effectiveness of the control law.

  17. Simulation of Open Loop and Closed Loop Control of Hydraulic Thrust System of Shield Machine%盾构推进液压系统的开环与闭环仿真控制

    Institute of Scientific and Technical Information of China (English)

    徐尤南; 邓文强

    2014-01-01

    In this paper ,the hydraulic cylinder of shield thrust system is controlled by partition ,to reduce the complexity of the system and ensure the accuracy of control . The simulation analysis on the thrust hydraulic system is carried out by hydraulic simulation software AMESim ,which is controlled by open loop and closed loop respectively .The results show that :compared with open loop control , the pressure-flow closed loop control can effectively reduce the pressure and flow fluctuations , control the pressure and velocity in real time ,the control effect is better .%对盾构推进系统的液压缸采用分区控制,以达到降低系统复杂程度、保证控制精度的目的。用液压仿真软件AM ESim对推进液压系统进行仿真模拟分析,采用开环与闭环两种方式。仿真结果表明,压力流量闭环控制较开环控制可以有效减少压力和流量的波动,实时控制推进压力和推进速度,控制效果较好。

  18. Estimation of Parametric Fault in Closed-loop Systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2015-01-01

    The aim of this paper is to present a method for estimation of parametric faults in closed-loop systems. The key technology applied in this paper is coprime factorization of both the dynamic system as well as the feedback controller. Using the Youla-Jabr-Bongiorno-Kucera (YJBK) parameterization...

  19. Closed loop identification using a modified Hansen scheme

    DEFF Research Database (Denmark)

    Sekunda, André Krabdrup; Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2015-01-01

    in closed loop [4], and one such method is the Hansen scheme [1]. Standard identification using Hansen scheme demands generating the identification signals indirectly. In this paper it is instead proposed to use the relationship between the Youla factorization of a plant and its stabilizing controller...

  20. Variable Step Closed Loop Power Control with Space Diversity for Low Elevation Angle High Altitude Platforms Communication Channel [Langkah Variabel Kontrol Daya Loop Tertutup dengan Keragaman Ruang untuk Sudut Elevasi Rendah pada Kanal Komunikasi HAPs

    Directory of Open Access Journals (Sweden)

    Iskandar Iskandar

    2016-07-01

    Full Text Available This paper proposes variable step closed loop power control algorithm combined with space diversity to improve the performance of High Altitude Platforms (HAPs communication at low elevation angle using Code Division Multiple Access (CDMA. In this contribution, we first develop HAPs channel model which is derived from experimental measurement. From our experiment, we found HAPs channel characteristic can be modeled as a Ricean distribution because the presence of line of sight path. Different elevation angle resulting different K factor value.  This value is then used in Signal to Interference Ratio (SIR based closed loop power control evaluation. The variable step algorithm is simulated under various elevation angles with different speed of mobile user. The performance is presented in terms of user elevation angle, user speed, step size and space diversity order. We found that the performance of variable step closed-loop power control less effective at low elevation angle. However our simulation shows that space diversity is able to improve the performance of closed loop power control for HAPs channel at low elevation angle.*****Kajian ini mengusulkan suatu algoritma kontrol daya langkah variabel loop tertutup dikombinasikan dengan keragaman ruang untuk meningkatkan kinerja komunikasi High Altitude Platforms(HAPs pada sudut elevasi rendah menggunakan Code Division Multiple Access (CDMA. Kami berkontribusi untuk mengembangkan model kanal HAPs yang berasal dari pengukuran eksperimental sebelumnya. Dari percobaan tersebut, kami menemukan karakteristik kanal HAPs yang dapat dimodelkan sebagai distribusi Ricean karena kehadiran jalur tanpa penghalang. Eksperimen menunjukkan bahwa perbedaan sudut elevasi menghasilkan perbedaan nilai factor K. Nilai ini kemudian digunakan dalam Signal to Interference Ratio (SIR berbasiskan evaluasi kontrol daya loop tertutup. Algoritma langkah variabel disimulasikan dibawah sudut elevasi yang berbeda dengan kecepatan

  1. Stepping Motor Closed-loop Control Circuit Based on THB6064H%基于THB6064H的步进电机闭环控制电路设计

    Institute of Scientific and Technical Information of China (English)

    刘立国; 孙杰; 刘淑燕; 田虹飞; 安红娟; 季春辉

    2011-01-01

    Circuit design programs of stepping motor closed-loop control system are proposed based on high current stepping motor driver chip THB6064H. The entire control system includes driver circuit based on THB6064H, control circuit based on microcontroller, and feedback link based on the incremental rotary encoder. Integrating the controller and driver achieves the closed-loop control of the stepper motor, and improves the control accuracy greatly.%提出基于大电流步进电机驱动芯片THB6064H的步进电机闭环控制系统的电路设计方案.整个控制系统主要包括基于THB6064H的驱动电路部分、基于单片机的控制电路部分和基于增量式旋转编码器的反馈环节.将控制器与驱动器做成一体化,实现对步进电机的闭环控制,使控制精度大大提高.

  2. Performance of a closed-loop feedback computer-controlled infusion system for maintaining blood pressure during spinal anaesthesia for caesarean section: a randomized controlled comparison of norepinephrine versus phenylephrine.

    Science.gov (United States)

    Ngan Kee, Warwick D; Khaw, Kim S; Tam, Yuk-Ho; Ng, Floria F; Lee, Shara W

    2017-06-01

    Closed-loop feedback computer-controlled vasopressor infusion has been previously described for maintaining blood pressure during spinal anaesthesia for caesarean section but there are limited data available comparing the relative performance of different vasopressors. The aim of this study was to compare the performance of norepinephrine versus phenylephrine in this system. Data from a randomized, two-arm parallel group, double-blinded controlled trial were reanalyzed. 104 patients scheduled for elective caesarean section under spinal anaesthesia were randomized to receive computer-controlled closed-loop infusion of either norepinephrine 5 µg ml(-1) or phenylephrine 100 µg ml(-1). This was started immediately after induction of spinal anaesthesia and used an algorithm designed to maintain systolic blood pressure near baseline until fetal delivery. Performance error calculations were used to compare the performance of the two vasopressors. The primary outcome was defined as the median absolute performance error. Median performance error, wobble and divergence were also compared. Median absolute performance error was smaller in the norepinephrine group (median 3.79 [interquartile range 2.82-5.17] %) versus the phenylephrine group (4.70 [3.23-6.57] %, P = 0.028). In addition, median performance error was smaller (0.75 [-1.56-2.52] %) versus 2.61 [0.83-4.57] %, P = 0.002) and wobble was smaller (2.85 [2.07-5.17] %) versus 3.39 [2.62-4.90] %, P = 0.028) in the norepinephrine group versus the phenylephrine group. Divergence was similar between groups. The precision of the control of blood pressure was greater with norepinephrine compared with phenylephrine at the drug concentrations used.

  3. CCD在数控机床闭环控制系统中的应用%Application of CCD in Close-loop Control System of NC Machine Tools

    Institute of Scientific and Technical Information of China (English)

    魏宏波; 王玮

    2016-01-01

    High precision measurement is the prerequisite for the realization of high precision control.Based on the analysis of ex-isting control system of NC machine tools, in order to improve the measurement precision and reduce the system cost, the traditional grating was combined with CCD to accomplish the closed-loop control of CNC.The principle and method of displacement measurement system were introduced.It provides a new idea for the closed-loop control of CNC machine tools.%高精度测量是实现高精度控制的前提。通过对现有数控机床控制系统的分析,为了提高测量精度、降低系统成本,将传统光栅与CCD结合起来完成数控机床闭环系统的控制,介绍了系统位移测量原理及方法,为数控机床闭环控制提供新思路。

  4. Simulation of the Open-loop and Closed-loop Control System Based on AMESim%基于AMESim压力开环与闭环控制系统研究

    Institute of Scientific and Technical Information of China (English)

    李新觉; 刘志刚; 余纯

    2014-01-01

    Based on the laboratory bench work of existing hydraulic schematics, AMESim models of the open-loop pressure control system and closed-loop pressure control system are established, then the results of simulation are an-alyzed in this paper. It's found that the closed-loop control system can be more stable than the open-loop control sys-tem. And it's proved that simulation results are effective by two comparative experiments.%基于实验室现有液压实验台工作原理图,通过分别建立压力开环控制和压力闭环控制系统的AMESim模型,以及所进行的仿真和分析,得出了闭环控制的系统能比开环控制的系统得到稳定精确的加载压力的结论。通过两种系统的控制对比实验,验证了仿真的结论。

  5. On closed loop transient response system identification

    Directory of Open Access Journals (Sweden)

    Christer Dalen

    2016-10-01

    Full Text Available Some methods for transient closed loop step response system identification presented in the literature are reviewed. Interestingly some errors in a method published in the early 80's where propagated into a recently published method. These methods are reviewed and some improved methods are suggested and presented. The methods are compared against each other on some closed loop system examples, e.g. a well pipeline-riser severe-slugging flow regime example, using Monte Carlo simulations for comparison of the methods.

  6. Dynamics and control designs for internal thermally coupled distillation columns with different purities, Part 2: close loop analysis and control designs

    Institute of Scientific and Technical Information of China (English)

    ZHU Yu; LIU Xinggao; CHU Jian

    2006-01-01

    Interaction between overhead and bottom composition loops of internal thermally coupled distillation columns (ITCDIC)with four purities are analyzed by means of relative gain array, condition number and singular value decomposition, which indicates that high- and very high-purity ITCDIC are well coupled and ill-conditioned systems with severe gain directionality problem. Based on the above dynamic behaviors, suitable control schemes of four different purity systems are studied. In low-purity system, internal model control (IMC) is better than decentralized proportion integral differential (D-PID) control in terms of response speed and remaining errors. Inmoderate-purity system, D-PID can effectively reject large load disturbances while IMC fails due to severe mismatch between model and plant. In high-purity system, neither IMC nor D-PID can provide satisfactory control so that modified IMC and multivariable PID with singular value decomposition scheme are presented respectively to improve control performances. Finally, in very high-purity systems, the combined feed-forward and feedback control scheme is proposed to deal with extremely sluggish responses to load disturbances.

  7. Simulating Observer in Supervisory Control- A Domain-based Method

    Directory of Open Access Journals (Sweden)

    Seyed Morteza Babamir

    2012-06-01

    Full Text Available An Observer in the supervisory control observes responses of a discrete system to events of its environment and reports an unsafe/ critical situation if the response is undesired. An undesired response from the system indicates the system response does not adhere to users’ requirements of the system. Therefore, events and conditions of the system environment and user’s requirements of the system are basic elements to observer in determining correctness of the system response. However, the noteworthy matter is that the events, conditions, and requirements should be defined based on data of problem domain because discrete data are primary ingredients of the environment in discrete systems and they are used by system users as a gauge to express their requirements playing a vital role in safety-critical systems, such as medical and avionic ones. A large quantity of methods has already been proposed to model and simulate supervisory control of discrete systems however, a systematic method relying on data of problem domain is missing. Having extracted events, conditions, and user’s requirements from data of problem domain, a Petri-Net automaton is constructed for identifying violation of user’s requirements. The net constitutes the core of the observer and it is used to identify undesired responses of the system. In the third step, run-time simulation of the observer is suggested using multithreading mechanism and Task Parallel Library (TPL technology of Microsoft. Finally, a case study of a discrete concurrent system is proposed, the method applied and simulation results are analyzed based on the system implementation on a multi-core computer.

  8. Application of an automation system and a supervisory control and data acquisition (SCADA) system for the optimal operation of a membrane adsorption hybrid system.

    Science.gov (United States)

    Smith, P J; Vigneswaran, S; Ngo, H H; Nguyen, H T; Ben-Aim, R

    2006-01-01

    The application of automation and supervisory control and data acquisition (SCADA) systems to municipal water and wastewater treatment plants is rapidly increasing. However, the application of these systems is less frequent in the research and development phases of emerging treatment technologies used in these industries. This study involved the implementation of automation and a SCADA system to the submerged membrane adsorption hybrid system for use in a semi-pilot scale research project. An incremental approach was used in the development of the automation and SCADA systems, leading to the development of two new control systems. The first system developed involved closed loop control of the backwash initiation, based upon a pressure increase, leading to productivity improvements as the backwash is only activated when required, not at a fixed time. This system resulted in a 40% reduction in the number of backwashes required and also enabled optimised operations under unsteady concentrations of wastewater. The second system developed involved closed loop control of the backwash duration, whereby the backwash was terminated when the pressure reached a steady state. This system resulted in a reduction of the duration of the backwash of up to 25% and enabled optimised operations as the foulant build-up within the reactor increased.

  9. 双闭环控制的三电平逆变电路SimuIink仿真实验%Simulink simulation experiment of three-level inverter circuit with double closed-loop control

    Institute of Scientific and Technical Information of China (English)

    李文娟; 王超; 冯杰; 周美兰; 高晗璎

    2016-01-01

    Aiming at the problems of open-loop three-level inverter circuit poor stability,slow dynamic response,weak carrying capacity,the voltage-current double closed-loop control scheme is proposed.The diode-clamped three-level inverter circuit is regarded as the controlled object.The math model of inverter circuit on two-phase synchronous rotating coordinates is established.The designs of current loop and voltage loop are carried out respectively.The current loop includes the inductance current feed-forward decoupling based on dq axis and the design of corresponding PI parameters. Voltage loop includes the capacitance voltage feed-forward decoupling based on dq axis and the design of controller parameters.The simulation model of three-level inverter circuit with double closed-loop control is built in the Simulink simulation platform.The waveforms of the output voltage and current of the double closed-loop control under the condition mutation loads are analyzed.%针对开环的三电平逆变电路稳定性差、动态响应慢、带载能力弱等问题,提出了电压、电流双闭环的控制方案。选取二极管箝位式三电平逆变电路作为被控对象,建立其在同步旋转坐标系下的数学模型,分别对电流环和电压环进行设计。电流环包括基于 d 、q 轴的电感电流前馈解耦及 PI 参数的设计;电压环包括基于 d 、q 轴的电容电压前馈解耦及控制器参数的设计。在 Simulink 仿真实验平台上,建立了双闭环控制的三电平逆变电路的仿真模型,分析了突变负载情况下双闭环控制的逆变输出电压和电流的仿真波形。

  10. Closed loop models for analyzing engineering requirements for simulators

    Science.gov (United States)

    Baron, S.; Muralidharan, R.; Kleinman, D.

    1980-01-01

    A closed loop analytic model, incorporating a model for the human pilot, (namely, the optimal control model) that would allow certain simulation design tradeoffs to be evaluated quantitatively was developed. This model was applied to a realistic flight control problem. The resulting model is used to analyze both overall simulation effects and the effects of individual elements. The results show that, as compared to an ideal continuous simulation, the discrete simulation can result in significant performance and/or workload penalties.

  11. Control Closed-loop Micro-vibration Modeling and Simulation Based on Flexible Satellite Model%基于全柔性卫星模型的控制闭环微振动建模与仿真

    Institute of Scientific and Technical Information of China (English)

    葛东明; 邹元杰; 张志娟; 王泽宇

    2012-01-01

    针对高分辨率遥感卫星的微振动分析,给出了一种整星结构运动与姿态控制系统闭环的建模方法。该方法基于全柔性卫星模型,通过考虑姿态控制系统的控制律和硬件特性建立集成仿真模型,进而预测卫星在轨微振动的微振动响应和结构传递特性。文章以某遥感卫星为例,分别从开环和闭环角度给出了微振动的微振动响应和结构传递特性的结果,并进行对比分析。分析结果表明:提出的方法能够实现全柔性卫星模型的控制闭环微振动分析,相对于传统的开环仿真更接近在轨实际情况。%For the micro-vibration analysis of high resolution remote sensing satellite, a closed- loop modeling method connecting satellite structure and attitude control is presented. By building integrated simulation model based on the flexible satellite model as well as the control law and hardware properties of the attitude control system, the method can be used to predict the in-orbit response of micro-vibration signals and transfer characteristics of the satellite structure. For the example of a remote sensing satellite, the results of the time response and the structure transfer characteristics are presented and analyzed comparably, from the viewpoint of open-loop and closed loop respectively. The analysis results show that the presented method can realize the con- trol closed-loop micro-vibration analysis of the flexible satellite model, and is closer to the real case in orbit compared with the traditional open-loop simulation.

  12. Constructing the model of closed-loop control system based on function packet sets%基于函数 P-集合的闭环控制系统构建

    Institute of Scientific and Technical Information of China (English)

    杜英玲; 王继梅; 苏燕; 李金霞; 邵长波

    2015-01-01

    To recognize the disturbance source existing in the closed-loop control system,and to eliminate the disturb-ance law hidden in the system,Inferring and minding further about the dynamic characteristic and law characteristic of function P-sets(function packet sets),the concepts of -F-shrinking law,F-extending law,(-F,F)-two directions law pair,-F-shrinking law clusters,F-extending law clusters,and (-F,F)-two directions law clusters were proposed,and definitions of shrinking degree,extending degree,shrinking degree set and extending degree set were given,which were used to identify the disturbance law existing in closed-loop control system.The disturbance recognition rule of (-F,F)-two directions law was presented,and the model of closed-loop control system basing on function P-sets was construc-ted.After experimental verification,it could be found that the given method was effective,while it provided a new the-oretical tool for the recognition and cancellation of disturbance law in the actual production and living.%为了准确识别闭环控制系统中存在的扰动源并消除其隐藏在系统中的干扰规律,在对函数 P-集合(function packet sets)的动态特性和规律特性进行进一步的推理挖掘的基础上,提出了-F-萎缩规律、F-扩张规律、(-F,F)-双向规律对及-F-萎缩规律簇、F-扩张规律簇、(-F,F)-双向规律簇的概念,给出了萎缩度、扩张度及萎缩度集合、扩张度集合的定义,并将其运用到闭环控制系统干扰规律的识别过程中,提出了(-F,F)-双向规律扰动识别准则,构建了基于函数 P-集合的闭环控制系统模型。经试验验证,给出的方法是有效的,同时为实际生产生活中干扰规律的识别与抵消提供了一个新的工具。

  13. SUPERVISORY CONTROL FOR PEAK REDUCTION IN COMMERCIAL BUILDINGS WHILE MAINTAINING COMFORT

    Energy Technology Data Exchange (ETDEWEB)

    Nutaro, James J [ORNL; Olama, Mohammed M [ORNL; Kuruganti, Teja [ORNL

    2016-01-01

    This paper describes a supervisory control strategy for limiting peak power demand by small and medium commercial buildings while still meeting the business needs of the occupants. This control strategy has two features that make it relevant to new and existing buildings. First, it is designed to operate with building equipment, such as air conditioning and refrigeration systems, as they are presently installed in most small and medium commercial buildings. Because of this, the supervisory control could be realized as a software-only retrofit to existing building management systems. Second, the proposed control acts as a supervisory management layer over existing control systems, rather than replacing them outright. The primary idea of this approach is that the controls for individual building equipment request energy resources for a control action and the supervisory control examines the requests and decides which control actions to allow while satisfying a limit on peak power demand.

  14. 具有有界控制输入的线性时变系统闭环稳定性%Closed-loop stability of linear time-variant systems with bounded control input

    Institute of Scientific and Technical Information of China (English)

    张桂香

    2000-01-01

    In this paper,on the basis of the Lyapunov theorem,some criteria to judge the closed-loop asymptotic stability of state feedback control systems with bounded control input for linear time-variant system is proposed.The secriteria ar esimple and less conservative.%对于线性时变系统,本文基于李雅普诺夫定理,给出了具有有界控制输入的状态反馈控制系统的闭环渐近稳定性判据。这些判据具有简单的形式和较少的保守性。

  15. Optimization of Fuzzy Logic Controller for Supervisory Power System Stabilizers

    Directory of Open Access Journals (Sweden)

    Y. A. Al-Turki

    2012-01-01

    Full Text Available This paper presents a powerful supervisory power system stabilizer (PSS using an adaptive fuzzy logic controller driven by an adaptive fuzzy set (AFS. The system under study consists of two synchronous generators, each fitted with a PSS, which are connected via double transmission lines. Different types of PSS-controller techniques are considered. The proposed genetic adaptive fuzzy logic controller (GAFLC-PSS, using 25 rules, is compared with a static fuzzy logic controller (SFLC driven by a fixed fuzzy set (FFS which has 49 rules. Both fuzzy logic controller (FLC algorithms utilize the speed error and its rate of change as an input vector. The adaptive FLC algorithm uses a genetic algorithmto tune the parameters of the fuzzy set of each PSS. The FLC’s are simulated and tested when the system is subjected to different disturbances under a wide range of operating points. The proposed GAFLC using AFS reduced the computational time of the FLC, where the number of rules is reduced from 49 to 25 rules. In addition, the proposed adaptive FLC driven by a genetic algorithm also reduced the complexity of the fuzzy model, while achieving a good dynamic response of the system under study.

  16. Design of Closed-loop Control System for Electronic Throttle Valve Based on LabVIEW%基于LabVIEW的电子节气门开度闭环控制系统设计

    Institute of Scientific and Technical Information of China (English)

    蒋艳; 钱伟康; 倪元鸿

    2012-01-01

    设计了基于LabVIEW 2010平台实现对汽车电子节气门蝶阀开度的闭环控制系统.系统选用NI的高速M系列USB-6251数据采集板卡采集从节气门位置传感器反馈的电压信号,且输出两路互补PWM信号控制节气门体中的直流电机.结合PID积分分离控制算法,即当节气门蝶阀开度变化较小时采用PID算法,当角度变化较大时采用PD算法.实验证明系统编程简单,人机交互方便,开发周期短,闭环控制效果良好,具有实际的应用价值.%The paper designs the closed-loop control system for automotive electronic throttle valve opening which is based on Lab VIEW 2010 platform. System uses NI high-speed M-Series USB-6251 data acquisition board to collect feedback voltage signal from the throttle position sensor and then outputs two complementary PWM signals to control DC motor which is in throttle body. System chooses PID control algorithm with integral separation, that is to say, when the throttle valve opening change is small,system uses PID algorithm, otherwise uses PD algorithm. Experiments show that system has the advantages of simple programming, convenient human-computer interaction, short development cycles and good closed-loop control, so this research has practical value in real life.

  17. Closed-Loop Signal Shaping Attitude Maneuvering Control for Flexible Spacecraft Subject to Actuator Saturation%控制受限柔性航天器姿态机动内闭环成形控制

    Institute of Scientific and Technical Information of China (English)

    孔宪仁; 杨正贤; 董晓光; 廖俊

    2011-01-01

    The problem of attitude maneuvering control of flexible spacecraft subject to actuator saturation is dealt with in this paper. To satisfy pointing requirement and simultaneously suppress vibration, a feedhack controller combined with closed-loop signal shaping is designed. The closed-loop aignal shaping partially delayed, is located within the feedback loop to reduce the residual vibration. This type of control architecture can be used advantageously to reject sensor disturbances and discontinuoua nonlinearities such as actuator saturation. Physical experiment results demonstrate that the proposed approach can significantly reduce the vibration of the flexible appendages during the fast angle maneuver subject to actuator saturation; the results also show that the presented control algorithm has the advantages of simplicity and efficiency for practical on-board computer operation.%针对柔性航天器带有执行机构饱和的姿态控制问题,提出了一种将反馈控制与内闭环信号成形相结合的控制方法.将成形器作用于系统内闭环回路中,通过人为引人控制延时达到抑制振动的目的,避免敏感器扰动、执行机构饱和等非线性影响控制器振动抑制效果.全物理实验结果表明,在反作用飞轮存在控制力矩饱和的情况下,该方法不仅使航天器快速地、平稳地完成高精度姿态机动,而且显著地减少了柔性结构的弹性振动,具有算法简单、易于在轨实时计算的优点.

  18. Adaptive control with an expert system based supervisory level. Thesis

    Science.gov (United States)

    Sullivan, Gerald A.

