WorldWideScience

Sample records for superthermal tokamak electrons

  1. Asymmetric electron cyclotron emission from superthermal electrons in the TFR Tokamak

    International Nuclear Information System (INIS)

    1981-03-01

    Measurements of electron cyclotron radiation near the fundamental frequency on the high and low magnetic field side of the TFR Tokamak are reported. In the presence of a superthermal electron component the measured intensities are asymmetric. A theoretical explanation based on the combined effects of the electron relativistic mass variation and the 1/R variation of the tokamak magnetic field is discussed

  2. Investigation of superthermal asymmetric electron distributions using electron cyclotron wave transmission in tokamaks

    International Nuclear Information System (INIS)

    Giruzzi, G.; Fidone, I.; Marcha, M.J.

    1991-01-01

    The asymmetric electron distribution generated during lower hybrid current drive has been computed using a 3-D Fokker-Planck code. The superthermal tail and the resulting current are generally a combination of two components streaming in opposite toroidal directions. An appropriate diagnostic method for experimental investigation of the two superthermal populations is wave transmission of two equivalent rays with equal and opposite values of the refractive index. These equivalent rays can be realized by launching the waves from symmetric positions with respect ot the equatorial plane at equal and opposite angles in the toroidal direction. Using an appropriate ray tracing code, the damping of the two rays is computed and it is shown that it results from electrons with opposite parallel velocities. The differential transmission is then a measure of the overall asymmetry of the electron momentum distribution. (author). 12 refs, 8 figs

  3. A ray-tracing study of electron cyclotron resonance heating in Tokamak plasmas with a superthermal electron tail

    International Nuclear Information System (INIS)

    Montes, A.; Dendy, R.O.

    1987-09-01

    We consider a Tokamak plasma in which the distribution of electron velocities in the direction parallel to the magnetic field has a monotonically decreasing superthermal tail. A fully three-dimensional ray-tracing code, which includes a realistic antenna pattern, toroidal effects, and refaction, is used to calculate the absorption of the extraordinary mode in the nonrelativistic limit away from perpendicular incidence. The ray-tracing approach extends results previously obtained in slab geometry (3-8) to a more realistic configuration; it is also essential in dealing with strong refraction in high-density plasmas. Our analytical model for the tail makes available a wide range of tail shapes and parameters. At low densities small tails (tail fraction [pt

  4. Superthermal electron distribution measurements from polarized electron cyclotron emission

    International Nuclear Information System (INIS)

    Luce, T.C.; Efthimion, P.C.; Fisch, N.J.

    1988-06-01

    Measurements of the superthermal electron distribution can be made by observing the polarized electron cyclotron emission. The emission is viewed along a constant magnetic field surface. This simplifies the resonance condition and gives a direct correlation between emission frequency and kinetic energy of the emitting electron. A transformation technique is formulated which determines the anisotropy of the distribution and number density of superthermals at each energy measured. The steady-state distribution during lower hybrid current drive and examples of the superthermal dynamics as the runaway conditions is varied are presented for discharges in the PLT tokamak. 15 refs., 8 figs

  5. Radially localized measurements of superthermal electrons using oblique electron cyclotron emission

    International Nuclear Information System (INIS)

    Preische, S.; Efthimion, P.C.; Kaye, S.M.

    1996-05-01

    It is shown that radial localization of optically tin Electron Cyclotron Emission from superthermal electrons can be imposed by observation of emission upshifted from the thermal cyclotron resonance in the horizontal midplane of a tokamak. A new and unique diagnostic has been proposed and operated to make radially localized measurements of superthermal electrons during Lower Hybrid Current Drive on the PBX-M tokamak. The superthermal electron density profile as well as moments of the electron energy distribution as a function of radius are measured during Lower Hybrid Current Drive. The time evolution of these measurements after the Lower Hybrid power is turned off are given and the observed behavior reflects the collisional isotropization of the energy distribution and radial diffusion of the spatial profile

  6. Nonlinear Electron Acoustic Waves in Dissipative Plasma with Superthermal Electrons

    Science.gov (United States)

    El-Hanbaly, A. M.; El-Shewy, E. K.; Kassem, A. I.; Darweesh, H. F.

    2016-01-01

    The nonlinear properties of small amplitude electron-acoustic ( EA) solitary and shock waves in a homogeneous system of unmagnetized collisionless plasma consisted of a cold electron fluid and superthermal hot electrons obeying superthermal distribution, and stationary ions have been investigated. A reductive perturbation method was employed to obtain the Kadomstev-Petviashvili-Burgers (KP-Brugers) equation. Some solutions of physical interest are obtained. These solutions are related to soliton, monotonic and oscillatory shock waves and their behaviour are shown graphically. The formation of these solutions depends crucially on the value of the Burgers term and the plasma parameters as well. By using the tangent hyperbolic (tanh) method, another interesting type of solution which is a combination between shock and soliton waves is obtained. The topology of phase portrait and potential diagram of the KP-Brugers equation is investigated.The advantage of using this method is that one can predict different classes of the travelling wave solutions according to different phase orbits. The obtained results may be helpful in better understanding of waves propagation in various space plasma environments as well as in inertial confinement fusion laboratory plasmas.

  7. Electron cyclotron maser instability in the solar corona - The role of superthermal tails

    Science.gov (United States)

    Vlahos, L.; Sharma, R. R.

    1985-01-01

    The effect of a superthermal component of electrons on the loss-cone-driven electron cyclotron maser instability is analyzed. It is found that for a superthermal tail with temperature about 10 KeV, the first harmonic (X- and O-mode) is suppressed for n(t)/n(r) of about 1 (n/t/ and n/r/ are the densities of superthermal tail and loss-cone electrons) and the second harmonic (X- and O-modes) is suppressed for n(t)/n(r) less than about 0.1. A qualitative discussion on the formation of superthermal tails is presented and it is suggested that superthermal tails play an important role on the observed or available power, at microwave frequencies, from the electron cyclotron maser instability in the solar corona.

  8. Influence of superthermal electrons on obliquely propagating ion-acoustic solitons in magnetized plasmas

    International Nuclear Information System (INIS)

    Kadijani, M Nouri; Abbasi, H; Pajouh, H Hakimi

    2011-01-01

    The effect of superthermal electrons, modeled by a Lorentzian velocity distribution function, on the oblique propagation characteristics of linear and nonlinear ion-acoustic waves in an electron-ion plasma in the presence of a uniform external magnetic field is investigated. First, the linear dispersion relations of the fast and slow modes are obtained. It is shown that the superthermal electrons make both modes propagate with smaller phase velocities. Then, the Korteweg-de Vries equation describing the propagation of nonlinear slow and fast ion-acoustic waves is derived. It is shown that the presence of superthermal electrons has a significant influence on the nature of magnetized ion-acoustic solitons. That is, for a larger population of the superthermal electrons, the soliton velocity of both modes in the laboratory frame significantly decreases and the soliton are slimmer, and on approaching the Maxwellian limit, the width becomes maximum.

  9. Electron cyclotron maser instability in the solar corona: The role of superthermal tails

    International Nuclear Information System (INIS)

    Vlahos, L.; Sharma, R.R.

    1985-01-01

    The effect of a superthermal component of electrons on the loss-cone--driven electron cyclotron maser instability is analyzed. We found that for a supertheral tail with temperature approx.10 keV (i) the first harmonic (X- and O-mode) is suppressed for n/sub t//n/sub r/roughly-equal1 (n/sub t/ and n/sub r/ are the densities of superthermal tail and loss-cone electrons) and (ii) the second harmonic (X- and O-modes) is suppressed for n/sub t//n/sub r/ -1 . We present a qualitative discussion on the formation of superthermal taisl and suggest that superthermal tails play an important role on the observed or available power, at microwave frequencies, from the electron cyclotron maser instability in the solar corona

  10. Small amplitude Kinetic Alfven waves in a superthermal electron-positron-ion plasma

    Science.gov (United States)

    Adnan, Muhammad; Mahmood, Sahahzad; Qamar, Anisa; Tribeche, Mouloud

    2016-11-01

    We are investigating the propagating properties of coupled Kinetic Alfven-acoustic waves in a low beta plasma having superthermal electrons and positrons. Using the standard reductive perturbation method, a nonlinear Korteweg-de Vries (KdV) type equation is derived which describes the evolution of Kinetic Alfven waves. It is found that nonlinearity and Larmor radius effects can compromise and give rise to solitary structures. The parametric role of superthermality and positron content on the characteristics of solitary wave structures is also investigated. It is found that only sub-Alfvenic and compressive solitons are supported in the present model. The present study may find applications in a low β electron-positron-ion plasma having superthermal electrons and positrons.

  11. Experimental evidence and theory for the interaction of superthermal electrons with the MHD modes during ECRH

    International Nuclear Information System (INIS)

    Lazaros, Avrilios

    2000-01-01

    The interaction of ECRH with the m/n=2/1 tearing mode, which was observed in toroidal plasmas, is attributed to the superthermal electrons which are produced on the EC resonance by the ECRH. Superthermal electrons diffusing across the q=2 surface, exchange power with the m/n=2/1 MHD mode which is either suppressed or enhanced. When the EC resonance is outside the rational surface, the mode is always suppressed. When the EC resonance is inside the rational surface, modes with large amplitude are enhanced while modes with small amplitude are suppressed. (author)

  12. Bernstein-Greene-Kruskal theory of electron holes in superthermal space plasma

    Science.gov (United States)

    Aravindakshan, Harikrishnan; Kakad, Amar; Kakad, Bharati

    2018-05-01

    Several spacecraft missions have observed electron holes (EHs) in Earth's and other planetary magnetospheres. These EHs are modeled with the stationary solutions of Vlasov-Poisson equations, obtained by adopting the Bernstein-Greene-Kruskal (BGK) approach. Through the literature survey, we find that the BGK EHs are modelled by using either thermal distribution function or any statistical distribution derived from particular spacecraft observations. However, Maxwell distributions are quite rare in space plasmas; instead, most of these plasmas are superthermal in nature and generally described by kappa distribution. We have developed a one-dimensional BGK model of EHs for space plasma that follows superthermal kappa distribution. The analytical solution of trapped electron distribution function for such plasmas is derived. The trapped particle distribution function in plasma following kappa distribution is found to be steeper and denser as compared to that for Maxwellian distribution. The width-amplitude relation of perturbation for superthermal plasma is derived and allowed regions of stable BGK solutions are obtained. We find that the stable BGK solutions are better supported by superthermal plasmas compared to that of thermal plasmas for small amplitude perturbations.

  13. Oblique ion-acoustic cnoidal waves in two temperature superthermal electrons magnetized plasma

    International Nuclear Information System (INIS)

    Panwar, A.; Ryu, C. M.; Bains, A. S.

    2014-01-01

    A study is presented for the oblique propagation of ion acoustic cnoidal waves in a magnetized plasma consisting of cold ions and two temperature superthermal electrons modelled by kappa-type distributions. Using the reductive perturbation method, the nonlinear Korteweg de-Vries equation is derived, which further gives the solutions with a special type of cnoidal elliptical functions. Both compressive and rarefactive structures are found for these cnoidal waves. Nonlinear periodic cnoidal waves are explained in terms of plasma parameters depicting the Sagdeev potential and the phase curves. It is found that the density ratio of hot electrons to ions μ significantly modifies compressive/refractive wave structures. Furthermore, the combined effects of superthermality of cold and hot electrons κ c ,κ h , cold to hot electron temperature ratio σ, angle of propagation and ion cyclotron frequency ω ci have been studied in detail to analyze the height and width of compressive/refractive cnoidal waves. The findings in the present study could have important implications in understanding the physics of electrostatic wave structures in the Saturn's magnetosphere where two temperature superthermal electrons are present

  14. Loss mechanism of the superthermal electrons across the separatrix into the scrape-off layer in DIVA

    International Nuclear Information System (INIS)

    Yamamoto, Shin; Sengoku, Seio; Kimura, Haruyuki; Shimomura, Yasuo; Maeda, Hikosuke

    1977-10-01

    Behavior of superthermal electrons is investigated by using X-ray measurement and electrostatic energy analyser. Superthermal electrons are divided into two groups; i.e. high energy electrons (10 keV - 100 keV) and epithermal electrons (150 eV - 500 eV). Loss flux of the epithermal electrons is obtained and their loss is shown to be explained by destruction of magnetic surfaces near the separatrix due to non-axisymmetric perturbations. Two-dimensional path of high energy electrons is obtained and the effects of non-axisymmetric perturbations on the drift surface are described. (auth.)

  15. Study of nonlinear electron-acoustic solitary and shock waves in a dissipative, nonplanar space plasma with superthermal hot electrons

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jiu-Ning, E-mail: hanjiuning@126.com; He, Yong-Lin; Luo, Jun-Hua; Nan, Ya-Gong; Han, Zhen-Hai; Dong, Guang-Xing [College of Physics and Electromechanical Engineering, Hexi University, Zhangye 734000 (China); Duan, Wen-Shan [College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); Li, Jun-Xiu [College of Civil Engineering, Hexi University, Zhangye 734000 (China)

    2014-01-15

    With the consideration of the superthermal electron distribution, we present a theoretical investigation about the nonlinear propagation of electron-acoustic solitary and shock waves in a dissipative, nonplanar non-Maxwellian plasma comprised of cold electrons, superthermal hot electrons, and stationary ions. The reductive perturbation technique is used to obtain a modified Korteweg-de Vries Burgers equation for nonlinear waves in this plasma. We discuss the effects of various plasma parameters on the time evolution of nonplanar solitary waves, the profile of shock waves, and the nonlinear structure induced by the collision between planar solitary waves. It is found that these parameters have significant effects on the properties of nonlinear waves and collision-induced nonlinear structure.

  16. Coupled ion acoustic and drift waves in magnetized superthermal electron-positron-ion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Adnan, Muhammad; Qamar, Anisa [Institute of Physics and Electronics, University of Peshawar, Peshawar 25000 (Pakistan); National Center for Physics, Quaid-i-Azam University Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Mahmood, S. [National Center for Physics, Quaid-i-Azam University Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Theoretical Physics Division, PINSTECH P.O. Nilore Islamabad 44000 (Pakistan); Physics Institute, Federal University of Rio Grande do Sul (UFRGS), 915051-970, Porto Alegre, RS (Brazil)

    2014-09-15

    Linear and nonlinear coupled drift-ion acoustic waves are investigated in a nonuniform magnetoplasma having kappa distributed electrons and positrons. In the linear regime, the role of kappa distribution and positron content on the dispersion relation has been highlighted; it is found that strong superthermality (low value of κ) and addition of positrons lowers the phase velocity via decreasing the fundamental scalelengths of the plasmas. In the nonlinear regime, first, coherent nonlinear structure in the form of dipoles and monopoles are obtained and the boundary conditions (boundedness) in the context of superthermality and positron concentrations are discussed. Second, in case of scalar nonlinearity, a Korteweg–de Vries-type equation is obtained, which admit solitary wave solution. It is found that both compressive and rarefactive solitons are formed in the present model. The present work may be useful to understand the low frequency electrostatic modes in inhomogeneous electron positron ion plasmas, which exist in astrophysical plasma situations such as those found in the pulsar magnetosphere.

  17. Coupled ion acoustic and drift waves in magnetized superthermal electron-positron-ion plasmas

    Science.gov (United States)

    Adnan, Muhammad; Mahmood, S.; Qamar, Anisa

    2014-09-01

    Linear and nonlinear coupled drift-ion acoustic waves are investigated in a nonuniform magnetoplasma having kappa distributed electrons and positrons. In the linear regime, the role of kappa distribution and positron content on the dispersion relation has been highlighted; it is found that strong superthermality (low value of κ) and addition of positrons lowers the phase velocity via decreasing the fundamental scalelengths of the plasmas. In the nonlinear regime, first, coherent nonlinear structure in the form of dipoles and monopoles are obtained and the boundary conditions (boundedness) in the context of superthermality and positron concentrations are discussed. Second, in case of scalar nonlinearity, a Korteweg-de Vries-type equation is obtained, which admit solitary wave solution. It is found that both compressive and rarefactive solitons are formed in the present model. The present work may be useful to understand the low frequency electrostatic modes in inhomogeneous electron positron ion plasmas, which exist in astrophysical plasma situations such as those found in the pulsar magnetosphere.

  18. Superthermal Electron Magnetosphere-Ionosphere Coupling in the Diffuse Aurora in the Presence of ECH Waves

    Science.gov (United States)

    Khazanov, G. V.; Tripathi, A. K.; Singhal, R. P.; Himwich, Elizabeth; Glocer, A.; Sibeck, D. G.

    2015-01-01

    There are two main theories for the origin of the diffuse auroral electron precipitation: first, pitch angle scattering by electrostatic electron cyclotron harmonic (ECH) waves, and second, by whistler mode waves. Precipitating electrons initially injected from the plasma sheet to the loss cone via wave-particle interaction processes degrade in the atmosphere toward lower energies and produce secondary electrons via impact ionization of the neutral atmosphere. These secondary electrons can escape back to the magnetosphere, become trapped on closed magnetic field lines, and deposit their energy back to the inner magnetosphere. ECH and whistler mode waves can also move electrons in the opposite direction, from the loss cone into the trap zone, if the source of such electrons exists in conjugate ionospheres located at the same field lines as the trapped magnetospheric electron population. Such a situation exists in the simulation scenario of superthermal electron energy interplay in the region of diffuse aurora presented and discussed by Khazanov et al. (2014) and will be quantified in this paper by taking into account the interaction of secondary electrons with ECH waves.

  19. Nonlinear dynamics of circularly polarized laser pulse propagating in a magnetized plasma with superthermal ions and mixed nonthermal high-energy tail electrons distributions

    Energy Technology Data Exchange (ETDEWEB)

    Etemadpour, R.; Dorranian, D., E-mail: doran@srbiau.ac.ir [Laser Laboratory, Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Sepehri Javan, N. [Department of Physics, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil (Iran, Islamic Republic of)

    2016-05-15

    The nonlinear dynamics of a circularly polarized laser pulse propagating in the magnetized plasmas whose constituents are superthermal ions and mixed nonthermal high-energy tail electrons is studied theoretically. A nonlinear equation which describes the dynamics of the slowly varying amplitude is obtained using a relativistic two-fluid model. Based on this nonlinear equation and taking into account some nonlinear phenomena such as modulational instability, self-focusing and soliton formation are investigated. Effect of the magnetized plasma with superthermal ions and mixed nonthermal high-energy tail electrons on these phenomena is considered. It is shown that the nonthermality and superthermality of particles can substantially change the nonlinearity of medium.

  20. Nonlinear dynamics of circularly polarized laser pulse propagating in a magnetized plasma with superthermal ions and mixed nonthermal high-energy tail electrons distributions

    International Nuclear Information System (INIS)

    Etemadpour, R.; Dorranian, D.; Sepehri Javan, N.

    2016-01-01

    The nonlinear dynamics of a circularly polarized laser pulse propagating in the magnetized plasmas whose constituents are superthermal ions and mixed nonthermal high-energy tail electrons is studied theoretically. A nonlinear equation which describes the dynamics of the slowly varying amplitude is obtained using a relativistic two-fluid model. Based on this nonlinear equation and taking into account some nonlinear phenomena such as modulational instability, self-focusing and soliton formation are investigated. Effect of the magnetized plasma with superthermal ions and mixed nonthermal high-energy tail electrons on these phenomena is considered. It is shown that the nonthermality and superthermality of particles can substantially change the nonlinearity of medium.

  1. Nonlinear dust-acoustic structures in space plasmas with superthermal electrons, positrons, and ions

    Energy Technology Data Exchange (ETDEWEB)

    Saberian, E., E-mail: e.saberian@neyshabur.ac.ir [University of Neyshabur, Department of Physics, Faculty of Basic Sciences (Iran, Islamic Republic of); Esfandyari-Kalejahi, A.; Afsari-Ghazi, M. [Azarbaijan Shahid Madani University, Department of Physics, Faculty of Sciences (Iran, Islamic Republic of)

    2017-01-15

    Some features of nonlinear dust-acoustic (DA) structures are investigated in a space plasma consisting of superthermal electrons, positrons, and positive ions in the presence of negatively charged dust grains with finite-temperature by employing a pseudo-potential technique in a hydrodynamic model. For this purpose, it is assumed that the electrons, positrons, and ions obey a kappa-like (κ) distribution in the background of adiabatic dust population. In the linear analysis, it is found that the dispersion relation yield two positive DA branches, i.e., the slow and fast DA waves. The upper branch (fast DA waves) corresponds to the case in which both (negatively charged) dust particles and (positively charged) ion species oscillate in phase with electrons and positrons. On the other hand, the lower branch (slow DA waves) corresponds to the case in which only dust particles oscillate in phase with electrons and positrons, while ion species are in antiphase with them. On the other hand, the fully nonlinear analysis shows that the existence domain of solitons and their characteristics depend strongly on the dust charge, ion charge, dust temperature, and the spectral index κ. It is found that the minimum/maximum Mach number increases as the spectral index κ increases. Also, it is found that only solitons with negative polarity can propagate and that their amplitudes increase as the parameter κ increases. Furthermore, the domain of Mach number shifts to the lower values, when the value of the dust charge Z{sub d} increases. Moreover, it is found that the Mach number increases with an increase in the dust temperature. Our analysis confirms that, in space plasmas with highly charged dusts, the presence of superthermal particles (electrons, positrons, and ions) may facilitate the formation of DA solitary waves. Particularly, in two cases of hydrogen ions H{sup +} (Z{sub i} = 1) and doubly ionized Helium atoms He{sup 2+} (Z{sub i} = 2), the mentioned results are the same

  2. Super-thermal particles in hot plasmas—Kinetic models, numerical solution strategies, and comparison to tokamak experiments

    International Nuclear Information System (INIS)

    Lauber, Philipp

    2013-01-01

    The excitation of collective instabilities by super-thermal particles in hot plasmas and the related transport processes attract increasing interest due to their fundamental challenges for theoretical models and their practical importance for burning fusion plasmas. In fact, the physics of a self-heated thermonuclear plasma due to fusion-born 3.5 MeV α-particles is one of the most important outstanding fundamental research topics on the way to a fusion power plant with magnetic confinement. Within the last 10 years significant advances on both the theoretical and the experimental sides have been made leading to a more detailed and quantitative understanding of fast-particle-driven instabilities. On the theoretical side, the crucial step was to move from fluid models for the plasma background with a hybrid kinetic expression for the energetic particles to a fully kinetic model for all the plasma species, i.e. background ions, background electrons, and fast ions. This improvement allows one to describe consistently the resonant interaction between global plasma waves such as shear Alfvén and Alfvén–acoustic waves, and the particles via Landau damping, i.e. the dynamics parallel to the magnetic background field. Also, mode conversion mechanisms require the inclusion of background ion scales in a kinetic, non-perturbative way. This accurate treatment of the plasma background leads not only to changes in the linear mode properties such as frequency, growth/damping rate, and mode structure but also influences the non-linear dynamics. Due to major advances, innovations and installation of diagnostics in present day experiments, this comparison can be carried out in a more detailed and comprehensive way than a few years ago. For example, the measurement of damping rates via active external antennas, the imaging of 2D mode structures via electron–cyclotron-emission spectroscopy, and the direct detection of escaping fast ions allow to diagnose various kinetic features

  3. Electron cyclotron waves transmission: new approach for the characterization of electron distribution functions in Tokamak hot plasmas

    International Nuclear Information System (INIS)

    Michelot, Y.

    1995-10-01

    Fast electrons are one of the basic ingredients of plasma operations in many existing thermonuclear fusion research devices. However, the understanding of fast electrons dynamics during creation and sustainment of the superthermal electrons tail is far for being satisfactory. For this reason, the Electron Cyclotron Transmission (ECT) diagnostic was implemented on Tore Supra tokamak. It consists on a microwave transmission system installed on a vertical chord crossing the plasma center and working in the frequency range 77-109 GHz. Variations of the wave amplitude during the propagation across the plasma may be due to refraction and resonant absorption. For the ECT, the most common manifestation of refraction is a reduction of the received power density with respect to the signal detected in vacuum, due to the spreading and deflection of the wave beam. Wave absorption is observed in the vicinity of the electron cyclotron harmonics and may be due both to thermal plasma and to superthermal electron tails. It has a characteristic frequency dependence due to the relativistic mass variation in the wave-electron resonance condition. This thesis presents the first measurements of: the extraordinary mode optical depth at the third harmonics, the electron temperature from the width of a cyclotron absorption line and the relaxation times of the electron distribution during lower hybrid current drive from the ordinary mode spectral superthermal absorption line at the first harmonic. (J.S.). 175 refs., 110 figs., 9 tabs., 3 annexes

  4. Oblique Interaction of Dust-ion Acoustic Solitons with Superthermal Electrons in a Magnetized Plasma

    Science.gov (United States)

    Parveen, Shahida; Mahmood, Shahzad; Adnan, Muhammad; Qamar, Anisa

    2018-01-01

    The oblique interaction between two dust-ion acoustic (DIA) solitons travelling in the opposite direction, in a collisionless magnetized plasma composed of dynamic ions, static dust (positive/negative) charged particles and interialess kappa distributed electrons is investigated. By employing extended Poincaré-Lighthill-Kuo (PLK) method, Korteweg-de Vries (KdV) equations are derived for the right and left moving low amplitude DIA solitons. Their trajectories and corresponding phase shifts before and after their interaction are also obtained. It is found that in negatively charged dusty plasma above the critical dust charged to ion density ratio the positive polarity pulse is formed, while below the critical dust charged density ratio the negative polarity pulse of DIA soliton exist. However it is found that only positive polarity pulse of DIA solitons exist for the positively charged dust particles case in a magnetized nonthermal plasma. The nonlinearity coefficient in the KdV equation vanishes for the negatively charged dusty plasma case for a particular set of parameters. Therefore, at critical plasma density composition for negatively charged dust particles case, the modified Korteweg-de Vries (mKdV) equations having cubic nonlinearity coefficient of the DIA solitons, and their corresponding phase shifts are derived for the left and right moving solitons. The effects of the system parameters including the obliqueness of solitons propagation with respect to magnetic field direction, superthermality of electrons and concentration of positively/negatively static dust charged particles on the phase shifts of the colliding solitons are also discussed and presented numerically. The results are applicable to space magnetized dusty plasma regimes.

  5. Dynamic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas with superthermal electrons and positrons

    Science.gov (United States)

    Saha, Asit; Pal, Nikhil; Chatterjee, Prasanta

    2014-10-01

    The dynamic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas with superthermal electrons and positrons has been investigated in the framework of perturbed and non-perturbed Kadomtsev-Petviashili (KP) equations. Applying the reductive perturbation technique, we have derived the KP equation in electron-positron-ion magnetoplasma with kappa distributed electrons and positrons. Bifurcations of ion acoustic traveling waves of the KP equation are presented. Using the bifurcation theory of planar dynamical systems, the existence of the solitary wave solutions and the periodic traveling wave solutions has been established. Two exact solutions of these waves have been derived depending on the system parameters. Then, using the Hirota's direct method, we have obtained two-soliton and three-soliton solutions of the KP equation. The effect of the spectral index κ on propagations of the two-soliton and the three-soliton has been shown. Considering an external periodic perturbation, we have presented the quasi periodic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas.

  6. Dynamic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas with superthermal electrons and positrons

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Asit, E-mail: asit-saha123@rediffmail.com, E-mail: prasantachatterjee1@rediffmail.com [Department of Mathematics, Sikkim Manipal Institute of Technology, Majitar, Rangpo, East-Sikkim 737136 (India); Department of Mathematics, Siksha Bhavana, Visva Bharati University, Santiniketan-731235 (India); Pal, Nikhil; Chatterjee, Prasanta, E-mail: asit-saha123@rediffmail.com, E-mail: prasantachatterjee1@rediffmail.com [Department of Mathematics, Siksha Bhavana, Visva Bharati University, Santiniketan-731235 (India)

    2014-10-15

    The dynamic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas with superthermal electrons and positrons has been investigated in the framework of perturbed and non-perturbed Kadomtsev-Petviashili (KP) equations. Applying the reductive perturbation technique, we have derived the KP equation in electron-positron-ion magnetoplasma with kappa distributed electrons and positrons. Bifurcations of ion acoustic traveling waves of the KP equation are presented. Using the bifurcation theory of planar dynamical systems, the existence of the solitary wave solutions and the periodic traveling wave solutions has been established. Two exact solutions of these waves have been derived depending on the system parameters. Then, using the Hirota's direct method, we have obtained two-soliton and three-soliton solutions of the KP equation. The effect of the spectral index κ on propagations of the two-soliton and the three-soliton has been shown. Considering an external periodic perturbation, we have presented the quasi periodic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas.

  7. Runaway electrons during tokamak startup

    International Nuclear Information System (INIS)

    Sharma, A.S.; Jayakumar, R.

