WorldWideScience

Sample records for supervised classification learning

  1. Observation versus classification in supervised category learning.

    Science.gov (United States)

    Levering, Kimery R; Kurtz, Kenneth J

    2015-02-01

    The traditional supervised classification paradigm encourages learners to acquire only the knowledge needed to predict category membership (a discriminative approach). An alternative that aligns with important aspects of real-world concept formation is learning with a broader focus to acquire knowledge of the internal structure of each category (a generative approach). Our work addresses the impact of a particular component of the traditional classification task: the guess-and-correct cycle. We compare classification learning to a supervised observational learning task in which learners are shown labeled examples but make no classification response. The goals of this work sit at two levels: (1) testing for differences in the nature of the category representations that arise from two basic learning modes; and (2) evaluating the generative/discriminative continuum as a theoretical tool for understand learning modes and their outcomes. Specifically, we view the guess-and-correct cycle as consistent with a more discriminative approach and therefore expected it to lead to narrower category knowledge. Across two experiments, the observational mode led to greater sensitivity to distributional properties of features and correlations between features. We conclude that a relatively subtle procedural difference in supervised category learning substantially impacts what learners come to know about the categories. The results demonstrate the value of the generative/discriminative continuum as a tool for advancing the psychology of category learning and also provide a valuable constraint for formal models and associated theories.

  2. Supervised Learning for Visual Pattern Classification

    Science.gov (United States)

    Zheng, Nanning; Xue, Jianru

    This chapter presents an overview of the topics and major ideas of supervised learning for visual pattern classification. Two prevalent algorithms, i.e., the support vector machine (SVM) and the boosting algorithm, are briefly introduced. SVMs and boosting algorithms are two hot topics of recent research in supervised learning. SVMs improve the generalization of the learning machine by implementing the rule of structural risk minimization (SRM). It exhibits good generalization even when little training data are available for machine training. The boosting algorithm can boost a weak classifier to a strong classifier by means of the so-called classifier combination. This algorithm provides a general way for producing a classifier with high generalization capability from a great number of weak classifiers.

  3. QUEST : Eliminating online supervised learning for efficient classification algorithms

    NARCIS (Netherlands)

    Zwartjes, Ardjan; Havinga, Paul J.M.; Smit, Gerard J.M.; Hurink, Johann L.

    2016-01-01

    In this work, we introduce QUEST (QUantile Estimation after Supervised Training), an adaptive classification algorithm for Wireless Sensor Networks (WSNs) that eliminates the necessity for online supervised learning. Online processing is important for many sensor network applications. Transmitting

  4. Genetic classification of populations using supervised learning.

    Directory of Open Access Journals (Sweden)

    Michael Bridges

    2011-05-01

    Full Text Available There are many instances in genetics in which we wish to determine whether two candidate populations are distinguishable on the basis of their genetic structure. Examples include populations which are geographically separated, case-control studies and quality control (when participants in a study have been genotyped at different laboratories. This latter application is of particular importance in the era of large scale genome wide association studies, when collections of individuals genotyped at different locations are being merged to provide increased power. The traditional method for detecting structure within a population is some form of exploratory technique such as principal components analysis. Such methods, which do not utilise our prior knowledge of the membership of the candidate populations. are termed unsupervised. Supervised methods, on the other hand are able to utilise this prior knowledge when it is available.In this paper we demonstrate that in such cases modern supervised approaches are a more appropriate tool for detecting genetic differences between populations. We apply two such methods, (neural networks and support vector machines to the classification of three populations (two from Scotland and one from Bulgaria. The sensitivity exhibited by both these methods is considerably higher than that attained by principal components analysis and in fact comfortably exceeds a recently conjectured theoretical limit on the sensitivity of unsupervised methods. In particular, our methods can distinguish between the two Scottish populations, where principal components analysis cannot. We suggest, on the basis of our results that a supervised learning approach should be the method of choice when classifying individuals into pre-defined populations, particularly in quality control for large scale genome wide association studies.

  5. Genetic classification of populations using supervised learning.

    LENUS (Irish Health Repository)

    Bridges, Michael

    2011-01-01

    There are many instances in genetics in which we wish to determine whether two candidate populations are distinguishable on the basis of their genetic structure. Examples include populations which are geographically separated, case-control studies and quality control (when participants in a study have been genotyped at different laboratories). This latter application is of particular importance in the era of large scale genome wide association studies, when collections of individuals genotyped at different locations are being merged to provide increased power. The traditional method for detecting structure within a population is some form of exploratory technique such as principal components analysis. Such methods, which do not utilise our prior knowledge of the membership of the candidate populations. are termed unsupervised. Supervised methods, on the other hand are able to utilise this prior knowledge when it is available.In this paper we demonstrate that in such cases modern supervised approaches are a more appropriate tool for detecting genetic differences between populations. We apply two such methods, (neural networks and support vector machines) to the classification of three populations (two from Scotland and one from Bulgaria). The sensitivity exhibited by both these methods is considerably higher than that attained by principal components analysis and in fact comfortably exceeds a recently conjectured theoretical limit on the sensitivity of unsupervised methods. In particular, our methods can distinguish between the two Scottish populations, where principal components analysis cannot. We suggest, on the basis of our results that a supervised learning approach should be the method of choice when classifying individuals into pre-defined populations, particularly in quality control for large scale genome wide association studies.

  6. QUEST: Eliminating Online Supervised Learning for Efficient Classification Algorithms

    Directory of Open Access Journals (Sweden)

    Ardjan Zwartjes

    2016-10-01

    Full Text Available In this work, we introduce QUEST (QUantile Estimation after Supervised Training, an adaptive classification algorithm for Wireless Sensor Networks (WSNs that eliminates the necessity for online supervised learning. Online processing is important for many sensor network applications. Transmitting raw sensor data puts high demands on the battery, reducing network life time. By merely transmitting partial results or classifications based on the sampled data, the amount of traffic on the network can be significantly reduced. Such classifications can be made by learning based algorithms using sampled data. An important issue, however, is the training phase of these learning based algorithms. Training a deployed sensor network requires a lot of communication and an impractical amount of human involvement. QUEST is a hybrid algorithm that combines supervised learning in a controlled environment with unsupervised learning on the location of deployment. Using the SITEX02 dataset, we demonstrate that the presented solution works with a performance penalty of less than 10% in 90% of the tests. Under some circumstances, it even outperforms a network of classifiers completely trained with supervised learning. As a result, the need for on-site supervised learning and communication for training is completely eliminated by our solution.

  7. QUEST: Eliminating Online Supervised Learning for Efficient Classification Algorithms.

    Science.gov (United States)

    Zwartjes, Ardjan; Havinga, Paul J M; Smit, Gerard J M; Hurink, Johann L

    2016-10-01

    In this work, we introduce QUEST (QUantile Estimation after Supervised Training), an adaptive classification algorithm for Wireless Sensor Networks (WSNs) that eliminates the necessity for online supervised learning. Online processing is important for many sensor network applications. Transmitting raw sensor data puts high demands on the battery, reducing network life time. By merely transmitting partial results or classifications based on the sampled data, the amount of traffic on the network can be significantly reduced. Such classifications can be made by learning based algorithms using sampled data. An important issue, however, is the training phase of these learning based algorithms. Training a deployed sensor network requires a lot of communication and an impractical amount of human involvement. QUEST is a hybrid algorithm that combines supervised learning in a controlled environment with unsupervised learning on the location of deployment. Using the SITEX02 dataset, we demonstrate that the presented solution works with a performance penalty of less than 10% in 90% of the tests. Under some circumstances, it even outperforms a network of classifiers completely trained with supervised learning. As a result, the need for on-site supervised learning and communication for training is completely eliminated by our solution.

  8. A supervised learning rule for classification of spatiotemporal spike patterns.

    Science.gov (United States)

    Lilin Guo; Zhenzhong Wang; Adjouadi, Malek

    2016-08-01

    This study introduces a novel supervised algorithm for spiking neurons that take into consideration synapse delays and axonal delays associated with weights. It can be utilized for both classification and association and uses several biologically influenced properties, such as axonal and synaptic delays. This algorithm also takes into consideration spike-timing-dependent plasticity as in Remote Supervised Method (ReSuMe). This paper focuses on the classification aspect alone. Spiked neurons trained according to this proposed learning rule are capable of classifying different categories by the associated sequences of precisely timed spikes. Simulation results have shown that the proposed learning method greatly improves classification accuracy when compared to the Spike Pattern Association Neuron (SPAN) and the Tempotron learning rule.

  9. Robust Semi-Supervised Manifold Learning Algorithm for Classification

    Directory of Open Access Journals (Sweden)

    Mingxia Chen

    2018-01-01

    Full Text Available In the recent years, manifold learning methods have been widely used in data classification to tackle the curse of dimensionality problem, since they can discover the potential intrinsic low-dimensional structures of the high-dimensional data. Given partially labeled data, the semi-supervised manifold learning algorithms are proposed to predict the labels of the unlabeled points, taking into account label information. However, these semi-supervised manifold learning algorithms are not robust against noisy points, especially when the labeled data contain noise. In this paper, we propose a framework for robust semi-supervised manifold learning (RSSML to address this problem. The noisy levels of the labeled points are firstly predicted, and then a regularization term is constructed to reduce the impact of labeled points containing noise. A new robust semi-supervised optimization model is proposed by adding the regularization term to the traditional semi-supervised optimization model. Numerical experiments are given to show the improvement and efficiency of RSSML on noisy data sets.

  10. Active Metric Learning for Supervised Classification

    OpenAIRE

    Kumaran, Krishnan; Papageorgiou, Dimitri; Chang, Yutong; Li, Minhan; Takáč, Martin

    2018-01-01

    Clustering and classification critically rely on distance metrics that provide meaningful comparisons between data points. We present mixed-integer optimization approaches to find optimal distance metrics that generalize the Mahalanobis metric extensively studied in the literature. Additionally, we generalize and improve upon leading methods by removing reliance on pre-designated "target neighbors," "triplets," and "similarity pairs." Another salient feature of our method is its ability to en...

  11. Phenotype classification of zebrafish embryos by supervised learning.

    Directory of Open Access Journals (Sweden)

    Nathalie Jeanray

    Full Text Available Zebrafish is increasingly used to assess biological properties of chemical substances and thus is becoming a specific tool for toxicological and pharmacological studies. The effects of chemical substances on embryo survival and development are generally evaluated manually through microscopic observation by an expert and documented by several typical photographs. Here, we present a methodology to automatically classify brightfield images of wildtype zebrafish embryos according to their defects by using an image analysis approach based on supervised machine learning. We show that, compared to manual classification, automatic classification results in 90 to 100% agreement with consensus voting of biological experts in nine out of eleven considered defects in 3 days old zebrafish larvae. Automation of the analysis and classification of zebrafish embryo pictures reduces the workload and time required for the biological expert and increases the reproducibility and objectivity of this classification.

  12. Learning Supervised Topic Models for Classification and Regression from Crowds

    DEFF Research Database (Denmark)

    Rodrigues, Filipe; Lourenco, Mariana; Ribeiro, Bernardete

    2017-01-01

    problems, which account for the heterogeneity and biases among different annotators that are encountered in practice when learning from crowds. We develop an efficient stochastic variational inference algorithm that is able to scale to very large datasets, and we empirically demonstrate the advantages...... annotation tasks, prone to ambiguity and noise, often with high volumes of documents, deem learning under a single-annotator assumption unrealistic or unpractical for most real-world applications. In this article, we propose two supervised topic models, one for classification and another for regression...

  13. Learning Supervised Topic Models for Classification and Regression from Crowds.

    Science.gov (United States)

    Rodrigues, Filipe; Lourenco, Mariana; Ribeiro, Bernardete; Pereira, Francisco C

    2017-12-01

    The growing need to analyze large collections of documents has led to great developments in topic modeling. Since documents are frequently associated with other related variables, such as labels or ratings, much interest has been placed on supervised topic models. However, the nature of most annotation tasks, prone to ambiguity and noise, often with high volumes of documents, deem learning under a single-annotator assumption unrealistic or unpractical for most real-world applications. In this article, we propose two supervised topic models, one for classification and another for regression problems, which account for the heterogeneity and biases among different annotators that are encountered in practice when learning from crowds. We develop an efficient stochastic variational inference algorithm that is able to scale to very large datasets, and we empirically demonstrate the advantages of the proposed model over state-of-the-art approaches.

  14. Coupled dimensionality reduction and classification for supervised and semi-supervised multilabel learning.

    Science.gov (United States)

    Gönen, Mehmet

    2014-03-01

    Coupled training of dimensionality reduction and classification is proposed previously to improve the prediction performance for single-label problems. Following this line of research, in this paper, we first introduce a novel Bayesian method that combines linear dimensionality reduction with linear binary classification for supervised multilabel learning and present a deterministic variational approximation algorithm to learn the proposed probabilistic model. We then extend the proposed method to find intrinsic dimensionality of the projected subspace using automatic relevance determination and to handle semi-supervised learning using a low-density assumption. We perform supervised learning experiments on four benchmark multilabel learning data sets by comparing our method with baseline linear dimensionality reduction algorithms. These experiments show that the proposed approach achieves good performance values in terms of hamming loss, average AUC, macro F 1 , and micro F 1 on held-out test data. The low-dimensional embeddings obtained by our method are also very useful for exploratory data analysis. We also show the effectiveness of our approach in finding intrinsic subspace dimensionality and semi-supervised learning tasks.

  15. Semi-Supervised Learning for Classification of Protein Sequence Data

    Directory of Open Access Journals (Sweden)

    Brian R. King

    2008-01-01

    Full Text Available Protein sequence data continue to become available at an exponential rate. Annotation of functional and structural attributes of these data lags far behind, with only a small fraction of the data understood and labeled by experimental methods. Classification methods that are based on semi-supervised learning can increase the overall accuracy of classifying partly labeled data in many domains, but very few methods exist that have shown their effect on protein sequence classification. We show how proven methods from text classification can be applied to protein sequence data, as we consider both existing and novel extensions to the basic methods, and demonstrate restrictions and differences that must be considered. We demonstrate comparative results against the transductive support vector machine, and show superior results on the most difficult classification problems. Our results show that large repositories of unlabeled protein sequence data can indeed be used to improve predictive performance, particularly in situations where there are fewer labeled protein sequences available, and/or the data are highly unbalanced in nature.

  16. Supervised Learning Applied to Air Traffic Trajectory Classification

    Science.gov (United States)

    Bosson, Christabelle; Nikoleris, Tasos

    2018-01-01

    Given the recent increase of interest in introducing new vehicle types and missions into the National Airspace System, a transition towards a more autonomous air traffic control system is required in order to enable and handle increased density and complexity. This paper presents an exploratory effort of the needed autonomous capabilities by exploring supervised learning techniques in the context of aircraft trajectories. In particular, it focuses on the application of machine learning algorithms and neural network models to a runway recognition trajectory-classification study. It investigates the applicability and effectiveness of various classifiers using datasets containing trajectory records for a month of air traffic. A feature importance and sensitivity analysis are conducted to challenge the chosen time-based datasets and the ten selected features. The study demonstrates that classification accuracy levels of 90% and above can be reached in less than 40 seconds of training for most machine learning classifiers when one track data point, described by the ten selected features at a particular time step, per trajectory is used as input. It also shows that neural network models can achieve similar accuracy levels but at higher training time costs.

  17. SPAM CLASSIFICATION BASED ON SUPERVISED LEARNING USING MACHINE LEARNING TECHNIQUES

    Directory of Open Access Journals (Sweden)

    T. Hamsapriya

    2011-12-01

    Full Text Available E-mail is one of the most popular and frequently used ways of communication due to its worldwide accessibility, relatively fast message transfer, and low sending cost. The flaws in the e-mail protocols and the increasing amount of electronic business and financial transactions directly contribute to the increase in e-mail-based threats. Email spam is one of the major problems of the today’s Internet, bringing financial damage to companies and annoying individual users. Spam emails are invading users without their consent and filling their mail boxes. They consume more network capacity as well as time in checking and deleting spam mails. The vast majority of Internet users are outspoken in their disdain for spam, although enough of them respond to commercial offers that spam remains a viable source of income to spammers. While most of the users want to do right think to avoid and get rid of spam, they need clear and simple guidelines on how to behave. In spite of all the measures taken to eliminate spam, they are not yet eradicated. Also when the counter measures are over sensitive, even legitimate emails will be eliminated. Among the approaches developed to stop spam, filtering is the one of the most important technique. Many researches in spam filtering have been centered on the more sophisticated classifier-related issues. In recent days, Machine learning for spam classification is an important research issue. The effectiveness of the proposed work is explores and identifies the use of different learning algorithms for classifying spam messages from e-mail. A comparative analysis among the algorithms has also been presented.

  18. The Costs of Supervised Classification: The Effect of Learning Task on Conceptual Flexibility

    Science.gov (United States)

    Hoffman, Aaron B.; Rehder, Bob

    2010-01-01

    Research has shown that learning a concept via standard supervised classification leads to a focus on diagnostic features, whereas learning by inferring missing features promotes the acquisition of within-category information. Accordingly, we predicted that classification learning would produce a deficit in people's ability to draw "novel…

  19. Automatic Classification Using Supervised Learning in a Medical Document Filtering Application.

    Science.gov (United States)

    Mostafa, J.; Lam, W.

    2000-01-01

    Presents a multilevel model of the information filtering process that permits document classification. Evaluates a document classification approach based on a supervised learning algorithm, measures the accuracy of the algorithm in a neural network that was trained to classify medical documents on cell biology, and discusses filtering…

  20. Evaluation of Semi-supervised Learning for Classification of Protein Crystallization Imagery.

    Science.gov (United States)

    Sigdel, Madhav; Dinç, İmren; Dinç, Semih; Sigdel, Madhu S; Pusey, Marc L; Aygün, Ramazan S

    2014-03-01

    In this paper, we investigate the performance of two wrapper methods for semi-supervised learning algorithms for classification of protein crystallization images with limited labeled images. Firstly, we evaluate the performance of semi-supervised approach using self-training with naïve Bayesian (NB) and sequential minimum optimization (SMO) as the base classifiers. The confidence values returned by these classifiers are used to select high confident predictions to be used for self-training. Secondly, we analyze the performance of Yet Another Two Stage Idea (YATSI) semi-supervised learning using NB, SMO, multilayer perceptron (MLP), J48 and random forest (RF) classifiers. These results are compared with the basic supervised learning using the same training sets. We perform our experiments on a dataset consisting of 2250 protein crystallization images for different proportions of training and test data. Our results indicate that NB and SMO using both self-training and YATSI semi-supervised approaches improve accuracies with respect to supervised learning. On the other hand, MLP, J48 and RF perform better using basic supervised learning. Overall, random forest classifier yields the best accuracy with supervised learning for our dataset.

  1. Seizure Classification From EEG Signals Using Transfer Learning, Semi-Supervised Learning and TSK Fuzzy System.

    Science.gov (United States)

    Jiang, Yizhang; Wu, Dongrui; Deng, Zhaohong; Qian, Pengjiang; Wang, Jun; Wang, Guanjin; Chung, Fu-Lai; Choi, Kup-Sze; Wang, Shitong

    2017-12-01

    Recognition of epileptic seizures from offline EEG signals is very important in clinical diagnosis of epilepsy. Compared with manual labeling of EEG signals by doctors, machine learning approaches can be faster and more consistent. However, the classification accuracy is usually not satisfactory for two main reasons: the distributions of the data used for training and testing may be different, and the amount of training data may not be enough. In addition, most machine learning approaches generate black-box models that are difficult to interpret. In this paper, we integrate transductive transfer learning, semi-supervised learning and TSK fuzzy system to tackle these three problems. More specifically, we use transfer learning to reduce the discrepancy in data distribution between the training and testing data, employ semi-supervised learning to use the unlabeled testing data to remedy the shortage of training data, and adopt TSK fuzzy system to increase model interpretability. Two learning algorithms are proposed to train the system. Our experimental results show that the proposed approaches can achieve better performance than many state-of-the-art seizure classification algorithms.

  2. A Cluster-then-label Semi-supervised Learning Approach for Pathology Image Classification.

    Science.gov (United States)

    Peikari, Mohammad; Salama, Sherine; Nofech-Mozes, Sharon; Martel, Anne L

    2018-05-08

    Completely labeled pathology datasets are often challenging and time-consuming to obtain. Semi-supervised learning (SSL) methods are able to learn from fewer labeled data points with the help of a large number of unlabeled data points. In this paper, we investigated the possibility of using clustering analysis to identify the underlying structure of the data space for SSL. A cluster-then-label method was proposed to identify high-density regions in the data space which were then used to help a supervised SVM in finding the decision boundary. We have compared our method with other supervised and semi-supervised state-of-the-art techniques using two different classification tasks applied to breast pathology datasets. We found that compared with other state-of-the-art supervised and semi-supervised methods, our SSL method is able to improve classification performance when a limited number of labeled data instances are made available. We also showed that it is important to examine the underlying distribution of the data space before applying SSL techniques to ensure semi-supervised learning assumptions are not violated by the data.

  3. Generative Adversarial Networks-Based Semi-Supervised Learning for Hyperspectral Image Classification

    Directory of Open Access Journals (Sweden)

    Zhi He

    2017-10-01

    Full Text Available Classification of hyperspectral image (HSI is an important research topic in the remote sensing community. Significant efforts (e.g., deep learning have been concentrated on this task. However, it is still an open issue to classify the high-dimensional HSI with a limited number of training samples. In this paper, we propose a semi-supervised HSI classification method inspired by the generative adversarial networks (GANs. Unlike the supervised methods, the proposed HSI classification method is semi-supervised, which can make full use of the limited labeled samples as well as the sufficient unlabeled samples. Core ideas of the proposed method are twofold. First, the three-dimensional bilateral filter (3DBF is adopted to extract the spectral-spatial features by naturally treating the HSI as a volumetric dataset. The spatial information is integrated into the extracted features by 3DBF, which is propitious to the subsequent classification step. Second, GANs are trained on the spectral-spatial features for semi-supervised learning. A GAN contains two neural networks (i.e., generator and discriminator trained in opposition to one another. The semi-supervised learning is achieved by adding samples from the generator to the features and increasing the dimension of the classifier output. Experimental results obtained on three benchmark HSI datasets have confirmed the effectiveness of the proposed method , especially with a limited number of labeled samples.

  4. Supervised machine learning and active learning in classification of radiology reports.

    Science.gov (United States)

    Nguyen, Dung H M; Patrick, Jon D

    2014-01-01

    This paper presents an automated system for classifying the results of imaging examinations (CT, MRI, positron emission tomography) into reportable and non-reportable cancer cases. This system is part of an industrial-strength processing pipeline built to extract content from radiology reports for use in the Victorian Cancer Registry. In addition to traditional supervised learning methods such as conditional random fields and support vector machines, active learning (AL) approaches were investigated to optimize training production and further improve classification performance. The project involved two pilot sites in Victoria, Australia (Lake Imaging (Ballarat) and Peter MacCallum Cancer Centre (Melbourne)) and, in collaboration with the NSW Central Registry, one pilot site at Westmead Hospital (Sydney). The reportability classifier performance achieved 98.25% sensitivity and 96.14% specificity on the cancer registry's held-out test set. Up to 92% of training data needed for supervised machine learning can be saved by AL. AL is a promising method for optimizing the supervised training production used in classification of radiology reports. When an AL strategy is applied during the data selection process, the cost of manual classification can be reduced significantly. The most important practical application of the reportability classifier is that it can dramatically reduce human effort in identifying relevant reports from the large imaging pool for further investigation of cancer. The classifier is built on a large real-world dataset and can achieve high performance in filtering relevant reports to support cancer registries. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  5. Supervised Learning

    Science.gov (United States)

    Rokach, Lior; Maimon, Oded

    This chapter summarizes the fundamental aspects of supervised methods. The chapter provides an overview of concepts from various interrelated fields used in subsequent chapters. It presents basic definitions and arguments from the supervised machine learning literature and considers various issues, such as performance evaluation techniques and challenges for data mining tasks.

  6. Semi-Supervised Active Learning for Sound Classification in Hybrid Learning Environments

    Science.gov (United States)

    Han, Wenjing; Coutinho, Eduardo; Li, Haifeng; Schuller, Björn; Yu, Xiaojie; Zhu, Xuan

    2016-01-01

    Coping with scarcity of labeled data is a common problem in sound classification tasks. Approaches for classifying sounds are commonly based on supervised learning algorithms, which require labeled data which is often scarce and leads to models that do not generalize well. In this paper, we make an efficient combination of confidence-based Active Learning and Self-Training with the aim of minimizing the need for human annotation for sound classification model training. The proposed method pre-processes the instances that are ready for labeling by calculating their classifier confidence scores, and then delivers the candidates with lower scores to human annotators, and those with high scores are automatically labeled by the machine. We demonstrate the feasibility and efficacy of this method in two practical scenarios: pool-based and stream-based processing. Extensive experimental results indicate that our approach requires significantly less labeled instances to reach the same performance in both scenarios compared to Passive Learning, Active Learning and Self-Training. A reduction of 52.2% in human labeled instances is achieved in both of the pool-based and stream-based scenarios on a sound classification task considering 16,930 sound instances. PMID:27627768

  7. Semi-Supervised Active Learning for Sound Classification in Hybrid Learning Environments.

    Science.gov (United States)

    Han, Wenjing; Coutinho, Eduardo; Ruan, Huabin; Li, Haifeng; Schuller, Björn; Yu, Xiaojie; Zhu, Xuan

    2016-01-01

    Coping with scarcity of labeled data is a common problem in sound classification tasks. Approaches for classifying sounds are commonly based on supervised learning algorithms, which require labeled data which is often scarce and leads to models that do not generalize well. In this paper, we make an efficient combination of confidence-based Active Learning and Self-Training with the aim of minimizing the need for human annotation for sound classification model training. The proposed method pre-processes the instances that are ready for labeling by calculating their classifier confidence scores, and then delivers the candidates with lower scores to human annotators, and those with high scores are automatically labeled by the machine. We demonstrate the feasibility and efficacy of this method in two practical scenarios: pool-based and stream-based processing. Extensive experimental results indicate that our approach requires significantly less labeled instances to reach the same performance in both scenarios compared to Passive Learning, Active Learning and Self-Training. A reduction of 52.2% in human labeled instances is achieved in both of the pool-based and stream-based scenarios on a sound classification task considering 16,930 sound instances.

  8. Out-of-Sample Generalizations for Supervised Manifold Learning for Classification.

    Science.gov (United States)

    Vural, Elif; Guillemot, Christine

    2016-03-01

    Supervised manifold learning methods for data classification map high-dimensional data samples to a lower dimensional domain in a structure-preserving way while increasing the separation between different classes. Most manifold learning methods compute the embedding only of the initially available data; however, the generalization of the embedding to novel points, i.e., the out-of-sample extension problem, becomes especially important in classification applications. In this paper, we propose a semi-supervised method for building an interpolation function that provides an out-of-sample extension for general supervised manifold learning algorithms studied in the context of classification. The proposed algorithm computes a radial basis function interpolator that minimizes an objective function consisting of the total embedding error of unlabeled test samples, defined as their distance to the embeddings of the manifolds of their own class, as well as a regularization term that controls the smoothness of the interpolation function in a direction-dependent way. The class labels of test data and the interpolation function parameters are estimated jointly with an iterative process. Experimental results on face and object images demonstrate the potential of the proposed out-of-sample extension algorithm for the classification of manifold-modeled data sets.

  9. Musical Instrument Classification Based on Nonlinear Recurrence Analysis and Supervised Learning

    Directory of Open Access Journals (Sweden)

    R.Rui

    2013-04-01

    Full Text Available In this paper, the phase space reconstruction of time series produced by different instruments is discussed based on the nonlinear dynamic theory. The dense ratio, a novel quantitative recurrence parameter, is proposed to describe the difference of wind instruments, stringed instruments and keyboard instruments in the phase space by analyzing the recursive property of every instrument. Furthermore, a novel supervised learning algorithm for automatic classification of individual musical instrument signals is addressed deriving from the idea of supervised non-negative matrix factorization (NMF algorithm. In our approach, the orthogonal basis matrix could be obtained without updating the matrix iteratively, which NMF is unable to do. The experimental results indicate that the accuracy of the proposed method is improved by 3% comparing with the conventional features in the individual instrument classification.

  10. Voxel-Based Neighborhood for Spatial Shape Pattern Classification of Lidar Point Clouds with Supervised Learning

    Directory of Open Access Journals (Sweden)

    Victoria Plaza-Leiva

    2017-03-01

    Full Text Available Improving the effectiveness of spatial shape features classification from 3D lidar data is very relevant because it is largely used as a fundamental step towards higher level scene understanding challenges of autonomous vehicles and terrestrial robots. In this sense, computing neighborhood for points in dense scans becomes a costly process for both training and classification. This paper proposes a new general framework for implementing and comparing different supervised learning classifiers with a simple voxel-based neighborhood computation where points in each non-overlapping voxel in a regular grid are assigned to the same class by considering features within a support region defined by the voxel itself. The contribution provides offline training and online classification procedures as well as five alternative feature vector definitions based on principal component analysis for scatter, tubular and planar shapes. Moreover, the feasibility of this approach is evaluated by implementing a neural network (NN method previously proposed by the authors as well as three other supervised learning classifiers found in scene processing methods: support vector machines (SVM, Gaussian processes (GP, and Gaussian mixture models (GMM. A comparative performance analysis is presented using real point clouds from both natural and urban environments and two different 3D rangefinders (a tilting Hokuyo UTM-30LX and a Riegl. Classification performance metrics and processing time measurements confirm the benefits of the NN classifier and the feasibility of voxel-based neighborhood.

  11. Voxel-Based Neighborhood for Spatial Shape Pattern Classification of Lidar Point Clouds with Supervised Learning.

    Science.gov (United States)

    Plaza-Leiva, Victoria; Gomez-Ruiz, Jose Antonio; Mandow, Anthony; García-Cerezo, Alfonso

    2017-03-15

    Improving the effectiveness of spatial shape features classification from 3D lidar data is very relevant because it is largely used as a fundamental step towards higher level scene understanding challenges of autonomous vehicles and terrestrial robots. In this sense, computing neighborhood for points in dense scans becomes a costly process for both training and classification. This paper proposes a new general framework for implementing and comparing different supervised learning classifiers with a simple voxel-based neighborhood computation where points in each non-overlapping voxel in a regular grid are assigned to the same class by considering features within a support region defined by the voxel itself. The contribution provides offline training and online classification procedures as well as five alternative feature vector definitions based on principal component analysis for scatter, tubular and planar shapes. Moreover, the feasibility of this approach is evaluated by implementing a neural network (NN) method previously proposed by the authors as well as three other supervised learning classifiers found in scene processing methods: support vector machines (SVM), Gaussian processes (GP), and Gaussian mixture models (GMM). A comparative performance analysis is presented using real point clouds from both natural and urban environments and two different 3D rangefinders (a tilting Hokuyo UTM-30LX and a Riegl). Classification performance metrics and processing time measurements confirm the benefits of the NN classifier and the feasibility of voxel-based neighborhood.

  12. Multi-Modal Curriculum Learning for Semi-Supervised Image Classification.

    Science.gov (United States)

    Gong, Chen; Tao, Dacheng; Maybank, Stephen J; Liu, Wei; Kang, Guoliang; Yang, Jie

    2016-07-01

    Semi-supervised image classification aims to classify a large quantity of unlabeled images by typically harnessing scarce labeled images. Existing semi-supervised methods often suffer from inadequate classification accuracy when encountering difficult yet critical images, such as outliers, because they treat all unlabeled images equally and conduct classifications in an imperfectly ordered sequence. In this paper, we employ the curriculum learning methodology by investigating the difficulty of classifying every unlabeled image. The reliability and the discriminability of these unlabeled images are particularly investigated for evaluating their difficulty. As a result, an optimized image sequence is generated during the iterative propagations, and the unlabeled images are logically classified from simple to difficult. Furthermore, since images are usually characterized by multiple visual feature descriptors, we associate each kind of features with a teacher, and design a multi-modal curriculum learning (MMCL) strategy to integrate the information from different feature modalities. In each propagation, each teacher analyzes the difficulties of the currently unlabeled images from its own modality viewpoint. A consensus is subsequently reached among all the teachers, determining the currently simplest images (i.e., a curriculum), which are to be reliably classified by the multi-modal learner. This well-organized propagation process leveraging multiple teachers and one learner enables our MMCL to outperform five state-of-the-art methods on eight popular image data sets.

  13. Conduction Delay Learning Model for Unsupervised and Supervised Classification of Spatio-Temporal Spike Patterns.

    Science.gov (United States)

    Matsubara, Takashi

    2017-01-01

    Precise spike timing is considered to play a fundamental role in communications and signal processing in biological neural networks. Understanding the mechanism of spike timing adjustment would deepen our understanding of biological systems and enable advanced engineering applications such as efficient computational architectures. However, the biological mechanisms that adjust and maintain spike timing remain unclear. Existing algorithms adopt a supervised approach, which adjusts the axonal conduction delay and synaptic efficacy until the spike timings approximate the desired timings. This study proposes a spike timing-dependent learning model that adjusts the axonal conduction delay and synaptic efficacy in both unsupervised and supervised manners. The proposed learning algorithm approximates the Expectation-Maximization algorithm, and classifies the input data encoded into spatio-temporal spike patterns. Even in the supervised classification, the algorithm requires no external spikes indicating the desired spike timings unlike existing algorithms. Furthermore, because the algorithm is consistent with biological models and hypotheses found in existing biological studies, it could capture the mechanism underlying biological delay learning.

  14. Supervised learning for the automated transcription of spacer classification from spoligotype films

    Directory of Open Access Journals (Sweden)

    Abernethy Neil

    2009-08-01

    Full Text Available Abstract Background Molecular genotyping of bacteria has revolutionized the study of tuberculosis epidemiology, yet these established laboratory techniques typically require subjective and laborious interpretation by trained professionals. In the context of a Tuberculosis Case Contact study in The Gambia we used a reverse hybridization laboratory assay called spoligotype analysis. To facilitate processing of spoligotype images we have developed tools and algorithms to automate the classification and transcription of these data directly to a database while allowing for manual editing. Results Features extracted from each of the 1849 spots on a spoligo film were classified using two supervised learning algorithms. A graphical user interface allows manual editing of the classification, before export to a database. The application was tested on ten films of differing quality and the results of the best classifier were compared to expert manual classification, giving a median correct classification rate of 98.1% (inter quartile range: 97.1% to 99.2%, with an automated processing time of less than 1 minute per film. Conclusion The software implementation offers considerable time savings over manual processing whilst allowing expert editing of the automated classification. The automatic upload of the classification to a database reduces the chances of transcription errors.

  15. Better and Faster: Knowledge Transfer from Multiple Self-supervised Learning Tasks via Graph Distillation for Video Classification

    OpenAIRE

    Zhang, Chenrui; Peng, Yuxin

    2018-01-01

    Video representation learning is a vital problem for classification task. Recently, a promising unsupervised paradigm termed self-supervised learning has emerged, which explores inherent supervisory signals implied in massive data for feature learning via solving auxiliary tasks. However, existing methods in this regard suffer from two limitations when extended to video classification. First, they focus only on a single task, whereas ignoring complementarity among different task-specific feat...

  16. Prototype-based Models for the Supervised Learning of Classification Schemes

    Science.gov (United States)

    Biehl, Michael; Hammer, Barbara; Villmann, Thomas

    2017-06-01

    An introduction is given to the use of prototype-based models in supervised machine learning. The main concept of the framework is to represent previously observed data in terms of so-called prototypes, which reflect typical properties of the data. Together with a suitable, discriminative distance or dissimilarity measure, prototypes can be used for the classification of complex, possibly high-dimensional data. We illustrate the framework in terms of the popular Learning Vector Quantization (LVQ). Most frequently, standard Euclidean distance is employed as a distance measure. We discuss how LVQ can be equipped with more general dissimilarites. Moreover, we introduce relevance learning as a tool for the data-driven optimization of parameterized distances.

  17. Classification of autism spectrum disorder using supervised learning of brain connectivity measures extracted from synchrostates

    Science.gov (United States)

    Jamal, Wasifa; Das, Saptarshi; Oprescu, Ioana-Anastasia; Maharatna, Koushik; Apicella, Fabio; Sicca, Federico

    2014-08-01

    Objective. The paper investigates the presence of autism using the functional brain connectivity measures derived from electro-encephalogram (EEG) of children during face perception tasks. Approach. Phase synchronized patterns from 128-channel EEG signals are obtained for typical children and children with autism spectrum disorder (ASD). The phase synchronized states or synchrostates temporally switch amongst themselves as an underlying process for the completion of a particular cognitive task. We used 12 subjects in each group (ASD and typical) for analyzing their EEG while processing fearful, happy and neutral faces. The minimal and maximally occurring synchrostates for each subject are chosen for extraction of brain connectivity features, which are used for classification between these two groups of subjects. Among different supervised learning techniques, we here explored the discriminant analysis and support vector machine both with polynomial kernels for the classification task. Main results. The leave one out cross-validation of the classification algorithm gives 94.7% accuracy as the best performance with corresponding sensitivity and specificity values as 85.7% and 100% respectively. Significance. The proposed method gives high classification accuracies and outperforms other contemporary research results. The effectiveness of the proposed method for classification of autistic and typical children suggests the possibility of using it on a larger population to validate it for clinical practice.

  18. Weakly supervised classification in high energy physics

    International Nuclear Information System (INIS)

    Dery, Lucio Mwinmaarong; Nachman, Benjamin; Rubbo, Francesco; Schwartzman, Ariel

    2017-01-01

    As machine learning algorithms become increasingly sophisticated to exploit subtle features of the data, they often become more dependent on simulations. This paper presents a new approach called weakly supervised classification in which class proportions are the only input into the machine learning algorithm. Using one of the most challenging binary classification tasks in high energy physics — quark versus gluon tagging — we show that weakly supervised classification can match the performance of fully supervised algorithms. Furthermore, by design, the new algorithm is insensitive to any mis-modeling of discriminating features in the data by the simulation. Weakly supervised classification is a general procedure that can be applied to a wide variety of learning problems to boost performance and robustness when detailed simulations are not reliable or not available.

  19. Weakly supervised classification in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Dery, Lucio Mwinmaarong [Physics Department, Stanford University,Stanford, CA, 94305 (United States); Nachman, Benjamin [Physics Division, Lawrence Berkeley National Laboratory,1 Cyclotron Rd, Berkeley, CA, 94720 (United States); Rubbo, Francesco; Schwartzman, Ariel [SLAC National Accelerator Laboratory, Stanford University,2575 Sand Hill Rd, Menlo Park, CA, 94025 (United States)

    2017-05-29

    As machine learning algorithms become increasingly sophisticated to exploit subtle features of the data, they often become more dependent on simulations. This paper presents a new approach called weakly supervised classification in which class proportions are the only input into the machine learning algorithm. Using one of the most challenging binary classification tasks in high energy physics — quark versus gluon tagging — we show that weakly supervised classification can match the performance of fully supervised algorithms. Furthermore, by design, the new algorithm is insensitive to any mis-modeling of discriminating features in the data by the simulation. Weakly supervised classification is a general procedure that can be applied to a wide variety of learning problems to boost performance and robustness when detailed simulations are not reliable or not available.

  20. A SURVEY OF SEMI-SUPERVISED LEARNING

    OpenAIRE

    Amrita Sadarangani *, Dr. Anjali Jivani

    2016-01-01

    Semi Supervised Learning involves using both labeled and unlabeled data to train a classifier or for clustering. Semi supervised learning finds usage in many applications, since labeled data can be hard to find in many cases. Currently, a lot of research is being conducted in this area. This paper discusses the different algorithms of semi supervised learning and then their advantages and limitations are compared. The differences between supervised classification and semi-supervised classific...

  1. Classification and Diagnostic Output Prediction of Cancer Using Gene Expression Profiling and Supervised Machine Learning Algorithms

    DEFF Research Database (Denmark)

    Yoo, C.; Gernaey, Krist

    2008-01-01

    importance in the projection (VIP) information of the DPLS method. The power of the gene selection method and the proposed supervised hierarchical clustering method is illustrated on a three microarray data sets of leukemia, breast, and colon cancer. Supervised machine learning algorithms thus enable...

  2. Supervised learning classification models for prediction of plant virus encoded RNA silencing suppressors.

    Directory of Open Access Journals (Sweden)

    Zeenia Jagga

    Full Text Available Viral encoded RNA silencing suppressor proteins interfere with the host RNA silencing machinery, facilitating viral infection by evading host immunity. In plant hosts, the viral proteins have several basic science implications and biotechnology applications. However in silico identification of these proteins is limited by their high sequence diversity. In this study we developed supervised learning based classification models for plant viral RNA silencing suppressor proteins in plant viruses. We developed four classifiers based on supervised learning algorithms: J48, Random Forest, LibSVM and Naïve Bayes algorithms, with enriched model learning by correlation based feature selection. Structural and physicochemical features calculated for experimentally verified primary protein sequences were used to train the classifiers. The training features include amino acid composition; auto correlation coefficients; composition, transition, and distribution of various physicochemical properties; and pseudo amino acid composition. Performance analysis of predictive models based on 10 fold cross-validation and independent data testing revealed that the Random Forest based model was the best and achieved 86.11% overall accuracy and 86.22% balanced accuracy with a remarkably high area under the Receivers Operating Characteristic curve of 0.95 to predict viral RNA silencing suppressor proteins. The prediction models for plant viral RNA silencing suppressors can potentially aid identification of novel viral RNA silencing suppressors, which will provide valuable insights into the mechanism of RNA silencing and could be further explored as potential targets for designing novel antiviral therapeutics. Also, the key subset of identified optimal features may help in determining compositional patterns in the viral proteins which are important determinants for RNA silencing suppressor activities. The best prediction model developed in the study is available as a

  3. Weakly Supervised Dictionary Learning

    Science.gov (United States)

    You, Zeyu; Raich, Raviv; Fern, Xiaoli Z.; Kim, Jinsub

    2018-05-01

    We present a probabilistic modeling and inference framework for discriminative analysis dictionary learning under a weak supervision setting. Dictionary learning approaches have been widely used for tasks such as low-level signal denoising and restoration as well as high-level classification tasks, which can be applied to audio and image analysis. Synthesis dictionary learning aims at jointly learning a dictionary and corresponding sparse coefficients to provide accurate data representation. This approach is useful for denoising and signal restoration, but may lead to sub-optimal classification performance. By contrast, analysis dictionary learning provides a transform that maps data to a sparse discriminative representation suitable for classification. We consider the problem of analysis dictionary learning for time-series data under a weak supervision setting in which signals are assigned with a global label instead of an instantaneous label signal. We propose a discriminative probabilistic model that incorporates both label information and sparsity constraints on the underlying latent instantaneous label signal using cardinality control. We present the expectation maximization (EM) procedure for maximum likelihood estimation (MLE) of the proposed model. To facilitate a computationally efficient E-step, we propose both a chain and a novel tree graph reformulation of the graphical model. The performance of the proposed model is demonstrated on both synthetic and real-world data.

  4. Prediction of lung cancer patient survival via supervised machine learning classification techniques.

    Science.gov (United States)

    Lynch, Chip M; Abdollahi, Behnaz; Fuqua, Joshua D; de Carlo, Alexandra R; Bartholomai, James A; Balgemann, Rayeanne N; van Berkel, Victor H; Frieboes, Hermann B

    2017-12-01

    Outcomes for cancer patients have been previously estimated by applying various machine learning techniques to large datasets such as the Surveillance, Epidemiology, and End Results (SEER) program database. In particular for lung cancer, it is not well understood which types of techniques would yield more predictive information, and which data attributes should be used in order to determine this information. In this study, a number of supervised learning techniques is applied to the SEER database to classify lung cancer patients in terms of survival, including linear regression, Decision Trees, Gradient Boosting Machines (GBM), Support Vector Machines (SVM), and a custom ensemble. Key data attributes in applying these methods include tumor grade, tumor size, gender, age, stage, and number of primaries, with the goal to enable comparison of predictive power between the various methods The prediction is treated like a continuous target, rather than a classification into categories, as a first step towards improving survival prediction. The results show that the predicted values agree with actual values for low to moderate survival times, which constitute the majority of the data. The best performing technique was the custom ensemble with a Root Mean Square Error (RMSE) value of 15.05. The most influential model within the custom ensemble was GBM, while Decision Trees may be inapplicable as it had too few discrete outputs. The results further show that among the five individual models generated, the most accurate was GBM with an RMSE value of 15.32. Although SVM underperformed with an RMSE value of 15.82, statistical analysis singles the SVM as the only model that generated a distinctive output. The results of the models are consistent with a classical Cox proportional hazards model used as a reference technique. We conclude that application of these supervised learning techniques to lung cancer data in the SEER database may be of use to estimate patient survival time

  5. Seeing It All: Evaluating Supervised Machine Learning Methods for the Classification of Diverse Otariid Behaviours.

    Directory of Open Access Journals (Sweden)

    Monique A Ladds

    Full Text Available Constructing activity budgets for marine animals when they are at sea and cannot be directly observed is challenging, but recent advances in bio-logging technology offer solutions to this problem. Accelerometers can potentially identify a wide range of behaviours for animals based on unique patterns of acceleration. However, when analysing data derived from accelerometers, there are many statistical techniques available which when applied to different data sets produce different classification accuracies. We investigated a selection of supervised machine learning methods for interpreting behavioural data from captive otariids (fur seals and sea lions. We conducted controlled experiments with 12 seals, where their behaviours were filmed while they were wearing 3-axis accelerometers. From video we identified 26 behaviours that could be grouped into one of four categories (foraging, resting, travelling and grooming representing key behaviour states for wild seals. We used data from 10 seals to train four predictive classification models: stochastic gradient boosting (GBM, random forests, support vector machine using four different kernels and a baseline model: penalised logistic regression. We then took the best parameters from each model and cross-validated the results on the two seals unseen so far. We also investigated the influence of feature statistics (describing some characteristic of the seal, testing the models both with and without these. Cross-validation accuracies were lower than training accuracy, but the SVM with a polynomial kernel was still able to classify seal behaviour with high accuracy (>70%. Adding feature statistics improved accuracies across all models tested. Most categories of behaviour -resting, grooming and feeding-were all predicted with reasonable accuracy (52-81% by the SVM while travelling was poorly categorised (31-41%. These results show that model selection is important when classifying behaviour and that by using

  6. Photometric classification of type Ia supernovae in the SuperNova Legacy Survey with supervised learning

    Energy Technology Data Exchange (ETDEWEB)

    Möller, A. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Ruhlmann-Kleider, V.; Leloup, C.; Neveu, J.; Palanque-Delabrouille, N.; Rich, J. [Irfu, SPP, CEA Saclay, F-91191 Gif sur Yvette Cedex (France); Carlberg, R. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H8 (Canada); Lidman, C. [Australian Astronomical Observatory, North Ryde, NSW 2113 (Australia); Pritchet, C., E-mail: anais.moller@anu.edu.au, E-mail: vanina.ruhlmann-kleider@cea.fr, E-mail: clement.leloup@cea.fr, E-mail: jneveu@lal.in2p3.fr, E-mail: nathalie.palanque-delabrouille@cea.fr, E-mail: james.rich@cea.fr, E-mail: raymond.carlberg@utoronto.ca, E-mail: chris.lidman@aao.gov.au, E-mail: pritchet@uvic.ca [Department of Physics and Astronomy, University of Victoria, P.O. Box 3055, Victoria, BC V8W 3P6 (Canada)

    2016-12-01

    In the era of large astronomical surveys, photometric classification of supernovae (SNe) has become an important research field due to limited spectroscopic resources for candidate follow-up and classification. In this work, we present a method to photometrically classify type Ia supernovae based on machine learning with redshifts that are derived from the SN light-curves. This method is implemented on real data from the SNLS deferred pipeline, a purely photometric pipeline that identifies SNe Ia at high-redshifts (0.2 < z < 1.1). Our method consists of two stages: feature extraction (obtaining the SN redshift from photometry and estimating light-curve shape parameters) and machine learning classification. We study the performance of different algorithms such as Random Forest and Boosted Decision Trees. We evaluate the performance using SN simulations and real data from the first 3 years of the Supernova Legacy Survey (SNLS), which contains large spectroscopically and photometrically classified type Ia samples. Using the Area Under the Curve (AUC) metric, where perfect classification is given by 1, we find that our best-performing classifier (Extreme Gradient Boosting Decision Tree) has an AUC of 0.98.We show that it is possible to obtain a large photometrically selected type Ia SN sample with an estimated contamination of less than 5%. When applied to data from the first three years of SNLS, we obtain 529 events. We investigate the differences between classifying simulated SNe, and real SN survey data. In particular, we find that applying a thorough set of selection cuts to the SN sample is essential for good classification. This work demonstrates for the first time the feasibility of machine learning classification in a high- z SN survey with application to real SN data.

  7. Photometric classification of type Ia supernovae in the SuperNova Legacy Survey with supervised learning

    International Nuclear Information System (INIS)

    Möller, A.; Ruhlmann-Kleider, V.; Leloup, C.; Neveu, J.; Palanque-Delabrouille, N.; Rich, J.; Carlberg, R.; Lidman, C.; Pritchet, C.

    2016-01-01

    In the era of large astronomical surveys, photometric classification of supernovae (SNe) has become an important research field due to limited spectroscopic resources for candidate follow-up and classification. In this work, we present a method to photometrically classify type Ia supernovae based on machine learning with redshifts that are derived from the SN light-curves. This method is implemented on real data from the SNLS deferred pipeline, a purely photometric pipeline that identifies SNe Ia at high-redshifts (0.2 < z < 1.1). Our method consists of two stages: feature extraction (obtaining the SN redshift from photometry and estimating light-curve shape parameters) and machine learning classification. We study the performance of different algorithms such as Random Forest and Boosted Decision Trees. We evaluate the performance using SN simulations and real data from the first 3 years of the Supernova Legacy Survey (SNLS), which contains large spectroscopically and photometrically classified type Ia samples. Using the Area Under the Curve (AUC) metric, where perfect classification is given by 1, we find that our best-performing classifier (Extreme Gradient Boosting Decision Tree) has an AUC of 0.98.We show that it is possible to obtain a large photometrically selected type Ia SN sample with an estimated contamination of less than 5%. When applied to data from the first three years of SNLS, we obtain 529 events. We investigate the differences between classifying simulated SNe, and real SN survey data. In particular, we find that applying a thorough set of selection cuts to the SN sample is essential for good classification. This work demonstrates for the first time the feasibility of machine learning classification in a high- z SN survey with application to real SN data.

  8. Manifold regularized multitask learning for semi-supervised multilabel image classification.

    Science.gov (United States)

    Luo, Yong; Tao, Dacheng; Geng, Bo; Xu, Chao; Maybank, Stephen J

    2013-02-01

    It is a significant challenge to classify images with multiple labels by using only a small number of labeled samples. One option is to learn a binary classifier for each label and use manifold regularization to improve the classification performance by exploring the underlying geometric structure of the data distribution. However, such an approach does not perform well in practice when images from multiple concepts are represented by high-dimensional visual features. Thus, manifold regularization is insufficient to control the model complexity. In this paper, we propose a manifold regularized multitask learning (MRMTL) algorithm. MRMTL learns a discriminative subspace shared by multiple classification tasks by exploiting the common structure of these tasks. It effectively controls the model complexity because different tasks limit one another's search volume, and the manifold regularization ensures that the functions in the shared hypothesis space are smooth along the data manifold. We conduct extensive experiments, on the PASCAL VOC'07 dataset with 20 classes and the MIR dataset with 38 classes, by comparing MRMTL with popular image classification algorithms. The results suggest that MRMTL is effective for image classification.

  9. Projected estimators for robust semi-supervised classification

    NARCIS (Netherlands)

    Krijthe, J.H.; Loog, M.

    2017-01-01

    For semi-supervised techniques to be applied safely in practice we at least want methods to outperform their supervised counterparts. We study this question for classification using the well-known quadratic surrogate loss function. Unlike other approaches to semi-supervised learning, the

  10. Graph-based semi-supervised learning with genomic data integration using condition-responsive genes applied to phenotype classification.

    Science.gov (United States)

    Doostparast Torshizi, Abolfazl; Petzold, Linda R

    2018-01-01

    Data integration methods that combine data from different molecular levels such as genome, epigenome, transcriptome, etc., have received a great deal of interest in the past few years. It has been demonstrated that the synergistic effects of different biological data types can boost learning capabilities and lead to a better understanding of the underlying interactions among molecular levels. In this paper we present a graph-based semi-supervised classification algorithm that incorporates latent biological knowledge in the form of biological pathways with gene expression and DNA methylation data. The process of graph construction from biological pathways is based on detecting condition-responsive genes, where 3 sets of genes are finally extracted: all condition responsive genes, high-frequency condition-responsive genes, and P-value-filtered genes. The proposed approach is applied to ovarian cancer data downloaded from the Human Genome Atlas. Extensive numerical experiments demonstrate superior performance of the proposed approach compared to other state-of-the-art algorithms, including the latest graph-based classification techniques. Simulation results demonstrate that integrating various data types enhances classification performance and leads to a better understanding of interrelations between diverse omics data types. The proposed approach outperforms many of the state-of-the-art data integration algorithms. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  11. Impact of corpus domain for sentiment classification: An evaluation study using supervised machine learning techniques

    Science.gov (United States)

    Karsi, Redouane; Zaim, Mounia; El Alami, Jamila

    2017-07-01

    Thanks to the development of the internet, a large community now has the possibility to communicate and express its opinions and preferences through multiple media such as blogs, forums, social networks and e-commerce sites. Today, it becomes clearer that opinions published on the web are a very valuable source for decision-making, so a rapidly growing field of research called “sentiment analysis” is born to address the problem of automatically determining the polarity (Positive, negative, neutral,…) of textual opinions. People expressing themselves in a particular domain often use specific domain language expressions, thus, building a classifier, which performs well in different domains is a challenging problem. The purpose of this paper is to evaluate the impact of domain for sentiment classification when using machine learning techniques. In our study three popular machine learning techniques: Support Vector Machines (SVM), Naive Bayes and K nearest neighbors(KNN) were applied on datasets collected from different domains. Experimental results show that Support Vector Machines outperforms other classifiers in all domains, since it achieved at least 74.75% accuracy with a standard deviation of 4,08.

  12. Optimistic semi-supervised least squares classification

    DEFF Research Database (Denmark)

    Krijthe, Jesse H.; Loog, Marco

    2017-01-01

    The goal of semi-supervised learning is to improve supervised classifiers by using additional unlabeled training examples. In this work we study a simple self-learning approach to semi-supervised learning applied to the least squares classifier. We show that a soft-label and a hard-label variant ...

  13. Projected estimators for robust semi-supervised classification

    DEFF Research Database (Denmark)

    Krijthe, Jesse H.; Loog, Marco

    2017-01-01

    For semi-supervised techniques to be applied safely in practice we at least want methods to outperform their supervised counterparts. We study this question for classification using the well-known quadratic surrogate loss function. Unlike other approaches to semi-supervised learning, the procedure...... specifically, we prove that, measured on the labeled and unlabeled training data, this semi-supervised procedure never gives a lower quadratic loss than the supervised alternative. To our knowledge this is the first approach that offers such strong, albeit conservative, guarantees for improvement over...... the supervised solution. The characteristics of our approach are explicated using benchmark datasets to further understand the similarities and differences between the quadratic loss criterion used in the theoretical results and the classification accuracy typically considered in practice....

  14. Learning Dynamics in Doctoral Supervision

    DEFF Research Database (Denmark)

    Kobayashi, Sofie

    investigates learning opportunities in supervision with multiple supervisors. This was investigated through observations and recording of supervision, and subsequent analysis of transcripts. The analyses used different perspectives on learning; learning as participation, positioning theory and variation theory....... The research illuminates how learning opportunities are created in the interaction through the scientific discussions. It also shows how multiple supervisors can contribute to supervision by providing new perspectives and opinions that have a potential for creating new understandings. The combination...... of different theoretical frameworks from the perspectives of learning as individual acquisition and a sociocultural perspective on learning contributed to a nuanced illustration of the otherwise implicit practices of supervision....

  15. Quantitative Outline-based Shape Analysis and Classification of Planetary Craterforms using Supervised Learning Models

    Science.gov (United States)

    Slezak, Thomas Joseph; Radebaugh, Jani; Christiansen, Eric

    2017-10-01

    The shapes of craterform morphology on planetary surfaces provides rich information about their origins and evolution. While morphologic information provides rich visual clues to geologic processes and properties, the ability to quantitatively communicate this information is less easily accomplished. This study examines the morphology of craterforms using the quantitative outline-based shape methods of geometric morphometrics, commonly used in biology and paleontology. We examine and compare landforms on planetary surfaces using shape, a property of morphology that is invariant to translation, rotation, and size. We quantify the shapes of paterae on Io, martian calderas, terrestrial basaltic shield calderas, terrestrial ash-flow calderas, and lunar impact craters using elliptic Fourier analysis (EFA) and the Zahn and Roskies (Z-R) shape function, or tangent angle approach to produce multivariate shape descriptors. These shape descriptors are subjected to multivariate statistical analysis including canonical variate analysis (CVA), a multiple-comparison variant of discriminant analysis, to investigate the link between craterform shape and classification. Paterae on Io are most similar in shape to terrestrial ash-flow calderas and the shapes of terrestrial basaltic shield volcanoes are most similar to martian calderas. The shapes of lunar impact craters, including simple, transitional, and complex morphology, are classified with a 100% rate of success in all models. Multiple CVA models effectively predict and classify different craterforms using shape-based identification and demonstrate significant potential for use in the analysis of planetary surfaces.

  16. An Accurate CT Saturation Classification Using a Deep Learning Approach Based on Unsupervised Feature Extraction and Supervised Fine-Tuning Strategy

    Directory of Open Access Journals (Sweden)

    Muhammad Ali

    2017-11-01

    Full Text Available Current transformer (CT saturation is one of the significant problems for protection engineers. If CT saturation is not tackled properly, it can cause a disastrous effect on the stability of the power system, and may even create a complete blackout. To cope with CT saturation properly, an accurate detection or classification should be preceded. Recently, deep learning (DL methods have brought a subversive revolution in the field of artificial intelligence (AI. This paper presents a new DL classification method based on unsupervised feature extraction and supervised fine-tuning strategy to classify the saturated and unsaturated regions in case of CT saturation. In other words, if protection system is subjected to a CT saturation, proposed method will correctly classify the different levels of saturation with a high accuracy. Traditional AI methods are mostly based on supervised learning and rely heavily on human crafted features. This paper contributes to an unsupervised feature extraction, using autoencoders and deep neural networks (DNNs to extract features automatically without prior knowledge of optimal features. To validate the effectiveness of proposed method, a variety of simulation tests are conducted, and classification results are analyzed using standard classification metrics. Simulation results confirm that proposed method classifies the different levels of CT saturation with a remarkable accuracy and has unique feature extraction capabilities. Lastly, we provided a potential future research direction to conclude this paper.

  17. SemiBoost: boosting for semi-supervised learning.

    Science.gov (United States)

    Mallapragada, Pavan Kumar; Jin, Rong; Jain, Anil K; Liu, Yi

    2009-11-01

    Semi-supervised learning has attracted a significant amount of attention in pattern recognition and machine learning. Most previous studies have focused on designing special algorithms to effectively exploit the unlabeled data in conjunction with labeled data. Our goal is to improve the classification accuracy of any given supervised learning algorithm by using the available unlabeled examples. We call this as the Semi-supervised improvement problem, to distinguish the proposed approach from the existing approaches. We design a metasemi-supervised learning algorithm that wraps around the underlying supervised algorithm and improves its performance using unlabeled data. This problem is particularly important when we need to train a supervised learning algorithm with a limited number of labeled examples and a multitude of unlabeled examples. We present a boosting framework for semi-supervised learning, termed as SemiBoost. The key advantages of the proposed semi-supervised learning approach are: 1) performance improvement of any supervised learning algorithm with a multitude of unlabeled data, 2) efficient computation by the iterative boosting algorithm, and 3) exploiting both manifold and cluster assumption in training classification models. An empirical study on 16 different data sets and text categorization demonstrates that the proposed framework improves the performance of several commonly used supervised learning algorithms, given a large number of unlabeled examples. We also show that the performance of the proposed algorithm, SemiBoost, is comparable to the state-of-the-art semi-supervised learning algorithms.

  18. Feasibility study of stain-free classification of cell apoptosis based on diffraction imaging flow cytometry and supervised machine learning techniques.

    Science.gov (United States)

    Feng, Jingwen; Feng, Tong; Yang, Chengwen; Wang, Wei; Sa, Yu; Feng, Yuanming

    2018-06-01

    This study was to explore the feasibility of prediction and classification of cells in different stages of apoptosis with a stain-free method based on diffraction images and supervised machine learning. Apoptosis was induced in human chronic myelogenous leukemia K562 cells by cis-platinum (DDP). A newly developed technique of polarization diffraction imaging flow cytometry (p-DIFC) was performed to acquire diffraction images of the cells in three different statuses (viable, early apoptotic and late apoptotic/necrotic) after cell separation through fluorescence activated cell sorting with Annexin V-PE and SYTOX® Green double staining. The texture features of the diffraction images were extracted with in-house software based on the Gray-level co-occurrence matrix algorithm to generate datasets for cell classification with supervised machine learning method. Therefore, this new method has been verified in hydrogen peroxide induced apoptosis model of HL-60. Results show that accuracy of higher than 90% was achieved respectively in independent test datasets from each cell type based on logistic regression with ridge estimators, which indicated that p-DIFC system has a great potential in predicting and classifying cells in different stages of apoptosis.

  19. Human semi-supervised learning.

    Science.gov (United States)

    Gibson, Bryan R; Rogers, Timothy T; Zhu, Xiaojin

    2013-01-01

    Most empirical work in human categorization has studied learning in either fully supervised or fully unsupervised scenarios. Most real-world learning scenarios, however, are semi-supervised: Learners receive a great deal of unlabeled information from the world, coupled with occasional experiences in which items are directly labeled by a knowledgeable source. A large body of work in machine learning has investigated how learning can exploit both labeled and unlabeled data provided to a learner. Using equivalences between models found in human categorization and machine learning research, we explain how these semi-supervised techniques can be applied to human learning. A series of experiments are described which show that semi-supervised learning models prove useful for explaining human behavior when exposed to both labeled and unlabeled data. We then discuss some machine learning models that do not have familiar human categorization counterparts. Finally, we discuss some challenges yet to be addressed in the use of semi-supervised models for modeling human categorization. Copyright © 2013 Cognitive Science Society, Inc.

  20. Enhanced manifold regularization for semi-supervised classification.

    Science.gov (United States)

    Gan, Haitao; Luo, Zhizeng; Fan, Yingle; Sang, Nong

    2016-06-01

    Manifold regularization (MR) has become one of the most widely used approaches in the semi-supervised learning field. It has shown superiority by exploiting the local manifold structure of both labeled and unlabeled data. The manifold structure is modeled by constructing a Laplacian graph and then incorporated in learning through a smoothness regularization term. Hence the labels of labeled and unlabeled data vary smoothly along the geodesics on the manifold. However, MR has ignored the discriminative ability of the labeled and unlabeled data. To address the problem, we propose an enhanced MR framework for semi-supervised classification in which the local discriminative information of the labeled and unlabeled data is explicitly exploited. To make full use of labeled data, we firstly employ a semi-supervised clustering method to discover the underlying data space structure of the whole dataset. Then we construct a local discrimination graph to model the discriminative information of labeled and unlabeled data according to the discovered intrinsic structure. Therefore, the data points that may be from different clusters, though similar on the manifold, are enforced far away from each other. Finally, the discrimination graph is incorporated into the MR framework. In particular, we utilize semi-supervised fuzzy c-means and Laplacian regularized Kernel minimum squared error for semi-supervised clustering and classification, respectively. Experimental results on several benchmark datasets and face recognition demonstrate the effectiveness of our proposed method.

  1. A new supervised learning algorithm for spiking neurons.

    Science.gov (United States)

    Xu, Yan; Zeng, Xiaoqin; Zhong, Shuiming

    2013-06-01

    The purpose of supervised learning with temporal encoding for spiking neurons is to make the neurons emit a specific spike train encoded by the precise firing times of spikes. If only running time is considered, the supervised learning for a spiking neuron is equivalent to distinguishing the times of desired output spikes and the other time during the running process of the neuron through adjusting synaptic weights, which can be regarded as a classification problem. Based on this idea, this letter proposes a new supervised learning method for spiking neurons with temporal encoding; it first transforms the supervised learning into a classification problem and then solves the problem by using the perceptron learning rule. The experiment results show that the proposed method has higher learning accuracy and efficiency over the existing learning methods, so it is more powerful for solving complex and real-time problems.

  2. Semi-supervised morphosyntactic classification of Old Icelandic.

    Science.gov (United States)

    Urban, Kryztof; Tangherlini, Timothy R; Vijūnas, Aurelijus; Broadwell, Peter M

    2014-01-01

    We present IceMorph, a semi-supervised morphosyntactic analyzer of Old Icelandic. In addition to machine-read corpora and dictionaries, it applies a small set of declension prototypes to map corpus words to dictionary entries. A web-based GUI allows expert users to modify and augment data through an online process. A machine learning module incorporates prototype data, edit-distance metrics, and expert feedback to continuously update part-of-speech and morphosyntactic classification. An advantage of the analyzer is its ability to achieve competitive classification accuracy with minimum training data.