    1991-01-01

    Adaptive control is presently one of the methods available which may be used to control plants with poorly modelled dynamics or time varying dynamics. Although many variations of adaptive controllers exist, a common characteristic of all adaptive control schemes, is that input/output measurements from the plant are used to adjust a control law in an on-line fashion. Ideally the adjustment mechanism of the adaptive controller is able to learn enough about the dynamics of the plant from input/output measurements to effectively control the plant. In practice, problems such as measurement noise, controller saturation, and incorrect model order, to name a few, may prevent proper adjustment of the controller and poor performance or instability result. In this work we set out to avoid the inadequacies of procedurally implemented safety nets, by introducing a two level control scheme in which an expert system based 'supervisor' at the upper level provides all the safety net functions for an adaptive controller at the lower level. The expert system is based on a shell called IPEX, (Interactive Process EXpert), that we developed specifically for the diagnosis and treatment of dynamic systems. Some of the more important functions that the IPEX system provides are: (1) temporal reasoning; (2) planning of diagnostic activities; and (3) interactive diagnosis. Also, because knowledge and control logic are separate, the incorporation of new diagnostic and treatment knowledge is relatively simple. We note that the flexibility available in the system to express diagnostic and treatment knowledge, allows much greater functionality than could ever be reasonably expected from procedural implementations of safety nets. The remainder of this chapter is divided into three sections. In section 1.1 we give a detailed review of the literature in the area of supervisory systems for adaptive controllers. In particular, we describe the evolution of safety nets from simple ad hoc techniques, up

  19. 基于变系数PID的无刷直流电动机双闭环系统%Brushless DC motor double closed-loop control system based on variable coefficient PID

    Institute of Scientific and Technical Information of China (English)

    郭宏; 吴海洋; 巫佩军

    2012-01-01

    A variable coefficient proportion integration differentiation(PID)algorithm used in the position loop was proposed and analyzed in the control system of electrical dual-redundancy brushless DC torque motor used in the direct drive valve.The steady-state error of the system was eliminated quickly by enhancing the influence of proportion regulator and integrator gradually according to the position deviation.The integration of position error was limited to ensure the system's stability.Experimental results show that the variable coefficient PID algorithm used in the position loop can ensure the system's stability and the accuracy of the position response,whatever the inner loop uses current loop or velocity loop.For the same step response,the step rise time of the double closed loop structure of the position and current reduced more than 32% compared with that of the double closed loop structure of the position and velocity.However,the double closed-loop structure of position/velocity loop performs strong loading appliance and strong robustness.%针对应用于直接驱动阀的电气双余度无刷直流力矩电动机控制系统,提出在位置环采用变系数PID(Proportion Integration Differentiation)控制算法,根据位置偏差改变调节参数,逐步加强比例和积分作用以快速消除系统稳态误差而又不引起系统抖动;为了保证系统的稳定性,对位置偏差的积分项进行了限制.实验结果表明:位置环采用该变系数PID控制算法的双闭环系统能够有效地保证系统的稳定性能和响应精度.同幅值的位置阶跃响应,位置环/电流环双闭环系统的上升时间比位置环/速度环双闭环系统的上升时间减小了32%;位置环/速度环双闭环系统具有优良的负载适应性能,鲁棒性强.

  20. Assisted closed-loop optimization of SSVEP-BCI efficiency

    Directory of Open Access Journals (Sweden)

    Jacobo eFernandez-Vargas

    2013-02-01

    Full Text Available We designed a novel assisted closed-loop optimization protocol to improve the efficiency of brain computer interfaces (BCI based on steady state visually evoked potentials (SSVEP. In traditional paradigms, the control over the BCI-performance completely depends on the subjects’ ability to learn from the given feedback cues. By contrast, in the proposed protocol both the subject and the machine share information and control over the BCI goal. Generally, the innovative assistance consists in the delivery of online information together with the online adaptation of BCI stimuli properties. In our case, this adaptive optimization process is realized by (i a closed-loop search for the best set of SSVEP flicker frequencies and (ii feedback of actual SSVEP magnitudes to both the subject and the machine. These closed-loop interactions between subject and machine are evaluated in real-time by continuous measurement of their efficiencies, which are used as online criteria to adapt the BCI control parameters. The proposed protocol aims to compensate for variability in possibly unknown subjects’ state and trait dimensions. In a study with N = 18 subjects, we found significant evidence that our protocol outperformed classic SSVEP-BCI control paradigms. Evidence is presented that it takes indeed into account interindividual variabilities: e.g. under the new protocol, baseline resting state EEG measures predict subjects’ BCI performances. This paper illustrates the promising potential of assisted closed-loop protocols in BCI systems. Probably their applicability might be expanded to innovative uses, e.g. as possible new diagnostic/therapeutic tools for clinical contexts and as new paradigms for basic research.

  1. Closed-Loop Control of Low Temperature Combustion and Transition Process of Diesel Engine%柴油机低温燃烧闭环控制及切换过程

    Institute of Scientific and Technical Information of China (English)

    曲栓; 石磊; 邓康耀

    2012-01-01

    Transition from conventional combustion to low temperature combustion was studied by using closed loop combustion control system. The test results reveal that the cycle-based closed loop control sys- tem can follow φc(crank angle corresponding to 50% of total heat release) step input and restrain system disturbances such as speed, load, rail pressure and exhaust gas recirculation (EGR). During the transition process, fuel injection timing can be adjusted in time to keep the combustion phase at the set point, in oth- er words, combustion stability is ensured.%借助于燃烧闭环控制系统,研究了传统燃烧到低温燃烧的切换过程.试验结果表明:基于循环的燃烧闭环控制系统能够跟踪累计放热50%对应的曲轴转角的阶跃输入,并且能很好地抑制转速、负荷、油轨压力和废气再循环(EGR)等系统干扰.在传统燃烧到低温燃烧的切换过程中,通过燃烧闭环控制系统实时地调节喷油提前角,可以使燃烧相位保持在参考值附近,从而保证了切换过程的燃烧稳定性.

  2. Closed loop identification using a modified Hansen scheme

    Science.gov (United States)

    Sekunda, A.; Niemann, H.; Kjølstad Poulsen, N.; Santos, I.

    2015-11-01

    It is often not feasible or even impossible to identify a plant in open loop. This might be because the plant contains unstable poles, or it is simply too expensive to remove the plant from its intended operation, among other possibilities. There are several methods for identifying a plant in closed loop [4], and one such method is the Hansen scheme [1]. Standard identification using Hansen scheme demands generating the identification signals indirectly. In this paper it is instead proposed to use the relationship between the Youla factorization of a plant and its stabilizing controller to directly measure the signals used for identification. A simulation example and identification of a gas bearing is given to show the method in action. Rotors supported by controllable gas bearings are open loop stable systems. However as the rotational speed is increased feedback control is necessary in order to keep the system stable. Furthermore because the dynamics of such a system depends on the rotational speed it is needed to conduct an identification while the system is part of a closed loop scheme. The authors believe the paper able to contribute towards a simpler and more direct way of identifying closed loop plants using Hansen scheme.

  3. Design validation and performance of closed loop gas recirculation system

    Science.gov (United States)

    Kalmani, S. D.; Joshi, A. V.; Majumder, G.; Mondal, N. K.; Shinde, R. R.

    2016-11-01

    A pilot experimental set up of the India Based Neutrino Observatory's ICAL detector has been operational for the last 4 years at TIFR, Mumbai. Twelve glass RPC detectors of size 2 × 2 m2, with a gas gap of 2 mm are under test in a closed loop gas recirculation system. These RPCs are continuously purged individually, with a gas mixture of R134a (C2H2F4), isobutane (iC4H10) and sulphur hexafluoride (SF6) at a steady rate of 360 ml/h to maintain about one volume change a day. To economize gas mixture consumption and to reduce the effluents from being released into the atmosphere, a closed loop system has been designed, fabricated and installed at TIFR. The pressure and flow rate in the loop is controlled by mass flow controllers and pressure transmitters. The performance and integrity of RPCs in the pilot experimental set up is being monitored to assess the effect of periodic fluctuation and transients in atmospheric pressure and temperature, room pressure variation, flow pulsations, uniformity of gas distribution and power failures. The capability of closed loop gas recirculation system to respond to these changes is also studied. The conclusions from the above experiment are presented. The validations of the first design considerations and subsequent modifications have provided improved guidelines for the future design of the engineering module gas system.

  4. Closed-loop control of in-cylinder gas conditioning in passenger car diesel engines; Zylinderindividuelle Regelung des Gaszustands bei Pkw-Dieselmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Knippschild, Clemens Ludwig

    2011-07-01

    An auspicious approach for the optimization of the Diesel engine is the application of alternative combustion techniques. In order to realize new combustion systems, besides novel actuators and sensors, a consequent development of engine control strategies is necessary. The scope of this doctoral thesis is the development of an integrated concept for cylinder individual control of the gas condition inside the combustion chamber using internal and external gas system actuators. The concept is combined with an injection parameter based combustion control system and a part of a cylinder pressure based engine control management. Furthermore, the main functionalities of a camless Variable Valve Actuation system (VVA) are used for dynamical gas condition manipulation. Within the cascaded gas system control structure nonlinear model based feedforward and linear PI feedback controllers are applied. All setpoint values for the main control variables, gas mass and oxygen level inside the cylinders, are calculated centralized by the cylinder coordinator. In addition to the control system, a likewise cylinder individual mean value gas condition model is introduced to provide relevant control data. The model calculations are based on cylinder pressure signals as well as on external model and sensor signals. The new serial production capable control strategy has been implemented within a Rapid-Prototyping-System and investigated on an engine test bench. Finally, the capability of the developed gas control system to stably applicate alternative combustion techniques during stationary and transient driving cycle, as well as the possibility to reduce exhaust emissions are evaluated. (orig.)

  5. Supervisory control of multiple robots in dynamic tasking environments.

    Science.gov (United States)

    Chen, Jessie Y C; Barnes, Michael J

    2012-01-01

    A military targeting environment was simulated to examine the effects of an intelligent route-planning agent RoboLeader, which could support dynamic robot re-tasking based on battlefield developments, on the performance of robotics operators. We manipulated the level of assistance (LOAs) provided by RoboLeader as well as the presence of a visualisation tool that provided feedback to the participants on their primary task (target encapsulation) performance. Results showed that the participants' primary task benefited from RoboLeader on all LOAs conditions compared to manual performance; however, visualisation had little effect. Frequent video gamers demonstrated significantly better situation awareness of the mission environment than did infrequent gamers. Those participants with higher spatial ability performed better on a secondary target detection task than did those with lower spatial ability. Finally, participants' workload assessments were significantly lower when they were assisted by RoboLeader than when they performed the target entrapment task manually. Practitioner Summary: This study demonstrated the utility of an intelligent agent for enhancing robotics operators' supervisory control performance as well as reducing their workload during a complex urban scenario involving moving targets. The results furthered the understanding of the interplay among level-of-autonomy, multitasking performance and individual differences in military tasking environments.

  6. Central safety factor and β N control on NSTX-U via beam power and plasma boundary shape modification, using TRANSP for closed loop simulations

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, M. D.; Andre, R.; Gates, D. A.; Gerhardt, S.; Goumiri, I. R.; Menard, J.

    2015-04-24

    The high-performance operational goals of NSTX-U will require development of advanced feedback control algorithms, including control of ßN and the safety factor profile. In this work, a novel approach to simultaneously controlling ßN and the value of the safety factor on the magnetic axis, q0, through manipulation of the plasma boundary shape and total beam power, is proposed. Simulations of the proposed scheme show promising results and motivate future experimental implementation and eventual integration into a more complex current profile control scheme planned to include actuation of individual beam powers, density, and loop voltage. As part of this work, a flexible framework for closed loop simulations within the high-fidelity code TRANSP was developed. The framework, used here to identify control-design-oriented models and to tune and test the proposed controller, exploits many of the predictive capabilities of TRANSP and provides a means for performing control calculations based on user-supplied data (controller matrices, target waveforms, etc.). The flexible framework should enable high-fidelity testing of a variety of control algorithms, thereby reducing the amount of expensive experimental time needed to implement new control algorithms on NSTX-U and other devices.

  7. High resolution interface circuit for closed-loop accelerometer*

    Institute of Scientific and Technical Information of China (English)

    Yin Liang; Liu Xiaowei; Chen Weiping; Zhou Zhiping

    2011-01-01

    This paper reports a low noise switched-capacitor CMOS interface circuit for the closed-loop operation of a capacitive accelerometer. The time division multiplexing of the same electrode is adopted to avoid the strong feedthrough between capacitance sensing and electrostatic force feedback. A PID controller is designed to ensure the stability and dynamic response o fa high Q closed-loop accelerometer with a vacuum package. The architecture only requires single ended operational amplifiers, transmission gates and capacitors. Test results show that a full scale acceleration of ±3 g, non-linearity of 0.05% and signal bandwidth of 1000 Hz are achieved. The complete module operates from a ±5 V supply and has a measured sensitivity of 1.2 V/g with a noise of floor of 0.8μg/√(Hz) in closed-loop. The chip is fabricated in the 2 μm two-metal and two-poly n-well CMOS process with an area of 15.2 mm2. These results prove that this circuit is suitable for high performance micro-accelerometer applications like seismic detection and oil exploration.

  8. 三相电压型PWM整流的新型双闭环控制策略%A Novel Double Closed Loops Control of the Three-phase Voltage-sourced PWM Rectifier

    Institute of Scientific and Technical Information of China (English)

    王恩德; 黄声华

    2012-01-01

    同步旋转d-q坐标系下的电压、电流双闭环控制,广泛应用于三相电压型PWM整流器。该方案结构简单,比较适合基于数字处理芯片的数字控制系统。由于交流侧电感工艺存在差异,且当电流很大电感饱和时,电感值也会有变化,实际控制系统往往忽略掉耦合项;而电压外环的非线性也使得控制系统的性能提升受到限制。提出一种新的电压电流双闭环控制策略,其中电流内环借鉴合成矢量的思想,提出同步旋转d-q坐标系下无电感£参数的电流解耦控制方法:电压外环采用电压平方为控制量实现线性化的间接电压控制。仿真与实验结果均验证了所提方法的正确性和有效性。%The double closed loop control strategy, which is composed of inner current loop and outer voltage loop in the d-q synchronous frame, is a relatively common control strategy of the three-phase voltage-sourced PWM rectifier. This strategy is suitable for the digital control system with the digital signal processor (DSP), because of its simple structure. The decoupling part is often ignored without the exact value of the boost inductance. And the nonlinear outer voltage loop is also the limit to improve the control performance. This paper proposed a novel double closed loop control strategy, which consists of decoupling current controller without exact value of the boost inductance in d-q synchronous frame, and the outer voltage linear control strategy with the control amount of the square of the voltage. Both the simulation analysis and experimental results demonstrate the validity of the proposed method and the feasibility of the control strategy.

  9. Closed-Loop Flow Control of the Coupled Wake Dynamics and Aerodynamic Loads of a Freely-Pivoting 3-DOF Bluff Body

    Science.gov (United States)

    Lambert, T.; Vukasinovic, B.; Glezer, A.

    2016-11-01

    The motion of an axisymmetric bluff body model that is free to pivot in pitch, yaw, and roll in a uniform stream in response to flow-induced aerodynamic loads is controlled in wind tunnel experiments using fluidic actuation. The model is attached to an upstream, wire-supported short streamwise sting through a low-friction hinge, and each of the support wires is individually-controlled by a servo actuator through an in-line load cell. The aerodynamic loads on the body, and thereby its motion, are controlled through fluidic modification of its aerodynamic coupling to its near wake using four independent aft mounted synthetic jet actuators that effect azimuthally-segmented flow attachment over the model's tail end. The effects of actuation-induced, transitory changes in the model's aerodynamic loads are measured by its motion response using motion tracking, while the coupled evolution of the near-wake is captured by high-speed stereo PIV. Flow control authority is demonstrated by feedback-controlled manipulation of the model's dynamic response, and dynamic mode decomposition (DMD) of the wake is used to characterize changes in the wake structure and stability. It is shown that this flow control approach can modify the stability and damping of the model's motion (e.g., suppression or amplification of its natural oscillations), and impose desired directional attitude. Supported by the ARO.

  10. 虚拟仿真技术在网络闭环控制中的应用%Application of virtual simulation technology in network closed-loop control

    Institute of Scientific and Technical Information of China (English)

    徐淑萍

    2012-01-01

    Internet上数据传输的不确定延时妨碍了远程被控对象和操作者之间迅捷而透明的交互,严重限制了网络远程控制系统的性能和应用.为了解决网络延时问题,提出一种基于虚拟仿真的网络三闭环控制结构.该方法依照开环系统实现闭环控制的思想,在客户端构造虚拟被控对象模型,使虚拟仿真系统与实际系统的运行状态相似甚至相同,同时又使操作者能依据虚拟仿真系统一端的运行情况决定下一步的控制指令,从而准确地对实际系统发出所需的控制指令,最终达到远程实时控制的目的.仿真结果证明了所提方法的有效性和可行性.%It is very hard to have a transparent and prompt interaction between user and remote controlled object due to uncertain time delay over the Internet, which severely limits the performance of network control systems. In order to solve the problem of random delay, a kind of three closed-loop network control structure based on virtual simulation was proposed. In accordance with the idea of open-loop system to achieve closed-loop control, this method constructed the virtual controlled object model in the client, made the operation states of virtual simulation system be similar or even identical to those of actual system, while allowing the operator to decide the next control instruction according to the operation of the virtual simulation system, so as to accurately give the required control instructions to the actual system, which ultimately achieved the purpose of remote real-time control. The simulation results show the validity and feasibility of the proposed method.

  11. Closed loop control system on load based on AVR microcontroller%基于AVR单片机的实验加载闭环控制系统

    Institute of Scientific and Technical Information of China (English)

    王丁; 王磐炬

    2011-01-01

    针对科研实验中对拉压千斤顶加载过程控制的需要,采用ATmega128单片机控制步进电机进而实现对执行系统的电动泵站实行自动控制.对力和位移的数据采集与处理及用步进电机控制电动泵站手柄的技术细节作了重点描述.通过单片机的A/D变换器对AMP放大模块采集的电桥信号作量化处理,千斤顶的操控手柄位置依电动油泵阀门开启的方向和大小作若干定位,单片机根据力或位移传感器信号,实时控制步进电机驱动手柄旋转到相应操控位置.%This article describes the use of ATmega128 AVR microcontroller series of DBS electric pumping stations and QFI00/200 separate twoway hydraulic jack to automate the process of manipulating the work of the technical content. Articles on force and displacement data acquisition and processing, and stepper motor control electric pump with the handle of the key technical details were described. Through the MCU's A/D converter module is collected on the AMP amplification quantify the signal bridge, jack handle position control valve opening according to the direction of electric pumps for a number of positioning and size of the microcontroller based on force or displacement sensor signals, real-time control stepper motor drive control handle rotate to the appropriate location.

  12. Study on the Robust Problem of the Excitation Power Supply With Closed Loop Control%闭环激磁电源鲁棒问题的研究

    Institute of Scientific and Technical Information of China (English)

    曾鸣; 王毅; 克晶; 苏宝库

    2001-01-01

    针对闭环激磁电源性能指标的实际需要,研究了该电源幅值回路系统的鲁棒性问题.依据鲁棒控制理论的回路成形原理,讨论了闭环激磁电源幅值回路鲁棒性能控制器的图形设计方法.仿真结果表明了设计的有效性,对实际系统有指导意义.%Aimed at the practice requirements of the performance index in the excitation power supply with dosed loop control, the robust problem of magnitude loop in this system is studied. Based on the principle of loop shaping of robust control theory, it is discussed the graphics design method of robust performance controller for magnitude loop of the system. The validity of the design is indicated in the emulation results, having significance to practice system.

  13. Issues and Feasibility Demonstration of Positioning Closed Loop Control for the CLIC Supporting System Using a Test Mock-up with Five Degrees of Freedom

    CERN Document Server

    Sosin, M; Chritin, N; Griffet, S; Kemppinen, J; Mainaud Durand, H; Rude, V; Sterbini, G

    2012-01-01

    Since several years, CERN is studying the feasibility of building a high energy e+ e- linear collider: the CLIC (Compact LInear Collider). One of the challenges of such a collider is the pre-alignment precision and accuracy requirement on the transverse positions of the linac components, which is typically 14 μm over a window of 200 m. To ensure the possibility of positioning within such tight constraints, CERN Beams Department’s Survey team has worked intensively at developing the methods and technology needed to achieve that objective. This paper describes activities which were performed on a test bench (mock-up) with five degrees of freedom (DOF) for the qualification of control algorithms for the CLIC supporting system active-pre-alignment. Present understanding, lessons learned (“know how”), issues of sensors noise and mechanical components nonlinearities are presented.

  14. RESONANCE CONTROL FOR THE COUPLED CAVITY LINAC AND DRIFT TUBE LINAC STRUCTURES OF THE SPALLATION NEUTRON SOURCE LINAC USING A CLOSED-LOOP WATER COOLING SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Bernardin, J. D. (John D.); Brown, R. L. (Richard L.); Brown, S. K. (Stanley K.); Bustos, G. R. (Gerald R.); Crow, M.L. (Martin L.); Gregory, W. S.; Hood, M. E. (Michael E.); Jurney, J. D. (James D.); Medalen, I. (Ivan); Owen, A. C. (Albert C.); Weiss, Robert E.

    2001-01-01

    The Spallation Neutron Source (SNS) is a facility being designed for scientific and industrial research and development. SNS will generate and use neutrons as a diagnostic tool for medical purposes, material science, etc. The neutrons will be produced by bombarding a heavy metal target with a high-energy beam of protons, generated and accelerated with a linear particle accelerator, or linac. The low energy end of the linac consists of two room temperature copper structures, the drift tube linac (DTL), and the coupled cavity linac (CCL). Both of these accelerating structures use large amounts of electrical energy to accelerate the protons to an energy of 185 MeV. Approximately 60-80% of the electrical energy is dissipated in the copper structure and must be removed. This is done using specifically designed water cooling passages within the linac's copper structure. Cooling water is supplied to these cooling passages by specially designed resonance control and water cooling systems.

  15. Conformal thermal therapy using planar ultrasound transducers and adaptive closed-loop MR temperature control: demonstration in gel phantoms and ex vivo tissues

    Science.gov (United States)

    Tang, K.; Choy, V.; Chopra, R.; Bronskill, M. J.

    2007-05-01

    MRI-guided transurethral ultrasound therapy offers a minimally invasive approach for the treatment of localized prostate cancer. Integrating a multi-element planar transducer with active MR temperature feedback can enable three-dimensional conformal thermal therapy of a target region within the prostate gland while sparing surrounding normal tissues. Continuous measurement of the temperature distribution in tissue enables dynamic compensation for unknown changes in blood flow and tissue properties during treatment. The main goal of this study was to evaluate the feasibility of using active temperature feedback on a clinical 1.5 T MR imager for conformal thermal therapy. MR thermometry was performed during heating in both gel phantoms and excised tissue with a transurethral heating applicator, and the rotation rate and power were varied based on the thermal measurements. The capability to produce a region of thermal damage that matched a target boundary was evaluated. The influence of a cooling gradient (to simulate cooling of the rectum or urethra) on the desired pattern of thermal damage was also investigated in gel phantoms. Results showed high correlation between the desired target boundary and the 55 °C isotherm generated during heating with an average distance error of 0.9 mm ± 0.4 mm (n = 6) in turkey breasts, 1.4 mm ± 0.6 mm (n = 4) in gel phantoms without rectal cooling and 1.4 mm ± 0.6 mm (n = 3) in gel phantoms with rectal cooling. The results were obtained using a temporal update rate of 5 s, a spatial resolution of 3 × 3 × 10 mm for the control point, and a temperature uncertainty of approximately 1 °C. The performance of the control algorithm under these conditions was comparable to that of simulations conducted previously by our group. Overall, the feasibility of generating targeted regions of thermal damage with a transurethral heating applicator and active MR temperature feedback has been demonstrated experimentally. This method of treatment

  16. Conformal thermal therapy using planar ultrasound transducers and adaptive closed-loop MR temperature control: demonstration in gel phantoms and ex vivo tissues

    Energy Technology Data Exchange (ETDEWEB)

    Tang, K [Sunnybrook Health Sciences Centre, 2075 Bayview Ave., Toronto, ON M4N 3M5 (Canada); Choy, V [Sunnybrook Health Sciences Centre, 2075 Bayview Ave., Toronto, ON M4N 3M5 (Canada); Chopra, R [Sunnybrook Health Sciences Centre, 2075 Bayview Ave., Toronto, ON M4N 3M5 (Canada); Bronskill, M J [Sunnybrook Health Sciences Centre, 2075 Bayview Ave., Toronto, ON M4N 3M5 (Canada)

    2007-05-21

    MRI-guided transurethral ultrasound therapy offers a minimally invasive approach for the treatment of localized prostate cancer. Integrating a multi-element planar transducer with active MR temperature feedback can enable three-dimensional conformal thermal therapy of a target region within the prostate gland while sparing surrounding normal tissues. Continuous measurement of the temperature distribution in tissue enables dynamic compensation for unknown changes in blood flow and tissue properties during treatment. The main goal of this study was to evaluate the feasibility of using active temperature feedback on a clinical 1.5 T MR imager for conformal thermal therapy. MR thermometry was performed during heating in both gel phantoms and excised tissue with a transurethral heating applicator, and the rotation rate and power were varied based on the thermal measurements. The capability to produce a region of thermal damage that matched a target boundary was evaluated. The influence of a cooling gradient (to simulate cooling of the rectum or urethra) on the desired pattern of thermal damage was also investigated in gel phantoms. Results showed high correlation between the desired target boundary and the 55 deg. C isotherm generated during heating with an average distance error of 0.9 mm {+-} 0.4 mm (n = 6) in turkey breasts, 1.4 mm {+-} 0.6 mm (n = 4) in gel phantoms without rectal cooling and 1.4 mm {+-} 0.6 mm (n = 3) in gel phantoms with rectal cooling. The results were obtained using a temporal update rate of 5 s, a spatial resolution of 3 x 3 x 10 mm for the control point, and a temperature uncertainty of approximately 1 deg. C. The performance of the control algorithm under these conditions was comparable to that of simulations conducted previously by our group. Overall, the feasibility of generating targeted regions of thermal damage with a transurethral heating applicator and active MR temperature feedback has been demonstrated experimentally. This method of

  17. Estimation of Model Uncertainties in Closed-loop Systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2008-01-01

    is a measure for the variation in the system seen through the feedback controller. It is shown that it is possible to isolate a certain number of parameters or uncertain blocks in the system exactly. This is obtained by modifying the feedback controller through the YJBK transfer function together with pre......This paper describe a method for estimation of parameters or uncertainties in closed-loop systems. The method is based on an application of the dual YJBK (after Youla, Jabr, Bongiorno and Kucera) parameterization of all systems stabilized by a given controller. The dual YJBK transfer function...

