WorldWideScience

Sample records for supervision-intern pair within-cases

  1. Training Level, Acculturation, Role Ambiguity, and Multicultural Discussions in Training and Supervising International Counseling Students in the United States

    Science.gov (United States)

    Ng, Kok-Mun; Smith, Shannon D.

    2012-01-01

    This research partially replicated Nilsson and Anderson's "Professional Psychology: Research and Practice" (2004) study on training and supervising international students. It investigated the relationships among international counseling students' training level, acculturation, supervisory working alliance (SWA), counseling self-efficacy (COSE),…

  2. Experiences of registered nurses who supervise international nursing students in the clinical and classroom setting: an integrative literature review.

    Science.gov (United States)

    Newton, Louise; Pront, Leeanne; Giles, Tracey M

    2016-06-01

    To examine the literature reporting the experiences and perceptions of registered nurses who supervise international nursing students in the clinical and classroom setting. Nursing education relies on clinical experts to supervise students during classroom and clinical education, and the quality of that supervision has a significant impact on student development and learning. Global migration and internationalisation of nursing education have led to increasing numbers of registered nurses supervising international nursing students. However, a paucity of relevant literature limits our understanding of these experiences. An integrative literature review. Comprehensive database searches of CINAHL, Informit, PubMed, Journals@Ovid, Findit@flinders and Medline were undertaken. Screening of 179 articles resulted in 10 included for review. Appraisal and analysis using Whittemore and Knafl's (Journal of Advanced Nursing, 52, 2005, 546) five stage integrative review recommendations was undertaken. This review highlighted some unique challenges for registered nurses supervising international nursing students. Identified issues were, a heightened sense of responsibility, additional pastoral care challenges, considerable time investments, communication challenges and cultural differences between teaching and learning styles. It is possible that these unique challenges could be minimised by implementing role preparation programmes specific to international nursing student supervision. Further research is needed to provide an in-depth exploration of current levels of preparation and support to make recommendations for future practice, education and policy development. An awareness of the specific cultural learning needs of international nursing students is an important first step to the provision of culturally competent supervision for this cohort of students. There is an urgent need for education and role preparation for all registered nurses supervising international nursing

  3. Mahonian pairs

    OpenAIRE

    Sagan, Bruce E.; Savage, Carla D.

    2012-01-01

    We introduce the notion of a Mahonian pair. Consider the set, P^*, of all words having the positive integers as alphabet. Given finite subsets S,T of P^*, we say that (S,T) is a Mahonian pair if the distribution of the major index, maj, over S is the same as the distribution of the inversion number, inv, over T. So the well-known fact that maj and inv are equidistributed over the symmetric group, S_n, can be expressed by saying that (S_n,S_n) is a Mahonian pair. We investigate various Mahonia...

  4. Pairing correlations in nuclei

    International Nuclear Information System (INIS)

    Baba, C.V.K.

    1988-01-01

    There are many similarities between the properties of nucleons in nuclei and electrons in metals. In addition to the properties explainable in terms of independent particle motion, there are many important co-operative effects suggesting correlated motion. Pairing correlation which leads to superconductivity in metals and several important properties in nuclei , is an exmple of such correlations. An attempt has been made to review the effects of pairing correlations in nuclei. Recent indications of reduction in pairing correlations at high angular momenta is discussed. A comparision between pairing correlations in the cases of nuclei and electrons in metals is attempted. (author). 20 refs., 10 figs

  5. Secure pairing with biometrics

    NARCIS (Netherlands)

    Buhan, I.R.; Boom, B.J.; Doumen, J.M.; Hartel, Pieter H.; Veldhuis, Raymond N.J.

    Secure pairing enables two devices that share no prior context with each other to agree upon a security association, which they can use to protect their subsequent communication. Secure pairing offers guarantees of the association partner identity and it should be resistant to eavesdropping and to a

  6. Affine pairings on ARM

    NARCIS (Netherlands)

    Acar, T.; Lauter, K.; Naehrig, M.; Shumow, D.

    2011-01-01

    Pairings on elliptic curves are being used in an increasing number of cryptographic applications on many different devices and platforms, but few performance numbers for cryptographic pairings have been reported on embedded and mobile devices. In this paper we give performance numbers for affine and

  7. Solutions of nuclear pairing

    International Nuclear Information System (INIS)

    Balantekin, A. B.; Pehlivan, Y.

    2007-01-01

    We give the exact solution of orbit dependent nuclear pairing problem between two nondegenerate energy levels using the Bethe ansatz technique. Our solution reduces to previously solved cases in the appropriate limits including Richardson's treatment of reduced pairing in terms of rational Gaudin algebra operators

  8. Pair correlations in nuclei

    International Nuclear Information System (INIS)

    Shimizu, Yoshifumi

    2009-01-01

    Except for the closed shell nuclei, almost all nuclei are in the superconducting state at their ground states. This well-known pair correlation in nuclei causes various interesting phenomena. It is especially to be noted that the pair correlation becomes weak in the excited states of nuclei with high angular momentum, which leads to the pair phase transition to the normal state in the high spin limit. On the other hand, the pair correlation becomes stronger in the nuclei with lower nucleon density than in those with normal density. In the region of neutron halo or skin state of unstable nuclei, this phenomenon is expected to be further enhanced to be observed compared to the ground state of stable nuclei. An overview of those interesting aspects caused via the pair correlation is presented here in the sections titled 'pair correlations in ground states', pair correlations in high spin states' and 'pair correlations in unstable nuclei' focusing on the high spin state. (S. Funahashi)

  9. Cooper Pairs in Insulators?

    International Nuclear Information System (INIS)

    Valles, James

    2008-01-01

    Nearly 50 years elapsed between the discovery of superconductivity and the emergence of the microscopic theory describing this zero resistance state. The explanation required a novel phase of matter in which conduction electrons joined in weakly bound pairs and condensed with other pairs into a single quantum state. Surprisingly, this Cooper pair formation has also been invoked to account for recently uncovered high-resistance or insulating phases of matter. To address this possibility, we have used nanotechnology to create an insulating system that we can probe directly for Cooper pairs. I will present the evidence that Cooper pairs exist and dominate the electrical transport in these insulators and I will discuss how these findings provide new insight into superconductor to insulator quantum phase transitions.

  10. Au pair trajectories

    DEFF Research Database (Denmark)

    Dalgas, Karina Märcher

    2015-01-01

    pair-sending families in the Philippines, this dissertation examines the long-term trajectories of these young Filipinas. It shows how the au pairs’ local and transnational family relations develop over time and greatly influence their life trajectories. A focal point of the study is how au pairs...... that Filipina au pairs see their stay abroad as an avenue of personal development and social recognition, I examine how the au pairs re-position themselves within their families at home through migration, and how they navigate between the often conflicting expectations of participation in the sociality......Since 2000, thousands of young Filipino migrants have come to Denmark as au pairs. Officially, they are there to “broaden their cultural horizons” by living temporarily with a Danish host family, but they also conduct domestic labor in exchange for food and money, which allows them to send...

  11. Mesoscopic pairing without superconductivity

    Science.gov (United States)

    Hofmann, Johannes

    2017-12-01

    We discuss pairing signatures in mesoscopic nanowires with a variable attractive pairing interaction. Depending on the wire length, density, and interaction strength, these systems realize a simultaneous bulk-to-mesoscopic and BCS-BEC crossover, which we describe in terms of the parity parameter that quantifies the odd-even energy difference and generalizes the bulk Cooper pair binding energy to mesoscopic systems. We show that the parity parameter can be extracted from recent measurements of conductance oscillations in SrTiO3 nanowires by Cheng et al. [Nature (London) 521, 196 (2015), 10.1038/nature14398], where it marks the critical magnetic field that separates pair and single-particle currents. Our results place the experiment in the fluctuation-dominated mesoscopic regime on the BCS side of the crossover.

  12. Investigations into nuclear pairing

    International Nuclear Information System (INIS)

    Clark, R.M.

    2006-01-01

    This paper is divided in two main sections focusing on different aspects of collective nuclear behavior. In the first section, solutions are considered for the collective pairing Hamiltonian. In particular, an approximate solution at the critical point of the pairing transition from harmonic vibration (normal nuclear behavior) to deformed rotation (superconducting behavior) in gauge space is found by analytic solution of the Hamiltonian. The eigenvalues are expressed in terms of the zeros of Bessel functions of integer order. The results are compared to the pairing bands based on the Pb isotopes. The second section focuses on the experimental search for the Giant Pairing Vibration (GPV) in nuclei. After briefly describing the origin of the GPV, and the reasons that the state has remained unidentified, a novel idea for populating this state is presented. A recent experiment has been performed using the LIBERACE+STARS detector system at the 88-Inch Cyclotron of LBNL to test the idea. (Author)

  13. [Paired kidneys in transplant].

    Science.gov (United States)

    Regueiro López, Juan C; Leva Vallejo, Manuel; Prieto Castro, Rafael; Anglada Curado, Francisco; Vela Jiménez, Francisco; Ruiz García, Jesús

    2009-02-01

    Many factors affect the graft and patient survival on the renal transplant outcome. These factors depend so much of the recipient and donor. We accomplished a study trying to circumvent factors that depend on the donor. We checked the paired kidneys originating of a same donor cadaver. We examined the risk factors in the evolution and follow-up in 278 couples of kidney transplant. We describe their differences, significance, the graft and patient survival, their functionality in 3 and 5 years and the risk factors implicated in their function. We study immunogenic and no immunogenic variables, trying to explain the inferior results in the grafts that are established secondly. We regroup the paired kidneys in those that they did not show paired initial function within the same couple. The results yield a discreet deterioration in the graft and patient survival for second group establish, superior creatinina concentration, without obtaining statistical significance. The Cox regression study establishes the early rejection (inferior to three months) and DR incompatibility values like risk factors. This model of paired kidneys would be able to get close to best-suited form for risk factors analysis in kidney transplant from cadaver donors, if more patients examine themselves in the same way. The paired kidneys originating from the same donor do not show the same function in spite of sharing the same conditions of the donor and perioperative management.

  14. Junctionless Cooper pair transistor

    Energy Technology Data Exchange (ETDEWEB)

    Arutyunov, K. Yu., E-mail: konstantin.yu.arutyunov@jyu.fi [National Research University Higher School of Economics , Moscow Institute of Electronics and Mathematics, 101000 Moscow (Russian Federation); P.L. Kapitza Institute for Physical Problems RAS , Moscow 119334 (Russian Federation); Lehtinen, J.S. [VTT Technical Research Centre of Finland Ltd., Centre for Metrology MIKES, P.O. Box 1000, FI-02044 VTT (Finland)

    2017-02-15

    Highlights: • Junctionless Cooper pair box. • Quantum phase slips. • Coulomb blockade and gate modulation of the Coulomb gap. - Abstract: Quantum phase slip (QPS) is the topological singularity of the complex order parameter of a quasi-one-dimensional superconductor: momentary zeroing of the modulus and simultaneous 'slip' of the phase by ±2π. The QPS event(s) are the dynamic equivalent of tunneling through a conventional Josephson junction containing static in space and time weak link(s). Here we demonstrate the operation of a superconducting single electron transistor (Cooper pair transistor) without any tunnel junctions. Instead a pair of thin superconducting titanium wires in QPS regime was used. The current–voltage characteristics demonstrate the clear Coulomb blockade with magnitude of the Coulomb gap modulated by the gate potential. The Coulomb blockade disappears above the critical temperature, and at low temperatures can be suppressed by strong magnetic field.

  15. Frustrated Lewis Pairs

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 11. Frustrated Lewis Pairs : Enabling via inability. Sanjoy Mukherjee ... Author Affiliations. Sanjoy Mukherjee Pakkirisamy Thilagar1. Department of Inorgainic and Physical Chemistry Indian Institute of Science Bangalore 560 012, India.

  16. Paired fuzzy sets

    DEFF Research Database (Denmark)

    Rodríguez, J. Tinguaro; Franco de los Ríos, Camilo; Gómez, Daniel

    2015-01-01

    In this paper we want to stress the relevance of paired fuzzy sets, as already proposed in previous works of the authors, as a family of fuzzy sets that offers a unifying view for different models based upon the opposition of two fuzzy sets, simply allowing the existence of different types...

  17. Affine pairings on ARM

    NARCIS (Netherlands)

    Acar, T.; Lauter, K.; Naehrig, M.; Shumow, D.; Abdalla, M.; Lange, T.

    2013-01-01

    We report on relative performance numbers for affine and projective pairings on a dual-core Cortex A9 ARM processor. Using a fast inversion in the base field and doing inversion in extension fields by using the norm map to reduce to inversions in smaller fields, we find a very low ratio of

  18. Excited cooper pairs

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Arrietea, M. G.; Solis, M. A.; De Llano, M. [Universidad Nacional Autonoma de Mexico, Mexico, D.F (Mexico)

    2001-02-01

    Excited cooper pairs formed in a many-fermion system are those with nonzero total center-of mass momentum (CMM). They are normally neglected in the standard Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity for being too few compared with zero CMM pairs. However, a Bose-Einstein condensation picture requires both zero and nonzero CMM pairs. Assuming a BCS model interaction between fermions we determine the populations for all CMM values of Cooper pairs by actually calculating the number of nonzero-CMM pairs relative to that of zero-CMM ones in both 2D and 3D. Although this ratio decreases rapidly with CMM, the number of Cooper pairs for any specific CMM less than the maximum (or breakup of the pair) momentum turns out to be typically larger than about 95% of those with zero-CMM at zero temperature T. Even at T {approx}100 K this fraction en 2D is still as large as about 70% for typical quasi-2D cuprate superconductor parameters. [Spanish] Los pares de cooper excitados formados en un sistema de muchos electrones, son aquellos con momentos de centro de masa (CMM) diferente de cero. Normalmente estos no son tomados en cuenta en la teoria estandar de la superconductividad de Bardeen-Cooper-Schrieffer (BCS) al suponer que su numero es muy pequeno comparados con los pares de centro de masa igual a cero. Sin embargo, un esquema de condensacion Bose-Einstein requiere de ambos pares, con CMM cero y diferente de cero. Asumiendo una interaccion modelo BCS entre los fermiones, determinamos la poblacion de pares cooper con cada uno de todos los posibles valores del CMM calculando el numero de pares con momentos de centro de masa diferente de cero relativo a los pares de CMM igual a cero, en 2D y 3D. Aunque esta razon decrece rapidamente con el CMM, el numero de pares de cooper para cualquier CMM especifico menor que el momento maximo (o rompimiento de par) es tipicamente mas grande que el 95% de aquellos con CMM cero. Aun a T {approx}100 K esta fraccion en 2D es

  19. Multi-pair states in electron–positron pair creation

    Energy Technology Data Exchange (ETDEWEB)

    Wöllert, Anton, E-mail: woellert@mpi-hd.mpg.de; Bauke, Heiko, E-mail: heiko.bauke@mpi-hd.mpg.de; Keitel, Christoph H.

    2016-09-10

    Ultra strong electromagnetic fields can lead to spontaneous creation of single or multiple electron–positron pairs. A quantum field theoretical treatment of the pair creation process combined with numerical methods provides a description of the fermionic quantum field state, from which all observables of the multiple electron–positron pairs can be inferred. This allows to study the complex multi-particle dynamics of electron–positron pair creation in-depth, including multi-pair statistics as well as momentum distributions and spin. To illustrate the potential benefit of this approach, it is applied to the intermediate regime of pair creation between nonperturbative Schwinger pair creation and perturbative multiphoton pair creation where the creation of multi-pair states becomes nonnegligible but cascades do not yet set in. Furthermore, it is demonstrated how spin and helicity of the created electrons and positrons are affected by the polarization of the counterpropagating laser fields, which induce the creation of electron–positron pairs.

  20. Multi-pair states in electron–positron pair creation

    International Nuclear Information System (INIS)

    Wöllert, Anton; Bauke, Heiko; Keitel, Christoph H.

    2016-01-01

    Ultra strong electromagnetic fields can lead to spontaneous creation of single or multiple electron–positron pairs. A quantum field theoretical treatment of the pair creation process combined with numerical methods provides a description of the fermionic quantum field state, from which all observables of the multiple electron–positron pairs can be inferred. This allows to study the complex multi-particle dynamics of electron–positron pair creation in-depth, including multi-pair statistics as well as momentum distributions and spin. To illustrate the potential benefit of this approach, it is applied to the intermediate regime of pair creation between nonperturbative Schwinger pair creation and perturbative multiphoton pair creation where the creation of multi-pair states becomes nonnegligible but cascades do not yet set in. Furthermore, it is demonstrated how spin and helicity of the created electrons and positrons are affected by the polarization of the counterpropagating laser fields, which induce the creation of electron–positron pairs.

  1. Coulomb pair-creation

    International Nuclear Information System (INIS)

    Hrasko, P.; Foeldy, L.; Toth, A.

    1986-07-01

    Electron-positron pair production in strong Coulomb fields is outlined. It is shown that the singular behaviour of the adiabatic basis can be removed if solutions of the time dependent external field Dirac equation are used as a basis to expand the fermion field operator. This latter 'asymptotic basis' makes it possible to introduce Feynman-propagator. Applying the reduction technique, the computation of all of the basic quantities can be reduced to the solution of an integral equation. The positron spectrum for separable potential model with Lorentzian time dependence and for potential jump is analyzed in the pole approximation. (author)

  2. Pairing correlations around scission

    International Nuclear Information System (INIS)

    Krappe, H.J.; Fadeev, S.

    2001-01-01

    To describe pairing correlations in a fissioning system one commonly projects the BCS wave function separately onto good particle numbers in each fragment in the exit channel, but only onto the total number of particles in the parent system. We propose to interpolate between these limiting situations by the generator-coordinate method with the particle-number difference between the nascent fragments as the generator coordinate. Model calculations are presented for the Hill-Wheeler-box potential with a δ-function diaphragm to mimic scission

  3. Au pairs on Facebook

    DEFF Research Database (Denmark)

    Dalgas, Karina Märcher

    2016-01-01

    Ethnographers are increasingly making use of Facebook to acquire access and general acquaintance with their field of study. However, little has been written on how Facebook is used methodologically in research that does not have social media sites as the main focus of interest. This article argues...... the au pairs resist and embrace such dominant representations, and on how such representations are ascribed different meanings in the transnational social fields of which the migrant are a part. The article is based on ethnographic fieldwork conducted between 2010 and 2014 in Denmark, the Philippines...

  4. Assessing Intimacy: The Pair Inventory.

    Science.gov (United States)

    Schaefer, Mark T.; Olson, David H.

    1981-01-01

    Personal Assessment of Intimacy in Relationships (PAIR) provides systematic information in five types of intimacy: emotional, social, sexual, intellectual and recreational. PAIR can be used with couples in marital therapy and enrichment groups. (Author)

  5. QSO Pairs across Active Galaxies

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Several QSO pairs have been reported and their redshifts determined, where the two objects in each pair are located across an active galaxy. The usually accepted explanation of such occurrences is that the pair is ejected from the parent galaxy. Currently interpreted redshifted spectra for both the QSOs ...

  6. Pairing in hadron structure

    International Nuclear Information System (INIS)

    Chela-Flores, J.

    1981-08-01

    A many-body approach to hadron structure is presented, in which we consider two parton species: spin-0 (b-partons), and spin-1/2 (f-partons). We extend a boson and a fermion pairing scheme for the b-, and f-partons respectively, into a Yang-Mills gauge theory. The main feature of this theory is that the gauge field is not identified with the usual gluon field variable in QCD. We study the confinement problem of the hadron constituents, and obtain, for low temperatures, partons that are confined by energy gaps. As the critical temperatures for the corresponding phase transitions are approached, the energy gap gradually disappears, and confinement is lost. The theory goes beyond the non-relativistic harmonic oscillator quark model, in the sense of giving physical reasons why a non-relativistic approximation is adequate in describing the internal dynamics of hadron structure. (author)

  7. Paired Hall states

    International Nuclear Information System (INIS)

    Greiter, M.

    1992-01-01

    This dissertation contains a collection of individual articles on various topics. Their significance in the corresponding field as well as connections between them are emphasized in a general and comprehensive introduction. In the first article, the author explores the consequences for macroscopic effective Lagrangians of assuming that the momentum density is proportional to the flow of conserved current. The universal corrections obtained for the macroscopic Lagrangian of a superconductor describe the London Hall effect, and provide a fully consistent derivation of it. In the second article, a heuristic principle is proposed for quantized Hall states: the existence and incompressibility of fractionally quantized Hall states is explained by an argument based on an adiabatic localization of magnetic flux, the process of trading uniform flux for an equal amount of fictitious flux attached to the particles. This principle is exactly implemented in the third article. For a certain class of model Hamiltonians, the author obtains Laughlin's Jastrow type wave functions explicitly from a filled Landau level, by smooth extrapolation in quantum statistics. The generalization of this analysis to the torus geometry shows that theorems restricting the possibilities of quantum statistics on closed surfaces are circumvented in the presence of a magnetic field. In the last article, the existence is proposed of a novel incompressible quantum liquid, a paired Hall state, at a half filled Landau level. This state arises adiabatically from free fermions in zero magnetic field, and reduces to a state previously proposed by Halperin in the limit of tightly bound pairs. It supports unusual excitations, including neutral fermions and charge e/4 anyons with statistical parameter θ = π/8

  8. Multi-pair states in electron–positron pair creation

    Directory of Open Access Journals (Sweden)

    Anton Wöllert

    2016-09-01

    Full Text Available Ultra strong electromagnetic fields can lead to spontaneous creation of single or multiple electron–positron pairs. A quantum field theoretical treatment of the pair creation process combined with numerical methods provides a description of the fermionic quantum field state, from which all observables of the multiple electron–positron pairs can be inferred. This allows to study the complex multi-particle dynamics of electron–positron pair creation in-depth, including multi-pair statistics as well as momentum distributions and spin. To illustrate the potential benefit of this approach, it is applied to the intermediate regime of pair creation between nonperturbative Schwinger pair creation and perturbative multiphoton pair creation where the creation of multi-pair states becomes nonnegligible but cascades do not yet set in. Furthermore, it is demonstrated how spin and helicity of the created electrons and positrons are affected by the polarization of the counterpropagating laser fields, which induce the creation of electron–positron pairs.

  9. Pair potentials in liquid metals

    International Nuclear Information System (INIS)

    Faber, T.E.

    1980-01-01

    The argument which justifies the use of a pair potential to describe the structure-dependent term in the energy of liquid metals is briefly reviewed. Because there is an additional term in the energy which depends upon volume rather than structure, and because the pair potential itself is volume-dependent, the relationship between pair potential and observable properties such as pressure, bulk modulus and pair distribution function is more complicated for liquid metals than it is for molecular liquids. Perhaps for this reason, the agreement between pair potentials inferred from observable properties and pair potentials calculated by means of pseudo-potential theory is still far from complete. The pair potential concept is applicable only to simple liquid metals, in which the electron-ion interaction is weak. No attempt is made to discuss liquid transition and rare-earth metals, which are not simple in this sense. (author)

  10. Experimental many-pairs nonlocality

    Science.gov (United States)

    Poh, Hou Shun; Cerè, Alessandro; Bancal, Jean-Daniel; Cai, Yu; Sangouard, Nicolas; Scarani, Valerio; Kurtsiefer, Christian

    2017-08-01

    Collective measurements on large quantum systems together with a majority voting strategy can lead to a violation of the Clauser-Horne-Shimony-Holt Bell inequality. In the presence of many entangled pairs, this violation decreases quickly with the number of pairs and vanishes for some critical pair number that is a function of the noise present in the system. Here we show that a different binning strategy can lead to a more substantial Bell violation when the noise is sufficiently small. Given the relation between the critical pair number and the source noise, we then present an experiment where the critical pair number is used to quantify the quality of a high visibility photon pair source. Our results demonstrate nonlocal correlations using collective measurements operating on clusters of more than 40 photon pairs.

  11. Kramers Pairs in configuration interaction

    DEFF Research Database (Denmark)

    Avery, John Scales; Avery, James Emil

    2003-01-01

    The theory of symmetry-preserving Kramers pair creation operators is reviewed and formulas for applying these operators to configuration interaction calculations are derived. A new and more general type of symmetry-preserving pair creation operator is proposed and shown to commute with the total ...

  12. Property (RD) for Hecke Pairs

    International Nuclear Information System (INIS)

    Shirbisheh, Vahid

    2012-01-01

    As the first step towards developing noncommutative geometry over Hecke C ∗ -algebras, we study property (RD) (Rapid Decay) for Hecke pairs. When the subgroup H in a Hecke pair (G, H) is finite, we show that the Hecke pair (G, H) has (RD) if and only if G has (RD). This provides us with a family of examples of Hecke pairs with property (RD). We also adapt Paul Jolissant’s works in Jolissaint (J K-Theory 2:723–735, 1989; Trans Amer Math Soc 317(1):167–196, 1990) to the setting of Hecke C ∗ -algebras and show that when a Hecke pair (G, H) has property (RD), the algebra of rapidly decreasing functions on the set of double cosets is closed under holomorphic functional calculus of the associated (reduced) Hecke C ∗ -algebra. Hence they have the same K 0 -groups.

  13. Instability of vortex pair leapfrogging

    DEFF Research Database (Denmark)

    Tophøj, Laust; Aref, Hassan

    2013-01-01

    Leapfrogging is a periodic solution of the four-vortex problem with two positive and two negative point vortices all of the same absolute circulation arranged as co-axial vortex pairs. The set of co-axial motions can be parameterized by the ratio 0 vortex pair sizes at the time when one...... pair passes through the other. Leapfrogging occurs for α > σ2, where is the silver ratio. The motion is known in full analytical detail since the 1877 thesis of Gröbli and a well known 1894 paper by Love. Acheson ["Instability of vortex leapfrogging," Eur. J. Phys.21, 269-273 (2000...... pairs fly off to infinity, and a "walkabout" mode, where the vortices depart from leapfrogging but still remain within a finite distance of one another. We show numerically that this transition is more gradual, a result that we relate to earlier investigations of chaotic scattering of vortex pairs [L...

  14. Pairing induced superconductivity in holography

    Science.gov (United States)

    Bagrov, Andrey; Meszena, Balazs; Schalm, Koenraad

    2014-09-01

    We study pairing induced superconductivity in large N strongly coupled systems at finite density using holography. In the weakly coupled dual gravitational theory the mechanism is conventional BCS theory. An IR hard wall cut-off is included to ensure that we can controllably address the dynamics of a single confined Fermi surface. We address in detail the interplay between the scalar order parameter field and fermion pairing. Adding an explicitly dynamical scalar operator with the same quantum numbers as the fermion-pair, the theory experiences a BCS/BEC crossover controlled by the relative scaling dimensions. We find the novel result that this BCS/BEC crossover exposes resonances in the canonical expectation value of the scalar operator. This occurs not only when the scaling dimension is degenerate with the Cooper pair, but also with that of higher derivative paired operators. We speculate that a proper definition of the order parameter which takes mixing with these operators into account stays finite nevertheless.

  15. Nuclear scissors mode with pairing

    International Nuclear Information System (INIS)

    Balbutsev, E. B.; Malov, L. A.; Schuck, P.; Urban, M.; Vinas, X.

    2008-01-01

    The coupled dynamics of the scissors mode and the isovector giant quadrupole resonance are studied using a generalized Wigner function moments method, taking into account pair correlations. Equations of motion for angular momentum, quadrupole moment, and other relevant collective variables are derived on the basis of the time-dependent Hartree-Fock-Bogolyubov equations. Analytical expressions for energy centroids and transition probabilities are found for the harmonic-oscillator model with the quadrupole-quadrupole residual interaction and monopole pairing force. Deformation dependences of energies and B(M1) values are correctly reproduced. The inclusion of pair correlations leads to a drastic improvement in the description of qualitative and quantitative characteristics of the scissors mode.

  16. Pairing mechanism in oxide superconductors

    International Nuclear Information System (INIS)

    Hirsch, J.E.

    1988-01-01

    A useful way to learn about the pairing mechanism that is responsible for high T c superconductivity is to study properties of model Hamiltonians on small systems. The goal is to find the simplest model that can describe the essential physics of high T c superconductivity. The authors have used Monte Carlo simulation and exact diagonalization techniques to study properties of systems of up to 64 sites. Their results show that spin fluctuations and other spin related mechanisms induced by a Hubbard on-site repulsion U are not likely to give rise to pairing, neither in one nor in multiple band models. In contrast, charge fluctuations in a model with both strong U and V (repulsion between Cu and O) are shown to give rise to pairing and it is suggested that this model provides a plausible mechanism for high T c superconductivity

  17. QCD pairing in primordial nuggets

    Science.gov (United States)

    Lugones, G.; Horvath, J. E.

    2003-08-01

    We analyze the problem of boiling and surface evaporation of quark nuggets in the cosmological quark-hadron transition. Recently, it has been shown that QCD pairing modifies the stability properties of strange quark matter. More specifically, strange quark matter in a color-flavor locked state was found to be absolutely stable for a much wider range of the parameters than ordinary unpaired strange quark matter (G. Lugones and J. E. Horvath, Phys. Rev. D, 66, 074017 (2002)). Assuming that primordial quark nuggets are actually formed we analyze the consequences of pairing on the rates of boiling and surface evaporation in order to determine whether they could have survived.

  18. Exclusive electroproduction of pion pairs

    International Nuclear Information System (INIS)

    Warkentin, N.; Schaefer, A.; Diehl, M.; Ivanov, D. Yu.

    2007-01-01

    We investigate electroproduction of pion pairs on the nucleon in the framework of QCD factorization for hard exclusive processes. We extend previous analyses by taking the hard-scattering coefficients at next-to-leading order in α s . The dynamics of the produced pion pair is described by two-pion distribution amplitudes, for which we perform a detailed theoretical and phenomenological analysis. In particular, we obtain constraints on these quantities by comparing our results with measurements of angular observables that are sensitive to the interference between two-pion production in the isoscalar and isovector channels. (orig.)

  19. Instantons in lepton pair production

    International Nuclear Information System (INIS)

    Brandenburg, A.; Ringwald, A.; Utermann, A.

    2006-05-01

    We consider QCD instanton-induced contributions to lepton pair production in hadron-hadron collisions. We relate these contributions to those known from deep inelastic scattering and demonstrate that they can be calculated reliably for sufficiently large momentum transfer. We observe that the instanton contribution to the angular distribution of the lepton pairs at finite momentum transfer strongly violates the Lam-Tung relation - a relation between coefficient functions of the angular distribution which is valid within the framework of ordinary perturbation theory. The drastic violation of this relation, as seen in experimental data, might be related to such instanton-induced effects. (Orig.)

  20. Guanidinium Pairing Facilitates Membrane Translocation

    Czech Academy of Sciences Publication Activity Database

    Allolio, Christoph; Baxová, Katarína; Vazdar, M.; Jungwirth, Pavel

    2016-01-01

    Roč. 120, č. 1 (2016), s. 143-153 ISSN 1520-6106 R&D Projects: GA ČR GA13-06181S Institutional support: RVO:61388963 Keywords : ab initio molecular dynamics * guanidinium * like charge pairing * membrane Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.177, year: 2016

  1. Pairing Linguistic and Music Intelligences

    Science.gov (United States)

    DiEdwardo, MaryAnn Pasda

    2005-01-01

    This article describes how music in the language classroom setting can be a catalyst for developing reading, writing, and understanding skills. Studies suggest that pairing music and linguistic intelligences in the college classroom improves students' grades and abilities to compose theses statements for research papers in courses that emphasize…

  2. Conjugal Pairing in Escherichia Coli

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 8. Conjugal Pairing in Escherichia Coli. Joshua Lederberg. Classics Volume 13 Issue 8 August 2008 pp 793-794. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/013/08/0793-0794 ...

  3. Rank error-correcting pairs

    DEFF Research Database (Denmark)

    Martinez Peñas, Umberto; Pellikaan, Ruud

    2017-01-01

    Error-correcting pairs were introduced as a general method of decoding linear codes with respect to the Hamming metric using coordinatewise products of vectors, and are used for many well-known families of codes. In this paper, we define new types of vector products, extending the coordinatewise ...

  4. 'Leonard pairs' in classical mechanics

    International Nuclear Information System (INIS)

    Zhedanov, Alexei; Korovnichenko, Alyona

    2002-01-01

    Leonard pairs (LP) are matrices with the property of mutual tri-diagonality. We introduce and study a classical analogue of LP. We show that corresponding classical 'Leonard' dynamical variables satisfy non-linear relations of the AW-type with respect to Poisson brackets. (author)

  5. Pair plasma relaxation time scales.

    Science.gov (United States)

    Aksenov, A G; Ruffini, R; Vereshchagin, G V

    2010-04-01

    By numerically solving the relativistic Boltzmann equations, we compute the time scale for relaxation to thermal equilibrium for an optically thick electron-positron plasma with baryon loading. We focus on the time scales of electromagnetic interactions. The collisional integrals are obtained directly from the corresponding QED matrix elements. Thermalization time scales are computed for a wide range of values of both the total-energy density (over 10 orders of magnitude) and of the baryonic loading parameter (over 6 orders of magnitude). This also allows us to study such interesting limiting cases as the almost purely electron-positron plasma or electron-proton plasma as well as intermediate cases. These results appear to be important both for laboratory experiments aimed at generating optically thick pair plasmas as well as for astrophysical models in which electron-positron pair plasmas play a relevant role.

  6. Statistical deprojection of galaxy pairs

    Science.gov (United States)

    Nottale, Laurent; Chamaraux, Pierre

    2018-06-01

    Aims: The purpose of the present paper is to provide methods of statistical analysis of the physical properties of galaxy pairs. We perform this study to apply it later to catalogs of isolated pairs of galaxies, especially two new catalogs we recently constructed that contain ≈1000 and ≈13 000 pairs, respectively. We are particularly interested by the dynamics of those pairs, including the determination of their masses. Methods: We could not compute the dynamical parameters directly since the necessary data are incomplete. Indeed, we only have at our disposal one component of the intervelocity between the members, namely along the line of sight, and two components of their interdistance, i.e., the projection on the sky-plane. Moreover, we know only one point of each galaxy orbit. Hence we need statistical methods to find the probability distribution of 3D interdistances and 3D intervelocities from their projections; we designed those methods under the term deprojection. Results: We proceed in two steps to determine and use the deprojection methods. First we derive the probability distributions expected for the various relevant projected quantities, namely intervelocity vz, interdistance rp, their ratio, and the product rp v_z^2, which is involved in mass determination. In a second step, we propose various methods of deprojection of those parameters based on the previous analysis. We start from a histogram of the projected data and we apply inversion formulae to obtain the deprojected distributions; lastly, we test the methods by numerical simulations, which also allow us to determine the uncertainties involved.

  7. Charge Aspects of Composite Pair Superconductivity

    Science.gov (United States)

    Flint, Rebecca

    2014-03-01

    Conventional Cooper pairs form from well-defined electronic quasiparticles, making the internal structure of the pair irrelevant. However, in the 115 family of superconductors, the heavy electrons are forming as they pair and the internal pair structure becomes as important as the pairing mechanism. Conventional spin fluctuation mediated pairing cannot capture the direct transition from incoherent local moments to heavy fermion superconductivity, but the formation of composite pairs favored by the two channel Kondo effect can. These composite pairs are local d-wave pairs formed by two conduction electrons in orthogonal Kondo channels screening the same local moment. Composite pairing shares the same symmetries as magnetically mediated pairing, however, only composite pairing necessarily involves a redistribution of charge within the unit cell originating from the internal pair structure, both as a monopole (valence change) and a quadrupole effect. This redistribution will onset sharply at the superconducting transition temperature. A smoking gun test for composite pairing is therefore a sharp signature at Tc - for example, a cusp in the Mossbauer isomer shift in NpPd5Al2 or in the NQR shift in (Ce,Pu)CoIn5.

  8. Kinetic equations with pairing correlations

    International Nuclear Information System (INIS)

    Fauser, R.

    1995-12-01

    The Gorkov equations are derived for a general non-equilibrium system. The Gorkov factorization is generalized by the cumulant expansion of the 2-particle correlation and by a generalized Wick theorem in the case of a perturbation expansion. A stationary solution for the Green functions in the Schwinger-Keldysh formalism is presented taking into account pairing correlations. Especially the effects of collisional broadening on the spectral functions and Green functions is discussed. Kinetic equations are derived in the quasi-particle approximation and in the case of particles with width. Explicit expressions for the self-energies are given. (orig.)

  9. Endocrine factors of pair bonding.

    Science.gov (United States)

    Stárka, L

    2007-01-01

    Throughout literature--fiction and poetry, fine arts and music--falling in love and enjoying romantic love plays a central role. While several psychosocial conceptions of pair attachment consider the participation of hormones, human endocrinology has dealt with this theme only marginally. According to some authors in addictology, falling in love shows some signs of hormonal response to stressors with changes in dopamine and serotonin signalling and neurotrophin (transforming growth factor b) concentration. Endorphins, oxytocin and vasopressin may play a role during the later phases of love. However, proof of hormonal events associated with love in humans has, until recently, been lacking.

  10. Pairs of dual periodic frames

    DEFF Research Database (Denmark)

    Christensen, Ole; Goh, Say Song

    2012-01-01

    The time–frequency analysis of a signal is often performed via a series expansion arising from well-localized building blocks. Typically, the building blocks are based on frames having either Gabor or wavelet structure. In order to calculate the coefficients in the series expansion, a dual frame...... is needed. The purpose of the present paper is to provide constructions of dual pairs of frames in the setting of the Hilbert space of periodic functions L2(0,2π). The frames constructed are given explicitly as trigonometric polynomials, which allows for an efficient calculation of the coefficients...

  11. Filipino au pairs on the move

    DEFF Research Database (Denmark)

    Dalgas, Karina Märcher

    2016-01-01

    Most Filipina au pairs in Denmark send remittances back home, and for many, au pairing forms part of longer-term migration trajectories. This article explores how Filipina au pairs try to carve out a future for themselves abroad. It shows that they navigate within tight webs of financial interdep......Most Filipina au pairs in Denmark send remittances back home, and for many, au pairing forms part of longer-term migration trajectories. This article explores how Filipina au pairs try to carve out a future for themselves abroad. It shows that they navigate within tight webs of financial...

  12. Ion pairing in ionic liquids

    International Nuclear Information System (INIS)

    Kirchner, Barbara; Malberg, Friedrich; Firaha, Dzmitry S; Hollóczki, Oldamur

    2015-01-01

    In the present article we briefly review the extensive discussion in literature about the presence or absence of ion pair-like aggregates in ionic liquids. While some experimental studies point towards the presence of neutral subunits in ionic liquids, many other experiments cannot confirm or even contradict their existence. Ion pairs can be detected directly in the gas phase, but no direct method is available to observe such association behavior in the liquid, and the corresponding indirect experimental proofs are based on such assumptions as unity charges at the ions. However, we have shown by calculating ionic liquid clusters of different sizes that assuming unity charges for ILs is erroneous, because a substantial charge transfer is taking place between the ionic liquid ions that reduce their total charge. Considering these effects might establish a bridge between the contradicting experimental results on this matter. Beside these results, according to molecular dynamics simulations the lifetimes of ion–ion contacts and their joint motions are far too short to verify the existence of neutral units in these materials. (topical review)

  13. Some advances in pairing theory

    International Nuclear Information System (INIS)

    Rowe, D.J.

    2001-01-01

    Two advances are reviewed in the application of pairing-force theory in the nuclear shell model. The first exploits a discovery that a wide range of two-nucleon interactions conserve seniority as a good quantum number. As a consequence, the eigenstates of a Hamiltonian with such an interaction belong to irreducible representations of a compact unitary-symplectic group. This makes it possible to extend the simply-solvable models with J=0 pairing forces to a much richer set of models and still obtain states uniquely classified by their seniority and angular momentum quantum numbers. Moreover, many of the low-lying energy levels of such models can be obtained algebraically; in technical terms, the models are in some cases completely solvable and in other cases partially solvable by algebraic methods. The second advance exploits the discovery that, in a coherent state representation, states of good nucleon number can be projected analytically from BCS vacuum and excited quasiparticle states. This makes it possible to perform calculations in a number-projected BCS basis without losing much of the advantage of working of the quasiparticle scheme. (Author)

  14. PandA : pairings and arithmetic

    NARCIS (Netherlands)

    Chuengsatiansup, C.; Naehrig, M.; Ribarski, P.; Schwabe, P.; Cao, Z.; Zhang, F.

    2014-01-01

    This paper introduces PandA, a software framework for Pairings and Arithmetic. It is designed to bring together advances in the efficient computation of cryptographic pairings and the development and implementation of pairing-based protocols. The intention behind the PandA framework is to give

  15. Dynamical pairing correlations in rotating nuclei

    International Nuclear Information System (INIS)

    Szymanski, Z.

    1985-01-01

    When the atomic nucleus rotates fast enough the static pair correlations may be destroyed. In this situation the pair-vibrations become an important manifestation of the short-range attractive pairing force. The influence of this effect on nuclear properties at high spin is discussed. (orig.)

  16. Pair shell model description of collective motions

    International Nuclear Information System (INIS)

    Chen Hsitseng; Feng Dahsuan

    1996-01-01

    The shell model in the pair basis has been reviewed with a case study of four particles in a spherical single-j shell. By analyzing the wave functions according to their pair components, the novel concept of the optimum pairs was developed which led to the proposal of a generalized pair mean-field method to solve the many-body problem. The salient feature of the method is its ability to handle within the framework of the spherical shell model a rotational system where the usual strong configuration mixing complexity is so simplified that it is now possible to obtain analytically the band head energies and the moments of inertia. We have also examined the effects of pair truncation on rotation and found the slow convergence of adding higher spin pairs. Finally, we found that when the SDI and Q .Q interactions are of equal strengths, the optimum pair approximation is still valid. (orig.)

  17. Solar Drift-Pair Bursts

    Science.gov (United States)

    Stanislavsky, A.; Volvach, Ya.; Konovalenko, A.; Koval, A.

    2017-08-01

    In this paper a new sight on the study of solar bursts historically called drift pairs (DPs) is presented. Having a simple morphology on dynamic spectra of radio records (two short components separated in time, and often they are very similar) and discovered at the dawn of radio astronomy, their features remain unexplained totally up to now. Generally, the DPs are observed during the solar storms of type III bursts, but not every storm of type III bursts is linked with DPs. Detected by ground-based instruments at decameter and meter wavelengths, the DP bursts are limited in frequency bandwidth. They can drift from high frequencies to low ones and vice versa. Their frequency drift rate may be both lower and higher than typical rates of type III bursts at the same frequency range. The development of low-frequency radio telescopes and data processing provide additional possibilities in the research. In this context the fresh analysis of DPs, made from recent observations in the summer campaign of 2015, are just considered. Their study was implemented by updated tools of the UTR-2 radio telescope at 9-33 MHz. During 10-12 July of 2015, DPs forming the longest patterns on dynamic spectra are about 7% of the total number of recorded DPs. Their marvelous resemblance in frequency drift rates with the solar S-bursts is discussed.

  18. Production of magnetic monopole pairs

    International Nuclear Information System (INIS)

    Maher, R.L.

    1980-01-01

    Using a covariant photon propagator (developed by W.B. Campbell) to represent a photon exchange between a magnetic monopole and an electric charge, the first order production amplitudes in a Feynman-Dyson perturbation expansion and the resulting differential cross-sections are calculated for monopole pair creation from: (i) electron positron annihilation, (ii) photon scattering in the presence of a nucleus, and (iii) electron scattering in the presence of a nucleus. This theory does not specify the spin character of magnetic monopoles, so all processes are calculated twice: for spin zero monopoles and for spin one-half monopoles. In the first and last processes the differential cross-sections have sufficiently different dependences on the production angles (associated with the monopoles momenta), so that near threshold experiments could distinguish between whether monopoles are either spin one-half or spin zero entities. For the t'Hooft monopole mass estimate (5-8 x 10 3 GeV) very high energy particle and photon beam sources would be required to achieve threshold for these production processes

  19. Report on Pairing-based Cryptography.

    Science.gov (United States)

    Moody, Dustin; Peralta, Rene; Perlner, Ray; Regenscheid, Andrew; Roginsky, Allen; Chen, Lily

    2015-01-01

    This report summarizes study results on pairing-based cryptography. The main purpose of the study is to form NIST's position on standardizing and recommending pairing-based cryptography schemes currently published in research literature and standardized in other standard bodies. The report reviews the mathematical background of pairings. This includes topics such as pairing-friendly elliptic curves and how to compute various pairings. It includes a brief introduction to existing identity-based encryption (IBE) schemes and other cryptographic schemes using pairing technology. The report provides a complete study of the current status of standard activities on pairing-based cryptographic schemes. It explores different application scenarios for pairing-based cryptography schemes. As an important aspect of adopting pairing-based schemes, the report also considers the challenges inherent in validation testing of cryptographic algorithms and modules. Based on the study, the report suggests an approach for including pairing-based cryptography schemes in the NIST cryptographic toolkit. The report also outlines several questions that will require further study if this approach is followed.

  20. An Entropic Approach for Pair Trading

    Directory of Open Access Journals (Sweden)

    Daisuke Yoshikawa

    2017-06-01

    Full Text Available In this paper, we derive the optimal boundary for pair trading. This boundary defines the points of entry into or exit from the market for a given stock pair. However, if the assumed model contains uncertainty, the resulting boundary could result in large losses. To avoid this, we develop a more robust strategy by accounting for the model uncertainty. To incorporate the model uncertainty, we use the relative entropy as a penalty function in the expected profit from pair trading.

  1. Magnetized pair Bose gas: relativistic superconductor

    International Nuclear Information System (INIS)

    Daicic, J.; Frankel, N.E.; Kowalenko, V.

    1993-01-01

    The magnetized Bose gas at temperatures above pair threshold is investigated. New magnetization laws are obtained for a wide range of field strengths, and the gas is shown to exhibit the Meissner effect. Some related results for the Fermi gas, a relativistic paramagnet, are also discussed. It is concluded that the pair gases, through the interplay between pair creation, temperature, field strength, statistics and/in the case of fermions/spin, have remarkable magnetic properties. 14 refs

  2. Variational study of the pair hopping model

    International Nuclear Information System (INIS)

    Fazekas, P.

    1990-01-01

    We study the ground state of a Hamiltonian introduced by Kolb and Penson for modelling situations in which small electron pairs are formed. The Hamiltonian consists of a tight binding band term, and a term describing the nearest neighbour hopping of electron pairs. We give a Gutzwiller-type variational treatment, first with a single-parameter Ansatz treated in the single site Gutzwiller approximation, and then with more complicated trial wave functions, and an improved Gutzwiller approximation. The calculation yields a transition from a partially paired normal state, in which the spin susceptibility has a diminished value, into a fully paired state. (author). 16 refs, 2 figs

  3. Dual origin of pairing in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Idini, A. [University of Jyvaskyla, Department of Physics (Finland); Potel, G. [Michigan State University, National Superconducting Cyclotron Laboratory (United States); Barranco, F. [Escuela Superior de Ingenieros, Universidad de Sevilla, Departamento de Fìsica Aplicada III (Spain); Vigezzi, E., E-mail: enrico.vigezzi@mi.infn.it [INFN Sezione di Milano (Italy); Broglia, R. A. [Università di Milano, Dipartimento di Fisica (Italy)

    2016-11-15

    The pairing correlations of the nucleus {sup 120}Sn are calculated by solving the Nambu–Gor’kov equations, including medium polarization effects resulting from the interweaving of quasiparticles, spin and density vibrations, taking into account, within the framework of nuclear field theory (NFT), processes leading to self-energy and vertex corrections and to the induced pairing interaction. From these results one can not only demonstrate the inevitability of the dual origin of pairing in nuclei, but also extract information which can be used at profit to quantitatively disentangle the contributions to the pairing gap Δ arising from the bare and from the induced pairing interaction. The first is the strong {sup 1}S{sub 0} short-range NN potential resulting from meson exchange between nucleons moving in time reversal states within an energy range of hundreds of MeV from the Fermi energy. The second results from the exchange of vibrational modes between nucleons moving within few MeV from the Fermi energy. Short- (v{sub p}{sup bare}) and long-range (v{sub p}{sup ind}) pairing interactions contribute essentially equally to nuclear Cooper pair stability. That is to the breaking of gauge invariance in open-shell superfluid nuclei and thus to the order parameter, namely to the ground state expectation value of the pair creation operator. In other words, to the emergent property of generalized rigidity in gauge space, and associated rotational bands and Cooper pair tunneling between members of these bands.

  4. Pair production in small angle Bhabha scattering

    International Nuclear Information System (INIS)

    Arbuzov, A.B.; Kuraev, Eh.A.; Merenkov, N.P.; Trentadue, L.

    1995-01-01

    The radiative corrections due to a pair production in the small angle high energy e + e - Bhabha scattering are considered. The corrections due to the production of virtual pairs as well as real soft and hard ones are calculated analytically. The collinear and semi-collinear kinematical regions of the hard pair production are taken into account. The results in the leading and next-to-leading logarithmic approximations provide the accuracy of Ο (0.1%). The results of numerical calculations show that the effects of pairs production are to be taken into account in the precise luminosity determination at LEP. 9 refs., 3 figs., 2 tabs

  5. Heteroditopic receptors for ion-pair recognition.

    Science.gov (United States)

    McConnell, Anna J; Beer, Paul D

    2012-05-21

    Ion-pair recognition is a new field of research emerging from cation and anion coordination chemistry. Specific types of heteroditopic receptor designs for ion pairs and the complexity of ion-pair binding are discussed to illustrate key concepts such as cooperativity. The importance of this area of research is reflected by the wide variety of potential applications of ion-pair receptors, including applications as membrane transport and salt solubilization agents and sensors. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Dual origin of pairing in nuclei

    Science.gov (United States)

    Idini, A.; Potel, G.; Barranco, F.; Vigezzi, E.; Broglia, R. A.

    2016-11-01

    The pairing correlations of the nucleus 120Sn are calculated by solving the Nambu-Gor'kov equations, including medium polarization effects resulting from the interweaving of quasiparticles, spin and density vibrations, taking into account, within the framework of nuclear field theory (NFT), processes leading to self-energy and vertex corrections and to the induced pairing interaction. From these results one can not only demonstrate the inevitability of the dual origin of pairing in nuclei, but also extract information which can be used at profit to quantitatively disentangle the contributions to the pairing gap Δ arising from the bare and from the induced pairing interaction. The first is the strong 1 S 0 short-range NN potential resulting from meson exchange between nucleons moving in time reversal states within an energy range of hundreds of MeV from the Fermi energy. The second results from the exchange of vibrational modes between nucleons moving within few MeV from the Fermi energy. Short- ( v p bare) and long-range ( v p ind) pairing interactions contribute essentially equally to nuclear Cooper pair stability. That is to the breaking of gauge invariance in open-shell superfluid nuclei and thus to the order parameter, namely to the ground state expectation value of the pair creation operator. In other words, to the emergent property of generalized rigidity in gauge space, and associated rotational bands and Cooper pair tunneling between members of these bands.

  7. Finding Maximal Pairs with Bounded Gap

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Lyngsø, Rune B.; Pedersen, Christian N. S.

    1999-01-01

    . In this paper we present methods for finding all maximal pairs under various constraints on the gap. In a string of length n we can find all maximal pairs with gap in an upper and lower bounded interval in time O(n log n+z) where z is the number of reported pairs. If the upper bound is removed the time reduces...... to O(n+z). Since a tandem repeat is a pair where the gap is zero, our methods can be seen as a generalization of finding tandem repeats. The running time of our methods equals the running time of well known methods for finding tandem repeats....