    1988-01-01

    Runaway electrons significantly affect the plasma and impurity evolution during tokamak startup. During its rise, a runaway pulse stores magnetic flux inductively; this is then released during the decay phase of the runaway pulse. This process affects plasma formation, current initiation and current buildup. Because of their relativistic velocities the runaway electrons have higher ionization and excitation rates than the plasma electrons. This leads to a significant modification of the impurity behaviour and consequently the plasma evolution. (author). 20 refs, 8 figs

  8. A quasi-one-dimensional velocity regime of super-thermal electron stream propagation through the solar corona

    International Nuclear Information System (INIS)

    Levin, B.N.

    1984-01-01

    The propagation of an inhomogeneous stream of fast electrons through the corona - the type III radio burst source - is considered. It is shown, that the angular spectrum width of plasma waves excited by the stream is defined both by Landau damping by particles of the diffuse component and by damping (in the region of large phase velocities) by particles of the stream itself having large pitch angles. The regime of quasi-one-dimensional diffusion in the velocity space is realized only in the presence of a sufficiently dense diffuse component of super-thermal particles and only for a sufficiently large inhomogeneity scale of the stream. A large scale of the stream space profile is formed, evidently, close to the region of injection of super-thermal particles. It is the result of 'stripping' of part of the electrons from the stream front to its slower part due to essential non-one-dimensionality of the particle diffusion in velocity space. Results obtained may explain, in particular, the evolution of a stream particle angular spectrum in the generation region of type III radio bursts observed by spacecrafts (Lin et al., 1981). For the relatively low energetic part of the stream, the oblique plasma wave stabilization by a diffuse component results in a quasi-one-dimensional regime of diffusion. The latter conserves the beam-like structure of this part of the stream. (orig.)

  9. Effect of excess superthermal hot electrons on finite amplitude ion-acoustic solitons and supersolitons in a magnetized auroral plasma

    Energy Technology Data Exchange (ETDEWEB)

    Rufai, O. R., E-mail: rrufai@csir.co.za [Council for Scientific and Industrial Research, Pretoria (South Africa); Bharuthram, R., E-mail: rbharuthram@uwc.ac.za [University of the Western Cape, Bellville (South Africa); Singh, S. V., E-mail: satyavir@iigs.iigm.res.in; Lakhina, G. S., E-mail: lakhina@iigs.iigm.res.in [Indian Institute of Geomagnetism, New Panvel (W), Navi, Mumbai-410218 (India)

    2015-10-15

    The effect of excess superthermal electrons is investigated on finite amplitude nonlinear ion-acoustic waves in a magnetized auroral plasma. The plasma model consists of a cold ion fluid, Boltzmann distribution of cool electrons, and kappa distributed hot electron species. The model predicts the evolution of negative potential solitons and supersolitons at subsonic Mach numbers region, whereas, in the case of Cairn's nonthermal distribution model for the hot electron species studied earlier, they can exist both in the subsonic and supersonic Mach number regimes. For the dayside auroral parameters, the model generates the super-acoustic electric field amplitude, speed, width, and pulse duration of about 18 mV/m, 25.4 km/s, 663 m, and 26 ms, respectively, which is in the range of the Viking spacecraft measurements.

  10. Electron cyclotron waves transmission: new approach for the characterization of electron distribution functions in Tokamak hot plasmas; La transmission d`ondes cyclotroniques electroniques: une approche nouvelle pour caracteriser les fonctions de distribution electronique des plasmas chauds de Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Michelot, Y

    1995-10-01

    Fast electrons are one of the basic ingredients of plasma operations in many existing thermonuclear fusion research devices. However, the understanding of fast electrons dynamics during creation and sustainment of the superthermal electrons tail is far for being satisfactory. For this reason, the Electron Cyclotron Transmission (ECT) diagnostic was implemented on Tore Supra tokamak. It consists on a microwave transmission system installed on a vertical chord crossing the plasma center and working in the frequency range 77-109 GHz. Variations of the wave amplitude during the propagation across the plasma may be due to refraction and resonant absorption. For the ECT, the most common manifestation of refraction is a reduction of the received power density with respect to the signal detected in vacuum, due to the spreading and deflection of the wave beam. Wave absorption is observed in the vicinity of the electron cyclotron harmonics and may be due both to thermal plasma and to superthermal electron tails. It has a characteristic frequency dependence due to the relativistic mass variation in the wave-electron resonance condition. This thesis presents the first measurements of: the extraordinary mode optical depth at the third harmonics, the electron temperature from the width of a cyclotron absorption line and the relaxation times of the electron distribution during lower hybrid current drive from the ordinary mode spectral superthermal absorption line at the first harmonic. (J.S.). 175 refs., 110 figs., 9 tabs., 3 annexes.

  11. Thermal and nonthermal electron cyclotron emission by high-temperature tokamak plasmas

    International Nuclear Information System (INIS)

    Airoldi, A.; Ramponi, G.

    1997-01-01

    An analysis of the electron cyclotron emission (ECE) spectra emitted by a high-temperature tokamak plasma in the frequency range of the second and third harmonic of the electron cyclotron frequency is made, both in purely Maxwellian and in non-Maxwellian cases (i.e., in the presence of a current-carrying superthermal tail). The work is motivated mainly by the experimental observations made in the supershot plasmas of the Tokamak Fusion Test Reactor (TFTR), where a systematic disagreement is found between the T e measurements by second-harmonic ECE and Thomson scattering. We show that, by properly taking into account the overlap of superthermals-emitted third harmonic with second-harmonic bulk emission, the radiation temperature observed about the central frequency of the second harmonic may be enhanced up to 30%endash 40% compared to the corresponding thermal value. Moreover we show that, for parameters relevant to the International Thermonuclear Experimental Reactor (ITER) with T e (0)>7 keV, the overlap between the second and the downshifted third harmonic seriously affects the central plasma region, so that the X-mode emission at the second harmonic becomes unsuitable for local T e measurements. copyright 1997 American Institute of Physics

  12. Effect of ion temperature on ion-acoustic solitary waves in a magnetized plasma in presence of superthermal electrons

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S. V.; Devanandhan, S.; Lakhina, G. S. [Indian Institute of Geomagnetism, Navi Mumbai (India); Bharuthram, R. [University of the Western Cape, Bellville (South Africa)

    2013-01-15

    Obliquely propagating ion-acoustic soliatry waves are examined in a magnetized plasma composed of kappa distributed electrons and fluid ions with finite temperature. The Sagdeev potential approach is used to study the properties of finite amplitude solitary waves. Using a quasi-neutrality condition, it is possible to reduce the set of equations to a single equation (energy integral equation), which describes the evolution of ion-acoustic solitary waves in magnetized plasmas. The temperature of warm ions affects the speed, amplitude, width, and pulse duration of solitons. Both the critical and the upper Mach numbers are increased by an increase in the ion temperature. The ion-acoustic soliton amplitude increases with the increase in superthermality of electrons. For auroral plasma parameters, the model predicts the soliton speed, amplitude, width, and pulse duration, respectively, to be in the range of (28.7-31.8) km/s, (0.18-20.1) mV/m; (590-167) m, and (20.5-5.25) ms, which are in good agreement with Viking observations.

  13. Performance of a Bounce-Averaged Global Model of Super-Thermal Electron Transport in the Earth's Magnetic Field

    Science.gov (United States)

    McGuire, Tim

    1998-01-01

    In this paper, we report the results of our recent research on the application of a multiprocessor Cray T916 supercomputer in modeling super-thermal electron transport in the earth's magnetic field. In general, this mathematical model requires numerical solution of a system of partial differential equations. The code we use for this model is moderately vectorized. By using Amdahl's Law for vector processors, it can be verified that the code is about 60% vectorized on a Cray computer. Speedup factors on the order of 2.5 were obtained compared to the unvectorized code. In the following sections, we discuss the methodology of improving the code. In addition to our goal of optimizing the code for solution on the Cray computer, we had the goal of scalability in mind. Scalability combines the concepts of portabilty with near-linear speedup. Specifically, a scalable program is one whose performance is portable across many different architectures with differing numbers of processors for many different problem sizes. Though we have access to a Cray at this time, the goal was to also have code which would run well on a variety of architectures.

  14. Runaway electrons in the TRIAM-1 tokamak

    International Nuclear Information System (INIS)

    Satoh, Takemichi; Nakamura, Kazuo; Toi, Kazuo; Nakamura, Yukio; Hiraki, Naoji

    1981-01-01

    Pulse height analysis of soft X-rays is carried out in the TRIAM-1 tokamak. The electron temperatures determined from the soft X-ray spectrum agree well with those from Thomson scattering. It is observed that low-energy runaway (slideaway) electrons appear in the high-current-density discharges. (author)

  15. Runaway electrons in the TRIAM-1 tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, T; Nakamura, K; Toi, K; Nakamura, Y; Hiraki, N [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1981-09-01

    Pulse height analysis of soft X-rays is carried out in the TRIAM-1 tokamak. The electron temperatures determined from the soft X-ray spectrum agree well with those from Thomson scattering. It is observed that low-energy runaway (slideaway) electrons appear in the high-current-density discharges.

  16. Diagnostic applications of transient synchrotron radiation in tokamak plasmas

    International Nuclear Information System (INIS)

    Fisch, N.J.; Kritz, A.H.

    1990-02-01

    Transient radiation, resulting from a brief, deliberate perturbation of the velocity distribution of superthermal tokamak electrons, can be more informative than the steady background radiation that is present in the absence of the perturbation. It is possible to define a number of interesting inverse problems, which exploit the two-dimensional frequency-time data of the transient radiation signal. 17 refs

  17. Electronic system of TBR tokamak device

    International Nuclear Information System (INIS)

    Silva, R.P. da.

    1980-01-01

    The electronics developed as a part of the TBR project, which involves the construction of a small tokamak at the Physics Institute of the University of Sao Paulo, is described. On the basis of tokamak parameter values, the electronics for the toroidal field, ohmic/heating and vertical field systems is presented, including capacitors bank, switches, triggering circuits and power supplies. A controlled power oscilator used in discharge cleaning and pre-ionization is also described. The performance of the system as a function of the desired plasma parameters is discussed. (Author) [pt

  18. Characteristics of four-channel Cherenkov-type detector for measurements of runaway electrons in the ISTTOK tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Plyusnin, V. V.; Duarte, P.; Fernandes, H.; Silva, C. [Instituto de Plasmas e FuSao Nuclear - Laboratorio Associado, Association Euratom/IST, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Jakubowski, L.; Zebrowski, J.; Malinowski, K.; Rabinski, M.; Sadowski, M. J. [The Andrzej Soltan Institute for Nuclear Studies (IPJ), 05-400 Otwock-Swierk (Poland)

    2010-10-15

    A diagnostics capable of characterizing the runaway and superthermal electrons has been developing on the ISTTOK tokamak. In previous paper, a use of single-channel Cherenkov-type detector with titanium filter for runaway electron studies in ISTTOK was reported. To measure fast electron populations with different energies, a prototype of a four-channel detector with molybdenum filters was designed. Test-stand studies of filters with different thicknesses (1, 3, 7, 10, 20, 50, and 100 {mu}m) have shown that they should allow the detection of electrons with energies higher than 69, 75, 87, 95, 120, 181, and 260 keV, respectively. First results of measurements with the four-channel detector revealed the possibility to measure reliably different fast electrons populations simultaneously.

  19. Tokamak startup with electron cyclotron heating

    International Nuclear Information System (INIS)

    Holly, D.J.; Prager, S.C.; Shepard, D.A.; Sprott, J.C.

    1980-04-01

    Experiments are described in which the startup voltage in a tokamak is reduced by approx. 60% by the use of a modest amount of electron cyclotron resonance heating power for preionization. A 50% reduction in volt-second requirement and impurity reflux are also observed

  20. Tokamak startup with electron cyclotron heating

    Energy Technology Data Exchange (ETDEWEB)

    Holly, D J; Prager, S C; Shepard, D A; Sprott, J C

    1980-04-01

    Experiments are described in which the startup voltage in a tokamak is reduced by approx. 60% by the use of a modest amount of electron cyclotron resonance heating power for preionization. A 50% reduction in volt-second requirement and impurity reflux are also observed.

  1. Electron thermal transport in tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Konings, J A

    1994-11-30

    The process of fusion of small nuclei thereby releasing energy, as it occurs continuously in the sun, is essential for the existence of mankind. The same process applied in a controlled way on earth would provide a clean and an abundant energy source, and be the long term solution of the energy problem. Nuclear fusion requires an extremely hot (10{sup 8} K) ionized gas, a plasma, that can only be maintained if it is kept insulated from any material wall. In the so called `tokamak` this is achieved by using magnetic fields. The termal insulation, which is essential if one wants to keep the plasma at the high `fusion` temperature, can be predicted using basic plasma therory. A comparison with experiments in tokamaks, however, showed that the electron enery losses are ten to hundred times larger than this theory predicts. This `anomalous transport` of thermal energy implies that, to reach the condition for nuclear fusion, a fusion reactor must have very large dimensions. This may put the economic feasibility of fusion power in jeopardy. Therefore, in a worldwide collaboration, physicists study tokamak plasmas in an attempt to understand and control the energy losses. From a scientific point of view, the mechanisms driving anomalous transport are one of the challenges in fudamental plasma physics. In Nieuwegein, a tokamak experiment (the Rijnhuizen Tokamak Project, RTP) is dedicated to the study of anomalous transport, in an international collaboration with other laboratories. (orig./WL).

  2. Relativistic runaway electrons in tokamak plasmas

    International Nuclear Information System (INIS)

    Jaspers, R.E.

    1995-01-01

    Runaway electrons are inherently present in a tokamak, in which an electric field is applied to drive a toroidal current. The experimental work is performed in the tokamak TEXTOR. Here runaway electrons can acquire energies of up to 30 MeV. The runaway electrons are studied by measuring their synchrotron radiation, which is emitted in the infrared wavelength range. The studies presented are unique in the sense that they are the first ones in tokamak research to employ this radiation. Hitherto, studies of runaway electrons revealed information about their loss in the edge of the discharge. The behaviour of confined runaways was still a terra incognita. The measurement of the synchrotron radiation allows a direct observation of the behaviour of runaway electrons in the hot core of the plasma. Information on the energy, the number and the momentum distribution of the runaway electrons is obtained. The production rate of the runaway electrons, their transport and the runaway interaction with plasma waves are studied. (orig./HP)

  3. Electron cyclotron emission from the PLT tokamak

    International Nuclear Information System (INIS)

    Hosea, J.; Arunasalam, V.; Cano, R.

    1977-07-01

    Experimental measurements of electron cyclotron emission from the PLT tokamak plasma reveal that black-body emission occurs at the fundamental frequency. Such emission, not possible by direct thermal excitation of electromagnetic waves, is herein attributed to thermal excitation of electrostatic (Bernstein) waves which then mode convert into electromagnetic waves. The local feature of the electrostatic wave generation permits spatially and time resolved measurements of electron temperature as for the second harmonic emission

  4. On the rogue wave propagation in ion pair superthermal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Abdelwahed, H. G., E-mail: hgomaa-eg@yahoo.com, E-mail: hgomaa-eg@mans.edu.eg; Zahran, M. A. [Physics Department, College of Sciences and Humanities Studies Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj (Saudi Arabia); Theoretical Physics Group, Physics Department, Faculty of Science, Mansoura University, Mansoura (Egypt); El-Shewy, E. K., E-mail: emadshewy@yahoo.com; Elwakil, S. A. [Theoretical Physics Group, Physics Department, Faculty of Science, Mansoura University, Mansoura (Egypt)

    2016-02-15

    Effects of superthermal electron on the features of nonlinear acoustic waves in unmagnetized collisionless ion pair plasma with superthermal electrons have been examined. The system equations are reduced in the form of the nonlinear Schrodinger equation. The rogue wave characteristics dependences on the ionic density ratio (ν = n{sub –0}/n{sub +0}), ionic mass ratio (Q = m{sub +}/m{sub −}), and superthermality index (κ) are investigated. It is worth mentioning that the results present in this work could be applicable in the Earth's ionosphere plasmas.

  5. Computer simulation of superthermal transport for laser fusion

    International Nuclear Information System (INIS)

    Kershaw, D.S.

    1979-01-01

    The relativistic multigroup diffusion equations describing superthermal electron transport in laser fusion plasmas were derived in an earlier UCRL. A successful numerical scheme based on these equations which is now being used to model laser fusion experiments is described

  6. Simulation of tokamak runaway-electron events

    International Nuclear Information System (INIS)

    Bolt, H.; Miyahara, A.; Miyake, M.; Yamamoto, T.

    1987-08-01

    High energy runaway-electron events which can occur in tokamaks when the plasma hits the first wall are a critical issue for the materials selection of future devices. Runaway-electron events are simulated with an electron linear accelerator to better understand the observed runaway-electron damage to tokamak first wall materials and to consider the runaway-electron issue in further materials development and selection. The electron linear accelerator produces beam energies of 20 to 30 MeV at an integrated power input of up to 1.3 kW. Graphite, SiC + 2 % AlN, stainless steel, molybdenum and tungsten have been tested as bulk materials. To test the reliability of actively cooled systems under runaway-electron impact layer systems of graphite fixed to metal substrates have been tested. The irradiation resulted in damage to the metal compounds but left graphite and SiC + 2 % AlN without damage. Metal substrates of graphite - metal systems for actively cooled structures suffer severe damage unless thick graphite shielding is provided. (author)

  7. Electron cyclotron heating (ECH) of tokamak plasmas

    International Nuclear Information System (INIS)

    Hoshino, Katsumichi

    1990-01-01

    Electron cyclotron heating (ECH) is one of the intense methods of plasma heating, and which utilizes the collisionless electron-cyclotron-resonance-interaction between the launched electromagnetic waves (called electron cyclotron waves) and electrons which are one of the constituents of the high temperature plasmas. Another constituent, namely the ions which are subject to nuclear fusion, are heated indirectly but strongly and instantly (in about 0.1 s) by the collisions with the ECH-heated electrons in the fusion plasmas. The recent progress on the development of high-power and high-frequency millimeter-wave-source enabled the ECH experiments in the middle size tokamaks such as JFT-2M (Japan), Doublet III (USA), T-10 (USSR) etc., and ECH has been demonstrated to be the sure and intense plasma heating method. The ECH attracts much attention for its remarkable capabilities; to produce plasmas (pre-ionization), to heat plasmas, to drive plasma current for the plasma confinement, and recently especially by the localization and the spatial controllability of its heating zone, which is beneficial for the fine controls of the profiles of plasma parameters (temperature, current density etc.), for the control of the magnetohydrodynamic instabilities, or for the optimization/improvement of the plasma confinement characteristics. Here, the present status of the ECH studies on tokamak plasmas are reviewed. (author)

  8. Disruption generated secondary runaway electrons in present day tokamaks

    International Nuclear Information System (INIS)

    Pankratov, I.M.; Jaspers, R.

    2000-01-01

    An analysis of the runaway electron secondary generation during disruptions in present day tokamaks (JET, JT-60U, TEXTOR) was made. It was shown that even for tokamaks with the plasma current I approx 100 kA the secondary generation may dominate the runaway production during disruptions. In the same time in tokamaks with I approx 1 MA the runaway electron secondary generation during disruptions may be suppressed

  9. Runaway electron generation in tokamak disruptions

    International Nuclear Information System (INIS)

    Helander, P.; Andersson, F.; Fueloep, T.; Smith, H.; Anderson, D.; Lisak, M.; Eriksson, L.-G.

    2005-01-01

    The time evolution of the plasma current during a tokamak disruption is calculated by solving the equations for runaway electron production simultaneously with the induction equation for the toroidal electric field. The resistive diffusion time in a post-disruption plasma is typically comparable to the runaway avalanche growth time. Accordingly, the toroidal electric field induced after the thermal quench of a disruption diffuses radially through the plasma at the same time as it accelerates runaway electrons, which in turn back-react on the electric field. When these processes are accounted for in a self-consistent way, it is found that (1) the efficiency and time scale of runaway generation agrees with JET experiments; (2) the runaway current profile typically becomes more peaked than the pre-disruption current profile; and (3) can easily become radially filamented. It is also shown that higher runaway electron generation is expected if the thermal quench is sufficiently fast. (author)

  10. Design and construction of electronic components for a ''Novillo'' Tokamak

    International Nuclear Information System (INIS)

    Lopez C, R.

    1986-07-01

    The goal of this effort was to design, construct and make functional the electronic components for a ''Novillo'' Tokamak currently being experimentally investigated at the National Institute of Nuclear Research in Mexico. The problem was to develop programmable electronic switches capable of discharging high voltage kilowatt energies stored in capacitator banks onto the coils of the Tokamak. (author)

  11. Improvement of tokamak performance by injection of electrons

    International Nuclear Information System (INIS)

    Ono, Masayuki.

    1992-12-01

    Concepts for improving tokamak performance by utilizing injection of hot electrons are discussed. Motivation of this paper is to introduce the research work being performed in this area and to refer the interested readers to the literature for more detail. The electron injection based concepts presented here have been developed in the CDX, CCT, and CDX-U tokamak facilities. The following three promising application areas of electron injection are described here: 1. Non-inductive current drive, 2. Plasma preionization for tokamak start-up assist, and 3. Charging-up of tokamak flux surfaces for improved plasma confinement. The main motivation for the dc-helicity injection current drive is in its efficiency that, in theory, is independent of plasma density. This property makes it attractive for driving currents in high density reactor plasmas

  12. ECRH and electron heat transport in tokamaks

    International Nuclear Information System (INIS)

    Zou, X.L.; Giruzzi, G.; Dumont, R.J.

    2003-01-01

    It has been observed during the ECRH experiments in tokamaks that the shape of the electron temperature profile in stationary regimes is not very sensitive to the ECRH power deposition i.e. the temperature profile remains peaked at the center even though the ECRH power deposition is off-axis. Various models have been invoked for the interpretation of this profile resilience phenomenon: the inward heat pinch, the critical temperature gradient, the Self-Organized Criticality, etc. Except the pinch effect, all of these models need a specific form of the diffusivity in the heat transport equation. In this work, our approach is to solve a simplified time-dependent heat transport equation analytically in cylindrical geometry. The features of this analytical solution are analyzed, in particular the relationship between the temperature profile resilience and the Eigenmode of the physical system with respect to the heat transport phenomenon. Finally, applications of this analytical solution for the determination of the transport coefficient and the polarization of the EC waves are presented. It has been shown that the solution of the simplified transport equation in a finite cylinder is a Fourier-Bessel series. This series represents in fact a decomposition of the heat source in Eigenmode, which are characterized by the Bessel functions of order 0. The physical interpretation of the Eigenmodes is the following: when the heat source is given by a Bessel function of order 0, the temperature profile has exactly the same form as the source at every time. At the beginning of the power injection, the effectiveness of the temperature response is the same for each Eigenmode, and the response in temperature, having the same form as the source, is local. Conversely, in the later phase of the evolution, the effectiveness of the temperature response for each Eigenmode is different: the higher the order, the lower the effectiveness. In this case the response in temperature appears as

  13. ELECTRON CYCLOTRON CURRENT DRIVE EFFICIENCY IN GENERAL TOKAMAK GEOMETRY

    International Nuclear Information System (INIS)

    LIN-LUI, Y.R; CHAN, V.S; PRATER, R.

    2003-01-01

    Green's-function techniques are used to calculate electron cyclotron current drive (ECCD) efficiency in general tokamak geometry in the low-collisionality regime. Fully relativistic electron dynamics is employed in the theoretical formulation. The high-velocity collision model is used to model Coulomb collisions and a simplified quasi-linear rf diffusion operator describes wave-particle interactions. The approximate analytic solutions which are benchmarked with a widely used ECCD model, facilitate time-dependent simulations of tokamak operational scenarios using the non-inductive current drive of electron cyclotron waves

  14. 2-D Imaging of Electron Temperature in Tokamak Plasmas

    International Nuclear Information System (INIS)

    Munsat, T.; Mazzucato, E.; Park, H.; Domier, C.W.; Johnson, M.; Luhmann, N.C. Jr.; Wang, J.; Xia, Z.; Classen, I.G.J.; Donne, A.J.H.; Pol, M.J. van de

    2004-01-01

    By taking advantage of recent developments in millimeter wave imaging technology, an Electron Cyclotron Emission Imaging (ECEI) instrument, capable of simultaneously measuring 128 channels of localized electron temperature over a 2-D map in the poloidal plane, has been developed for the TEXTOR tokamak. Data from the new instrument, detailing the MHD activity associated with a sawtooth crash, is presented

  15. Observation of electron temperature profile in HL-1M tokamak

    International Nuclear Information System (INIS)

    Cao Jianyong; Xu Deming; Ding Xuantong

    2000-01-01

    The principle and method of the electron temperature measurement by means of electron cyclotron emission (ECE) have been described. Several results under different conditions on HL-1M tokamak have been given. The hollow profile of electron temperature appears in some stages, such as current rising, pellet injection and impurity concentration in the plasma centre. When the bias voltage is applied, the electron temperature profile become steeper. All of the phenomena are related with the transport in plasma centre

  16. Investigation of slide-away discharges in the HT-7 tokamak

    International Nuclear Information System (INIS)

    Lu Hongwei; Hu Liqun; Lin Shiyao; Zhong Guoqian; Zhou Ruijie

    2010-01-01

    In tokamak plasmas, the discharge will go into 'runaway' discharges if the density decays to the critical ones. The discharge will go into 'slide-away' discharges if the density reaches a lower level. The slide-away discharge is characterized by high confinement and lots of superthermal electrons which constitute a large part of plasma current. In HT-7 Tokamak, the slide-away discharges have been achieved by decreasing the plasma density. The relation ship between plasma current and the critical density of slide-away discharge was investigated. It was also found that the increase of density in slide-away discharge can make the confinement poor. And also, lots of superthermal electrons lost from the vacuum chamber. (authors)

  17. Electron cyclotron current drive efficiency in an axisymmetric tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez-Tapia, C.; Beltran-Plata, M. [Instituto Nacional de Investigaciones Nucleares, Dept. de Fisica, Mexico D.F. (Mexico)

    2004-07-01

    The neoclassical transport theory is applied to calculate electron cyclotron current drive (ECCD) efficiency in an axisymmetric tokamak in the low-collisionality regime. The tokamak ordering is used to obtain a system of equations that describe the dynamics of the plasma where the nonlinear ponderomotive (PM) force due to high-power radio-frequency (RF) waves is included. The PM force is produced around an electron cyclotron resonant surface at a specific poloidal location. The ECCD efficiency is analyzed in the cases of first and second harmonics (for different impinging angles of the RF waves) and it is validated using experimental parameter values from TCV and T-10 tokamaks. The results are in agreement with those obtained by means of Green's function techniques. (authors)

  18. Electron Heating of LHCD Plasma in HT-7 Tokamak

    International Nuclear Information System (INIS)

    Ding Yonghua; Wan Baonian; Lin Shiyao; Chen Zhongyong; Hu Xiwei; Shi Yuejiang; Hu Liqun; Kong Wei; Zhang Xiaoqing

    2006-01-01

    Electron heating via lower hybrid current drive (LHCD) has been investigated in HT-7 superconducting tokamak. Experiments show that the central electron temperature T e0 , the volume averaged electron temperature e > and the peaking factor of the electron temperature Q Te = T e0 / e > increase with the lower hybrid wave (LHW) power. Simultaneously the electron heating efficiency and the electron temperature as the function of the central line-averaged electron density (n e ) and the plasma current (I p ) have also been investigated. The experimental results are in a good agreement with those of the classical collision theory and the LHW power deposition theory

  19. Electron density measurements in the TRIAM-1 tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Mitarai, O; Nakashima, H; Nakamura, K; Hiraki, N; Toi, K [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1980-02-01

    Electron density measurements in the TRIAM-1 tokamak are carried out by a 140 GHz microwave interferometer. To follow rapid density variations, a high-speed direct-reading type interferometer is constructed. The density of (1 - 20) x 10/sup 13/ cm/sup -3/ is measured.

  20. Electron density measurements in the TRIAM-1 tokamak

    International Nuclear Information System (INIS)

    Mitarai, Osamu; Nakashima, Hisatoshi; Nakamura, Kazuo; Hiraki, Naoji; Toi, Kazuo

    1980-01-01

    Electron density measurements in the TRIAM-1 tokamak are carried out by a 140 GHz microwave interferometer. To follow rapid density variations, a high-speed direct-reading type interferometer is constructed. The density of (1 - 20) x 10 13 cm -3 is measured. (author)

  1. Tokamak

    International Nuclear Information System (INIS)

    Wesson, John.

    1996-01-01

    This book is the first compiled collection about tokamak. At first chapter tokamak is represented from fusion point of view and also the necessary conditions for producing power. The following chapters are represent plasma physics, the specifications of tokamak, plasma heating procedures and problems related to it, equilibrium, confinement, magnetohydrodynamic stability, instabilities, plasma material interaction, plasma measurement and experiments regarding to tokamak; an addendum is also given at the end of the book

  2. Tokamak start-up with electron-cyclotron heating

    Energy Technology Data Exchange (ETDEWEB)

    Holly, D J; Prager, S C; Shepard, D A; Sprott, J C [Wisconsin Univ., Madison (USA)

    1981-11-01

    Experiments are described in which the start-up voltage in a tokamak is reduced by about a factor of two by the use of a modest amount of electron cyclotron resonance heating power for pre-ionization. The solution of the zero-dimensional start-up equations indicates that the effect is due to the high initial density which increases the rate at which the conductivity increases in the neutral-dominated initial plasma. The effect extrapolates favourably to larger tokamaks. A 50% reduction in the start-up volt-second requirement and impurity reflux is also observed.