  18. 基于Matlab/Simulink的高速液压动力系统闭环控制研究%Research on Closed Loop Control for High-speed Hydraulic Power System Based on Matlab/Simulink

    Institute of Scientific and Technical Information of China (English)

    王继哲; 赵月琴; 张士卫

    2012-01-01

    High-speed hydraulic power system applied in some mechanical ejector is used to lauch load fastly. By the designed closed loop control system, ejection parameters were controlled within a certain range. Matlab/Simulink was applied to conduct theoretical analysis, modeling and simulation of the control system based on high-speed hydraulic power system design scheme. The simulation results were analyzed and the reasons were found. It provides theoretical basis for the engineering realization of high-speed hydraulic power system.%应用于某机械弹射器的高速液压动力系统用于负载的高速弹射,通过设计的闭环控制系统可实现一定范围内的弹射参数控制.在高速液压动力系统设计方案的基础上,运用Matlab/Simulink对控制系统进行了理论分析、建模和仿真.对仿真结果进行分析,找出影响仿真结果的原因,为高速液压动力系统的工程实现提供理论依据.

  19. 多无人机协同目标跟踪闭环最优控制方法%A Closed-loop Optimal Control for Multiple Unmanned Aerial Vehicles Cooperative Target Tracking

    Institute of Scientific and Technical Information of China (English)

    钟春梅; 赵振宇; 孙海波; 周锐

    2012-01-01

    Considering the problems of poor real-time property or optimization for the existing methods, a closed-loop optimal control method for cooperative target tracking based on the optimal condition was proposed for the control of approaching and loitering stages. The adaptive azimuth control of UAVs was implemented according to the relative distance and angle between the UAV and target in order to gain the optimal observing geometry as quickly as possible. The simulation results demonstrated that the optimal observing geometry during approaching and loitering stages was achieved with high real-time and optimization.%针对目前多机协同目标跟踪方法缺乏实时性和最优性等问题.提出了一种由趋近和盘旋两阶段组成的多无人机协同目标跟踪闭环最优控制方法.当距离目标远时自适应调节无人机方位角优先且尽快趋近目标;而当距离近时则自适应调节无人机方位角优先且尽快实现最优观测视线夹角.仿真结果证明了:在靠近和盘旋阶段均确保了最优性观测条件,且具有较好的实时性和最优性.

  20. Closed-loop System Identification with New Sensors

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, K; Stoustrup, Jakob

    2008-01-01

    This paper deals with system identification of new system dynamics revealed by online introduction of new sensors in existing multi-variable linear control systems. The so-called "Hansen Scheme" utilises the dual Youla-Kucera parameterisation of all systems stabilised by a given linear controller...... to transform closed-loop system identification problems into open-loop-like problems. We show that this scheme can be formally extended to accomodate extra sensors in a nice way. The approach is illustrated on a simple simulation example....

  1. Closed Loop Analysis of Multilevel Inverter fed Drives

    Directory of Open Access Journals (Sweden)

    Bharath VS

    2014-05-01

    Full Text Available This paper deals with the simulation and implementation of multilevel inverter for drives application. Here the focuses will be on improving the efficiency of the multilevel inverter and quality of output voltage waveform. The circuit is developed towards high efficiency, high performance, and low cost, simple control scheme. Harmonics Elimination were implemented to reduce the Total Harmonics Distortion (THD value which is achieved by selecting appropriate switching angles. In this paper to determine the performance of rectifier, steady state analysis is done.  Furthermore, the merits of multilevel inverter topology are inherited.Closed loop control is done to analysis the stability of the system.

  2. THE INFLUENCE OF BIOFEEDBACK SESSIONS IN CLOSED LOOP OF HEART RATE VARIABILITY AND PACED BREATHING ON SYSTOLIC BLOOD PRESSURE CONTROL DURING STANDARD DRUG THERAPY IN PATIENTS WITH ARTERIAL HYPERTENSION

    Directory of Open Access Journals (Sweden)

    S. A. S. Belal

    2015-06-01

    Full Text Available Changes of systolic blood pressure (SBP in biofeedback (BFB sessions with closed loop of paced breathing (PB and heart rate variability (HRV during standard drug therapy of arterial hypertension (AH was studied. 275 patients with 1-3 degree of AH (143 men and 132 women, mean age 58,55 ± 7,99 years was divided into two comparable groups: 1 - BFB (139 patients in investigated PB loop, 2 - control group (136 patients with BFB without PB. In both groups was performed 10 sessions of BFB. Changes of SBP depending on the stage and degree of AH, gender and age was assessed. BP was measured by the method of Korotkov’s with monometer Microlife BP AG1-20 in same conditions. Data were processed by parametric and nonparametric statistics. It is proved that the use of biofeedback in the loop of PB and HRV significantly (p < 0.01 exceeds in efficiency an isolated drug therapy in control of SBP at any stage and degree of AH in patients of both sexes in all age groups. Extent of the effect increases with the stage and degree of the disease and not related to the sex and age of the patient. Findings allow to recommend this technique in clinical practice.

  3. Closed-loop approach to thermodynamics

    CERN Document Server

    Goupil, C; Herbert, E; Benenti, G; D'Angelo, Y; Lecoeur, Ph

    2016-01-01

    We present the closed-loop approach to linear nonequilibrium thermodynamics considering a generic heat engine dissipatively connected to two temperature baths. The system is usually quite generally characterized by two parameters: the output power $P$ and the conversion efficiency $\\eta$, to which we add a third one, the working frequency $\\omega$. We establish that a detailed understanding of the effects of the dissipative coupling on the energy conversion process, necessitates the knowledge of only two quantities: the system's feedback factor $\\beta$ and its open-loop gain $A_{0}$, the product of which, $A_{0}\\beta$, characterizes the interplay between the efficiency, the output power and the operating rate of the system. The feedback loop approach thus provides a versatile and economical, hence efficient, tool for the study of any conversion engine operation for which a feedback factor may be defined as illustrated with a thermoelectric system.

  4. Closed-loop approach to thermodynamics

    Science.gov (United States)

    Goupil, C.; Ouerdane, H.; Herbert, E.; Benenti, G.; D'Angelo, Y.; Lecoeur, Ph.

    2016-09-01

    We present the closed-loop approach to linear nonequilibrium thermodynamics considering a generic heat engine dissipatively connected to two temperature baths. The system is usually quite generally characterized by two parameters: the output power P and the conversion efficiency η , to which we add a third one, the working frequency ω . We establish that a detailed understanding of the effects of the dissipative coupling on the energy conversion process requires only knowing two quantities: the system's feedback factor β and its open-loop gain A0, which product A0β characterizes the interplay between the efficiency, the output power, and the operating rate of the system. By raising the abstract hermodynamic analysis to a higher level, the feedback loop approach provides a versatile and economical, hence fairly efficient, tool for the study of any conversion engine operation for which a feedback factor can be defined.

  5. Closed loop supply chain in printing operation

    Directory of Open Access Journals (Sweden)

    Marcius Fabius Henriques Carvalho

    2011-12-01

    Full Text Available There is a clear change in focus in large companies, previously dedicated primarily to the production of physical goods, toward offering complimentary services and changing their focus toward more service-oriented businesses, in order to increase their competitiveness. At the same time, companies are facing increasing product returns due to various reasons leading to reverse logistics practices and toward the introduction of a Closed Loop Supply Chain management perspective. The purpose of this work is to identify, using a case study in the printing industry,  specific characteristics, regarding product returns, both in a product-oriented and a service-oriented operation. Furthermore, the current work performs a diagnosis of current practices applications of CLSC models in the two operating models. The paper concludes that indeed there are relevant differences in managing the CLSC for each case and identify the main gaps for each operation.

  6. Closed Loop Requirements and Analysis Management

    Science.gov (United States)

    Lamoreaux, Michael; Verhoef, Brett

    2015-01-01

    Effective systems engineering involves the use of analysis in the derivation of requirements and verification of designs against those requirements. The initial development of requirements often depends on analysis for the technical definition of specific aspects of a product. Following the allocation of system-level requirements to a product's components, the closure of those requirements often involves analytical approaches to verify that the requirement criteria have been satisfied. Meanwhile, changes that occur in between these two processes need to be managed in order to achieve a closed-loop requirement derivation/verification process. Herein are presented concepts for employing emerging Team center capabilities to jointly manage requirements and analysis data such that analytical techniques are utilized to effectively derive and allocate requirements, analyses are consulted and updated during the change evaluation processes, and analyses are leveraged during the design verification process. Recommendations on concept validation case studies are also discussed.

  7. Closed Loop Finite Element Modeling of Piezoelectric Smart Structures

    Directory of Open Access Journals (Sweden)

    Guang Meng

    2006-01-01

    Full Text Available The objective of this paper is to develop a general design and analysis scheme for actively controlled piezoelectric smart structures. The scheme involves dynamic modeling of a smart structure, designing control laws and closed-loop simulation in a finite element environment. Based on the structure responses determined by finite element method, a modern system identification technique known as Observer/Kalman filter Identification (OKID technique is used to determine the system Markov parameters. The Eigensystem Realization Algorithm (ERA is then employed to develop an explicit state space model of the equivalent linear system for control law design. The Linear Quadratic Gaussian (LQG control law design technique is employed to design a control law. By using ANSYS parametric design language (APDL, the control law is incorporated into the ANSYS finite element model to perform closed loop simulations. Therefore, the control law performance can be evaluated in the context of a finite element environment. Finally, numerical examples have demonstrated the validity and efficiency of the proposed design scheme. Without any further modifications, the design scheme can be readily applied to other complex smart structures.

  8. Integrated Evaluation of Closed Loop Air Revitalization System Components

    Science.gov (United States)

    Murdock, K.

    2010-01-01

    NASA s vision and mission statements include an emphasis on human exploration of space, which requires environmental control and life support technologies. This Contractor Report (CR) describes the development and evaluation of an Air Revitalization System, modeling and simulation of the components, and integrated hardware testing with the goal of better understanding the inherent capabilities and limitations of this closed loop system. Major components integrated and tested included a 4-Bed Modular Sieve, Mechanical Compressor Engineering Development Unit, Temperature Swing Adsorption Compressor, and a Sabatier Engineering and Development Unit. The requisite methodolgy and technical results are contained in this CR.

  9. Closed-Loop Autofocus Scheme for Scanning Electron Microscope

    Directory of Open Access Journals (Sweden)

    Cui Le

    2015-01-01

    Full Text Available In this paper, we present a full scale autofocus approach for scanning electron microscope (SEM. The optimal focus (in-focus position of the microscope is achieved by maximizing the image sharpness using a vision-based closed-loop control scheme. An iterative optimization algorithm has been designed using the sharpness score derived from image gradient information. The proposed method has been implemented and validated using a tungsten gun SEM at various experimental conditions like varying raster scan speed, magnification at real-time. We demonstrate that the proposed autofocus technique is accurate, robust and fast.

  10. 高精度闭环激磁电源正余弦精密基准的设计%Design of the Sine and Cosine Precision Reference of High Precision Excitation Power Supply with Closed Loop Control

    Institute of Scientific and Technical Information of China (English)

    曾鸣; 王慧敏; 张东纯; 苏宝库

    2001-01-01

    It is the key factor of guaranteeing the performance index of the excitation power supply system that has been designed for the sine and cosine precision reference of high precision excitation power supply with closed loop control. The paper adopts reliable frequency division technique and programmable logic device technique, insures the stability and reliability of designed circuits. The long period usage indicates the validity of the design method and satisfies the requirements of the system precision index.%因为设计高精度的闭环激磁电源正、余弦精密基准是保证闭环激磁电源性能指标的关键,所以采用可靠的分频技术和可编程逻辑芯片技术,以确保设计电路的稳定性和可靠性.运行实践证明:该设计方法能满足系统精度指标的要求.

  11. 神经群模型中癫痫状棘波的闭环控制性能研究%Performance of closed-loop control of epileptiform spikes in neural mass models

    Institute of Scientific and Technical Information of China (English)

    刘仙; 马百旺; 刘会军

    2013-01-01

    Neural mass models can produce electroencephalography (EEG) like signals corresponding to interical, pre-ictal and ictal activities. In this paper, a novel closed-loop feedback control strategy based on algebraic estimation is proposed to eliminate epileptiform spikes in neural mass models. Algebraic estimation plays a role in observing the states of the model in order to construct the controller. For a network of coupled neural populations, the characteristics regarding the closed-loop feedback control strategy, including the relationship between the type of controlled populations and the ability of eliminating epileptiform spikes, the relationship between the number of controlled populations and control energy, the relationship between the model parameters and control energy, are determined by numerical simulations. The purpose is to establish the rules for the proper control of eliminating epileptiform spikes with as less control energy as possible. Moreover, the proposed control-loop control strategy is compared with a direct proportional feedback control strategy by numerical simulations. It is shown that the use of algebraic estimation makes a reduction of control energy.%神经群模型可模拟产生癫痫发作间歇期、发作前期和发作期的脑电信号.本文基于代数估计法,给出一种新型的闭环反馈控制策略以消除神经群模型中的癫痫状棘波.代数估计法用以观测模型中的状态以进一步构造控制器.在多个神经群耦合的模型中,通过数值仿真研究了与所给的闭环反馈控制策略相关的一些特性,包括受控神经群的类型与消除棘波的能力之间的关系、受控神经群的数目与控制能量之间的关系、模型的参量和控制能量之间的关系,以期建立合适的控制规则实现利用尽可能小的控制能量消除癫痫状棘波.此外,通过数值仿真对基于代数估计法的闭环反馈控制策略和直接比例反馈控制策略进行比较,

  12. Application of optimal control principles to describe the supervisory control behavior of AAA crew members

    Science.gov (United States)

    Hale, C.; Valentino, G. J.

    1982-01-01

    Supervisory decision making and control behavior within a C(3) oriented, ground based weapon system is being studied. The program involves empirical investigation of the sequence of control strategies used during engagement of aircraft targets. An engagement is conceptually divided into several stages which include initial information processing activity, tracking, and ongoing adaptive control decisions. Following a brief description of model parameters, two experiments which served as initial investigation into the accuracy of assumptions regarding the importance of situation assessment in procedure selection are outlined. Preliminary analysis of the results upheld the validity of the assumptions regarding strategic information processing and cue-criterion relationship learning. These results indicate that this model structure should be useful in studies of supervisory decision behavior.

  13. Multimodal user input to supervisory control systems - Voice-augmented keyboard

    Science.gov (United States)

    Mitchell, Christine M.; Forren, Michelle G.

    1987-01-01

    The use of a voice-augmented keyboard input modality is evaluated in a supervisory control application. An implementation of voice recognition technology in supervisory control is proposed: voice is used to request display pages, while the keyboard is used to input system reconfiguration commands. Twenty participants controlled GT-MSOCC, a high-fidelity simulation of the operator interface to a NASA ground control system, via a workstation equipped with either a single keyboard or a voice-augmented keyboard. Experimental results showed that in all cases where significant performance differences occurred, performance with the voice-augmented keyboard modality was inferior to and had greater variance than the keyboard-only modality. These results suggest that current moderately priced voice recognition systems are an inappropriate human-computer interaction technology in supervisory control systems.

  14. Predictive models of procedural human supervisory control behavior

    Science.gov (United States)

    Boussemart, Yves

    Human supervisory control systems are characterized by the computer-mediated nature of the interactions between one or more operators and a given task. Nuclear power plants, air traffic management and unmanned vehicles operations are examples of such systems. In this context, the role of the operators is typically highly proceduralized due to the time and mission-critical nature of the tasks. Therefore, the ability to continuously monitor operator behavior so as to detect and predict anomalous situations is a critical safeguard for proper system operation. In particular, such models can help support the decision J]l8king process of a supervisor of a team of operators by providing alerts when likely anomalous behaviors are detected By exploiting the operator behavioral patterns which are typically reinforced through standard operating procedures, this thesis proposes a methodology that uses statistical learning techniques in order to detect and predict anomalous operator conditions. More specifically, the proposed methodology relies on hidden Markov models (HMMs) and hidden semi-Markov models (HSMMs) to generate predictive models of unmanned vehicle systems operators. Through the exploration of the resulting HMMs in two distinct single operator scenarios, the methodology presented in this thesis is validated and shown to provide models capable of reliably predicting operator behavior. In addition, the use of HSMMs on the same data scenarios provides the temporal component of the predictions missing from the HMMs. The final step of this work is to examine how the proposed methodology scales to more complex scenarios involving teams of operators. Adopting a holistic team modeling approach, both HMMs and HSMMs are learned based on two team-based data sets. The results show that the HSMMs can provide valuable timing information in the single operator case, whereas HMMs tend to be more robust to increased team complexity. In addition, this thesis discusses the

  15. 电励磁同步电动机转矩角截止负反馈闭环控制%Torque-Angle Cut-Off Negative Feedback Closed-Loop Control Strategy of Electrical Excited Synchronous Motor

    Institute of Scientific and Technical Information of China (English)

    谢慕君; 步伟明; 冯敬芳; 王志乾

    2013-01-01

    针对电励磁同步电动机负载变化易失步的问题,通过对转矩角特性分析,提出了一种基于转矩角截止负反馈的控制策略。阐述了利用转矩角控制防止失步的原理,建立了基于同步电动机磁链观测的转矩角数学模型,并设计了转矩角外环、励磁电流内环的双闭环控制系统。仿真结果表明,该控制策略与常规控制相比,适应负载变化的能力显著提高,有效抑制了电机的失步,为电机的稳定控制开辟了新途径。%Aiming at the problem that the electrical synchronous excited motor will be out of step with the load changes, this paper raised a control strategy based on torque-angle cut-off feedback via the analysis of torque-angle characteristics. Discussion was made to the principle using torque-angle control to prevent out-of-step. The mathematical model of torque-angle was constructed based on the flux linkage observation of synchronous motors and the double closed-loop control system for the outer loop adopting torque-angle and the inner loop adopting field current were designed. The simulation results show that compared with conventional control, this control strategy obviously met the requirements of load changes, effectively restraining out-of-step of motors, which opens up a new way for stable control of motors.

  16. 双闭环控制采摘机器人机械手设计-基于 PLC 和 CAN 总线%Robot Manipulator Design for Double Closed Loop Control-Based on PLC and CAN BUS

    Institute of Scientific and Technical Information of China (English)

    何龙; 陈晓龙

    2016-01-01

    A new robot manipulator joint distributed control scheme is proposed based on the PLC motion controller and CAN BUS by using the double closed-loop control system .The robot joint motor control system CAN module and PLC controller are designed with the idea of modular design .The mechanical hand of the robot is used to adjust the joint of the robot hand .The signal acquisition is acquired by using the Holzer sensor and infrared sensor and the photoelectric en -coder .The signal is acquired by the A/D converter and the signal is transmitted to the PLC controller .At the end of the manipulator,the CAN bus is used to control the communication signal,and the parallel control of the end effector is realized .At last ,the feed forward control environment is added to the system based on the double closed -loop control scheme .The static performance of the system is improved .The results show that the robot is stable and reliable in opera-tion.%采用双闭环控制系统,基于PLC运动控制器和 CAN 总线,提出了一种新的采摘机器人机械手关节分布式控制方案,并采用模块化思想设计了机器人关节电机控制系统、CAN 模块及PLC控制器。采摘机器人机械手的关节采用谐波减速器进行调节,利用霍尔传感器和红外线传感器及光电编码器进行图像、转速和障碍物触碰的信号采集,采集信号利用A/D转换器将数据传输给 PLC 控制器。机械手的执行末端采用 CAN 总线控制,并利用变频器传递的通信信号,实现了末端执行器的并行控制,使多机械手处于最佳动作状态。最后,在双闭环控制方案的基础上加入了前馈控制环境,利用前馈控制环节可以实现对系统的实时控制,改善了系统的静态性能,实现了机械手对实际采摘位置的有效追踪。实验和仿真模拟表明:位移时间曲线平滑无突变,表明机器人在运行过程中平稳、无振动,机器人工作的可靠性

  17. Multicenter closed-loop insulin delivery study points to challenges for keeping blood glucose in a safe range by a control algorithm in adults and adolescents with type 1 diabetes from various sites.

    Science.gov (United States)

    Zisser, Howard; Renard, Eric; Kovatchev, Boris; Cobelli, Claudio; Avogaro, Angelo; Nimri, Revital; Magni, Lalo; Buckingham, Bruce A; Chase, H Peter; Doyle, Francis J; Lum, John; Calhoun, Peter; Kollman, Craig; Dassau, Eyal; Farret, Anne; Place, Jerome; Breton, Marc; Anderson, Stacey M; Dalla Man, Chiara; Del Favero, Simone; Bruttomesso, Daniela; Filippi, Alessio; Scotton, Rachele; Phillip, Moshe; Atlas, Eran; Muller, Ido; Miller, Shahar; Toffanin, Chiara; Raimondo, Davide Martino; De Nicolao, Giuseppe; Beck, Roy W

    2014-10-01

    The Control to Range Study was a multinational artificial pancreas study designed to assess the time spent in the hypo- and hyperglycemic ranges in adults and adolescents with type 1 diabetes while under closed-loop control. The controller attempted to keep the glucose ranges between 70 and 180 mg/dL. A set of prespecified metrics was used to measure safety. We studied 53 individuals for approximately 22 h each during clinical research center admissions. Plasma glucose level was measured every 15-30 min (YSI clinical laboratory analyzer instrument [YSI, Inc., Yellow Springs, OH]). During the admission, subjects received three mixed meals (1 g of carbohydrate/kg of body weight; 100 g maximum) with meal announcement and automated insulin dosing by the controller. For adults, the mean of subjects' mean glucose levels was 159 mg/dL, and mean percentage of values 71-180 mg/dL was 66% overall (59% daytime and 82% overnight). For adolescents, the mean of subjects' mean glucose levels was 166 mg/dL, and mean percentage of values in range was 62% overall (53% daytime and 82% overnight). Whereas prespecified criteria for safety were satisfied by both groups, they were met at the individual level in adults only for combined daytime/nighttime and for isolated nighttime. Two adults and six adolescents failed to meet the daytime criterion, largely because of postmeal hyperglycemia, and another adolescent failed to meet the nighttime criterion. The control-to-range system performed as expected: faring better overnight than during the day and performing with variability between patients even after individualization based on patients' prior settings. The system had difficulty preventing postmeal excursions above target range.

  18. Fabrication and formation mechanism of closed-loop fibers by electrospinning with a tip collector

    Institute of Scientific and Technical Information of China (English)

    闫旭; 于淼; 韩文鹏; 犹明浩; 张君诚; 董瑞华; 张红娣; 龙云泽

    2016-01-01

    Electrospun nanofibers with designed or controlled structures have drawn much attention. In this study, we report an interesting new closed-loop structure in individual cerium nitrate/polyvinyl alcohol (Ce(NO3)3/PVA) and NaCl/PVA fibers, which are fabricated by electrospinning with a nail collector. The electrospinning parameters such as voltage and Ce(NO3)3 (or NaCl) concentration are examined for the formation of the closed-loop structure. The results suggest that the increase of the spinning voltage or addition of Ce(NO3)3 (or NaCl) is favorable for the formation of the closed-loop structure, and the increase of loop numbers and the decrease of loop size. Further analyses indicate that the formation mechanism of the closed-loop fibers can be predominantly attributed to the Coulomb repulsion in the charged jets.