  8. Pair plasma in pulsar magnetospheres

    International Nuclear Information System (INIS)

    Asseo, Estelle

    2003-01-01

    The main features of radiation received from pulsars imply that they are neutron stars which contain an extremely intense magnetic field and emit coherently in the radio domain. Most recent studies attribute the origin of the coherence to plasma instabilities arising in pulsar magnetospheres; they mainly concern the linear, or the nonlinear, character of the involved unstable waves. We briefly introduce radio pulsars and specify physical conditions in pulsar emission regions: geometrical properties, magnetic field, pair creation processes and repartition of relativistic charged particles. We point to the main ingredients of the linear theory, extensively explored since the 1970s: (i) a dispersion relation specific to the pulsar case; (ii) the characteristics of the waves able to propagate in relativistic pulsar plasmas; (iii) the different ways in which a two-humped distribution of particles may arise in a pulsar magnetosphere and favour the development of a two-stream instability. We sum up recent improvements of the linear theory: (i) the determination of a 'coupling function' responsible for high values of the wave field components and electromagnetic energy available; (ii) the obtention of new dispersion relations for actually anisotropic pulsar plasmas with relativistic motions and temperatures; (iii) the interaction between a plasma and a beam, both with relativistic motions and temperatures; (iv) the interpretation of observed 'coral' and 'conal' features, associated with the presence of boundaries and curved magnetic field lines in the emission region; (v) the detailed topology of the magnetic field in the different parts of the emission region and its relation to models recently proposed to interpret drifting subpulses observed from PSR 0943+10, showing 20 sub-beams of emission. We relate the nonlinear evolution of the two-stream instability and development of strong turbulence in relativistic pulsar plasmas to the emergence of relativistic solitons, able

  9. Stereo Pair: Wellington, New Zealand

    Science.gov (United States)

    2000-01-01

    Wellington, the capital city of New Zealand, is located on the shores of Port Nicholson, a natural harbor at the south end of North Island. The city was founded in 1840 by British emigrants and now has a regional population of more than 400,000 residents. As seen here, the natural terrain imposes strong control over the urban growth pattern (urban features generally appear gray or white in this view). Rugged hills generally rising to 300 meters (1,000 feet) help protect the city and harbor from strong winter windsNew Zealand is seismically active and faults are readily seen in the topography. The Wellington Fault forms the straight northwestern (left) shoreline of the harbor. Toward the southwest (down) the fault crosses through the city, then forms linear canyons in the hills before continuing offshore at the bottom. Toward the northeast (upper right) the fault forms the sharp mountain front along the northern edge of the heavily populated Hutt Valley.This stereoscopic image pair was generated using topographic data from the Shuttle Radar Topography Mission, combined with an enhanced true color Landsat7 satellite image. The topography data are used to create two differing perspectives of a single image, one perspective for each eye. In doing so, each point in the image is shifted slightly, depending on its elevation. When stereoscopically merged, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions.Landsat satellites have provided visible light and infrared images of the Earth continuously since 1972. SRTM topographic data match the 30 meter (99 foot) spatial resolution of most Landsat images and will provide a valuable complement for studying the historic and growing Landsat data archive. The Landsat 7 Thematic Mapper image used here was provided to the SRTM project by the United States Geological Survey, Earth Resources Observation Systems (EROS) data Center, Sioux Falls, South Dakota.Elevation data used in this image

  10. SRTM Stereo Pair: Fiji Islands

    Science.gov (United States)

    2000-01-01

    image pair and viewing them with a stereoscope. When stereoscopically merged, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions.This image was acquired by SRTM aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (about 200 feet) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.Size: 192 km (119 miles) x 142 km (88 miles) Location: 17.8 deg. South lat., 178.0 deg. East lon. Orientation: North at top Date Acquired: February 19, 2000 Image: NASA/JPL/NIMA

  11. Hole pairing induced by antiferromagnetic spin fluctuations

    International Nuclear Information System (INIS)

    Su, Z.B.; Yu Lu; Dong, J.M.; Tosatti, E.

    1987-08-01

    The effective interaction induced by antiferromagnetic spin fluctuations is considered in the random phase approximation in the context of the recently discovered high T c oxide superconductors. This effective attraction favours a triplet pairing of holes. The implications of such pairing mechanism are discussed in connection with the current experimental observations. (author). 30 refs, 2 figs

  12. Exploring Pair Programming Benefits for MIS Majors

    Science.gov (United States)

    Dongo, Tendai; Reed, April H.; O'Hara, Margaret

    2016-01-01

    Pair programming is a collaborative programming practice that places participants in dyads, working in tandem at one computer to complete programming assignments. Pair programming studies with Computer Science (CS) and Software Engineering (SE) majors have identified benefits such as technical productivity, program/design quality, academic…

  13. Exclusive production of W pairs in CMS

    CERN Document Server

    INSPIRE-00002838

    2014-01-01

    We report the results on the search for exclusive production of $W$ pairs in the LHC with data collected by the Compact Muon Solenoid detector in proton-proton collisions at $\\sqrt{s}$~=~7~TeV. The analysis comprises the two-photon production of a $W$ pairs, ${pp\\to p\\,W^{+}W^{-}\\,p\\to p\\,\

  14. Exclusive production of $W$ pairs in CMS

    OpenAIRE

    Da Silveira, Gustavo Gil; CMS

    2014-01-01

    We report the results on the search for exclusive production of $W$ pairs in the LHC with data collected by the Compact Muon Solenoid detector in proton-proton collisions at $\\sqrt{s}$~=~7~TeV. The analysis comprises the two-photon production of a $W$ pairs, ${pp\\to p\\,W^{+}W^{-}\\,p\\to p\\,\

  15. Becoming independent through au pair migration

    DEFF Research Database (Denmark)

    Dalgas, Karina Märcher

    2015-01-01

    . This article argues that, despite this critique, au pairing does play an important formative role for young Filipinas because it opens up for experiences abroad that enable them to be recognised as independent adults in Philippine society. Rather than autonomy, however, au pairs define their independence...

  16. Drift wave in pair-ion plasma

    Indian Academy of Sciences (India)

    ion plasma are discussed. It is shown that the temperature and/or mass difference of both species could produce drift wave in a pair-ion plasma. The results are discussed in the context of the fullerene pair-ion plasma experiment.

  17. A New Secure Pairing Protocol using Biometrics

    NARCIS (Netherlands)

    Buhan, I.R.

    2008-01-01

    Secure Pairing enables two devices, which share no prior context with each other, to agree upon a security association that they can use to protect their subsequent communication. Secure pairing offers guarantees of the association partner identity and it should be resistant to eavesdropping or to a

  18. Pair creation at large inherent angles

    International Nuclear Information System (INIS)

    Chen, P.; Tauchi, T.; Schroeder, D.V.

    1992-01-01

    In the next-generation linear colliders, the low-energy e + e - pairs created during the collision of high-energy e + e - beams would cause potential deleterious background problems to the detectors. At low collider energies, the pairs are made essentially by the incoherent process, where the pair is created by the interaction of beamstrahlung photons on the individual particles in the oncoming beam. This problem was first identified by Zolotarev, et al. At energies where the beamstrahlung parameter Υ lies approximately in the range 0.6 approx-lt Υ approx-lt 100, pair creation from the beamstrahlung photons is dominated by a coherent process, first noted by Chen. The seriousness of this pair creation problem lies in the transverse momenta that the pair particles carry when leaving the interaction point (IP) with large angles. Since the central issue is the transverse momentum for particles with large angles, the authors notice that there is another source for it. Namely, when the pair particles are created at low energies, the intrinsic angles of these pairs when produced may already be large. In this paper they reinvestigate the problem, following essentially the same equivalent photon approach, but with changes in specific details including the virtual photon spectrum. In addition, various assumptions are made more explicit. The formulas derived are then applied to the collider parameters designed by Palmer

  19. Methods and apparatus for measurement of the resistivity of geological formations from within cased wells in presence of acoustic and magnetic energy sources

    Science.gov (United States)

    Vail, W.B. III.

    1991-08-27

    Methods and apparatus are provided for measuring the acoustically modulated electronic properties of geological formations and cement layers adjacent to cased boreholes. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. Voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of the leakage current conducted into formation in the vicinity of those electrodes. Simultaneously subjecting the casing and formation to an acoustic source acoustically modulates the leakage current measured thereby providing a measure of the acoustically modulated electronic properties of the adjacent formation. Similarly, methods and apparatus are also described which measure the leakage current into formation while simultaneously subjecting the casing to an applied magnetic field which therefore allows measurement of the magnetically modulated electronic properties of the casing and the adjacent formation. 9 figures.

  20. Methods and apparatus for measurement of the resistivity of geological formations from within cased wells in presence of acoustic and magnetic energy sources

    Science.gov (United States)

    Vail, III, William B.

    1991-01-01

    Methods and apparatus are provided for measuring the acoustically modulated electronic properties of geological formations and cement layers adjacent to cased boreholes. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. Voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of the leakage current conducted into formation in the vicinity of those electrodes. Simultaneously subjecting the casing and formation to an acoustic source acoustically modulates the leakage current measured thereby providing a measure of the acoustically modulated electronic properties of the adjacent formation. Similarly, methods and apparatus are also described which measure the leakage current into formation while simultaneously subjecting the casing to an applied magnetic field which therefore allows measurement of the magnetically modulated electronic properties of the casing and the adjacent formation.

  1. String pair production in non homogeneous backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Bolognesi, S. [Department of Physics “E. Fermi” University of Pisa, and INFN - Sezione di Pisa,Largo Pontecorvo, 3, Ed. C, 56127 Pisa (Italy); Rabinovici, E. [Racah Institute of Physics, The Hebrew University of Jerusalem,91904 Jerusalem (Israel); Tallarita, G. [Departamento de Ciencias, Facultad de Artes Liberales,Universidad Adolfo Ibáñez, Santiago 7941169 (Chile)

    2016-04-28

    We consider string pair production in non homogeneous electric backgrounds. We study several particular configurations which can be addressed with the Euclidean world-sheet instanton technique, the analogue of the world-line instanton for particles. In the first case the string is suspended between two D-branes in flat space-time, in the second case the string lives in AdS and terminates on one D-brane (this realizes the holographic Schwinger effect). In some regions of parameter space the result is well approximated by the known analytical formulas, either the particle pair production in non-homogeneous background or the string pair production in homogeneous background. In other cases we see effects which are intrinsically stringy and related to the non-homogeneity of the background. The pair production is enhanced already for particles in time dependent electric field backgrounds. The string nature enhances this even further. For spacial varying electrical background fields the string pair production is less suppressed than the rate of particle pair production. We discuss in some detail how the critical field is affected by the non-homogeneity, for both time and space dependent electric field backgrouds. We also comment on what could be an interesting new prediction for the small field limit. The third case we consider is pair production in holographic confining backgrounds with homogeneous and non-homogeneous fields.

  2. Thermodynamics of pairing phase transition in nuclei

    International Nuclear Information System (INIS)

    Karim, Afaque; Ahmad, Shakeb

    2014-01-01

    The pairing gaps, pairing energy, heat capacity and entropy are calculated within BCS (Bardeen- Cooper-Schrieffer) based quasi particle approach, including thermal fluctuations on pairing field within pairing model for all nuclei (light, medium, heavy and super heavy nuclei). Quasi particles approach in BCS theory was introduced and reformulated to study various properties. For thermodynamic behavior of nuclei at finite temperatures, the anomalous averages of creation and annihilation operators are introduced. It is solved self consistently at finite temperatures to obtain BCS Hamiltonian. After doing unitary transformation, we obtained the Hamiltonian in the diagonal form. Thus, one gets temperature dependence gap parameter and pairing energy for nuclei. Moreover, the energy at finite temperatures is the sum of the condensation energy and the thermal energy of fermionic quasi particles. With the help of BCS Hamiltonian, specific heat, entropy and free energy are calculated for different nuclei. In this paper the gap parameter occupation number and pairing energy as a function of temperature which is important for all the light, medium, heavy and super heavy nuclei is calculated. Moreover, the various thermo dynamical quantities like specific heat, entropy and free energy is also obtained for different nuclei. Thus, the thermodynamics of pairing phase transition in nuclei is studied

  3. Exploring Pair Programming Benefits for MIS Majors

    Directory of Open Access Journals (Sweden)

    April H. Reed

    2016-12-01

    Full Text Available Pair programming is a collaborative programming practice that places participants in dyads, working in tandem at one computer to complete programming assignments. Pair programming studies with Computer Science (CS and Software Engineering (SE majors have identified benefits such as technical productivity, program/design quality, academic performance, and increased satisfaction for their participants. In this paper, pair programming is studied with Management Information Systems (MIS majors, who (unlike CS and SE majors taking several programming courses typically take only one programming course and often struggle to develop advanced programming skills within that single course. The researchers conducted two pair programming experiments in an introductory software development course for MIS majors over three semesters to determine if pair programming could enhance learning for MIS students. The program results, researchers’ direct observations, and participants’ responses to a survey questionnaire were analyzed after each experiment. The results indicate that pair programming appears to be beneficial to MIS students’ technical productivity and program design quality, specifically the ability to create programs using high-level concepts. Additionally, results confirmed increased student satisfaction and reduced frustration, as the pairs worked collaboratively to produce a program while actively communicating and enjoying the process.

  4. Effect of pairing on nuclear dynamics

    International Nuclear Information System (INIS)

    Scamps, Guillaume

    2014-01-01

    Pairing correlations is an essential component for the description of the atomic nuclei. The effects of pairing on static property of nuclei are now well known. In this thesis, the effect of pairing on nuclear dynamics is investigated. Theories that includes pairing are benchmarked in a model case. The TDHF+BCS theory turns out to be a good compromise between the physics taken into account and the numerical cost. This TDHF+BCS theory was retained for realistic calculations. Nevertheless, the application of pairing in the BCS approximation may induce new problems due to (1) the particle number symmetry breaking, (2) the non-conservation of the continuity equation. These difficulties are analysed in detail and solutions are proposed. In this thesis, a 3 dimensional TDHF+BCS code is developed to simulate the nuclear dynamic. Applications to giant resonances show that pairing modify only the low lying peaks. The high lying collective components are only affected by the initial conditions. An exhaustive study of the giant quadrupole resonances with the TDHF+BCS theory is performed on more than 700 spherical or deformed nuclei. Is is shown that the TDHF+BCS theory reproduces well the collective energy of the resonance. After validation on the small amplitude limit problem, the approach was applied to study nucleon transfer in heavy ion reactions. A new method to extract transfer probabilities is introduced. It is demonstrated that pairing significantly increases the two-nucleon transfer probability. (author) [fr

  5. String pair production in non homogeneous backgrounds

    International Nuclear Information System (INIS)

    Bolognesi, S.; Rabinovici, E.; Tallarita, G.

    2016-01-01

    We consider string pair production in non homogeneous electric backgrounds. We study several particular configurations which can be addressed with the Euclidean world-sheet instanton technique, the analogue of the world-line instanton for particles. In the first case the string is suspended between two D-branes in flat space-time, in the second case the string lives in AdS and terminates on one D-brane (this realizes the holographic Schwinger effect). In some regions of parameter space the result is well approximated by the known analytical formulas, either the particle pair production in non-homogeneous background or the string pair production in homogeneous background. In other cases we see effects which are intrinsically stringy and related to the non-homogeneity of the background. The pair production is enhanced already for particles in time dependent electric field backgrounds. The string nature enhances this even further. For spacial varying electrical background fields the string pair production is less suppressed than the rate of particle pair production. We discuss in some detail how the critical field is affected by the non-homogeneity, for both time and space dependent electric field backgrouds. We also comment on what could be an interesting new prediction for the small field limit. The third case we consider is pair production in holographic confining backgrounds with homogeneous and non-homogeneous fields.

  6. Nonrandom network connectivity comes in pairs

    Directory of Open Access Journals (Sweden)

    Felix Z. Hoffmann

    2017-02-01

    Full Text Available Overrepresentation of bidirectional connections in local cortical networks has been repeatedly reported and is a focus of the ongoing discussion of nonrandom connectivity. Here we show in a brief mathematical analysis that in a network in which connection probabilities are symmetric in pairs, Pij = Pji, the occurrences of bidirectional connections and nonrandom structures are inherently linked; an overabundance of reciprocally connected pairs emerges necessarily when some pairs of neurons are more likely to be connected than others. Our numerical results imply that such overrepresentation can also be sustained when connection probabilities are only approximately symmetric.

  7. Soliton pair creation at finite temperatures

    International Nuclear Information System (INIS)

    Grigoriev, D.Yu.; Rubakov, V.A.

    1988-01-01

    Creation of soliton-antisoliton pairs at finite temperature is considered within a (1+1)-dimensional model of a real scalar field. It is argued that at certain temperatures, the soliton pair creation in quantum theory can be investigated by studying classical field evolution in real time. The classical field equations are solved numerically, and the pair creation rate and average number of solitons are evaluated. No peculiar suppression of the rate is observed. Some results on the sphaleron transitions in (1+1)-dimensional abelian Higgs model are also presented. (orig.)

  8. Pairing fluctuations in trapped Fermi gases

    International Nuclear Information System (INIS)

    Viverit, Luciano; Bruun, Georg M.; Minguzzi, Anna; Fazio, Rosario

    2004-01-01

    We examine the contribution of pairing fluctuations to the superfluid order parameter for harmonically trapped atomic Fermi gases in the BCS regime. In the limit of small systems we consider, both analytically and numerically, their space and temperature dependence. We predict a parity effect, i.e., that pairing fluctuations show a maximum or a minimum at the center of the trap, depending on the value of the last occupied shell being even or odd. We propose to detect pairing fluctuations by measuring the density-density correlation function after a ballistic expansion of the gas

  9. AudioPairBank: Towards A Large-Scale Tag-Pair-Based Audio Content Analysis

    OpenAIRE

    Sager, Sebastian; Elizalde, Benjamin; Borth, Damian; Schulze, Christian; Raj, Bhiksha; Lane, Ian

    2016-01-01

    Recently, sound recognition has been used to identify sounds, such as car and river. However, sounds have nuances that may be better described by adjective-noun pairs such as slow car, and verb-noun pairs such as flying insects, which are under explored. Therefore, in this work we investigate the relation between audio content and both adjective-noun pairs and verb-noun pairs. Due to the lack of datasets with these kinds of annotations, we collected and processed the AudioPairBank corpus cons...

  10. English for au pairs the au pair's guide to learning English

    CERN Document Server

    Curtis, Lucy

    2014-01-01

    English for Au Pairs has interlinked stories about a group of au pairs new to England. Marta, an 18-year-old from Poland arrives in the UK to work as an au pair. Throughout her year-long stay she has many different experiences - some bad, some good - but with the support of her host family she finds new friends and improves her English. English for Au Pairs offers insight into the joys and difficulties of being an au pair while at the same time reinforcing English language learning through grammar explanations and exercises.

  11. Effects of disorder on the electron pairing

    International Nuclear Information System (INIS)

    Oviedo-Roa, R.; Wang, C.; Navarro, O.

    1996-01-01

    The electron pairing in randomly disordered lattices is studied by using an attractive Hubbard model, and by mapping the many-body problem onto a tight-binding one in a higher dimensional space, where a diagonal disorder is considered within the coherent-potential approximation. The results show an enhancement of the pair-binding energy as the self-energy difference increases in a binary alloy A x B 1-x . This fact suggests that the pairing process is highly sensitive to the one-particle localization condition. A ground-state phase diagram for on-site interaction disorder shows regions where pairing is avoided for ordered diatomic systems but not for disordered case

  12. Pairing properties of realistic effective interactions

    Directory of Open Access Journals (Sweden)

    Gargano A.

    2016-01-01

    Full Text Available We investigate the pairing properties of an effective shell-model interaction defined within a model space outside 132Sn and derived by means of perturbation theory from the CD-Bonn free nucleon-nucleon potential. It turns out that the neutron pairing component of the effective interaction is significantly weaker than the proton one, which accounts for the large pairing gap difference observed in the two-valence identical particle nuclei 134Sn and 134Te. The role of the contribution arising from one particle-one hole excitations in determining the pairing force is discussed and its microscopic structure is also analyzed in terms of the multipole decomposition.

  13. Statistical mechanics of magnetized pair Fermi gas

    International Nuclear Information System (INIS)

    Daicic, J.; Frankel, N.E.; Kowalenko, V.

    1993-01-01

    Following previous work on the magnetized pair Bose gas this contribution presents the statistical mechanics of the charged relativistic Fermi gas with pair creation in d spatial dimensions. Initially, the gas in no external fields is studied. As a result, expansions for the various thermodynamic functions are obtained in both the μ/m→0 (neutrino) limit, and about the point μ/m =1, where μ is the chemical potential. The thermodynamics of a gas of quantum-number conserving massless fermions is also discussed. Then a complete study of the pair Fermi gas in a homogeneous magnetic field, is presented investigating the behavior of the magnetization over a wide range of field strengths. The inclusion of pairs leads to new results for the net magnetization due to the paramagnetic moment of the spins and the diamagnetic Landau orbits. 20 refs

  14. Degenerated differential pair with controllable transconductance

    NARCIS (Netherlands)

    Mensink, Clemens; Mensink, Clemens H.J.; Nauta, Bram

    1998-01-01

    A differential pair with input transistors and provided with a variable degeneration resistor. The degeneration resistor comprises a series arrangement of two branches of coupled resistors which are shunted in mutually corresponding points by respective control transistors whose gates are

  15. Projected entangled pair states: status and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Verstraete, Frank [Universitaet Wien (Austria)

    2008-07-01

    We report on the progress made to extend the density matrix renormalization group to higher dimensions, discuss the underlying theory of projected entangled pair states (PEPS) and illustrate its potential on the hand of a few examples.

  16. Isovectorial pairing in solvable and algebraic models

    International Nuclear Information System (INIS)

    Lerma, Sergio; Vargas, Carlos E; Hirsch, Jorge G

    2011-01-01

    Schematic interactions are useful to gain some insight in the behavior of very complicated systems such as the atomic nuclei. Prototypical examples are, in this context, the pairing interaction and the quadrupole interaction of the Elliot model. In this contribution the interplay between isovectorial pairing, spin-orbit, and quadrupole terms in a harmonic oscillator shell (the so-called pairing-plus-quadrupole model) is studied by algebraic methods. The ability of this model to provide a realistic description of N = Z even-even nuclei in the fp-shell is illustrated with 44 Ti. Our calculations which derive from schematic and simple terms confirm earlier conclusions obtained by using realistic interactions: the SU(3) symmetry of the quadrupole term is broken mainly by the spin-orbit term, but the energies depends strongly on pairing.

  17. Three mirror pairs of fermion families

    International Nuclear Information System (INIS)

    Montvay, I.

    1988-01-01

    A simple model with three mirror pairs of fermion families is considered which allows for a substantial mixing between the mirror fermion partners without conflicting with known phenomenology. (orig.)

  18. QCD angular correlations for muon pair production

    International Nuclear Information System (INIS)

    Kajantie, K.; Raitio, R.; Lindfors, J.

    1978-01-01

    Angular distributions of muons are discussed in the framework of a QCD treatment of muon pair production in hadron-hadron collisions. The predicted angular effects are independent of the infrared behavior of QCD. Measuring them will permit one to determine whether the origin of the large transverse momentum of the pair is in the quark transverse momenta or in a constituent-constituent subprocess. (author)

  19. Pairing interaction method in crystal field theory

    International Nuclear Information System (INIS)

    Dushin, R.B.

    1989-01-01

    Expressions, permitting to describe matrix elements of secular equation for metal-ligand pairs via parameters of the method of pairing interactions, genealogical coefficients and Clebsch-Gordan coefficients, are given. The expressions are applicable to any level or term of f n and d n configurations matrix elements for the terms of the maximum multiplicity of f n and d n configurations and also for the main levels of f n configurations are tabulated

  20. Influence of quadrupole pairing on backbending

    International Nuclear Information System (INIS)

    Faessler, A.; Wakai, M.

    1978-01-01

    The backbending phenomenon is attributed to the Coriolis antipairing and the rotational alignment effects. We can consider both effects simultaneously by applying the cranked Hartree-Fock-Bogoliubov theory to the description of the rotational motion of nuclei. In usual treatments of the backbending, however, only the monopole pairing force is considered and pairing forces of other types are neglected. This may be the main reason for starting of the backbending at too small total angular momentum in theoretical results. (orig.) [de

  1. Transverse Momentum Distributions for Heavy Quark Pairs

    OpenAIRE

    Berger, Edmond L.; Meng, Ruibin

    1993-01-01

    We study the transverse momentum distribution for a $pair$ of heavy quarks produced in hadron-hadron interactions. Predictions for the large transverse momentum region are based on exact order $\\alpha_s^3$ QCD perturbation theory. For the small transverse momentum region, we use techniques for all orders resummation of leading logarithmic contributions associated with initial state soft gluon radiation. The combination provides the transverse momentum distribution of heavy quark pairs for all...

  2. Seniority zero pair coupled cluster doubles theory

    International Nuclear Information System (INIS)

    Stein, Tamar; Henderson, Thomas M.; Scuseria, Gustavo E.

    2014-01-01

    Coupled cluster theory with single and double excitations accurately describes weak electron correlation but is known to fail in cases of strong static correlation. Fascinatingly, however, pair coupled cluster doubles (p-CCD), a simplified version of the theory limited to pair excitations that preserve the seniority of the reference determinant (i.e., the number of unpaired electrons), has mean field computational cost and is an excellent approximation to the full configuration interaction (FCI) of the paired space provided that the orbital basis defining the pairing scheme is adequately optimized. In previous work, we have shown that optimization of the pairing scheme in the seniority zero FCI leads to a very accurate description of static correlation. The same conclusion extends to p-CCD if the orbitals are optimized to make the p-CCD energy stationary. We here demonstrate these results with numerous examples. We also explore the contributions of different seniority sectors to the coupled cluster doubles (CCD) correlation energy using different orbital bases. We consider both Hartree-Fock and Brueckner orbitals, and the role of orbital localization. We show how one can pair the orbitals so that the role of the Brueckner orbitals at the CCD level is retained at the p-CCD level. Moreover, we explore ways of extending CCD to accurately describe strongly correlated systems

  3. Base pair probability estimates improve the prediction accuracy of RNA non-canonical base pairs.

    Directory of Open Access Journals (Sweden)

    Michael F Sloma

    2017-11-01

    Full Text Available Prediction of RNA tertiary structure from sequence is an important problem, but generating accurate structure models for even short sequences remains difficult. Predictions of RNA tertiary structure tend to be least accurate in loop regions, where non-canonical pairs are important for determining the details of structure. Non-canonical pairs can be predicted using a knowledge-based model of structure that scores nucleotide cyclic motifs, or NCMs. In this work, a partition function algorithm is introduced that allows the estimation of base pairing probabilities for both canonical and non-canonical interactions. Pairs that are predicted to be probable are more likely to be found in the true structure than pairs of lower probability. Pair probability estimates can be further improved by predicting the structure conserved across multiple homologous sequences using the TurboFold algorithm. These pairing probabilities, used in concert with prior knowledge of the canonical secondary structure, allow accurate inference of non-canonical pairs, an important step towards accurate prediction of the full tertiary structure. Software to predict non-canonical base pairs and pairing probabilities is now provided as part of the RNAstructure software package.

  4. Base pair probability estimates improve the prediction accuracy of RNA non-canonical base pairs.

    Science.gov (United States)

    Sloma, Michael F; Mathews, David H

    2017-11-01

    Prediction of RNA tertiary structure from sequence is an important problem, but generating accurate structure models for even short sequences remains difficult. Predictions of RNA tertiary structure tend to be least accurate in loop regions, where non-canonical pairs are important for determining the details of structure. Non-canonical pairs can be predicted using a knowledge-based model of structure that scores nucleotide cyclic motifs, or NCMs. In this work, a partition function algorithm is introduced that allows the estimation of base pairing probabilities for both canonical and non-canonical interactions. Pairs that are predicted to be probable are more likely to be found in the true structure than pairs of lower probability. Pair probability estimates can be further improved by predicting the structure conserved across multiple homologous sequences using the TurboFold algorithm. These pairing probabilities, used in concert with prior knowledge of the canonical secondary structure, allow accurate inference of non-canonical pairs, an important step towards accurate prediction of the full tertiary structure. Software to predict non-canonical base pairs and pairing probabilities is now provided as part of the RNAstructure software package.

  5. Generalized pairing strategies-a bridge from pairing strategies to colorings

    Directory of Open Access Journals (Sweden)

    Győrffy Lajos

    2016-12-01

    Full Text Available In this paper we define a bridge between pairings and colorings of the hypergraphs by introducing a generalization of pairs called t-cakes for t ∈ ℕ, t ≥ 2. For t = 2 the 2-cakes are the same as the well-known pairs of system of distinct representatives, that can be turned to pairing strategies in Maker-Breaker hypergraph games, see Hales and Jewett [12]. The two-colorings are the other extremity of t-cakes, in which the whole ground set of the hypergraph is one big cake that we divide into two parts (color classes. Starting from the pairings (2-cake placement and two-colorings we define the generalized t-cake placements where we pair p elements by q elements (p, q ∈ ℕ, 1 ≤ p, q < t, p + q = t.

  6. Radical-pair based avian magnetoreception

    Science.gov (United States)

    Procopio, Maria; Ritz, Thorsten

    2014-03-01

    Behavioural experiments suggest that migratory birds possess a magnetic compass sensor able to detect the direction of the geomagnetic. One hypothesis for the basis of this remarkable sensory ability is that the coherent quantum spin dynamics of photoinduced radical pair reactions transduces directional magnetic information from the geomagnetic field into changes of reaction yields, possibly involving the photoreceptor cryptochrome in the birds retina. The suggested radical-pair based avian magnetoreception has attracted attention in the field of quantum biology as an example of a biological sensor which might exploit quantum coherences for its biological function. Investigations on such a spin-based sensor have focussed on uncovering the design features for the design of a biomimetic magnetic field sensor. We study the effects of slow fluctuations in the nuclear spin environment on the directional signal. We quantitatively evaluate the robustness of signals under fluctuations on a timescale longer than the lifetime of a radical pair, utilizing two models of radical pairs. Our results suggest design principles for building a radical-pair based compass sensor that is both robust and highly directional sensitive.

  7. Isominkowskian theory of Cooper Pairs in superconductors

    International Nuclear Information System (INIS)

    Animalu, A.O.E.

    1993-01-01

    Via the use of Santilli's isominkowskian space, the author presents a relativistic extension of the author's recent treatment of the Cooper Pair in superconductivity based on the Lie-isotopic lifting of quantum mechanics known as Hadronic Mechanics. The isominkowskian treatment reduces the solution of the eiganvalue problem for the quasiparticle energy spectrum to a geometric problem of specifying the metric of the isominkowskian space inside the pair in various models of ordinary high T c superconductors. The use of an intriguing realization of the metric due to Dirac reduces the dimensionality of the interior space to two yielding a spin mutation from 1/2 to zero inside a Cooper pair in two-band BCS and Hubbard models. 12 refs

  8. On pair-absorption in intrinsic vapours

    International Nuclear Information System (INIS)

    Hotop, R.; Niemax, K.; Schlueter, D.

    1982-01-01

    The bound-state pair-absorption bands Cs(6 2 S 1 sub(/) 2 ) + Cs(6 2 S 1 sub(/) 2 ) + hν → Cs(5 2 D 5 sub(/) 2 sub(,) 3 sub(/) 2 ) + Cs(6 2 P 1 sub(/) 2 ) and the K-K continuum-state pair-absorptions in the wavelength region 2.350 <= lambda <= 2.850 Angstroem have been investigated experimentally. In the case of the bound-state pair-absorption bands a theoretical approach for the absorption cross section at the band centre is given which is in good agreement with the experimental observation. Differences between our and the theoretical formulas given by the Stanford group are discussed. (orig.)

  9. Pair production by a deep potential well

    International Nuclear Information System (INIS)

    Nikishov, A.I.

    1987-01-01

    Solutions are obtained for the Dirac and Klein-Gordon equations with a one-dimensional symmetric potential well, having a flat bottom and arbitrary depth, width and field strengths at the walls. Quasi-stationary solutions describing a pair production by the well and the inverse process are obtained. It is shown that if the pair production probability is small, it is expressed in terms of the pair production probability on one wall and the particle oscillation frequency in the well. If the well has a supercritical depth, the lower continuum contains positron resonance scattering states at energies close to the real part of the quasi-stationary level energy (Zeldovich's effect). The qualitative dependence of the positron penetration coefficient through the wall on its energy and the well depth is an evidence that the solution of the so called one-particle Dirac equation describes in fact a many-particle system with a charge of 0 or 1

  10. The inverse problem for Schwinger pair production

    Directory of Open Access Journals (Sweden)

    F. Hebenstreit

    2016-02-01

    Full Text Available The production of electron–positron pairs in time-dependent electric fields (Schwinger mechanism depends non-linearly on the applied field profile. Accordingly, the resulting momentum spectrum is extremely sensitive to small variations of the field parameters. Owing to this non-linear dependence it is so far unpredictable how to choose a field configuration such that a predetermined momentum distribution is generated. We show that quantum kinetic theory along with optimal control theory can be used to approximately solve this inverse problem for Schwinger pair production. We exemplify this by studying the superposition of a small number of harmonic components resulting in predetermined signatures in the asymptotic momentum spectrum. In the long run, our results could facilitate the observation of this yet unobserved pair production mechanism in quantum electrodynamics by providing suggestions for tailored field configurations.

  11. Hadronic production of massive lepton pairs

    International Nuclear Information System (INIS)

    Berger, E.L.

    1982-12-01

    A review is presented of recent experimental and theoretical progress in studies of the production of massive lepton pairs in hadronic collisions. I begin with the classical Drell-Yan annihilation model and its predictions. Subsequently, I discuss deviations from scaling, the status of the proofs of factorization in the parton model, higher-order terms in the perturbative QCD expansion, the discrepancy between measured and predicted yields (K factor), high-twist terms, soft gluon effects, transverse-momentum distributions, implications for weak vector boson (W +- and Z 0 ) yields and production properties, nuclear A dependence effects, correlations of the lepton pair with hadrons in the final state, and angular distributions in the lepton-pair rest frame

  12. Charged topological black hole pair creation

    International Nuclear Information System (INIS)

    Mann, R.B.

    1998-01-01

    I examine the pair creation of black holes in space-times with a cosmological constant of either sign. I consider cosmological C-metrics and show that the conical singularities in this metric vanish only for three distinct classes of black hole metric, two of which have compact event horizons on each spatial slice. One class is a generalization of the Reissner-Nordstroem (anti-)de Sitter black holes in which the event horizons are the direct product of a null line with a 2-surface with topology of genus g. The other class consists of neutral black holes whose event horizons are the direct product of a null conoid with a circle. In the presence of a domain wall, black hole pairs of all possible types will be pair created for a wide range of mass and charge, including even negative mass black holes. I determine the relevant instantons and Euclidean actions for each case. (orig.)

  13. Theory of antiferromagnetic pairing in cuprate superconductors

    International Nuclear Information System (INIS)

    Plakida, N.M.

    2006-01-01

    A review of the antiferromagnetic exchange and spin-fluctuation pairing theory in the cuprate superconductors is given. We briefly discuss a phenomenological approach and a theory in the limit of weak Coulomb correlations. A microscopic theory in the strong correlation limit is presented in more detail. In particular, results of our recently developed theory for the effective p-d Hubbard model and the reduced t-J model are given. We have proved that retardation effects for the antiferromagnetic exchange interaction are unimportant that results in pairing of all charge carriers in the conduction band and high Tc proportional to the Fermi energy. The spin-fluctuation interaction caused by kinematic interaction gives an additional contribution to the d-wave pairing. Dependence of Tc on the hole concentration and the lattice constant (or pressure) and an oxygen isotope shift are discussed

  14. Holographic EPR pairs, wormholes and radiation

    Science.gov (United States)

    Chernicoff, Mariano; Güijosa, Alberto; Pedraza, Juan F.

    2013-10-01

    As evidence for the ER = EPR conjecture, it has recently been observed that the string that is holographically dual to an entangled quark-antiquark pair separating with (asymptotically) uniform acceleration has a wormhole on its worldsheet. We point out that a two-sided horizon and a wormhole actually appear for much more generic quark-antiquark trajectories, which is consistent with the fact that the members of an EPR pair need not be permanently out of causal contact. The feature that determines whether the causal structure of the string worldsheet is trivial or not turns out to be the emission of gluonic radiation by the dual quark and antiquark. In the strongly-coupled gauge theory, it is only when radiation is emitted that one obtains an unambiguous separation of the pair into entangled subsystems, and this is what is reflected on the gravity side by the existence of the worldsheet horizon.

  15. Drell-Yan lepton pair photoproduction

    International Nuclear Information System (INIS)

    Badalyan, R.G.; Grabskij, V.O.; Matinyan, S.G.

    1989-01-01

    The study of photon structure functions by spectra of massive lepton pairs (M l + l - ≥ 2 GeV) in photon fragmentation region in γp-interactions at high energies is suggested. In calculations of Drell-Yan lepton pair inclusive spectra in γp-interactions for photon structure functions there are used results obtained within QCD, data on γγ-interactions in e + e - → e + e - X on colliders as well as results from the analysis of vector meson non-diffractive photoproduction at high energies. It is shown that there exists a sufficienly wide kinematic region over variables X l + l - and M l + l - , wherein photon structure functions can be studied by spectra of Grell-Yan lepton pairs in the processes of their photoproduction. 31 refs.; 6 figs.; 1 tab

  16. Lax pairs: a novel type of separability

    International Nuclear Information System (INIS)

    Fokas, A S

    2009-01-01

    An attempt is made to place into historical context the fundamental concept of Lax pairs. For economy of presentation, emphasis is placed on the effectiveness of Lax pairs for the analysis of integrable nonlinear evolution PDEs. It is argued that Lax pairs provide a deeper type of separability than the classical separation of variables. Indeed, it is shown that: (a) the solution of the Cauchy problem of evolution equations is based on the derivation of a nonlinear Fourier transform pair, and this is achieved by employing the spectral analysis of one of the two eigenvalue equations forming a Lax pair; thus, although this methodology still follows the reverent philosophy of the classical separation of variables and transform methods, it can be applied to a class of nonlinear PDEs. (b) The solution of initial-boundary-value problems of evolution equations is based on the simultaneous spectral analysis of both equations forming a Lax pair and hence, in a sense, it employs the synthesis instead of the separation of variables; this methodology does not have a direct classical analogue, however, it can be considered as the nonlinearization of a method which combines Green's function classical integral representations with an analogue of the method of images, but which are now formulated in the spectral (Fourier) instead of the physical space. In addition to presenting a general methodology for analysing initial- and initial-boundary-value problems for nonlinear integrable evolution equations in one and two spatial variables, recent progress is reviewed for the derivation and the solution of integrable nonlinear evolution PDEs formulated in higher than two spatial dimensions. (topical review)

  17. Top quark pair production in ATLAS

    CERN Document Server

    Moreno Llacer, M; The ATLAS collaboration

    2010-01-01

    Top-quark pairs are expected to be produced at the LHC, even at the lower beam energy and luminosity in the first years of running. Establishing the top-pair signal and measuring the production cross-section are important benchmarks for ATLAS, and will help understand the detector performance for events with high-pT leptons, high jet multiplicity, missing transverse energy. The prospects for early top physics measurements will be shown, with a particular emphasis on the progress achieved with data so far.

  18. Mass resolution for lepton pairs at Isabelle

    International Nuclear Information System (INIS)

    Baltay, C.; Paige, F.E.

    1978-01-01

    Experiments measuring e + e - and μ + μ-pairs will be the principal way of searching at ISABELLE for the Z 0 and for vector mesons made from new heavy quark-antiquark (Q anti Q ) pairs. Although the best possible mass resolution is clearly of benefit in such experiments, excessive resolution would lead to an unnecessarily large detector. It is believed that a mass resolution of a few percent is appropriate in searching both for the Z 0 and for new Q anti Q states. However, there are some interesting experiments which would require much better mass resolution, of order 1/4% FWHM. 9 references

  19. Ponderomotive effects in multiphoton pair production

    Science.gov (United States)

    Kohlfürst, Christian; Alkofer, Reinhard

    2018-02-01

    The Dirac-Heisenberg-Wigner formalism is employed to investigate electron-positron pair production in cylindrically symmetric but otherwise spatially inhomogeneous, oscillating electric fields. The oscillation frequencies are hereby tuned to obtain multiphoton pair production in the nonperturbative threshold regime. An effective mass, as well as a trajectory-based semiclassical analysis, is introduced in order to interpret the numerical results for the distribution functions as well as for the particle yields and spectra. The results, including the asymptotic particle spectra, display clear signatures of ponderomotive forces.

  20. Holographic EPR Pairs, Wormholes and Radiation

    OpenAIRE

    Chernicoff, Mariano; Güijosa, Alberto; Pedraza, Juan F.

    2013-01-01

    As evidence for the ER=EPR conjecture, it has recently been observed that the string that is holographically dual to an entangled quark-antiquark pair separating with (asymptotically) uniform acceleration has a wormhole on its worldsheet. We point out that a two-sided horizon and a wormhole actually appear for much more generic quark-antiquark trajectories, which is consistent with the fact that the members of an EPR pair need not be permanently out of causal contact. The feature that determi...

  1. Gluino-pair production at the Tevatron

    International Nuclear Information System (INIS)

    Beenakker, W.; Spira, M.; Zerwas, P.M.

    1995-05-01

    The next-to-leading order QCD corrections to the production of gluino pairs at the Tevatron are presented in this paper. Similar to the production of squark-antisquark pairs, the dependence of the cross section on the renormalization/factorization scale is reduced considerably by including the higher-order corrections. The cross section increases with respect to the lowest-order calculation which, in previous experimental analyses, had been evaluated at the scale of the invariant energy of the partonic subprocesses. (orig.)

  2. Facial expressions and pair bonds in hylobatids.

    Science.gov (United States)

    Florkiewicz, Brittany; Skollar, Gabriella; Reichard, Ulrich H

    2018-06-06

    Facial expressions are an important component of primate communication that functions to transmit social information and modulate intentions and motivations. Chimpanzees and macaques, for example, produce a variety of facial expressions when communicating with conspecifics. Hylobatids also produce various facial expressions; however, the origin and function of these facial expressions are still largely unclear. It has been suggested that larger facial expression repertoires may have evolved in the context of social complexity, but this link has yet to be tested at a broader empirical basis. The social complexity hypothesis offers a possible explanation for the evolution of complex communicative signals such as facial expressions, because as the complexity of an individual's social environment increases so does the need for communicative signals. We used an intraspecies, pair-focused study design to test the link between facial expressions and sociality within hylobatids, specifically the strength of pair-bonds. The current study compared 206 hr of video and 103 hr of focal animal data for ten hylobatid pairs from three genera (Nomascus, Hoolock, and Hylobates) living at the Gibbon Conservation Center. Using video footage, we explored 5,969 facial expressions along three dimensions: repertoire use, repertoire breadth, and facial expression synchrony [FES]. We then used focal animal data to compare dimensions of facial expressiveness to pair bond strength and behavioral synchrony. Hylobatids in our study overlapped in only half of their facial expressions (50%) with the only other detailed, quantitative study of hylobatid facial expressions, while 27 facial expressions were uniquely observed in our study animals. Taken together, hylobatids have a large facial expression repertoire of at least 80 unique facial expressions. Contrary to our prediction, facial repertoire composition was not significantly correlated with pair bond strength, rates of territorial synchrony

  3. Dislocation processes in quasicrystals-Kink-pair formation control or jog-pair formation control

    International Nuclear Information System (INIS)

    Takeuchi, Shin

    2005-01-01

    A computer simulation of dislocation in a model quasiperiodic lattice indicates that the dislocation feels a large Peierls potential when oriented in particular directions. For a dislocation with a high Peierls potential, the glide velocity and the climb velocity of the dislocation can be described almost in parallel in terms of the kink-pair formation followed by kink motion and the jog-pair formation followed by jog motion, respectively. The activation enthalpy of the kink-pair formation is the sum of the kink-pair formation enthalpy and the atomic jump activation enthalpy, while the activation enthalpy of the jog-pair formation involves the jog-pair enthalpy and the self-diffusion enthalpy. Since the kink-pair energy can be considerably larger than the jog-pair energy, the climb velocity can be faster than the glide velocity, so that the plastic deformation of quasicrystals can be brought not by dislocation glide but by dislocation climb at high temperatures

  4. Pair- ${v}$ -SVR: A Novel and Efficient Pairing nu-Support Vector Regression Algorithm.

    Science.gov (United States)

    Hao, Pei-Yi

    This paper proposes a novel and efficient pairing nu-support vector regression (pair--SVR) algorithm that combines successfully the superior advantages of twin support vector regression (TSVR) and classical -SVR algorithms. In spirit of TSVR, the proposed pair--SVR solves two quadratic programming problems (QPPs) of smaller size rather than a single larger QPP, and thus has faster learning speed than classical -SVR. The significant advantage of our pair--SVR over TSVR is the improvement in the prediction speed and generalization ability by introducing the concepts of the insensitive zone and the regularization term that embodies the essence of statistical learning theory. Moreover, pair--SVR has additional advantage of using parameter for controlling the bounds on fractions of SVs and errors. Furthermore, the upper bound and lower bound functions of the regression model estimated by pair--SVR capture well the characteristics of data distributions, thus facilitating automatic estimation of the conditional mean and predictive variance simultaneously. This may be useful in many cases, especially when the noise is heteroscedastic and depends strongly on the input values. The experimental results validate the superiority of our pair--SVR in both training/prediction speed and generalization ability.This paper proposes a novel and efficient pairing nu-support vector regression (pair--SVR) algorithm that combines successfully the superior advantages of twin support vector regression (TSVR) and classical -SVR algorithms. In spirit of TSVR, the proposed pair--SVR solves two quadratic programming problems (QPPs) of smaller size rather than a single larger QPP, and thus has faster learning speed than classical -SVR. The significant advantage of our pair--SVR over TSVR is the improvement in the prediction speed and generalization ability by introducing the concepts of the insensitive zone and the regularization term that embodies the essence of statistical learning theory

  5. Collective neutrino-pair emission due to Cooper pairing of protons in superconducting neutron stars

    International Nuclear Information System (INIS)

    Leinson, L.B.

    2001-01-01

    The neutrino emission due to formation and breaking of Cooper pairs of protons in superconducting cores of neutron stars is considered with taking into account the electromagnetic coupling of protons to ambient electrons. It is shown that collective response of electrons to the proton quantum transition contributes coherently to the complete interaction with a neutrino field and enhances the neutrino-pair production. Our calculation shows that the contribution of the vector weak current to the ννbar emissivity of protons is much larger than that calculated by different authors without taking into account the plasma effects. Partial contribution of the pairing protons to the total neutrino radiation from the neutron star core is very sensitive to the critical temperatures for the proton and neutron pairing. We show domains of these parameters where the neutrino radiation, caused by a singlet-state pairing of protons is dominating

  6. Intermittent pair-housing, pair relationship qualities, and HPA activity in adult female rhesus macaques.

    Science.gov (United States)

    Hannibal, Darcy L; Cassidy, Lauren C; Vandeleest, Jessica; Semple, Stuart; Barnard, Allison; Chun, Katie; Winkler, Sasha; McCowan, Brenda

    2018-05-02

    Laboratory rhesus macaques are often housed in pairs and may be temporarily or permanently separated for research, health, or management reasons. While both long-term social separations and introductions can stimulate a stress response that impacts inflammation and immune function, the effects of short-term overnight separations and whether qualities of the pair relationship mediate these effects are unknown. In this study, we investigated the effects of overnight separations on the urinary cortisol concentration of 20 differentially paired adult female rhesus macaques (Macaca mulatta) at the California National Primate Research Center. These females were initially kept in either continuous (no overnight separation) or intermittent (with overnight separation) pair-housing and then switched to the alternate pair-housing condition part way through the study. Each study subject was observed for 5 weeks, during which we collected measures of affiliative, aggressive, anxious, abnormal, and activity-state behaviors in both pair-housing conditions. Additionally, up to three urine samples were collected from each subject per week and assayed for urinary free cortisol and creatinine. Lastly, the behavioral observer scored each pair on four relationship quality attributes ("Anxious," "Tense," "Well-meshed," and "Friendly") using a seven-point scale. Data were analyzed using a generalized linear model with gamma distribution and an information theoretic approach to determine the best model set. An interaction between the intermittent pairing condition and tense pair adjective rating was in the top three models of the best model set. Dominance and rates of affiliation were also important for explaining urinary cortisol variation. Our results suggest that to prevent significant changes in HPA-axis activation in rhesus macaque females, which could have unintended effects on research outcomes, pairs with "Tense" relationships and overnight separations preventing tactile contact

  7. Pair Negotiation When Developing English Speaking Tasks

    Science.gov (United States)

    Bohórquez Suárez, Ingrid Liliana; Gómez Sará, Mary Mily; Medina Mosquera, Sindy Lorena

    2011-01-01

    This study analyzes what characterizes the negotiations of seventh graders at a public school in Bogotá when working in pairs to develop speaking tasks in EFL classes. The inquiry is a descriptive case study that follows the qualitative paradigm. As a result of analyzing the data, we obtained four consecutive steps that characterize students'…

  8. Drift wave in pair-ion plasma

    Indian Academy of Sciences (India)

    of charged particles in electromagnetic fields. The linear and nonlinear collective modes in electron-positron plasma have been investigated theoretically [3–6]. Recently, Oohara and Hatakeyama [7] have developed a novel method for generating a pair plasma con- sisting of only negative and positive ions with equal mass ...

  9. Klein tunneling phenomenon with pair creation process

    Science.gov (United States)

    Wu, G. Z.; Zhou, C. T.; Fu, L. B.

    2018-01-01

    In this paper, we study the Klein tunneling phenomenon with electron-positron pair creation process. Pairs can be created from the vacuum by a supercritical single-well potential (for electrons). In the time region, the time-dependent growth pattern of the created pairs can be characterized by four distinct regimes which can be considered as four different statuses of the single well. We find that if positrons penetrate the single well by Klein tunneling in different statuses, the total number of the tunneling positrons will be different. If Klein tunneling begins at the initial stage of the first status i.e. when the sing well is empty, the tunneling process and the total number of tunneling positrons are similar to the traditional Klein tunneling case without considering the pair creation process. As the tunneling begins later, the total tunneling positron number increases. The number will finally settle to an asymptotic value when the tunneling begins later than the settling-down time t s of the single well which has been defined in this paper.

  10. Effective pair potentials for spherical nanoparticles

    International Nuclear Information System (INIS)

    Van Zon, Ramses

    2009-01-01

    An effective description for rigid spherical nanoparticles in a fluid of point particles is presented. The points inside the nanoparticles and the point particles are assumed to interact via spherically symmetric additive pair potentials, while the distribution of points inside the nanoparticles is taken to be spherically symmetric and smooth. The resulting effective pair interactions between a nanoparticle and a point particle, as well as between two nanoparticles, are then given by spherically symmetric potentials. If overlap between particles is allowed, as can occur for some forms of the pair potentials, the effective potential generally has non-analytic points. It is shown that for each effective potential the expressions for different overlapping cases can be written in terms of one analytic auxiliary potential. Even when only non-overlapping situations are possible, the auxiliary potentials facilitate the formulation of the effective potentials. Effective potentials for hollow nanoparticles (appropriate e.g. for buckyballs) are also considered and shown to be related to those for solid nanoparticles. For hollow nanoparticles overlap is more physical, since this covers the case of a smaller particle embedded in a larger, hollow nanoparticle. Finally, explicit expressions are given for the effective potentials derived from basic pair potentials of power law and exponential form, as well as from the commonly used London–van der Waals, Morse, Buckingham, and Lennard-Jones potentials. The applicability of the latter is demonstrated by comparison with an atomic description of nanoparticles with an internal face centered cubic structure

  11. Odd-frequency pairing in superconducting heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Golubov, A A [Faculty of Science and Technology and MESA Institute for Nanotechnology, University of Twente, 7500 AE Enschede (Netherlands); Tanaka, Y [Department of Applied Physics, Nagoya University, Nagoya, 464-8603 (Japan); Asano, Y [Department of Applied Physics, Hokkaido University, Sapporo 060-8628 (Japan); Tanuma, Y [Institute of Physics, Kanagawa University, 3-7-1, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686 (Japan)], E-mail: a.golubov@utwente.nl

    2009-04-22

    We review the theory of odd-frequency pairing in superconducting heterostructures, where an odd-frequency pairing component is induced near interfaces. A general description of the superconducting proximity effect in a normal metal or a ferromagnet attached to an unconventional superconductor (S) is given within quasiclassical kinetic theory for various types of symmetry state in S. Various possible symmetry classes in a superconductor are considered which are consistent with the Pauli principle: even-frequency spin-singlet even-parity (ESE) state, even-frequency spin-triplet odd-parity (ETO) state, odd-frequency spin-triplet even-parity (OTE) state and odd-frequency spin-singlet odd-parity (OSO) state. As an example, we consider a junction between a diffusive normal metal (DN) and a p-wave superconductor (even-frequency spin-triplet odd-parity symmetry), where the pairing amplitude in DN belongs to an odd-frequency spin-triplet even-parity symmetry class. We also discuss the manifestation of odd-frequency pairing in conventional superconductor/normal (S/N) proximity systems and its relation to the classical McMillan-Rowell oscillations.

  12. Impact of Paired Tutoring and Mentoring.

    Science.gov (United States)

    Bruce, Jennifer E.; Trammell, Jack

    2003-01-01

    Discusses a study that examines the effects of paired tutoring and mentoring on academic achievement of college freshmen in a probationary program. Results show that students with mentoring and tutoring services by the same person show greater academic gains as measured by compliance and academic achievement than do those students who were…

  13. Pair breaking and charge relaxation in superconductors

    International Nuclear Information System (INIS)

    Nielson, J.B.; Pethick, C.J.; Rammer, J.; Smith, H.

    1982-01-01

    We present a general formalism based on the quasiclassical Green's function for calculating charge imbalance in nonequilibrium superconductors. Our discussion is sufficiently general that it applies at arbitrary temperatures, and under conditions when the width of quasiparticle states are appreciable due to pair breaking processes, and when strong coupling effects are significant. As a first application we demonstrate in detail how in the limit of smallpair breaking and for a weak coupling superconductor the collision term in the formalism reduces to the one in the quasiparticle Boltzmann equation. We next treat the case of charge imbalance generated by tunnel injection, with pair breaking by phonons and magnetic impurities. Over the range of temperatures investigated exerimentally to date, the calculated charge imbalance is rather close to that evaluated using the Boltzmann equation, even if pair braeking is so strong as almost to destroy superconductivity. Finally we consider charge imbalance generated by the combined influence of a supercurrent and a temperature gradient. We give calculations for a dirty superconductor with scattering by phonons as the pair breaking mechanism, and the results give a reasonable account of the experimental data of Clarke, Fjordboge, and Lindelof. We carry out calculations for the case of impurity scattering along which are valid not only in the clean and dirty limits, but also for intermediate situations. These enable us to see how the large contribution to the charge imbalance found for energies close to the gap edge in the clean case is reduced with increasing impurity scattering

  14. Pseudopotential transformation of correlated-pair equations

    International Nuclear Information System (INIS)

    Szasz, L.; Brown, L.