  3. Tokamak start-up with electron-cyclotron heating

    International Nuclear Information System (INIS)

    Holly, D.J.; Prager, S.C.; Shepard, D.A.; Sprott, J.C.

    1981-01-01

    Experiments are described in which the start-up voltage in a tokamak is reduced by about a factor of two by the use of a modest amount of electron cyclotron resonance heating power for pre-ionization. The solution of the zero-dimensional start-up equations indicates that the effect is due to the high initial density which increases the rate at which the conductivity increases in the neutral-dominated initial plasma. The effect extrapolates favourably to larger tokamaks. A 50% reduction in the start-up volt-second requirement and impurity reflux is also observed. (author)

  4. Sawtooth-induced loss of runaway electrons in tokamaks

    International Nuclear Information System (INIS)

    Yan Longwen; Shi Bingren; Jiao Yiming

    2001-01-01

    A model based on banana orbit loss has been proposed to explain the sawtooth effect on the loss of the runaway electrons in tokamaks. Circulating runaway electrons can be transferred into the trapped ones due to magnetic perturbation during sawtooth crashes, then they are repelled to the limiter via toroidal precession drift with a time delay. This model may also clarify the hard X-ray oscillations correlated with the m = 2 mode and the hard X-ray bursts during outer disruptions

  5. Electron cyclotron emission imaging in tokamak plasmas

    NARCIS (Netherlands)

    Munsat, T.; Domier, C.W.; Kong, X. Y.; Liang, T. R.; N C Luhmann Jr.,; Tobias, B. J.; Lee, W.; Park, H. K.; Yun, G.; Classen, I.G.J.; Donne, A. J. H.

    2010-01-01

    We discuss the recent history and latest developments of the electron cyclotron emission imaging diagnostic technique, wherein electron temperature is measured in magnetically confined plasmas with two-dimensional spatial resolution. The key enabling technologies for this technique are the

  6. Kinetic modelling of runaway electron avalanches in tokamak plasmas.

    Czech Academy of Sciences Publication Activity Database

    Nilsson, E.; Decker, J.; Peysson, Y.; Granetz, R.S.; Saint-Laurent, F.; Vlainic, Milos

    2015-01-01

    Roč. 57, č. 9 (2015), č. článku 095006. ISSN 0741-3335 EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:61389021 Keywords : plasma physics * runaway electrons * knock-on collisions * tokamak * Fokker-Planck * runaway avalanches Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.404, year: 2015

  7. Spectral measurements of runway electrons in the TEXTOR tokamak

    International Nuclear Information System (INIS)

    Kudyakov, Timur

    2009-01-01

    The generation of multi-MeV runaway electrons is a well known effect related to the plasma disruptions in tokamaks. The runaway electrons can substantially reduce the lifetime of the future tokamak ITER. In this thesis physical properties of runaway electrons and their possible negative effects on ITER have been studied in the TEXTOR tokamak. A new diagnostic, a scanning probe, has been developed to provide direct measurements of the absolute number of runaway electrons coming from the plasma, its energy distribution and the related energy load in the material during low density (runaway) discharges and during disruptions. The basic elements of the probe are YSO crystals which transform the energy of runaway electrons into visible light which is guided via optical fibres to photomultipliers. In order to obtain the energy distribution of runaways, the crystals are covered with layers of stainless steel (or tungsten in two earlier test versions) of different thicknesses. The final probe design has 9 crystals and can temporally and spectrally resolve electrons with energies between 4 MeV and 30 MeV. The probe is tested and absolutely calibrated at the linear electron accelerator ELBE in Rossendorf. The measurements are in good agreement with Monte Carlo simulations using the Geant4 code. The runaway transport in the presence of the internal and externally applied magnetic perturbations has been studied. The diffusion coefficient and the value of the magnetic fluctuation for runaways were derived as a function of B t . It was found that an increase of runaway losses from the plasma with the decreasing toroidal magnetic field is accompanied with a growth of the magnetic fluctuation in the plasma. The magnetic shielding picture could be confirmed which predicts that the runaway loss occurs predominantly for low energy runaways (few MeV) and considerably less for the high energy ones. In the case of the externally applied magnetic perturbations by means of the dynamic

  8. Spectral measurements of runway electrons in the TEXTOR tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Kudyakov, Timur

    2009-07-22

    The generation of multi-MeV runaway electrons is a well known effect related to the plasma disruptions in tokamaks. The runaway electrons can substantially reduce the lifetime of the future tokamak ITER. In this thesis physical properties of runaway electrons and their possible negative effects on ITER have been studied in the TEXTOR tokamak. A new diagnostic, a scanning probe, has been developed to provide direct measurements of the absolute number of runaway electrons coming from the plasma, its energy distribution and the related energy load in the material during low density (runaway) discharges and during disruptions. The basic elements of the probe are YSO crystals which transform the energy of runaway electrons into visible light which is guided via optical fibres to photomultipliers. In order to obtain the energy distribution of runaways, the crystals are covered with layers of stainless steel (or tungsten in two earlier test versions) of different thicknesses. The final probe design has 9 crystals and can temporally and spectrally resolve electrons with energies between 4 MeV and 30 MeV. The probe is tested and absolutely calibrated at the linear electron accelerator ELBE in Rossendorf. The measurements are in good agreement with Monte Carlo simulations using the Geant4 code. The runaway transport in the presence of the internal and externally applied magnetic perturbations has been studied. The diffusion coefficient and the value of the magnetic fluctuation for runaways were derived as a function of B{sub t}. It was found that an increase of runaway losses from the plasma with the decreasing toroidal magnetic field is accompanied with a growth of the magnetic fluctuation in the plasma. The magnetic shielding picture could be confirmed which predicts that the runaway loss occurs predominantly for low energy runaways (few MeV) and considerably less for the high energy ones. In the case of the externally applied magnetic perturbations by means of the dynamic

  9. Runaway electrons in the SINP tokamak

    Indian Academy of Sciences (India)

    The runaway electrons have been studied in the start-up phase [12–14], as well as in the steady phase [15–17]. We have confined ourselves here to the initial rise phase of the discharge mainly because the runaway electrons find the initial low density (Т ) and large applied toroidal electric field ( М = Оloop 2 К), where К is ...

  10. Runaway relativistic electron scattering on the plazma oscillations in tokamak

    International Nuclear Information System (INIS)

    Krasovitskij, V.B.; Razdorski, V.G.

    1980-01-01

    The dynamics of fast electrons in a tolamak plasma with the presence of the constant external electric field have been inveatigated. It is shown that the occurrence of the relativistic electrons ''tail'' of the distribution function is followed by an intensive plasma oscillation swinging under conditions of the anomalous Doppler effect and their large angle scattering in the momentum space. A part of scattered electrons is captured by tokamak inhomogeneous magnetic field and causes the occurrence of a new low frequency alfven instability under conditions of magnetic drift resonance followed by quasilinear diffusion of relativistic electrons along the small radius of the torus. The flux of runaway electrons scattered on plasma oscillations has been found. A nonlinear diffusion equation has been derived for the flux of captured electrons. The equation defines the carrying out of fast particles from the plasma filament center to its periphery depending on the external magnetic field and plasma parameters

  11. Experimental measurement of electron heat diffusivity in a tokamak

    International Nuclear Information System (INIS)

    Callen, J.D.; Jahns, G.L.

    1976-06-01

    The electron temperature perturbation produced by internal disruptions in the center of the Oak Ridge Tokamak (ORMAK) is followed with a multi-chord soft x-ray detector array. The space-time evolution is found to be diffusive in character, with a conduction coefficient larger by a factor of 2.5 - 15 than that implied by the energy containment time, apparently because it is a measurement for the small group of electrons whose energies exceed the cut-off energy of the detectors

  12. Impact of electron trapping on RF current drive in tokamaks

    International Nuclear Information System (INIS)

    Giruzzi, G.; Engelmann, F.

    1987-01-01

    The impact of the presence of trapped electrons on noninductive current drive by RF waves in tokamak plasmas is investigated. The appropriate response function, allowing to express the current drive efficiency J/P by a simple analytical formula, has been derived. The approach displays the reasons for the degradation of the current drive efficiency away from the plasma axis in the case of methods relying on the diffusion of electrons in the velocity component perpendicular to the confining magnetic field. It is shown that this degradation is appreciable even for large resonant parallel velocities. (author) [pt

  13. Wave trajectory and electron cyclotron heating in tokamak plasmas

    International Nuclear Information System (INIS)

    Tanaka, S.; Maekawa, T.; Terumichi, Y.; Hamada, Y.

    1980-01-01

    Wave trajectories in high density tokamak plasmas are studied numerically. Results show that the ordinary wave injected at an appropriate incident angle can propagate into the dense plasmas and is mode-converted to the extraordinary wave at the plasma cutoff, is further converted to the electron Bernstein wave during passing a loop or a folded curve near the upper hybrid resonance layer, and is cyclotron damped away, resulting in local electron heating before arriving at the cyclotron resonance layer. Similar trajectory and damping are obtained when a microwave in a form of extraordinary wave is injected quasi-perpendicularly in the direction of decreasing toroidal field

  14. Studies of runaway electrons via Cherenkov effect in tokamaks

    Science.gov (United States)

    Zebrowski, J.; Jakubowski, L.; Rabinski, M.; Sadowski, M. J.; Jakubowski, M. J.; Kwiatkowski, R.; Malinowski, K.; Mirowski, R.; Mlynar, J.; Ficker, O.; Weinzettl, V.; Causa, F.; COMPASS; FTU Teams

    2018-01-01

    The paper concerns measurements of runaway electrons (REs) which are generated during discharges in tokamaks. The control of REs is an important task in experimental studies within the ITER-physics program. The NCBJ team proposed to study REs by means of Cherenkov-type detectors several years ago. The Cherenkov radiation, induced by REs in appropriate radiators, makes it possible to identify fast electron beams and to determine their spatial- and temporal-characteristics. The results of recent experimental studies of REs, performed in two tokamaks - COMPASS in Prague and FTU in Frascati, are summarized and discussed in this paper. Examples of the electron-induced signals, as recorded at different experimental conditions and scenarios, are presented. Measurements performed with a three-channel Cherenkov-probe in COMPASS showed that the first fast electron peaks can be observed already during the current ramp-up phase. A strong dependence of RE-signals on the radial position of the Cherenkov probe was observed. The most distinct electron peaks were recorded during the plasma disruption. The Cherenkov signals confirmed the appearance of post-disruptive RE beams in circular-plasma discharges with massive Ar-puffing. During experiments at FTU a clear correlation between the Cherenkov detector signals and the rotation of magnetic islands was identified.

  15. The prospects for electron Bernstein wave heating of spherical tokamaks

    International Nuclear Information System (INIS)

    Cairns, R.A.; Lashmore-Davies, C.N.

    2000-02-01

    Electron Bernstein waves are analysed as possible candidates for heating spherical tokamaks. An inhomogeneous plane slab model of the plasma with a sheared magnetic field is used to calculate the linear conversion of the ordinary mode (O-mode) to the extraordinary mode (X-mode). A formula for the fraction of the incident O-mode energy which is converted to the X-mode at the O-mode cut-off is derived. This fraction is then able to propagate to the upper hybrid resonance where it is converted to the electron Bernstein mode. The damping of electron Bernstein waves at the fourth harmonic resonance, corresponding to a 60GHz source on the Mega Amp Spherical Tokamak MAST [A C Darke et al Proc 16th Symposium on Fusion Energy, Champaign- Urbana, Illinois USA IEEE, 2 p1456 (1995)], is computed. This is shown to be so strongly absorbing that the electron Bernstein wave would be totally absorbed in the outer regions of the resonance. This feature implies that electron Bernstein wave current drive (on- or off-axis) could be very efficient. (author)

  16. Electron heating using lower hybrid waves in the PLT tokamak

    International Nuclear Information System (INIS)

    Bell, R.E.; Bernabei, S.; Cavallo, A.; Chu, T.K.; Luce, T.; Motley, R.; Ono, M.; Stevens, J.; von Goeler, S.

    1987-06-01

    Lower hybrid waves with a narrow high velocity wave spectrum have been used to achieve high central electron temperatures in a tokamak plasma. Waves with a frequency of 2.45 GHz launched by a 16-waveguide grill at a power level less than 600 kW were used to increase the central electron temperature of the PLT plasma from 2.2 keV to 5 keV. The magnitude of the temperature increase depends strongly on the phase difference between the waveguides and on the direction of the launched wave. A reduction in the central electron thermal diffusivity is associated with the peaked electron temperature profiles of lower hybrid current-driven plasmas. 16 refs

  17. Runaway electrons and rational q-surfaces in a tokamak

    International Nuclear Information System (INIS)

    Cheetham, A.D.; Hogg, G.R.; Kuwahara, H.; Morton, A.H.

    1983-01-01

    Results of measurements with LT-4 of runaway electron behaviour during the current rise stage of discharges when q = rBsub(T)/RBsub(p) (where r and R are minor and major radii, Bsub(T) and Bsub(p) are toroidal and poloidal magnetic fields) is changing continuously are reported. The results establish a role for outward moving rational q regions in removing runaway electrons from a tokamak plasma. The model indicates that as well as carrying a proportion of low energy runaways with them the rational q regions also scatter high energy electrons from the discharge. This leads to an upper limit for the energy of fully confined electrons. The size of the runaway population might be minimised by controlling the rate of movement of rational surfaces. This would be achieved by programming the rate of rise of the plasma current

  18. Electron temperature gradient driven instability in the tokamak boundary plasma

    International Nuclear Information System (INIS)

    Xu, X.Q.; Rosenbluth, M.N.; Diamond, P.H.

    1992-01-01

    A general method is developed for calculating boundary plasma fluctuations across a magnetic separatrix in a tokamak with a divertor or a limiter. The slab model, which assumes a periodic plasma in the edge reaching the divertor or limiter plate in the scrape-off layer(SOL), should provide a good estimate, if the radial extent of the fluctuation quantities across the separatrix to the edge is small compared to that given by finite particle banana orbit. The Laplace transform is used for solving the initial value problem. The electron temperature gradient(ETG) driven instability is found to grow like t -1/2 e γmt

  19. Free-electron laser experiments in the microwave tokamak experiment

    International Nuclear Information System (INIS)

    Allen, S.L.; Brown, M.D.; Byers, J.A.; Casper, T.A.; Cohen, B.I.; Cohen, R.H.; Cummings, J.C.; Fenstermacher, M.E.; Foote, J.H.; Hooper, E.B.; Jong, R.A.; Langdon, A.B.; Lasinski, B.F.; Lasnier, C.J.; Matsuda, Y.; Meyer, W.H.; Moller, J.M.; Nexsen, W.E.; Rice, B.W.; Rognlien, T.D.; Smith, G.R.; Stallard, B.W.; Thomassen, K.I.; Throop, A.L.; Turner, W.C.; Wood, R.D.; Cook, D.R.; Makowski, M.A.; Oasa, K.; Ogawa, T.

    1990-08-01

    Microwave pulses have been injected from a free electron-laser (FEL) into the Microwave Tokamak Experiment (MTX) at up to 0.2 GW at 140 GHz in short pulses (10-ns duration) with O-mode polarization. The power transmitted through the plasma was measured in a first experimental study of high power pulse propagation in the plasma; no nonlinear effects were found at this power level. Calculations indicate that nonlinear effects may be found at the higher power densities expected in future experiments. 9 refs., 2 figs

  20. Polarized electron cyclotron emission in the Tokapole II Tokamak

    International Nuclear Information System (INIS)

    Sengstacke, M.A.; Dexter, R.N.; Prager, S.C.

    1984-06-01

    To examine the effect of wall reflections we have measured the polarization of second harmonic cyclotron emission (at omega = 2 omega/sub ce/) in the Tokapole II tokamak both with and without a microwave absorber installed within the field of view of the receiving antenna. Indeed, the local elimination of wall reflections markedly enhances the polarization, as described in section II. Section III describes observations consistent with right-hand cutoff effects and an attempt to infer the electron temperature from cyclotron emission in an optically thin plasma

  1. Electron and current density measurements on tokamak plasmas

    International Nuclear Information System (INIS)

    Lammeren, A.C.A.P. van.

    1991-01-01

    The first part of this thesis describes the Thomson-scattering diagnostic as it was present at the TORTUR tokamak. For the first time with this diagnostic a complete tangential scattering spectrum was recorded during one single laser pulse. From this scattering spectrum the local current density was derived. Small deviations from the expected gaussian scattering spectrum were observed indicating the non-Maxwellian character of the electron-velocity distribution. The second part of this thesis describes the multi-channel interferometer/ polarimeter diagnostic which was constructed, build and operated on the Rijnhuizen Tokamak Project (RTP) tokamak. The diagnostic was operated routinely, yielding the development of the density profiles for every discharge. When ECRH (Electron Cyclotron Resonance Heating) is switched on the density profile broadens, the central density decreases and the total density increases, the opposite takes place when ECRH is switched off. The influence of MHD (magnetohydrodynamics) activity on the density was clearly observable. In the central region of the plasma it was measured that in hydrogen discharges the so-called sawtooth collapse is preceded by an m=1 instability which grows rapidly. An increase in radius of this m=1 mode of 1.5 cm just before the crash is observed. In hydrogen discharges the sawtooth induced density pulse shows an asymmetry for the high- and low-field side propagation. This asymmetry disappeared for helium discharges. From the location of the maximum density variations during an m=2 mode the position of the q=2 surface is derived. The density profiles are measured during the energy quench phase of a plasma disruption. A fast flattening and broadening of the density profile is observed. (author). 95 refs.; 66 figs.; 7 tabs

  2. Anomalous electron streaming due to electrostatic modes in tokamak plasmas

    International Nuclear Information System (INIS)

    Schultz, S.D.; Bers, A.; Ram, A.K.

    1993-01-01

    The motion of circulating electrons in a tokamak interacting with electrostatic waves (such as lower-hybrid waves) is given by a guiding center Hamiltonian and studied by numerical integration. The unperturbed motion of electron guiding centers is first shown to be integrable, and, in a manner similar to that used in previous works, a set of action-angle coordinates for the orbits are derived which take into account finite aspect ratio and noncircular plasma cross section. Electrostatic modes in the low-frequency, long-wavelength limit are treated as a perturbation to the guiding center Hamiltonian. The waves are generated with low integral values of the toroidal and poloidal mode numbers n and m and satisfy the approximate lower-hybrid dispersion relation k perpendicular /k parallel ∼ ω pe /ω ∼ 10 1.5 . If the number of modes is greater than three, the electron motion parallel to the magnetic field is observed to be stochastic in the phase-space region where v parallel is near the wave parallel phase velocity. On surfaces with rational values of the safety factor q, superposition of modes with degenerate values of the parallel mode number n + (m/q) is shown to result in electron streaming perpendicular to the magnetic field. The speed and direction of this radial motion are observed to have sinusoidal dependence on the poloidal angle. For models including finite magnetic-field shear, the authors find a limit to the extent of the radial streaming of the electrons. Results for the speed of the electron radial motion for typical tokamak parameters are presented

  3. Kinetic modelling of runaway electron avalanches in tokamak plasmas

    International Nuclear Information System (INIS)

    Nilsson, E; Peysson, Y; Saint-Laurent, F; Decker, J; Granetz, R S; Vlainic, M

    2015-01-01

    Runaway electrons can be generated in tokamak plasmas if the accelerating force from the toroidal electric field exceeds the collisional drag force owing to Coulomb collisions with the background plasma. In ITER, disruptions are expected to generate runaway electrons mainly through knock-on collisions (Hender et al 2007 Nucl. Fusion 47 S128–202), where enough momentum can be transferred from existing runaways to slow electrons to transport the latter beyond a critical momentum, setting off an avalanche of runaway electrons. Since knock-on runaways are usually scattered off with a significant perpendicular component of the momentum with respect to the local magnetic field direction, these particles are highly magnetized. Consequently, the momentum dynamics require a full 3D kinetic description, since these electrons are highly sensitive to the magnetic non-uniformity of a toroidal configuration. For this purpose, a bounce-averaged knock-on source term is derived. The generation of runaway electrons from the combined effect of Dreicer mechanism and knock-on collision process is studied with the code LUKE, a solver of the 3D linearized bounce-averaged relativistic electron Fokker–Planck equation (Decker and Peysson 2004 DKE: a fast numerical solver for the 3D drift kinetic equation Report EUR-CEA-FC-1736, Euratom-CEA), through the calculation of the response of the electron distribution function to a constant parallel electric field. The model, which has been successfully benchmarked against the standard Dreicer runaway theory now describes the runaway generation by knock-on collisions as proposed by Rosenbluth (Rosenbluth and Putvinski 1997 Nucl. Fusion 37 1355–62). This paper shows that the avalanche effect can be important even in non-disruptive scenarios. Runaway formation through knock-on collisions is found to be strongly reduced when taking place off the magnetic axis, since trapped electrons can not contribute to the runaway electron population. Finally

  4. Electron thermal transport in tokamak: ETG or TEM turbulences?

    International Nuclear Information System (INIS)

    Lin, Z.; Chen, L.; Nishimura, Y.; Qu, H.; Hahm, T.S.; Lewandowski, J.; Rewoldt, G.; Wang, W.X.; Diamond, P.H.; Holland, C.; Zonca, F.; Li, Y.

    2005-01-01

    This paper reports progress on numerical and theoretical studies of electron transport in tokamak including: (1) electron temperature gradient turbulence; (2) trapped electron mode turbulence; and (3) a new finite element solver for global electromagnetic simulation. In particular, global gyrokinetic particle simulation and nonlinear gyrokinetic theory find that electron temperature gradient (ETG) instability saturates via nonlinear toroidal couplings, which transfer energy successively from unstable modes to damped modes preferably with longer poloidal wavelengths. The electrostatic ETG turbulence is dominated by nonlinearly generated radial streamers. The length of streamers scales with the device size and is much longer than the distance between mode rational surfaces or electron radial excursions. Both fluctuation intensity and transport level are independent of the streamer size. These simulations with realistic plasma parameters find that the electron heat conductivity is much smaller than the experimental value and in contrast with recent findings of flux-tube simulations that ETG turbulence is responsible for the anomalous electron thermal transport in fusion plasmas. The nonlinear toroidal couplings represent a new paradigm for the spectral cascade in plasma turbulence. (author)

  5. Electron-cyclotron current drive in the tokamak physics experiment

    International Nuclear Information System (INIS)

    Smith, G.R.; Kritz, A.H.; Radin, S.H.

    1992-01-01

    Ray-tracking calculations provide estimates of the electron-cyclotron heating (ECH) power required to suppress tearing modes near the q=2 surface in the Tokamak Physics Experiment. Effects of finite beam width and divergence are included, as are the effects of scattering of the ECH power by drift-wave turbulence. A frequency of about 120 GHz allows current drive on the small-R (high-B) portion of q=2, while 80 GHz drives current on the large-R (low-B) portion. The higher frequency has the advantages of less sensitivity to wave and plasma parameters and of no trapped-electron degradation of current-drive efficiency. Less than 1 MW suffices to suppress tearing modes even with high turbulence levels

  6. On the superthermal UCN production

    International Nuclear Information System (INIS)

    Yoshiki, Hajime

    1996-01-01

    In 1992, the production of ultracold neutrons (UCN) by means of superthermal method predicted by Golub and Pendlebury was verified quantitatively by changing incident cold neutron wavelength to observe the maximum of UCN production at a certain wavelength. At this wavelength, the dispersion curve of superfluid liquid helium and the energy momentum curve of a free neutron cross, and the energy and momentum of incident neutrons can be converted entirely to those of produced phonons, thus the neutrons with infinitesimal energy are left, which are UCN. It was learned that the calculation by Cohen and Feynman is correct, and now the rate of UCN production per unit time can be calculated. The comparison of this with other methods is discussed. The heat that would be produced in liquid helium if it was exposed to a cold neutron field was calculated. The proposed set of the circulation pumps for 3 He combined with a new heat exchanger gives the answer to the problem. Two main objectives for getting a strong UCN source are the precise determination of neutron lifetime and the search for the electric dipole moment of neutrons. The e.d.m. measurement machine integrated with refrigeration parts is shown. Preliminary measurement was done for the three-layer high permeability shield. (K.I.)

  7. On the superthermal UCN production

    Energy Technology Data Exchange (ETDEWEB)

    Yoshiki, Hajime [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1996-08-01

    In 1992, the production of ultracold neutrons (UCN) by means of superthermal method predicted by Golub and Pendlebury was verified quantitatively by changing incident cold neutron wavelength to observe the maximum of UCN production at a certain wavelength. At this wavelength, the dispersion curve of superfluid liquid helium and the energy momentum curve of a free neutron cross, and the energy and momentum of incident neutrons can be converted entirely to those of produced phonons, thus the neutrons with infinitesimal energy are left, which are UCN. It was learned that the calculation by Cohen and Feynman is correct, and now the rate of UCN production per unit time can be calculated. The comparison of this with other methods is discussed. The heat that would be produced in liquid helium if it was exposed to a cold neutron field was calculated. The proposed set of the circulation pumps for {sup 3}He combined with a new heat exchanger gives the answer to the problem. Two main objectives for getting a strong UCN source are the precise determination of neutron lifetime and the search for the electric dipole moment of neutrons. The e.d.m. measurement machine integrated with refrigeration parts is shown. Preliminary measurement was done for the three-layer high permeability shield. (K.I.)

  8. Electron density fluctuation measurements in the TORTUR tokamak

    International Nuclear Information System (INIS)

    Remkes, G.J.J.

    1990-01-01

    This thesis deals with measurements of electron-density fluctuations in the TORTUR tokamak. These measurements are carried out by making use of collective scattering of electromagnetic beams. The choice of the wavelength of the probing beam used in collective scattering experiments has important consequences. in this thesis it is argued that the best choice for a wavelength lies in the region 0.1 - 1 mm. Because sources in this region were not disposable a 2 mm collective scattering apparatus has been used as a fair compromise. The scattering theory, somewhat adapted to the specific TORTUR situation, is discussed in Ch. 2. Large scattering angles are admitted in scattering experiments with 2 mm probing beams. This had consequences for the spatial response functions. Special attention has been paid to the wave number resolution. Expressions for the minimum source power have been determined for two detection techniques. The design and implementation of the scattering apparatus has been described in Ch. 3. The available location of the scattering volume and values of the scattering angle have been determined. The effect of beam deflection due to refraction effects is evaluated. The electronic system is introduced. Ch. 4 presents the results of measurements of density fluctuations in the TORTUR tokamak in the frequency range 1 kHz to 100 MHz end the wave number region 400 - 4000 m -1 in different regions of the plasma. Correlation between density and magnetic fluctuations has been found in a number of cases. During the current decay at the termination of several plasma discharges minor disruptions occurred. The fluctuations during these disruptions have been monitored. Measurements have been performed in hydrogen as well as deuterium. A possible dependence of the wave number on the ion gyroradius has been investigated. The isotropy of the fluctuations in the poloidal plane was investigated. A theoretical discussion of the measured results is given in ch. 5. ( H.W.). 63

  9. Electron Landau damping of ion Bernstein waves in tokamak plasmas

    International Nuclear Information System (INIS)

    Brambilla, M.

    1998-01-01

    Absorption of ion Bernstein (IB) waves by electrons is investigated. These waves are excited by linear mode conversion in tokamak plasmas during fast wave (FW) heating and current drive experiments in the ion cyclotron range of frequencies. Near mode conversion, electromagnetic corrections to the local dispersion relation largely suppress electron Landau damping of these waves, which becomes important again, however, when their wavelength is comparable to the ion Larmor radius or shorter. The small Larmor radius wave equations solved by most numerical codes do not correctly describe the onset of electron Landau damping at very short wavelengths, and these codes, therefore, predict very little damping of IB waves, in contrast to what one would expect from the local dispersion relation. We present a heuristic, but quantitatively accurate, model which allows account to be taken of electron Landau damping of IB waves in such codes, without affecting the damping of the compressional wave or the efficiency of mode conversion. The possibilities and limitations of this approach are discussed on the basis of a few examples, obtained by implementing this model in the toroidal axisymmetric full wave code TORIC. (author)

  10. Electron Bernstein wave current drive in the start-up phase of a tokamak discharge

    International Nuclear Information System (INIS)

    Montes, A.; Ludwig, G.O.

    1986-04-01

    Current drive by electron Bernstein waves in the start-up phase of tokamak discharges is studied. A general analytical expression is derived for the figure of merit J/Pd associated with these waves. This is coupled with a ray tracing code, allowing the calculation of the total current generated per unit of incident power in realistic tokamak conditions. The resuts show that the electron Bernstein waves can drive substantial currents even at very low electron temperatures. (Author) [pt

  11. Electron diffusion in tokamaks due to electromagnetic fluctuations

    International Nuclear Information System (INIS)

    Horton, W.; Choi, D.-I.; Yushmanov, P.N.; Parail, V.V.