  19. Discussion on Influence of Model Uncertainties on Closed-loop Adaptive Stability Control Design%模型不确定性对自适应闭环紧急控制设计影响的探讨

    Institute of Scientific and Technical Information of China (English)

    方勇杰

    2011-01-01

    探讨了自适应闭环紧急控制技术的高度集中优化的本质及其适用性受模型不确定性的影响。结合工业界在安全防御实践中消化不确定性的实际经验,指出在自适应闭环紧急控制设计中,应充分考虑高度集中优化系统适用的时空条件,复杂大系统闭环控制的框架设计不宜以高度集中优化为唯一设计理念,应在持续改善系统模型精度的同时,寻求摆脱对系统模型精确性依赖的其他方法。建议采用时空分散决策,将不确定性因素可能导致决策错误的风险进行分摊;应重视人在控制决策过程中的作用,并推广实施紧急控制策略适应性的在线校核;应考虑控制目标的弹性化,避免同时%A discussion is presented on the nature of highly-centralized optimization of the closed-loop adaptive stability control technology and the influence of model uncertainties on its suitability.Industrial experiences in dissolving uncertainties in security defense practices are introduced.It is pointed out that for design of security defense framework time-space conditions applicable for highly-centralized optimization system should be taken into full consideration,the conceptual design of a large complex closed-loop system control framework should not be solely based on highly-centralized optimization,other methods of not relying on system modeling accuracy should be developed besides consistently improving modeling accuracy,time-space distributed decision-making should be used to share risks of wrong decisions due to uncertainties,the role of engineers in the decision-making process should be emphasized and on-line verification of the adaptability of emergency control decisions should be widely used,flexibility of control objectives should be considered to avoid seeking simultaneous satisfaction of multi optimal man-made objectives and risk based concept should be used to coordinate on-line and off-line pre

  20. A translational platform for prototyping closed-loop neuromodulation systems

    Directory of Open Access Journals (Sweden)

    Pedram eAfshar

    2013-01-01

    Full Text Available While modulating neural activity through stimulation is an effective treatment for neurological diseases such as Parkinson’s disease and essential tremor, an opportunity for improving neuromodulation therapy remains in automatically adjusting therapy to continuously optimize patient outcomes. Practical issues associated with achieving this include the paucity of human data related to disease states, poorly validated estimators of patient state, and unknown dynamic mappings of optimal stimulation parameters based on estimated states. To overcome these challenges, we present an investigational platform including: an implanted sensing and stimulation device to collect data and run automated closed-loop algorithms; an external tool to prototype classifier and control-policy algorithms; and real-time telemetry to update the implanted device firmware and monitor its state. The prototyping system was demonstrated in a chronic large animal model studying hippocampal dynamics. We used the platform to find biomarkers of the observed states and transfer functions of different stimulation amplitudes. Data showed that moderate levels of stimulation suppress hippocampal beta activity, while high levels of stimulation produce seizure-like after-discharge activity. The biomarker and transfer function observations were mapped into classifier and control-policy algorithms, which were downloaded to the implanted device to continuously titrate stimulation amplitude for the desired network effect. The platform is designed to be a flexible prototyping tool and could be used to develop improved mechanistic models and automated closed-loop systems for a variety of neurological disorders.

  1. 六自由度并联微动机器人全闭环控制系统研究%Research of closed-loop control of 6-DOF parallel micro motion robot

    Institute of Scientific and Technical Information of China (English)

    丰茂

    2012-01-01

    为了提高基于压电陶瓷驱动的3-PPSR并联微动机器人的定位精度,将一种电容式微位移传感器集成于并联机构上,采用六点式测量法同时得到并联机器人末端六个自由度的位姿.使用微位移循环修正法进行误差分析和补偿,确定初始误差并在此基础上提出了有效的误差补偿方法.在已有的压电陶瓷闭环控制的基础上,利用测量所得的并联机构末端位姿作为反馈信号,采用模糊PID控制法实现了整个机构的闭环控制.%Taking a three-limb 6-DOF parallel micro motion robot driven by piezoelectric as the object,in order to improve its positioning accuracy,a kind of capacitive sensor which is used to detect the micro-displacement is integrated in the parallel robot.The six-point measurement method is developed to measure the parallel robot's pose of 6-DOF at the same time.The method of adjusting displacement recurrently is used to analyze and compensate the error.Based on the research,a method of error compensation is presented.With the feedback signal of the sensors,the closed-loop control is realized by the fuzzy PID control method.

  2. Efficacy comparison of atracurium through target control infusion and continuous close-loop muscle relaxant injection%靶控输注与闭环式肌松注射阿曲库铵效果比较

    Institute of Scientific and Technical Information of China (English)

    刘畅; 刘庆; 刘萍; 唐燕红

    2013-01-01

    Objective To compare the efficacy of atracurium administered through target control infusion and closed-loop muscle relaxant injection. Methods 75 patients undergoing laparotomy under total intravenous anesthesia were randomly divided into two groupsGroup T(n=39)received atracurium by target control infusion. The target concentration during induction was set at 5 mg/L,after trachea cannula at 1 mg/L, and during opera-tion according to the requirement. Group C (n=36),received atracurium by closed-loop muscle relaxant injection systemthe induction dose of atracurium was 0.5 mg/kg,the maintenance dose 2.5 μg/kg/min, increase to 10 μg/kg/min when T1/Tc > 10%. The onset time,recovery index, the time from stopping injection to extubation,dosages,frequence of dissatisfying muscle relaxation,mean arterial pressure,heart rate,respiratory rate,and SpO2 in the two groups were compared. No antagonist was used in both groups. It was the time for extubation when T1/Tc recovered to 90%. Results There were no statistical differences in onset time,mean arterial pressure, heart rate,respiratory rate,and SpO2 between the two groups (P> 0.05). Compared with group T, the recovery index,the time form stopping injection to extubation of group C was shorter,dosages larger and frequence of dissatisfy-ing muscle relaxation less (P10%,增药速度为10μg/kg/min,记录2组肌松起效时间、恢复指数、停药至拔管时间、用药量、术中肌松不足出现次数、各阶段平均动脉压、心率、呼吸频率、SpO2。2组均不使用拮抗剂,术毕待T1/Tc恢复至90%后拔管。结果:2组一般资料,各阶段平均动脉压、心率、SpO2比较无统计学意义(P>0.05),阿曲库铵起效时间、插管条件比较无统计学意义(P>0.05),与T组相比,C组恢复指数,拔管时间缩短,用药量增大,肌松不足出现次数减少(P<0.05);结论:靶控输注与闭环式肌松注射两种方式注射均能安全应用于临床,但闭环式肌松

  3. Development of an Automated Decision-Making Tool for Supervisory Control System

    Energy Technology Data Exchange (ETDEWEB)

    Cetiner, Sacit M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Muhlheim, Michael David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Flanagan, George F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fugate, David L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kisner, Roger A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-09-01

    This technical report was generated as a product of the Supervisory Control for Multi-Modular Small Modular Reactor (SMR) Plants project within the Instrumentation, Control and Human-Machine Interface technology area under the Advanced Small Modular Reactor (AdvSMR) Research and Development Program of the US Department of Energy. The report documents the definition of strategies, functional elements, and the structural architecture of a supervisory control system for multi-modular AdvSMR plants. This research activity advances the state of the art by incorporating real-time, probabilistic-based decision-making into the supervisory control system architectural layers through the introduction of a tiered-plant system approach. The report provides background information on the state of the art of automated decision-making, including the description of existing methodologies. It then presents a description of a generalized decision-making framework, upon which the supervisory control decision-making algorithm is based. The probabilistic portion of automated decision-making is demonstrated through a simple hydraulic loop example.

  4. Design of Stepper Motor Closed-loop Control System Based on AT89S52%基于AT89S52的步进电机闭环控制系统设计

    Institute of Scientific and Technical Information of China (English)

    汪俊

    2012-01-01

    In order to improve the positioning accuracy of the stepper motor,the design of stepper motor closed-loop control system based on AT89S52 is proposed in this paper.The AT89S52 microcontroller is used to receive instructions from PC by serial port and produce corresponding control signal.Through controlling the stepper motor by RD-053MS stepper motor drive,the angle encoder and IK220 counter card are used to obtain the rotation angle of the stepper motor in real time and feedback it to the PC.The PC calculates the difference value between the actual rotation angle and the target rotation angle,and sends motion instructions to the AT89S52 microcontroller until the instructions meet precision requirement.The experiment shows that the positioning accuracy of the system can be controlled in less than 20 second of arc,and can be applied into many CNC system.%为了提高步进电机的定位精度,提出了一种基于AT89S52的步进电机闭环控制系统设计方案。采用AT89S52单片机从串口接收上位机的指令并产生相应的控制信号,通过RD-053MS步进电机驱动器对步进电机进行控制,并用角度编码器和IK220计数卡实时获取步进电机的转动角度,将其反馈给上位机,上位机根据计算出的实际转动角度和目标转动角度的差值,向下位机继续发送运动指令,直到满足精度要求。实验结果表明,系统定位精度可控制在20角秒以内,可应用于多种数控场合中。

  5. Modular model-based supervisory controller design for wafer logistics in lithography machines

    NARCIS (Netherlands)

    Van Der Sanden, B.; Reniers, M.; Geilen, M.; Basten, T.; Jacobs, J.; Voeten, J.; Schiffelers, R.

    2015-01-01

    Development of high-level supervisory controllers is an important challenge in the design of high-tech systems. It has become a significant issue due to increased complexity, combined with demands for verified quality, time to market, ease of development, and integration of new functionality. To

  6. Closed Loop Supply Chains for Sustainable Mass Customization

    DEFF Research Database (Denmark)

    Nielsen, Kjeld; Brunø, Thomas Ditlev

    2013-01-01

    Closed loop supply chains reducing waste, energy consumption and natural resource depletion which all contribute to more sustainable production and products. For mass customization however, the challenges of closed loop supply chains are emphasized by the large variety of inbound end...

  7. An Adaptive Supervisory Sliding Fuzzy Cerebellar Model Articulation Controller for Sensorless Vector-Controlled Induction Motor Drive Systems

    Directory of Open Access Journals (Sweden)

    Shun-Yuan Wang

    2015-03-01

    Full Text Available This paper presents the implementation of an adaptive supervisory sliding fuzzy cerebellar model articulation controller (FCMAC in the speed sensorless vector control of an induction motor (IM drive system. The proposed adaptive supervisory sliding FCMAC comprised a supervisory controller, integral sliding surface, and an adaptive FCMAC. The integral sliding surface was employed to eliminate steady-state errors and enhance the responsiveness of the system. The adaptive FCMAC incorporated an FCMAC with a compensating controller to perform a desired control action. The proposed controller was derived using the Lyapunov approach, which guarantees learning-error convergence. The implementation of three intelligent control schemes—the adaptive supervisory sliding FCMAC, adaptive sliding FCMAC, and adaptive sliding CMAC—were experimentally investigated under various conditions in a realistic sensorless vector-controlled IM drive system. The root mean square error (RMSE was used as a performance index to evaluate the experimental results of each control scheme. The analysis results indicated that the proposed adaptive supervisory sliding FCMAC substantially improved the system performance compared with the other control schemes.

  8. Closed-loop suppression of chaos in nonlinear driven oscillators

    Science.gov (United States)

    Aguirre, L. A.; Billings, S. A.

    1995-05-01

    This paper discusses the suppression of chaos in nonlinear driven oscillators via the addition of a periodic perturbation. Given a system originally undergoing chaotic motions, it is desired that such a system be driven to some periodic orbit. This can be achieved by the addition of a weak periodic signal to the oscillator input. This is usually accomplished in open loop, but this procedure presents some difficulties which are discussed in the paper. To ensure that this is attained despite uncertainties and possible disturbances on the system, a procedure is suggested to perform control in closed loop. In addition, it is illustrated how a model, estimated from input/output data, can be used in the design. Numerical examples which use the Duffing-Ueda and modified van der Pol oscillators are included to illustrate some of the properties of the new approach.

  9. 纯电动客车用BLDCM双闭环控制系统建模与仿真%Model and Simulation of BLDCM Double Closed-loop Control System for Pure Electric Bus

    Institute of Scientific and Technical Information of China (English)

    张昌利; 马建

    2012-01-01

    In order to provide reference for the development of electric vehicles, a velocity-current double closed-loop control system was devised for the brushless DC motor (BLDCM) in a pure electric bus reassembled from a given city transit bus. A dynamic simulation model for this control system was established on MATLAB, and three simulation experiments, i. e. , no-/on- load switch on BLDCM, gear shift of vehicle, as well as vehicle running under a given city driving cycle, were conducted. Simulation results show that, compared with the traditional motor- focused control systems, this system takes vehicle velocity as control object, and integrates vehicle control and motor control into a more coherent pattern. By installing speed detecting devices on wheels other than on the motor, this system also introduces a possible way to reduce both the design difficulty and the manufacture cost for BLDCM. Besides having equal controlling effect on BLDCM's rotating speed to traditional control systems, this system also has excellent performance in vehicle speed stabilization during gear shift period, and has fast respond to frequently changing vehicle speed, therefore meets the demands of city road driving for pure electric bus.%为了给电动汽车的研发提供参考,针对某型城市公交中巴客车改装的纯电动汽车,设计了无刷直流电机(BLDCM)的车速-电流双闭环控制系统,在MATLAB环境下搭建了该系统的动态仿真模型,并从空载(负载)运行、换挡运行、循环工况运行3个方面进行了仿真试验。研究结果表明:相比于传统的仅针对电机的驱动控制系统,该系统直接以车速为控制对象,可以将整车控制与电机控制有机结合起来;测速装置从电机转移到车轮上,利于降低BLDCM的设计复杂度和制造成本;该系统的电机调速控制效果与传统的电机驱动控制系统相当,并可有效控制汽车换挡带来的车速突变、迅速响应频繁变化的

  10. 热轧铝板带分段冷却闭环控制策略%Closed-loop Control Strategy of Segmented Cooling in Hot Rolling of Aluminum Alloys

    Institute of Scientific and Technical Information of China (English)

    高山凤; 刘鸿飞; 郗安民; 杨贤

    2016-01-01

    Based on measuring system of the roll temperature, the closed-loop fuzzy control system of segmented cooling is introduced, in order to solve the problem existing in the control of strip crown in the hot rolling of aluminum alloys. The simple measurement equipment and control system is used, instead of the expensive and complex strip crown control system. First the adaptive PSO-BP neural network is trained with the actual data of rolling, and the temperature presetting model is set by completed training neural network based on the target crown of aluminum strip. Then, the fuzzy control rules of the segmented cooling system are designed according to the operation experience of worker and the results of theoretical analysis. The goal of control strip crown is achieved ultimately. Through the verification of the two high reversible hot rolling mill, the deviation value of roll temperature can be controlled within ±4℃ and the proportion of aluminum strip crown within the scope of target crown(20~40μm) is 95% on the aluminum strip with longitudinal. The method takes full advantage of the control ability of segmented cooling system for strip crown.%针对目前热轧铝板带凸度控制存在的问题,建立以轧辊温度在线测量为基础的分段冷却闭环模糊控制系统。以简单的测量设备和控制方法,代替昂贵复杂的板带凸度控制机构。用实际轧制数据训练自适应PSO-BP神经网络,并用训练完成的神经网络依据目标板带凸度得出轧辊温度预设定模型;依据操作人员的经验以及理论分析结果,设计分段冷却模糊控制规则,形成分段冷却闭环控制系统,达到控制板带凸度的目的。经在某厂二辊可逆热轧上的应用,结果表明:轧辊温度偏差量可控制在±4℃内;铝板带纵向各处的凸度95%以上可控制在目标凸度(20~40μm)范围内。该方法充分发挥了分段冷却系统对板带凸度的控制能力。

  11. Insulin pump therapy in youth with type 1 diabetes: toward closed-loop systems.

    Science.gov (United States)

    Tauschmann, Martin; Hovorka, Roman

    2014-06-01

    Insulin pump technology has advanced considerably over the past three decades, leading to more favorable metabolic control and less hypoglycemic events when compared with multiple daily injection therapy. The use of insulin pumps is increasing, particularly in children and adolescents with type 1 diabetes. This review outlines recent developments in insulin pump therapy from a pediatric perspective. 'Smart' pumps, sensor-augmented pump therapy and threshold-suspend feature of insulin pumps are reviewed in terms of efficacy, safety and psychosocial impact. The current status of closed-loop systems focusing on clinical outcomes is highlighted. Closed-loop insulin delivery is gradually progressing from bench to the clinical practice. Longer and larger studies in home settings are needed to expand on short- to medium-term outpatient evaluations. Predictive low glucose management and overnight closed-loop delivery may be the next applications to be implemented in daily routine. Further challenges include improvements of control algorithms, sensor accuracy, duration of insulin action, integration and size of devices and connectivity and usability. Gradual improvements and increasing sophistication of closed-loop components lie on the path toward unsupervised hands-off fully closed-loop system.

  12. Virtuality in human supervisory control: assessing the effects of psychological and social remoteness.

    Science.gov (United States)

    Stanton, Neville A; Ashleigh, Melanie J; Roberts, Anthony D; Xu, Francis

    2003-10-10

    Virtuality would seem to offer certain advantages for human supervisory control. First, it could provide a physical analogue of the 'real world' environment. Second, it does not require control room engineers to be in the same place as each other. In order to investigate these issues, a low-fidelity simulation of an energy distribution network was developed. The main aims of the research were to assess some of the psychological concerns associated with virtual environments. First, it may result in the social isolation of the people, and it may have dramatic effects upon the nature of the work. Second, a direct physical correspondence with the 'real world' may not best support human supervisory control activities. Experimental teams were asked to control an energy distribution network. Measures of team performance, group identity and core job characteristics were taken. In general terms, the results showed that teams working in the same location performed better than teams who were remote from one another.

  13. 基于电压闭环的双馈风力发电软切入控制%Soft cutting-in control based on voltage close-loop for doubly-fed wind power

    Institute of Scientific and Technical Information of China (English)

    方太勋; 吴小丹; 杨浩; 周启文

    2011-01-01

    Traditional control methods of wind power generation may produce high impact current at cutting -in moment,which threatens the safety of generator and power system. In order to study the soft grid -connection technology,the experimental excitation control system of a 30 kW VSCF(Variable Speed Constant Frequency) DFIG(Doubly Fed Induction Generator) is designed. According to the operational characteristics of AC excited VSCF wind power generation,the back-to-back converter is used as the excitation source of DFIG. Based on the analysis of DFIG mathematical model in rotating coordinates system,the stator flux-oriented mode is applied in no-load cutting-in algorithm. As partial reactive power is consumed to establish magnetic field in the no-load operation of DFIG,the traditional open-loop control method may cause the inaccuracy of stator voltage. The voltage close-loop control mode is proposed to improve the accuracy of stator voltage at no-load cutting-in moment. Experimental results show that the proposed control method effectively reduces the impact current and realizes the soft cutting-in.%传统的风力发电并网技术在并网瞬间会产生很大的冲击电流,严重威胁发电机及电力系统的安全.为研究空载并网技术,设计了一套30 kW变速恒频双馈异步风力发电机励磁控制实验系统.根据交流励磁变速恒频风力发电的运行特性,采用背靠背变流器作为双馈异步发电机(DFIG)的励磁源.分析了基于旋转坐标系统下的DFIG的数学模型,采用定子磁链定向方式的空载并网算法,由于DFIG在空载运行过程中需要消耗一部分无功来建立磁场,因此传统开环控制过程会引起定子电压控制精度不足,为此提出采用电压闭环控制方式提高空载并网过程中的定子电压精度.实验表明,该控制方法可以有效减小DFIG在并网过程中产生的冲击电流,实现控制过程软切入.

  14. Irradiation Testing Vehicles for Fast Reactors from Open Test Assemblies to Closed Loops

    Energy Technology Data Exchange (ETDEWEB)

    Sienicki, James J. [Argonne National Lab. (ANL), Argonne, IL (United States); Grandy, Christopher [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-12-15

    A review of irradiation testing vehicle approaches and designs that have been incorporated into past Sodium-Cooled Fast Reactors (SFRs) or envisioned for incorporation has been carried out. The objective is to understand the essential features of the approaches and designs so that they can inform test vehicle designs for a future U.S. Fast Test Reactor. Fast test reactor designs examined include EBR-II, FFTF, JOYO, BOR-60, PHÉNIX, JHR, and MBIR. Previous designers exhibited great ingenuity in overcoming design and operational challenges especially when the original reactor plant’s mission changed to an irradiation testing mission as in the EBRII reactor plant. The various irradiation testing vehicles can be categorized as: Uninstrumented open assemblies that fit into core locations; Instrumented open test assemblies that fit into special core locations; Self-contained closed loops; and External closed loops. A special emphasis is devoted to closed loops as they are regarded as a very desirable feature of a future U.S. Fast Test Reactor. Closed loops are an important technology for irradiation of fuels and materials in separate controlled environments. The impact of closed loops on the design of fast reactors is also discussed in this report.

  15. Open- and closed-loop multiobjective optimal strategies for HIV therapy using NSGA-II.

    Science.gov (United States)

    Heris, S Mostapha Kalami; Khaloozadeh, Hamid

    2011-06-01

    In this paper, multiobjective open- and closed-loop optimal treatment strategies for HIV/AIDS are presented. It is assumed that highly active antiretroviral therapy is available for treatment of HIV infection. Amount of drug usage and the quality of treatment are defined as two objectives of a biobjective optimization problem, and Nondominated Sorting Genetic Algorithm II is used to solve this problem. Open- and closed-loop control strategies are used to produce optimal control inputs, and the Pareto frontiers obtained from these two strategies are compared. Pareto frontier, resulted from the optimization process, suggests a set of treatment strategies, which all are optimal from a perspective, and can be used in different medical and economic conditions. Robustness of closed-loop system in the presence of measurement noises is analyzed, assuming various levels of noise.

  16. Regime-based supervisory control to reduce power fluctuations from offshore wind power plants

    DEFF Research Database (Denmark)

    Barahona Garzón, Braulio; Cutululis, Nicolaos Antonio; Trombe, Pierre-Julien

    2013-01-01

    of production, hence revenue for the wind farm operator. On the other hand, progresses in short term forecasting, together with the increasing use of probabilistic forecasting can help in achieving efficient power fluctuations reduction with minimum lost production. Here we present supervisory control concepts...... that consider different wind power regimes to derive control setpoints by using a Markov-Switching AutoRegressive model. We evaluate the performance versus measured data in terms of power ramp characteristics and energy efficiency....

  17. A supervisory control approach in economic MPC design for refrigeration systems

    DEFF Research Database (Denmark)

    Shafiei, Seyed Ehsan; Stoustrup, Jakob; Rasmussen, Henrik

    2013-01-01

    A model predictive control at the supervisory level is proposed for refrigeration systems using price and temperature predictions. The control objective is to minimize the overall energy cost within the prediction horizon. The method is mainly developed for demand-side management in the future sm...... to rearrange the problem to facilitate convex programming. A nonlinear continuous time model validated by real data is employed to simulate system operation. The results show a considerable economic saving as well as a trade-off between the saving level and design complexity.......A model predictive control at the supervisory level is proposed for refrigeration systems using price and temperature predictions. The control objective is to minimize the overall energy cost within the prediction horizon. The method is mainly developed for demand-side management in the future...... smart grid, but a simpler version can be applied in the current electricity market. Due to the system nonlinearity, the minimization is in general a complicated nonconvex optimization problem. A new supervisory control structure as well as an algorithmic pressure control scheme is put forward...