  3. Toward Determination of Venous Thrombosis Ages by Using Fuzzy Logic and Supervised Bayes Classification

    National Research Council Canada - National Science Library

    Lim, P

    2001-01-01

    .... Thus, the proposed learning base is constructed in a 3-tuple: observation, label, membership value in term of fuzzy logic for each class and not a 2-tuple as in the usual supervised Bayes classification application...

  4. Supervised and Unsupervised Classification for Pattern Recognition Purposes

    Directory of Open Access Journals (Sweden)

    Catalina COCIANU

    2006-01-01

    Full Text Available A cluster analysis task has to identify the grouping trends of data, to decide on the sound clusters as well as to validate somehow the resulted structure. The identification of the grouping tendency existing in a data collection assumes the selection of a framework stated in terms of a mathematical model allowing to express the similarity degree between couples of particular objects, quasi-metrics expressing the similarity between an object an a cluster and between clusters, respectively. In supervised classification, we are provided with a collection of preclassified patterns, and the problem is to label a newly encountered pattern. Typically, the given training patterns are used to learn the descriptions of classes which in turn are used to label a new pattern. The final section of the paper presents a new methodology for supervised learning based on PCA. The classes are represented in the measurement/feature space by a continuous repartitions

  5. Coupled Semi-Supervised Learning

    Science.gov (United States)

    2010-05-01

    Additionally, specify the expected category of each relation argument to enable type-checking. Subsystem components and the KI can benefit from methods that...confirm that our coupled semi-supervised learning approaches can scale to hun- dreds of predicates and can benefit from using a diverse set of...organization yes California Institute of Technology vegetable food yes carrots vehicle item yes airplanes vertebrate animal yes videoGame product yes

  6. Supervised Learning for Dynamical System Learning.

    Science.gov (United States)

    Hefny, Ahmed; Downey, Carlton; Gordon, Geoffrey J

    2015-01-01

    Recently there has been substantial interest in spectral methods for learning dynamical systems. These methods are popular since they often offer a good tradeoff between computational and statistical efficiency. Unfortunately, they can be difficult to use and extend in practice: e.g., they can make it difficult to incorporate prior information such as sparsity or structure. To address this problem, we present a new view of dynamical system learning: we show how to learn dynamical systems by solving a sequence of ordinary supervised learning problems, thereby allowing users to incorporate prior knowledge via standard techniques such as L 1 regularization. Many existing spectral methods are special cases of this new framework, using linear regression as the supervised learner. We demonstrate the effectiveness of our framework by showing examples where nonlinear regression or lasso let us learn better state representations than plain linear regression does; the correctness of these instances follows directly from our general analysis.

  7. Semi-supervised learning via regularized boosting working on multiple semi-supervised assumptions.

    Science.gov (United States)

    Chen, Ke; Wang, Shihai

    2011-01-01

    Semi-supervised learning concerns the problem of learning in the presence of labeled and unlabeled data. Several boosting algorithms have been extended to semi-supervised learning with various strategies. To our knowledge, however, none of them takes all three semi-supervised assumptions, i.e., smoothness, cluster, and manifold assumptions, together into account during boosting learning. In this paper, we propose a novel cost functional consisting of the margin cost on labeled data and the regularization penalty on unlabeled data based on three fundamental semi-supervised assumptions. Thus, minimizing our proposed cost functional with a greedy yet stagewise functional optimization procedure leads to a generic boosting framework for semi-supervised learning. Extensive experiments demonstrate that our algorithm yields favorite results for benchmark and real-world classification tasks in comparison to state-of-the-art semi-supervised learning algorithms, including newly developed boosting algorithms. Finally, we discuss relevant issues and relate our algorithm to the previous work.

  8. Assessment of various supervised learning algorithms using different performance metrics

    Science.gov (United States)

    Susheel Kumar, S. M.; Laxkar, Deepak; Adhikari, Sourav; Vijayarajan, V.

    2017-11-01

    Our work brings out comparison based on the performance of supervised machine learning algorithms on a binary classification task. The supervised machine learning algorithms which are taken into consideration in the following work are namely Support Vector Machine(SVM), Decision Tree(DT), K Nearest Neighbour (KNN), Naïve Bayes(NB) and Random Forest(RF). This paper mostly focuses on comparing the performance of above mentioned algorithms on one binary classification task by analysing the Metrics such as Accuracy, F-Measure, G-Measure, Precision, Misclassification Rate, False Positive Rate, True Positive Rate, Specificity, Prevalence.

  9. Weakly supervised visual dictionary learning by harnessing image attributes.

    Science.gov (United States)

    Gao, Yue; Ji, Rongrong; Liu, Wei; Dai, Qionghai; Hua, Gang

    2014-12-01

    Bag-of-features (BoFs) representation has been extensively applied to deal with various computer vision applications. To extract discriminative and descriptive BoF, one important step is to learn a good dictionary to minimize the quantization loss between local features and codewords. While most existing visual dictionary learning approaches are engaged with unsupervised feature quantization, the latest trend has turned to supervised learning by harnessing the semantic labels of images or regions. However, such labels are typically too expensive to acquire, which restricts the scalability of supervised dictionary learning approaches. In this paper, we propose to leverage image attributes to weakly supervise the dictionary learning procedure without requiring any actual labels. As a key contribution, our approach establishes a generative hidden Markov random field (HMRF), which models the quantized codewords as the observed states and the image attributes as the hidden states, respectively. Dictionary learning is then performed by supervised grouping the observed states, where the supervised information is stemmed from the hidden states of the HMRF. In such a way, the proposed dictionary learning approach incorporates the image attributes to learn a semantic-preserving BoF representation without any genuine supervision. Experiments in large-scale image retrieval and classification tasks corroborate that our approach significantly outperforms the state-of-the-art unsupervised dictionary learning approaches.

  10. Semi-supervised and unsupervised extreme learning machines.

    Science.gov (United States)

    Huang, Gao; Song, Shiji; Gupta, Jatinder N D; Wu, Cheng

    2014-12-01

    Extreme learning machines (ELMs) have proven to be efficient and effective learning mechanisms for pattern classification and regression. However, ELMs are primarily applied to supervised learning problems. Only a few existing research papers have used ELMs to explore unlabeled data. In this paper, we extend ELMs for both semi-supervised and unsupervised tasks based on the manifold regularization, thus greatly expanding the applicability of ELMs. The key advantages of the proposed algorithms are as follows: 1) both the semi-supervised ELM (SS-ELM) and the unsupervised ELM (US-ELM) exhibit learning capability and computational efficiency of ELMs; 2) both algorithms naturally handle multiclass classification or multicluster clustering; and 3) both algorithms are inductive and can handle unseen data at test time directly. Moreover, it is shown in this paper that all the supervised, semi-supervised, and unsupervised ELMs can actually be put into a unified framework. This provides new perspectives for understanding the mechanism of random feature mapping, which is the key concept in ELM theory. Empirical study on a wide range of data sets demonstrates that the proposed algorithms are competitive with the state-of-the-art semi-supervised or unsupervised learning algorithms in terms of accuracy and efficiency.

  11. Supervised machine learning-based classification scheme to segment the brainstem on MRI in multicenter brain tumor treatment context.

    Science.gov (United States)

    Dolz, Jose; Laprie, Anne; Ken, Soléakhéna; Leroy, Henri-Arthur; Reyns, Nicolas; Massoptier, Laurent; Vermandel, Maximilien

    2016-01-01

    To constrain the risk of severe toxicity in radiotherapy and radiosurgery, precise volume delineation of organs at risk is required. This task is still manually performed, which is time-consuming and prone to observer variability. To address these issues, and as alternative to atlas-based segmentation methods, machine learning techniques, such as support vector machines (SVM), have been recently presented to segment subcortical structures on magnetic resonance images (MRI). SVM is proposed to segment the brainstem on MRI in multicenter brain cancer context. A dataset composed by 14 adult brain MRI scans is used to evaluate its performance. In addition to spatial and probabilistic information, five different image intensity values (IIVs) configurations are evaluated as features to train the SVM classifier. Segmentation accuracy is evaluated by computing the Dice similarity coefficient (DSC), absolute volumes difference (AVD) and percentage volume difference between automatic and manual contours. Mean DSC for all proposed IIVs configurations ranged from 0.89 to 0.90. Mean AVD values were below 1.5 cm(3), where the value for best performing IIVs configuration was 0.85 cm(3), representing an absolute mean difference of 3.99% with respect to the manual segmented volumes. Results suggest consistent volume estimation and high spatial similarity with respect to expert delineations. The proposed approach outperformed presented methods to segment the brainstem, not only in volume similarity metrics, but also in segmentation time. Preliminary results showed that the approach might be promising for adoption in clinical use.

  12. Safe semi-supervised learning based on weighted likelihood.

    Science.gov (United States)

    Kawakita, Masanori; Takeuchi, Jun'ichi

    2014-05-01

    We are interested in developing a safe semi-supervised learning that works in any situation. Semi-supervised learning postulates that n(') unlabeled data are available in addition to n labeled data. However, almost all of the previous semi-supervised methods require additional assumptions (not only unlabeled data) to make improvements on supervised learning. If such assumptions are not met, then the methods possibly perform worse than supervised learning. Sokolovska, Cappé, and Yvon (2008) proposed a semi-supervised method based on a weighted likelihood approach. They proved that this method asymptotically never performs worse than supervised learning (i.e., it is safe) without any assumption. Their method is attractive because it is easy to implement and is potentially general. Moreover, it is deeply related to a certain statistical paradox. However, the method of Sokolovska et al. (2008) assumes a very limited situation, i.e., classification, discrete covariates, n(')→∞ and a maximum likelihood estimator. In this paper, we extend their method by modifying the weight. We prove that our proposal is safe in a significantly wide range of situations as long as n≤n('). Further, we give a geometrical interpretation of the proof of safety through the relationship with the above-mentioned statistical paradox. Finally, we show that the above proposal is asymptotically safe even when n(')

  13. Semi-supervised Probabilistic Distance Clustering and the Uncertainty of Classification

    Science.gov (United States)

    Iyigun, Cem; Ben-Israel, Adi

    Semi-supervised clustering is an attempt to reconcile clustering (unsupervised learning) and classification (supervised learning, using prior information on the data). These two modes of data analysis are combined in a parameterized model, the parameter θ ∈ [0, 1] is the weight attributed to the prior information, θ = 0 corresponding to clustering, and θ = 1 to classification. The results (cluster centers, classification rule) depend on the parameter θ, an insensitivity to θ indicates that the prior information is in agreement with the intrinsic cluster structure, and is otherwise redundant. This explains why some data sets (such as the Wisconsin breast cancer data, Merz and Murphy, UCI repository of machine learning databases, University of California, Irvine, CA) give good results for all reasonable classification methods. The uncertainty of classification is represented here by the geometric mean of the membership probabilities, shown to be an entropic distance related to the Kullback-Leibler divergence.

  14. Semi-supervised learning for ordinal Kernel Discriminant Analysis.

    Science.gov (United States)

    Pérez-Ortiz, M; Gutiérrez, P A; Carbonero-Ruz, M; Hervás-Martínez, C

    2016-12-01

    Ordinal classification considers those classification problems where the labels of the variable to predict follow a given order. Naturally, labelled data is scarce or difficult to obtain in this type of problems because, in many cases, ordinal labels are given by a user or expert (e.g. in recommendation systems). Firstly, this paper develops a new strategy for ordinal classification where both labelled and unlabelled data are used in the model construction step (a scheme which is referred to as semi-supervised learning). More specifically, the ordinal version of kernel discriminant learning is extended for this setting considering the neighbourhood information of unlabelled data, which is proposed to be computed in the feature space induced by the kernel function. Secondly, a new method for semi-supervised kernel learning is devised in the context of ordinal classification, which is combined with our developed classification strategy to optimise the kernel parameters. The experiments conducted compare 6 different approaches for semi-supervised learning in the context of ordinal classification in a battery of 30 datasets, showing (1) the good synergy of the ordinal version of discriminant analysis and the use of unlabelled data and (2) the advantage of computing distances in the feature space induced by the kernel function. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Transfer learning improves supervised image segmentation across imaging protocols.

    Science.gov (United States)

    van Opbroek, Annegreet; Ikram, M Arfan; Vernooij, Meike W; de Bruijne, Marleen

    2015-05-01

    The variation between images obtained with different scanners or different imaging protocols presents a major challenge in automatic segmentation of biomedical images. This variation especially hampers the application of otherwise successful supervised-learning techniques which, in order to perform well, often require a large amount of labeled training data that is exactly representative of the target data. We therefore propose to use transfer learning for image segmentation. Transfer-learning techniques can cope with differences in distributions between training and target data, and therefore may improve performance over supervised learning for segmentation across scanners and scan protocols. We present four transfer classifiers that can train a classification scheme with only a small amount of representative training data, in addition to a larger amount of other training data with slightly different characteristics. The performance of the four transfer classifiers was compared to that of standard supervised classification on two magnetic resonance imaging brain-segmentation tasks with multi-site data: white matter, gray matter, and cerebrospinal fluid segmentation; and white-matter-/MS-lesion segmentation. The experiments showed that when there is only a small amount of representative training data available, transfer learning can greatly outperform common supervised-learning approaches, minimizing classification errors by up to 60%.

  16. Arabic Supervised Learning Method Using N-Gram

    Science.gov (United States)

    Sanan, Majed; Rammal, Mahmoud; Zreik, Khaldoun

    2008-01-01

    Purpose: Recently, classification of Arabic documents is a real problem for juridical centers. In this case, some of the Lebanese official journal documents are classified, and the center has to classify new documents based on these documents. This paper aims to study and explain the useful application of supervised learning method on Arabic texts…

  17. Active relearning for robust supervised classification of pulmonary emphysema

    Science.gov (United States)

    Raghunath, Sushravya; Rajagopalan, Srinivasan; Karwoski, Ronald A.; Bartholmai, Brian J.; Robb, Richard A.

    2012-03-01

    Radiologists are adept at recognizing the appearance of lung parenchymal abnormalities in CT scans. However, the inconsistent differential diagnosis, due to subjective aggregation, mandates supervised classification. Towards optimizing Emphysema classification, we introduce a physician-in-the-loop feedback approach in order to minimize uncertainty in the selected training samples. Using multi-view inductive learning with the training samples, an ensemble of Support Vector Machine (SVM) models, each based on a specific pair-wise dissimilarity metric, was constructed in less than six seconds. In the active relearning phase, the ensemble-expert label conflicts were resolved by an expert. This just-in-time feedback with unoptimized SVMs yielded 15% increase in classification accuracy and 25% reduction in the number of support vectors. The generality of relearning was assessed in the optimized parameter space of six different classifiers across seven dissimilarity metrics. The resultant average accuracy improved to 21%. The co-operative feedback method proposed here could enhance both diagnostic and staging throughput efficiency in chest radiology practice.

  18. A New Method for Solving Supervised Data Classification Problems

    Directory of Open Access Journals (Sweden)

    Parvaneh Shabanzadeh

    2014-01-01

    Full Text Available Supervised data classification is one of the techniques used to extract nontrivial information from data. Classification is a widely used technique in various fields, including data mining, industry, medicine, science, and law. This paper considers a new algorithm for supervised data classification problems associated with the cluster analysis. The mathematical formulations for this algorithm are based on nonsmooth, nonconvex optimization. A new algorithm for solving this optimization problem is utilized. The new algorithm uses a derivative-free technique, with robustness and efficiency. To improve classification performance and efficiency in generating classification model, a new feature selection algorithm based on techniques of convex programming is suggested. Proposed methods are tested on real-world datasets. Results of numerical experiments have been presented which demonstrate the effectiveness of the proposed algorithms.

  19. Graph-Based Semi-Supervised Hyperspectral Image Classification Using Spatial Information

    Science.gov (United States)

    Jamshidpour, N.; Homayouni, S.; Safari, A.

    2017-09-01

    Hyperspectral image classification has been one of the most popular research areas in the remote sensing community in the past decades. However, there are still some problems that need specific attentions. For example, the lack of enough labeled samples and the high dimensionality problem are two most important issues which degrade the performance of supervised classification dramatically. The main idea of semi-supervised learning is to overcome these issues by the contribution of unlabeled samples, which are available in an enormous amount. In this paper, we propose a graph-based semi-supervised classification method, which uses both spectral and spatial information for hyperspectral image classification. More specifically, two graphs were designed and constructed in order to exploit the relationship among pixels in spectral and spatial spaces respectively. Then, the Laplacians of both graphs were merged to form a weighted joint graph. The experiments were carried out on two different benchmark hyperspectral data sets. The proposed method performed significantly better than the well-known supervised classification methods, such as SVM. The assessments consisted of both accuracy and homogeneity analyses of the produced classification maps. The proposed spectral-spatial SSL method considerably increased the classification accuracy when the labeled training data set is too scarce.When there were only five labeled samples for each class, the performance improved 5.92% and 10.76% compared to spatial graph-based SSL, for AVIRIS Indian Pine and Pavia University data sets respectively.

  20. GRAPH-BASED SEMI-SUPERVISED HYPERSPECTRAL IMAGE CLASSIFICATION USING SPATIAL INFORMATION

    Directory of Open Access Journals (Sweden)

    N. Jamshidpour

    2017-09-01

    Full Text Available Hyperspectral image classification has been one of the most popular research areas in the remote sensing community in the past decades. However, there are still some problems that need specific attentions. For example, the lack of enough labeled samples and the high dimensionality problem are two most important issues which degrade the performance of supervised classification dramatically. The main idea of semi-supervised learning is to overcome these issues by the contribution of unlabeled samples, which are available in an enormous amount. In this paper, we propose a graph-based semi-supervised classification method, which uses both spectral and spatial information for hyperspectral image classification. More specifically, two graphs were designed and constructed in order to exploit the relationship among pixels in spectral and spatial spaces respectively. Then, the Laplacians of both graphs were merged to form a weighted joint graph. The experiments were carried out on two different benchmark hyperspectral data sets. The proposed method performed significantly better than the well-known supervised classification methods, such as SVM. The assessments consisted of both accuracy and homogeneity analyses of the produced classification maps. The proposed spectral-spatial SSL method considerably increased the classification accuracy when the labeled training data set is too scarce.When there were only five labeled samples for each class, the performance improved 5.92% and 10.76% compared to spatial graph-based SSL, for AVIRIS Indian Pine and Pavia University data sets respectively.

  1. A semi-supervised classification algorithm using the TAD-derived background as training data

    Science.gov (United States)

    Fan, Lei; Ambeau, Brittany; Messinger, David W.

    2013-05-01

    In general, spectral image classification algorithms fall into one of two categories: supervised and unsupervised. In unsupervised approaches, the algorithm automatically identifies clusters in the data without a priori information about those clusters (except perhaps the expected number of them). Supervised approaches require an analyst to identify training data to learn the characteristics of the clusters such that they can then classify all other pixels into one of the pre-defined groups. The classification algorithm presented here is a semi-supervised approach based on the Topological Anomaly Detection (TAD) algorithm. The TAD algorithm defines background components based on a mutual k-Nearest Neighbor graph model of the data, along with a spectral connected components analysis. Here, the largest components produced by TAD are used as regions of interest (ROI's),or training data for a supervised classification scheme. By combining those ROI's with a Gaussian Maximum Likelihood (GML) or a Minimum Distance to the Mean (MDM) algorithm, we are able to achieve a semi supervised classification method. We test this classification algorithm against data collected by the HyMAP sensor over the Cooke City, MT area and University of Pavia scene.

  2. Supervised Classification Performance of Multispectral Images

    OpenAIRE

    Perumal, K.; Bhaskaran, R.

    2010-01-01

    Nowadays government and private agencies use remote sensing imagery for a wide range of applications from military applications to farm development. The images may be a panchromatic, multispectral, hyperspectral or even ultraspectral of terra bytes. Remote sensing image classification is one amongst the most significant application worlds for remote sensing. A few number of image classification algorithms have proved good precision in classifying remote sensing data. But, of late, due to the ...

  3. Classification of perovskites with supervised self-organizing maps

    International Nuclear Information System (INIS)

    Kuzmanovski, Igor; Dimitrovska-Lazova, Sandra; Aleksovska, Slobotka

    2007-01-01

    In this work supervised self-organizing maps were used for structural classification of perovskites. For this purpose, structural data for total number of 286 perovskites, belonging to ABO 3 and/or A 2 BB'O 6 types, were collected from literature: 130 of these are cubic, 85 orthorhombic and 71 monoclinic. For classification purposes, the effective ionic radii of the cations, electronegativities of the cations in B-position, as well as, the oxidation states of these cations, were used as input variables. The parameters of the developed models, as well as, the most suitable variables for classification purposes were selected using genetic algorithms. Two-third of all the compounds were used in the training phase. During the optimization process the performances of the models were checked using cross-validation leave-1/10-out. The performances of obtained solutions were checked using the test set composed of the remaining one-third of the compounds. The obtained models for classification of these three classes of perovskite compounds show very good results. Namely, the classification of the compounds in the test set resulted in small number of discrepancies (4.2-6.4%) between the actual crystallographic class and the one predicted by the models. All these results are strong arguments for the validity of supervised self-organizing maps for performing such types of classification. Therefore, the proposed procedure could be successfully used for crystallographic classification of perovskites in one of these three classes

  4. Subsampled Hessian Newton Methods for Supervised Learning.

    Science.gov (United States)

    Wang, Chien-Chih; Huang, Chun-Heng; Lin, Chih-Jen

    2015-08-01

    Newton methods can be applied in many supervised learning approaches. However, for large-scale data, the use of the whole Hessian matrix can be time-consuming. Recently, subsampled Newton methods have been proposed to reduce the computational time by using only a subset of data for calculating an approximation of the Hessian matrix. Unfortunately, we find that in some situations, the running speed is worse than the standard Newton method because cheaper but less accurate search directions are used. In this work, we propose some novel techniques to improve the existing subsampled Hessian Newton method. The main idea is to solve a two-dimensional subproblem per iteration to adjust the search direction to better minimize the second-order approximation of the function value. We prove the theoretical convergence of the proposed method. Experiments on logistic regression, linear SVM, maximum entropy, and deep networks indicate that our techniques significantly reduce the running time of the subsampled Hessian Newton method. The resulting algorithm becomes a compelling alternative to the standard Newton method for large-scale data classification.

  5. Semi-supervised Learning for Phenotyping Tasks.

    Science.gov (United States)

    Dligach, Dmitriy; Miller, Timothy; Savova, Guergana K

    2015-01-01

    Supervised learning is the dominant approach to automatic electronic health records-based phenotyping, but it is expensive due to the cost of manual chart review. Semi-supervised learning takes advantage of both scarce labeled and plentiful unlabeled data. In this work, we study a family of semi-supervised learning algorithms based on Expectation Maximization (EM) in the context of several phenotyping tasks. We first experiment with the basic EM algorithm. When the modeling assumptions are violated, basic EM leads to inaccurate parameter estimation. Augmented EM attenuates this shortcoming by introducing a weighting factor that downweights the unlabeled data. Cross-validation does not always lead to the best setting of the weighting factor and other heuristic methods may be preferred. We show that accurate phenotyping models can be trained with only a few hundred labeled (and a large number of unlabeled) examples, potentially providing substantial savings in the amount of the required manual chart review.

  6. Transfer learning improves supervised image segmentation across imaging protocols

    DEFF Research Database (Denmark)

    van Opbroek, Annegreet; Ikram, M. Arfan; Vernooij, Meike W.

    2015-01-01

    with slightly different characteristics. The performance of the four transfer classifiers was compared to that of standard supervised classification on two MRI brain-segmentation tasks with multi-site data: white matter, gray matter, and CSF segmentation; and white-matter- /MS-lesion segmentation......The variation between images obtained with different scanners or different imaging protocols presents a major challenge in automatic segmentation of biomedical images. This variation especially hampers the application of otherwise successful supervised-learning techniques which, in order to perform...... well, often require a large amount of labeled training data that is exactly representative of the target data. We therefore propose to use transfer learning for image segmentation. Transfer-learning techniques can cope with differences in distributions between training and target data, and therefore...

  7. Action learning in undergraduate engineering thesis supervision

    Directory of Open Access Journals (Sweden)

    Brad Stappenbelt

    2017-03-01

    Full Text Available In the present action learning implementation, twelve action learning sets were conducted over eight years. The action learning sets consisted of students involved in undergraduate engineering research thesis work. The concurrent study accompanying this initiative, investigated the influence of the action learning environment on student approaches to learning and any accompanying academic, learning and personal benefits realised. The influence of preferred learning styles on set function and student adoption of the action learning process were also examined. The action learning environment implemented had a measurable significant positive effect on student academic performance, their ability to cope with the stresses associated with conducting a research thesis, the depth of learning, the development of autonomous learners and student perception of the research thesis experience. The present study acts as an addendum to a smaller scale implementation of this action learning approach, applied to supervision of third and fourth year research projects and theses, published in 2010.

  8. Conditional High-Order Boltzmann Machines for Supervised Relation Learning.

    Science.gov (United States)

    Huang, Yan; Wang, Wei; Wang, Liang; Tan, Tieniu

    2017-09-01

    Relation learning is a fundamental problem in many vision tasks. Recently, high-order Boltzmann machine and its variants have shown their great potentials in learning various types of data relation in a range of tasks. But most of these models are learned in an unsupervised way, i.e., without using relation class labels, which are not very discriminative for some challenging tasks, e.g., face verification. In this paper, with the goal to perform supervised relation learning, we introduce relation class labels into conventional high-order multiplicative interactions with pairwise input samples, and propose a conditional high-order Boltzmann Machine (CHBM), which can learn to classify the data relation in a binary classification way. To be able to deal with more complex data relation, we develop two improved variants of CHBM: 1) latent CHBM, which jointly performs relation feature learning and classification, by using a set of latent variables to block the pathway from pairwise input samples to output relation labels and 2) gated CHBM, which untangles factors of variation in data relation, by exploiting a set of latent variables to multiplicatively gate the classification of CHBM. To reduce the large number of model parameters generated by the multiplicative interactions, we approximately factorize high-order parameter tensors into multiple matrices. Then, we develop efficient supervised learning algorithms, by first pretraining the models using joint likelihood to provide good parameter initialization, and then finetuning them using conditional likelihood to enhance the discriminant ability. We apply the proposed models to a series of tasks including invariant recognition, face verification, and action similarity labeling. Experimental results demonstrate that by exploiting supervised relation labels, our models can greatly improve the performance.

  9. Learning Apache Mahout classification

    CERN Document Server

    Gupta, Ashish

    2015-01-01

    If you are a data scientist who has some experience with the Hadoop ecosystem and machine learning methods and want to try out classification on large datasets using Mahout, this book is ideal for you. Knowledge of Java is essential.

  10. A review of supervised object-based land-cover image classification

    Science.gov (United States)

    Ma, Lei; Li, Manchun; Ma, Xiaoxue; Cheng, Liang; Du, Peijun; Liu, Yongxue

    2017-08-01

    vehicle) or agricultural sites where it also correlates with the number of targeted classes. More than 95.6% of studies involve an area less than 300 ha, and the spatial resolution of images is predominantly between 0 and 2 m. Furthermore, we identify some methods that may advance supervised object-based image classification. For example, deep learning and type-2 fuzzy techniques may further improve classification accuracy. Lastly, scientists are strongly encouraged to report results of uncertainty studies to further explore the effects of varied factors on supervised object-based image classification.

  11. Empirical Studies On Machine Learning Based Text Classification Algorithms

    OpenAIRE

    Shweta C. Dharmadhikari; Maya Ingle; Parag Kulkarni

    2011-01-01

    Automatic classification of text documents has become an important research issue now days. Properclassification of text documents requires information retrieval, machine learning and Natural languageprocessing (NLP) techniques. Our aim is to focus on important approaches to automatic textclassification based on machine learning techniques viz. supervised, unsupervised and semi supervised.In this paper we present a review of various text classification approaches under machine learningparadig...

  12. Balancing Design Project Supervision and Learning Facilitation

    DEFF Research Database (Denmark)

    Nielsen, Louise Møller

    2012-01-01

    experiences and expertise to guide the students’ decisions in relation to the design project. This paper focuses on project supervision in the context of design education – and more specifically on how this supervision is unfolded in a Problem Based Learning culture. The paper explores the supervisor......’s balance between the roles: 1) Design Project Supervisor – and 2) Learning Facilitator – with the aim to understand when to apply the different roles, and what to be aware of when doing so. This paper represents the first pilot-study of a larger research effort. It is based on a Lego Serious Play workshop......In design there is a long tradition for apprenticeship, as well as tradition for learning through design projects. Today many design educations are positioned within the University context, and have to be aligned with the learning culture and structure, which they represent. This raises a specific...

  13. Active semi-supervised learning method with hybrid deep belief networks.

    Science.gov (United States)

    Zhou, Shusen; Chen, Qingcai; Wang, Xiaolong

    2014-01-01

    In this paper, we develop a novel semi-supervised learning algorithm called active hybrid deep belief networks (AHD), to address the semi-supervised sentiment classification problem with deep learning. First, we construct the previous several hidden layers using restricted Boltzmann machines (RBM), which can reduce the dimension and abstract the information of the reviews quickly. Second, we construct the following hidden layers using convolutional restricted Boltzmann machines (CRBM), which can abstract the information of reviews effectively. Third, the constructed deep architecture is fine-tuned by gradient-descent based supervised learning with an exponential loss function. Finally, active learning method is combined based on the proposed deep architecture. We did several experiments on five sentiment classification datasets, and show that AHD is competitive with previous semi-supervised learning algorithm. Experiments are also conducted to verify the effectiveness of our proposed method with different number of labeled reviews and unlabeled reviews respectively.

  14. Stochastic microstructure characterization and reconstruction via supervised learning

    International Nuclear Information System (INIS)

    Bostanabad, Ramin; Bui, Anh Tuan; Xie, Wei; Apley, Daniel W.; Chen, Wei

    2016-01-01

    Microstructure characterization and reconstruction have become indispensable parts of computational materials science. The main contribution of this paper is to introduce a general methodology for practical and efficient characterization and reconstruction of stochastic microstructures based on supervised learning. The methodology is general in that it can be applied to a broad range of microstructures (clustered, porous, and anisotropic). By treating the digitized microstructure image as a set of training data, we generically learn the stochastic nature of the microstructure via fitting a supervised learning model to it (we focus on classification trees). The fitted supervised learning model provides an implicit characterization of the joint distribution of the collection of pixel phases in the image. Based on this characterization, we propose two different approaches to efficiently reconstruct any number of statistically equivalent microstructure samples. We test the approach on five examples and show that the spatial dependencies within the microstructures are well preserved, as evaluated via correlation and lineal-path functions. The main advantages of our approach stem from having a compact empirically-learned model that characterizes the stochastic nature of the microstructure, which not only makes reconstruction more computationally efficient than existing methods, but also provides insight into morphological complexity.

  15. Opportunities to Learn Scientific Thinking in Joint Doctoral Supervision

    Science.gov (United States)

    Kobayashi, Sofie; Grout, Brian W.; Rump, Camilla Østerberg

    2015-01-01

    Research into doctoral supervision has increased rapidly over the last decades, yet our understanding of how doctoral students learn scientific thinking from supervision is limited. Most studies are based on interviews with little work being reported that is based on observation of actual supervision. While joint supervision has become widely…

  16. Artificial neural network classification using a minimal training set - Comparison to conventional supervised classification

    Science.gov (United States)

    Hepner, George F.; Logan, Thomas; Ritter, Niles; Bryant, Nevin

    1990-01-01

    Recent research has shown an artificial neural network (ANN) to be capable of pattern recognition and the classification of image data. This paper examines the potential for the application of neural network computing to satellite image processing. A second objective is to provide a preliminary comparison and ANN classification. An artificial neural network can be trained to do land-cover classification of satellite imagery using selected sites representative of each class in a manner similar to conventional supervised classification. One of the major problems associated with recognition and classifications of pattern from remotely sensed data is the time and cost of developing a set of training sites. This reseach compares the use of an ANN back propagation classification procedure with a conventional supervised maximum likelihood classification procedure using a minimal training set. When using a minimal training set, the neural network is able to provide a land-cover classification superior to the classification derived from the conventional classification procedure. This research is the foundation for developing application parameters for further prototyping of software and hardware implementations for artificial neural networks in satellite image and geographic information processing.

  17. A Supervised Classification Algorithm for Note Onset Detection

    Directory of Open Access Journals (Sweden)

    Douglas Eck

    2007-01-01

    Full Text Available This paper presents a novel approach to detecting onsets in music audio files. We use a supervised learning algorithm to classify spectrogram frames extracted from digital audio as being onsets or nononsets. Frames classified as onsets are then treated with a simple peak-picking algorithm based on a moving average. We present two versions of this approach. The first version uses a single neural network classifier. The second version combines the predictions of several networks trained using different hyperparameters. We describe the details of the algorithm and summarize the performance of both variants on several datasets. We also examine our choice of hyperparameters by describing results of cross-validation experiments done on a custom dataset. We conclude that a supervised learning approach to note onset detection performs well and warrants further investigation.

  18. Classification of gene expression data: A hubness-aware semi-supervised approach.

    Science.gov (United States)

    Buza, Krisztian

    2016-04-01

    Classification of gene expression data is the common denominator of various biomedical recognition tasks. However, obtaining class labels for large training samples may be difficult or even impossible in many cases. Therefore, semi-supervised classification techniques are required as semi-supervised classifiers take advantage of unlabeled data. Gene expression data is high-dimensional which gives rise to the phenomena known under the umbrella of the curse of dimensionality, one of its recently explored aspects being the presence of hubs or hubness for short. Therefore, hubness-aware classifiers have been developed recently, such as Naive Hubness-Bayesian k-Nearest Neighbor (NHBNN). In this paper, we propose a semi-supervised extension of NHBNN which follows the self-training schema. As one of the core components of self-training is the certainty score, we propose a new hubness-aware certainty score. We performed experiments on publicly available gene expression data. These experiments show that the proposed classifier outperforms its competitors. We investigated the impact of each of the components (classification algorithm, semi-supervised technique, hubness-aware certainty score) separately and showed that each of these components are relevant to the performance of the proposed approach. Our results imply that our approach may increase classification accuracy and reduce computational costs (i.e., runtime). Based on the promising results presented in the paper, we envision that hubness-aware techniques will be used in various other biomedical machine learning tasks. In order to accelerate this process, we made an implementation of hubness-aware machine learning techniques publicly available in the PyHubs software package (http://www.biointelligence.hu/pyhubs) implemented in Python, one of the most popular programming languages of data science. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Graph-based semi-supervised learning

    CERN Document Server

    Subramanya, Amarnag

    2014-01-01

    While labeled data is expensive to prepare, ever increasing amounts of unlabeled data is becoming widely available. In order to adapt to this phenomenon, several semi-supervised learning (SSL) algorithms, which learn from labeled as well as unlabeled data, have been developed. In a separate line of work, researchers have started to realize that graphs provide a natural way to represent data in a variety of domains. Graph-based SSL algorithms, which bring together these two lines of work, have been shown to outperform the state-of-the-art in many applications in speech processing, computer visi

  20. Structural knowledge learning from maps for supervised land cover/use classification: Application to the monitoring of land cover/use maps in French Guiana

    Science.gov (United States)

    Bayoudh, Meriam; Roux, Emmanuel; Richard, Gilles; Nock, Richard

    2015-03-01

    The number of satellites and sensors devoted to Earth observation has become increasingly elevated, delivering extensive data, especially images. At the same time, the access to such data and the tools needed to process them has considerably improved. In the presence of such data flow, we need automatic image interpretation methods, especially when it comes to the monitoring and prediction of environmental and societal changes in highly dynamic socio-environmental contexts. This could be accomplished via artificial intelligence. The concept described here relies on the induction of classification rules that explicitly take into account structural knowledge, using Aleph, an Inductive Logic Programming (ILP) system, combined with a multi-class classification procedure. This methodology was used to monitor changes in land cover/use of the French Guiana coastline. One hundred and fifty-eight classification rules were induced from 3 diachronic land cover/use maps including 38 classes. These rules were expressed in first order logic language, which makes them easily understandable by non-experts. A 10-fold cross-validation gave significant average values of 84.62%, 99.57% and 77.22% for classification accuracy, specificity and sensitivity, respectively. Our methodology could be beneficial to automatically classify new objects and to facilitate object-based classification procedures.

  1. Supervised classification of distributed data streams for smart grids

    Energy Technology Data Exchange (ETDEWEB)

    Guarracino, Mario R. [High Performance Computing and Networking - National Research Council of Italy, Naples (Italy); Irpino, Antonio; Verde, Rosanna [Seconda Universita degli Studi di Napoli, Dipartimento di Studi Europei e Mediterranei, Caserta (Italy); Radziukyniene, Neringa [Lithuanian Energy Institute, Laboratory of Systems Control and Automation, Kaunas (Lithuania)

    2012-03-15

    The electricity system inherited from the 19th and 20th centuries has been a reliable but centralized system. With the spreading of local, distributed and intermittent renewable energy resources, top-down central control of the grid no longer meets modern requirements. For these reasons, the power grid has been equipped with smart meters integrating bi-directional communications, advanced power measurement and management capabilities. Smart meters make it possible to remotely turn power on or off to a customer, read usage information, detect a service outage and the unauthorized use of electricity. To fully exploit their capabilities, we foresee the usage of distributed supervised classification algorithms. By gathering data available from meters and other sensors, such algorithms can create local classification models for attack detection, online monitoring, privacy preservation, workload balancing, prediction of energy demand and incoming faults. In this paper we present a decentralized distributed classification algorithm based on proximal support vector machines. The method uses partial knowledge, in form of data streams, to build its local model on each meter. We demonstrate the performance of the proposed scheme on synthetic datasets. (orig.)

  2. Supervised classification of continental shelf sediment off western Donegal, Ireland

    Science.gov (United States)

    Monteys, X.; Craven, K.; McCarron, S. G.

    2017-12-01

    Managing human impacts on marine ecosystems requires natural regions to be identified and mapped over a range of hierarchically nested scales. In recent years (2000-present) the Irish National Seabed Survey (INSS) and Integrated Mapping for the Sustainable Development of Ireland's Marine Resources programme (INFOMAR) (Geological Survey Ireland and Marine Institute collaborations) has provided unprecedented quantities of high quality data on Ireland's offshore territories. The increasing availability of large, detailed digital representations of these environments requires the application of objective and quantitative analyses. This study presents results of a new approach for sea floor sediment mapping based on an integrated analysis of INFOMAR multibeam bathymetric data (including the derivatives of slope and relative position), backscatter data (including derivatives of angular response analysis) and sediment groundtruthing over the continental shelf, west of Donegal. It applies a Geographic-Object-Based Image Analysis software package to provide a supervised classification of the surface sediment. This approach can provide a statistically robust, high resolution classification of the seafloor. Initial results display a differentiation of sediment classes and a reduction in artefacts from previously applied methodologies. These results indicate a methodology that could be used during physical habitat mapping and classification of marine environments.

  3. Supervised Cross-Modal Factor Analysis for Multiple Modal Data Classification

    KAUST Repository

    Wang, Jingbin

    2015-10-09

    In this paper we study the problem of learning from multiple modal data for purpose of document classification. In this problem, each document is composed two different modals of data, i.e., An image and a text. Cross-modal factor analysis (CFA) has been proposed to project the two different modals of data to a shared data space, so that the classification of a image or a text can be performed directly in this space. A disadvantage of CFA is that it has ignored the supervision information. In this paper, we improve CFA by incorporating the supervision information to represent and classify both image and text modals of documents. We project both image and text data to a shared data space by factor analysis, and then train a class label predictor in the shared space to use the class label information. The factor analysis parameter and the predictor parameter are learned jointly by solving one single objective function. With this objective function, we minimize the distance between the projections of image and text of the same document, and the classification error of the projection measured by hinge loss function. The objective function is optimized by an alternate optimization strategy in an iterative algorithm. Experiments in two different multiple modal document data sets show the advantage of the proposed algorithm over other CFA methods.

  4. Collaborative Supervised Learning for Sensor Networks

    Science.gov (United States)

    Wagstaff, Kiri L.; Rebbapragada, Umaa; Lane, Terran

    2011-01-01

    Collaboration methods for distributed machine-learning algorithms involve the specification of communication protocols for the learners, which can query other learners and/or broadcast their findings preemptively. Each learner incorporates information from its neighbors into its own training set, and they are thereby able to bootstrap each other to higher performance. Each learner resides at a different node in the sensor network and makes observations (collects data) independently of the other learners. After being seeded with an initial labeled training set, each learner proceeds to learn in an iterative fashion. New data is collected and classified. The learner can then either broadcast its most confident classifications for use by other learners, or can query neighbors for their classifications of its least confident items. As such, collaborative learning combines elements of both passive (broadcast) and active (query) learning. It also uses ideas from ensemble learning to combine the multiple responses to a given query into a single useful label. This approach has been evaluated against current non-collaborative alternatives, including training a single classifier and deploying it at all nodes with no further learning possible, and permitting learners to learn from their own most confident judgments, absent interaction with their neighbors. On several data sets, it has been consistently found that active collaboration is the best strategy for a distributed learner network. The main advantages include the ability for learning to take place autonomously by collaboration rather than by requiring intervention from an oracle (usually human), and also the ability to learn in a distributed environment, permitting decisions to be made in situ and to yield faster response time.

  5. A strategy learning model for autonomous agents based on classification

    Directory of Open Access Journals (Sweden)

    Śnieżyński Bartłomiej

    2015-09-01

    Full Text Available In this paper we propose a strategy learning model for autonomous agents based on classification. In the literature, the most commonly used learning method in agent-based systems is reinforcement learning. In our opinion, classification can be considered a good alternative. This type of supervised learning can be used to generate a classifier that allows the agent to choose an appropriate action for execution. Experimental results show that this model can be successfully applied for strategy generation even if rewards are delayed. We compare the efficiency of the proposed model and reinforcement learning using the farmer-pest domain and configurations of various complexity. In complex environments, supervised learning can improve the performance of agents much faster that reinforcement learning. If an appropriate knowledge representation is used, the learned knowledge may be analyzed by humans, which allows tracking the learning process

  6. Establishing a Supervised Classification of Global Blue Carbon Mangrove Ecosystems

    Science.gov (United States)

    Baltezar, P.

    2016-12-01

    Understanding change in mangroves over time will aid forest management systems working to protect them from over exploitation. Mangroves are one of the most carbon dense terrestrial ecosystems on the planet and are therefore a high priority for sustainable forest management. Although they represent 1% of terrestrial cover, they could account for about 10% of global carbon emissions. The foundation of this analysis uses remote sensing to establish a supervised classification of mangrove forests for discrete regions in the Zambezi Delta of Mozambique and the Rufiji Delta of Tanzania. Open-source mapping platforms provided a dynamic space for analyzing satellite imagery in the Google Earth Engine (GEE) coding environment. C-Band Synthetic Aperture Radar data from Sentinel 1 was used in the model as a mask by optimizing SAR parameters. Exclusion metrics identified within Global Land Surface Temperature data from MODIS and the Shuttle Radar Topography Mission were used to accentuate mangrove features. Variance was accounted for in exclusion metrics by statistically calculating thresholds for radar, thermal, and elevation data. Optical imagery from the Landsat 8 archive aided a quality mosaic in extracting the highest spectral index values most appropriate for vegetative mapping. The enhanced radar, thermal, and digital elevation imagery were then incorporated into the quality mosaic. Training sites were selected from Google Earth imagery and used in the classification with a resulting output of four mangrove cover map models for each site. The model was assessed for accuracy by observing the differences between the mangrove classification models to the reference maps. Although the model was over predicting mangroves in non-mangrove regions, it was more accurately classifying mangrove regions established by the references. Future refinements will expand the model with an objective degree of accuracy.

  7. Ensemble learning with trees and rules: supervised, semi-supervised, unsupervised

    Science.gov (United States)

    In this article, we propose several new approaches for post processing a large ensemble of conjunctive rules for supervised and semi-supervised learning problems. We show with various examples that for high dimensional regression problems the models constructed by the post processing the rules with ...

  8. A Novel Classification Algorithm Based on Incremental Semi-Supervised Support Vector Machine.

    Directory of Open Access Journals (Sweden)

    Fei Gao

    Full Text Available For current computational intelligence techniques, a major challenge is how to learn new concepts in changing environment. Traditional learning schemes could not adequately address this problem due to a lack of dynamic data selection mechanism. In this paper, inspired by human learning process, a novel classification algorithm based on incremental semi-supervised support vector machine (SVM is proposed. Through the analysis of prediction confidence of samples and data distribution in a changing environment, a "soft-start" approach, a data selection mechanism and a data cleaning mechanism are designed, which complete the construction of our incremental semi-supervised learning system. Noticeably, with the ingenious design procedure of our proposed algorithm, the computation complexity is reduced effectively. In addition, for the possible appearance of some new labeled samples in the learning process, a detailed analysis is also carried out. The results show that our algorithm does not rely on the model of sample distribution, has an extremely low rate of introducing wrong semi-labeled samples and can effectively make use of the unlabeled samples to enrich the knowledge system of classifier and improve the accuracy rate. Moreover, our method also has outstanding generalization performance and the ability to overcome the concept drift in a changing environment.

  9. Maximum margin semi-supervised learning with irrelevant data.

    Science.gov (United States)

    Yang, Haiqin; Huang, Kaizhu; King, Irwin; Lyu, Michael R

    2015-10-01

    Semi-supervised learning (SSL) is a typical learning paradigms training a model from both labeled and unlabeled data. The traditional SSL models usually assume unlabeled data are relevant to the labeled data, i.e., following the same distributions of the targeted labeled data. In this paper, we address a different, yet formidable scenario in semi-supervised classification, where the unlabeled data may contain irrelevant data to the labeled data. To tackle this problem, we develop a maximum margin model, named tri-class support vector machine (3C-SVM), to utilize the available training data, while seeking a hyperplane for separating the targeted data well. Our 3C-SVM exhibits several characteristics and advantages. First, it does not need any prior knowledge and explicit assumption on the data relatedness. On the contrary, it can relieve the effect of irrelevant unlabeled data based on the logistic principle and maximum entropy principle. That is, 3C-SVM approaches an ideal classifier. This classifier relies heavily on labeled data and is confident on the relevant data lying far away from the decision hyperplane, while maximally ignoring the irrelevant data, which are hardly distinguished. Second, theoretical analysis is provided to prove that in what condition, the irrelevant data can help to seek the hyperplane. Third, 3C-SVM is a generalized model that unifies several popular maximum margin models, including standard SVMs, Semi-supervised SVMs (S(3)VMs), and SVMs learned from the universum (U-SVMs) as its special cases. More importantly, we deploy a concave-convex produce to solve the proposed 3C-SVM, transforming the original mixed integer programming, to a semi-definite programming relaxation, and finally to a sequence of quadratic programming subproblems, which yields the same worst case time complexity as that of S(3)VMs. Finally, we demonstrate the effectiveness and efficiency of our proposed 3C-SVM through systematical experimental comparisons. Copyright

  10. Supervised Filter Learning for Representation Based Face Recognition.

    Directory of Open Access Journals (Sweden)

    Chao Bi

    Full Text Available Representation based classification methods, such as Sparse Representation Classification (SRC and Linear Regression Classification (LRC have been developed for face recognition problem successfully. However, most of these methods use the original face images without any preprocessing for recognition. Thus, their performances may be affected by some problematic factors (such as illumination and expression variances in the face images. In order to overcome this limitation, a novel supervised filter learning algorithm is proposed for representation based face recognition in this paper. The underlying idea of our algorithm is to learn a filter so that the within-class representation residuals of the faces' Local Binary Pattern (LBP features are minimized and the between-class representation residuals of the faces' LBP features are maximized. Therefore, the LBP features of filtered face images are more discriminative for representation based classifiers. Furthermore, we also extend our algorithm for heterogeneous face recognition problem. Extensive experiments are carried out on five databases and the experimental results verify the efficacy of the proposed algorithm.

  11. Regular graph construction for semi-supervised learning

    International Nuclear Information System (INIS)

    Vega-Oliveros, Didier A; Berton, Lilian; Eberle, Andre Mantini; Lopes, Alneu de Andrade; Zhao, Liang

    2014-01-01

    Semi-supervised learning (SSL) stands out for using a small amount of labeled points for data clustering and classification. In this scenario graph-based methods allow the analysis of local and global characteristics of the available data by identifying classes or groups regardless data distribution and representing submanifold in Euclidean space. Most of methods used in literature for SSL classification do not worry about graph construction. However, regular graphs can obtain better classification accuracy compared to traditional methods such as k-nearest neighbor (kNN), since kNN benefits the generation of hubs and it is not appropriate for high-dimensionality data. Nevertheless, methods commonly used for generating regular graphs have high computational cost. We tackle this problem introducing an alternative method for generation of regular graphs with better runtime performance compared to methods usually find in the area. Our technique is based on the preferential selection of vertices according some topological measures, like closeness, generating at the end of the process a regular graph. Experiments using the global and local consistency method for label propagation show that our method provides better or equal classification rate in comparison with kNN

  12. A Supervised Machine Learning Study of Online Discussion Forums about Type-2 Diabetes

    DEFF Research Database (Denmark)

    Reichert, Jonathan-Raphael; Kristensen, Klaus Langholz; Mukkamala, Raghava Rao

    2017-01-01

    supervised machine learning techniques to analyze the online conversations. In order to analyse these online textual conversations, we have chosen four domain specific models (Emotions, Sentiment, Personality Traits and Patient Journey). As part of text classification, we employed the ensemble learning...... method by using 5 different supervised machine learning algorithms to build a set of text classifiers by using the voting method to predict most probable label for a given textual conversation from the online discussion forums. Our findings show that there is a high amount of trust expressed by a subset...

  13. Spectral Learning for Supervised Topic Models.

    Science.gov (United States)

    Ren, Yong; Wang, Yining; Zhu, Jun

    2018-03-01

    Supervised topic models simultaneously model the latent topic structure of large collections of documents and a response variable associated with each document. Existing inference methods are based on variational approximation or Monte Carlo sampling, which often suffers from the local minimum defect. Spectral methods have been applied to learn unsupervised topic models, such as latent Dirichlet allocation (LDA), with provable guarantees. This paper investigates the possibility of applying spectral methods to recover the parameters of supervised LDA (sLDA). We first present a two-stage spectral method, which recovers the parameters of LDA followed by a power update method to recover the regression model parameters. Then, we further present a single-phase spectral algorithm to jointly recover the topic distribution matrix as well as the regression weights. Our spectral algorithms are provably correct and computationally efficient. We prove a sample complexity bound for each algorithm and subsequently derive a sufficient condition for the identifiability of sLDA. Thorough experiments on synthetic and real-world datasets verify the theory and demonstrate the practical effectiveness of the spectral algorithms. In fact, our results on a large-scale review rating dataset demonstrate that our single-phase spectral algorithm alone gets comparable or even better performance than state-of-the-art methods, while previous work on spectral methods has rarely reported such promising performance.

  14. Semi-supervised Learning with Deep Generative Models

    NARCIS (Netherlands)

    Kingma, D.P.; Rezende, D.J.; Mohamed, S.; Welling, M.

    2014-01-01

    The ever-increasing size of modern data sets combined with the difficulty of obtaining label information has made semi-supervised learning one of the problems of significant practical importance in modern data analysis. We revisit the approach to semi-supervised learning with generative models and

  15. Opportunities to learn scientific thinking in joint doctoral supervision

    DEFF Research Database (Denmark)

    Kobayashi, Sofie; Grout, Brian William Wilson; Rump, Camilla Østerberg

    2015-01-01

    Research into doctoral supervision has increased rapidly over the last decades, yet our understanding of how doctoral students learn scientific thinking from supervision is limited. Most studies are based on interviews with little work being reported that is based on observation of actual...... supervision. While joint supervision has become widely used, its learning dynamics remains under-researched and this paper aims to address these gaps in research by exploring learning opportunities in doctoral supervision with two supervisors. The study explores how the tensions in scientific discussion...... between supervisors can become learning opportunities. We combine two different theoretical perspectives, using participation and positioning theory as a sociocultural perspective and variation theory as an individual constructivist perspective on learning. Based on our analysis of a complex episode we...

  16. Effects of supervised Self Organising Maps parameters on classification performance.

    Science.gov (United States)

    Ballabio, Davide; Vasighi, Mahdi; Filzmoser, Peter

    2013-02-26

    Self Organising Maps (SOMs) are one of the most powerful learning strategies among neural networks algorithms. SOMs have several adaptable parameters and the selection of appropriate network architectures is required in order to make accurate predictions. The major disadvantage of SOMs is probably due to the network optimisation, since this procedure can be often time-expensive. Effects of network size, training epochs and learning rate on the classification performance of SOMs are known, whereas the effect of other parameters (type of SOMs, weights initialisation, training algorithm, topology and boundary conditions) are not so obvious. This study was addressed to analyse the effect of SOMs parameters on the network classification performance, as well as on their computational times, taking into consideration a significant number of real datasets, in order to achieve a comprehensive statistical comparison. Parameters were contemporaneously evaluated by means of an approach based on the design of experiments, which enabled the investigation of their interaction effects. Results highlighted the most important parameters which influence the classification performance and enabled the identification of the optimal settings, as well as the optimal architectures to reduce the computational time of SOMs. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Deep learning classification in asteroseismology

    DEFF Research Database (Denmark)

    Hon, Marc; Stello, Dennis; Yu, Jie

    2017-01-01

    In the power spectra of oscillating red giants, there are visually distinct features defining stars ascending the red giant branch from those that have commenced helium core burning. We train a 1D convolutional neural network by supervised learning to automatically learn these visual features from...

  18. Predicting protein complexes using a supervised learning method combined with local structural information.

    Science.gov (United States)

    Dong, Yadong; Sun, Yongqi; Qin, Chao

    2018-01-01

    The existing protein complex detection methods can be broadly divided into two categories: unsupervised and supervised learning methods. Most of the unsupervised learning methods assume that protein complexes are in dense regions of protein-protein interaction (PPI) networks even though many true complexes are not dense subgraphs. Supervised learning methods utilize the informative properties of known complexes; they often extract features from existing complexes and then use the features to train a classification model. The trained model is used to guide the search process for new complexes. However, insufficient extracted features, noise in the PPI data and the incompleteness of complex data make the classification model imprecise. Consequently, the classification model is not sufficient for guiding the detection of complexes. Therefore, we propose a new robust score function that combines the classification model with local structural information. Based on the score function, we provide a search method that works both forwards and backwards. The results from experiments on six benchmark PPI datasets and three protein complex datasets show that our approach can achieve better performance compared with the state-of-the-art supervised, semi-supervised and unsupervised methods for protein complex detection, occasionally significantly outperforming such methods.

  19. Integrating the Supervised Information into Unsupervised Learning

    Directory of Open Access Journals (Sweden)

    Ping Ling

    2013-01-01

    Full Text Available This paper presents an assembling unsupervised learning framework that adopts the information coming from the supervised learning process and gives the corresponding implementation algorithm. The algorithm consists of two phases: extracting and clustering data representatives (DRs firstly to obtain labeled training data and then classifying non-DRs based on labeled DRs. The implementation algorithm is called SDSN since it employs the tuning-scaled Support vector domain description to collect DRs, uses spectrum-based method to cluster DRs, and adopts the nearest neighbor classifier to label non-DRs. The validation of the clustering procedure of the first-phase is analyzed theoretically. A new metric is defined data dependently in the second phase to allow the nearest neighbor classifier to work with the informed information. A fast training approach for DRs’ extraction is provided to bring more efficiency. Experimental results on synthetic and real datasets verify that the proposed idea is of correctness and performance and SDSN exhibits higher popularity in practice over the traditional pure clustering procedure.

  20. MULTI-LABEL ASRS DATASET CLASSIFICATION USING SEMI-SUPERVISED SUBSPACE CLUSTERING

    Data.gov (United States)

    National Aeronautics and Space Administration — MULTI-LABEL ASRS DATASET CLASSIFICATION USING SEMI-SUPERVISED SUBSPACE CLUSTERING MOHAMMAD SALIM AHMED, LATIFUR KHAN, NIKUNJ OZA, AND MANDAVA RAJESWARI Abstract....

  1. Supervised classification of combined copy number and gene expression data

    Directory of Open Access Journals (Sweden)

    Riccadonna S.

    2007-12-01

    Full Text Available In this paper we apply a predictive profiling method to genome copy number aberrations (CNA in combination with gene expression and clinical data to identify molecular patterns of cancer pathophysiology. Predictive models and optimal feature lists for the platforms are developed by a complete validation SVM-based machine learning system. Ranked list of genome CNA sites (assessed by comparative genomic hybridization arrays – aCGH and of differentially expressed genes (assessed by microarray profiling with Affy HG-U133A chips are computed and combined on a breast cancer dataset for the discrimination of Luminal/ ER+ (Lum/ER+ and Basal-like/ER- classes. Different encodings are developed and applied to the CNA data, and predictive variable selection is discussed. We analyze the combination of profiling information between the platforms, also considering the pathophysiological data. A specific subset of patients is identified that has a different response to classification by chromosomal gains and losses and by differentially expressed genes, corroborating the idea that genomic CNA can represent an independent source for tumor classification.

  2. Deep learning for image classification

    Science.gov (United States)

    McCoppin, Ryan; Rizki, Mateen

    2014-06-01

    This paper provides an overview of deep learning and introduces the several subfields of deep learning including a specific tutorial of convolutional neural networks. Traditional methods for learning image features are compared to deep learning techniques. In addition, we present our preliminary classification results, our basic implementation of a convolutional restricted Boltzmann machine on the Mixed National Institute of Standards and Technology database (MNIST), and we explain how to use deep learning networks to assist in our development of a robust gender classification system.

  3. Experiments on Supervised Learning Algorithms for Text Categorization

    Science.gov (United States)

    Namburu, Setu Madhavi; Tu, Haiying; Luo, Jianhui; Pattipati, Krishna R.

    2005-01-01

    Modern information society is facing the challenge of handling massive volume of online documents, news, intelligence reports, and so on. How to use the information accurately and in a timely manner becomes a major concern in many areas. While the general information may also include images and voice, we focus on the categorization of text data in this paper. We provide a brief overview of the information processing flow for text categorization, and discuss two supervised learning algorithms, viz., support vector machines (SVM) and partial least squares (PLS), which have been successfully applied in other domains, e.g., fault diagnosis [9]. While SVM has been well explored for binary classification and was reported as an efficient algorithm for text categorization, PLS has not yet been applied to text categorization. Our experiments are conducted on three data sets: Reuter's- 21578 dataset about corporate mergers and data acquisitions (ACQ), WebKB and the 20-Newsgroups. Results show that the performance of PLS is comparable to SVM in text categorization. A major drawback of SVM for multi-class categorization is that it requires a voting scheme based on the results of pair-wise classification. PLS does not have this drawback and could be a better candidate for multi-class text categorization.

  4. Cross-Domain Semi-Supervised Learning Using Feature Formulation.

    Science.gov (United States)

    Xingquan Zhu

    2011-12-01

    Semi-Supervised Learning (SSL) traditionally makes use of unlabeled samples by including them into the training set through an automated labeling process. Such a primitive Semi-Supervised Learning (pSSL) approach suffers from a number of disadvantages including false labeling and incapable of utilizing out-of-domain samples. In this paper, we propose a formative Semi-Supervised Learning (fSSL) framework which explores hidden features between labeled and unlabeled samples to achieve semi-supervised learning. fSSL regards that both labeled and unlabeled samples are generated from some hidden concepts with labeling information partially observable for some samples. The key of the fSSL is to recover the hidden concepts, and take them as new features to link labeled and unlabeled samples for semi-supervised learning. Because unlabeled samples are only used to generate new features, but not to be explicitly included in the training set like pSSL does, fSSL overcomes the inherent disadvantages of the traditional pSSL methods, especially for samples not within the same domain as the labeled instances. Experimental results and comparisons demonstrate that fSSL significantly outperforms pSSL-based methods for both within-domain and cross-domain semi-supervised learning.

  5. Active Learning for Text Classification

    OpenAIRE

    Hu, Rong

    2011-01-01

    Text classification approaches are used extensively to solve real-world challenges. The success or failure of text classification systems hangs on the datasets used to train them, without a good dataset it is impossible to build a quality system. This thesis examines the applicability of active learning in text classification for the rapid and economical creation of labelled training data. Four main contributions are made in this thesis. First, we present two novel selection strategies to cho...

  6. Teacher and learner: Supervised and unsupervised learning in communities.

    Science.gov (United States)

    Shafto, Michael G; Seifert, Colleen M

    2015-01-01

    How far can teaching methods go to enhance learning? Optimal methods of teaching have been considered in research on supervised and unsupervised learning. Locally optimal methods are usually hybrids of teaching and self-directed approaches. The costs and benefits of specific methods have been shown to depend on the structure of the learning task, the learners, the teachers, and the environment.

  7. FROM2D to 3d Supervised Segmentation and Classification for Cultural Heritage Applications

    Science.gov (United States)

    Grilli, E.; Dininno, D.; Petrucci, G.; Remondino, F.

    2018-05-01

    The digital management of architectural heritage information is still a complex problem, as a heritage object requires an integrated representation of various types of information in order to develop appropriate restoration or conservation strategies. Currently, there is extensive research focused on automatic procedures of segmentation and classification of 3D point clouds or meshes, which can accelerate the study of a monument and integrate it with heterogeneous information and attributes, useful to characterize and describe the surveyed object. The aim of this study is to propose an optimal, repeatable and reliable procedure to manage various types of 3D surveying data and associate them with heterogeneous information and attributes to characterize and describe the surveyed object. In particular, this paper presents an approach for classifying 3D heritage models, starting from the segmentation of their textures based on supervised machine learning methods. Experimental results run on three different case studies demonstrate that the proposed approach is effective and with many further potentials.

  8. Deep Learning for ECG Classification

    Science.gov (United States)

    Pyakillya, B.; Kazachenko, N.; Mikhailovsky, N.

    2017-10-01

    The importance of ECG classification is very high now due to many current medical applications where this problem can be stated. Currently, there are many machine learning (ML) solutions which can be used for analyzing and classifying ECG data. However, the main disadvantages of these ML results is use of heuristic hand-crafted or engineered features with shallow feature learning architectures. The problem relies in the possibility not to find most appropriate features which will give high classification accuracy in this ECG problem. One of the proposing solution is to use deep learning architectures where first layers of convolutional neurons behave as feature extractors and in the end some fully-connected (FCN) layers are used for making final decision about ECG classes. In this work the deep learning architecture with 1D convolutional layers and FCN layers for ECG classification is presented and some classification results are showed.

  9. Semi-supervised vibration-based classification and condition monitoring of compressors

    Science.gov (United States)

    Potočnik, Primož; Govekar, Edvard

    2017-09-01

    Semi-supervised vibration-based classification and condition monitoring of the reciprocating compressors installed in refrigeration appliances is proposed in this paper. The method addresses the problem of industrial condition monitoring where prior class definitions are often not available or difficult to obtain from local experts. The proposed method combines feature extraction, principal component analysis, and statistical analysis for the extraction of initial class representatives, and compares the capability of various classification methods, including discriminant analysis (DA), neural networks (NN), support vector machines (SVM), and extreme learning machines (ELM). The use of the method is demonstrated on a case study which was based on industrially acquired vibration measurements of reciprocating compressors during the production of refrigeration appliances. The paper presents a comparative qualitative analysis of the applied classifiers, confirming the good performance of several nonlinear classifiers. If the model parameters are properly selected, then very good classification performance can be obtained from NN trained by Bayesian regularization, SVM and ELM classifiers. The method can be effectively applied for the industrial condition monitoring of compressors.

  10. Building an Arabic Sentiment Lexicon Using Semi-supervised Learning

    Directory of Open Access Journals (Sweden)

    Fawaz H.H. Mahyoub

    2014-12-01

    Full Text Available Sentiment analysis is the process of determining a predefined sentiment from text written in a natural language with respect to the entity to which it is referring. A number of lexical resources are available to facilitate this task in English. One such resource is the SentiWordNet, which assigns sentiment scores to words found in the English WordNet. In this paper, we present an Arabic sentiment lexicon that assigns sentiment scores to the words found in the Arabic WordNet. Starting from a small seed list of positive and negative words, we used semi-supervised learning to propagate the scores in the Arabic WordNet by exploiting the synset relations. Our algorithm assigned a positive sentiment score to more than 800, a negative score to more than 600 and a neutral score to more than 6000 words in the Arabic WordNet. The lexicon was evaluated by incorporating it into a machine learning-based classifier. The experiments were conducted on several Arabic sentiment corpora, and we were able to achieve a 96% classification accuracy.

  11. Quantum Ensemble Classification: A Sampling-Based Learning Control Approach.

    Science.gov (United States)

    Chen, Chunlin; Dong, Daoyi; Qi, Bo; Petersen, Ian R; Rabitz, Herschel

    2017-06-01

    Quantum ensemble classification (QEC) has significant applications in discrimination of atoms (or molecules), separation of isotopes, and quantum information extraction. However, quantum mechanics forbids deterministic discrimination among nonorthogonal states. The classification of inhomogeneous quantum ensembles is very challenging, since there exist variations in the parameters characterizing the members within different classes. In this paper, we recast QEC as a supervised quantum learning problem. A systematic classification methodology is presented by using a sampling-based learning control (SLC) approach for quantum discrimination. The classification task is accomplished via simultaneously steering members belonging to different classes to their corresponding target states (e.g., mutually orthogonal states). First, a new discrimination method is proposed for two similar quantum systems. Then, an SLC method is presented for QEC. Numerical results demonstrate the effectiveness of the proposed approach for the binary classification of two-level quantum ensembles and the multiclass classification of multilevel quantum ensembles.