    1987-01-01

    Calculations for the stochastic diffusion of electrons in Tokamaks due to a spectrum of electromagnetic drift fluctuations are presented. The parametric dependence of the diffusion coefficient on the amplitude and phase velocity of the spectrum, and the bounce frequency for the electrons is studied. The wavenumber spectrum is taken to be a low order (5 x 5) randomly-phased, isotropic, monotonic spectrum extending from k sub(perpendicular to min) ≅ ωsub(ci)/Csub(s) to k sub(perpendicular to max) ≅ 3ωsub(pe)/C with different power laws of decrease φsub(k) ≅ φ 1 /ksup(m), 1 ≤ m ≤ 3. A nonlinear Ohm's law is derived for the self-consistent relation between the electrostatic and parallel vector potentials. The parallel structure of the fluctuations is taken to be such that ksup(nl)sub(parallel to)Vsub(e) < ωsub(k) due to the nonlinear perpendicular motion of the electrons described in the nonlinear Ohm's law. The diffusion coefficient scales approximately as the neo-Alcator and Merezhkin-Mukhovatov empirical formulas for plasma densities below a critical density. (author)

  12. Electron diffusion in tokamaks due to electromagnetic fluctuations

    International Nuclear Information System (INIS)

    Horton, W.; Choi, D.I.; Yushmanov, P.N.; Parail, V.V.

    1986-05-01

    Calculations for the stochastic diffusion of electrons in tokamaks due to a spectrum of electromagnetic drift fluctuations are presented. The parametric dependence of the diffusion coefficient on the amplitude and phase velocity of the spectrum, and the bounce frequency for the electrons is studied. The wavenumber spectrum is taken to be a low order (5 x 5) randomly-phased, isotropic, Monotonic spectrum extending from k /sub perpendicular min/ approx. = ω/sub ci//c/sub s/ to k/sub perpendicular max/ approx. = 3ω/sub pe//c with different power laws of decrease phi k approx. = phi 1/k/sup m/, 1 less than or equal to m less than or equal to 3. A nonlinear Ohm's law is derived for the self-consistent relation between the electrostatic and parallel vector potentials. The parallel structure of the fluctuations is taken to be such that k parallel/sup nl/upsilon/sub e/ < w/sub k/ due to the nonlinear perpendicular motion of the electrons described in the nonlinear Ohm's law. The diffusion coefficient scales approximately as the neo-Alcator and Merezhkin-Mukhovatoc empirical formulas for plasma densities above a critical density

  13. Modelling of electron transport and of sawtooth activity in tokamaks

    International Nuclear Information System (INIS)

    Angioni, C.

    2001-10-01

    Transport phenomena in tokamak plasmas strongly limit the particle and energy confinement and represent a crucial obstacle to controlled thermonuclear fusion. Within the vast framework of transport studies, three topics have been tackled in the present thesis: first, the computation of neoclassical transport coefficients for general axisymmetric equilibria and arbitrary collisionality regime; second, the analysis of the electron temperature behaviour and transport modelling of plasma discharges in the Tokamak a configuration Variable (TCV); third, the modelling and simulation of the sawtooth activity with different plasma heating conditions. The work dedicated to neoclassical theory has been undertaken in order to first analytically identify a set of equations suited for implementation in existing Fokker-Planck codes. Modifications of these codes enabled us to compute the neoclassical transport coefficients considering different realistic magnetic equilibrium configurations and covering a large range of variation of three key parameters: aspect ratio, collisionality, and effective charge number. A comparison of the numerical results with an analytical limit has permitted the identification of two expressions for the trapped particle fraction, capable of encapsulating the geometrical effects and thus enabling each transport coefficient to be fitted with a single analytical function. This has allowed us to provide simple analytical formulae for all the neoclassical transport coefficients valid for arbitrary aspect ratio and collisionality in general realistic geometry. This work is particularly useful for a correct evaluation of the neoclassical contribution in tokamak scenarios with large bootstrap cur- rent fraction, or improved confinement regimes with low anomalous transport and for the determination of the plasma current density profile, since the plasma conductivity is usually assumed neoclassical. These results have been included in the plasma transport code

  14. Theory of ion heat transport in tokamaks

    International Nuclear Information System (INIS)

    Gott, Y.V.; Yurchenko, E.I.

    1987-01-01

    Experiments which have been carried out in several tokamaks to determine the ion thermal conductivity show that it is several times the value predicted by the neoclassical theory. A possible explanation for this discrepancy is proposed. When the finite width of a banana is taken into account, there are substantial increases in the heat fluxes which stem from the important contribution of superthermal ions to the transport. If the electron diffusive flux is zero, a systematic account of the ions with E>T leads to an ion heat flux with a finite banana width which is two to four times the neoclassical prediction. The effect of the anomalous nature of the electron flux on the ion heat transport is analyzed. An expression is derived for calculating the ion heat transport over the entire range of collision rates

  15. Intense relativistic electron beam injector system for tokamak current drive

    International Nuclear Information System (INIS)

    Bailey, V.L.; Creedon, J.M.; Ecker, B.M.; Helava, H.I.

    1983-01-01

    We report experimental and theoretical studies of an intense relativistic electron beam (REB) injection system designed for tokamak current drive experiments. The injection system uses a standard high-voltage pulsed REB generator and a magnetically insulated transmission line (MITL) to drive an REB-accelerating diode in plasma. A series of preliminary experiments has been carried out to test the system by injecting REBs into a test chamber with preformed plasma and applied magnetic field. REBs were accelerated from two types of diodes: a conventional vacuum diode with foil anode, and a plasma diode, i.e., an REB cathode immersed in the plasma. REB current was in the range of 50 to 100 kA and REB particle energy ranged from 0.1 to 1.0 MeV. MITL power density exceeded 10 GW/cm 2 . Performance of the injection system and REB transport properties is documented for plasma densities from 5 x 10 12 to 2 x 10 14 cm -3 . Injection system data are compared with numerical calculations of the performance of the coupled system consisting of the generator, MITL, and diode

  16. Profile consistency, anomalous electron thermal conduction, and confinement analysis of tokamak devices

    International Nuclear Information System (INIS)

    Qu Wenxiao

    1992-01-01

    Assuming that there exists a position in the tokamak plasma where the energy transport is dominated by local anomalous electron thermal conduction and taking advantage of the basic experimental result usually referred to as profile consistency, the authors obtain a more convincing approach to the description of the confinement property of tokamak devices without touching upon the physical mechanism of global plasma energy transport. 8 refs

  17. Extraordinary mode absorption at the electron cyclotron harmonic frequencies as a Tokamak plasma diagnostic

    International Nuclear Information System (INIS)

    Pachtman, A.

    1986-09-01

    Measurements of Extraordinary mode absorption at the electron cyclotron harmonic frequencies are of unique value in high temperature, high density Tokamak plasma diagnostic applications. An experimental study of Extraordinary mode absorption at the semi-opaque second and third harmonics has been performed on the ALCATOR C Tokamak. A narrow beam of submillimeter laser radiation was used to illuminate the plasma in a horizontal plane, providing a continuous measurement of the one-pass, quasi-perpendicular transmission

  18. Electron and impurity transport studies in the TCV Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, D.

    2013-05-15

    In this thesis electron and impurity transport are studied in the Tokamak à Configuration Variable (TCV) located at CRPP-EPFL in Lausanne. Understanding particle transport is primordial for future nuclear fusion power plants. Modeling of experiments in many specific plasma scenarios can help to understand the common elements of the physics at play and to interpret apparently contradictory experiments on the same machine and across different machines. The first part of this thesis deals with electron transport in TCV high confinement mode plasmas. It was observed that the electron density profile in these plasmas flatten when intense electron heating is applied, in contrast to observations on other machines where the increase of the profile peakedness was reported. It is shown with quasi-linear gyrokinetic simulations that this effect, usually interpreted as collisionality dependence, stems from the combined effect of many plasma parameters. The influence of the collisionality, electron to ion temperature ratio, the ratio of temperature gradients, and the Ware-pinch are studied with detailed parameter scans. It is shown that the complex interdependence of the various plasma parameters is greatly simplified when the simulation results are interpreted as a function of the average frequency of the main modes contributing to radial transport. In this way the model is able to explain the experimental results. It was also shown that the same basic understanding is at play in L-modes, H-modes and electron internal transport barriers. The second part of the thesis is devoted to impurity transport. A multi-purpose gas injection system is developed, commissioned and calibrated. It is shown that the system is capable of massive gas injections to provoke disruptions and delivering small puffs of gaseous impurities for perturbative transport experiments. This flexible tool is exploited in a series of impurity transport measurements with argon and neon injections. The impurities

  19. Electron and impurity transport studies in the TCV Tokamak

    International Nuclear Information System (INIS)

    Wagner, D.

    2013-05-01

    In this thesis electron and impurity transport are studied in the Tokamak à Configuration Variable (TCV) located at CRPP-EPFL in Lausanne. Understanding particle transport is primordial for future nuclear fusion power plants. Modeling of experiments in many specific plasma scenarios can help to understand the common elements of the physics at play and to interpret apparently contradictory experiments on the same machine and across different machines. The first part of this thesis deals with electron transport in TCV high confinement mode plasmas. It was observed that the electron density profile in these plasmas flatten when intense electron heating is applied, in contrast to observations on other machines where the increase of the profile peakedness was reported. It is shown with quasi-linear gyrokinetic simulations that this effect, usually interpreted as collisionality dependence, stems from the combined effect of many plasma parameters. The influence of the collisionality, electron to ion temperature ratio, the ratio of temperature gradients, and the Ware-pinch are studied with detailed parameter scans. It is shown that the complex interdependence of the various plasma parameters is greatly simplified when the simulation results are interpreted as a function of the average frequency of the main modes contributing to radial transport. In this way the model is able to explain the experimental results. It was also shown that the same basic understanding is at play in L-modes, H-modes and electron internal transport barriers. The second part of the thesis is devoted to impurity transport. A multi-purpose gas injection system is developed, commissioned and calibrated. It is shown that the system is capable of massive gas injections to provoke disruptions and delivering small puffs of gaseous impurities for perturbative transport experiments. This flexible tool is exploited in a series of impurity transport measurements with argon and neon injections. The impurities

  20. Diagnosis of mildly relativistic electron velocity distributions by electron cyclotron emission in the Alcator C tokamak

    International Nuclear Information System (INIS)

    Kato, K.

    1986-09-01

    Mildly relativistic electron velocity distributions are diagnosed from measurements of the first few electron cyclotron emission harmonics in the Alcator C tokamak. The approach employs a vertical viewing chord through the center of the tokamak plasma terminating at a compact, high-performance viewing dump. The cyclotron emission spectra obtained in this way are dominated by frequency downshifts due to the relativistic mass increase, which discriminates the electrons by their total energy. In this way a one-to-one correspondence between the energy and the emission frequency is accomplished in the absence of harmonic superpositions. The distribution, described by f/sub p/, the line-averaged phase space density, and Λ, the anisotropy factor, is determined from the ratio of the optically thin harmonics or polarizations. Diagnosis of spectra in the second and the third harmonic range of frequencies obtained during lower hybrid heating, current drive, and low density ohmic discharges are carried out, using different methods depending on the degree of harmonic superposition present in the spectrum and the availability of more than one ratio measurement. Discussions of transient phenomena, the radiation temperature measurement from the optically thick first harmonic, and the measurements compared to the angular hard x-ray diagnostic results illuminate the capabilities of the vertically viewing electron cyclotron emission diagnostic

  1. Mitigation of current quench by runaway electrons in LHCD discharges in the HT-7 tokamak

    International Nuclear Information System (INIS)

    Lu, H.W.; Hu, L.Q.; Lin, S.Y.; Zhong, G.Q.

    2009-01-01

    Production of runaway electrons during a major disruption has been observed in HT-7 Tokamak. The runaway current plateaus, which can carry part of the pre-disruptive current, are observed in lower-hybrid current drive (LHCD) limiter discharges. It is found that the runaway current can mitigate the disruptions effectively. Detailed observations are presented on the runaway electrons generated following disruptions in the HT-7 tokamak with carbon limited discharges. The results indicate that the magnetic oscillations play an important role in the activity of runaway electrons in disruption. (author)

  2. Electron temperature fluctuation in the HT-7 tokamak plasma observed by electron cyclotron emission imaging

    International Nuclear Information System (INIS)

    Xiao-Yuan, Xu; Jun, Wang; Yi, Yu; Yi-Zhi, Wen; Chang-Xuan, Yu; Wan-Dong, Liu; Bao-Nian, Wan; Xiang, Gao; Luhmann, N. C.; Domier, C. W.; Wang, Jian; Xia, Z. G.; Shen, Zuowei

    2009-01-01

    The fluctuation of the electron temperature has been measured by using the electron cyclotron emission imaging in the Hefei Tokamak-7 (HT-7) plasma. The electron temperature fluctuation with a broadband spectrum shows that it propagates in the electron diamagnetic drift direction, and the mean poloidal wave-number k-bar θ is calculated to be about 1.58 cm −1 , or k-bar θρ s thickapprox 0.34. It indicates that the fluctuation should come from the electron drift wave turbulence. The linear global scaling of the electron temperature fluctuation with the gradient of electron temperature is consistent with the mixing length scale qualitatively. Evolution of spectrum of the fluctuation during the sawtooth oscillation phases is investigated, and the fluctuation is found to increase with the gradient of electron temperature increasing during most phases of the sawtooth oscillation. The results indicate that the electron temperature gradient is probably the driver of the fluctuation enhancement. The steady heat flux driven by electron temperature fluctuation is estimated and compared with the results from power balance estimation. (fluids, plasmas and electric discharges)

  3. The resonance between runaway electrons and magnetic ripple in HT-7 Tokamak

    International Nuclear Information System (INIS)

    Zhou Ruijie; Hu Liqun; Lu Hongwei; Lin Shiyao; Zhong Guoqiang; Xu Ping; Zhang Jizong

    2011-01-01

    For suppressing the energy of runaway electrons in tokamak plasma, we analyzed the X-ray energy spectra by runaway electrons in different discharges of the HT-7 tokamak experiment performed in the autumn of 2009. The resonant phenomenon between runaway electrons and magnetic ripple was found. Although, the energy of runaway electrons in the plasma core can be as high as several tens of MeV, but when they are transported to the edge, the electron energy are limited to a certain range by resonance with the magnetic ripple of different harmonic numbers. The runaway electrons under high loop voltage resonate with low step magnetic perturbations, with high energy gain; whereas the runaway electrons under low loop voltage resonate with high level magnetic perturbations, with low energy gain. Using this mechanism, the energy of runaway electrons can be restricted to a low level, and this will significantly mitigate the damage effect on the equipment caused by runaway electrons. (authors)

  4. Electron cyclotron absorption in Tokamak plasmas in the presence of radial transport of particles

    International Nuclear Information System (INIS)

    Rosa, Paulo R. da S.; Ziebell, Luiz F.

    1998-01-01

    We use quasilinear theory to study effects of particle radial transport on the electron cyclotron absorption coefficient by a current carrying plasma, in a tokamak modelated as a plasma slab. Our numerical results indicate significant modification in the profile of the electron cyclotron absorption coefficient when transport is taken into account relative to the situation without transport. (author)

  5. Generación y dinámica de electrones runaway en plasmas tokamak

    OpenAIRE

    Fernández Gómez, Isabel

    2016-01-01

    La dinámica y generación de electrones runaway en plasmas tokamak constituye el tema central de esta tesis. En un tokamak, el fenómeno runaway es el resultado de la existencia de un campo eléctrico en dirección toroidal. Aquellos electrones cuya velocidad excede un cierto valor crítico se aceleran de forma continua, ya que la e ciencia de las colisiones para disipar la energía ganada en el campo disminuye con la velocidad (∼ ⁻¹) . Se tiene entonces lo que se conoce como un electrón runaway. ...

  6. Effects of discharge cleaning on the production of runaway electrons in TORTUS tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Cross, R C; Liu, J R; Giannone, L. (Sydney Univ. (Australia). School of Physics)

    1983-06-01

    Experimental results are presented on the production of runaway electrons as a function of wall cleanliness in the TORTUS tokamak. When the walls are clean, the production rate decreases as the filling pressure increases. When the walls are contaminated by oxygen, the production rate can increase when the filling pressure is increased, owing to the production of water vapour during tokamak discharges. These results resolve the differences reported in the literature on the production of runaways as a function of filling pressure. It is also observed that the runaway electron instability seen in other devices is suppressed when the walls are discharge-cleaned.

  7. Effects of discharge cleaning on the production of runaway electrons in TORTUS tokamak

    International Nuclear Information System (INIS)

    Cross, R.C.; Liu, J.R.; Giannone, L.

    1983-01-01

    Experimental results are presented on the production of runaway electrons as a function of wall cleanliness in the TORTUS tokamak. When the walls are clean, the production rate decreases as the filling pressure increases. When the walls are contaminated by oxygen, the production rate can increase when the filling pressure is increased, owing to the production of water vapour during tokamak discharges. These results resolve the differences reported in the literature on the production of runaways as a function of filling pressure. It is also observed that the runaway electron instability seen in other devices is suppressed when the walls are discharge-cleaned. (author)

  8. Scaling law of runaway electrons in the HL-1M tokamak

    International Nuclear Information System (INIS)

    Zheng Yongzhen

    2005-01-01

    Runaway confinement time in ohmic and additionally heated tokamak plasmas presents an anomalous behavior in comparison with theoretical predictions based on neoclassical models. A one-dimensional numerical including generation and loss effects for runaway electrons is used to deduce the dependence of runaway energy ε τ on runaway confinement time. The simulation results are presented in the form of a scaling law for ε τ on plasma parameters. The scaling of ε τ and therefore the runaway confinement time and runaway electron diffusivity has been studied in the HL-1M tokamak, by measuring hard X-ray spectra under different experimental conditions. (authors)

  9. Simultaneous measurement of line electron density and Faraday rotation in the ISX-B tokamak

    International Nuclear Information System (INIS)

    Hutchinson, D.P.; Ma, C.H.; Staats, P.A.; Vander Sluis, K.L.

    1981-01-01

    A new diagnostic system utilizing a submillimetre-wave, phase-modulated polarimeter/interferometer has been used to simultaneously measure the time evolution of the line-averaged electron density and poloidal field-induced Faraday rotation in the ISX-B tokamak. The measurements, performed along four chords of the plasma column, have been correlated with poloidal field changes associated with a ramp in the Ohmic-heating current and by neutral-beam injection. These are the first simultaneous measurements of line electron density and Faraday rotation to be made along a chord of submillimetre laser beam in a tokamak plasma. (author)

  10. Oblique electron cyclotron emission for electron distribution studies (invited)

    International Nuclear Information System (INIS)

    Preische, S.; Efthimion, P.C.; Kaye, S.M.

    1997-01-01

    Electron cyclotron emission (ECE) at an oblique angle to the magnetic field provides a means of probing the electron distribution function both in energy and physical space through changes in and constraints on the relativistic electron cyclotron resonance condition. Diagnostics based on this Doppler shifted resonance are able to study a variety of electron distributions through changes in the location of the resonance in physical or energy space accomplished by changes in the viewing angle and frequency, and the magnetic field. For the case of observation across a changing magnetic field, such as across the tokamak midplane, the constraint on the resonance condition for real solutions to the dispersion relation can constrain the physical location of optically thin emission. A new Oblique ECE diagnostic was installed and operated on the PBX-M tokamak for the study of energetic electrons during lower hybrid current drive. It has a view 33 degree with respect to perpendicular in the tokamak midplane, receives second harmonic X-mode emission, and is constrained to receive single pass emission by SiC viewing dumps on the tokamak walls. Spatial localization of optically thin emission from superthermal electrons (50 endash 100 keV) was obtained by observation of emission upshifted from a thermal cyclotron harmonic. The localized measurements of the electron energy distribution and the superthermal density profile made by this diagnostic demonstrate its potential to study the spatial transport of energetic electrons on fast magnetohydrodynamic time scales or anomalous diffusion time scales. Oblique ECE can also be used to study electron distributions that may have a slight deviation from a Maxwellian by localizing the emission in energy space. (Abstract Truncated)

  11. Impedance of an intense plasma-cathode electron source for tokamak startup

    Science.gov (United States)

    Hinson, E. T.; Barr, J. L.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Perry, J. M.

    2016-05-01

    An impedance model is formulated and tested for the ˜1 kV , 1 kA/cm2 , arc-plasma cathode electron source used for local helicity injection tokamak startup. A double layer sheath is established between the high-density arc plasma ( narc≈1021 m-3 ) within the electron source, and the less dense external tokamak edge plasma ( nedge≈1018 m-3 ) into which current is injected at the applied injector voltage, Vinj . Experiments on the Pegasus spherical tokamak show that the injected current, Iinj , increases with Vinj according to the standard double layer scaling Iinj˜Vinj3 /2 at low current and transitions to Iinj˜Vinj1 /2 at high currents. In this high current regime, sheath expansion and/or space charge neutralization impose limits on the beam density nb˜Iinj/Vinj1 /2 . For low tokamak edge density nedge and high Iinj , the inferred beam density nb is consistent with the requirement nb≤nedge imposed by space-charge neutralization of the beam in the tokamak edge plasma. At sufficient edge density, nb˜narc is observed, consistent with a limit to nb imposed by expansion of the double layer sheath. These results suggest that narc is a viable control actuator for the source impedance.

  12. Proposed non-interferometric FIR electron density measuring scheme for Tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Dodel, G; Kunz, W [Stuttgart Univ. (TH) (Germany, F.R.). Inst. fuer Plasmaforschung

    1979-08-01

    Extension of FIR polarimetry to electron density measurements in Tokamaks is suggested as a possible alternative for devices in which FIR interferometry is not applicable or difficult to handle due to reduced accessibility or strong mechanical vibrations. The method is numerically simulated. The relative experimental simplicity compared with interferometry has to be paid for with symmetry assumptions which enter into the evaluation process.

  13. Microwave reflectrometry for electron density measurements in the TJ-1 tokamak plasma

    International Nuclear Information System (INIS)

    Anabitarte, E.; Bustamante, E.G.; Calderon, M.A.G.; Vegas, A.

    1986-01-01

    A study about microwave reflectometry to measure the outside profile of the electron plasma density on tokamak TJ-1 is presented. It is also presented the condition of applicability of this method after the characteristic parameters of the plasma and its resolution. The simulation of the plasma in laboratory by means of a metallic mirror causes the whole characterization of the reflectometer. (author)

  14. Effects of radial envelope modulations on the collisionless trapped-electron mode in tokamak plasmas

    Science.gov (United States)

    Chen, Hao-Tian; Chen, Liu

    2018-05-01

    Adopting the ballooning-mode representation and including the effects of radial envelope modulations, we have derived the corresponding linear eigenmode equation for the collisionless trapped-electron mode in tokamak plasmas. Numerical solutions of the eigenmode equation indicate that finite radial envelope modulations can affect the linear stability properties both quantitatively and qualitatively via the significant modifications in the corresponding eigenmode structures.

  15. Electron density and temperature determination in a Tokamak plasma using light scattering

    International Nuclear Information System (INIS)

    Perez-Navarro Gomez, A.; Zurro Hernandez, B.

    1976-01-01

    A theoretical foundation review for light scattering by plasmas is presented. Furthemore, a review of the experimental methods for electron density and temperature measurements, with spatial and time resolution, is included in a Tokamak plasma using spectral analysis of the scattered radiation. (author) [es

  16. Electron thermal transport barrier and magnetohydrodynamic activity observed in Tokamak plasmas with negative central shear

    NARCIS (Netherlands)

    M.R. de Baar,; Hogeweij, G. M. D.; Cardozo, N. J. L.; Oomens, A. A. M.; Schüller, F. C.

    1997-01-01

    In the Rijnhuizen Tokamak Project, plasmas with steady-state negative central shear (NCS) are made with off-axis electron cyclotron heating. Shifting the power deposition by 2 mm results in a sharp transition of confinement. The good confinement branch features a transport barrier at the off-axis

  17. Electron density and temperature determination in a Tokamak plasma using light scattering

    International Nuclear Information System (INIS)

    Perez-Navarro Gomerz, A.; Zurro Hernandez, B.

    1976-01-01

    A theoretical foundation review for light scattering by plasmas is presented. Furthermore, we have included a review of the experimental methods for electron density and temperature measurements, with spatial and time resolution, in a Tokamak plasma using spectral analysis of the scattered radiation. (Author) 13 refs

  18. Superthermal photon bunching in terms of simple probability distributions

    Science.gov (United States)

    Lettau, T.; Leymann, H. A. M.; Melcher, B.; Wiersig, J.

    2018-05-01

    We analyze the second-order photon autocorrelation function g(2 ) with respect to the photon probability distribution and discuss the generic features of a distribution that results in superthermal photon bunching [g(2 )(0 ) >2 ]. Superthermal photon bunching has been reported for a number of optical microcavity systems that exhibit processes such as superradiance or mode competition. We show that a superthermal photon number distribution cannot be constructed from the principle of maximum entropy if only the intensity and the second-order autocorrelation are given. However, for bimodal systems, an unbiased superthermal distribution can be constructed from second-order correlations and the intensities alone. Our findings suggest modeling superthermal single-mode distributions by a mixture of a thermal and a lasinglike state and thus reveal a generic mechanism in the photon probability distribution responsible for creating superthermal photon bunching. We relate our general considerations to a physical system, i.e., a (single-emitter) bimodal laser, and show that its statistics can be approximated and understood within our proposed model. Furthermore, the excellent agreement of the statistics of the bimodal laser and our model reveals that the bimodal laser is an ideal source of bunched photons, in the sense that it can generate statistics that contain no other features but the superthermal bunching.

  19. Measurement of high-energy electrons by means of a Cherenkov detector in ISTTOK tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Jakubowski, L., E-mail: lech.Jjakubowski@ipj.gov.p [Andrzej Soltan Institute for Nuclear Studies (IPJ), 05-400 Otwock-Swierk (Poland); Zebrowski, J. [Andrzej Soltan Institute for Nuclear Studies (IPJ), 05-400 Otwock-Swierk (Poland); Plyusnin, V.V. [Association Euratom/IST, Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Av. Rovisco Pais, 1049 - 001 Lisboa (Portugal); Malinowski, K.; Sadowski, M.J.; Rabinski, M. [Andrzej Soltan Institute for Nuclear Studies (IPJ), 05-400 Otwock-Swierk (Poland); Fernandes, H.; Silva, C.; Duarte, P. [Association Euratom/IST, Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Av. Rovisco Pais, 1049 - 001 Lisboa (Portugal)

    2010-10-15

    The paper concerns detectors of the Cherenkov radiation which can be used to measure high-energy electrons escaping from short-living plasma. Such detectors have high temporal (about 1 ns) and spatial (about 1 mm) resolution. The paper describes a Cherenkov-type detector which was designed, manufactured and installed in the ISTTOK tokamak in order to measure fast runaway electrons. The radiator of that detector was made of an aluminium nitride (AlN) tablet with a light-tight filter on its front surface. Cherenkov signals from the radiator were transmitted through an optical cable to a fast photomultiplier. It made possible to perform direct measurements of the runaway electrons of energy above 80 keV. The measured energy values and spatial characteristics of the recorded electrons appeared to be consistent with results of numerical modelling of the runaway electron generation process in the ISTTOK tokamak.

  20. Flow shear stabilization of hybrid electron-ion drift mode in tokamaks

    International Nuclear Information System (INIS)

    Bai, L.

    1999-01-01

    In this paper, a model of sheared flow stabilization on hybrid electron-ion drift mode is proposed. At first, in the presence of dissipative trapped electrons, there exists an intrinsic oscillation mode in tokamak plasmas, namely hybrid dissipative trapped electron-ion temperature gradient mode (hereafter, called as hybrid electron-ion drift mode). This conclusion is in agreement with the observations in the simulated tokamak experiment on the CLM. Then, it is found that the coupling between the sheared flows and dissipative trapped electrons is proposed as the stabilization mechanism of both toroidal sheared flow and poloidal sheared flow on the hybrid electron-ion drift mode, that is, similar to the stabilizing effect of poloidal sheared flow on edge plasmas in tokamaks, in the presence of both dissipative trapped electrons and toroidal sheared flow, large toroidal sheared flow is always a strong stabilizing effect on the hybrid electron-ion drift mode in internal transport barrier location, too. This result is consistent with the experimental observations in JT-60U. (author)

  1. Flow shear stabilization of hybrid electron-ion drift mode in tokamaks

    International Nuclear Information System (INIS)

    Bai, L.