  18. Design of Very Low Frequency High Voltage Generator Using Three-closed-loop Control%采用三闭环控制的超低频高压电源设计

    Institute of Scientific and Technical Information of China (English)

    刘志刚; 李国锋; 王宁会

    2012-01-01

    为了满足交联聚乙烯(XLPE)电缆对检测电源的要求,设计了一种采用两个高频高压变压器作为升压变压器的超低频高压电源。详细阐述了系统的硬件设计及软件控制策略,优化了变压器的结构及绝缘,大大缩小了变压器的体积及质量,减小了变压器的分布参数。并根据电路拓扑的特点,首次采用先进的三闭环控制技术,动态地对高频部分及低频部分的输出进行了监控与调整,减小了高频高压变压器分布参数对电源性能的影响。同时对采样数据采取了分段化的处理方法,大大减小了程序的计算量,使它能够应用于单片机控制。采用所设计的35kV/0.1Hz电源对电气特性等效于XLPE电缆的高压电容(1.5μF)进行了实验,其总谐波畸变率(THD)为2.76%,完全满足IEEE 400.2标准对总谐波畸变率〈5%的要求。实验结果验证了理论的可行性与正确性。%A novel topology and the control strategy of the very-low-frequency(VLF) high voltage generator are introduced to meet the requirements of XLPE cable test.Design parameters of the system hardware and the control strategy of the system software are presented.The structure and the insulation of the transformer are optimized.As a result,the volume and the weight are decreased obviously.According to the topology of the circuit,the cutting edge of three-closed-loop control technology is first applied in VLF high voltage power supply.The output voltage and the secondary voltage are timely monitored and regulated,so that the influence of distributed parameter is reduced effectively.Simultaneously,the principle of segmental data processing is applied in data processing.Thereby,the calculation complexity is decreased significantly.The 35 kV/0.1 Hz power supply is used to test a 1.5 μF capacitor.Total harmonic distortion is 2.76% which can meet the requirements of IEEE 400.6 standard.The experimental results verify the accuracy and

  19. Cognitive Modeling for Closed-Loop Task Mitigation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Intelligent Automation, Inc. (IAI) along with collaborators at the University of Iowa and Old Dominion University (ODU) developed an advanced closed-loop Adaptive...

  20. Closed Loop Supply Chains for Sustainable Mass Customization

    DEFF Research Database (Denmark)

    Nielsen, Kjeld; Brunø, Thomas Ditlev

    2013-01-01

    Closed loop supply chains reducing waste, energy consumption and natural resource depletion which all contribute to more sustainable production and products. For mass customization however, the challenges of closed loop supply chains are emphasized by the large variety of inbound end-of-life prod......Closed loop supply chains reducing waste, energy consumption and natural resource depletion which all contribute to more sustainable production and products. For mass customization however, the challenges of closed loop supply chains are emphasized by the large variety of inbound end......-of-life products from customers which complicates handling and forecasting. This paper analyses these challenges in the specific context mass customization using theoretical considerations and three case studies....

  1. Physical/chemical closed-loop life support

    Science.gov (United States)

    Lawless, James G.

    1988-01-01

    Information on physical/chemical closed-loop life support systems are given in viewgraph form. Information is given on program objectives, the elements of a life support system, and Pathfinder program elements.

  2. 超细气流粉碎分级系统产品粒径的确定与控制%Determination and Control of Product Size for a Ultrafine Milling-Classifying Closed Loop System

    Institute of Scientific and Technical Information of China (English)

    刘雪东; 卓震

    2001-01-01

    The closed loop system which composed by ultrafine pancake jet mill and ultrafine centrifugal air classifier has been set up. The product cut size of jet mill is less than 10 μm. The classifier obtains sharp distributio n of end product cut size. Feeding rate of jet mill, rotational speed of classif ier, flow rate of secondary air flow and flow rate of third air flow are the fac tors that affect on the cut size of end product. The optimal operation conditio ns of the system are discussed by using orthogonal experiment. The relation among rotational speed of classifier, feeding rate of jet mill, flow rate of s econda ry air flow of classifier and end product cut size has been analyzed by means of regressive method. Based on the results of regressive analysis, the end product cut size control process of ultrafine milling and classifying system is introdu ced in this paper. The feasibility of compuer control system has been testified by the results of experiments.%建立扁平式超细气流粉碎机与离心式超细空气分级机 组成的闭路循环系统。粉碎机将 粉碎原料粉碎至粒度10 μm左右,分级机使粉碎产品的粒度分布更窄。影响超细气流粉 碎分级系统产品粒径的因素有粉碎机的加料速度、分级机叶轮转速及分级机二、三次风量等 。通过正交试验及最小二乘法得到分级机分级叶轮转速、粉碎机加料速度、二次风量等对产 品粒径影响的回归公式。正交试验结果表明,当分级机分级叶轮转速增加时,产品粒径减小 ;当原料加入速度增加,产品粒径增大;二次风量增加,产品粒径稍有减少。在回归分析的 基础上,建立粉碎分级系统产品粒径的计算机控制过程。通过计算机控制粉碎分级系统产品 粒径,实现粉碎产品粒径的“目标控制”。控制系统的可行性得到试验结果的验证。

  3. Architecture Design and Performance Analysis of Supervisory Control System of Multiple UAVs

    Directory of Open Access Journals (Sweden)

    Guozhong Zhang

    2015-04-01

    Full Text Available Although UAV systems are currently controlled by a group of people, in the future, increased automation could allow a single operator to supervise multiple UAVs. Operators will be involved in the mission planning, imagery analysis, weapon control, and contingency interventions. This study examines the architecture and prototype of multiple UAVs supervisory control system. Firstly, the architecture for testing and evaluating human supervisory system controlling multiple UAVs is devised and each sub-system is described in detail. Then a prototype test bed of multiple UAVs supervisory control for demonstrating architecture and adaptive levels of autonomy is built. Finally, with the test bed, the impact of dynamic role allocation on system performance is studied based on quantitative criteria of wait times and operator utilisation. It is shown by simulation that dynamic role allocation can effectively shorten wait times, and eventually improve the system performance.Defence Science Journal, Vol. 65, No. 2, March 2015, pp.93-98, DOI:http://dx.doi.org/10.14429/dsj.65.5837

  4. Active fault diagnosis in closed-loop uncertain systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    2006-01-01

    Fault diagnosis of parametric faults in closed-loop uncertain systems by using an auxiliary input vector is considered in this paper, i.e. active fault diagnosis (AFD). The active fault diagnosis is based directly on the socalled fault signature matrix, related to the YJBK (Youla, Jabr, Bongiorno...... and Kucera) parameterization. Conditions are given for exact detection and isolation of parametric faults in closed-loop uncertain systems....

  5. A precision closed-loop driving scheme of silicon micromachined vibratory gyroscope

    Energy Technology Data Exchange (ETDEWEB)

    Yang Bo; Zhou Bailing; Wang Shourong [Instrument Science and Engineering Department, Southeast University Nanjing 210096 (China)

    2006-04-01

    This paper describes a precision closed-loop driving scheme for Silicon Micromachined Vibratory Gyroscope (SMVG). It decouples the angle and gain of the selfoscillation- driven, optimizes the angle to reduce the relative difference between drive frequency and resonant frequency of the drive mode and achieves the closed-loop selfoscillation- driven by nonlinear relation between DC voltage using for control and drive force. The experiments show that the standard deviation of drive frequency is 0.009Hz, with relative drift 2.2ppm and the standard deviation of the amplitude is 0.0025mV, with relative drift 15ppm in one hour respectively. The closed-loop drive scheme improves the precision and stability of drive frequency and the amplitude of the gyroscope well. The paper analyses and tests the noise of the self-oscillation-driven. The result shows that the self-oscillation-driven has a rms noise below -100dB.

  6. Decentralized identification for multivariable integrating processes with time delays from closed-loop step tests.

    Science.gov (United States)

    Mei, Hua; Li, Shaoyuan

    2007-04-01

    In order to identify those multivariable processes with integrating factors in their transfer function matrices, a simple yet robust decentralized identification method from closed-loop step tests is proposed. By the frequency response matrix computed from the closed-loop system data and the knowledge of the decentralized controller, the structural information of the multivariable integrating process is determined firstly and then the continuous parametric model with dead times is approximated similarly with the parameterization of the open-loop stable process. Computer simulations and an application to a 3 x 3 integrating multiple-tank water level system verify the validation of the proposed method even if the closed-loop system is affected by some stochastic noise sources.

  7. Towards energy efficient operation of Heating, Ventilation and Air Conditioning systems via advanced supervisory control design

    Science.gov (United States)

    Oswiecinska, A.; Hibbs, J.; Zajic, I.; Burnham, K. J.

    2015-11-01

    This paper presents conceptual control solution for reliable and energy efficient operation of heating, ventilation and air conditioning (HVAC) systems used in large volume building applications, e.g. warehouse facilities or exhibition centres. Advanced two-level scalable control solution, designed to extend capabilities of the existing low-level control strategies via remote internet connection, is presented. The high-level, supervisory controller is based on Model Predictive Control (MPC) architecture, which is the state-of-the-art for indoor climate control systems. The innovative approach benefits from using passive heating and cooling control strategies for reducing the HVAC system operational costs, while ensuring that required environmental conditions are met.

  8. Design of Multiregional Supervisory Fuzzy PID Control of pH Reactors

    Directory of Open Access Journals (Sweden)

    Shebel AlSabbah

    2015-01-01

    Full Text Available This work concerns designing multiregional supervisory fuzzy PID (Proportional-Integral-Derivative control for pH reactors. The proposed work focuses, mainly, on two themes. The first one is to propose a multiregional supervisory fuzzy-based cascade control structure. It would enable modifying dynamics and enhance system’s stability. The fuzzy system (master loop has been chosen as a tuner for PID controller (slave loop. It takes into consideration parameters uncertainties and reference tracking. The second theme concerns designing a hybrid neural network-based pH estimator. The proposed estimator would overcome the industrial drawbacks, that is, cost and size, found with conventional methods for pH measurement. The final end-user-interface (EUI front panel and the results that evaluate the performance of the supervisory fuzzy PID-based control system and hybrid NN-based estimator have been presented using the compatibility found between LabView and MatLab. They lead to conclude that the proposed algorithms are appropriate to systems nonlinearities encountered with pH reactors.

  9. On the evaluation of expected performance cost for partially observed closed-loop stochastic systems

    Science.gov (United States)

    Bayard, D. S.; Eslami, M.

    1985-01-01

    New methods are presented for evaluating the expected performance cost of partially observed closed-loop stochastic systems. When the variances of the process statistics are small, a linearized model of the closed-loop stochastic system is defined for which the expected cost can be evaluated by recursion on a set of purely deterministic difference equations. When the variances of the process statistics are large, the linearized model can be used in the control variate method of variance reduction for reducing the number of sample paths required for effective Monte Carlo estimation.

  10. Evaluating the Impact of Communication Network Performance on Supervisory Supermarket Control

    DEFF Research Database (Denmark)

    Madsen, Jacob Theilgaard; Minko, Tomasz; Madsen, Tatiana Kozlova

    2017-01-01

    This paper addresses the evaluation of the impact of non-ideal communication networks on system performance of hierarchical control systems. It develops a stepwise evaluation approach that is applied to the example scenario of a supervisory controller for supermarket temperature control, addressing...... of communication network performance on the supermarket refrigeration control and resulting energy costs using simulation models. The results show that the controller is resilient to downstream information delays, however upstream delays or up- and downstream information loss can cause significant performance...

  11. 硅微谐振加速度计高精度相位闭环控制系统设计与实现%Design and implement of high precision phase closed-loop control system for silicon resonant accelerometer

    Institute of Scientific and Technical Information of China (English)

    王岩; 张玲; 邢朝洋

    2014-01-01

    硅微谐振加速度计因具有小体积优势和高精度潜力,成为硅微惯性传感器研制的热点之一。高精度相位闭环控制系统是决定硅微谐振加速度计精度水平的重要因素。在分析硅微谐振加速度计工作机理的基础上,从闭环控制系统设计的角度,分析了相位闭环控制回路的原理,提出了一种可以消除匀加速误差的高精度三阶无静差相位闭环控制方案。给出了设计思路,研究了环路性能测试方法,讨论了闭环系统相位误差的来源与抑制方法。所设计的闭环回路在0.1 Hz处静态增益为170 dB,启动时间小于20 ms,实测带宽为432 Hz,全温范围内相位闭环回路相差变化0.84°,系统参数满足设计指标。%The silicon resonant accelerometer (SRA) is one of research hotspots of inertial instrument due to its small volume and potential of high precision. The closed-loop control is one of the important ways to improve the performance of the SRA. Based on the analysis of the working principle of the SRA, this paper presents a closed-loop control scheme for high-precision three-order zero static-error phase to eliminate the acceleration error. The technology for testing the performance of the closed-loop system is researched, and the phase error source and the depressing solution are discussed. The simulated static gain of the open-loop frequency response is 170 dB at 0.1 Hz, and the setup time is within 20 ms. The experiments shows that the bandwidth and the temperature error of phase closed-loop system is 432 Hz and 0.84° respectively. The test results prove that the closed-loop designed can meet the design specifications.

  12. Human Automation Integration for Supervisory Control of UAVs

    Science.gov (United States)

    2006-06-01

    diminished. Performance of tasks that are likely to be required include: • Managing and controlling multiple UAV missions • Co-ordination and de...Data latency and trust; • Migrating control between operators and teams ; • Operator skills & embedded training; • Commonality in control...Nano cognetics – bottom-up, emergent organising principles based on least parsable information exchanges Controlability • Automation is not the

  13. Multi-model unfalsified adaptive switching supervisory control

    NARCIS (Netherlands)

    Baldi, Simone; Battistelli, Giorgio; Mosca, Edoardo; Tesi, Pietro

    2010-01-01

    The paper studies how on-line inferring stability of a potential control-loop consisting of an uncertain plant interconnected in feedback with a candidate controller using plant I/O pairs recorded while the plant is possibly driven by a different controller. In such a context, a convenient tool to w

  14. Investigation of the overall transient performance of the industrial two-phase closed loop thermosyphon

    NARCIS (Netherlands)

    Vincent, Charles C.J.; Kok, Jacobus B.W.

    1992-01-01

    The two-phase closed loop thermosyphon is investigated with emphasis on the overall performance in transient operation. The control volume approach is the base of a global analysis describing the motion of vapor and liquid phases of the thermosyphon system in one-dimensional equations. Interfacial s

  15. Closed-loop insulin delivery for treatment of type 1 diabetes

    Directory of Open Access Journals (Sweden)

    Elleri Daniela

    2011-11-01

    Full Text Available Abstract Type 1 diabetes is one of the most common endocrine problems in childhood and adolescence, and remains a serious chronic disorder with increased morbidity and mortality, and reduced quality of life. Technological innovations positively affect the management of type 1 diabetes. Closed-loop insulin delivery (artificial pancreas is a recent medical innovation, aiming to reduce the risk of hypoglycemia while achieving tight control of glucose. Characterized by real-time glucose-responsive insulin administration, closed-loop systems combine glucose-sensing and insulin-delivery components. In the most viable and researched configuration, a disposable sensor measures interstitial glucose levels, which are fed into a control algorithm controlling delivery of a rapid-acting insulin analog into the subcutaneous tissue by an insulin pump. Research progress builds on an increasing use of insulin pumps and availability of glucose monitors. We review the current status of insulin delivery, focusing on clinical evaluations of closed-loop systems. Future goals are outlined, and benefits and limitations of closed-loop therapy contrasted. The clinical utility of these systems is constrained by inaccuracies in glucose sensing, inter- and intra-patient variability, and delays due to absorption of insulin from the subcutaneous tissue, all of which are being gradually addressed.

  16. Intelligent supervisory-level control of industrial processes

    Energy Technology Data Exchange (ETDEWEB)

    Jaervensivu, M. [Pronyx Control Software (Finland); Juuso, E. [Oulu Univ. (Finland). Control Engineering Lab.

    2000-07-01

    Faced by intense competition, the pulp and paper industry is aiming for higher profitability by raising productivity and lowering costs. On the global scale, the industry has to meet increasing market demands for higher product quality, more specialty products, greater production flexibility and a higher standard of environmental protection. For these reasons, extensive research is being conducted to improve existing processes. One option that is gaining increasing attention within the industry is to improve control of existing processes by means of intelligent systems. In this paper, an intelligent kiln control system is presented. The system consists of two parts: the stabilizing control is based on a new LECont concept which uses a novel linguistic equation approach, while the targets are determined by a StabOpti concept on the optimisation level. Nonlinear models obtained from process data are used for optimisation and compensation of load disturbances. According to test results from on industrial pulp mill, operational flexibility was improved and both economic and ecological benefits were obtained. The overall control system provides a better insight into the process and extends the scope of both fuzzy logic control and advanced extensions of classical control. (orig.)

  17. The structure and operation scheme of an automatic and supervisory control system for KEPCO UPFC

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, S.J.; Lee, D.W.; Moon, S.I. [Seoul National Univ., Seoul (Korea, Republic of). School of Electrical Engineering

    2007-07-01

    The structure and functions of a control system that can be used for automatic and supervisory control of a unified power flow controller (UPFC) was presented. A UPFC is a device used in power electronic based transmission to allow the independent control of active and reactive power flows as well as the simultaneous control of voltage profile. The Korea Electric Power Corporation (KEPCO) installed a {+-}80 MVA UPFC at the 154 kV Kangjin substation, operated in the Kangjin-Jangheung transmission line. The operation strategies used in both the normal state and emergency state were presented along with a scheme that includes the minimization of active power loss, coordination of voltage/Var control with an under load tap changer (ULTC), and better system security. Although this UPFC is operated by set-point control, it has some limitations, particularly in emergency events. In order to overcome the limitation of set-point control, this paper proposed the automatic and supervisory control system connected to a local SCADA for data exchange. The primary function of the system is to analyze the state of the power system, determine the control objectives and to calculate the optimal power flow. Details of each of these functions was described in this paper along with a detailed algorithm for each scheme. 5 refs., 6 figs.

  18. Supervisory controller synthesis for product lines using CIF 3

    NARCIS (Netherlands)

    M.H. ter Beek (Maurice); M.A. Reniers (Michel); E.P. de Vink (Erik Peter)

    2016-01-01

    textabstractUsing the CIF 3 toolset, we illustrate the general idea of controller synthesis for product line engineering for a prototypical example of a family of coffee machines. The challenge is to integrate a number of given components into a family of products such that the resulting behaviour

  19. A Fault tolerant Control Supervisory System development Procedurefor Small Satellites

    DEFF Research Database (Denmark)

    Izadi-Zamanabadi, Roozbeh; Larsen, Jesper Abildgaard

    The paper presents a stepwise procedure to develop a fault tolerant control system for small satellites. The procedure is illustrated through implementation on the AAUSAT-II spacecraft. As it is shown the presented procedure requires expertise from several disciplines that are nevertheless...

  20. Predictive Models of Procedural Human Supervisory Control Behavior

    Science.gov (United States)

    2011-01-01

    flight-path deconfliction and crew duties, remain a primary concern for safe operations ( Weibel and Hansman, 2005). In summary, the control of multiple...for the development of decision aids." Systems, Man and Cybernetics, IEEE Transactions on 20(2): 310-317. Weibel , R. E. and J. R. Hansman (2005

  1. Modeling Supermarket Refrigeration Systems for Supervisory Control in Smart Grid

    DEFF Research Database (Denmark)

    Shafiei, Seyed Ehsan; Rasmussen, Henrik; Stoustrup, Jakob

    2013-01-01

    A modular modeling approach of supermarket refrigeration systems (SRS) which is appropriate for smart grid control purposes is presented in this paper. Modeling and identification are performed by just knowing the system configuration and measured data disregarding the physical details. So......, this approach is extendable to different configurations with different modules. The focus of the work is on estimating the power consumption of the system while estimating the display case temperatures as well. This model can however be employed as a simulation benchmark to develop control methods for SRS...... regarding their power/energy consumptions in the future smart grids. Moreover, the developed model is validated by real data collected from a supermarket in Denmark. The utilization of the produced model is also illustrated by a simple simulation example....

  2. Reverse logistics and closed-loop supply chain

    DEFF Research Database (Denmark)

    Govindan, Kannan; Soleimani, Hamed; Kannan, Devika

    2015-01-01

    Based on environmental, legal, social, and economic factors, reverse logistics and closed-loop supply chain issues have attracted attention among both academia and practitioners. This attention is evident by the vast number of publications in scientific journals which have been published in recent...... years. Hence, a comprehensive literature review of recent and state-of-the-art papers is vital to draw a framework of the past, and to shed light on future directions. The aim of this paper is to review recently published papers in reverse logistic and closed-loop supply chain in scientific journals...

  3. Modeling human decision making behavior in supervisory control

    Science.gov (United States)

    Tulga, M. K.; Sheridan, T. B.

    1977-01-01

    An optimal decision control model was developed, which is based primarily on a dynamic programming algorithm which looks at all the available task possibilities, charts an optimal trajectory, and commits itself to do the first step (i.e., follow the optimal trajectory during the next time period), and then iterates the calculation. A Bayesian estimator was included which estimates the tasks which might occur in the immediate future and provides this information to the dynamic programming routine. Preliminary trials comparing the human subject's performance to that of the optimal model show a great similarity, but indicate that the human skips certain movements which require quick change in strategy.

  4. Fabrication and formation mechanism of closed-loop fibers by electrospinning with a tip collector

    Science.gov (United States)

    Xu, Yan; Miao, Yu; Wen-Peng, Han; Ming-Hao, You; Jun-Cheng, Zhang; Rui-Hua, Dong; Hong-Di, Zhang; Yun-Ze, Long

    2016-07-01

    Electrospun nanofibers with designed or controlled structures have drawn much attention. In this study, we report an interesting new closed-loop structure in individual cerium nitrate/polyvinyl alcohol (Ce(NO3)3/PVA) and NaCl/PVA fibers, which are fabricated by electrospinning with a nail collector. The electrospinning parameters such as voltage and Ce(NO3)3 (or NaCl) concentration are examined for the formation of the closed-loop structure. The results suggest that the increase of the spinning voltage or addition of Ce(NO3)3 (or NaCl) is favorable for the formation of the closed-loop structure, and the increase of loop numbers and the decrease of loop size. Further analyses indicate that the formation mechanism of the closed-loop fibers can be predominantly attributed to the Coulomb repulsion in the charged jets. Project supported by the National Natural Science Foundation of China (Grant Nos. 51373082 and 11404181), the Taishan Scholars Program of Shandong Province, China (Grant No. ts20120528), and the Postdoctoral Scientific Research Foundation of Qingdao City, China.

  5. Idaho National Laboratory Supervisory Control and Data Acquisition Intrusion Detection System (SCADA IDS)

    Energy Technology Data Exchange (ETDEWEB)

    Jared Verba; Michael Milvich

    2008-05-01

    Current Intrusion Detection System (IDS) technology is not suited to be widely deployed inside a Supervisory, Control and Data Acquisition (SCADA) environment. Anomaly- and signature-based IDS technologies have developed methods to cover information technology-based networks activity and protocols effectively. However, these IDS technologies do not include the fine protocol granularity required to ensure network security inside an environment with weak protocols lacking authentication and encryption. By implementing a more specific and more intelligent packet inspection mechanism, tailored traffic flow analysis, and unique packet tampering detection, IDS technology developed specifically for SCADA environments can be deployed with confidence in detecting malicious activity.

  6. Supervisory System and Multivariable Control Applying Weighted Fuzzy-PID Logic in an Alcoholic Fermentation Process

    Directory of Open Access Journals (Sweden)

    Márcio Mendonça

    2015-10-01

    Full Text Available In this work, it is analyzed a multivariate system control of an alcoholic fermentation process with no minimum phase. The control is made with PID classic controllers associated with a supervisory system based on Fuzzy Systems. The Fuzzy system, a priori, send set-points to PID controllers, but also adds protection functions, such as if the biomass valued is at zero or very close. The Fuzzy controller changes the campaign to prevent or mitigate the paralyzation of the process. Three control architectures based on Fuzzy Control Systems are presented and compared in performance with classic control in different campaigns. The third architecture, in particular, adds an adaptive function. A brief summary of Fuzzy theory and correlated works will be presented. And, finally simulations results, conclusions and future works end the article.

  7. Creating integral value for stakeholders in closed loop supply chains

    NARCIS (Netherlands)

    Schenkel, Maren; Krikke, Harold; Caniëls, Marjolein CJ; van der Laan, Erwin

    2015-01-01

    This paper contributes to the existing literature by researching integral value creation in closed loop supply chains (CLSCs). We distinguish between multiple types of business value, strategic success factors, and multiple groups of stakeholders that affect and are affected by CLSC activities. To g

  8. Closed-loop analysis of an articulated railcar train

    Energy Technology Data Exchange (ETDEWEB)

    Heinzl, P.; Ploechl, M.; Mack, W.; Lugner, P. [Technische Univ., Vienna (Austria). Inst. fuer Mechanik

    2000-07-01

    An articulated railcar train is modelled by a plane three-body linkage mechanism guided at two points along a given trajectory with a prescribed velocity of the front point. The closed-loop system is analyzed using a symbolic-numerical method leading to ordinary differential equations in minimal coordinates. (orig.)