    1975-01-01

    A pseudopotential transformation for correlated-pair equations is derived that yields solutions that are pseudowavefunctions, i.e., they do not have to be orthogonal to the core functions. The approximate solutions for the transformation will be much simpler to compute, but they do not involve a loss of accuracy

  15. Predictive labeling with dependency pairs using SAT

    NARCIS (Netherlands)

    Koprowski, A.; Middeldorp, A.; Pfenning, F.

    2007-01-01

    This paper combines predictive labeling with dependency pairs and reports on its implementation. Our starting point is the method of proving termination of rewrite systems using semantic labeling with infinite models in combination with lexicographic path orders. We replace semantic labeling with

  16. Multipole pair vibrations in superfluid 3He

    International Nuclear Information System (INIS)

    Baldo, M.; Giansiracusa, G.; Lombardo, U.; Pucci, R.; Petronio, G.

    1978-01-01

    Starting from a path integral formation of the 3 He superfluidity, the authors study the pair vibrations around the BCS solution. For both the BW and ABM states get a set of possible excitations. In particular it is shown that a new type of excitation is present for pure 1 = 2 spin singlet vibration. (Auth.)

  17. Pion-pair production by two photons

    International Nuclear Information System (INIS)

    Terazawa, Hidezumi.

    1994-07-01

    The cross section for pion-pair production by two photons is calculated approximately by using the low energy theorem previously derived from partially-conserved-axial-vector-current hypothesis and current algebra, and found to agree very well with the experimental data recently obtained by the Mark II, TPC/Two-Gamma and CLEO Collaborations. (author)

  18. Computing Hypercrossed Complex Pairings in Digital Images

    Directory of Open Access Journals (Sweden)

    Simge Öztunç

    2013-01-01

    Full Text Available We consider an additive group structure in digital images and introduce the commutator in digital images. Then we calculate the hypercrossed complex pairings which generates a normal subgroup in dimension 2 and in dimension 3 by using 8-adjacency and 26-adjacency.

  19. Phenomena, dynamics and instabilities of vortex pairs

    International Nuclear Information System (INIS)

    Williamson, C H K; Asselin, D J; Leweke, T; Harris, D M

    2014-01-01

    Our motivation for studying the dynamics of vortex pairs stems initially from an interest in the trailing wake vortices from aircraft and the dynamics of longitudinal vortices close to a vehicle surface. However, our motivation also comes from the fact that vortex–vortex interactions and vortex–wall interactions are fundamental to many turbulent flows. The intent of the paper is to present an overview of some of our recent work concerning the formation and structure of counter-rotating vortex pairs. We are interested in the long-wave and short-wave three-dimensional instabilities that evolve for an isolated vortex pair, but also we would like to know how vortex pairs interact with a wall, including both two-dimensional interactions, and also the influence of the surface on the three-dimensional instabilities. The emphasis of this presentation is on physical mechanisms by which vortices interact with each other and with surfaces, principally from an experimental approach, but also coupled with analytical studies. (paper)

  20. A Novel Approach for Collaborative Pair Programming

    Science.gov (United States)

    Goel, Sanjay; Kathuria, Vanshi

    2010-01-01

    The majority of an engineer's time in the software industry is spent working with other programmers. Agile methods of software development like eXtreme Programming strongly rely upon practices like daily meetings and pair programming. Hence, the need to learn the skill of working collaboratively is of primary importance for software developers.…

  1. Pair production of intermediate vector bosons

    International Nuclear Information System (INIS)

    Mikaelian, K.O.

    1979-01-01

    The production of intermediate vector boson pairs W + W - , Z 0 Z 0 , W +- Z 0 and W +- γ in pp and p anti p collisions is discussed. The motivation is to detect the self-interactions among the four intermediate vector bosons

  2. Pairing the Adult Learner and Boutique Wineries

    Science.gov (United States)

    Holyoke, Laura; Heath-Simpson, Delta

    2013-01-01

    This study explored connections between adult learners and their experiences in the context of small boutique wineries operating in the start-up phase of the organizational life cycle. The research objective was to gain insight regarding the pairing of adult learners with the entering of a specialty industry. Fourteen individuals from four…

  3. Plasma analog of particle-pair production

    International Nuclear Information System (INIS)

    Tsidulko, Yu.A.; Berk, H.L.

    1996-09-01

    It is shown that the plasma axial shear flow instability satisfies the Klein-Gordon equation. The plasma instability is then shown to be analogous to spontaneous particle-pair production when a potential energy is present that is greater than twice the particle rest mass energy. Stability criteria can be inferred based on field theoretical conservation laws

  4. Frustrated Lewis pairs: Design and reactivity

    Indian Academy of Sciences (India)

    for FLP systems and their unique reactivity are discussed here. Keywords. Lewis .... we will concentrate on the design principles of such. FLPs and the ... Designs of frustrated Lewis pairs ..... 64 and neutral titanium (III) complex [Cp2TiOC6.

  5. Environmentally benign working pairs for adsorption refrigeration

    International Nuclear Information System (INIS)

    Cui Qun; Tao Gang; Chen Haijun; Guo Xinyue; Yao Huqing

    2005-01-01

    This paper begins from adsorption working pairs: water and ethanol were selected as refrigerants; 13x molecular sieve, silica gel, activated carbon, adsorbent NA and NB, proposed by authors, were selected as adsorbents, and the performance of adsorption working pairs in adsorption refrigeration cycle was studied. The adsorption isotherms of adsorbents (NA and NB) were obtained by high-vacuum gravimetric method. Desorption properties of adsorbents were analyzed and compared by thermal analysis method. The performance of adsorption refrigeration was studied on simulation device of adsorption refrigeration cycle. After presentation of adsorption isotherms, the thermodynamic performance for their use in adsorption refrigeration system was calculated. The results show: (1) the maximum adsorption capacity of water on adsorbent NA reaches 0.7 kg/kg, and the maximum adsorption capacity of ethanol on adsorbent NB is 0.68 kg/kg, which is three times that of ethanol on activated carbon, (2) the refrigeration capacity of NA-water working pair is 922 kJ/kg, the refrigeration capacity of NB-ethanol is 2.4 times that of activated carbon-methanol, (3) as environmental friendly and no public hazard adsorption working pair, NA-H 2 O and NB-ethanol can substitute activated carbon-methanol in adsorption refrigeration system using low-grade heat source

  6. Fermion pair physics at LEP2

    International Nuclear Information System (INIS)

    Georgios, Anagnostou

    2004-01-01

    Combined measurements of the 4 LEP collaborations for the fermion pair processes e + e - →f anti f are presented. The results show no significant deviations when compared with the Standard Model predictions and are used to set limits on contact interactions, Z' gauge bosons and low scale gravity models with large extra dimensions. (orig.)

  7. Frustrated Lewis pairs-assisted tritium labeling

    Czech Academy of Sciences Publication Activity Database

    Marek, Aleš; Široká, Sabina; Elbert, Tomáš

    2016-01-01

    Roč. 14, č. 5 (2016), s. 219 ISSN 2336-7202. [Sjezd českých a slovenských chemických společností /68./. 04.09.2016-07.09.2016, Praha] Institutional support: RVO:61388963 Keywords : frustrated Lewis pairs * one-pot synthesis * tritium -labeling Subject RIV: CC - Organic Chemistry

  8. Angular assymetries in a shielded pair line

    International Nuclear Information System (INIS)

    Fanchiotti, H.; Garcia Canal, C.A.; Vucetich, H.

    1979-01-01

    The capacitance matrix and surface charge density distribution of an unbalanced pair line with both longitudinal and balanced excitations is presented. In particular the case in which the axes of the inner wires are not restricted to lie on a line through the axis of the shield is discussed

  9. Binaries and triples among asteroid pairs

    Science.gov (United States)

    Pravec, Petr; Scheirich, Peter; Kušnirák, Peter; Hornoch, Kamil; Galád, Adrián

    2015-08-01

    Despite major achievements obtained during the past two decades, our knowledge of the population and properties of small binary and multiple asteroid systems is still far from advanced. There is a numerous indirect evidence for that most small asteroid systems were formed by rotational fission of cohesionless parent asteroids that were spun up to the critical frequency presumably by YORP, but details of the process are lacking. Furthermore, as we proceed with observations of more and more binary and paired asteroids, we reveal new facts that substantially refine and sometimes change our understanding of the asteroid systems. One significant new finding we have recently obtained is that primaries of many asteroid pairs are actually binary or triple systems. The first such case found is (3749) Balam (Vokrouhlický, ApJL 706, L37, 2009). We have found 9 more binary systems among asteroid pairs within our ongoing NEOSource photometric project since October 2012. They are (6369) 1983 UC, (8306) Shoko, (9783) Tensho-kan, (10123) Fideoja, (21436) Chaoyichi, (43008) 1999 UD31, (44620) 1999 RS43, (46829) 1998 OS14 and (80218) 1999 VO123. We will review their characteristics. These paired binaries as we call them are mostly similar to binaries in the general ("background") population (of unpaired asteroids), but there are a few trends. The paired binaries tend to have larger secondaries with D_2/D_1 = 0.3 to 0.5 and they also tend to be wider systems with 8 of the 10 having orbital periods between 30 and 81 hours, than average among binaries in the general population. There may be also a larger fraction of triples; (3749) Balam is a confirmed triple, having a larger close and a smaller distant satellite, and (8306) Shoko and (10123) Fideoja are suspect triples as they show additional rotational lightcurve components with periods of 61 and 38.8 h that differ from the orbital period of 36.2 and 56.5 h, respectively. The unbound secondaries tend to be of the same size or

  10. Metal-mediated DNA base pairing: alternatives to hydrogen-bonded Watson-Crick base pairs.

    Science.gov (United States)

    Takezawa, Yusuke; Shionoya, Mitsuhiko

    2012-12-18

    With its capacity to store and transfer the genetic information within a sequence of monomers, DNA forms its central role in chemical evolution through replication and amplification. This elegant behavior is largely based on highly specific molecular recognition between nucleobases through the specific hydrogen bonds in the Watson-Crick base pairing system. While the native base pairs have been amazingly sophisticated through the long history of evolution, synthetic chemists have devoted considerable efforts to create alternative base pairing systems in recent decades. Most of these new systems were designed based on the shape complementarity of the pairs or the rearrangement of hydrogen-bonding patterns. We wondered whether metal coordination could serve as an alternative driving force for DNA base pairing and why hydrogen bonding was selected on Earth in the course of molecular evolution. Therefore, we envisioned an alternative design strategy: we replaced hydrogen bonding with another important scheme in biological systems, metal-coordination bonding. In this Account, we provide an overview of the chemistry of metal-mediated base pairing including basic concepts, molecular design, characteristic structures and properties, and possible applications of DNA-based molecular systems. We describe several examples of artificial metal-mediated base pairs, such as Cu(2+)-mediated hydroxypyridone base pair, H-Cu(2+)-H (where H denotes a hydroxypyridone-bearing nucleoside), developed by us and other researchers. To design the metallo-base pairs we carefully chose appropriate combinations of ligand-bearing nucleosides and metal ions. As expected from their stronger bonding through metal coordination, DNA duplexes possessing metallo-base pairs exhibited higher thermal stability than natural hydrogen-bonded DNAs. Furthermore, we could also use metal-mediated base pairs to construct or induce other high-order structures. These features could lead to metal-responsive functional

  11. Schwinger pair creation of Kaluza-Klein particles: Pair creation without tunneling

    International Nuclear Information System (INIS)

    Friedmann, Tamar; Verlinde, Herman

    2005-01-01

    We study Schwinger pair creation of charged Kaluza-Klein (KK) particles from a static KK electric field. We find that the gravitational backreaction of the electric field on the geometry--which is incorporated via the electric KK-Melvin solution--prevents the electrostatic potential from overcoming the rest mass of the KK particles, thus impeding the tunneling mechanism which is often thought of as responsible for the pair creation. However, we find that pair creation still occurs with a finite rate formally similar to the classic Schwinger result, but via an apparently different mechanism, involving a combination of the Unruh effect and vacuum polarization due to the E-field

  12. Neutron pair and proton pair transfer reactions between identical cores in the sulfur region

    International Nuclear Information System (INIS)

    Mermaz, M.C.

    1995-12-01

    Optical model and exact finite range distorted-wave Born approximation analyses were performed on neutron pair exchange between identical cores for 32 S and 34 S nuclei and on proton pair exchange between identical cores for 30 Si and 32 S. The extracted spectroscopic factors were compared with theoretical ones deduced from Hartree-Fock calculations on these pair of nuclei. The enhancement of the experimental cross sections with respect to the theoretical ones strongly suggests evidence for a nuclear Josephson effect. (author). 15 refs., 5 figs., 3 tabs

  13. Model for pairing phase transition in atomic nuclei

    International Nuclear Information System (INIS)

    Schiller, A.; Guttormsen, M.; Hjorth-Jensen, M.; Rekstad, J.; Siem, S.

    2002-01-01

    A model is developed which allows the investigation and classification of the pairing phase transition in atomic nuclei. The regions of the parameter space are discussed for which a pairing phase transition can be observed. The model parameters include number of particles, attenuation of pairing correlations with increasing seniority, single-particle level spacing, and pairing gap parameter

  14. Paired peer learning through engineering education outreach

    Science.gov (United States)

    Fogg-Rogers, Laura; Lewis, Fay; Edmonds, Juliet

    2017-01-01

    Undergraduate education incorporating active learning and vicarious experience through education outreach presents a critical opportunity to influence future engineering teaching and practice capabilities. Engineering education outreach activities have been shown to have multiple benefits; increasing interest and engagement with science and engineering for school children, providing teachers with expert contributions to engineering subject knowledge, and developing professional generic skills for engineers such as communication and teamwork. This pilot intervention paired 10 pre-service teachers and 11 student engineers to enact engineering outreach in primary schools, reaching 269 children. A longitudinal mixed methods design was employed to measure change in attitudes and Education Outreach Self-Efficacy in student engineers; alongside attitudes, Teaching Engineering Self-Efficacy and Engineering Subject Knowledge Confidence in pre-service teachers. Highly significant improvements were noted in the pre-service teachers' confidence and self-efficacy, while both the teachers and engineers qualitatively described benefits arising from the paired peer mentor model.

  15. Top quark pair production beyond NNLO

    Energy Technology Data Exchange (ETDEWEB)

    Muselli, Claudio [TIF Lab, Dipartimento di Fisica, Università di Milano, and INFN - Sezione di Milano,Via Celoria 16, I-20133 Milano (Italy); Bonvini, Marco [Rudolf Peierls Centre for Theoretical Physics, University of Oxford,1 Keble Road, OX1 3NP, Oxford (United Kingdom); Forte, Stefano [TIF Lab, Dipartimento di Fisica, Università di Milano, and INFN - Sezione di Milano,Via Celoria 16, I-20133 Milano (Italy); Marzani, Simone [Center for Theoretical Physics, Massachusetts Institute of Technology,77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Ridolfi, Giovanni [Dipartimento di Fisica, Università di Genova and INFN - Sezione di Genova,Via Dodecaneso 33, I-16146 Genova (Italy)

    2015-08-17

    We construct an approximate expression for the total cross section for the production of a heavy quark-antiquark pair in hadronic collisions at next-to-next-to-next-to-leading order (N{sup 3}LO) in α{sub s}. We use a technique which exploits the analyticity of the Mellin space cross section, and the information on its singularity structure coming from large N (soft gluon, Sudakov) and small N (high energy, BFKL) all order resummations, previously introduced and used in the case of Higgs production. We validate our method by comparing to available exact results up to NNLO. We find that N{sup 3}LO corrections increase the predicted top pair cross section at the LHC by about 4% over the NNLO.

  16. Top quark pair production beyond NNLO

    International Nuclear Information System (INIS)

    Muselli, Claudio; Bonvini, Marco; Forte, Stefano; Marzani, Simone; Ridolfi, Giovanni

    2015-01-01

    We construct an approximate expression for the total cross section for the production of a heavy quark-antiquark pair in hadronic collisions at next-to-next-to-next-to-leading order (N 3 LO) in α s . We use a technique which exploits the analyticity of the Mellin space cross section, and the information on its singularity structure coming from large N (soft gluon, Sudakov) and small N (high energy, BFKL) all order resummations, previously introduced and used in the case of Higgs production. We validate our method by comparing to available exact results up to NNLO. We find that N 3 LO corrections increase the predicted top pair cross section at the LHC by about 4% over the NNLO.

  17. Photoproduction of Drell-Yan lepton pairs

    International Nuclear Information System (INIS)

    Jones, L.M.; Sullivan, J.D.; Willen, D.E.; Wyld, H.W.

    1979-01-01

    We investigate the Drell-Yan reaction γp → (μ + μ - ) X with an eye to experimental determination of the photon structure functions. Contributions to the process from both the nonhadronic anomaly and the vector-dominance piece are estimated: we find that the cross section from the anomaly dominates the vector-dominance contribution at large Q 2 . The background from Bethe-Heitler pairs is also calculated; it is somewhat suppressed by going to y=0, and further suppressed relative to the Drell-Yan contribution for fixed Q 2 by looking at high center-of-mass energies and at small Q/sub perpendicular/ for the pair. Overall we find that the absolute Drell-Yan cross sections in the regions of interest are very small; experimental study of the process will be difficult

  18. A search for resonant Z pair production

    Energy Technology Data Exchange (ETDEWEB)

    Boveia, Antonio [Univ. of California, Santa Barbara, CA (United States)

    2008-12-01

    I describe a search for anomalous production of Z pairs through a new massive resonance X in 2.5-2.9 fb-1 of p$\\bar{p}$ collisions at √s = 1.96 TeV using the CDFII Detector at the Fermilab Tevatron. I reconstruct Z pairs through their decays to electrons, muons, and quarks. To achieve perhaps the most efficient lepton reconstruction ever used at CDF, I apply a thorough understanding of the detector and new reconstruction software heavily revised for this purpose. In particular, I have designed and employ new general-purpose algorithms for tracking at large η in order to increase muon acceptance. Upon analyzing the unblinded signal samples, I observe no X → ZZ candidates and set upper limits on the production cross section using a Kaluza-Klein graviton-like acceptance.

  19. Magnetically-enhanced open string pair production

    Science.gov (United States)

    Lu, J. X.

    2017-12-01

    We consider the stringy interaction between two parallel stacks of D3 branes placed at a separation. Each stack of D3 branes in a similar fashion carry an electric flux and a magnetic flux with the two sharing no common field strength index. The interaction amplitude has an imaginary part, giving rise to the Schwinger-like pair production of open strings. We find a significantly enhanced rate of this production when the two electric fluxes are almost identical and the brane separation is on the order of string scale. This enhancement will be largest if the two magnetic fluxes are opposite in direction. This novel enhancement results from the interplay of the non-perturbative Schwinger-type pair production due to the electric flux and the stringy tachyon due to the magnetic flux, and may have realistic physical applications.

  20. Radiation- and pair-loaded shocks

    Science.gov (United States)

    Lyutikov, Maxim

    2018-06-01

    We consider the structure of mildly relativistic shocks in dense media, taking into account the radiation and pair loading, and diffusive radiation energy transfer within the flow. For increasing shock velocity (increasing post-shock temperature), the first important effect is the efficient energy redistribution by radiation within the shock that leads to the appearance of an isothermal jump, whereby the flow reaches the final state through a discontinuous isothermal transition. The isothermal jump, on scales much smaller than the photon diffusion length, consists of a weak shock and a quick relaxation to the isothermal conditions. Highly radiation-dominated shocks do not form isothermal jump. Pair production can mildly increase the overall shock compression ratio to ≈10 (4 for matter-dominated shocks and 7 of the radiation-dominated shocks).

  1. Dynamics and Instabilities of Vortex Pairs

    Science.gov (United States)

    Leweke, Thomas; Le Dizès, Stéphane; Williamson, Charles H. K.

    2016-01-01

    This article reviews the characteristics and behavior of counter-rotating and corotating vortex pairs, which are seemingly simple flow configurations yet immensely rich in phenomena. Since the reviews in this journal by Widnall (1975) and Spalart (1998) , who studied the fundamental structure and dynamics of vortices and airplane trailing vortices, respectively, there have been many analytical, computational, and experimental studies of vortex pair flows. We discuss two-dimensional dynamics, including the merging of same-sign vortices and the interaction with the mutually induced strain, as well as three-dimensional displacement and core instabilities resulting from this interaction. Flows subject to combined instabilities are also considered, in particular the impingement of opposite-sign vortices on a ground plane. We emphasize the physical mechanisms responsible for the flow phenomena and clearly present the key results that are useful to the reader for predicting the dynamics and instabilities of parallel vortices.

  2. Space-Efficient Re-Pair Compression

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li; Prezza, Nicola

    2017-01-01

    Re-Pair [5] is an effective grammar-based compression scheme achieving strong compression rates in practice. Let n, σ, and d be the text length, alphabet size, and dictionary size of the final grammar, respectively. In their original paper, the authors show how to compute the Re-Pair grammar...... in expected linear time and 5n + 4σ2 + 4d + √n words of working space on top of the text. In this work, we propose two algorithms improving on the space of their original solution. Our model assumes a memory word of [log2 n] bits and a re-writable input text composed by n such words. Our first algorithm runs...

  3. Glass scintillator pair for compensation neutron logging

    International Nuclear Information System (INIS)

    Ji Changsong; Li Xuezhi; Yiu Guangduo

    1985-01-01

    Glass scintillator pair types ST 1604 and ST 1605 for compensation of neutron logging is developed. The neutron sensitive material used is multistick lithium glass scintillators 3 and 4 mm in diameter respectively. Thermoneutron detection efficiencies are 50-60% and 100% respectively. The detection efficiency for 60 Co γ ray is lower than 0.3%. The type ST 1604 and ST 1605 may also be used as high sensitive neutron detectors in an intensive γ ray field

  4. On $ \\phi $ -amicable pairs (with appendix)

    NARCIS (Netherlands)

    G.L. Cohen; H.J.J. te Riele (Herman)

    1995-01-01

    textabstractLet $\\phi(n)$ denote Euler's totient function, i.e., the number of positive integers~$pairs of positive integers $(a_0,a_1)$ with $a_0\\le a_1$ such that $\\phi(a_0)=\\phi(a_1)=(a_0+a_1)/k$ for some integer $k\\ge1$. We call these numbers $\\phi$--{\\it

  5. Signature scheme based on bilinear pairs

    Science.gov (United States)

    Tong, Rui Y.; Geng, Yong J.

    2013-03-01

    An identity-based signature scheme is proposed by using bilinear pairs technology. The scheme uses user's identity information as public key such as email address, IP address, telephone number so that it erases the cost of forming and managing public key infrastructure and avoids the problem of user private generating center generating forgery signature by using CL-PKC framework to generate user's private key.

  6. Hadronic production of lepton pairs (experimental)

    International Nuclear Information System (INIS)

    Boucrot, J.

    1980-12-01

    Hadonic production of lepton pairs has become a good testground of Q.C.D. The large effects predicted in cross sections and in Psub(T) distributions are seen and may be one of the good indirect proofs of the existence of gluons. Detailed experimental results are available, and clearly it is necessary that higher order Q.C.D. corrections should be estimated

  7. W+- pairs and neutral currents at ISABELLE

    International Nuclear Information System (INIS)

    Mikaelian, K.O.

    1975-01-01

    A report is presented on two different types of processes which may form part of the weak interactions program. The first is the production of pairs of charged weak bosons in the process pp → W + W - X; the second involves searching for neutral current effects in the rate for ordinary lepton production, without measuring any charge asymmetry or helicities using the reaction pp → l + l - X

  8. Narrowband polarization entangled telecom photon pair source

    OpenAIRE

    Kaiser , Florian; Issautier , Amandine; Alibart , Olivier; Martin , Anthony; Tanzilli , Sébastien

    2011-01-01

    Contributed Talk; International audience; During the last decade, quantum entanglement has paved the way out to of the lab modern applications such as quantum computation and communication. Today, small scale quantum networks exist already, but they are limited to a few 100 km distance, due to intrinsic fiber transmission losses and non perfect detectors. These networks are typically established using photon pair sources based on spontaneous parametric down conversion (SPDC). Widely used enta...

  9. Determination of the pairing-strength constants in the isovector plus isoscalar pairing case

    Science.gov (United States)

    Mokhtari, D.; Fellah, M.; Allal, N. H.

    2016-05-01

    A method for the determination of the pairing-strength constants, in the neutron-proton (n-p) isovector plus isoscalar pairing case, is proposed in the framework of the BCS theory. It is based on the fitting of these constants to reproduce the experimentally known pairing gap parameters as well as the root-mean-squared (r.m.s) charge radii values. The method is applied to some proton-rich even-even nuclei. The single-particle energies used are those of a deformed Woods-Saxon mean field. It is shown that the obtained value of the ratio GnpT=0/G npT=1 is of the same order as the ones, arbitrary chosen, of some previous works. The effect of the inclusion of the isoscalar n-p pairing in the r.m.s matter radii is then numerically studied for the same nuclei.

  10. Neutrino signal from pair-instability supernovae

    Science.gov (United States)

    Wright, Warren P.; Gilmer, Matthew S.; Fröhlich, Carla; Kneller, James P.

    2017-11-01

    A very massive star with a carbon-oxygen core in the range of 64M ⊙Earth from two, one-dimensional pair-instability supernova simulations which bracket the mass range of stars which explode by this mechanism taking into account the full time and energy dependence of the neutrino emission and the flavor evolution through the outer layers of the star. We calculate the neutrino signals in five different detectors chosen to represent present or near future designs. We find the more massive progenitors explode as pair-instability supernova which can easily be detected in multiple different neutrino detectors at the "standard" supernova distance of 10 kpc producing several events in DUNE, JUNO, and Super-Kamiokande, while the lightest progenitors produce only a handful of events (if any) in the same detectors. The proposed Hyper-Kamiokande detector would detect neutrinos from a large pair-instability supernova as far as ˜50 kpc allowing it to reach the Megallanic Clouds and the several very high mass stars known to exist there.

  11. Exclusive production of W pairs in CMS

    Directory of Open Access Journals (Sweden)

    Silveira Da

    2014-04-01

    Full Text Available We report the results on the search for exclusive production of W pairs in the LHC with data collected by the Compact Muon Solenoid detector in proton-proton collisions at √s = 7 TeV. The analysis comprises the two-photon production of a W pairs, pp → pW+ W− p → p νe± νµ∓ p. Two events are observed in data for pT(ℓ > 4 GeV, |η(ℓ| 20 GeV, in agreement with the standard model prediction of 2.2 ± 0.4 signal events with 0.84 ± 0.15 background events. Moreover, a study of the tail of the lepton pair transverse momentum distribution is performed to search for an evidence of anomalous quartic gauge couplings in the γγ → W+ W− vertex. As no events are observed in data, it results in a model-independent upper limits for the anomalous W quartic gauge couplings aW0,C/Λ2, which are of the order of 10−4.

  12. Galactic Pairs in the Early Universe

    Science.gov (United States)

    Kohler, Susanna

    2018-02-01

    In the spirit of Valentines Day, today well be exploring apparent pairs of galaxies in the distant, early universe. How can we tell whether these duos are actually paired galaxies, as opposed to disguised singles?Real Pair, or Trick of the Light?In the schematic timeline of the universe, the epoch of reionization is when the first galaxies and quasars began to form and evolve. [NASA]The statistics of merging galaxies throughout the universe reveal not only direct information about how galaxies interact, but also cosmological information about the structure of the universe. While weve observed many merging galaxy pairs at low redshift, however, its much more challenging to identify these duos in the early universe.A merging pair of galaxies at high redshift appears to us as a pair of unresolved blobs that lie close to each other in the sky. But spotting such a set of objects doesnt necessarily mean were looking at a merger! There are three possible scenarios to explain an observed apparent duo:Its a pair of galaxies in a stage of merger.Its a projection coincidence; the two galaxies arent truly near each other.Its a single galaxy being gravitationally lensed by a foreground object. This strong lensing produces the appearance of multiple galaxies.Hubble photometry of one of the three galaxy groups identified at z 8, with the galaxies in the image labeled with their corresponding approximate photometric redshifts. [Adapted from Chaikin et al. 2018]Hunting for Distant DuosIn a recent study led by Evgenii Chaikin (Peter the Great St. Petersburg Polytechnic University, Russia), a team of scientists has explored the Hubble Ultra Deep Field in search ofhigh-redshift galaxies merging during the epoch of reionization, when the first galaxies formed and evolved.Using an approach called the dropout technique, which leverages the visibility of the galaxies in different wavelength filters, Chaikin and collaborators obtain approximate redshifts for an initial sample of 7

  13. Pair formation by a deep potential well

    International Nuclear Information System (INIS)

    Nikishov, A.I.

    1987-01-01

    We obtain solutions of the Dirac and Klein-Gordon equations for a symmetric one-dimensional potential well with a flat bottom, and arbitrary depth, width, and field strength at the walls. Quasistationary solutions are found describing pair creation by the well, and the inverse process. It is shown that when the probability of pair creation by the well is small, it can be expressed in terms of the probability of pair creation at one of the walls and the oscillation frequency of the particle in the well. Among the states of the lower continuum, there are positron resonance scattering states for supercritical well depths. The energies of these states are close to the real part of the quasistationary energy level (the Zel'dovich effect). The qualitative dependence of the transmission coefficient of the positron through the well on its energy and the well width supports the idea that the solution of the so-called one-particle Dirac equation describes a many-particle system with charge 0 or 1

  14. Pair creation by dynamic field configurations

    International Nuclear Information System (INIS)

    Aoyama, H.

    1982-01-01

    This thesis deals with the dynamics of the classical configuration of a quantum field unstable due to pair creation. The effective action method is developed first to treat such problems for a simple two-field model. Physical quantities such as pair creation probabilities are related to a complex function called the effective configuration, which is defined to minimize the effective action. Unitarity of the S-matrix is verified at the lowest order of the weak-field approximation. At the same order, the real valued vacuum expectation value of the quantum field, named the real configuration, is constructed in terms of the effective configuration. An integro-differential equation for the real configuration is given and is used to show that the real configuration is causal, while the effective configuration is not. Two practical applications of the effective action method are discussed. The first deals with pair creation in an anisotropic universe, and the real geometry is given in terms of the effective geometry in the samll anisotropy limit. The second deals with expanding vacuum bubbles. Corresponding to three possible situations, three kinds of field equations of each of the effective configuration and the real configuration are obtained. The behavior of the bubble is also studied by a semi-classical method, and one of the three situations is suggested to be plausible

  15. Quantitative evaluation of pairs and RS steganalysis

    Science.gov (United States)

    Ker, Andrew D.

    2004-06-01

    We give initial results from a new project which performs statistically accurate evaluation of the reliability of image steganalysis algorithms. The focus here is on the Pairs and RS methods, for detection of simple LSB steganography in grayscale bitmaps, due to Fridrich et al. Using libraries totalling around 30,000 images we have measured the performance of these methods and suggest changes which lead to significant improvements. Particular results from the project presented here include notes on the distribution of the RS statistic, the relative merits of different "masks" used in the RS algorithm, the effect on reliability when previously compressed cover images are used, and the effect of repeating steganalysis on the transposed image. We also discuss improvements to the Pairs algorithm, restricting it to spatially close pairs of pixels, which leads to a substantial performance improvement, even to the extent of surpassing the RS statistic which was previously thought superior for grayscale images. We also describe some of the questions for a general methodology of evaluation of steganalysis, and potential pitfalls caused by the differences between uncompressed, compressed, and resampled cover images.

  16. Pair-correlations in swimmer suspensions

    Science.gov (United States)

    Nambiar, Sankalp; Subramanian, Ganesh

    2017-11-01

    Suspensions of rear-actuated swimming microorganisms, such as E.coli, exhibit several interesting phenomena including spontaneous pattern formation above a critical concentration, novel rheological properties, shear-induced concentration banding etc. Explanations based on mean-field theory are only qualitative, since interactions between swimmers are important for typical experimental concentrations. We analytically characterize the hydrodynamic pair-interactions in a quiescent suspension of slender straight swimmers. The pair-correlation, calculated at leading order by integrating the swimmer velocity disturbances along straight trajectories, decays as 1/r2 for r >> L (L being the swimmer size). This allows us to characterize both polar and nematic correlations in an interacting swimmer suspension. In the absence of correlations, the velocity covariance asymptotes from a constant for r > L, the latter being characteristic of a suspension of non-interacting point force-dipoles. On including correlations, the slow decay of the pair-orientation correlation leads to an additional contribution to the velocity covariance that diverges logarithmically with system size.

  17. Estimating Eulerian spectra from pairs of drifters

    Science.gov (United States)

    LaCasce, Joe

    2017-04-01

    GPS-tracked surface drifters offer the possibility of sampling energetic variations at the ocean surface on scales of only 10s of meters, much less than that resolved by satellite. Here we investigate whether velocity differences between pairs of drifters can be used to estimate kinetic energy spectra. Theoretical relations between the spectrum and the second-order longitudinal structure function for 2D non-divergent flow are derived. The structure function is a natural statistic for particle pairs and is easily calculated. However it integrates contributions across wavenumber, and this tends to obscure the spectral dependencies when turbulent inertial ranges are of finite extent. Nevertheless, the transform from spectrum to structure function is robust, as illustrated with Eulerian data collected from aircraft. The inverse transform, from structure function to spectrum, is much less robust, yielding poor results in particular at large wavenumbers. This occurs because the transform involves a filter function which magnifies contributions from large pair separations, which tend to be noisy. Fitting the structure function to a polynomial improves the spectral estimate, but not sufficiently to distinguish correct inertial range dependencies. Thus with Lagrangian data, it is appears preferable to focus on structure functions, despite their shortcomings.

  18. Magnetic Pair Creation Transparency in Pulsars

    Science.gov (United States)

    Story, Sarah; Baring, M. G.

    2013-04-01

    The Fermi gamma-ray pulsar database now exceeds 115 sources and has defined an important part of Fermi's science legacy, providing rich information for the interpretation of young energetic pulsars and old millisecond pulsars. Among the well established population characteristics is the common occurrence of exponential turnovers in the 1-10 GeV range. These turnovers are too gradual to arise from magnetic pair creation in the strong magnetic fields of pulsar inner magnetospheres, so their energy can be used to provide lower bounds to the typical altitude of GeV band emission. We explore such constraints due to single-photon pair creation transparency below the turnover energy. We adopt a semi-analytic approach, spanning both domains when general relativistic influences are important and locales where flat spacetime photon propagation is modified by rotational aberration effects. Our work clearly demonstrates that including near-threshold physics in the pair creation rate is essential to deriving accurate attenuation lengths. The altitude bounds, typically in the range of 2-6 neutron star radii, provide key information on the emission altitude in radio quiet pulsars that do not possess double-peaked pulse profiles. For the Crab pulsar, which emits pulsed radiation up to energies of 120 GeV, we obtain a lower bound of around 15 neutron star radii to its emission altitude.

  19. Paired and interacting galaxies: Conference summary

    International Nuclear Information System (INIS)

    Norman, C.A.

    1990-01-01

    The author gives a summary of the conference proceedings. The conference began with the presentation of the basic data sets on pairs, groups, and interacting galaxies with the latter being further discussed with respect to both global properties and properties of the galactic nuclei. Then followed the theory, modelling and interpretation using analytic techniques, simulations and general modelling for spirals and ellipticals, starbursts and active galactic nuclei. Before the conference the author wrote down the three questions concerning pairs, groups and interacting galaxies that he hoped would be answered at the meeting: (1) How do they form, including the role of initial conditions, the importance of subclustering, the evolution of groups to compact groups, and the fate of compact groups; (2) How do they evolve, including issues such as relevant timescales, the role of halos and the problem of overmerging, the triggering and enhancement of star formation and activity in the galactic nuclei, and the relative importance of dwarf versus giant encounters; and (3) Are they important, including the frequency of pairs and interactions, whether merging and interactions are very important aspects of the life of a normal galaxy at formation, during its evolution, in forming bars, shells, rings, bulges, etc., and in the formation and evolution of active galaxies? Where possible he focuses on these three central issues in the summary

  20. Orthogonal expansions related to compact Gelfand pairs

    DEFF Research Database (Denmark)

    Berg, Christian; Peron, Ana P.; Porcu, Emilio

    2017-01-01

    . The functions of this class are the functions having a uniformly convergent expansion ∑ϕεZB(ϕ)(u)ϕ(x) for xεG,uεL, where the sum is over the space Z of positive definite spherical functions ϕ:G→C for the Gelfand pair, and (B(ϕ))ϕεZ is a family of continuous positive definite functions on L such that ∑ϕε......For a locally compact group G, let P(G) denote the set of continuous positive definite functions f:G→C. Given a compact Gelfand pair (G,K) and a locally compact group L, we characterize the class PK#(G,L) of functions fεP(G×L) which are bi-invariant in the G-variable with respect to K......(d)) and (U(q),U(q-1)) as well as for the product of these Gelfand pairs.The result generalizes recent theorems of Berg-Porcu (2016) and Guella-Menegatto (2016)....

  1. Strong pairing approximation in comparison with the exact solutions to the pairing Hamiltonian

    Directory of Open Access Journals (Sweden)

    Lunyov A.V.

    2016-01-01

    Full Text Available Results of the Strong Pairing Approximation (SPA as a method with the exact particle number conservation are compared with those of the quasiparticle method (QM. It is shown that SPA comes to the same equations as QM for the gap parameter, chemical potential and one- and two-quasiparticle states. Calculations are performed for 14864Gd84 as an example, and compared with the exact solutions to the pairing Hamiltonian.

  2. Detecting nonlocal Cooper pair entanglement by optical Bell inequality violation

    OpenAIRE

    Nigg, Simon E.; Tiwari, Rakesh P.; Walter, Stefan; Schmidt, Thomas L.

    2014-01-01

    Based on the Bardeen Cooper Schrieffer (BCS) theory of superconductivity, the coherent splitting of Cooper pairs from a superconductor to two spatially separated quantum dots has been predicted to generate nonlocal pairs of entangled electrons. In order to test this hypothesis, we propose a scheme to transfer the spin state of a split Cooper pair onto the polarization state of a pair of optical photons. We show that the produced photon pairs can be used to violate a Bell inequality, unambiguo...

  3. The paired-domination and the upper paired-domination numbers of graphs

    Directory of Open Access Journals (Sweden)

    Włodzimierz Ulatowski

    2015-01-01

    Full Text Available In this paper we continue the study of paired-domination in graphs. A paired-dominating set, abbreviated PDS, of a graph \\(G\\ with no isolated vertex is a dominating set of vertices whose induced subgraph has a perfect matching. The paired-domination number of \\(G\\, denoted by \\(\\gamma_{p}(G\\, is the minimum cardinality of a PDS of \\(G\\. The upper paired-domination number of \\(G\\, denoted by \\(\\Gamma_{p}(G\\, is the maximum cardinality of a minimal PDS of \\(G\\. Let \\(G\\ be a connected graph of order \\(n\\geq 3\\. Haynes and Slater in [Paired-domination in graphs, Networks 32 (1998, 199-206], showed that \\(\\gamma_{p}(G\\leq n-1\\ and they determine the extremal graphs \\(G\\ achieving this bound. In this paper we obtain analogous results for \\(\\Gamma_{p}(G\\. Dorbec, Henning and McCoy in [Upper total domination versus upper paired-domination, Questiones Mathematicae 30 (2007, 1-12] determine \\(\\Gamma_{p}(P_n\\, instead in this paper we determine \\(\\Gamma_{p}(C_n\\. Moreover, we describe some families of graphs \\(G\\ for which the equality \\(\\gamma_{p}(G=\\Gamma_{p}(G\\ holds.

  4. Top quark pair production at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Baernreuther, Peter

    2012-06-28

    One of the most interesting and manifold processes in the Standard Model of elementary particle physics is the top quark pair production. It enabled the discovery of the top quark at the Tevatron in 1995 and the determination of many of its properties. By means of a precise measurement and calculation of the cross section of top quark pair production it is possible to extract the top quark mass. Improvements in the gluon parton distribution functions (important for the Higgs boson production) or improvements in the prediction of the Higgs mass are also closely linked with the top quark pair production. Furthermore, the production process plays an important role in the discovery of new physics. On the one hand the top quark pair decays form the largest part of the background in many BSM models, on the other hand BSM physics can be detected directly in the decay process by investigating the charge symmetry or the invariant mass spectrum. At the LHC it will be possible for the first time to produce a large amount of top quarks; thereby the statistical errors of the observables will be strongly reduced. The enormous increase in the production rate has two reasons. On the one hand, the acceleration energy of the LHC (14 TeV and 7 TeV) is significantly greater than that of the Tevatron (1.96 Tev). This leads to an increase of the cross section by a factor of 100 ({proportional_to}7.3 pb at the Tevatron to {proportional_to}800 pb at 14 TeV LHC). On the other hand, the luminosity of the LHC outperforms the Tevatron by a factor of 10-100. The reduced experimental errors for the observables demand an improvement of the theoretical error. The experimental accuracy of the LHC and the great relevance of the process led to an intensive activity of different research groups in order to improve the calculation of the cross section of top quark pair production. This work presents for the first time a complete numerical result for the full NNLO correction for the top quark pair

  5. Top quark pair production at the LHC

    International Nuclear Information System (INIS)

    Baernreuther, Peter

    2012-01-01

    One of the most interesting and manifold processes in the Standard Model of elementary particle physics is the top quark pair production. It enabled the discovery of the top quark at the Tevatron in 1995 and the determination of many of its properties. By means of a precise measurement and calculation of the cross section of top quark pair production it is possible to extract the top quark mass. Improvements in the gluon parton distribution functions (important for the Higgs boson production) or improvements in the prediction of the Higgs mass are also closely linked with the top quark pair production. Furthermore, the production process plays an important role in the discovery of new physics. On the one hand the top quark pair decays form the largest part of the background in many BSM models, on the other hand BSM physics can be detected directly in the decay process by investigating the charge symmetry or the invariant mass spectrum. At the LHC it will be possible for the first time to produce a large amount of top quarks; thereby the statistical errors of the observables will be strongly reduced. The enormous increase in the production rate has two reasons. On the one hand, the acceleration energy of the LHC (14 TeV and 7 TeV) is significantly greater than that of the Tevatron (1.96 Tev). This leads to an increase of the cross section by a factor of 100 (∝7.3 pb at the Tevatron to ∝800 pb at 14 TeV LHC). On the other hand, the luminosity of the LHC outperforms the Tevatron by a factor of 10-100. The reduced experimental errors for the observables demand an improvement of the theoretical error. The experimental accuracy of the LHC and the great relevance of the process led to an intensive activity of different research groups in order to improve the calculation of the cross section of top quark pair production. This work presents for the first time a complete numerical result for the full NNLO correction for the top quark pair production in quark anti

  6. Older Galaxy Pair Has Surprisingly Youthful Glow

    Science.gov (United States)

    2007-01-01

    [figure removed for brevity, see original site] Poster Version A pair of interacting galaxies might be experiencing the galactic equivalent of a mid-life crisis. For some reason, the pair, called Arp 82, didn't make their stars early on as is typical of most galaxies. Instead, they got a second wind later in life -- about 2 billion years ago -- and started pumping out waves of new stars as if they were young again. Arp 82 is an interacting pair of galaxies with a strong bridge and a long tail. NGC 2535 is the big galaxy and NGC 2536 is its smaller companion. The disk of the main galaxy looks like an eye, with a bright 'pupil' in the center and oval-shaped 'eyelids.' Dramatic 'beads on a string' features are visible as chains of evenly spaced star-formation complexes along the eyelids. These are presumably the result of large-scale gaseous shocks from a grazing encounter. The colors of this galaxy indicate that the observed stars are young to intermediate in age, around 2 million to 2 billion years old, much less than the age of the universe (13.7 billion years). The puzzle is: why didn't Arp 82 form many stars earlier, like most galaxies of that mass range? Scientifically, it is an oddball and provides a relatively nearby lab for studying the age of intermediate-mass galaxies. This picture is a composite captured by Spitzer's infrared array camera with light at wavelength 8 microns shown in red, NASA's Galaxy Evolution Explorer combined 1530 and 2310 Angstroms shown in blue, and the Southeastern Association for Research in Astronomy Observatory light at 6940 Angstroms shown in green.

  7. Augmenting Think-Pair-Share with Simulations

    Science.gov (United States)

    Lee, Kevin M.; Siedell, C. M.; Prather, E. E.; CATS

    2009-01-01

    Computer simulations are valuable tools for the teaching and learning of introductory astronomy. They enable students to link together small pieces of information into mental models of complex physical systems that are far beyond their everyday experience. They can also be used to authentically test a student's conceptual understanding of a physical system by asking the student to make predictions regarding its behavior. Students receive formative feedback by testing their predictions in simulations. Think-Pair-Share - the posing of conceptual questions to students and having them vote on the answer before and after discussion with their peers - can benefit considerably from the incorporation of simulations. Simulations can be used for delivering content that precedes Think-Pair-Share, as the prompt the questions is based upon, or as a feedback tool to illustrate the answer to a question. These techniques are utilized in ClassAction - a collection of materials designed to enhance the metacognitive skills of Astro 101 students by promoting interactive engagement and providing rapid feedback. The main focus is dynamic conceptual questions largely based upon graphics that can be projected in the classroom. Many questions are available in a Flash computer database and instructors have the capability to recast these questions into alternate permutations based on their own preferences and student responses. Outlines, graphics, and simulations are included which instructors can use to provide feedback. This poster provides examples of simulation usage in Think-Pair-Share related to sky motions, lunar phases, and stellar properties. A multi-institutional classroom validation study of ClassAction is currently underway as a Collaboration of Astronomy Teaching Scholars (CATS) research project. All materials are publicly available at http://astro.unl.edu. We would like to thank the NSF for funding under Grant Nos. 0404988 and 0715517, a CCLI Phase III Grant for the

  8. Paired structures and bipolar knowledge representation

    DEFF Research Database (Denmark)

    Montero, Javier; Bustince, Humberto; Franco, Camilo

    In this strictly positional paper we propose a general approach to bipolar knowledge representation, where the meaning of concepts can be modelled by examining their decomposition into opposite and neutral categories. In particular, it is the semantic relationship between the opposite categories...... and at the same time the type of neutrality rising in between opposites. Based on this first level of bipolar knowledge representation, paired structures in fact offer the means to characterize a specific bipolar valuation scale depending on the meaning of the concept that has to be verified. In this sense...

  9. Z Boson Pair-Production at LEP

    CERN Document Server

    Achard, P; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, V P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brochu, F; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo-Llatas, M; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; van Dalen, J A; De Asmundis, R; Déglon, P L; Debreczeni, J; Degré, A; Dehmelt, K; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Dionisi, C; Dittmar, M; Doria, A; Dova, M T; Duchesneau, D; Duda, M; Echenard, B; Eline, A; El-Hage, A; El-Mamouni, H; Engler, A; Eppling, F J; Extermann, P; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, M; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisher, W; Fisk, I; Forconi, G; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hou, S R; Hu, Y; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Käfer, D; Kaur, M; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, E W; Klimentov, A; König, A C; Kopal, M; Koutsenko, V F; Kräber, M H; Krämer, R W; Krüger, A; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Leiste, R; Levtchenko, M; Levchenko, P M; Li, C; Likhoded, S; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Luci, C; Luminari, L; Lustermann, W; Ma Wen Gan; Malgeri, L; Malinin, A; Maña, C; Mans, J; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Nisati, A; Novák, T; Nowak, H; Ofierzynski, R A; Organtini, G; Pal, I; Palomares, C; Paolucci, P; Paramatti, R; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pioppi, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Pothier, J; Prokofev, D; Prokofiev, D O; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Riemann, S; Riles, K; Roe, B P; Romero, L; Rosca, A; Rosier-Lees, S; Roth, S; Rosenbleck, C; Roux, B; Rubio, J A; Ruggiero, G; Rykaczewski, H; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Schäfer, C; Shchegelskii, V; Schopper, Herwig Franz; Schotanus, D J; Sciacca, C; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Son, D; Souga, C; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Sushkov, S; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tarjan, P; Tauscher, Ludwig; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Ulbricht, J; Valente, E; Van de Walle, R T; Vásquez, R; Veszpremi, V; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wang, Q; Wang, X L; Wang, Z M; Weber, M; Wienemann, P; Wilkens, H; Wynhoff, S; Xia, L; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Yeh, S C; Zalite, A; Zalite, Yu; Zhang, Z P; Zhao, J; Zhu, G Y; Zhu, R Y; Zhuang, H L; Zichichi, A; Zimmermann, B; Zöller, M

    2003-01-01

    Events stemming from the pair-production of Z bosons in e^+e^- collisions are studied using 217.4 pb^-1 of data collected with the L3 detector at centre-of-mass energies from 200 GeV up to 209 GeV. The special case of events with b quarks is also investigated. Combining these events with those collected at lower centre-of-mass energies, the Standard Model predictions for the production mechanism are verified. In addition, limits are set on anomalous couplings of neutral gauge bosons and on effects of extra space dimensions.

  10. Pair Negotiation When Developing English Speaking Tasks

    Directory of Open Access Journals (Sweden)

    Ingrid Liliana Bohórquez Suárez

    2011-12-01

    Full Text Available This study analyzes what characterizes the negotiations of seventh graders at a public school in Bogotá when working in pairs to develop speaking tasks in EFL classes. The inquiry is a descriptive case study that follows the qualitative paradigm. As a result of analyzing the data, we obtained four consecutive steps that characterize students’ negotiations: Establishing a connection with a partner to work with, proposing practical alternatives, refusing mates’ propositions, and making practical decisions. Moreover, we found that the constant performance of the process of negotiation provokes students to construct a sociolinguistic identity that allows agreements to emerge.

  11. Production of supersymmetric pairs at antipp colliders

    International Nuclear Information System (INIS)

    Peschanski, R.

    1985-02-01

    Production and decay rates of squarks and gluinos at antipp colliders are shown to depend not only on the mass scale but on the ratio of squark to gluino mass. In the degenerate case which is shown to be natural in a large class of broken Supergravity models with minimal field content the predicted cross-sections are enhanced by a sizeable factor. This gives an improved bound on the squark mass (70 GeV) from the analysis of Cern monojets and indications for the search of squark decay modes of supersymmetric pairs at antipp colliders in the near future

  12. Pairing correlations in a fissioning potential well

    International Nuclear Information System (INIS)

    Krappe, H.J.; Fadeev, S.

    1999-01-01

    To describe pairing correlations in a fissioning system one commonly projects the BCS wave function separately onto good particle numbers in each fragment in the exit channel, but only onto the total number of particles in the parent system. We propose to interpolate between these limiting situations by the generator-coordinate method with the particle-number difference between the nascent fragments as the generator coordinate. Model calculations are presented for the Hill-Wheeler box potential with a δ-function diaphragm to mimic scission

  13. Hadroproduction of massive lepton pairs and QCD

    International Nuclear Information System (INIS)

    Berger, E.L.

    1979-04-01

    A survey is presented of some current issues of interest in attempts to describe the production of massive lepton pairs in hadronic collisions at high energies. I concentrate on the interpretation of data in terms of the parton model and on predictions derived from quantum-chromodynamics (QCD), their reliability and their confrontation with experiment. Among topics treated are the connection with deep-inelastic lepton scattering, universality of structure functions, and the behavior of cross-sections as a function of transverse momentum

  14. Dimer pair correlations on the brick lattice

    International Nuclear Information System (INIS)

    Yokoi, C.S.O.; Nagle, J.F.; Sulinas, S.R.

    1986-01-01

    Using exact methods, pair-correlation functions are studied in the dimer model defined on a brick lattice. At long distances these functions exhibit strongly anisotropic algebraic decay and, near criticality, the length scales diverge differently in the two principal directions. The critical exponents are v /sub x/ =1/2 and v /sub y/ =1. These results are in agreement with deductions drawn from recent exact finite-size scaling calculations. We also interpret our results in the light of domain wall theories of commensurate-incommensurate transitions, and in particular we study the relation of the present model to the discrete version of the Pokrovsky-Talapov model introduced by Villain

  15. Detecting nonlocal Cooper pair entanglement by optical Bell inequality violation

    Energy Technology Data Exchange (ETDEWEB)

    Nigg, Simon E.; Tiwari, Rakesh P.; Walter, Stefan; Schmidt, Thomas L. [Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel (Switzerland)

    2015-07-01

    Based on the Bardeen Cooper Schrieffer (BCS) theory of superconductivity, the coherent splitting of Cooper pairs from a superconductor to two spatially separated quantum dots has been predicted to generate nonlocal pairs of entangled electrons. In order to test this hypothesis, we propose a scheme to transfer the spin state of a split Cooper pair onto the polarization state of a pair of optical photons. We show that the produced photon pairs can be used to violate a Bell inequality, unambiguously demonstrating the entanglement of the split Cooper pairs.

  16. Detecting nonlocal Cooper pair entanglement by optical Bell inequality violation

    Science.gov (United States)

    Nigg, Simon E.; Tiwari, Rakesh P.; Walter, Stefan; Schmidt, Thomas L.