    2001-01-01

    In this paper, a model of sheared flow stabilization on hybrid electron-ion drift mode is proposed. At first, in the presence of dissipative trapped electrons, there exists an intrinsic oscillation mode in tokamak plasmas, namely hybrid dissipative trapped electron-ion temperature gradient mode (hereafter, called as hybrid electron-ion drift mode). This conclusion is in agreement with the observations in the simulated tokamak experiment on the CLM. Then, it is found that the coupling between the sheared flows and dissipative trapped electrons is proposed as the stabilization mechanism of both toroidal sheared flow and poloidal sheared flow on the hybrid electron-ion drift mode, that is, similar to the stabilizing effect of poloidal sheared flow on edge plasmas in tokamaks, in the presence of both dissipative trapped electrons and toroidal sheared flow, large toroidal sheared flow is always a strong stabilizing effect on the hybrid electron-ion drift mode in internal transport barrier location, too. This result is consistent with the experimental observations in JT-60U. (author)

  2. Thermal and superthermal properties of supersymmetric field theories

    International Nuclear Information System (INIS)

    Fuchs, J.

    1984-01-01

    We discuss the finite-temperature behaviour of supersymmetric field theories. We show that their 'superthermal' properties which concern the question of susy breaking at finite temperature and their thermal properties must be considered separately. Susy breaking is determined by the so-called superthermal ensemble, whereas thermodynamical properties follow from the conventional thermal ensemble, leading to the usual statistics for the bosonic and fermionic components of a superfield. We show that superspace techniques can be used in a straightforward way only for superthermal Green functions but not for thermal ones. We also discuss the possibility of finite-temperature susy restoration and the implications of Goldstone's theorem at finite temperature. (orig.)

  3. Equilibrium, confinement and stability of runaway electrons in tokamaks

    International Nuclear Information System (INIS)

    Spong, D.A.

    1976-03-01

    Some of the ramifications of the runaway population in tokamak experiments are investigated. Consideration is given both to the normal operating regime of tokamaks where only a small fraction of high energy runaways are present and to the strong runaway regime where runaways are thought to carry a significant portion of the toroidal current. In particular, the areas to be examined are the modeling of strong runaway discharges, single particle orbit characteristics of runaways, macroscopic beam-plasma equilibria, and stability against kink modes. A simple one-dimensional, time-dependent model has been constructed in relation to strong runaway discharges. Single particle orbits are analyzed in relation to both the strong runaway regime and the weak regime. The effects of vector E x vector B drifts are first considered in strong runaway discharges and are found to lead to a slow inward shrinkage of the beam. Macroscopic beam-plasma equilibria are treated assuming a pressureless relativistic beam with inertia and using an ideal MHD approximation for the plasma. The stability of a toroidal relativistic beam against kink perturbations is examined using several models

  4. RECENT DEVELOPMENTS ON THE 110 GHz ELECTRON CYCLOTRON INSTATLLATION ON THE DIII-D TOKAMAK

    International Nuclear Information System (INIS)

    PONCE, D.; CALLIS, R.W.; CARY, W.P.; FERRON, J.R.; GREEN, M.; GRUNLOH, H.J.; GORELOV, Y.; LOHR, J.; ELLIS, R.A.

    2002-01-01

    OAK A271 RECENT DEVELOPMENTS ON THE 110 GHZ ELECTRON CYCLOTRON INSTALLATION ON THE DIII-D TOKAMAK. Significant improvements are being implement4ed to the capability of the 110 GHz electron cyclotron system on the DIII-D tokamak. Chief among these is the addition of the fifth and sixth 1 MW class gyrotrons, increasing the power available for auxiliary heating and current drive by nearly 60%. These tubes use artificially grown diamond rf output windows to obtain high power with long pulse capability. The beams from these tubes are nearly Gaussian, facilitating coupling to the waveguide. A new fully articulating dual launcher capable of high speed spatial scanning has been designed and tested. The launcher has two axis independent steering for each waveguide. the mirrors can be rotated at up to 100 o /s. A new feedback system linking the DIII-D Plasma Control System (PCS) with the gyrotron beam voltage waveform generators permits real-time feedback control of some plasma properties such as electron temperature. The PCS can use a variety of plasma monitors to generate its control signal, including electron cyclotron emission and Mirnov probes. Electron cyclotron heating and electron cyclotron current drive (ECH and ECCD) were used during this year's DIII-D experimental campaign to control electron temperature, density, and q profiles, induce an ELM-free H-mode, and suppress the m=2/n=1 neoclassical tearing mode. The new capabilities have expanded the role of EC systems in tokamak plasma control

  5. Experimental investigation on electron cyclotron absorption at down-shifted frequency in the PLT tokamak

    International Nuclear Information System (INIS)

    Mazzucato, E.; Fidone, I.; Cavallo, A.; von Goeler, S.; Hsuan, H.

    1986-05-01

    The absorption of 60 GHz electron cyclotron waves, with the extraordinary mode and an oblique angle of propagation, has been investigated in the PLT tokamak in the regime of down-shifted frequencies. The production of energetic electrons, with energies of up to 300 to 400 keV, peaks at values of toroidal field (approx. =29 kG) for which the wave frequency is significantly smaller than the electron cyclotron frequency in the whole plasma region. The observations are consistent with the predictions of the relativistic theory of electron cyclotron damping at down-shifted frequency. Existing rf sources make this process a viable method for assisting the current ramp-up, and for heating the plasma of present large tokamaks

  6. First Direct Observation of Runaway-Electron-Driven Whistler Waves in Tokamaks

    Science.gov (United States)

    Spong, D. A.; Heidbrink, W. W.; Paz-Soldan, C.; Du, X. D.; Thome, K. E.; Van Zeeland, M. A.; Collins, C.; Lvovskiy, A.; Moyer, R. A.; Austin, M. E.; Brennan, D. P.; Liu, C.; Jaeger, E. F.; Lau, C.

    2018-04-01

    DIII-D experiments at low density (ne˜1019 m-3 ) have directly measured whistler waves in the 100-200 MHz range excited by multi-MeV runaway electrons. Whistler activity is correlated with runaway intensity (hard x-ray emission level), occurs in novel discrete frequency bands, and exhibits nonlinear limit-cycle-like behavior. The measured frequencies scale with the magnetic field strength and electron density as expected from the whistler dispersion relation. The modes are stabilized with increasing magnetic field, which is consistent with wave-particle resonance mechanisms. The mode amplitudes show intermittent time variations correlated with changes in the electron cyclotron emission that follow predator-prey cycles. These can be interpreted as wave-induced pitch angle scattering of moderate energy runaways. The tokamak runaway-whistler mechanisms have parallels to whistler phenomena in ionospheric plasmas. The observations also open new directions for the modeling and active control of runaway electrons in tokamaks.

  7. Suprathermal electron studies in the TCV tokamak: Design of a tomographic hard-x-ray spectrometer

    International Nuclear Information System (INIS)

    Gnesin, S.; Coda, S.; Decker, J.; Peysson, Y.

    2008-01-01

    Electron cyclotron resonance heating and electron cyclotron current drive, disruptive events, and sawtooth activity are all known to produce suprathermal electrons in fusion devices, motivating increasingly detailed studies of the generation and dynamics of this suprathermal population. Measurements have been performed in the past years in the tokamak a configuration variable (TCV) tokamak using a single pinhole hard-x-ray (HXR) camera and electron-cyclotron-emission radiometers, leading, in particular, to the identification of the crucial role of spatial transport in the physics of ECCD. The observation of a poloidal asymmetry in the emitted suprathermal bremsstrahlung radiation motivates the design of a proposed new tomographic HXR spectrometer reported in this paper. The design, which is based on a compact modified Soller collimator concept, is being aided by simulations of tomographic reconstruction. Quantitative criteria have been developed to optimize the design for the greatly variable shapes and positions of TCV plasmas.

  8. Electrons of high perpendicular energy in the low-density regime of Tokamaks

    International Nuclear Information System (INIS)

    Bornatici, M.; Engelmann, F.

    1978-01-01

    Effects due to instabilities excited in the low-density regime of tokamaks by runaway electrons via the cyclotron resonance ω+Ω=kV along with the formation of a positive slope in the runaway distribution are considered. Conditions for the production of electrons of high perpendicular energy and their trapping in toroidal field ripples, leading to liner damage, are discussed and found to be rather stringent. Fairly good agreement with the experiments is found

  9. Electron temperature and density relaxations during internal disruptions in TFR Tokamak plasmas

    International Nuclear Information System (INIS)

    Enriques, L.; Sand, F.

    1977-01-01

    Several diagnostics (soft X-ray, Thompson scattering, high frequency waves, and vacuum ultraviolet spectroscopy) have been used on TFR Tokamak plasmas in order to show that the soft X-ray relaxations are mainly due to electron temperature relaxations, with only small variations of the electron density. Values of ΔTsub(eo)/Tsub(eo) up to 17% and of Δnsub(eo)/nsub(eo) of a few % or less have been measured. (author)

  10. Electron temperature and density relaxations during internal disruptions in TFR Tokamak plasmas

    International Nuclear Information System (INIS)

    1976-07-01

    Several diagnostics (soft X-ray, Thomson scattering, high frequency waves, and vacuum ultraviolet spectroscopy) have been used on TFR Tokamak plasmas in order to show that the soft X-ray relaxations are mainly due to electron temperature relaxations, with only small variations of the electron density. Values of ΔTsub(e0)/Tsub(e0) up to 17% and of Δnsub(e0)/nsub(e0) of a few % or less have been measured

  11. On the avalanche generation of runaway electrons during tokamak disruptions

    International Nuclear Information System (INIS)

    Martín-Solís, J. R.; Loarte, A.; Lehnen, M.

    2015-01-01

    A simple zero dimensional model for a tokamak disruption is developed to evaluate the avalanche multiplication of a runaway primary seed during the current quench phase of a fast disruptive event. Analytical expressions for the plateau runaway current, the energy of the runaway beam, and the runaway energy distribution function are obtained allowing the identification of the parameters dominating the formation of the runaway current during disruptions. The effect of the electromagnetic coupling to the vessel and the penetration of the external magnetic energy during the disruption current quench as well as of the collisional dissipation of the runaway current at high densities are investigated. Current profile shape effects during the formation of the runaway beam are also addressed by means of an upgraded one-dimensional model

  12. Measurement of peripheral electron temperature by electron cyclotron emission during the H-mode transition in JFT-2M tokamak

    International Nuclear Information System (INIS)

    Hoshino, Katsumichi; Yamamoto, Takumi; Kawashima, Hisato

    1987-01-01

    Time evolution and profile of peripheral electron temperature during the H-mode like transition in a tokamak plasma is measured using the second and third harmonic of electron cyclotron emission (ECE). The so called ''H-mode'' state which has good particle/energy confinement is characterized by sudden decrease in the spectral line intensity of deuterium molecule. Such a sudden decrease in the line intensity of D α with good energy confinement is found not only in divertor discharges, but also in limiter dischargs in JFT-2M tokamak. It is found by the measurement of ECE that the peripheral electron temperature suddenly increases in both of such phases. The relation between H-transition and the peripheral electron temperature or its profile is investigated. (author)

  13. Microwave measurements of the time evolution of electron density in the T-11M tokamak

    International Nuclear Information System (INIS)

    Petrov, V.G.; Petrov, A.A.; Malyshev, A.Yu.; Markov, V.K.; Babarykin, A.V.

    2004-01-01

    Unambiguous diagnostics intended for measuring the time behavior of the electron density and monitoring the line-averaged plasma density in the T-11M tokamak are described. The time behavior of the plasma density in the T-11M tokamak is measured by a multichannel phase-jump-free microwave polarization interferometer based on the Cotton-Mouton effect. After increasing the number of simultaneously operating interferometer channels and enhancing the sensitivity of measurements, it became possible to measure the time evolution of the plasma density profile in the T-11M tokamak. The first results from such measurements in various operating regimes of the T-11M tokamak are presented. The measurement and data processing techniques are described, the measurement errors are analyzed, and the results obtained are discussed. We propose using a pulsed time-of-flight refractometer to monitor the average plasma density in the T-11M tokamak. The refractometer emits nanosecond microwave probing pulses with a carrier frequency that is higher than the plasma frequency and, thus, operates in the transmission mode. A version of the instrument has been developed with a carrier frequency of 140 GHz, which allows one to measure the average density in regimes with a nominal T-11M plasma density of (3-5) x 10 13 cm -3 . Results are presented from the first measurements of the average density in the T-11M tokamak with the help of a pulsed time-of-flight refractometer by probing the plasma in the equatorial plane in a regime with the reflection of the probing radiation from the inner wall of the vacuum chamber

  14. Study of the electron heat transport in Tore-Supra tokamak

    International Nuclear Information System (INIS)

    Harauchamps, E.

    2004-01-01

    This work presents analytical solutions to the electron heat transport equation involving a damping term and a convection term in a cylindrical geometry. These solutions, processed by Matlab, allow the determination of the evolution of the radial profile of electron temperature in tokamaks during heating. The modulated injection of waves around the electron cyclotron frequency is an efficient tool to study heat transport experimentally in tokamaks. The comparison of these analytical solutions with experimental results from Tore-Supra during 2 discharges (30550 and 31165) shows the presence of a sudden change for the diffusion and damping coefficients. The hypothesis of the presence of a pinch spread all along the plasma might explain the shape of the experimental temperature profiles. These analytical solutions could be used to determine the time evolution of plasma density as well or of any parameter whose evolution is governed by a diffusion-convection equation. (A.C.)

  15. Breakdown assisted by a novel electron drift injection in the J-TEXT tokamak

    International Nuclear Information System (INIS)

    Wang, Nengchao; Jin, Hai; Zhuang, Ge; Ding, Yonghua; Pan, Yuan; Cen, Yishun; Chen, Zhipeng; Huang, Hai; Liu, Dequan; Rao, Bo; Zhang, Ming; Zou, Bichen

    2014-01-01

    A novel electron drift injection (EDI) system aiming to improve breakdown behavior has been designed and constructed on the Joint Texas EXperiment Tokamak Tokamak. Electrons emitted by the system undergo the E×B drift, ∇B drift and curvature drift in sequence in order to traverse the confining magnetic field. A local electrostatic well, generated by a concave-shaped plate biased more negative than the cathode, is introduced to interrupt the emitted electrons moving along the magnetic field line (in the parallel direction) in an attempt to bring an enhancement of the injection efficiency and depth. A series of experiments have demonstrated the feasibility of this method, and a penetration distance deeper than 9.5 cm is achieved. Notable breakdown improvements, including the reduction of breakdown delay and average loop voltage, are observed for discharges assisted by EDI. The lower limit of successfully ionized pressure is expanded

  16. A relativistic model of electron cyclotron current drive efficiency in tokamak plasmas

    Directory of Open Access Journals (Sweden)

    Lin-Liu Y.R.

    2012-09-01

    Full Text Available A fully relativistic model of electron cyclotron current drive (ECCD efficiency based on the adjoint function techniques is considered. Numerical calculations of the current drive efficiency in a tokamak by using the variational approach are performed. A fully relativistic extension of the variational principle with the modified basis functions for the Spitzer function with momentum conservation in the electron-electron collision is described in general tokamak geometry. The model developed has generalized that of Marushchenko’s (N.B . Marushchenko, et al. Fusion Sci. & Tech., 2009, which is extended for arbitrary temperatures and covers exactly the asymptotic for u ≫ 1 when Z → ∞, and suitable for ray-tracing calculations.

  17. Experimental studies of thermal and non-thermal electron cyclotron phenomena in tokamaks

    International Nuclear Information System (INIS)

    McDermott, F.S.

    1984-12-01

    A direct measurement of wave absorption in the ISX-B tokamak at the second harmonic of the electron cyclotron frequency is reported. Measurements of the absorption of a wave polarized in the extraordinary mode and propagating perpendicular to the toroidal magnetic field are in agreement with the absorption predicted by the linearized Vlasov equation for a thermal plasma. Agreement is found both for an analytic approximation to the wave absorption and for a numerical simulation of ray propagation in toroidal geometry. Observations are also reported on a non-linear, three-wave interaction process occurring during high power electron cyclotron resonance heating in the Versator II tokamak. The measured spectra and the threshold power are consistent with a model in which the incident power in the extraordinary mode of polarization decays at the upper hybrid resonance layer into a lower hybrid wave and an electron Bernstein wave. Finally, measurements of non-thermal emission at the second harmonic of the electron cyclotron frequency and below the electron plasma frequency are reported from low density, non-Maxwellian plasma in the Versator II tokamak. The emission spectra are in agreement with a model in which waves are driven unstable at the anomalous Doppler resonance, while only weakly damped at the Cerenkov resonance

  18. Correlation of electron beams and hard x-ray emissions in ISTTOK Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Jakubowski, L.; Malinowski, K.; Sadowski, M.J.; Zebrowski, J.; Rabinski, M.; Jakubowski, M.J. [National Centre for Nuclear Research (NCBJ), Otwock (Poland); Plyusnin, V.V.; Fernandes, H.; Silva, C.; Duarte, P. [Association Euratom/IST, Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Lisboa (Portugal)

    2013-11-15

    The paper reports on experimental studies of electron beams in the ISTTOK tokamak, those were performed by means of an improved four-channel detector. The Cherenkov-type detector measuring head was equipped with four radiators made of two types of alumina-nitrate (AlN) poly-crystals: machinable and translucent ones, both of 10 mm in diameter and 2.5 mm in thickness. The movable support that enabled the whole detectors to be placed inside the tokamak vacuum chamber, at chosen positions along the ISTTOK minor radius. Since the electron energy distribution is one of the most important characteristics of tokamak plasmas, the main aim of the study was to perform estimations of an energy spectrum of the recorded electrons. For this purpose the radiators were coated with molybdenum (Mo) layers of different thickness. The technique based on the use of Cherenkov-type detectors enabled the detection of fast electrons (of energy above 66 keV) and determination of their spatial and temporal characteristics in the ISTTOK experiment. Measurements of hard X-rays (HXR), which were emitted during ISTTOK discharges, have also been performed. Particular attention was paid to the correlation measurements of HXR pulses with run-away electron beams. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Neoclassical electron heat conduction in tokamaks performed by the ions

    International Nuclear Information System (INIS)

    Ware, A.A.

    1987-07-01

    The increment to neoclassical ion heat conduction caused by electron collisions is shown to act like electron heat conduction since the energy is taken from and given back to the electrons at each diffusion step length. It can exceed electron neoclassical heat conduction by an order of magnitude

  20. Instability connected with a beam of run-away electrons in the Tokamak TM-3

    International Nuclear Information System (INIS)

    Alikaev, V.V.; Razumova, K.A.; Sokolov, Yu.A.

    The study of the instability of runaway electrons on the Tokamak TM-3 is continued. The longitudinal energy of runaway electrons that have undergone deceleration during instability is estimated from measurements of superhigh frequency radiation of plasma. A connection was found between the effect of a small fraction of energy protons (observed previously with a low plasma concentration) and the instability being studied. As instability develops, the longitudinal energy of runaway electrons is partially transformed to the transverse degree of freedom of these electrons and is partially transmitted to the basic plasma component

  1. Electron density and temperature determination in a Tokamak plasma using light scattering; Determinacion de la densidad y temperatura electronicas en un Tokamak mediante difusion luminosa

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Navarro Gomerz, A; Zurro Hernandez, B

    1976-07-01

    A theoretical foundation review for light scattering by plasmas is presented. Furthermore, we have included a review of the experimental methods for electron density and temperature measurements, with spatial and time resolution, in a Tokamak plasma using spectral analysis of the scattered radiation. (Author) 13 refs.

  2. Photo nuclear data needed to understand multi-MeV electrons behaviour on the ITER Tokamak

    International Nuclear Information System (INIS)

    Joyer, P.; Martin, G.

    1994-01-01

    During early operation of the future tokamak ITER, electrons will be accelerated up to hundreds of MeV during unavoidable disruptions of the plasma current. As they impinge on the vacuum vessel, they will create high intensity X-ray beams, source of high activation spots by photo nuclear spallation reactions. To estimate beforehand the induced dose rates, a reliable set of cross sections is needed: reactions of X-rays (from 10 to 500 MeV) on a few usual materials. In addition, to characterize these electron beams on present day tokamaks, as Tore-Supra, additional data for some more exotic elements in a lower energy range (< 100 MeV) could be useful. (authors). 6 refs., 2 figs

  3. Selected methods of electron-and ion-diagnostics in tokamak scrape-off-layer

    Directory of Open Access Journals (Sweden)

    Sadowski Marek J.

    2015-06-01

    Full Text Available This invited paper considers reasons why exact measurements of fast electron and ion losses in tokamaks, and particularly i n a scrape-off-layer and near a divertor region, are necessary in order to master nuclear fusion energy production. Attention is also paid to direct measurements of escaping fusion products from D-D and D-T reactions, and in particular of fast alphas which might be used for plasma heating. The second part describes the generation of so-called runaway and ripple-born electrons which might induce high energy losses and cause severe damages of internal walls in fusion facilities. Advantages and disadvantages of different diagnostic methods applied for studies of such fast electrons are discussed. Particular attention is paid to development of a direct measuring technique based on the Cherenkov effect which might be induced by fast electrons in appropriate radiators. There are presented various versions of Cherenkov-type probes which have been developed by the NCBJ team and applied in different tokamak experiments. The third part is devoted to direct measurements of fast ions (including those produced by the nuclear fusion reactions which can escape from a high-temperature plasma region. Investigation of fast fusion-produced protons from tokamak discharges is reported. New ion probes, which were developed by the NCBJ team, are also presented. For the first time there is given a detailed description of an ion pinhole camera, which enables irradiation of several nuclear track detectors during a single tokamak discharge, and a miniature Thomson-type mass-spectrometer, which can be used for ion measurements at plasma borders.

  4. Generation of suprathermal electrons during plasma current startup by lower hybrid waves in a tokamak

    International Nuclear Information System (INIS)

    Ohkubo, K.; Toi, K.; Kawahata, K.

    1984-10-01

    Suprathermal electrons which carry a seed current are generated by non-resonant parametric decay instability during initial phase of lower hybrid current startup in the JIPP T-IIU tokamak. From the numerical analysis, it is found that parametrically excited lower hybrid waves at lower side band can bridge the spectral gap between the thermal velocity and the low velocity end in the pump power spectrum. (author)

  5. Sawtooth control by on-axis electron cyclotron current drive on the WT-3 tokamak

    International Nuclear Information System (INIS)

    Asakawa, M.; Tanabe, K.; Nakayama, A.; Watanabe, M.; Nakamura, M.; Tanaka, H.; Maekawa, T.; Terumichi, Y.

    1999-01-01

    The experiments on control of sawtooth oscillations (STO) by electron cyclotron current drive (ECCD) have been performed on the WT-3 tokamak. Stabilization and excitation of STO are observed for counter-ECCD and co-ECCD, respectively, when the position of the power deposition is located inside the inversion radius. These results are due to the modification of the current profile near the magnetic axis. (author)

  6. Plasma electron density measurement with multichannel microwave interferometer on the HL-1 tokamak device

    International Nuclear Information System (INIS)

    Xu Deming; Zhang Hongyin; Liu Zetian; Ding Xuantong; Li Qirui; Wen Yangxi

    1989-11-01

    A multichannel microwave interferometer which is composed of different microwave interferometers (one 2 mm band, one 4 mm band and two 8 mm band) has been used to measure the plasma electron density on HL-1 tokamak device. The electron density approaching to 5 x 10 13 cm -3 is measured by a 2 mm band microwave interferometer. In the determinable range, the electron density profile in the cross-section on HL-1 device has been measured by this interferometer. A microcomputer data processing system is also developed

  7. Electron cyclotron heating of a tokamak reactor at down-shifted frequencies

    International Nuclear Information System (INIS)

    Fidone, I.; Giruzzi, G.; Mazzucato, E.

    1985-01-01

    The absorption of electron cyclotron waves in a hot and dense tokamak plasma is investigated for the case of the extraordinary mode for outside launching. It is shown that, for electron temperatures T/sub e/ greater than or equal to 5 keV, strong absorption occurs for oblique propagation at frequencies significantly below the electron gyrofrequency at the plasma center. A new density dependence of the wave absorption is found which is more favorable for plasma heating than the familiar n/sub e/ -1 scaling

  8. Electron cyclotron heating studies of the Compact Ignition Tokamak (CIT)

    International Nuclear Information System (INIS)

    Porkolab, M.; Bonoli, P.T.; Englade, R.; Myer, R.; Smith, G.R.; Kritz, A.H.

    1989-01-01

    The Compact Ignition Tokamak (CIT) operating scenario calls for ramping the toroidal magnetic field from B/sub T/ = 7.0 (8.0) to 10.0 Tesla in a few seconds, followed by a burn cycle and a ramp-down cycle. Simultaneously, the plasma must be heated from an initial low beta equilibrium (/bar /beta// ≅ 0.44% at 7.0 to 8.0 Tesla) to a final burn equilibrium (/bar /beta// = 2.8%) having 10.0 Tesla on the magnetic axis. Since the toroidal plasma current will be ramped at the same time and since the available time for flat-top magnetic field must be reserved for the burn cycle, it is imperative that densification and heating be carried out as the magnetic field is ramped. Here we examine an approach which is applicable to ECR heating. The frequency remains constant, while the angle of injection is varied by simply rotating a reflecting mirror placed in the path of the incident microwave beam. The rotating mirror permits one to launch waves with sufficiently high N/sub /parallel// so that the Doppler broadened resonance of particles on the magnetic axis with f = 280 GHz and B/sub T/ = 7.0--8.0 Tesla can provide adequate absorption. As the resonance layer moves toward the magnetic axis the beam is swept toward perpendicular to reduce the Doppler width and avoid heating the plasma edge. At B/sub T/ = 10.0 Tesla the beam will be at normal incidence with strong absorption immediately on the high field side of the resonance (relativistic regime). We envisage using the ordinary mode (O-mode, /rvec E//sub RF/ /parallel/ /rvec B/) of polarization which is accessible from the outside (low-field side) of the torus provided the density is such that ω/sub pe/ ≤ ω ∼ ω/sub ce/ (max). 8 refs., 3 figs

  9. Nonlinear trapped electron mode and anomalous heat transport in tokamaks

    International Nuclear Information System (INIS)

    Kaw, P.K.

    1982-01-01

    We take the phenomenological point of view that the anomalous electron thermal conductivity produced by the non-linear trapped electron mode should also influence the stability properties of the mode itself. Using a model equation, we show that this effect makes the mode self-stabilizing. A simple expression for the anomalous thermal conductivity is derived, and its scaling properties are discussed. (orig.)

  10. Fokker-Planck theory of electron cyclotron assisted startup and breakdown in Tokamaks

    International Nuclear Information System (INIS)

    Fidone, I.; Granata, G.

    1993-04-01

    The kinetic theory of plasma startup in a tokamak in the presence of electron cyclotron resonance heating is discussed. The linear theory of the X-mode and the upper-hybrid converted mode damping in low density and temperature plasmas are first reviewed. Then, the kinetic equation for the electron velocity distribution is considered, which is determined by the perpendicular electron cyclotron quasilinear diffusion operator, the parallel electric field, elastic and inelastic electron-neutral collisions and various losses. Two different time scales, namely the elastic electron-neutral collision time and the much longer ionization time, are identified. Thus a two time scale ordering procedure is legitimated for which the velocity distribution is determined by the quasilinear diffusion and the electron-neutral collision frequency; the ionization rate is computed using the Fokker-Planck solution for the electron velocity distribution

  11. Theoretical and experimental studies of runaway electrons in the TEXTOR tokamak

    International Nuclear Information System (INIS)

    Abdullaev, S.S.; Finken, K.H.; Wongrach, K.; Willi, O.

    2016-01-01

    Theoretical and experimental studies of runaway electrons in tokamaks and their mitigations, particularly the recent studies performed by a group of the Heinrich-Heine University Duesseldorf in collaboration with the Institute of Energy and Climate Research of the Research Centre (Forschungszentrum) of Juelich are reviewed. The main topics focus on (i) runaway generation mechanisms, (ii) runaway orbits in equilibrium plasma, (iii) transport in stochastic magnetic fields, (iv) diagnostics and investigations of transport of runaway electron and their losses in low density discharges (v) runaway electrons during plasma disruptions, and (vi) runaway mitigation methods. The development of runaway diagnostics enables the measurement of runaway electrons in both the centre and edge of the plasma. The diagnostics provide an absolute runaway energy resolved measurement, the radial decay length of runaway electrons and, the structure and dynamics of runaway electron beams. The new mechanism of runaway electron formation during plasma disruptions is discussed.

  12. Theoretical and experimental studies of runaway electrons in the TEXTOR tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Abdullaev, S.S.; Finken, K.H.; Wongrach, K.; Willi, O.

    2016-07-01

    Theoretical and experimental studies of runaway electrons in tokamaks and their mitigations, particularly the recent studies performed by a group of the Heinrich-Heine University Duesseldorf in collaboration with the Institute of Energy and Climate Research of the Research Centre (Forschungszentrum) of Juelich are reviewed. The main topics focus on (i) runaway generation mechanisms, (ii) runaway orbits in equilibrium plasma, (iii) transport in stochastic magnetic fields, (iv) diagnostics and investigations of transport of runaway electron and their losses in low density discharges (v) runaway electrons during plasma disruptions, and (vi) runaway mitigation methods. The development of runaway diagnostics enables the measurement of runaway electrons in both the centre and edge of the plasma. The diagnostics provide an absolute runaway energy resolved measurement, the radial decay length of runaway electrons and, the structure and dynamics of runaway electron beams. The new mechanism of runaway electron formation during plasma disruptions is discussed.