  9. Closed loop two-echelon repairable item systems

    NARCIS (Netherlands)

    Spanjers, L.; van Ommeren, Jan C.W.; Zijm, Willem H.M.; Liberopoulos, G.; Papadopoulos, C.T.; Tan, B.; MacGregor Smith, J.; Gershwin, S.B.

    2006-01-01

    In this paper we consider closed loop two-echelon epairable item systems with repair facilities both at a number of local service centers (called bases) and at a central location (the depot). The goal of the system is to maintain a number of production facilities (one at each base) in optimal

  10. Closed loop two-echelon repairable item systems

    NARCIS (Netherlands)

    Spanjers, L.; van Ommeren, Jan C.W.; Zijm, Willem H.M.

    In this paper we consider closed loop two-echelon repairable item systems with repair facilities both at a number of local service centers (called bases) and at a central location (the depot). The goal of the system is to maintain a number of production facilities (one at each base) in optimal

  11. Perancangan Sistem Pemantauan Pengendali Suhu pada Stirred Tank Heater menggunakan Supervisory Control and Data Acquisition (SCADA

    Directory of Open Access Journals (Sweden)

    Ike Bayusari

    2013-04-01

    Full Text Available This paper discusses design of a suhue control monitoring system in stirred tank heater system that has an important function in industrial processes. Monitoring of suhue control system in stirred tank heater is designed using Supervisory Control and Data Acquisition (SCADA that control function of industrial processes. While the actuator to be controlled is the position of burner openings, so that the heat can be adjusted to meet a predetermined set-point. The suhue controller that is also used as a Remote Terminal Unit (RTU is Programmable Logic Controller (PLC. The testing result showed on SCADA system was quite good, where the average percentage of deviation for testing of set-point data was 0.76687%, and the percentage of deviation for testing of suhue data was 0.082%.

  12. Three key regions for supervisory attentional control: Evidence from neuroimaging meta-analyses

    Science.gov (United States)

    Cieslik, Edna C.; Mueller, Veronika I.; Eickhoff, Claudia R.; Langner, Robert; Eickhoff, Simon B.

    2014-01-01

    The supervisory attentional system has been proposed to mediate non-routine, goal-oriented behaviour by guiding the selection and maintenance of the goal-relevant task schema. Here, we aimed to delineate the brain regions that mediate these high-level control processes via neuroimaging meta-analysis. In particular, we investigated the core neural correlates of a wide range of tasks requiring supervisory control for the suppression of a routine action in favour of another, non-routine one. Our sample comprised n = 173 experiments employing go/no-go, stop-signal, Stroop or spatial interference tasks. Consistent convergence across all four paradigm classes was restricted to right anterior insula and inferior frontal junction, with anterior midcingulate cortex and pre-supplementary motor area being consistently involved in all but the go/no-go task. Taken together with lesion studies in patients, our findings suggest that the controlled activation and maintenance of adequate task schemata relies, across paradigms, on a right-dominant midcingulo-insular-inferior frontal core network. This also implies that the role of other prefrontal and parietal regions may be less domain-general than previously thought. PMID:25446951

  13. Evaluation of closed-loop anesthesia delivery for propofol anesthesia in pediatric cardiac surgery.

    Science.gov (United States)

    Biswas, Indranil; Mathew, Preethy J; Singh, Rana S; Puri, Goverdhan D

    2013-12-01

    The objective of this study was to compare the feasibility of closed-loop anesthesia delivery with manual control of propofol in pediatric patients during cardiac surgery. Forty ASA II-III children, undergoing elective cardiac surgery under cardiopulmonary bypass (CPB) in a tertiary care hospital, were randomized to receive propofol either through a closed-loop anesthesia delivery system (CL group) or through traditional manual control (manual group) to achieve a target BIS of 50. Patients were induced and subsequently maintained with a propofol infusion. The propofol usage and the efficacy of closed-loop system in controlling BIS within ±10 of the target were compared with that of manual control. The maintenance of BIS within ±10 of target and intraoperative hemodynamic stability were similar between the two groups. However, induction dose of propofol was less in the CL group (2.06 ± 0.79 mg·kg(-1) ) than the manual group (2.95 ± 1.03 mg·kg(-1) ) (P = 0.006) with less overshoot of BIS during induction in the closed-loop group (P = 0.007). Total propofol used in the off-CPB period was less in the CL group (6.29 ± 2.48 mg·kg(-1) h(-1) vs 7.82 ± 2.1 mg·kg(-1) h(-1) ) (P = 0.037). Phenylephrine use in the pre-CPB period was more in the manual group (16.92 ± 10.92 μg·kg(-1) vs 5.79 ± 5.98 μg·kg(-1) ) (P = 0.014). Manual group required a median of 18 (range 8-29) dose adjustments per hour, while the CL group required none. This study demonstrated the feasibility of closed-loop controlled propofol anesthesia in children, even in challenging procedures such as cardiac surgery. Closed-loop system needs further and larger evaluation to establish its safety and efficacy. © 2013 John Wiley & Sons Ltd.

  14. CDP - Adaptive Supervisory Control and Data Acquisition (SCADA) Technology for Infrastructure Protection

    Energy Technology Data Exchange (ETDEWEB)

    Marco Carvalho; Richard Ford

    2012-05-14

    Supervisory Control and Data Acquisition (SCADA) Systems are a type of Industrial Control System characterized by the centralized (or hierarchical) monitoring and control of geographically dispersed assets. SCADA systems combine acquisition and network components to provide data gathering, transmission, and visualization for centralized monitoring and control. However these integrated capabilities, especially when built over legacy systems and protocols, generally result in vulnerabilities that can be exploited by attackers, with potentially disastrous consequences. Our research project proposal was to investigate new approaches for secure and survivable SCADA systems. In particular, we were interested in the resilience and adaptability of large-scale mission-critical monitoring and control infrastructures. Our research proposal was divided in two main tasks. The first task was centered on the design and investigation of algorithms for survivable SCADA systems and a prototype framework demonstration. The second task was centered on the characterization and demonstration of the proposed approach in illustrative scenarios (simulated or emulated).

  15. A Safe Supervisory Flight Control Scheme in the Presence of Constraints and Anomalies

    Directory of Open Access Journals (Sweden)

    Franzè Giuseppe

    2015-03-01

    Full Text Available In this paper the hybrid supervisory control architecture developed by Famularo et al. (2011 for constrained control systems is adopted with the aim to improve safety in aircraft operations when critical events like command saturations or unpredicted anomalies occur. The capabilities of a low-computational demanding predictive scheme for the supervision of non-linear dynamical systems subject to sudden switchings amongst operating conditions and time-varying constraints are exploited in the flight control systems framework. The strategy is based on command governor ideas and is tailored to jointly take into account time-varying set-points/constraints. Unpredictable anomalies in the nominal plant behaviour, whose models fall in the category of time-varying constraints, can also be tolerated by the control scheme. In order to show the effectiveness of the proposed approach, simulations both on a high altitude performance demonstrator unmanned aircraft with redundant control surfaces and the P92 general aviation aircraft are discussed.

  16. IMC-PID design based on model matching approach and closed-loop shaping.

    Science.gov (United States)

    Jin, Qi B; Liu, Q

    2014-03-01

    Motivated by the limitations of the conventional internal model control (IMC), this communication addresses the design of IMC-based PID in terms of the robust performance of the control system. The IMC controller form is obtained by solving an H-infinity problem based on the model matching approach, and the parameters are determined by closed-loop shaping. The shaping of the closed-loop transfer function is considered both for the set-point tracking and for the load disturbance rejection. The design procedure is formulated as a multi-objective optimization problem which is solved by a specific optimization algorithm. A nice feature of this design method is that it permits a clear tradeoff between robustness and performance. Simulation examples show that the proposed method is effective and has a wide applicability.

  17. A computer simulation experiment of supervisory control of remote manipulation. M.S. Thesis

    Science.gov (United States)

    Mccandlish, S. G.

    1966-01-01

    A computer simulation of a remote manipulation task and a rate-controlled manipulator is described. Some low-level automatic decision making ability which could be used at the operator's discretion to augment his direct continuous control was built into the manipulator. Experiments were made on the effect of transmission delay, dynamic lag, and intermittent vision on human manipulative ability. Delay does not make remote manipulation impossible. Intermittent visual feedback, and the absence of rate information in the display presented to the operator do not seem to impair the operator's performance. A small-capacity visual feedback channel may be sufficient for remote manipulation tasks, or one channel might be time-shared between several operators. In other experiments the operator called in sequence various on-site automatic control programs of the machine, and thereby acted as a supervisor. The supervisory mode of operation has some advantages when the task to be performed is difficult for a human controlling directly.

  18. Simple PID parameter tuning method based on outputs of the closed loop system

    Science.gov (United States)

    Han, Jianda; Zhu, Zhiqiang; Jiang, Ziya; He, Yuqing

    2016-05-01

    Most of the existing PID parameters tuning methods are only effective with pre-known accurate system models, which often require some strict identification experiments and thus infeasible for many complicated systems. Actually, in most practical engineering applications, it is desirable for the PID tuning scheme to be directly based on the input-output response of the closed-loop system. Thus, a new parameter tuning scheme for PID controllers without explicit mathematical model is developed in this paper. The paper begins with a new frequency domain properties analysis of the PID controller. After that, the definition of characteristic frequency for the PID controller is given in order to study the mathematical relationship between the PID parameters and the open-loop frequency properties of the controlled system. Then, the concepts of M-field and θ-field are introduced, which are then used to explain how the PID control parameters influence the closed-loop frequency-magnitude property and its time responses. Subsequently, the new PID parameter tuning scheme, i.e., a group of tuning rules, is proposed based on the preceding analysis. Finally, both simulations and experiments are conducted, and the results verify the feasibility and validity of the proposed methods. This research proposes a PID parameter tuning method based on outputs of the closed loop system.

  19. Research and implementation of digital detection method on closed loop FOG

    Institute of Scientific and Technical Information of China (English)

    LI Di; LI Xu-you; SUN Yao

    2004-01-01

    In the strapdown inertial navigation system, the Fiber Optical Gyro(FOG) must have high precision to give accurate navigation information. In this paper, a digital closed loop detection method based on the ramp wave modulating technigue is introduced. DSP and FPGA have many advantages in digital signal processing. In the design, by using DSP, a complex arithmetic operation is completed to meet the needs of closed loop control of FOG within a short time. All kinds of control signals are produced easily by FPGA, under which DSP could work properly. Combining the DSP and FPGA, the detecting method is implemented successfully. In the end, the result of test and performance is given. From the result we can conclude that the precision of FOG is improved and the noises are limited to a low level.

  20. Bifurcations of limit cycles in open and closed loop reverse flow reactors

    Science.gov (United States)

    Russo, Lucia; Crescitelli, Silvestro; Brasiello, Antonio

    2013-10-01

    The present work analyses the bifurcations of limit cycles in open and loop reverse flow reactors. The open loop system consists of a reactor where the flow direction is periodically forced whereas in the closed loop system, the flow inversion is dictated by a control law which activates when the temperature at the edge of catalytic bed falls below the set-point value. We performed the bifurcation analysis of the open loop system as the switch time is varied and we constructed the solution diagram through the application of continuation technique. Many Naimark-Sacker bifurcations leading to quasi-periodic regimes have been found on the limit cycles branches. Finally, we compared these limit cycles with those of the closed loop system where the flow inversion is dictated by a control system which acts if the temperature measured at the edge of reactor falls below a set-point value.

  1. Study of the Open Loop and Closed Loop Oscillator Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Imel, George R. [Idaho State Univ., Pocatello, ID (United States); Baker, Benjamin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Riley, Tony [Knolls Atomic Power Lab. (KAPL), Schenectady, NY (United States); Langbehn, Adam [Puget Sound Naval Base, Bremerton, WA (United States); Aryal, Harishchandra [Idaho State Univ., Pocatello, ID (United States); Benzerga, M. Lamine [Idaho State Univ., Pocatello, ID (United States)

    2015-04-11

    This report presents the progress and completion of a five-year study undertaken at Idaho State University of the measurement of very small worth reactivity samples comparing open and closed loop oscillator techniques.The study conclusively demonstrated the equivalency of the two techniques with regard to uncertainties in reactivity values, i.e., limited by reactor noise. As those results are thoroughly documented in recent publications, in this report we will concentrate on the support work that was necessary. For example, we describe in some detail the construction and calibration of a pilot rod for the closed loop system. We discuss the campaign to measure the required reactor parameters necessary for inverse-kinetics. Finally, we briefly discuss the transfer of the open loop technique to other reactor systems.

  2. Integrated closed-loop cavity of a tunable laser

    Science.gov (United States)

    Ren, M.; Cai, H.; Gu, Y. D.; Chin, L. K.; Radhakrishnan, K.; Ser, W.; Sun, H. D.; Liang, Q. X.; Kwong, D.-L.; Liu, A. Q.

    2016-10-01

    In this paper, a closed-loop cavity of a tunable laser integrated onto a silicon chip is demonstrated. The closed-loop cavity consists of a semiconductor optical amplifier chip, two separated micro-ring resonators, and a U-shaped waveguide sub-loop, enabling dominating lasing in the counterclockwise direction. The lasing wavelength is tuned by varying the effective refractive index of the thermal ring-resonators. It has achieved wide tuning range (55.4 nm), high spectral purity (50-dB side mode suppression ratio), ˜1-mW output power, and 36-dB counter-propagation power suppression ratio. The integrated tunable laser has high potential in applications such as optical network, optical sensing, and integrated optoelectronic systems.

  3. Modelling of Closed Loop Class E Inverter Based Induction Heater

    Directory of Open Access Journals (Sweden)

    S. Arumugam

    2011-01-01

    Full Text Available This study presents simulation of class E inverter based induction heater system using simulink. DC is converted into high frequency AC using class E inverter. This high frequency AC is used for induction heating. Closed loop systems are modeled and they are simulated using Mat lab Simulink.The results of closed loop systems are presented. The proposed amplifier with two series-parallel resonant load networks will allow sinusoidal output voltage to be achieved by associating with the positive and negative quasi-sinusoidal waveforms. The complementarily activated configuration will provide continuous high-ripple-frequency inputcurrent waveforms; this approach significantly reduces electromagnetic interference and requires very little filtering. With the symmetry of the push-pull Class-E Circuit, there is the additional benefit that the even harmonics are suppressed at the load, and thus there are fewer harmonic distortions.

  4. Closed-loop adaptive optical system with a liquid mirror.

    Science.gov (United States)

    Vdovin, Gleb

    2009-02-15

    A deformable mirror based on internal reflection from an electrostatically deformable liquid-air interface is proposed and investigated. A differential equation describing the static behavior of such a mirror is analyzed and solved numerically. Stable closed-loop operation of an adaptive optical system with a liquid deformable mirror is demonstrated, including forming and the correction of low-order aberrations described by Zernike polynomials and the real-time correction of dynamically changing aberrations.

  5. Closed Loop Recycling of Plastic Housing for Flat Screen TVs

    OpenAIRE

    2012-01-01

    The treatment of the rapidly increasing number of End-of-Life (EoL) Flat screen Televisions (FTVs) presents major challenges and opportunities. Closing loops in plastic housing material flows remains a particular technical challenge because of the presence of additives, such as Flame Retardants (FR) in recovered housings. In the framework of a collaborative project PRIME with TP Vision the TV development site for Philips TVs and a Van Gansewinkel first level recycling plant, series of experim...

  6. Hypnosis closed loop TCI systems in outpatient surgery.

    Science.gov (United States)

    Ramos-Luengo, A; Asensio-Merino, F

    Determine the influence of general anaesthesia with closed-loop systems in the results of outpatient varicose vein surgery. Retrospective observational study including data from 270 outpatients between 2014 and 2015. The patients were divided into 2 groups according to the type of general anaesthesia used. The CL Group included patients who received propofol in closed-loop guided by BIS and remifentanil using TCI, and the C Group received non-closed-loop anaesthesia. Age, sex, surgical time, discharge time and failure of outpatient surgery were recorded. Quantitative data were checked for normal distribution by the method of Kolmogorov-Smirnov-Lilliefors. Differences between groups were analysed by a Student-t-test or Mann-Whitney-Wilcoxon test, depending on their distribution. Categorical data were analysed by a Chi-squared test. We used Kaplan-Meier estimator and the effect size (calculated by Cohen's d) to study the discharge time. Statistical analysis was performed using R 3.2.3 binary for Mac OS X 10.9. There were no significant differences in age, sex and surgical time and failure of outpatient surgery. Discharge time was different in both groups: 200 (100) vs. 180 (82.5) minutes, C Group and CL Group, respectively (data are median and interquartile rank); P=.005. The use of closed-loop devices for the hypnotic component of anaesthesia hastens discharge time. However, for this effect to be clinically significant, some improvements still need to be made in our outpatient surgery units. Copyright © 2016 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. Closed Loop Recycling of Plastic Housing for Flat Screen TVs

    OpenAIRE

    Peeters, Jef; VANEGAS Paul; Devoldere, Tom; Dewulf, Wim; Duflou, Joost

    2012-01-01

    The treatment of the rapidly increasing number of End-of-Life (EoL) Flat screen Televisions (FTVs) presents major challenges and opportunities. Closing loops in plastic housing material flows remains a particular technical challenge because of the presence of additives, such as Flame Retardants (FR) in recovered housings. In the framework of a collaborative project PRIME with TP Vision the TV development site for Philips TVs and a Van Gansewinkel first level recycling plant, series of experim...

  8. Performance Measurement/Management in Closed-Loop Supply Chain

    OpenAIRE

    Kashyap, Karthik

    2010-01-01

    Reverse logistics and supply chain or the more popular term closed-loop supply chain management is a topic which is gaining speed and popularity during recent years especially due to the various laws and directives laid down by the governments in order to protect environment and the society. Apart from these directives, organisations across various industry sectors are realising this as an opportunity to gain competitive advantage in the supply chain over other organisations and a way of gain...

  9. Validation of Closed Loop Degaussing System for Double Hull Submarines

    OpenAIRE

    Demilier, Laurent; Cauffet, Gilles; Chadebec, Olivier; Coulomb, Jean-Louis; Rouve, Laure-Line

    2010-01-01

    International audience; This paper presents last DCNS development on Closed Loop Degaussing System dedicated to high performance electromagnetic silent warship. This paper focuses on an evolution of the CLDG algorithm for degaussed warship. Developed in cooperation with Grenoble Electrical Engineering Lab, this genuine method allows to determine the hull unknown magnetization components, thus the predicted signature, based on real time magnetic measurements from sensors located very close to ...

  10. Closed-Loop and Decision-Assist Resuscitation of Burn Patients

    Science.gov (United States)

    2008-04-01

    hemorrhagic shock. Artif Cells Blood Substit Immobil Biotechnol. 1997;25:61–73. 42. Lowell JA, Schifferdecker C, Driscoll DF, Benotti PN, Bistrian BR...unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 renal blood flow, and cardiac output are likely to be adequate. Target values are...clinical trials demon- strating effective closed-loop control of nitroprusside infusion for postoperative blood pressure regulation in cardiac patients.26

  11. Falcon: a highly flexible open-source software for closed-loop neuroscience

    Science.gov (United States)

    Ciliberti, Davide; Kloosterman, Fabian

    2017-08-01

    Objective. Closed-loop experiments provide unique insights into brain dynamics and function. To facilitate a wide range of closed-loop experiments, we created an open-source software platform that enables high-performance real-time processing of streaming experimental data. Approach. We wrote Falcon, a C++ multi-threaded software in which the user can load and execute an arbitrary processing graph. Each node of a Falcon graph is mapped to a single thread and nodes communicate with each other through thread-safe buffers. The framework allows for easy implementation of new processing nodes and data types. Falcon was tested both on a 32-core and a 4-core workstation. Streaming data was read from either a commercial acquisition system (Neuralynx) or the open-source Open Ephys hardware, while closed-loop TTL pulses were generated with a USB module for digital output. We characterized the round-trip latency of our Falcon-based closed-loop system, as well as the specific latency contribution of the software architecture, by testing processing graphs with up to 32 parallel pipelines and eight serial stages. We finally deployed Falcon in a task of real-time detection of population bursts recorded live from the hippocampus of a freely moving rat. Main results. On Neuralynx hardware, round-trip latency was well below 1 ms and stable for at least 1 h, while on Open Ephys hardware latencies were below 15 ms. The latency contribution of the software was below 0.5 ms. Round-trip and software latencies were similar on both 32- and 4-core workstations. Falcon was used successfully to detect population bursts online with ~40 ms average latency. Significance. Falcon is a novel open-source software for closed-loop neuroscience. It has sub-millisecond intrinsic latency and gives the experimenter direct control of CPU resources. We envisage Falcon to be a useful tool to the neuroscientific community for implementing a wide variety of closed-loop experiments, including those

  12. Falcon: a highly flexible open-source software for closed-loop neuroscience.

    Science.gov (United States)

    Ciliberti, Davide; Kloosterman, Fabian

    2017-05-26

    Closed-loop experiments provide unique insights into brain dynamics and function. To facilitate a wide range of closed-loop experiments, we created an open-source software platform that enables high-performance real-time processing of streaming experimental data. We wrote Falcon, a C++ multi-threaded software in which the user can load and execute an arbitrary processing graph. Each node of a Falcon graph is mapped to a single thread and nodes communicate with each other through thread-safe buffers. The framework allows for easy implementation of new processing nodes and data types. Falcon was tested both on a 32-core and a 4-core workstation. Streaming data was read from either a commercial acquisition system (Neuralynx) or the open-source Open Ephys hardware, while closed-loop TTL pulses were generated with a USB module for digital output. We characterized the round-trip latency of our Falcon-based closed-loop system, as well as the specific latency contribution of the software architecture, by testing processing graphs with up to 32 parallel pipelines and eight serial stages. We finally deployed Falcon in a task of real-time detection of population bursts recorded live from the hippocampus of a freely moving rat. On Neuralynx hardware, round-trip latency was well below 1 ms and stable for at least 1 h, while on Open Ephys hardware latencies were below 15 ms. The latency contribution of the software was below 0.5 ms. Round-trip and software latencies were similar on both 32- and 4-core workstations. Falcon was used successfully to detect population bursts online with ~40 ms average latency. Falcon is a novel open-source software for closed-loop neuroscience. It has sub-millisecond intrinsic latency and gives the experimenter direct control of CPU resources. We envisage Falcon to be a useful tool to the neuroscientific community for implementing a wide variety of closed-loop experiments, including those requiring use of complex data structures and real

  13. Model-Driven Safety Analysis of Closed-Loop Medical Systems.

    Science.gov (United States)

    Pajic, Miroslav; Mangharam, Rahul; Sokolsky, Oleg; Arney, David; Goldman, Julian; Lee, Insup

    2012-10-26

    In modern hospitals, patients are treated using a wide array of medical devices that are increasingly interacting with each other over the network, thus offering a perfect example of a cyber-physical system. We study the safety of a medical device system for the physiologic closed-loop control of drug infusion. The main contribution of the paper is the verification approach for the safety properties of closed-loop medical device systems. We demonstrate, using a case study, that the approach can be applied to a system of clinical importance. Our method combines simulation-based analysis of a detailed model of the system that contains continuous patient dynamics with model checking of a more abstract timed automata model. We show that the relationship between the two models preserves the crucial aspect of the timing behavior that ensures the conservativeness of the safety analysis. We also describe system design that can provide open-loop safety under network failure.

  14. A closed-loop MEMS accelerometer with capacitive sensing interface ASIC

    Science.gov (United States)

    Liu, Minjie; Chi, Baoyong; Liu, Yunfeng; Dong, Jingxin

    2013-01-01

    A closed-loop MEMS accelerometer with capacitive sensing interface ASIC (application specific integrated circuit) is presented. The parasitic-insensitive switched-capacitor sample-charge architecture is used to implement the capacitive sensing, which is crucial to the case where sensor and interface ASIC are combined in a two-chip approach to implement the closed-loop MEMS accelerometer. Based on the 0.35 µm CMOS sensing interface ASIC, an accelerometer prototype has been implemented, in which force-rebalance with the lag-proportional-integral controller is applied to improve the system stability and frequency response performance, and the testing results indicate the sensitivity of the presented accelerometer is 650 mV/g, the full measurement range ±15 g, the non-linearity 0.098% and the noise floor 23.17 µg/rt-Hz.