    2015-03-01

    Based on the Bardeen-Cooper-Schrieffer theory of superconductivity, the coherent splitting of Cooper pairs from a superconductor to two spatially separated quantum dots has been predicted to generate nonlocal pairs of entangled electrons. In order to test this hypothesis, we propose a scheme to transfer the spin state of a split Cooper pair onto the polarization state of a pair of optical photons. We show that the photon pairs produced can be used to violate a Bell inequality, unambiguously demonstrating the entanglement of the split Cooper pairs.

  17. Frequent Pairs in Data Streams: Exploiting Parallelism and Skew

    DEFF Research Database (Denmark)

    Campagna, Andrea; Kutzkow, Konstantin; Pagh, Rasmus

    2011-01-01

    We introduce the Pair Streaming Engine (PairSE) that detects frequent pairs in a data stream of transactions. Our algorithm finds the most frequent pairs with high probability, and gives tight bounds on their frequency. It is particularly space efficient for skewed distribution of pair supports...... items mining in data streams. We show how to efficiently scale these approaches to handle large transactions. We report experimental results showcasing precision and recall of our method. In particular, we find that often our method achieves excellent precision, returning identical upper and lower...... bounds on the supports of the most frequent pairs....

  18. Ethical Issues Concerning the Use of Videoconferencing To Supervise International Social Work Field Practicum Students.

    Science.gov (United States)

    Panos, Patrick T.; Panos, Angelea; Cox, Shirley E.; Roby, Jini L.; Matheson, Kenneth W.

    2002-01-01

    Examines current ethical guidelines affecting the use of videoconferencing in the supervision of social work students nationally and internationally. Suggests protocols to address ethical and professional practice issues that are likely to arise as a result of using videoconferencing to conduct supervision across international borders. (EV)

  19. Pair Production Constraints on Superluminal Neutrinos Revisited

    International Nuclear Information System (INIS)

    Brodsky, Stanley

    2012-01-01

    We revisit the pair creation constraint on superluminal neutrinos considered by Cohen and Glashow in order to clarify which types of superluminal models are constrained. We show that a model in which the superluminal neutrino is effectively light-like can evade the Cohen-Glashow constraint. In summary, any model for which the CG pair production process operates is excluded because such timelike neutrinos would not be detected by OPERA or other experiments. However, a superluminal neutrino which is effectively lightlike with fixed p 2 can evade the Cohen-Glashow constraint because of energy-momentum conservation. The coincidence involved in explaining the SN1987A constraint certainly makes such a picture improbable - but it is still intrinsically possible. The lightlike model is appealing in that it does not violate Lorentz symmetry in particle interactions, although one would expect Hughes-Drever tests to turn up a violation eventually. Other evasions of the CG constraints are also possible; perhaps, e.g., the neutrino takes a 'short cut' through extra dimensions or suffers anomalous acceleration in matter. Irrespective of the OPERA result, Lorentz-violating interactions remain possible, and ongoing experimental investigation of such possibilities should continue.

  20. Using Dictionary Pair Learning for Seizure Detection.

    Science.gov (United States)

    Ma, Xin; Yu, Nana; Zhou, Weidong

    2018-02-13

    Automatic seizure detection is extremely important in the monitoring and diagnosis of epilepsy. The paper presents a novel method based on dictionary pair learning (DPL) for seizure detection in the long-term intracranial electroencephalogram (EEG) recordings. First, for the EEG data, wavelet filtering and differential filtering are applied, and the kernel function is performed to make the signal linearly separable. In DPL, the synthesis dictionary and analysis dictionary are learned jointly from original training samples with alternating minimization method, and sparse coefficients are obtained by using of linear projection instead of costly [Formula: see text]-norm or [Formula: see text]-norm optimization. At last, the reconstructed residuals associated with seizure and nonseizure sub-dictionary pairs are calculated as the decision values, and the postprocessing is performed for improving the recognition rate and reducing the false detection rate of the system. A total of 530[Formula: see text]h from 20 patients with 81 seizures were used to evaluate the system. Our proposed method has achieved an average segment-based sensitivity of 93.39%, specificity of 98.51%, and event-based sensitivity of 96.36% with false detection rate of 0.236/h.

  1. Generalized quantum interference of correlated photon pairs

    Science.gov (United States)

    Kim, Heonoh; Lee, Sang Min; Moon, Han Seb

    2015-01-01

    Superposition and indistinguishablility between probability amplitudes have played an essential role in observing quantum interference effects of correlated photons. The Hong-Ou-Mandel interference and interferences of the path-entangled photon number state are of special interest in the field of quantum information technologies. However, a fully generalized two-photon quantum interferometric scheme accounting for the Hong-Ou-Mandel scheme and path-entangled photon number states has not yet been proposed. Here we report the experimental demonstrations of the generalized two-photon interferometry with both the interferometric properties of the Hong-Ou-Mandel effect and the fully unfolded version of the path-entangled photon number state using photon-pair sources, which are independently generated by spontaneous parametric down-conversion. Our experimental scheme explains two-photon interference fringes revealing single- and two-photon coherence properties in a single interferometer setup. Using the proposed interferometric measurement, it is possible to directly estimate the joint spectral intensity of a photon pair source. PMID:25951143

  2. Odd-frequency pairing in superconducting heterostructures .

    Science.gov (United States)

    Golubov, A. A.; Tanaka, Y.; Yokoyama, T.; Asano, Y.

    2007-03-01

    We present a general theory of the proximity effect in junctions between unconventional superconductors and diffusive normal metals (DN) or ferromagnets (DF). We consider all possible symmetry classes in a superconductor allowed by the Pauli principle: even-frequency spin-singlet even-parity state, even-frequency spin-triplet odd-parity state, odd-frequency spin-triplet even-parity state and odd-frequency spin-singlet odd-parity state. For each of the above states, symmetry and spectral properties of the induced pair amplitude in the DN (DF) are determined. The cases of junctions with spin-singlet s- and d-wave superconductors and spin-triplet p-wave superconductors are adressed in detail. We discuss the interplay between the proximity effect and midgap Andreev bound states arising at interfaces in unconventional (d- or p-wave) junctions. The most striking property is the odd-frequency symmetry of the pairing amplitude induced in DN (DF) in contacts with p-wave superconductors. This leads to zero-energy singularity in the density of states and to anomalous screening of an external magnetic field. Peculiarities of Josephson effect in d- or p-wave junctions are discussed. Experiments are suggested to detect an order parameter symmetry using heterostructures with unconventional superconductors.

  3. The leptoquark hunter's guide: pair production

    Science.gov (United States)

    Diaz, Bastian; Schmaltz, Martin; Zhong, Yi-Ming

    2017-10-01

    Leptoquarks occur in many new physics scenarios and could be the next big discovery at the LHC. The purpose of this paper is to point out that a model-independent search strategy covering all possible leptoquarks is possible and has not yet been fully exploited. To be systematic we organize the possible leptoquark final states according to a leptoquark matrix with entries corresponding to nine experimentally distinguishable leptoquark decays: any of {light-jet, b-jet, top} with any of {neutrino, e/ μ, τ}. The 9 possibilities can be explored in a largely model-independent fashion with pair-production of leptoquarks at the LHC. We review the status of experimental searches for the 9 components of the leptoquark matrix, pointing out which 3 have not been adequately covered. We plead that experimenters publish bounds on leptoquark cross sections as functions of mass for as wide a range of leptoquark masses as possible. Such bounds are essential for reliable recasts to general leptoquark models. To demonstrate the utility of the leptoquark matrix approach we collect and summarize searches with the same final states as leptoquark pair production and use them to derive bounds on a complete set of Minimal Leptoquark models which span all possible flavor and gauge representations for scalar and vector leptoquarks.

  4. Cooperative interactions between paired domain and homeodomain.

    Science.gov (United States)

    Jun, S; Desplan, C

    1996-09-01

    The Pax proteins are a family of transcriptional regulators involved in many developmental processes in all higher eukaryotes. They are characterized by the presence of a paired domain (PD), a bipartite DNA binding domain composed of two helix-turn-helix (HTH) motifs,the PAI and RED domains. The PD is also often associated with a homeodomain (HD) which is itself able to form homo- and hetero-dimers on DNA. Many of these proteins therefore contain three HTH motifs each able to recognize DNA. However, all PDs recognize highly related DNA sequences, and most HDs also recognize almost identical sites. We show here that different Pax proteins use multiple combinations of their HTHs to recognize several types of target sites. For instance, the Drosophila Paired protein can bind, in vitro, exclusively through its PAI domain, or through a dimer of its HD, or through cooperative interaction between PAI domain and HD. However, prd function in vivo requires the synergistic action of both the PAI domain and the HD. Pax proteins with only a PD appear to require both PAI and RED domains, while a Pax-6 isoform and a new Pax protein, Lune, may rely on the RED domain and HD. We propose a model by which Pax proteins recognize different target genes in vivo through various combinations of their DNA binding domains, thus expanding their recognition repertoire.

  5. Optimisation of a quantum pair space thruster

    Directory of Open Access Journals (Sweden)

    Valeriu DRAGAN

    2012-06-01

    Full Text Available The paper addresses the problem of propulsion for long term space missions. Traditionally a space propulsion unit has a propellant mass which is ejected trough a nozzle to generate thrust; this is also the case with inert gases energized by an on-board power unit. Unconventional methods for propulsion include high energy LASERs that rely on the momentum of photons to generate thrust. Anti-matter has also been proposed for energy storage. Although the momentum of ejected gas is significantly higher, the LASER propulsion offers the perspective of unlimited operational time – provided there is a power source. The paper will propose the use of the quantum pair formation for generating a working mass, this is different than conventional anti-matter thrusters since the material particles generated are used as propellant not as energy storage.Two methods will be compared: LASER and positron-electron, quantum pair formation. The latter will be shown to offer better momentum above certain energy levels.For the demonstrations an analytical solution is obtained and provided in the form of various coefficients. The implications are, for now, theoretical however the practicality of an optimized thruster using such particles is not to be neglected for long term space missions.

  6. Understanding Fomalhaut as a Cooper pair

    Science.gov (United States)

    Feng, F.; Jones, H. R. A.

    2018-03-01

    Fomalhaut is a nearby stellar system and has been found to be a triple based on astrometric observations. With new radial velocity and astrometric data, we study the association between Fomalhaut A, B, and C in a Bayesian framework, finding that the system is gravitationally bound or at least associated. Based on simulations of the system, we find that Fomalhaut C can be easily destabilized through combined perturbations from the Galactic tide and stellar encounters. Considering that observing the disruption of a triple is probably rare in the solar neighbourhood, we conclude that Fomalhaut C is a so-called `gravitational pair' of Fomalhaut A and B. Like the Cooper pair mechanism in superconductors, this phenomenon only appears once the orbital energy of a component becomes comparable with the energy fluctuations caused by the environment. Based on our simulations, we find (1) an upper limit of 8 km s-1 velocity difference is appropriate when selecting binary candidates, and (2) an empirical formula for the escape radius, which is more appropriate than tidal radius when measuring the stability of wide binaries.

  7. Leptoquark pair production in hadronic interactions

    International Nuclear Information System (INIS)

    Bluemlein, J.; Boos, E.; Moskovskij Gosudarstvennyj Univ., Moscow; Kryukov, A.; Moskovskij Gosudarstvennyj Univ., Moscow

    1996-10-01

    The scalar and vector leptoquark pair production cross sections in hadronic collisions are calculated. In a model independent analysis we consider the most general C and P conserving couplings of gluons to both scalar and vector leptoquarks described by an effective low-energy Lagangian which obeys SU(3) c invariance. Analytrical expressions are derived for the differential and integral scattering cross sections including the case of anomalous vector leptoquark couplings, κ G and λ G , to the gluon field. Numerical predictions are given for the kinematic range of the TEVATRON and LHC. The pair production cross sections are also calculated for the resolved photon contributions to ep → e anti ΦΦX at HERA and LEP x LHC, and for the process γγ → Φ anti ΦX at possible future e + e - linear colliders and γγ colliders. Estimates of the search potential for scalar and vector leptoquarks at present and future high energy colliders are given. (orig.)

  8. Synergy between pair coupled cluster doubles and pair density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Garza, Alejandro J.; Bulik, Ireneusz W. [Department of Chemistry, Rice University, Houston, Texas 77251-1892 (United States); Henderson, Thomas M. [Department of Chemistry and Department of Physics and Astronomy, Rice University, Houston, Texas 77251-1892 (United States); Scuseria, Gustavo E. [Department of Chemistry and Department of Physics and Astronomy, Rice University, Houston, Texas 77251-1892 (United States); Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2015-01-28

    Pair coupled cluster doubles (pCCD) has been recently studied as a method capable of accounting for static correlation with low polynomial cost. We present three combinations of pCCD with Kohn–Sham functionals of the density and on-top pair density (the probability of finding two electrons on top of each other) to add dynamic correlation to pCCD without double counting. With a negligible increase in computational cost, these pCCD+DFT blends greatly improve upon pCCD in the description of typical problems where static and dynamic correlations are both important. We argue that—as a black-box method with low scaling, size-extensivity, size-consistency, and a simple quasidiagonal two-particle density matrix—pCCD is an excellent match for pair density functionals in this type of fusion of multireference wavefunctions with DFT.

  9. Treatment of pairing correlations based on the equations of motion for zero-coupled pair operators

    International Nuclear Information System (INIS)

    Andreozzi, F.; Covello, A.; Gargano, A.; Ye, L.J.; Porrino, A.

    1985-01-01

    The pairing problem is treated by means of the equations of motion for zero-coupled pair operators. Exact equations for the seniority-v states of N particles are derived. These equations can be solved by a step-by-step procedure which consists of progressively adding pairs of particles to a core. The theory can be applied at several levels of approximation depending on the number of core states which are taken into account. Some numerical applications to the treatment of v = 0, v = 1, and v = 2 states in the Ni isotopes are performed. The accuracy of various approximations is tested by comparison with exact results. For the seniority-one and seniority-two problems it turns out that the results obtained from the first-order theory are very accurate, while those of higher order calculations are practically exact. Concerning the seniority-zero problem, a fifth-order calculation reproduces quite well the three lowest states

  10. Quantifying inbreeding avoidance through extra-pair reproduction.

    Science.gov (United States)

    Reid, Jane M; Arcese, Peter; Keller, Lukas F; Germain, Ryan R; Duthie, A Bradley; Losdat, Sylvain; Wolak, Matthew E; Nietlisbach, Pirmin

    2015-01-01

    Extra-pair reproduction is widely hypothesized to allow females to avoid inbreeding with related socially paired males. Consequently, numerous field studies have tested the key predictions that extra-pair offspring are less inbred than females' alternative within-pair offspring, and that the probability of extra-pair reproduction increases with a female's relatedness to her socially paired male. However, such studies rarely measure inbreeding or relatedness sufficiently precisely to detect subtle effects, or consider biases stemming from failure to observe inbred offspring that die during early development. Analyses of multigenerational song sparrow (Melospiza melodia) pedigree data showed that most females had opportunity to increase or decrease the coefficient of inbreeding of their offspring through extra-pair reproduction with neighboring males. In practice, observed extra-pair offspring had lower inbreeding coefficients than females' within-pair offspring on average, while the probability of extra-pair reproduction increased substantially with the coefficient of kinship between a female and her socially paired male. However, simulations showed that such effects could simply reflect bias stemming from inbreeding depression in early offspring survival. The null hypothesis that extra-pair reproduction is random with respect to kinship therefore cannot be definitively rejected in song sparrows, and existing general evidence that females avoid inbreeding through extra-pair reproduction requires reevaluation given such biases. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  11. Enhanced stability of bound pairs at nonzero lattice momenta

    International Nuclear Information System (INIS)

    Kornilovitch, Pavel

    2004-01-01

    A two-body problem on the square lattice is analyzed. The interaction potential consists of strong on-site repulsion and nearest-neighbor attraction. The exact pairing conditions are derived for s-, p-, and d-symmetric bound states. The pairing conditions are strong functions of the total pair momentum K. It is found that the stability of pairs increases with K. At weak attraction, the pairs do not form at the Γ point but stabilize at lattice momenta close to the Brillouin zone boundary. The phase boundaries in the momentum space, which separate stable and unstable pairs, are calculated. It is found that the pairs are formed easier along the (π,0) direction than along the (π,π) direction. This might lead to the appearance of 'hot pairing spots' on the K x and K y axes

  12. Pair formation models for sexually transmitted infections : A primer

    NARCIS (Netherlands)

    Kretzschmar, MEE; Heijne, Janneke C M

    For modelling sexually transmitted infections, duration of partnerships can strongly influence the transmission dynamics of the infection. If partnerships are monogamous, pairs of susceptible individuals are protected from becoming infected, while pairs of infected individuals delay onward

  13. Theoretical analysis of noncanonical base pairing interactions in ...

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    Noncanonical base pairs in RNA have strong structural and functional implications but are currently not considered ..... Full optimizations of the systems were also carried out using ... of the individual bases in the base pair through the equation.

  14. Quasi spin pairing and the structure of the Lipkin model

    International Nuclear Information System (INIS)

    Cambiaggio, M.C.; Plastino, A.

    1978-01-01

    By introducing the concepts of quasi-spin pairing and quasi-spin seniority, the Lipkin model is extended to a variable number of particles. The properties of quasi-spin pairing are seen to be quite similar to those of ordinary pairing. The quasi-spin seniority allows one to obtain a simple classification of excited multiplets. A 'pairing plus monopole' model is studied in connection with the Hartree-Fock theory. (orig.) [de

  15. Extensions of Bessel sequences to dual pairs of frames

    DEFF Research Database (Denmark)

    Christensen, Ole; Kim, Hong Oh; Kim, Rae Young

    2013-01-01

    Tight frames in Hilbert spaces have been studied intensively for the past years. In this paper we demonstrate that it often is an advantage to use pairs of dual frames rather than tight frames. We show that in any separable Hilbert space, any pairs of Bessel sequences can be extended to a pair of...... be extended to a pair of dual frames. © 2012 Elsevier Inc. All rights reserved....

  16. Pair production by a superhard photon in a crystal

    International Nuclear Information System (INIS)

    Kalashnikov, N.P.; Kovalev, G.V.; Strikhanov, M.N.

    1980-01-01

    Electron-positron pair production by a hard photon moving almost parallelly to the crystallographic axis or monocrystal plane is considered. Calculation is conducted of the production differential by the energies of pair components and total cross section of pair production in the case when primary photon moved at a small angle THETA 0 m 2 /U [ru

  17. Evolution of closely linked gene pairs in vertebrate genomes

    NARCIS (Netherlands)

    Franck, E.; Hulsen, T.; Huynen, M.A.; Jong, de W.W.; Lunsen, N.H.; Madsen, O.

    2008-01-01

    The orientation of closely linked genes in mammalian genomes is not random: there are more head-to-head (h2h) gene pairs than expected. To understand the origin of this enrichment in h2h gene pairs, we have analyzed the phylogenetic distribution of gene pairs separated by less than 600 bp of

  18. (RN) pair production by photons in a hot Maxwellian plasma

    International Nuclear Information System (INIS)

    Haug, E.

    2004-01-01

    The production of electron-positron pairs by photons in the Coulomb Field of electrons and positrons (triplet production) in hot thermal plasmas is investigated. The pair production rate for this process is calculated as a function of the photon energy and compared with the rate of photon-nucleus pair production for semi-relativistic and relativistic plasma temperatures. (author)

  19. A Golub-Kahan-type reduction method for matrix pairs

    NARCIS (Netherlands)

    Hochstenbach, M.E.; Reichel, L.; Yu, X.

    2015-01-01

    We describe a novel method for reducing a pair of large matrices {A;B} to a pair of small matrices {H;K}. The method is an extension of Golub-Kahan bidiagonalization to matrix pairs, and simplifies to the latter method when B is the identity matrix. Applications to Tikhonov regularization of large

  20. A Golub-Kahan-type reduction method for matrix pairs

    NARCIS (Netherlands)

    Hochstenbach, M.E.; Reichel, L.; Yu, X.

    2015-01-01

    We describe a novel method for reducing a pair of large matrices {A,B} to a pair of small matrices {H,K}. The method is an extension of Golub–Kahan bidiagonalization to matrix pairs, and simplifies to the latter method when B is the identity matrix. Applications to Tikhonov regularization of large

  1. On extensions of wavelet systems to dual pairs of frames

    DEFF Research Database (Denmark)

    Christensen, Ole; Kim, Hong Oh; Kim, Rae Young

    2015-01-01

    It is an open problem whether any pair of Bessel sequences with wavelet structure can be extended to a pair of dual frames by adding a pair of singly generated wavelet systems. We consider the particular case where the given wavelet systems are generated by the multiscale setup with trigonometric...

  2. QSO Pairs across Active Galaxies: Evidence of Blueshifts? D. Basu

    Indian Academy of Sciences (India)

    2006-12-04

    Dec 4, 2006 ... Abstract. Several QSO pairs have been reported and their redshifts determined, where the two objects in each pair are located across an active galaxy. The usually accepted explanation of such occurrences is that the pair is ejected from the parent galaxy. Currently interpreted redshifted spec- tra for both ...

  3. Sharp corners as sources of spiral pairs

    International Nuclear Information System (INIS)

    Biton, Y.; Rabinovitch, A.; Braunstein, D.; Friedman, M.; Aviram, I.

    2010-01-01

    It is demonstrated that using the FitzHugh-Nagumo model, stimulation of excitable media inside a region possessing sharp corners, can lead to the appearance of sources of spiral-pairs of sustained activity. The two conditions for such source creation are: The corners should be less than 120 deg. and the range of stimulating amplitudes should be small, occurring just above the threshold value and decreasing with the corner angle. The basic mechanisms driving the phenomenon are discussed. These include: A. If the corner angle is below 120 deg., the wave generated inside cannot emerge at the corner tip, resulting in the creation of two free edges which start spiraling towards each other. B. Spiraling must be strong enough; otherwise annihilation of the rotating arms would occur too soon to create a viable source. C. The intricacies of the different radii involved are elucidated. Possible applications in heart stimulation and in chemical reactions are considered.

  4. Neutron area monitor with TLD pairs

    International Nuclear Information System (INIS)

    Guzman G, K. A.; Borja H, C. G.; Valero L, C.; Hernandez D, V. M.; Vega C, H. R.

    2011-11-01

    The response of a passive neutron area monitor with pairs of thermoluminescent dosimeters has been calculated using the Monte Carlo code MCNP5. The response was calculated for one TLD 600 located at the center of a polyethylene cylinder, as moderator. When neutrons collide with the moderator lose their energy reaching the TLD with thermal energies where the ambient dose equivalent is calculated. The response was calculated for 47 monoenergetic neutron sources ranging from 1E(-9) to 20 MeV. Response was calculated using two irradiation geometries, one with an upper source and another with a lateral source. For both irradiation schemes the response was calculated with the TLDs in two positions, one parallel to the source and another perpendicular to the source. The advantage of this passive neutron monitor area is that can be used in locations with intense, pulsed and mixed radiation fields. (Author)

  5. Radiative corrections for the leptonic pair production

    Energy Technology Data Exchange (ETDEWEB)

    Elend, H H

    1971-01-01

    The one-photon bremsstrahlung correction for symmetrical lepton pair production is newly calculated. For this, from all the Feynman diagrams, the subset is picked out for this process which essentially contributes to the symmetrical case. The matrix element square value for the chosen sub-set is expressed by the Bethe-Heitler matrix element square value provided with certain kinematic factors (Huld relationship), where a) a development after the energy of the Bremsquantum, assumed to be small, is carried out and the series is cut off after the second term beyond the infrared section, b) a high-energy approximation is made. Furthermore, c) the structure of the target nucleus and of the recoil transfered to it is neglected, d) the integration on the phase space of the bremsquantitum is carried out with a peaking approximation. All these approximations are individually discussed, and the validity limits which they set for the bremsstrahlung in the result are accurately given.

  6. One Monopole-Antimonopole Pair Solutions

    International Nuclear Information System (INIS)

    Teh, Rosy; Wong, K.-M.

    2009-01-01

    We present new classical generalized one monopole-antimonopole pair solutions of the SU(2) Yang-Mills-Higgs theory with the Higgs field in the adjoint representation. We show that in general the one monopole-antimonopole solution need not be solved by imposing mθ-winding number to be integer greater than one. We also show that this solution can be solved when m = 1 by transforming the large distance asymptotic solutions to general solutions that depend on a parameter p. Secondly we show that these large distance asymptotic solutions can be further generalized to the Jacobi elliptic functions. We focus our numerical calculation on the Jacobi elliptic functions solution when the nφ-winding number is one and show that this generalized Jacobi elliptic 1-MAP solution possesses lower energy. All these solutions are numerical finite energy non-BPS solutions of the Yang-Mills-Higgs field theory.

  7. An advanced KB mirror pair for microfocusing

    CERN Document Server

    Ferme, J J

    2001-01-01

    A new range of micro-focusing mirrors based on KB pairs has been developed by SESO for Beamline Nanospectroscopy at the Elettra Storage Ring in Trieste, Italy. Both the focusing and the aspheric shape are adjustable with stepper motors. The goal of the beamline is to have a high photon density spot with a variable size in the experimental chamber over the whole soft X-ray range. The estimated dimension of the final spot should be smaller than 4 mu m sup 2 FWHM, with a photon density of the order of 10 sup 1 sup 3 photons/s mu m sup 2; this may be achieved only by accepting an angular divergence on these mirrors of between 5 and 10 mrad. This condition can be fulfilled only with elliptical (or plane elliptical) mirrors with very limited residual slope errors (below 1 mu rad RMS) that are able to correct even small focal distance errors.

  8. Na Cl ion pair association in water-DMSO mixtures: Effect of ion pair ...

    Indian Academy of Sciences (India)

    The 12-6-1 potential model predicts running coordination numbers closest to experimental data. Keywords. ... value of interaction energy minimum between the Na. + and Cl. − ..... ion pair mostly remains as a CIP, a fair amount of SAIP is also ...

  9. Asteroid clusters similar to asteroid pairs

    Science.gov (United States)

    Pravec, P.; Fatka, P.; Vokrouhlický, D.; Scheeres, D. J.; Kušnirák, P.; Hornoch, K.; Galád, A.; Vraštil, J.; Pray, D. P.; Krugly, Yu. N.; Gaftonyuk, N. M.; Inasaridze, R. Ya.; Ayvazian, V. R.; Kvaratskhelia, O. I.; Zhuzhunadze, V. T.; Husárik, M.; Cooney, W. R.; Gross, J.; Terrell, D.; Világi, J.; Kornoš, L.; Gajdoš, Š.; Burkhonov, O.; Ehgamberdiev, Sh. A.; Donchev, Z.; Borisov, G.; Bonev, T.; Rumyantsev, V. V.; Molotov, I. E.

    2018-04-01

    We studied the membership, size ratio and rotational properties of 13 asteroid clusters consisting of between 3 and 19 known members that are on similar heliocentric orbits. By backward integrations of their orbits, we confirmed their cluster membership and estimated times elapsed since separation of the secondaries (the smaller cluster members) from the primary (i.e., cluster age) that are between 105 and a few 106 years. We ran photometric observations for all the cluster primaries and a sample of secondaries and we derived their accurate absolute magnitudes and rotation periods. We found that 11 of the 13 clusters follow the same trend of primary rotation period vs mass ratio as asteroid pairs that was revealed by Pravec et al. (2010). We generalized the model of the post-fission system for asteroid pairs by Pravec et al. (2010) to a system of N components formed by rotational fission and we found excellent agreement between the data for the 11 asteroid clusters and the prediction from the theory of their formation by rotational fission. The two exceptions are the high-mass ratio (q > 0.7) clusters of (18777) Hobson and (22280) Mandragora for which a different formation mechanism is needed. Two candidate mechanisms for formation of more than one secondary by rotational fission were published: the secondary fission process proposed by Jacobson and Scheeres (2011) and a cratering collision event onto a nearly critically rotating primary proposed by Vokrouhlický et al. (2017). It will have to be revealed from future studies which of the clusters were formed by one or the other process. To that point, we found certain further interesting properties and features of the asteroid clusters that place constraints on the theories of their formation, among them the most intriguing being the possibility of a cascade disruption for some of the clusters.

  10. PAIR'14 / PAIR'15 STUDENT CONFERENCES ON PLANNING IN ARTIFICIAL INTELLIGENCE AND ROBOTICS

    Directory of Open Access Journals (Sweden)

    Editorial Foreword

    2015-12-01

    Full Text Available Dear Readerthe original idea of the student conference on “Planning in Artificial Intelligence and Robotics” (PAIR is to join young researchers from particular laboratories in Czech Republic, where planning problems are investigated from artificial intelligence (AI or robotics points of view. The first year of PAIR has been organized at the Dept. of Computer Science, Faculty Electrical Engineering, Czech Technical University in 2014.At PAIR 2014, laboratories from Prague and Brno were presented. In particular, students and researchers from Charles University, Czech Technical University in Prague, Brno University of Technology, and Central European Institute of Technology participated at the event. Beside an introduction of the particular research groups and their topics, students presented contributions on their current research results. Ten papers were presented on topics ranging from domain–independent planning, trajectory planning to applications for unmanned aerial and legged robots. This first event provides us an initial experience with the community of young researchers in Czech Republic that are working planning in robotic or AI. Based on the success of PAIR 2014, we decided to continue with our effort to establish a suitable fora for students that are geographically very close, but usually do not meet, because of participation on different Robotics and AI events.The second student conference on Planning in Artificial Intelligence and Robotics (PAIR 2015 successfully continues the tradition of the first year of the conference organized in Prague. This year, the conference was collocated with 10th anniversary of RoboTour contest in Písek. This format enable us to extend the impact of the PAIR conference and improve the visibility of the growing student community. The conference reached a good amount of interesting papers focused on image processing for mobile robots, swarm control, driving simulation, robot control, or domain

  11. A natively paired antibody library yields drug leads with higher sensitivity and specificity than a randomly paired antibody library.

    Science.gov (United States)

    Adler, Adam S; Bedinger, Daniel; Adams, Matthew S; Asensio, Michael A; Edgar, Robert C; Leong, Renee; Leong, Jackson; Mizrahi, Rena A; Spindler, Matthew J; Bandi, Srinivasa Rao; Huang, Haichun; Tawde, Pallavi; Brams, Peter; Johnson, David S

    2018-04-01

    Deep sequencing and single-chain variable fragment (scFv) yeast display methods are becoming more popular for discovery of therapeutic antibody candidates in mouse B cell repertoires. In this study, we compare a deep sequencing and scFv display method that retains native heavy and light chain pairing with a related method that randomly pairs heavy and light chain. We performed the studies in a humanized mouse, using interleukin 21 receptor (IL-21R) as a test immunogen. We identified 44 high-affinity binder scFv with the native pairing method and 100 high-affinity binder scFv with the random pairing method. 30% of the natively paired scFv binders were also discovered with the randomly paired method, and 13% of the randomly paired binders were also discovered with the natively paired method. Additionally, 33% of the scFv binders discovered only in the randomly paired library were initially present in the natively paired pre-sort library. Thus, a significant proportion of "randomly paired" scFv were actually natively paired. We synthesized and produced 46 of the candidates as full-length antibodies and subjected them to a panel of binding assays to characterize their therapeutic potential. 87% of the antibodies were verified as binding IL-21R by at least one assay. We found that antibodies with native light chains were more likely to bind IL-21R than antibodies with non-native light chains, suggesting a higher false positive rate for antibodies from the randomly paired library. Additionally, the randomly paired method failed to identify nearly half of the true natively paired binders, suggesting a higher false negative rate. We conclude that natively paired libraries have critical advantages in sensitivity and specificity for antibody discovery programs.

  12. Demographic mechanisms of inbreeding adjustment through extra-pair reproduction.

    Science.gov (United States)

    Reid, Jane M; Duthie, A Bradley; Wolak, Matthew E; Arcese, Peter

    2015-07-01

    One hypothesis explaining extra-pair reproduction is that socially monogamous females mate with extra-pair males to adjust the coefficient of inbreeding (f) of extra-pair offspring (EPO) relative to that of within-pair offspring (WPO) they would produce with their socially paired male. Such adjustment of offspring f requires non-random extra-pair reproduction with respect to relatedness, which is in turn often assumed to require some mechanism of explicit pre-copulatory or post-copulatory kin discrimination. We propose three demographic processes that could potentially cause mean f to differ between individual females' EPO and WPO given random extra-pair reproduction with available males without necessarily requiring explicit kin discrimination. Specifically, such a difference could arise if social pairings formed non-randomly with respect to relatedness or persisted non-randomly with respect to relatedness, or if the distribution of relatedness between females and their sets of potential mates changed during the period through which social pairings persisted. We used comprehensive pedigree and pairing data from free-living song sparrows (Melospiza melodia) to quantify these three processes and hence investigate how individual females could adjust mean offspring f through instantaneously random extra-pair reproduction. Female song sparrows tended to form social pairings with unrelated or distantly related males slightly less frequently than expected given random pairing within the defined set of available males. Furthermore, social pairings between more closely related mates tended to be more likely to persist across years than social pairings between less closely related mates. However, these effects were small and the mean relatedness between females and their sets of potential extra-pair males did not change substantially across the years through which social pairings persisted. Our framework and analyses illustrate how demographic and social structuring within

  13. Isolated galaxies, pairs, and groups of galaxies

    International Nuclear Information System (INIS)

    Kuneva, I.; Kalinkov, M.

    1990-01-01

    The authors searched for isolated galaxies, pairs and groups of galaxies in the CfA survey (Huchra et al. 1983). It was assumed that the distances to galaxies are given by R = V/H sub o, where H sub o = 100 km s(exp -1) Mpc(exp -1) and R greater than 6 Mpc. The searching procedure is close to those, applied to find superclusters of galaxies (Kalinkov and Kuneva 1985, 1986). A sphere with fixed radius r (asterisk) is described around each galaxy. The mean spatial density in the sphere is m. Let G 1 be any galaxy and G 2 be its nearest neighbor at a distance R 2 . If R sub 2 exceeds the 95 percent quintile in the distribution of the distances of the second neighbors, then G 1 is an isolated galaxy. Let the midpoint of G 1 and G 2 be O 2 and r 2 =R 2 2. For the volume V 2 , defined with the radius r 2 , the density D 2 less than k mu, the galaxy G 2 is a single one and the procedure for searching for pairs and groups, beginning with this object is over and we have to pass to another object. Here the authors present the groups - isolated and nonisolated - with n greater than 3, found in the CfA survey in the Northern galactic hemisphere. The parameters used are k = 10 and r (asterisk) = 5 Mpc. Table 1 contains: (1) the group number, (2) the galaxy, nearest to the multiplet center, (3) multiplicity n, (4) the brightest galaxy if it is not listed in (2); (5) and (6) are R.A. and Dec. (1950), (7) - mean distance D in Mpc. Further there are the mean density rho (8) of the multiplet (galaxies Mpc (exp -3)), (9) the density rho (asterisk) for r (asterisk) = 5 Mpc and (10) the density rho sub g for the group with its nearest neighbor. The parenthesized digits for densities in the last three columns are powers of ten

  14. Investigation of tau pair production at PETRA

    International Nuclear Information System (INIS)

    Kuester, H.

    1983-11-01

    The reaction e + e - -> tau + tau - has been measured at center of mass energies around 34 GeV. The selection is sensitive to 93% of the tau pair decays, thus making possible a high identification efficiency of proportional 70% over a large solid angle. The total cross section has been measured to Rsub(tau) = sigmasub(tautau)/sigmasub(point) = .94 +- .06(stat.) +- .06(syst.). In the differential cross section a charge asymmetry of Asub(tau) = (-(9.0 +- 6.6)% was observed, corresponding to a tau axial vector coupling to the weak neutral current of asub(tau) = -.94 +- 0.69. Moreover, final states from the decays tau -> πν, tau -> eνν, and tau -> μνν have been isolated and branching ratios into these channels have been determined. From the inclusive momentum spectra of the observed decay products (including the channel tau -> rhoν) the forward backward asymmetry of tau polarization has been determined to Asub(p,tau) = -(1 +- 22)% which corresponds to vsub(tau) = -.1 +- 2.9. Tests on factorization are discussed. (orig.) [de

  15. Perpendicular relativistic shocks in magnetized pair plasma

    Science.gov (United States)

    Plotnikov, Illya; Grassi, Anna; Grech, Mickael

    2018-04-01

    Perpendicular relativistic (γ0 = 10) shocks in magnetized pair plasmas are investigated using two dimensional Particle-in-Cell simulations. A systematic survey, from unmagnetized to strongly magnetized shocks, is presented accurately capturing the transition from Weibel-mediated to magnetic-reflection-shaped shocks. This transition is found to occur for upstream flow magnetizations 10-3 10-2, it leaves place to a purely electromagnetic precursor following from the strong emission of electromagnetic waves at the shock front. Particle acceleration is found to be efficient in weakly magnetized perpendicular shocks in agreement with previous works, and is fully suppressed for σ > 10-2. Diffusive Shock Acceleration is observed only in weakly magnetized shocks, while a dominant contribution of Shock Drift Acceleration is evidenced at intermediate magnetizations. The spatial diffusion coefficients are extracted from the simulations allowing for a deeper insight into the self-consistent particle kinematics and scale with the square of the particle energy in weakly magnetized shocks. These results have implications for particle acceleration in the internal shocks of AGN jets and in the termination shocks of Pulsar Wind Nebulae.

  16. Development of pair distribution function analysis

    International Nuclear Information System (INIS)

    Vondreele, R.; Billinge, S.; Kwei, G.; Lawson, A.

    1996-01-01

    This is the final report of a 3-year LDRD project at LANL. It has become more and more evident that structural coherence in the CuO 2 planes of high-T c superconducting materials over some intermediate length scale (nm range) is important to superconductivity. In recent years, the pair distribution function (PDF) analysis of powder diffraction data has been developed for extracting structural information on these length scales. This project sought to expand and develop this technique, use it to analyze neutron powder diffraction data, and apply it to problems. In particular, interest is in the area of high-T c superconductors, although we planned to extend the study to the closely related perovskite ferroelectric materials andother materials where the local structure affects the properties where detailed knowledge of the local and intermediate range structure is important. In addition, we planned to carry out single crystal experiments to look for diffuse scattering. This information augments the information from the PDF

  17. Efficient Implementation of the Pairing on Mobilephones Using BREW

    Science.gov (United States)

    Yoshitomi, Motoi; Takagi, Tsuyoshi; Kiyomoto, Shinsaku; Tanaka, Toshiaki

    Pairing based cryptosystems can accomplish novel security applications such as ID-based cryptosystems, which have not been constructed efficiently without the pairing. The processing speed of the pairing based cryptosystems is relatively slow compared with the other conventional public key cryptosystems. However, several efficient algorithms for computing the pairing have been proposed, namely Duursma-Lee algorithm and its variant ηT pairing. In this paper, we present an efficient implementation of the pairing over some mobilephones. Moreover, we compare the processing speed of the pairing with that of the other standard public key cryptosystems, i. e. RSA cryptosystem and elliptic curve cryptosystem. Indeed the processing speed of our implementation in ARM9 processors on BREW achieves under 100 milliseconds using the supersingular curve over F397. In addition, the pairing is more efficient than the other public key cryptosystems, and the pairing can be achieved enough also on BREW mobilephones. It has become efficient enough to implement security applications, such as short signature, ID-based cryptosystems or broadcast encryption, using the pairing on BREW mobilephones.

  18. Observing Pair-Work Task in an English Speaking Class

    Directory of Open Access Journals (Sweden)

    Diana Achmad

    2014-01-01

    Full Text Available This paper reports on students’ pair-work interactions to develop their speaking skills in an ELT classroom which consisted of international learners. A number of 16 learners of intermediate proficiency with IELTS score band 5.5 were observed. The teacher had paired those he considered among them to be the more competent ones (hereafter, stronger with the less competent ones (hereafter, weaker; therefore, eight pairs were observed during the lesson. The task given to the students was to express ‘Agree and Disagree’ in the context of giving opinions related to social life. Based on the observations, the task was successfully implemented by six pairs; thus, the two others faced some problems. From the first pair, it was seen that the stronger student had intimated the weaker one into speaking during the task. The other pair, who was both of the same native, did not converse in English as expected and mostly used their native language to speak with one another presumably due to respect from the stronger student towards the weaker one. In situations like this, when pair-work becomes unproductive, rotating pairs is recommended to strengthen information sharing and assigning roles to avoid a student from taking over the activity from his or her pair. In conclusion, pairing international learners with mixed speaking proficiency by teachers must be conducted as effectively as possible by initially identifying their ability and learning culture to profoundly expand the students’ language resources.

  19. Topological Nodal Cooper Pairing in Doped Weyl Metals

    Science.gov (United States)

    Li, Yi; Haldane, F. D. M.

    2018-02-01

    We generalize the concept of Berry connection of the single-electron band structure to that of a two-particle Cooper pairing state between two Fermi surfaces with opposite Chern numbers. Because of underlying Fermi surface topology, the pairing Berry phase acquires nontrivial monopole structure. Consequently, pairing gap functions have topologically protected nodal structure as vortices in the momentum space with the total vorticity solely determined by the pair monopole charge qp. The nodes of gap function behave as the Weyl-Majorana points of the Bogoliubov-de Gennes pairing Hamiltonian. Their relation with the connection patterns of the surface modes from the Weyl band structure and the Majorana surface modes inside the pairing gap is also discussed. Under the approximation of spherical Fermi surfaces, the pairing symmetry are represented by monopole harmonic functions. The lowest possible pairing channel carries angular momentum number j =|qp|, and the corresponding gap functions are holomorphic or antiholomorphic functions on Fermi surfaces. After projected on the Fermi surfaces with nontrivial topology, all the partial-wave channels of pairing interactions acquire the monopole charge qp independent of concrete pairing mechanism.

  20. Pulsar Pair Cascades in Magnetic Fields with Offset Polar Caps

    Science.gov (United States)

    Harding, Alice K.; Muslimov, Alex G.

    2012-01-01

    Neutron star magnetic fields may have polar caps (PC) that are offset from the dipole axis, through field-line sweepback near the light cylinder or non-symmetric currents within the star. The effects of such offsets on electron-positron pair cascades are investigated, using simple models of dipole magnetic fields with small distortions that shift the PCs by different amounts or directions. Using a Monte Carlo pair cascade simulation, we explore the changes in the pair spectrum, multiplicity and energy flux across the PC, as well as the trends in pair flux and pair energy flux with spin-down luminosity, L(sub sd). We also give an estimate of the distribution of heating flux from returning positrons on the PC for different offsets. We find that even modest offsets can produce significant increases in pair multiplicity, especially for pulsars that are near or beyond the pair death lines for centered PCs, primarily because of higher accelerating fields. Pair spectra cover several decades in energy, with the spectral range of millisecond pulsars (MSPs) two orders of magnitude higher than for normal pulsars, and PC offsets allow significant extension of all spectra to lower pair energies. We find that the total PC pair luminosity L(sub pair) is proportional to L(sub sd), with L(sub pair) approximates 10(exp -3) L(sub sd) for normal pulsars and L(sub pair) approximates 10(exp -2) L(sub sd) for MSPs. Remarkably, the total PC heating luminosity for even large offsets increases by less than a factor of two, even though the PC area increases by much larger factors, because most of the heating occurs near the magnetic axis.

  1. PLANNING IN ARTIFICIAL INTELLIGENCE AND ROBOTICS (PAIR

    Directory of Open Access Journals (Sweden)

    Editorial, Foreword

    2016-11-01

    Full Text Available September 18th, 2016Deggendorf, Germanyhttp://robotics.fel.cvut.cz/pair16/Organized by: Artificial Intelligence Center Department of Computer Science Faculty of Electrical Engineering Czech Technical University in PragueTechnicka 2, Prague 6, 166 27, Czech RepublicGuest editors:Jan Faigl (Artificial Intelligence Center, Department of Computer Science, Faculty of Electrical Engineering, Czech Technical University in PragueJiří Vokřínek (Artificial Intelligence Center, Department of Computer Science, Faculty of Electrical Engineering, Czech Technical University in PragueScientific comittee:D. Belter (Poznań University of Technology, PolandW. Dorner (Technische Hochschule Deggendorf, GermanyJ. Faigl (Czech Technical University in PragueT. Krajník (University of Lincoln, United KingdomA. Komenda (Czech Technical University in PragueG. Kupris (Technische Hochschule Deggendorf, GermanyM. Rollo (Czech Technical University in PragueM. Saska (Czech Technical University in PragueJ. Vokřínek (Czech Technical University in PragueV. Vonásek (Czech Technical University in PragueK. Walas (Poznań University of Technology, Poland Foreword:The third year of the student conference on “Planning in Artificial Intelligence and Robotics” (PAIR continues in joining young researchers and students interested in robotics and artificial intelligence. In 2016, we follow the schema of the last year as a joint event with the RoboTour competition in Deggendorf, Germany. Thanks to the great collaboration with Gerald Kupris and Wolfgang Donner from Technische Hochschule Deggendorf and support from Czech Technical University under project No. SVK 26/16/F3 and Bayerisches Staatsministerium der Finanzen, für Landesentwicklung und Heimat, we have been able to provide accommodations and travel support to participants and an invited speaker. Fourteen papers have accepted and listed in the conference program. The papers have been authored by students from Central Europe

  2. Hidden Pair of Supermassive Black Holes

    Science.gov (United States)

    Kohler, Susanna

    2015-08-01

    Could a pair of supermassive black holes (SMBHs) be lurking at the center of the galaxy Mrk 231? A recent study finds that this may be the case and the unique spectrum of this galaxy could be the key to discovering more hidden binary SMBH systems.Where Are the Binary Supermassive Black Holes?Its believed that most, if not all, galaxies have an SMBH at their centers. As two galaxies merge, the two SMBHs should evolve into a closely-bound binary system before they eventually merge. Given the abundance of galaxy mergers, we would expect to see the kinematic and visual signatures of these binary SMBHs among observed active galactic nuclei yet such evidence for sub-parsec binary SMBH systems remains scarce and ambiguous. This has led researchers to wonder: is there another way that we might detect these elusive systems?A collaboration led by Chang-Shuo Yan (National Astronomical Observatories, Chinese Academy of Sciences) thinks that there is. The group suggests that these systems might have distinct signatures in their optical-to-UV spectra, and they identify a system that might be just such a candidate: Mrk 231.A Binary CandidateProposed model of Mrk 231. Two supermassive black holes, each with their own mini-disk, orbit each other in the center of a circumbinary disk. The secondary black hole has cleared gap in the circumbinary disk as a result of its orbit around the primary black hole. [Yan et al. 2015]Mrk 231 is a galaxy with a disturbed morphology and tidal tails strong clues that it might be in the final stages of a galactic merger. In addition to these signs, Mrk 231 also has an unusual spectrum for a quasar: its continuum emission displays an unexpected drop in the near-UV band.Yan and her collaborators propose that the odd behavior of Mrk 231s spectrum can be explained if the center of the galaxy houses a pair of SMBHs each with its own mini accretion disk surrounded by a circumbinary accretion disk. As the secondary SMBH orbits the primary SMBH (with a

  3. Stereo Pair, Salt Lake City, Utah

    Science.gov (United States)

    2002-01-01

    The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This image pair provides a stereoscopic map view of north central Utah that includes all of these Olympic sites. In the south, next to Utah Lake, Provo hosts the ice hockey competition. In the north, northeast of the Great Salt Lake, Ogden hosts curling and the nearby Snowbasin ski area hosts the downhill events. In between, southeast of the Great Salt Lake, Salt Lake City hosts the Olympic Village and the various skating events. Further east, across the Wasatch Mountains, the Park City ski resort hosts the bobsled, ski jumping, and snowboarding events. The Winter Olympics are always hosted in mountainous terrain. This view shows the dramatic landscape that makes the Salt Lake City region a world-class center for winter sports.This stereoscopic image was generated by draping a Landsat satellite image over a Shuttle Radar Topography Mission digital elevation model. Two differing perspectives were then calculated, one for each eye. They can be seen in 3-D by viewing the left image with the right eye and the right image with the left eye (cross-eyed viewing or by downloading and printing the image pair and viewing them with a stereoscope. When stereoscopically merged, the result is a vertically exaggerated view of Earth's surface in its full three dimensions.Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive, managed by the U.S. Geological Survey (USGS).Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR

  4. Paired Straight Hearth Furnace - Transformational Ironmaking Process

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wei-Kao [McMaster Univ., Hamilton, ON (Canada); Debski, Paul [Andritz Metals Inc.,Canonsburg, PA (United States)

    2014-11-19

    The U. S. steel industry has reduced its energy intensity per ton of steel shipped by 33% since 1990. However, further significant gains in energy efficiency will require the development of new, transformational iron and steelmaking processes. The Paired Straight Hearth Furnace (PSH) process is an emerging alternative high productivity, direct reduced iron (DRI) technology that may achieve very low fuel rates and has the potential to replace blast furnace ironmaking. The PSH furnace can operate independently or may be coupled with other melting technologies to produce liquid hot metal that is both similar to blast furnace iron and suitable as a feedstock for basic oxygen steelmaking furnaces. The PSH process uses non-metallurgical coal as a reductant to convert iron oxides such as iron ore and steelmaking by-product oxides to DRI pellets. In this process, a multi-layer, nominally 120mm tall bed of composite “green balls” made from oxide, coal and binder is built up and contained within a moving refractory hearth. The pellet bed absorbs radiant heat energy during exposure to the high temperature interior refractory surfaces of the PSH while generating a strongly reducing gas atmosphere in the bed that yields a highly metalized DRI product. The PSH concept has been well tested in static hearth experiments. A moving bed design is being developed. The process developers believe that if successful, the PSH process has the potential to replace blast furnaces and coke ovens at a fraction of the operating and capital cost while using about 30% less energy relative to current blast furnace technology. DRI output could also feed electric arc furnaces (EAFs) by displacing a portion of the scrap charge.

  5. Top-quark pair production near threshold

    International Nuclear Information System (INIS)

    Sumino, Y.; Fujii, K.; Hagiwara, K.; Murayama, H.; Ng, C.

    1993-01-01

    We present a novel formalism to calculate the total and the differential cross sections for heavy unstable top-quark pair production near threshold. Within the context of the nonrelativistic quark model, we introduce the running toponium width Γ FTHETA (E,p) in the Schroedinger equation for the three-point Green's function that governs the t bar t contribution to the e + e- annihilation process. The effect of the running of the width is found to be significant in two aspects: (i) it takes account of the phase-space volume for the decay process t bar t→bW + bar bW- and provides a consistent framework for calculating the differential cross sections; and (ii) it reduces the widths of the low-lying resonances to considerably less than 2Γ t (m t 2 ). Furthermore, the running of the width causes the total cross section to decrease significantly at c.m. energies below the first ''resonance'' enhancement, whereas it makes the ''peak'' cross section more distinct than is obtained in the fixed toponium width approximation. We use the two-loop-improved QCD potential in our calculation, and the α s (m Z ) Mbar S dependences of the total and differential cross sections are studied quantitatively, where M bar S denotes the modified minimal subtraction scheme. We find that the correlations in the α s and m t measurements are opposite in the total and differential cross sections, and the simultaneous measurements would lead to an accurate determination of both parameters

  6. Affected sib pair tests in inbred populations.

    Science.gov (United States)

    Liu, W; Weir, B S

    2004-11-01

    The affected-sib-pair (ASP) method for detecting linkage between a disease locus and marker loci was first established 50 years ago, and since then numerous modifications have been made. We modify two identity-by-state (IBS) test statistics of Lange (Lange, 1986a, 1986b) to allow for inbreeding in the population. We evaluate the power and false positive rates of the modified tests under three disease models, using simulated data. Before estimating false positive rates, we demonstrate that IBS tests are tests of both linkage and linkage disequilibrium between marker and disease loci. Therefore, the null hypothesis of IBS tests should be no linkage and no LD. When the population inbreeding coefficient is large, the false positive rates of Lange's tests become much larger than the nominal value, while those of our modified tests remain close to the nominal value. To estimate power with a controlled false positive rate, we choose the cutoff values based on simulated datasets under the null hypothesis, so that both Lange's tests and the modified tests generate same false positive rate. The powers of Lange's z-test and our modified z-test are very close and do not change much with increasing inbreeding. The power of the modified chi-square test also stays stable when the inbreeding coefficient increases. However, the power of Lange's chi-square test increases with increasing inbreeding, and is larger than that of our modified chi-square test for large inbreeding coefficients. The power is high under a recessive disease model for both Lange's tests and the modified tests, though the power is low for additive and dominant disease models. Allowing for inbreeding is therefore appropriate, at least for diseases known to be recessive.

  7. Adiabatic pair creation in heavy-ion and laser fields

    International Nuclear Information System (INIS)

    Pickl, P.; Durr, D.