  13. Runaway electron transport studies in the HL-1M tokamak

    International Nuclear Information System (INIS)

    Zheng Yongzhen; Qi Changwei; Ding Xuantong; Li Wenzhong

    2002-01-01

    The transport of runaway electrons in a hot plasma has been studied in four experiments, which provide the runaway diffusivity D r The first experiment obtained runaway electrons using a steady state approach for values of the runaway confinement time τ r , deduced from hard X-ray bremsstrahlung spectra. In the second experiment, diffusion has been interpreted in terms of the magnetic fluctuation, from which a electron thermal diffusivity can be deduced. Runaway electro diffusion coefficient is determined by intrinsic magnetic fluctuations, rather than electrostatic fluctuations because of the high energy involved. The results presented here demonstrate the efficiency of using runaway transport techniques for determining intrinsic magnetic fluctuations

  14. Microtearing Instabilities and Electron Transport in the NSTX Spherical Tokamak

    International Nuclear Information System (INIS)

    Wong, K.L.; Kaye, S.; Mikkelsen, D.R.; Krommes, J.A.; Hill, K.; Bell, R.; LeBlanc, B.

    2007-01-01

    We report a successful quantitative account of the experimentally determined electron thermal conductivity χ e in a beam-heated H mode plasma by the magnetic fluctuations from microtearing instabilities. The calculated χ e based on existing nonlinear theory agrees with the result from transport analysis of the experimental data. Without using any adjustable parameter, the good agreement spans the entire region where there is a steep electron temperature gradient to drive the instability

  15. Electron-temperature-gradient-induced instability in tokamak scrape-off layers

    International Nuclear Information System (INIS)

    Berk, H.L.; Ryutov, D.D.; Tsidulko, Y.A.; Xu, X.Q.

    1992-08-01

    An electron temperature instability driven by the Kunkel-Guillory sheath impedance, has been applied to the scrape-off layer of tokamaks. The formalism has been generalized to more fully account for parallel wavelength dynamics, to differentiate between electromagnetic and electrostatic perturbations and to account for particle recycling effects. It is conjectured that this conducting wall instability leads to edge fluctuations in tokamaks that produce scrape-off widths of many ion Larmor radii ≅10. The predicted instability characteristics correlate somewhat with DIII-D edge fluctuation data, and the scrape-off layer width in the DIII-D experiment agrees with theoretical estimates that can be derived from mixing lenght theory

  16. Electronic density measurement in the TB R-1 tokamak using Faraday rotation

    International Nuclear Information System (INIS)

    Elizondo, Juan Iraburu

    1996-01-01

    In this work, the experimental results of electronic density measurements in the TBR-1 tokamak, obtained by Faraday rotation of a microwave beam, are presented, The beam (65 GHz, 500 MW) is generated by a Klystron and crosses the plasma in the horizontal plane. The density values obtained are in agreement with the measurements of a conventional microwave interferometer. As a result of numerical simulations and measurements, it can be concluded that it would be advisable the use of lower wavelengths, to minimize the beam refraction when it crosses the plasma. The results show the feasibility of the Faraday rotation method for density measurement, in the first experiment performed in a tokamak, for the geometry considered. (author)

  17. Recent developments on the 110 GHz electron cyclotron installation on the DIII-D tokamak

    International Nuclear Information System (INIS)

    Ponce, D.; Callis, R.W.; Cary, W.P.; Ferron, J.R.; Green, M.; Grunloh, H.J.; Gorelov, Y.; Lohr, J.; Ellis, R.A.

    2003-01-01

    Significant improvements are being implemented to the capability of the 110 GHz electron cyclotron system on the DIII-D tokamak. Chief among these is the addition of the fifth and sixth 1 MW class gyrotrons, increasing the power available for auxiliary heating and current drive by nearly 60%. These tubes use artificially grown diamond r.f. output windows to obtain high power with long pulse capability. The beams from these tubes are nearly Gaussian, facilitating coupling to the waveguide. A new fully articulating dual launcher capable of high speed spatial scanning has been designed and tested. The launcher has two axis independent steering for each waveguide. The mirrors can be rotated at up to 100 deg./s. A new feedback system linking the DIII-D Plasma Control System (PCS) with the gyrotron beam voltage waveform generators permits real-time feedback control of some plasma properties such as electron temperature. The PCS can use a variety of plasma monitors to generate its control signal, including electron cyclotron emission and Mirnov probes. Electron cyclotron heating and electron cyclotron current drive were used during this year's DIII-D experimental campaign to control electron temperature, density, and q profiles, induce an ELM-free H-mode, and suppress the m=2/n=1 neoclassical tearing mode. The new capabilities have expanded the role of EC systems in tokamak plasma control

  18. Study of the electron heat transport in Tore-Supra tokamak; Etude du transport de la chaleur electronique dans le Tokamak Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Harauchamps, E

    2004-07-01

    This work presents analytical solutions to the electron heat transport equation involving a damping term and a convection term in a cylindrical geometry. These solutions, processed by Matlab, allow the determination of the evolution of the radial profile of electron temperature in tokamaks during heating. The modulated injection of waves around the electron cyclotron frequency is an efficient tool to study heat transport experimentally in tokamaks. The comparison of these analytical solutions with experimental results from Tore-Supra during 2 discharges (30550 and 31165) shows the presence of a sudden change for the diffusion and damping coefficients. The hypothesis of the presence of a pinch spread all along the plasma might explain the shape of the experimental temperature profiles. These analytical solutions could be used to determine the time evolution of plasma density as well or of any parameter whose evolution is governed by a diffusion-convection equation. (A.C.)

  19. Determining of electron temperature profile on the cross section of a Tokamak, using ECE technique

    Directory of Open Access Journals (Sweden)

    M. Hosseinpour

    2007-06-01

    Full Text Available  In this paper we have used plasma electron cyclotron emissions at the second harmonic frequency of extraordinary mode to determine the temperature profile of the plasma produced in IR-T1 Tokamak. The emissions obtained at different frequencies by a 5-channel heterodyne receiver, have been analyzed to determine the spatial variation of the electron temperature on the plasma cross section. The results have been also used to show the three-dimensional time evolution of the temperature profile during the period of confinement.

  20. A survey of electron Bernstein wave heating and current drive potential for spherical tokamaks

    Czech Academy of Sciences Publication Activity Database

    Urban, Jakub; Decker, J.; Peysson, Y.; Preinhaelter, Josef; Shevchenko, V.; Taylor, G.; Vahala, L.; Vahala, G.

    2011-01-01

    Roč. 51, č. 8 (2011), 083050-083050 ISSN 0029-5515 R&D Projects: GA ČR GA202/08/0419; GA MŠk 7G10072 Institutional research plan: CEZ:AV0Z20430508 Keywords : spherical tokamak * electron Bernstein wave (EBW) * heating * current drive * electron cyclotron wave Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 4.090, year: 2011 http://iopscience.iop.org/0029-5515/51/8/083050/pdf/0029-5515_51_8_083050.pdf

  1. Electron cyclotron heating and supra-thermal electron dynamics in the TCV Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Gnesin, S.

    2011-10-15

    This thesis is concerned with the physics of supra-thermal electrons in thermonuclear, magnetically confined plasmas. Under a variety of conditions, in laboratory as well as space plasmas, the electron velocity distribution function is not in thermodynamic equilibrium owing to internal or external drives. Accordingly, the distribution function departs from the equilibrium Maxwellian, and in particular generally develops a high-energy tail. In tokamak plasmas, this occurs especially as a result of injection of high-power electromagnetic waves, used for heating and current drive, as well as a result of internal magnetohydrodynamic (MHD) instabilities. The physics of these phenomena is intimately tied to the properties and dynamics of this supra-thermal electron population. This motivates the development of instrumental apparatus to measure its properties as well as of numerical codes to simulate their dynamics. Both aspects are reflected in this thesis work, which features advanced instrumental development and experimental measurements as well as numerical modeling. The instrumental development consisted of the complete design of a spectroscopic and tomographic system of four multi-detector hard X-ray (HXR) cameras for the TCV tokamak. The goal is to measure bremsstrahlung emission from supra-thermal electrons with energies in the 10-300 keV range, with the ultimate aim of providing the first full tomographic reconstruction at these energies in a noncircular plasma. In particular, supra-thermal electrons are generated in TCV by a high-power electron cyclotron heating (ECH) system and are also observed in the presence of MHD events, such as sawtooth oscillations and disruptive instabilities. This diagnostic employs state-of-the-art solid-state detectors and is optimized for the tight space requirements of the TCV ports. It features a novel collimator concept that combines compactness and flexibility as well as full digital acquisition of the photon pulses, greatly

  2. Electron cyclotron heating and supra-thermal electron dynamics in the TCV Tokamak

    International Nuclear Information System (INIS)

    Gnesin, S.

    2011-10-01

    This thesis is concerned with the physics of supra-thermal electrons in thermonuclear, magnetically confined plasmas. Under a variety of conditions, in laboratory as well as space plasmas, the electron velocity distribution function is not in thermodynamic equilibrium owing to internal or external drives. Accordingly, the distribution function departs from the equilibrium Maxwellian, and in particular generally develops a high-energy tail. In tokamak plasmas, this occurs especially as a result of injection of high-power electromagnetic waves, used for heating and current drive, as well as a result of internal magnetohydrodynamic (MHD) instabilities. The physics of these phenomena is intimately tied to the properties and dynamics of this supra-thermal electron population. This motivates the development of instrumental apparatus to measure its properties as well as of numerical codes to simulate their dynamics. Both aspects are reflected in this thesis work, which features advanced instrumental development and experimental measurements as well as numerical modeling. The instrumental development consisted of the complete design of a spectroscopic and tomographic system of four multi-detector hard X-ray (HXR) cameras for the TCV tokamak. The goal is to measure bremsstrahlung emission from supra-thermal electrons with energies in the 10-300 keV range, with the ultimate aim of providing the first full tomographic reconstruction at these energies in a noncircular plasma. In particular, supra-thermal electrons are generated in TCV by a high-power electron cyclotron heating (ECH) system and are also observed in the presence of MHD events, such as sawtooth oscillations and disruptive instabilities. This diagnostic employs state-of-the-art solid-state detectors and is optimized for the tight space requirements of the TCV ports. It features a novel collimator concept that combines compactness and flexibility as well as full digital acquisition of the photon pulses, greatly

  3. Development of a six channel Fabry-Perot interferometer for continuous measurement of electron temperature of Tokamak plasma. Application to current diffusion study

    International Nuclear Information System (INIS)

    Talvard, M.

    1984-10-01

    It is shown how the properties of the electron cyclotron emission of a tokamak plasma can be used to measure the electron temperature. The design of a six channel Fabry-Perot interferometer is then described. This interferometer allows the measurement of the time evolution of the electron temperature profile of the plasma in the TFR tokamak. Using this technique interesting results have been obtained concerning the current penetration during the start up phase of a tokamak discharge [fr

  4. Investigation of runaway electrons in the PRETEXT Tokamak

    International Nuclear Information System (INIS)

    Eckstrand, S.A.

    1981-01-01

    High energy (0.2 to 0.4 MeV) runaway electrons have been studied in PRETEXT discharges by detecting the hard x-ray bremsstrahlung radiation produced when they escape from the discharge and strike the limiter. A pulse height analysis system, which included pileup rejection circuitry because of the high count rate, recorded both the amplitude and arrival time of each pulse

  5. Effect of externally applied periodic force on ion acoustic waves in superthermal plasmas

    Science.gov (United States)

    Chowdhury, Snigdha; Mandi, Laxmikanta; Chatterjee, Prasanta

    2018-04-01

    Ion acoustic solitary waves in superthermal plasmas are investigated in the presence of trapped electrons. The reductive perturbation technique is employed to obtain a forced Korteweg-de Vries-like Schamel equation. An analytical solution is obtained in the presence of externally applied force. The effect of the external applied periodic force is also observed. The effect of the spectral index (κ), the strength ( f 0 ) , and the frequency ( ω ) on the amplitude and width of the solitary wave is obtained. The result may be useful in laboratory plasma as well as space environments.

  6. Analysis of line integrated electron density using plasma position data on Korea Superconducting Tokamak Advanced Research

    International Nuclear Information System (INIS)

    Nam, Y. U.; Chung, J.

    2010-01-01

    A 280 GHz single-channel horizontal millimeter-wave interferometer system has been installed for plasma electron density measurements on the Korea Superconducting Tokamak Advanced Research (KSTAR) device. This system has a triangular beam path that does not pass through the plasma axis due to geometrical constraints in the superconducting tokamak. The term line density on KSTAR has a different meaning from the line density of other tokamaks. To estimate the peak density and the mean density from the measured line density, information on the position of the plasma is needed. The information has been calculated from tangentially viewed visible images using the toroidal symmetry of the plasma. Interface definition language routines have been developed for this purpose. The calculated plasma position data correspond well to calculation results from magnetic analysis. With the position data and an estimated plasma profile, the peak density and the mean density have been obtained from the line density. From these results, changes of plasma density themselves can be separated from effects of the plasma movements, so they can give valuable information on the plasma status.

  7. Trapped Electron Mode Turbulence Driven Intrinsic Rotation in Tokamak Plasmas

    International Nuclear Information System (INIS)

    Wang, W.X.; Hahm, T.S.; Ethier, S.; Zakharov, L.E.

    2011-01-01

    Recent progress from global gyrokinetic simulations in understanding the origin of intrinsic rotation in toroidal plasmas is reported with emphasis on electron thermal transport dominated regimes. The turbulence driven intrinsic torque associated with nonlinear residual stress generation by the fluctuation intensity and the intensity gradient in the presence of zonal flow shear induced asymmetry in the parallel wavenumber spectrum is shown to scale close to linearly with plasma gradients and the inverse of the plasma current. These results qualitatively reproduce empirical scalings of intrinsic rotation observed in various experiments. The origin of current scaling is found to be due to enhanced kll symmetry breaking induced by the increased radial variation of the safety factor as the current decreases. The physics origin for the linear dependence of intrinsic torque on pressure gradient is that both turbulence intensity and the zonal flow shear, which are two key ingredients for driving residual stress, increase with the strength of turbulence drive, which is R0/LTe and R0/Lne for the trapped electron mode.

  8. Ion and electron parameters in the alcator C tokamak scrape-off region

    International Nuclear Information System (INIS)

    Wan, A.S.H.

    1986-05-01

    Janus is a bi-directional, multi-functional edge probe used to diagnose the ion and electron parameters in the Alcator C tokamak scrape-off region. Two mirror image sets of diagnostics are aligned to face the electron and ion sides along magnetic field lines. Each set of diagnostics consists of a retarding-field energy analyzer (RFEA), a Langmuir probe, and a calorimeter. The RFEA can alternatively sample both the ion and electron parallel energy distribution functions during a tokamak discharge. From the Langmuir probe, one can infer electron temperature, density, and the plasma floating potential. Simple Langmuir probe theory is found to yield the best agreement between the measured Langmuir probe characteristics and the RFEA-inferred T/sub e/. The calorimeter independently detects the total parallel heat flux incident to an electrically floating plate. The measured sheath transmission coefficient, however, is typically lower than the theoretically predicted value by a factor of approx.3. Together these diagnostics enable detailed, localized edge plasma characterization on Alcator C

  9. Note: Measurement of the runaway electrons in the J-TEXT tokamak

    International Nuclear Information System (INIS)

    Chen, Z. Y.; Zhang, Y.; Zhang, X. Q.; Luo, Y. H.; Jin, W.; Li, J. C.; Chen, Z. P.; Wang, Z. J.; Yang, Z. J.; Zhuang, G.

    2012-01-01

    The runaway electrons have been measured by hard x-ray detectors and soft x-ray array in the J-TEXT tokamak. The hard x-ray radiations in the energy ranges of 0.5-5 MeV are measured by two NaI detectors. The flux of lost runaway electrons can be obtained routinely. The soft x-ray array diagnostics are used to monitor the runaway beam generated in disruptions since the soft x-ray is dominated by the interaction between runaway electrons and metallic impurities inside the plasma. With the aid of soft x-ray array, runaway electron beam has been detected directly during the formation of runaway current plateau following the disruptions.

  10. Fokker-Planck simulations of knock-on electron runaway avalanche and bursts in tokamaks

    International Nuclear Information System (INIS)

    Chiu, S.C.; Rosenbluth, M.N.; Harvey, R.W.; Chan, V.S.

    1998-01-01

    The avalanche of runaway electrons in an ohmic tokamak plasma triggered by knock-on collisions of traces of energetic electrons with the bulk electrons is simulated by the bounce averaged Fokker-Planck code, CQL3D. It is shown that even when the electric field is small for the production of Dreicer runaways, the knock-on collisions can produce significant runaway electrons in a fraction of a second at typical reactor parameters. The energy spectrum of these knock-on runaways has a characteristic temperature. The growth rate and temperature of the runaway distribution are determined and compared with theory. In simulations of pellet injection into high temperature plasmas, it is shown that a burst of Dreicer runaways may also occur depending on the cooling rate due to the pellet injection. Implications of these phenomena on disruption control in reactor plasmas are discussed. (author)

  11. A diagnostic for electron dynamics in tokamaks. Final report

    International Nuclear Information System (INIS)

    Skiff, F.; Boyd, D.

    1997-12-01

    The diagnostic was installed on TdeV and brought into operation. It was optimized to the extent that time and money permitted. A considerable quantity of data was accumulated and analyzed. Experiments ended in August 1995. The apparatus has been removed from TdeV and returned to the University of Maryland. Each of these activities is detailed here. The diagnostic worked very well. Although the distribution functions behaved in ways that were not anticipated and the refractive losses were sometimes higher than projected, the authors were able to adapt to the unexpected. In the authors' estimation, all of the effects listed above are significant, and warrant further study. The diagnostic is ready for use as a tool to study the physics of current drive and current profile modification. A mechanism for steering the launched beams is desirable to cope with the strong variations in refraction which are seen. Phased array launchers seem attractive for this purpose. Tuning of the length of the waveguide run is important to avoid troublesome reflections (return losses). It may be best to build in this capability in a future system. The perpendicular dynamics of the current driven electrons are invisible to us with the present form of the diagnostic. Simultaneous measurements at fundamental and harmonic frequencies would make perpendicular distribution function measurements possible

  12. Electron temperature and density profiles measurement in the TJ-1 tokamak by Thomson scattering

    International Nuclear Information System (INIS)

    Pardo, C.; Zurro, B.

    1986-01-01

    Electron temperature and density profiles of ohmically heated hydrogen plasmas in the TJ-1 tokamak have been measured by Thomson scattering. The temperature profile peaks sharply in the central region while the density profile is very flat. Temperature values between 100 and 390 eV have been measured for densities in the range of 5.10 12 to 2.6.10 13 cm -3 . Parameters characterizing TJ-1 plasma, such as confinement times Z eff , have been deduced from experimental data. Energy confinement times are compared with experimental scaling laws. (author)

  13. Generation of noninductive current by electron-Bernstein waves on the COMPASS-D Tokamak.

    Science.gov (United States)

    Shevchenko, V; Baranov, Y; O'Brien, M; Saveliev, A

    2002-12-23

    Electron-Bernstein waves (EBW) were excited in the plasma by mode converted extraordinary (X) waves launched from the high field side of the COMPASS-D tokamak at different toroidal angles. It has been found experimentally that X-mode injection perpendicular to the magnetic field provides maximum heating efficiency. Noninductive currents of up to 100 kA were found to be driven by the EBW mode with countercurrent drive. These results are consistent with ray tracing and quasilinear Fokker-Planck simulations.

  14. 2D electron density profile measurement in tokamak by laser-accelerated ion-beam probe.

    Science.gov (United States)

    Chen, Y H; Yang, X Y; Lin, C; Wang, L; Xu, M; Wang, X G; Xiao, C J

    2014-11-01

    A new concept of Heavy Ion Beam Probe (HIBP) diagnostic has been proposed, of which the key is to replace the electrostatic accelerator of traditional HIBP by a laser-driven ion accelerator. Due to the large energy spread of ions, the laser-accelerated HIBP can measure the two-dimensional (2D) electron density profile of tokamak plasma. In a preliminary simulation, a 2D density profile was reconstructed with a spatial resolution of about 2 cm, and with the error below 15% in the core region. Diagnostics of 2D density fluctuation is also discussed.

  15. Losses of runaway electrons in MHD-active plasmas of the COMPASS tokamak.

    Czech Academy of Sciences Publication Activity Database

    Ficker, Ondřej; Mlynář, Jan; Vlainic, Milos; Čeřovský, Jaroslav; Urban, Jakub; Vondráček, Petr; Weinzettl, Vladimír; Macúšová, Eva; Decker, J.; Gospodarczyk, M.; Martin, P.; Nardon, E.; Papp, G.; Plyusnin, V.V.; Reux, C.; Saint-Laurent, F.; Sommariva, C.; Cavalier, Jordan; Havlíček, Josef; Havránek, Aleš; Hronová-Bilyková, Olena; Imríšek, Martin; Markovič, Tomáš; Varju, Jozef; Papřok, Richard; Pánek, Radomír; Hron, Martin

    2017-01-01

    Roč. 57, č. 7 (2017), č. článku 076002. ISSN 0029-5515 R&D Projects: GA MŠk LG14002; GA MŠk(CZ) LM2015045; GA MŠk(CZ) 8D15001 EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:61389021 Keywords : tokamaks * runaway electrons * MHD instabilities * disruptions Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 3.307, year: 2016

  16. Aspects of the diffusion of electrons and ions in Tokamak plasma

    International Nuclear Information System (INIS)

    Negrea, M.; Petrisor, I.; Constantinescu, Dana

    2010-01-01

    Two distinct problems concerning the anomalous transport in Tokamak plasma were analysed. The first one is related to the diffusion of ions in a stochastic magnetic field with curvature starting from Langevin equations of the guiding centre approximation. We analysed the influence of the drift Kubo number, the magnetic Kubo number and of the anisotropy on the diffusion of ions. The second problem is related to the diffusion of electrons in a combination of an electrostatic stochastic field with an unperturbed sheared magnetic field in slab geometry. The global effects of the parameters on the diffusion tensor components are exhibited.(authors)

  17. Simultaneous Propagation of Heat Waves Induced by Sawteeth and Electron-Cyclotron Heating Power Modulation in the Rtp Tokamak

    NARCIS (Netherlands)

    Gorini, G.; Mantica, P.; Hogeweij, G. M. D.; De Luca, F.; Jacchia, A.; Konings, J. A.; Cardozo, N. J. L.; Peters, M.

    1993-01-01

    The incremental electron heat diffusivity chi(inc) is determined in Rijnhuizen Tokamak Project plasmas by measurements of simultaneous heat pulses due to (1) the sawtooth instability and (2) modulated electron cyclotron heating. No systematic difference is observed between the two measured chi(inc)

  18. Study of runaway electrons using dosimetry of hard x-ray radiations in Damavand tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Rasouli, C.; Pourshahab, B.; Rasouli, H. [Plasma Physics and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute, AEOI, PO Box 14155-1339, Tehran (Iran, Islamic Republic of); Hosseini Pooya, S. M.; Orouji, T. [Radiation Application Research School, Nuclear Science and Technology Research Institute, AEOI, PO Box 14155-1339, Tehran (Iran, Islamic Republic of)

    2014-05-15

    In this work several studies have been conducted on hard x-ray emissions of Damavand tokamak based on radiation dosimetry using the Thermoluminescence method. The goal was to understand interactions of runaway electrons with plasma particles, vessel wall, and plasma facing components. Total of 354 GR-200 (LiF:Mg,Cu,P) thermoluminescence dosimeter (TLD) crystals have been placed on 118 points – three TLDs per point – to map hard x-ray radiation doses on the exterior of the vacuum vessel. Results show two distinctive levels of x-ray radiations doses on the exterior of the vessel. The low-dose area on which measured dose is about 0.5 mSv/shot. In the low-dose area there is no particular component inside the vessel. On the contrary, on high-dose area of the vessel, x-ray radiations dose exceeds 30 mSv/shot. The high-dose area coincides with the position of limiters, magnetic probe ducts, and vacuum vessel intersections. Among the high-dose areas, the highest level of dose is measured in the position of the limiter, which could be due to its direct contact with the plasma column and with runaway electrons. Direct collisions of runaway electrons with the vessel wall and plasma facing components make a major contribution for production of hard x-ray photons in Damavand tokamak.

  19. Tokamak electron heat transport by direct numerical simulation of small scale turbulence

    International Nuclear Information System (INIS)

    Labit, B.

    2002-10-01

    In a fusion machine, understanding plasma turbulence, which causes a degradation of the measured energy confinement time, would constitute a major progress in this field. In tokamaks, the measured ion and electron thermal conductivities are of comparable magnitude. The possible sources of turbulence are the temperature and density gradients occurring in a fusion plasma. Whereas the heat losses in the ion channel are reasonably well understood, the origin of the electron losses is more uncertain. In addition to the radial velocity associated to the fluctuations of the electric field, electrons are more affected than ions by the magnetic field fluctuations. In experiments, the confinement time can be conveniently expressed in terms of dimensionless parameters. Although still somewhat too imprecise, these scaling laws exhibit strong dependencies on the normalized pressure β or the normalized Larmor radius, ρ * . The present thesis assesses whether a tridimensional, electromagnetic, nonlinear fluid model of plasma turbulence driven by a specific instability can reproduce the dependence of the experimental electron heat losses on the dimensionless parameters β and ρ * . The investigated interchange instability is the Electron Temperature Gradient driven one (ETG). The model is built by using the set of Braginskii equations. The developed simulation code is global in the sense that a fixed heat flux is imposed at the inner boundary, leaving the gradients free to evolve. From the nonlinear simulations, we have put in light three characteristics for the ETG turbulence: the turbulent transport is essentially electrostatic; the potential and pressure fluctuations form radially elongated cells called streamers; the transport level is very low compared to the experimental values. The thermal transport dependence study has shown a very small role of the normalized pressure, which is in contradiction with the Ohkama's formula. On the other hand, the crucial role of the

  20. Measurement of electron density profiles by soft X-ray tomography on the RTP tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, D.F. da; Donne, A.J.H.; Lyadina, E.S.; Rutteman, R.H.; Tanzi, C.P. [FOM-Instituut voor Plasmafysica, Rijnhuizen (Netherlands)

    1993-12-31

    Tomographic diagnosis of the soft x-ray emissivity profile is a powerful method for studying several plasma parameters. The x-ray emissivity is a complicated function of plasma quantities like the electron density and temperature, and the impurity content in the plasma. These quantities can be studied separately provided that information is available on the remaining parameters. Soft x-ray emissivity profiles have already been used successfully in other machines to determine local values of impurity densities and the effective charge Z{sub eff}. In the RTP tokamak the electron density profile has been inferred from a modelling of the x-ray emissivity in situations where information is available on the electron temperature profile, the value of Z{sub eff}, and the relative proportion of the impurities. The method can be useful for the study of hollow density profiles that cannot be properly reconstructed by Abel inversion of interferometer or reflectometer data. (author) 7 refs., 2 figs.

  1. Measurement of electron density profiles by soft X-ray tomography on the RTP tokamak

    International Nuclear Information System (INIS)

    Cruz, D.F. da; Donne, A.J.H.; Lyadina, E.S.; Rutteman, R.H.; Tanzi, C.P.

    1993-01-01

    Tomographic diagnosis of the soft x-ray emissivity profile is a powerful method for studying several plasma parameters. The x-ray emissivity is a complicated function of plasma quantities like the electron density and temperature, and the impurity content in the plasma. These quantities can be studied separately provided that information is available on the remaining parameters. Soft x-ray emissivity profiles have already been used successfully in other machines to determine local values of impurity densities and the effective charge Z eff . In the RTP tokamak the electron density profile has been inferred from a modelling of the x-ray emissivity in situations where information is available on the electron temperature profile, the value of Z eff , and the relative proportion of the impurities. The method can be useful for the study of hollow density profiles that cannot be properly reconstructed by Abel inversion of interferometer or reflectometer data. (author) 7 refs., 2 figs

  2. Cross effects on electron-cyclotron and lower-hybrid current drive in tokamak plasmas

    International Nuclear Information System (INIS)

    Fidone, I.; Giruzzi, G.; Krivenski, V.; Mazzucato, E.; Ziebell, L.F.