  12. Transfer Learning beyond Text Classification

    Science.gov (United States)

    Yang, Qiang

    Transfer learning is a new machine learning and data mining framework that allows the training and test data to come from different distributions or feature spaces. We can find many novel applications of machine learning and data mining where transfer learning is necessary. While much has been done in transfer learning in text classification and reinforcement learning, there has been a lack of documented success stories of novel applications of transfer learning in other areas. In this invited article, I will argue that transfer learning is in fact quite ubiquitous in many real world applications. In this article, I will illustrate this point through an overview of a broad spectrum of applications of transfer learning that range from collaborative filtering to sensor based location estimation and logical action model learning for AI planning. I will also discuss some potential future directions of transfer learning.

  13. An iterated Laplacian based semi-supervised dimensionality reduction for classification of breast cancer on ultrasound images.

    Science.gov (United States)

    Liu, Xiao; Shi, Jun; Zhou, Shichong; Lu, Minhua

    2014-01-01

    The dimensionality reduction is an important step in ultrasound image based computer-aided diagnosis (CAD) for breast cancer. A newly proposed l2,1 regularized correntropy algorithm for robust feature selection (CRFS) has achieved good performance for noise corrupted data. Therefore, it has the potential to reduce the dimensions of ultrasound image features. However, in clinical practice, the collection of labeled instances is usually expensive and time costing, while it is relatively easy to acquire the unlabeled or undetermined instances. Therefore, the semi-supervised learning is very suitable for clinical CAD. The iterated Laplacian regularization (Iter-LR) is a new regularization method, which has been proved to outperform the traditional graph Laplacian regularization in semi-supervised classification and ranking. In this study, to augment the classification accuracy of the breast ultrasound CAD based on texture feature, we propose an Iter-LR-based semi-supervised CRFS (Iter-LR-CRFS) algorithm, and then apply it to reduce the feature dimensions of ultrasound images for breast CAD. We compared the Iter-LR-CRFS with LR-CRFS, original supervised CRFS, and principal component analysis. The experimental results indicate that the proposed Iter-LR-CRFS significantly outperforms all other algorithms.

  14. Improving the potential of pixel-based supervised classification in ...

    African Journals Online (AJOL)

    The goal of this paper was to describe the impact of various parameters when applying a supervised Maximum Likelihood Classifier (MLC) to SPOT 5 image analysis in a remote savanna biome. Pair separation indicators and probability thresholds were used to analyse the effect of training area size and heterogeneity as ...

  15. Assessing Electronic Cigarette-Related Tweets for Sentiment and Content Using Supervised Machine Learning

    OpenAIRE

    Cole-Lewis, Heather; Varghese, Arun; Sanders, Amy; Schwarz, Mary; Pugatch, Jillian; Augustson, Erik

    2015-01-01

    Background Electronic cigarettes (e-cigarettes) continue to be a growing topic among social media users, especially on Twitter. The ability to analyze conversations about e-cigarettes in real-time can provide important insight into trends in the public?s knowledge, attitudes, and beliefs surrounding e-cigarettes, and subsequently guide public health interventions. Objective Our aim was to establish a supervised machine learning algorithm to build predictive classification models that assess T...

  16. A functional supervised learning approach to the study of blood pressure data.

    Science.gov (United States)

    Papayiannis, Georgios I; Giakoumakis, Emmanuel A; Manios, Efstathios D; Moulopoulos, Spyros D; Stamatelopoulos, Kimon S; Toumanidis, Savvas T; Zakopoulos, Nikolaos A; Yannacopoulos, Athanasios N

    2018-04-15

    In this work, a functional supervised learning scheme is proposed for the classification of subjects into normotensive and hypertensive groups, using solely the 24-hour blood pressure data, relying on the concepts of Fréchet mean and Fréchet variance for appropriate deformable functional models for the blood pressure data. The schemes are trained on real clinical data, and their performance was assessed and found to be very satisfactory. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Automated labelling of cancer textures in colorectal histopathology slides using quasi-supervised learning.

    Science.gov (United States)

    Onder, Devrim; Sarioglu, Sulen; Karacali, Bilge

    2013-04-01

    Quasi-supervised learning is a statistical learning algorithm that contrasts two datasets by computing estimate for the posterior probability of each sample in either dataset. This method has not been applied to histopathological images before. The purpose of this study is to evaluate the performance of the method to identify colorectal tissues with or without adenocarcinoma. Light microscopic digital images from histopathological sections were obtained from 30 colorectal radical surgery materials including adenocarcinoma and non-neoplastic regions. The texture features were extracted by using local histograms and co-occurrence matrices. The quasi-supervised learning algorithm operates on two datasets, one containing samples of normal tissues labelled only indirectly, and the other containing an unlabeled collection of samples of both normal and cancer tissues. As such, the algorithm eliminates the need for manually labelled samples of normal and cancer tissues for conventional supervised learning and significantly reduces the expert intervention. Several texture feature vector datasets corresponding to different extraction parameters were tested within the proposed framework. The Independent Component Analysis dimensionality reduction approach was also identified as the one improving the labelling performance evaluated in this series. In this series, the proposed method was applied to the dataset of 22,080 vectors with reduced dimensionality 119 from 132. Regions containing cancer tissue could be identified accurately having false and true positive rates up to 19% and 88% respectively without using manually labelled ground-truth datasets in a quasi-supervised strategy. The resulting labelling performances were compared to that of a conventional powerful supervised classifier using manually labelled ground-truth data. The supervised classifier results were calculated as 3.5% and 95% for the same case. The results in this series in comparison with the benchmark

  18. Action learning in undergraduate engineering thesis supervision

    OpenAIRE

    Stappenbelt, Brad

    2017-01-01

    In the present action learning implementation, twelve action learning sets were conducted over eight years. The action learning sets consisted of students involved in undergraduate engineering research thesis work. The concurrent study accompanying this initiative investigated the influence of the action learning environment on student approaches to learning and any accompanying academic, learning and personal benefits realised. The influence of preferred learning styles on set function and s...

  19. Can Semi-Supervised Learning Explain Incorrect Beliefs about Categories?

    Science.gov (United States)

    Kalish, Charles W.; Rogers, Timothy T.; Lang, Jonathan; Zhu, Xiaojin

    2011-01-01

    Three experiments with 88 college-aged participants explored how unlabeled experiences--learning episodes in which people encounter objects without information about their category membership--influence beliefs about category structure. Participants performed a simple one-dimensional categorization task in a brief supervised learning phase, then…

  20. Label Information Guided Graph Construction for Semi-Supervised Learning.

    Science.gov (United States)

    Zhuang, Liansheng; Zhou, Zihan; Gao, Shenghua; Yin, Jingwen; Lin, Zhouchen; Ma, Yi

    2017-09-01

    In the literature, most existing graph-based semi-supervised learning methods only use the label information of observed samples in the label propagation stage, while ignoring such valuable information when learning the graph. In this paper, we argue that it is beneficial to consider the label information in the graph learning stage. Specifically, by enforcing the weight of edges between labeled samples of different classes to be zero, we explicitly incorporate the label information into the state-of-the-art graph learning methods, such as the low-rank representation (LRR), and propose a novel semi-supervised graph learning method called semi-supervised low-rank representation. This results in a convex optimization problem with linear constraints, which can be solved by the linearized alternating direction method. Though we take LRR as an example, our proposed method is in fact very general and can be applied to any self-representation graph learning methods. Experiment results on both synthetic and real data sets demonstrate that the proposed graph learning method can better capture the global geometric structure of the data, and therefore is more effective for semi-supervised learning tasks.

  1. Multispectral and Panchromatic used Enhancement Resolution and Study Effective Enhancement on Supervised and Unsupervised Classification Land – Cover

    Science.gov (United States)

    Salman, S. S.; Abbas, W. A.

    2018-05-01

    The goal of the study is to support analysis Enhancement of Resolution and study effect on classification methods on bands spectral information of specific and quantitative approaches. In this study introduce a method to enhancement resolution Landsat 8 of combining the bands spectral of 30 meters resolution with panchromatic band 8 of 15 meters resolution, because of importance multispectral imagery to extracting land - cover. Classification methods used in this study to classify several lands -covers recorded from OLI- 8 imagery. Two methods of Data mining can be classified as either supervised or unsupervised. In supervised methods, there is a particular predefined target, that means the algorithm learn which values of the target are associated with which values of the predictor sample. K-nearest neighbors and maximum likelihood algorithms examine in this work as supervised methods. In other hand, no sample identified as target in unsupervised methods, the algorithm of data extraction searches for structure and patterns between all the variables, represented by Fuzzy C-mean clustering method as one of the unsupervised methods, NDVI vegetation index used to compare the results of classification method, the percent of dense vegetation in maximum likelihood method give a best results.

  2. Supervised Classification Processes for the Characterization of Heritage Elements, Case Study: Cuenca-Ecuador

    Science.gov (United States)

    Briones, J. C.; Heras, V.; Abril, C.; Sinchi, E.

    2017-08-01

    The proper control of built heritage entails many challenges related to the complexity of heritage elements and the extent of the area to be managed, for which the available resources must be efficiently used. In this scenario, the preventive conservation approach, based on the concept that prevent is better than cure, emerges as a strategy to avoid the progressive and imminent loss of monuments and heritage sites. Regular monitoring appears as a key tool to identify timely changes in heritage assets. This research demonstrates that the supervised learning model (Support Vector Machines - SVM) is an ideal tool that supports the monitoring process detecting visible elements in aerial images such as roofs structures, vegetation and pavements. The linear, gaussian and polynomial kernel functions were tested; the lineal function provided better results over the other functions. It is important to mention that due to the high level of segmentation generated by the classification procedure, it was necessary to apply a generalization process through opening a mathematical morphological operation, which simplified the over classification for the monitored elements.

  3. Action Learning in Undergraduate Engineering Thesis Supervision

    Science.gov (United States)

    Stappenbelt, Brad

    2017-01-01

    In the present action learning implementation, twelve action learning sets were conducted over eight years. The action learning sets consisted of students involved in undergraduate engineering research thesis work. The concurrent study accompanying this initiative investigated the influence of the action learning environment on student approaches…

  4. 7 CFR 27.80 - Fees; classification, Micronaire, and supervision.

    Science.gov (United States)

    2010-01-01

    ....80 Section 27.80 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS COTTON CLASSIFICATION UNDER COTTON FUTURES LEGISLATION Regulations Costs of...

  5. Classification and Weakly Supervised Pain Localization using Multiple Segment Representation.

    Science.gov (United States)

    Sikka, Karan; Dhall, Abhinav; Bartlett, Marian Stewart

    2014-10-01

    Automatic pain recognition from videos is a vital clinical application and, owing to its spontaneous nature, poses interesting challenges to automatic facial expression recognition (AFER) research. Previous pain vs no-pain systems have highlighted two major challenges: (1) ground truth is provided for the sequence, but the presence or absence of the target expression for a given frame is unknown, and (2) the time point and the duration of the pain expression event(s) in each video are unknown. To address these issues we propose a novel framework (referred to as MS-MIL) where each sequence is represented as a bag containing multiple segments, and multiple instance learning (MIL) is employed to handle this weakly labeled data in the form of sequence level ground-truth. These segments are generated via multiple clustering of a sequence or running a multi-scale temporal scanning window, and are represented using a state-of-the-art Bag of Words (BoW) representation. This work extends the idea of detecting facial expressions through 'concept frames' to 'concept segments' and argues through extensive experiments that algorithms such as MIL are needed to reap the benefits of such representation. The key advantages of our approach are: (1) joint detection and localization of painful frames using only sequence-level ground-truth, (2) incorporation of temporal dynamics by representing the data not as individual frames but as segments, and (3) extraction of multiple segments, which is well suited to signals with uncertain temporal location and duration in the video. Extensive experiments on UNBC-McMaster Shoulder Pain dataset highlight the effectiveness of the approach by achieving competitive results on both tasks of pain classification and localization in videos. We also empirically evaluate the contributions of different components of MS-MIL. The paper also includes the visualization of discriminative facial patches, important for pain detection, as discovered by our

  6. Improving Semi-Supervised Learning with Auxiliary Deep Generative Models

    DEFF Research Database (Denmark)

    Maaløe, Lars; Sønderby, Casper Kaae; Sønderby, Søren Kaae

    Deep generative models based upon continuous variational distributions parameterized by deep networks give state-of-the-art performance. In this paper we propose a framework for extending the latent representation with extra auxiliary variables in order to make the variational distribution more...... expressive for semi-supervised learning. By utilizing the stochasticity of the auxiliary variable we demonstrate how to train discriminative classifiers resulting in state-of-the-art performance within semi-supervised learning exemplified by an 0.96% error on MNIST using 100 labeled data points. Furthermore...

  7. CLASSIFICATION OF LEARNING MANAGEMENT SYSTEMS

    Directory of Open Access Journals (Sweden)

    Yu. B. Popova

    2016-01-01

    Full Text Available Using of information technologies and, in particular, learning management systems, increases opportunities of teachers and students in reaching their goals in education. Such systems provide learning content, help organize and monitor training, collect progress statistics and take into account the individual characteristics of each user. Currently, there is a huge inventory of both paid and free systems are physically located both on college servers and in the cloud, offering different features sets of different licensing scheme and the cost. This creates the problem of choosing the best system. This problem is partly due to the lack of comprehensive classification of such systems. Analysis of more than 30 of the most common now automated learning management systems has shown that a classification of such systems should be carried out according to certain criteria, under which the same type of system can be considered. As classification features offered by the author are: cost, functionality, modularity, keeping the customer’s requirements, the integration of content, the physical location of a system, adaptability training. Considering the learning management system within these classifications and taking into account the current trends of their development, it is possible to identify the main requirements to them: functionality, reliability, ease of use, low cost, support for SCORM standard or Tin Can API, modularity and adaptability. According to the requirements at the Software Department of FITR BNTU under the guidance of the author since 2009 take place the development, the use and continuous improvement of their own learning management system.

  8. Determining effects of non-synonymous SNPs on protein-protein interactions using supervised and semi-supervised learning.

    Directory of Open Access Journals (Sweden)

    Nan Zhao

    2014-05-01

    Full Text Available Single nucleotide polymorphisms (SNPs are among the most common types of genetic variation in complex genetic disorders. A growing number of studies link the functional role of SNPs with the networks and pathways mediated by the disease-associated genes. For example, many non-synonymous missense SNPs (nsSNPs have been found near or inside the protein-protein interaction (PPI interfaces. Determining whether such nsSNP will disrupt or preserve a PPI is a challenging task to address, both experimentally and computationally. Here, we present this task as three related classification problems, and develop a new computational method, called the SNP-IN tool (non-synonymous SNP INteraction effect predictor. Our method predicts the effects of nsSNPs on PPIs, given the interaction's structure. It leverages supervised and semi-supervised feature-based classifiers, including our new Random Forest self-learning protocol. The classifiers are trained based on a dataset of comprehensive mutagenesis studies for 151 PPI complexes, with experimentally determined binding affinities of the mutant and wild-type interactions. Three classification problems were considered: (1 a 2-class problem (strengthening/weakening PPI mutations, (2 another 2-class problem (mutations that disrupt/preserve a PPI, and (3 a 3-class classification (detrimental/neutral/beneficial mutation effects. In total, 11 different supervised and semi-supervised classifiers were trained and assessed resulting in a promising performance, with the weighted f-measure ranging from 0.87 for Problem 1 to 0.70 for the most challenging Problem 3. By integrating prediction results of the 2-class classifiers into the 3-class classifier, we further improved its performance for Problem 3. To demonstrate the utility of SNP-IN tool, it was applied to study the nsSNP-induced rewiring of two disease-centered networks. The accurate and balanced performance of SNP-IN tool makes it readily available to study the

  9. Determining Effects of Non-synonymous SNPs on Protein-Protein Interactions using Supervised and Semi-supervised Learning

    Science.gov (United States)

    Zhao, Nan; Han, Jing Ginger; Shyu, Chi-Ren; Korkin, Dmitry

    2014-01-01

    Single nucleotide polymorphisms (SNPs) are among the most common types of genetic variation in complex genetic disorders. A growing number of studies link the functional role of SNPs with the networks and pathways mediated by the disease-associated genes. For example, many non-synonymous missense SNPs (nsSNPs) have been found near or inside the protein-protein interaction (PPI) interfaces. Determining whether such nsSNP will disrupt or preserve a PPI is a challenging task to address, both experimentally and computationally. Here, we present this task as three related classification problems, and develop a new computational method, called the SNP-IN tool (non-synonymous SNP INteraction effect predictor). Our method predicts the effects of nsSNPs on PPIs, given the interaction's structure. It leverages supervised and semi-supervised feature-based classifiers, including our new Random Forest self-learning protocol. The classifiers are trained based on a dataset of comprehensive mutagenesis studies for 151 PPI complexes, with experimentally determined binding affinities of the mutant and wild-type interactions. Three classification problems were considered: (1) a 2-class problem (strengthening/weakening PPI mutations), (2) another 2-class problem (mutations that disrupt/preserve a PPI), and (3) a 3-class classification (detrimental/neutral/beneficial mutation effects). In total, 11 different supervised and semi-supervised classifiers were trained and assessed resulting in a promising performance, with the weighted f-measure ranging from 0.87 for Problem 1 to 0.70 for the most challenging Problem 3. By integrating prediction results of the 2-class classifiers into the 3-class classifier, we further improved its performance for Problem 3. To demonstrate the utility of SNP-IN tool, it was applied to study the nsSNP-induced rewiring of two disease-centered networks. The accurate and balanced performance of SNP-IN tool makes it readily available to study the rewiring of

  10. Automated supervised classification of variable stars. I. Methodology

    NARCIS (Netherlands)

    Debosscher, J.; Sarro, L.M.; Aerts, C.C.; Cuypers, J.; Vandenbussche, B.; Garrido, R.; Solano, E.

    2007-01-01

    Context: The fast classification of new variable stars is an important step in making them available for further research. Selection of science targets from large databases is much more efficient if they have been classified first. Defining the classes in terms of physical parameters is also

  11. Benchmarking protein classification algorithms via supervised cross-validation

    NARCIS (Netherlands)

    Kertész-Farkas, A.; Dhir, S.; Sonego, P.; Pacurar, M.; Netoteia, S.; Nijveen, H.; Kuzniar, A.; Leunissen, J.A.M.; Kocsor, A.; Pongor, S.

    2008-01-01

    Development and testing of protein classification algorithms are hampered by the fact that the protein universe is characterized by groups vastly different in the number of members, in average protein size, similarity within group, etc. Datasets based on traditional cross-validation (k-fold,

  12. Optimizing area under the ROC curve using semi-supervised learning.

    Science.gov (United States)

    Wang, Shijun; Li, Diana; Petrick, Nicholas; Sahiner, Berkman; Linguraru, Marius George; Summers, Ronald M

    2015-01-01

    Receiver operating characteristic (ROC) analysis is a standard methodology to evaluate the performance of a binary classification system. The area under the ROC curve (AUC) is a performance metric that summarizes how well a classifier separates two classes. Traditional AUC optimization techniques are supervised learning methods that utilize only labeled data (i.e., the true class is known for all data) to train the classifiers. In this work, inspired by semi-supervised and transductive learning, we propose two new AUC optimization algorithms hereby referred to as semi-supervised learning receiver operating characteristic (SSLROC) algorithms, which utilize unlabeled test samples in classifier training to maximize AUC. Unlabeled samples are incorporated into the AUC optimization process, and their ranking relationships to labeled positive and negative training samples are considered as optimization constraints. The introduced test samples will cause the learned decision boundary in a multidimensional feature space to adapt not only to the distribution of labeled training data, but also to the distribution of unlabeled test data. We formulate the semi-supervised AUC optimization problem as a semi-definite programming problem based on the margin maximization theory. The proposed methods SSLROC1 (1-norm) and SSLROC2 (2-norm) were evaluated using 34 (determined by power analysis) randomly selected datasets from the University of California, Irvine machine learning repository. Wilcoxon signed rank tests showed that the proposed methods achieved significant improvement compared with state-of-the-art methods. The proposed methods were also applied to a CT colonography dataset for colonic polyp classification and showed promising results.

  13. Semi-supervised Eigenvectors for Locally-biased Learning

    DEFF Research Database (Denmark)

    Hansen, Toke Jansen; Mahoney, Michael W.

    2012-01-01

    In many applications, one has side information, e.g., labels that are provided in a semi-supervised manner, about a specific target region of a large data set, and one wants to perform machine learning and data analysis tasks "nearby" that pre-specified target region. Locally-biased problems of t...

  14. Generalization of Supervised Learning for Binary Mask Estimation

    DEFF Research Database (Denmark)

    May, Tobias; Gerkmann, Timo

    2014-01-01

    This paper addresses the problem of speech segregation by es- timating the ideal binary mask (IBM) from noisy speech. Two methods will be compared, one supervised learning approach that incorporates a priori knowledge about the feature distri- bution observed during training. The second method...

  15. Robust semi-supervised learning : projections, limits & constraints

    NARCIS (Netherlands)

    Krijthe, J.H.

    2018-01-01

    In many domains of science and society, the amount of data being gathered is increasing rapidly. To estimate input-output relationships that are often of interest, supervised learning techniques rely on a specific type of data: labeled examples for which we know both the input and an outcome. The

  16. Discriminatory Data Mapping by Matrix-Based Supervised Learning Metrics

    NARCIS (Netherlands)

    Strickert, M.; Schneider, P.; Keilwagen, J.; Villmann, T.; Biehl, M.; Hammer, B.

    2008-01-01

    Supervised attribute relevance detection using cross-comparisons (SARDUX), a recently proposed method for data-driven metric learning, is extended from dimension-weighted Minkowski distances to metrics induced by a data transformation matrix Ω for modeling mutual attribute dependence. Given class

  17. Self-supervised Chinese ontology learning from online encyclopedias.

    Science.gov (United States)

    Hu, Fanghuai; Shao, Zhiqing; Ruan, Tong

    2014-01-01

    Constructing ontology manually is a time-consuming, error-prone, and tedious task. We present SSCO, a self-supervised learning based chinese ontology, which contains about 255 thousand concepts, 5 million entities, and 40 million facts. We explore the three largest online Chinese encyclopedias for ontology learning and describe how to transfer the structured knowledge in encyclopedias, including article titles, category labels, redirection pages, taxonomy systems, and InfoBox modules, into ontological form. In order to avoid the errors in encyclopedias and enrich the learnt ontology, we also apply some machine learning based methods. First, we proof that the self-supervised machine learning method is practicable in Chinese relation extraction (at least for synonymy and hyponymy) statistically and experimentally and train some self-supervised models (SVMs and CRFs) for synonymy extraction, concept-subconcept relation extraction, and concept-instance relation extraction; the advantages of our methods are that all training examples are automatically generated from the structural information of encyclopedias and a few general heuristic rules. Finally, we evaluate SSCO in two aspects, scale and precision; manual evaluation results show that the ontology has excellent precision, and high coverage is concluded by comparing SSCO with other famous ontologies and knowledge bases; the experiment results also indicate that the self-supervised models obviously enrich SSCO.

  18. An online learning space facilitating supervision pedagogies in ...

    African Journals Online (AJOL)

    Quality research supervision leading to timely completion and student satisfaction involves explicit pedagogy and effective communication. This article describes the development within an action research cycle of an online learning space designed to achieve these goals. The research 'spirals' involved interventions in the ...

  19. Gaia eclipsing binary and multiple systems. Supervised classification and self-organizing maps

    Science.gov (United States)

    Süveges, M.; Barblan, F.; Lecoeur-Taïbi, I.; Prša, A.; Holl, B.; Eyer, L.; Kochoska, A.; Mowlavi, N.; Rimoldini, L.

    2017-07-01

    Context. Large surveys producing tera- and petabyte-scale databases require machine-learning and knowledge discovery methods to deal with the overwhelming quantity of data and the difficulties of extracting concise, meaningful information with reliable assessment of its uncertainty. This study investigates the potential of a few machine-learning methods for the automated analysis of eclipsing binaries in the data of such surveys. Aims: We aim to aid the extraction of samples of eclipsing binaries from such databases and to provide basic information about the objects. We intend to estimate class labels according to two different, well-known classification systems, one based on the light curve morphology (EA/EB/EW classes) and the other based on the physical characteristics of the binary system (system morphology classes; detached through overcontact systems). Furthermore, we explore low-dimensional surfaces along which the light curves of eclipsing binaries are concentrated, and consider their use in the characterization of the binary systems and in the exploration of biases of the full unknown Gaia data with respect to the training sets. Methods: We have explored the performance of principal component analysis (PCA), linear discriminant analysis (LDA), Random Forest classification and self-organizing maps (SOM) for the above aims. We pre-processed the photometric time series by combining a double Gaussian profile fit and a constrained smoothing spline, in order to de-noise and interpolate the observed light curves. We achieved further denoising, and selected the most important variability elements from the light curves using PCA. Supervised classification was performed using Random Forest and LDA based on the PC decomposition, while SOM gives a continuous 2-dimensional manifold of the light curves arranged by a few important features. We estimated the uncertainty of the supervised methods due to the specific finite training set using ensembles of models constructed

  20. Efficient tuning in supervised machine learning

    NARCIS (Netherlands)

    Koch, Patrick

    2013-01-01

    The tuning of learning algorithm parameters has become more and more important during the last years. With the fast growth of computational power and available memory databases have grown dramatically. This is very challenging for the tuning of parameters arising in machine learning, since the

  1. Classification of Polarimetric SAR Data Using Dictionary Learning

    DEFF Research Database (Denmark)

    Vestergaard, Jacob Schack; Nielsen, Allan Aasbjerg; Dahl, Anders Lindbjerg

    2012-01-01

    This contribution deals with classification of multilook fully polarimetric synthetic aperture radar (SAR) data by learning a dictionary of crop types present in the Foulum test site. The Foulum test site contains a large number of agricultural fields, as well as lakes, forests, natural vegetation......, grasslands and urban areas, which make it ideally suited for evaluation of classification algorithms. Dictionary learning centers around building a collection of image patches typical for the classification problem at hand. This requires initial manual labeling of the classes present in the data and is thus...... a method for supervised classification. Sparse coding of these image patches aims to maintain a proficient number of typical patches and associated labels. Data is consecutively classified by a nearest neighbor search of the dictionary elements and labeled with probabilities of each class. Each dictionary...

  2. Enhancing fieldwork learning using blended learning, GIS and remote supervision

    Science.gov (United States)

    Marra, Wouter A.; Alberti, Koko; Karssenberg, Derek

    2015-04-01

    Fieldwork is an important part of education in geosciences and essential to put theoretical knowledge into an authentic context. Fieldwork as teaching tool can take place in various forms, such as field-tutorial, excursion, or supervised research. Current challenges with fieldwork in education are to incorporate state-of-the art methods for digital data collection, on-site GIS-analysis and providing high-quality feedback to large groups of students in the field. We present a case on first-year earth-sciences fieldwork with approximately 80 students in the French Alps focused on geological and geomorphological mapping. Here, students work in couples and each couple maps their own fieldwork area to reconstruct the formative history. We present several major improvements for this fieldwork using a blended-learning approach, relying on open source software only. An important enhancement to the French Alps fieldwork is improving students' preparation. In a GIS environment, students explore their fieldwork areas using existing remote sensing data, a digital elevation model and derivatives to formulate testable hypotheses before the actual fieldwork. The advantage of this is that the students already know their area when arriving in the field, have started to apply the empirical cycle prior to their field visit, and are therefore eager to investigate their own research questions. During the fieldwork, students store and analyze their field observations in the same GIS environment. This enables them to get a better overview of their own collected data, and to integrate existing data sources also used in the preparation phase. This results in a quicker and enhanced understanding by the students. To enable remote access to observational data collected by students, the students synchronize their data daily with a webserver running a web map application. Supervisors can review students' progress remotely, examine and evaluate their observations in a GIS, and provide

  3. A review of supervised machine learning applied to ageing research.

    Science.gov (United States)

    Fabris, Fabio; Magalhães, João Pedro de; Freitas, Alex A

    2017-04-01

    Broadly speaking, supervised machine learning is the computational task of learning correlations between variables in annotated data (the training set), and using this information to create a predictive model capable of inferring annotations for new data, whose annotations are not known. Ageing is a complex process that affects nearly all animal species. This process can be studied at several levels of abstraction, in different organisms and with different objectives in mind. Not surprisingly, the diversity of the supervised machine learning algorithms applied to answer biological questions reflects the complexities of the underlying ageing processes being studied. Many works using supervised machine learning to study the ageing process have been recently published, so it is timely to review these works, to discuss their main findings and weaknesses. In summary, the main findings of the reviewed papers are: the link between specific types of DNA repair and ageing; ageing-related proteins tend to be highly connected and seem to play a central role in molecular pathways; ageing/longevity is linked with autophagy and apoptosis, nutrient receptor genes, and copper and iron ion transport. Additionally, several biomarkers of ageing were found by machine learning. Despite some interesting machine learning results, we also identified a weakness of current works on this topic: only one of the reviewed papers has corroborated the computational results of machine learning algorithms through wet-lab experiments. In conclusion, supervised machine learning has contributed to advance our knowledge and has provided novel insights on ageing, yet future work should have a greater emphasis in validating the predictions.

  4. Deep learning classification in asteroseismology

    Science.gov (United States)

    Hon, Marc; Stello, Dennis; Yu, Jie

    2017-08-01

    In the power spectra of oscillating red giants, there are visually distinct features defining stars ascending the red giant branch from those that have commenced helium core burning. We train a 1D convolutional neural network by supervised learning to automatically learn these visual features from images of folded oscillation spectra. By training and testing on Kepler red giants, we achieve an accuracy of up to 99 per cent in separating helium-burning red giants from those ascending the red giant branch. The convolutional neural network additionally shows capability in accurately predicting the evolutionary states of 5379 previously unclassified Kepler red giants, by which we now have greatly increased the number of classified stars.

  5. GMDH-Based Semi-Supervised Feature Selection for Electricity Load Classification Forecasting

    Directory of Open Access Journals (Sweden)

    Lintao Yang

    2018-01-01

    Full Text Available With the development of smart power grids, communication network technology and sensor technology, there has been an exponential growth in complex electricity load data. Irregular electricity load fluctuations caused by the weather and holiday factors disrupt the daily operation of the power companies. To deal with these challenges, this paper investigates a day-ahead electricity peak load interval forecasting problem. It transforms the conventional continuous forecasting problem into a novel interval forecasting problem, and then further converts the interval forecasting problem into the classification forecasting problem. In addition, an indicator system influencing the electricity load is established from three dimensions, namely the load series, calendar data, and weather data. A semi-supervised feature selection algorithm is proposed to address an electricity load classification forecasting issue based on the group method of data handling (GMDH technology. The proposed algorithm consists of three main stages: (1 training the basic classifier; (2 selectively marking the most suitable samples from the unclassified label data, and adding them to an initial training set; and (3 training the classification models on the final training set and classifying the test samples. An empirical analysis of electricity load dataset from four Chinese cities is conducted. Results show that the proposed model can address the electricity load classification forecasting problem more efficiently and effectively than the FW-Semi FS (forward semi-supervised feature selection and GMDH-U (GMDH-based semi-supervised feature selection for customer classification models.

  6. Learning Semantic Segmentation with Diverse Supervision

    OpenAIRE

    Ye, Linwei; Liu, Zhi; Wang, Yang

    2018-01-01

    Models based on deep convolutional neural networks (CNN) have significantly improved the performance of semantic segmentation. However, learning these models requires a large amount of training images with pixel-level labels, which are very costly and time-consuming to collect. In this paper, we propose a method for learning CNN-based semantic segmentation models from images with several types of annotations that are available for various computer vision tasks, including image-level labels fo...

  7. Effects of coaching supervision, mentoring supervision and abusive supervision on talent development among trainee doctors in public hospitals: moderating role of clinical learning environment.

    Science.gov (United States)

    Subramaniam, Anusuiya; Silong, Abu Daud; Uli, Jegak; Ismail, Ismi Arif

    2015-08-13

    Effective talent development requires robust supervision. However, the effects of supervisory styles (coaching, mentoring and abusive supervision) on talent development and the moderating effects of clinical learning environment in the relationship between supervisory styles and talent development among public hospital trainee doctors have not been thoroughly researched. In this study, we aim to achieve the following, (1) identify the extent to which supervisory styles (coaching, mentoring and abusive supervision) can facilitate talent development among trainee doctors in public hospital and (2) examine whether coaching, mentoring and abusive supervision are moderated by clinical learning environment in predicting talent development among trainee doctors in public hospital. A questionnaire-based critical survey was conducted among trainee doctors undergoing housemanship at six public hospitals in the Klang Valley, Malaysia. Prior permission was obtained from the Ministry of Health Malaysia to conduct the research in the identified public hospitals. The survey yielded 355 responses. The results were analysed using SPSS 20.0 and SEM with AMOS 20.0. The findings of this research indicate that coaching and mentoring supervision are positively associated with talent development, and that there is no significant relationship between abusive supervision and talent development. The findings also support the moderating role of clinical learning environment on the relationships between coaching supervision-talent development, mentoring supervision-talent development and abusive supervision-talent development among public hospital trainee doctors. Overall, the proposed model indicates a 26 % variance in talent development. This study provides an improved understanding on the role of the supervisory styles (coaching and mentoring supervision) on facilitating talent development among public hospital trainee doctors. Furthermore, this study extends the literature to better

  8. Supervised Machine Learning for Population Genetics: A New Paradigm

    Science.gov (United States)

    Schrider, Daniel R.; Kern, Andrew D.

    2018-01-01

    As population genomic datasets grow in size, researchers are faced with the daunting task of making sense of a flood of information. To keep pace with this explosion of data, computational methodologies for population genetic inference are rapidly being developed to best utilize genomic sequence data. In this review we discuss a new paradigm that has emerged in computational population genomics: that of supervised machine learning (ML). We review the fundamentals of ML, discuss recent applications of supervised ML to population genetics that outperform competing methods, and describe promising future directions in this area. Ultimately, we argue that supervised ML is an important and underutilized tool that has considerable potential for the world of evolutionary genomics. PMID:29331490

  9. Non supervised classification of vegetable covers on digital images of remote sensors: Landsat - ETM+

    International Nuclear Information System (INIS)

    Arango Gutierrez, Mauricio; Branch Bedoya, John William; Botero Fernandez, Veronica

    2005-01-01

    The plant species diversity in Colombia and the lack of inventory of them suggests the need for a process that facilitates the work of investigators in these disciplines. Remote satellite sensors such as landsat ETM+ and non-supervised artificial intelligence techniques, such as self-organizing maps - SOM, could provide viable alternatives for advancing in the rapid obtaining of information related to zones with different vegetative covers in the national geography. The zone proposed for the study case was classified in a supervised form by the method of maximum likelihood by another investigation in forest sciences and eight types of vegetative covers were discriminated. This information served as a base line to evaluate the performance of the non-supervised sort keys isodata and SOM. However, the information that the images provided had to first be purified according to the criteria of use and data quality, so that adequate information for these non-supervised methods were used. For this, several concepts were used; such as, image statistics, spectral behavior of the vegetative communities, sensor characteristics and the average divergence that allowed to define the best bands and their combinations. Principal component analysis was applied to these to reduce to the number of data while conserving a large percentage of the information. The non-supervised techniques were applied to these purified data, modifying some parameters that could yield a better convergence of the methods. The results obtained were compared with the supervised classification via confusion matrices and it was concluded that there was not a good convergence of non-supervised classification methods with this process for the case of vegetative covers

  10. Identification of Village Building via Google Earth Images and Supervised Machine Learning Methods

    Directory of Open Access Journals (Sweden)

    Zhiling Guo

    2016-03-01

    Full Text Available In this study, a method based on supervised machine learning is proposed to identify village buildings from open high-resolution remote sensing images. We select Google Earth (GE RGB images to perform the classification in order to examine its suitability for village mapping, and investigate the feasibility of using machine learning methods to provide automatic classification in such fields. By analyzing the characteristics of GE images, we design different features on the basis of two kinds of supervised machine learning methods for classification: adaptive boosting (AdaBoost and convolutional neural networks (CNN. To recognize village buildings via their color and texture information, the RGB color features and a large number of Haar-like features in a local window are utilized in the AdaBoost method; with multilayer trained networks based on gradient descent algorithms and back propagation, CNN perform the identification by mining deeper information from buildings and their neighborhood. Experimental results from the testing area at Savannakhet province in Laos show that our proposed AdaBoost method achieves an overall accuracy of 96.22% and the CNN method is also competitive with an overall accuracy of 96.30%.

  11. Multi-Label Classification by Semi-Supervised Singular Value Decomposition.

    Science.gov (United States)

    Jing, Liping; Shen, Chenyang; Yang, Liu; Yu, Jian; Ng, Michael K

    2017-10-01

    Multi-label problems arise in various domains, including automatic multimedia data categorization, and have generated significant interest in computer vision and machine learning community. However, existing methods do not adequately address two key challenges: exploiting correlations between labels and making up for the lack of labelled data or even missing labelled data. In this paper, we proposed to use a semi-supervised singular value decomposition (SVD) to handle these two challenges. The proposed model takes advantage of the nuclear norm regularization on the SVD to effectively capture the label correlations. Meanwhile, it introduces manifold regularization on mapping to capture the intrinsic structure among data, which provides a good way to reduce the required labelled data with improving the classification performance. Furthermore, we designed an efficient algorithm to solve the proposed model based on the alternating direction method of multipliers, and thus, it can efficiently deal with large-scale data sets. Experimental results for synthetic and real-world multimedia data sets demonstrate that the proposed method can exploit the label correlations and obtain promising and better label prediction results than the state-of-the-art methods.

  12. An Effective Big Data Supervised Imbalanced Classification Approach for Ortholog Detection in Related Yeast Species

    Directory of Open Access Journals (Sweden)

    Deborah Galpert

    2015-01-01

    Full Text Available Orthology detection requires more effective scaling algorithms. In this paper, a set of gene pair features based on similarity measures (alignment scores, sequence length, gene membership to conserved regions, and physicochemical profiles are combined in a supervised pairwise ortholog detection approach to improve effectiveness considering low ortholog ratios in relation to the possible pairwise comparison between two genomes. In this scenario, big data supervised classifiers managing imbalance between ortholog and nonortholog pair classes allow for an effective scaling solution built from two genomes and extended to other genome pairs. The supervised approach was compared with RBH, RSD, and OMA algorithms by using the following yeast genome pairs: Saccharomyces cerevisiae-Kluyveromyces lactis, Saccharomyces cerevisiae-Candida glabrata, and Saccharomyces cerevisiae-Schizosaccharomyces pombe as benchmark datasets. Because of the large amount of imbalanced data, the building and testing of the supervised model were only possible by using big data supervised classifiers managing imbalance. Evaluation metrics taking low ortholog ratios into account were applied. From the effectiveness perspective, MapReduce Random Oversampling combined with Spark SVM outperformed RBH, RSD, and OMA, probably because of the consideration of gene pair features beyond alignment similarities combined with the advances in big data supervised classification.

  13. Modeling Time Series Data for Supervised Learning

    Science.gov (United States)

    Baydogan, Mustafa Gokce

    2012-01-01

    Temporal data are increasingly prevalent and important in analytics. Time series (TS) data are chronological sequences of observations and an important class of temporal data. Fields such as medicine, finance, learning science and multimedia naturally generate TS data. Each series provide a high-dimensional data vector that challenges the learning…

  14. Semi-supervised manifold learning with affinity regularization for Alzheimer's disease identification using positron emission tomography imaging.

    Science.gov (United States)

    Lu, Shen; Xia, Yong; Cai, Tom Weidong; Feng, David Dagan

    2015-01-01

    Dementia, Alzheimer's disease (AD) in particular is a global problem and big threat to the aging population. An image based computer-aided dementia diagnosis method is needed to providing doctors help during medical image examination. Many machine learning based dementia classification methods using medical imaging have been proposed and most of them achieve accurate results. However, most of these methods make use of supervised learning requiring fully labeled image dataset, which usually is not practical in real clinical environment. Using large amount of unlabeled images can improve the dementia classification performance. In this study we propose a new semi-supervised dementia classification method based on random manifold learning with affinity regularization. Three groups of spatial features are extracted from positron emission tomography (PET) images to construct an unsupervised random forest which is then used to regularize the manifold learning objective function. The proposed method, stat-of-the-art Laplacian support vector machine (LapSVM) and supervised SVM are applied to classify AD and normal controls (NC). The experiment results show that learning with unlabeled images indeed improves the classification performance. And our method outperforms LapSVM on the same dataset.

  15. Applying active learning to supervised word sense disambiguation in MEDLINE

    Science.gov (United States)

    Chen, Yukun; Cao, Hongxin; Mei, Qiaozhu; Zheng, Kai; Xu, Hua

    2013-01-01

    Objectives This study was to assess whether active learning strategies can be integrated with supervised word sense disambiguation (WSD) methods, thus reducing the number of annotated samples, while keeping or improving the quality of disambiguation models. Methods We developed support vector machine (SVM) classifiers to disambiguate 197 ambiguous terms and abbreviations in the MSH WSD collection. Three different uncertainty sampling-based active learning algorithms were implemented with the SVM classifiers and were compared with a passive learner (PL) based on random sampling. For each ambiguous term and each learning algorithm, a learning curve that plots the accuracy computed from the test set as a function of the number of annotated samples used in the model was generated. The area under the learning curve (ALC) was used as the primary metric for evaluation. Results Our experiments demonstrated that active learners (ALs) significantly outperformed the PL, showing better performance for 177 out of 197 (89.8%) WSD tasks. Further analysis showed that to achieve an average accuracy of 90%, the PL needed 38 annotated samples, while the ALs needed only 24, a 37% reduction in annotation effort. Moreover, we analyzed cases where active learning algorithms did not achieve superior performance and identified three causes: (1) poor models in the early learning stage; (2) easy WSD cases; and (3) difficult WSD cases, which provide useful insight for future improvements. Conclusions This study demonstrated that integrating active learning strategies with supervised WSD methods could effectively reduce annotation cost and improve the disambiguation models. PMID:23364851

  16. Applying active learning to supervised word sense disambiguation in MEDLINE.

    Science.gov (United States)

    Chen, Yukun; Cao, Hongxin; Mei, Qiaozhu; Zheng, Kai; Xu, Hua

    2013-01-01

    This study was to assess whether active learning strategies can be integrated with supervised word sense disambiguation (WSD) methods, thus reducing the number of annotated samples, while keeping or improving the quality of disambiguation models. We developed support vector machine (SVM) classifiers to disambiguate 197 ambiguous terms and abbreviations in the MSH WSD collection. Three different uncertainty sampling-based active learning algorithms were implemented with the SVM classifiers and were compared with a passive learner (PL) based on random sampling. For each ambiguous term and each learning algorithm, a learning curve that plots the accuracy computed from the test set as a function of the number of annotated samples used in the model was generated. The area under the learning curve (ALC) was used as the primary metric for evaluation. Our experiments demonstrated that active learners (ALs) significantly outperformed the PL, showing better performance for 177 out of 197 (89.8%) WSD tasks. Further analysis showed that to achieve an average accuracy of 90%, the PL needed 38 annotated samples, while the ALs needed only 24, a 37% reduction in annotation effort. Moreover, we analyzed cases where active learning algorithms did not achieve superior performance and identified three causes: (1) poor models in the early learning stage; (2) easy WSD cases; and (3) difficult WSD cases, which provide useful insight for future improvements. This study demonstrated that integrating active learning strategies with supervised WSD methods could effectively reduce annotation cost and improve the disambiguation models.

  17. Improved supervised classification of accelerometry data to distinguish behaviors of soaring birds

    Science.gov (United States)

    Suffredini, Tony; Wessells, Stephen M.; Bloom, Peter H.; Lanzone, Michael; Blackshire, Sheldon; Sridhar, Srisarguru; Katzner, Todd

    2017-01-01

    Soaring birds can balance the energetic costs of movement by switching between flapping, soaring and gliding flight. Accelerometers can allow quantification of flight behavior and thus a context to interpret these energetic costs. However, models to interpret accelerometry data are still being developed, rarely trained with supervised datasets, and difficult to apply. We collected accelerometry data at 140Hz from a trained golden eagle (Aquila chrysaetos) whose flight we recorded with video that we used to characterize behavior. We applied two forms of supervised classifications, random forest (RF) models and K-nearest neighbor (KNN) models. The KNN model was substantially easier to implement than the RF approach but both were highly accurate in classifying basic behaviors such as flapping (85.5% and 83.6% accurate, respectively), soaring (92.8% and 87.6%) and sitting (84.1% and 88.9%) with overall accuracies of 86.6% and 92.3% respectively. More detailed classification schemes, with specific behaviors such as banking and straight flights were well classified only by the KNN model (91.24% accurate; RF = 61.64% accurate). The RF model maintained its accuracy of classifying basic behavior classification accuracy of basic behaviors at sampling frequencies as low as 10Hz, the KNN at sampling frequencies as low as 20Hz. Classification of accelerometer data collected from free ranging birds demonstrated a strong dependence of predicted behavior on the type of classification model used. Our analyses demonstrate the consequence of different approaches to classification of accelerometry data, the potential to optimize classification algorithms with validated flight behaviors to improve classification accuracy, ideal sampling frequencies for different classification algorithms, and a number of ways to improve commonly used analytical techniques and best practices for classification of accelerometry data. PMID:28403159

  18. Dynamic classification system in large-scale supervision of energy efficiency in buildings

    International Nuclear Information System (INIS)

    Kiluk, S.

    2014-01-01

    Highlights: • Rough set approximation of classification improves energy efficiency prediction. • Dynamic features of diagnostic classification allow for its precise prediction. • Indiscernibility in large population enhances identification of process features. • Diagnostic information can be refined by dynamic references to local neighbourhood. • We introduce data exploration validation based on system dynamics and uncertainty. - Abstract: Data mining and knowledge discovery applied to the billing data provide the diagnostic instruments for the evaluation of energy use in buildings connected to a district heating network. To ensure the validity of an algorithm-based classification system, the dynamic properties of a sequence of partitions for consecutive detected events were investigated. The information regarding the dynamic properties of the classification system refers to the similarities between the supervised objects and migrations that originate from the changes in the building energy use and loss similarity to their neighbourhood and thus represents the refinement of knowledge. In this study, we demonstrate that algorithm-based diagnostic knowledge has dynamic properties that can be exploited with a rough set predictor to evaluate whether the implementation of classification for supervision of energy use aligns with the dynamics of changes of district heating-supplied building properties. Moreover, we demonstrate the refinement of the current knowledge with the previous findings and we present the creation of predictive diagnostic systems based on knowledge dynamics with a satisfactory level of classification errors, even for non-stationary data

  19. An empirical study of ensemble-based semi-supervised learning approaches for imbalanced splice site datasets.

    Science.gov (United States)

    Stanescu, Ana; Caragea, Doina

    2015-01-01

    Recent biochemical advances have led to inexpensive, time-efficient production of massive volumes of raw genomic data. Traditional machine learning approaches to genome annotation typically rely on large amounts of labeled data. The process of labeling data can be expensive, as it requires domain knowledge and expert involvement. Semi-supervised learning approaches that can make use of unlabeled data, in addition to small amounts of labeled data, can help reduce the costs associated with labeling. In this context, we focus on the problem of predicting splice sites in a genome using semi-supervised learning approaches. This is a challenging problem, due to the highly imbalanced distribution of the data, i.e., small number of splice sites as compared to the number of non-splice sites. To address this challenge, we propose to use ensembles of semi-supervised classifiers, specifically self-training and co-training classifiers. Our experiments on five highly imbalanced splice site datasets, with positive to negative ratios of 1-to-99, showed that the ensemble-based semi-supervised approaches represent a good choice, even when the amount of labeled data consists of less than 1% of all training data. In particular, we found that ensembles of co-training and self-training classifiers that dynamically balance the set of labeled instances during the semi-supervised iterations show improvements over the corresponding supervised ensemble baselines. In the presence of limited amounts of labeled data, ensemble-based semi-supervised approaches can successfully leverage the unlabeled data to enhance supervised ensembles learned from highly imbalanced data distributions. Given that such distributions are common for many biological sequence classification problems, our work can be seen as a stepping stone towards more sophisticated ensemble-based approaches to biological sequence annotation in a semi-supervised framework.

  20. FACET CLASSIFICATIONS OF E-LEARNING TOOLS

    Directory of Open Access Journals (Sweden)

    Olena Yu. Balalaieva

    2013-12-01

    Full Text Available The article deals with the classification of e-learning tools based on the facet method, which suggests the separation of the parallel set of objects into independent classification groups; at the same time it is not assumed rigid classification structure and pre-built finite groups classification groups are formed by a combination of values taken from the relevant facets. An attempt to systematize the existing classification of e-learning tools from the standpoint of classification theory is made for the first time. Modern Ukrainian and foreign facet classifications of e-learning tools are described; their positive and negative features compared to classifications based on a hierarchical method are analyzed. The original author's facet classification of e-learning tools is proposed.

  1. Classification of multiple sclerosis lesions using adaptive dictionary learning.

    Science.gov (United States)

    Deshpande, Hrishikesh; Maurel, Pierre; Barillot, Christian

    2015-12-01

    This paper presents a sparse representation and an adaptive dictionary learning based method for automated classification of multiple sclerosis (MS) lesions in magnetic resonance (MR) images. Manual delineation of MS lesions is a time-consuming task, requiring neuroradiology experts to analyze huge volume of MR data. This, in addition to the high intra- and inter-observer variability necessitates the requirement of automated MS lesion classification methods. Among many image representation models and classification methods that can be used for such purpose, we investigate the use of sparse modeling. In the recent years, sparse representation has evolved as a tool in modeling data using a few basis elements of an over-complete dictionary and has found applications in many image processing tasks including classification. We propose a supervised classification approach by learning dictionaries specific to the lesions and individual healthy brain tissues, which include white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF). The size of the dictionaries learned for each class plays a major role in data representation but it is an even more crucial element in the case of competitive classification. Our approach adapts the size of the dictionary for each class, depending on the complexity of the underlying data. The algorithm is validated using 52 multi-sequence MR images acquired from 13 MS patients. The results demonstrate the effectiveness of our approach in MS lesion classification. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Supervised Learning with Complex-valued Neural Networks

    CERN Document Server

    Suresh, Sundaram; Savitha, Ramasamy

    2013-01-01

    Recent advancements in the field of telecommunications, medical imaging and signal processing deal with signals that are inherently time varying, nonlinear and complex-valued. The time varying, nonlinear characteristics of these signals can be effectively analyzed using artificial neural networks.  Furthermore, to efficiently preserve the physical characteristics of these complex-valued signals, it is important to develop complex-valued neural networks and derive their learning algorithms to represent these signals at every step of the learning process. This monograph comprises a collection of new supervised learning algorithms along with novel architectures for complex-valued neural networks. The concepts of meta-cognition equipped with a self-regulated learning have been known to be the best human learning strategy. In this monograph, the principles of meta-cognition have been introduced for complex-valued neural networks in both the batch and sequential learning modes. For applications where the computati...

  3. Using Supervised Deep Learning for Human Age Estimation Problem

    Science.gov (United States)

    Drobnyh, K. A.; Polovinkin, A. N.

    2017-05-01

    Automatic facial age estimation is a challenging task upcoming in recent years. In this paper, we propose using the supervised deep learning features to improve an accuracy of the existing age estimation algorithms. There are many approaches solving the problem, an active appearance model and the bio-inspired features are two of them which showed the best accuracy. For experiments we chose popular publicly available FG-NET database, which contains 1002 images with a broad variety of light, pose, and expression. LOPO (leave-one-person-out) method was used to estimate the accuracy. Experiments demonstrated that adding supervised deep learning features has improved accuracy for some basic models. For example, adding the features to an active appearance model gave the 4% gain (the error decreased from 4.59 to 4.41).

  4. Feature Genes Selection Using Supervised Locally Linear Embedding and Correlation Coefficient for Microarray Classification.

    Science.gov (United States)

    Xu, Jiucheng; Mu, Huiyu; Wang, Yun; Huang, Fangzhou

    2018-01-01

    The selection of feature genes with high recognition ability from the gene expression profiles has gained great significance in biology. However, most of the existing methods have a high time complexity and poor classification performance. Motivated by this, an effective feature selection method, called supervised locally linear embedding and Spearman's rank correlation coefficient (SLLE-SC 2 ), is proposed which is based on the concept of locally linear embedding and correlation coefficient algorithms. Supervised locally linear embedding takes into account class label information and improves the classification performance. Furthermore, Spearman's rank correlation coefficient is used to remove the coexpression genes. The experiment results obtained on four public tumor microarray datasets illustrate that our method is valid and feasible.

  5. Semi-Supervised Classification for Fault Diagnosis in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Ma, Jian Ping; Jiang, Jin

    2014-01-01

    Pattern classification methods have become important tools for fault diagnosis in industrial systems. However, it is normally difficult to obtain reliable labeled data to train a supervised pattern classification model for applications in a nuclear power plant (NPP). However, unlabeled data easily become available through increased deployment of supervisory, control, and data acquisition (SCADA) systems. In this paper, a fault diagnosis scheme based on semi-supervised classification (SSC) method is developed with specific applications for NPP. In this scheme, newly measured plant data are treated as unlabeled data. They are integrated with selected labeled data to train a SSC model which is then used to estimate labels of the new data. Compared to exclusive supervised approaches, the proposed scheme requires significantly less number of labeled data to train a classifier. Furthermore, it is shown that higher degree of uncertainties in the labeled data can be tolerated. The developed scheme has been validated using the data generated from a desktop NPP simulator and also from a physical NPP simulator using a graph-based SSC algorithm. Two case studies have been used in the validation process. In the first case study, three faults have been simulated on the desktop simulator. These faults have all been classified successfully with only four labeled data points per fault case. In the second case, six types of fault are simulated on the physical NPP simulator. All faults have been successfully diagnosed. The results have demonstrated that SSC is a promising tool for fault diagnosis

  6. On the asymptotic improvement of supervised learning by utilizing additional unlabeled samples - Normal mixture density case

    Science.gov (United States)

    Shahshahani, Behzad M.; Landgrebe, David A.

    1992-01-01

    The effect of additional unlabeled samples in improving the supervised learning process is studied in this paper. Three learning processes. supervised, unsupervised, and combined supervised-unsupervised, are compared by studying the asymptotic behavior of the estimates obtained under each process. Upper and lower bounds on the asymptotic covariance matrices are derived. It is shown that under a normal mixture density assumption for the probability density function of the feature space, the combined supervised-unsupervised learning is always superior to the supervised learning in achieving better estimates. Experimental results are provided to verify the theoretical concepts.

  7. DuSK: A Dual Structure-preserving Kernel for Supervised Tensor Learning with Applications to Neuroimages

    Science.gov (United States)

    He, Lifang; Kong, Xiangnan; Yu, Philip S.; Ragin, Ann B.; Hao, Zhifeng; Yang, Xiaowei

    2015-01-01

    With advances in data collection technologies, tensor data is assuming increasing prominence in many applications and the problem of supervised tensor learning has emerged as a topic of critical significance in the data mining and machine learning community. Conventional methods for supervised tensor learning mainly focus on learning kernels by flattening the tensor into vectors or matrices, however structural information within the tensors will be lost. In this paper, we introduce a new scheme to design structure-preserving kernels for supervised tensor learning. Specifically, we demonstrate how to leverage the naturally available structure within the tensorial representation to encode prior knowledge in the kernel. We proposed a tensor kernel that can preserve tensor structures based upon dual-tensorial mapping. The dual-tensorial mapping function can map each tensor instance in the input space to another tensor in the feature space while preserving the tensorial structure. Theoretically, our approach is an extension of the conventional kernels in the vector space to tensor space. We applied our novel kernel in conjunction with SVM to real-world tensor classification problems including brain fMRI classification for three different diseases (i.e., Alzheimer's disease, ADHD and brain damage by HIV). Extensive empirical studies demonstrate that our proposed approach can effectively boost tensor classification performances, particularly with small sample sizes. PMID:25927014

  8. DuSK: A Dual Structure-preserving Kernel for Supervised Tensor Learning with Applications to Neuroimages.

    Science.gov (United States)

    He, Lifang; Kong, Xiangnan; Yu, Philip S; Ragin, Ann B; Hao, Zhifeng; Yang, Xiaowei

    With advances in data collection technologies, tensor data is assuming increasing prominence in many applications and the problem of supervised tensor learning has emerged as a topic of critical significance in the data mining and machine learning community. Conventional methods for supervised tensor learning mainly focus on learning kernels by flattening the tensor into vectors or matrices, however structural information within the tensors will be lost. In this paper, we introduce a new scheme to design structure-preserving kernels for supervised tensor learning. Specifically, we demonstrate how to leverage the naturally available structure within the tensorial representation to encode prior knowledge in the kernel. We proposed a tensor kernel that can preserve tensor structures based upon dual-tensorial mapping. The dual-tensorial mapping function can map each tensor instance in the input space to another tensor in the feature space while preserving the tensorial structure. Theoretically, our approach is an extension of the conventional kernels in the vector space to tensor space. We applied our novel kernel in conjunction with SVM to real-world tensor classification problems including brain fMRI classification for three different diseases ( i.e ., Alzheimer's disease, ADHD and brain damage by HIV). Extensive empirical studies demonstrate that our proposed approach can effectively boost tensor classification performances, particularly with small sample sizes.

  9. A Cross-Correlated Delay Shift Supervised Learning Method for Spiking Neurons with Application to Interictal Spike Detection in Epilepsy.

    Science.gov (United States)

    Guo, Lilin; Wang, Zhenzhong; Cabrerizo, Mercedes; Adjouadi, Malek

    2017-05-01

    This study introduces a novel learning algorithm for spiking neurons, called CCDS, which is able to learn and reproduce arbitrary spike patterns in a supervised fashion allowing the processing of spatiotemporal information encoded in the precise timing of spikes. Unlike the Remote Supervised Method (ReSuMe), synapse delays and axonal delays in CCDS are variants which are modulated together with weights during learning. The CCDS rule is both biologically plausible and computationally efficient. The properties of this learning rule are investigated extensively through experimental evaluations in terms of reliability, adaptive learning performance, generality to different neuron models, learning in the presence of noise, effects of its learning parameters and classification performance. Results presented show that the CCDS learning method achieves learning accuracy and learning speed comparable with ReSuMe, but improves classification accuracy when compared to both the Spike Pattern Association Neuron (SPAN) learning rule and the Tempotron learning rule. The merit of CCDS rule is further validated on a practical example involving the automated detection of interictal spikes in EEG records of patients with epilepsy. Results again show that with proper encoding, the CCDS rule achieves good recognition performance.

  10. A Hybrid Supervised/Unsupervised Machine Learning Approach to Solar Flare Prediction

    Science.gov (United States)

    Benvenuto, Federico; Piana, Michele; Campi, Cristina; Massone, Anna Maria

    2018-01-01

    This paper introduces a novel method for flare forecasting, combining prediction accuracy with the ability to identify the most relevant predictive variables. This result is obtained by means of a two-step approach: first, a supervised regularization method for regression, namely, LASSO is applied, where a sparsity-enhancing penalty term allows the identification of the significance with which each data feature contributes to the prediction; then, an unsupervised fuzzy clustering technique for classification, namely, Fuzzy C-Means, is applied, where the regression outcome is partitioned through the minimization of a cost function and without focusing on the optimization of a specific skill score. This approach is therefore hybrid, since it combines supervised and unsupervised learning; realizes classification in an automatic, skill-score-independent way; and provides effective prediction performances even in the case of imbalanced data sets. Its prediction power is verified against NOAA Space Weather Prediction Center data, using as a test set, data in the range between 1996 August and 2010 December and as training set, data in the range between 1988 December and 1996 June. To validate the method, we computed several skill scores typically utilized in flare prediction and compared the values provided by the hybrid approach with the ones provided by several standard (non-hybrid) machine learning methods. The results showed that the hybrid approach performs classification better than all other supervised methods and with an effectiveness comparable to the one of clustering methods; but, in addition, it provides a reliable ranking of the weights with which the data properties contribute to the forecast.

  11. [Quantitative classification in catering trade and countermeasures of supervision and management in Hunan Province].

    Science.gov (United States)

    Liu, Xiulan; Chen, Lizhang; He, Xiang

    2012-02-01

    To analyze the status quo of quantitative classification in Hunan Province catering industry, and to discuss the countermeasures in-depth. According to relevant laws and regulations, and after referring to Daily supervision and quantitative scoring sheet and consulting experts, a checklist of key supervision indicators was made. The implementation of quantitative classification in 10 cities in Hunan Province was studied, and the status quo was analyzed. All the 390 catering units implemented quantitative classified management. The larger the catering enterprise, the higher level of quantitative classification. In addition to cafeterias, the smaller the catering units, the higher point of deduction, and snack bars and beverage stores were the highest. For those quantified and classified as C and D, the point of deduction was higher in the procurement and storage of raw materials, operation processing and other aspects. The quantitative classification of Hunan Province has relatively wide coverage. There are hidden risks in food security in small catering units, snack bars, and beverage stores. The food hygienic condition of Hunan Province needs to be improved.

  12. Supervised Learning for Detection of Duplicates in Genomic Sequence Databases.

    Directory of Open Access Journals (Sweden)

    Qingyu Chen

    Full Text Available First identified as an issue in 1996, duplication in biological databases introduces redundancy and even leads to inconsistency when contradictory information appears. The amount of data makes purely manual de-duplication impractical, and existing automatic systems cannot detect duplicates as precisely as can experts. Supervised learning has the potential to address such problems by building automatic systems that learn from expert curation to detect duplicates precisely and efficiently. While machine learning is a mature approach in other duplicate detection contexts, it has seen only preliminary application in genomic sequence databases.We developed and evaluated a supervised duplicate detection method based on an expert curated dataset of duplicates, containing over one million pairs across five organisms derived from genomic sequence databases. We selected 22 features to represent distinct attributes of the database records, and developed a binary model and a multi-class model. Both models achieve promising performance; under cross-validation, the binary model had over 90% accuracy in each of the five organisms, while the multi-class model maintains high accuracy and is more robust in generalisation. We performed an ablation study to quantify the impact of different sequence record features, finding that features derived from meta-data, sequence identity, and alignment quality impact performance most strongly. The study demonstrates machine learning can be an effective additional tool for de-duplication of genomic sequence databases. All Data are available as described in the supplementary material.

  13. Supervised Learning for Detection of Duplicates in Genomic Sequence Databases.

    Science.gov (United States)

    Chen, Qingyu; Zobel, Justin; Zhang, Xiuzhen; Verspoor, Karin

    2016-01-01

    First identified as an issue in 1996, duplication in biological databases introduces redundancy and even leads to inconsistency when contradictory information appears. The amount of data makes purely manual de-duplication impractical, and existing automatic systems cannot detect duplicates as precisely as can experts. Supervised learning has the potential to address such problems by building automatic systems that learn from expert curation to detect duplicates precisely and efficiently. While machine learning is a mature approach in other duplicate detection contexts, it has seen only preliminary application in genomic sequence databases. We developed and evaluated a supervised duplicate detection method based on an expert curated dataset of duplicates, containing over one million pairs across five organisms derived from genomic sequence databases. We selected 22 features to represent distinct attributes of the database records, and developed a binary model and a multi-class model. Both models achieve promising performance; under cross-validation, the binary model had over 90% accuracy in each of the five organisms, while the multi-class model maintains high accuracy and is more robust in generalisation. We performed an ablation study to quantify the impact of different sequence record features, finding that features derived from meta-data, sequence identity, and alignment quality impact performance most strongly. The study demonstrates machine learning can be an effective additional tool for de-duplication of genomic sequence databases. All Data are available as described in the supplementary material.

  14. Function approximation using combined unsupervised and supervised learning.

    Science.gov (United States)

    Andras, Peter

    2014-03-01

    Function approximation is one of the core tasks that are solved using neural networks in the context of many engineering problems. However, good approximation results need good sampling of the data space, which usually requires exponentially increasing volume of data as the dimensionality of the data increases. At the same time, often the high-dimensional data is arranged around a much lower dimensional manifold. Here we propose the breaking of the function approximation task for high-dimensional data into two steps: (1) the mapping of the high-dimensional data onto a lower dimensional space corresponding to the manifold on which the data resides and (2) the approximation of the function using the mapped lower dimensional data. We use over-complete self-organizing maps (SOMs) for the mapping through unsupervised learning, and single hidden layer neural networks for the function approximation through supervised learning. We also extend the two-step procedure by considering support vector machines and Bayesian SOMs for the determination of the best parameters for the nonlinear neurons in the hidden layer of the neural networks used for the function approximation. We compare the approximation performance of the proposed neural networks using a set of functions and show that indeed the neural networks using combined unsupervised and supervised learning outperform in most cases the neural networks that learn the function approximation using the original high-dimensional data.

  15. Ship-Iceberg Discrimination in Sentinel-2 Multispectral Imagery by Supervised Classification

    Directory of Open Access Journals (Sweden)

    Peder Heiselberg

    2017-11-01

    Full Text Available The European Space Agency Sentinel-2 satellites provide multispectral images with pixel sizes down to 10 m. This high resolution allows for fast and frequent detection, classification and discrimination of various objects in the sea, which is relevant in general and specifically for the vast Arctic environment. We analyze several sets of multispectral image data from Denmark and Greenland fall and winter, and describe a supervised search and classification algorithm based on physical parameters that successfully finds and classifies all objects in the sea with reflectance above a threshold. It discriminates between objects like ships, islands, wakes, and icebergs, ice floes, and clouds with accuracy better than 90%. Pan-sharpening the infrared bands leads to classification and discrimination of ice floes and clouds better than 95%. For complex images with abundant ice floes or clouds, however, the false alarm rate dominates for small non-sailing boats.