  15. Open Loop and Closed Loop Performance of Switched Reluctance Motor with Various Converter Topologies

    Directory of Open Access Journals (Sweden)

    Malligunta Kiran Kumar

    2014-07-01

    Full Text Available Switched reluctance motor (SRM is becoming popular because of its simple construction, robustness and low-maintenance. This motor is very useful for high speed applications because no windings are placed on rotor and can also be used for variable speed applications in industries. Converter is one of the important elements in SRM which plays a very crucial role. In this paper various converter topologies for 6/4 switched reluctance motor and Asymmetric bridge converter topology for 8/6 switched reluctance motor are discussed. Finally a closed loop for each converter topology is proposed. The converter topologies are simulated by using MATLAB/SIMULINK. Constant speed is achieved in closed loop control.

  16. Closed-loop, multichannel experimentation using the open-source NeuroRighter electrophysiology platform

    Directory of Open Access Journals (Sweden)

    Jonathan Paul Newman

    2013-01-01

    Full Text Available Single neuron feedback control techniques, such as voltage clamp and dynamic clamp, have enabled numerous advances in our understanding of ion channels, electrochemical signaling, and neural dynamics. Although commercially available multichannel recording and stimulation systems are commonly used for studying neural processing at the network level, they provide little native support for real-time feedback. We developed the open-source NeuroRighter multichannel electrophysiology hardware and software platform for closed-loop multichannel control with a focus on accessibility and low cost. NeuroRighter allows 64 channels of stimulation and recording for around US $10,000, along with the ability to integrate with other software and hardware. Here, we present substantial enhancements to the NeuroRighter platform, including a redesigned desktop application, a new stimulation subsystem allowing arbitrary stimulation patterns, low-latency data servers for accessing data streams, and a new application programming interface (API for creating closed-loop protocols that can be inserted into NeuroRighter as plugin programs. This greatly simplifies the design of sophisticated real-time experiments without sacrificing the power and speed of a compiled programming language. Here we present a detailed description of NeuroRighter as a stand alone application, its plugin API, and an extensive set of case studies that highlight the system's abilities for conducting closed-loop, multichannel interfacing experiments.

  17. Conceptualization and validation of an open-source closed-loop deep brain stimulation system in rat.

    Science.gov (United States)

    Wu, Hemmings; Ghekiere, Hartwin; Beeckmans, Dorien; Tambuyzer, Tim; van Kuyck, Kris; Aerts, Jean-Marie; Nuttin, Bart

    2015-04-21

    Conventional deep brain stimulation (DBS) applies constant electrical stimulation to specific brain regions to treat neurological disorders. Closed-loop DBS with real-time feedback is gaining attention in recent years, after proved more effective than conventional DBS in terms of pathological symptom control clinically. Here we demonstrate the conceptualization and validation of a closed-loop DBS system using open-source hardware. We used hippocampal theta oscillations as system input, and electrical stimulation in the mesencephalic reticular formation (mRt) as controller output. It is well documented that hippocampal theta oscillations are highly related to locomotion, while electrical stimulation in the mRt induces freezing. We used an Arduino open-source microcontroller between input and output sources. This allowed us to use hippocampal local field potentials (LFPs) to steer electrical stimulation in the mRt. Our results showed that closed-loop DBS significantly suppressed locomotion compared to no stimulation, and required on average only 56% of the stimulation used in open-loop DBS to reach similar effects. The main advantages of open-source hardware include wide selection and availability, high customizability, and affordability. Our open-source closed-loop DBS system is effective, and warrants further research using open-source hardware for closed-loop neuromodulation.

  18. POPEYE: A production rule-based model of multitask supervisory control (POPCORN)

    Science.gov (United States)

    Townsend, James T.; Kadlec, Helena; Kantowitz, Barry H.

    1988-01-01

    Recent studies of relationships between subjective ratings of mental workload, performance, and human operator and task characteristics have indicated that these relationships are quite complex. In order to study the various relationships and place subjective mental workload within a theoretical framework, we developed a production system model for the performance component of the complex supervisory task called POPCORN. The production system model is represented by a hierarchial structure of goals and subgoals, and the information flow is controlled by a set of condition-action rules. The implementation of this production system, called POPEYE, generates computer simulated data under different task difficulty conditions which are comparable to those of human operators performing the task. This model is the performance aspect of an overall dynamic psychological model which we are developing to examine and quantify relationships between performance and psychological aspects in a complex environment.

  19. Supervisory fussy control for an electric generating hybrid system; Control supervisorio difuso para un sistema hibrido de generacion electrica

    Energy Technology Data Exchange (ETDEWEB)

    Lagunas Mendoza, Javier

    2004-11-15

    This work presents the development of a fuzzy supervisory controller for a hybrid power system (HPS). After reviewing the actual configurations for Hybrid Systems used around the world, it was defined the configuration and constitutive elements to be implemented in proposed HPS. The HPS includes: photovoltaic arrays, wind turbines as renewable sources, a Gen-set as a back-up system, a battery bank a mean for energy storage, AC loads and finally an inverter to transform DC to AC in order to provide electricity to the loads. Once the HPS configuration was selected, the mathematical models for the different elements of the system were selected. The validation of the models was made comparing the results from the model with collected real data of an experimental HPS installed in Pachuca Hidalgo. Using MatLab it was developed a program to simulate the operation of the a HPS. The main function of the supervisory controller within the HPS is to satisfy the objectives of operation of the system, and it was defined as part of the research work. The operation philosophy of the supervisory controller was defined having selected HPS configuration and the operation objectives of the system. Regarding to the supervisory controller development, first it was carried out a bibliographic review of the supervisory controllers that are used nowadays whose use some techniques of intelligent control. As result form this review the fuzzy logic technique was chosen to be implemented in the supervisory controller proposed. The resulting supervisory controller was a multi- variable system type, and it is implementation was challenging task. Its development was made using the hierarchic decomposition based on meta-knowledge. As result a smaller diffuse systems with a less number of rules were obtained. An important part of the work was the implementation of the supervisory controller in Matlab. The controller tested in the developed simulation program for SHGE. The results of operation of

  20. Closed-loop brain-machine-body interfaces for noninvasive rehabilitation of movement disorders.

    Science.gov (United States)

    Broccard, Frédéric D; Mullen, Tim; Chi, Yu Mike; Peterson, David; Iversen, John R; Arnold, Mike; Kreutz-Delgado, Kenneth; Jung, Tzyy-Ping; Makeig, Scott; Poizner, Howard; Sejnowski, Terrence; Cauwenberghs, Gert

    2014-08-01

    Traditional approaches for neurological rehabilitation of patients affected with movement disorders, such as Parkinson's disease (PD), dystonia, and essential tremor (ET) consist mainly of oral medication, physical therapy, and botulinum toxin injections. Recently, the more invasive method of deep brain stimulation (DBS) showed significant improvement of the physical symptoms associated with these disorders. In the past several years, the adoption of feedback control theory helped DBS protocols to take into account the progressive and dynamic nature of these neurological movement disorders that had largely been ignored so far. As a result, a more efficient and effective management of PD cardinal symptoms has emerged. In this paper, we review closed-loop systems for rehabilitation of movement disorders, focusing on PD, for which several invasive and noninvasive methods have been developed during the last decade, reducing the complications and side effects associated with traditional rehabilitation approaches and paving the way for tailored individual therapeutics. We then present a novel, transformative, noninvasive closed-loop framework based on force neurofeedback and discuss several future developments of closed-loop systems that might bring us closer to individualized solutions for neurological rehabilitation of movement disorders.

  1. Depressor effect of closed-loop chip system in spontaneously hypertensive rats.

    Science.gov (United States)

    Gao, Xing-Ya; Huang, Xing-Lin; Wang, Han-Jun; Zhou, Li-Min; Xu, Yao; Wang, Wei; Zhu, Guo-Qing

    2007-12-30

    We previously reported that a closed-loop chip system was designed to decrease arterial pressure in normal rabbits and rats. In the present study, the depressor effects of the chip system were investigated in spontaneously hypertensive rats (SHR) and Wistar-Kyoto rats (WKY). The arterial pressure was recorded, sampled, operated and processed in the chip system. The chip system instantaneously controlled arterial pressure by stimulating the left aortic depressor nerve according to the feedback signals of arterial pressure. The closed-loop chip system effectively decreased mean arterial pressure (MAP) and heart rate (HR) in both SHR and WKY rats. It decreased the duration and the maximal MAP level of the pressor response evoked by either intravenous injection of phenylephrine or cutaneous nociceptive stimulation in SHR, but had no significant effect on the magnitude of the increase in MAP. Furthermore, the chip system significantly increased the baroreflex gain in SHR, but not in normal WKY rats. These results suggest that the closed-loop chip system effectively decreases the arterial pressure and increases baroreflex gain in SHR. The chip system does not abolish the arterial pressure responses to accidental pressor events, but decreases the duration and the maximal MAP level of the pressor responses.

  2. NEW CLOSED-LOOP DRIVING CIRCUIT OF SILICON MICROMACHINED VIBRATORY GYROSCOPE

    Institute of Scientific and Technical Information of China (English)

    YANGBo; SUYah; ZHOUBai-ling

    2005-01-01

    A new closed-loop driving scheme for the silicon micromachined vibratory gyroscope (SMVG) is proposed. The push-pull driving is adopted and in-phase AC and reverse-phase DC voltages are applied in the driving electrodes placed in both sides of the active combs, respectively. Driving performance analyses show that the frequency spectrum between driving moments and noise signals is separated. Therefore, the model of the closed-loop control is set up with the phase lock loop (PLL). The requirements for phases and gains of the sinusoidal selfdrive-oscillation are met by PLL, thus the closed-loop circuit reaches the self-drive-oscillation. Phase conditions of the sinusoidal self-drive-oscillation and the characteristic of phase discrimination of the PLL are used to eliminate the coupling between driving and sense signals, and noise signals. Finally, experimental results show that the variations of both the driving frequency and the amplitude are all under 0.02%. The precision and the reliability of the gyroscope are greatly improved.

  3. System Design and Study on Bionic Eye of Spherical Parallel Mechanism Based on Attitude Closed-loop Control%基于姿态闭环控制的球面并联仿生眼系统设计与研究

    Institute of Scientific and Technical Information of China (English)

    李超; 谢少荣; 李恒宇; 缪金松; 徐元玉; 罗均

    2011-01-01

    An attitude feedback based method for establishing the closed-loop control system of spherical parallel mechanism (SPM) is proposed to circumvent the difficulty caused by the complex, three-dimensional, nonlinear and strongly coupled relationship between the input and output of the mechanism.SPM, then, is employed to the design of bionic eye which emulates the function of human's eye but is bigger than it in size, and incorporates the interface of thesignal of control and video.In addition, the real-time online calculation of the inverse kinematics and the scheme of the closed-loop control is conducted on DSP (digital signal processor).Finally, the experimental results substantially confirm that the improved positioning precision of the bionic eye is obtained by introducing the proposed algorithm.%提出了一种基于姿态反馈的球面并联机构闭环控制方法,有效地解决了该机构输入与输出之间复杂的3维非线性强耦合映射关系给构建闭环系统带来的问题.同时将球面并联机构应用到机器人眼设计上,制作了类似人眼运动特点、比人眼尺寸略大、具有控制和视频信号接口的仿生眼实物;基于数字信号处理器(DSP)的控制系统实现了逆解和闭环控制算法的实时在线计算.实验结果表明,姿态闭环控制算法有效提高了仿生眼的定位精度.

  4. Closed Loop Analysis of Bridgeless SEPIC Converter for Drive Application

    Directory of Open Access Journals (Sweden)

    Gopinath Mani

    2015-06-01

    Full Text Available In this paper closed loop analysis of Single phase AC-DC Bridgeless Single Ended Primary Inductance Converter (SEPIC for Power Factor Correction (PFC rectifier is analyzed. In this topology the absence of an input diode bridge and the due to presence of two semiconductor switches in the current flowing path during each switching cycle which will results in lesser conduction losses and improved thermal management compared to the conventional converters. In this paper the operational principles, Frequency analysis, and design equations of the proposed converter are described in detail. Performance of the proposed SEPIC PFC rectifier are carried out using Matlab Simulink software and results are presented.

  5. Closed-loop transcranial alternating current stimulation of slow oscillations

    Directory of Open Access Journals (Sweden)

    Wilde Christian

    2015-09-01

    Full Text Available Transcranial alternating current stimulation (tACS is an emerging non-invasive tool for modulating brain oscillations. There is evidence that weak oscillatory electrical stimulation during sleep can entrain cortical slow oscillations to improve the memory consolidation in rodents and humans. Using a novel method and a custom built stimulation device, automatic stimulation of slow oscillations in-phase with the endogenous activity in a real-time closed-loop setup is possible. Preliminary data from neuroplasticity experiments show a high detection performance of the proposed method, electrical measurements demonstrate the outstanding quality of the presented stimulation device.

  6. Inverse spin Hall effect in a closed loop circuit

    Energy Technology Data Exchange (ETDEWEB)

    Omori, Y.; Auvray, F.; Wakamura, T.; Niimi, Y., E-mail: niimi@issp.u-tokyo.ac.jp [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba 277-8581 (Japan); Fert, A. [Unité Mixte de Physique CNRS/Thales, 91767 Palaiseau France associée à l' Université de Paris-Sud, 91405 Orsay (France); Otani, Y. [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba 277-8581 (Japan); RIKEN-CEMS, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2014-06-16

    We present measurements of inverse spin Hall effects (ISHEs), in which the conversion of a spin current into a charge current via the ISHE is detected not as a voltage in a standard open circuit but directly as the charge current generated in a closed loop. The method is applied to the ISHEs of Bi-doped Cu and Pt. The derived expression of ISHE for the loop structure can relate the charge current flowing into the loop to the spin Hall angle of the SHE material and the resistance of the loop.

  7. Closed-loop steerable drilling tools for high temperature applications

    Energy Technology Data Exchange (ETDEWEB)

    Donati, F.; Oppelt, J.; Ragnitz, D. [and others

    1995-12-31

    Today drilling environment calls for drillers to be able to access deeper, high temperature and high pressure reservoirs, where high temperature is intended close to 200{degrees}C and high pressure more than 10000 psi. A new family of automatic drilling tools has been introduced which provides automatic steering within ultra deep formations under high temperature and high pressure (HTHP) conditions. Another important use of this system is foreseen in the drilling of wells with extended reach horizontal sections. The directional changes in the Closed-Loop Drilling System are automatically generated on the basis of Measurement While Drilling (MWD) measurements taken directly within the tool. Since the major application aims at the very deep hydrocarbon layers, all components are designed to operate at temperatures between 185 to 200{degrees}C. Special consideration is given to the design of downhole motor elastomer and electronic components of the MWD. In preparation for the field application of the complete fully directional tool, field tests have been performed with a Straight Hole Drilling Closed-Loop System and other essential system components. The Straight Hole Drilling Device has been designed to drill a straight vertical well. It has been successfully run on various onshore and offshore European locations; where in one case a maximum depth of over 7,200 m was attained. Additional field case histories are provided in this report on high temperature downhole motors. The complete fully directional system will be ready for field application within end of June 1995.

  8. Definition of a Robust Supervisory Control Scheme for Sodium-Cooled Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ponciroli, R.; Passerini, S.; Vilim, R. B.

    2016-04-17

    In this work, an innovative control approach for metal-fueled Sodium-cooled Fast Reactors is proposed. With respect to the classical approach adopted for base-load Nuclear Power Plants, an alternative control strategy for operating the reactor at different power levels by respecting the system physical constraints is presented. In order to achieve a higher operational flexibility along with ensuring that the implemented control loops do not influence the system inherent passive safety features, a dedicated supervisory control scheme for the dynamic definition of the corresponding set-points to be supplied to the PID controllers is designed. In particular, the traditional approach based on the adoption of tabulated lookup tables for the set-point definition is found not to be robust enough when failures of the implemented SISO (Single Input Single Output) actuators occur. Therefore, a feedback algorithm based on the Reference Governor approach, which allows for the optimization of reference signals according to the system operating conditions, is proposed.

  9. On the significance of the noise model for the performance of a linear MPC in closed-loop operation

    DEFF Research Database (Denmark)

    Hagdrup, Morten; Boiroux, Dimitri; Mahmoudi, Zeinab

    2016-01-01

    models typically means less parameters to identify. Systematic tuning of such controllers is discussed. Simulation studies are conducted for linear time-invariant systems showing that choosing a noise model of low order is beneficial for closed-loop performance. (C) 2016, IFAC (International Federation...... of Automatic Control) Hosting by Elsevier Ltd. All rights reserved....

  10. Tool for Turbine Engine Closed-Loop Transient Analysis (TTECTrA) Users' Guide

    Science.gov (United States)

    Csank, Jeffrey T.; Zinnecker, Alicia M.

    2014-01-01

    The tool for turbine engine closed-loop transient analysis (TTECTrA) is a semi-automated control design tool for subsonic aircraft engine simulations. At a specific flight condition, TTECTrA produces a basic controller designed to meet user-defined goals and containing only the fundamental limiters that affect the transient performance of the engine. The purpose of this tool is to provide the user a preliminary estimate of the transient performance of an engine model without the need to design a full nonlinear controller.

  11. Electronic Warfare Closed Loop Laboratory (EWCLL) Antenna Motor Software and Hardware Development

    Science.gov (United States)

    2016-09-01

    ARL-TN-0779 ● SEP 2016 US Army Research Laboratory Electronic Warfare Closed Loop Laboratory (EWCLL) Antenna Motor Software and...Electronic Warfare Closed Loop Laboratory (EWCLL) Antenna Motor Software and Hardware Development by Neal Tesny Sensors and Electron Devices Directorate...TITLE AND SUBTITLE Electronic Warfare Closed Loop Laboratory (EWCLL) Antenna Motor Software and Hardware Development 5a. CONTRACT NUMBER 5b

  12. Elevator Group Supervisory Control System Using Genetic Network Programming with Macro Nodes and Reinforcement Learning

    Science.gov (United States)

    Zhou, Jin; Yu, Lu; Mabu, Shingo; Hirasawa, Kotaro; Hu, Jinglu; Markon, Sandor

    Elevator Group Supervisory Control System (EGSCS) is a very large scale stochastic dynamic optimization problem. Due to its vast state space, significant uncertainty and numerous resource constraints such as finite car capacities and registered hall/car calls, it is hard to manage EGSCS using conventional control methods. Recently, many solutions for EGSCS using Artificial Intelligence (AI) technologies have been reported. Genetic Network Programming (GNP), which is proposed as a new evolutionary computation method several years ago, is also proved to be efficient when applied to EGSCS problem. In this paper, we propose an extended algorithm for EGSCS by introducing Reinforcement Learning (RL) into GNP framework, and an improvement of the EGSCS' performances is expected since the efficiency of GNP with RL has been clarified in some other studies like tile-world problem. Simulation tests using traffic flows in a typical office building have been made, and the results show an actual improvement of the EGSCS' performances comparing to the algorithms using original GNP and conventional control methods. Furthermore, as a further study, an importance weight optimization algorithm is employed based on GNP with RL and its efficiency is also verified with the better performances.

  13. The remote supervisory and controlling experiment system of traditional Chinese medicine production based on Fieldbus

    Science.gov (United States)

    Zhan, Jinliang; Lu, Pei

    2006-11-01

    Since the quality of traditional Chinese medicine products are affected by raw material, machining and many other factors, it is difficult for traditional Chinese medicine production process especially the extracting process to ensure the steady and homogeneous quality. At the same time, there exist some quality control blind spots due to lacking on-line quality detection means. But if infrared spectrum analysis technology was used in traditional Chinese medicine production process on the basis of off-line analysis to real-time detect the quality of semi-manufactured goods and to be assisted by advanced automatic control technique, the steady and homogeneous quality can be obtained. It can be seen that the on-line detection of extracting process plays an important role in the development of Chinese patent medicines industry. In this paper, the design and implement of a traditional Chinese medicine extracting process monitoring experiment system which is based on PROFIBUS-DP field bus, OPC, and Internet technology is introduced. The system integrates intelligence node which gathering data, superior sub-system which achieving figure configuration and remote supervisory, during the process of traditional Chinese medicine production, monitors the temperature parameter, pressure parameter, quality parameter etc. And it can be controlled by the remote nodes in the VPN (Visual Private Network). Experiment and application do have proved that the system can reach the anticipation effect fully, and with the merits of operational stability, real-time, reliable, convenient and simple manipulation and so on.

  14. Fuzzy-logic-based supervisory controller for the management of energy in a hybrid system; Control supervisorio difuso para sistemas hibridos de generacion electrica

    Energy Technology Data Exchange (ETDEWEB)

    Lagunas, J.; Caratozzolo, P.; Ortega, C.; Gonzalez, R.

    2004-07-01

    This paper presents and validates the use of a fuzzy-logic-based supervisory controller for the management of energy in a hybrid system. The general configuration of the hybrid system is presented as well as the operational objectives of the supervisory controller. The inputs and outputs of the controller are also presented along with the hierarchical structure employed in order to reduce the number of rules in the knowledge base. The results obtained are compared against those of a conventional controller. Simulations were carried out using Matlab. (Author)

  15. STABLE ADAPTIVE CONTROL FOR A CLASS OF NONLINEAR SYSTEMS WITHOUT USE OF A SUPERVISORY TERM IN THE CONTROL LAW

    Directory of Open Access Journals (Sweden)

    MOHAMED BAHITA

    2012-02-01

    Full Text Available In this paper, a direct adaptive control scheme for a class of nonlinear systems is proposed. The architecture employs a Gaussian radial basis function (RBF network to construct an adaptive controller. The parameters of the adaptive controller are adapted and changed according to a law derived using Lyapunov stability theory. The centres of the RBF network are adapted on line using the k-means algorithm. Asymptotic Lyapunov stability is established without the use of a supervisory (compensatory term in the control law and with the tracking errors converging to a neighbourhood of the origin. Finally, a simulation is provided to explore the feasibility of the proposed neuronal controller design method.

  16. PENINGKATAN KEAMANAN SUPERVISORY CONTROL AND DATA ACQUISITION (SCADA PADA SMART GRID SEBAGAI INFRASTRUKTUR KRITIS

    Directory of Open Access Journals (Sweden)

    Ahmad Budi Setiawan

    2016-10-01

    Full Text Available SCADA (Supervisory Control and Data Acquisition systems as the control unit of the smart grid has been used in almost various industries around the world in terms of automation systems. Smart grid technology combines the energy infrastructure and telecommunications and Internet networks. The system provides the operational ease and efficiency in the industry. However, the system has a lot of vulnerabilities in information security aspects that can have a major impact for the industry and even the economy. This study tried to design in building a smart grid cyber security, it includes the strategies that must be done and the information security system architecture to be built. The study was conducted qualitative in-depth interviews, focus group discussions and direct observation. Results of this research is the design strategy recommendations ddalam development of smart grid cyber security. Recommendation results of this study also intended as a suggestion-making framework for smart grid cyber security as a reference implementation of the smart grid in Indonesia.

  17. Nine-Phase Induction Motor Vector Control System Based on the Harmonic Current Closed-Loop Control Strategy%基于谐波电流闭环控制的九相感应电机矢量控制系统

    Institute of Scientific and Technical Information of China (English)

    梅柏杉; 冯江波; 吴迪

    2014-01-01

    采用转子磁链定向矢量控制方法,对九相感应电机矢量控制系统的转矩动静态响应进行了研究。针对应用传统的谐波电流开环控制策略时定子电流谐波含量较大的问题,使用了谐波电流闭环控制策略以抵制各高次谐波对定子电流的影响。以一台九相集中整距绕组感应电机为例,在MATLAB的Simulink工具箱中搭建了完整的九相感应电机矢量控制系统模型。仿真结果表明,系统可以有效抑制定子的谐波电流,且具有较好的动态性能。%Based on the rotor field oriented control method, the dynamic and static torque response of a nine-phase induction motor vector control system was studied. To solve the problem of high harmonic content in the stator current in the conventional harmonic currents open-loops control strategy,the harmonic currents closed-loops control method was used to resist the higher harmonic currents’ s effect on the stator currents . Taking a nine phase concen-trated winding induction motor for example,a complete nine-phase induction motor vector control system model was built in MATLAB/Simulink toolbox. The simulation results show that the system can effectively restrain the stator har-monic current, and has good dynamic performance.

  18. Low voltage bandgap reference with closed loop curvature compensation

    Science.gov (United States)

    Tao, Fan; Bo, Du; Zheng, Zhang; Guoshun, Yuan

    2009-03-01

    A new low-voltage CMOS bandgap reference (BGR) that achieves high temperature stability is proposed. It feeds back the output voltage to the curvature compensation circuit that constitutes a closed loop circuit to cancel the logarithmic term of voltage VBE. Meanwhile a low voltage amplifier with the 0.5 μm low threshold technology is designed for the BGR. A high temperature stability BGR circuit is fabricated in the CSMC 0.5 μm CMOS technology. The measured result shows that the BGR can operate down to 1 V, while the temperature coefficient and line regulation are only 9 ppm/°C and 1.2 mV/V, respectively.