    2008-01-01

    The planned generation of lasers and heavy-ion colliders renews the hope to see electron-positron pair creation in strong classical fields. This old prediction is usually referred to as spontaneous pair creation. We observe that both heavy-ion collisions and pair creation in strong laser fields, are instances of the theory of adiabatic pair creation. We shall present the theory, thereby correcting earlier results. We give the momentum distribution of created pairs in overcritical fields. We discuss carefully the proposed experimental verifications and conclude that pure laser-based experiments are highly questionable. We propose a new experiment, joining laser fields and heavy ions, which may be feasible with present-day technology and which may indeed verify the theoretical prediction of adiabatic pair creation. Our presentation relies on recent rigorous works in mathematical physics. (authors)

  8. Nucleon-pair approximation to the nuclear shell model

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Y.M., E-mail: ymzhao@sjtu.edu.cn [Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Arima, A. [Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Musashi Gakuen, 1-26-1 Toyotamakami Nerima-ku, Tokyo 176-8533 (Japan)

    2014-12-01

    Atomic nuclei are complex systems of nucleons–protons and neutrons. Nucleons interact with each other via an attractive and short-range force. This feature of the interaction leads to a pattern of dominantly monopole and quadrupole correlations between like particles (i.e., proton–proton and neutron–neutron correlations) in low-lying states of atomic nuclei. As a consequence, among dozens or even hundreds of possible types of nucleon pairs, very few nucleon pairs such as proton and neutron pairs with spin zero, two (in some cases spin four), and occasionally isoscalar spin-aligned proton–neutron pairs, play important roles in low-energy nuclear structure. The nucleon-pair approximation therefore provides us with an efficient truncation scheme of the full shell model configurations which are otherwise too large to handle for medium and heavy nuclei in foreseeable future. Furthermore, the nucleon-pair approximation leads to simple pictures in physics, as the dimension of nucleon-pair subspace is always small. The present paper aims at a sound review of its history, formulation, validity, applications, as well as its link to previous approaches, with the focus on the new developments in the last two decades. The applicability of the nucleon-pair approximation and numerical calculations of low-lying states for realistic atomic nuclei are demonstrated with examples. Applications of pair approximations to other problems are also discussed.

  9. Considerations on Velocities and Accelerations in Higher Pairs Mechanisms

    Directory of Open Access Journals (Sweden)

    Florina-Carmen Ciornei

    2015-12-01

    Full Text Available The paper proposes a method for finding the velocities and accelerations in the pairs from a mechanism with higher pairs in the case when the curvature radii of the curves achieving the higher pair are finite. There are obtained the characteristic equations of the motion in the higher pair for the case that one of the curves has zero curvature radius, condition characteristic to the knife edge follower. The relations are required to justify the difference between the particular cases of knife edge follower and flat face follower. The methodology is exemplified through an actual example.

  10. Exotic Paired States with Anisotropic Spin-Dependent Fermi Surfaces

    International Nuclear Information System (INIS)

    Feiguin, Adrian E.; Fisher, Matthew P. A.

    2009-01-01

    We propose a model for realizing exotic paired states in cold Fermi gases by using a spin-dependent optical lattice to engineer mismatched Fermi surfaces for each hyperfine species. The BCS phase diagram shows a stable paired superfluid state with coexisting pockets of momentum space with gapless unpaired carriers, similar to the Sarma state in polarized mixtures, but in our case the system is unpolarized. We propose the possible existence of an exotic 'Cooper-pair Bose-metal' phase, which has a gap for single fermion excitations but gapless and uncondensed 'Cooper-pair' excitations residing on a 'Bose surface' in momentum space.

  11. Alexander-equivalent Zariski pairs of irreducible sextics

    DEFF Research Database (Denmark)

    Eyral, Christophe; Oka, Mutsuo

    2009-01-01

    The existence of Alexander-equivalent Zariski pairs dealing with irreducible curves of degree 6 was proved by Degtyarev. However, no explicit example of such a pair is available (only the existence is known) in the literature. In this paper, we construct the first concrete example.......The existence of Alexander-equivalent Zariski pairs dealing with irreducible curves of degree 6 was proved by Degtyarev. However, no explicit example of such a pair is available (only the existence is known) in the literature. In this paper, we construct the first concrete example....

  12. Pairing from strong repulsion in triangular lattice Hubbard model

    Science.gov (United States)

    Zhang, Shang-Shun; Zhu, Wei; Batista, Cristian D.

    2018-04-01

    We propose a pairing mechanism between holes in the dilute limit of doped frustrated Mott insulators. Hole pairing arises from a hole-hole-magnon three-body bound state. This pairing mechanism has its roots on single-hole kinetic energy frustration, which favors antiferromagnetic (AFM) correlations around the hole. We demonstrate that the AFM polaron (hole-magnon bound state) produced by a single hole propagating on a field-induced polarized background is strong enough to bind a second hole. The effective interaction between these three-body bound states is repulsive, implying that this pairing mechanism is relevant for superconductivity.

  13. Butterflyfishes as a System for Investigating Pair Bonding

    KAUST Repository

    Nowicki, Jessica

    2017-11-14

    For many animals, affiliative relationships such as pair bonds form the foundation of society, and are highly adaptive. Animal systems amenable for comparatively studying pair bonding are important for identifying underlying biological mechanisms, but mostly exist in mammals. Better establishing fish systems will enable comparison of pair bonding mechanisms across taxonomically distant lineages that may reveal general underlying principles. We examined the utility of wild butterflyfishes (f: Chaetodontidae; g: Chaetodon) for comparatively studying pair bonding. Stochastic character mapping inferred that within the family, pairing is ancestral, with at least seven independent transitions to group formation and seven transition to solitary behavior from the late Miocene to recent. In six sympatric and wide-spread species representing a clade with one ancestrally reconstructed transition from paired to solitary grouping, we then verified social systems at Lizard Island, Australia. In situ observations confirmed that Chaetodon baronessa, C. lunulatus, and C. vagabundus are predominantly pair bonding, whereas C. rainfordi, C. plebeius, and C. trifascialis are predominantly solitary. Even in the predominantly pair bonding species, C. lunulatus, a proportion of adults (15 %) are solitary. Importantly, inter- and intra-specific differences in social systems do not co-vary with other previously established attributes (geographic occurrence, parental care, diet, or territoriality). Hence, the proposed butterflyfish populations are promising for comparative analyses of pair bonding and its mechanistic underpinnings. Avenues for further developing the system are proposed, including determining whether the utility of these species applies across their geographic disruptions.

  14. AGT, Burge pairs and minimal models

    International Nuclear Information System (INIS)

    Bershtein, M.; Foda, O.

    2014-01-01

    We consider the AGT correspondence in the context of the conformal field theory M p,p ′ ⊗M H , where M p,p ′ is the minimal model based on the Virasoro algebra V p,p ′ labeled by two co-prime integers {p,p ′ }, 1pairs {Y 1 ι ,Y 2 ι } that satisfy Y 2,σ ι,⊺ −Y 1,σ+r ι −1 ι,⊺ ≥1−s ι , and Y 1,σ ι,⊺ −Y 2,σ+p−r ι −1 ι,⊺ ≥1−p ′ +s ι , where Y i,σ ι,⊺ is the σ-column of Y i ι , i∈{1,2}, we obtain a well-defined expression that we identify with B n p,p ′ ,H . We check the correctness of this expression for 1. Any 1-point B 1 p,p ′ ,H on the torus, when the operator insertion is the identity, and 2. The 6-point B 3 3,4,H on the sphere that involves six Ising magnetic operators.

  15. AT Base Pair Anions vs. (9-methyl-A)(1-methyl-T) Base Pair Anions

    International Nuclear Information System (INIS)

    Radisic, Dunja; Bowen, Kit H.; Dabkowska, Iwona; Storoniak, Piotr; Rak, Janusz; Gutowski, Maciej S.

    2005-01-01

    The anionic base pairs of adenine and thymine, (AT)-, and 9-methyladenine and 1-methylthymine, (MAMT)-, have been investigated both theoretically and experimentally in a complementary, synergistic study. Calculations on (AT)- found that it had undergone a barrier-free proton transfer (BFPT) similar to that seen in other dimer anion systems and that its structural configuration that was neither Watson-Crick (WC) nor Hoogsteen (HS). The vertical detachment energy (VDE) of (AT)- was determined by anion photoelectron spectroscopy and found to be in agreement with the VDE value predicted by theory for the BFPT mechanism. An AT pair in DNA is structurally immobilized into the WC configuration, in part, by being bonded to the sugars of the double helix. This circumstance was mimicked by methylating the sites on both A and T where these sugars would have been tied, viz., 9-methyladenine and 1-methylthymine. Calculations found no BFPT in (MAMT)- and a resulting (MAMT)- configuration that wa s either HS or WC, with the configurations differing in stability by ca. 2 kcal/mol. The photoelectron spectrum of (MAMT)- occurred at a completely different electron binding energy than had (AT)-. Moreover, the VDE value of (MAMT)- was in agreement with that predicted by theory. The configuration of (MAMT)- and its lack of electron-induced proton transfer are inter-related. While there may be other pathways for electron-induced damage, BFPT in the WC/HS configurations of (AT)- is not feasible

  16. AT base pair anions versus (9-methyl-A)(1-methyl-T) base pair anions.

    Science.gov (United States)

    Radisic, Dunja; Bowen, Kit H; Dabkowska, Iwona; Storoniak, Piotr; Rak, Janusz; Gutowski, Maciej

    2005-05-04

    The anionic base pairs of adenine and thymine, (AT)(-), and 9-methyladenine and 1-methylthymine, (MAMT)(-), have been investigated both theoretically and experimentally in a complementary, synergistic study. Calculations on (AT)(-) found that it had undergone a barrier-free proton transfer (BFPT) similar to that seen in other dimer anion systems and that its structural configuration was neither Watson-Crick (WC) nor Hoogsteen (HS). The vertical detachment energy (VDE) of (AT)(-) was determined by anion photoelectron spectroscopy and found to be in agreement with the VDE value predicted by theory for the BFPT mechanism. An AT pair in DNA is structurally immobilized into the WC configuration, in part, by being bonded to the sugars of the double helix. This circumstance was mimicked by methylating the sites on both A and T where these sugars would have been tied, viz., 9-methyladenine and 1-methylthymine. Calculations found no BFPT in (MAMT)(-) and a resulting (MAMT)(-) configuration that was either HS or WC, with the configurations differing in stability by ca. 2 kcal/mol. The photoelectron spectrum of (MAMT)(-) occurred at a completely different electron binding energy than had (AT)(-). Moreover, the VDE value of (MAMT)(-) was in agreement with that predicted by theory. The configuration of (MAMT)(-) and its lack of electron-induced proton transfer are inter-related. While there may be other pathways for electron-induced DNA alterations, BFPT in the WC/HS configurations of (AT)(-) is not feasible.

  17. AGT, Burge pairs and minimal models

    Energy Technology Data Exchange (ETDEWEB)

    Bershtein, M. [Landau Institute for Theoretical Physics,Chernogolovka (Russian Federation); Institute for Information Transmission Problems,Moscow (Russian Federation); National Research University Higher School of Economics, International Laboratory of Representation Theory and Mathematical Physics, Independent University of Moscow, Moscow (Russian Federation); Foda, O. [Mathematics and Statistics, University of Melbourne,Parkville, VIC 3010 (Australia)

    2014-06-30

    We consider the AGT correspondence in the context of the conformal field theory M{sup p,p{sup ′}}⊗M{sup H}, where M{sup p,p{sup ′}} is the minimal model based on the Virasoro algebra V{sup p,p{sup ′}} labeled by two co-prime integers {p,p"′}, 1pairs {Y_1"ι,Y_2"ι} that satisfy Y{sub 2,σ}{sup ι,⊺}−Y{sub 1,σ+r{sub ι−1}{sup ι,⊺}}≥1−s{sub ι}, and Y{sub 1,σ}{sup ι,⊺}−Y{sub 2,σ+p−r{sub ι−1}{sup ι,⊺}}≥1−p{sup ′}+s{sub ι}, where Y{sub i,σ}{sup ι,⊺} is the σ-column of Y{sub i}{sup ι}, i∈{1,2}, we obtain a well-defined expression that we identify with B{sub n}{sup p,p{sup ′,H}}. We check the correctness of this expression for 1. Any 1-point B{sub 1}{sup p,p{sup ′,H}} on the torus, when the operator insertion is the identity, and 2. The 6-point B{sub 3}{sup 3,4,H} on the sphere that involves six Ising magnetic operators.

  18. Galaxy pairs as a probe for mergers at z ~ 2

    DEFF Research Database (Denmark)

    Man, A.W.S.; Zirm, Andrew Wasmuth; Toft, Sune

    2011-01-01

    In this work I investigate the redshift evolution of pair fraction of a sample of 196 massive galaxies from z = 0 to 3, selected from the COSMOS field. We find that on average a massive galaxy undergoes ~ 1.1 \\pm 0.5 major merger since z = 3. I will review the current limitations of using the pair...

  19. Inflation of the screening length induced by Bjerrum pairs

    NARCIS (Netherlands)

    Zwanikken, J.W.; van Roij, R.H.H.G.

    2009-01-01

    Within a modified Poisson–Boltzmann theory we study the effect of Bjerrum pairs on the typical length scale 1/¯κ over which electric fields are screened in electrolyte solutions, taking into account a simple association–dissociation equilibrium between free ions and Bjerrum pairs. At low densities

  20. Theory of pairing symmetry in the vortex states

    NARCIS (Netherlands)

    Yokoyama, Takehito; Ichioka, Yukio; Yanaka, Yukio; Golubov, Alexandre Avraamovitch

    2010-01-01

    We investigate pairing symmetry in an Abrikosov vortex and vortex lattice. It is shown that the Cooper pair wave function at the center of an Abrikosov vortex with vorticity m has a different parity with respect to frequency from that in the bulk if m is an odd number, while it has the same parity

  1. Proton-neutron correlations in a broken-pair model

    International Nuclear Information System (INIS)

    Akkermans, J.N.L.

    1981-01-01

    In this thesis nuclear-structure calculations are reported which were performed with the broken-pair model. The model which is developed, is an extension of existing broken-pair models in so far that it includes both proton and neutron valence pairs. The relevant formalisms are presented. In contrast to the number-non-conserving model, a proton-neutron broken-pair model is well suited to study the correlations which are produced by the proton-neutron interaction. It is shown that the proton-neutron force has large matrix elements which mix the proton- with neutron broken-pair configurations. This occurs especially for Jsup(PI)=2 + and 3 - pairs. This property of the proton-neutron force is used to improve the spectra of single-closed shell nuclei, where particle-hole excitations of the closed shell are a special case of broken-pair configurations. Using Kr and Te isotopes it is demonstrated that the proton-neutron force gives rise to correlated pair structures, which remain remarkably constant with varying nucleon numbers. (Auth.)

  2. Finding Question-Answer Pairs from Online Forums

    DEFF Research Database (Denmark)

    Cong, Gao; Wang, Long; Lin, Chin-Yew

    2008-01-01

    Online forums contain a huge amount of valuable user generated content. In this paper we address the problem of extracting question-answer pairs from forums. Question-answer pairs extracted from forums can be used to help Question Answering services (e.g. Yahoo! Answers) among other applications...

  3. Observing Pair-Work Task in an English Speaking Class

    Science.gov (United States)

    Achmad, Diana; Yusuf, Yunisrina Qismullah

    2014-01-01

    This paper reports on students' pair-work interactions to develop their speaking skills in an ELT classroom which consisted of international learners. A number of 16 learners of intermediate proficiency with IELTS score band 5.5 were observed. The teacher had paired those he considered among them to be the more competent ones (hereafter, stronger)…

  4. On e(+)e(-) pair production by colliding electromagnetic pulses

    NARCIS (Netherlands)

    Narozhny, NB; Bulanov, SS; Mur, VD; Popov, VS

    2004-01-01

    Electron-positron pair production from vacuum in an electromagnetic field created by two counterpropagating focused laser pulses interacting with each other is analyzed. The dependence of the number of produced pairs on the intensity of a laser pulse and the focusing parameter is studied with a

  5. Observation of charmonium pairs produced exclusively in pp collisions

    NARCIS (Netherlands)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Cartelle, P. Alvarez; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreassen, R.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Gutierrez, O. Aquines; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Belogurov, S.; Belous, K.; Belyaev, I.; Onderwater, G.; Pellegrino, A.

    A search is performed for the central exclusive production of pairs of charmonia produced in proton-proton collisions. Using data corresponding to an integrated luminosity of 3 fb(-1) collected at centre-of-mass energies of 7 and 8 TeV, J/psi J/psi and J/psi psi (2S) pairs are observed, which have

  6. Teleportation of Quantum States through Mixed Entangled Pairs

    Institute of Scientific and Technical Information of China (English)

    ZHENG Shi-Biao

    2006-01-01

    @@ We describe a protocol for quantum state teleportation via mixed entangled pairs. With the help of an ancilla,near-perfect teleportation might be achieved. For pure entangled pairs, perfect teleportation might be achieved with a certain probability without using an ancilla. The protocol is generalized to teleportation of multiparticle states and quantum secret sharing.

  7. minimal pairs of polytopes and their number of vertices

    African Journals Online (AJOL)

    Preferred Customer

    Using this operation we give a new algorithm to reduce and find a minimal pair of polytopes from the given ... Key words/phrases: Pairs of compact convex sets, Blaschke addition, Minkowski sum, mnimality ... product K(X)×K(X) by K2. (X).

  8. Pairing renormalization and regularization within the local density approximation

    International Nuclear Information System (INIS)

    Borycki, P.J.; Dobaczewski, J.; Nazarewicz, W.; Stoitsov, M.V.

    2006-01-01

    We discuss methods used in mean-field theories to treat pairing correlations within the local density approximation. Pairing renormalization and regularization procedures are compared in spherical and deformed nuclei. Both prescriptions give fairly similar results, although the theoretical motivation, simplicity, and stability of the regularization procedure make it a method of choice for future applications

  9. Solving the Airline Crew Pairing Problem using Subsequence Generation

    DEFF Research Database (Denmark)

    Rasmussen, Matias Sevel; Lusby, Richard Martin; Ryan, David M.

    2010-01-01

    Good and fast solutions to the airline crew pairing problem are highly interesting for the airline industry, as crew costs are the biggest expenditure after fuel for an airline. The crew pairing problem is typically modelled as a set partitioning problem and solved by column generation. However, ...

  10. Solving the Airline Crew Pairing Problem using Subsequence Generation

    DEFF Research Database (Denmark)

    Rasmussen, Matias Sevel; Ryan, David; Lusby, Richard Martin

    2009-01-01

    Good and fast solutions to the airline crew pairing problem are highly interesting for the airline industry, as crew costs are the biggest expenditure after fuel for an airline. The crew pairing problem is typically modelled as a set partitioning problem and solved by column generation. However, ...

  11. Intruder level and deformation in SD-pair shell model

    International Nuclear Information System (INIS)

    Luo Yan'an; Ning Pingzhi; Pan Feng

    2004-01-01

    The influence of intruder level on nuclear deformation is studied within the framework of the nucleon-pair shell model truncated to an SD-pair subspace. The results suggest that the intruder level has a tendency to reduce the deformation and plays an important role in determining the onset of rotational behavior. (authors)

  12. Extending the Extensional Lambda Calculus with Surjective Pairing is Conservative

    DEFF Research Database (Denmark)

    Støvring, Kristian

    2006-01-01

    We answer Klop and de Vrijer's question whether adding surjective-pairing axioms to the extensional lambda calculus yields a conservative extension. The answer is positive. As a byproduct we obtain a "syntactic" proof that the extensional lambda calculus with surjective pairing is consistent....

  13. Relativistic quasiparticle random phase approximation with a separable pairing force

    International Nuclear Information System (INIS)

    Tian Yuan; Ma Zhongyu; Ring Peter

    2009-01-01

    In our previous work, we introduced a separable pairing force for relativistic Hartree-Bogoliubov calculations. This force was adjusted to reproduce the pairing properties of the Gogny force in nuclear matter. By using the well known techniques of Talmi and Moshinsky it can be expanded in a series of separable terms and converges quickly after a few terms. It was found that the pairing properties can be depicted on almost the same footing as the original pairing interaction, not only in nuclear matter, but also in finite nuclei. In this study, we construct a relativistic quasiparticle random phase approximation (RQRPA) with this separable pairing interaction and calculate the excitation energies of the first excited 2 + states and reduced B(E2; 0 + →2 + ) transition rates for a chain of Sn isotopes in RQRPA. Compared with the results of the full Gogny force, we find that this simple separable pairing interaction can describe the pairing properties of the excited vibrational states as well as the original pairing interaction. (authors)

  14. Pair production of arbitrary spin particles by electromagnetic fields

    International Nuclear Information System (INIS)

    Kruglov, S.I.

    2006-01-01

    The exact solutions of the wave equation for arbitrary spin particles in the field of the soliton-like electric impulse were obtained. The differential probability of pair production of particles by electromagnetic fields has been evaluated on the basis of the exact solutions. As a particular case, the particle pair production in the constant and uniform electric field were studied

  15. Quantitative measures of entanglement in pair-coherent states

    International Nuclear Information System (INIS)

    Agarwal, G S; Biswas, Asoka

    2005-01-01

    The pair-coherent states for a two-mode radiation field are known to belong to a family of states with non-Gaussian wavefunction. The nature of quantum entanglement between the two modes and some features of non-classicality are studied for such states. The existing criterion for inseparability are examined in the context of pair-coherent states

  16. Pair Formation of Hard Core Bosons in Flat Band Systems

    Science.gov (United States)

    Mielke, Andreas

    2018-05-01

    Hard core bosons in a large class of one or two dimensional flat band systems have an upper critical density, below which the ground states can be described completely. At the critical density, the ground states are Wigner crystals. If one adds a particle to the system at the critical density, the ground state and the low lying multi particle states of the system can be described as a Wigner crystal with an additional pair of particles. The energy band for the pair is separated from the rest of the multi-particle spectrum. The proofs use a Gerschgorin type of argument for block diagonally dominant matrices. In certain one-dimensional or tree-like structures one can show that the pair is localised, for example in the chequerboard chain. For this one-dimensional system with periodic boundary condition the energy band for the pair is flat, the pair is localised.

  17. Inflation of the screening length induced by Bjerrum pairs.

    Science.gov (United States)

    Zwanikken, Jos; van Roij, René

    2009-10-21

    Within a modified Poisson-Boltzmann theory we study the effect of Bjerrum pairs on the typical length scale [Formula: see text] over which electric fields are screened in electrolyte solutions, taking into account a simple association-dissociation equilibrium between free ions and Bjerrum pairs. At low densities of Bjerrum pairs, this length scale is well approximated by the Debye length [Formula: see text], with ρ(s) the free-ion density. At high densities of Bjerrum pairs, however, we find [Formula: see text], which is significantly larger than 1/κ due to the enhanced effective permittivity of the electrolyte, caused by the polarization of Bjerrum pairs. We argue that this mechanism may explain the recently observed anomalously large colloid-free zones between an oil-dispersed colloidal crystal and a colloidal monolayer at the oil-water interface.

  18. An Intelligent Model for Pairs Trading Using Genetic Algorithms.

    Science.gov (United States)

    Huang, Chien-Feng; Hsu, Chi-Jen; Chen, Chi-Chung; Chang, Bao Rong; Li, Chen-An

    2015-01-01

    Pairs trading is an important and challenging research area in computational finance, in which pairs of stocks are bought and sold in pair combinations for arbitrage opportunities. Traditional methods that solve this set of problems mostly rely on statistical methods such as regression. In contrast to the statistical approaches, recent advances in computational intelligence (CI) are leading to promising opportunities for solving problems in the financial applications more effectively. In this paper, we present a novel methodology for pairs trading using genetic algorithms (GA). Our results showed that the GA-based models are able to significantly outperform the benchmark and our proposed method is capable of generating robust models to tackle the dynamic characteristics in the financial application studied. Based upon the promising results obtained, we expect this GA-based method to advance the research in computational intelligence for finance and provide an effective solution to pairs trading for investment in practice.

  19. Pair truncation for rotational nuclei: j=17/2 model

    International Nuclear Information System (INIS)

    Halse, P.; Jaqua, L.; Barrett, B.R.

    1989-01-01

    The suitability of the pair condensate approach for rotational states is studied in a single j=17/2 shell of identical nucleons interacting through a quadrupole-quadrupole Hamiltonian. The ground band and a K=2 excited band are both studied in detail. A direct comparison of the exact states with those constituting the SD and SDG subspaces is used to identify the important degrees of freedom for these levels. The range of pairs necessary for a good description is found to be highly state dependent; S and D pairs are the major constituents of the low-spin ground-band levels, while G pairs are needed for those in the γ band. Energy spectra are obtained for each truncated subspace. SDG pairs allow accurate reproduction of the binding energy and K=2 excitation energy, but still give a moment of inertia which is about 30% too small even for the lowest levels

  20. Overdensity of galaxies in the environment of quasar pairs

    Science.gov (United States)

    Sandrinelli, A.; Falomo, R.; Treves, A.; Scarpa, R.; Uslenghi, M.

    2018-03-01

    We report on a study of the galaxy environments of low redshift physical quasars pairs. We selected 20 pairs having projected separation Survey images, we evaluated the galaxy overdensity around these quasars in pairs and then compare it with that of a sample of isolated quasars with same redshift and luminosity. It is found that on average there is a systematic larger overdensity of galaxies around quasars in pairs with respect to that of isolated quasars. This may represent a significant link between nuclear activity and galaxy environment. However, at odds with that, the closest quasar pairs seem to inhabit poorer environments. Implications of present results and perspectives for future work are briefly discussed.

  1. Effects of Worked Examples, Example-Problem Pairs, and Problem-Example Pairs Compared to Problem Solving

    NARCIS (Netherlands)

    Van Gog, Tamara; Kester, Liesbeth; Paas, Fred

    2010-01-01

    Van Gog, T., Kester, L., & Paas, F. (2010, August). Effects of worked examples, example-problem pairs, and problem-example pairs compared to problem solving. Paper presented at the Biannual EARLI SIG meeting of Instructional design and Learning and instruction with computers, Ulm, Germany.

  2. On the combination of the Cooper pair and the Ogg pair in the high-Tc oxide superconductor

    International Nuclear Information System (INIS)

    Zhang Liyuan.

    1991-08-01

    In this paper it is argued that the superconductivity of the high-T c oxide superconductor (HTOS) can be explained by the combinating mechanism of the Cooper pair and the Ogg pair. The properties of the superconducting state of the HTOS have been calculated under this mechanism, and the theoretical results are overall consistent with the experiment. (author). 37 refs

  3. Merging a Pair of Supermassive Black Holes

    Science.gov (United States)

    Kohler, Susanna

    2016-10-01

    hydrodynamically, simulating the final stages of the galaxy merger.When the separation of the two SMBHs is small enough, the authors extract a spherical region of 5 kpc from around the pair and evolve this as an N-body simulation.Finally, the separation of the SMBHs becomes so small (0.01 pc) that gravitational-wave emission is the dominant loss of energy driving the inspiral. The authors add post-Newtonian terms into the N-body simulation to account for this.Time evolution of the separation between the SMBHs, beginning with the hydrodynamical simulation (blue), then transitioning to the direct N-body calculation (red), and ending with the introduction of post-Newtonian terms (green) to account for gravitational-wave emission. [Adapted from Khan et al. 2016]Successful CoalescenceKhan and collaborators complex approach allows them to simulate the entire process of the merger and SMBH coalescence, resulting in several key determinations.First, they demonstrate that the SMBHs can coalesce on timescales of only tens of Myr, which is roughly two orders of magnitude smaller than what was typically estimated before. They find that gas dissipation before the merger is instrumental in creating the conditions that allow for this rapid orbital decay.The authors also demonstrate that the gravitational potential of the galaxy merger remnant is triaxial throughout the merger. Khan and collaborators simulations confirm that this non-spherical potential solves the final parsec problem by sending stars on plunging orbits around the SMBHs. These more distant stars cause the SMBHs to lose angular momentum through dynamical friction and continue their inspiral, even when the stars immediately surrounding the SMBHs have been depleted.This simulation isan important step toward a better understanding of SMBH mergers. Its outcomes are especially promising for future gravitational-wave campaigns, as the short SMBH coalescence timescales indicate that these mergers could indeed be observable

  4. Electronic pairing mechanism due to band modification with increasing pair number

    International Nuclear Information System (INIS)

    Mizia, J.

    1995-01-01

    It is shown that a shift of an electron band with electron occupation number n, which is changing during the transition to the superconducting state, can lower the total energy of the system. In fact it will bring a negative contribution to the pairing potential, which is proportional to the product of the electron band shift with occupation number and the charge transfer during the transition to the superconducting state. The shift of the electron band comes from the change of stresses and the change of correlation effects in the CuO 2 plane with n, that in turn is caused by the changing oxygen concentration. This model explains the phenomenological success of Hirsch's model, which gives no explanation how the band shift in energy can give rise to superconductivity. (orig.)

  5. Twin photon pairs in a high-Q silicon microresonator

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Steven; Lu, Xiyuan [Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627 (United States); Jiang, Wei C. [Institute of Optics, University of Rochester, Rochester, New York 14627 (United States); Lin, Qiang, E-mail: qiang.lin@rochester.edu [Institute of Optics, University of Rochester, Rochester, New York 14627 (United States); Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York 14627 (United States)

    2015-07-27

    We report the generation of high-purity twin photon pairs through cavity-enhanced non-degenerate four-wave mixing (FWM) in a high-Q silicon microdisk resonator. Twin photon pairs are created within the same cavity mode and are consequently expected to be identical in all degrees of freedom. The device is able to produce twin photons at telecommunication wavelengths with a pair generation rate as large as (3.96 ± 0.03) × 10{sup 5} pairs/s, within a narrow bandwidth of 0.72 GHz. A coincidence-to-accidental ratio of 660 ± 62 was measured, the highest value reported to date for twin photon pairs, at a pair generation rate of (2.47 ± 0.04) × 10{sup 4} pairs/s. Through careful engineering of the dispersion matching window, we have reduced the ratio of photons resulting from degenerate FWM to non-degenerate FWM to less than 0.15.

  6. Parietal lesion effects on cued recall following pair associate learning.

    Science.gov (United States)

    Ben-Zvi, Shir; Soroker, Nachum; Levy, Daniel A

    2015-07-01

    We investigated the involvement of the posterior parietal cortex in episodic memory in a lesion-effects study of cued recall following pair-associate learning. Groups of patients who had experienced first-incident stroke, generally in middle cerebral artery territory, and exhibited damage that included lateral posterior parietal regions, were tested within an early post-stroke time window. In three experiments, patients and matched healthy comparison groups executed repeated study and cued recall test blocks of pairs of words (Experiment 1), pairs of object pictures (Experiment 2), or pairs of object pictures and environmental sounds (Experiment 3). Patients' brain CT scans were subjected to quantitative analysis of lesion volumes. Behavioral and lesion data were used to compute correlations between area lesion extent and memory deficits, and to conduct voxel-based lesion-symptom mapping. These analyses implicated lateral ventral parietal cortex, especially the angular gyrus, in cued recall deficits, most pronouncedly in the cross-modal picture-sound pairs task, though significant parietal lesion effects were also found in the unimodal word pairs and picture pairs tasks. In contrast to an earlier study in which comparable parietal lesions did not cause deficits in item recognition, these results indicate that lateral posterior parietal areas make a substantive contribution to demanding forms of recollective retrieval as represented by cued recall, especially for complex associative representations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. ON THE POLAR CAP CASCADE PAIR MULTIPLICITY OF YOUNG PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Timokhin, A. N.; Harding, A. K., E-mail: andrey.timokhin@nasa.gov [Astrophysics Science Division, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2015-09-10

    We study the efficiency of pair production in polar caps of young pulsars under a variety of conditions to estimate the maximum possible multiplicity of pair plasma in pulsar magnetospheres. We develop a semi-analytic model for calculation of cascade multiplicity which allows efficient exploration of the parameter space and corroborate it with direct numerical simulations. Pair creation processes are considered separately from particle acceleration in order to assess different factors affecting cascade efficiency, with acceleration of primary particles described by recent self-consistent non-stationary model of pair cascades. We argue that the most efficient cascades operate in the curvature radiation/synchrotron regime, the maximum multiplicity of pair plasma in pulsar magnetospheres is ∼few × 10{sup 5}. The multiplicity of pair plasma in magnetospheres of young energetic pulsars weakly depends on the strength of the magnetic field and the radius of curvature of magnetic field lines and has a stronger dependence on pulsar inclination angle. This result questions assumptions about very high pair plasma multiplicity in theories of pulsar wind nebulae.

  8. Pairing gaps from nuclear mean-field models

    International Nuclear Information System (INIS)

    Bender, M.; Rutz, K.; Maruhn, J.A.

    2000-01-01

    We discuss the pairing gap, a measure for nuclear pairing correlations, in chains of spherical, semi-magic nuclei in the framework of self-consistent nuclear mean-field models. The equations for the conventional BCS model and the approximate projection-before-variation Lipkin-Nogami method are formulated in terms of local density functionals for the effective interaction. We calculate the Lipkin-Nogami corrections of both the mean-field energy and the pairing energy. Various definitions of the pairing gap are discussed as three-point, four-point and five-point mass-difference formulae, averaged matrix elements of the pairing potential, and single-quasiparticle energies. Experimental values for the pairing gap are compared with calculations employing both a delta pairing force and a density-dependent delta interaction in the BCS and Lipkin-Nogami model. Odd-mass nuclei are calculated in the spherical blocking approximation which neglects part of the the core polarization in the odd nucleus. We find that the five-point mass difference formula gives a very robust description of the odd-even staggering, other approximations for the gap may differ from that up to 30% for certain nuclei. (orig.)

  9. The coevolution of long-term pair bonds and cooperation.

    Science.gov (United States)

    Song, Z; Feldman, M W

    2013-05-01

    The evolution of social traits may not only depend on but also change the social structure of the population. In particular, the evolution of pairwise cooperation, such as biparental care, depends on the pair-matching distribution of the population, and the latter often emerges as a collective outcome of individual pair-bonding traits, which are also under selection. Here, we develop an analytical model and individual-based simulations to study the coevolution of long-term pair bonds and cooperation in parental care, where partners play a Snowdrift game in each breeding season. We illustrate that long-term pair bonds may coevolve with cooperation when bonding cost is below a threshold. As long-term pair bonds lead to assortative interactions through pair-matching dynamics, they may promote the prevalence of cooperation. In addition to the pay-off matrix of a single game, the evolutionarily stable equilibrium also depends on bonding cost and accidental divorce rate, and it is determined by a form of balancing selection because the benefit from pair-bond maintenance diminishes as the frequency of cooperators increases. Our findings highlight the importance of ecological factors affecting social bonding cost and stability in understanding the coevolution of social behaviour and social structures, which may lead to the diversity of biological social systems. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  10. Separable pairing force for relativistic quasiparticle random-phase approximation

    International Nuclear Information System (INIS)

    Tian Yuan; Ma Zhongyu; Ring, Peter

    2009-01-01

    We have introduced a separable pairing force, which was adjusted to reproduce the pairing properties of the Gogny force in nuclear matter. This separable pairing force is able to describe in relativistic Hartree-Bogoliubov (RHB) calculations the pairing properties in the ground state of finite nuclei on almost the same footing as the original Gogny interaction. In this work we investigate excited states using the Relativistic Quasiparticle Random-Phase Approximation (RQRPA) with the same separable pairing force. For consistency the Goldstone modes and the convergence with various cutoff parameters in this version of RQRPA are studied. The first excited 2 + states for the chain of Sn isotopes with Z=50 and the chain of isotones with N=82 isotones are calculated in RQRPA together with the 3 - states of Sn isotopes. By comparing our results with experimental data and with the results of the original Gogny force we find that this simple separable pairing interaction is very successful in depicting the pairing properties of vibrational excitations.

  11. High Level Rule Modeling Language for Airline Crew Pairing

    Science.gov (United States)

    Mutlu, Erdal; Birbil, Ş. Ilker; Bülbül, Kerem; Yenigün, Hüsnü

    2011-09-01

    The crew pairing problem is an airline optimization problem where a set of least costly pairings (consecutive flights to be flown by a single crew) that covers every flight in a given flight network is sought. A pairing is defined by using a very complex set of feasibility rules imposed by international and national regulatory agencies, and also by the airline itself. The cost of a pairing is also defined by using complicated rules. When an optimization engine generates a sequence of flights from a given flight network, it has to check all these feasibility rules to ensure whether the sequence forms a valid pairing. Likewise, the engine needs to calculate the cost of the pairing by using certain rules. However, the rules used for checking the feasibility and calculating the costs are usually not static. Furthermore, the airline companies carry out what-if-type analyses through testing several alternate scenarios in each planning period. Therefore, embedding the implementation of feasibility checking and cost calculation rules into the source code of the optimization engine is not a practical approach. In this work, a high level language called ARUS is introduced for describing the feasibility and cost calculation rules. A compiler for ARUS is also implemented in this work to generate a dynamic link library to be used by crew pairing optimization engines.

  12. Analysis of Food Pairing in Regional Cuisines of India.

    Directory of Open Access Journals (Sweden)

    Anupam Jain

    Full Text Available Any national cuisine is a sum total of its variety of regional cuisines, which are the cultural and historical identifiers of their respective regions. India is home to a number of regional cuisines that showcase its culinary diversity. Here, we study recipes from eight different regional cuisines of India spanning various geographies and climates. We investigate the phenomenon of food pairing which examines compatibility of two ingredients in a recipe in terms of their shared flavor compounds. Food pairing was enumerated at the level of cuisine, recipes as well as ingredient pairs by quantifying flavor sharing between pairs of ingredients. Our results indicate that each regional cuisine follows negative food pairing pattern; more the extent of flavor sharing between two ingredients, lesser their co-occurrence in that cuisine. We find that frequency of ingredient usage is central in rendering the characteristic food pairing in each of these cuisines. Spice and dairy emerged as the most significant ingredient classes responsible for the biased pattern of food pairing. Interestingly while individual spices contribute to negative food pairing, dairy products on the other hand tend to deviate food pairing towards positive side. Our data analytical study highlighting statistical properties of the regional cuisines, brings out their culinary fingerprints that could be used to design algorithms for generating novel recipes and recipe recommender systems. It forms a basis for exploring possible causal connection between diet and health as well as prospection of therapeutic molecules from food ingredients. Our study also provides insights as to how big data can change the way we look at food.

  13. Analysis of Food Pairing in Regional Cuisines of India.

    Science.gov (United States)

    Jain, Anupam; N K, Rakhi; Bagler, Ganesh

    2015-01-01

    Any national cuisine is a sum total of its variety of regional cuisines, which are the cultural and historical identifiers of their respective regions. India is home to a number of regional cuisines that showcase its culinary diversity. Here, we study recipes from eight different regional cuisines of India spanning various geographies and climates. We investigate the phenomenon of food pairing which examines compatibility of two ingredients in a recipe in terms of their shared flavor compounds. Food pairing was enumerated at the level of cuisine, recipes as well as ingredient pairs by quantifying flavor sharing between pairs of ingredients. Our results indicate that each regional cuisine follows negative food pairing pattern; more the extent of flavor sharing between two ingredients, lesser their co-occurrence in that cuisine. We find that frequency of ingredient usage is central in rendering the characteristic food pairing in each of these cuisines. Spice and dairy emerged as the most significant ingredient classes responsible for the biased pattern of food pairing. Interestingly while individual spices contribute to negative food pairing, dairy products on the other hand tend to deviate food pairing towards positive side. Our data analytical study highlighting statistical properties of the regional cuisines, brings out their culinary fingerprints that could be used to design algorithms for generating novel recipes and recipe recommender systems. It forms a basis for exploring possible causal connection between diet and health as well as prospection of therapeutic molecules from food ingredients. Our study also provides insights as to how big data can change the way we look at food.

  14. Analysis of Food Pairing in Regional Cuisines of India

    Science.gov (United States)

    Bagler, Ganesh

    2015-01-01

    Any national cuisine is a sum total of its variety of regional cuisines, which are the cultural and historical identifiers of their respective regions. India is home to a number of regional cuisines that showcase its culinary diversity. Here, we study recipes from eight different regional cuisines of India spanning various geographies and climates. We investigate the phenomenon of food pairing which examines compatibility of two ingredients in a recipe in terms of their shared flavor compounds. Food pairing was enumerated at the level of cuisine, recipes as well as ingredient pairs by quantifying flavor sharing between pairs of ingredients. Our results indicate that each regional cuisine follows negative food pairing pattern; more the extent of flavor sharing between two ingredients, lesser their co-occurrence in that cuisine. We find that frequency of ingredient usage is central in rendering the characteristic food pairing in each of these cuisines. Spice and dairy emerged as the most significant ingredient classes responsible for the biased pattern of food pairing. Interestingly while individual spices contribute to negative food pairing, dairy products on the other hand tend to deviate food pairing towards positive side. Our data analytical study highlighting statistical properties of the regional cuisines, brings out their culinary fingerprints that could be used to design algorithms for generating novel recipes and recipe recommender systems. It forms a basis for exploring possible causal connection between diet and health as well as prospection of therapeutic molecules from food ingredients. Our study also provides insights as to how big data can change the way we look at food. PMID:26430895

  15. Preferred and avoided codon pairs in three domains of life

    Directory of Open Access Journals (Sweden)

    Tenson Tanel

    2008-10-01

    Full Text Available Abstract Background Alternative synonymous codons are not used with equal frequencies. In addition, the contexts of codons – neighboring nucleotides and neighboring codons – can have certain patterns. The codon context can influence both translational accuracy and elongation rates. However, it is not known how strong or conserved the codon context preferences in different organisms are. We analyzed 138 organisms (bacteria, archaea and eukaryotes to find conserved patterns of codon pairs. Results After removing the effects of single codon usage and dipeptide biases we discovered a set of neighboring codons for which avoidances or preferences were conserved in all three domains of life. Such biased codon pairs could be divided into subtypes on the basis of the nucleotide patterns that influence the bias. The most frequently avoided type of codon pair was nnUAnn. We discovered that 95.7% of avoided nnUAnn type patterns contain out-frame UAA or UAG triplets on the sense and/or antisense strand. On average, nnUAnn codon pairs are more frequently avoided in ORFeomes than in genomes. Thus we assume that translational selection plays a major role in the avoidance of these codon pairs. Among the preferred codon pairs, nnGCnn was the major type. Conclusion Translational selection shapes codon pair usage in protein coding sequences by rules that are common to all three domains of life. The most frequently avoided codon pairs contain the patterns nnUAnn, nnGGnn, nnGnnC, nnCGCn, GUCCnn, CUCCnn, nnCnnA or UUCGnn. The most frequently preferred codon pairs contain the patterns nnGCnn, nnCAnn or nnUnCn.

  16. Amperean Pairing and the Pseudogap Phase of Cuprate Superconductors

    Science.gov (United States)

    Lee, Patrick A.

    2014-07-01

    The enigmatic pseudogap phase in underdoped cuprate high-Tc superconductors has long been recognized as a central puzzle of the Tc problem. Recent data show that the pseudogap is likely a distinct phase, characterized by a medium range and quasistatic charge ordering. However, the origin of the ordering wave vector and the mechanism of the charge order is unknown. At the same time, earlier data show that precursive superconducting fluctuations are also associated with this phase. We propose that the pseudogap phase is a novel pairing state where electrons on the same side of the Fermi surface are paired, in strong contrast with conventional Bardeen-Cooper-Schrieffer theory which pairs electrons on opposite sides of the Fermi surface. In this state the Cooper pair carries a net momentum and belongs to a general class called pair density wave. The microscopic pairing mechanism comes from a gauge theory formulation of the resonating valence bond (RVB) picture, where spinons traveling in the same direction feel an attractive force in analogy with Ampere's effects in electromagnetism. We call this Amperean pairing. Charge order automatically appears as a subsidiary order parameter even when long-range pair order is destroyed by phase fluctuations. Our theory gives a prediction of the ordering wave vector which is in good agreement with experiment. Furthermore, the quasiparticle spectrum from our model explains many of the unusual features reported in photoemission experiments. The Fermi arc, the unusual way the tip of the arc terminates, and the relation of the spanning vector of the arc tips to the charge ordering wave vector also come out naturally. Finally, we propose an experiment that can directly test the notion of Amperean pairing.

  17. A nucleon-pair and boson coexistent description of nuclei

    Science.gov (United States)

    Dai, Lianrong; Pan, Feng; Draayer, J. P.

    2017-07-01

    We study a mixture of s-bosons and like-nucleon pairs with the standard pairing interaction outside an inert core. Competition between the nucleon-pairs and s-bosons is investigated in this scenario. The robustness of the BCS-BEC coexistence and crossover phenomena are examined through an analysis of pf-shell nuclei with realistic single-particle energies, in which two configurations with Pauli blocking of nucleon-pair orbits due to the formation of the s-bosons is taken into account. When the nucleon-pair orbits are considered to be independent of the s-bosons, the BCS-BEC crossover becomes smooth, with the number of the s-bosons noticeably more than that of the nucleon-pairs near the half-shell point, a feature that is demonstrated in the pf-shell for several values of the standard pairing interaction strength. As a further test of the robustness of the BCS-BEC coexistence and crossover phenomena in nuclei, results are given for values of even-even 102-130Sn with 100Sn taken as a core and valence neutron pairs confined within the 1d 5/2, 0g 7/2, 1d 3/2, 2s 1/2, 1h 11/2 orbits in the nucleon-pair orbit and the s-boson independent approximation. The results indicate that the B(E2) values are reproduced well. Supported by National Natural Science Foundation of China (11375080, 11675071), the U.S. National Science Foundation (OCI-0904874 and ACI-1516338), U. S. Department of Energy (DE-SC0005248), the Southeastern Universities Research Association, the China-U. S. Theory Institute for Physics with Exotic Nuclei (CUSTIPEN) (DE-SC0009971), and the LSU-LNNU joint research program (9961) is acknowledged

  18. Hybrid TLC-pair meter for the Sphinx Project

    Science.gov (United States)

    Wada, T.; Yamamoto, I.; Takahashi, N.; Misaki, A.

    1985-01-01

    The chief aims in THE SPHINX PROJECT are research of super lepton physics and new detector experiments. At the second phase of THE SPHINX PROJECT, a hybrid TLC-PAIR METER was designed for measuring high energy neutrino sources (E upsilon * TeV), searching high energy muon sources (E mu TeV) and measuring muon group (E mu 1 TeV). The principle of PAIR METER has been already proposed. In this TLC-PAIR METER, electromagnetic shower induced by cosmic ray muons are detected using TL (Thermoluminescence) sheets with position counters.

  19. Hybrid TLC-pair meter for the Sphinx Project

    International Nuclear Information System (INIS)

    Wada, T.; Yamamoto, I.; Takahashi, N.; Misaki, A.

    1985-01-01

    The chief aims in the Sphinx Project are research on super lepton physics and new detector experiments. In the second phase of the Sphinx Project, a hybrid TLC-pair meter was designed for measuring for high energy neutrino sources (E upsilon * TeV), searching high energy muon sources (E mu TeV), and measuring muon groups (E mu 1 TeV). The principle of the pair meter has been already proposed. In this TLC pair meter, electromagnetic showers induced by cosmic ray muons are detected using thermoluminescene sheets with position counters

  20. Structure of 2,4-Diaminopyrimidine - Theobromine Alternate Base Pairs

    Science.gov (United States)

    Gengeliczki, Zsolt; Callahan, Michael P.; Kabelac, Martin; Rijs, Anouk M.; deVries, Mattanjah S.

    2011-01-01

    We report the structure of clusters of 2,4-diaminopyrimidine with 3,7-dimethylxanthine (theobromine) in the gas phase determined by IR-UV double resonance spectroscopy in both the near-IR and mid-IR regions in combination with ab initio computations. These clusters represent potential alternate nucleobase pairs, geometrically equivalent to guanine-cytosine. We have found the four lowest energy structures, which include the Watson-Crick base pairing motif. This Watson-Crick structure has not been observed by resonant two-photon ionization (R2PI) in the gas phase for the canonical DNA base pairs.

  1. ΛΛ pairing in NΛ composite matter

    International Nuclear Information System (INIS)

    Tanigawa, Tomonori; Matsuzaki, Masayuki; Chiba, Satoshi

    2002-01-01

    ΛΛ pairing correlation in binary mixed matter of nucleons and lambdas is studied within the relativistic Hartree-Bogoliubov model. Λ hyperons to be paired up are immersed in background nucleons in normal state. A phenomenological ΛΛ interaction, which is derived relativistically from the Lagrangian of the system, is adopted to the gap equation. It is found that increasing the nucleon density makes the ΛΛ pairing gap suppressed. This result suggests a mechanism, specific to relativistic models, of its dependence on the nucleon density. (author)

  2. ΛΛ pairing in NΛ composite matter

    International Nuclear Information System (INIS)

    Tanigawa, Tomonori; Matsuzaki, Masayuki; Chiba, Satoshi

    2003-01-01

    ΛΛ pairing correlation in binary mixed matter of nucleons and lambdas is studied within the relativistic Hartree-Bogoliubov model. Λ hyperons to be paired up are immersed in background nucleons in normal state. A phenomenological ΛΛ interaction, which is derived relativistically from the Lagrangian of the system, is adopted to the gap equation. It is found that increasing the nucleon density makes the ΛΛ pairing gap suppressed. This result suggests a mechanism, specific to relativistic models, of its dependence on the nucleon density. (author)

  3. Wigner function and tomogram of the pair coherent state

    International Nuclear Information System (INIS)

    Meng, Xiang-Guo; Wang, Ji-Suo; Fan, Hong-Yi

    2007-01-01

    Using the entangled state representation of Wigner operator and the technique of integration within an ordered product (IWOP) of operators, the Wigner function of the pair coherent state is derived. The variations of the Wigner function with the parameters α and q in the ρ-γ phase space are discussed. The physical meaning of the Wigner function for the pair coherent state is given by virtue of its marginal distributions. The tomogram of the pair coherent state is calculated with the help of the Radon transform between the Wigner operator and the projection operator of the entangled state |η 1 ,η 2 ,τ 1 ,τ 2 >

  4. Pair production by a constant external field in noncommutative QED

    International Nuclear Information System (INIS)

    Chair, N.; Sheikh-Jabbari, M.M.

    2000-09-01

    In this paper we study QED on the noncommutative space in the constant electro-magnetic field background. Using the explicit solutions of the noncommutative version of Dirac equation in such background, we show that there are well-defined in and out-going asymptotic states and also there is a causal Green's function. We calculate the pair production rate in this case. We show that at tree level noncommutativity will not change the pair production and the threshold electric field. We also calculate the pair production rate considering the first loop corrections. In this case we show that the threshold electric field is decreased by the noncommutativity effects. (author)

  5. {lambda}{lambda} pairing in N{lambda} composite matter

    Energy Technology Data Exchange (ETDEWEB)

    Tanigawa, Tomonori [Japan Society for the Promotion of Science, Tokyo (Japan); Matsuzaki, Masayuki [Japan Atomic Energy Research Inst., Tokyo (Japan); Chiba, Satoshi [Fukuoka Univ. of Education, Dept. of Physics, Munakata, Fukuoka (Japan)

    2002-09-01

    {lambda}{lambda} pairing correlation in binary mixed matter of nucleons and lambdas is studied within the relativistic Hartree-Bogoliubov model. {lambda} hyperons to be paired up are immersed in background nucleons in normal state. A phenomenological {lambda}{lambda} interaction, which is derived relativistically from the Lagrangian of the system, is adopted to the gap equation. It is found that increasing the nucleon density makes the {lambda}{lambda} pairing gap suppressed. This result suggests a mechanism, specific to relativistic models, of its dependence on the nucleon density. (author)

  6. Learning preferences from paired opposite-based semantics

    DEFF Research Database (Denmark)

    Franco de los Ríos, Camilo; Rodríguez, J. Tinguaro; Montero, Javier

    2017-01-01

    Preference semantics examine the meaning of the preference predicate, according to the way that alternatives can be understood and organized for decision making purposes. Through opposite-based semantics, preference structures can be characterized by their paired decomposition of preference...... on the character of opposition, the compound meaning of preference emerges from the fuzzy reinforcement of paired opposite concepts, searching for significant evidence for affirming dominance among the decision objects. Here we propose a general model for the paired decomposition of preference, examining its...

  7. Alpha-transfer reactions and the pairing-vibration model

    International Nuclear Information System (INIS)

    Betts, R.R.

    1977-01-01

    The pairing-vibration model with isospin is extended to include α-transfer reactions. Selection rules and expressions for transition strengths are derived and compared with experimental results for A = 40--66 nuclei. The selection rules are found to be followed quite well in the examples studied. The systematics of ground-state transition strengths are qualitatively quite well reproduced although the quantitative agreement is poor. When the changing nature of the pairing quanta is incorporated using two-particle transfer data the agreement becomes quantitatively good. Evidence is presented for clustering other than that due to pairing in 40 Ca and 44 Ti

  8. QED peripheral mechanism of pair production at colliders

    International Nuclear Information System (INIS)

    Ahmadov, A. I.; Galynskii, M. V.; Bystritskiy, Yu. M.; Kuraev, E. A.; Shatnev, M. G.

    2008-01-01

    Cross sections of the processes of production of neutral pions and pairs of charged fermions and bosons in peripheral interaction of leptons and photons are calculated in the main logarithmic approximation. We investigate the phase volumes and differential cross sections. The differential cross sections of production of a few neutral pions and a few pairs are written down explicitly. Considering the academic problem of summation over a number of pairs for massless particles we reproduce the known results obtained in the 1970s. The possibility of constructing the generator for Monte Carlo modeling of these processes based on these results is discussed.

  9. General form of Darboux transformations for Lax pairs

    International Nuclear Information System (INIS)

    Zhou Zixiang.