  16. Not-so-supervised: a survey of semi-supervised, multi-instance, and transfer learning in medical image analysis

    NARCIS (Netherlands)

    Cheplygina, Veronika; de Bruijne, Marleen; Pluim, Josien P. W.

    2018-01-01

    Machine learning (ML) algorithms have made a tremendous impact in the field of medical imaging. While medical imaging datasets have been growing in size, a challenge for supervised ML algorithms that is frequently mentioned is the lack of annotated data. As a result, various methods which can learn

  17. Seismic waveform classification using deep learning

    Science.gov (United States)

    Kong, Q.; Allen, R. M.

    2017-12-01

    MyShake is a global smartphone seismic network that harnesses the power of crowdsourcing. It has an Artificial Neural Network (ANN) algorithm running on the phone to distinguish earthquake motion from human activities recorded by the accelerometer on board. Once the ANN detects earthquake-like motion, it sends a 5-min chunk of acceleration data back to the server for further analysis. The time-series data collected contains both earthquake data and human activity data that the ANN confused. In this presentation, we will show the Convolutional Neural Network (CNN) we built under the umbrella of supervised learning to find out the earthquake waveform. The waveforms of the recorded motion could treat easily as images, and by taking the advantage of the power of CNN processing the images, we achieved very high successful rate to select the earthquake waveforms out. Since there are many non-earthquake waveforms than the earthquake waveforms, we also built an anomaly detection algorithm using the CNN. Both these two methods can be easily extended to other waveform classification problems.

  18. Restricted Boltzmann machines based oversampling and semi-supervised learning for false positive reduction in breast CAD.

    Science.gov (United States)

    Cao, Peng; Liu, Xiaoli; Bao, Hang; Yang, Jinzhu; Zhao, Dazhe

    2015-01-01

    The false-positive reduction (FPR) is a crucial step in the computer aided detection system for the breast. The issues of imbalanced data distribution and the limitation of labeled samples complicate the classification procedure. To overcome these challenges, we propose oversampling and semi-supervised learning methods based on the restricted Boltzmann machines (RBMs) to solve the classification of imbalanced data with a few labeled samples. To evaluate the proposed method, we conducted a comprehensive performance study and compared its results with the commonly used techniques. Experiments on benchmark dataset of DDSM demonstrate the effectiveness of the RBMs based oversampling and semi-supervised learning method in terms of geometric mean (G-mean) for false positive reduction in Breast CAD.

  19. Exploiting Attribute Correlations: A Novel Trace Lasso-Based Weakly Supervised Dictionary Learning Method.

    Science.gov (United States)

    Wu, Lin; Wang, Yang; Pan, Shirui

    2017-12-01

    It is now well established that sparse representation models are working effectively for many visual recognition tasks, and have pushed forward the success of dictionary learning therein. Recent studies over dictionary learning focus on learning discriminative atoms instead of purely reconstructive ones. However, the existence of intraclass diversities (i.e., data objects within the same category but exhibit large visual dissimilarities), and interclass similarities (i.e., data objects from distinct classes but share much visual similarities), makes it challenging to learn effective recognition models. To this end, a large number of labeled data objects are required to learn models which can effectively characterize these subtle differences. However, labeled data objects are always limited to access, committing it difficult to learn a monolithic dictionary that can be discriminative enough. To address the above limitations, in this paper, we propose a weakly-supervised dictionary learning method to automatically learn a discriminative dictionary by fully exploiting visual attribute correlations rather than label priors. In particular, the intrinsic attribute correlations are deployed as a critical cue to guide the process of object categorization, and then a set of subdictionaries are jointly learned with respect to each category. The resulting dictionary is highly discriminative and leads to intraclass diversity aware sparse representations. Extensive experiments on image classification and object recognition are conducted to show the effectiveness of our approach.

  20. Learning rates in supervised and unsupervised intelligent systems

    International Nuclear Information System (INIS)

    Hora, S.C.

    1986-01-01

    Classifying observations from a mixture distribution is considered a simple model for learning. Existing results are integrated to obtain asymptotically optimal estimators of the classification rule. The asymptotic relative efficiencies show that a tutored learner is considerably more efficient on difficult problems, but only slightly more efficient on easy problems. This suggests a combined method that seeks instruction on hard cases

  1. Robust head pose estimation via supervised manifold learning.

    Science.gov (United States)

    Wang, Chao; Song, Xubo

    2014-05-01

    Head poses can be automatically estimated using manifold learning algorithms, with the assumption that with the pose being the only variable, the face images should lie in a smooth and low-dimensional manifold. However, this estimation approach is challenging due to other appearance variations related to identity, head location in image, background clutter, facial expression, and illumination. To address the problem, we propose to incorporate supervised information (pose angles of training samples) into the process of manifold learning. The process has three stages: neighborhood construction, graph weight computation and projection learning. For the first two stages, we redefine inter-point distance for neighborhood construction as well as graph weight by constraining them with the pose angle information. For Stage 3, we present a supervised neighborhood-based linear feature transformation algorithm to keep the data points with similar pose angles close together but the data points with dissimilar pose angles far apart. The experimental results show that our method has higher estimation accuracy than the other state-of-art algorithms and is robust to identity and illumination variations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Arrangement and Applying of Movement Patterns in the Cerebellum Based on Semi-supervised Learning.

    Science.gov (United States)

    Solouki, Saeed; Pooyan, Mohammad

    2016-06-01

    Biological control systems have long been studied as a possible inspiration for the construction of robotic controllers. The cerebellum is known to be involved in the production and learning of smooth, coordinated movements. Therefore, highly regular structure of the cerebellum has been in the core of attention in theoretical and computational modeling. However, most of these models reflect some special features of the cerebellum without regarding the whole motor command computational process. In this paper, we try to make a logical relation between the most significant models of the cerebellum and introduce a new learning strategy to arrange the movement patterns: cerebellar modular arrangement and applying of movement patterns based on semi-supervised learning (CMAPS). We assume here the cerebellum like a big archive of patterns that has an efficient organization to classify and recall them. The main idea is to achieve an optimal use of memory locations by more than just a supervised learning and classification algorithm. Surely, more experimental and physiological researches are needed to confirm our hypothesis.

  3. Supervised Learning in Spiking Neural Networks for Precise Temporal Encoding.

    Science.gov (United States)

    Gardner, Brian; Grüning, André

    2016-01-01

    Precise spike timing as a means to encode information in neural networks is biologically supported, and is advantageous over frequency-based codes by processing input features on a much shorter time-scale. For these reasons, much recent attention has been focused on the development of supervised learning rules for spiking neural networks that utilise a temporal coding scheme. However, despite significant progress in this area, there still lack rules that have a theoretical basis, and yet can be considered biologically relevant. Here we examine the general conditions under which synaptic plasticity most effectively takes place to support the supervised learning of a precise temporal code. As part of our analysis we examine two spike-based learning methods: one of which relies on an instantaneous error signal to modify synaptic weights in a network (INST rule), and the other one relying on a filtered error signal for smoother synaptic weight modifications (FILT rule). We test the accuracy of the solutions provided by each rule with respect to their temporal encoding precision, and then measure the maximum number of input patterns they can learn to memorise using the precise timings of individual spikes as an indication of their storage capacity. Our results demonstrate the high performance of the FILT rule in most cases, underpinned by the rule's error-filtering mechanism, which is predicted to provide smooth convergence towards a desired solution during learning. We also find the FILT rule to be most efficient at performing input pattern memorisations, and most noticeably when patterns are identified using spikes with sub-millisecond temporal precision. In comparison with existing work, we determine the performance of the FILT rule to be consistent with that of the highly efficient E-learning Chronotron rule, but with the distinct advantage that our FILT rule is also implementable as an online method for increased biological realism.

  4. Supervised learning of probability distributions by neural networks

    Science.gov (United States)

    Baum, Eric B.; Wilczek, Frank

    1988-01-01

    Supervised learning algorithms for feedforward neural networks are investigated analytically. The back-propagation algorithm described by Werbos (1974), Parker (1985), and Rumelhart et al. (1986) is generalized by redefining the values of the input and output neurons as probabilities. The synaptic weights are then varied to follow gradients in the logarithm of likelihood rather than in the error. This modification is shown to provide a more rigorous theoretical basis for the algorithm and to permit more accurate predictions. A typical application involving a medical-diagnosis expert system is discussed.

  5. Evaluation of forest cover estimates for Haiti using supervised classification of Landsat data

    Science.gov (United States)

    Churches, Christopher E.; Wampler, Peter J.; Sun, Wanxiao; Smith, Andrew J.

    2014-08-01

    This study uses 2010-2011 Landsat Thematic Mapper (TM) imagery to estimate total forested area in Haiti. The thematic map was generated using radiometric normalization of digital numbers by a modified normalization method utilizing pseudo-invariant polygons (PIPs), followed by supervised classification of the mosaicked image using the Food and Agriculture Organization (FAO) of the United Nations Land Cover Classification System. Classification results were compared to other sources of land-cover data produced for similar years, with an emphasis on the statistics presented by the FAO. Three global land cover datasets (GLC2000, Globcover, 2009, and MODIS MCD12Q1), and a national-scale dataset (a land cover analysis by Haitian National Centre for Geospatial Information (CNIGS)) were reclassified and compared. According to our classification, approximately 32.3% of Haiti's total land area was tree covered in 2010-2011. This result was confirmed using an error-adjusted area estimator, which predicted a tree covered area of 32.4%. Standardization to the FAO's forest cover class definition reduces the amount of tree cover of our supervised classification to 29.4%. This result was greater than the reported FAO value of 4% and the value for the recoded GLC2000 dataset of 7.0%, but is comparable to values for three other recoded datasets: MCD12Q1 (21.1%), Globcover (2009) (26.9%), and CNIGS (19.5%). We propose that at coarse resolutions, the segmented and patchy nature of Haiti's forests resulted in a systematic underestimation of the extent of forest cover. It appears the best explanation for the significant difference between our results, FAO statistics, and compared datasets is the accuracy of the data sources and the resolution of the imagery used for land cover analyses. Analysis of recoded global datasets and results from this study suggest a strong linear relationship (R2 = 0.996 for tree cover) between spatial resolution and land cover estimates.

  6. Combining theories to reach multi-faceted insights into learning opportunities in doctoral supervision

    DEFF Research Database (Denmark)

    Kobayashi, Sofie; Rump, Camilla Østerberg

    The aim of this paper is to illustrate how theories can be combined to explore opportunities for learning in doctoral supervision. While our earlier research into learning dynamics in doctoral supervision in life science research (Kobayashi, 2014) has focused on illustrating learning opportunitie...

  7. Working memory supports inference learning just like classification learning.

    Science.gov (United States)

    Craig, Stewart; Lewandowsky, Stephan

    2013-08-01

    Recent research has found a positive relationship between people's working memory capacity (WMC) and their speed of category learning. To date, only classification-learning tasks have been considered, in which people learn to assign category labels to objects. It is unknown whether learning to make inferences about category features might also be related to WMC. We report data from a study in which 119 participants undertook classification learning and inference learning, and completed a series of WMC tasks. Working memory capacity was positively related to people's classification and inference learning performance.

  8. Supervised Self-Organizing Classification of Superresolution ISAR Images: An Anechoic Chamber Experiment

    Directory of Open Access Journals (Sweden)

    Radoi Emanuel

    2006-01-01

    Full Text Available The problem of the automatic classification of superresolution ISAR images is addressed in the paper. We describe an anechoic chamber experiment involving ten-scale-reduced aircraft models. The radar images of these targets are reconstructed using MUSIC-2D (multiple signal classification method coupled with two additional processing steps: phase unwrapping and symmetry enhancement. A feature vector is then proposed including Fourier descriptors and moment invariants, which are calculated from the target shape and the scattering center distribution extracted from each reconstructed image. The classification is finally performed by a new self-organizing neural network called SART (supervised ART, which is compared to two standard classifiers, MLP (multilayer perceptron and fuzzy KNN ( nearest neighbors. While the classification accuracy is similar, SART is shown to outperform the two other classifiers in terms of training speed and classification speed, especially for large databases. It is also easier to use since it does not require any input parameter related to its structure.

  9. Semi-Supervised Multitask Learning for Scene Recognition.

    Science.gov (United States)

    Lu, Xiaoqiang; Li, Xuelong; Mou, Lichao

    2015-09-01

    Scene recognition has been widely studied to understand visual information from the level of objects and their relationships. Toward scene recognition, many methods have been proposed. They, however, encounter difficulty to improve the accuracy, mainly due to two limitations: 1) lack of analysis of intrinsic relationships across different scales, say, the initial input and its down-sampled versions and 2) existence of redundant features. This paper develops a semi-supervised learning mechanism to reduce the above two limitations. To address the first limitation, we propose a multitask model to integrate scene images of different resolutions. For the second limitation, we build a model of sparse feature selection-based manifold regularization (SFSMR) to select the optimal information and preserve the underlying manifold structure of data. SFSMR coordinates the advantages of sparse feature selection and manifold regulation. Finally, we link the multitask model and SFSMR, and propose the semi-supervised learning method to reduce the two limitations. Experimental results report the improvements of the accuracy in scene recognition.

  10. Prototype Vector Machine for Large Scale Semi-Supervised Learning

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kai; Kwok, James T.; Parvin, Bahram

    2009-04-29

    Practicaldataminingrarelyfalls exactlyinto the supervisedlearning scenario. Rather, the growing amount of unlabeled data poses a big challenge to large-scale semi-supervised learning (SSL). We note that the computationalintensivenessofgraph-based SSLarises largely from the manifold or graph regularization, which in turn lead to large models that are dificult to handle. To alleviate this, we proposed the prototype vector machine (PVM), a highlyscalable,graph-based algorithm for large-scale SSL. Our key innovation is the use of"prototypes vectors" for effcient approximation on both the graph-based regularizer and model representation. The choice of prototypes are grounded upon two important criteria: they not only perform effective low-rank approximation of the kernel matrix, but also span a model suffering the minimum information loss compared with the complete model. We demonstrate encouraging performance and appealing scaling properties of the PVM on a number of machine learning benchmark data sets.

  11. Supervised learning with decision margins in pools of spiking neurons.

    Science.gov (United States)

    Le Mouel, Charlotte; Harris, Kenneth D; Yger, Pierre

    2014-10-01

    Learning to categorise sensory inputs by generalising from a few examples whose category is precisely known is a crucial step for the brain to produce appropriate behavioural responses. At the neuronal level, this may be performed by adaptation of synaptic weights under the influence of a training signal, in order to group spiking patterns impinging on the neuron. Here we describe a framework that allows spiking neurons to perform such "supervised learning", using principles similar to the Support Vector Machine, a well-established and robust classifier. Using a hinge-loss error function, we show that requesting a margin similar to that of the SVM improves performance on linearly non-separable problems. Moreover, we show that using pools of neurons to discriminate categories can also increase the performance by sharing the load among neurons.

  12. Source localization in an ocean waveguide using supervised machine learning.

    Science.gov (United States)

    Niu, Haiqiang; Reeves, Emma; Gerstoft, Peter

    2017-09-01

    Source localization in ocean acoustics is posed as a machine learning problem in which data-driven methods learn source ranges directly from observed acoustic data. The pressure received by a vertical linear array is preprocessed by constructing a normalized sample covariance matrix and used as the input for three machine learning methods: feed-forward neural networks (FNN), support vector machines (SVM), and random forests (RF). The range estimation problem is solved both as a classification problem and as a regression problem by these three machine learning algorithms. The results of range estimation for the Noise09 experiment are compared for FNN, SVM, RF, and conventional matched-field processing and demonstrate the potential of machine learning for underwater source localization.

  13. Supervised Machine Learning for Regionalization of Environmental Data: Distribution of Uranium in Groundwater in Ukraine

    Science.gov (United States)

    Govorov, Michael; Gienko, Gennady; Putrenko, Viktor

    2018-05-01

    In this paper, several supervised machine learning algorithms were explored to define homogeneous regions of con-centration of uranium in surface waters in Ukraine using multiple environmental parameters. The previous study was focused on finding the primary environmental parameters related to uranium in ground waters using several methods of spatial statistics and unsupervised classification. At this step, we refined the regionalization using Artifi-cial Neural Networks (ANN) techniques including Multilayer Perceptron (MLP), Radial Basis Function (RBF), and Convolutional Neural Network (CNN). The study is focused on building local ANN models which may significantly improve the prediction results of machine learning algorithms by taking into considerations non-stationarity and autocorrelation in spatial data.

  14. Supervised Variational Relevance Learning, An Analytic Geometric Feature Selection with Applications to Omic Datasets.

    Science.gov (United States)

    Boareto, Marcelo; Cesar, Jonatas; Leite, Vitor B P; Caticha, Nestor

    2015-01-01

    We introduce Supervised Variational Relevance Learning (Suvrel), a variational method to determine metric tensors to define distance based similarity in pattern classification, inspired in relevance learning. The variational method is applied to a cost function that penalizes large intraclass distances and favors small interclass distances. We find analytically the metric tensor that minimizes the cost function. Preprocessing the patterns by doing linear transformations using the metric tensor yields a dataset which can be more efficiently classified. We test our methods using publicly available datasets, for some standard classifiers. Among these datasets, two were tested by the MAQC-II project and, even without the use of further preprocessing, our results improve on their performance.

  15. Multicultural supervision: lessons learned about an ongoing struggle.

    Science.gov (United States)

    Christiansen, Abigail Tolhurst; Thomas, Volker; Kafescioglu, Nilufer; Karakurt, Gunnur; Lowe, Walter; Smith, William; Wittenborn, Andrea

    2011-01-01

    This article examines the experiences of seven diverse therapists in a supervision course as they wrestled with the real-world application of multicultural supervision. Existing literature on multicultural supervision does not address the difficulties that arise in addressing multicultural issues in the context of the supervision relationship. The experiences of six supervisory candidates and one mentoring supervisor in addressing multicultural issues in supervision are explored. Guidelines for conversations regarding multicultural issues are provided. © 2011 American Association for Marriage and Family Therapy.

  16. SuperSpike: Supervised Learning in Multilayer Spiking Neural Networks.

    Science.gov (United States)

    Zenke, Friedemann; Ganguli, Surya

    2018-04-13

    A vast majority of computation in the brain is performed by spiking neural networks. Despite the ubiquity of such spiking, we currently lack an understanding of how biological spiking neural circuits learn and compute in vivo, as well as how we can instantiate such capabilities in artificial spiking circuits in silico. Here we revisit the problem of supervised learning in temporally coding multilayer spiking neural networks. First, by using a surrogate gradient approach, we derive SuperSpike, a nonlinear voltage-based three-factor learning rule capable of training multilayer networks of deterministic integrate-and-fire neurons to perform nonlinear computations on spatiotemporal spike patterns. Second, inspired by recent results on feedback alignment, we compare the performance of our learning rule under different credit assignment strategies for propagating output errors to hidden units. Specifically, we test uniform, symmetric, and random feedback, finding that simpler tasks can be solved with any type of feedback, while more complex tasks require symmetric feedback. In summary, our results open the door to obtaining a better scientific understanding of learning and computation in spiking neural networks by advancing our ability to train them to solve nonlinear problems involving transformations between different spatiotemporal spike time patterns.

  17. Fall detection using supervised machine learning algorithms: A comparative study

    KAUST Repository

    Zerrouki, Nabil; Harrou, Fouzi; Houacine, Amrane; Sun, Ying

    2017-01-01

    Fall incidents are considered as the leading cause of disability and even mortality among older adults. To address this problem, fall detection and prevention fields receive a lot of intention over the past years and attracted many researcher efforts. We present in the current study an overall performance comparison between fall detection systems using the most popular machine learning approaches which are: Naïve Bayes, K nearest neighbor, neural network, and support vector machine. The analysis of the classification power associated to these most widely utilized algorithms is conducted on two fall detection databases namely FDD and URFD. Since the performance of the classification algorithm is inherently dependent on the features, we extracted and used the same features for all classifiers. The classification evaluation is conducted using different state of the art statistical measures such as the overall accuracy, the F-measure coefficient, and the area under ROC curve (AUC) value.

  18. Fall detection using supervised machine learning algorithms: A comparative study

    KAUST Repository

    Zerrouki, Nabil

    2017-01-05

    Fall incidents are considered as the leading cause of disability and even mortality among older adults. To address this problem, fall detection and prevention fields receive a lot of intention over the past years and attracted many researcher efforts. We present in the current study an overall performance comparison between fall detection systems using the most popular machine learning approaches which are: Naïve Bayes, K nearest neighbor, neural network, and support vector machine. The analysis of the classification power associated to these most widely utilized algorithms is conducted on two fall detection databases namely FDD and URFD. Since the performance of the classification algorithm is inherently dependent on the features, we extracted and used the same features for all classifiers. The classification evaluation is conducted using different state of the art statistical measures such as the overall accuracy, the F-measure coefficient, and the area under ROC curve (AUC) value.

  19. Image Classification Workflow Using Machine Learning Methods

    Science.gov (United States)

    Christoffersen, M. S.; Roser, M.; Valadez-Vergara, R.; Fernández-Vega, J. A.; Pierce, S. A.; Arora, R.

    2016-12-01

    Recent increases in the availability and quality of remote sensing datasets have fueled an increasing number of scientifically significant discoveries based on land use classification and land use change analysis. However, much of the software made to work with remote sensing data products, specifically multispectral images, is commercial and often prohibitively expensive. The free to use solutions that are currently available come bundled up as small parts of much larger programs that are very susceptible to bugs and difficult to install and configure. What is needed is a compact, easy to use set of tools to perform land use analysis on multispectral images. To address this need, we have developed software using the Python programming language with the sole function of land use classification and land use change analysis. We chose Python to develop our software because it is relatively readable, has a large body of relevant third party libraries such as GDAL and Spectral Python, and is free to install and use on Windows, Linux, and Macintosh operating systems. In order to test our classification software, we performed a K-means unsupervised classification, Gaussian Maximum Likelihood supervised classification, and a Mahalanobis Distance based supervised classification. The images used for testing were three Landsat rasters of Austin, Texas with a spatial resolution of 60 meters for the years of 1984 and 1999, and 30 meters for the year 2015. The testing dataset was easily downloaded using the Earth Explorer application produced by the USGS. The software should be able to perform classification based on any set of multispectral rasters with little to no modification. Our software makes the ease of land use classification using commercial software available without an expensive license.

  20. A Novel Semi-Supervised Electronic Nose Learning Technique: M-Training

    Directory of Open Access Journals (Sweden)

    Pengfei Jia

    2016-03-01

    Full Text Available When an electronic nose (E-nose is used to distinguish different kinds of gases, the label information of the target gas could be lost due to some fault of the operators or some other reason, although this is not expected. Another fact is that the cost of getting the labeled samples is usually higher than for unlabeled ones. In most cases, the classification accuracy of an E-nose trained using labeled samples is higher than that of the E-nose trained by unlabeled ones, so gases without label information should not be used to train an E-nose, however, this wastes resources and can even delay the progress of research. In this work a novel multi-class semi-supervised learning technique called M-training is proposed to train E-noses with both labeled and unlabeled samples. We employ M-training to train the E-nose which is used to distinguish three indoor pollutant gases (benzene, toluene and formaldehyde. Data processing results prove that the classification accuracy of E-nose trained by semi-supervised techniques (tri-training and M-training is higher than that of an E-nose trained only with labeled samples, and the performance of M-training is better than that of tri-training because more base classifiers can be employed by M-training.

  1. A Multiagent-based Intrusion Detection System with the Support of Multi-Class Supervised Classification

    Science.gov (United States)

    Shyu, Mei-Ling; Sainani, Varsha

    The increasing number of network security related incidents have made it necessary for the organizations to actively protect their sensitive data with network intrusion detection systems (IDSs). IDSs are expected to analyze a large volume of data while not placing a significantly added load on the monitoring systems and networks. This requires good data mining strategies which take less time and give accurate results. In this study, a novel data mining assisted multiagent-based intrusion detection system (DMAS-IDS) is proposed, particularly with the support of multiclass supervised classification. These agents can detect and take predefined actions against malicious activities, and data mining techniques can help detect them. Our proposed DMAS-IDS shows superior performance compared to central sniffing IDS techniques, and saves network resources compared to other distributed IDS with mobile agents that activate too many sniffers causing bottlenecks in the network. This is one of the major motivations to use a distributed model based on multiagent platform along with a supervised classification technique.

  2. EEG source space analysis of the supervised factor analytic approach for the classification of multi-directional arm movement

    Science.gov (United States)

    Shenoy Handiru, Vikram; Vinod, A. P.; Guan, Cuntai

    2017-08-01

    Objective. In electroencephalography (EEG)-based brain-computer interface (BCI) systems for motor control tasks the conventional practice is to decode motor intentions by using scalp EEG. However, scalp EEG only reveals certain limited information about the complex tasks of movement with a higher degree of freedom. Therefore, our objective is to investigate the effectiveness of source-space EEG in extracting relevant features that discriminate arm movement in multiple directions. Approach. We have proposed a novel feature extraction algorithm based on supervised factor analysis that models the data from source-space EEG. To this end, we computed the features from the source dipoles confined to Brodmann areas of interest (BA4a, BA4p and BA6). Further, we embedded class-wise labels of multi-direction (multi-class) source-space EEG to an unsupervised factor analysis to make it into a supervised learning method. Main Results. Our approach provided an average decoding accuracy of 71% for the classification of hand movement in four orthogonal directions, that is significantly higher (>10%) than the classification accuracy obtained using state-of-the-art spatial pattern features in sensor space. Also, the group analysis on the spectral characteristics of source-space EEG indicates that the slow cortical potentials from a set of cortical source dipoles reveal discriminative information regarding the movement parameter, direction. Significance. This study presents evidence that low-frequency components in the source space play an important role in movement kinematics, and thus it may lead to new strategies for BCI-based neurorehabilitation.

  3. Descriptor Learning via Supervised Manifold Regularization for Multioutput Regression.

    Science.gov (United States)

    Zhen, Xiantong; Yu, Mengyang; Islam, Ali; Bhaduri, Mousumi; Chan, Ian; Li, Shuo

    2017-09-01

    Multioutput regression has recently shown great ability to solve challenging problems in both computer vision and medical image analysis. However, due to the huge image variability and ambiguity, it is fundamentally challenging to handle the highly complex input-target relationship of multioutput regression, especially with indiscriminate high-dimensional representations. In this paper, we propose a novel supervised descriptor learning (SDL) algorithm for multioutput regression, which can establish discriminative and compact feature representations to improve the multivariate estimation performance. The SDL is formulated as generalized low-rank approximations of matrices with a supervised manifold regularization. The SDL is able to simultaneously extract discriminative features closely related to multivariate targets and remove irrelevant and redundant information by transforming raw features into a new low-dimensional space aligned to targets. The achieved discriminative while compact descriptor largely reduces the variability and ambiguity for multioutput regression, which enables more accurate and efficient multivariate estimation. We conduct extensive evaluation of the proposed SDL on both synthetic data and real-world multioutput regression tasks for both computer vision and medical image analysis. Experimental results have shown that the proposed SDL can achieve high multivariate estimation accuracy on all tasks and largely outperforms the algorithms in the state of the arts. Our method establishes a novel SDL framework for multioutput regression, which can be widely used to boost the performance in different applications.

  4. Semi-supervised learning of hyperspectral image segmentation applied to vine tomatoes and table grapes

    Directory of Open Access Journals (Sweden)

    Jeroen van Roy

    2018-03-01

    Full Text Available Nowadays, quality inspection of fruit and vegetables is typically accomplished through visual inspection. Automation of this inspection is desirable to make it more objective. For this, hyperspectral imaging has been identified as a promising technique. When the field of view includes multiple objects, hypercubes should be segmented to assign individual pixels to different objects. Unsupervised and supervised methods have been proposed. While the latter are labour intensive as they require masking of the training images, the former are too computationally intensive for in-line use and may provide different results for different hypercubes. Therefore, a semi-supervised method is proposed to train a computationally efficient segmentation algorithm with minimal human interaction. As a first step, an unsupervised classification model is used to cluster spectra in similar groups. In the second step, a pixel selection algorithm applied to the output of the unsupervised classification is used to build a supervised model which is fast enough for in-line use. To evaluate this approach, it is applied to hypercubes of vine tomatoes and table grapes. After first derivative spectral preprocessing to remove intensity variation due to curvature and gloss effects, the unsupervised models segmented 86.11% of the vine tomato images correctly. Considering overall accuracy, sensitivity, specificity and time needed to segment one hypercube, partial least squares discriminant analysis (PLS-DA was found to be the best choice for in-line use, when using one training image. By adding a second image, the segmentation results improved considerably, yielding an overall accuracy of 96.95% for segmentation of vine tomatoes and 98.52% for segmentation of table grapes, demonstrating the added value of the learning phase in the algorithm.

  5. Unsupervised/supervised learning concept for 24-hour load forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Djukanovic, M [Electrical Engineering Inst. ' Nikola Tesla' , Belgrade (Yugoslavia); Babic, B [Electrical Power Industry of Serbia, Belgrade (Yugoslavia); Sobajic, D J; Pao, Y -H [Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Electrical Engineering and Computer Science

    1993-07-01

    An application of artificial neural networks in short-term load forecasting is described. An algorithm using an unsupervised/supervised learning concept and historical relationship between the load and temperature for a given season, day type and hour of the day to forecast hourly electric load with a lead time of 24 hours is proposed. An additional approach using functional link net, temperature variables, average load and last one-hour load of previous day is introduced and compared with the ANN model with one hidden layer load forecast. In spite of limited available weather variables (maximum, minimum and average temperature for the day) quite acceptable results have been achieved. The 24-hour-ahead forecast errors (absolute average) ranged from 2.78% for Saturdays and 3.12% for working days to 3.54% for Sundays. (Author)

  6. Semi-Supervised Learning to Identify UMLS Semantic Relations.

    Science.gov (United States)

    Luo, Yuan; Uzuner, Ozlem

    2014-01-01

    The UMLS Semantic Network is constructed by experts and requires periodic expert review to update. We propose and implement a semi-supervised approach for automatically identifying UMLS semantic relations from narrative text in PubMed. Our method analyzes biomedical narrative text to collect semantic entity pairs, and extracts multiple semantic, syntactic and orthographic features for the collected pairs. We experiment with seeded k-means clustering with various distance metrics. We create and annotate a ground truth corpus according to the top two levels of the UMLS semantic relation hierarchy. We evaluate our system on this corpus and characterize the learning curves of different clustering configuration. Using KL divergence consistently performs the best on the held-out test data. With full seeding, we obtain macro-averaged F-measures above 70% for clustering the top level UMLS relations (2-way), and above 50% for clustering the second level relations (7-way).

  7. Spiking neural networks for handwritten digit recognition-Supervised learning and network optimization.

    Science.gov (United States)

    Kulkarni, Shruti R; Rajendran, Bipin

    2018-07-01

    We demonstrate supervised learning in Spiking Neural Networks (SNNs) for the problem of handwritten digit recognition using the spike triggered Normalized Approximate Descent (NormAD) algorithm. Our network that employs neurons operating at sparse biological spike rates below 300Hz achieves a classification accuracy of 98.17% on the MNIST test database with four times fewer parameters compared to the state-of-the-art. We present several insights from extensive numerical experiments regarding optimization of learning parameters and network configuration to improve its accuracy. We also describe a number of strategies to optimize the SNN for implementation in memory and energy constrained hardware, including approximations in computing the neuronal dynamics and reduced precision in storing the synaptic weights. Experiments reveal that even with 3-bit synaptic weights, the classification accuracy of the designed SNN does not degrade beyond 1% as compared to the floating-point baseline. Further, the proposed SNN, which is trained based on the precise spike timing information outperforms an equivalent non-spiking artificial neural network (ANN) trained using back propagation, especially at low bit precision. Thus, our study shows the potential for realizing efficient neuromorphic systems that use spike based information encoding and learning for real-world applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Document Classification Using Distributed Machine Learning

    OpenAIRE

    Aydin, Galip; Hallac, Ibrahim Riza

    2018-01-01

    In this paper, we investigate the performance and success rates of Na\\"ive Bayes Classification Algorithm for automatic classification of Turkish news into predetermined categories like economy, life, health etc. We use Apache Big Data technologies such as Hadoop, HDFS, Spark and Mahout, and apply these distributed technologies to Machine Learning.

  9. Using Machine Learning for Land Suitability Classification

    African Journals Online (AJOL)

    User

    West African Journal of Applied Ecology, vol. ... evidence for the utility of machine learning methods in land suitability classification especially MCS methods. ... Artificial intelligence tools. ..... Numerical values of index for the various classes.

  10. Supervised dictionary learning for inferring concurrent brain networks.

    Science.gov (United States)

    Zhao, Shijie; Han, Junwei; Lv, Jinglei; Jiang, Xi; Hu, Xintao; Zhao, Yu; Ge, Bao; Guo, Lei; Liu, Tianming

    2015-10-01

    Task-based fMRI (tfMRI) has been widely used to explore functional brain networks via predefined stimulus paradigm in the fMRI scan. Traditionally, the general linear model (GLM) has been a dominant approach to detect task-evoked networks. However, GLM focuses on task-evoked or event-evoked brain responses and possibly ignores the intrinsic brain functions. In comparison, dictionary learning and sparse coding methods have attracted much attention recently, and these methods have shown the promise of automatically and systematically decomposing fMRI signals into meaningful task-evoked and intrinsic concurrent networks. Nevertheless, two notable limitations of current data-driven dictionary learning method are that the prior knowledge of task paradigm is not sufficiently utilized and that the establishment of correspondences among dictionary atoms in different brains have been challenging. In this paper, we propose a novel supervised dictionary learning and sparse coding method for inferring functional networks from tfMRI data, which takes both of the advantages of model-driven method and data-driven method. The basic idea is to fix the task stimulus curves as predefined model-driven dictionary atoms and only optimize the other portion of data-driven dictionary atoms. Application of this novel methodology on the publicly available human connectome project (HCP) tfMRI datasets has achieved promising results.

  11. Healthcare students' evaluation of the clinical learning environment and supervision - a cross-sectional study.

    Science.gov (United States)

    Pitkänen, Salla; Kääriäinen, Maria; Oikarainen, Ashlee; Tuomikoski, Anna-Maria; Elo, Satu; Ruotsalainen, Heidi; Saarikoski, Mikko; Kärsämänoja, Taina; Mikkonen, Kristina

    2018-03-01

    The purpose of clinical placements and supervision is to promote the development of healthcare students´ professional skills. High-quality clinical learning environments and supervision were shown to have significant influence on healthcare students´ professional development. This study aimed to describe healthcare students` evaluation of the clinical learning environment and supervision, and to identify the factors that affect these. The study was performed as a cross-sectional study. The data (n = 1973) were gathered through an online survey using the Clinical Learning Environment, Supervision and Nurse Teacher scale during the academic year 2015-2016 from all healthcare students (N = 2500) who completed their clinical placement at a certain university hospital in Finland. The data were analysed using descriptive statistics and binary logistic regression analysis. More than half of the healthcare students had a named supervisor and supervision was completed as planned. The students evaluated the clinical learning environment and supervision as 'good'. The students´ readiness to recommend the unit to other students and the frequency of separate private unscheduled sessions with the supervisor were the main factors that affect healthcare students` evaluation of the clinical learning environment and supervision. Individualized and goal-oriented supervision in which the student had a named supervisor and where supervision was completed as planned in a positive environment that supported learning had a significant impact on student's learning. The clinical learning environment and supervision support the development of future healthcare professionals' clinical competence. The supervisory relationship was shown to have a significant effect on the outcomes of students' experiences. We recommend the planning of educational programmes for supervisors of healthcare students for the enhancement of supervisors' pedagogical competencies in supervising students in

  12. A hybrid ensemble learning approach to star-galaxy classification

    Science.gov (United States)

    Kim, Edward J.; Brunner, Robert J.; Carrasco Kind, Matias

    2015-10-01

    There exist a variety of star-galaxy classification techniques, each with their own strengths and weaknesses. In this paper, we present a novel meta-classification framework that combines and fully exploits different techniques to produce a more robust star-galaxy classification. To demonstrate this hybrid, ensemble approach, we combine a purely morphological classifier, a supervised machine learning method based on random forest, an unsupervised machine learning method based on self-organizing maps, and a hierarchical Bayesian template-fitting method. Using data from the CFHTLenS survey (Canada-France-Hawaii Telescope Lensing Survey), we consider different scenarios: when a high-quality training set is available with spectroscopic labels from DEEP2 (Deep Extragalactic Evolutionary Probe Phase 2 ), SDSS (Sloan Digital Sky Survey), VIPERS (VIMOS Public Extragalactic Redshift Survey), and VVDS (VIMOS VLT Deep Survey), and when the demographics of sources in a low-quality training set do not match the demographics of objects in the test data set. We demonstrate that our Bayesian combination technique improves the overall performance over any individual classification method in these scenarios. Thus, strategies that combine the predictions of different classifiers may prove to be optimal in currently ongoing and forthcoming photometric surveys, such as the Dark Energy Survey and the Large Synoptic Survey Telescope.

  13. Learning How to Supervise: Midlevel Managers' Individual Learning Journeys

    Science.gov (United States)

    David, Keegan

    2010-01-01

    The purpose of this study was to explore how midlevel managers in student affairs learn supervisory skills. Student affairs professionals are given tremendous responsibility for the lives of students outside the classroom. The Association of College Personnel Administrators and other sources outlined the necessary competencies for student affairs…

  14. Machine-learning methods in the classification of water bodies

    Directory of Open Access Journals (Sweden)

    Sołtysiak Marek

    2016-06-01

    Full Text Available Amphibian species have been considered as useful ecological indicators. They are used as indicators of environmental contamination, ecosystem health and habitat quality., Amphibian species are sensitive to changes in the aquatic environment and therefore, may form the basis for the classification of water bodies. Water bodies in which there are a large number of amphibian species are especially valuable even if they are located in urban areas. The automation of the classification process allows for a faster evaluation of the presence of amphibian species in the water bodies. Three machine-learning methods (artificial neural networks, decision trees and the k-nearest neighbours algorithm have been used to classify water bodies in Chorzów – one of 19 cities in the Upper Silesia Agglomeration. In this case, classification is a supervised data mining method consisting of several stages such as building the model, the testing phase and the prediction. Seven natural and anthropogenic features of water bodies (e.g. the type of water body, aquatic plants, the purpose of the water body (destination, position of the water body in relation to any possible buildings, condition of the water body, the degree of littering, the shore type and fishing activities have been taken into account in the classification. The data set used in this study involved information about 71 different water bodies and 9 amphibian species living in them. The results showed that the best average classification accuracy was obtained with the multilayer perceptron neural network.

  15. Supervised spike-timing-dependent plasticity: a spatiotemporal neuronal learning rule for function approximation and decisions.

    Science.gov (United States)

    Franosch, Jan-Moritz P; Urban, Sebastian; van Hemmen, J Leo

    2013-12-01

    How can an animal learn from experience? How can it train sensors, such as the auditory or tactile system, based on other sensory input such as the visual system? Supervised spike-timing-dependent plasticity (supervised STDP) is a possible answer. Supervised STDP trains one modality using input from another one as "supervisor." Quite complex time-dependent relationships between the senses can be learned. Here we prove that under very general conditions, supervised STDP converges to a stable configuration of synaptic weights leading to a reconstruction of primary sensory input.

  16. Supervised learning of tools for content-based search of image databases

    Science.gov (United States)

    Delanoy, Richard L.

    1996-03-01

    A computer environment, called the Toolkit for Image Mining (TIM), is being developed with the goal of enabling users with diverse interests and varied computer skills to create search tools for content-based image retrieval and other pattern matching tasks. Search tools are generated using a simple paradigm of supervised learning that is based on the user pointing at mistakes of classification made by the current search tool. As mistakes are identified, a learning algorithm uses the identified mistakes to build up a model of the user's intentions, construct a new search tool, apply the search tool to a test image, display the match results as feedback to the user, and accept new inputs from the user. Search tools are constructed in the form of functional templates, which are generalized matched filters capable of knowledge- based image processing. The ability of this system to learn the user's intentions from experience contrasts with other existing approaches to content-based image retrieval that base searches on the characteristics of a single input example or on a predefined and semantically- constrained textual query. Currently, TIM is capable of learning spectral and textural patterns, but should be adaptable to the learning of shapes, as well. Possible applications of TIM include not only content-based image retrieval, but also quantitative image analysis, the generation of metadata for annotating images, data prioritization or data reduction in bandwidth-limited situations, and the construction of components for larger, more complex computer vision algorithms.

  17. Learning outcomes using video in supervision and peer feedback during clinical skills training

    DEFF Research Database (Denmark)

    Lauridsen, Henrik Hein; Toftgård, Rie Castella; Nørgaard, Cita

    supervision of clinical skills (formative assessment). Demonstrations of these principles will be presented as video podcasts during the session. The learning outcomes of video supervision and peer-feedback were assessed in an online questionnaire survey. Results Results of the supervision showed large self......Objective New technology and learning principles were introduced in a clinical skills training laboratory (iLab). The intension was to move from apprenticeship to active learning principles including peer feedback and supervision using video. The objective of this study was to evaluate student...... learning outcomes in a manual skills training subject using video during feedback and supervision. Methods The iLab classroom was designed to fit four principles of teaching using video. Two of these principles were (a) group work using peer-feedback on videos produced by the students and, (b) video...

  18. Response monitoring using quantitative ultrasound methods and supervised dictionary learning in locally advanced breast cancer

    Science.gov (United States)

    Gangeh, Mehrdad J.; Fung, Brandon; Tadayyon, Hadi; Tran, William T.; Czarnota, Gregory J.

    2016-03-01

    A non-invasive computer-aided-theragnosis (CAT) system was developed for the early assessment of responses to neoadjuvant chemotherapy in patients with locally advanced breast cancer. The CAT system was based on quantitative ultrasound spectroscopy methods comprising several modules including feature extraction, a metric to measure the dissimilarity between "pre-" and "mid-treatment" scans, and a supervised learning algorithm for the classification of patients to responders/non-responders. One major requirement for the successful design of a high-performance CAT system is to accurately measure the changes in parametric maps before treatment onset and during the course of treatment. To this end, a unified framework based on Hilbert-Schmidt independence criterion (HSIC) was used for the design of feature extraction from parametric maps and the dissimilarity measure between the "pre-" and "mid-treatment" scans. For the feature extraction, HSIC was used to design a supervised dictionary learning (SDL) method by maximizing the dependency between the scans taken from "pre-" and "mid-treatment" with "dummy labels" given to the scans. For the dissimilarity measure, an HSIC-based metric was employed to effectively measure the changes in parametric maps as an indication of treatment effectiveness. The HSIC-based feature extraction and dissimilarity measure used a kernel function to nonlinearly transform input vectors into a higher dimensional feature space and computed the population means in the new space, where enhanced group separability was ideally obtained. The results of the classification using the developed CAT system indicated an improvement of performance compared to a CAT system with basic features using histogram of intensity.

  19. A Comparison of Supervised Machine Learning Algorithms and Feature Vectors for MS Lesion Segmentation Using Multimodal Structural MRI

    Science.gov (United States)

    Sweeney, Elizabeth M.; Vogelstein, Joshua T.; Cuzzocreo, Jennifer L.; Calabresi, Peter A.; Reich, Daniel S.; Crainiceanu, Ciprian M.; Shinohara, Russell T.

    2014-01-01

    Machine learning is a popular method for mining and analyzing large collections of medical data. We focus on a particular problem from medical research, supervised multiple sclerosis (MS) lesion segmentation in structural magnetic resonance imaging (MRI). We examine the extent to which the choice of machine learning or classification algorithm and feature extraction function impacts the performance of lesion segmentation methods. As quantitative measures derived from structural MRI are important clinical tools for research into the pathophysiology and natural history of MS, the development of automated lesion segmentation methods is an active research field. Yet, little is known about what drives performance of these methods. We evaluate the performance of automated MS lesion segmentation methods, which consist of a supervised classification algorithm composed with a feature extraction function. These feature extraction functions act on the observed T1-weighted (T1-w), T2-weighted (T2-w) and fluid-attenuated inversion recovery (FLAIR) MRI voxel intensities. Each MRI study has a manual lesion segmentation that we use to train and validate the supervised classification algorithms. Our main finding is that the differences in predictive performance are due more to differences in the feature vectors, rather than the machine learning or classification algorithms. Features that incorporate information from neighboring voxels in the brain were found to increase performance substantially. For lesion segmentation, we conclude that it is better to use simple, interpretable, and fast algorithms, such as logistic regression, linear discriminant analysis, and quadratic discriminant analysis, and to develop the features to improve performance. PMID:24781953

  20. Automated Spirometry Quality Assurance: Supervised Learning From Multiple Experts.

    Science.gov (United States)

    Velickovski, Filip; Ceccaroni, Luigi; Marti, Robert; Burgos, Felip; Gistau, Concepcion; Alsina-Restoy, Xavier; Roca, Josep

    2018-01-01

    Forced spirometry testing is gradually becoming available across different healthcare tiers including primary care. It has been demonstrated in earlier work that commercially available spirometers are not fully able to assure the quality of individual spirometry manoeuvres. Thus, a need to expand the availability of high-quality spirometry assessment beyond specialist pulmonary centres has arisen. In this paper, we propose a method to select and optimise a classifier using supervised learning techniques by learning from previously classified forced spirometry tests from a group of experts. Such a method is able to take into account the shape of the curve as an expert would during visual inspection. We evaluated the final classifier on a dataset put aside for evaluation yielding an area under the receiver operating characteristic curve of 0.88 and specificities of 0.91 and 0.86 for sensitivities of 0.60 and 0.82. Furthermore, other specificities and sensitivities along the receiver operating characteristic curve were close to the level of the experts when compared against each-other, and better than an earlier rules-based method assessed on the same dataset. We foresee key benefits in raising diagnostic quality, saving time, reducing cost, and also improving remote care and monitoring services for patients with chronic respiratory diseases in the future if a clinical decision support system with the encapsulated classifier is to be integrated into the work-flow of forced spirometry testing.

  1. Supervised learning with restricted training sets: a generating functional analysis

    Energy Technology Data Exchange (ETDEWEB)

    Heimel, J.A.F.; Coolen, A.C.C. [Department of Mathematics, King' s College London, Strand, London (United Kingdom)

    2001-10-26

    We study the dynamics of supervised on-line learning of realizable tasks in feed-forward neural networks. We focus on the regime where the number of examples used for training is proportional to the number of input channels N. Using generating functional techniques from spin glass theory, we are able to average over the composition of the training set and transform the problem for N{yields}{infinity} to an effective single pattern system described completely by the student autocovariance, the student-teacher overlap and the student response function with exact closed equations. Our method applies to arbitrary learning rules, i.e., not necessarily of a gradient-descent type. The resulting exact macroscopic dynamical equations can be integrated without finite-size effects up to any degree of accuracy, but their main value is in providing an exact and simple starting point for analytical approximation schemes. Finally, we show how, in the region of absent anomalous response and using the hypothesis that (as in detailed balance systems) the short-time part of the various operators can be transformed away, one can describe the stationary state of the network successfully by a set of coupled equations involving only four scalar order parameters. (author)

  2. A numeric comparison of variable selection algorithms for supervised learning

    International Nuclear Information System (INIS)

    Palombo, G.; Narsky, I.

    2009-01-01

    Datasets in modern High Energy Physics (HEP) experiments are often described by dozens or even hundreds of input variables. Reducing a full variable set to a subset that most completely represents information about data is therefore an important task in analysis of HEP data. We compare various variable selection algorithms for supervised learning using several datasets such as, for instance, imaging gamma-ray Cherenkov telescope (MAGIC) data found at the UCI repository. We use classifiers and variable selection methods implemented in the statistical package StatPatternRecognition (SPR), a free open-source C++ package developed in the HEP community ( (http://sourceforge.net/projects/statpatrec/)). For each dataset, we select a powerful classifier and estimate its learning accuracy on variable subsets obtained by various selection algorithms. When possible, we also estimate the CPU time needed for the variable subset selection. The results of this analysis are compared with those published previously for these datasets using other statistical packages such as R and Weka. We show that the most accurate, yet slowest, method is a wrapper algorithm known as generalized sequential forward selection ('Add N Remove R') implemented in SPR.

  3. Competencies to enable learning-focused clinical supervision: a thematic analysis of the literature.

    Science.gov (United States)

    Pront, Leeanne; Gillham, David; Schuwirth, Lambert W T

    2016-04-01

    Clinical supervision is essential for development of health professional students and widely recognised as a significant factor influencing student learning. Although considered important, delivery is often founded on personal experience or a series of predetermined steps that offer standardised behavioural approaches. Such a view may limit the capacity to promote individualised student learning in complex clinical environments. The objective of this review was to develop a comprehensive understanding of what is considered 'good' clinical supervision, within health student education. The literature provides many perspectives, so collation and interpretation were needed to aid development and understanding for all clinicians required to perform clinical supervision within their daily practice. A comprehensive thematic literature review was carried out, which included a variety of health disciplines and geographical environments. Literature addressing 'good' clinical supervision consists primarily of descriptive qualitative research comprising mostly small studies that repeated descriptions of student and supervisor opinions of 'good' supervision. Synthesis and thematic analysis of the literature resulted in four 'competency' domains perceived to inform delivery of learning-focused or 'good' clinical supervision. Domains understood to promote student learning are co-dependent and include 'to partner', 'to nurture', 'to engage' and 'to facilitate meaning'. Clinical supervision is a complex phenomenon and establishing a comprehensive understanding across health disciplines can influence the future health workforce. The learning-focused clinical supervision domains presented here provide an alternative perspective of clinical supervision of health students. This paper is the first step in establishing a more comprehensive understanding of learning-focused clinical supervision, which may lead to development of competencies for clinical supervision. © 2016 John Wiley

  4. Supervised deep learning embeddings for the prediction of cervical cancer diagnosis

    Directory of Open Access Journals (Sweden)

    Kelwin Fernandes

    2018-05-01

    Full Text Available Cervical cancer remains a significant cause of mortality all around the world, even if it can be prevented and cured by removing affected tissues in early stages. Providing universal and efficient access to cervical screening programs is a challenge that requires identifying vulnerable individuals in the population, among other steps. In this work, we present a computationally automated strategy for predicting the outcome of the patient biopsy, given risk patterns from individual medical records. We propose a machine learning technique that allows a joint and fully supervised optimization of dimensionality reduction and classification models. We also build a model able to highlight relevant properties in the low dimensional space, to ease the classification of patients. We instantiated the proposed approach with deep learning architectures, and achieved accurate prediction results (top area under the curve AUC = 0.6875 which outperform previously developed methods, such as denoising autoencoders. Additionally, we explored some clinical findings from the embedding spaces, and we validated them through the medical literature, making them reliable for physicians and biomedical researchers.

  5. How Supervisor Experience Influences Trust, Supervision, and Trainee Learning: A Qualitative Study.

    Science.gov (United States)

    Sheu, Leslie; Kogan, Jennifer R; Hauer, Karen E

    2017-09-01

    Appropriate trust and supervision facilitate trainees' growth toward unsupervised practice. The authors investigated how supervisor experience influences trust, supervision, and subsequently trainee learning. In a two-phase qualitative inductive content analysis, phase one entailed reviewing 44 internal medicine resident and attending supervisor interviews from two institutions (July 2013 to September 2014) for themes on how supervisor experience influences trust and supervision. Three supervisor exemplars (early, developing, experienced) were developed and shared in phase two focus groups at a single institution, wherein 23 trainees validated the exemplars and discussed how each impacted learning (November 2015). Phase one: Four domains of trust and supervision varying with experience emerged: data, approach, perspective, clinical. Early supervisors were detail oriented and determined trust depending on task completion (data), were rule based (approach), drew on their experiences as trainees to guide supervision (perspective), and felt less confident clinically compared with more experienced supervisors (clinical). Experienced supervisors determined trust holistically (data), checked key aspects of patient care selectively and covertly (approach), reflected on individual experiences supervising (perspective), and felt comfortable managing clinical problems and gauging trainee abilities (clinical). Phase two: Trainees felt the exemplars reflected their experiences, described their preferences and learning needs shifting over time, and emphasized the importance of supervisor flexibility to match their learning needs. With experience, supervisors differ in their approach to trust and supervision. Supervisors need to trust themselves before being able to trust others. Trainees perceive these differences and seek supervision approaches that align with their learning needs.

  6. Exploiting unsupervised and supervised classification for segmentation of the pathological lung in CT

    International Nuclear Information System (INIS)

    Korfiatis, P; Costaridou, L; Kalogeropoulou, C; Petsas, T; Daoussis, D; Adonopoulos, A

    2009-01-01

    Delineation of lung fields in presence of diffuse lung diseases (DLPDs), such as interstitial pneumonias (IP), challenges segmentation algorithms. To deal with IP patterns affecting the lung border an automated image texture classification scheme is proposed. The proposed segmentation scheme is based on supervised texture classification between lung tissue (normal and abnormal) and surrounding tissue (pleura and thoracic wall) in the lung border region. This region is coarsely defined around an initial estimate of lung border, provided by means of Markov Radom Field modeling and morphological operations. Subsequently, a support vector machine classifier was trained to distinguish between the above two classes of tissue, using textural feature of gray scale and wavelet domains. 17 patients diagnosed with IP, secondary to connective tissue diseases were examined. Segmentation performance in terms of overlap was 0.924±0.021, and for shape differentiation mean, rms and maximum distance were 1.663±0.816, 2.334±1.574 and 8.0515±6.549 mm, respectively. An accurate, automated scheme is proposed for segmenting abnormal lung fields in HRC affected by IP

  7. Exploiting unsupervised and supervised classification for segmentation of the pathological lung in CT

    Science.gov (United States)

    Korfiatis, P.; Kalogeropoulou, C.; Daoussis, D.; Petsas, T.; Adonopoulos, A.; Costaridou, L.

    2009-07-01

    Delineation of lung fields in presence of diffuse lung diseases (DLPDs), such as interstitial pneumonias (IP), challenges segmentation algorithms. To deal with IP patterns affecting the lung border an automated image texture classification scheme is proposed. The proposed segmentation scheme is based on supervised texture classification between lung tissue (normal and abnormal) and surrounding tissue (pleura and thoracic wall) in the lung border region. This region is coarsely defined around an initial estimate of lung border, provided by means of Markov Radom Field modeling and morphological operations. Subsequently, a support vector machine classifier was trained to distinguish between the above two classes of tissue, using textural feature of gray scale and wavelet domains. 17 patients diagnosed with IP, secondary to connective tissue diseases were examined. Segmentation performance in terms of overlap was 0.924±0.021, and for shape differentiation mean, rms and maximum distance were 1.663±0.816, 2.334±1.574 and 8.0515±6.549 mm, respectively. An accurate, automated scheme is proposed for segmenting abnormal lung fields in HRC affected by IP

  8. SSC-EKE: Semi-Supervised Classification with Extensive Knowledge Exploitation.

    Science.gov (United States)

    Qian, Pengjiang; Xi, Chen; Xu, Min; Jiang, Yizhang; Su, Kuan-Hao; Wang, Shitong; Muzic, Raymond F

    2018-01-01

    We introduce a new, semi-supervised classification method that extensively exploits knowledge. The method has three steps. First, the manifold regularization mechanism, adapted from the Laplacian support vector machine (LapSVM), is adopted to mine the manifold structure embedded in all training data, especially in numerous label-unknown data. Meanwhile, by converting the labels into pairwise constraints, the pairwise constraint regularization formula (PCRF) is designed to compensate for the few but valuable labelled data. Second, by further combining the PCRF with the manifold regularization, the precise manifold and pairwise constraint jointly regularized formula (MPCJRF) is achieved. Third, by incorporating the MPCJRF into the framework of the conventional SVM, our approach, referred to as semi-supervised classification with extensive knowledge exploitation (SSC-EKE), is developed. The significance of our research is fourfold: 1) The MPCJRF is an underlying adjustment, with respect to the pairwise constraints, to the graph Laplacian enlisted for approximating the potential data manifold. This type of adjustment plays the correction role, as an unbiased estimation of the data manifold is difficult to obtain, whereas the pairwise constraints, converted from the given labels, have an overall high confidence level. 2) By transforming the values of the two terms in the MPCJRF such that they have the same range, with a trade-off factor varying within the invariant interval [0, 1), the appropriate impact of the pairwise constraints to the graph Laplacian can be self-adaptively determined. 3) The implication regarding extensive knowledge exploitation is embodied in SSC-EKE. That is, the labelled examples are used not only to control the empirical risk but also to constitute the MPCJRF. Moreover, all data, both labelled and unlabelled, are recruited for the model smoothness and manifold regularization. 4) The complete framework of SSC-EKE organically incorporates multiple

  9. The Practice of Supervision for Professional Learning: The Example of Future Forensic Specialists

    Science.gov (United States)

    Köpsén, Susanne; Nyström, Sofia

    2015-01-01

    Supervision intended to support learning is of great interest in professional knowledge development. No single definition governs the implementation and enactment of supervision because of different conditions, intentions, and pedagogical approaches. Uncertainty exists at a time when knowledge and methods are undergoing constant development. This…

  10. Baccalaureate nursing students' perceptions of learning and supervision in the clinical environment.

    Science.gov (United States)

    Dimitriadou, Maria; Papastavrou, Evridiki; Efstathiou, Georgios; Theodorou, Mamas

    2015-06-01

    This study is an exploration of nursing students' experiences within the clinical learning environment (CLE) and supervision provided in hospital settings. A total of 357 second-year nurse students from all universities in Cyprus participated in the study. Data were collected using the Clinical Learning Environment, Supervision and Nurse Teacher instrument. The dimension "supervisory relationship (mentor)", as well as the frequency of individualized supervision meetings, were found to be important variables in the students' clinical learning. However, no statistically-significant connection was established between successful mentor relationship and team supervision. The majority of students valued their mentor's supervision more highly than a nurse teacher's supervision toward the fulfillment of learning outcomes. The dimensions "premises of nursing care" and "premises of learning" were highly correlated, indicating that a key component of a quality clinical learning environment is the quality of care delivered. The results suggest the need to modify educational strategies that foster desirable learning for students in response to workplace demands. © 2014 Wiley Publishing Asia Pty Ltd.

  11. Indonesian name matching using machine learning supervised approach

    Science.gov (United States)

    Alifikri, Mohamad; Arif Bijaksana, Moch.

    2018-03-01

    Most existing name matching methods are developed for English language and so they cover the characteristics of this language. Up to this moment, there is no specific one has been designed and implemented for Indonesian names. The purpose of this thesis is to develop Indonesian name matching dataset as a contribution to academic research and to propose suitable feature set by utilizing combination of context of name strings and its permute-winkler score. Machine learning classification algorithms is taken as the method for performing name matching. Based on the experiments, by using tuned Random Forest algorithm and proposed features, there is an improvement of matching performance by approximately 1.7% and it is able to reduce until 70% misclassification result of the state of the arts methods. This improving performance makes the matching system more effective and reduces the risk of misclassified matches.

  12. Evaluation of Four Supervised Learning Methods for Benthic Habitat Mapping Using Backscatter from Multi-Beam Sonar

    Directory of Open Access Journals (Sweden)

    Jacquomo Monk

    2012-11-01

    Full Text Available An understanding of the distribution and extent of marine habitats is essential for the implementation of ecosystem-based management strategies. Historically this had been difficult in marine environments until the advancement of acoustic sensors. This study demonstrates the applicability of supervised learning techniques for benthic habitat characterization using angular backscatter response data. With the advancement of multibeam echo-sounder (MBES technology, full coverage datasets of physical structure over vast regions of the seafloor are now achievable. Supervised learning methods typically applied to terrestrial remote sensing provide a cost-effective approach for habitat characterization in marine systems. However the comparison of the relative performance of different classifiers using acoustic data is limited. Characterization of acoustic backscatter data from MBES using four different supervised learning methods to generate benthic habitat maps is presented. Maximum Likelihood Classifier (MLC, Quick, Unbiased, Efficient Statistical Tree (QUEST, Random Forest (RF and Support Vector Machine (SVM were evaluated to classify angular backscatter response into habitat classes using training data acquired from underwater video observations. Results for biota classifications indicated that SVM and RF produced the highest accuracies, followed by QUEST and MLC, respectively. The most important backscatter data were from the moderate incidence angles between 30° and 50°. This study presents initial results for understanding how acoustic backscatter from MBES can be optimized for the characterization of marine benthic biological habitats.

  13. Closing the loop: from paper to protein annotation using supervised Gene Ontology classification.

    Science.gov (United States)

    Gobeill, Julien; Pasche, Emilie; Vishnyakova, Dina; Ruch, Patrick

    2014-01-01

    Gene function curation of the literature with Gene Ontology (GO) concepts is one particularly time-consuming task in genomics, and the help from bioinformatics is highly requested to keep up with the flow of publications. In 2004, the first BioCreative challenge already designed a task of automatic GO concepts assignment from a full text. At this time, results were judged far from reaching the performances required by real curation workflows. In particular, supervised approaches produced the most disappointing results because of lack of training data. Ten years later, the available curation data have massively grown. In 2013, the BioCreative IV GO task revisited the automatic GO assignment task. For this issue, we investigated the power of our supervised classifier, GOCat. GOCat computes similarities between an input text and already curated instances contained in a knowledge base to infer GO concepts. The subtask A consisted in selecting GO evidence sentences for a relevant gene in a full text. For this, we designed a state-of-the-art supervised statistical approach, using a naïve Bayes classifier and the official training set, and obtained fair results. The subtask B consisted in predicting GO concepts from the previous output. For this, we applied GOCat and reached leading results, up to 65% for hierarchical recall in the top 20 outputted concepts. Contrary to previous competitions, machine learning has this time outperformed standard dictionary-based approaches. Thanks to BioCreative IV, we were able to design a complete workflow for curation: given a gene name and a full text, this system is able to select evidence sentences for curation and to deliver highly relevant GO concepts. Contrary to previous competitions, machine learning this time outperformed dictionary-based systems. Observed performances are sufficient for being used in a real semiautomatic curation workflow. GOCat is available at http://eagl.unige.ch/GOCat/. http://eagl.unige.ch/GOCat4FT/.