  19. Improvement of the cascading closed loop cycle system

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guoqiang; CAI Ruixian

    2007-01-01

    Aspen Plus was used to simulate and get more information about the cascading closed loop cycle (CCLC)system [1-3].Following evaluation of the variable temperature heat source (e.g.gas turbine flue gas) utilized by the CCLC,both qualitative and quantitive comparisons between the system and simple steam Rankine cycle,were made.The results indicate that CCLC has the advantage in recuperating exergy from flue gas,but it cannot sufficiently convert the recuperated exergy to useful work.To improve the utilization of low temperature flue gas heat,the properties and parameters of the working substance must match conditions of the low temperature heat source.A better cycle scheme and pressure distribution was proposed to raise the efficiency of the CCLC.In addition,the multifunction system concept was introduced to improve the performance of CCLC with solar energy.

  20. Manufacturers’ Closed-Loop Orientation for Green Supply Chain Management

    Directory of Open Access Journals (Sweden)

    Shumin Liu

    2017-02-01

    Full Text Available The concept of green supply chain management (GSCM is still in its infancy and has been implemented only to a limited extent. Strategic orientation is an important factor affecting its implementation. No reliable and valid strategic orientation construct has been developed for greening a supply chain. This study proposes closed-loop orientation (CLO as the appropriate strategic orientation to implement GSCM practices successfully and develops a valid measurement of CLO. Data collected from 296 Chinese manufacturers were analyzed using the structural equation modeling method to examine the relationships among CLO, GSCM practice and environmental and economic performance. The results show that both CLO and GSCM have positive effects on the environmental performance and economic performance and that CLO positively impacts the level of implementation of GSCM. The results also show that GSCM completely mediates the relationships between CLO and environmental and economic performance.

  1. Synthetic Modeling of Astronomical Closed Loop Adaptive Optics

    CERN Document Server

    Jolissaint, Laurent

    2010-01-01

    We present an analytical model of a single natural guide star astronomical adaptive optics system, in closed loop mode. The model is used to simulate the long exposure system point spread function, using the spatial frequency (or Fourier) approach, and complement an initial open loop model. Applications range from system design, science case analysis and AO data reduction. All the classical phase errors have been included: deformable mirror fitting error, wavefront sensor spatial aliasing, wavefront sensor noise, and the correlated anisoplanatic and servo-lag error. The model includes the deformable mirror spatial transfer function, and the actuator array geometry can be different from the wavefront sensor lenslet array geometry. We also include the dispersion between the sensing and the correction wavelengths. Illustrative examples are given at the end of the paper.

  2. Stability Analysis of Closed-loop Water System

    Institute of Scientific and Technical Information of China (English)

    Yongzheng FU; Keqi WU; Yaqiao CAI

    2006-01-01

    Aiming at closed-loop water system, by the method that shutting certain subcircuit, and solving the piping network, computing flow deviation of other subcircuits, then analyzing the rules of variation of stability with various factors, following conclusions are obtained: When reducing the resistance in main pipes, increasing resistance of subcircuits, system stability can be improved. Centralized regulation by changing power has no influence on system stability; centralized regulation by changing resistances will decrease system stability. Pump characteristics curve influences system stability, stability of the flat characteristic is superior to the steep one. For direct return system (DRS), the stability of subcircuit which is farthest from the heat source is the worst. For reverse return system (RRS), the stability of subcircuit in the middle of the pipe-network has the worst stability.Overall, stability of RRS is inferior to that of DRS.

  3. Low voltage bandgap reference with closed loop curvature compensation

    Institute of Scientific and Technical Information of China (English)

    Fan Tao; Du Bo; Zhang Zheng; Yuan Guoshun

    2009-01-01

    A new low-voltage CMOS bandgap reference (BGR) that achieves high temperature stability is proposed. It feeds back the output voltage to the curvature compensation circuit that constitutes a closed loop circuit to cancel the logarithmic term of voltage VBE. Meanwhile a low voltage amplifier with the 0.5μm low threshold technology is designed for the BGR. A high temperature stability BGR circuit is fabricated in the CSMC 0.5μm CMOS tech-nology. The measured result shows that the BGR can operate down to 1 V, while the temperature coefficient and line regulation are only 9 ppm/℃ and 1.2 mV/V, respectively.

  4. Research on Double Closed-loop Control Strategy for Magnetic Levitation Vibrator%磁悬浮减振器的双闭环控制策略研究

    Institute of Scientific and Technical Information of China (English)

    周振雄; 曲永印; 王悦刚

    2012-01-01

    A novel magnetic levitation vibrator was studied. It was a mixed magnetic levitation system which was made up of permanent magnets and electromagnets. The mutual repulsive force between the magnets was used to provide levitating force to realize flexible damp vibration. Based on the system model, aiming at the nonlinearity of magnetic levitation system of the vibrator, the existence of non-modeling dynamic and uncertainty, and the inaccurate characteristic of the model, with the auto-disturbance rejection controller as outer loop, PID controller as inner loop, the scheme that forming double-loop feedback control to achieve a stable levitation, damping and disturbance resistance was put forward. Simulation analysis and experiment research show that using this controlling scheme, the magnetic levitation vibrator has good dynamic, static characteristic and strong disturbance resistance.%研究一种新型的磁悬浮减振器,它采用永磁铁和电磁铁构成混合式磁悬浮系统,利用磁铁间相互的斥力提供悬浮力,实现柔性减振.在系统模型的基础上,针对减振器磁悬浮系统的非线性、存在未建模动态和不确定性、模型不十分精确的特点,提出采用自抗扰控制器作为外环,PID控制器作为内环,构成双闭环反馈控制方案来实现稳定的悬浮、减振和对扰动的抑制.仿真分析和实验研究表明:采用此控制方案的磁悬浮减振器具有很好的动、静态特性和强抗扰性.

  5. Closed Loop Short Rotation Woody Biomass Energy Crops

    Energy Technology Data Exchange (ETDEWEB)

    Brower, Michael [CRC Development, LLC, Oakland, CA (United States)

    2012-09-30

    CRC Development LLC is pursuing commercialization of shrub willow crops to evaluate and confirm estimates of yield, harvesting, transportation and renewable energy conversion costs and to provide a diverse resource in its supply portfolio.The goal of Closed Loop Short Rotation Woody Biomass Energy Crops is supply expansion in Central New York to facilitate the commercialization of willow biomass crops as part of the mix of woody biomass feedstocks for bioenergy and bioproducts. CRC Development LLC established the first commercial willow biomass plantation acreage in North America was established on the Tug Hill in the spring of 2006 and expanded in 2007. This was the first 230- acres toward the goal of 10,000 regional acres. This project replaces some 2007-drought damaged acreage and installs a total of 630-acre new planting acres in order to demonstrate to regional agricultural producers and rural land-owners the economic vitality of closed loop short rotation woody biomass energy crops when deployed commercially in order to motivate new grower entry into the market-place. The willow biomass will directly help stabilize the fuel supply for the Lyonsdale Biomass facility, which produces 19 MWe of power and exports 15,000 pph of process steam to Burrows Paper. This project will also provide feedstock to The Biorefinery in New York for the manufacture of renewable, CO2-neutral liquid transportation fuels, chemicals and polymers. This project helps end dependency on imported fossil fuels, adds to region economic and environmental vitality and contributes to national security through improved energy independence.

  6. Research of simulation for brushless DC motor with dual closed-loop cascade control system%无刷直流电机双闭环串级控制系统仿真研究

    Institute of Scientific and Technical Information of China (English)

    吕伟鹏

    2011-01-01

    In order to analyze and design the control system of BLDCM effectively,a new method of modeling and simulation for brushless DC motor under Matlab is proposed,this method is based on modular.Each module is described in detail.and then test the control system with a classic double-loop control method of modeling and simulation. The experimental results shows that the waveform of simulation consistent with analysis of theoretical The intergral separation which used in PI regulator makes zero-shoot on speed, and the system runs stability.It provides a great convenience for designing and debugging the system.%为了有效地分析和设计BLDCM控制系统,基于Matlab提出了一种新型的模块化的BLDCM控制系统仿真建模的方法。对各个模块进行了详细说明。最后,采用经典的速度、电流双闭环控制方法对该建模方法进行了仿真测试。结果表明仿真波形符合理论分析。转速环引入了积分分离的PI调节器使超调量为零,系统特性稳定,它为实际系统设计和调试工作提供了极大方便。

  7. Closed-loop approach for situation awareness of medical devices and operating room infrastructure

    Directory of Open Access Journals (Sweden)

    Rockstroh Max

    2015-09-01

    Full Text Available In recent years, approaches for information and control integration in the digital operating room have emerged. A major step towards an intelligent operating room and a cooperative technical environment would be autonomous adaptation of medical devices and systems to the surgical workflow. The OR staff should be freed from information seeking and maintenance tasks. We propose a closed-loop concept integrating workflow monitoring, processing and (semi-automatic interaction to bridge the gap between OR integration of medical devices and workflow-related information management.

  8. New trends in diabetes management: mobile telemedicine closed-loop system.

    Science.gov (United States)

    Hernando, M Elena; Gómez, Enrique J; Gili, Antonio; Gómez, Mónica; García, Gema; del Pozo, Francisco

    2004-01-01

    The rapid growth and development of information technologies over recent years, in the areas of mobile and wireless technologies is shaping a new technological scenario of telemedicine in diabetes. This telemedicine scenario can play an important role for further acceptance by diabetic patients of the existing continuous glucose monitoring systems and insulin pumps with the final goal of improving current therapeutic procedures. This paper describes a Personal Smart Assistant integrated in a multi-access telemedicine architecture for the implementation of a mobile telemedicine closed-loop system for diabetes management. The system is being evaluated within the European Union project named INCA ("Intelligent Control Assistant for Diabetes").

  9. Supervisory Control of a Humanoid Robot in Microgravity for Manipulation Tasks

    Science.gov (United States)

    Farrell, Logan C.; Strawser, Phil; Hambuchen, Kimberly; Baker, Will; Badger, Julia

    2017-01-01

    Teleoperation is the dominant form of dexterous robotic tasks in the field. However, there are many use cases in which direct teleoperation is not feasible such as disaster areas with poor communication as posed in the DARPA Robotics Challenge, or robot operations on spacecraft a large distance from Earth with long communication delays. Presented is a solution that combines the Affordance Template Framework for object interaction with TaskForce for supervisory control in order to accomplish high level task objectives with basic autonomous behavior from the robot. TaskForce, is a new commanding infrastructure that allows for optimal development of task execution, clear feedback to the user to aid in off-nominal situations, and the capability to add autonomous verification and corrective actions. This framework has allowed the robot to take corrective actions before requesting assistance from the user. This framework is demonstrated with Robonaut 2 removing a Cargo Transfer Bag from a simulated logistics resupply vehicle for spaceflight using a single operator command. This was executed with 80% success with no human involvement, and 95% success with limited human interaction. This technology sets the stage to do any number of high level tasks using a similar framework, allowing the robot to accomplish tasks with minimal to no human interaction.

  10. Design and Implementation of 12V/24V Closed loop Boost Converter for Solar Powered LED Lighting System

    Directory of Open Access Journals (Sweden)

    P.Sathya

    2013-02-01

    Full Text Available this paper presents the design and implementation of high performance closed loop Boost converter for solar powered HBLED lighting system. The proposed system consists of solar photovoltaic module, a closed loop boost converter and LED lighting module. The closed loop boost converter is used to convert a low level dc input voltage from solar PV module to a high level dc voltage required for the load. To regulate the output of the converter, closed loop voltage feedback technique is used. The feedback voltage is compared with a reference voltage and a control signal is generated and amplified. The amplified signal is fed to 555 Timer which in turn generates a PWM signal which controls the switching of MOSFET. Thus by switching of MOSFET it would try to keep output as constant. Initially the boost converter, timer circuit, amplifier circuit and LED light circuits are designed, simulated and finally implemented in printed circuit board. The simulation studies are carried out in MULTISIM. Theexperimental results for solar PV and boost converter obtained in both software and hardware are presented here.

  11. Apparatus for externally controlled closed-loop feedback digital epitaxy

    Science.gov (United States)

    Eres, D.; Sharp, J.W.

    1996-07-30

    A method and apparatus for digital epitaxy are disclosed. The apparatus includes a pulsed gas delivery assembly that supplies gaseous material to a substrate to form an adsorption layer of the gaseous material on the substrate. Structure is provided for measuring the isothermal desorption spectrum of the growth surface to monitor the active sites which are available for adsorption. The vacuum chamber housing the substrate facilitates evacuation of the gaseous material from the area adjacent the substrate following exposure. In use, digital epitaxy is achieved by exposing a substrate to a pulse of gaseous material to form an adsorption layer of the material on the substrate. The active sites on the substrate are monitored during the formation of the adsorption layer to determine if all the active sites have been filled. Once the active sites have been filled on the growth surface of the substrate, the pulse of gaseous material is terminated. The unreacted portion of the gas pulse is evacuated by continuous pumping. Subsequently, a second pulse is applied when availability of active sites is determined by studying the isothermal desorption spectrum. These steps are repeated until a thin film of sufficient thickness is produced. 5 figs.

  12. Role of human operator in closed loop control systems

    Directory of Open Access Journals (Sweden)

    H. P. Bhattacharyya

    1955-04-01

    Full Text Available This article gives a brief account of a particular aspect of human engineering which aims at improving the efficiency of working of a complicated machine itself, but by improving upon the machine itself, but by simplifying the operating procedures for the operator who has to run the machine. A human operator has been treated like a servocontrolled machine. It has been stressed also that probably a man and machine are basically different; the former often acts in peculiar ways whereas, the latter generally behaves in a manner bound by its design which is extremely flexible in the case of a man.

  13. A Proposal of Ajax Framework for Web-based Supervisory and Control Systems

    Science.gov (United States)

    Yanagihara, Shintaro; Ishihara, Akira; Ishii, Toshinao; Kitsuki, Junichi; Seo, Kazuo

    In recent years, with spread of Web application and performance gain of Web browsers, the demand of the web-based supervisory and control(WSCADA) systems based on RIA(Rich Internet Application) is increased. To develop CRUD operations(Create, Read, Update, Delete which corresponds to the basic database operations) of RIA-based web applications, various frameworks and libraries are being provided. However, to develop behavior operations, a lot of program must be written manually. The typical operations of WSCADA are behavior operations, so even if RIA frameworks and libraries are used to develop WSCADA, the productivity of development doesn't improve. Although conceptual models and development environment have been proposed for typical web applications consisted mostly of CRUD operations, those for WSCADA is still the unsolved problem. This paper proposes the user interface model and the development environment for the monitoring user interface program of WSCADA. We focus on the productivity enhancement of the WSCADA development, and propose the Monitoring User Interface Model(MUM) extended Model-View-Controller(MVC) model. We design the Ajax framework and the development environment based on our model. We define the DisplayItem as the advanced View and the MonitoringItem as the advanced Model, and classify the Controller into the Interaction and the Behavior. Our Ajax framework based on web browser's standard technologies, provides the mapping between conceptual model elements. We define the domain specific language for writing the mapping. We design development environment for auto-generating Behavior program from the mapping. In this paper, we evaluate our model and development environment through the experimental development of the typical WSCADA. As a result, the development cost of the WSCADA based on our framework is only one fifth of that based on the typical Ajax library.

  14. Anti-hypertensive effects of a closed-loop chip system in renovascular hypertensive rats.

    Science.gov (United States)

    Zhou, Li-Min; Zhu, Guo-Qing; Wang, Han-Jun; Zhao, Cong-Kan; Xu, Yao; Gao, Xing-Ya

    2008-08-01

    The authors' previous study showed a closed-loop chip system that was used to control arterial pressure in normal rabbits and rats. In the present study the anti-hypertensive effects of the chip system were investigated in anaesthetized two-kidney one-clip (2K1C) renovascular hypertensive rats and compared with sham-operated rats. The chip system recorded, sampled, and processed the signals of arterial pressure and instantaneously controlled arterial pressure by stimulating the left aortic depressor nerve. The frequency of stimulation was determined according to the feedback signals of arterial pressure. The chip system, running three different programs, successfully achieved a different degree of depressor effects. It effectively decreased not only mean arterial pressure (MAP), but also renal sympathetic nerve activity (RSNA) in both 2K1C rats and sham-operated rats. The chip system significantly increased the baroreflex gain in the 2K1C rats, but not in the sham-operated rats. It normalized the increased left ventricle developing pressure and maximal rise rate of the left ventricle pressure (dP/dtmax) in the 2K1C rats. These results indicate that the depressor effect can be controlled by changing the programs of the chip system. The closed-loop chip system effectively decreased arterial pressure and sympathetic outflow, increased baroreflex gain, and normalized the enhanced cardiac contractility in renovascular hypertensive rats.

  15. Closed-loop helium circulation system for actuation of a continuously operating heart catheter pump.

    Science.gov (United States)

    Karabegovic, Alen; Hinteregger, Markus; Janeczek, Christoph; Mohl, Werner; Gföhler, Margit

    2017-06-09

    Currently available, pneumatic-based medical devices are operated using closed-loop pulsatile or open continuous systems. Medical devices utilizing gases with a low atomic number in a continuous closed loop stream have not been documented to date. This work presents the construction of a portable helium circulation addressing the need for actuating a novel, pneumatically operated catheter pump. The design of its control system puts emphasis on the performance, safety and low running cost of the catheter pump. Static and dynamic characteristics of individual elements in the circulation are analyzed to ensure a proper operation of the system. The pneumatic circulation maximizes the working range of the drive unit inside the catheter pump while reducing the total size and noise production.Separate flow and pressure controllers position the turbine's working point into the stable region of the pressure creation element. A subsystem for rapid gas evacuation significantly decreases the duration of helium removal after a leak, reaching subatmospheric pressure in the intracorporeal catheter within several milliseconds. The system presented in the study offers an easy control of helium mass flow while ensuring stable behavior of its internal components.

  16. Perioperative insulin therapy using a closed-loop artificial endocrine pancreas after hepatic resection

    Institute of Scientific and Technical Information of China (English)

    Takehiro Okabayashi; Hiromichi Maeda; Zhao-Li Sun; Robert A Montgomery; Isao Nishimori; Kazuhiro Hanazaki

    2009-01-01

    Postoperative hyperglycemia is common in critically ill patients, even in those without a prior history of diabetes mellitus. It is well known that hyperglycemia induced by surgical stress often results in dysregulation of liver metabolism and immune function, impairing postoperative recovery. Current evidence suggests that maintaining normoglycemia postoperatively improves surgical outcome and reduces the mortality and morbidity of critically ill patients. On the basis of these observations, several large randomized controlledstudies were designed to evaluate the benefit of postoperative tight glycemic control with intensive insulin therapy. However, intensive insulin therapy carries the risk of hypoglycemia, which is linked to serious neurological events. Recently, we demonstrated that perioperative tight glycemic control in surgical patients could be achieved safely using a closed-loop glycemic control system and that this decreased both the incidence of infection at the site of the surgical incision, without the appearance of hypoglycemia, and actual hospital costs. Here, we review the benefits and requirements of perioperative intensive insulin therapy using a closed-loop artificial endocrine pancreas system in hepatectomized patients. This novel intensive insulin therapy is safe and effectively improves surgical outcome after hepatic resection.

  17. Precision Closed-Loop Orbital Maneuvering System Design and Performance for the Magnetospheric Multiscale Formation

    Science.gov (United States)

    Chai, Dean J.; Queen, Steven Z.; Placanica, Samuel J.

    2015-01-01

    NASAs Magnetospheric Multiscale (MMS) mission successfully launched on March 13,2015 (UTC) consists of four identically instrumented spin-stabilized observatories that function as a constellation to study magnetic reconnection in space. The need to maintain sufficiently accurate spatial and temporal formation resolution of the observatories must be balanced against the logistical constraints of executing overly-frequent maneuvers on a small fleet of spacecraft. These two considerations make for an extremely challenging maneuver design problem. This paper focuses on the design elements of a 6-DOF spacecraft attitude control and maneuvering system capable of delivering the high-precision adjustments required by the constellation designers specifically, the design, implementation, and on-orbit performance of the closed-loop formation-class maneuvers that include initialization, maintenance, and re-sizing. The maneuvering control system flown on MMS utilizes a micro-gravity resolution accelerometer sampled at a high rate in order to achieve closed-loop velocity tracking of an inertial target with arc-minute directional and millimeter-per second magnitude accuracy. This paper summarizes the techniques used for correcting bias drift, sensor-head offsets, and centripetal aliasing in the acceleration measurements. It also discusses the on-board pre-maneuver calibration and compensation algorithms as well as the implementation of the post-maneuver attitude adjustments.

  18. Closed-Loop Dynamic Modeling of Cerebral Hemodynamics

    Science.gov (United States)

    Marmarelis, V. Z.; Shin, D. C.; Orme, M. E.; Zhang, R.

    2013-01-01

    The dynamics of cerebral hemodynamics have been studied extensively because of their fundamental physiological and clinical importance. In particular, the dynamic processes of cerebral flow autoregulation and CO2 vasomotor reactivity have attracted broad attention because of their involvement in a host of pathologies and clinical conditions (e.g. hypertension, syncope, stroke, traumatic brain injury, vascular dementia, Alzheimer’s disease, mild cognitive impairment etc.). This raises the prospect of useful diagnostic methods being developed on the basis of quantitative models of cerebral hemodynamics, if cerebral vascular dysfunction can be quantified reliably from data collected within practical clinical constraints. This paper presents a modeling method that utilizes beat-to-beat measurements of mean arterial blood pressure, cerebral blood flow velocity and end-tidal CO2 (collected non-invasively under resting conditions) to quantify the dynamics of cerebral flow autoregulation (CFA) and cerebral vasomotor reactivity (CVMR). The unique and novel aspect of this dynamic model is that it is nonlinear and operates in a closed-loop configuration. PMID:23292615

  19. Real-Time Closed Loop Modulated Turbine Cooling

    Science.gov (United States)

    Shyam, Vikram; Culley, Dennis E.; Eldridge, Jeffrey; Jones, Scott; Woike, Mark; Cuy, Michael

    2014-01-01

    It has been noted by industry that in addition to dramatic variations of temperature over a given blade surface, blade-to-blade variations also exist despite identical design. These variations result from manufacturing variations, uneven wear and deposition over the life of the part as well as limitations in the uniformity of coolant distribution in the baseline cooling design. It is proposed to combine recent advances in optical sensing, actuation, and film cooling concepts to develop a workable active, closed-loop modulated turbine cooling system to improve by 10 to 20 the turbine thermal state over the flight mission, to improve engine life and to dramatically reduce turbine cooling air usage and aircraft fuel burn. A reduction in oxides of nitrogen (NOx) can also be achieved by using the excess coolant to improve mixing in the combustor especially for rotorcraft engines. Recent patents filed by industry and universities relate to modulating endwall cooling using valves. These schemes are complex, add weight and are limited to the endwalls. The novelty of the proposed approach is twofold 1) Fluidic diverters that have no moving parts are used to modulate cooling and can operate under a wide range of conditions and environments. 2) Real-time optical sensing to map the thermal state of the turbine has never been attempted in realistic engine conditions.

  20. Automating the weaning process with advanced closed-loop systems.

    Science.gov (United States)

    Burns, Karen E A; Lellouche, Francois; Lessard, Martin R

    2008-10-01

    Limiting the duration of invasive ventilation is an important goal in caring for critically ill patients. Several clinical trials have shown that compared to traditional care, protocols can reduce the total duration of mechanical ventilation. Computerized or automated weaning has the potential to improve weaning, while decreasing associated workload, and to transfer best evidence into clinical practice by integrating closed-loop technology into protocols that can be operationalized continuously. In this article, we review the principles of automated systems, discuss automated systems that can be used during weaning, and examine the best-current evidence from randomized trials and observational studies supporting their use. We highlight three commercially available systems (Mandatory Minute Ventilation, Adaptive Support Ventilation and SmartCare) that can be used to automate the weaning process. We note advantages and disadvantages associated with individual weaning systems and differences among them. We discuss the potential role for automation in complimenting clinical acumen, reducing practice pattern variation and facilitating knowledge translation into clinical practice, and underscore the need for additional high quality investigations to evaluate automated weaning systems in different practice settings and diverse patient populations.