    1988-03-01

    In this paper, the author finds all the Darboux transformations for general Lax pair with coefficients analytic to spectral parameter. The auto-Baecklund property of these Darboux transformations for n x n system is also verified. (author). 7 refs

  10. Using Single Colors and Color Pairs to Communicate Basic Tastes

    Directory of Open Access Journals (Sweden)

    Andy T. Woods

    2016-07-01

    Full Text Available Recently, it has been demonstrated that people associate each of the basic tastes (e.g., sweet, sour, bitter, and salty with specific colors (e.g., red, green, black, and white. In the present study, we investigated whether pairs of colors (both associated with a particular taste or taste word would give rise to stronger associations relative to pairs of colors that were associated with different tastes. We replicate the findings of previous studies highlighting the existence of a robust crossmodal correspondence between individual colors and basic tastes. However, while there was evidence that pairs of colors could indeed communicate taste information more consistently than single colors, our participants took more than twice as long to match the color pairs with tastes than the single colors. Possible reasons for these results are discussed.

  11. Using Single Colors and Color Pairs to Communicate Basic Tastes.

    Science.gov (United States)

    Woods, Andy T; Spence, Charles

    2016-01-01

    Recently, it has been demonstrated that people associate each of the basic tastes (e.g., sweet, sour, bitter, and salty) with specific colors (e.g., red, green, black, and white). In the present study, we investigated whether pairs of colors (both associated with a particular taste or taste word) would give rise to stronger associations relative to pairs of colors that were associated with different tastes. We replicate the findings of previous studies highlighting the existence of a robust crossmodal correspondence between individual colors and basic tastes. However, while there was evidence that pairs of colors could indeed communicate taste information more consistently than single colors, our participants took more than twice as long to match the color pairs with tastes than the single colors. Possible reasons for these results are discussed.

  12. Observation of muon-electron pairs in neutrino reactions

    International Nuclear Information System (INIS)

    Hoffmann, D.

    1980-05-01

    The present thesis describes the observation of muon-electron pairs in neutrino reactions. This experiment was performed using an optical multiplate spark chamber in the broad band neutrino beam of the CERN proton synchrotron. (orig.) [de

  13. Complexation of Nitrous Oxide by Frustrated Lewis Pairs

    NARCIS (Netherlands)

    Otten, Edwin; Neu, Rebecca C.; Stephan, Douglas W.

    2009-01-01

    Frustrated Lewis pairs comprised of a basic yet sterically encumbered phosphine with boron Lewis acids bind nitrous oxide to give intact PNNOB linkages. The synthesis, structure, and bonding of these species are described.

  14. Crystal structure and pair potentials: A molecular-dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, M.; Rahman, A.

    1980-10-06

    With use of a Lagrangian which allows for the variation of the shape and size of the periodically repeating molecular-dynamics cell, it is shown that different pair potentials lead to different crystal structures.

  15. On the pair creation effect in radiative charmonium transitions

    International Nuclear Information System (INIS)

    Lewin, K.

    1985-01-01

    Contribution to radiative charmonium decay amplitudes which come from Feynman diagrams containing creation of internal c anti c quark pair is investigated. The a im of the paper is calulation of this pair creation correction to the wave function overlap integral of the transition amplitude in a quasilocal semirelativistic approximation which works for charmed and heavier quark pairs. The application to the decay width of the spin flip transition psi(3685) → γchi(3415) givesa 12% correction to the nopair term using a meson radius near 0.5 Fm and a scale parameter Λ=400 MeV taken from fits inchar=monium spectroscopy. The error of the approximation is estimated to be smaller than 50%. The investigation indicates that also in the case of electroweak meson decays quatitative results cannot be expected from the no-pair contribution alone

  16. Model of pair aggregation on the Bethe lattice

    DEFF Research Database (Denmark)

    Baillet, M.V.-P.; Pacheco, A.F.; Gómez, J.B.

    1997-01-01

    We extend a recent model of aggregation of pairs of particles, analyzing the case in which the supporting framework is a Bethe lattice. The model exhibits a critical behavior of the percolation theory type....

  17. The pairing theory - its physical basis and its consequences

    International Nuclear Information System (INIS)

    Schrieffer, J.R.

    1992-01-01

    The key developments which set the scene for the microscopic theory of superconductivity are discussed and the physical reasoning which lead to the pairing theory is presented. Consequences of the BCS theory are reviewed. (orig.)

  18. Sensitivity of Electron Transfer Mediated Decay to Ion Pairing.

    Science.gov (United States)

    Pohl, Marvin N; Richter, Clemens; Lugovoy, Evgeny; Seidel, Robert; Slavíček, Petr; Aziz, Emad F; Abel, Bernd; Winter, Bernd; Hergenhahn, Uwe

    2017-08-17

    Ion pairing in electrolyte solutions remains a topic of discussion despite a long history of research. Very recently, nearest-neighbor mediated electronic de-excitation processes of core hole vacancies (electron transfer mediated decay, ETMD) were proposed to carry a spectral fingerprint of local solvation structure and in particular of contact ion pairs. Here, for the first time, we apply electron-electron coincidence detection to a liquid microjet, and record ETMD spectra of Li 1s vacancies in aqueous solutions of lithium chloride (LiCl) in direct comparison to lithium acetate (LiOAc). A change in the ETMD spectrum dependent on the electrolyte anion identity is observed for 4.5 M salt concentration. We discuss these findings within the framework of the formation and presence of contact ion pairs and the unique sensitivity of ETMD spectroscopy to ion pairing.

  19. Programmable trigger for electron pairs in ring image Cherenkov counters

    International Nuclear Information System (INIS)

    Glab, J.; Baur, R.; Manner, R.

    1990-01-01

    This paper describes a programmable trigger processor for the recognition of Cherenkov rings in a RICH counter. It identifies open electron pairs and suppresses close conversion and Dalitz pairs within 20 μs. More generally, the system can be used for correlating pixel images with pattern masks in order to locate all relatively well defined patterns of a certain type. The trigger processor consists of a systolic processor array of 160 x 176, i.e., 28,160 identical processing elements (PEs) that filter out open electron pairs, and a pseudo adder array that determines whether there was at least one such pair. The processor array is assembled of 20 x 22 VLSI chips containing 8 x 8 PEs each. The semi-custom chip has been developed in 2 μ CMOS standard cell technology

  20. Butterflyfishes as a System for Investigating Pair Bonding

    KAUST Repository

    Nowicki, Jessica; O'Connell, Lauren; Cowman, Peter F; Walker, Stefan; Coker, Darren James; Pratchett, Morgan

    2017-01-01

    from the late Miocene to recent. In six sympatric and wide-spread species representing a clade with one ancestrally reconstructed transition from paired to solitary grouping, we then verified social systems at Lizard Island, Australia. In situ

  1. Nuclear pairing reduction due to rotation and blocking

    International Nuclear Information System (INIS)

    Wu, X.; Zhang, Z. H.; Zeng, J. Y.; Lei, Y. A.

    2011-01-01

    Nuclear pairing gaps of normally deformed and superdeformed nuclei are investigated using the particle-number-conserving (PNC) formalism for the cranked shell model, in which the blocking effects are treated exactly. Both rotational frequency ω dependence and seniority (number of unpaired particles) ν dependence of the pairing gap Δ-tilde are investigated. For the ground-state bands of even-even nuclei, PNC calculations show that, in general, Δ-tilde decreases with increasing ω, but the ω dependence is much weaker than that calculated by the number-projected Hartree-Fock-Bogolyubov approach. For the multiquasiparticle bands (seniority ν>2), the pairing gaps stay almost ω independent. As a function of the seniority ν, the bandhead pairing gaps Δ-tilde(ν,ω=0) decrease slowly with increasing ν. Even for the highest seniority ν bands identified so far, Δ-tilde(ν,ω=0) remains greater than 70% of Δ-tilde(ν=0,ω=0).

  2. Pair distribution function and structure factor of spherical particles

    International Nuclear Information System (INIS)

    Howell, Rafael C.; Proffen, Thomas; Conradson, Steven D.

    2006-01-01

    The availability of neutron spallation-source instruments that provide total scattering powder diffraction has led to an increased application of real-space structure analysis using the pair distribution function. Currently, the analytical treatment of finite size effects within pair distribution refinement procedures is limited. To that end, an envelope function is derived which transforms the pair distribution function of an infinite solid into that of a spherical particle with the same crystal structure. Distributions of particle sizes are then considered, and the associated envelope function is used to predict the particle size distribution of an experimental sample of gold nanoparticles from its pair distribution function alone. Finally, complementing the wealth of existing diffraction analysis, the peak broadening for the structure factor of spherical particles, expressed as a convolution derived from the envelope functions, is calculated exactly for all particle size distributions considered, and peak maxima, offsets, and asymmetries are discussed

  3. Hot accretion disks with electron-positron pairs

    International Nuclear Information System (INIS)

    White, T.R.; Lightman, A.P.

    1989-01-01

    The hot thermal accretion disks of the 1970s are studied and consideration is given to the effects of electron-positron pairs, which were originally neglected. It is found that disks cooled by internally produced photons have a critical accretion rate above which equilibrium is not possible in a radial annulus centered around r = 10 GM/c-squared, where M is the mass of the central object. This confirms and extends previous work by Kusunose and Takahara. Above the critical rate, pairs are created more rapidly than they can be destroyed. Below the critical rate, there are two solutions to the disk structure, one with a high pair density and one with a low pair density. Depending on the strength of the viscosity, the critical accretion rate corresponds to a critical luminosity of about 3-10 percent of the Eddington limit. 32 refs

  4. Electron Waiting Times of a Cooper Pair Splitter

    Science.gov (United States)

    Walldorf, Nicklas; Padurariu, Ciprian; Jauho, Antti-Pekka; Flindt, Christian

    2018-02-01

    Electron waiting times are an important concept in the analysis of quantum transport in nanoscale conductors. Here we show that the statistics of electron waiting times can be used to characterize Cooper pair splitters that create spatially separated spin-entangled electrons. A short waiting time between electrons tunneling into different leads is associated with the fast emission of a split Cooper pair, while long waiting times are governed by the slow injection of Cooper pairs from a superconductor. Experimentally, the waiting time distributions can be measured using real-time single-electron detectors in the regime of slow tunneling, where conventional current measurements are demanding. Our work is important for understanding the fundamental transport processes in Cooper pair splitters and the predictions may be verified using current technology.

  5. Electron Waiting Times of a Cooper Pair Splitter

    DEFF Research Database (Denmark)

    Walldorf, Nicklas; Padurariu, Ciprian; Jauho, Antti-Pekka

    2018-01-01

    Electron waiting times are an important concept in the analysis of quantum transport in nanoscale conductors. Here we show that the statistics of electron waiting times can be used to characterize Cooper pair splitters that create spatially separated spin-entangled electrons. A short waiting time...... between electrons tunneling into different leads is associated with the fast emission of a split Cooper pair, while long waiting times are governed by the slow injection of Cooper pairs from a superconductor. Experimentally, the waiting time distributions can be measured using real-time single......-electron detectors in the regime of slow tunneling, where conventional current measurements are demanding. Our work is important for understanding the fundamental transport processes in Cooper pair splitters and the predictions may be verified using current technology....

  6. Pairs Trading to the Commodities Futures Market Using Cointegration Method

    Directory of Open Access Journals (Sweden)

    Cüneyt Ungever

    2015-10-01

    Full Text Available This paper investigates pairs trading strategy by using the cointegration method among the 10 most popular agricultural future markets. It is found that only in 2 pairs shows trading signal. The pairs trading strategy is performed in two stages that are the formation period and the trading period with daily futures data from 2004 to 2015. After the formation period was constructed, it is assumed that the cointegration error continues to hold the trading period same as it does for the formation period. The pairs trading strategy is created by the long position cotton and the short position coffee and also long position cotton and short position the livecattle. It is found that the profitability of this strategy worked well in both formation period and trading period.

  7. An exact fermion-pair to boson mapping

    International Nuclear Information System (INIS)

    Johnson, C.W.

    1993-01-01

    I derive in a novel fashion exact formulas for the calculation of general matrix elements, including the overlap (norm) matrix, between states constructed from fermion pairs. Mapping the fermion pairs to bosons, I show how to construct finite and exact (in the sense of preserving matrix elements) boson representations of the norm operator and one- and two-fermion operators. This may lead to a microscopic basis for the Interacting Boson Model, as well as new truncation schemes for the nuclear shell model

  8. Pair q-coherent states and their antibunching effects

    International Nuclear Information System (INIS)

    Wang Zhongqing; Li Junhong; An Guanglei; Chongqing Univ. of Posts and Telecommunications, Chongqing

    2005-01-01

    Using the properties of the q-deformed boson creation and annihilation operators and their inverse operators, two kind of q-deformed pair coherent states are introduced. Antibunching effects and correlation properties between two modes in the states are investigated. It is shown that q-deformed pair coherent states exhibit antibunching effects and the photons of the two modes are correlated. These nonclassical effects are influenced by the parameter q. These effects increase when |lnq| increases. (authors)

  9. Recoil effects in multiphoton electron-positron pair creation

    International Nuclear Information System (INIS)

    Krajewska, K.; Kaminski, J. Z.

    2010-01-01

    Triply differential probability rates for electron-positron pair creation in laser-nucleus collisions, calculated within the S-matrix approach, are investigated as functions of the nuclear recoil. Pronounced enhancements of differential probability rates of multiphoton pair production are found for a nonzero momentum transfer from the colliding nucleus. The corresponding rates show a very dramatic dependence on the polarization of the laser field impinging on the nucleus; only for a linearly polarized light are the multiphoton rates for electron-positron pair production considerably large. We focus therefore on this case. Our numerical results for different geometries of the reaction particles demonstrate that, for the linearly polarized laser field of an infinite extent (which is a good approximation for femtosecond laser pulses), the pair creation is far more efficient if the nucleus is detected in the direction of the laser-field propagation. The corresponding angular distributions of the created particles show that the high-energy pairs are predominantly produced in the plane spanned by the polarization vector and the laser-field propagation direction, while the low-energy pairs are rather spread around the latter of the two directions. The enhancement of differential probability rates at each energy sector, defined by the four-momentum conservation relation, is observed with varying the energy of the produced particles. The total probability rates of pair production are also evaluated and compared with the corresponding results for the case when one disregards the recoil effect. A tremendous enhancement of the total probability rates of the electron-positron pair creation is observed if one takes into account the nuclear recoil.

  10. Modification of the isotope effect due to pair breaking

    International Nuclear Information System (INIS)

    Carbotte, J.P.; Greeson, M.; Perez-Gonzalez, A.

    1991-01-01

    We have calculated the effect of pair breaking on the isotope-effect coefficient (β) of a superconductor. We find that, as the pair-breaking scattering rate is increased, β also increases in absolute value. Values of β much larger than the canonical value of 1/2 can easily be achieved even in models where the electron-phonon interaction contributes only a very small amount to the value of the intrinsic critical temperature

  11. PAIR PRODUCTION IN LOW-LUMINOSITY GALACTIC NUCLEI

    International Nuclear Information System (INIS)

    Moscibrodzka, M.; Gammie, C. F.; Dolence, J. C.; Shiokawa, H.

    2011-01-01

    Electron-positron pairs may be produced near accreting black holes by a variety of physical processes, and the resulting pair plasma may be accelerated and collimated into a relativistic jet. Here, we use a self-consistent dynamical and radiative model to investigate pair production by γγ collisions in weakly radiative accretion flows around a black hole of mass M and accretion rate M-dot . Our flow model is drawn from general relativistic magnetohydrodynamic simulations, and our radiation field is computed by a Monte Carlo transport scheme assuming the electron distribution function is thermal. We argue that the pair production rate scales as r -6 M -1 M-dot 6 . We confirm this numerically and calibrate the scaling relation. This relation is self-consistent in a wedge in M, M-dot parameter space. If M-dot is too low the implied pair density over the poles of the black hole is below the Goldreich-Julian density and γγ pair production is relatively unimportant; if M-dot is too high the models are radiatively efficient. We also argue that for a power-law spectrum the pair production rate should scale with the observables L X ≡ X-ray luminosity and M as L 2 X M -4 . We confirm this numerically and argue that this relation likely holds even for radiatively efficient flows. The pair production rates are sensitive to black hole spin and to the ion-electron temperature ratio which are fixed in this exploratory calculation. We finish with a brief discussion of the implications for Sgr A* and M87.

  12. Lepton pair production at ISR energies and QCD

    International Nuclear Information System (INIS)

    Altarelli, G.; Martinelli, G.

    1985-01-01

    Motivated by some recent results from the ISR we have considered all available data on the production of Drell-Yan pairs by high energy proton beams. We show that the lepton pair cross sections and qsub(T) distributions are correctly described by QCD using the known distributions of partons in the proton and acceptable values of the QCD scale Λ. No other free parameter is required. Within the accuracy of the data no appreciable intrinsic transverse momentum is needed. (orig.)

  13. Determination of constants of factorized pairing force from conservation laws

    International Nuclear Information System (INIS)

    Voronkov, Yu.P.; Mikhajlov, V.M.

    1975-01-01

    The constants of a factorized interaction in the particle-particle channel are evaluated on the basis of average field parameters and Cooper pairing. The relations between the constants of multipole particle-particle forces are derived for the spherical nuclei. The constants of the quadrupole pairing are obtained for deformed nuclei from the angular momentum conservation law. The calculated constants are compared with empiricalones

  14. Training IBM Watson using Automatically Generated Question-Answer Pairs

    OpenAIRE

    Lee, Jangho; Kim, Gyuwan; Yoo, Jaeyoon; Jung, Changwoo; Kim, Minseok; Yoon, Sungroh

    2016-01-01

    IBM Watson is a cognitive computing system capable of question answering in natural languages. It is believed that IBM Watson can understand large corpora and answer relevant questions more effectively than any other question-answering system currently available. To unleash the full power of Watson, however, we need to train its instance with a large number of well-prepared question-answer pairs. Obviously, manually generating such pairs in a large quantity is prohibitively time consuming and...

  15. Paired quasars near NGC 2639: Evidence for quasars in superclusters

    International Nuclear Information System (INIS)

    Ford, H.; Ciardullo, R.; Harms, R.

    1983-01-01

    Arp found 10 quasars near a low-redshift galaxy 27' SSE of NGC 2639. Six of the quasars can be grouped into three redshift pairs which align across the anonymous galaxy. The large number of quasars and pairings could show an association with the low-redshift galaxy, or alternatively, might be due to superclusters seen along the line of sight. We tested the latter hypothesis by using deep, red-sensitive Lick 3 m prime focus plates to search for a supercluster associated with the z = 0.3 quasar pair. The plates show extended nebulosity associated with the quasar U10 (thetaapprox.7'', or 20 kpc at z = 0.3) and a richness class 1, Bautz-Morgan type III cluster 4' NW of U10. A spectrum of one the cluster's brightest galaxies gives z = 0.34, suggesting that the cluster and quasar are unassociated. We obtained spectra of eight of the quasars and find that (i) two of the quasars have very strong absorption shortward of Lyα, and (ii) two of Arp's redshifts (including one which Arp considered uncertain) are incorrect. Our redshifts break two of the redshift pairs, including the pair at z = 0.3. We use the redshift distribution of optically selected quasars to argue that the third pair has no statistical significance, and conclude that there is no basis for associating the quasars with the low-redshift anonymous galaxy. The disappearance of the redshift pairs vitiates the possibility of testing the paired-quasars-in-superclusters hypothesis in the NGC 2639 field

  16. Investigation of the paired-gear method in selectivity studies

    DEFF Research Database (Denmark)

    Sistiaga, Manu; Herrmann, Bent; Larsen, R.B.

    2009-01-01

    was repeated throughout the eight cases in this investigation. When using the paired-gear method, the distribution of the estimated L50 and SR is wider; the distribution of the estimated split parameter has a higher variability than the true split; the estimated mean L50 and SR can be biased; the estimated...... recommend that the methodology used to obtain selectivity estimates using the paired-gear method be reviewed....

  17. Deformed nuclear state as a quasiparticle-pair

    International Nuclear Information System (INIS)

    Dobaczewski, J.; Skalski, J.

    1988-01-01

    The deformed nuclear states, obtained in terms of the Hartree-Fock plus BCS method with the Skyrme SIII interaction, are approximated by condensates of the low-angular-momentum quasiparticle and particle pairs. The optimal pairs are determined by the variation after truncation method. The influence of the truncation on the deformation energy and the importance of the core-polarization effects are investigated

  18. Asymmetric information capacities of reciprocal pairs of quantum channels

    Science.gov (United States)

    Rosati, Matteo; Giovannetti, Vittorio

    2018-05-01

    Reciprocal pairs of quantum channels are defined as completely positive transformations which admit a rigid, distance-preserving, yet not completely positive transformation that allows one to reproduce the outcome of one from the corresponding outcome of the other. From a classical perspective these transmission lines should exhibit the same communication efficiency. This is no longer the case in the quantum setting: explicit asymmetric behaviors are reported studying the classical communication capacities of reciprocal pairs of depolarizing and Weyl-covariant channels.

  19. Majorana edge States in atomic wires coupled by pair hopping.

    Science.gov (United States)

    Kraus, Christina V; Dalmonte, Marcello; Baranov, Mikhail A; Läuchli, Andreas M; Zoller, P

    2013-10-25

    We present evidence for Majorana edge states in a number conserving theory describing a system of spinless fermions on two wires that are coupled by pair hopping. Our analysis is based on a combination of a qualitative low energy approach and numerical techniques using the density matrix renormalization group. In addition, we discuss an experimental realization of pair-hopping interactions in cold atom gases confined in optical lattices.

  20. Pair correlation of particles in strongly nonideal systems

    International Nuclear Information System (INIS)

    Vaulina, O. S.

    2012-01-01

    A new semiempirical model is proposed for describing the spatial correlation between interacting particles in nonideal systems. The developed model describes the main features in the behavior of the pair correlation function for crystalline structures and can also be used for qualitative and quantitative description of the spatial correlation of particles in strongly nonideal liquid systems. The proposed model is compared with the results of simulation of the pair correlation function.

  1. The Potts model and flows. 1. The pair correlation function

    International Nuclear Information System (INIS)

    Essam, J.W.; Tsallis, C.

    1985-01-01

    It is shown that the partition function for the lambda-state Potts model with pair-interactions is related to the expected number of integer mod-lambda flows in a percolation model. The relation is generalised to the pair correlation function. The resulting high temperature expansion coefficients are shown to be the flow polynomials of graph theory. An observation of Tsallis and Levy concerning the equivalent transmissivity of a cluster is also proved. (Author) [pt

  2. Pairing field and moments of inertia of superdeformed nuclei

    International Nuclear Information System (INIS)

    Chen Yongjing; Chen Yongshou; Xu Fuxin

    2002-01-01

    The authors have systematically analysed the dynamic moments of inertia of the experimental superdeformed (SD) bands observed in the A = 190, 150 and 60-80 mass regions as functions of rotational frequency. By combining the different mass regions, the dramatic features of the dynamic moments of inertia were found and explained based on the calculations of the pairing fields of SD nuclei with the anisotropic harmonic oscillator quadrupole pairing Hartree-Fock-Bogoliubov model

  3. Hybridized plasmon in an asymmetric cut-wire-pair structure

    Energy Technology Data Exchange (ETDEWEB)

    Tung, Nguyen Thanh [Vietnamese Military Academy of Science and Technology, Hanoi (Viet Nam); Hanyang University, Seoul (Korea, Republic of); Rhee, Joo Yull [Sungkyunkwan University, Suwon (Korea, Republic of); Park, Jin Woo; Lee, Young Pak [Hanyang University, Seoul (Korea, Republic of)

    2010-12-15

    In this report, we discuss an electromagnetic analog of the molecular-orbital theory for metamaterial structures. We show that the electromagnetic responses of a metamagnetic structure consisting of paired cut-wires can be well understood by using the plasmon-hybridization mechanism. The simulated transmission spectra of the asymmetric cut-wire-pair structure, which were obtained utilizing the transfer-matrix method, strongly support our suggestion.

  4. Lax Pairs for Discrete Integrable Equations via Darboux Transformations

    International Nuclear Information System (INIS)

    Cao Ce-Wen; Zhang Guang-Yao

    2012-01-01

    A method is developed to construct discrete Lax pairs using Darboux transformations. More kinds of Lax pairs are found for some newly appeared discrete integrable equations, including the H1, the special H3 and the Q1 models in the Adler—Bobenko—Suris list and the closely related discrete and semi-discrete pKdV, pMKdV, SG and Liouville equations. (general)

  5. Secondary partitioning isotope effects on solvolytic ion pair intermediates

    International Nuclear Information System (INIS)

    Abbey, K.J.

    1976-01-01

    The thermal decomposition of N-benzhydryl N-nitrosobenzamide (BNB) has been shown to produce an ion pair which either forms ester or reacts with the solvent. In ethanol, the fraction of ester produced, R, was much smaller than R values obtained from solvolysis or from the diphenyldiazomethane (DDM)-benzoic acid reaction, which was suggested to yield the same ion pair as solvolysis. This difference led to the conclusion that the ionic species for the nitrosamide decomposition is a nitrogen-separated ion pair. This study was initiated on the assumption that BNB led to solvolytic ion pairs, but that both the intimate and solvent-separated ion pairs were produced directly from the nitrosamide. The use of α-tritiated BNB for the study of partitioning isotope effects (PIE's) in this system led to activity ratios much lower than expected from other reported work. Results of studies of ''special'' salt effect were not consistent for all situations, but the results do suggest that the assumption that BNB leads to solvolytic ion pairs is probably valid. The investigation of the more stable p-methoxybenzhydryl benzoate system proved to be highly productive. The ester fraction produced, R, responded dramatically to the addition of common-ion as well as ''special'' salts. The functional relationship of R on salt concentration could be explained in terms of Winstein's solvolytic scheme where the intimate ion pair, the solvent-separated ion pair, and the dissociated ion were important. Tritium-labelled compounds were used for PIE studies on 3 different compounds, and three different methods of reaction are proposed

  6. CPM Pairs from LSPM so far not WDS Listed

    Science.gov (United States)

    Knapp, Wilfried; Nanson, John

    2017-04-01

    The LSPM catalog (Lepine and Shara 2005) is a rich source for CPM pairs we thought already exhausted - but as we found during research for our report “A new concept for counter-checking of assumed CPM pairs” (Knapp and Nanson 2016) there are still many potential CPM pairs indicated in LSPM which as of the beginning of 2016 are not listed in the WDS catalog. A first part of about 40 such objects is presented here.

  7. On magnon mediated Cooper pair formation in ferromagnetic superconductors

    Directory of Open Access Journals (Sweden)

    Rakesh Kar

    2014-08-01

    Full Text Available Identification of pairing mechanism leading to ferromagnetic superconductivity is one of the most challenging issues in condensed matter physics. Although different models have been proposed to explain this phenomenon, a quantitative understanding about this pairing is yet to be achieved. Using the localized-itinerant model, we find that in ferromagnetic superconducting materials both triplet pairing and singlet pairing of electrons are possible through magnon exchange depending upon whether the Debye cut off frequency of magnons is greater or lesser than the Hund's coupling (J multiplied by average spin (S per site. Taking into account the repulsive interaction due to the existence of paramagnons, we also find an expression for effective interaction potential between a pair of electrons with opposite spins. We apply the developed formalism in case of UGe2 and URhGe. The condition of singlet pairing is found to be fulfilled in these cases, as was previously envisaged by Suhl [Suhl, Phys. Rev. Lett. 87, 167007 (2001]. We compute the critical temperatures of URhGe at ambient pressure and of UGe2 under different pressures for the first time through BCS equation. Thus, this work outlines a very simple way to evaluate critical temperature in case of a superconducting system. A close match with the available experimental results strongly supports our theoretical treatment.

  8. Numerical studies of pair creation in counterpropagating laser fields

    Energy Technology Data Exchange (ETDEWEB)

    Ruf, Matthias

    2009-05-27

    Pair creation from vacuum induced by electromagnetic fields is probably one of the most intriguing phenomena in physics. If the fields are sufficiently strong, the QED vacuum become unstable. Due to the remarkable progress in laser technology during recent years an experimental investigation of pair creation by pure laser light is coming into reach. The focus of this thesis is on pair creation in counterpropagating laser beams. The pair creation probability is calculated employing the numerically obtained solutions of the Dirac equation. This numerical ansatz has the capability of calculating the momentum distribution of the created pairs in a single propagation, for pure time dependent field configurations. Furthermore, it allows to take the magnetic component of the laser fields into account, which is usually neglected. The latter strongly affects the creation process at high laser frequency. The involved numerical calculations are rather time consuming, therefore the second project of this thesis was to develop a highly efficient code for solving relativistic quantum mechanical problems. This is accomplished by adopting the split-operator method to the Klein-Gordon equation. Here the possibility arises to use parallel computing. However the corresponding spin-statistics becomes crucial in the case of pair creation, demonstrated in several examples. (orig.)

  9. Theoretical study of GC+/GC base pair derivatives

    International Nuclear Information System (INIS)

    Meng Fancui; Wang Huanjie; Xu Weiren; Liu Chengbu

    2005-01-01

    The geometries of R (R=CH 3 , CH 3 O, F, NO 2 ) substituted GC base pair derivatives and their cations have been optimized at B3LYP/6-31G* level and the substituent effects on the neutral and cationic geometric structures and energies have been discussed. The inner reorganization energies of various base pair derivatives and the native GC base pair have been calculated to discuss the substituent effects on the reorganization energy. NBO (natural bond orbital) analysis has been carried out on both the neutral and the cationic systems to investigate the differences of the charge distributions and the electronic structures. The outcomes indicate that 8-CH 3 O-G:C has the greatest reorganization energy and 8-NO 2 -G:C has the least, while the other substituted base pairs have a reorganization energy close to that of G:C. The one charge is mostly localized on guanine part after ionization and as high as 0.95e. The bond distances of N1-N3'andN2-O2' in the cationic base pair derivatives shortened and that of O6-N4' elongated as compared with the corresponding bond distances of the neutral GC base pair derivatives

  10. Phase shifts of the paired wings of butterfly diagrams

    International Nuclear Information System (INIS)

    Li Kejun; Liang Hongfei; Feng Wen

    2010-01-01

    Sunspot groups observed by the Royal Greenwich Observatory/US Air Force/NOAA from 1874 May to 2008 November and the Carte Synoptique solar filaments from 1919 March to 1989 December are used to investigate the relative phase shift of the paired wings of butterfly diagrams of sunspot and filament activities. Latitudinal migration of sunspot groups (or filaments) does asynchronously occur in the northern and southern hemispheres, and there is a relative phase shift between the paired wings of their butterfly diagrams in a cycle, making the paired wings spatially asymmetrical on the solar equator. It is inferred that hemispherical solar activity strength should evolve in a similar way within the paired wings of a butterfly diagram in a cycle, demonstrating the paired wings phenomenon and showing the phase relationship between the northern and southern hemispherical solar activity strengths, as well as a relative phase shift between the paired wings of a butterfly diagram, which should bring about almost the same relative phase shift of hemispheric solar activity strength. (research papers)

  11. The pairing theory of polarons in real- and impulse spaces

    International Nuclear Information System (INIS)

    Dzhumanov, S.; Abboudy, S.; Baratov, A.A.

    1995-07-01

    A consistent pairing theory of carriers in real- and impulse spaces is developed. The pairing of different free (F), delocalized (D) and self-trapped (S) carriers in real-space, leading to the formation of various bipolaronic states are considered within the continuum model and adiabatic approximation taking into account the combined effect of the short- and long-range components of electron-lattice interaction with and without electron correlation. The formation possibility of D- and S-bipolarons as a function of ε ∞ /ε 0 are shown. The pairing scenarios of carriers in k-space leading to the formation of different bipolarons (including also Cooper pairs dynamic bipolarons) are considered within the generalized BCS-like model taking into account the combined phonon and polaron-bag mediated processes. It is shown that the pure BCS pairing picture is the particular case of the general BCS-like one. The possible relevance of the obtained results to high-T c superconductors is discussed in details in the framework of a novel two-stage Fermi-Bose-liquid scenarios of superconductivity which is caused by single particle and pair condensation of an attracting bipolarons. (author). 51 refs, 6 figs

  12. Extra-pair mating and evolution of cooperative neighbourhoods.

    Directory of Open Access Journals (Sweden)

    Sigrunn Eliassen

    Full Text Available A striking but unexplained pattern in biology is the promiscuous mating behaviour in socially monogamous species. Although females commonly solicit extra-pair copulations, the adaptive reason has remained elusive. We use evolutionary modelling of breeding ecology to show that females benefit because extra-pair paternity incentivizes males to shift focus from a single brood towards the entire neighbourhood, as they are likely to have offspring there. Male-male cooperation towards public goods and dear enemy effects of reduced territorial aggression evolve from selfish interests, and lead to safer and more productive neighbourhoods. The mechanism provides adaptive explanations for the common empirical observations that females engage in extra-pair copulations, that neighbours dominate as extra-pair sires, and that extra-pair mating correlates with predation mortality and breeding density. The models predict cooperative behaviours at breeding sites where males cooperate more towards public goods than females. Where maternity certainty makes females care for offspring at home, paternity uncertainty and a potential for offspring in several broods make males invest in communal benefits and public goods. The models further predict that benefits of extra-pair mating affect whole nests or neighbourhoods, and that cuckolding males are often cuckolded themselves. Derived from ecological mechanisms, these new perspectives point towards the evolution of sociality in birds, with relevance also for mammals and primates including humans.

  13. Numerical studies of pair creation in counterpropagating laser fields

    International Nuclear Information System (INIS)

    Ruf, Matthias

    2009-01-01

    Pair creation from vacuum induced by electromagnetic fields is probably one of the most intriguing phenomena in physics. If the fields are sufficiently strong, the QED vacuum become unstable. Due to the remarkable progress in laser technology during recent years an experimental investigation of pair creation by pure laser light is coming into reach. The focus of this thesis is on pair creation in counterpropagating laser beams. The pair creation probability is calculated employing the numerically obtained solutions of the Dirac equation. This numerical ansatz has the capability of calculating the momentum distribution of the created pairs in a single propagation, for pure time dependent field configurations. Furthermore, it allows to take the magnetic component of the laser fields into account, which is usually neglected. The latter strongly affects the creation process at high laser frequency. The involved numerical calculations are rather time consuming, therefore the second project of this thesis was to develop a highly efficient code for solving relativistic quantum mechanical problems. This is accomplished by adopting the split-operator method to the Klein-Gordon equation. Here the possibility arises to use parallel computing. However the corresponding spin-statistics becomes crucial in the case of pair creation, demonstrated in several examples. (orig.)

  14. Dependence of two-proton radioactivity on nuclear pairing models

    Science.gov (United States)

    Oishi, Tomohiro; Kortelainen, Markus; Pastore, Alessandro

    2017-10-01

    Sensitivity of two-proton emitting decay to nuclear pairing correlation is discussed within a time-dependent three-body model. We focus on the 6Be nucleus assuming α +p +p configuration, and its decay process is described as a time evolution of the three-body resonance state. For a proton-proton subsystem, a schematic density-dependent contact (SDDC) pairing model is employed. From the time-dependent calculation, we observed the exponential decay rule of a two-proton emission. It is shown that the density dependence does not play a major role in determining the decay width, which can be controlled only by the asymptotic strength of the pairing interaction. This asymptotic pairing sensitivity can be understood in terms of the dynamics of the wave function driven by the three-body Hamiltonian, by monitoring the time-dependent density distribution. With this simple SDDC pairing model, there remains an impossible trinity problem: it cannot simultaneously reproduce the empirical Q value, decay width, and the nucleon-nucleon scattering length. This problem suggests that a further sophistication of the theoretical pairing model is necessary, utilizing the two-proton radioactivity data as the reference quantities.

  15. Pairing of heterochromatin in response to cellular stress

    International Nuclear Information System (INIS)

    Abdel-Halim, H.I.; Mullenders, L.H.F.; Boei, J.J.W.A.

    2006-01-01

    We previously reported that exposure of human cells to DNA-damaging agents (X-rays and mitomycin C (MMC)) induces pairing of the homologous paracentromeric heterochromatin of chromosome 9 (9q12-13). Here, we show that UV irradiation and also heat shock treatment of human cells lead to similar effects. Since the various agents induce very different types and frequencies of damage to cellular constituents, the data suggest a general stress response as the underlying mechanism. Moreover, local UV irradiation experiments revealed that pairing of heterochromatin is an event that can be triggered without induction of DNA damage in the heterochromatic sequences. The repair deficient xeroderma pigmentosum cells (group F) previously shown to fail pairing after MMC displayed elevated pairing after heat shock treatment but not after UV exposure. Taken together, the present results indicate that pairing of heterochromatin following exposure to DNA-damaging agents is initiated by a general stress response and that the sensing of stress or the maintenance of the paired status of the heterochromatin might be dependent on DNA repair

  16. Pair Interaction of Catalytical Sphere Dimers in Chemically Active Media

    Directory of Open Access Journals (Sweden)

    Jing-Min Shi

    2018-01-01

    Full Text Available We study the pair dynamics of two self-propelled sphere dimers in the chemically active medium in which a cubic autocatalytic chemical reaction takes place. Concentration gradient around the dimer, created by reactions occurring on the catalytic sphere surface and responsible for the self-propulsion, is greatly influenced by the chemical activities of the environment. Consequently, the pair dynamics of two dimers mediated by the concentration field are affected. In the particle-based mesoscopic simulation, we combine molecular dynamics (MD for potential interactions and reactive multiparticle collision dynamics (RMPC for solvent flow and bulk reactions. Our results indicate three different configurations between a pair of dimers after the collision, i.e., two possible scenarios of bound dimer pairs and one unbound dimer pair. A phase diagram is sketched as a function of the rate coefficients of the environment reactions. Since the pair interactions are the basic elements of larger scale systems, we believe the results may shed light on the understanding of the collective dynamics.

  17. Pair formation models for sexually transmitted infections: A primer

    Directory of Open Access Journals (Sweden)

    Mirjam Kretzschmar

    2017-08-01

    Full Text Available For modelling sexually transmitted infections, duration of partnerships can strongly influence the transmission dynamics of the infection. If partnerships are monogamous, pairs of susceptible individuals are protected from becoming infected, while pairs of infected individuals delay onward transmission of the infection as long as they persist. In addition, for curable infections re-infection from an infected partner may occur. Furthermore, interventions based on contact tracing rely on the possibility of identifying and treating partners of infected individuals. To reflect these features in a mathematical model, pair formation models were introduced to mathematical epidemiology in the 1980's. They have since been developed into a widely used tool in modelling sexually transmitted infections and the impact of interventions. Here we give a basic introduction to the concepts of pair formation models for a susceptible-infected-susceptible (SIS epidemic. We review some results and applications of pair formation models mainly in the context of chlamydia infection. Keywords: Pair formation, Mathematical model, Partnership duration, Sexually transmitted infections, Basic reproduction number

  18. Cytoplasmic and Genomic Effects on Meiotic Pairing in Brassica Hybrids and Allotetraploids from Pair Crosses of Three Cultivated Diploids

    Science.gov (United States)

    Cui, Cheng; Ge, Xianhong; Gautam, Mayank; Kang, Lei; Li, Zaiyun

    2012-01-01

    Interspecific hybridization and allopolyploidization contribute to the origin of many important crops. Synthetic Brassica is a widely used model for the study of genetic recombination and “fixed heterosis” in allopolyploids. To investigate the effects of the cytoplasm and genome combinations on meiotic recombination, we produced digenomic diploid and triploid hybrids and trigenomic triploid hybrids from the reciprocal crosses of three Brassica diploids (B. rapa, AA; B. nigra, BB; B. oleracea, CC). The chromosomes in the resultant hybrids were doubled to obtain three allotetraploids (B. juncea, AA.BB; B. napus, AA.CC; B. carinata, BB.CC). Intra- and intergenomic chromosome pairings in these hybrids were quantified using genomic in situ hybridization and BAC-FISH. The level of intra- and intergenomic pairings varied significantly, depending on the genome combinations and the cytoplasmic background and/or their interaction. The extent of intragenomic pairing was less than that of intergenomic pairing within each genome. The extent of pairing variations within the B genome was less than that within the A and C genomes, each of which had a similar extent of pairing. Synthetic allotetraploids exhibited nondiploidized meiotic behavior, and their chromosomal instabilities were correlated with the relationship of the genomes and cytoplasmic background. Our results highlight the specific roles of the cytoplasm and genome to the chromosomal behaviors of hybrids and allopolyploids. PMID:22505621

  19. Olfactory interference during inhibitory backward pairing in honey bees.

    Directory of Open Access Journals (Sweden)

    Matthieu Dacher

    Full Text Available Restrained worker honey bees are a valuable model for studying the behavioral and neural bases of olfactory plasticity. The proboscis extension response (PER; the proboscis is the mouthpart of honey bees is released in response to sucrose stimulation. If sucrose stimulation is preceded one or a few times by an odor (forward pairing, the bee will form a memory for this association, and subsequent presentations of the odor alone are sufficient to elicit the PER. However, backward pairing between the two stimuli (sucrose, then odor has not been studied to any great extent in bees, although the vertebrate literature indicates that it elicits a form of inhibitory plasticity.If hungry bees are fed with sucrose, they will release a long lasting PER; however, this PER can be interrupted if an odor is presented 15 seconds (but not 7 or 30 seconds after the sucrose (backward pairing. We refer to this previously unreported process as olfactory interference. Bees receiving this 15 second backward pairing show reduced performance after a subsequent single forward pairing (excitatory conditioning trial. Analysis of the results supported a relationship between olfactory interference and a form of backward pairing-induced inhibitory learning/memory. Injecting the drug cimetidine into the deutocerebrum impaired olfactory interference.Olfactory interference depends on the associative link between odor and PER, rather than between odor and sucrose. Furthermore, pairing an odor with sucrose can lead either to association of this odor to PER or to the inhibition of PER by this odor. Olfactory interference may provide insight into processes that gate how excitatory and inhibitory memories for odor-PER associations are formed.

  20. Conditions for formation of electron pairs in a metal

    Energy Technology Data Exchange (ETDEWEB)

    Shekhtman, A.Z., E-mail: shekhtmanalexander@gmail.com

    2015-04-15

    Highlights: • A new approach has been developed for consideration of electron pairing in metals. • Binding energy of a single pair induced by electron-phonon interaction is very small. • A new mechanism for electron pairing in metals has been considered. • Conditions for feasibility of the mechanism give conditions for electron pairing. • The mechanism gives wide opportunities to study new conditions for electron pairing. - Abstract: In an isotropic model of the electron system of metal that is presented by the Fröhlich’s initial Hamiltonian, in the approximation of a weak electron–phonon interaction at T = 0, first time, we show that the ground state of the system is the state with pairing correlations of electrons (the pair correlations of occupied electron states). In contrast to the BCS approach, the initial point in our approach is not electron pairing but is the maximum reduction of the energy of the considered system due to virtual processes of the electron–phonon interaction and to the exchange effect for the indirect electron–electron interaction (which is induced by certain phonon modes separately from others). In contrast to the BCS approach, we take into account the portion of the energy of the electron system that is connected with the above exchange effect. In the BCS approach, the corresponding portion is missed, and its role is prescribed to the portion that does not relate to the electron pairing. We show that expectation values of the above Hamiltonian for different wave functions for two interacting electrons above the Fermi sea of the non-interacting system (with interaction between the electrons that is induced by different phonon modes separately from others) are minimum for a certain structure of these functions and simultaneously for phonon modes that can induce the transitions of the interacting electrons between electron states in which they are (without violation of the Pauli exclusion principle and at everything else

  1. RNA-PAIRS: RNA probabilistic assignment of imino resonance shifts

    International Nuclear Information System (INIS)

    Bahrami, Arash; Clos, Lawrence J.; Markley, John L.; Butcher, Samuel E.; Eghbalnia, Hamid R.

    2012-01-01

    The significant biological role of RNA has further highlighted the need for improving the accuracy, efficiency and the reach of methods for investigating RNA structure and function. Nuclear magnetic resonance (NMR) spectroscopy is vital to furthering the goals of RNA structural biology because of its distinctive capabilities. However, the dispersion pattern in the NMR spectra of RNA makes automated resonance assignment, a key step in NMR investigation of biomolecules, remarkably challenging. Herein we present RNA Probabilistic Assignment of Imino Resonance Shifts (RNA-PAIRS), a method for the automated assignment of RNA imino resonances with synchronized verification and correction of predicted secondary structure. RNA-PAIRS represents an advance in modeling the assignment paradigm because it seeds the probabilistic network for assignment with experimental NMR data, and predicted RNA secondary structure, simultaneously and from the start. Subsequently, RNA-PAIRS sets in motion a dynamic network that reverberates between predictions and experimental evidence in order to reconcile and rectify resonance assignments and secondary structure information. The procedure is halted when assignments and base-parings are deemed to be most consistent with observed crosspeaks. The current implementation of RNA-PAIRS uses an initial peak list derived from proton-nitrogen heteronuclear multiple quantum correlation ( 1 H– 15 N 2D HMQC) and proton–proton nuclear Overhauser enhancement spectroscopy ( 1 H– 1 H 2D NOESY) experiments. We have evaluated the performance of RNA-PAIRS by using it to analyze NMR datasets from 26 previously studied RNAs, including a 111-nucleotide complex. For moderately sized RNA molecules, and over a range of comparatively complex structural motifs, the average assignment accuracy exceeds 90%, while the average base pair prediction accuracy exceeded 93%. RNA-PAIRS yielded accurate assignments and base pairings consistent with imino resonances for a

  2. RNA-PAIRS: RNA probabilistic assignment of imino resonance shifts

    Energy Technology Data Exchange (ETDEWEB)

    Bahrami, Arash; Clos, Lawrence J.; Markley, John L.; Butcher, Samuel E. [National Magnetic Resonance Facility at Madison (United States); Eghbalnia, Hamid R., E-mail: eghbalhd@uc.edu [University of Cincinnati, Department of Molecular and Cellular Physiology (United States)

    2012-04-15

    The significant biological role of RNA has further highlighted the need for improving the accuracy, efficiency and the reach of methods for investigating RNA structure and function. Nuclear magnetic resonance (NMR) spectroscopy is vital to furthering the goals of RNA structural biology because of its distinctive capabilities. However, the dispersion pattern in the NMR spectra of RNA makes automated resonance assignment, a key step in NMR investigation of biomolecules, remarkably challenging. Herein we present RNA Probabilistic Assignment of Imino Resonance Shifts (RNA-PAIRS), a method for the automated assignment of RNA imino resonances with synchronized verification and correction of predicted secondary structure. RNA-PAIRS represents an advance in modeling the assignment paradigm because it seeds the probabilistic network for assignment with experimental NMR data, and predicted RNA secondary structure, simultaneously and from the start. Subsequently, RNA-PAIRS sets in motion a dynamic network that reverberates between predictions and experimental evidence in order to reconcile and rectify resonance assignments and secondary structure information. The procedure is halted when assignments and base-parings are deemed to be most consistent with observed crosspeaks. The current implementation of RNA-PAIRS uses an initial peak list derived from proton-nitrogen heteronuclear multiple quantum correlation ({sup 1}H-{sup 15}N 2D HMQC) and proton-proton nuclear Overhauser enhancement spectroscopy ({sup 1}H-{sup 1}H 2D NOESY) experiments. We have evaluated the performance of RNA-PAIRS by using it to analyze NMR datasets from 26 previously studied RNAs, including a 111-nucleotide complex. For moderately sized RNA molecules, and over a range of comparatively complex structural motifs, the average assignment accuracy exceeds 90%, while the average base pair prediction accuracy exceeded 93%. RNA-PAIRS yielded accurate assignments and base pairings consistent with imino

  3. Inhomogeneous ensembles of radical pairs in chemical compasses

    Science.gov (United States)

    Procopio, Maria; Ritz, Thorsten

    2016-11-01

    The biophysical basis for the ability of animals to detect the geomagnetic field and to use it for finding directions remains a mystery of sensory biology. One much debated hypothesis suggests that an ensemble of specialized light-induced radical pair reactions can provide the primary signal for a magnetic compass sensor. The question arises what features of such a radical pair ensemble could be optimized by evolution so as to improve the detection of the direction of weak magnetic fields. Here, we focus on the overlooked aspect of the noise arising from inhomogeneity of copies of biomolecules in a realistic biological environment. Such inhomogeneity leads to variations of the radical pair parameters, thereby deteriorating the signal arising from an ensemble and providing a source of noise. We investigate the effect of variations in hyperfine interactions between different copies of simple radical pairs on the directional response of a compass system. We find that the choice of radical pair parameters greatly influences how strongly the directional response of an ensemble is affected by inhomogeneity.

  4. Orbitally limited pair-density-wave phase of multilayer superconductors

    Science.gov (United States)

    Möckli, David; Yanase, Youichi; Sigrist, Manfred

    2018-04-01

    We investigate the magnetic field dependence of an ideal superconducting vortex lattice in the parity-mixed pair-density-wave phase of multilayer superconductors within a circular cell Ginzburg-Landau approach. In multilayer systems, due to local inversion symmetry breaking, a Rashba spin-orbit coupling is induced at the outer layers. This combined with a perpendicular paramagnetic (Pauli) limiting magnetic field stabilizes a staggered layer dependent pair-density-wave phase in the superconducting singlet channel. The high-field pair-density-wave phase is separated from the low-field BCS phase by a first-order phase transition. The motivating guiding question in this paper is: What is the minimal necessary Maki parameter αM for the appearance of the pair-density-wave phase of a superconducting trilayer system? To address this problem we generalize the circular cell method for the regular flux-line lattice of a type-II superconductor to include paramagnetic depairing effects. Then, we apply the model to the trilayer system, where each of the layers are characterized by Ginzburg-Landau parameter κ0 and a Maki parameter αM. We find that when the spin-orbit Rashba interaction compares to the superconducting condensation energy, the orbitally limited pair-density-wave phase stabilizes for Maki parameters αM>10 .

  5. Micromechanics of base pair unzipping in the DNA duplex

    International Nuclear Information System (INIS)

    Volkov, Sergey N; Paramonova, Ekaterina V; Yakubovich, Alexander V; Solov’yov, Andrey V

    2012-01-01

    All-atom molecular dynamics (MD) simulations of DNA duplex unzipping in a water environment were performed. The investigated DNA double helix consists of a Drew-Dickerson dodecamer sequence and a hairpin (AAG) attached to the end of the double-helix chain. The considered system is used to examine the process of DNA strand separation under the action of an external force. This process occurs in vivo and now is being intensively investigated in experiments with single molecules. The DNA dodecamer duplex is consequently unzipped pair by pair by means of the steered MD. The unzipping trajectories turn out to be similar for the duplex parts with G⋅C content and rather distinct for the parts with A⋅T content. It is shown that during the unzipping each pair experiences two types of motion: relatively quick rotation together with all the duplex and slower motion in the frame of the unzipping fork. In the course of opening, the complementary pair passes through several distinct states: (i) the closed state in the double helix, (ii) the metastable preopened state in the unzipping fork and (iii) the unbound state. The performed simulations show that water molecules participate in the stabilization of the metastable states of the preopened base pairs in the DNA unzipping fork. (paper)

  6. Cellular automaton simulation of counter flow with paired pedestrians

    Directory of Open Access Journals (Sweden)

    Hui Xiong

    2011-12-01

    Full Text Available Knowledge on pedestrian behavior is the basis to build decision support system for crowd evacuation management in emergency. In this paper, the impact of paired walking behavior on pedestrian counter flow in a channel is studied. The pedestrian walking behaviors are simulated by the cellular automaton model and the pedestrians are classified as single right walker, single left walker, paired right walker, and paired left walker. Single walker can move forward, leftward, rightward or stand still. The paired pedestrians are considered as a combined unit similar to the single walker in terms of route choice and they can move to the same direction simultaneously. It is found that flow and velocity decrease with increase of the paired rate in case of stable density. Simulation results reveal the phase transitions in terms of density from free flow to the unstable flow and from the unstable flow to the congestion flow. However, the critical densities of phase transition are unaffected by the channel size.

  7. Isoscalar and isovector pairing in a formalism of quartets

    Energy Technology Data Exchange (ETDEWEB)

    Sambataro, M., E-mail: michelangelo.sambataro@ct.infn.it [Istituto Nazionale di Fisica Nucleare – Sezione di Catania, Via S. Sofia 64, I-95123 Catania (Italy); Sandulescu, N., E-mail: sandulescu@theory.nipne.ro [National Institute of Physics and Nuclear Engineering, P.O. Box MG-6, Magurele, Bucharest (Romania); Johnson, C.W., E-mail: cjohnson@mail.sdsu.edu [Department of Physics, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1233 (United States)

    2015-01-05

    Isoscalar (T=0, J=1) and isovector (T=1, J=0) pairing correlations in the ground state of self-conjugate nuclei are treated in terms of alpha-like quartets built by two protons and two neutrons coupled to total isospin T=0 and total angular momentum J=0. Quartets are constructed dynamically via an iterative variational procedure and the ground state is represented as a product of such quartets. It is shown that the quartet formalism describes accurately the ground state energies of realistic isovector plus isoscalar pairing Hamiltonians in nuclei with valence particles outside the {sup 16}O, {sup 40}Ca and {sup 100}Sn cores. Within the quartet formalism we analyze the competition between isovector and isoscalar pairing correlations and find that for nuclei with the valence nucleons above the cores {sup 40}Ca and {sup 100}Sn the isovector correlations account for the largest fraction of the total pairing correlations. This is not the case for sd-shell nuclei for which isoscalar correlations prevail. Contrary to many mean-field studies, isovector and isoscalar pairing correlations mix significantly in the quartet approach.