  14. Assessing Electronic Cigarette-Related Tweets for Sentiment and Content Using Supervised Machine Learning.

    Science.gov (United States)

    Cole-Lewis, Heather; Varghese, Arun; Sanders, Amy; Schwarz, Mary; Pugatch, Jillian; Augustson, Erik

    2015-08-25

    Electronic cigarettes (e-cigarettes) continue to be a growing topic among social media users, especially on Twitter. The ability to analyze conversations about e-cigarettes in real-time can provide important insight into trends in the public's knowledge, attitudes, and beliefs surrounding e-cigarettes, and subsequently guide public health interventions. Our aim was to establish a supervised machine learning algorithm to build predictive classification models that assess Twitter data for a range of factors related to e-cigarettes. Manual content analysis was conducted for 17,098 tweets. These tweets were coded for five categories: e-cigarette relevance, sentiment, user description, genre, and theme. Machine learning classification models were then built for each of these five categories, and word groupings (n-grams) were used to define the feature space for each classifier. Predictive performance scores for classification models indicated that the models correctly labeled the tweets with the appropriate variables between 68.40% and 99.34% of the time, and the percentage of maximum possible improvement over a random baseline that was achieved by the classification models ranged from 41.59% to 80.62%. Classifiers with the highest performance scores that also achieved the highest percentage of the maximum possible improvement over a random baseline were Policy/Government (performance: 0.94; % improvement: 80.62%), Relevance (performance: 0.94; % improvement: 75.26%), Ad or Promotion (performance: 0.89; % improvement: 72.69%), and Marketing (performance: 0.91; % improvement: 72.56%). The most appropriate word-grouping unit (n-gram) was 1 for the majority of classifiers. Performance continued to marginally increase with the size of the training dataset of manually annotated data, but eventually leveled off. Even at low dataset sizes of 4000 observations, performance characteristics were fairly sound. Social media outlets like Twitter can uncover real-time snapshots of

  15. Assessing Electronic Cigarette-Related Tweets for Sentiment and Content Using Supervised Machine Learning

    Science.gov (United States)

    Cole-Lewis, Heather; Varghese, Arun; Sanders, Amy; Schwarz, Mary; Pugatch, Jillian

    2015-01-01

    Background Electronic cigarettes (e-cigarettes) continue to be a growing topic among social media users, especially on Twitter. The ability to analyze conversations about e-cigarettes in real-time can provide important insight into trends in the public’s knowledge, attitudes, and beliefs surrounding e-cigarettes, and subsequently guide public health interventions. Objective Our aim was to establish a supervised machine learning algorithm to build predictive classification models that assess Twitter data for a range of factors related to e-cigarettes. Methods Manual content analysis was conducted for 17,098 tweets. These tweets were coded for five categories: e-cigarette relevance, sentiment, user description, genre, and theme. Machine learning classification models were then built for each of these five categories, and word groupings (n-grams) were used to define the feature space for each classifier. Results Predictive performance scores for classification models indicated that the models correctly labeled the tweets with the appropriate variables between 68.40% and 99.34% of the time, and the percentage of maximum possible improvement over a random baseline that was achieved by the classification models ranged from 41.59% to 80.62%. Classifiers with the highest performance scores that also achieved the highest percentage of the maximum possible improvement over a random baseline were Policy/Government (performance: 0.94; % improvement: 80.62%), Relevance (performance: 0.94; % improvement: 75.26%), Ad or Promotion (performance: 0.89; % improvement: 72.69%), and Marketing (performance: 0.91; % improvement: 72.56%). The most appropriate word-grouping unit (n-gram) was 1 for the majority of classifiers. Performance continued to marginally increase with the size of the training dataset of manually annotated data, but eventually leveled off. Even at low dataset sizes of 4000 observations, performance characteristics were fairly sound. Conclusions Social media outlets

  16. A bifurcation identifier for IV-OCT using orthogonal least squares and supervised machine learning.

    Science.gov (United States)

    Macedo, Maysa M G; Guimarães, Welingson V N; Galon, Micheli Z; Takimura, Celso K; Lemos, Pedro A; Gutierrez, Marco Antonio

    2015-12-01

    Intravascular optical coherence tomography (IV-OCT) is an in-vivo imaging modality based on the intravascular introduction of a catheter which provides a view of the inner wall of blood vessels with a spatial resolution of 10-20 μm. Recent studies in IV-OCT have demonstrated the importance of the bifurcation regions. Therefore, the development of an automated tool to classify hundreds of coronary OCT frames as bifurcation or nonbifurcation can be an important step to improve automated methods for atherosclerotic plaques quantification, stent analysis and co-registration between different modalities. This paper describes a fully automated method to identify IV-OCT frames in bifurcation regions. The method is divided into lumen detection; feature extraction; and classification, providing a lumen area quantification, geometrical features of the cross-sectional lumen and labeled slices. This classification method is a combination of supervised machine learning algorithms and feature selection using orthogonal least squares methods. Training and tests were performed in sets with a maximum of 1460 human coronary OCT frames. The lumen segmentation achieved a mean difference of lumen area of 0.11 mm(2) compared with manual segmentation, and the AdaBoost classifier presented the best result reaching a F-measure score of 97.5% using 104 features. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Applying Active Learning to Assertion Classification of Concepts in Clinical Text

    Science.gov (United States)

    Chen, Yukun; Mani, Subramani; Xu, Hua

    2012-01-01

    Supervised machine learning methods for clinical natural language processing (NLP) research require a large number of annotated samples, which are very expensive to build because of the involvement of physicians. Active learning, an approach that actively samples from a large pool, provides an alternative solution. Its major goal in classification is to reduce the annotation effort while maintaining the quality of the predictive model. However, few studies have investigated its uses in clinical NLP. This paper reports an application of active learning to a clinical text classification task: to determine the assertion status of clinical concepts. The annotated corpus for the assertion classification task in the 2010 i2b2/VA Clinical NLP Challenge was used in this study. We implemented several existing and newly developed active learning algorithms and assessed their uses. The outcome is reported in the global ALC score, based on the Area under the average Learning Curve of the AUC (Area Under the Curve) score. Results showed that when the same number of annotated samples was used, active learning strategies could generate better classification models (best ALC – 0.7715) than the passive learning method (random sampling) (ALC – 0.7411). Moreover, to achieve the same classification performance, active learning strategies required fewer samples than the random sampling method. For example, to achieve an AUC of 0.79, the random sampling method used 32 samples, while our best active learning algorithm required only 12 samples, a reduction of 62.5% in manual annotation effort. PMID:22127105

  18. Predicting the Failure of Dental Implants Using Supervised Learning Techniques

    Directory of Open Access Journals (Sweden)

    Chia-Hui Liu

    2018-05-01

    Full Text Available Prosthodontic treatment has been a crucial part of dental treatment for patients with full mouth rehabilitation. Dental implant surgeries that replace conventional dentures using titanium fixtures have become the top choice. However, because of the wide-ranging scope of implant surgeries, patients’ body conditions, surgeons’ experience, and the choice of implant system should be considered during treatment. The higher price charged by dental implant treatments compared to conventional dentures has led to a rush among medical staff; therefore, the future impact of surgeries has not been analyzed in detail, resulting in medial disputes. Previous literature on the success factors of dental implants is mainly focused on single factors such as patients’ systemic diseases, operation methods, or prosthesis types for statistical correlation significance analysis. This study developed a prediction model for providing an early warning mechanism to reduce the chances of dental implant failure. We collected the clinical data of patients who received artificial dental implants at the case hospital for a total of 8 categories and 20 variables. Supervised learning techniques such as decision tree (DT, support vector machines, logistic regressions, and classifier ensembles (i.e., Bagging and AdaBoost were used to analyze the prediction of the failure of dental implants. The results show that DT with both Bagging and Adaboost techniques possesses the highest prediction performance for the failure of dental implant (area under the receiver operating characteristic curve, AUC: 0.741; the analysis also revealed that the implant systems affect dental implant failure. The model can help clinical surgeons to reduce medical failures by choosing the optimal implant system and prosthodontics treatments for their patients.

  19. I’m just thinking - How learning opportunities are created in doctoral supervision

    DEFF Research Database (Denmark)

    Kobayashi, Sofie; Berge, Maria; Grout, Brian William Wilson

    for learning. Earlier research into doctoral supervision has been rather vague on how doctoral students learn to carry out research. Empirically, we have based the study on four cases each with one doctoral student and their supervisors. The supervision sessions were captured on video and audio to provide...... for verbatim transcripts that were subsequently analysed. Our results illustrate how supervisors and doctoral students create learning opportunities by varying aspects of research in the discussion. Better understanding of this mechanism whereby learning opportunities are created by bringing aspects......With this paper we aim to contribute towards an understanding of learning dynamics in doctoral supervision by analysing how learning opportunities are created in the interaction. We analyse interaction between supervisors and doctoral students using the notion of experiencing variation as a key...

  20. Accuracy Analysis Comparison of Supervised Classification Methods for Anomaly Detection on Levees Using SAR Imagery

    Directory of Open Access Journals (Sweden)

    Ramakalavathi Marapareddy

    2017-10-01

    Full Text Available This paper analyzes the use of a synthetic aperture radar (SAR imagery to support levee condition assessment by detecting potential slide areas in an efficient and cost-effective manner. Levees are prone to a failure in the form of internal erosion within the earthen structure and landslides (also called slough or slump slides. If not repaired, slough slides may lead to levee failures. In this paper, we compare the accuracy of the supervised classification methods minimum distance (MD using Euclidean and Mahalanobis distance, support vector machine (SVM, and maximum likelihood (ML, using SAR technology to detect slough slides on earthen levees. In this work, the effectiveness of the algorithms was demonstrated using quad-polarimetric L-band SAR imagery from the NASA Jet Propulsion Laboratory’s (JPL’s uninhabited aerial vehicle synthetic aperture radar (UAVSAR. The study area is a section of the lower Mississippi River valley in the Southern USA, where earthen flood control levees are maintained by the US Army Corps of Engineers.

  1. Automated segmentation of geographic atrophy in fundus autofluorescence images using supervised pixel classification.

    Science.gov (United States)

    Hu, Zhihong; Medioni, Gerard G; Hernandez, Matthias; Sadda, Srinivas R

    2015-01-01

    Geographic atrophy (GA) is a manifestation of the advanced or late stage of age-related macular degeneration (AMD). AMD is the leading cause of blindness in people over the age of 65 in the western world. The purpose of this study is to develop a fully automated supervised pixel classification approach for segmenting GA, including uni- and multifocal patches in fundus autofluorescene (FAF) images. The image features include region-wise intensity measures, gray-level co-occurrence matrix measures, and Gaussian filter banks. A [Formula: see text]-nearest-neighbor pixel classifier is applied to obtain a GA probability map, representing the likelihood that the image pixel belongs to GA. Sixteen randomly chosen FAF images were obtained from 16 subjects with GA. The algorithm-defined GA regions are compared with manual delineation performed by a certified image reading center grader. Eight-fold cross-validation is applied to evaluate the algorithm performance. The mean overlap ratio (OR), area correlation (Pearson's [Formula: see text]), accuracy (ACC), true positive rate (TPR), specificity (SPC), positive predictive value (PPV), and false discovery rate (FDR) between the algorithm- and manually defined GA regions are [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text], respectively.

  2. Fully Decentralized Semi-supervised Learning via Privacy-preserving Matrix Completion.

    Science.gov (United States)

    Fierimonte, Roberto; Scardapane, Simone; Uncini, Aurelio; Panella, Massimo

    2016-08-26

    Distributed learning refers to the problem of inferring a function when the training data are distributed among different nodes. While significant work has been done in the contexts of supervised and unsupervised learning, the intermediate case of Semi-supervised learning in the distributed setting has received less attention. In this paper, we propose an algorithm for this class of problems, by extending the framework of manifold regularization. The main component of the proposed algorithm consists of a fully distributed computation of the adjacency matrix of the training patterns. To this end, we propose a novel algorithm for low-rank distributed matrix completion, based on the framework of diffusion adaptation. Overall, the distributed Semi-supervised algorithm is efficient and scalable, and it can preserve privacy by the inclusion of flexible privacy-preserving mechanisms for similarity computation. The experimental results and comparison on a wide range of standard Semi-supervised benchmarks validate our proposal.

  3. Supervised pre-processing approaches in multiple class variables classification for fish recruitment forecasting

    KAUST Repository

    Fernandes, José Antonio

    2013-02-01

    A multi-species approach to fisheries management requires taking into account the interactions between species in order to improve recruitment forecasting of the fish species. Recent advances in Bayesian networks direct the learning of models with several interrelated variables to be forecasted simultaneously. These models are known as multi-dimensional Bayesian network classifiers (MDBNs). Pre-processing steps are critical for the posterior learning of the model in these kinds of domains. Therefore, in the present study, a set of \\'state-of-the-art\\' uni-dimensional pre-processing methods, within the categories of missing data imputation, feature discretization and feature subset selection, are adapted to be used with MDBNs. A framework that includes the proposed multi-dimensional supervised pre-processing methods, coupled with a MDBN classifier, is tested with synthetic datasets and the real domain of fish recruitment forecasting. The correctly forecasting of three fish species (anchovy, sardine and hake) simultaneously is doubled (from 17.3% to 29.5%) using the multi-dimensional approach in comparison to mono-species models. The probability assessments also show high improvement reducing the average error (estimated by means of Brier score) from 0.35 to 0.27. Finally, these differences are superior to the forecasting of species by pairs. © 2012 Elsevier Ltd.

  4. Application of semi-supervised deep learning to lung sound analysis.

    Science.gov (United States)

    Chamberlain, Daniel; Kodgule, Rahul; Ganelin, Daniela; Miglani, Vivek; Fletcher, Richard Ribon

    2016-08-01

    The analysis of lung sounds, collected through auscultation, is a fundamental component of pulmonary disease diagnostics for primary care and general patient monitoring for telemedicine. Despite advances in computation and algorithms, the goal of automated lung sound identification and classification has remained elusive. Over the past 40 years, published work in this field has demonstrated only limited success in identifying lung sounds, with most published studies using only a small numbers of patients (typically Ndeep learning algorithm for automatically classify lung sounds from a relatively large number of patients (N=284). Focusing on the two most common lung sounds, wheeze and crackle, we present results from 11,627 sound files recorded from 11 different auscultation locations on these 284 patients with pulmonary disease. 890 of these sound files were labeled to evaluate the model, which is significantly larger than previously published studies. Data was collected with a custom mobile phone application and a low-cost (US$30) electronic stethoscope. On this data set, our algorithm achieves ROC curves with AUCs of 0.86 for wheeze and 0.74 for crackle. Most importantly, this study demonstrates how semi-supervised deep learning can be used with larger data sets without requiring extensive labeling of data.

  5. Attribute Learning for SAR Image Classification

    Directory of Open Access Journals (Sweden)

    Chu He

    2017-04-01

    Full Text Available This paper presents a classification approach based on attribute learning for high spatial resolution Synthetic Aperture Radar (SAR images. To explore the representative and discriminative attributes of SAR images, first, an iterative unsupervised algorithm is designed to cluster in the low-level feature space, where the maximum edge response and the ratio of mean-to-variance are included; a cross-validation step is applied to prevent overfitting. Second, the most discriminative clustering centers are sorted out to construct an attribute dictionary. By resorting to the attribute dictionary, a representation vector describing certain categories in the SAR image can be generated, which in turn is used to perform the classifying task. The experiments conducted on TerraSAR-X images indicate that those learned attributes have strong visual semantics, which are characterized by bright and dark spots, stripes, or their combinations. The classification method based on these learned attributes achieves better results.

  6. Deep transfer learning for automatic target classification: MWIR to LWIR

    Science.gov (United States)

    Ding, Zhengming; Nasrabadi, Nasser; Fu, Yun

    2016-05-01

    Publisher's Note: This paper, originally published on 5/12/2016, was replaced with a corrected/revised version on 5/18/2016. If you downloaded the original PDF but are unable to access the revision, please contact SPIE Digital Library Customer Service for assistance. When dealing with sparse or no labeled data in the target domain, transfer learning shows its appealing performance by borrowing the supervised knowledge from external domains. Recently deep structure learning has been exploited in transfer learning due to its attractive power in extracting effective knowledge through multi-layer strategy, so that deep transfer learning is promising to address the cross-domain mismatch. In general, cross-domain disparity can be resulted from the difference between source and target distributions or different modalities, e.g., Midwave IR (MWIR) and Longwave IR (LWIR). In this paper, we propose a Weighted Deep Transfer Learning framework for automatic target classification through a task-driven fashion. Specifically, deep features and classifier parameters are obtained simultaneously for optimal classification performance. In this way, the proposed deep structures can extract more effective features with the guidance of the classifier performance; on the other hand, the classifier performance is further improved since it is optimized on more discriminative features. Furthermore, we build a weighted scheme to couple source and target output by assigning pseudo labels to target data, therefore we can transfer knowledge from source (i.e., MWIR) to target (i.e., LWIR). Experimental results on real databases demonstrate the superiority of the proposed algorithm by comparing with others.

  7. Galaxy Classification using Machine Learning

    Science.gov (United States)

    Fowler, Lucas; Schawinski, Kevin; Brandt, Ben-Elias; widmer, Nicole

    2017-01-01

    We present our current research into the use of machine learning to classify galaxy imaging data with various convolutional neural network configurations in TensorFlow. We are investigating how five-band Sloan Digital Sky Survey imaging data can be used to train on physical properties such as redshift, star formation rate, mass and morphology. We also investigate the performance of artificially redshifted images in recovering physical properties as image quality degrades.

  8. SU-E-J-107: Supervised Learning Model of Aligned Collagen for Human Breast Carcinoma Prognosis

    International Nuclear Information System (INIS)

    Bredfeldt, J; Liu, Y; Conklin, M; Keely, P; Eliceiri, K; Mackie, T

    2014-01-01

    Purpose: Our goal is to develop and apply a set of optical and computational tools to enable large-scale investigations of the interaction between collagen and tumor cells. Methods: We have built a novel imaging system for automating the capture of whole-slide second harmonic generation (SHG) images of collagen in registry with bright field (BF) images of hematoxylin and eosin stained tissue. To analyze our images, we have integrated a suite of supervised learning tools that semi-automatically model and score collagen interactions with tumor cells via a variety of metrics, a method we call Electronic Tumor Associated Collagen Signatures (eTACS). This group of tools first segments regions of epithelial cells and collagen fibers from BF and SHG images respectively. We then associate fibers with groups of epithelial cells and finally compute features based on the angle of interaction and density of the collagen surrounding the epithelial cell clusters. These features are then processed with a support vector machine to separate cancer patients into high and low risk groups. Results: We validated our model by showing that eTACS produces classifications that have statistically significant correlation with manual classifications. In addition, our system generated classification scores that accurately predicted breast cancer patient survival in a cohort of 196 patients. Feature rank analysis revealed that TACS positive fibers are more well aligned with each other, generally lower density, and terminate within or near groups of epithelial cells. Conclusion: We are working to apply our model to predict survival in larger cohorts of breast cancer patients with a diversity of breast cancer types, predict response to treatments such as COX2 inhibitors, and to study collagen architecture changes in other cancer types. In the future, our system may be used to provide metastatic potential information to cancer patients to augment existing clinical assays

  9. SU-E-J-107: Supervised Learning Model of Aligned Collagen for Human Breast Carcinoma Prognosis

    Energy Technology Data Exchange (ETDEWEB)

    Bredfeldt, J; Liu, Y; Conklin, M; Keely, P; Eliceiri, K; Mackie, T [University of Wisconsin, Madison, WI (United States)

    2014-06-01

    Purpose: Our goal is to develop and apply a set of optical and computational tools to enable large-scale investigations of the interaction between collagen and tumor cells. Methods: We have built a novel imaging system for automating the capture of whole-slide second harmonic generation (SHG) images of collagen in registry with bright field (BF) images of hematoxylin and eosin stained tissue. To analyze our images, we have integrated a suite of supervised learning tools that semi-automatically model and score collagen interactions with tumor cells via a variety of metrics, a method we call Electronic Tumor Associated Collagen Signatures (eTACS). This group of tools first segments regions of epithelial cells and collagen fibers from BF and SHG images respectively. We then associate fibers with groups of epithelial cells and finally compute features based on the angle of interaction and density of the collagen surrounding the epithelial cell clusters. These features are then processed with a support vector machine to separate cancer patients into high and low risk groups. Results: We validated our model by showing that eTACS produces classifications that have statistically significant correlation with manual classifications. In addition, our system generated classification scores that accurately predicted breast cancer patient survival in a cohort of 196 patients. Feature rank analysis revealed that TACS positive fibers are more well aligned with each other, generally lower density, and terminate within or near groups of epithelial cells. Conclusion: We are working to apply our model to predict survival in larger cohorts of breast cancer patients with a diversity of breast cancer types, predict response to treatments such as COX2 inhibitors, and to study collagen architecture changes in other cancer types. In the future, our system may be used to provide metastatic potential information to cancer patients to augment existing clinical assays.

  10. Voice based gender classification using machine learning

    Science.gov (United States)

    Raahul, A.; Sapthagiri, R.; Pankaj, K.; Vijayarajan, V.

    2017-11-01

    Gender identification is one of the major problem speech analysis today. Tracing the gender from acoustic data i.e., pitch, median, frequency etc. Machine learning gives promising results for classification problem in all the research domains. There are several performance metrics to evaluate algorithms of an area. Our Comparative model algorithm for evaluating 5 different machine learning algorithms based on eight different metrics in gender classification from acoustic data. Agenda is to identify gender, with five different algorithms: Linear Discriminant Analysis (LDA), K-Nearest Neighbour (KNN), Classification and Regression Trees (CART), Random Forest (RF), and Support Vector Machine (SVM) on basis of eight different metrics. The main parameter in evaluating any algorithms is its performance. Misclassification rate must be less in classification problems, which says that the accuracy rate must be high. Location and gender of the person have become very crucial in economic markets in the form of AdSense. Here with this comparative model algorithm, we are trying to assess the different ML algorithms and find the best fit for gender classification of acoustic data.

  11. Learning Microbial Community Structures with Supervised and Unsupervised Non-negative Matrix Factorization.

    Science.gov (United States)

    Cai, Yun; Gu, Hong; Kenney, Toby

    2017-08-31

    Learning the structure of microbial communities is critical in understanding the different community structures and functions of microbes in distinct individuals. We view microbial communities as consisting of many subcommunities which are formed by certain groups of microbes functionally dependent on each other. The focus of this paper is on methods for extracting the subcommunities from the data, in particular Non-Negative Matrix Factorization (NMF). Our methods can be applied to both OTU data and functional metagenomic data. We apply the existing unsupervised NMF method and also develop a new supervised NMF method for extracting interpretable information from classification problems. The relevance of the subcommunities identified by NMF is demonstrated by their excellent performance for classification. Through three data examples, we demonstrate how to interpret the features identified by NMF to draw meaningful biological conclusions and discover hitherto unidentified patterns in the data. Comparing whole metagenomes of various mammals, (Muegge et al., Science 332:970-974, 2011), the biosynthesis of macrolides pathway is found in hindgut-fermenting herbivores, but not carnivores. This is consistent with results in veterinary science that macrolides should not be given to non-ruminant herbivores. For time series microbiome data from various body sites (Caporaso et al., Genome Biol 12:50, 2011), a shift in the microbial communities is identified for one individual. The shift occurs at around the same time in the tongue and gut microbiomes, indicating that the shift is a genuine biological trait, rather than an artefact of the method. For whole metagenome data from IBD patients and healthy controls (Qin et al., Nature 464:59-65, 2010), we identify differences in a number of pathways (some known, others new). NMF is a powerful tool for identifying the key features of microbial communities. These identified features can not only be used to perform difficult

  12. PHOTOMETRIC SUPERNOVA CLASSIFICATION WITH MACHINE LEARNING

    International Nuclear Information System (INIS)

    Lochner, Michelle; Peiris, Hiranya V.; Lahav, Ofer; Winter, Max K.; McEwen, Jason D.

    2016-01-01

    Automated photometric supernova classification has become an active area of research in recent years in light of current and upcoming imaging surveys such as the Dark Energy Survey (DES) and the Large Synoptic Survey Telescope, given that spectroscopic confirmation of type for all supernovae discovered will be impossible. Here, we develop a multi-faceted classification pipeline, combining existing and new approaches. Our pipeline consists of two stages: extracting descriptive features from the light curves and classification using a machine learning algorithm. Our feature extraction methods vary from model-dependent techniques, namely SALT2 fits, to more independent techniques that fit parametric models to curves, to a completely model-independent wavelet approach. We cover a range of representative machine learning algorithms, including naive Bayes, k -nearest neighbors, support vector machines, artificial neural networks, and boosted decision trees (BDTs). We test the pipeline on simulated multi-band DES light curves from the Supernova Photometric Classification Challenge. Using the commonly used area under the curve (AUC) of the Receiver Operating Characteristic as a metric, we find that the SALT2 fits and the wavelet approach, with the BDTs algorithm, each achieve an AUC of 0.98, where 1 represents perfect classification. We find that a representative training set is essential for good classification, whatever the feature set or algorithm, with implications for spectroscopic follow-up. Importantly, we find that by using either the SALT2 or the wavelet feature sets with a BDT algorithm, accurate classification is possible purely from light curve data, without the need for any redshift information.

  13. PHOTOMETRIC SUPERNOVA CLASSIFICATION WITH MACHINE LEARNING

    Energy Technology Data Exchange (ETDEWEB)

    Lochner, Michelle; Peiris, Hiranya V.; Lahav, Ofer; Winter, Max K. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); McEwen, Jason D., E-mail: dr.michelle.lochner@gmail.com [Mullard Space Science Laboratory, University College London, Surrey RH5 6NT (United Kingdom)

    2016-08-01

    Automated photometric supernova classification has become an active area of research in recent years in light of current and upcoming imaging surveys such as the Dark Energy Survey (DES) and the Large Synoptic Survey Telescope, given that spectroscopic confirmation of type for all supernovae discovered will be impossible. Here, we develop a multi-faceted classification pipeline, combining existing and new approaches. Our pipeline consists of two stages: extracting descriptive features from the light curves and classification using a machine learning algorithm. Our feature extraction methods vary from model-dependent techniques, namely SALT2 fits, to more independent techniques that fit parametric models to curves, to a completely model-independent wavelet approach. We cover a range of representative machine learning algorithms, including naive Bayes, k -nearest neighbors, support vector machines, artificial neural networks, and boosted decision trees (BDTs). We test the pipeline on simulated multi-band DES light curves from the Supernova Photometric Classification Challenge. Using the commonly used area under the curve (AUC) of the Receiver Operating Characteristic as a metric, we find that the SALT2 fits and the wavelet approach, with the BDTs algorithm, each achieve an AUC of 0.98, where 1 represents perfect classification. We find that a representative training set is essential for good classification, whatever the feature set or algorithm, with implications for spectroscopic follow-up. Importantly, we find that by using either the SALT2 or the wavelet feature sets with a BDT algorithm, accurate classification is possible purely from light curve data, without the need for any redshift information.

  14. Optimal Subset Selection of Time-Series MODIS Images and Sample Data Transfer with Random Forests for Supervised Classification Modelling.

    Science.gov (United States)

    Zhou, Fuqun; Zhang, Aining

    2016-10-25

    Nowadays, various time-series Earth Observation data with multiple bands are freely available, such as Moderate Resolution Imaging Spectroradiometer (MODIS) datasets including 8-day composites from NASA, and 10-day composites from the Canada Centre for Remote Sensing (CCRS). It is challenging to efficiently use these time-series MODIS datasets for long-term environmental monitoring due to their vast volume and information redundancy. This challenge will be greater when Sentinel 2-3 data become available. Another challenge that researchers face is the lack of in-situ data for supervised modelling, especially for time-series data analysis. In this study, we attempt to tackle the two important issues with a case study of land cover mapping using CCRS 10-day MODIS composites with the help of Random Forests' features: variable importance, outlier identification. The variable importance feature is used to analyze and select optimal subsets of time-series MODIS imagery for efficient land cover mapping, and the outlier identification feature is utilized for transferring sample data available from one year to an adjacent year for supervised classification modelling. The results of the case study of agricultural land cover classification at a regional scale show that using only about a half of the variables we can achieve land cover classification accuracy close to that generated using the full dataset. The proposed simple but effective solution of sample transferring could make supervised modelling possible for applications lacking sample data.

  15. An Active Learning Framework for Hyperspectral Image Classification Using Hierarchical Segmentation

    Science.gov (United States)

    Zhang, Zhou; Pasolli, Edoardo; Crawford, Melba M.; Tilton, James C.

    2015-01-01

    Augmenting spectral data with spatial information for image classification has recently gained significant attention, as classification accuracy can often be improved by extracting spatial information from neighboring pixels. In this paper, we propose a new framework in which active learning (AL) and hierarchical segmentation (HSeg) are combined for spectral-spatial classification of hyperspectral images. The spatial information is extracted from a best segmentation obtained by pruning the HSeg tree using a new supervised strategy. The best segmentation is updated at each iteration of the AL process, thus taking advantage of informative labeled samples provided by the user. The proposed strategy incorporates spatial information in two ways: 1) concatenating the extracted spatial features and the original spectral features into a stacked vector and 2) extending the training set using a self-learning-based semi-supervised learning (SSL) approach. Finally, the two strategies are combined within an AL framework. The proposed framework is validated with two benchmark hyperspectral datasets. Higher classification accuracies are obtained by the proposed framework with respect to five other state-of-the-art spectral-spatial classification approaches. Moreover, the effectiveness of the proposed pruning strategy is also demonstrated relative to the approaches based on a fixed segmentation.

  16. Integrative gene network construction to analyze cancer recurrence using semi-supervised learning.

    Science.gov (United States)

    Park, Chihyun; Ahn, Jaegyoon; Kim, Hyunjin; Park, Sanghyun

    2014-01-01

    The prognosis of cancer recurrence is an important research area in bioinformatics and is challenging due to the small sample sizes compared to the vast number of genes. There have been several attempts to predict cancer recurrence. Most studies employed a supervised approach, which uses only a few labeled samples. Semi-supervised learning can be a great alternative to solve this problem. There have been few attempts based on manifold assumptions to reveal the detailed roles of identified cancer genes in recurrence. In order to predict cancer recurrence, we proposed a novel semi-supervised learning algorithm based on a graph regularization approach. We transformed the gene expression data into a graph structure for semi-supervised learning and integrated protein interaction data with the gene expression data to select functionally-related gene pairs. Then, we predicted the recurrence of cancer by applying a regularization approach to the constructed graph containing both labeled and unlabeled nodes. The average improvement rate of accuracy for three different cancer datasets was 24.9% compared to existing supervised and semi-supervised methods. We performed functional enrichment on the gene networks used for learning. We identified that those gene networks are significantly associated with cancer-recurrence-related biological functions. Our algorithm was developed with standard C++ and is available in Linux and MS Windows formats in the STL library. The executable program is freely available at: http://embio.yonsei.ac.kr/~Park/ssl.php.

  17. Integrative gene network construction to analyze cancer recurrence using semi-supervised learning.

    Directory of Open Access Journals (Sweden)

    Chihyun Park

    Full Text Available BACKGROUND: The prognosis of cancer recurrence is an important research area in bioinformatics and is challenging due to the small sample sizes compared to the vast number of genes. There have been several attempts to predict cancer recurrence. Most studies employed a supervised approach, which uses only a few labeled samples. Semi-supervised learning can be a great alternative to solve this problem. There have been few attempts based on manifold assumptions to reveal the detailed roles of identified cancer genes in recurrence. RESULTS: In order to predict cancer recurrence, we proposed a novel semi-supervised learning algorithm based on a graph regularization approach. We transformed the gene expression data into a graph structure for semi-supervised learning and integrated protein interaction data with the gene expression data to select functionally-related gene pairs. Then, we predicted the recurrence of cancer by applying a regularization approach to the constructed graph containing both labeled and unlabeled nodes. CONCLUSIONS: The average improvement rate of accuracy for three different cancer datasets was 24.9% compared to existing supervised and semi-supervised methods. We performed functional enrichment on the gene networks used for learning. We identified that those gene networks are significantly associated with cancer-recurrence-related biological functions. Our algorithm was developed with standard C++ and is available in Linux and MS Windows formats in the STL library. The executable program is freely available at: http://embio.yonsei.ac.kr/~Park/ssl.php.

  18. Discriminative Nonlinear Analysis Operator Learning: When Cosparse Model Meets Image Classification.

    Science.gov (United States)

    Wen, Zaidao; Hou, Biao; Jiao, Licheng

    2017-05-03

    Linear synthesis model based dictionary learning framework has achieved remarkable performances in image classification in the last decade. Behaved as a generative feature model, it however suffers from some intrinsic deficiencies. In this paper, we propose a novel parametric nonlinear analysis cosparse model (NACM) with which a unique feature vector will be much more efficiently extracted. Additionally, we derive a deep insight to demonstrate that NACM is capable of simultaneously learning the task adapted feature transformation and regularization to encode our preferences, domain prior knowledge and task oriented supervised information into the features. The proposed NACM is devoted to the classification task as a discriminative feature model and yield a novel discriminative nonlinear analysis operator learning framework (DNAOL). The theoretical analysis and experimental performances clearly demonstrate that DNAOL will not only achieve the better or at least competitive classification accuracies than the state-of-the-art algorithms but it can also dramatically reduce the time complexities in both training and testing phases.

  19. Hyperspectral Image Classification Using Discriminative Dictionary Learning

    International Nuclear Information System (INIS)

    Zongze, Y; Hao, S; Kefeng, J; Huanxin, Z

    2014-01-01

    The hyperspectral image (HSI) processing community has witnessed a surge of papers focusing on the utilization of sparse prior for effective HSI classification. In sparse representation based HSI classification, there are two phases: sparse coding with an over-complete dictionary and classification. In this paper, we first apply a novel fisher discriminative dictionary learning method, which capture the relative difference in different classes. The competitive selection strategy ensures that atoms in the resulting over-complete dictionary are the most discriminative. Secondly, motivated by the assumption that spatially adjacent samples are statistically related and even belong to the same materials (same class), we propose a majority voting scheme incorporating contextual information to predict the category label. Experiment results show that the proposed method can effectively strengthen relative discrimination of the constructed dictionary, and incorporating with the majority voting scheme achieve generally an improved prediction performance

  20. An efficient flow-based botnet detection using supervised machine learning

    DEFF Research Database (Denmark)

    Stevanovic, Matija; Pedersen, Jens Myrup

    2014-01-01

    Botnet detection represents one of the most crucial prerequisites of successful botnet neutralization. This paper explores how accurate and timely detection can be achieved by using supervised machine learning as the tool of inferring about malicious botnet traffic. In order to do so, the paper...... introduces a novel flow-based detection system that relies on supervised machine learning for identifying botnet network traffic. For use in the system we consider eight highly regarded machine learning algorithms, indicating the best performing one. Furthermore, the paper evaluates how much traffic needs...... to accurately and timely detect botnet traffic using purely flow-based traffic analysis and supervised machine learning. Additionally, the results show that in order to achieve accurate detection traffic flows need to be monitored for only a limited time period and number of packets per flow. This indicates...

  1. Doctoral learning: a case for a cohort model of supervision and support

    Directory of Open Access Journals (Sweden)

    Naydene de Lange

    2011-01-01

    Full Text Available We document the efforts of the faculty of education of a large research-oriented university in supporting doctoral learning. The development of a space for doctoral learning is in line with the need to develop a community of researchers in South Africa. We describe the historical origins of this cohort model of doctoral supervision and support, draw on literature around doctoral learning, and analyse a cohort of doctoral students' evaluation of the seminarsoverthree years. The findings indicate that the model has great value in developing scholarship and reflective practice in candidates, in providing support and supervision, and in sustaining students towards the completion of their doctorates.

  2. Australia's Supervising Teachers: Motivators and Challenges to Inform Professional Learning

    Science.gov (United States)

    Nielsen, Wendy; Mena, Juanjo; Clarke, Anthony; O'Shea, Sarah; Hoban, Garry; Collins, John

    2017-01-01

    This paper offers an overview of what motivates and challenges Australian supervising teachers to work with preservice teachers in their classrooms. In the contemporary Australian context of new National Professional Standards for Teachers, a new national curriculum and new standards for Initial Teacher Education programs, what motivates and…

  3. Postgraduate supervision at an open distance e-learning institution ...

    African Journals Online (AJOL)

    Effective postgraduate supervision is a concern at universities worldwide, even under optimal conditions where post-graduate students are studying full-time. Universities are being pressured by their governments to increase the throughput of postgraduates where there is a need for supervisory guidance in order to produce ...

  4. E-LEARNING TOOLS: STRUCTURE, CONTENT, CLASSIFICATION

    Directory of Open Access Journals (Sweden)

    Yuliya H. Loboda

    2012-05-01

    Full Text Available The article analyses the problems of organization of educational process with use of electronic means of education. Specifies the definition of "electronic learning", their structure and content. Didactic principles are considered, which are the basis of their creation and use. Given the detailed characteristics of e-learning tools for methodological purposes. On the basis of the allocated pedagogical problems of the use of electronic means of education presented and complemented by their classification, namely the means of theoretical and technological training, means of practical training, support tools, and comprehensive facilities.

  5. Cancer survival analysis using semi-supervised learning method based on Cox and AFT models with L1/2 regularization.

    Science.gov (United States)

    Liang, Yong; Chai, Hua; Liu, Xiao-Ying; Xu, Zong-Ben; Zhang, Hai; Leung, Kwong-Sak

    2016-03-01

    One of the most important objectives of the clinical cancer research is to diagnose cancer more accurately based on the patients' gene expression profiles. Both Cox proportional hazards model (Cox) and accelerated failure time model (AFT) have been widely adopted to the high risk and low risk classification or survival time prediction for the patients' clinical treatment. Nevertheless, two main dilemmas limit the accuracy of these prediction methods. One is that the small sample size and censored data remain a bottleneck for training robust and accurate Cox classification model. In addition to that, similar phenotype tumours and prognoses are actually completely different diseases at the genotype and molecular level. Thus, the utility of the AFT model for the survival time prediction is limited when such biological differences of the diseases have not been previously identified. To try to overcome these two main dilemmas, we proposed a novel semi-supervised learning method based on the Cox and AFT models to accurately predict the treatment risk and the survival time of the patients. Moreover, we adopted the efficient L1/2 regularization approach in the semi-supervised learning method to select the relevant genes, which are significantly associated with the disease. The results of the simulation experiments show that the semi-supervised learning model can significant improve the predictive performance of Cox and AFT models in survival analysis. The proposed procedures have been successfully applied to four real microarray gene expression and artificial evaluation datasets. The advantages of our proposed semi-supervised learning method include: 1) significantly increase the available training samples from censored data; 2) high capability for identifying the survival risk classes of patient in Cox model; 3) high predictive accuracy for patients' survival time in AFT model; 4) strong capability of the relevant biomarker selection. Consequently, our proposed semi-supervised

  6. A new tool for supervised classification of satellite images available on web servers: Google Maps as a case study

    Science.gov (United States)

    García-Flores, Agustín.; Paz-Gallardo, Abel; Plaza, Antonio; Li, Jun

    2016-10-01

    This paper describes a new web platform dedicated to the classification of satellite images called Hypergim. The current implementation of this platform enables users to perform classification of satellite images from any part of the world thanks to the worldwide maps provided by Google Maps. To perform this classification, Hypergim uses unsupervised algorithms like Isodata and K-means. Here, we present an extension of the original platform in which we adapt Hypergim in order to use supervised algorithms to improve the classification results. This involves a significant modification of the user interface, providing the user with a way to obtain samples of classes present in the images to use in the training phase of the classification process. Another main goal of this development is to improve the runtime of the image classification process. To achieve this goal, we use a parallel implementation of the Random Forest classification algorithm. This implementation is a modification of the well-known CURFIL software package. The use of this type of algorithms to perform image classification is widespread today thanks to its precision and ease of training. The actual implementation of Random Forest was developed using CUDA platform, which enables us to exploit the potential of several models of NVIDIA graphics processing units using them to execute general purpose computing tasks as image classification algorithms. As well as CUDA, we use other parallel libraries as Intel Boost, taking advantage of the multithreading capabilities of modern CPUs. To ensure the best possible results, the platform is deployed in a cluster of commodity graphics processing units (GPUs), so that multiple users can use the tool in a concurrent way. The experimental results indicate that this new algorithm widely outperform the previous unsupervised algorithms implemented in Hypergim, both in runtime as well as precision of the actual classification of the images.

  7. Automatic segmentation of MR brain images of preterm infants using supervised classification.

    Science.gov (United States)

    Moeskops, Pim; Benders, Manon J N L; Chiţ, Sabina M; Kersbergen, Karina J; Groenendaal, Floris; de Vries, Linda S; Viergever, Max A; Išgum, Ivana

    2015-09-01

    Preterm birth is often associated with impaired brain development. The state and expected progression of preterm brain development can be evaluated using quantitative assessment of MR images. Such measurements require accurate segmentation of different tissue types in those images. This paper presents an algorithm for the automatic segmentation of unmyelinated white matter (WM), cortical grey matter (GM), and cerebrospinal fluid in the extracerebral space (CSF). The algorithm uses supervised voxel classification in three subsequent stages. In the first stage, voxels that can easily be assigned to one of the three tissue types are labelled. In the second stage, dedicated analysis of the remaining voxels is performed. The first and the second stages both use two-class classification for each tissue type separately. Possible inconsistencies that could result from these tissue-specific segmentation stages are resolved in the third stage, which performs multi-class classification. A set of T1- and T2-weighted images was analysed, but the optimised system performs automatic segmentation using a T2-weighted image only. We have investigated the performance of the algorithm when using training data randomly selected from completely annotated images as well as when using training data from only partially annotated images. The method was evaluated on images of preterm infants acquired at 30 and 40weeks postmenstrual age (PMA). When the method was trained using random selection from the completely annotated images, the average Dice coefficients were 0.95 for WM, 0.81 for GM, and 0.89 for CSF on an independent set of images acquired at 30weeks PMA. When the method was trained using only the partially annotated images, the average Dice coefficients were 0.95 for WM, 0.78 for GM and 0.87 for CSF for the images acquired at 30weeks PMA, and 0.92 for WM, 0.80 for GM and 0.85 for CSF for the images acquired at 40weeks PMA. Even though the segmentations obtained using training data

  8. A comparative evaluation of supervised and unsupervised representation learning approaches for anaplastic medulloblastoma differentiation

    Science.gov (United States)

    Cruz-Roa, Angel; Arevalo, John; Basavanhally, Ajay; Madabhushi, Anant; González, Fabio

    2015-01-01

    Learning data representations directly from the data itself is an approach that has shown great success in different pattern recognition problems, outperforming state-of-the-art feature extraction schemes for different tasks in computer vision, speech recognition and natural language processing. Representation learning applies unsupervised and supervised machine learning methods to large amounts of data to find building-blocks that better represent the information in it. Digitized histopathology images represents a very good testbed for representation learning since it involves large amounts of high complex, visual data. This paper presents a comparative evaluation of different supervised and unsupervised representation learning architectures to specifically address open questions on what type of learning architectures (deep or shallow), type of learning (unsupervised or supervised) is optimal. In this paper we limit ourselves to addressing these questions in the context of distinguishing between anaplastic and non-anaplastic medulloblastomas from routine haematoxylin and eosin stained images. The unsupervised approaches evaluated were sparse autoencoders and topographic reconstruct independent component analysis, and the supervised approach was convolutional neural networks. Experimental results show that shallow architectures with more neurons are better than deeper architectures without taking into account local space invariances and that topographic constraints provide useful invariant features in scale and rotations for efficient tumor differentiation.

  9. Supervised Classification High-Resolution Remote-Sensing Image Based on Interval Type-2 Fuzzy Membership Function

    Directory of Open Access Journals (Sweden)

    Chunyan Wang

    2018-05-01

    Full Text Available Because of the degradation of classification accuracy that is caused by the uncertainty of pixel class and classification decisions of high-resolution remote-sensing images, we proposed a supervised classification method that is based on an interval type-2 fuzzy membership function for high-resolution remote-sensing images. We analyze the data features of a high-resolution remote-sensing image and construct a type-1 membership function model in a homogenous region by supervised sampling in order to characterize the uncertainty of the pixel class. On the basis of the fuzzy membership function model in the homogeneous region and in accordance with the 3σ criterion of normal distribution, we proposed a method for modeling three types of interval type-2 membership functions and analyze the different types of functions to improve the uncertainty of pixel class expressed by the type-1 fuzzy membership function and to enhance the accuracy of classification decision. According to the principle that importance will increase with a decrease in the distance between the original, upper, and lower fuzzy membership of the training data and the corresponding frequency value in the histogram, we use the weighted average sum of three types of fuzzy membership as the new fuzzy membership of the pixel to be classified and then integrated into the neighborhood pixel relations, constructing a classification decision model. We use the proposed method to classify real high-resolution remote-sensing images and synthetic images. Additionally, we qualitatively and quantitatively evaluate the test results. The results show that a higher classification accuracy can be achieved with the proposed algorithm.

  10. Semi-supervised prediction of gene regulatory networks using machine learning algorithms.

    Science.gov (United States)

    Patel, Nihir; Wang, Jason T L

    2015-10-01

    Use of computational methods to predict gene regulatory networks (GRNs) from gene expression data is a challenging task. Many studies have been conducted using unsupervised methods to fulfill the task; however, such methods usually yield low prediction accuracies due to the lack of training data. In this article, we propose semi-supervised methods for GRN prediction by utilizing two machine learning algorithms, namely, support vector machines (SVM) and random forests (RF). The semi-supervised methods make use of unlabelled data for training. We investigated inductive and transductive learning approaches, both of which adopt an iterative procedure to obtain reliable negative training data from the unlabelled data. We then applied our semi-supervised methods to gene expression data of Escherichia coli and Saccharomyces cerevisiae, and evaluated the performance of our methods using the expression data. Our analysis indicated that the transductive learning approach outperformed the inductive learning approach for both organisms. However, there was no conclusive difference identified in the performance of SVM and RF. Experimental results also showed that the proposed semi-supervised methods performed better than existing supervised methods for both organisms.

  11. Model of Supervision Based on Primary School Teacher Professional Competency in Tematic Learning in Curriculum 2013

    Directory of Open Access Journals (Sweden)

    Meilani Hartono

    2017-08-01

    Full Text Available This study aims to find the Supervision Model Based on Primary Teacher Professional Competence which effective on integrated learning. This study use research and development with qualitative approach which will be carried out in the Palmerah, West Jakarta. The techniques used to collect data are interviews, questionnaires, observation and documentation. Data v alidity is tested with credibility, transferability, dependability, and comfortability. The model developed will be validated using the Delphi technique. The result of this research is the discovery of the model and device-based supervision model of professional competence of primary teachers in integrated learning. The long-term goal of this research is to improve the teachers’ competence and the supervision quality for primary teachers in integrated learning

  12. Unbiased and non-supervised learning methods for disruption prediction at JET

    International Nuclear Information System (INIS)

    Murari, A.; Vega, J.; Ratta, G.A.; Vagliasindi, G.; Johnson, M.F.; Hong, S.H.

    2009-01-01

    The importance of predicting the occurrence of disruptions is going to increase significantly in the next generation of tokamak devices. The expected energy content of ITER plasmas, for example, is such that disruptions could have a significant detrimental impact on various parts of the device, ranging from erosion of plasma facing components to structural damage. Early detection of disruptions is therefore needed with evermore increasing urgency. In this paper, the results of a series of methods to predict disruptions at JET are reported. The main objective of the investigation consists of trying to determine how early before a disruption it is possible to perform acceptable predictions on the basis of the raw data, keeping to a minimum the number of 'ad hoc' hypotheses. Therefore, the chosen learning techniques have the common characteristic of requiring a minimum number of assumptions. Classification and Regression Trees (CART) is a supervised but, on the other hand, a completely unbiased and nonlinear method, since it simply constructs the best classification tree by working directly on the input data. A series of unsupervised techniques, mainly K-means and hierarchical, have also been tested, to investigate to what extent they can autonomously distinguish between disruptive and non-disruptive groups of discharges. All these independent methods indicate that, in general, prediction with a success rate above 80% can be achieved not earlier than 180 ms before the disruption. The agreement between various completely independent methods increases the confidence in the results, which are also confirmed by a visual inspection of the data performed with pseudo Grand Tour algorithms.

  13. Supervised and Unsupervised Learning of Multidimensional Acoustic Categories

    Science.gov (United States)

    Goudbeek, Martijn; Swingley, Daniel; Smits, Roel

    2009-01-01

    Learning to recognize the contrasts of a language-specific phonemic repertoire can be viewed as forming categories in a multidimensional psychophysical space. Research on the learning of distributionally defined visual categories has shown that categories defined over 1 dimension are easy to learn and that learning multidimensional categories is…

  14. Alzheimer's Disease Early Diagnosis Using Manifold-Based Semi-Supervised Learning.

    Science.gov (United States)

    Khajehnejad, Moein; Saatlou, Forough Habibollahi; Mohammadzade, Hoda

    2017-08-20

    Alzheimer's disease (AD) is currently ranked as the sixth leading cause of death in the United States and recent estimates indicate that the disorder may rank third, just behind heart disease and cancer, as a cause of death for older people. Clearly, predicting this disease in the early stages and preventing it from progressing is of great importance. The diagnosis of Alzheimer's disease (AD) requires a variety of medical tests, which leads to huge amounts of multivariate heterogeneous data. It can be difficult and exhausting to manually compare, visualize, and analyze this data due to the heterogeneous nature of medical tests; therefore, an efficient approach for accurate prediction of the condition of the brain through the classification of magnetic resonance imaging (MRI) images is greatly beneficial and yet very challenging. In this paper, a novel approach is proposed for the diagnosis of very early stages of AD through an efficient classification of brain MRI images, which uses label propagation in a manifold-based semi-supervised learning framework. We first apply voxel morphometry analysis to extract some of the most critical AD-related features of brain images from the original MRI volumes and also gray matter (GM) segmentation volumes. The features must capture the most discriminative properties that vary between a healthy and Alzheimer-affected brain. Next, we perform a principal component analysis (PCA)-based dimension reduction on the extracted features for faster yet sufficiently accurate analysis. To make the best use of the captured features, we present a hybrid manifold learning framework which embeds the feature vectors in a subspace. Next, using a small set of labeled training data, we apply a label propagation method in the created manifold space to predict the labels of the remaining images and classify them in the two groups of mild Alzheimer's and normal condition (MCI/NC). The accuracy of the classification using the proposed method is 93

  15. Discriminative Bayesian Dictionary Learning for Classification.

    Science.gov (United States)

    Akhtar, Naveed; Shafait, Faisal; Mian, Ajmal

    2016-12-01

    We propose a Bayesian approach to learn discriminative dictionaries for sparse representation of data. The proposed approach infers probability distributions over the atoms of a discriminative dictionary using a finite approximation of Beta Process. It also computes sets of Bernoulli distributions that associate class labels to the learned dictionary atoms. This association signifies the selection probabilities of the dictionary atoms in the expansion of class-specific data. Furthermore, the non-parametric character of the proposed approach allows it to infer the correct size of the dictionary. We exploit the aforementioned Bernoulli distributions in separately learning a linear classifier. The classifier uses the same hierarchical Bayesian model as the dictionary, which we present along the analytical inference solution for Gibbs sampling. For classification, a test instance is first sparsely encoded over the learned dictionary and the codes are fed to the classifier. We performed experiments for face and action recognition; and object and scene-category classification using five public datasets and compared the results with state-of-the-art discriminative sparse representation approaches. Experiments show that the proposed Bayesian approach consistently outperforms the existing approaches.

  16. Improvements on coronal hole detection in SDO/AIA images using supervised classification

    Directory of Open Access Journals (Sweden)

    Reiss Martin A.

    2015-01-01

    Full Text Available We demonstrate the use of machine learning algorithms in combination with segmentation techniques in order to distinguish coronal holes and filaments in SDO/AIA EUV images of the Sun. Based on two coronal hole detection techniques (intensity-based thresholding, SPoCA, we prepared datasets of manually labeled coronal hole and filament channel regions present on the Sun during the time range 2011–2013. By mapping the extracted regions from EUV observations onto HMI line-of-sight magnetograms we also include their magnetic characteristics. We computed shape measures from the segmented binary maps as well as first order and second order texture statistics from the segmented regions in the EUV images and magnetograms. These attributes were used for data mining investigations to identify the most performant rule to differentiate between coronal holes and filament channels. We applied several classifiers, namely Support Vector Machine (SVM, Linear Support Vector Machine, Decision Tree, and Random Forest, and found that all classification rules achieve good results in general, with linear SVM providing the best performances (with a true skill statistic of ≈ 0.90. Additional information from magnetic field data systematically improves the performance across all four classifiers for the SPoCA detection. Since the calculation is inexpensive in computing time, this approach is well suited for applications on real-time data. This study demonstrates how a machine learning approach may help improve upon an unsupervised feature extraction method.

  17. Semi-supervised learning and domain adaptation in natural language processing

    CERN Document Server

    Søgaard, Anders

    2013-01-01

    This book introduces basic supervised learning algorithms applicable to natural language processing (NLP) and shows how the performance of these algorithms can often be improved by exploiting the marginal distribution of large amounts of unlabeled data. One reason for that is data sparsity, i.e., the limited amounts of data we have available in NLP. However, in most real-world NLP applications our labeled data is also heavily biased. This book introduces extensions of supervised learning algorithms to cope with data sparsity and different kinds of sampling bias.This book is intended to be both

  18. Classification, (big) data analysis and statistical learning

    CERN Document Server

    Conversano, Claudio; Vichi, Maurizio

    2018-01-01

    This edited book focuses on the latest developments in classification, statistical learning, data analysis and related areas of data science, including statistical analysis of large datasets, big data analytics, time series clustering, integration of data from different sources, as well as social networks. It covers both methodological aspects as well as applications to a wide range of areas such as economics, marketing, education, social sciences, medicine, environmental sciences and the pharmaceutical industry. In addition, it describes the basic features of the software behind the data analysis results, and provides links to the corresponding codes and data sets where necessary. This book is intended for researchers and practitioners who are interested in the latest developments and applications in the field. The peer-reviewed contributions were presented at the 10th Scientific Meeting of the Classification and Data Analysis Group (CLADAG) of the Italian Statistical Society, held in Santa Margherita di Pul...

  19. Active learning for semi-supervised clustering based on locally linear propagation reconstruction.

    Science.gov (United States)

    Chang, Chin-Chun; Lin, Po-Yi

    2015-03-01

    The success of semi-supervised clustering relies on the effectiveness of side information. To get effective side information, a new active learner learning pairwise constraints known as must-link and cannot-link constraints is proposed in this paper. Three novel techniques are developed for learning effective pairwise constraints. The first technique is used to identify samples less important to cluster structures. This technique makes use of a kernel version of locally linear embedding for manifold learning. Samples neither important to locally linear propagation reconstructions of other samples nor on flat patches in the learned manifold are regarded as unimportant samples. The second is a novel criterion for query selection. This criterion considers not only the importance of a sample to expanding the space coverage of the learned samples but also the expected number of queries needed to learn the sample. To facilitate semi-supervised clustering, the third technique yields inferred must-links for passing information about flat patches in the learned manifold to semi-supervised clustering algorithms. Experimental results have shown that the learned pairwise constraints can capture the underlying cluster structures and proven the feasibility of the proposed approach. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Using Supervised Learning Techniques for Diagnosis of Dynamic Systems

    Science.gov (United States)

    2002-05-04

    diagnosis task is to determine the system elements that could cause decision trees [14], where classification is the result of a series of the erroneous...Rodriguez, Carlos J. Alonso y Q. Isaac Moro. Clasificaci6n de patrones temporales en sistemas dinimicos mediante Boosting y Alineamiento dinamico

  1. An evaluation of unsupervised and supervised learning algorithms for clustering landscape types in the United States

    Science.gov (United States)

    Wendel, Jochen; Buttenfield, Barbara P.; Stanislawski, Larry V.

    2016-01-01

    Knowledge of landscape type can inform cartographic generalization of hydrographic features, because landscape characteristics provide an important geographic context that affects variation in channel geometry, flow pattern, and network configuration. Landscape types are characterized by expansive spatial gradients, lacking abrupt changes between adjacent classes; and as having a limited number of outliers that might confound classification. The US Geological Survey (USGS) is exploring methods to automate generalization of features in the National Hydrography Data set (NHD), to associate specific sequences of processing operations and parameters with specific landscape characteristics, thus obviating manual selection of a unique processing strategy for every NHD watershed unit. A chronology of methods to delineate physiographic regions for the United States is described, including a recent maximum likelihood classification based on seven input variables. This research compares unsupervised and supervised algorithms applied to these seven input variables, to evaluate and possibly refine the recent classification. Evaluation metrics for unsupervised methods include the Davies–Bouldin index, the Silhouette index, and the Dunn index as well as quantization and topographic error metrics. Cross validation and misclassification rate analysis are used to evaluate supervised classification methods. The paper reports the comparative analysis and its impact on the selection of landscape regions. The compared solutions show problems in areas of high landscape diversity. There is some indication that additional input variables, additional classes, or more sophisticated methods can refine the existing classification.

  2. Multi-level discriminative dictionary learning with application to large scale image classification.

    Science.gov (United States)

    Shen, Li; Sun, Gang; Huang, Qingming; Wang, Shuhui; Lin, Zhouchen; Wu, Enhua

    2015-10-01

    The sparse coding technique has shown flexibility and capability in image representation and analysis. It is a powerful tool in many visual applications. Some recent work has shown that incorporating the properties of task (such as discrimination for classification task) into dictionary learning is effective for improving the accuracy. However, the traditional supervised dictionary learning methods suffer from high computation complexity when dealing with large number of categories, making them less satisfactory in large scale applications. In this paper, we propose a novel multi-level discriminative dictionary learning method and apply it to large scale image classification. Our method takes advantage of hierarchical category correlation to encode multi-level discriminative information. Each internal node of the category hierarchy is associated with a discriminative dictionary and a classification model. The dictionaries at different layers are learnt to capture the information of different scales. Moreover, each node at lower layers also inherits the dictionary of its parent, so that the categories at lower layers can be described with multi-scale information. The learning of dictionaries and associated classification models is jointly conducted by minimizing an overall tree loss. The experimental results on challenging data sets demonstrate that our approach achieves excellent accuracy and competitive computation cost compared with other sparse coding methods for large scale image classification.

  3. Predicting incomplete gene microarray data with the use of supervised learning algorithms

    CSIR Research Space (South Africa)

    Twala, B

    2010-10-01

    Full Text Available that prediction using supervised learning can be improved in probabilistic terms given incomplete microarray data. This imputation approach is based on the a priori probability of each value determined from the instances at that node of a decision tree (PDT...

  4. Multiclass semi-supervised learning for animal behavior recognition from accelerometer data

    NARCIS (Netherlands)

    Tanha, J.; van Someren, M.; de Bakker, M.; Bouten, W.; Shamoun-Baranes, J.; Afsarmanesh, H.

    2012-01-01

    In this paper we present a new Multiclass semi-supervised learning algorithm that uses a base classifier in combination with a similarity function applied to all data to find a classifier that maximizes the margin and consistency over all data. A novel multiclass loss function is presented and used

  5. Undergraduate Internship Supervision in Psychology Departments: Use of Experiential Learning Best Practices

    Science.gov (United States)

    Bailey, Sarah F.; Barber, Larissa K.; Nelson, Videl L.

    2017-01-01

    This study examined trends in how psychology internships are supervised compared to current experiential learning best practices in the literature. We sent a brief online survey to relevant contact persons for colleges/universities with psychology departments throughout the United States (n = 149 responded). Overall, the majority of institutions…

  6. Using supervised machine learning to code policy issues: Can classifiers generalize across contexts?

    NARCIS (Netherlands)

    Burscher, B.; Vliegenthart, R.; de Vreese, C.H.

    2015-01-01

    Content analysis of political communication usually covers large amounts of material and makes the study of dynamics in issue salience a costly enterprise. In this article, we present a supervised machine learning approach for the automatic coding of policy issues, which we apply to news articles

  7. Semi-supervised eigenvectors for large-scale locally-biased learning

    DEFF Research Database (Denmark)

    Hansen, Toke Jansen; Mahoney, Michael W.

    2014-01-01

    improved scaling properties. We provide several empirical examples demonstrating how these semi-supervised eigenvectors can be used to perform locally-biased learning; and we discuss the relationship between our results and recent machine learning algorithms that use global eigenvectors of the graph......In many applications, one has side information, e.g., labels that are provided in a semi-supervised manner, about a specific target region of a large data set, and one wants to perform machine learning and data analysis tasks nearby that prespecified target region. For example, one might......-based machine learning and data analysis tools. At root, the reason is that eigenvectors are inherently global quantities, thus limiting the applicability of eigenvector-based methods in situations where one is interested in very local properties of the data. In this paper, we address this issue by providing...

  8. [Guidelines for hygienic classification of learning technologies].

    Science.gov (United States)

    Kuchma, V R; Teksheva, L M; Milushkina, O Iu

    2008-01-01

    Optimization of the educational environment under the present-day conditions has been in progress, by using learning techwares (LTW) without fail. To organize and regulate an academic process in terms of the safety of applied LTW, there is a need for their classification. The currently existing attempts to structure LTW disregard hygienically significant aspects. The task of the present study was to substantiate a LTW safety criterion ensuring a universal approach to working out regulations. This criterion may be the exposure intensity determined by the form of organization of education and its pattern, by the procedure of information presentation, and the age-related peculiarities of a pupil, i.e. by the actual load that is presented by the product of the intensity exposure and its time. The hygienic classification of LTW may be used to evaluate their negative effect in an educational process on the health status of children and adolescents, to regulate hazardous factors and training modes, to design and introduce new learning complexes. The structuring of a LTW system allows one to define possible deleterious actions and the possibilities of preventing this action on the basis of strictly established regulations.

  9. Supervised Cross-Modal Factor Analysis for Multiple Modal Data Classification

    KAUST Repository

    Wang, Jingbin; Zhou, Yihua; Duan, Kanghong; Wang, Jim Jing-Yan; Bensmail, Halima

    2015-01-01

    . In this paper, we improve CFA by incorporating the supervision information to represent and classify both image and text modals of documents. We project both image and text data to a shared data space by factor analysis, and then train a class label predictor

  10. A Novel Approach to Developing a Supervised Spatial Decision Support System for Image Classification: A Study of Paddy Rice Investigation

    Directory of Open Access Journals (Sweden)

    Shih-Hsun Chang

    2014-01-01

    Full Text Available Paddy rice area estimation via remote sensing techniques has been well established in recent years. Texture information and vegetation indicators are widely used to improve the classification accuracy of satellite images. Accordingly, this study employs texture information and vegetation indicators as ancillary information for classifying paddy rice through remote sensing images. In the first stage, the images are attained using a remote sensing technique and ancillary information is employed to increase the accuracy of classification. In the second stage, we decide to construct an efficient supervised classifier, which is used to evaluate the ancillary information. In the third stage, linear discriminant analysis (LDA is introduced. LDA is a well-known method for classifying images to various categories. Also, the particle swarm optimization (PSO algorithm is employed to optimize the LDA classification outcomes and increase classification performance. In the fourth stage, we discuss the strategy of selecting different window sizes and analyze particle numbers and iteration numbers with corresponding accuracy. Accordingly, a rational strategy for the combination of ancillary information is introduced. Afterwards, the PSO algorithm improves the accuracy rate from 82.26% to 89.31%. The improved accuracy results in a much lower salt-and-pepper effect in the thematic map.

  11. Semi-Supervised Multi-View Ensemble Learning Based On Extracting Cross-View Correlation

    Directory of Open Access Journals (Sweden)

    ZALL, R.

    2016-05-01

    Full Text Available Correlated information between different views incorporate useful for learning in multi view data. Canonical correlation analysis (CCA plays important role to extract these information. However, CCA only extracts the correlated information between paired data and cannot preserve correlated information between within-class samples. In this paper, we propose a two-view semi-supervised learning method called semi-supervised random correlation ensemble base on spectral clustering (SS_RCE. SS_RCE uses a multi-view method based on spectral clustering which takes advantage of discriminative information in multiple views to estimate labeling information of unlabeled samples. In order to enhance discriminative power of CCA features, we incorporate the labeling information of both unlabeled and labeled samples into CCA. Then, we use random correlation between within-class samples from cross view to extract diverse correlated features for training component classifiers. Furthermore, we extend a general model namely SSMV_RCE to construct ensemble method to tackle semi-supervised learning in the presence of multiple views. Finally, we compare the proposed methods with existing multi-view feature extraction methods using multi-view semi-supervised ensembles. Experimental results on various multi-view data sets are presented to demonstrate the effectiveness of the proposed methods.

  12. Supervised orthogonal discriminant subspace projects learning for face recognition.

    Science.gov (United States)

    Chen, Yu; Xu, Xiao-Hong

    2014-02-01

    In this paper, a new linear dimension reduction method called supervised orthogonal discriminant subspace projection (SODSP) is proposed, which addresses high-dimensionality of data and the small sample size problem. More specifically, given a set of data points in the ambient space, a novel weight matrix that describes the relationship between the data points is first built. And in order to model the manifold structure, the class information is incorporated into the weight matrix. Based on the novel weight matrix, the local scatter matrix as well as non-local scatter matrix is defined such that the neighborhood structure can be preserved. In order to enhance the recognition ability, we impose an orthogonal constraint into a graph-based maximum margin analysis, seeking to find a projection that maximizes the difference, rather than the ratio between the non-local scatter and the local scatter. In this way, SODSP naturally avoids the singularity problem. Further, we develop an efficient and stable algorithm for implementing SODSP, especially, on high-dimensional data set. Moreover, the theoretical analysis shows that LPP is a special instance of SODSP by imposing some constraints. Experiments on the ORL, Yale, Extended Yale face database B and FERET face database are performed to test and evaluate the proposed algorithm. The results demonstrate the effectiveness of SODSP. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Contaminant source identification using semi-supervised machine learning

    International Nuclear Information System (INIS)

    Vesselinov, Velimir Valentinov; Alexandrov, Boian S.; O’Malley, Dan

    2017-01-01

    Identification of the original groundwater types present in geochemical mixtures observed in an aquifer is a challenging but very important task. Frequently, some of the groundwater types are related to different infiltration and/or contamination sources associated with various geochemical signatures and origins. The characterization of groundwater mixing processes typically requires solving complex inverse models representing groundwater flow and geochemical transport in the aquifer, where the inverse analysis accounts for available site data. Usually, the model is calibrated against the available data characterizing the spatial and temporal distribution of the observed geochemical types. Numerous different geochemical constituents and processes may need to be simulated in these models which further complicates the analyses. In this paper, we propose a new contaminant source identification approach that performs decomposition of the observation mixtures based on Non-negative Matrix Factorization (NMF) method for Blind Source Separation (BSS), coupled with a custom semi-supervised clustering algorithm. Our methodology, called NMFk, is capable of identifying (a) the unknown number of groundwater types and (b) the original geochemical concentration of the contaminant sources from measured geochemical mixtures with unknown mixing ratios without any additional site information. NMFk is tested on synthetic and real-world site data. Finally, the NMFk algorithm works with geochemical data represented in the form of concentrations, ratios (of two constituents; for example, isotope ratios), and delta notations (standard normalized stable isotope ratios).

  14. Polarimetric SAR Image Classification Using Multiple-feature Fusion and Ensemble Learning

    Directory of Open Access Journals (Sweden)

    Sun Xun

    2016-12-01

    Full Text Available In this paper, we propose a supervised classification algorithm for Polarimetric Synthetic Aperture Radar (PolSAR images using multiple-feature fusion and ensemble learning. First, we extract different polarimetric features, including extended polarimetric feature space, Hoekman, Huynen, H/alpha/A, and fourcomponent scattering features of PolSAR images. Next, we randomly select two types of features each time from all feature sets to guarantee the reliability and diversity of later ensembles and use a support vector machine as the basic classifier for predicting classification results. Finally, we concatenate all prediction probabilities of basic classifiers as the final feature representation and employ the random forest method to obtain final classification results. Experimental results at the pixel and region levels show the effectiveness of the proposed algorithm.

  15. Information-theoretic semi-supervised metric learning via entropy regularization.

    Science.gov (United States)

    Niu, Gang; Dai, Bo; Yamada, Makoto; Sugiyama, Masashi

    2014-08-01

    We propose a general information-theoretic approach to semi-supervised metric learning called SERAPH (SEmi-supervised metRic leArning Paradigm with Hypersparsity) that does not rely on the manifold assumption. Given the probability parameterized by a Mahalanobis distance, we maximize its entropy on labeled data and minimize its entropy on unlabeled data following entropy regularization. For metric learning, entropy regularization improves manifold regularization by considering the dissimilarity information of unlabeled data in the unsupervised part, and hence it allows the supervised and unsupervised parts to be integrated in a natural and meaningful way. Moreover, we regularize SERAPH by trace-norm regularization to encourage low-dimensional projections associated with the distance metric. The nonconvex optimization problem of SERAPH could be solved efficiently and stably by either a gradient projection algorithm or an EM-like iterative algorithm whose M-step is convex. Experiments demonstrate that SERAPH compares favorably with many well-known metric learning methods, and the learned Mahalanobis distance possesses high discriminability even under noisy environments.