    1986-11-01

    Electron cyclotron resonance current drive in a tokamak plasma in the presence of a lower hybrid tail is investigated using a 2D Fokker-Planck code. For an extraordinary mode at oblique propagation and down-shifted frequency it is shown that the efficiency of electron cyclotron current drive becomes, i) substantially greater than the corresponding efficiency of a Maxwellian plasma at the same bulk temperature, ii) equal or greater than that of the lower hybrid waves, iii) comparable with the efficiency of a Maxwellian plasma at much higher temperature. This enhancement results from a beneficial cross-effect of the two waves on the formation of the current carrying electron tail. (5 fig; 17 refs)

  3. Electron and ion energy distribution functions in slide-away regime of TRIAM-1 tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Kazuo; Satoh, Takemichi; Toi, Kazuo; Hiraki, Naoji; Nakamura, Yukio; Itoh, Satoshi

    1983-02-01

    The plasma properties, and the electron and ion energy distribution functions in particular, are studied in the slide-away regime of the TRIAM-1 tokamak, with the streaming parameter averaged over the plasma cross-section being varied up to 0.4. In the range >= 0.1, the soft X-ray spectrum has a tail component, and the electrical resistivity derived from the loop voltage/plasma current characteristics is lower than the Spitzer-Harm resistivity, which is estimated from the experimentally-obtained Zsub(eff)-value, electron temperature and electron density. Anomalous ion heating, however, does not occur, and the ion temperature agrees well with Artsimovich's scaling law.

  4. Efficiency of the generation of impulsion by cyclotron waves currents of the electrons in an Axisymmetric Tokamak; Eficiencia de la generacion de corrientes de impulsion por ondas ciclotronicas de los electrones en un Tokamak axisimetrico

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez T, C.; Beltran P, M. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2004-07-01

    The neoclassical theory of transport is used to calculate the current efficiency of electronic cyclotron impulsion (ECCD) in an axisymmetric tokamak in the few collisions regime. The standard parameter of the tokamak is used to obtain a system of equations that describe the hydrodynamic of the plasma, where the ponderomotive force (PM) due to high power radio frequency waves is taken in account. The PM force is produced in the proximity of electron cyclotron resonance surface in a specific poloidal localization. The efficiency ECCD is analyzed in the cases of first and second harmonic (for different angles of injection of radio frequency waves) and it is validated using the experimental values of the TCV and T-10 tokamaks. The results are according to those obtained by means of the techniques of the Green functions. (Author)

  5. Runaway electrons in disruptions and perturbed magnetic topologies of tokamak plasmas

    International Nuclear Information System (INIS)

    Forster, Michael

    2012-01-01

    Nuclear fusion represents a valuable perspective for a safe and reliable energy supply from the middle of the 21st century on. Currently, the tokamak is the most advanced principle of confining a man-made fusion plasma. The operation of future, reactor sized tokamaks like ITER faces a crucial difficulty in the generation of runaway electrons. The runaway of electrons is a free fall acceleration into the relativistic regime which is known in various kinds of plasmas including astrophysical ones, thunderbolts and fusion plasmas. The tokamak disruption instability can include the conversion of a substantial part of the plasma current into a runaway electron current. When the high energetic runaways are lost, they can strike the plasma facing components at localised spots. Due to their high energies up to a few tens of MeV, the runaways carry the potential to reduce the lifetimes of wall components and even to destroy sensitive, i.e. actively cooled parts. The research for effective ways to suppress the generation of runaway electrons is hampered by the lack of a complete understanding of the physics of the runaways in disruptions. As it is practically impossible to use standard electron detectors in the challenging environment of a tokamak, the experimental knowledge about runaways is limited and it relies on rather indirect techniques of measurement. The main diagnostics used for this PhD work are three reciprocating probes which measure the runaway electrons directly at the plasma edge of the tokamak TEXTOR. A calorimetric probe and a material probe which exploits the signature that a runaway beam impact leaves in the probe were developed in the course of the PhD work. Novel observations of the burst-like runaway electron losses in tokamak disruptions are reported. The runaway bursts are temporally resolved and first-time measurements of the corresponding runaway energy spectra are presented. A characteristic shape and typical burst to burst variations of the

  6. A survey of electron Bernstein wave heating and current drive potential for spherical tokamaks

    Science.gov (United States)

    Urban, Jakub; Decker, Joan; Peysson, Yves; Preinhaelter, Josef; Shevchenko, Vladimir; Taylor, Gary; Vahala, Linda; Vahala, George

    2011-08-01

    The electron Bernstein wave (EBW) is typically the only wave in the electron cyclotron (EC) range that can be applied in spherical tokamaks for heating and current drive (H&CD). Spherical tokamaks (STs) operate generally in high-β regimes, in which the usual EC O- and X-modes are cut off. In this case, EBWs seem to be the only option that can provide features similar to the EC waves—controllable localized H&CD that can be used for core plasma heating as well as for accurate plasma stabilization. The EBW is a quasi-electrostatic wave that can be excited by mode conversion from a suitably launched O- or X-mode; its propagation further inside the plasma is strongly influenced by the plasma parameters. These rather awkward properties make its application somewhat more difficult. In this paper we perform an extensive numerical study of EBW H&CD performance in four typical ST plasmas (NSTX L- and H-mode, MAST Upgrade, NHTX). Coupled ray-tracing (AMR) and Fokker-Planck (LUKE) codes are employed to simulate EBWs of varying frequencies and launch conditions, which are the fundamental EBW parameters that can be chosen and controlled. Our results indicate that an efficient and universal EBW H&CD system is indeed viable. In particular, power can be deposited and current reasonably efficiently driven across the whole plasma radius. Such a system could be controlled by a suitably chosen launching antenna vertical position and would also be sufficiently robust.

  7. Properties of ion temperature gradient and trapped electron modes in tokamak plasmas with inverted density profiles

    Science.gov (United States)

    Du, Huarong; Jhang, Hogun; Hahm, T. S.; Dong, J. Q.; Wang, Z. X.

    2017-12-01

    We perform a numerical study of linear stability of the ion temperature gradient (ITG) mode and the trapped electron mode (TEM) in tokamak plasmas with inverted density profiles. A local gyrokinetic integral equation is applied for this study. From comprehensive parametric scans, we obtain stability diagrams for ITG modes and TEMs in terms of density and temperature gradient scale lengths. The results show that, for the inverted density profile, there exists a normalized threshold temperature gradient above which the ITG mode and the TEM are either separately or simultaneously unstable. The instability threshold of the TEM for the inverted density profile is substantially different from that for normal and flat density profiles. In addition, deviations are found on the ITG threshold from an early analytic theory in sheared slab geometry with the adiabatic electron response [T. S. Hahm and W. M. Tang, Phys. Fluids B 1, 1185 (1989)]. A possible implication of this work on particle transport in pellet fueled tokamak plasmas is discussed.

  8. Monitoring of the current profile by using cyclotronic electron waves in tokamaks; Controle du profil de courant par ondes cyclotroniques electroniques dans les tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Dumont, R

    2001-08-01

    The subject of this thesis is the study of the cyclotronic electron wave as a monitoring tool of the current profile. The first chapter is dedicated to basic notions concerning tokamak plasmas and current generation. The second chapter is centered on the use of fast electrons to generate current and on its modelling. The propagation and absorption of the cyclotronic electron wave require a specific polarization state whose characteristics must be carefully chosen according to some parameters of the discharge, the chapter 3 deals with this topic. The absorption of a wave in a plasma depends greatly on the velocity distribution of the particles that make up the plasma and this distribution is constantly modified by the energy of the wave, so this phenomenon is non-linear and its physical description is difficult. In a case of a fusion plasma, a sophisticated approximation called quasi-linear theory can be applied with some restrictions that are presented in chapter 4. Chapters 5 and 6 are dedicated to kinetics scenarios involving the low hybrid wave and the cyclotronic electron wave inside the plasma. Some experiments dedicated to the study of the cyclotronic electron wave have been performed in Tore-supra (France) and FTU (Italy) tokamaks, they are presented in the last chapter. (A.C.)

  9. Efficiency of the generation of impulsion by cyclotron waves currents of the electrons in an Axisymmetric Tokamak

    International Nuclear Information System (INIS)

    Gutierrez T, C.; Beltran P, M.

    2004-01-01

    The neoclassical theory of transport is used to calculate the current efficiency of electronic cyclotron impulsion (ECCD) in an axisymmetric tokamak in the few collisions regime. The standard parameter of the tokamak is used to obtain a system of equations that describe the hydrodynamic of the plasma, where the ponderomotive force (PM) due to high power radio frequency waves is taken in account. The PM force is produced in the proximity of electron cyclotron resonance surface in a specific poloidal localization. The efficiency ECCD is analyzed in the cases of first and second harmonic (for different angles of injection of radio frequency waves) and it is validated using the experimental values of the TCV and T-10 tokamaks. The results are according to those obtained by means of the techniques of the Green functions. (Author)

  10. Link between self-consistent pressure profiles and electron internal transport barriers in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Razumova, K A [Nuclear Fusion Institute, RRC ' Kurchatov Institute' , 123182 Moscow (Russian Federation); Andreev, V F [Nuclear Fusion Institute, RRC ' Kurchatov Institute' , 123182 Moscow (Russian Federation); Donne, A J H [FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, partner in the Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Hogeweij, G M D [FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, partner in the Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Lysenko, S E [Nuclear Fusion Institute, RRC ' Kurchatov Institute' , 123182 Moscow (Russian Federation); Shelukhin, D A [Nuclear Fusion Institute, RRC ' Kurchatov Institute' , 123182 Moscow (Russian Federation); Spakman, G W [FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, partner in the Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Vershkov, V A [Nuclear Fusion Institute, RRC ' Kurchatov Institute' , 123182 Moscow (Russian Federation); Zhuravlev, V A [Nuclear Fusion Institute, RRC ' Kurchatov Institute' , 123182 Moscow (Russian Federation)

    2006-09-15

    Tokamak plasmas have a tendency to self-organization: the plasma pressure profiles obtained in different operational regimes and even in various tokamaks may be represented by a single typical curve, called the self-consistent pressure profile. About a decade ago local zones with enhanced confinement were discovered in tokamak plasmas. These zones are referred to as internal transport barriers (ITBs) and they can act on the electron and/or ion fluid. Here the pressure gradients can largely exceed the gradients dictated by profile consistency. So the existence of ITBs seems to be in contradiction with the self-consistent pressure profiles (this is also often referred to as profile resilience or profile stiffness). In this paper we will discuss the interplay between profile consistency and ITBs. A summary of the cumulative information obtained from T-10, RTP and TEXTOR is given, and a coherent explanation of the main features of the observed phenomena is suggested. Both phenomena, the self-consistent profile and ITB, are connected with the density of rational magnetic surfaces, where the turbulent cells are situated. The distance between these cells determines the level of their interaction, and therefore the level of the turbulent transport. This process regulates the plasma pressure profile. If the distance is wide, the turbulent flux may be diminished and the ITB may be formed. In regions with rarefied surfaces the steeper pressure gradients are possible without instantaneously inducing pressure driven instabilities, which force the profiles back to their self-consistent shapes. Also it can be expected that the ITB region is wider for lower dq/d{rho} (more rarefied surfaces)

  11. Vertical one-dimensional electron cyclotron emission imaging diagnostic for HT-7 tokamak

    International Nuclear Information System (INIS)

    Wang Jun; Xu Xiaoyuan; Wen Yizhi; Yu Changxuan; Wan Baonian; Luhmann, N.C.; Wang, Jian; Xia, Z.G.

    2005-01-01

    A vertical resolved 16-channel electron cyclotron emission imaging (ECEI) diagnostic has been developed and installed on the HT7 Tokamak for measuring plasma electron cyclotron emission with a temporal resolution of 0.5 us. The system is working on a fixed frequency 97.5 GHz in the first stage. The sample volumes of the system are aligned vertically with a vertical channel spacing of 11 mm, and can be shifted across the plasma cross-section by varying the toroidal magnetic field. The high spatial resolution of the system is achieved by utilizing a low cost linear mixer/receiver array and an optical imaging system. The focus location may be shifted horizontally via translation of one of the optical imaging elements. The detail of the system design and laboratory testing of the ECE Imaging optics are presented, together with HT7 plasma data. (author)

  12. Electron cyclotron measurements with the fast scanning heterdyne radiometer on the tokamak fusion test reactor

    International Nuclear Information System (INIS)

    Taylor, G.; Efthimion, P.C.; McCarthy, M.P.; Fredd, E.A.; Cutler, R.C.

    1986-01-01

    Three fast scanning heterodyne receivers, swept between 75-110 GHz, 110-170 GHz, and 170-210 GHz, have measured electron cyclotron emission on the horizontal midplane of the tokamak fusion test reactor (TFTR) plasma. A second harmonic microwave mixer in the 170-210 GHz receiver allows the use of a 75-110 GHz backward wave oscillator as a swept local oscillator. Electron temperature profile evolution data with a time resolution of 2 msec and a profile acquisition rate of 250 Hz are presented for gas-fuelled and pellet-fuelled ohmic and neutral beam heated plasmas with toroidal fields up to 5.2 tesla. Recent results from a swept mode absolute calibration technique which can improve the accuracy and data collection efficiency during in-situ calibration are also presented

  13. Antenna loading and electron heating experiments of ICRF wave in TNT-A tokamak

    International Nuclear Information System (INIS)

    Shinohara, Shunjiro; Asakura, Nobuyuki; Naito, Masahiro; Miyamoto, Kenro

    1984-01-01

    Antenna loading resistance and electron heating effects of ICRF wave were investigated in TNT-A tokamak. Lodaing resistance increased with the mean plasma density and decreased with the input power. The effect of the distance between the plasma and antenna surface on loading resistance was studied and had good agreements with the calculated results. The increase in the soft Xray emissivity was larger in the presence of ion-ion hybrid and/or ion cyclotron resonance layer in the plasma than that in the absence of them. With the absorbed power up to two times of the ohmic power, the central electron temperature increased by 20%, the soft Xray emissivity increased by 80% and the mean plasma density decreased by 10%, while the total radiation loss increased slightly (by 15%). (author)

  14. Observation of Flat Electron Temperature Profiles in the Lithium Tokamak Experiment

    International Nuclear Information System (INIS)

    Boyle, D. P.; Majeski, R.; Schmitt, J. C.; Auburn University, AL; Hansen, C.

    2017-01-01

    It has been predicted for over a decade that low-recycling plasma-facing components in fusion devices would allow high edge temperatures and flat or nearly flat temperature profiles. In recent experiments with lithium wall coatings in the Lithium Tokamak Experiment (LTX), a hot edge (> 200 eV) and flat electron temperature profiles have been measured following the termination of external fueling. In this work, reduced recycling was demonstrated by retention of ~ 60% of the injected hydrogen in the walls following the discharge. Electron energy confinement followed typical Ohmic confinement scaling during fueling, but did not decrease with density after fueling terminated, ultimately exceeding the scaling by ~ 200% . Lastly, achievement of the low-recycling, hot edge regime has been an important goal of LTX and lithium plasma-facing component research in general, as it has potentially significant implications for the operation, design, and cost of fusion devices.

  15. Measurement of lower-hybrid-driven current profile by Abel inversion of electron-cyclotron wave transmission spectra

    International Nuclear Information System (INIS)

    Fidone, I.; Giruzzi, G.; Caron, X.; Meyer, R.L.

    1991-01-01

    A method for measuring the radial profile of the lower-hybrid-driven current in a low-density tokamak plasma using electron-cyclotron wave attenuation is discussed. This diagnostic scheme is reminiscent of the transmission interferometry approach, commonly used in tokamaks to measure the plasma density, but now the wave amplitude instead of the phase is measured. Wave attenuation of the ordinary mode at ω p much-lt ω c along vertical chords is measured; at these frequencies, the waves are absorbed by the superthermal tail sustained by lower-hybrid waves and the local wave absorption coefficient is proportional to the noninductive current density. The radial profile of this current is obtained from Abel inversion. An application to the Tore Supra tokamak is presented

  16. Nanoparticle Plasma Jet as Fast Probe for Runaway Electrons in Tokamak Disruptions

    Science.gov (United States)

    Bogatu, I. N.; Galkin, S. A.

    2017-10-01

    Successful probing of runaway electrons (REs) requires fast (1 - 2 ms) high-speed injection of enough mass able to penetrate through tokamak toroidal B-field (2 - 5 T) over 1 - 2 m distance with large assimilation fraction in core plasma. A nanoparticle plasma jet (NPPJ) from a plasma gun is a unique combination of millisecond trigger-to-delivery response and mass-velocity of 100 mg at several km/s for deep direct injection into current channel of rapidly ( 1 ms) cooling post-TQ core plasma. After C60 NPPJ test bed demonstration we started to work on ITER-compatible boron nitride (BN) NPPJ. Once injected into plasma, BN NP undergoes ablative sublimation, thermally decomposes into B and N, and releases abundant B and N high-charge ions along plasma-traversing path and into the core. We present basic characteristics of our BN NPPJ concept and first results from B and N ions on Zeff > 1 effect on REs dynamics by using a self-consistent model for RE current density. Simulation results of BNQ+ NPPJ penetration through tokamak B-field to RE beam location performed with Hybrid Electro-Magnetic code (HEM-2D) are also presented. Work supported by U.S. DOE SBIR Grant.

  17. Study of runaway electrons using the conditional average sampling method in the Damavand tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Pourshahab, B., E-mail: bpourshahab@gmail.com [University of Isfahan, Department of Nuclear Engineering, Faculty of Advance Sciences and Technologies (Iran, Islamic Republic of); Sadighzadeh, A. [Nuclear Science and Technology Research Institute, Plasma Physics and Nuclear Fusion Research School (Iran, Islamic Republic of); Abdi, M. R., E-mail: r.abdi@phys.ui.ac.ir [University of Isfahan, Department of Physics, Faculty of Science (Iran, Islamic Republic of); Rasouli, C. [Nuclear Science and Technology Research Institute, Plasma Physics and Nuclear Fusion Research School (Iran, Islamic Republic of)

    2017-03-15

    Some experiments for studying the runaway electron (RE) effects have been performed using the poloidal magnetic probes system installed around the plasma column in the Damavand tokamak. In these experiments, the so-called runaway-dominated discharges were considered in which the main part of the plasma current is carried by REs. The induced magnetic effects on the poloidal pickup coils signals are observed simultaneously with the Parail–Pogutse instability moments for REs and hard X-ray bursts. The output signals of all diagnostic systems enter the data acquisition system with 2 Msample/(s channel) sampling rate. The temporal evolution of the diagnostic signals is analyzed by the conditional average sampling (CAS) technique. The CASed profiles indicate RE collisions with the high-field-side plasma facing components at the instability moments. The investigation has been carried out for two discharge modes—low-toroidal-field (LTF) and high-toroidal-field (HTF) ones—related to both up and down limits of the toroidal magnetic field in the Damavand tokamak and their comparison has shown that the RE confinement is better in HTF discharges.

  18. Electron cyclotron heating/current-drive system using high power tubes for QUEST spherical tokamak

    Science.gov (United States)

    Onchi, Takumi; Idei, H.; Hasegawa, M.; Nagata, T.; Kuroda, K.; Hanada, K.; Kariya, T.; Kubo, S.; Tsujimura, T. I.; Kobayashi, S.; Quest Team

    2017-10-01

    Electron cyclotron heating (ECH) is the primary method to ramp up plasma current non-inductively in QUEST spherical tokamak. A 28 GHz gyrotron is employed for short pulses, where the radio frequency (RF) power is about 300 kW. Current ramp-up efficiency of 0.5 A/W has been obtained with focused beam of the second harmonic X-mode. A quasi-optical polarizer unit has been newly installed to avoid arcing events. For steady-state tokamak operation, 8.56 GHz klystron with power of 200 kW is used as the CW-RF source. The high voltage power supply (54 kV/13 A) for the klystron has been built recently, and initial bench test of the CW-ECH system is starting. The array of insulated-gate bipolar transistor works to quickly cut off the input power for protecting the klystron. This work is supported by JSPS KAKENHI (15H04231), NIFS Collaboration Research program (NIFS13KUTR085, NIFS17KUTR128), and through MEXT funding for young scientists associated with active promotion of national university reforms.

  19. Plasma core electron density and temperature measurements using CVI line emissions in TCABR Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, F. do, E-mail: fellypen@ifi.unicamp.br [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Centro de Componentes Semicondutores; Machida, M. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Instituto de Fisica Gleb Wataghin; Severo, J.H.F.; Sanada, E.; Ronchi, G. [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Fisica

    2015-08-15

    In this work, we present results of electron temperature (T{sub e} ) and density (n {sub e} ) measurements obtained in Tokamak Chauffage Alfven Bresilien (TCABR) tokamak using visible spectroscopy from CVI line emissions which occurs mainly near the center of the plasma column. The presented method is based on a well-known relationship between the particle flux (Γ {sub ion}) and the photon flux (ø {sub ion}) emitted by an ion species combined with ionizations per photon atomic data provided by the atomic data and analysis structure (ADAS) database. In the experiment, we measured the photon fluxes of three different CVI spectral line emissions, 4685.2, 5290.5, and 6200.6 Å (one line per shot). Using this method it was possible to find out the temporal evolution of T{sub e} and n{sub e} in the plasma. The results achieved are in good agreement with T{sub e} and n{sub e} measurements made using other diagnostic tools. (author)

  20. Plasma density measurements on COMPASS-C tokamak from electron cyclotron emission cutoffs

    International Nuclear Information System (INIS)

    Chenna Reddy, D.; Edlington, T.

    1996-01-01

    Electron cyclotron emission (ECE) is a standard diagnostic in present day tokamak devices for temperature measurement. When the plasma density is high enough the emission at some frequencies is cut off. Of these cutoff frequencies, the first frequency to cut off depends on the shape of the density profile. If the density profile can be described by a few parameters, in some circumstances, this first cutoff frequency can be used to obtain two of these parameters. If more than two parameters are needed to describe the density profile, then additional independent measurements are required to find all the parameters. We describe a technique by which it is possible to obtain an analytical relation between the radius at which the first cutoff occurs and the profile parameters. Assuming that the shape of the profile does not change as the average density rises after the first cutoff, one can use the cutoffs at other frequencies to obtain the average density at the time of these cutoffs. The plasma densities obtained with this technique using the data from a 14 channel ECE diagnostic on COMPASS-C tokamak are in good agreement with those measured by a standard 2 mm interferometer. The density measurement using the ECE cutoffs is an independent measurement and requires only a frequency calibration of the ECE diagnostic. copyright 1996 American Institute of Physics

  1. Electron cyclotron-electron Bernstein wave emission diagnostics for the COMPASS tokamak

    Czech Academy of Sciences Publication Activity Database

    Zajac, Jaromír; Preinhaelter, Josef; Urban, Jakub; Žáček, František; Šesták, David; Nanobashvili, S.

    2010-01-01

    Roč. 81, č. 10 (2010), 10D911-10D911 ISSN 0034-6748. [TOPICAL CONFERENCE ON HIGH-TEMPERATURE PLASMA DIAGNOSTICS/18th./. Wildwood, New Jersey, 16.05.2010-20.05.2010] R&D Projects: GA ČR GA202/08/0419 Institutional research plan: CEZ:AV0Z20430508 Keywords : antenna radiation patterns * antennas in plasma * plasma diagnostics * Tokamak Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.598, year: 2010 http://link.aip.org/link/?RSI/81/10D911

  2. HESTER: a hot-electron superconducting tokamak experimental reactor at M.I.T

    International Nuclear Information System (INIS)

    Schultz, J.H.; Montgomery, D.B.

    1983-04-01

    HESTER is an experimental tokamak, designed to resolve many of the central questions in the tokamak development program in the 1980's. It combines several unique features with new perspectives on the other major tokamak experiments scheduled for the next decade. The overall objectives of HESTER, in rough order of their presently perceived importance, are the achievement of reactor-like wall-loadings and plasma parameters for long pulse periods, determination of a good, reactor-relevant method of steady-state or very long pulse tokamak current drive, duplication of the planned very high temperature neutral injection experiments using only radio frequency heating, a demonstration of true steady-state tokamak operation, integration of a high-performance superconducting magnet system into a tokamak experiment, determination of the best methods of long term impurity control, and studies of transport and pressure limits in high field, high aspect ratio tokamak plasmas. These objectives are described

  3. Investigation of ring-like runaway electron beams in the EAST tokamak

    International Nuclear Information System (INIS)

    Zhou, R J; Hu, L Q; Li, E Z; Xu, M; Zhong, G Q; Xu, L Q; Lin, S Y; Zhang, J Z

    2013-01-01

    In the EAST tokamak, asymmetrical ring-like runaway electron beams with energy more than 30 MeV and pitch angle about 0.1 were investigated. Those runaway beams carried about 46% of the plasma current and located around the q = 2 rational surface when m/n = 1/1 and m/n = 2/1 MHD modes existed in the plasma. Those runaway beams changed from a hollow to a filled structure during the slow oscillations in the discharge about every 0.2 s, which correlated with a large step-like jump in electron cyclotron emission (ECE) signals, a big spike-like perturbation in Mirnov signals and a large decrease in runaway energy. Between those slow oscillations with large magnitude, fast oscillations with small magnitude also existed about every 0.02 s, which correlated with a small step-like jump in ECE signals, a small spike-like perturbation in Mirnov signals, but no clear decrease in runaway energy and changes in the runaway beam structure. Resonant interactions occurred between runaway electrons and magnetohydrodynamic instabilities, which gave rise to fast pitch angle scattering processes of those resonant runaway electrons, and hence increased the synchrotron radiation. Theoretical calculations of the resonant interaction were given based on a test particle description. Synchrotron radiation of those resonant runaway electrons was increased by about 60% until the end of the resonant interaction. (paper)

  4. Investigation of particle transport through the measurement of the electron source in the Texas Experimental Tokamak

    International Nuclear Information System (INIS)

    Klepper, C.C.

    1985-01-01

    The spatial distribution of the electron source was measured spectroscopically in the Texas Experimental Tokamak. The method used involves the measurement of the emissivity of the Balmer α and β lines of neutral hydrogen. Modeling of the corresponding atomic transitions provides a relation between the emissivities and the electron source from the ionization of neutrals. Toroidal distributions were obtained by means of a set of relatively calibrated photodiode amplifier-filter packages referred to as plasma light monitors. Such monitors were distributed toroidally, and attached primarily to radial ports. Specially constructed, absolutely calibrated monitors provided absolute calibration. A scanning, rotating mirror system provided in-out brightness profiles. A TV camera system, viewing the limiter through a tangential port, provided a qualitative description of the poloidal asymmetry. Such description was necessary for the inversion of the rotating mirror data. Using electron density profiles obtained by means of far-infrared interferometry, and integrating the electron sources, the global particle confinement time (tau/sub p/) was computed. Parameter scans were performed in ohmically heated plasmas, varying the toroidal field, the plasma current, the electron density, and the plasma position with respect to the center of the poloidal ring limiter. It was found that tau/sub p/ peaks for a critical density that is independent of the other parameters

  5. Losses of runaway electrons in MHD-active plasmas of the COMPASS tokamak

    Science.gov (United States)

    Ficker, O.; Mlynar, J.; Vlainic, M.; Cerovsky, J.; Urban, J.; Vondracek, P.; Weinzettl, V.; Macusova, E.; Decker, J.; Gospodarczyk, M.; Martin, P.; Nardon, E.; Papp, G.; Plyusnin, V. V.; Reux, C.; Saint-Laurent, F.; Sommariva, C.; Cavalier, J.; Havlicek, J.; Havranek, A.; Hronova, O.; Imrisek, M.; Markovic, T.; Varju, J.; Paprok, R.; Panek, R.; Hron, M.; The COMPASS Team

    2017-07-01

    The significant role of magnetic perturbations in mitigation and losses of runaway electrons (REs) was documented in dedicated experimental studies of RE at the COMPASS tokamak. REs in COMPASS are produced both in low density quiescent discharges and in disruptions triggered by massive gas injection (MGI). The role of the RE seed produced in the beginning of the discharge on the subsequent RE population proved significant. Modulation of the RE losses by MHD instabilities was observed at several characteristic frequencies, as well as by magnetic field oscillations related to power supplies. Magnetic islands seem to suppress the losses as the HXR signal is low and coherent with the island rotation frequency. Moreover, periods of increased losses of REs observed in the current quench (CQ) and early RE beam plateau phase of the MGI disruptions seem to be linked to the bursts of magnetic perturbation, and to the observation of filaments in the fast visible camera images.

  6. Data acquisition and processing system of the electron cyclotron emission imaging system of the KSTAR tokamak

    International Nuclear Information System (INIS)

    Kim, J. B.; Lee, W.; Yun, G. S.; Park, H. K.; Domier, C. W.; Luhmann, N. C. Jr.

    2010-01-01

    A new innovative electron cyclotron emission imaging (ECEI) diagnostic system for the Korean Superconducting Tokamak Advanced Research (KSTAR) produces a large amount of data. The design of the data acquisition and processing system of the ECEI diagnostic system should consider covering the large data production and flow. The system design is based on the layered structure scalable to the future extension to accommodate increasing data demands. Software architecture that allows a web-based monitoring of the operation status, remote experiment, and data analysis is discussed. The operating software will help machine operators and users validate the acquired data promptly, prepare next discharge, and enhance the experiment performance and data analysis in a distributed environment.