  8. Differential bremsstrahlung and pair production cross sections at high energies

    International Nuclear Information System (INIS)

    Olsen, Haakon A.

    2003-01-01

    Detailed differential cross sections for high energy bremsstrahlung and pair production are derived with specific attention to the differences between the two processes, which are considerable. For the integrated cross sections, which are the only cross sections specifically known until now, the final state integration theorem guarantees that the exact cross section formulas can be exchanged between bremsstrahlung and pair production by the same substitution rules as for the Born-approximation Bethe-Heitler cross sections, for any amount of atomic screening. In fact the theorem states that the Coulomb corrections to the integrated bremsstrahlung and pair production cross sections are identical for any amount of screening. The analysis of the basic differential cross sections leads to fundamental physical differences between bremsstrahlung and pair production. Coulomb corrections occur for pair production in the strong electric field of the atom for 'large' momentum transfer of the order of mc. For bremsstrahlung, on the other hand, the Coulomb corrections take place at a 'large' distance from the atom of the order of ((ℎ/2π)/mc)ε, with a 'small' momentum transfer mc/ε, where ε is the initial electron energy in units of mc 2 . And the Coulomb corrections can be large, of the order of larger than (Z/137) 2 , which is considerably larger than the integrated cross section corrections

  9. Coherent pair creation from beam-beam interaction

    International Nuclear Information System (INIS)

    Chen, Pisin.

    1989-09-01

    It has recently been recognized that in future linear colliders, there is a finite probability that the beamstrahlung photons will turn into e + e - pairs induced by the same beam-beam field, and this would potentially cause background problems. In this paper, we first review the probability of such a coherent pair creation process. It is seen that the constraint on the beamstrahlung parameter, Υ, is tight of these coherent pairs to be totally suppressed. We then point out that there exists a minimum energy for the pair-created particles, which scales as ∼1/5Υ. When combining this condition with the deflection angle for the low-energy particles, the constraint on the allowable Υ value is much relaxed. Finally, we calculate the effective cross section for producing the weak bosons by the low-energy e + e - pairs. It is shown that these cross sections are substantial for Υ > 1. We suggest that this effect can help to autoscan the particle spectrum in the high energy frontier. 10 refs., 2 figs

  10. Formation and interference of two pairs of vortex streets

    International Nuclear Information System (INIS)

    Kamemoto, Kyoji

    1976-01-01

    A series of theoretical analysis were made on the mechanism of the formation and interference of two pairs of vortex streets appearing behind a pair of two long bars placed perpendicularly to uniform flow. In the first part, the flow model used for this study is explained. It was assumed that two pairs of vortex sheets having the same interval (h) were placed at the distance of g in non-viscous flow. Then small disturbance was given to the flow, and the behavior of the vortex sheets in course of time was analyzed by solving a set of linear simultaneous differential equations. Eight fundamental modes of small displacement were obtained as the independent solutions of the equations. The fundamental modes and the associated parameters are presented. In the second part, a set of non-linear differential equations were derived by substituting the vortex sheets with vortex streets with finite intensity. The set of equations were solved numerically. The results of numerical solutions for various conditions are presented. Main conclusions drawn from this study are that the condition of the existence of two pairs of vortex sheets is g/h >= 1, and that the mutual interference between two pairs of vortex streets becomes conspicuous for g/h <= 2. Some discussions made by other researchers and the author are also presented at the end of this paper. (Aoki, K.)

  11. Problems of quantum electrodynamics with external field creating pairs

    International Nuclear Information System (INIS)

    Fradkin, E.S.; Gitman, D.M.

    1979-11-01

    This paper is a preliminary version of a review of the results obtained by the authors and their collaborators which mainly concern problems of quantum electrodynamics with the pair-creating external field. In this paper the Furry picture is constructed for quantum electrodynamics with the pair-creating external field. It is shown, that various Green functions in the external field arise in the theory in a natural way. Special features of usage of the unitarity conditions for calculating the total probabilities of transitions are discussed. Perturbation theory for determining the mean electromagnetic field is constructed. Effective Lagrangians for pair-creating fields are built. One of the possible ways to introduce external field in quantum electrodynamics is considered. All the Green functions arising in the theory suggested are calculated for a constant field and a plane wave field. For the case of the electric field the total probability of creation of pairs from the vacuum accompanied by the photon irradiation and the total probability of transition from a single-electron state accompanied by the photon irradiation and creation of pairs are obtained by using the formulated rules for calculating the total probabilities of transitions. (author)

  12. On the restoration of symmetry in paired Fermion systems

    International Nuclear Information System (INIS)

    Flocard, H.

    1997-01-01

    We consider the problem of symmetry restoration as treated by the method of variation after projection (VAP) on good quantum numbers. We show that for compact groups, the convergence of the connected-linked expansion of the VAP kernels over the physically relevant interval of integration of the pairing gauge angle is not guaranteed. We propose instead a method which generates approximations of increasing precision which are periodic with respect to the gauge angle while differing from truncations of the Fourier expansion of the VAP kernels. For the projection on good particle number in paired fermion systems, this new approach is shown to be equivalent to an expansion in powers of the pairing tensor. For the lowest order approximation, an analytical integration over the gauge angle is performed explicitly. It provides the algebraic forms of the single particle Hamiltonian and of the pairing field entering generalized Hartree endash Fock endash Bogoljubov equations. Contrary to most approximations, the validity of the expressions for the energy and mean values of operators thus obtained is not a priori restricted where the fluctuation of the operator associated with the broken symmetry is large. We also derive the first-order correction to the pairing-order parameter. We test the quality of the proposed method on a non-trivial soluble model. copyright 1997 Academic Press, Inc

  13. The role of spatial organization in preference for color pairs.

    Science.gov (United States)

    Schloss, Karen B; Palmer, Stephen E

    2011-01-01

    We investigated how spatial organization influences color-pair preference asymmetries: differential preference for one color pair over another when the pairs contain the same colors in opposite spatial configurations. Schloss and Palmer (2011, Attention, Perception, & Psychophysics 73 55-571) found weak figure ground preference asymmetries for small squares centered on large squares in aesthetic ratings. Here, we found robust preference asymmetries using a more sensitive forced-choice task: participants strongly prefer pairs with yellower, lighter figures on bluer, darker grounds (experiment 1). We also investigated which spatial factors influence these preference asymmetries. Relative area of the two component regions is clearly important, and perceived 3-D area of the 2-D displays (ie after the ground is amodally completed behind the figure) is more influential than 2-D area (experiment 2). Surroundedness is not required, because yellowness blueness effects were comparable for pairs in which the figure was surrounded by the ground, and for mosaic arrangements in which the regions were adjacent and separated by a gap (experiment 3). Lightness darkness effects, however, were opposite for figure ground versus mosaic organizations: people prefer figure-ground organizations in which smaller regions are lighter, but prefer mosaic organizations in which smaller regions are darker. Physiological, phenomenological, and ecological explanations of the reported results are discussed.

  14. Importance of interlayer pair tunneling: A variational perspective

    International Nuclear Information System (INIS)

    Medhi, Amal; Basu, Saurabh

    2011-01-01

    We study the effect of interlayer pair tunneling in a bilayer superconductor where each layer is described by a two dimensional t-J model and the two layers are connected by the Josephson pair tunneling term. We study this model using a grand canonical variational Monte Carlo (GVMC) method, for which we develop a new algorithm to perform Monte Carlo simulation of a system with fluctuating particle number. The variational wavefunction is taken to be the product of two Gutzwiller projected d-wave BCS wavefunctions with variable particle densities, one for each layer. We calculate the energy of the above state as a function of the d-wave superconducting gap parameter, Δ. We find that the interlayer pair tunneling energy, E perpendicular shows interesting variation with Δ. E perpendicular tends to enhance the optimal value of Δ, thereby the superconducting pairing. However the magnitude of the tunneling energy is found to be too small to have any appreciable effect on the physical properties. While the result is supported by early experiments and hence may appear known to the community, the current work presents a new approach to the problem and confirms the diminished role of interlayer pair tunneling by directly calculating its contribution to superconducting condensation energy.

  15. Electron-positron pair production in inhomogeneous electromagnetic fields

    International Nuclear Information System (INIS)

    Kohlfürst, C.

    2015-01-01

    The process of electron-positron pair production is investigated within the phase-space Wigner formalism. The similarities between atomic ionization and pair production for homogeneous, but time-dependent linearly polarized electric fields are examined mainly in the regime of multiphoton absorption (field-dependent threshold, above-threshold pair production). Characteristic signatures in the particle spectra are identified (effective mass, channel closing). The non-monotonic dependence of the particle yield on the carrier frequency is discussed as well. The investigations are then extended to spatially inhomogeneous electric fields. New effects arising due to the spatial dependence of the effective mass are discussed in terms of a semi-classical interpretation. An increase in the normalized particle yield is found for various field configurations.Pair production in inhomogeneous electric and magnetic fields is also studied. The influence of a time-dependent spatially inhomogeneous magnetic field on the momentum spectrum and the particle yield is investigated. The Lorentz invariants are identified to be crucial in order to understand pair production by strong electric fields in the presence of strong magnetic fields. (author) [de

  16. Adaptive memory: animacy effects persist in paired-associate learning.

    Science.gov (United States)

    VanArsdall, Joshua E; Nairne, James S; Pandeirada, Josefa N S; Cogdill, Mindi

    2015-01-01

    Recent evidence suggests that animate stimuli are remembered better than matched inanimate stimuli. Two experiments tested whether this animacy effect persists in paired-associate learning of foreign words. Experiment 1 randomly paired Swahili words with matched animate and inanimate English words. Participants were told simply to learn the English "translations" for a later test. Replicating earlier findings using free recall, a strong animacy advantage was found in this cued-recall task. Concerned that the effect might be due to enhanced accessibility of the individual responses (e.g., animates represent a more accessible category), Experiment 2 selected animate and inanimate English words from two more constrained categories (four-legged animals and furniture). Once again, an advantage was found for pairs using animate targets. These results argue against organisational accounts of the animacy effect and potentially have implications for foreign language vocabulary learning.

  17. Readout ASIC of pair-monitor for international linear collider

    International Nuclear Information System (INIS)

    Sato, Yutaro; Ikeda, Hirokazu; Ito, Kazutoshi; Miyamoto, Akiya; Nagamine, Tadashi; Sasaki, Rei; Takubo, Yosuke; Tauchi, Toshiaki; Yamamoto, Hitoshi

    2010-01-01

    The pair-monitor is a beam profile monitor at the interaction point of the international linear collider. A prototype of the readout ASIC for the pair-monitor has been designed and tested. Since the pair-monitor uses the hit distribution of electrons and positrons generated by the beam-crossing to measure the beam profile, the readout ASIC is designed to count the number of hits. In a prototype ASIC, 36 readout cells were implemented by TSMC 0.25-μm CMOS process. Each readout cell is equipped with an amplifier, comparator, 8-bit counter and 16 count-registers. By the operation test, all the ASIC component were confirmed to work correctly. As the next step, we develop the prototype ASIC with the silicon on insulator technology. It is produced with OKI 0.2-μm FD-SOI CMOS process.

  18. Einstein-Podolsky-Rosen paradox in single pairs of images.

    Science.gov (United States)

    Lantz, Eric; Denis, Séverine; Moreau, Paul-Antoine; Devaux, Fabrice

    2015-10-05

    Spatially entangled twin photons provide a test of the Einstein-Podolsky-Rosen (EPR) paradox in its original form of position (image plane) versus impulsion (Fourier plane). We show that recording a single pair of images in each plane is sufficient to safely demonstrate an EPR paradox. On each pair of images, we have retrieved the fluctuations by subtracting the fitted deterministic intensity shape and then have obtained an intercorrelation peak with a sufficient signal to noise ratio to safely distinguish this peak from random fluctuations. A 95% confidence interval has been determined, confirming a high degree of paradox whatever the considered single pairs. Last, we have verified that the value of the variance of the difference between twin images is always below the quantum (poissonian) limit, in order to ensure the particle character of the demonstration. Our demonstration shows that a single image pattern can reveal the quantum and non-local behavior of light.

  19. CsI Calorimeter for a Compton-Pair Telescope

    Science.gov (United States)

    Grove, Eric J.

    We propose to build and test a hodoscopic CsI(Tl) scintillating-crystal calorimeter for a medium-energy γ-ray Compton and pair telescope. The design and technical approach for this calorimeter relies deeply on heritage from the Fermi LAT CsI Calorimeter, but it dramatically improves the low-energy performance of that design by reading out the scintillation light with silicon photomultipliers (SiPMs), making the technology developed for Fermi applicable in the Compton regime. While such a hodoscopic calorimeter is useful for an entire class of medium-energy γ-ray telescope designs, we propose to build it explicitly to support beam tests and balloon flight of the Proto-ComPair telescope, the development and construction of which was funded in a four-year APRA program beginning in 2015 ("ComPair: Steps to a Medium Energy γ-ray Mission" with PI J. McEnery of GSFC). That award did not include funding for its CsI calorimeter subsystem, and this proposal is intended to cover that gap. ComPair is a MIDEX-class instrument concept to perform a high-sensitivity survey of the γ-ray sky from 0.5 MeV to 500 MeV. ComPair is designed to provide a dramatic increase in sensitivity relative to previous instruments in this energy range (predominantly INTEGRAL/SPI and Compton COMPTEL), with the same transformative sensitivity increase - and corresponding scientific return- that the Fermi Large Area Telescope provided relative to Compton EGRET. To enable transformative science over a broad range of MeV energies and with a wide field of view, ComPair is a combined Compton telescope and pair telescope employing a silicon-strip tracker (for Compton scattering and pair conversion and tracking) and a solid-state CdZnTe calorimeter (for Compton absorption) and CsI calorimeter (for pair calorimetry), surrounded by a plastic scintillator anti-coincidence detector. Under the current proposal, we will complete the detailed design, assembly, and test of the CsI calorimeter for the risk

  20. Tearing modes with pressure gradient effect in pair plasmas

    International Nuclear Information System (INIS)

    Cai Huishan; Li Ding; Zheng Jian

    2009-01-01

    The general dispersion relation of tearing mode with pressure gradient effect in pair plasmas is derived analytically. If the pressure gradients of positron and electron are not identical in pair plasmas, the pressure gradient has significant influence at tearing mode in both collisionless and collisional regimes. In collisionless regime, the effects of pressure gradient depend on its magnitude. For small pressure gradient, the growth rate of tearing mode is enhanced by pressure gradient. For large pressure gradient, the growth rate is reduced by pressure gradient. The tearing mode can even be stabilized if pressure gradient is large enough. In collisional regime, the growth rate of tearing mode is reduced by the pressure gradient. While the positron and electron have equal pressure gradient, tearing mode is not affected by pressure gradient in pair plasmas.

  1. Pumping Electron-Positron Pairs from a Well Potential.

    Science.gov (United States)

    Wang, Qiang; Liu, Jie; Fu, Li-Bin

    2016-04-29

    In the presence of very deep well potential, electrons will spontaneously occupy the empty embedded bound states and electron-positron pairs are created by means of a non-perturbative tunneling process. In this work, by slowly oscillating the width or depth, the population transfer channels are opened and closed periodically. We find and clearly show that by the non-synchronous ejections of particles, the saturation of pair number in a static super-critical well can be broken, and electrons and positrons can be pumped inexhaustibly from vacuum with a constant production rate. In the adiabatic limit, final pair number after a single cycle has quantized values as a function of the upper boundary of the oscillating, and the critical upper boundaries indicate the diving points of the bound states.

  2. Pair production from nuclear collisions and cosmic ray transport

    International Nuclear Information System (INIS)

    Norbury, John W

    2006-01-01

    Modern cosmic ray transport codes, that are capable of use for a variety of applications, need to include all significant atomic, nuclear and particle reactions at a variety of energies. Lepton pair production from nucleus-nucleus collisions has not been included in transport codes to date. Using the methods of Baur, Bertulani and Baron, the present report provides estimates of electron-positron pair production cross sections for nuclei and energies relevant to cosmic ray transport. It is shown that the cross sections are large compared to other typical processes such as single neutron removal due to strong or electromagnetic interactions. Therefore, lepton pair production may need to be included in some transport code applications involving MeV electrons. (brief report)

  3. Magnetic Fluctuations in Pair-Density-Wave Superconductors

    Science.gov (United States)

    Christensen, Morten H.; Jacobsen, Henrik; Maier, Thomas A.; Andersen, Brian M.

    2016-04-01

    Pair-density-wave superconductivity constitutes a novel electronic condensate proposed to be realized in certain unconventional superconductors. Establishing its potential existence is important for our fundamental understanding of superconductivity in correlated materials. Here we compute the dynamical magnetic susceptibility in the presence of a pair-density-wave ordered state and study its fingerprints on the spin-wave spectrum including the neutron resonance. In contrast to the standard case of d -wave superconductivity, we show that the pair-density-wave phase exhibits neither a spin gap nor a magnetic resonance peak, in agreement with a recent neutron scattering experiment on underdoped La1.905 Ba0.095 CuO4 [Z. Xu et al., Phys. Rev. Lett. 113, 177002 (2014)].

  4. Noninteractive Verifiable Outsourcing Algorithm for Bilinear Pairing with Improved Checkability

    Directory of Open Access Journals (Sweden)

    Yanli Ren

    2017-01-01

    Full Text Available It is well known that the computation of bilinear pairing is the most expensive operation in pairing-based cryptography. In this paper, we propose a noninteractive verifiable outsourcing algorithm of bilinear pairing based on two servers in the one-malicious model. The outsourcer need not execute any expensive operation, such as scalar multiplication and modular exponentiation. Moreover, the outsourcer could detect any failure with a probability close to 1 if one of the servers misbehaves. Therefore, the proposed algorithm improves checkability and decreases communication cost compared with the previous ones. Finally, we utilize the proposed algorithm as a subroutine to achieve an anonymous identity-based encryption (AIBE scheme with outsourced decryption and an identity-based signature (IBS scheme with outsourced verification.

  5. Massive lepton pairs as a prompt photon surrogate

    International Nuclear Information System (INIS)

    Berger L, Edmond; Gordon E, Lionel; Klasen, Michael

    1998-01-01

    The authors discuss the transverse momentum distribution for the production of massive lepton-pairs in hadron reactions at fixed target and collider energies within the context of next-to-leading order perturbative quantum chromodynamics. For values of the transverse momentum Q T greater than the pair mass Q, Q T > Q, they show that the differential cross section is dominated by subprocesses initiated by incident gluons. Massive lepton-pair differential cross sections are an advantageous source of constraints on the gluon density, free from the experimental and theoretical complications of photon isolation that beset studies of prompt photon production. They compare calculations with data and provide predictions for the differential cross section as a function of Q T in proton-antiproton reactions at center-of-mass energies of 1.8 TeV, and in proton-nucleon reactions at fixed target and LHC energies

  6. Automatically pairing measured findings across narrative abdomen CT reports.

    Science.gov (United States)

    Sevenster, Merlijn; Bozeman, Jeffrey; Cowhy, Andrea; Trost, William

    2013-01-01

    Radiological measurements are one of the key variables in widely adopted guidelines (WHO, RECIST) that standardize and objectivize response assessment in oncology care. Measurements are typically described in free-text, narrative radiology reports. We present a natural language processing pipeline that extracts measurements from radiology reports and pairs them with extracted measurements from prior reports of the same clinical finding, e.g., lymph node or mass. A ground truth was created by manually pairing measurements in the abdomen CT reports of 50 patients. A Random Forest classifier trained on 15 features achieved superior results in an end-to-end evaluation of the pipeline on the extraction and pairing task: precision 0.910, recall 0.878, F-measure 0.894, AUC 0.988. Representing the narrative content in terms of UMLS concepts did not improve results. Applications of the proposed technology include data mining, advanced search and workflow support for healthcare professionals managing radiological measurements.

  7. Relativistic mean field theory for deformed nuclei with pairing correlations

    International Nuclear Information System (INIS)

    Geng, Lisheng; Toki, Hiroshi; Sugimoto, Satoru; Meng, Jie

    2003-01-01

    We develop a relativistic mean field (RMF) description of deformed nuclei with pairing correlations in the BCS approximation. The treatment of the pairing correlations for nuclei whose Fermi surfaces are close to the threshold of unbound states needs special attention. With this in mind, we use a delta function interaction for the pairing interaction to pick up those states whose wave functions are concentrated in the nuclear region and employ the standard BCS approximation for the single-particle states obtained from the BMF theory with deformation. We apply the RMF + BCS method to the Zr isotopes and obtain a good description of the binding energies and the nuclear radii of nuclei from the proton drip line to the neutron drip line. (author)

  8. N = 1 dual string pairs and their modular superpotentials

    International Nuclear Information System (INIS)

    Luest, D.

    1998-01-01

    We review the duality between heterotic and F-theory string vacua with N=1 space-time supersymmetry in eight, six and four dimensions. In particular, we discuss two chains of four-dimensional F-theory/heterotic dual string pairs, where F-theory is compactified on certain elliptic Calabi-Yau fourfolds, and the dual heterotic vacua are given by compactifications on elliptic Calabi-Yau threefolds plus the specification of the E 8 x E 8 gauge bundles. We show that the massless spectra of the dual pairs agree by using, for one chain of models, an index formula to count the heterotic bundle moduli and determine the dual F-theory spectra from the Hodge numbers of the fourfolds and of the type IIB base spaces. Moreover as a further check, we demonstrate that for one particular heterotic/F-theory dual pair the N=1 superpotentials are the same. (orig.)

  9. Pairing symmetry transitions in the even-denominator FQHE system

    International Nuclear Information System (INIS)

    Nomura, Kentaro; Yoshioka, Daijiro

    2001-01-01

    Transitions from a paired quantum Hall state to another quantum Hall state in bilayer systems are discussed in the framework of the edge theory. Starting from the edge theory for the Haldane-Rezayi state, it is shown that the charging effect of a bilayer system which breaks the SU (2) symmetry of the pseudospin shifts the central charge and the conformal dimensions of the fermionic fields which describe the pseudospin sector in the edge theory. This corresponds to the transition from the Haldane-Rezayi state to Halperin's 331 state, or from a singlet d-wave to a triplet p-wave ABM type paired state in the composite fermion picture. Considering interlayer tunneling, the tunneling rate-capacitance phase diagram for the ν=5/2 paired bilayer system is discussed. (author)

  10. Pairing Symmetry Transitions in the Even-Denominator FQHE System

    Science.gov (United States)

    Nomura, Kentaro; Yoshioka, Daijiro

    2001-12-01

    Transitions from a paired quantum Hall state to another quantum Hall state in bilayer systems are discussed in the framework of the edge theory. Starting from the edge theory for the Haldane Rezayi state, it is shown that the charging effect of a bilayer system which breaks the SU(2) symmetry of the pseudospin shifts the central charge and the conformal dimensions of the fermionic fields which describe the pseudospin sector in the edge theory. This corresponds to the transition from the Haldane Rezayi state to Halperin's 331 state, or from a singlet d-wave to a triplet p-wave ABM type paired state in the composite fermion picture. Considering interlayer tunneling, the tunneling rate-capacitance phase diagram for the ν=5/2 paired bilayer system is discussed.

  11. Near quantum limited amplification from inelastic Cooper-pair tunneling

    Science.gov (United States)

    Hofheinz, Max; Jebari, Salha; Blanchet, Florian; Grimm, Alexander; Hazra, Dibyendu; Albert, Romain; Portier, Fabien

    Josephson parametric amplifiers approach quantum-limited noise performance but require strong external microwave pump tones which make them more difficult to use than DC powered amplifiers: The pump tone can affect the device under test and requires expensive room-temperature equipment. Inelastic Cooper pair tunneling processes through a small DC voltage-biased Josephson junction, where a tunneling Cooper pair dissipates its energy 2 eV in the form of two photons are reminiscent of parametric down conversion. We show that these processes can be used to provide amplification near the quantum limit without external microwave pump tone. We explain the measured gain and noise based on the P (E) theory of inelastic Cooper pair tunneling and general fluctuation-dissipation relations.

  12. Morphological type correlation between nearest neighbor pairs of galaxies

    Science.gov (United States)

    Yamagata, Tomohiko

    1990-01-01

    Although the morphological type of galaxies is one of the most fundamental properties of galaxies, its origin and evolutionary processes, if any, are not yet fully understood. It has been established that the galaxy morphology strongly depends on the environment in which the galaxy resides (e.g., Dressler 1980). Galaxy pairs correspond to the smallest scales of galaxy clustering and may provide important clues to how the environment influences the formation and evolution of galaxies. Several investigators pointed out that there is a tendency for pair galaxies to have similar morphological types (Karachentsev and Karachentseva 1974, Page 1975, Noerdlinger 1979). Here, researchers analyze morphological type correlation for 18,364 nearest neighbor pairs of galaxies identified in the magnetic tape version of the Center for Astrophysics Redshift Catalogue.

  13. Suppression of bremsstrahlung and pair production due to environmental factors

    International Nuclear Information System (INIS)

    Klein, Spencer

    1999-01-01

    The environment in which bremsstrahlung and pair creation occurs can strongly affect cross sections for these processes. Because ultrarelativistic electromagnetic interactions involve very small longitudinal momentum transfers, the reactions occur gradually, spread over long distances. During this time, even relatively weak factors can accumulate enough to disrupt the interaction. In the Landau-Pomeranchuk-Migdal effect, multiple scattering reduces the bremsstrahlung and pair production cross section. This review will discuss this and a variety of other factors that can suppress bremsstrahlung and pair production, as well as related effects involving beamstrahlung and QCD processes. After surveying different theoretical approaches, experimental measurements will be covered. Recent accurate measurements by the SLAC E-146 Collaboration will be highlighted, along with several recent theoretical works relating to the experiment. (c) 1999 The American Physical Society

  14. e+e--annihilation into baryon-antibaryon pairs

    International Nuclear Information System (INIS)

    Koerner, J.G.; Kuroda, M.

    1976-07-01

    Using GVDM-type form factors we calculate the e + -e - production cross sections for the reactions e + e - → 1 + /2 - anti(1 +- /2), 1 + /2 - anti(3 +- /2), 1 + /2 - anti(5 + /2) and 3 + /2 - anti(3 + /2) including all prominent baryon resonances at energies of present and planned e + -e - storage ring machines. We also evaluate the cross section of charmed baryon pair production. Near their respective thresholds charmed and uncharmed baryon pair production are predicted to constitute comparable fractions of the total hadronic cross section. The calculated cross sections indicate that the interference of direct and 1-photon decay of the PSI-particles into baryon pairs is small. (orig.) [de

  15. The Peak Pairs algorithm for strain mapping from HRTEM images

    Energy Technology Data Exchange (ETDEWEB)

    Galindo, Pedro L. [Departamento de Lenguajes y Sistemas Informaticos, CASEM, Universidad de Cadiz, Pol. Rio San Pedro s/n. 11510, Puerto Real, Cadiz (Spain)], E-mail: pedro.galindo@uca.es; Kret, Slawomir [Institute of Physics, PAS, AL. Lotnikow 32/46, 02-668 Warsaw (Poland); Sanchez, Ana M. [Departamento de Ciencia de los Materiales e Ing. Metalurgica y Q. Inorganica, Facultad de Ciencias, Universidad de Cadiz, Pol. Rio San Pedro s/n. 11510, Puerto Real, Cadiz (Spain); Laval, Jean-Yves [Laboratoire de Physique du Solide, UPR5 CNRS-ESPCI, Paris (France); Yanez, Andres; Pizarro, Joaquin; Guerrero, Elisa [Departamento de Lenguajes y Sistemas Informaticos, CASEM, Universidad de Cadiz, Pol. Rio San Pedro s/n. 11510, Puerto Real, Cadiz (Spain); Ben, Teresa; Molina, Sergio I. [Departamento de Ciencia de los Materiales e Ing. Metalurgica y Q. Inorganica, Facultad de Ciencias, Universidad de Cadiz, Pol. Rio San Pedro s/n. 11510, Puerto Real, Cadiz (Spain)

    2007-11-15

    Strain mapping is defined as a numerical image-processing technique that measures the local shifts of image details around a crystal defect with respect to the ideal, defect-free, positions in the bulk. Algorithms to map elastic strains from high-resolution transmission electron microscopy (HRTEM) images may be classified into two categories: those based on the detection of peaks of intensity in real space and the Geometric Phase approach, calculated in Fourier space. In this paper, we discuss both categories and propose an alternative real space algorithm (Peak Pairs) based on the detection of pairs of intensity maxima in an affine transformed space dependent on the reference area. In spite of the fact that it is a real space approach, the Peak Pairs algorithm exhibits good behaviour at heavily distorted defect cores, e.g. interfaces and dislocations. Quantitative results are reported from experiments to determine local strain in different types of semiconductor heterostructures.

  16. Paired replacement fuel assemblies for BWR-type reactor

    International Nuclear Information System (INIS)

    Oguchi, Kazushige.

    1997-01-01

    There are disposed a large-diameter water rod constituting a non-boiling region at a central portion and paired replacement fuel assemblies for two streams having the same average enrichment degree and different amount of burnable poisons. The paired replacement fuel assemblies comprise a first fuel assembly having a less amount of burnable poisons and a second fuel assembly having a larger amount of burnable poisons. A number of burnable poison-containing fuel rods in adjacent with the large diameter water rod is increased in the second fuel assembly than the first fuel assembly. Then, the poison of the paired replacement fuel assemblies for the BWR type reactor can be annihilated simultaneously at the final stage of the cycle. Accordingly, fuels for a BWR type reactor excellent in economical property and safety and facilitating the design of the replacement reactor core can be obtained. (N.H.)

  17. Pairing Behavior of the Monogamous King Quail, Coturnix chinensis.

    Directory of Open Access Journals (Sweden)

    Elizabeth Adkins-Regan

    Full Text Available Animals with socially monogamous mating systems are valuable for discovering proximate mechanisms of prosocial behavior and close social relationships. Especially powerful are comparisons between related species that differ in monogamous tendency. Birds are the most socially monogamous vertebrates. Thus far most research on mechanisms of pairing has used zebra finches, which do not have a relative with a different mating system, however. The goal of the experiments reported here was to develop a new comparative avian system by studying the pairing behavior of a reportedly strongly monogamous quail, the king quail (Coturnix chinensis, a species in the same clade as the less monogamous Japanese quail (Coturnix japonica, the subject of much prior research. In Experiment 1 male-female pairs of king quail housed together were initially avoidant or aggressive but most rapidly progressed to allopreening and huddling. A separation-reunion paradigm reliably elicited both of these behaviors in males that had cohabited for one week. In Experiment 2 the allopreening and huddling behavior of males in cohabiting pairs was highly selective, and a majority of the males were aggressive toward a familiar female that was not the cohabitation partner. In Experiment 3 males were separated from their female cohabitation partners for 9-10 weeks and then given two-choice tests. All but one male spent more time near an unfamiliar female, which may have reflected aggression and shows recognition of and memory for the past pairing experience. Thus king quail show robust, selective and easy to measure pairing behavior that can be reliably elicited with simple separation-reunion testing procedures. Copulation is rarely seen during tests. The behavior of king quail is a striking contrast to that of Japanese quail, providing a new comparative system for discovering mechanisms of behavior related to close social relationships and monogamy.

  18. Pairing Behavior of the Monogamous King Quail, Coturnix chinensis.

    Science.gov (United States)

    Adkins-Regan, Elizabeth

    2016-01-01

    Animals with socially monogamous mating systems are valuable for discovering proximate mechanisms of prosocial behavior and close social relationships. Especially powerful are comparisons between related species that differ in monogamous tendency. Birds are the most socially monogamous vertebrates. Thus far most research on mechanisms of pairing has used zebra finches, which do not have a relative with a different mating system, however. The goal of the experiments reported here was to develop a new comparative avian system by studying the pairing behavior of a reportedly strongly monogamous quail, the king quail (Coturnix chinensis), a species in the same clade as the less monogamous Japanese quail (Coturnix japonica), the subject of much prior research. In Experiment 1 male-female pairs of king quail housed together were initially avoidant or aggressive but most rapidly progressed to allopreening and huddling. A separation-reunion paradigm reliably elicited both of these behaviors in males that had cohabited for one week. In Experiment 2 the allopreening and huddling behavior of males in cohabiting pairs was highly selective, and a majority of the males were aggressive toward a familiar female that was not the cohabitation partner. In Experiment 3 males were separated from their female cohabitation partners for 9-10 weeks and then given two-choice tests. All but one male spent more time near an unfamiliar female, which may have reflected aggression and shows recognition of and memory for the past pairing experience. Thus king quail show robust, selective and easy to measure pairing behavior that can be reliably elicited with simple separation-reunion testing procedures. Copulation is rarely seen during tests. The behavior of king quail is a striking contrast to that of Japanese quail, providing a new comparative system for discovering mechanisms of behavior related to close social relationships and monogamy.

  19. Sex-specific differential survival of extra-pair and within-pair offspring in song sparrows, Melospiza melodia.

    Science.gov (United States)

    Sardell, Rebecca J; Arcese, Peter; Keller, Lukas F; Reid, Jane M

    2011-11-07

    It is widely hypothesized that the evolution of female extra-pair reproduction in socially monogamous species reflects indirect genetic benefits to females. However, a critical prediction of this hypothesis, that extra-pair young (EPY) are fitter than within-pair young (WPY), has rarely been rigorously tested. We used 18 years of data from free-living song sparrows, Melospiza melodia, to test whether survival through major life-history stages differed between EPY and WPY maternal half-siblings. On average, survival of hatched chicks to independence from parental care and recruitment, and their total lifespan, did not differ significantly between EPY and WPY. However, EPY consistently tended to be less likely to survive, and recruited EPY survived for significantly fewer years than recruited WPY. Furthermore, the survival difference between EPY and WPY was sex-specific; female EPY were less likely to survive to independence and recruitment and lived fewer years than female WPY, whereas male EPY were similarly or slightly more likely to survive and to live more years than male WPY. These data indicate that extra-pair paternity may impose an indirect cost on females via their female offspring and that sex-specific genetic, environmental or maternal effects may shape extra-pair reproduction.

  20. All paired up with no place to go: pairing, synapsis, and DSB formation in a balancer heterozygote.

    Directory of Open Access Journals (Sweden)

    Wei J Gong

    2005-11-01

    Full Text Available The multiply inverted X chromosome balancer FM7 strongly suppresses, or eliminates, the occurrence of crossing over when heterozygous with a normal sequence homolog. We have utilized the LacI-GFP: lacO system to visualize the effects of FM7 on meiotic pairing, synapsis, and double-strand break formation in Drosophila oocytes. Surprisingly, the analysis of meiotic pairing and synapsis for three lacO reporter couplets in FM7/X heterozygotes revealed they are paired and synapsed during zygotene/pachytene in 70%-80% of oocytes. Moreover, the regions defined by these lacO couplets undergo double-strand break formation at normal frequency. Thus, even complex aberration heterozygotes usually allow high frequencies of meiotic pairing, synapsis, and double-strand break formation in Drosophila oocytes. However, the frequencies of failed pairing and synapsis were still 1.5- to 2-fold higher than were observed for corresponding regions in oocytes with two normal sequence X chromosomes, and this effect was greatest near a breakpoint. We propose that heterozygosity for breakpoints creates a local alteration in synaptonemal complex structure that is propagated across long regions of the bivalent in a fashion analogous to chiasma interference, which also acts to suppress crossing over.

  1. Arithmetic properties of $\\ell$-regular overpartition pairs

    OpenAIRE

    NAIKA, MEGADAHALLI SIDDA MAHADEVA; SHIVASHANKAR, CHANDRAPPA

    2017-01-01

    In this paper, we investigate the arithmetic properties of $\\ell$-regular overpartition pairs. Let $\\overline{B}_{\\ell}(n)$ denote the number of $\\ell$-regular overpartition pairs of $n$. We will prove the number of Ramanujan-like congruences and infinite families of congruences modulo 3, 8, 16, 36, 48, 96 for $\\overline{B}_3(n)$ and modulo 3, 16, 64, 96 for $\\overline{B}_4(n)$. For example, we find that for all nonnegative integers $\\alpha$ and $n$, $\\overline{B}_{3}(3^{\\alpha}(3n+2))\\equiv ...

  2. Cooper pair splitters beyond the Coulomb blockade regime

    Energy Technology Data Exchange (ETDEWEB)

    Amitai, Ehud; Tiwari, Rakesh P.; Nigg, Simon E. [Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel (Switzerland); Walter, Stefan [Institute for Theoretical Physics, University Erlangen Nuernberg, Staudtstrasse 7, 91058 Erlangen (Germany); Schmidt, Thomas L. [Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg (Luxembourg)

    2016-07-01

    We consider the setup of a conventional s-wave Cooper pair splitter. However, we consider the charging energies in the quantum dots to be finite and smaller than the superconducting gap. We find analytically that at low energies the superconductor mediates an inter-dot tunneling term, the spin symmetry of which is influenced by a finite Zeeman field. This effect, together with an electrical tuning scheme of the quantum dot levels, can be used to engineer a non local triplet state on the two quantum dots, thereby extending the non-local state engineering capabilities of the Cooper pair splitter system.

  3. An N=2 dual pair and a phase transition

    International Nuclear Information System (INIS)

    Aspinwall, P.S.

    1996-01-01

    We carefully analyze the N=2 dual pair of string theories in four dimensions introduced by Ferrara, Harvey, Strominger and Vafa. The analysis shows that a second discrete degree of freedom must be switched on in addition to the known ''Wilson line'' to achieve a non-perturbatively consistent theory. We also identify the phase transition this model undergoes into another dual pair via a process analogous to a conifold transition. This provides the first known example of a phase transition which is understood from both the type II and the heterotic string picture. (orig.)

  4. [Involvement of cranial pairs as manifestation of prostatic cancer].

    Science.gov (United States)

    Ripa Saldias, L M; Ayuso Blanco, T; Delpon Pérez, E; Sarria Octavio de Toledo, L

    1994-10-01

    Two cases of prostate cancer (PC) which presented clinically with affectation of the cranial pairs due to skull base metastasis. In both cases, existence of intraparenchimatous brain metastasis was excluded. Initial improvement with hormonal therapy was followed by clinical, analytical and radiological relapse due to spread of process until death, at 11 and 36 months from diagnosis. Although PC's bone metastasis are frequent, their location at the skull base is uncommon. Even more rare are the cases which present with changes in the cranial pairs in the absence of signs and symptoms of prostatism.

  5. Nilpotent orbits in real symmetric pairs and stationary black holes

    International Nuclear Information System (INIS)

    Dietrich, Heiko; De Graaf, Willem A.; Ruggeri, Daniele; Trigiante, Mario

    2017-01-01

    In the study of stationary solutions in extended supergravities with symmetric scalar manifolds, the nilpotent orbits of a real symmetric pair play an important role. In this paper we discuss two approaches to determine the nilpotent orbits of a real symmetric pair. We apply our methods to an explicit example, and thereby classify the nilpotent orbits of (SL 2 (R)) 4 acting on the fourth tensor power of the natural 2-dimensional SL 2 (R)-module. This makes it possible to classify all stationary solutions of the so-called STU-supergravity model. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. A two-level solvable model involving competing pairing interactions

    International Nuclear Information System (INIS)

    Dussel, G.G.; Maqueda, E.E.; Perazzo, R.P.J.; Evans, J.A.

    1986-01-01

    A model is considered consisting of nucleons moving in two non-degenerate l-shells and interacting through two pairing residual interactions with (S, T) = (1, 0) and (0, 1). These, together with the single particle hamiltonian induce mutually destructive correlations, giving rise to various collective pictures that can be discussed as representing a two-dimensional space of phases. The model is solved exactly using an O(8)xO(8) group theoretical classification scheme. The transfer of correlated pairs and quartets is also discussed. (orig.)

  7. Minimal Representations and Reductive Dual Pairs in Conformal Field Theory

    International Nuclear Information System (INIS)

    Todorov, Ivan

    2010-01-01

    A minimal representation of a simple non-compact Lie group is obtained by 'quantizing' the minimal nilpotent coadjoint orbit of its Lie algebra. It provides context for Roger Howe's notion of a reductive dual pair encountered recently in the description of global gauge symmetry of a (4-dimensional) conformal observable algebra. We give a pedagogical introduction to these notions and point out that physicists have been using both minimal representations and dual pairs without naming them and hence stand a chance to understand their theory and to profit from it.

  8. Pair Interaction of Dislocations in Two-Dimensional Crystals

    Science.gov (United States)

    Eisenmann, C.; Gasser, U.; Keim, P.; Maret, G.; von Grünberg, H. H.

    2005-10-01

    The pair interaction between crystal dislocations is systematically explored by analyzing particle trajectories of two-dimensional colloidal crystals measured by video microscopy. The resulting pair energies are compared to Monte Carlo data and to predictions derived from the standard Hamiltonian of the elastic theory of dislocations. Good agreement is found with respect to the distance and temperature dependence of the interaction potential, but not regarding the angle dependence where discrete lattice effects become important. Our results on the whole confirm that the dislocation Hamiltonian allows a quantitative understanding of the formation and interaction energies of dislocations in two-dimensional crystals.

  9. Defect-antidefect pair production via field oscillations

    International Nuclear Information System (INIS)

    Digal, S.; Sengupta, S.; Srivastava, A.M.

    1997-01-01

    We show that the mechanism of vortex-antivortex pair production via field oscillations, earlier proposed by two of us for systems with first order transitions in the presence of explicit symmetry breaking, is in fact generally applicable. We further argue that this mechanism applies to all sorts of topological defects (e.g., strings, monopoles, textures) and for second order transitions as well (involving quench from high temperature). We also show this explicitly by numerically simulating the production of vortex-antivortex pairs by the decay of bubble walls for a U(1) global theory in the absence of any explicit symmetry breaking. copyright 1997 The American Physical Society

  10. Massive mu pair production in a vector field theory model

    CERN Document Server

    Halliday, I G

    1976-01-01

    Massive electrodynamics is treated as a model for the production of massive mu pairs in high-energy hadronic collisions. The dominant diagrams in perturbation theory are identified and analyzed. These graphs have an eikonal structure which leads to enormous cancellations in the two-particle inclusive cross section but not in the n-particle production cross sections. Under the assumption that these cancellations are complete, a Drell-Yan structure appears in the inclusive cross section but the particles accompanying the mu pairs have a very different structure compared to the parton model. The pionization region is no longer empty of particles as in single parton models. (10 refs).

  11. Pairing in Fermionic Systems Basic Concepts and Modern Applications

    CERN Document Server

    Clark, John W; Alford, Mark

    2006-01-01

    Cooper pairing of fermions is a profound phenomenon that has become very important in many different areas of physics in the recent past. This book brings together, for the first time, experts from various fields involving Cooper pairing, at the level of BCS theory and beyond, including the study of novel states of matter such as ultracold atomic gases, nuclear systems at the extreme, and quark matter with application to neutron stars. Cross-disciplinary in nature, the book will be of interest to physicists in many different specialties, including condensed matter, nuclear, high-energy, and as

  12. First-principles study of Frenkel pair recombination in tungsten

    International Nuclear Information System (INIS)

    Qin, Shi-Yao; Jin, Shuo; Li, Yu-Hao; Zhou, Hong-Bo; Zhang, Ying; Lu, Guang-Hong

    2017-01-01

    The recombination of one Frenkel pair in tungsten has been investigated through first-principles simulation. Two different recombination types have been identified: instantaneous and thermally activated. The small recombination barriers for thermally activated recombination cases indicate that recombination can occur easily with a slightly increased temperature. For both of the two recombination types, recombination occurs through the self-interstitial atom moving towards the vacancy. The recombination process can be direct or through replacement sequences, depending on the vertical distance between the vacancy and the 〈1 1 1〉 line of self-interstitial atom pair.

  13. Full NLO massive gauge boson pair production at the LHC

    CERN Document Server

    Baglio, Julien; Weber, Marcus M

    2013-01-01

    Electroweak gauge boson pair production is a very important process at the LHC as it probes the non-abelian structure of electroweak interactions and is a background process for many searches. We present full next-to-leading order predictions for the production cross sections and distributions of on-shell massive gauge boson pair production in the Standard Model, including both QCD and electroweak corrections. The hierarchy between the ZZ, WW and WZ channels, observed in the transverse momentum distributions, will be analyzed. We will also present a comparison with experimental data for the total cross sections including a study of the theoretical uncertainties.

  14. Pair breaking and density of states in disordered superconductors

    International Nuclear Information System (INIS)

    Weinkauf, A.; Zittartz, J.

    1975-01-01

    It is shown that pair breaking occurs in a disordered superconductor due to spatial variations of the order parameter, although the system is time reversal invariant. The pair breaking effect is reflected by the occurence of some interesting fine structure in the one particle density of states. Discrete bound states and split-off impurity bands show up in the single impurity case and for very dilute alloys, respectively. For finite alloy concentrations the calculations are done within the CPA. Although principally important, the fine structure is concentrated in an energy range too narrow to be detected experimentally. (orig.) [de

  15. Josephson junction analog and quasiparticle-pair current

    DEFF Research Database (Denmark)

    Bak, Christen Kjeldahl; Pedersen, Niels Falsig

    1973-01-01

    A close analogy exists between a Josephson junction and a phase-locked loop. A new type of electrical analog based on this principle is presented. It is shown that the inclusion in this analog of a low-pass filter gives rise to a current of the same form as the Josephson quasiparticle-pair current....... A simple picture of the quasiparticle-pair current, which gives the right dependences, is obtained by assuming a junction cutoff frequency to be at the energy gap. ©1973 American Institute of Physics...

  16. Supersymmetric Higgs pair discovery prospects at hadron colliders

    CERN Document Server

    Belyaev, A; Éboli, Oscar J P; Mizukoshi, J K; Novaes, S F

    2000-01-01

    We study the potential of hadron colliders in the search for the pair production of neutral Higgs bosons in the framework of the Minimal Supersymmetric Standard Model. Using analytical expressions for the relevant amplitudes, we perform a detailed signal and background analysis, working out efficient kinematical cuts for the extraction of the signal. The important role of squark loop contributions to the signal is emphasised. If the signal is sufficiently enhanced by these contributions, it could even be observable at the next run of the upgraded Tevatron collider in the near future. At the LHC the pair production of light and heavy Higgs bosons might be detectable simultaneously.

  17. Low mass lepton pair production in hadron collisions

    International Nuclear Information System (INIS)

    Berger, E. L.; Klasen, M.

    1999-01-01

    The hadroproduction of lepton pairs with mass Q and transverse momentum Q T can be described in perturbative QCD by the same partonic subprocesses as prompt photon production. They demonstrate that, like prompt photon production, lepton pair production is dominated by quark-gluon scattering in the region Q T > Q/2. This leads to sensitivity to the gluon density in kinematical regimes that are accessible both at collider and fixed target experiments while eliminating the theoretical and experimental uncertainties present in prompt photon production

  18. Paired structures and other opposite-based models

    DEFF Research Database (Denmark)

    Rodríguez, J. Tinguaro; Franco, Camilo; Gómez, Daniel

    2015-01-01

    , that we will assume dependent on a specific negation, previously determined. In this way we can define a paired fuzzy set as a couple of opposite valuation fuzzy sets. Then we shall explore what kind of new valuation fuzzy sets can be generated from the semantic tension between those two poles, leading...... to a more complex valuation structure that still keeps the essence of being paired. In this way several neutral fuzzy sets can appear, in particular indeterminacy, ambivalence and conflict. Two consequences are then presented: on one hand, we will show how Atanassov´s Intuitionistic Fuzzy Sets can be viewed...

  19. Energy gap in S- and D-wave pairing superconductors

    International Nuclear Information System (INIS)

    Dolgov, O.V.; Golubov, A.A.

    1988-01-01

    In this paper the ratio of 2Δ g /T c , where Δ g is the gap edge, T c is the critical temperature, is calculated in the framework of the model of strong electron-phonon coupling. Both isotropic and anisotropic pairing cases are considered. It is shown that the isotropic Eliashberg model can not account for the large values of the ratio 2Δ g /T c for the reasonable values of the electron-phonon coupling parameter λ while anisotropic pairing can resolve this problem

  20. Electron-positron pair creation in heavy ion collisions

    International Nuclear Information System (INIS)

    Kienle, P.

    1987-01-01

    The authors review the status of experiments to study the electron positron pair creation in heavy ion atom collisions at bombarding energies close to the Coulomb barrier. The disentanglement and characterization of various sources of positrons observed in such collisions are described with a focus on the monoenergetic electron positron pairs observed. They seem to originate from the two-body decay of a family of neutral particles with masses of about 3m and lifetimes in the range of 6 x 10 - 14 s, produced by high Coulomb fields. First attempts were made to create these particles by resonant Bhabha scattering

  1. Positron-electron pairs produced in heavy-ion collisions

    International Nuclear Information System (INIS)

    Ahmad, I.; Austin, Sam. M.; Back, B. B.; Betts, R. R.; Calaprice, F. P.; Chan, K. C.; Chishti, A.; Conner, C. M.; Dunford, R. W.; Fox, J. D.

    1999-01-01

    The production of positron-electron pairs in collisions of 238 U+ 232 Th at 5.95 MeV/nucleon, and of 238 U+ 181 Ta at 5.95, 6.1, and 6.3 MeV/nucleon, has been studied with the APEX spectrometer at Argonne National Laboratory. Several analyses have been performed to search for sharp structures in sum-energy spectra for positron-electron pairs. Such features have been reported in previous experiments. No statistically convincing evidence for such behavior is observed in the present data. (c) 1999 The American Physical Society

  2. Study of tau-pair production at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Abramowicz, H. [Tel Aviv Univ. (Israel). School of Physics; Max Planck Institute for Physics, Munich (Germany); Adamczyk, L. [AGH-Univ. of Science and Technology, Cracow (Poland). Faculty of Physics and Applied Computer Science; Adamus, M. [Institute for Nuclear Studies, Warsaw (PL)] (and others)

    2010-12-15

    A study of events containing two tau leptons with high transverse momentum has been performed with the ZEUS detector at HERA, using a data sample corresponding to an integrated luminosity of 0.33 fb{sup -1}. The tau candidates were identified from their decays into electrons, muons or hadronic jets. The number of tau-pair candidates has been compared with the prediction from the Standard Model, where the largest contribution is expected from Bethe-Heitler processes. The total visible cross section was extracted. Standard Model expectations agree well with the measured distributions, also at high invariant mass of the tau pair. (orig.)

  3. Pair approximation and the OAI mapping in the deformed limit

    International Nuclear Information System (INIS)

    Yoshinaga, N.

    1989-01-01

    The pair subspaces - the SD- and SDG-subspaces - are constructed. Eigenstates for a quadrupole force and transition rates for a quadrupole operator are calculated in the single j-shell-model. The SDG-pair approximation is found to be excellent in describing the low-spin states of the ground bands compared to exact shell-model calculations. The fermion interactions are mapped onto the corresponding boson ones using the mapping procedure by Otsuka, Arima and Iachello (OAI). The OAI approximation in zeroth-order fails in reproducing the ground-state energies in the deformed limit. (orig.)

  4. A pair spectrometer for measuring multipolarities of energetic nuclear transitions

    CERN Document Server

    Gulyás, J.; Krasznahorkay, A.J.; Csatlós, M.; Csige, L.; Gácsi, Z.; Hunyadi, M.; Krasznahorkay, A.; Vitéz, A.; Tornyi, T.G.

    2016-02-01

    A multi-detector array has been designed and constructed for the simultaneous measurement of energy- and angular correlations of electron-positron pairs. Experimental results are obtained over a wide angular range for high-energy transitions in 16O, 12C and 8Be. A comparison with GEANT simulations demonstrates that angular correlations between 50 and 180 degrees of the electron-positron pairs in the energy range between 6 and 18 MeV can be determined with sufficient resolution and efficiency.

  5. Ferromagnetic pairing states on two-coupled chains

    International Nuclear Information System (INIS)

    Tanaka, Akinori

    2008-01-01

    We propose a concrete model which exhibits ferromagnetism and electron-pair condensation simultaneously. The model is defined on two chains and consists of the electron hopping term, the on-site Coulomb repulsion and a ferromagnetic interaction which describes ferromagnetic coupling between two electrons, one on a bond in a chain and the other on a site in the other chain. It is rigorously shown that the model has fully-polarized ferromagnetic pairing ground states. The higher dimensional version of the model is also presented

  6. On the pair creation effect in radiative bottonium transitions

    International Nuclear Information System (INIS)

    Lewin, K.; Motz, G.B.

    1986-01-01

    The contributions from internal b-quark pair creation to the radiative transition rates of the processes Y(2S) → X b 1 +γ and X b 2 → Y(1S)+γ have been estimated in a quasilocal approximation preserving the time-dependence of the antiquark propagator and found to be smaller than 10%. Although relatively small, the pair creation correction depends sensitively on quark masses and photon energies and thus cannot be ignored in quantitative investigations of radiative quarkonium transitions

  7. Role of pn-pairs in nuclear structure

    International Nuclear Information System (INIS)

    Nie, G.K.