  16. New Informative Features for Fault Diagnosis of Industrial Systems by Supervised Classification

    OpenAIRE

    Verron , Sylvain; Tiplica , Teodor; Kobi , Abdessamad

    2009-01-01

    International audience; The purpose of this article is to present a method for industrial process diagnosis. We are interested in fault diagnosis considered as a supervised classication task. The interest of the proposed method is to take into account new features (and so new informations) in the classifier. These new features are probabilities extracted from a Bayesian network comparing the faulty observations to the normal operating conditions. The performances of this method are evaluated ...

  17. SAR Target Recognition via Supervised Discriminative Dictionary Learning and Sparse Representation of the SAR-HOG Feature

    Directory of Open Access Journals (Sweden)

    Shengli Song

    2016-08-01

    Full Text Available Automatic target recognition (ATR in synthetic aperture radar (SAR images plays an important role in both national defense and civil applications. Although many methods have been proposed, SAR ATR is still very challenging due to the complex application environment. Feature extraction and classification are key points in SAR ATR. In this paper, we first design a novel feature, which is a histogram of oriented gradients (HOG-like feature for SAR ATR (called SAR-HOG. Then, we propose a supervised discriminative dictionary learning (SDDL method to learn a discriminative dictionary for SAR ATR and propose a strategy to simplify the optimization problem. Finally, we propose a SAR ATR classifier based on SDDL and sparse representation (called SDDLSR, in which both the reconstruction error and the classification error are considered. Extensive experiments are performed on the MSTAR database under standard operating conditions and extended operating conditions. The experimental results show that SAR-HOG can reliably capture the structures of targets in SAR images, and SDDL can further capture subtle differences among the different classes. By virtue of the SAR-HOG feature and SDDLSR, the proposed method achieves the state-of-the-art performance on MSTAR database. Especially for the extended operating conditions (EOC scenario “Training 17 ∘ —Testing 45 ∘ ”, the proposed method improves remarkably with respect to the previous works.

  18. Learning classification models with soft-label information.

    Science.gov (United States)

    Nguyen, Quang; Valizadegan, Hamed; Hauskrecht, Milos

    2014-01-01

    Learning of classification models in medicine often relies on data labeled by a human expert. Since labeling of clinical data may be time-consuming, finding ways of alleviating the labeling costs is critical for our ability to automatically learn such models. In this paper we propose a new machine learning approach that is able to learn improved binary classification models more efficiently by refining the binary class information in the training phase with soft labels that reflect how strongly the human expert feels about the original class labels. Two types of methods that can learn improved binary classification models from soft labels are proposed. The first relies on probabilistic/numeric labels, the other on ordinal categorical labels. We study and demonstrate the benefits of these methods for learning an alerting model for heparin induced thrombocytopenia. The experiments are conducted on the data of 377 patient instances labeled by three different human experts. The methods are compared using the area under the receiver operating characteristic curve (AUC) score. Our AUC results show that the new approach is capable of learning classification models more efficiently compared to traditional learning methods. The improvement in AUC is most remarkable when the number of examples we learn from is small. A new classification learning framework that lets us learn from auxiliary soft-label information provided by a human expert is a promising new direction for learning classification models from expert labels, reducing the time and cost needed to label data.

  19. Outdoor Learning: Supervision Is More than Watching Children Play

    Science.gov (United States)

    Olsen, Heather; Thompson, Donna; Hudson, Susan

    2011-01-01

    Early childhood programs strive to provide good-quality care and education as young children develop their physical, emotional, social, and intellectual skills. In order to provide children with positive, developmentally appropriate learning opportunities, educators ensure the safety and security of children, indoors and outdoors. The outdoor…

  20. Improving orbit prediction accuracy through supervised machine learning

    Science.gov (United States)

    Peng, Hao; Bai, Xiaoli

    2018-05-01

    Due to the lack of information such as the space environment condition and resident space objects' (RSOs') body characteristics, current orbit predictions that are solely grounded on physics-based models may fail to achieve required accuracy for collision avoidance and have led to satellite collisions already. This paper presents a methodology to predict RSOs' trajectories with higher accuracy than that of the current methods. Inspired by the machine learning (ML) theory through which the models are learned based on large amounts of observed data and the prediction is conducted without explicitly modeling space objects and space environment, the proposed ML approach integrates physics-based orbit prediction algorithms with a learning-based process that focuses on reducing the prediction errors. Using a simulation-based space catalog environment as the test bed, the paper demonstrates three types of generalization capability for the proposed ML approach: (1) the ML model can be used to improve the same RSO's orbit information that is not available during the learning process but shares the same time interval as the training data; (2) the ML model can be used to improve predictions of the same RSO at future epochs; and (3) the ML model based on a RSO can be applied to other RSOs that share some common features.

  1. Generating a Spanish Affective Dictionary with Supervised Learning Techniques

    Science.gov (United States)

    Bermudez-Gonzalez, Daniel; Miranda-Jiménez, Sabino; García-Moreno, Raúl-Ulises; Calderón-Nepamuceno, Dora

    2016-01-01

    Nowadays, machine learning techniques are being used in several Natural Language Processing (NLP) tasks such as Opinion Mining (OM). OM is used to analyse and determine the affective orientation of texts. Usually, OM approaches use affective dictionaries in order to conduct sentiment analysis. These lexicons are labeled manually with affective…

  2. Facilitating the learning process in design-based learning practices: an investigation of teachers' actions in supervising students

    NARCIS (Netherlands)

    Gomez Puente, S.M.; Eijck, van M.W.; Jochems, W.M.G.

    2013-01-01

    Background: In research on design-based learning (DBL), inadequate attention is paid to the role the teacher plays in supervising students in gathering and applying knowledge to design artifacts, systems, and innovative solutions in higher education. Purpose: In this study, we examine whether

  3. Learning features for tissue classification with the classification restricted Boltzmann machine

    DEFF Research Database (Denmark)

    van Tulder, Gijs; de Bruijne, Marleen

    2014-01-01

    Performance of automated tissue classification in medical imaging depends on the choice of descriptive features. In this paper, we show how restricted Boltzmann machines (RBMs) can be used to learn features that are especially suited for texture-based tissue classification. We introduce the convo...... outperform conventional RBM-based feature learning, which is unsupervised and uses only a generative learning objective, as well as often-used filter banks. We show that a mixture of generative and discriminative learning can produce filters that give a higher classification accuracy....

  4. Emotional Literacy Support Assistants' Views on Supervision Provided by Educational Psychologists: What EPs Can Learn from Group Supervision

    Science.gov (United States)

    Osborne, Cara; Burton, Sheila

    2014-01-01

    The Educational Psychology Service in this study has responsibility for providing group supervision to Emotional Literacy Support Assistants (ELSAs) working in schools. To date, little research has examined this type of inter-professional supervision arrangement. The current study used a questionnaire to examine ELSAs' views on the supervision…

  5. Extended apprenticeship learning in doctoral training and supervision - moving beyond 'cookbook recipes'

    DEFF Research Database (Denmark)

    Tanggaard, Lene; Wegener, Charlotte

    An apprenticeship perspective on learning in academia sheds light on the potential for mutual learning and production, and also reveals the diverse range of learning resources beyond the formal novice-–expert relationship. Although apprenticeship is a well-known concept in educational research......, in this case apprenticeship offers an innovative perspective on future practice and research in academia allowing more students access to high high-quality research training and giving supervisors a chance to combine their own research with their supervision obligations....

  6. Classification versus inference learning contrasted with real-world categories.

    Science.gov (United States)

    Jones, Erin L; Ross, Brian H

    2011-07-01

    Categories are learned and used in a variety of ways, but the research focus has been on classification learning. Recent work contrasting classification with inference learning of categories found important later differences in category performance. However, theoretical accounts differ on whether this is due to an inherent difference between the tasks or to the implementation decisions. The inherent-difference explanation argues that inference learners focus on the internal structure of the categories--what each category is like--while classification learners focus on diagnostic information to predict category membership. In two experiments, using real-world categories and controlling for earlier methodological differences, inference learners learned more about what each category was like than did classification learners, as evidenced by higher performance on a novel classification test. These results suggest that there is an inherent difference between learning new categories by classifying an item versus inferring a feature.

  7. Unsupervised feature learning for autonomous rock image classification

    Science.gov (United States)

    Shu, Lei; McIsaac, Kenneth; Osinski, Gordon R.; Francis, Raymond

    2017-09-01

    Autonomous rock image classification can enhance the capability of robots for geological detection and enlarge the scientific returns, both in investigation on Earth and planetary surface exploration on Mars. Since rock textural images are usually inhomogeneous and manually hand-crafting features is not always reliable, we propose an unsupervised feature learning method to autonomously learn the feature representation for rock images. In our tests, rock image classification using the learned features shows that the learned features can outperform manually selected features. Self-taught learning is also proposed to learn the feature representation from a large database of unlabelled rock images of mixed class. The learned features can then be used repeatedly for classification of any subclass. This takes advantage of the large dataset of unlabelled rock images and learns a general feature representation for many kinds of rocks. We show experimental results supporting the feasibility of self-taught learning on rock images.

  8. Large-scale weakly supervised object localization via latent category learning.

    Science.gov (United States)

    Chong Wang; Kaiqi Huang; Weiqiang Ren; Junge Zhang; Maybank, Steve

    2015-04-01

    Localizing objects in cluttered backgrounds is challenging under large-scale weakly supervised conditions. Due to the cluttered image condition, objects usually have large ambiguity with backgrounds. Besides, there is also a lack of effective algorithm for large-scale weakly supervised localization in cluttered backgrounds. However, backgrounds contain useful latent information, e.g., the sky in the aeroplane class. If this latent information can be learned, object-background ambiguity can be largely reduced and background can be suppressed effectively. In this paper, we propose the latent category learning (LCL) in large-scale cluttered conditions. LCL is an unsupervised learning method which requires only image-level class labels. First, we use the latent semantic analysis with semantic object representation to learn the latent categories, which represent objects, object parts or backgrounds. Second, to determine which category contains the target object, we propose a category selection strategy by evaluating each category's discrimination. Finally, we propose the online LCL for use in large-scale conditions. Evaluation on the challenging PASCAL Visual Object Class (VOC) 2007 and the large-scale imagenet large-scale visual recognition challenge 2013 detection data sets shows that the method can improve the annotation precision by 10% over previous methods. More importantly, we achieve the detection precision which outperforms previous results by a large margin and can be competitive to the supervised deformable part model 5.0 baseline on both data sets.

  9. Computer-Vision-Assisted Palm Rehabilitation With Supervised Learning.

    Science.gov (United States)

    Vamsikrishna, K M; Dogra, Debi Prosad; Desarkar, Maunendra Sankar

    2016-05-01

    Physical rehabilitation supported by the computer-assisted-interface is gaining popularity among health-care fraternity. In this paper, we have proposed a computer-vision-assisted contactless methodology to facilitate palm and finger rehabilitation. Leap motion controller has been interfaced with a computing device to record parameters describing 3-D movements of the palm of a user undergoing rehabilitation. We have proposed an interface using Unity3D development platform. Our interface is capable of analyzing intermediate steps of rehabilitation without the help of an expert, and it can provide online feedback to the user. Isolated gestures are classified using linear discriminant analysis (DA) and support vector machines (SVM). Finally, a set of discrete hidden Markov models (HMM) have been used to classify gesture sequence performed during rehabilitation. Experimental validation using a large number of samples collected from healthy volunteers reveals that DA and SVM perform similarly while applied on isolated gesture recognition. We have compared the results of HMM-based sequence classification with CRF-based techniques. Our results confirm that both HMM and CRF perform quite similarly when tested on gesture sequences. The proposed system can be used for home-based palm or finger rehabilitation in the absence of experts.

  10. Efficient dynamic graph construction for inductive semi-supervised learning.

    Science.gov (United States)

    Dornaika, F; Dahbi, R; Bosaghzadeh, A; Ruichek, Y

    2017-10-01

    Most of graph construction techniques assume a transductive setting in which the whole data collection is available at construction time. Addressing graph construction for inductive setting, in which data are coming sequentially, has received much less attention. For inductive settings, constructing the graph from scratch can be very time consuming. This paper introduces a generic framework that is able to make any graph construction method incremental. This framework yields an efficient and dynamic graph construction method that adds new samples (labeled or unlabeled) to a previously constructed graph. As a case study, we use the recently proposed Two Phase Weighted Regularized Least Square (TPWRLS) graph construction method. The paper has two main contributions. First, we use the TPWRLS coding scheme to represent new sample(s) with respect to an existing database. The representative coefficients are then used to update the graph affinity matrix. The proposed method not only appends the new samples to the graph but also updates the whole graph structure by discovering which nodes are affected by the introduction of new samples and by updating their edge weights. The second contribution of the article is the application of the proposed framework to the problem of graph-based label propagation using multiple observations for vision-based recognition tasks. Experiments on several image databases show that, without any significant loss in the accuracy of the final classification, the proposed dynamic graph construction is more efficient than the batch graph construction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Semi-Supervised Bayesian Classification of Materials with Impact-Echo Signals

    Directory of Open Access Journals (Sweden)

    Jorge Igual

    2015-05-01

    Full Text Available The detection and identification of internal defects in a material require the use of some technology that translates the hidden interior damages into observable signals with different signature-defect correspondences. We apply impact-echo techniques for this purpose. The materials are classified according to their defective status (homogeneous, one defect or multiple defects and kind of defect (hole or crack, passing through or not. Every specimen is impacted by a hammer, and the spectrum of the propagated wave is recorded. This spectrum is the input data to a Bayesian classifier that is based on the modeling of the conditional probabilities with a mixture of Gaussians. The parameters of the Gaussian mixtures and the class probabilities are estimated using an extended expectation-maximization algorithm. The advantage of our proposal is that it is flexible, since it obtains good results for a wide range of models even under little supervision; e.g., it obtains a harmonic average of precision and recall value of 92.38% given only a 10% supervision ratio. We test the method with real specimens made of aluminum alloy. The results show that the algorithm works very well. This technique could be applied in many industrial problems, such as the optimization of the marble cutting process.

  12. Network Supervision of Adult Experience and Learning Dependent Sensory Cortical Plasticity.

    Science.gov (United States)

    Blake, David T

    2017-06-18

    The brain is capable of remodeling throughout life. The sensory cortices provide a useful preparation for studying neuroplasticity both during development and thereafter. In adulthood, sensory cortices change in the cortical area activated by behaviorally relevant stimuli, by the strength of response within that activated area, and by the temporal profiles of those responses. Evidence supports forms of unsupervised, reinforcement, and fully supervised network learning rules. Studies on experience-dependent plasticity have mostly not controlled for learning, and they find support for unsupervised learning mechanisms. Changes occur with greatest ease in neurons containing α-CamKII, which are pyramidal neurons in layers II/III and layers V/VI. These changes use synaptic mechanisms including long term depression. Synaptic strengthening at NMDA-containing synapses does occur, but its weak association with activity suggests other factors also initiate changes. Studies that control learning find support of reinforcement learning rules and limited evidence of other forms of supervised learning. Behaviorally associating a stimulus with reinforcement leads to a strengthening of cortical response strength and enlarging of response area with poor selectivity. Associating a stimulus with omission of reinforcement leads to a selective weakening of responses. In some preparations in which these associations are not as clearly made, neurons with the most informative discharges are relatively stronger after training. Studies analyzing the temporal profile of responses associated with omission of reward, or of plasticity in studies with different discriminanda but statistically matched stimuli, support the existence of limited supervised network learning. © 2017 American Physiological Society. Compr Physiol 7:977-1008, 2017. Copyright © 2017 John Wiley & Sons, Inc.

  13. Supervised learning in spiking neural networks with FORCE training.

    Science.gov (United States)

    Nicola, Wilten; Clopath, Claudia

    2017-12-20

    Populations of neurons display an extraordinary diversity in the behaviors they affect and display. Machine learning techniques have recently emerged that allow us to create networks of model neurons that display behaviors of similar complexity. Here we demonstrate the direct applicability of one such technique, the FORCE method, to spiking neural networks. We train these networks to mimic dynamical systems, classify inputs, and store discrete sequences that correspond to the notes of a song. Finally, we use FORCE training to create two biologically motivated model circuits. One is inspired by the zebra finch and successfully reproduces songbird singing. The second network is motivated by the hippocampus and is trained to store and replay a movie scene. FORCE trained networks reproduce behaviors comparable in complexity to their inspired circuits and yield information not easily obtainable with other techniques, such as behavioral responses to pharmacological manipulations and spike timing statistics.

  14. Supervised Learning Using Spike-Timing-Dependent Plasticity of Memristive Synapses.

    Science.gov (United States)

    Nishitani, Yu; Kaneko, Yukihiro; Ueda, Michihito

    2015-12-01

    We propose a supervised learning model that enables error backpropagation for spiking neural network hardware. The method is modeled by modifying an existing model to suit the hardware implementation. An example of a network circuit for the model is also presented. In this circuit, a three-terminal ferroelectric memristor (3T-FeMEM), which is a field-effect transistor with a gate insulator composed of ferroelectric materials, is used as an electric synapse device to store the analog synaptic weight. Our model can be implemented by reflecting the network error to the write voltage of the 3T-FeMEMs and introducing a spike-timing-dependent learning function to the device. An XOR problem was successfully demonstrated as a benchmark learning by numerical simulations using the circuit properties to estimate the learning performance. In principle, the learning time per step of this supervised learning model and the circuit is independent of the number of neurons in each layer, promising a high-speed and low-power calculation in large-scale neural networks.

  15. Cerebellar supervised learning revisited: biophysical modeling and degrees-of-freedom control.

    Science.gov (United States)

    Kawato, Mitsuo; Kuroda, Shinya; Schweighofer, Nicolas

    2011-10-01

    The biophysical models of spike-timing-dependent plasticity have explored dynamics with molecular basis for such computational concepts as coincidence detection, synaptic eligibility trace, and Hebbian learning. They overall support different learning algorithms in different brain areas, especially supervised learning in the cerebellum. Because a single spine is physically very small, chemical reactions at it are essentially stochastic, and thus sensitivity-longevity dilemma exists in the synaptic memory. Here, the cascade of excitable and bistable dynamics is proposed to overcome this difficulty. All kinds of learning algorithms in different brain regions confront with difficult generalization problems. For resolution of this issue, the control of the degrees-of-freedom can be realized by changing synchronicity of neural firing. Especially, for cerebellar supervised learning, the triangle closed-loop circuit consisting of Purkinje cells, the inferior olive nucleus, and the cerebellar nucleus is proposed as a circuit to optimally control synchronous firing and degrees-of-freedom in learning. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Classification of ECG beats using deep belief network and active learning.

    Science.gov (United States)

    G, Sayantan; T, Kien P; V, Kadambari K

    2018-04-12

    A new semi-supervised approach based on deep learning and active learning for classification of electrocardiogram signals (ECG) is proposed. The objective of the proposed work is to model a scientific method for classification of cardiac irregularities using electrocardiogram beats. The model follows the Association for the Advancement of medical instrumentation (AAMI) standards and consists of three phases. In phase I, feature representation of ECG is learnt using Gaussian-Bernoulli deep belief network followed by a linear support vector machine (SVM) training in the consecutive phase. It yields three deep models which are based on AAMI-defined classes, namely N, V, S, and F. In the last phase, a query generator is introduced to interact with the expert to label few beats to improve accuracy and sensitivity. The proposed approach depicts significant improvement in accuracy with minimal queries posed to the expert and fast online training as tested on the MIT-BIH Arrhythmia Database and the MIT-BIH Supra-ventricular Arrhythmia Database (SVDB). With 100 queries labeled by the expert in phase III, the method achieves an accuracy of 99.5% in "S" versus all classifications (SVEB) and 99.4% accuracy in "V " versus all classifications (VEB) on MIT-BIH Arrhythmia Database. In a similar manner, it is attributed that an accuracy of 97.5% for SVEB and 98.6% for VEB on SVDB database is achieved respectively. Graphical Abstract Reply- Deep belief network augmented by active learning for efficient prediction of arrhythmia.

  17. Poster abstract: Water level estimation in urban ultrasonic/passive infrared flash flood sensor networks using supervised learning

    KAUST Repository

    Mousa, Mustafa; Claudel, Christian G.

    2014-01-01

    floods occur very rarely, we use a supervised learning approach to estimate the correction to the ultrasonic rangefinder caused by temperature fluctuations. Preliminary data shows that water level can be estimated with an absolute error of less than 2 cm

  18. Ship-Iceberg Discrimination in Sentinel-2 Multispectral Imagery by Supervised Classification

    DEFF Research Database (Denmark)

    Heiselberg, Peder; Heiselberg, Henning

    2017-01-01

    . It discriminates between objects like ships, islands, wakes, and icebergs, ice floes, and clouds with accuracy better than 90%. Pan-sharpening the infrared bands leads to classification and discrimination of ice floes and clouds better than 95%. For complex images with abundant ice floes or clouds, however...

  19. Clinical learning environment and supervision of international nursing students: A cross-sectional study.

    Science.gov (United States)

    Mikkonen, Kristina; Elo, Satu; Miettunen, Jouko; Saarikoski, Mikko; Kääriäinen, Maria

    2017-05-01

    Previously, it has been shown that the clinical learning environment causes challenges for international nursing students, but there is a lack of empirical evidence relating to the background factors explaining and influencing the outcomes. To describe international and national students' perceptions of their clinical learning environment and supervision, and explain the related background factors. An explorative cross-sectional design was used in a study conducted in eight universities of applied sciences in Finland during September 2015-May 2016. All nursing students studying English language degree programs were invited to answer a self-administered questionnaire based on both the clinical learning environment, supervision and nurse teacher scale and Cultural and Linguistic Diversity scale with additional background questions. Participants (n=329) included international (n=231) and Finnish (n=98) nursing students. Binary logistic regression was used to identify background factors relating to the clinical learning environment and supervision. International students at a beginner level in Finnish perceived the pedagogical atmosphere as worse than native speakers. In comparison to native speakers, these international students generally needed greater support from the nurse teacher at their university. Students at an intermediate level in Finnish reported two times fewer negative encounters in cultural diversity at their clinical placement than the beginners. To facilitate a successful learning experience, international nursing students require a sufficient level of competence in the native language when conducting clinical placements. Educational interventions in language education are required to test causal effects on students' success in the clinical learning environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Characterization of the Optical Properties of Turbid Media by Supervised Learning of Scattering Patterns.

    Science.gov (United States)

    Hassaninia, Iman; Bostanabad, Ramin; Chen, Wei; Mohseni, Hooman

    2017-11-10

    Fabricated tissue phantoms are instrumental in optical in-vitro investigations concerning cancer diagnosis, therapeutic applications, and drug efficacy tests. We present a simple non-invasive computational technique that, when coupled with experiments, has the potential for characterization of a wide range of biological tissues. The fundamental idea of our approach is to find a supervised learner that links the scattering pattern of a turbid sample to its thickness and scattering parameters. Once found, this supervised learner is employed in an inverse optimization problem for estimating the scattering parameters of a sample given its thickness and scattering pattern. Multi-response Gaussian processes are used for the supervised learning task and a simple setup is introduced to obtain the scattering pattern of a tissue sample. To increase the predictive power of the supervised learner, the scattering patterns are filtered, enriched by a regressor, and finally characterized with two parameters, namely, transmitted power and scaled Gaussian width. We computationally illustrate that our approach achieves errors of roughly 5% in predicting the scattering properties of many biological tissues. Our method has the potential to facilitate the characterization of tissues and fabrication of phantoms used for diagnostic and therapeutic purposes over a wide range of optical spectrum.

  1. Machine learning algorithms for mode-of-action classification in toxicity assessment.

    Science.gov (United States)

    Zhang, Yile; Wong, Yau Shu; Deng, Jian; Anton, Cristina; Gabos, Stephan; Zhang, Weiping; Huang, Dorothy Yu; Jin, Can

    2016-01-01

    Real Time Cell Analysis (RTCA) technology is used to monitor cellular changes continuously over the entire exposure period. Combining with different testing concentrations, the profiles have potential in probing the mode of action (MOA) of the testing substances. In this paper, we present machine learning approaches for MOA assessment. Computational tools based on artificial neural network (ANN) and support vector machine (SVM) are developed to analyze the time-concentration response curves (TCRCs) of human cell lines responding to tested chemicals. The techniques are capable of learning data from given TCRCs with known MOA information and then making MOA classification for the unknown toxicity. A novel data processing step based on wavelet transform is introduced to extract important features from the original TCRC data. From the dose response curves, time interval leading to higher classification success rate can be selected as input to enhance the performance of the machine learning algorithm. This is particularly helpful when handling cases with limited and imbalanced data. The validation of the proposed method is demonstrated by the supervised learning algorithm applied to the exposure data of HepG2 cell line to 63 chemicals with 11 concentrations in each test case. Classification success rate in the range of 85 to 95 % are obtained using SVM for MOA classification with two clusters to cases up to four clusters. Wavelet transform is capable of capturing important features of TCRCs for MOA classification. The proposed SVM scheme incorporated with wavelet transform has a great potential for large scale MOA classification and high-through output chemical screening.

  2. Active Learning of Classification Models with Likert-Scale Feedback.

    Science.gov (United States)

    Xue, Yanbing; Hauskrecht, Milos

    2017-01-01

    Annotation of classification data by humans can be a time-consuming and tedious process. Finding ways of reducing the annotation effort is critical for building the classification models in practice and for applying them to a variety of classification tasks. In this paper, we develop a new active learning framework that combines two strategies to reduce the annotation effort. First, it relies on label uncertainty information obtained from the human in terms of the Likert-scale feedback. Second, it uses active learning to annotate examples with the greatest expected change. We propose a Bayesian approach to calculate the expectation and an incremental SVM solver to reduce the time complexity of the solvers. We show the combination of our active learning strategy and the Likert-scale feedback can learn classification models more rapidly and with a smaller number of labeled instances than methods that rely on either Likert-scale labels or active learning alone.

  3. Automated cell analysis tool for a genome-wide RNAi screen with support vector machine based supervised learning

    Science.gov (United States)

    Remmele, Steffen; Ritzerfeld, Julia; Nickel, Walter; Hesser, Jürgen

    2011-03-01

    RNAi-based high-throughput microscopy screens have become an important tool in biological sciences in order to decrypt mostly unknown biological functions of human genes. However, manual analysis is impossible for such screens since the amount of image data sets can often be in the hundred thousands. Reliable automated tools are thus required to analyse the fluorescence microscopy image data sets usually containing two or more reaction channels. The herein presented image analysis tool is designed to analyse an RNAi screen investigating the intracellular trafficking and targeting of acylated Src kinases. In this specific screen, a data set consists of three reaction channels and the investigated cells can appear in different phenotypes. The main issue of the image processing task is an automatic cell segmentation which has to be robust and accurate for all different phenotypes and a successive phenotype classification. The cell segmentation is done in two steps by segmenting the cell nuclei first and then using a classifier-enhanced region growing on basis of the cell nuclei to segment the cells. The classification of the cells is realized by a support vector machine which has to be trained manually using supervised learning. Furthermore, the tool is brightness invariant allowing different staining quality and it provides a quality control that copes with typical defects during preparation and acquisition. A first version of the tool has already been successfully applied for an RNAi-screen containing three hundred thousand image data sets and the SVM extended version is designed for additional screens.

  4. Accuracy of latent-variable estimation in Bayesian semi-supervised learning.

    Science.gov (United States)

    Yamazaki, Keisuke

    2015-09-01

    Hierarchical probabilistic models, such as Gaussian mixture models, are widely used for unsupervised learning tasks. These models consist of observable and latent variables, which represent the observable data and the underlying data-generation process, respectively. Unsupervised learning tasks, such as cluster analysis, are regarded as estimations of latent variables based on the observable ones. The estimation of latent variables in semi-supervised learning, where some labels are observed, will be more precise than that in unsupervised, and one of the concerns is to clarify the effect of the labeled data. However, there has not been sufficient theoretical analysis of the accuracy of the estimation of latent variables. In a previous study, a distribution-based error function was formulated, and its asymptotic form was calculated for unsupervised learning with generative models. It has been shown that, for the estimation of latent variables, the Bayes method is more accurate than the maximum-likelihood method. The present paper reveals the asymptotic forms of the error function in Bayesian semi-supervised learning for both discriminative and generative models. The results show that the generative model, which uses all of the given data, performs better when the model is well specified. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. An online supervised learning method based on gradient descent for spiking neurons.

    Science.gov (United States)

    Xu, Yan; Yang, Jing; Zhong, Shuiming

    2017-09-01

    The purpose of supervised learning with temporal encoding for spiking neurons is to make the neurons emit a specific spike train encoded by precise firing times of spikes. The gradient-descent-based (GDB) learning methods are widely used and verified in the current research. Although the existing GDB multi-spike learning (or spike sequence learning) methods have good performance, they work in an offline manner and still have some limitations. This paper proposes an online GDB spike sequence learning method for spiking neurons that is based on the online adjustment mechanism of real biological neuron synapses. The method constructs error function and calculates the adjustment of synaptic weights as soon as the neurons emit a spike during their running process. We analyze and synthesize desired and actual output spikes to select appropriate input spikes in the calculation of weight adjustment in this paper. The experimental results show that our method obviously improves learning performance compared with the offline learning manner and has certain advantage on learning accuracy compared with other learning methods. Stronger learning ability determines that the method has large pattern storage capacity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Comparison of supervised machine learning algorithms for waterborne pathogen detection using mobile phone fluorescence microscopy

    Science.gov (United States)

    Ceylan Koydemir, Hatice; Feng, Steve; Liang, Kyle; Nadkarni, Rohan; Benien, Parul; Ozcan, Aydogan

    2017-06-01

    Giardia lamblia is a waterborne parasite that affects millions of people every year worldwide, causing a diarrheal illness known as giardiasis. Timely detection of the presence of the cysts of this parasite in drinking water is important to prevent the spread of the disease, especially in resource-limited settings. Here we provide extended experimental testing and evaluation of the performance and repeatability of a field-portable and cost-effective microscopy platform for automated detection and counting of Giardia cysts in water samples, including tap water, non-potable water, and pond water. This compact platform is based on our previous work, and is composed of a smartphone-based fluorescence microscope, a disposable sample processing cassette, and a custom-developed smartphone application. Our mobile phone microscope has a large field of view of 0.8 cm2 and weighs only 180 g, excluding the phone. A custom-developed smartphone application provides a user-friendly graphical interface, guiding the users to capture a fluorescence image of the sample filter membrane and analyze it automatically at our servers using an image processing algorithm and training data, consisting of >30,000 images of cysts and >100,000 images of other fluorescent particles that are captured, including, e.g. dust. The total time that it takes from sample preparation to automated cyst counting is less than an hour for each 10 ml of water sample that is tested. We compared the sensitivity and the specificity of our platform using multiple supervised classification models, including support vector machines and nearest neighbors, and demonstrated that a bootstrap aggregating (i.e. bagging) approach using raw image file format provides the best performance for automated detection of Giardia cysts. We evaluated the performance of this machine learning enabled pathogen detection device with water samples taken from different sources (e.g. tap water, non-potable water, pond water) and achieved a

  7. Comparison of supervised machine learning algorithms for waterborne pathogen detection using mobile phone fluorescence microscopy

    KAUST Repository

    Ceylan Koydemir, Hatice

    2017-06-14

    Giardia lamblia is a waterborne parasite that affects millions of people every year worldwide, causing a diarrheal illness known as giardiasis. Timely detection of the presence of the cysts of this parasite in drinking water is important to prevent the spread of the disease, especially in resource-limited settings. Here we provide extended experimental testing and evaluation of the performance and repeatability of a field-portable and cost-effective microscopy platform for automated detection and counting of Giardia cysts in water samples, including tap water, non-potable water, and pond water. This compact platform is based on our previous work, and is composed of a smartphone-based fluorescence microscope, a disposable sample processing cassette, and a custom-developed smartphone application. Our mobile phone microscope has a large field of view of ~0.8 cm2 and weighs only ~180 g, excluding the phone. A custom-developed smartphone application provides a user-friendly graphical interface, guiding the users to capture a fluorescence image of the sample filter membrane and analyze it automatically at our servers using an image processing algorithm and training data, consisting of >30,000 images of cysts and >100,000 images of other fluorescent particles that are captured, including, e.g. dust. The total time that it takes from sample preparation to automated cyst counting is less than an hour for each 10 ml of water sample that is tested. We compared the sensitivity and the specificity of our platform using multiple supervised classification models, including support vector machines and nearest neighbors, and demonstrated that a bootstrap aggregating (i.e. bagging) approach using raw image file format provides the best performance for automated detection of Giardia cysts. We evaluated the performance of this machine learning enabled pathogen detection device with water samples taken from different sources (e.g. tap water, non-potable water, pond water) and achieved

  8. Comparison of supervised machine learning algorithms for waterborne pathogen detection using mobile phone fluorescence microscopy

    Directory of Open Access Journals (Sweden)

    Ceylan Koydemir Hatice

    2017-06-01

    Full Text Available Giardia lamblia is a waterborne parasite that affects millions of people every year worldwide, causing a diarrheal illness known as giardiasis. Timely detection of the presence of the cysts of this parasite in drinking water is important to prevent the spread of the disease, especially in resource-limited settings. Here we provide extended experimental testing and evaluation of the performance and repeatability of a field-portable and cost-effective microscopy platform for automated detection and counting of Giardia cysts in water samples, including tap water, non-potable water, and pond water. This compact platform is based on our previous work, and is composed of a smartphone-based fluorescence microscope, a disposable sample processing cassette, and a custom-developed smartphone application. Our mobile phone microscope has a large field of view of ~0.8 cm2 and weighs only ~180 g, excluding the phone. A custom-developed smartphone application provides a user-friendly graphical interface, guiding the users to capture a fluorescence image of the sample filter membrane and analyze it automatically at our servers using an image processing algorithm and training data, consisting of >30,000 images of cysts and >100,000 images of other fluorescent particles that are captured, including, e.g. dust. The total time that it takes from sample preparation to automated cyst counting is less than an hour for each 10 ml of water sample that is tested. We compared the sensitivity and the specificity of our platform using multiple supervised classification models, including support vector machines and nearest neighbors, and demonstrated that a bootstrap aggregating (i.e. bagging approach using raw image file format provides the best performance for automated detection of Giardia cysts. We evaluated the performance of this machine learning enabled pathogen detection device with water samples taken from different sources (e.g. tap water, non-potable water, pond

  9. Comparison of supervised machine learning algorithms for waterborne pathogen detection using mobile phone fluorescence microscopy

    KAUST Repository

    Ceylan Koydemir, Hatice; Feng, Steve; Liang, Kyle; Nadkarni, Rohan; Benien, Parul; Ozcan, Aydogan

    2017-01-01

    Giardia lamblia is a waterborne parasite that affects millions of people every year worldwide, causing a diarrheal illness known as giardiasis. Timely detection of the presence of the cysts of this parasite in drinking water is important to prevent the spread of the disease, especially in resource-limited settings. Here we provide extended experimental testing and evaluation of the performance and repeatability of a field-portable and cost-effective microscopy platform for automated detection and counting of Giardia cysts in water samples, including tap water, non-potable water, and pond water. This compact platform is based on our previous work, and is composed of a smartphone-based fluorescence microscope, a disposable sample processing cassette, and a custom-developed smartphone application. Our mobile phone microscope has a large field of view of ~0.8 cm2 and weighs only ~180 g, excluding the phone. A custom-developed smartphone application provides a user-friendly graphical interface, guiding the users to capture a fluorescence image of the sample filter membrane and analyze it automatically at our servers using an image processing algorithm and training data, consisting of >30,000 images of cysts and >100,000 images of other fluorescent particles that are captured, including, e.g. dust. The total time that it takes from sample preparation to automated cyst counting is less than an hour for each 10 ml of water sample that is tested. We compared the sensitivity and the specificity of our platform using multiple supervised classification models, including support vector machines and nearest neighbors, and demonstrated that a bootstrap aggregating (i.e. bagging) approach using raw image file format provides the best performance for automated detection of Giardia cysts. We evaluated the performance of this machine learning enabled pathogen detection device with water samples taken from different sources (e.g. tap water, non-potable water, pond water) and achieved

  10. Restructuring supervision and reconfiguration of skill mix in community pharmacy: Classification of perceived safety and risk.

    Science.gov (United States)

    Bradley, Fay; Willis, Sarah C; Noyce, Peter R; Schafheutle, Ellen I

    2016-01-01

    Broadening the range of services provided through community pharmacy increases workloads for pharmacists that could be alleviated by reconfiguring roles within the pharmacy team. To examine pharmacists' and pharmacy technicians (PTs)' perceptions of how safe it would be for support staff to undertake a range of pharmacy activities during a pharmacist's absence. Views on supervision, support staff roles, competency and responsibility were also sought. Informed by nominal group discussions, a questionnaire was developed and distributed to a random sample of 1500 pharmacists and 1500 PTs registered in England. Whilst focused on community pharmacy practice, hospital pharmacy respondents were included, as more advanced skill mix models may provide valuable insights. Respondents were asked to rank a list of 22 pharmacy activities in terms of perceived risk and safety of these activities being performed by support staff during a pharmacist's absence. Descriptive and comparative statistic analyses were conducted. Six-hundred-and-forty-two pharmacists (43.2%) and 854 PTs (57.3%) responded; the majority worked in community pharmacy. Dependent on agreement levels with perceived safety, from community pharmacists and PTs, and hospital pharmacists and PTs, the 22 activities were grouped into 'safe' (n = 7), 'borderline' (n = 9) and 'unsafe' (n = 6). Activities such as assembly and labeling were considered 'safe,' clinical activities were considered 'unsafe.' There were clear differences between pharmacists and PTs, and sectors (community pharmacy vs. hospital). Community pharmacists were most cautious (particularly mobile and portfolio pharmacists) about which activities they felt support staff could safely perform; PTs in both sectors felt significantly more confident performing particularly technical activities than pharmacists. This paper presents novel empirical evidence informing the categorization of pharmacy activities into 'safe,' 'borderline' or 'unsafe

  11. Supervised pre-processing approaches in multiple class variables classification for fish recruitment forecasting

    KAUST Repository

    Fernandes, José Antonio; Lozano, Jose A.; Iñ za, Iñ aki; Irigoien, Xabier; Pé rez, Aritz; Rodrí guez, Juan Diego

    2013-01-01

    A multi-species approach to fisheries management requires taking into account the interactions between species in order to improve recruitment forecasting of the fish species. Recent advances in Bayesian networks direct the learning of models

  12. Polarimetric SAR image classification based on discriminative dictionary learning model

    Science.gov (United States)

    Sang, Cheng Wei; Sun, Hong

    2018-03-01

    Polarimetric SAR (PolSAR) image classification is one of the important applications of PolSAR remote sensing. It is a difficult high-dimension nonlinear mapping problem, the sparse representations based on learning overcomplete dictionary have shown great potential to solve such problem. The overcomplete dictionary plays an important role in PolSAR image classification, however for PolSAR image complex scenes, features shared by different classes will weaken the discrimination of learned dictionary, so as to degrade classification performance. In this paper, we propose a novel overcomplete dictionary learning model to enhance the discrimination of dictionary. The learned overcomplete dictionary by the proposed model is more discriminative and very suitable for PolSAR classification.

  13. From learning taxonomies to phylogenetic learning: Integration of 16S rRNA gene data into FAME-based bacterial classification

    Directory of Open Access Journals (Sweden)

    Dawyndt Peter

    2010-01-01

    Full Text Available Abstract Background Machine learning techniques have shown to improve bacterial species classification based on fatty acid methyl ester (FAME data. Nonetheless, FAME analysis has a limited resolution for discrimination of bacteria at the species level. In this paper, we approach the species classification problem from a taxonomic point of view. Such a taxonomy or tree is typically obtained by applying clustering algorithms on FAME data or on 16S rRNA gene data. The knowledge gained from the tree can then be used to evaluate FAME-based classifiers, resulting in a novel framework for bacterial species classification. Results In view of learning in a taxonomic framework, we consider two types of trees. First, a FAME tree is constructed with a supervised divisive clustering algorithm. Subsequently, based on 16S rRNA gene sequence analysis, phylogenetic trees are inferred by the NJ and UPGMA methods. In this second approach, the species classification problem is based on the combination of two different types of data. Herein, 16S rRNA gene sequence data is used for phylogenetic tree inference and the corresponding binary tree splits are learned based on FAME data. We call this learning approach 'phylogenetic learning'. Supervised Random Forest models are developed to train the classification tasks in a stratified cross-validation setting. In this way, better classification results are obtained for species that are typically hard to distinguish by a single or flat multi-class classification model. Conclusions FAME-based bacterial species classification is successfully evaluated in a taxonomic framework. Although the proposed approach does not improve the overall accuracy compared to flat multi-class classification, it has some distinct advantages. First, it has better capabilities for distinguishing species on which flat multi-class classification fails. Secondly, the hierarchical classification structure allows to easily evaluate and visualize the

  14. From learning taxonomies to phylogenetic learning: integration of 16S rRNA gene data into FAME-based bacterial classification.

    Science.gov (United States)

    Slabbinck, Bram; Waegeman, Willem; Dawyndt, Peter; De Vos, Paul; De Baets, Bernard

    2010-01-30

    Machine learning techniques have shown to improve bacterial species classification based on fatty acid methyl ester (FAME) data. Nonetheless, FAME analysis has a limited resolution for discrimination of bacteria at the species level. In this paper, we approach the species classification problem from a taxonomic point of view. Such a taxonomy or tree is typically obtained by applying clustering algorithms on FAME data or on 16S rRNA gene data. The knowledge gained from the tree can then be used to evaluate FAME-based classifiers, resulting in a novel framework for bacterial species classification. In view of learning in a taxonomic framework, we consider two types of trees. First, a FAME tree is constructed with a supervised divisive clustering algorithm. Subsequently, based on 16S rRNA gene sequence analysis, phylogenetic trees are inferred by the NJ and UPGMA methods. In this second approach, the species classification problem is based on the combination of two different types of data. Herein, 16S rRNA gene sequence data is used for phylogenetic tree inference and the corresponding binary tree splits are learned based on FAME data. We call this learning approach 'phylogenetic learning'. Supervised Random Forest models are developed to train the classification tasks in a stratified cross-validation setting. In this way, better classification results are obtained for species that are typically hard to distinguish by a single or flat multi-class classification model. FAME-based bacterial species classification is successfully evaluated in a taxonomic framework. Although the proposed approach does not improve the overall accuracy compared to flat multi-class classification, it has some distinct advantages. First, it has better capabilities for distinguishing species on which flat multi-class classification fails. Secondly, the hierarchical classification structure allows to easily evaluate and visualize the resolution of FAME data for the discrimination of bacterial

  15. From learning taxonomies to phylogenetic learning: Integration of 16S rRNA gene data into FAME-based bacterial classification

    Science.gov (United States)

    2010-01-01

    Background Machine learning techniques have shown to improve bacterial species classification based on fatty acid methyl ester (FAME) data. Nonetheless, FAME analysis has a limited resolution for discrimination of bacteria at the species level. In this paper, we approach the species classification problem from a taxonomic point of view. Such a taxonomy or tree is typically obtained by applying clustering algorithms on FAME data or on 16S rRNA gene data. The knowledge gained from the tree can then be used to evaluate FAME-based classifiers, resulting in a novel framework for bacterial species classification. Results In view of learning in a taxonomic framework, we consider two types of trees. First, a FAME tree is constructed with a supervised divisive clustering algorithm. Subsequently, based on 16S rRNA gene sequence analysis, phylogenetic trees are inferred by the NJ and UPGMA methods. In this second approach, the species classification problem is based on the combination of two different types of data. Herein, 16S rRNA gene sequence data is used for phylogenetic tree inference and the corresponding binary tree splits are learned based on FAME data. We call this learning approach 'phylogenetic learning'. Supervised Random Forest models are developed to train the classification tasks in a stratified cross-validation setting. In this way, better classification results are obtained for species that are typically hard to distinguish by a single or flat multi-class classification model. Conclusions FAME-based bacterial species classification is successfully evaluated in a taxonomic framework. Although the proposed approach does not improve the overall accuracy compared to flat multi-class classification, it has some distinct advantages. First, it has better capabilities for distinguishing species on which flat multi-class classification fails. Secondly, the hierarchical classification structure allows to easily evaluate and visualize the resolution of FAME data for

  16. Deep learning for tumor classification in imaging mass spectrometry.

    Science.gov (United States)

    Behrmann, Jens; Etmann, Christian; Boskamp, Tobias; Casadonte, Rita; Kriegsmann, Jörg; Maaß, Peter

    2018-04-01

    Tumor classification using imaging mass spectrometry (IMS) data has a high potential for future applications in pathology. Due to the complexity and size of the data, automated feature extraction and classification steps are required to fully process the data. Since mass spectra exhibit certain structural similarities to image data, deep learning may offer a promising strategy for classification of IMS data as it has been successfully applied to image classification. Methodologically, we propose an adapted architecture based on deep convolutional networks to handle the characteristics of mass spectrometry data, as well as a strategy to interpret the learned model in the spectral domain based on a sensitivity analysis. The proposed methods are evaluated on two algorithmically challenging tumor classification tasks and compared to a baseline approach. Competitiveness of the proposed methods is shown on both tasks by studying the performance via cross-validation. Moreover, the learned models are analyzed by the proposed sensitivity analysis revealing biologically plausible effects as well as confounding factors of the considered tasks. Thus, this study may serve as a starting point for further development of deep learning approaches in IMS classification tasks. https://gitlab.informatik.uni-bremen.de/digipath/Deep_Learning_for_Tumor_Classification_in_IMS. jbehrmann@uni-bremen.de or christianetmann@uni-bremen.de. Supplementary data are available at Bioinformatics online.

  17. New supervised learning theory applied to cerebellar modeling for suppression of variability of saccade end points.

    Science.gov (United States)

    Fujita, Masahiko

    2013-06-01

    A new supervised learning theory is proposed for a hierarchical neural network with a single hidden layer of threshold units, which can approximate any continuous transformation, and applied to a cerebellar function to suppress the end-point variability of saccades. In motor systems, feedback control can reduce noise effects if the noise is added in a pathway from a motor center to a peripheral effector; however, it cannot reduce noise effects if the noise is generated in the motor center itself: a new control scheme is necessary for such noise. The cerebellar cortex is well known as a supervised learning system, and a novel theory of cerebellar cortical function developed in this study can explain the capability of the cerebellum to feedforwardly reduce noise effects, such as end-point variability of saccades. This theory assumes that a Golgi-granule cell system can encode the strength of a mossy fiber input as the state of neuronal activity of parallel fibers. By combining these parallel fiber signals with appropriate connection weights to produce a Purkinje cell output, an arbitrary continuous input-output relationship can be obtained. By incorporating such flexible computation and learning ability in a process of saccadic gain adaptation, a new control scheme in which the cerebellar cortex feedforwardly suppresses the end-point variability when it detects a variation in saccadic commands can be devised. Computer simulation confirmed the efficiency of such learning and showed a reduction in the variability of saccadic end points, similar to results obtained from experimental data.

  18. A Weighted Block Dictionary Learning Algorithm for Classification

    OpenAIRE

    Shi, Zhongrong

    2016-01-01

    Discriminative dictionary learning, playing a critical role in sparse representation based classification, has led to state-of-the-art classification results. Among the existing discriminative dictionary learning methods, two different approaches, shared dictionary and class-specific dictionary, which associate each dictionary atom to all classes or a single class, have been studied. The shared dictionary is a compact method but with lack of discriminative information; the class-specific dict...

  19. Gene selection and classification for cancer microarray data based on machine learning and similarity measures

    Directory of Open Access Journals (Sweden)

    Liu Qingzhong

    2011-12-01

    Full Text Available Abstract Background Microarray data have a high dimension of variables and a small sample size. In microarray data analyses, two important issues are how to choose genes, which provide reliable and good prediction for disease status, and how to determine the final gene set that is best for classification. Associations among genetic markers mean one can exploit information redundancy to potentially reduce classification cost in terms of time and money. Results To deal with redundant information and improve classification, we propose a gene selection method, Recursive Feature Addition, which combines supervised learning and statistical similarity measures. To determine the final optimal gene set for prediction and classification, we propose an algorithm, Lagging Prediction Peephole Optimization. By using six benchmark microarray gene expression data sets, we compared Recursive Feature Addition with recently developed gene selection methods: Support Vector Machine Recursive Feature Elimination, Leave-One-Out Calculation Sequential Forward Selection and several others. Conclusions On average, with the use of popular learning machines including Nearest Mean Scaled Classifier, Support Vector Machine, Naive Bayes Classifier and Random Forest, Recursive Feature Addition outperformed other methods. Our studies also showed that Lagging Prediction Peephole Optimization is superior to random strategy; Recursive Feature Addition with Lagging Prediction Peephole Optimization obtained better testing accuracies than the gene selection method varSelRF.

  20. On Internet Traffic Classification: A Two-Phased Machine Learning Approach

    Directory of Open Access Journals (Sweden)

    Taimur Bakhshi

    2016-01-01

    Full Text Available Traffic classification utilizing flow measurement enables operators to perform essential network management. Flow accounting methods such as NetFlow are, however, considered inadequate for classification requiring additional packet-level information, host behaviour analysis, and specialized hardware limiting their practical adoption. This paper aims to overcome these challenges by proposing two-phased machine learning classification mechanism with NetFlow as input. The individual flow classes are derived per application through k-means and are further used to train a C5.0 decision tree classifier. As part of validation, the initial unsupervised phase used flow records of fifteen popular Internet applications that were collected and independently subjected to k-means clustering to determine unique flow classes generated per application. The derived flow classes were afterwards used to train and test a supervised C5.0 based decision tree. The resulting classifier reported an average accuracy of 92.37% on approximately 3.4 million test cases increasing to 96.67% with adaptive boosting. The classifier specificity factor which accounted for differentiating content specific from supplementary flows ranged between 98.37% and 99.57%. Furthermore, the computational performance and accuracy of the proposed methodology in comparison with similar machine learning techniques lead us to recommend its extension to other applications in achieving highly granular real-time traffic classification.

  1. Time series classification using k-Nearest neighbours, Multilayer Perceptron and Learning Vector Quantization algorithms

    Directory of Open Access Journals (Sweden)

    Jiří Fejfar

    2012-01-01

    Full Text Available We are presenting results comparison of three artificial intelligence algorithms in a classification of time series derived from musical excerpts in this paper. Algorithms were chosen to represent different principles of classification – statistic approach, neural networks and competitive learning. The first algorithm is a classical k-Nearest neighbours algorithm, the second algorithm is Multilayer Perceptron (MPL, an example of artificial neural network and the third one is a Learning Vector Quantization (LVQ algorithm representing supervised counterpart to unsupervised Self Organizing Map (SOM.After our own former experiments with unlabelled data we moved forward to the data labels utilization, which generally led to a better accuracy of classification results. As we need huge data set of labelled time series (a priori knowledge of correct class which each time series instance belongs to, we used, with a good experience in former studies, musical excerpts as a source of real-world time series. We are using standard deviation of the sound signal as a descriptor of a musical excerpts volume level.We are describing principle of each algorithm as well as its implementation briefly, giving links for further research. Classification results of each algorithm are presented in a confusion matrix showing numbers of misclassifications and allowing to evaluate overall accuracy of the algorithm. Results are compared and particular misclassifications are discussed for each algorithm. Finally the best solution is chosen and further research goals are given.

  2. Building an asynchronous web-based tool for machine learning classification.

    Science.gov (United States)

    Weber, Griffin; Vinterbo, Staal; Ohno-Machado, Lucila

    2002-01-01

    Various unsupervised and supervised learning methods including support vector machines, classification trees, linear discriminant analysis and nearest neighbor classifiers have been used to classify high-throughput gene expression data. Simpler and more widely accepted statistical tools have not yet been used for this purpose, hence proper comparisons between classification methods have not been conducted. We developed free software that implements logistic regression with stepwise variable selection as a quick and simple method for initial exploration of important genetic markers in disease classification. To implement the algorithm and allow our collaborators in remote locations to evaluate and compare its results against those of other methods, we developed a user-friendly asynchronous web-based application with a minimal amount of programming using free, downloadable software tools. With this program, we show that classification using logistic regression can perform as well as other more sophisticated algorithms, and it has the advantages of being easy to interpret and reproduce. By making the tool freely and easily available, we hope to promote the comparison of classification methods. In addition, we believe our web application can be used as a model for other bioinformatics laboratories that need to develop web-based analysis tools in a short amount of time and on a limited budget.

  3. Supervised Transfer Sparse Coding

    KAUST Repository

    Al-Shedivat, Maruan

    2014-07-27

    A combination of the sparse coding and transfer learn- ing techniques was shown to be accurate and robust in classification tasks where training and testing objects have a shared feature space but are sampled from differ- ent underlying distributions, i.e., belong to different do- mains. The key assumption in such case is that in spite of the domain disparity, samples from different domains share some common hidden factors. Previous methods often assumed that all the objects in the target domain are unlabeled, and thus the training set solely comprised objects from the source domain. However, in real world applications, the target domain often has some labeled objects, or one can always manually label a small num- ber of them. In this paper, we explore such possibil- ity and show how a small number of labeled data in the target domain can significantly leverage classifica- tion accuracy of the state-of-the-art transfer sparse cod- ing methods. We further propose a unified framework named supervised transfer sparse coding (STSC) which simultaneously optimizes sparse representation, domain transfer and classification. Experimental results on three applications demonstrate that a little manual labeling and then learning the model in a supervised fashion can significantly improve classification accuracy.

  4. Multiple kernel learning using single stage function approximation for binary classification problems

    Science.gov (United States)

    Shiju, S.; Sumitra, S.

    2017-12-01

    In this paper, the multiple kernel learning (MKL) is formulated as a supervised classification problem. We dealt with binary classification data and hence the data modelling problem involves the computation of two decision boundaries of which one related with that of kernel learning and the other with that of input data. In our approach, they are found with the aid of a single cost function by constructing a global reproducing kernel Hilbert space (RKHS) as the direct sum of the RKHSs corresponding to the decision boundaries of kernel learning and input data and searching that function from the global RKHS, which can be represented as the direct sum of the decision boundaries under consideration. In our experimental analysis, the proposed model had shown superior performance in comparison with that of existing two stage function approximation formulation of MKL, where the decision functions of kernel learning and input data are found separately using two different cost functions. This is due to the fact that single stage representation helps the knowledge transfer between the computation procedures for finding the decision boundaries of kernel learning and input data, which inturn boosts the generalisation capacity of the model.

  5. Semantic Segmentation of Convolutional Neural Network for Supervised Classification of Multispectral Remote Sensing

    Science.gov (United States)

    Xue, L.; Liu, C.; Wu, Y.; Li, H.

    2018-04-01

    Semantic segmentation is a fundamental research in remote sensing image processing. Because of the complex maritime environment, the classification of roads, vegetation, buildings and water from remote Sensing Imagery is a challenging task. Although the neural network has achieved excellent performance in semantic segmentation in the last years, there are a few of works using CNN for ground object segmentation and the results could be further improved. This paper used convolution neural network named U-Net, its structure has a contracting path and an expansive path to get high resolution output. In the network , We added BN layers, which is more conducive to the reverse pass. Moreover, after upsampling convolution , we add dropout layers to prevent overfitting. They are promoted to get more precise segmentation results. To verify this network architecture, we used a Kaggle dataset. Experimental results show that U-Net achieved good performance compared with other architectures, especially in high-resolution remote sensing imagery.

  6. Counterbalancing clinical supervision and independent practice: case studies in learning thoracic epidural catheter insertion.

    Science.gov (United States)

    Johnson, T

    2010-12-01

    Thoracic epidural catheter placement is an example of a demanding and high-risk clinical skill that junior anaesthetists need to learn by experience and under the supervision of consultants. This learning is known to present challenges that require further study. Ten consultant and 10 trainee anaesthetists in a teaching hospital were interviewed about teaching and learning this skill in the operating theatre, and a phenomenological analysis of their experience was performed. Trainee participation was limited by time pressure, lack of familiarity with consultants, and consultants' own need for clinical experience. There was a particular tension between safe and effective consultant practice and permitting trainees' independence. Three distinct stages of participation and assistance were identified from reports of ideal practice: early (part-task or basic procedure, consultant always present giving instruction and feedback), middle (independent practice with straightforward cases without further instruction), and late (skill extension and transfer). Learning assistance provided by consultants varied, but it was often not matched to the trainees' stages of learning. Negotiation of participation and assistance was recognized as being useful, but it did not happen routinely. There are many obstacles to trainees' participation in thoracic epidural catheter insertion, and learning assistance is not matched to need. A more explicit understanding of stages of learning is required to benefit the learning of this and other advanced clinical skills.

  7. DL-ReSuMe: A Delay Learning-Based Remote Supervised Method for Spiking Neurons.

    Science.gov (United States)

    Taherkhani, Aboozar; Belatreche, Ammar; Li, Yuhua; Maguire, Liam P

    2015-12-01

    Recent research has shown the potential capability of spiking neural networks (SNNs) to model complex information processing in the brain. There is biological evidence to prove the use of the precise timing of spikes for information coding. However, the exact learning mechanism in which the neuron is trained to fire at precise times remains an open problem. The majority of the existing learning methods for SNNs are based on weight adjustment. However, there is also biological evidence that the synaptic delay is not constant. In this paper, a learning method for spiking neurons, called delay learning remote supervised method (DL-ReSuMe), is proposed to merge the delay shift approach and ReSuMe-based weight adjustment to enhance the learning performance. DL-ReSuMe uses more biologically plausible properties, such as delay learning, and needs less weight adjustment than ReSuMe. Simulation results have shown that the proposed DL-ReSuMe approach achieves learning accuracy and learning speed improvements compared with ReSuMe.

  8. Improving supervised classification accuracy using non-rigid multimodal image registration: detecting prostate cancer

    Science.gov (United States)

    Chappelow, Jonathan; Viswanath, Satish; Monaco, James; Rosen, Mark; Tomaszewski, John; Feldman, Michael; Madabhushi, Anant

    2008-03-01

    Computer-aided diagnosis (CAD) systems for the detection of cancer in medical images require precise labeling of training data. For magnetic resonance (MR) imaging (MRI) of the prostate, training labels define the spatial extent of prostate cancer (CaP); the most common source for these labels is expert segmentations. When ancillary data such as whole mount histology (WMH) sections, which provide the gold standard for cancer ground truth, are available, the manual labeling of CaP can be improved by referencing WMH. However, manual segmentation is error prone, time consuming and not reproducible. Therefore, we present the use of multimodal image registration to automatically and accurately transcribe CaP from histology onto MRI following alignment of the two modalities, in order to improve the quality of training data and hence classifier performance. We quantitatively demonstrate the superiority of this registration-based methodology by comparing its results to the manual CaP annotation of expert radiologists. Five supervised CAD classifiers were trained using the labels for CaP extent on MRI obtained by the expert and 4 different registration techniques. Two of the registration methods were affi;ne schemes; one based on maximization of mutual information (MI) and the other method that we previously developed, Combined Feature Ensemble Mutual Information (COFEMI), which incorporates high-order statistical features for robust multimodal registration. Two non-rigid schemes were obtained by succeeding the two affine registration methods with an elastic deformation step using thin-plate splines (TPS). In the absence of definitive ground truth for CaP extent on MRI, classifier accuracy was evaluated against 7 ground truth surrogates obtained by different combinations of the expert and registration segmentations. For 26 multimodal MRI-WMH image pairs, all four registration methods produced a higher area under the receiver operating characteristic curve compared to that

  9. Nonlinear Semi-Supervised Metric Learning Via Multiple Kernels and Local Topology.

    Science.gov (United States)

    Li, Xin; Bai, Yanqin; Peng, Yaxin; Du, Shaoyi; Ying, Shihui

    2018-03-01

    Changing the metric on the data may change the data distribution, hence a good distance metric can promote the performance of learning algorithm. In this paper, we address the semi-supervised distance metric learning (ML) problem to obtain the best nonlinear metric for the data. First, we describe the nonlinear metric by the multiple kernel representation. By this approach, we project the data into a high dimensional space, where the data can be well represented by linear ML. Then, we reformulate the linear ML by a minimization problem on the positive definite matrix group. Finally, we develop a two-step algorithm for solving this model and design an intrinsic steepest descent algorithm to learn the positive definite metric matrix. Experimental results validate that our proposed method is effective and outperforms several state-of-the-art ML methods.

  10. A Supervised Learning Process to Validate Online Disease Reports for Use in Predictive Models.

    Science.gov (United States)

    Patching, Helena M M; Hudson, Laurence M; Cooke, Warrick; Garcia, Andres J; Hay, Simon I; Roberts, Mark; Moyes, Catherine L

    2015-12-01

    Pathogen distribution models that predict spatial variation in disease occurrence require data from a large number of geographic locations to generate disease risk maps. Traditionally, this process has used data from public health reporting systems; however, using online reports of new infections could speed up the process dramatically. Data from both public health systems and online sources must be validated before they can be used, but no mechanisms exist to validate data from online media reports. We have developed a supervised learning process to validate geolocated disease outbreak data in a timely manner. The process uses three input features, the data source and two metrics derived from the location of each disease occurrence. The location of disease occurrence provides information on the probability of disease occurrence at that location based on environmental and socioeconomic factors and the distance within or outside the current known disease extent. The process also uses validation scores, generated by disease experts who review a subset of the data, to build a training data set. The aim of the supervised learning process is to generate validation scores that can be used as weights going into the pathogen distribution model. After analyzing the three input features and testing the performance of alternative processes, we selected a cascade of ensembles comprising logistic regressors. Parameter values for the training data subset size, number of predictors, and number of layers in the cascade were tested before the process was deployed. The final configuration was tested using data for two contrasting diseases (dengue and cholera), and 66%-79% of data points were assigned a validation score. The remaining data points are scored by the experts, and the results inform the training data set for the next set of predictors, as well as going to the pathogen distribution model. The new supervised learning process has been implemented within our live site and is

  11. On combining principal components with Fisher's linear discriminants for supervised learning

    NARCIS (Netherlands)

    Pechenizkiy, M.; Tsymbal, A.; Puuronen, S.

    2006-01-01

    "The curse of dimensionality" is pertinent to many learning algorithms, and it denotes the drastic increase of computational complexity and classification error in high dimensions. In this paper, principal component analysis (PCA), parametric feature extraction (FE) based on Fisher’s linear

  12. Test-retest reliability of the Clinical Learning Environment, Supervision and Nurse Teacher (CLES + T) scale.

    Science.gov (United States)

    Gustafsson, Margareta; Blomberg, Karin; Holmefur, Marie

    2015-07-01

    The Clinical Learning Environment, Supervision and Nurse Teacher (CLES + T) scale evaluates the student nurses' perception of the learning environment and supervision within the clinical placement. It has never been tested in a replication study. The aim of the present study was to evaluate the test-retest reliability of the CLES + T scale. The CLES + T scale was administered twice to a group of 42 student nurses, with a one-week interval. Test-retest reliability was determined by calculations of Intraclass Correlation Coefficients (ICCs) and weighted Kappa coefficients. Standard Error of Measurements (SEM) and Smallest Detectable Difference (SDD) determined the precision of individual scores. Bland-Altman plots were created for analyses of systematic differences between the test occasions. The results of the study showed that the stability over time was good to excellent (ICC 0.88-0.96) in the sub-dimensions "Supervisory relationship", "Pedagogical atmosphere on the ward" and "Role of the nurse teacher". Measurements of "Premises of nursing on the ward" and "Leadership style of the manager" had lower but still acceptable stability (ICC 0.70-0.75). No systematic differences occurred between the test occasions. This study supports the usefulness of the CLES + T scale as a reliable measure of the student nurses' perception of the learning environment within the clinical placement at a hospital. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Characterization and reconstruction of 3D stochastic microstructures via supervised learning.

    Science.gov (United States)

    Bostanabad, R; Chen, W; Apley, D W

    2016-12-01

    The need for computational characterization and reconstruction of volumetric maps of stochastic microstructures for understanding the role of material structure in the processing-structure-property chain has been highlighted in the literature. Recently, a promising characterization and reconstruction approach has been developed where the essential idea is to convert the digitized microstructure image into an appropriate training dataset to learn the stochastic nature of the morphology by fitting a supervised learning model to the dataset. This compact model can subsequently be used to efficiently reconstruct as many statistically equivalent microstructure samples as desired. The goal of this paper is to build upon the developed approach in three major directions by: (1) extending the approach to characterize 3D stochastic microstructures and efficiently reconstruct 3D samples, (2) improving the performance of the approach by incorporating user-defined predictors into the supervised learning model, and (3) addressing potential computational issues by introducing a reduced model which can perform as effectively as the full model. We test the extended approach on three examples and show that the spatial dependencies, as evaluated via various measures, are well preserved in the reconstructed samples. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  14. Optimizing ChIP-seq peak detectors using visual labels and supervised machine learning.

    Science.gov (United States)

    Hocking, Toby Dylan; Goerner-Potvin, Patricia; Morin, Andreanne; Shao, Xiaojian; Pastinen, Tomi; Bourque, Guillaume

    2017-02-15

    Many peak detection algorithms have been proposed for ChIP-seq data analysis, but it is not obvious which algorithm and what parameters are optimal for any given dataset. In contrast, regions with and without obvious peaks can be easily labeled by visual inspection of aligned read counts in a genome browser. We propose a supervised machine learning approach for ChIP-seq data analysis, using labels that encode qualitative judgments about which genomic regions contain or do not contain peaks. The main idea is to manually label a small subset of the genome, and then learn a model that makes consistent peak predictions on the rest of the genome. We created 7 new histone mark datasets with 12 826 visually determined labels, and analyzed 3 existing transcription factor datasets. We observed that default peak detection parameters yield high false positive rates, which can be reduced by learning parameters using a relatively small training set of labeled data from the same experiment type. We also observed that labels from different people are highly consistent. Overall, these data indicate that our supervised labeling method is useful for quantitatively training and testing peak detection algorithms. Labeled histone mark data http://cbio.ensmp.fr/~thocking/chip-seq-chunk-db/ , R package to compute the label error of predicted peaks https://github.com/tdhock/PeakError. toby.hocking@mail.mcgill.ca or guil.bourque@mcgill.ca. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  15. Self-supervised learning as an enabling technology for future space exploration robots: ISS experiments on monocular distance learning

    Science.gov (United States)

    van Hecke, Kevin; de Croon, Guido C. H. E.; Hennes, Daniel; Setterfield, Timothy P.; Saenz-Otero, Alvar; Izzo, Dario

    2017-11-01

    Although machine learning holds an enormous promise for autonomous space robots, it is currently not employed because of the inherent uncertain outcome of learning processes. In this article we investigate a learning mechanism, Self-Supervised Learning (SSL), which is very reliable and hence an important candidate for real-world deployment even on safety-critical systems such as space robots. To demonstrate this reliability, we introduce a novel SSL setup that allows a stereo vision equipped robot to cope with the failure of one of its cameras. The setup learns to estimate average depth using a monocular image, by using the stereo vision depths from the past as trusted ground truth. We present preliminary results from an experiment on the International Space Station (ISS) performed with the MIT/NASA SPHERES VERTIGO satellite. The presented experiments were performed on October 8th, 2015 on board the ISS. The main goals were (1) data gathering, and (2) navigation based on stereo vision. First the astronaut Kimiya Yui moved the satellite around the Japanese Experiment Module to gather stereo vision data for learning. Subsequently, the satellite freely explored the space in the module based on its (trusted) stereo vision system and a pre-programmed exploration behavior, while simultaneously performing the self-supervised learning of monocular depth estimation on board. The two main goals were successfully achieved, representing the first online learning robotic experiments in space. These results lay the groundwork for a follow-up experiment in which the satellite will use the learned single-camera depth estimation for autonomous exploration in the ISS, and are an advancement towards future space robots that continuously improve their navigation capabilities over time, even in harsh and completely unknown space environments.

  16. Accurate Detection of Dysmorphic Nuclei Using Dynamic Programming and Supervised Classification.

    Science.gov (United States)

    Verschuuren, Marlies; De Vylder, Jonas; Catrysse, Hannes; Robijns, Joke; Philips, Wilfried; De Vos, Winnok H

    2017-01-01

    A vast array of pathologies is typified by the presence of nuclei with an abnormal morphology. Dysmorphic nuclear phenotypes feature dramatic size changes or foldings, but also entail much subtler deviations such as nuclear protrusions called blebs. Due to their unpredictable size, shape and intensity, dysmorphic nuclei are often not accurately detected in standard image analysis routines. To enable accurate detection of dysmorphic nuclei in confocal and widefield fluorescence microscopy images, we have developed an automated segmentation algorithm, called Blebbed Nuclei Detector (BleND), which relies on two-pass thresholding for initial nuclear contour detection, and an optimal path finding algorithm, based on dynamic programming, for refining these contours. Using a robust error metric, we show that our method matches manual segmentation in terms of precision and outperforms state-of-the-art nuclear segmentation methods. Its high performance allowed for building and integrating a robust classifier that recognizes dysmorphic nuclei with an accuracy above 95%. The combined segmentation-classification routine is bound to facilitate nucleus-based diagnostics and enable real-time recognition of dysmorphic nuclei in intelligent microscopy workflows.

  17. Accurate Detection of Dysmorphic Nuclei Using Dynamic Programming and Supervised Classification.

    Directory of Open Access Journals (Sweden)

    Marlies Verschuuren

    Full Text Available A vast array of pathologies is typified by the presence of nuclei with an abnormal morphology. Dysmorphic nuclear phenotypes feature dramatic size changes or foldings, but also entail much subtler deviations such as nuclear protrusions called blebs. Due to their unpredictable size, shape and intensity, dysmorphic nuclei are often not accurately detected in standard image analysis routines. To enable accurate detection of dysmorphic nuclei in confocal and widefield fluorescence microscopy images, we have developed an automated segmentation algorithm, called Blebbed Nuclei Detector (BleND, which relies on two-pass thresholding for initial nuclear contour detection, and an optimal path finding algorithm, based on dynamic programming, for refining these contours. Using a robust error metric, we show that our method matches manual segmentation in terms of precision and outperforms state-of-the-art nuclear segmentation methods. Its high performance allowed for building and integrating a robust classifier that recognizes dysmorphic nuclei with an accuracy above 95%. The combined segmentation-classification routine is bound to facilitate nucleus-based diagnostics and enable real-time recognition of dysmorphic nuclei in intelligent microscopy workflows.

  18. Strategies to Increase Accuracy in Text Classification

    NARCIS (Netherlands)

    D. Blommesteijn (Dennis)

    2014-01-01

    htmlabstractText classification via supervised learning involves various steps from processing raw data, features extraction to training and validating classifiers. Within these steps implementation decisions are critical to the resulting classifier accuracy. This paper contains a report of the

  19. Large-Scale Machine Learning for Classification and Search

    Science.gov (United States)

    Liu, Wei

    2012-01-01

    With the rapid development of the Internet, nowadays tremendous amounts of data including images and videos, up to millions or billions, can be collected for training machine learning models. Inspired by this trend, this thesis is dedicated to developing large-scale machine learning techniques for the purpose of making classification and nearest…

  20. Supervised versus unsupervised categorization: two sides of the same coin?

    Science.gov (United States)

    Pothos, Emmanuel M; Edwards, Darren J; Perlman, Amotz

    2011-09-01

    Supervised and unsupervised categorization have been studied in separate research traditions. A handful of studies have attempted to explore a possible convergence between the two. The present research builds on these studies, by comparing the unsupervised categorization results of Pothos et al. ( 2011 ; Pothos et al., 2008 ) with the results from two procedures of supervised categorization. In two experiments, we tested 375 participants with nine different stimulus sets and examined the relation between ease of learning of a classification, memory for a classification, and spontaneous preference for a classification. After taking into account the role of the number of category labels (clusters) in supervised learning, we found the three variables to be closely associated with each other. Our results provide encouragement for researchers seeking unified theoretical explanations for supervised and unsupervised categorization, but raise a range of challenging theoretical questions.

  1. A new avenue for classification and prediction of olive cultivars using supervised and unsupervised algorithms.

    Directory of Open Access Journals (Sweden)

    Amir H Beiki

    Full Text Available Various methods have been used to identify cultivares of olive trees; herein we used different bioinformatics algorithms to propose new tools to classify 10 cultivares of olive based on RAPD and ISSR genetic markers datasets generated from PCR reactions. Five RAPD markers (OPA0a21, OPD16a, OP01a1, OPD16a1 and OPA0a8 and five ISSR markers (UBC841a4, UBC868a7, UBC841a14, U12BC807a and UBC810a13 selected as the most important markers by all attribute weighting models. K-Medoids unsupervised clustering run on SVM dataset was fully able to cluster each olive cultivar to the right classes. All trees (176 induced by decision tree models generated meaningful trees and UBC841a4 attribute clearly distinguished between foreign and domestic olive cultivars with 100% accuracy. Predictive machine learning algorithms (SVM and Naïve Bayes were also able to predict the right class of olive cultivares with 100% accuracy. For the first time, our results showed data mining techniques can be effectively used to distinguish between plant cultivares and proposed machine learning based systems in this study can predict new olive cultivars with the best possible accuracy.

  2. Joint Feature Selection and Classification for Multilabel Learning.

    Science.gov (United States)

    Huang, Jun; Li, Guorong; Huang, Qingming; Wu, Xindong

    2018-03-01

    Multilabel learning deals with examples having multiple class labels simultaneously. It has been applied to a variety of applications, such as text categorization and image annotation. A large number of algorithms have been proposed for multilabel learning, most of which concentrate on multilabel classification problems and only a few of them are feature selection algorithms. Current multilabel classification models are mainly built on a single data representation composed of all the features which are shared by all the class labels. Since each class label might be decided by some specific features of its own, and the problems of classification and feature selection are often addressed independently, in this paper, we propose a novel method which can perform joint feature selection and classification for multilabel learning, named JFSC. Different from many existing methods, JFSC learns both shared features and label-specific features by considering pairwise label correlations, and builds the multilabel classifier on the learned low-dimensional data representations simultaneously. A comparative study with state-of-the-art approaches manifests a competitive performance of our proposed method both in classification and feature selection for multilabel learning.

  3. Group-Based Active Learning of Classification Models.

    Science.gov (United States)

    Luo, Zhipeng; Hauskrecht, Milos

    2017-05-01

    Learning of classification models from real-world data often requires additional human expert effort to annotate the data. However, this process can be rather costly and finding ways of reducing the human annotation effort is critical for this task. The objective of this paper is to develop and study new ways of providing human feedback for efficient learning of classification models by labeling groups of examples. Briefly, unlike traditional active learning methods that seek feedback on individual examples, we develop a new group-based active learning framework that solicits label information on groups of multiple examples. In order to describe groups in a user-friendly way, conjunctive patterns are used to compactly represent groups. Our empirical study on 12 UCI data sets demonstrates the advantages and superiority of our approach over both classic instance-based active learning work, as well as existing group-based active-learning methods.

  4. Optimal robustness of supervised learning from a noniterative point of view

    Science.gov (United States)

    Hu, Chia-Lun J.

    1995-08-01

    In most artificial neural network applications, (e.g. pattern recognition) if the dimension of the input vectors is much larger than the number of patterns to be recognized, generally, a one- layered, hard-limited perceptron is sufficient to do the recognition job. As long as the training input-output mapping set is numerically given, and as long as this given set satisfies a special linear-independency relation, the connection matrix to meet the supervised learning requirements can be solved by a noniterative, one-step, algebra method. The learning of this noniterative scheme is very fast (close to real-time learning) because the learning is one-step and noniterative. The recognition of the untrained patterns is very robust because a universal geometrical optimization process of selecting the solution can be applied to the learning process. This paper reports the theoretical foundation of this noniterative learning scheme and focuses the result at the optimal robustness analysis. A real-time character recognition scheme is then designed along this line. This character recognition scheme will be used (in a movie presentation) to demonstrate the experimental results of some theoretical parts reported in this paper.

  5. Increasing the Safety in Recycling of Construction and Demolition Waste by Using Supervised Machine Learning

    International Nuclear Information System (INIS)

    Kuritcyn, P; Anding, K; Linß, E; Latyev, S M

    2015-01-01

    This paper discusses the possibility of the optical identification of recycled aggregates of construction and demolition waste (CDW) using methods of image processing, spectral analysis and machine learning. The classification performances in colour images shown, that we have to use other added spectral information to solve the recognition task in a satisfactory manner. In addition to investigations on a large colour image dataset first investigations in visible (VIS) and infrared (IR) spectrum were done for analysing significant characteristics in spectrum, which are useful for classification the C and D aggregates

  6. Visual texture perception via graph-based semi-supervised learning

    Science.gov (United States)

    Zhang, Qin; Dong, Junyu; Zhong, Guoqiang

    2018-04-01

    Perceptual features, for example direction, contrast and repetitiveness, are important visual factors for human to perceive a texture. However, it needs to perform psychophysical experiment to quantify these perceptual features' scale, which requires a large amount of human labor and time. This paper focuses on the task of obtaining perceptual features' scale of textures by small number of textures with perceptual scales through a rating psychophysical experiment (what we call labeled textures) and a mass of unlabeled textures. This is the scenario that the semi-supervised learning is naturally suitable for. This is meaningful for texture perception research, and really helpful for the perceptual texture database expansion. A graph-based semi-supervised learning method called random multi-graphs, RMG for short, is proposed to deal with this task. We evaluate different kinds of features including LBP, Gabor, and a kind of unsupervised deep features extracted by a PCA-based deep network. The experimental results show that our method can achieve satisfactory effects no matter what kind of texture features are used.

  7. WLAN Fingerprint Indoor Positioning Strategy Based on Implicit Crowdsourcing and Semi-Supervised Learning

    Directory of Open Access Journals (Sweden)

    Chunjing Song

    2017-11-01

    Full Text Available Wireless local area network (WLAN fingerprint positioning is an indoor localization technique with high accuracy and low hardware requirements. However, collecting received signal strength (RSS samples for the fingerprint database is time-consuming and labor-intensive, hindering the use of this technique. The popular crowdsourcing sampling technique has been introduced to reduce the workload of sample collection, but has two challenges: one is the heterogeneity of devices, which can significantly affect the positioning accuracy; the other is the requirement of users’ intervention in traditional crowdsourcing, which reduces the practicality of the system. In response to these challenges, we have proposed a new WLAN indoor positioning strategy, which incorporates a new preprocessing method for RSS samples, the implicit crowdsourcing sampling technique, and a semi-supervised learning algorithm. First, implicit crowdsourcing does not require users’ intervention. The acquisition program silently collects unlabeled samples, the RSS samples, without information about the position. Secondly, to cope with the heterogeneity of devices, the preprocessing method maps all the RSS values of samples to a uniform range and discretizes them. Finally, by using a large number of unlabeled samples with some labeled samples, Co-Forest, the introduced semi-supervised learning algorithm, creates and repeatedly refines a random forest ensemble classifier that performs well for location estimation. The results of experiments conducted in a real indoor environment show that the proposed strategy reduces the demand for large quantities of labeled samples and achieves good positioning accuracy.

  8. Semi-Supervised Tensor-Based Graph Embedding Learning and Its Application to Visual Discriminant Tracking.

    Science.gov (United States)

    Hu, Weiming; Gao, Jin; Xing, Junliang; Zhang, Chao; Maybank, Stephen

    2017-01-01

    An appearance model adaptable to changes in object appearance is critical in visual object tracking. In this paper, we treat an image patch as a two-order tensor which preserves the original image structure. We design two graphs for characterizing the intrinsic local geometrical structure of the tensor samples of the object and the background. Graph embedding is used to reduce the dimensions of the tensors while preserving the structure of the graphs. Then, a discriminant embedding space is constructed. We prove two propositions for finding the transformation matrices which are used to map the original tensor samples to the tensor-based graph embedding space. In order to encode more discriminant information in the embedding space, we propose a transfer-learning- based semi-supervised strategy to iteratively adjust the embedding space into which discriminative information obtained from earlier times is transferred. We apply the proposed semi-supervised tensor-based graph embedding learning algorithm to visual tracking. The new tracking algorithm captures an object's appearance characteristics during tracking and uses a particle filter to estimate the optimal object state. Experimental results on the CVPR 2013 benchmark dataset demonstrate the effectiveness of the proposed tracking algorithm.

  9. A semi-supervised learning approach for RNA secondary structure prediction.

    Science.gov (United States)

    Yonemoto, Haruka; Asai, Kiyoshi; Hamada, Michiaki

    2015-08-01

    RNA secondary structure prediction is a key technology in RNA bioinformatics. Most algorithms for RNA secondary structure prediction use probabilistic models, in which the model parameters are trained with reliable RNA secondary structures. Because of the difficulty of determining RNA secondary structures by experimental procedures, such as NMR or X-ray crystal structural analyses, there are still many RNA sequences that could be useful for training whose secondary structures have not been experimentally determined. In this paper, we introduce a novel semi-supervised learning approach for training parameters in a probabilistic model of RNA secondary structures in which we employ not only RNA sequences with annotated secondary structures but also ones with unknown secondary structures. Our model is based on a hybrid of generative (stochastic context-free grammars) and discriminative models (conditional random fields) that has been successfully applied to natural language processing. Computational experiments indicate that the accuracy of secondary structure prediction is improved by incorporating RNA sequences with unknown secondary structures into training. To our knowledge, this is the first study of a semi-supervised learning approach for RNA secondary structure prediction. This technique will be useful when the number of reliable structures is limited. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Combination of mass spectrometry-based targeted lipidomics and supervised machine learning algorithms in detecting adulterated admixtures of white rice.

    Science.gov (United States)

    Lim, Dong Kyu; Long, Nguyen Phuoc; Mo, Changyeun; Dong, Ziyuan; Cui, Lingmei; Kim, Giyoung; Kwon, Sung Won

    2017-10-01

    The mixing of extraneous ingredients with original products is a common adulteration practice in food and herbal medicines. In particular, authenticity of white rice and its corresponding blended products has become a key issue in food industry. Accordingly, our current study aimed to develop and evaluate a novel discrimination method by combining targeted lipidomics with powerful supervised learning methods, and eventually introduce a platform to verify the authenticity of white rice. A total of 30 cultivars were collected, and 330 representative samples of white rice from Korea and China as well as seven mixing ratios were examined. Random forests (RF), support vector machines (SVM) with a radial basis function kernel, C5.0, model averaged neural network, and k-nearest neighbor classifiers were used for the classification. We achieved desired results, and the classifiers effectively differentiated white rice from Korea to blended samples with high prediction accuracy for the contamination ratio as low as five percent. In addition, RF and SVM classifiers were generally superior to and more robust than the other techniques. Our approach demonstrated that the relative differences in lysoGPLs can be successfully utilized to detect the adulterated mixing of white rice originating from different countries. In conclusion, the present study introduces a novel and high-throughput platform that can be applied to authenticate adulterated admixtures from original white rice samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. N-grams Based Supervised Machine Learning Model for Mobile Agent Platform Protection against Unknown Malicious Mobile Agents

    Directory of Open Access Journals (Sweden)

    Pallavi Bagga

    2017-12-01

    Full Text Available From many past years, the detection of unknown malicious mobile agents before they invade the Mobile Agent Platform has been the subject of much challenging activity. The ever-growing threat of malicious agents calls for techniques for automated malicious agent detection. In this context, the machine learning (ML methods are acknowledged more effective than the Signature-based and Behavior-based detection methods. Therefore, in this paper, the prime contribution has been made to detect the unknown malicious mobile agents based on n-gram features and supervised ML approach, which has not been done so far in the sphere of the Mobile Agents System (MAS security. To carry out the study, the n-grams ranging from 3 to 9 are extracted from a dataset containing 40 malicious and 40 non-malicious mobile agents. Subsequently, the classification is performed using different classifiers. A nested 5-fold cross validation scheme is employed in order to avoid the biasing in the selection of optimal parameters of classifier. The observations of extensive experiments demonstrate that the work done in this paper is suitable for the task of unknown malicious mobile agent detection in a Mobile Agent Environment, and also adds the ML in the interest list of researchers dealing with MAS security.

  12. The helpfulness of category labels in semi-supervised learning depends on category structure.

    Science.gov (United States)

    Vong, Wai Keen; Navarro, Daniel J; Perfors, Amy

    2016-02-01

    The study of semi-supervised category learning has generally focused on how additional unlabeled information with given labeled information might benefit category learning. The literature is also somewhat contradictory, sometimes appearing to show a benefit to unlabeled information and sometimes not. In this paper, we frame the problem differently, focusing on when labels might be helpful to a learner who has access to lots of unlabeled information. Using an unconstrained free-sorting categorization experiment, we show that labels are useful to participants only when the category structure is ambiguous and that people's responses are driven by the specific set of labels they see. We present an extension of Anderson's Rational Model of Categorization that captures this effect.

  13. Classification of solar wind with machine learning

    NARCIS (Netherlands)

    E. Camporeale (Enrico); A. Carè (Algo); J.E. Borovsky (Joseph)

    2017-01-01

    htmlabstractWe present a four-category classification algorithm for the solar wind, based on Gaussian Process. The four categories are the ones previously adopted in Xu and Borovsky (2015): ejecta, coronal hole origin plasma, streamer belt origin plasma, and sector reversal origin plasma. The

  14. An Ontology to Support the Classification of Learning Material in an Organizational Learning Environment: An Evaluation

    Science.gov (United States)

    Valaski, Joselaine; Reinehr, Sheila; Malucelli, Andreia

    2017-01-01

    Purpose: The purpose of this research was to evaluate whether ontology integrated in an organizational learning environment may support the automatic learning material classification in a specific knowledge area. Design/methodology/approach: An ontology for recommending learning material was integrated in the organizational learning environment…

  15. Clinical learning environment and supervision: experiences of Norwegian nursing students - a questionnaire survey.

    Science.gov (United States)

    Skaalvik, Mari Wolff; Normann, Hans Ketil; Henriksen, Nils

    2011-08-01

    To measure nursing students' experiences and satisfaction with their clinical learning environments. The primary interest was to compare the results between students with respect to clinical practice in nursing homes and hospital wards. Clinical learning environments are important for the learning processes of nursing students and for preferences for future workplaces. Working with older people is the least preferred area of practice among nursing students in Norway. A cross-sectional design. A validated questionnaire was distributed to all nursing students from five non-randomly selected university colleges in Norway. A total of 511 nursing students completed a Norwegian version of the questionnaire, Clinical Learning Environment, Supervision and Nurse Teacher (CLES+T) evaluation scale in 2009. Data including descriptive statistics were analysed using the Statistical Program for the Social Sciences. Factor structure was analysed by principal component analysis. Differences across sub-groups were tested with chi-square tests and Mann-Whitney U test for categorical variables and t-tests for continuous variables. Ordinal logistic regression analysis of perceptions of the ward as a good learning environment was performed with supervisory relationships and institutional contexts as independent variables, controlling for age, sex and study year. The participating nursing students with clinical placements in nursing homes assessed their clinical learning environment significantly more negatively than those with hospital placements on nearby all sub-dimensions. The evidence found in this study indicates that measures should be taken to strengthen nursing homes as learning environments for nursing students. To recruit more graduated nurses to work in nursing homes, actions to improve the learning environment are needed. © 2011 Blackwell Publishing Ltd.

  16. Preliminary hard and soft bottom seafloor substrate map derived from an supervised classification of bathymetry derived from multispectral World View-2 satellite imagery of Ni'ihau Island, Territory of Main Hawaiian Islands, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Preliminary hard and soft seafloor substrate map derived from a supervised classification from multispectral World View-2 satellite imagery of Ni'ihau Island,...

  17. Feature Inference Learning and Eyetracking

    Science.gov (United States)

    Rehder, Bob; Colner, Robert M.; Hoffman, Aaron B.

    2009-01-01

    Besides traditional supervised classification learning, people can learn categories by inferring the missing features of category members. It has been proposed that feature inference learning promotes learning a category's internal structure (e.g., its typical features and interfeature correlations) whereas classification promotes the learning of…

  18. Deep Multi-Task Learning for Tree Genera Classification

    Science.gov (United States)

    Ko, C.; Kang, J.; Sohn, G.

    2018-05-01

    The goal for our paper is to classify tree genera using airborne Light Detection and Ranging (LiDAR) data with Convolution Neural Network (CNN) - Multi-task Network (MTN) implementation. Unlike Single-task Network (STN) where only one task is assigned to the learning outcome, MTN is a deep learning architect for learning a main task (classification of tree genera) with other tasks (in our study, classification of coniferous and deciduous) simultaneously, with shared classification features. The main contribution of this paper is to improve classification accuracy from CNN-STN to CNN-MTN. This is achieved by introducing a concurrence loss (Lcd) to the designed MTN. This term regulates the overall network performance by minimizing the inconsistencies between the two tasks. Results show that we can increase the classification accuracy from 88.7 % to 91.0 % (from STN to MTN). The second goal of this paper is to solve the problem of small training sample size by multiple-view data generation. The motivation of this goal is to address one of the most common problems in implementing deep learning architecture, the insufficient number of training data. We address this problem by simulating training dataset with multiple-view approach. The promising results from this paper are providing a basis for classifying a larger number of dataset and number of classes in the future.

  19. Literature mining of protein-residue associations with graph rules learned through distant supervision

    Directory of Open Access Journals (Sweden)

    Ravikumar KE

    2012-10-01

    Full Text Available Abstract Background We propose a method for automatic extraction of protein-specific residue mentions from the biomedical literature. The method searches text for mentions of amino acids at specific sequence positions and attempts to correctly associate each mention with a protein also named in the text. The methods presented in this work will enable improved protein functional site extraction from articles, ultimately supporting protein function prediction. Our method made use of linguistic patterns for identifying the amino acid residue mentions in text. Further, we applied an automated graph-based method to learn syntactic patterns corresponding to protein-residue pairs mentioned in the text. We finally present an approach to automated construction of relevant training and test data using the distant supervision model. Results The performance of the method was assessed by extracting protein-residue relations from a new automatically generated test set of sentences containing high confidence examples found using distant supervision. It achieved a F-measure of 0.84 on automatically created silver corpus and 0.79 on a manually annotated gold data set for this task, outperforming previous methods. Conclusions The primary contributions of this work are to (1 demonstrate the effectiveness of distant supervision for automatic creation of training data for protein-residue relation extraction, substantially reducing the effort and time involved in manual annotation of a data set and (2 show that the graph-based relation extraction approach we used generalizes well to the problem of protein-residue association extraction. This work paves the way towards effective extraction of protein functional residues from the literature.

  20. Literature mining of protein-residue associations with graph rules learned through distant supervision.

    Science.gov (United States)

    Ravikumar, Ke; Liu, Haibin; Cohn, Judith D; Wall, Michael E; Verspoor, Karin

    2012-10-05

    We propose a method for automatic extraction of protein-specific residue mentions from the biomedical literature. The method searches text for mentions of amino acids at specific sequence positions and attempts to correctly associate each mention with a protein also named in the text. The methods presented in this work will enable improved protein functional site extraction from articles, ultimately supporting protein function prediction. Our method made use of linguistic patterns for identifying the amino acid residue mentions in text. Further, we applied an automated graph-based method to learn syntactic patterns corresponding to protein-residue pairs mentioned in the text. We finally present an approach to automated construction of relevant training and test data using the distant supervision model. The performance of the method was assessed by extracting protein-residue relations from a new automatically generated test set of sentences containing high confidence examples found using distant supervision. It achieved a F-measure of 0.84 on automatically created silver corpus and 0.79 on a manually annotated gold data set for this task, outperforming previous methods. The primary contributions of this work are to (1) demonstrate the effectiveness of distant supervision for automatic creation of training data for protein-residue relation extraction, substantially reducing the effort and time involved in manual annotation of a data set and (2) show that the graph-based relation extraction approach we used generalizes well to the problem of protein-residue association extraction. This work paves the way towards effective extraction of protein functional residues from the literature.

  1. Student nurses' experiences of the clinical learning environment in relation to the organization of supervision: a questionnaire survey.

    Science.gov (United States)

    Sundler, Annelie J; Björk, Maria; Bisholt, Birgitta; Ohlsson, Ulla; Engström, Agneta Kullén; Gustafsson, Margareta

    2014-04-01

    The aim was to investigate student nurses' experiences of the clinical learning environment in relation to how the supervision was organized. The clinical environment plays an essential part in student nurses' learning. Even though different models for supervision have been previously set forth, it has been stressed that there is a need both of further empirical studies on the role of preceptorship in undergraduate nursing education and of studies comparing different models. A cross-sectional study with comparative design was carried out with a mixed method approach. Data were collected from student nurses in the final term of the nursing programme at three universities in Sweden by means of a questionnaire. In general the students had positive experiences of the clinical learning environment with respect to pedagogical atmosphere, leadership style of the ward manager, premises of nursing, supervisory relationship, and role of the nurse preceptor and nurse teacher. However, there were significant differences in their ratings of the supervisory relationship (ppedagogical atmosphere (p 0.025) depending on how the supervision was organized. Students who had the same preceptor all the time were more satisfied with the supervisory relationship than were those who had different preceptors each day. Students' comments on the supervision confirmed the significance of the preceptor and the supervisory relationship. The organization of the supervision was of significance with regard to the pedagogical atmosphere and the students' relation to preceptors. Students with the same preceptor throughout were more positive concerning the supervisory relationship and the pedagogical atmosphere. © 2013.

  2. Sampling algorithms for validation of supervised learning models for Ising-like systems

    Science.gov (United States)

    Portman, Nataliya; Tamblyn, Isaac

    2017-12-01

    In this paper, we build and explore supervised learning models of ferromagnetic system behavior, using Monte-Carlo sampling of the spin configuration space generated by the 2D Ising model. Given the enormous size of the space of all possible Ising model realizations, the question arises as to how to choose a reasonable number of samples that will form physically meaningful and non-intersecting training and testing datasets. Here, we propose a sampling technique called ;ID-MH; that uses the Metropolis-Hastings algorithm creating Markov process across energy levels within the predefined configuration subspace. We show that application of this method retains phase transitions in both training and testing datasets and serves the purpose of validation of a machine learning algorithm. For larger lattice dimensions, ID-MH is not feasible as it requires knowledge of the complete configuration space. As such, we develop a new ;block-ID; sampling strategy: it decomposes the given structure into square blocks with lattice dimension N ≤ 5 and uses ID-MH sampling of candidate blocks. Further comparison of the performance of commonly used machine learning methods such as random forests, decision trees, k nearest neighbors and artificial neural networks shows that the PCA-based Decision Tree regressor is the most accurate predictor of magnetizations of the Ising model. For energies, however, the accuracy of prediction is not satisfactory, highlighting the need to consider more algorithmically complex methods (e.g., deep learning).

  3. Supervised neural network modeling: an empirical investigation into learning from imbalanced data with labeling errors.

    Science.gov (United States)

    Khoshgoftaar, Taghi M; Van Hulse, Jason; Napolitano, Amri

    2010-05-01

    Neural network algorithms such as multilayer perceptrons (MLPs) and radial basis function networks (RBFNets) have been used to construct learners which exhibit strong predictive performance. Two data related issues that can have a detrimental impact on supervised learning initiatives are class imbalance and labeling errors (or class noise). Imbalanced data can make it more difficult for the neural network learning algorithms to distinguish between examples of the various classes, and class noise can lead to the formulation of incorrect hypotheses. Both class imbalance and labeling errors are pervasive problems encountered in a wide variety of application domains. Many studies have been performed to investigate these problems in isolation, but few have focused on their combined effects. This study presents a comprehensive empirical investigation using neural network algorithms to learn from imbalanced data with labeling errors. In particular, the first component of our study investigates the impact of class noise and class imbalance on two common neural network learning algorithms, while the second component considers the ability of data sampling (which is commonly used to address the issue of class imbalance) to improve their performances. Our results, for which over two million models were trained and evaluated, show that conclusions drawn using the more commonly studied C4.5 classifier may not apply when using neural networks.

  4. Using distant supervised learning to identify protein subcellular localizations from full-text scientific articles.

    Science.gov (United States)

    Zheng, Wu; Blake, Catherine

    2015-10-01

    Databases of curated biomedical knowledge, such as the protein-locations reflected in the UniProtKB database, provide an accurate and useful resource to researchers and decision makers. Our goal is to augment the manual efforts currently used to curate knowledge bases with automated approaches that leverage the increased availability of full-text scientific articles. This paper describes experiments that use distant supervised learning to identify protein subcellular localizations, which are important to understand protein function and to identify candidate drug targets. Experiments consider Swiss-Prot, the manually annotated subset of the UniProtKB protein knowledge base, and 43,000 full-text articles from the Journal of Biological Chemistry that contain just under 11.5 million sentences. The system achieves 0.81 precision and 0.49 recall at sentence level and an accuracy of 57% on held-out instances in a test set. Moreover, the approach identifies 8210 instances that are not in the UniProtKB knowledge base. Manual inspection of the 50 most likely relations showed that 41 (82%) were valid. These results have immediate benefit to researchers interested in protein function, and suggest that distant supervision should be explored to complement other manual data curation efforts. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Porosity estimation by semi-supervised learning with sparsely available labeled samples

    Science.gov (United States)

    Lima, Luiz Alberto; Görnitz, Nico; Varella, Luiz Eduardo; Vellasco, Marley; Müller, Klaus-Robert; Nakajima, Shinichi

    2017-09-01

    This paper addresses the porosity estimation problem from seismic impedance volumes and porosity samples located in a small group of exploratory wells. Regression methods, trained on the impedance as inputs and the porosity as output labels, generally suffer from extremely expensive (and hence sparsely available) porosity samples. To optimally make use of the valuable porosity data, a semi-supervised machine learning method was proposed, Transductive Conditional Random Field Regression (TCRFR), showing good performance (Görnitz et al., 2017). TCRFR, however, still requires more labeled data than those usually available, which creates a gap when applying the method to the porosity estimation problem in realistic situations. In this paper, we aim to fill this gap by introducing two graph-based preprocessing techniques, which adapt the original TCRFR for extremely weakly supervised scenarios. Our new method outperforms the previous automatic estimation methods on synthetic data and provides a comparable result to the manual labored, time-consuming geostatistics approach on real data, proving its potential as a practical industrial tool.

  6. Fast and robust segmentation of white blood cell images by self-supervised learning.

    Science.gov (United States)

    Zheng, Xin; Wang, Yong; Wang, Guoyou; Liu, Jianguo

    2018-04-01

    A fast and accurate white blood cell (WBC) segmentation remains a challenging task, as different WBCs vary significantly in color and shape due to cell type differences, staining technique variations and the adhesion between the WBC and red blood cells. In this paper, a self-supervised learning approach, consisting of unsupervised initial segmentation and supervised segmentation refinement, is presented. The first module extracts the overall foreground region from the cell image by K-means clustering, and then generates a coarse WBC region by touching-cell splitting based on concavity analysis. The second module further uses the coarse segmentation result of the first module as automatic labels to actively train a support vector machine (SVM) classifier. Then, the trained SVM classifier is further used to classify each pixel of the image and achieve a more accurate segmentation result. To improve its segmentation accuracy, median color features representing the topological structure and a new weak edge enhancement operator (WEEO) handling fuzzy boundary are introduced. To further reduce its time cost, an efficient cluster sampling strategy is also proposed. We tested the proposed approach with two blood cell image datasets obtained under various imaging and staining conditions. The experiment results show that our approach has a superior performance of accuracy and time cost on both datasets. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Diagnostic information system dynamics in the evaluation of machine learning algorithms for the supervision of energy efficiency of district heating-supplied buildings

    International Nuclear Information System (INIS)

    Kiluk, Sebastian

    2017-01-01

    Highlights: • Energy efficiency classification sustainability benefits from knowledge prediction. • Diagnostic classification can be validated with its dynamics and current data. • Diagnostic classification dynamics provides novelty extraction for knowledge update. • Data mining comparison can be performed with knowledge dynamics and uncertainty. • Diagnostic information refinement benefits form comparing classifiers dynamics. - Abstract: Modern ways of exploring the diagnostic knowledge provided by data mining and machine learning raise some concern about the ways of evaluating the quality of output knowledge, usually represented by information systems. Especially in district heating, the stationarity of efficiency models, and thus the relevance of diagnostic classification system, cannot be ensured due to the impact of social, economic or technological changes, which are hard to identify or predict. Therefore, data mining and machine learning have become an attractive strategy for automatically and continuously absorbing such dynamics. This paper presents a new method of evaluation and comparison of diagnostic information systems gathered algorithmically in district heating efficiency supervision based on exploring the evolution of information system and analyzing its dynamic features. The process of data mining and knowledge discovery was applied to the data acquired from district heating substations’ energy meters to provide the automated discovery of diagnostic knowledge base necessary for the efficiency supervision of district heating-supplied buildings. The implemented algorithm consists of several steps of processing the billing data, including preparation, segmentation, aggregation and knowledge discovery stage, where classes of abstract models representing energy efficiency constitute an information system representing diagnostic knowledge about the energy efficiency of buildings favorably operating under similar climate conditions and

  8. Language Learning Strategies: Classification and Pedagogical Implication

    Directory of Open Access Journals (Sweden)

    Ag. Bambang Setiyadi

    2001-01-01

    Full Text Available Many studies have been conducted to explore language learning strategies (Rubin, 1975, Naiman et . al ., 1978; Fillmore, 1979; O'Malley et . al ., 1985 and 1990; Politzer and Groarty, 1985; Prokop, 1989; Oxford, 1990; and Wenden, 1991. In the current study a total of 79 university students participating in a 3 month English course participated. This study attempted to explore what language learning strategies successful learners used and to what extent the strategies contributed to success in learning English in Indonesia . Factor analyses, accounting for 62.1 %, 56.0 %, 41.1 %, and 43.5 % of the varience of speaking, listening, reading and writing measures in the language learning strategy questionnaire, suggested that the questionnaire constituted three constructs. The three constructs were named metacognitive strategies, deep level cognitive and surface level cognitive strategies. Regression analyses, performed using scales based on these factors revealed significant main effects for the use of the language learning strategies in learning English, constituting 43 % of the varience in the posttest English achievement scores. An analysis of varience of the gain scores of the highest, middle, and the lowest groups of performers suggested a greater use of metacognitive strategies among successful learners and a greater use of surface level cognitive strategies among unsuccessful learners. Implications for the classroom and future research are also discussed.

  9. Advanced Steel Microstructural Classification by Deep Learning Methods.

    Science.gov (United States)

    Azimi, Seyed Majid; Britz, Dominik; Engstler, Michael; Fritz, Mario; Mücklich, Frank

    2018-02-01

    The inner structure of a material is called microstructure. It stores the genesis of a material and determines all its physical and chemical properties. While microstructural characterization is widely spread and well known, the microstructural classification is mostly done manually by human experts, which gives rise to uncertainties due to subjectivity. Since the microstructure could be a combination of different phases or constituents with complex substructures its automatic classification is very challenging and only a few prior studies exist. Prior works focused on designed and engineered features by experts and classified microstructures separately from the feature extraction step. Recently, Deep Learning methods have shown strong performance in vision applications by learning the features from data together with the classification step. In this work, we propose a Deep Learning method for microstructural classification in the examples of certain microstructural constituents of low carbon steel. This novel method employs pixel-wise segmentation via Fully Convolutional Neural Network (FCNN) accompanied by a max-voting scheme. Our system achieves 93.94% classification accuracy, drastically outperforming the state-of-the-art method of 48.89% accuracy. Beyond the strong performance of our method, this line of research offers a more robust and first of all objective way for the difficult task of steel quality appreciation.

  10. Classification of Strawberry Fruit Shape by Machine Learning

    Science.gov (United States)

    Ishikawa, T.; Hayashi, A.; Nagamatsu, S.; Kyutoku, Y.; Dan, I.; Wada, T.; Oku, K.; Saeki, Y.; Uto, T.; Tanabata, T.; Isobe, S.; Kochi, N.

    2018-05-01

    Shape is one of the most important traits of agricultural products due to its relationships with the quality, quantity, and value of the products. For strawberries, the nine types of fruit shape were defined and classified by humans based on the sampler patterns of the nine types. In this study, we tested the classification of strawberry shapes by machine learning in order to increase the accuracy of the classification, and we introduce the concept of computerization into this field. Four types of descriptors were extracted from the digital images of strawberries: (1) the Measured Values (MVs) including the length of the contour line, the area, the fruit length and width, and the fruit width/length ratio; (2) the Ellipse Similarity Index (ESI); (3) Elliptic Fourier Descriptors (EFDs), and (4) Chain Code Subtraction (CCS). We used these descriptors for the classification test along with the random forest approach, and eight of the nine shape types were classified with combinations of MVs + CCS + EFDs. CCS is a descriptor that adds human knowledge to the chain codes, and it showed higher robustness in classification than the other descriptors. Our results suggest machine learning's high ability to classify fruit shapes accurately. We will attempt to increase the classification accuracy and apply the machine learning methods to other plant species.

  11. Global Optimization Ensemble Model for Classification Methods

    Science.gov (United States)

    Anwar, Hina; Qamar, Usman; Muzaffar Qureshi, Abdul Wahab

    2014-01-01

    Supervised learning is the process of data mining for deducing rules from training datasets. A broad array of supervised learning algorithms exists, every one of them with its own advantages and drawbacks. There are some basic issues that affect the accuracy of classifier while solving a supervised learning problem, like bias-variance tradeoff, dimensionality of input space, and noise in the input data space. All these problems affect the accuracy of classifier and are the reason that there is no global optimal method for classification. There is not any generalized improvement method that can increase the accuracy of any classifier while addressing all the problems stated above. This paper proposes a global optimization ensemble model for classification methods (GMC) that can improve the overall accuracy for supervised learning problems. The experimental results on various public datasets showed that the proposed model improved the accuracy of the classification models from 1% to 30% depending upon the algorithm complexity. PMID:24883382

  12. Global Optimization Ensemble Model for Classification Methods

    Directory of Open Access Journals (Sweden)

    Hina Anwar

    2014-01-01

    Full Text Available Supervised learning is the process of data mining for deducing rules from training datasets. A broad array of supervised learning algorithms exists, every one of them with its own advantages and drawbacks. There are some basic issues that affect the accuracy of classifier while solving a supervised learning problem, like bias-variance tradeoff, dimensionality of input space, and noise in the input data space. All these problems affect the accuracy of classifier and are the reason that there is no global optimal method for classification. There is not any generalized improvement method that can increase the accuracy of any classifier while addressing all the problems stated above. This paper proposes a global optimization ensemble model for classification methods (GMC that can improve the overall accuracy for supervised learning problems. The experimental results on various public datasets showed that the proposed model improved the accuracy of the classification models from 1% to 30% depending upon the algorithm complexity.

  13. Assessing Miniaturized Sensor Performance using Supervised Learning, with Application to Drug and Explosive Detection

    DEFF Research Database (Denmark)

    Alstrøm, Tommy Sonne

    of sensors, as the sensors are designed to provide robust and reliable measurements. That means, the sensors are designed to have repeated measurement clusters. Sensor fusion is presented for the sensor based on chemoselective compounds. An array of color changing compounds are handled and in unity they make......This Ph.D. thesis titled “Assessing Miniaturized Sensor Performance using Supervised Learning, with Application to Drug and Explosive Detection” is a part of the strategic research project “Miniaturized sensors for explosives detection in air” funded by the Danish Agency for Science and Technology...... emanated by explosives and drugs, similar to an electronic nose. To evaluate sensor responses a data processing and evaluation pipeline is required. The work presented herein focuses on the feature extraction, feature representation and sensor accuracy. Thus the primary aim of this thesis is twofold...

  14. A semi-supervised learning framework for biomedical event extraction based on hidden topics.

    Science.gov (United States)

    Zhou, Deyu; Zhong, Dayou

    2015-05-01

    Scientists have devoted decades of efforts to understanding the interaction between proteins or RNA production. The information might empower the current knowledge on drug reactions or the development of certain diseases. Nevertheless, due to the lack of explicit structure, literature in life science, one of the most important sources of this information, prevents computer-based systems from accessing. Therefore, biomedical event extraction, automatically acquiring knowledge of molecular events in research articles, has attracted community-wide efforts recently. Most approaches are based on statistical models, requiring large-scale annotated corpora to precisely estimate models' parameters. However, it is usually difficult to obtain in practice. Therefore, employing un-annotated data based on semi-supervised learning for biomedical event extraction is a feasible solution and attracts more interests. In this paper, a semi-supervised learning framework based on hidden topics for biomedical event extraction is presented. In this framework, sentences in the un-annotated corpus are elaborately and automatically assigned with event annotations based on their distances to these sentences in the annotated corpus. More specifically, not only the structures of the sentences, but also the hidden topics embedded in the sentences are used for describing the distance. The sentences and newly assigned event annotations, together with the annotated corpus, are employed for training. Experiments were conducted on the multi-level event extraction corpus, a golden standard corpus. Experimental results show that more than 2.2% improvement on F-score on biomedical event extraction is achieved by the proposed framework when compared to the state-of-the-art approach. The results suggest that by incorporating un-annotated data, the proposed framework indeed improves the performance of the state-of-the-art event extraction system and the similarity between sentences might be precisely

  15. Nonlinear programming for classification problems in machine learning

    Science.gov (United States)

    Astorino, Annabella; Fuduli, Antonio; Gaudioso, Manlio

    2016-10-01

    We survey some nonlinear models for classification problems arising in machine learning. In the last years this field has become more and more relevant due to a lot of practical applications, such as text and web classification, object recognition in machine vision, gene expression profile analysis, DNA and protein analysis, medical diagnosis, customer profiling etc. Classification deals with separation of sets by means of appropriate separation surfaces, which is generally obtained by solving a numerical optimization model. While linear separability is the basis of the most popular approach to classification, the Support Vector Machine (SVM), in the recent years using nonlinear separating surfaces has received some attention. The objective of this work is to recall some of such proposals, mainly in terms of the numerical optimization models. In particular we tackle the polyhedral, ellipsoidal, spherical and conical separation approaches and, for some of them, we also consider the semisupervised versions.

  16. Just How Much Can School Pupils Learn from School Gardening? A Study of Two Supervised Agricultural Experience Approaches in Uganda

    Science.gov (United States)

    Okiror, John James; Matsiko, Biryabaho Frank; Oonyu, Joseph

    2011-01-01

    School systems in Africa are short of skills that link well with rural communities, yet arguments to vocationalize curricula remain mixed and school agriculture lacks the supervised practical component. This study, conducted in eight primary (elementary) schools in Uganda, sought to compare the learning achievement of pupils taught using…

  17. Active learning strategies for the deduplication of electronic patient data using classification trees.

    Science.gov (United States)

    Sariyar, M; Borg, A; Pommerening, K

    2012-10-01

    Supervised record linkage methods often require a clerical review to gain informative training data. Active learning means to actively prompt the user to label data with special characteristics in order to minimise the review costs. We conducted an empirical evaluation to investigate whether a simple active learning strategy using binary comparison patterns is sufficient or if string metrics together with a more sophisticated algorithm are necessary to achieve high accuracies with a small training set. Based on medical registry data with different numbers of attributes, we used active learning to acquire training sets for classification trees, which were then used to classify the remaining data. Active learning for binary patterns means that every distinct comparison pattern represents a stratum from which one item is sampled. Active learning for patterns consisting of the Levenshtein string metric values uses an iterative process where the most informative and representative examples are added to the training set. In this context, we extended the active learning strategy by Sarawagi and Bhamidipaty (2002). On the original data set, active learning based on binary comparison patterns leads to the best results. When dropping four or six attributes, using string metrics leads to better results. In both cases, not more than 200 manually reviewed training examples are necessary. In record linkage applications where only forename, name and birthday are available as attributes, we suggest the sophisticated active learning strategy based on string metrics in order to achieve highly accurate results. We recommend the simple strategy if more attributes are available, as in our study. In both cases, active learning significantly reduces the amount of manual involvement in training data selection compared to usual record linkage settings. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Machine learning in infrared object classification - an all-sky selection of YSO candidates

    Science.gov (United States)

    Marton, Gabor; Zahorecz, Sarolta; Toth, L. Viktor; Magnus McGehee, Peregrine; Kun, Maria

    2015-08-01

    Object classification is a fundamental and challenging problem in the era of big data. I will discuss up-to-date methods and their application to classify infrared point sources.We analysed the ALLWISE catalogue, the most recent public source catalogue of the Wide-field Infrared Survey Explorer (WISE) to compile a reliable list of Young Stellar Object (YSO) candidates. We tested and compared classical and up-to-date statistical methods as well, to discriminate source types like extragalactic objects, evolved stars, main sequence stars, objects related to the interstellar medium and YSO candidates by using their mid-IR WISE properties and associated near-IR 2MASS data.In the particular classification problem the Support Vector Machines (SVM), a class of supervised learning algorithm turned out to be the best tool. As a result we classify Class I and II YSOs with >90% accuracy while the fraction of contaminating extragalactic objects remains well below 1%, based on the number of known objects listed in the SIMBAD and VizieR databases. We compare our results to other classification schemes from the literature and show that the SVM outperforms methods that apply linear cuts on the colour-colour and colour-magnitude space. Our homogenous YSO candidate catalog can serve as an excellent pathfinder for future detailed observations of individual objects and a starting point of statistical studies that aim to add pieces to the big picture of star formation theory.

  19. Accurate in silico identification of protein succinylation sites using an iterative semi-supervised learning technique.

    Science.gov (United States)

    Zhao, Xiaowei; Ning, Qiao; Chai, Haiting; Ma, Zhiqiang

    2015-06-07

    As a widespread type of protein post-translational modifications (PTMs), succinylation plays an important role in regulating protein conformation, function and physicochemical properties. Compared with the labor-intensive and time-consuming experimental approaches, computational predictions of succinylation sites are much desirable due to their convenient and fast speed. Currently, numerous computational models have been developed to identify PTMs sites through various types of two-class machine learning algorithms. These methods require both positive and negative samples for training. However, designation of the negative samples of PTMs was difficult and if it is not properly done can affect the performance of computational models dramatically. So that in this work, we implemented the first application of positive samples only learning (PSoL) algorithm to succinylation sites prediction problem, which was a special class of semi-supervised machine learning that used positive samples and unlabeled samples to train the model. Meanwhile, we proposed a novel succinylation sites computational predictor called SucPred (succinylation site predictor) by using multiple feature encoding schemes. Promising results were obtained by the SucPred predictor with an accuracy of 88.65% using 5-fold cross validation on the training dataset and an accuracy of 84.40% on the independent testing dataset, which demonstrated that the positive samples only learning algorithm presented here was particularly useful for identification of protein succinylation sites. Besides, the positive samples only learning algorithm can be applied to build predictors for other types of PTMs sites with ease. A web server for predicting succinylation sites was developed and was freely accessible at http://59.73.198.144:8088/SucPred/. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Efficient HIK SVM learning for image classification.

    Science.gov (United States)

    Wu, Jianxin

    2012-10-01

    Histograms are used in almost every aspect of image processing and computer vision, from visual descriptors to image representations. Histogram intersection kernel (HIK) and support vector machine (SVM) classifiers are shown to be very effective in dealing with histograms. This paper presents contributions concerning HIK SVM for image classification. First, we propose intersection coordinate descent (ICD), a deterministic and scalable HIK SVM solver. ICD is much faster than, and has similar accuracies to, general purpose SVM solvers and other fast HIK SVM training methods. We also extend ICD to the efficient training of a broader family of kernels. Second, we show an important empirical observation that ICD is not sensitive to the C parameter in SVM, and we provide some theoretical analyses to explain this observation. ICD achieves high accuracies in many problems, using its default parameters. This is an attractive property for practitioners, because many image processing tasks are too large to choose SVM parameters using cross-validation.

  1. Classification without labels: learning from mixed samples in high energy physics

    Science.gov (United States)

    Metodiev, Eric M.; Nachman, Benjamin; Thaler, Jesse

    2017-10-01

    Modern machine learning techniques can be used to construct powerful models for difficult collider physics problems. In many applications, however, these models are trained on imperfect simulations due to a lack of truth-level information in the data, which risks the model learning artifacts of the simulation. In this paper, we introduce the paradigm of classification without labels (CWoLa) in which a classifier is trained to distinguish statistical mixtures of classes, which are common in collider physics. Crucially, neither individual labels nor class proportions are required, yet we prove that the optimal classifier in the CWoLa paradigm is also the optimal classifier in the traditional fully-supervised case where all label information is available. After demonstrating the power of this method in an analytical toy example, we consider a realistic benchmark for collider physics: distinguishing quark- versus gluon-initiated jets using mixed quark/gluon training samples. More generally, CWoLa can be applied to any classification problem where labels or class proportions are unknown or simulations are unreliable, but statistical mixtures of the classes are available.

  2. Cooperative Learning for Distributed In-Network Traffic Classification

    Science.gov (United States)

    Joseph, S. B.; Loo, H. R.; Ismail, I.; Andromeda, T.; Marsono, M. N.

    2017-04-01

    Inspired by the concept of autonomic distributed/decentralized network management schemes, we consider the issue of information exchange among distributed network nodes to network performance and promote scalability for in-network monitoring. In this paper, we propose a cooperative learning algorithm for propagation and synchronization of network information among autonomic distributed network nodes for online traffic classification. The results show that network nodes with sharing capability perform better with a higher average accuracy of 89.21% (sharing data) and 88.37% (sharing clusters) compared to 88.06% for nodes without cooperative learning capability. The overall performance indicates that cooperative learning is promising for distributed in-network traffic classification.

  3. Unsupervised Feature Learning for Heart Sounds Classification Using Autoencoder

    Science.gov (United States)

    Hu, Wei; Lv, Jiancheng; Liu, Dongbo; Chen, Yao

    2018-04-01

    Cardiovascular disease seriously threatens the health of many people. It is usually diagnosed during cardiac auscultation, which is a fast and efficient method of cardiovascular disease diagnosis. In recent years, deep learning approach using unsupervised learning has made significant breakthroughs in many fields. However, to our knowledge, deep learning has not yet been used for heart sound classification. In this paper, we first use the average Shannon energy to extract the envelope of the heart sounds, then find the highest point of S1 to extract the cardiac cycle. We convert the time-domain signals of the cardiac cycle into spectrograms and apply principal component analysis whitening to reduce the dimensionality of the spectrogram. Finally, we apply a two-layer autoencoder to extract the features of the spectrogram. The experimental results demonstrate that the features from the autoencoder are suitable for heart sound classification.

  4. AGE GROUP CLASSIFICATION USING MACHINE LEARNING TECHNIQUES

    OpenAIRE

    Arshdeep Singh Syal*1 & Abhinav Gupta2

    2017-01-01

    A human face provides a lot of information that allows another person to identify characteristics such as age, sex, etc. Therefore, the challenge is to develop an age group prediction system using the automatic learning method. The task of estimating the age group of the human from their frontal facial images is very captivating, but also challenging because of the pattern of personalized and non-linear aging that differs from one person to another. This paper examines the problem of predicti...

  5. Supervised machine learning algorithms to diagnose stress for vehicle drivers based on physiological sensor signals.

    Science.gov (United States)

    Barua, Shaibal; Begum, Shahina; Ahmed, Mobyen Uddin

    2015-01-01

    Machine learning algorithms play an important role in computer science research. Recent advancement in sensor data collection in clinical sciences lead to a complex, heterogeneous data processing, and analysis for patient diagnosis and prognosis. Diagnosis and treatment of patients based on manual analysis of these sensor data are difficult and time consuming. Therefore, development of Knowledge-based systems to support clinicians in decision-making is important. However, it is necessary to perform experimental work to compare performances of different machine learning methods to help to select appropriate method for a specific characteristic of data sets. This paper compares classification performance of three popular machine learning methods i.e., case-based reasoning, neutral networks and support vector machine to diagnose stress of vehicle drivers using finger temperature and heart rate variability. The experimental results show that case-based reasoning outperforms other two methods in terms of classification accuracy. Case-based reasoning has achieved 80% and 86% accuracy to classify stress using finger temperature and heart rate variability. On contrary, both neural network and support vector machine have achieved less than 80% accuracy by using both physiological signals.

  6. Failure diagnosis using deep belief learning based health state classification

    International Nuclear Information System (INIS)

    Tamilselvan, Prasanna; Wang, Pingfeng

    2013-01-01

    Effective health diagnosis provides multifarious benefits such as improved safety, improved reliability and reduced costs for operation and maintenance of complex engineered systems. This paper presents a novel multi-sensor health diagnosis method using deep belief network (DBN). DBN has recently become a popular approach in machine learning for its promised advantages such as fast inference and the ability to encode richer and higher order network structures. The DBN employs a hierarchical structure with multiple stacked restricted Boltzmann machines and works through a layer by layer successive learning process. The proposed multi-sensor health diagnosis methodology using DBN based state classification can be structured in three consecutive stages: first, defining health states and preprocessing sensory data for DBN training and testing; second, developing DBN based classification models for diagnosis of predefined health states; third, validating DBN classification models with testing sensory dataset. Health diagnosis using DBN based health state classification technique is compared with four existing diagnosis techniques. Benchmark classification problems and two engineering health diagnosis applications: aircraft engine health diagnosis and electric power transformer health diagnosis are employed to demonstrate the efficacy of the proposed approach

  7. An Efficient Ensemble Learning Method for Gene Microarray Classification

    Directory of Open Access Journals (Sweden)

    Alireza Osareh

    2013-01-01

    Full Text Available The gene microarray analysis and classification have demonstrated an effective way for the effective diagnosis of diseases and cancers. However, it has been also revealed that the basic classification techniques have intrinsic drawbacks in achieving accurate gene classification and cancer diagnosis. On the other hand, classifier ensembles have received increasing attention in various applications. Here, we address the gene classification issue using RotBoost ensemble methodology. This method is a combination of Rotation Forest and AdaBoost techniques which in turn preserve both desirable features of an ensemble architecture, that is, accuracy and diversity. To select a concise subset of informative genes, 5 different feature selection algorithms are considered. To assess the efficiency of the RotBoost, other nonensemble/ensemble techniques including Decision Trees, Support Vector Machines, Rotation Forest, AdaBoost, and Bagging are also deployed. Experimental results have revealed that the combination of the fast correlation-based feature selection method with ICA-based RotBoost ensemble is highly effective for gene classification. In fact, the proposed method can create ensemble classifiers which outperform not only the classifiers produced by the conventional machine learning but also the classifiers generated by two widely used conventional ensemble learning methods, that is, Bagging and AdaBoost.

  8. A Cognitive Skill Classification Based On Multi Objective Optimization Using Learning Vector Quantization for Serious Games

    Directory of Open Access Journals (Sweden)

    Moh. Aries Syufagi

    2011-12-01

    Full Text Available Nowadays, serious games and game technology are poised to transform the way of educating and training students at all levels. However, pedagogical value in games do not help novice students learn, too many memorizing and reduce learning process due to no information of player’s ability. To asses the cognitive level of player ability, we propose a Cognitive Skill Game (CSG. CSG improves this cognitive concept to monitor how players interact with the game. This game employs Learning Vector Quantization (LVQ for optimizing the cognitive skill input classification of the player. CSG is using teacher’s data to obtain the neuron vector of cognitive skill pattern supervise. Three clusters multi objective target will be classified as; trial and error, carefully and, expert cognitive skill. In the game play experiments using 33 respondent players demonstrates that 61% of players have high trial and error cognitive skill, 21% have high carefully cognitive skill, and 18% have high expert cognitive skill. CSG may provide information to game engine when a player needs help or when wanting a formidable challenge. The game engine will provide the appropriate tasks according to players’ ability. CSG will help balance the emotions of players, so players do not get bored and frustrated. Players have a high interest to finish the game if the player is emotionally stable. Interests in the players strongly support the procedural learning in a serious game.

  9. Ichthyoplankton Classification Tool using Generative Adversarial Networks and Transfer Learning

    KAUST Repository

    Aljaafari, Nura

    2018-04-15

    The study and the analysis of marine ecosystems is a significant part of the marine science research. These systems are valuable resources for fisheries, improving water quality and can even be used in drugs production. The investigation of ichthyoplankton inhabiting these ecosystems is also an important research field. Ichthyoplankton are fish in their early stages of life. In this stage, the fish have relatively similar shape and are small in size. The currently used way of identifying them is not optimal. Marine scientists typically study such organisms by sending a team that collects samples from the sea which is then taken to the lab for further investigation. These samples need to be studied by an expert and usually end needing a DNA sequencing. This method is time-consuming and requires a high level of experience. The recent advances in AI have helped to solve and automate several difficult tasks which motivated us to develop a classification tool for ichthyoplankton. We show that using machine learning techniques, such as generative adversarial networks combined with transfer learning solves such a problem with high accuracy. We show that using traditional machine learning algorithms fails to solve it. We also give a general framework for creating a classification tool when the dataset used for training is a limited dataset. We aim to build a user-friendly tool that can be used by any user for the classification task and we aim to give a guide to the researchers so that they can follow in creating a classification tool.

  10. Genome-wide prediction of cis-regulatory regions using supervised deep learning methods.

    Science.gov (United States)

    Li, Yifeng; Shi, Wenqiang; Wasserman, Wyeth W

    2018-05-31

    In the human genome, 98% of DNA sequences are non-protein-coding regions that were previously disregarded as junk DNA. In fact, non-coding regions host a variety of cis-regulatory regions which precisely control the expression of genes. Thus, Identifying active cis-regulatory regions in the human genome is critical for understanding gene regulation and assessing the impact of genetic variation on phenotype. The developments of high-throughput sequencing and machine learning technologies make it possible to predict cis-regulatory regions genome wide. Based on rich data resources such as the Encyclopedia of DNA Elements (ENCODE) and the Functional Annotation of the Mammalian Genome (FANTOM) projects, we introduce DECRES based on supervised deep learning approaches for the identification of enhancer and promoter regions in the human genome. Due to their ability to discover patterns in large and complex data, the introduction of deep learning methods enables a significant advance in our knowledge of the genomic locations of cis-regulatory regions. Using models for well-characterized cell lines, we identify key experimental features that contribute to the predictive performance. Applying DECRES, we delineate locations of 300,000 candidate enhancers genome wide (6.8% of the genome, of which 40,000 are supported by bidirectional transcription data), and 26,000 candidate promoters (0.6% of the genome). The predicted annotations of cis-regulatory regions will provide broad utility for genome interpretation from functional genomics to clinical applications. The DECRES model demonstrates potentials of deep learning technologies when combined with high-throughput sequencing data, and inspires the development of other advanced neural network models for further improvement of genome annotations.

  11. Exploiting the potential of unlabeled endoscopic video data with self-supervised learning.

    Science.gov (United States)

    Ross, Tobias; Zimmerer, David; Vemuri, Anant; Isensee, Fabian; Wiesenfarth, Manuel; Bodenstedt, Sebastian; Both, Fabian; Kessler, Philip; Wagner, Martin; Müller, Beat; Kenngott, Hannes; Speidel, Stefanie; Kopp-Schneider, Annette; Maier-Hein, Klaus; Maier-Hein, Lena

    2018-04-27

    Surgical data science is a new research field that aims to observe all aspects of the patient treatment process in order to provide the right assistance at the right time. Due to the breakthrough successes of deep learning-based solutions for automatic image annotation, the availability of reference annotations for algorithm training is becoming a major bottleneck in the field. The purpose of this paper was to investigate the concept of self-supervised learning to address this issue. Our approach is guided by the hypothesis that unlabeled video data can be used to learn a representation of the target domain that boosts the performance of state-of-the-art machine learning algorithms when used for pre-training. Core of the method is an auxiliary task based on raw endoscopic video data of the target domain that is used to initialize the convolutional neural network (CNN) for the target task. In this paper, we propose the re-colorization of medical images with a conditional generative adversarial network (cGAN)-based architecture as auxiliary task. A variant of the method involves a second pre-training step based on labeled data for the target task from a related domain. We validate both variants using medical instrument segmentation as target task. The proposed approach can be used to radically reduce the manual annotation effort involved in training CNNs. Compared to the baseline approach of generating annotated data from scratch, our method decreases exploratively the number of labeled images by up to 75% without sacrificing performance. Our method also outperforms alternative methods for CNN pre-training, such as pre-training on publicly available non-medical (COCO) or medical data (MICCAI EndoVis2017 challenge) using the target task (in this instance: segmentation). As it makes efficient use of available (non-)public and (un-)labeled data, the approach has the potential to become a valuable tool for CNN (pre-)training.

  12. Whither Supervision?

    Directory of Open Access Journals (Sweden)

    Duncan Waite

    2006-11-01

    Full Text Available This paper inquires if the school supervision is in decadence. Dr. Waite responds that the answer will depend on which perspective you look at it. Dr. Waite suggests taking in consideration three elements that are related: the field itself, the expert in the field (the professor, the theorist, the student and the administrator, and the context. When these three elements are revised, it emphasizes that there is not a consensus about the field of supervision, but there are coincidences related to its importance and that it is related to the improvement of the practice of the students in the school for their benefit. Dr. Waite suggests that the practice on this field is not always in harmony with what the theorists affirm. When referring to the supervisor or the skilled person, the author indicates that his or her perspective depends on his or her epistemological believes or in the way he or she conceives the learning; that is why supervision can be understood in different ways. About the context, Waite suggests that there have to be taken in consideration the social or external forces that influent the people and the society, because through them the education is affected. Dr. Waite concludes that the way to understand the supervision depends on the performer’s perspective. He responds to the initial question saying that the supervision authorities, the knowledge on this field, the performers, and its practice, are maybe spread but not extinct because the supervision will always be part of the great enterprise that we called education.

  13. Combined use of two supervised learning algorithms to model sea turtle behaviours from tri-axial acceleration data.

    Science.gov (United States)

    Jeantet, L; Dell'Amico, F; Forin-Wiart, M-A; Coutant, M; Bonola, M; Etienne, D; Gresser, J; Regis, S; Lecerf, N; Lefebvre, F; de Thoisy, B; Le Maho, Y; Brucker, M; Châtelain, N; Laesser, R; Crenner, F; Handrich, Y; Wilson, R; Chevallier, D

    2018-05-23

    Accelerometers are becoming ever more important sensors in animal-attached technology, providing data that allow determination of body posture and movement and thereby helping to elucidate behaviour in animals that are difficult to observe. We sought to validate the identification of sea turtle behaviours from accelerometer signals by deploying tags on the carapace of a juvenile loggerhead ( Caretta caretta ), an adult hawksbill ( Eretmochelys imbricata ) and an adult green turtle ( Chelonia mydas ) at Aquarium La Rochelle, France. We recorded tri-axial acceleration at 50 Hz for each species for a full day while two fixed cameras recorded their behaviours. We identified behaviours from the acceleration data using two different supervised learning algorithms, Random Forest and Classification And Regression Tree (CART), treating the data from the adult animals as separate from the juvenile data. We achieved a global accuracy of 81.30% for the adult hawksbill and green turtle CART model and 71.63% for the juvenile loggerhead, identifying 10 and 12 different behaviours, respectively. Equivalent figures were 86.96% for the adult hawksbill and green turtle Random Forest model and 79.49% for the juvenile loggerhead, for the same behaviours. The use of Random Forest combined with CART algorithms allowed us to understand the decision rules implicated in behaviour discrimination, and thus remove or group together some 'confused' or under--represented behaviours in order to get the most accurate models. This study is the first to validate accelerometer data to identify turtle behaviours and the approach can now be tested on other captive sea turtle species. © 2018. Published by The Company of Biologists Ltd.