    2003-01-01

    An α-cluster model of nuclear structure based on power of proton + neutron (pn)-pairs to bind themselves to α-clusters is proposed. The α-cluster is taken as the perfect condition of coupling of 2 pn- pairs, reminding complete electron shell in atomic physics. Pn-pairs create 2 other types of coupling of considerably less power between pn-pairs of nearby α-clusters ε α c and between pn-pair not bound into α-cluster with pn-pairs of nearby cluster ε pn c . Last two types of coupling are called covalent because of reminding similar electron coupling in chemistry. According the model nucleus is a liquid drop consisting of molecules, which are α-clusters, tied by covalent coupling with those ones which are in close vicinity. Then in case of even-even nuclei spin of the nucleus has to be zero I=0 + as sum of spinless particles. In case of nucleus has some nucleons (i) in intermolecular space, I=Σj i ; with taking into account that there is coupling of p and n in pn-pair. Therefore for 6 Li (1=0)I=2·1/2=1 + . The values ε α c , ε pn c and binding energy of the pn-pair itself ε pn have been estimated from analysis of binding energy of nuclei 6 Li, 10 B and 12 C. With the values the binding energy of the other nuclei with N=Z up to 58 Cu have been described with difference between experimental values and model ones in average less than 0.4 MeV. The structure reveals some regular forms, in which every cluster has reduced amount of covalent coupling, 3 or 4, and free pn-pair has 6 covalent coupling with 3 nearby clusters pn-pairs. Then the magic numbers are supposed to be the matter of geometry, when total amount of covalent couplings is optimal (minimal for the amount of clusters), α- clusters are placed in the same fixed distant from center of mass. It means that protons of the clusters can be considered as belonging to one shell. In the cluster model single particle effects have to be considered as single particle binding in one of the surface

  8. Modeling top quark pair production in the search of new, heavy resonance that decays into a pair of Higgs bosons

    CERN Document Server

    Liyanage, Kalpanie Madara

    2017-01-01

    The Higgs boson pair production process at the LHC provides an opportunity for performing a study of the trilinear Higgs boson self-coupling. We consider Higgs boson pair production in the bbWW*channel, with subsequent decay of the WW* pair into lνqq. Due to irreducible top quark backgrounds and the associated uncertainties, this is a challenging final state to explore. We apply appropriate selection cuts on suitable kinematic variables in order to obtain a signal-enriched region. Using several different Monte Carlo (MC) samples the top quark background process is then studied in this region of interest. We find that depending on the phase space, different MC samples lead to kinematic differences.

  9. Hydration of Watson-Crick base pairs and dehydration of Hoogsteen base pairs inducing structural polymorphism under molecular crowding conditions.

    Science.gov (United States)

    Miyoshi, Daisuke; Nakamura, Kaori; Tateishi-Karimata, Hisae; Ohmichi, Tatsuo; Sugimoto, Naoki

    2009-03-18

    It has been revealed recently that molecular crowding, which is one of the largest differences between in vivo and in vitro conditions, is a critical factor determining the structure, stability, and function of nucleic acids. However, the effects of molecular crowding on Watson-Crick and Hoogsteen base pairs remain unclear. In order to investigate directly and quantitatively the molecular crowding effects on base pair types in nucleic acids, we designed intramolecular parallel- and antiparallel-stranded DNA duplexes consisting of Hoogsteen and Watson-Crick base pairs, respectively, as well as an intramolecular parallel-stranded triplex containing both types of base pairs. Thermodynamic analyses demonstrated that the values of free energy change at 25 degrees C for Hoogsteen base-pair formations decreased from +1.45 +/- 0.15 to +1.09 +/- 0.13 kcal mol(-1), and from -1.89 +/- 0.13 to -2.71 +/- 0.11 kcal mol(-1) in the intramolecular duplex and triplex, respectively, when the concentration of PEG 200 (polyethylene glycol with average molecular weight 200) increased from 0 to 20 wt %. However, corresponding values for Watson-Crick formation in the duplex and triplex increased from -10.2 +/- 0.2 to -8.7 +/- 0.1 kcal mol(-1), and from -10.8 +/- 0.2 to -9.2 +/- 0.2 kcal mol(-1), respectively. Furthermore, it was revealed that the opposing effects of molecular crowding on the Hoogsteen and Watson-Crick base pairs were due to different behaviors of water molecules binding to the DNA strands.

  10. Pair Housing of Dairy Calves and Age at Pairing: Effects on Weaning Stress, Health, Production and Social Networks.

    Science.gov (United States)

    Bolt, Sarah L; Boyland, Natasha K; Mlynski, David T; James, Richard; Croft, Darren P

    2017-01-01

    The early social environment can influence the health and behaviour of animals, with effects lasting into adulthood. In Europe, around 60% of dairy calves are reared individually during their first eight weeks of life, while others may be housed in pairs or small groups. This study assessed the effects of varying degrees of social contact on weaning stress, health and production during pen rearing, and on the social networks that calves later formed when grouped. Forty female Holstein-Friesian calves were allocated to one of three treatments: individually housed (I, n = 8), pair-housed from day five (P5, n = 8 pairs), and pair-housed from day 28 (P28, n = 8 pairs). From day 48, calves were weaned by gradual reduction of milk over three days, and vocalisations were recorded as a measure of stress for three days before, during and after weaning. Health and production (growth rate and concentrate intakes) were not affected by treatment during the weaning period or over the whole study. Vocalisations were highest post-weaning, and were significantly higher in I calves than pair-reared calves. Furthermore, P28 calves vocalised significantly more than P5 calves. The social network of calves was measured for one month after all calves were grouped in a barn, using association data from spatial proximity loggers. We tested for week-week stability, social differentiation and assortment in the calf network. Additionally, we tested for treatment differences in: coefficient of variation (CV) in association strength, percentage of time spent with ex-penmate (P5 and P28 calves only) and weighted degree centrality (the sum of the strength of an individual's associations). The network was relatively stable from weeks one to four and was significantly differentiated, with individuals assorting based on prior familiarity. P5 calves had significantly higher CV in association strength than I calves in week one (indicating more heterogeneous social associations) but there were no

  11. BEC-BCS crossover in a (p+ip)-wave pairing Hamiltonian coupled to bosonic molecular pairs

    International Nuclear Information System (INIS)

    Dunning, Clare; Isaac, Phillip S.; Links, Jon; Zhao, Shao-You

    2011-01-01

    We analyse a (p+ip)-wave pairing BCS Hamiltonian, coupled to a single bosonic degree of freedom representing a molecular condensate, and investigate the nature of the BEC-BCS crossover for this system. For a suitable restriction on the coupling parameters, we show that the model is integrable and we derive the exact solution by the algebraic Bethe ansatz. In this manner we also obtain explicit formulae for correlation functions and compute these for several cases. We find that the crossover between the BEC state and the strong pairing p+ip phase is smooth for this model, with no intermediate quantum phase transition.

  12. On the Fonte structure between a pair of Banach spaces

    International Nuclear Information System (INIS)

    Sharma, C.S.

    1990-01-01

    The main purpose of the present note is to establish the essential equivalence of the adjoint of a semilinear map defined through the Fonte structure between a pair of Banach spaces and the adjoint of the same map defined by Pian and the present author

  13. Electromagnetic lepton-pair production in relativistic collisions

    International Nuclear Information System (INIS)

    Albert, C.J.; Ernst, D.J.; Strayer, M.R.; Bottcher, C.

    1991-01-01

    Electromagnetic lepton-pair production in relativistic collisions is studied in an ab initio approach with no free parameters. After a semi-classical approximation to the relative motion of the two incident particles is made, the resulting second-order diagram is calculated using a Monte Carlo technique to evaluate the resulting seven-dimensional integral. We examine the case of electron-positron pair production in π - p collisions at p pi = 17 GeV. We find that a significant fraction of the measured pairs in this reaction are produced via the magnetic spin-flip current of the proton. Approaches, such as the equivalent photon approximation, which neglect this part of the current predict much too small a cross section. This feature is traced to the cuts imposed in taking the experimental data. Lepton-pair production in the scattering of 3 He, 4 He and 4 He, 4 He is proposed as a clean way of experimentally separating the spin-flip and non-flip processes; predictions are made for these systems

  14. Charge transfer in DNA: role of base pairing

    Czech Academy of Sciences Publication Activity Database

    Kratochvílová, Irena; Bunček, M.; Schneider, Bohdan

    2009-01-01

    Roč. 38, Suppl. (2009), S123-S123 ISSN 0175-7571. [EBSA European Biophysics Congress /7./. Genoa, 11.07.2009-15.07.2009] Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z50520701 Keywords : DNA * charge transport * base pairing Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.437, year: 2009

  15. An effective pair potential for liquid semiconductor, Se: Structure and ...

    Indian Academy of Sciences (India)

    This model potential is then used to describe through low-order perturbation theory, the structure and related dynamical properties like self-diffusion coefficient and shear viscosity of this complex liquid over a wide range of temperatures. Keywords. Liquid semiconductor; pair potential; structure and dynamical properties.

  16. An effective pair potential for liquid semiconductor, Se: Structure and ...

    Indian Academy of Sciences (India)

    The effective pair potential of liquid semiconductor Se is extracted from its experimental structure factor data using an accurate liquid state theory and this shows important basic features. A model potential incorporating the basic features of the structure factor extracted potential is suggested. This model potential is then used ...

  17. Ion pairs in non-redundant protein structures

    Indian Academy of Sciences (India)

    Ion pairs contribute to several functions including the activity of catalytic triads, fusion of viral membranes, stability in thermophilic proteins and solvent–protein interactions. Furthermore, they have the ability to affect the stability of protein structures and are also a part of the forces that act to hold monomers together.

  18. Multi-user distribution of polarization entangled photon pairs

    Energy Technology Data Exchange (ETDEWEB)

    Trapateau, J.; Orieux, A.; Diamanti, E.; Zaquine, I., E-mail: isabelle.zaquine@telecom-paristech.fr [LTCI, CNRS, Télécom ParisTech, Université Paris-Saclay, 75013 Paris (France); Ghalbouni, J. [Applied Physics Laboratory, Faculty of Sciences 2, Lebanese University, Campus Fanar, BP 90656 Jdeidet (Lebanon)

    2015-10-14

    We experimentally demonstrate multi-user distribution of polarization entanglement using commercial telecom wavelength division demultiplexers. The entangled photon pairs are generated from a broadband source based on spontaneous parametric down conversion in a periodically poled lithium niobate crystal using a double path setup employing a Michelson interferometer and active phase stabilisation. We test and compare demultiplexers based on various technologies and analyze the effect of their characteristics, such as losses and polarization dependence, on the quality of the distributed entanglement for three channel pairs of each demultiplexer. In all cases, we obtain a Bell inequality violation, whose value depends on the demultiplexer features. This demonstrates that entanglement can be distributed to at least three user pairs of a network from a single source. Additionally, we verify for the best demultiplexer that the violation is maintained when the pairs are distributed over a total channel attenuation corresponding to 20 km of optical fiber. These techniques are therefore suitable for resource-efficient practical implementations of entanglement-based quantum key distribution and other quantum communication network applications.

  19. Inter-layer Cooper pairing of two-dimensional electrons

    International Nuclear Information System (INIS)

    Inoue, Masahiro; Takemori, Tadashi; Yoshizaki, Ryozo; Sakudo, Tunetaro; Ohtaka, Kazuo

    1987-01-01

    The authors point out the possibility that the high transition temperatures of the recently discovered oxide superconductors are dominantly caused by the inter-layer Cooper pairing of two-dimensional electrons that are coupled through the exchange of three-dimensional phonons. (author)

  20. Aliasing effects in digital images of line-pair phantoms

    International Nuclear Information System (INIS)

    Albert, Michael; Beideck, Daniel J.; Bakic, Predrag R.; Maidment, Andrew D.A.

    2002-01-01

    Line-pair phantoms are commonly used for evaluating screen-film systems. When imaged digitally, aliasing effects give rise to additional periodic patterns. This paper examines one such effect that medical physicists are likely to encounter, and which can be used as an indicator of super-resolution

  1. On Dual Gabor Frame Pairs Generated by Polynomials

    DEFF Research Database (Denmark)

    Christensen, Ole; Rae Young, Kim

    2010-01-01

    We provide explicit constructions of particularly convenient dual pairs of Gabor frames. We prove that arbitrary polynomials restricted to sufficiently large intervals will generate Gabor frames, at least for small modulation parameters. Unfortunately, no similar function can generate a dual Gabo...

  2. Influence of pairing in double beta decay of 48Ca

    Indian Academy of Sciences (India)

    Proton–neutron pairing is expected to play a significant role in the calculation of ... probability, one can only extract upper limit for the effective electron–neutrino mass .... The matrices for (FN,Z(θ))αβ and (fN,Z)αβ have been developed. In the.

  3. Robot etiquette: How to approach a pair of people?

    NARCIS (Netherlands)

    Karreman, Daphne Eleonora; Utama, Lex; Joosse, M.P.; Lohse, M.; van Dijk, Elisabeth M.A.G.; Evers, Vanessa

    2014-01-01

    Research has been carried out on robots approaching one person [1, 3, 4]. However, further research is needed on robots approaching groups of people. In the study reported in this paper, we studied participants who were paired up for a task and assessed their perception and behaviors as they were

  4. Lagrangian statistics of particle pairs in homogeneous isotropic turbulence

    NARCIS (Netherlands)

    Biferale, L.; Boffeta, G.; Celani, A.; Devenish, B.J.; Lanotte, A.; Toschi, F.

    2005-01-01

    We present a detailed investigation of the particle pair separation process in homogeneous isotropic turbulence. We use data from direct numerical simulations up to R????280 following the evolution of about two million passive tracers advected by the flow over a time span of about three decades. We

  5. Sensitivity analysis of physiochemical interaction model: which pair ...

    African Journals Online (AJOL)

    ... of two model parameters at a time on the solution trajectory of physiochemical interaction over a time interval. Our aim is to use this powerful mathematical technique to select the important pair of parameters of this physical process which is cost-effective. Keywords: Passivation Rate, Sensitivity Analysis, ODE23, ODE45 ...

  6. Positive Noise Cross Correlation in a Copper Pair Splitter.

    Science.gov (United States)

    Das, Anindya; Ronen, Yuval; Heiblum, Moty; Shtrikman, Hadas; Mahalu, Diana

    2012-02-01

    Entanglement is in heart of the Einstein-Podolsky-Rosen (EPR) paradox, in which non-locality is a fundamental property. Up to date spin entanglement of electrons had not been demonstrated. Here, we provide direct evidence of such entanglement by measuring: non-local positive current correlation and positive cross correlation among current fluctuations, both of separated electrons born by a Cooper-pair-beam-splitter. The realization of the splitter is provided by injecting current from an Al superconductor contact into two, single channel, pure InAs nanowires - each intercepted by a Coulomb blockaded quantum dot (QD). The QDs impedes strongly the flow of Cooper pairs allowing easy single electron transport. The passage of electron in one wire enables the simultaneous passage of the other in the neighboring wire. The splitting efficiency of the Cooper pairs (relative to Cooper pairs actual current) was found to be ˜ 40%. The positive cross-correlations in the currents and their fluctuations (shot noise) are fully consistent with entangled electrons produced by the beam splitter.

  7. Pairing effects in rotating nuclei: a semi classical approach

    International Nuclear Information System (INIS)

    Durand, M.

    1985-10-01

    The semi-classical phase-space distribution ρ(r,p) is calculated for rotating superfluid nuclei, taking into account the reaction of the pairing field to the rotational motion. Moments of inertia and current distributions calculated by means of this distribution pass continuously from a rigid to an irrotational behaviour

  8. Electron-positron pair production in ultrastrong laser fields

    Directory of Open Access Journals (Sweden)

    Bai Song Xie

    2017-09-01

    Full Text Available Electron–positron pair production due to the decay of vacuum in ultrastrong laser fields is an interesting topic which is revived recently because of the rapid development of current laser technology. The theoretical and numerical research progress of this challenging topic is reviewed. Many new findings are presented by different approaches such as the worldline instantons, the S-matrix theory, the kinetic method by solving the quantum Vlasov equation or/and the real-time Dirac–Heisenberg–Wigner formalism, the computational quantum field theory by solving the Dirac equation and so on. In particular, the effects of electric field polarizations on pair production are unveiled with different patterns of created momentum spectra. The effects of polarizations on the number density of created particles and the nonperturbative signatures of multiphoton process are also presented. The competitive interplay between the multiphoton process and nonperturbation process plays a key role in these new findings. These newly discovered phenomena are valuable to deepen the understanding of pair production in complex fields and even have an implication to the study of strong-field ionization. More recent studies on the pair production in complex fields as well as beyond laser fields are briefly presented in the view point of perspective future.

  9. Distributed wireless quantum communication networks with partially entangled pairs

    International Nuclear Information System (INIS)

    Yu Xu-Tao; Zhang Zai-Chen; Xu Jin

    2014-01-01

    Wireless quantum communication networks transfer quantum state by teleportation. Existing research focuses on maximal entangled pairs. In this paper, we analyse the distributed wireless quantum communication networks with partially entangled pairs. A quantum routing scheme with multi-hop teleportation is proposed. With the proposed scheme, is not necessary for the quantum path to be consistent with the classical path. The quantum path and its associated classical path are established in a distributed way. Direct multi-hop teleportation is conducted on the selected path to transfer a quantum state from the source to the destination. Based on the feature of multi-hop teleportation using partially entangled pairs, if the node number of the quantum path is even, the destination node will add another teleportation at itself. We simulated the performance of distributed wireless quantum communication networks with a partially entangled state. The probability of transferring the quantum state successfully is statistically analyzed. Our work shows that multi-hop teleportation on distributed wireless quantum networks with partially entangled pairs is feasible. (general)

  10. Using Picture Books as Paired Texts to Teach Educational Theories

    Science.gov (United States)

    Gao, Yang; Bintz, William P.

    2015-01-01

    Picture books, when used thoughtfully and artfully, can teach theories to graduate students in literacy and foreign language education. In this article, the authors described how a pair of picture books is used to teach Vygotsky's "Zone of Proximal Development" and Krashen's "Input Hypothesis" in the fields of literacy…

  11. Clarifying and Teaching Bohm-Bawerk's "Marginal Pairs."

    Science.gov (United States)

    Egger, John B.

    1998-01-01

    Briefly defines and provides some background on Eugen von Bohm-Bawerk's "marginal pairs" theory of pricing. Asserts that Bohm-Bawerk's theory is a good introduction to the Austrian school of economics and illustrates the differences between this approach and neoclassical economic theory. Includes several graphs and tables of data. (MJP)

  12. Positive definite functions and dual pairs of locally convex spaces

    Directory of Open Access Journals (Sweden)

    Daniel Alpay

    2018-01-01

    Full Text Available Using pairs of locally convex topological vector spaces in duality and topologies defined by directed families of sets bounded with respect to the duality, we prove general factorization theorems and general dilation theorems for operator-valued positive definite functions.

  13. Quantitative Analysis of Tenofovir by Titrimetric, Extractive Ion-pair ...

    African Journals Online (AJOL)

    Methods: Tenofovir disoproxil forms a complex of 1:1 molar ratio with fumaric acid that was employed in its aqueous titration with sodium hydroxide. Non-aqueous titration was also employed for its determination. Extractive ion-pair spectrophotometric technique using methyl orange was similarly employed to evaluate ...

  14. A paired wedge filter system for compensation in dose differences

    International Nuclear Information System (INIS)

    Kobayashi, H.; Sakurai, Y.; Kondo, S.; Abe, S.; Hayakawa, N.; Aoyama, Y.; Obata, Y.; Ishigaki, T.

    1998-01-01

    Objective: In radiotherapy, it is important to conform the high dose volume to the planned target volume. A variable thickness paired wedge filter system was developed to compensate for dose inhomogeneity arising from field width segment variation in conformal irradiation. Materials and methods: The present study used a 6 MV linear accelerator equipped with multileaf collimator leaves and a paired wedge compensating filter system. The dose variation due to field width was measured in each field segment width. The variation in attenuation of the compensators was measured as a function of filter position. As the field width increases, the relative absorbed dose also increases; this is the point of requiring compensation, so it can be in reverse proportion. Results: As the field width increases, the relative absorbed dose also increases; this is why compensation is required and thus it must be in reverse proportion. Attenuation of the absorbed dose by the paired filters was in proportion to the filter position. The filter position to compensate for the difference of absorbed doses was defined by the square root of the field width. For a field varying in width from 4 to 16 cm, the variation in the absorbed dose across the field was reduced from 12% to 2.7%. Conclusion: This paired wedge filter system reduced absorbed dose variations across multileaf collimator shaped fields and can facilitate treatment planning in conformal therapy. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  15. High energy collisions with pair (e-+e+) production

    International Nuclear Information System (INIS)

    Deco, G.R.; Rivarola, R.D.

    1988-01-01

    In this work, it is investigated the mechanism of pair production (e - +e + ). It is studied the competition between the beam capture reactions compared to mechanical and radiative capture of an electron initially orbiting in the target. (A.C.A.S.) [pt

  16. Frustrated Lewis pairs-assisted reduction of carbonyl compounds

    Czech Academy of Sciences Publication Activity Database

    Marek, Aleš; Pedersen, M. H. F.

    2015-01-01

    Roč. 71, č. 6 (2015), s. 917-921 ISSN 0040-4020 Institutional support: RVO:61388963 Keywords : frustrated Lewis pairs * hydrogen activation * benzyl alcohol * tritium labeling * labeled compounds Subject RIV: CC - Organic Chemistry Impact factor: 2.645, year: 2015

  17. Inclusive top-pair production phenomenology with TOPIXS

    NARCIS (Netherlands)

    Beneke, M.; Falgari, P|info:eu-repo/dai/nl/339938897; Klein, Sebastian; Piclum, J.; Schwinn, C.; Ubiali, M.; Yan, F.

    2012-01-01

    We discuss various aspects of inclusive top-quark pair production based on Topixs, a new, flexible program that computes the production cross section at the Tevatron and LHC at next-to-next-to-leading logarithmic accuracy in soft and Coulomb resummation, including bound-state effects and the

  18. Ferrocene-based Lewis acids and Lewis pairs: Synthesis and ...

    Indian Academy of Sciences (India)

    The design and synthesis of molecules containing non-interacting Lewis base and Lewis acid groups. [Frustrated Lewis pairs (FLP's)] have received intense attention due to their potential applications in the area of molecular catalysis.1–3. For example,. Stephen's and co-workers have demonstrated that the unquenched ...

  19. Study of wino pair production in e+e- annihilation

    International Nuclear Information System (INIS)

    Fukai, Tomoki; Kizukuri, Yoshiki; Oshimo, Noriyuki; Otake, Yoshie; Sugiyama, Naoshi

    1987-01-01

    We discuss wino pair production in e + e - annihilation and subsequent leptonic wino decay for various types of supersymmetric or supergravity models. Phenomenological predictions on this process depend considerably on a specific model. We analyze the energy distribution, forward-backward asymmetry and angular distribution of a charged lepton in the final state. (Author shortened by G.Q.)

  20. Knowledge transfer in pair programming: An in-depth analysis

    DEFF Research Database (Denmark)

    Plonka, Laura; Sharp, Helen; van der Linden, Janet

    2015-01-01

    Whilst knowledge transfer is one of the most widely-claimed benefits of pair programming, little is known about how knowledge transfer is achieved in this setting. This is particularly pertinent for novice−expert constellations, but knowledge transfer takes place to some degree in all constellati...

  1. Multiple electromagnetic pair production in ultrarelativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Best, C.

    1992-04-01

    The problem of the unitary violation in the pair production in ultrarelativistic heavy ion collisions was studied by a consideration of the field-theoretical foundations. The quantum electrodynamics in an external field were thereby reduced to a Dirac-sea model, the equivalence of which to the non-radiative QED resulted from the equality of the generating functionals. The latter can both be expressed explicitely by means of the complet set of the solutions of the Dirac equation in an external field. This method is based solely on the path-integral approach, which makes it possible to discriminate clearly between the physically given correlation functions and their generating functional at the one hand and at the other hand between the models constructed to their interpretation. From the model expression for the pair production amplitudes and multiplicities could be calculated, for which only the knowledge of the one-particle S matrix is necessary. For the calculation of the multiplicities different forms of the perturbation theory were discussed. Finally an impact-parameter dependent Weizsaecker-Williams approximation for the calculation of arbitrary two-photon graphs was constructed and applied to the given problem. The results indicate that at small distances very high pair multiplicities are to be expected. Finally a new approach to the pair production in an external field was discussed, which is not based on the canonical field theory, but on the formalism of the Wigner functions. (orig./HSI) [de

  2. The pair correlation function of spatial Hawkes processes

    DEFF Research Database (Denmark)

    Møller, Jesper; Torrisi, Giovanni Luca

    2007-01-01

    Spatial Hawkes processes can be considered as spatial versions of classical Hawkes processes. We derive the pair correlation function of stationary spatial Hawkes processes and discuss the connection to the Bartlett spectrum and other summary statistics. Particularly, results for Gaussian fertility...... rates and the extension to spatial Hawkes processes with random fertility rates are discussed....

  3. Heavy quark pair production in polarized photon-photon collisions

    International Nuclear Information System (INIS)

    Jikia, G.; Tkabladze, A.

    2000-04-01

    We present the cross sections of the heavy quark-antiquark pair production in polarized photon photon collision for the general case of photon polarizations. The numerical results for top-antitop production cross sections together with production asymmetries are obtained for linearly polarized photon-photon collisions, including QCD radiative corrections. (orig.)

  4. Molecular electrostatics for probing lone pair-π interactions.

    Science.gov (United States)

    Mohan, Neetha; Suresh, Cherumuttathu H; Kumar, Anmol; Gadre, Shridhar R

    2013-11-14

    An electrostatics-based approach has been proposed for probing the weak interactions between lone pair containing molecules and π deficient molecular systems. For electron-rich molecules, the negative minima in molecular electrostatic potential (MESP) topography give the location of electron localization and the MESP value at the minimum (Vmin) quantifies the electron-rich character of that region. Interactive behavior of a lone pair bearing molecule with electron deficient π-systems, such as hexafluorobenzene, 1,3,5-trinitrobenzene, 2,4,6-trifluoro-1,3,5-triazine and 1,2,4,5-tetracyanobenzene explored within DFT brings out good correlation of the lone pair-π interaction energy (E(int)) with the Vmin value of the electron-rich system. Such interaction is found to be portrayed well with the Electrostatic Potential for Intermolecular Complexation (EPIC) model. On the basis of the precise location of MESP minimum, a prediction for the orientation of a lone pair bearing molecule with an electron deficient π-system is possible in the majority of the cases studied.

  5. Density functional approach for pairing in finite size systems

    International Nuclear Information System (INIS)

    Hupin, G.

    2011-09-01

    The combination of functional theory where the energy is written as a functional of the density, and the configuration mixing method, provides an efficient description of nuclear ground and excited state properties. The specific pathologies that have been recently observed, show the lack of a clear underlying justification associated to the breaking and the restoration of symmetries within density functional theory. This thesis focuses on alternative treatments of pairing correlations in finite many body systems that consider the breaking and the restoration of the particle number conservation. The energy is written as a functional of a projected quasi-particle vacuum and can be linked to the one obtained within the configuration mixing framework. This approach has been applied to make the projection either before or after the application of the variational principle. It is more flexible than the usual configuration mixing method since it can handle more general effective interactions than the latter. The application to the Krypton isotopes shows the feasibility and the efficiency of the method to describe pairing near closed shell nuclei. Following a parallel path, a theory where the energy is written as a functional of the occupation number and natural orbitals is proposed. The new functional is benchmarked in an exactly solvable model, the pairing Hamiltonian. The efficiency and the applicability of the new theory have been tested for various pairing strengths, single particle energy spectra and numbers of particles. (author)

  6. Lepton-pair production in hadron-nucleus collisions

    International Nuclear Information System (INIS)

    Moss, J.M.; Peng, J.C.; Alde, D.M.

    1989-01-01

    Physics motivations for precision measurements of lepton pair production in nuclei are discussed. Preliminary results from Fermilab Experiment E772 are presented. The relevance of these results to the EMC effect and to J/ψ suppression in heavy ion collisions is also discussed. 34 refs., 17 figs

  7. Female bluethroats enhance offspring immunocompetence through extra-pair copulations.

    Science.gov (United States)

    Johnsen, A; Andersen, V; Sunding, C; Lifjeld, J T

    2000-07-20

    Female birds frequently copulate with extra-pair males, but the adaptive value of this behaviour is poorly understood. Some studies have suggested that 'good genes' may be involved, where females seek to have their eggs fertilized by high-quality males without receiving any material benefits from them. Nevertheless, it remains to be shown that a genetic benefit is passed on to offspring. Here we report that nestling bluethroats, Luscinia svecica, sired by extra-pair males had a higher T-cell-mediated immune response than their maternal half-siblings raised in the same nest. The difference could not be attributed to nestling body mass, sex or hatching order, but may be an effect of paternal genotype. Extra-pair young were also more immunocompetent than their paternal half-sibs raised in the genetic father's own nest, which indicates an additional effect of maternal genotype. Our results are consistent with the idea that females engage in extra-pair copulations to obtain compatible viability genes, rather than 'good genes' per se.

  8. Correlation of WAIS IQ in 10 Pairs of Brothers.

    Science.gov (United States)

    Matarazzo, Joseph D.; And Others

    1978-01-01

    Pairs of brothers were individually examined with Wechsler Adult Intelligence Scale some 10 months apart by an experienced clinical psychologist unaware of the consanguineous relationship. Correlation of .42 for Full Scale IQ is consistent with median correlation reported by Erlenmeyer-Kimling and Jarvik in their 1963 literature review.…

  9. Visualizing lone pairs in compounds containing heavier congeners ...

    Indian Academy of Sciences (India)

    Unknown

    Fm3 PbS provides a segue into perovskite phases of technological significance, including ... rôle of the lone pair in driving (respectively) the ferroelectric and antiferroelectric phase transitions. 2. SnO, αα-PbO ..... of compounds with d0 elements, and to N A Hill for critically reading this manuscript. The Laboratoire SPMS and ...

  10. Nuclear pairing reduction due to rotation and blocking

    International Nuclear Information System (INIS)

    Wu Xi; Zhang Zhenhua; Lei Yi'an; Zeng Jinyan

    2010-01-01

    Nuclear pairing gaps of well-deformed and superdeformed nuclei are investigated using the particle-number conserving (PNC) formalism for the cranked shell model, in which the blocking effects are treated exactly and no spurious states appear. Both the rotational frequency ω-dependence and seniority ν-dependence of the pairing gap Δ-bar are addressed. For the ground-state bands of even-even nuclei, PNC calculations show that in general Δ-bar decreases with increasing ω, but the ω-dependence is much weaker than that calculated by the number-projected Hartree-Fock-Bogolyubov (NHFB) approach. For the multi quasiparticle bands (seniority ν > 2), the pairing gaps keep almost ω-independent. As a function of the seniority ν, the bandhead pairing gaps Δ-bar (ν, ω = 0) decrease slowly with increasing ν. Even for the highest seniority ν bands identified so far, Δ-bar (ν, ω = 0) keep 70% larger than Δ-bar (ν = 0, ω = 0). (authors)

  11. Solving a robust airline crew pairing problem with column generation

    NARCIS (Netherlands)

    Muter, I.; Birbil, S.I.; Bülbül, K.; Sahin, G.; Yenigün, H.; Tas, D.; Tüzün, D.

    2013-01-01

    In this study, we solve a robust version of the airline crew pairing problem. Our concept of robustness was partially shaped during our discussions with small local airlines in Turkey which may have to add a set of extra flights into their schedule at short notice during operation. Thus, robustness

  12. Preliminary evidence suggests extra-pair mating in the endangered ...

    African Journals Online (AJOL)

    This study utilized four microsatellite genetic markers, originally developed for the African grey parrot. Parentage testing was undertaken using genotype comparisons with the dominant pair within the breeding group as well as auxiliary males where available. Although four markers were insufficient to provide conclusive ...

  13. Chaotic scattering of two identical point vortex pairs revisited

    DEFF Research Database (Denmark)

    Tophøj, Laust Emil Hjerrild; Aref, Hassan

    2008-01-01

    A new numerical exploration suggests that the motion of two vortex pairs, with constituent vortices all of the same absolute circulation, displays chaotic scattering regimes. The mechanisms leading to chaotic scattering are different from the “slingshot effect” identified by Price [Phys. Fluids A...

  14. Measurement of interfacial tension of immiscible liquid pairs in microgravity

    Science.gov (United States)

    Weinberg, Michael C.; Neilson, George F.; Baertlein, Carl; Subramanian, R. Shankar; Trinh, Eugene H.

    1994-01-01

    A discussion is given of a containerless microgravity experiment aimed at measuring the interfacial tension of immiscible liquid pairs using a compound drop rotation method. The reasons for the failure to execute such experiments in microgravity are described. Also, the results of post-flight analyses used to confirm our arguments are presented.

  15. Quasars Probing Quasars. X. The Quasar Pair Spectral Database

    Science.gov (United States)

    Findlay, Joseph R.; Prochaska, J. Xavier; Hennawi, Joseph F.; Fumagalli, Michele; Myers, Adam D.; Bartle, Stephanie; Chehade, Ben; DiPompeo, Michael A.; Shanks, Tom; Lau, Marie Wingyee; Rubin, Kate H. R.

    2018-06-01

    The rare close projection of two quasars on the sky provides the opportunity to study the host galaxy environment of a foreground quasar in absorption against the continuum emission of a background quasar. For over a decade the “Quasars probing quasars” series has utilized this technique to further the understanding of galaxy formation and evolution in the presence of a quasar at z > 2, resolving scales as small as a galactic disk and from bound gas in the circumgalactic medium to the diffuse environs of intergalactic space. Presented here is the public release of the quasar pair spectral database utilized in these studies. In addition to projected pairs at z > 2, the database also includes quasar pair members at z useful for small-scale clustering studies. In total, the database catalogs 5627 distinct objects, with 4083 lying within 5‧ of at least one other source. A spectral library contains 3582 optical and near-infrared spectra for 3028 of the cataloged sources. As well as reporting on 54 newly discovered quasar pairs, we outline the key contributions made by this series over the last 10 years, summarize the imaging and spectroscopic data used for target selection, discuss the target selection methodologies, describe the database content, and explore some avenues for future work. Full documentation for the spectral database, including download instructions, is supplied at http://specdb.readthedocs.io/en/latest/.

  16. Gut microbiomes of Malawian twin pairs discordant for kwashiorkor

    Science.gov (United States)

    Kwashiorkor, an enigmatic form of severe acute malnutrition, is the consequence of inadequate nutrient intake plus additional environmental insults. To investigate the role of the gut microbiome, we studied 317 Malawian twin pairs during the first 3 years of life. During this time, half of the twin ...

  17. Paired and Interacting Galaxies: International Astronomical Union Colloquium No. 124

    Science.gov (United States)

    Sulentic, Jack W. (Editor); Keel, William C. (Editor); Telesco, C. M. (Editor)

    1990-01-01

    The proceedings of the International Astronomical Union Colloquium No. 124, held at the University of Alabama at Tuscaloosa, on December 4 to 7, are given. The purpose of the conference was to describe the current state of theoretical and observational knowledge of interacting galaxies, with particular emphasis on galaxies in pairs.

  18. Quantifying the FIR interaction enhancement in paired galaxies

    International Nuclear Information System (INIS)

    Xu Cong; Sulentic, J.W.

    1990-01-01

    We studied the ''Catalogue of Isolated Pairs of Galaxies in the Northern Hemisphere'' by Karachentsev (1972) and a well matched comparison sample taken from the ''Catalogue of Isolated Galaxies'' by Karachentseva (1973) in order to quantify the enhanced FIR emission properties of interacting galaxies. 8 refs, 6 figs

  19. Minutia-pair spectral representations for fingerprint template protection

    NARCIS (Netherlands)

    Stanko, T.; Skoric, B.

    2017-01-01

    We introduce a new fixed-length representation of fingerprint minutiae, for use in template protection. It is similar to the `spectral minutiae' representation of Xu et al. but is based on coordinate differences between pairs of minutiae. Our technique has the advantage that it does not discard the

  20. Inferring relationships between pairs of individuals from locus heterozygosities

    Directory of Open Access Journals (Sweden)

    Spinetti Isabella

    2002-11-01

    Full Text Available Abstract Background The traditional exact method for inferring relationships between individuals from genetic data is not easily applicable in all situations that may be encountered in several fields of applied genetics. This study describes an approach that gives affordable results and is easily applicable; it is based on the probabilities that two individuals share 0, 1 or both alleles at a locus identical by state. Results We show that these probabilities (zi depend on locus heterozygosity (H, and are scarcely affected by variation of the distribution of allele frequencies. This allows us to obtain empirical curves relating zi's to H for a series of common relationships, so that the likelihood ratio of a pair of relationships between any two individuals, given their genotypes at a locus, is a function of a single parameter, H. Application to large samples of mother-child and full-sib pairs shows that the statistical power of this method to infer the correct relationship is not much lower than the exact method. Analysis of a large database of STR data proves that locus heterozygosity does not vary significantly among Caucasian populations, apart from special cases, so that the likelihood ratio of the more common relationships between pairs of individuals may be obtained by looking at tabulated zi values. Conclusions A simple method is provided, which may be used by any scientist with the help of a calculator or a spreadsheet to compute the likelihood ratios of common alternative relationships between pairs of individuals.

  1. Strong Neutron Pairing in core+4n Nuclei.

    Science.gov (United States)

    Revel, A; Marqués, F M; Sorlin, O; Aumann, T; Caesar, C; Holl, M; Panin, V; Vandebrouck, M; Wamers, F; Alvarez-Pol, H; Atar, L; Avdeichikov, V; Beceiro-Novo, S; Bemmerer, D; Benlliure, J; Bertulani, C A; Boillos, J M; Boretzky, K; Borge, M J G; Caamaño, M; Casarejos, E; Catford, W N; Cederkäll, J; Chartier, M; Chulkov, L; Cortina-Gil, D; Cravo, E; Crespo, R; Datta Pramanik, U; Díaz Fernández, P; Dillmann, I; Elekes, Z; Enders, J; Ershova, O; Estradé, A; Farinon, F; Fraile, L M; Freer, M; Galaviz, D; Geissel, H; Gernhäuser, R; Golubev, P; Göbel, K; Hagdahl, J; Heftrich, T; Heil, M; Heine, M; Heinz, A; Henriques, A; Ignatov, A; Johansson, H T; Jonson, B; Kahlbow, J; Kalantar-Nayestanaki, N; Kanungo, R; Kelic-Heil, A; Knyazev, A; Kröll, T; Kurz, N; Labiche, M; Langer, C; Le Bleis, T; Lemmon, R; Lindberg, S; Machado, J; Marganiec, J; Movsesyan, A; Nacher, E; Najafi, M; Nilsson, T; Nociforo, C; Paschalis, S; Perea, A; Petri, M; Pietri, S; Plag, R; Reifarth, R; Ribeiro, G; Rigollet, C; Röder, M; Rossi, D; Savran, D; Scheit, H; Simon, H; Syndikus, I; Taylor, J T; Tengblad, O; Thies, R; Togano, Y; Velho, P; Volkov, V; Wagner, A; Weick, H; Wheldon, C; Wilson, G; Winfield, J S; Woods, P; Yakorev, D; Zhukov, M; Zilges, A; Zuber, K

    2018-04-13

    The emission of neutron pairs from the neutron-rich N=12 isotones ^{18}C and ^{20}O has been studied by high-energy nucleon knockout from ^{19}N and ^{21}O secondary beams, populating unbound states of the two isotones up to 15 MeV above their two-neutron emission thresholds. The analysis of triple fragment-n-n correlations shows that the decay ^{19}N(-1p)^{18}C^{*}→^{16}C+n+n is clearly dominated by direct pair emission. The two-neutron correlation strength, the largest ever observed, suggests the predominance of a ^{14}C core surrounded by four valence neutrons arranged in strongly correlated pairs. On the other hand, a significant competition of a sequential branch is found in the decay ^{21}O(-1n)^{20}O^{*}→^{18}O+n+n, attributed to its formation through the knockout of a deeply bound neutron that breaks the ^{16}O core and reduces the number of pairs.

  2. Paired fuzzy sets as a basic structure for knowledge representation

    DEFF Research Database (Denmark)

    Montero, Javier; Franco de los Ríos, Camilo; Gómez, Daniel

    2015-01-01

    In this paper we present an unifying approach to a number of fuzzy models that share the existence of two opposite concepts. In particular, we stress that standard structures for knowledge representation are being built from a family of related concepts, paired concepts in case we simply consider...

  3. Awakened Oscillations in Coupled Consumer-Resource Pairs

    Directory of Open Access Journals (Sweden)

    Almaz Mustafin

    2014-01-01

    Full Text Available The paper concerns two interacting consumer-resource pairs based on chemostat-like equations under the assumption that the dynamics of the resource is considerably slower than that of the consumer. The presence of two different time scales enables to carry out a fairly complete analysis of the problem. This is done by treating consumers and resources in the coupled system as fast-scale and slow-scale variables, respectively, and subsequently considering developments in phase planes of these variables, fast and slow, as if they are independent. When uncoupled, each pair has unique asymptotically stable steady state and no self-sustained oscillatory behavior (although damped oscillations about the equilibrium are admitted. When the consumer-resource pairs are weakly coupled through direct reciprocal inhibition of consumers, the whole system exhibits self-sustained relaxation oscillations with a period that can be significantly longer than intrinsic relaxation time of either pair. It is shown that the model equations adequately describe locally linked consumer-resource systems of quite different nature: living populations under interspecific interference competition and lasers coupled via their cavity losses.

  4. Consistency of Hydrologic Relationships of a Paired Watershed Approach

    Science.gov (United States)

    Herbert Ssegane; Devendra M. Amatya; George M. Chescheir; Wayne R. Skaggs; Ernest W. Tollner; Jami E.. Nettles

    2013-01-01

    Paired watershed studies are used around the world to evaluate and quantify effects of forest and water management practices on hydrology and water quality. The basic concept uses two neighboring watersheds (one as a control and another as a treatment), which are concurrently monitored during calibration (pre-treatment) and post-treatment periods. A statistically...

  5. Nonlocal Cooper pair splitting in a pSn-junction

    NARCIS (Netherlands)

    Veldhorst, M.; Brinkman, Alexander

    2010-01-01

    Perfect Cooper pair splitting is proposed, based on crossed Andreev reflection (CAR) in a p-type semiconductor-superconductor-n-type semiconductor (pSn) junction. The ideal splitting is caused by the energy filtering that is enforced by the band structure of the electrodes. The pSn junction is

  6. Question presentation methods for paired-associate learning

    NARCIS (Netherlands)

    Engel, F.L.; Geerings, M.P.W.

    1988-01-01

    Four different methods of question presentation, in interactive computeraided learning of Dutch-English word pairs are evaluated experimentally. These methods are: 1) the 'open-question method', 2) the 'multiple-choice method', 3) the 'sequential method' and 4) the 'true/ false method'. When

  7. Pairing Courses across the Disciplines: Effects on Writing Performance

    Science.gov (United States)

    Watts, Julie; Burnett, Rebecca E.

    2012-01-01

    Writing performance of a complex recommendation report produced by student teams for an actual client during a 15-week semester was compared in a writing-intensive Agronomy 356 course and in paired Agronomy 356/English 309 courses. The longitudinal study investigated differences that existed between reports produced for each learning environment…

  8. Personality Traits and Performance in Listening for Minimal Pairs

    Directory of Open Access Journals (Sweden)

    Saemeh Askani

    2017-12-01

    Full Text Available The aim of this study was to compare the performances of EFL learners belonging to various personality groups in listening tests. A group of 30 high school EFL learners were selected for this study. All of them were at low-intermediate level of general English proficiency. Based on Myers-Briggs Type Indicator (MBTI personality questionnaire (2017, these participants were classified into four pairs of contrasting personality groups. The analysis of the participants‟ personality types was conducted online and took about twenty minutes. Then, they took a test of listening for minimal pairs. Scores of contrasting personality groups were compared with each other by running four paired t-tests. Results obtained by these t-tests showed that intuitive participants outperformed sensing ones, and perceiving participants outperformed judging ones in the listening test. No significant difference was found between the performances of contrasting personality groups in the two pairs of extrovert/introvert and thinking/feeling. Flexibility, adaptability, and being open to a larger set of options are suggested to be possible reasons behind the success of these groups. However, the influence of large set of interacting factors that might have a significant impact on the performance of people in listening test cannot be denied. Depending on the type of listening test, some of these factors might play a more significant role compared to other competing factors.

  9. Photon pairs: Quantum chromodynamics continuum and the Higgs ...

    Indian Academy of Sciences (India)

    is the largest. Results are compared with data from the Fermilab Tevatron and predictions are made for the large hadron collider. The QCD continuum is shown to have a softer spectrum than the Higgs boson signal at the LHC. Keywords. Higgs; photon pairs; quantum chromodynamics. PACS Nos 12.15.Ji; 12.38.Cy; 13.85.

  10. A flexible algorithm for calculating pair interactions on SIMD architectures

    Science.gov (United States)

    Páll, Szilárd; Hess, Berk

    2013-12-01

    Calculating interactions or correlations between pairs of particles is typically the most time-consuming task in particle simulation or correlation analysis. Straightforward implementations using a double loop over particle pairs have traditionally worked well, especially since compilers usually do a good job of unrolling the inner loop. In order to reach high performance on modern CPU and accelerator architectures, single-instruction multiple-data (SIMD) parallelization has become essential. Avoiding memory bottlenecks is also increasingly important and requires reducing the ratio of memory to arithmetic operations. Moreover, when pairs only interact within a certain cut-off distance, good SIMD utilization can only be achieved by reordering input and output data, which quickly becomes a limiting factor. Here we present an algorithm for SIMD parallelization based on grouping a fixed number of particles, e.g. 2, 4, or 8, into spatial clusters. Calculating all interactions between particles in a pair of such clusters improves data reuse compared to the traditional scheme and results in a more efficient SIMD parallelization. Adjusting the cluster size allows the algorithm to map to SIMD units of various widths. This flexibility not only enables fast and efficient implementation on current CPUs and accelerator architectures like GPUs or Intel MIC, but it also makes the algorithm future-proof. We present the algorithm with an application to molecular dynamics simulations, where we can also make use of the effective buffering the method introduces.

  11. Dependence between the colour of galaxies in pairs (Holmberg effect)

    International Nuclear Information System (INIS)

    Demin, V.V.; Zasov, A.V.; Dibaj, Eh.A.; Tomov, A.N.

    1984-01-01

    Proceeding from the data of photoelectric photometpy by Tomov, the colours of galaxies in double systems are studied For the most of the paips formed by elliptical (EE) or by spiral (SS) galaxies, the difference between the corrected colour indices (B-V)sub(T)sup(0) of components does not exceed 0.10 and does not depend on the difference ΔT of their morphological types The correlation between the colours of galaxies in EE-pairs can be explained by the similaritins of element abundances but not of the luminosities of galaxies. The elliptical and SO-galaxies in pairs with the spiral galaxies ape noticeably bluep on the avepage. The relation between the colours of galaxies in ES-pairs is possible. The colours of early-type spiral galaxies (T < 4) in most of the SS-systems are more blue as compared to the mean colours of galaxies of the same type T. A similarity of the colours of the galaxies in many of the SS-pairs can be a result of the periodically repeated bursts of star formation which take place in both galaxies simultaneously

  12. Research of the internal electron-positron pair production

    International Nuclear Information System (INIS)

    Fenyes, Tibor

    1985-01-01

    The phenomenon of internal electron-positron pair production by excited nuclei is briefly reviewed. The advantages of this phenomenon in nuclear structure investigations are pointed. The new Si(Li)-Si(Li) electron spectrometer with superconducting magnetic transporter (SMS) built at ATOMKI, Hungary, was tested for detection of internal electron-positron pair production events. Proton beam of a Van de Graaff accelerator of 5 MV was used to excite the target nuclei of sup(27)Al, sup(42)Ca and sup(19)F. The internal pair production coefficients were measured and compared with the data of literature. The detection efficiency of SMS is calculated to be (37+-7)%. The test proved that the SMS is suitable for nuclear structure investigations producing electron-positron pairs. The SMS of ATOMKI is recently the top instrument all over the world in this field: its detection efficiency, energy resolution and applicability for multipolarity identification are much better than these properties of other detectors. (D.Gy.)

  13. Paired structures in logical and semiotic models of natural language

    DEFF Research Database (Denmark)

    Rodríguez, J. Tinguaro; Franco, Camilo; Montero, Javier

    2014-01-01

    The evidence coming from cognitive psychology and linguistics shows that pairs of reference concepts (as e.g. good/bad, tall/short, nice/ugly, etc.) play a crucial role in the way we everyday use and understand natural languages in order to analyze reality and make decisions. Different situations...

  14. Frustrated Lewis pairs-assisted reduction of carbonyl compounds

    DEFF Research Database (Denmark)

    Marek, Ales; Pedersen, Martin Holst Friborg

    2015-01-01

    An alternative and robust method for the reduction of carbonyl groups by frustrated Lewis pairs (FLPs) is reported in this paper. With its very mild reaction conditions, good to excellent yields, absolute regioselectivity and the non-metallic character of the reagent, it provides an excellent too...

  15. Interionic pair potentials and partial structure factors of compound ...

    Indian Academy of Sciences (India)

    Hiroike. Formulae are applied to NaSn (Na, Sn, NaSn, Na3Sn) which is considered as a ... for not only physicists but also chemists and engineers. This study is ... alizing Harrison's [18] approach of pair-wise potential between the metallic ions.

  16. The Role of Broken Cooper Pairs in Warm Nuclei

    International Nuclear Information System (INIS)

    Guttormsen, M.; Chankova, R.; Larsen, A.C.; Rekstad, J.; Siem, S.; Syed, N.U.H.; Agvaanluvsan, U.; Schiller, A.; Voinov, A.

    2007-01-01

    In order to understand warm nuclei and describe the underlying microscopic structure, entropy is measured for several even-even and odd-mass nuclei. Mid-shell nuclei show significant odd-even entropy differences interpreted as the single-particle entropy introduced by the valence nucleon. A method to extract critical temperatures for the pair breaking process is demonstrated. (author)

  17. The probability that a pair of group elements is autoconjugate

    Indian Academy of Sciences (India)

    [1] Alghamdi A M and Russo F G, A generalization of the probability that the commutator of two group elements is equal to a given element, Bull. Iranian Math. Soc. 38 (2012). 973–986. [2] Blackburn S R, Britnell J R and Wildon M, The probability that a pair of elements of a finite group are conjugate, J. London Math. Soc.

  18. Space-times carrying a quasirecurrent pairing of vector fields

    International Nuclear Information System (INIS)

    Rosca, R.; Ianus, S.

    1977-01-01

    A quasirecurrent pairing of vector fields(X 1 ,X 2 ,) defined previously by Rosca (C.R. Acad. Sci. 282 (1976)) is investigated on a space-time in two cases: (1) X 1 is spacelike and X 2 is timelike; (2) X 1 is null and X 2 is spacelike. The physical interpretation of these vector fields is given. (author)

  19. Unmatched Projector/Backprojector Pairs: Perturbation and Convergence Analysis

    DEFF Research Database (Denmark)

    Elfving, Tommy; Hansen, Per Christian

    2018-01-01

    methods in order to understand the role played by the nonmatch of the matrices. We also study the convergence properties of linear stationary iterations based on unmatched matrix pairs, leading to insight into the behavior of some important row-and column-oriented algebraic iterative methods. We conclude...

  20. Transport de paires EPR dans des structures mesoscopiques

    Science.gov (United States)

    Dupont, Emilie

    Dans cette these, nous nous sommes particulierement interesses a la propagation de paires EPR1 delocalisees et localisees, et a l'influence d'un supraconducteur sur le transport de ces paires. Apres une introduction de cette etude, ainsi que du cadre scientifique qu'est l'informatique quantique dans lequel elle s'inscrit, nous allons dans le chapitre 1 faire un rappel sur le systeme constitue de deux points quantiques normaux entoures de deux fils supraconducteurs. Cela nous permettra d'introduire une methode de calcul qui sera reutilisee par la suite, et de trouver egalement le courant Josephson produit par ce systeme transforme en SQUID-dc par l'ajout d'une jonction auxiliaire. Le SQUID permet de mesurer l'etat de spin (singulet ou triplet), et peut etre forme a partir d'autres systemes que nous etudierons ensuite. Dans le chapitre 2, nous rappellerons l'etude detaillee d'un intricateur d'Andreev faite par un groupe de Bale. La matrice T, permettant d'obtenir le courant dans les cas ou les electrons sont separes spatialement ou non, sera etudiee en detail afin d'en faire usage au chapitre suivant. Le chapitre 3 est consacre a l'etude de l'influence du bruit sur le fonctionnement de l'intricateur d'Andreev. Ce bruit modifie la forme du courant jusqu'a aboutir a d'autres conditions de fonctionnement de l'intricateur. En effet, le bruit present sur les points quantiques peut perturber le transport des paires EPR par l'intermediaire des degres de liberte. Nous montrerons que, du fait de l'"intrication" entre la charge de la paire et le bruit, la paire est detruite pour des temps longs. Cependant, le resultat le plus important sera que le bruit perturbe plus le transport des paires delocalisees, qui implique une resonance de Breit-Wigner a deux particules. Le transport parasite n'implique pour sa part qu'une resonance de Breit-Wigner a une particule. Dans le chapitre 4, nous reviendrons au systeme constitue de deux points quantiques entoures de deux fils