  14. Deep learning for EEG-Based preference classification

    Science.gov (United States)

    Teo, Jason; Hou, Chew Lin; Mountstephens, James

    2017-10-01

    Electroencephalogram (EEG)-based emotion classification is rapidly becoming one of the most intensely studied areas of brain-computer interfacing (BCI). The ability to passively identify yet accurately correlate brainwaves with our immediate emotions opens up truly meaningful and previously unattainable human-computer interactions such as in forensic neuroscience, rehabilitative medicine, affective entertainment and neuro-marketing. One particularly useful yet rarely explored areas of EEG-based emotion classification is preference recognition [1], which is simply the detection of like versus dislike. Within the limited investigations into preference classification, all reported studies were based on musically-induced stimuli except for a single study which used 2D images. The main objective of this study is to apply deep learning, which has been shown to produce state-of-the-art results in diverse hard problems such as in computer vision, natural language processing and audio recognition, to 3D object preference classification over a larger group of test subjects. A cohort of 16 users was shown 60 bracelet-like objects as rotating visual stimuli on a computer display while their preferences and EEGs were recorded. After training a variety of machine learning approaches which included deep neural networks, we then attempted to classify the users' preferences for the 3D visual stimuli based on their EEGs. Here, we show that that deep learning outperforms a variety of other machine learning classifiers for this EEG-based preference classification task particularly in a highly challenging dataset with large inter- and intra-subject variability.

  15. Plant MicroRNA Prediction by Supervised Machine Learning Using C5.0 Decision Trees

    Directory of Open Access Journals (Sweden)

    Philip H. Williams

    2012-01-01

    Full Text Available MicroRNAs (miRNAs are nonprotein coding RNAs between 20 and 22 nucleotides long that attenuate protein production. Different types of sequence data are being investigated for novel miRNAs, including genomic and transcriptomic sequences. A variety of machine learning methods have successfully predicted miRNA precursors, mature miRNAs, and other nonprotein coding sequences. MirTools, mirDeep2, and miRanalyzer require “read count” to be included with the input sequences, which restricts their use to deep-sequencing data. Our aim was to train a predictor using a cross-section of different species to accurately predict miRNAs outside the training set. We wanted a system that did not require read-count for prediction and could therefore be applied to short sequences extracted from genomic, EST, or RNA-seq sources. A miRNA-predictive decision-tree model has been developed by supervised machine learning. It only requires that the corresponding genome or transcriptome is available within a sequence window that includes the precursor candidate so that the required sequence features can be collected. Some of the most critical features for training the predictor are the miRNA:miRNA∗ duplex energy and the number of mismatches in the duplex. We present a cross-species plant miRNA predictor with 84.08% sensitivity and 98.53% specificity based on rigorous testing by leave-one-out validation.

  16. Plant MicroRNA Prediction by Supervised Machine Learning Using C5.0 Decision Trees.

    Science.gov (United States)

    Williams, Philip H; Eyles, Rod; Weiller, Georg

    2012-01-01

    MicroRNAs (miRNAs) are nonprotein coding RNAs between 20 and 22 nucleotides long that attenuate protein production. Different types of sequence data are being investigated for novel miRNAs, including genomic and transcriptomic sequences. A variety of machine learning methods have successfully predicted miRNA precursors, mature miRNAs, and other nonprotein coding sequences. MirTools, mirDeep2, and miRanalyzer require "read count" to be included with the input sequences, which restricts their use to deep-sequencing data. Our aim was to train a predictor using a cross-section of different species to accurately predict miRNAs outside the training set. We wanted a system that did not require read-count for prediction and could therefore be applied to short sequences extracted from genomic, EST, or RNA-seq sources. A miRNA-predictive decision-tree model has been developed by supervised machine learning. It only requires that the corresponding genome or transcriptome is available within a sequence window that includes the precursor candidate so that the required sequence features can be collected. Some of the most critical features for training the predictor are the miRNA:miRNA(∗) duplex energy and the number of mismatches in the duplex. We present a cross-species plant miRNA predictor with 84.08% sensitivity and 98.53% specificity based on rigorous testing by leave-one-out validation.

  17. Automated Detection of Microaneurysms Using Scale-Adapted Blob Analysis and Semi-Supervised Learning

    Energy Technology Data Exchange (ETDEWEB)

    Adal, Kedir M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sidebe, Desire [Univ. of Burgundy, Dijon (France); Ali, Sharib [Univ. of Burgundy, Dijon (France); Chaum, Edward [Univ. of Tennessee, Knoxville, TN (United States); Karnowski, Thomas Paul [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Meriaudeau, Fabrice [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-01-07

    Despite several attempts, automated detection of microaneurysm (MA) from digital fundus images still remains to be an open issue. This is due to the subtle nature of MAs against the surrounding tissues. In this paper, the microaneurysm detection problem is modeled as finding interest regions or blobs from an image and an automatic local-scale selection technique is presented. Several scale-adapted region descriptors are then introduced to characterize these blob regions. A semi-supervised based learning approach, which requires few manually annotated learning examples, is also proposed to train a classifier to detect true MAs. The developed system is built using only few manually labeled and a large number of unlabeled retinal color fundus images. The performance of the overall system is evaluated on Retinopathy Online Challenge (ROC) competition database. A competition performance measure (CPM) of 0.364 shows the competitiveness of the proposed system against state-of-the art techniques as well as the applicability of the proposed features to analyze fundus images.

  18. Semi-supervised Learning Predicts Approximately One Third of the Alternative Splicing Isoforms as Functional Proteins

    Directory of Open Access Journals (Sweden)

    Yanqi Hao

    2015-07-01

    Full Text Available Alternative splicing acts on transcripts from almost all human multi-exon genes. Notwithstanding its ubiquity, fundamental ramifications of splicing on protein expression remain unresolved. The number and identity of spliced transcripts that form stably folded proteins remain the sources of considerable debate, due largely to low coverage of experimental methods and the resulting absence of negative data. We circumvent this issue by developing a semi-supervised learning algorithm, positive unlabeled learning for splicing elucidation (PULSE; http://www.kimlab.org/software/pulse, which uses 48 features spanning various categories. We validated its accuracy on sets of bona fide protein isoforms and directly on mass spectrometry (MS spectra for an overall AU-ROC of 0.85. We predict that around 32% of “exon skipping” alternative splicing events produce stable proteins, suggesting that the process engenders a significant number of previously uncharacterized proteins. We also provide insights into the distribution of positive isoforms in various functional classes and into the structural effects of alternative splicing.

  19. Automated Quality Assessment of Structural Magnetic Resonance Brain Images Based on a Supervised Machine Learning Algorithm

    Directory of Open Access Journals (Sweden)

    Ricardo Andres Pizarro

    2016-12-01

    Full Text Available High-resolution three-dimensional magnetic resonance imaging (3D-MRI is being increasingly used to delineate morphological changes underlying neuropsychiatric disorders. Unfortunately, artifacts frequently compromise the utility of 3D-MRI yielding irreproducible results, from both type I and type II errors. It is therefore critical to screen 3D-MRIs for artifacts before use. Currently, quality assessment involves slice-wise visual inspection of 3D-MRI volumes, a procedure that is both subjective and time consuming. Automating the quality rating of 3D-MRI could improve the efficiency and reproducibility of the procedure. The present study is one of the first efforts to apply a support vector machine (SVM algorithm in the quality assessment of structural brain images, using global and region of interest (ROI automated image quality features developed in-house. SVM is a supervised machine-learning algorithm that can predict the category of test datasets based on the knowledge acquired from a learning dataset. The performance (accuracy of the automated SVM approach was assessed, by comparing the SVM-predicted quality labels to investigator-determined quality labels. The accuracy for classifying 1457 3D-MRI volumes from our database using the SVM approach is around 80%. These results are promising and illustrate the possibility of using SVM as an automated quality assessment tool for 3D-MRI.

  20. Automated Quality Assessment of Structural Magnetic Resonance Brain Images Based on a Supervised Machine Learning Algorithm.

    Science.gov (United States)

    Pizarro, Ricardo A; Cheng, Xi; Barnett, Alan; Lemaitre, Herve; Verchinski, Beth A; Goldman, Aaron L; Xiao, Ena; Luo, Qian; Berman, Karen F; Callicott, Joseph H; Weinberger, Daniel R; Mattay, Venkata S

    2016-01-01

    High-resolution three-dimensional magnetic resonance imaging (3D-MRI) is being increasingly used to delineate morphological changes underlying neuropsychiatric disorders. Unfortunately, artifacts frequently compromise the utility of 3D-MRI yielding irreproducible results, from both type I and type II errors. It is therefore critical to screen 3D-MRIs for artifacts before use. Currently, quality assessment involves slice-wise visual inspection of 3D-MRI volumes, a procedure that is both subjective and time consuming. Automating the quality rating of 3D-MRI could improve the efficiency and reproducibility of the procedure. The present study is one of the first efforts to apply a support vector machine (SVM) algorithm in the quality assessment of structural brain images, using global and region of interest (ROI) automated image quality features developed in-house. SVM is a supervised machine-learning algorithm that can predict the category of test datasets based on the knowledge acquired from a learning dataset. The performance (accuracy) of the automated SVM approach was assessed, by comparing the SVM-predicted quality labels to investigator-determined quality labels. The accuracy for classifying 1457 3D-MRI volumes from our database using the SVM approach is around 80%. These results are promising and illustrate the possibility of using SVM as an automated quality assessment tool for 3D-MRI.

  1. The effects of supervised learning on event-related potential correlates of music-syntactic processing.

    Science.gov (United States)

    Guo, Shuang; Koelsch, Stefan

    2015-11-11

    Humans process music even without conscious effort according to implicit knowledge about syntactic regularities. Whether such automatic and implicit processing is modulated by veridical knowledge has remained unknown in previous neurophysiological studies. This study investigates this issue by testing whether the acquisition of veridical knowledge of a music-syntactic irregularity (acquired through supervised learning) modulates early, partly automatic, music-syntactic processes (as reflected in the early right anterior negativity, ERAN), and/or late controlled processes (as reflected in the late positive component, LPC). Excerpts of piano sonatas with syntactically regular and less regular chords were presented repeatedly (10 times) to non-musicians and amateur musicians. Participants were informed by a cue as to whether the following excerpt contained a regular or less regular chord. Results showed that the repeated exposure to several presentations of regular and less regular excerpts did not influence the ERAN elicited by less regular chords. By contrast, amplitudes of the LPC (as well as of the P3a evoked by less regular chords) decreased systematically across learning trials. These results reveal that late controlled, but not early (partly automatic), neural mechanisms of music-syntactic processing are modulated by repeated exposure to a musical piece. This article is part of a Special Issue entitled SI: Prediction and Attention. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Automated detection of microaneurysms using scale-adapted blob analysis and semi-supervised learning.

    Science.gov (United States)

    Adal, Kedir M; Sidibé, Désiré; Ali, Sharib; Chaum, Edward; Karnowski, Thomas P; Mériaudeau, Fabrice

    2014-04-01

    Despite several attempts, automated detection of microaneurysm (MA) from digital fundus images still remains to be an open issue. This is due to the subtle nature of MAs against the surrounding tissues. In this paper, the microaneurysm detection problem is modeled as finding interest regions or blobs from an image and an automatic local-scale selection technique is presented. Several scale-adapted region descriptors are introduced to characterize these blob regions. A semi-supervised based learning approach, which requires few manually annotated learning examples, is also proposed to train a classifier which can detect true MAs. The developed system is built using only few manually labeled and a large number of unlabeled retinal color fundus images. The performance of the overall system is evaluated on Retinopathy Online Challenge (ROC) competition database. A competition performance measure (CPM) of 0.364 shows the competitiveness of the proposed system against state-of-the art techniques as well as the applicability of the proposed features to analyze fundus images. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. An Efficient Semi-supervised Learning Approach to Predict SH2 Domain Mediated Interactions.

    Science.gov (United States)

    Kundu, Kousik; Backofen, Rolf

    2017-01-01

    Src homology 2 (SH2) domain is an important subclass of modular protein domains that plays an indispensable role in several biological processes in eukaryotes. SH2 domains specifically bind to the phosphotyrosine residue of their binding peptides to facilitate various molecular functions. For determining the subtle binding specificities of SH2 domains, it is very important to understand the intriguing mechanisms by which these domains recognize their target peptides in a complex cellular environment. There are several attempts have been made to predict SH2-peptide interactions using high-throughput data. However, these high-throughput data are often affected by a low signal to noise ratio. Furthermore, the prediction methods have several additional shortcomings, such as linearity problem, high computational complexity, etc. Thus, computational identification of SH2-peptide interactions using high-throughput data remains challenging. Here, we propose a machine learning approach based on an efficient semi-supervised learning technique for the prediction of 51 SH2 domain mediated interactions in the human proteome. In our study, we have successfully employed several strategies to tackle the major problems in computational identification of SH2-peptide interactions.

  4. Random ensemble learning for EEG classification.

    Science.gov (United States)

    Hosseini, Mohammad-Parsa; Pompili, Dario; Elisevich, Kost; Soltanian-Zadeh, Hamid

    2018-01-01

    Real-time detection of seizure activity in epilepsy patients is critical in averting seizure activity and improving patients' quality of life. Accurate evaluation, presurgical assessment, seizure prevention, and emergency alerts all depend on the rapid detection of seizure onset. A new method of feature selection and classification for rapid and precise seizure detection is discussed wherein informative components of electroencephalogram (EEG)-derived data are extracted and an automatic method is presented using infinite independent component analysis (I-ICA) to select independent features. The feature space is divided into subspaces via random selection and multichannel support vector machines (SVMs) are used to classify these subspaces. The result of each classifier is then combined by majority voting to establish the final output. In addition, a random subspace ensemble using a combination of SVM, multilayer perceptron (MLP) neural network and an extended k-nearest neighbors (k-NN), called extended nearest neighbor (ENN), is developed for the EEG and electrocorticography (ECoG) big data problem. To evaluate the solution, a benchmark ECoG of eight patients with temporal and extratemporal epilepsy was implemented in a distributed computing framework as a multitier cloud-computing architecture. Using leave-one-out cross-validation, the accuracy, sensitivity, specificity, and both false positive and false negative ratios of the proposed method were found to be 0.97, 0.98, 0.96, 0.04, and 0.02, respectively. Application of the solution to cases under investigation with ECoG has also been effected to demonstrate its utility. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Automatic Quantification of Tumour Hypoxia From Multi-Modal Microscopy Images Using Weakly-Supervised Learning Methods.

    Science.gov (United States)

    Carneiro, Gustavo; Peng, Tingying; Bayer, Christine; Navab, Nassir

    2017-07-01

    In recently published clinical trial results, hypoxia-modified therapies have shown to provide more positive outcomes to cancer patients, compared with standard cancer treatments. The development and validation of these hypoxia-modified therapies depend on an effective way of measuring tumor hypoxia, but a standardized measurement is currently unavailable in clinical practice. Different types of manual measurements have been proposed in clinical research, but in this paper we focus on a recently published approach that quantifies the number and proportion of hypoxic regions using high resolution (immuno-)fluorescence (IF) and hematoxylin and eosin (HE) stained images of a histological specimen of a tumor. We introduce new machine learning-based methodologies to automate this measurement, where the main challenge is the fact that the clinical annotations available for training the proposed methodologies consist of the total number of normoxic, chronically hypoxic, and acutely hypoxic regions without any indication of their location in the image. Therefore, this represents a weakly-supervised structured output classification problem, where training is based on a high-order loss function formed by the norm of the difference between the manual and estimated annotations mentioned above. We propose four methodologies to solve this problem: 1) a naive method that uses a majority classifier applied on the nodes of a fixed grid placed over the input images; 2) a baseline method based on a structured output learning formulation that relies on a fixed grid placed over the input images; 3) an extension to this baseline based on a latent structured output learning formulation that uses a graph that is flexible in terms of the amount and positions of nodes; and 4) a pixel-wise labeling based on a fully-convolutional neural network. Using a data set of 89 weakly annotated pairs of IF and HE images from eight tumors, we show that the quantitative results of methods (3) and (4

  6. Novel Approaches for Diagnosing Melanoma Skin Lesions Through Supervised and Deep Learning Algorithms.

    Science.gov (United States)

    Premaladha, J; Ravichandran, K S

    2016-04-01

    Dermoscopy is a technique used to capture the images of skin, and these images are useful to analyze the different types of skin diseases. Malignant melanoma is a kind of skin cancer whose severity even leads to death. Earlier detection of melanoma prevents death and the clinicians can treat the patients to increase the chances of survival. Only few machine learning algorithms are developed to detect the melanoma using its features. This paper proposes a Computer Aided Diagnosis (CAD) system which equips efficient algorithms to classify and predict the melanoma. Enhancement of the images are done using Contrast Limited Adaptive Histogram Equalization technique (CLAHE) and median filter. A new segmentation algorithm called Normalized Otsu's Segmentation (NOS) is implemented to segment the affected skin lesion from the normal skin, which overcomes the problem of variable illumination. Fifteen features are derived and extracted from the segmented images are fed into the proposed classification techniques like Deep Learning based Neural Networks and Hybrid Adaboost-Support Vector Machine (SVM) algorithms. The proposed system is tested and validated with nearly 992 images (malignant & benign lesions) and it provides a high classification accuracy of 93 %. The proposed CAD system can assist the dermatologists to confirm the decision of the diagnosis and to avoid excisional biopsies.

  7. Computerized breast cancer analysis system using three stage semi-supervised learning method.

    Science.gov (United States)

    Sun, Wenqing; Tseng, Tzu-Liang Bill; Zhang, Jianying; Qian, Wei

    2016-10-01

    A large number of labeled medical image data is usually a requirement to train a well-performed computer-aided detection (CAD) system. But the process of data labeling is time consuming, and potential ethical and logistical problems may also present complications. As a result, incorporating unlabeled data into CAD system can be a feasible way to combat these obstacles. In this study we developed a three stage semi-supervised learning (SSL) scheme that combines a small amount of labeled data and larger amount of unlabeled data. The scheme was modified on our existing CAD system using the following three stages: data weighing, feature selection, and newly proposed dividing co-training data labeling algorithm. Global density asymmetry features were incorporated to the feature pool to reduce the false positive rate. Area under the curve (AUC) and accuracy were computed using 10 fold cross validation method to evaluate the performance of our CAD system. The image dataset includes mammograms from 400 women who underwent routine screening examinations, and each pair contains either two cranio-caudal (CC) or two mediolateral-oblique (MLO) view mammograms from the right and the left breasts. From these mammograms 512 regions were extracted and used in this study, and among them 90 regions were treated as labeled while the rest were treated as unlabeled. Using our proposed scheme, the highest AUC observed in our research was 0.841, which included the 90 labeled data and all the unlabeled data. It was 7.4% higher than using labeled data only. With the increasing amount of labeled data, AUC difference between using mixed data and using labeled data only reached its peak when the amount of labeled data was around 60. This study demonstrated that our proposed three stage semi-supervised learning can improve the CAD performance by incorporating unlabeled data. Using unlabeled data is promising in computerized cancer research and may have a significant impact for future CAD system

  8. A comparison of supervised classification methods for the prediction of substrate type using multibeam acoustic and legacy grain-size data.

    Directory of Open Access Journals (Sweden)

    David Stephens

    Full Text Available Detailed seabed substrate maps are increasingly in demand for effective planning and management of marine ecosystems and resources. It has become common to use remotely sensed multibeam echosounder data in the form of bathymetry and acoustic backscatter in conjunction with ground-truth sampling data to inform the mapping of seabed substrates. Whilst, until recently, such data sets have typically been classified by expert interpretation, it is now obvious that more objective, faster and repeatable methods of seabed classification are required. This study compares the performances of a range of supervised classification techniques for predicting substrate type from multibeam echosounder data. The study area is located in the North Sea, off the north-east coast of England. A total of 258 ground-truth samples were classified into four substrate classes. Multibeam bathymetry and backscatter data, and a range of secondary features derived from these datasets were used in this study. Six supervised classification techniques were tested: Classification Trees, Support Vector Machines, k-Nearest Neighbour, Neural Networks, Random Forest and Naive Bayes. Each classifier was trained multiple times using different input features, including i the two primary features of bathymetry and backscatter, ii a subset of the features chosen by a feature selection process and iii all of the input features. The predictive performances of the models were validated using a separate test set of ground-truth samples. The statistical significance of model performances relative to a simple baseline model (Nearest Neighbour predictions on bathymetry and backscatter were tested to assess the benefits of using more sophisticated approaches. The best performing models were tree based methods and Naive Bayes which achieved accuracies of around 0.8 and kappa coefficients of up to 0.5 on the test set. The models that used all input features didn't generally perform well

  9. Convolutional neural network with transfer learning for rice type classification

    Science.gov (United States)

    Patel, Vaibhav Amit; Joshi, Manjunath V.

    2018-04-01

    Presently, rice type is identified manually by humans, which is time consuming and error prone. Therefore, there is a need to do this by machine which makes it faster with greater accuracy. This paper proposes a deep learning based method for classification of rice types. We propose two methods to classify the rice types. In the first method, we train a deep convolutional neural network (CNN) using the given segmented rice images. In the second method, we train a combination of a pretrained VGG16 network and the proposed method, while using transfer learning in which the weights of a pretrained network are used to achieve better accuracy. Our approach can also be used for classification of rice grain as broken or fine. We train a 5-class model for classifying rice types using 4000 training images and another 2- class model for the classification of broken and normal rice using 1600 training images. We observe that despite having distinct rice images, our architecture, pretrained on ImageNet data boosts classification accuracy significantly.

  10. Manifold regularized multitask feature learning for multimodality disease classification.

    Science.gov (United States)

    Jie, Biao; Zhang, Daoqiang; Cheng, Bo; Shen, Dinggang

    2015-02-01

    Multimodality based methods have shown great advantages in classification of Alzheimer's disease (AD) and its prodromal stage, that is, mild cognitive impairment (MCI). Recently, multitask feature selection methods are typically used for joint selection of common features across multiple modalities. However, one disadvantage of existing multimodality based methods is that they ignore the useful data distribution information in each modality, which is essential for subsequent classification. Accordingly, in this paper we propose a manifold regularized multitask feature learning method to preserve both the intrinsic relatedness among multiple modalities of data and the data distribution information in each modality. Specifically, we denote the feature learning on each modality as a single task, and use group-sparsity regularizer to capture the intrinsic relatedness among multiple tasks (i.e., modalities) and jointly select the common features from multiple tasks. Furthermore, we introduce a new manifold-based Laplacian regularizer to preserve the data distribution information from each task. Finally, we use the multikernel support vector machine method to fuse multimodality data for eventual classification. Conversely, we also extend our method to the semisupervised setting, where only partial data are labeled. We evaluate our method using the baseline magnetic resonance imaging (MRI), fluorodeoxyglucose positron emission tomography (FDG-PET), and cerebrospinal fluid (CSF) data of subjects from AD neuroimaging initiative database. The experimental results demonstrate that our proposed method can not only achieve improved classification performance, but also help to discover the disease-related brain regions useful for disease diagnosis. © 2014 Wiley Periodicals, Inc.

  11. A Cognitive Skill Classification Based on Multi Objective Optimization Using Learning Vector Quantization for Serious Games

    Directory of Open Access Journals (Sweden)

    Moh. Aries Syufagi

    2013-09-01

    Full Text Available Nowadays, serious games and game technology are poised to transform the way of educating and training students at all levels. However, pedagogical value in games do not help novice students learn, too many memorizing and reduce learning process due to no information of player’s ability. To asses the cognitive level of player ability, we propose a Cognitive Skill Game (CSG. CSG improves this cognitive concept to monitor how players interact with the game. This game employs Learning Vector Quantization (LVQ for optimizing the cognitive skill input classification of the player. CSG is using teacher’s data to obtain the neuron vector of cognitive skill pattern supervise. Three clusters multi objective XE "multi objective"  target will be classified as; trial and error, carefully and, expert cognitive skill. In the game play experiments employ 33 respondent players demonstrates that 61% of players have high trial and error, 21% have high carefully, and 18% have high expert cognitive skill. CSG may provide information to game engine when a player needs help or when wanting a formidable challenge. The game engine will provide the appropriate tasks according to players’ ability. CSG will help balance the emotions of players, so players do not get bored and frustrated. 

  12. Examining the Capability of Supervised Machine Learning Classifiers in Extracting Flooded Areas from Landsat TM Imagery: A Case Study from a Mediterranean Flood

    Directory of Open Access Journals (Sweden)

    Gareth Ireland

    2015-03-01

    Full Text Available This study explored the capability of Support Vector Machines (SVMs and regularised kernel Fisher’s discriminant analysis (rkFDA machine learning supervised classifiers in extracting flooded area from optical Landsat TM imagery. The ability of both techniques was evaluated using a case study of a riverine flood event in 2010 in a heterogeneous Mediterranean region, for which TM imagery acquired shortly after the flood event was available. For the two classifiers, both linear and non-linear (kernel versions were utilised in their implementation. The ability of the different classifiers to map the flooded area extent was assessed on the basis of classification accuracy assessment metrics. Results showed that rkFDA outperformed SVMs in terms of accurate flooded pixels detection, also producing fewer missed detections of the flooded area. Yet, SVMs showed less false flooded area detections. Overall, the non-linear rkFDA classification method was the more accurate of the two techniques (OA = 96.23%, K = 0.877. Both methods outperformed the standard Normalized Difference Water Index (NDWI thresholding (OA = 94.63, K = 0.818 by roughly 0.06 K points. Although overall accuracy results for the rkFDA and SVMs classifications only showed a somewhat minor improvement on the overall accuracy exhibited by the NDWI thresholding, notably both classifiers considerably outperformed the thresholding algorithm in other specific accuracy measures (e.g. producer accuracy for the “not flooded” class was ~10.5% less accurate for the NDWI thresholding algorithm in comparison to the classifiers, and average per-class accuracy was ~5% less accurate than the machine learning models. This study provides evidence of the successful application of supervised machine learning for classifying flooded areas in Landsat imagery, where few studies so far exist in this direction. Considering that Landsat data is open access and has global coverage, the results of this study

  13. Supervised Classification in the Presence of Misclassified Training Data: A Monte Carlo Simulation Study in the Three Group Case

    Directory of Open Access Journals (Sweden)

    Jocelyn E Bolin

    2014-02-01

    Full Text Available Statistical classification of phenomena into observed groups is very common in the social and behavioral sciences. Statistical classification methods, however, are affected by the characteristics of the data under study. Statistical classification can be further complicated by initial misclassification of the observed groups. The purpose of this study is to investigate the impact of initial training data misclassification on several statistical classification and data mining techniques. Misclassification conditions in the three-group case will be simulated and results will be presented in terms of overall as well as subgroup classification accuracy. Results show decreased classification accuracy as sample size, group separation and group size ratio decrease and as misclassification percentage increases with random forests demonstrating the highest accuracy across conditions.

  14. Master's Thesis Supervision: Relations between Perceptions of the Supervisor-Student Relationship, Final Grade, Perceived Supervisor Contribution to Learning and Student Satisfaction

    Science.gov (United States)

    de Kleijn, Renske A. M.; Mainhard, M. Tim; Meijer, Paulien C.; Pilot, Albert; Brekelmans, Mieke

    2012-01-01

    Master's thesis supervision is a complex task given the two-fold goal of the thesis (learning and assessment). An important aspect of supervision is the supervisor-student relationship. This quantitative study (N = 401) investigates how perceptions of the supervisor-student relationship are related to three dependent variables: final grade,…

  15. Self-Supervised Video Representation Learning With Odd-One-Out Networks : CVPR 2017 : 21-26 July 2016, Honolulu, Hawaii : proceedings

    NARCIS (Netherlands)

    Fernando, B.; Bilen, H.; Gavves, E.; Gould, S.

    2017-01-01

    We propose a new self-supervised CNN pre-training technique based on a novel auxiliary task called odd-one-out learning. In this task, the machine is asked to identify the unrelated or odd element from a set of otherwise related elements. We apply this technique to self-supervised video

  16. An Adaptive Privacy Protection Method for Smart Home Environments Using Supervised Learning

    Directory of Open Access Journals (Sweden)

    Jingsha He

    2017-03-01

    Full Text Available In recent years, smart home technologies have started to be widely used, bringing a great deal of convenience to people’s daily lives. At the same time, privacy issues have become particularly prominent. Traditional encryption methods can no longer meet the needs of privacy protection in smart home applications, since attacks can be launched even without the need for access to the cipher. Rather, attacks can be successfully realized through analyzing the frequency of radio signals, as well as the timestamp series, so that the daily activities of the residents in the smart home can be learnt. Such types of attacks can achieve a very high success rate, making them a great threat to users’ privacy. In this paper, we propose an adaptive method based on sample data analysis and supervised learning (SDASL, to hide the patterns of daily routines of residents that would adapt to dynamically changing network loads. Compared to some existing solutions, our proposed method exhibits advantages such as low energy consumption, low latency, strong adaptability, and effective privacy protection.

  17. Semi-supervised learning based probabilistic latent semantic analysis for automatic image annotation

    Institute of Scientific and Technical Information of China (English)

    Tian Dongping

    2017-01-01

    In recent years, multimedia annotation problem has been attracting significant research attention in multimedia and computer vision areas, especially for automatic image annotation, whose purpose is to provide an efficient and effective searching environment for users to query their images more easily.In this paper, a semi-supervised learning based probabilistic latent semantic analysis ( PL-SA) model for automatic image annotation is presenred.Since it' s often hard to obtain or create la-beled images in large quantities while unlabeled ones are easier to collect, a transductive support vector machine ( TSVM) is exploited to enhance the quality of the training image data.Then, differ-ent image features with different magnitudes will result in different performance for automatic image annotation.To this end, a Gaussian normalization method is utilized to normalize different features extracted from effective image regions segmented by the normalized cuts algorithm so as to reserve the intrinsic content of images as complete as possible.Finally, a PLSA model with asymmetric mo-dalities is constructed based on the expectation maximization( EM) algorithm to predict a candidate set of annotations with confidence scores.Extensive experiments on the general-purpose Corel5k dataset demonstrate that the proposed model can significantly improve performance of traditional PL-SA for the task of automatic image annotation.

  18. Construction of Hamiltonians by supervised learning of energy and entanglement spectra

    Science.gov (United States)

    Fujita, Hiroyuki; Nakagawa, Yuya O.; Sugiura, Sho; Oshikawa, Masaki

    2018-02-01

    Correlated many-body problems ubiquitously appear in various fields of physics such as condensed matter, nuclear, and statistical physics. However, due to the interplay of the large number of degrees of freedom, it is generically impossible to treat these problems from first principles. Thus the construction of a proper model, namely, effective Hamiltonian, is essential. Here, we propose a simple supervised learning algorithm for constructing Hamiltonians from given energy or entanglement spectra. We apply the proposed scheme to the Hubbard model at the half-filling, and compare the obtained effective low-energy spin model with several analytic results based on the high-order perturbation theory, which have been inconsistent with each other. We also show that our approach can be used to construct the entanglement Hamiltonian of a quantum many-body state from its entanglement spectrum as well. We exemplify this using the ground states of the S =1 /2 two-leg Heisenberg ladders. We observe a qualitative difference between the entanglement Hamiltonians of the two phases (the Haldane and the rung singlet phase) of the model due to the different origin of the entanglement. In the Haldane phase, we find that the entanglement Hamiltonian is nonlocal by nature, and the locality can be restored by introducing the anisotropy and turning the ground state into the large-D phase. Possible applications to the model construction from experimental data and to various problems of strongly correlated systems are discussed.

  19. Comparative Analysis of River Flow Modelling by Using Supervised Learning Technique

    Science.gov (United States)

    Ismail, Shuhaida; Mohamad Pandiahi, Siraj; Shabri, Ani; Mustapha, Aida

    2018-04-01

    The goal of this research is to investigate the efficiency of three supervised learning algorithms for forecasting monthly river flow of the Indus River in Pakistan, spread over 550 square miles or 1800 square kilometres. The algorithms include the Least Square Support Vector Machine (LSSVM), Artificial Neural Network (ANN) and Wavelet Regression (WR). The forecasting models predict the monthly river flow obtained from the three models individually for river flow data and the accuracy of the all models were then compared against each other. The monthly river flow of the said river has been forecasted using these three models. The obtained results were compared and statistically analysed. Then, the results of this analytical comparison showed that LSSVM model is more precise in the monthly river flow forecasting. It was found that LSSVM has he higher r with the value of 0.934 compared to other models. This indicate that LSSVM is more accurate and efficient as compared to the ANN and WR model.

  20. A deep learning pipeline for Indian dance style classification

    Science.gov (United States)

    Dewan, Swati; Agarwal, Shubham; Singh, Navjyoti

    2018-04-01

    In this paper, we address the problem of dance style classification to classify Indian dance or any dance in general. We propose a 3-step deep learning pipeline. First, we extract 14 essential joint locations of the dancer from each video frame, this helps us to derive any body region location within the frame, we use this in the second step which forms the main part of our pipeline. Here, we divide the dancer into regions of important motion in each video frame. We then extract patches centered at these regions. Main discriminative motion is captured in these patches. We stack the features from all such patches of a frame into a single vector and form our hierarchical dance pose descriptor. Finally, in the third step, we build a high level representation of the dance video using the hierarchical descriptors and train it using a Recurrent Neural Network (RNN) for classification. Our novelty also lies in the way we use multiple representations for a single video. This helps us to: (1) Overcome the RNN limitation of learning small sequences over big sequences such as dance; (2) Extract more data from the available dataset for effective deep learning by training multiple representations. Our contributions in this paper are three-folds: (1) We provide a deep learning pipeline for classification of any form of dance; (2) We prove that a segmented representation of a dance video works well with sequence learning techniques for recognition purposes; (3) We extend and refine the ICD dataset and provide a new dataset for evaluation of dance. Our model performs comparable or better in some cases than the state-of-the-art on action recognition benchmarks.

  1. Learning through simulated independent practice leads to better future performance in a simulated crisis than learning through simulated supervised practice.

    Science.gov (United States)

    Goldberg, A; Silverman, E; Samuelson, S; Katz, D; Lin, H M; Levine, A; DeMaria, S

    2015-05-01

    Anaesthetists may fail to recognize and manage certain rare intraoperative events. Simulation has been shown to be an effective educational adjunct to typical operating room-based education to train for these events. It is yet unclear, however, why simulation has any benefit. We hypothesize that learners who are allowed to manage a scenario independently and allowed to fail, thus causing simulated morbidity, will consequently perform better when re-exposed to a similar scenario. Using a randomized, controlled, observer-blinded design, 24 first-year residents were exposed to an oxygen pipeline contamination scenario, either where patient harm occurred (independent group, n=12) or where a simulated attending anaesthetist intervened to prevent harm (supervised group, n=12). Residents were brought back 6 months later and exposed to a different scenario (pipeline contamination) with the same end point. Participants' proper treatment, time to diagnosis, and non-technical skills (measured using the Anaesthetists' Non-Technical Skills Checklist, ANTS) were measured. No participants provided proper treatment in the initial exposure. In the repeat encounter 6 months later, 67% in the independent group vs 17% in the supervised group resumed adequate oxygen delivery (P=0.013). The independent group also had better ANTS scores [median (interquartile range): 42.3 (31.5-53.1) vs 31.3 (21.6-41), P=0.015]. There was no difference in time to treatment if proper management was provided [602 (490-820) vs 610 (420-800) s, P=0.79]. Allowing residents to practise independently in the simulation laboratory, and subsequently, allowing them to fail, can be an important part of simulation-based learning. This is not feasible in real clinical practice but appears to have improved resident performance in this study. The purposeful use of independent practice and its potentially negative outcomes thus sets simulation-based learning apart from traditional operating room learning. © The Author

  2. Machine-Learning Research

    OpenAIRE

    Dietterich, Thomas G.

    1997-01-01

    Machine-learning research has been making great progress in many directions. This article summarizes four of these directions and discusses some current open problems. The four directions are (1) the improvement of classification accuracy by learning ensembles of classifiers, (2) methods for scaling up supervised learning algorithms, (3) reinforcement learning, and (4) the learning of complex stochastic models.

  3. Improved Neural Signal Classification in a Rapid Serial Visual Presentation Task Using Active Learning.

    Science.gov (United States)

    Marathe, Amar R; Lawhern, Vernon J; Wu, Dongrui; Slayback, David; Lance, Brent J

    2016-03-01

    The application space for brain-computer interface (BCI) technologies is rapidly expanding with improvements in technology. However, most real-time BCIs require extensive individualized calibration prior to use, and systems often have to be recalibrated to account for changes in the neural signals due to a variety of factors including changes in human state, the surrounding environment, and task conditions. Novel approaches to reduce calibration time or effort will dramatically improve the usability of BCI systems. Active Learning (AL) is an iterative semi-supervised learning technique for learning in situations in which data may be abundant, but labels for the data are difficult or expensive to obtain. In this paper, we apply AL to a simulated BCI system for target identification using data from a rapid serial visual presentation (RSVP) paradigm to minimize the amount of training samples needed to initially calibrate a neural classifier. Our results show AL can produce similar overall classification accuracy with significantly less labeled data (in some cases less than 20%) when compared to alternative calibration approaches. In fact, AL classification performance matches performance of 10-fold cross-validation (CV) in over 70% of subjects when training with less than 50% of the data. To our knowledge, this is the first work to demonstrate the use of AL for offline electroencephalography (EEG) calibration in a simulated BCI paradigm. While AL itself is not often amenable for use in real-time systems, this work opens the door to alternative AL-like systems that are more amenable for BCI applications and thus enables future efforts for developing highly adaptive BCI systems.

  4. A non-parametric, supervised classification of vegetation types on the Kaibab National Forest using decision trees

    Science.gov (United States)

    Suzanne M. Joy; R. M. Reich; Richard T. Reynolds

    2003-01-01

    Traditional land classification techniques for large areas that use Landsat Thematic Mapper (TM) imagery are typically limited to the fixed spatial resolution of the sensors (30m). However, the study of some ecological processes requires land cover classifications at finer spatial resolutions. We model forest vegetation types on the Kaibab National Forest (KNF) in...

  5. Quantum learning: asymptotically optimal classification of qubit states

    International Nuclear Information System (INIS)

    Guta, Madalin; Kotlowski, Wojciech

    2010-01-01

    Pattern recognition is a central topic in learning theory, with numerous applications such as voice and text recognition, image analysis and computer diagnosis. The statistical setup in classification is the following: we are given an i.i.d. training set (X 1 , Y 1 ), ... , (X n , Y n ), where X i represents a feature and Y i in{0, 1} is a label attached to that feature. The underlying joint distribution of (X, Y) is unknown, but we can learn about it from the training set, and we aim at devising low error classifiers f: X→Y used to predict the label of new incoming features. In this paper, we solve a quantum analogue of this problem, namely the classification of two arbitrary unknown mixed qubit states. Given a number of 'training' copies from each of the states, we would like to 'learn' about them by performing a measurement on the training set. The outcome is then used to design measurements for the classification of future systems with unknown labels. We found the asymptotically optimal classification strategy and show that typically it performs strictly better than a plug-in strategy, which consists of estimating the states separately and then discriminating between them using the Helstrom measurement. The figure of merit is given by the excess risk equal to the difference between the probability of error and the probability of error of the optimal measurement for known states. We show that the excess risk scales as n -1 and compute the exact constant of the rate.

  6. Fast Low-Rank Shared Dictionary Learning for Image Classification.

    Science.gov (United States)

    Tiep Huu Vu; Monga, Vishal

    2017-11-01

    Despite the fact that different objects possess distinct class-specific features, they also usually share common patterns. This observation has been exploited partially in a recently proposed dictionary learning framework by separating the particularity and the commonality (COPAR). Inspired by this, we propose a novel method to explicitly and simultaneously learn a set of common patterns as well as class-specific features for classification with more intuitive constraints. Our dictionary learning framework is hence characterized by both a shared dictionary and particular (class-specific) dictionaries. For the shared dictionary, we enforce a low-rank constraint, i.e., claim that its spanning subspace should have low dimension and the coefficients corresponding to this dictionary should be similar. For the particular dictionaries, we impose on them the well-known constraints stated in the Fisher discrimination dictionary learning (FDDL). Furthermore, we develop new fast and accurate algorithms to solve the subproblems in the learning step, accelerating its convergence. The said algorithms could also be applied to FDDL and its extensions. The efficiencies of these algorithms are theoretically and experimentally verified by comparing their complexities and running time with those of other well-known dictionary learning methods. Experimental results on widely used image data sets establish the advantages of our method over the state-of-the-art dictionary learning methods.

  7. A new semi-supervised learning model combined with Cox and SP-AFT models in cancer survival analysis.

    Science.gov (United States)

    Chai, Hua; Li, Zi-Na; Meng, De-Yu; Xia, Liang-Yong; Liang, Yong

    2017-10-12

    Gene selection is an attractive and important task in cancer survival analysis. Most existing supervised learning methods can only use the labeled biological data, while the censored data (weakly labeled data) far more than the labeled data are ignored in model building. Trying to utilize such information in the censored data, a semi-supervised learning framework (Cox-AFT model) combined with Cox proportional hazard (Cox) and accelerated failure time (AFT) model was used in cancer research, which has better performance than the single Cox or AFT model. This method, however, is easily affected by noise. To alleviate this problem, in this paper we combine the Cox-AFT model with self-paced learning (SPL) method to more effectively employ the information in the censored data in a self-learning way. SPL is a kind of reliable and stable learning mechanism, which is recently proposed for simulating the human learning process to help the AFT model automatically identify and include samples of high confidence into training, minimizing interference from high noise. Utilizing the SPL method produces two direct advantages: (1) The utilization of censored data is further promoted; (2) the noise delivered to the model is greatly decreased. The experimental results demonstrate the effectiveness of the proposed model compared to the traditional Cox-AFT model.

  8. SUPERVISION IMPLEMENTATION IN MANAGEMENT QUALITY: AN ATTEMPT TO IMPROVE THE QUALITY OF LEARNING AT MADRASAH ALIYAH DARUL A’MAL METRO

    Directory of Open Access Journals (Sweden)

    Subandi Subandi

    2016-03-01

    Full Text Available The primary purpose of this qualitative study is to identify and analyze supervision by implementing management quality to improve the quality of learning at Madrasah Aliyah Darul A’mal Metro, Lampung. The quality of management implementation is elaborated in the steps of assurance of learning quality. Two instruments, which consist of observation and questionnaire, were used in this study of which each instrument was analyzed based the deductive framework. The results of this study from each instrument revealed four steps of assurance of learning quality, among others (1 by socializing academic supervision program and its advantages to all stake holders, and (2 by implementing stages of assurance through academic supervision by the principals of Madrasah Aliyah Darul A’mal and supervisor, (3 performing supervision that is equipped with valid instrument to measure learning success, (4 performing the follow-up program by clinical and group discussion to provide appropriate model of performance.

  9. Machine Learning Based Localization and Classification with Atomic Magnetometers

    Science.gov (United States)

    Deans, Cameron; Griffin, Lewis D.; Marmugi, Luca; Renzoni, Ferruccio

    2018-01-01

    We demonstrate identification of position, material, orientation, and shape of objects imaged by a Rb 85 atomic magnetometer performing electromagnetic induction imaging supported by machine learning. Machine learning maximizes the information extracted from the images created by the magnetometer, demonstrating the use of hidden data. Localization 2.6 times better than the spatial resolution of the imaging system and successful classification up to 97% are obtained. This circumvents the need of solving the inverse problem and demonstrates the extension of machine learning to diffusive systems, such as low-frequency electrodynamics in media. Automated collection of task-relevant information from quantum-based electromagnetic imaging will have a relevant impact from biomedicine to security.

  10. A dictionary learning approach for human sperm heads classification.

    Science.gov (United States)

    Shaker, Fariba; Monadjemi, S Amirhassan; Alirezaie, Javad; Naghsh-Nilchi, Ahmad Reza

    2017-12-01

    To diagnose infertility in men, semen analysis is conducted in which sperm morphology is one of the factors that are evaluated. Since manual assessment of sperm morphology is time-consuming and subjective, automatic classification methods are being developed. Automatic classification of sperm heads is a complicated task due to the intra-class differences and inter-class similarities of class objects. In this research, a Dictionary Learning (DL) technique is utilized to construct a dictionary of sperm head shapes. This dictionary is used to classify the sperm heads into four different classes. Square patches are extracted from the sperm head images. Columnized patches from each class of sperm are used to learn class-specific dictionaries. The patches from a test image are reconstructed using each class-specific dictionary and the overall reconstruction error for each class is used to select the best matching class. Average accuracy, precision, recall, and F-score are used to evaluate the classification method. The method is evaluated using two publicly available datasets of human sperm head shapes. The proposed DL based method achieved an average accuracy of 92.2% on the HuSHeM dataset, and an average recall of 62% on the SCIAN-MorphoSpermGS dataset. The results show a significant improvement compared to a previously published shape-feature-based method. We have achieved high-performance results. In addition, our proposed approach offers a more balanced classifier in which all four classes are recognized with high precision and recall. In this paper, we use a Dictionary Learning approach in classifying human sperm heads. It is shown that the Dictionary Learning method is far more effective in classifying human sperm heads than classifiers using shape-based features. Also, a dataset of human sperm head shapes is introduced to facilitate future research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Nonparametric, Coupled ,Bayesian ,Dictionary ,and Classifier Learning for Hyperspectral Classification.

    Science.gov (United States)

    Akhtar, Naveed; Mian, Ajmal

    2017-10-03

    We present a principled approach to learn a discriminative dictionary along a linear classifier for hyperspectral classification. Our approach places Gaussian Process priors over the dictionary to account for the relative smoothness of the natural spectra, whereas the classifier parameters are sampled from multivariate Gaussians. We employ two Beta-Bernoulli processes to jointly infer the dictionary and the classifier. These processes are coupled under the same sets of Bernoulli distributions. In our approach, these distributions signify the frequency of the dictionary atom usage in representing class-specific training spectra, which also makes the dictionary discriminative. Due to the coupling between the dictionary and the classifier, the popularity of the atoms for representing different classes gets encoded into the classifier. This helps in predicting the class labels of test spectra that are first represented over the dictionary by solving a simultaneous sparse optimization problem. The labels of the spectra are predicted by feeding the resulting representations to the classifier. Our approach exploits the nonparametric Bayesian framework to automatically infer the dictionary size--the key parameter in discriminative dictionary learning. Moreover, it also has the desirable property of adaptively learning the association between the dictionary atoms and the class labels by itself. We use Gibbs sampling to infer the posterior probability distributions over the dictionary and the classifier under the proposed model, for which, we derive analytical expressions. To establish the effectiveness of our approach, we test it on benchmark hyperspectral images. The classification performance is compared with the state-of-the-art dictionary learning-based classification methods.

  12. Machine Learning Classification of Buildings for Map Generalization

    Directory of Open Access Journals (Sweden)

    Jaeeun Lee

    2017-10-01

    Full Text Available A critical problem in mapping data is the frequent updating of large data sets. To solve this problem, the updating of small-scale data based on large-scale data is very effective. Various map generalization techniques, such as simplification, displacement, typification, elimination, and aggregation, must therefore be applied. In this study, we focused on the elimination and aggregation of the building layer, for which each building in a large scale was classified as “0-eliminated,” “1-retained,” or “2-aggregated.” Machine-learning classification algorithms were then used for classifying the buildings. The data of 1:1000 scale and 1:25,000 scale digital maps obtained from the National Geographic Information Institute were used. We applied to these data various machine-learning classification algorithms, including naive Bayes (NB, decision tree (DT, k-nearest neighbor (k-NN, and support vector machine (SVM. The overall accuracies of each algorithm were satisfactory: DT, 88.96%; k-NN, 88.27%; SVM, 87.57%; and NB, 79.50%. Although elimination is a direct part of the proposed process, generalization operations, such as simplification and aggregation of polygons, must still be performed for buildings classified as retained and aggregated. Thus, these algorithms can be used for building classification and can serve as preparatory steps for building generalization.

  13. Optimizing Multiple Kernel Learning for the Classification of UAV Data

    Directory of Open Access Journals (Sweden)

    Caroline M. Gevaert

    2016-12-01

    Full Text Available Unmanned Aerial Vehicles (UAVs are capable of providing high-quality orthoimagery and 3D information in the form of point clouds at a relatively low cost. Their increasing popularity stresses the necessity of understanding which algorithms are especially suited for processing the data obtained from UAVs. The features that are extracted from the point cloud and imagery have different statistical characteristics and can be considered as heterogeneous, which motivates the use of Multiple Kernel Learning (MKL for classification problems. In this paper, we illustrate the utility of applying MKL for the classification of heterogeneous features obtained from UAV data through a case study of an informal settlement in Kigali, Rwanda. Results indicate that MKL can achieve a classification accuracy of 90.6%, a 5.2% increase over a standard single-kernel Support Vector Machine (SVM. A comparison of seven MKL methods indicates that linearly-weighted kernel combinations based on simple heuristics are competitive with respect to computationally-complex, non-linear kernel combination methods. We further underline the importance of utilizing appropriate feature grouping strategies for MKL, which has not been directly addressed in the literature, and we propose a novel, automated feature grouping method that achieves a high classification accuracy for various MKL methods.

  14. Classification and its applications for drug-target interaction identification

    OpenAIRE

    Mei, Jian-Ping; Kwoh, Chee-Keong; Yang, Peng; Li, Xiao-Li

    2015-01-01

    Classification is one of the most popular and widely used supervised learning tasks, which categorizes objects into predefined classes based on known knowledge. Classification has been an important research topic in machine learning and data mining. Different classification methods have been proposed and applied to deal with various real-world problems. Unlike unsupervised learning such as clustering, a classifier is typically trained with labeled data before being used to make prediction, an...

  15. Developing a practice of supervision in university as a collective learning process

    DEFF Research Database (Denmark)

    Lund, Birthe; Jensen, Annie Aarup

    2009-01-01

    of the framework surrounding the supervision process, both as regards the students and the teachers; to de-privatize the problems encountered by the individual teacher during the supervision; to ensure that students would be able to graduate within the timeframe of the education (the institutional economic......The point of departure of the paper is a university pedagogical course established with the purpose of strengthening the university teachers’ competence regarding the supervision of students working on their master’s thesis. The purpose of the course is furthermore to ensure the improvement...

  16. An Overview of Deep Learning Based Methods for Unsupervised and Semi-Supervised Anomaly Detection in Videos

    Directory of Open Access Journals (Sweden)

    B. Ravi Kiran

    2018-02-01

    Full Text Available Videos represent the primary source of information for surveillance applications. Video material is often available in large quantities but in most cases it contains little or no annotation for supervised learning. This article reviews the state-of-the-art deep learning based methods for video anomaly detection and categorizes them based on the type of model and criteria of detection. We also perform simple studies to understand the different approaches and provide the criteria of evaluation for spatio-temporal anomaly detection.

  17. Representation learning with deep extreme learning machines for efficient image set classification

    KAUST Repository

    Uzair, Muhammad

    2016-12-09

    Efficient and accurate representation of a collection of images, that belong to the same class, is a major research challenge for practical image set classification. Existing methods either make prior assumptions about the data structure, or perform heavy computations to learn structure from the data itself. In this paper, we propose an efficient image set representation that does not make any prior assumptions about the structure of the underlying data. We learn the nonlinear structure of image sets with deep extreme learning machines that are very efficient and generalize well even on a limited number of training samples. Extensive experiments on a broad range of public datasets for image set classification show that the proposed algorithm consistently outperforms state-of-the-art image set classification methods both in terms of speed and accuracy.

  18. Representation learning with deep extreme learning machines for efficient image set classification

    KAUST Repository

    Uzair, Muhammad; Shafait, Faisal; Ghanem, Bernard; Mian, Ajmal

    2016-01-01

    Efficient and accurate representation of a collection of images, that belong to the same class, is a major research challenge for practical image set classification. Existing methods either make prior assumptions about the data structure, or perform heavy computations to learn structure from the data itself. In this paper, we propose an efficient image set representation that does not make any prior assumptions about the structure of the underlying data. We learn the nonlinear structure of image sets with deep extreme learning machines that are very efficient and generalize well even on a limited number of training samples. Extensive experiments on a broad range of public datasets for image set classification show that the proposed algorithm consistently outperforms state-of-the-art image set classification methods both in terms of speed and accuracy.

  19. Learning semantic histopathological representation for basal cell carcinoma classification

    Science.gov (United States)

    Gutiérrez, Ricardo; Rueda, Andrea; Romero, Eduardo

    2013-03-01

    Diagnosis of a histopathology glass slide is a complex process that involves accurate recognition of several structures, their function in the tissue and their relation with other structures. The way in which the pathologist represents the image content and the relations between those objects yields a better and accurate diagnoses. Therefore, an appropriate semantic representation of the image content will be useful in several analysis tasks such as cancer classification, tissue retrieval and histopahological image analysis, among others. Nevertheless, to automatically recognize those structures and extract their inner semantic meaning are still very challenging tasks. In this paper we introduce a new semantic representation that allows to describe histopathological concepts suitable for classification. The approach herein identify local concepts using a dictionary learning approach, i.e., the algorithm learns the most representative atoms from a set of random sampled patches, and then models the spatial relations among them by counting the co-occurrence between atoms, while penalizing the spatial distance. The proposed approach was compared with a bag-of-features representation in a tissue classification task. For this purpose, 240 histological microscopical fields of view, 24 per tissue class, were collected. Those images fed a Support Vector Machine classifier per class, using 120 images as train set and the remaining ones for testing, maintaining the same proportion of each concept in the train and test sets. The obtained classification results, averaged from 100 random partitions of training and test sets, shows that our approach is more sensitive in average than the bag-of-features representation in almost 6%.

  20. Solar wind classification from a machine learning perspective

    Science.gov (United States)

    Heidrich-Meisner, V.; Wimmer-Schweingruber, R. F.

    2017-12-01

    It is a very well known fact that the ubiquitous solar wind comes in at least two varieties, the slow solar wind and the coronal hole wind. The simplified view of two solar wind types has been frequently challenged. Existing solar wind categorization schemes rely mainly on different combinations of the solar wind proton speed, the O and C charge state ratios, the Alfvén speed, the expected proton temperature and the specific proton entropy. In available solar wind classification schemes, solar wind from stream interaction regimes is often considered either as coronal hole wind or slow solar wind, although their plasma properties are different compared to "pure" coronal hole or slow solar wind. As shown in Neugebauer et al. (2016), even if only two solar wind types are assumed, available solar wind categorization schemes differ considerably for intermediate solar wind speeds. Thus, the decision boundary between the coronal hole and the slow solar wind is so far not well defined.In this situation, a machine learning approach to solar wind classification can provide an additional perspective.We apply a well-known machine learning method, k-means, to the task of solar wind classification in order to answer the following questions: (1) How many solar wind types can reliably be identified in our data set comprised of ten years of solar wind observations from the Advanced Composition Explorer (ACE)? (2) Which combinations of solar wind parameters are particularly useful for solar wind classification?Potential subtypes of slow solar wind are of particular interest because they can provide hints of respective different source regions or release mechanisms of slow solar wind.

  1. Computer-aided assessment of breast density: comparison of supervised deep learning and feature-based statistical learning

    Science.gov (United States)

    Li, Songfeng; Wei, Jun; Chan, Heang-Ping; Helvie, Mark A.; Roubidoux, Marilyn A.; Lu, Yao; Zhou, Chuan; Hadjiiski, Lubomir M.; Samala, Ravi K.

    2018-01-01

    Breast density is one of the most significant factors that is associated with cancer risk. In this study, our purpose was to develop a supervised deep learning approach for automated estimation of percentage density (PD) on digital mammograms (DMs). The input ‘for processing’ DMs was first log-transformed, enhanced by a multi-resolution preprocessing scheme, and subsampled to a pixel size of 800 µm  ×  800 µm from 100 µm  ×  100 µm. A deep convolutional neural network (DCNN) was trained to estimate a probability map of breast density (PMD) by using a domain adaptation resampling method. The PD was estimated as the ratio of the dense area to the breast area based on the PMD. The DCNN approach was compared to a feature-based statistical learning approach. Gray level, texture and morphological features were extracted and a least absolute shrinkage and selection operator was used to combine the features into a feature-based PMD. With approval of the Institutional Review Board, we retrospectively collected a training set of 478 DMs and an independent test set of 183 DMs from patient files in our institution. Two experienced mammography quality standards act radiologists interactively segmented PD as the reference standard. Ten-fold cross-validation was used for model selection and evaluation with the training set. With cross-validation, DCNN obtained a Dice’s coefficient (DC) of 0.79  ±  0.13 and Pearson’s correlation (r) of 0.97, whereas feature-based learning obtained DC  =  0.72  ±  0.18 and r  =  0.85. For the independent test set, DCNN achieved DC  =  0.76  ±  0.09 and r  =  0.94, while feature-based learning achieved DC  =  0.62  ±  0.21 and r  =  0.75. Our DCNN approach was significantly better and more robust than the feature-based learning approach for automated PD estimation on DMs, demonstrating its potential use for automated density reporting as

  2. Computer-aided assessment of breast density: comparison of supervised deep learning and feature-based statistical learning.

    Science.gov (United States)

    Li, Songfeng; Wei, Jun; Chan, Heang-Ping; Helvie, Mark A; Roubidoux, Marilyn A; Lu, Yao; Zhou, Chuan; Hadjiiski, Lubomir M; Samala, Ravi K

    2018-01-09

    Breast density is one of the most significant factors that is associated with cancer risk. In this study, our purpose was to develop a supervised deep learning approach for automated estimation of percentage density (PD) on digital mammograms (DMs). The input 'for processing' DMs was first log-transformed, enhanced by a multi-resolution preprocessing scheme, and subsampled to a pixel size of 800 µm  ×  800 µm from 100 µm  ×  100 µm. A deep convolutional neural network (DCNN) was trained to estimate a probability map of breast density (PMD) by using a domain adaptation resampling method. The PD was estimated as the ratio of the dense area to the breast area based on the PMD. The DCNN approach was compared to a feature-based statistical learning approach. Gray level, texture and morphological features were extracted and a least absolute shrinkage and selection operator was used to combine the features into a feature-based PMD. With approval of the Institutional Review Board, we retrospectively collected a training set of 478 DMs and an independent test set of 183 DMs from patient files in our institution. Two experienced mammography quality standards act radiologists interactively segmented PD as the reference standard. Ten-fold cross-validation was used for model selection and evaluation with the training set. With cross-validation, DCNN obtained a Dice's coefficient (DC) of 0.79  ±  0.13 and Pearson's correlation (r) of 0.97, whereas feature-based learning obtained DC  =  0.72  ±  0.18 and r  =  0.85. For the independent test set, DCNN achieved DC  =  0.76  ±  0.09 and r  =  0.94, while feature-based learning achieved DC  =  0.62  ±  0.21 and r  =  0.75. Our DCNN approach was significantly better and more robust than the feature-based learning approach for automated PD estimation on DMs, demonstrating its potential use for automated density reporting as well as

  3. Study and development of equipment supervision technique system and its management software for nuclear electricity production

    International Nuclear Information System (INIS)

    Zhang Liying; Zou Pingguo; Zhu Chenghu; Lu Haoliang; Wu Jie

    2008-01-01

    The equipment supervision technique system, which standardized the behavior of supervision organizations in planning and implementing of equipment supervision, is built up based on equipment supervision technique documents, such as Quality Supervision Classifications, Special Supervision Plans and Supervision Guides. Furthermore, based on the research, the equipment supervision management information system is developed by Object Oriented Programming, which consists of supervision information, supervision technique, supervision implementation, quality statistics and analysis module. (authors)

  4. Supervised learning based model for predicting variability-induced timing errors

    NARCIS (Netherlands)

    Jiao, X.; Rahimi, A.; Narayanaswamy, B.; Fatemi, H.; Pineda de Gyvez, J.; Gupta, R.K.

    2015-01-01

    Circuit designers typically combat variations in hardware and workload by increasing conservative guardbanding that leads to operational inefficiency. Reducing this excessive guardband is highly desirable, but causes timing errors in synchronous circuits. We propose a methodology for supervised

  5. Ischemia Detection Using Supervised Learning for Hierarchical Neural Networks Based on Kohonen-Maps

    National Research Council Canada - National Science Library

    Vladutu, L

    2001-01-01

    .... The motivation for developing the Supervising Network - Self Organizing Map (sNet-SOM) model is to design computationally effective solutions for the particular problem of ischemia detection and other similar applications...

  6. Graph-Based Semi-Supervised Learning for Indoor Localization Using Crowdsourced Data

    Directory of Open Access Journals (Sweden)

    Liye Zhang

    2017-04-01

    Full Text Available Indoor positioning based on the received signal strength (RSS of the WiFi signal has become the most popular solution for indoor localization. In order to realize the rapid deployment of indoor localization systems, solutions based on crowdsourcing have been proposed. However, compared to conventional methods, lots of different devices are used in crowdsourcing system and less RSS values are collected by each device. Therefore, the crowdsourced RSS values are more erroneous and can result in significant localization errors. In order to eliminate the signal strength variations across diverse devices, the Linear Regression (LR algorithm is proposed to solve the device diversity problem in crowdsourcing system. After obtaining the uniform RSS values, a graph-based semi-supervised learning (G-SSL method is used to exploit the correlation between the RSS values at nearby locations to estimate an optimal RSS value at each location. As a result, the negative effect of the erroneous measurements could be mitigated. Since the AP locations need to be known in G-SSL algorithm, the Compressed Sensing (CS method is applied to precisely estimate the location of the APs. Based on the location of the APs and a simple signal propagation model, the RSS difference between different locations is calculated and used as an additional constraint to improve the performance of G-SSL. Furthermore, to exploit the sparsity of the weights used in the G-SSL, we use the CS method to reconstruct these weights more accurately and make a further improvement on the performance of the G-SSL. Experimental results show improved results in terms of the smoothness of the radio map and the localization accuracy.

  7. Neuroanatomical heterogeneity of schizophrenia revealed by semi-supervised machine learning methods.

    Science.gov (United States)

    Honnorat, Nicolas; Dong, Aoyan; Meisenzahl-Lechner, Eva; Koutsouleris, Nikolaos; Davatzikos, Christos

    2017-12-20

    Schizophrenia is associated with heterogeneous clinical symptoms and neuroanatomical alterations. In this work, we aim to disentangle the patterns of neuroanatomical alterations underlying a heterogeneous population of patients using a semi-supervised clustering method. We apply this strategy to a cohort of patients with schizophrenia of varying extends of disease duration, and we describe the neuroanatomical, demographic and clinical characteristics of the subtypes discovered. We analyze the neuroanatomical heterogeneity of 157 patients diagnosed with Schizophrenia, relative to a control population of 169 subjects, using a machine learning method called CHIMERA. CHIMERA clusters the differences between patients and a demographically-matched population of healthy subjects, rather than clustering patients themselves, thereby specifically assessing disease-related neuroanatomical alterations. Voxel-Based Morphometry was conducted to visualize the neuroanatomical patterns associated with each group. The clinical presentation and the demographics of the groups were then investigated. Three subgroups were identified. The first two differed substantially, in that one involved predominantly temporal-thalamic-peri-Sylvian regions, whereas the other involved predominantly frontal regions and the thalamus. Both subtypes included primarily male patients. The third pattern was a mix of these two and presented milder neuroanatomic alterations and comprised a comparable number of men and women. VBM and statistical analyses suggest that these groups could correspond to different neuroanatomical dimensions of schizophrenia. Our analysis suggests that schizophrenia presents distinct neuroanatomical variants. This variability points to the need for a dimensional neuroanatomical approach using data-driven, mathematically principled multivariate pattern analysis methods, and should be taken into account in clinical studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Supervised learning methods for pathological arterial pulse wave differentiation: A SVM and neural networks approach.

    Science.gov (United States)

    Paiva, Joana S; Cardoso, João; Pereira, Tânia

    2018-01-01

    The main goal of this study was to develop an automatic method based on supervised learning methods, able to distinguish healthy from pathologic arterial pulse wave (APW), and those two from noisy waveforms (non-relevant segments of the signal), from the data acquired during a clinical examination with a novel optical system. The APW dataset analysed was composed by signals acquired in a clinical environment from a total of 213 subjects, including healthy volunteers and non-healthy patients. The signals were parameterised by means of 39pulse features: morphologic, time domain statistics, cross-correlation features, wavelet features. Multiclass Support Vector Machine Recursive Feature Elimination (SVM RFE) method was used to select the most relevant features. A comparative study was performed in order to evaluate the performance of the two classifiers: Support Vector Machine (SVM) and Artificial Neural Network (ANN). SVM achieved a statistically significant better performance for this problem with an average accuracy of 0.9917±0.0024 and a F-Measure of 0.9925±0.0019, in comparison with ANN, which reached the values of 0.9847±0.0032 and 0.9852±0.0031 for Accuracy and F-Measure, respectively. A significant difference was observed between the performances obtained with SVM classifier using a different number of features from the original set available. The comparison between SVM and NN allowed reassert the higher performance of SVM. The results obtained in this study showed the potential of the proposed method to differentiate those three important signal outcomes (healthy, pathologic and noise) and to reduce bias associated with clinical diagnosis of cardiovascular disease using APW. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Protein complex detection in PPI networks based on data integration a