  7. Poloidal rotation driven by electron cyclotron resonance wave in tokamak plasmas

    Directory of Open Access Journals (Sweden)

    Qing Zhou

    2017-10-01

    Full Text Available The poloidal electric filed, which is the drive field of poloidal rotation, has been observed and increases obviously after the injection of electron cyclotron resonance wave in HL-2A experiment, and the amplitude of the poloidal electric field is in the order of 103 V/m. Through theoretical analysis using Stringer rotation model, the observed poloidal electric field is of the same order as the theoretical calculation value. In addition, the magnetic pump damping which would damp the poloidal rotation is calculated numerically and the calculation results show that the closer to the core plasmas, the stronger the magnetic pump damping will be. Meanwhile, according to the value of the calculated magnetic pump damping, the threshold of the poloidal electric field which could overcome magnetic pump damping and drive poloidal rotation in tokamak plasmas is given out. Finally, the poloidal rotation velocity over time at different minor radius is studied theoretically.

  8. The Compact Ignition Tokamak and electron cyclotron heating: Description of need; assessment of prospects

    International Nuclear Information System (INIS)

    Ignat, D.W.; Cohn, D.R.; Woskov, P.P.

    1989-01-01

    The CIT will benefit from auxiliary heating of 10 to 40 MW. The schedules of both the CIT construction project and the operating plan contain adequate time to develop and implement ECH systems based on the gyrotron and the induction free electron laser (IFEL). Each approach has advantages and is the object of R and D at the level of many millions of dollars per year. While the gyrotron is further advanced in terms of power and pulse length achieved, rapid progress is scheduled for the IFEL, including experiments on tokamaks. Plans of CIT, gyrotron, and IFEL make 1992 an appropriate time frame to commit to one or both systems. 12 refs., 8 figs., 2 tabs

  9. Electron cyclotron resonance hydrogen/helium plasma characterization and simulation of pumping in tokamaks

    International Nuclear Information System (INIS)

    Outten, C.A.

    1992-01-01

    Electron Cyclotron Resonance (ECR) plasmas have been employed to simulate the plasma conditions at the edge of a tokamak in order to investigate hydrogen/helium uptake in thin metal films. The process of microwave power absorption, important to characterizing the ECR plasma source, was investigated by measuring the electron density and temperature with a Langmuir probe and optical spectroscopy as a function of the magnetic field gradient and incident microwave power. A novel diagnostic, carbon resistance probe, provided a direct measure of the ion energy and fluence while measurements from a Langmuir probe were used for comparison. The Langmuir probe gave a plasma potential minus floating potential of 30 ± 5 eV, in good agreement with the carbon resistance probe result of ion energy ≤ 40 eV. The measured ion energy was consistent with the ion energy predicted from a model based upon divergent magnetic field extraction. Also, based upon physical sputtering of the carbon, the hydrogen fluence rate was determined to be 1 x 10 16 /cm 2 -sec for 50 Watts of incident microwave power. ECR hydrogen/helium plasmas were used to study preferential pumping of helium in candidate materials for tokamak pump-limiters: nickel, vanadium, aluminum, and nickel/aluminum multi-layers. Nickel and vanadium exhibited similar pumping capacities whereas aluminum showed a reduced capacity due to increased sputtering. A helium retention model based upon ion implantation ranges and sputtering rates agreed with the experimental data. A new multilayer/bilayer pumping concept showed improved pumping above that for single element films

  10. Electron cyclotron wave absorption by the fast tail generated by the dc electric field in tokamak plasmas

    International Nuclear Information System (INIS)

    Giruzzi, G.; Krivenski, V.; Fidone, I.; Ziebell, L.F.

    1985-03-01

    Wave damping near the electron gyrofrequency in a tokamak plasma with the energetic tail generated by the dc electric field is investigated. The electron tail is computed by a Fokker-Planck initial value code as a function of the relevant parameter Esub(parallel)/Esub(c)=Esub(parallel)Tsub(e)/(2πsub(e)c 3 Λ). It is shown that in most cases of physical interest strong damping of the e-mode occurs for oblique propagation. The results are of relevance for studies of ECRH in present-day tokamaks and in future reactors where a mildly relativistic electron tail is naturally present for large tsub(e). Special emphasis is therefore given to wave absorption for frequencies f significantly below the central electron gyrofrequency, and to the associated rf-driven current

  11. Runaway electron studies with hard x-ray and microwave diagnostics in the FT-2 lower hybrid current drive discharges

    Science.gov (United States)

    Shevelev, A. E.; Khilkevitch, E. M.; Lashkul, S. I.; Rozhdestvensky, V. V.; Pandya, S. P.; Plyusnin, V. V.; Altukhov, A. B.; Kouprienko, D. V.; Chugunov, I. N.; Doinikov, D. N.; Esipov, L. A.; Gin, D. B.; Iliasova, M. V.; Naidenov, V. O.; Polunovsky, I. A.; Sidorov, A. V.; Kiptily, V. G.

    2018-01-01

    Studies of the super-thermal and runaway electron behavior in ohmic and lower hybrid current drive FT-2 tokamak plasmas have been carried out using information obtained from measurements of hard x-ray spectra and non-thermal microwave radiation intensity at the frequency of 10 GHz and in the range of (53 ÷ 78) GHz. A gamma-ray spectrometer based on a scintillation detector with a LaBr3(Ce) crystal was used, which provides measurements at counting rates up to 107 s-1. Reconstruction of the energy distribution of RE interacting with the poloidal limiter of the tokamak chamber was made with application of the DeGaSum code. Super-thermal electrons accelerated up to 2 MeV by the LH waves at the high-frequency pumping of the plasma with low density ≤ft ~ 2  ×  1013 cm-3 and then up to 7 MeV by vortex electric field have been found. Experimental analysis of the runaway electron beam generation and evolution of their energy distribution in the FT-2 plasmas is presented in the article and compared with the numerical calculation of the maximum energy gained by runaway electrons for given plasma parameters. In addition, possible mechanisms for limiting the maximum energy gained by the runaway electrons are also calculated and described for a FT-2 plasma discharge.

  12. Helium, iron and electron particle transport and energy transport studies on the TFTR tokamak

    International Nuclear Information System (INIS)

    Synakowski, E.J.; Efthimion, P.C.; Rewoldt, G.; Stratton, B.C.; Tang, W.M.; Grek, B.; Hill, K.W.; Hulse, R.A.; Johnson, D.W.; Mansfield, D.K.; McCune, D.; Mikkelsen, D.R.; Park, H.K.; Ramsey, A.T.; Redi, M.H.; Scott, S.D.; Taylor, G.; Timberlake, J.; Zarnstorff, M.C.

    1993-03-01

    Results from helium, iron, and electron transport on TFTR in L-mode and Supershot deuterium plasmas with the same toroidal field, plasma current, and neutral beam heating power are presented. They are compared to results from thermal transport analysis based on power balance. Particle diffusivities and thermal conductivities are radially hollow and larger than neoclassical values, except possibly near the magnetic axis. The ion channel dominates over the electron channel in both particle and thermal diffusion. A peaked helium profile, supported by inward convection that is stronger than predicted by neoclassical theory, is measured in the Supershot The helium profile shape is consistent with predictions from quasilinear electrostatic drift-wave theory. While the perturbative particle diffusion coefficients of all three species are similar in the Supershot, differences are found in the L-Mode. Quasilinear theory calculations of the ratios of impurity diffusivities are in good accord with measurements. Theory estimates indicate that the ion heat flux should be larger than the electron heat flux, consistent with power balance analysis. However, theoretical values of the ratio of the ion to electron heat flux can be more than a factor of three larger than experimental values. A correlation between helium diffusion and ion thermal transport is observed and has favorable implications for sustained ignition of a tokamak fusion reactor

  13. Helium, Iron and Electron Particle Transport and Energy Transport Studies on the TFTR Tokamak

    Science.gov (United States)

    Synakowski, E. J.; Efthimion, P. C.; Rewoldt, G.; Stratton, B. C.; Tang, W. M.; Grek, B.; Hill, K. W.; Hulse, R. A.; Johnson, D .W.; Mansfield, D. K.; McCune, D.; Mikkelsen, D. R.; Park, H. K.; Ramsey, A. T.; Redi, M. H.; Scott, S. D.; Taylor, G.; Timberlake, J.; Zarnstorff, M. C. (Princeton Univ., NJ (United States). Plasma Physics Lab.); Kissick, M. W. (Wisconsin Univ., Madison, WI (United States))

    1993-03-01

    Results from helium, iron, and electron transport on TFTR in L-mode and Supershot deuterium plasmas with the same toroidal field, plasma current, and neutral beam heating power are presented. They are compared to results from thermal transport analysis based on power balance. Particle diffusivities and thermal conductivities are radially hollow and larger than neoclassical values, except possibly near the magnetic axis. The ion channel dominates over the electron channel in both particle and thermal diffusion. A peaked helium profile, supported by inward convection that is stronger than predicted by neoclassical theory, is measured in the Supershot The helium profile shape is consistent with predictions from quasilinear electrostatic drift-wave theory. While the perturbative particle diffusion coefficients of all three species are similar in the Supershot, differences are found in the L-Mode. Quasilinear theory calculations of the ratios of impurity diffusivities are in good accord with measurements. Theory estimates indicate that the ion heat flux should be larger than the electron heat flux, consistent with power balance analysis. However, theoretical values of the ratio of the ion to electron heat flux can be more than a factor of three larger than experimental values. A correlation between helium diffusion and ion thermal transport is observed and has favorable implications for sustained ignition of a tokamak fusion reactor.

  14. Measurement of turbulent electron temperature fluctuations on the ASDEX Upgrade tokamak using correlated electron cyclotron emission

    Energy Technology Data Exchange (ETDEWEB)

    Freethy, S. J., E-mail: simon.freethy@ipp.mpg.de [Max Planck Institute for Plasma Physics, 85748 Garching (Germany); Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Conway, G. D.; Happel, T.; Köhn, A. [Max Planck Institute for Plasma Physics, 85748 Garching (Germany); Classen, I.; Vanovac, B. [FOM Institute DIFFER, 5612 AJ Eindhoven (Netherlands); Creely, A. J.; White, A. E. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2016-11-15

    Turbulent temperature fluctuations are measured on the ASDEX Upgrade tokamak using pairs of closely spaced, narrow-band heterodyne radiometer channels and a standard correlation technique. The pre-detection spacing and bandwidth of the radiometer channel pairs is chosen such that they are physically separated less than a turbulent correlation length, but do not overlap. The radiometer has 4 fixed filter frequency channels and two tunable filter channels for added flexibility in the measurement position. Relative temperature fluctuation amplitudes are observed in a helium plasma to be δT/T = (0.76 ± 0.02)%, (0.67 ± 0.02)%, and (0.59 ± 0.03)% at normalised toroidal flux radius of ρ{sub tor} = 0.82, 0.75, and 0.68, respectively.

  15. Using bremsstrahlung for electron density estimation and correction in EAST tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yingjie, E-mail: bestfaye@gmail.com; Wu, Zhenwei; Gao, Wei; Jie, Yinxian; Zhang, Jizong; Huang, Juan; Zhang, Ling; Zhao, Junyu

    2013-11-15

    Highlights: • The visible bremsstrahlung diagnostic provides a simple and effective tool for electron density estimation in steady state discharges. • This method can make up some disadvantages of present FIR and TS diagnostics in EAST tokamak. • Line averaged electron density has been deduced from central VB signal. The results can also be used for FIR n{sub e} correction. • Typical n{sub e} profiles have been obtained with T{sub e} and reconstructed bremsstrahlung profiles. -- Abstract: In EAST electron density (n{sub e}) is measured by the multi-channel far-infrared (FIR) hydrogen cyanide (HCN) interferometer and Thomson scattering (TS) diagnostics. However, it is difficult to obtain accurate n{sub e} profile for that there are many problems existing in current electron density diagnostics. Since the visible bremsstrahlung (VB) emission coefficient has a strong dependence on electron density, the visible bremsstrahlung measurement system developed to determine the ion effective charge (Z{sub eff}) may also be used for n{sub e} estimation via inverse operations. With assumption that Z{sub eff} has a flat profile and does not change significantly in steady state discharges, line averaged electron density (n{sup ¯}{sub e}) has been deduced from VB signals in L-mode and H-mode discharges in EAST. The results are in good coincidence with n{sup ¯}{sub e} from FIR, which proves that VB measurement is an effective tool for n{sub e} estimation. VB diagnostic is also applied to n{sup ¯}{sub e} correction when FIR n{sup ¯}{sub e} is wrong for the laser phase shift reversal together with noise causes errors when electron density changed rapidly in the H-mode discharges. Typical n{sub e} profiles in L-mode and H-mode phase are also deduced with reconstructed bremsstrahlung profiles.

  16. Suprathermal electron studies in Tokamak plasmas by means of diagnostic measurements and modeling

    International Nuclear Information System (INIS)

    Kamleitner, J.

    2015-01-01

    To achieve reactor-relevant conditions in a tokamak plasma, auxiliary heating systems are required and can be realized by waves injected in the plasma that heat ions or electrons. Electron cyclotron resonant heating (ECRH) is a very flexible and robust technique featuring localized power deposition and current drive (CD) capabilities. Its fundamental principles are well understood and the application of ECRH is a proven and established tool; electron cyclotron current drive (ECCD) is regularly used to develop advanced scenarios and control magneto-hydrodynamics (MHD) instabilities in the plasma by tailoring the current profile. There remain important open questions, such as the phase space dynamics, the observed radial broadening of the supra-thermal electron distribution function and discrepancies in predicted and experimental CD efficiency. A main goal is to improve the understanding of wave-particle interaction in plasmas and current drive mechanisms. This was accomplished by combined experimental and numerical studies, strongly based on the conjunction of hard X-ray (HXR) Bremsstrahlung measurements and Fokker-Planck modelling, characterizing the supra-thermal electron population. The hard X-ray tomographic spectrometer (HXRS) diagnostic was developed to perform these studies by investigating spatial HXR emission asymmetries in the co- and counter-current directions and within the poloidal plane. The system uses cadmium-telluride detectors and digital acquisition to store the complete time history of incoming photon pulses. An extensive study of digital pulse processing algorithms was performed and its application allows the HXRS to handle high count rates in a noisy tokamak environment. Numerical tools were developed to improve the time resolution by conditional averaging and to obtain local information with the general tomographic inversion package. The interfaces of the LUKE code and the well-established CQL3D Fokker-Planck code to the Tokamak a

  17. Measurement of electron density of the plasma in the Tokamak TCABR, through Thomson scattering diagnostic

    International Nuclear Information System (INIS)

    Jeronimo, Leonardo Cunha

    2013-01-01

    Over the last few years is remarkable, so increasingly evident the need for a new source of energy for mankind. One promising option is through nuclear fusion, where the plasma produced in the reactor can be converted into electrical energy. Therefore, knowing the characteristics of this plasma is very important to control it and understand it so desirable. One of the diagnostic options is called Thomson scattering . This is considered the most reliable method for the determination of important plasma parameters such as temperature and electron density, and may also help in the study and explanation of various internal mechanisms. The great advantage lies in the tact that they consist of a direct measurement and nonperturbative. But it is a diagnosis whose installation and execution is admittedly complex, limiting it only a few laboratories in the fíeld of fusion for the world. Among the main difficulties, wc can highlight the fact that the scattered signal is very small, thus requiring a large increase of the incident power. Moreover, the external physical conditions can cause mechanical vibrations that eliminate or minimize them as much as possible, is a great challenge, considering the optical micrometrically very sensitive and needs involved in the system. This work describes the entire process of installation and operation of Thomson scattering diagnostic in tokamak TCABR and through this diagnosis, we work on results of electron temperature, to finally be able to calculate the electron density of the plasma. (author)

  18. The influence of secondary electron emission on the floating potential of tokamak-born dust

    International Nuclear Information System (INIS)

    Vaverka, J; Richterová, I; Vyšinka, M; Pavlů, J; Šafránková, J; Němeček, Z

    2014-01-01

    Dust production and its transport into the core plasma is an important issue for magnetic confinement fusion. Dust grains are charged by various processes, such as the collection of plasma particles and electron emissions, and their charge influences the dynamics of the dust. This paper presents the results of calculations of the surface potential of dust grains in a Maxwellian plasma. Our calculations include the charging balance of a secondary electron emission (SEE) from the dust. The numerical model that we have used accounts for the influence of backscattered electrons and takes into account the effects of grain size, material, and it is also able to handle both spherical and non-spherical grains. We discuss the role of the SEE under tokamak conditions and show that the SEE is a leading process for the grains crossing the scrape-off layer from the edge to core plasma. The results of our calculations are relevant for materials related to fusion experiments in ITER. (paper)

  19. Electron temperature profiles in high power neutral-beam-heated TFTR [Tokamak Fusion Test Reactor] plasmas

    International Nuclear Information System (INIS)

    Taylor, G.; Grek, B.; Stauffer, F.J.; Goldston, R.J.; Fredrickson, E.D.; Wieland, R.M.; Zarnstorff, M.C.

    1987-09-01

    In 1986, the maximum neutral beam injection (NBI) power in the Tokamak Fusion Test Reactor (TFTR) was increased to 20 MW, with three beams co-parallel and one counter-parallel to I/sub p/. TFTR was operated over a wide range of plasma parameters; 2.5 19 19 m -3 . Data bases have been constructed with over 600 measured electron temperature profiles from multipoint TV Thomson scattering which span much of this parameter space. We have also examined electron temperature profile shapes from electron cyclotron emission at the fundamental ordinary mode and second harmonic extraordinary mode for a subset of these discharges. In the light of recent work on ''profile consistency'' we have analyzed these temperature profiles in the range 0.3 < (r/a) < 0.9 to determine if a profile shape exists which is insensitive to q/sub cyl/ and beam-heating profile. Data from both sides of the temperature profile [T/sub e/(R)] were mapped to magnetic flux surfaces [T/sub e/(r/a)]. Although T/sub e/(r/a), in the region where 0.3 < r/a < 0.9 was found to be slightly broader at lower q/sub cyl/, it was found to be remarkably insensitive to β/sub p/, to the fraction of NBI power injected co-parallel to I/sub p/, and to the heating profile going from peaked on axis, to hollow. 10 refs., 8 figs

  20. Removal of the lower hybrid (LH) frequency time scale in test electron simulations of LH-induced tokamak edge electron flow

    Czech Academy of Sciences Publication Activity Database

    Fuchs, Vladimír; Petržílka, Václav; Gunn, J. P.; Goniche, M.

    2002-01-01

    Roč. 52, supplement D (2002), s. 45-50 ISSN 0011-4626. [Symposium on Plasma Physics and Technology/20th./. Prague, 10.06.2002-13.06.2002] Institutional research plan: CEZ:AV0Z2043910 Keywords : tokamak, edge electrons, lower hybrid antenna Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.311, year: 2002

  1. Fast wave and electron cyclotron current drive in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Petty, C.C.; Pinsker, R.I.; Austin, M.E.

    1995-01-01

    The non-inductive current drive from directional fast Alfven and electron cyclotron waves was measured in the DIII-D tokamak in order to demonstrate these forms of radiofrequency (RF) current drive and to compare the measured efficiencies with theoretical expectations. The fast wave frequency was 8 times the deuterium cyclotron frequency at the plasma centre, while the electron cyclotron wave was at twice the electron cyclotron frequency. Complete non-inductive current drive was achieved using a combination of fast wave current drive (FWCD) and electron cyclotron current drive (ECCD) in discharges for which the total plasma current was inductively ramped down from 400 to 170 kA. For steady current discharges, an analysis of the loop voltage revealed up to 195 kA of a non-inductive current (out of 310 kA) during combined electron cyclotron and fast wave injection, with a maximum of 110 kA of FWCD and 80 kA of ECCD achieved (not simultaneously). The peakedness of the current profile increased with RF current drive, indicating that the driven current was centrally localized. The FWCD efficiency increased linearly with the central electron temperature as expected; however, the FWCD was severely degraded in low current discharges owing to incomplete fast wave absorption. The measured FWCD agreed with the predictions of a ray tracing code only when a parasitic loss of 4% per pass was included in the modelling along with multiple pass absorption. Enhancement of the second harmonic ECCD efficiency by the toroidal electric field was observed experimentally. The measured ECCD was in good agreement with Fokker-Planck code predictions. (author). 41 refs, 13 figs, 1 tab

  2. Measurement of the electron and ion temperatures by the x-ray imaging crystal spectrometer on joint Texas experimental tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Yan, W.; Chen, Z. Y., E-mail: zychen@hust.edu.cn; Huang, D. W.; Tong, R. H.; Wang, S. Y.; Wei, Y. N.; Ma, T. K.; Zhuang, G. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan (China); Jin, W. [Center of Interface Dynamics for Sustainability, China Academy of Engineering Physics, Chengdu, Sichuan 610200 (China); Lee, S. G. [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Shi, Y. J. [Department of Nuclear Engineering, Seoul National University, Seoul 08826 (Korea, Republic of)

    2016-11-15

    An x-ray imaging crystal spectrometer has been developed on joint Texas experimental tokamak for the measurement of electron and ion temperatures from the K{sub α} spectra of helium-like argon and its satellite lines. A two-dimensional multi-wire proportional counter has been applied to detect the spectra. The electron and ion temperatures have been obtained from the Voigt fitting with the spectra of helium-like argon ions. The profiles of electron and ion temperatures show the dependence on electron density in ohmic plasmas.

  3. Experimental study of parametric dependence of electron-scale turbulence in a spherical tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Y.; Guttenfelder, W.; Kaye, S. M.; Mazzucato, E.; Bell, R. E.; Diallo, A.; LeBlanc, B. P. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Domier, C. W.; Lee, K. C. [University of California at Davis, Davis, California 95616 (United States); Smith, D. R. [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Yuh, H. [Nova Photonics, Inc., Princeton, New Jersey 08540 (United States)

    2012-05-15

    Electron-scale turbulence is predicted to drive anomalous electron thermal transport. However, experimental study of its relation with transport is still in its early stage. On the National Spherical Tokamak Experiment (NSTX), electron-scale density fluctuations are studied with a novel tangential microwave scattering system with high radial resolution of {+-}2 cm. Here, we report a study of parametric dependence of electron-scale turbulence in NSTX H-mode plasmas. The dependence on density gradient is studied through the observation of a large density gradient variation in the core induced by an edge localized mode (ELM) event, where we found the first clear experimental evidence of density gradient stabilization of electron-gyro scale turbulence in a fusion plasma. This observation, coupled with linear gyro-kinetic calculations, leads to the identification of the observed instability as toroidal electron temperature gradient (ETG) modes. It is observed that longer wavelength ETG modes, k{sub Up-Tack }{rho}{sub s} Less-Than-Or-Equivalent-To 10 ({rho}{sub s} is the ion gyroradius at electron temperature and k{sub Up-Tack} is the wavenumber perpendicular to local equilibrium magnetic field), are most stabilized by density gradient, and the stabilization is accompanied by about a factor of two decrease in electron thermal diffusivity. Comparisons with nonlinear ETG gyrokinetic simulations show ETG turbulence may be able to explain the experimental electron heat flux observed before the ELM event. The collisionality dependence of electron-scale turbulence is also studied by systematically varying plasma current and toroidal field, so that electron gyroradius ({rho}{sub e}), electron beta ({beta}{sub e}), and safety factor (q{sub 95}) are kept approximately constant. More than a factor of two change in electron collisionality, {nu}{sub e}{sup *}, was achieved, and we found that the spectral power of electron-scale turbulence appears to increase as {nu}{sub e}{sup *} is

  4. Experiments on electron temperature profile resilience in FTU tokamak with continuous and modulated ECRH

    International Nuclear Information System (INIS)

    Cirant, S.

    2002-01-01

    Experiments performed on FTU tokamak, aiming at validation of physics-based transport models of the electron temperature profile resilience, are presented. ECRH is used to probe transport features, both in steady-state and in response to perturbations, while ECCD and LHCD are used for current density profile shaping. Observed confinement behaviour shows agreement with a critical temperature gradient length modelling. Central, low gradient plasma is characterized by low stiffness and low electron thermal diffusivity. Strong stiffness and high conduction are found in the confinement region. Resilience is experimentally characterized by an index of the resistance of the profile to adapt its shape to localized ECRH, while the diffusivity and its low-high transition are measured both by power balance and heat pulse propagation analysis. A particular attention is given to the investigation of the transition layer between low-high diffusivity and low-high stiffness regions. A dependence of LTc on magnetic shear, similar to what found in Tore Supra, and consistent with ETG based anomalous transport, is found. (author)

  5. Design of the 2D electron cyclotron emission imaging instrument for the J-TEXT tokamak.

    Science.gov (United States)

    Pan, X M; Yang, Z J; Ma, X D; Zhu, Y L; Luhmann, N C; Domier, C W; Ruan, B W; Zhuang, G

    2016-11-01

    A new 2D Electron Cyclotron Emission Imaging (ECEI) diagnostic is being developed for the J-TEXT tokamak. It will provide the 2D electron temperature information with high spatial, temporal, and temperature resolution. The new ECEI instrument is being designed to support fundamental physics investigations on J-TEXT including MHD, disruption prediction, and energy transport. The diagnostic contains two dual dipole antenna arrays corresponding to F band (90-140 GHz) and W band (75-110 GHz), respectively, and comprises a total of 256 channels. The system can observe the same magnetic surface at both the high field side and low field side simultaneously. An advanced optical system has been designed which permits the two arrays to focus on a wide continuous region or two radially separate regions with high imaging spatial resolution. It also incorporates excellent field curvature correction with field curvature adjustment lenses. An overview of the diagnostic and the technical progress including the new remote control technique are presented.

  6. High spatial resolution upgrade of the electron cyclotron emission radiometer for the DIII-D tokamak.

    Science.gov (United States)

    Truong, D D; Austin, M E

    2014-11-01

    The 40-channel DIII-D electron cyclotron emission (ECE) radiometer provides measurements of Te(r,t) at the tokamak midplane from optically thick, second harmonic X-mode emission over a frequency range of 83-130 GHz. The frequency spacing of the radiometer's channels results in a spatial resolution of ∼1-3 cm, depending on local magnetic field and electron temperature. A new high resolution subsystem has been added to the DIII-D ECE radiometer to make sub-centimeter (0.6-0.8 cm) resolution Te measurements. The high resolution subsystem branches off from the regular channels' IF bands and consists of a microwave switch to toggle between IF bands, a switched filter bank for frequency selectivity, an adjustable local oscillator and mixer for further frequency down-conversion, and a set of eight microwave filters in the 2-4 GHz range. Higher spatial resolution is achieved through the use of a narrower (200 MHz) filter bandwidth and closer spacing between the filters' center frequencies (250 MHz). This configuration allows for full coverage of the 83-130 GHz frequency range in 2 GHz bands. Depending on the local magnetic field, this translates into a "zoomed-in" analysis of a ∼2-4 cm radial region. Expected uses of these channels include mapping the spatial dependence of Alfven eigenmodes, geodesic acoustic modes, and externally applied magnetic perturbations. Initial Te measurements, which demonstrate that the desired resolution is achieved, are presented.

  7. Soft-X ray electronics for temperature measurement in SST-1 tokamak

    International Nuclear Information System (INIS)

    Kumari, Praveena; Raval, Jayesh V.; Chauhan, Harsad; Hansalia, C.J.; Joisa, Y.S.; Rajpal, Rachana

    2015-01-01

    Soft-X ray diagnostic is used for the measurement of core temperature of plasma in tokamak. Signal conditioning electronics is designed, developed and tested for Soft-X ray measurement in SST-1. Silicon Surface Barrier Detectors (SBD) are used for detection of Soft -X ray. The detector is very sensitive and have a large leakage current (1-10) nA/cm"2. The preamplifier is designed to measure (10-100) nA of current signal. Virtual bias is supplied to detector through preamplifier. The front end electronics are mounted directly on the feed through in air side. Detectors are interfaced with feed through by 2-wire shielded cable. In the way of getting good results, problems are identified and troubleshooted. Soft-X ray signals are observed consistently in SST-1 campaign XIII. Different scheme were tested during the plasma experimental shots to get better measurement. This poster will describe the design details, interfacing with detector, problem faced, remedy and results. (author)

  8. High performance gamma-ray spectrometer for runaway electron studies on the FT-2 tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Shevelev, A.E., E-mail: Shevelev@cycla.ioffe.ru [Ioffe Institute, Politekhnicheskaya 26, St. Petersburg 194021 (Russian Federation); Khilkevitch, E.M.; Lashkul, S.I.; Rozhdestvensky, V.V.; Altukhov, A.B.; Chugunov, I.N.; Doinikov, D.N.; Esipov, L.A.; Gin, D.B.; Iliasova, M.V.; Naidenov, V.O.; Nersesyan, N.S.; Polunovsky, I.A.; Sidorov, A.V. [Ioffe Institute, Politekhnicheskaya 26, St. Petersburg 194021 (Russian Federation); Kiptily, V.G. [CCFE, Culham Science Centre, Abingdon, Oxon X14 3DB (United Kingdom)

    2016-09-11

    A gamma-ray spectrometer based on LaBr{sub 3}(Ce) scintillator has been used for measurements of hard X-ray emission generated by runaway electrons in the FT-2 tokamak plasmas. Using of the fast LaBr{sub 3}(Ce) has allowed extending count rate range of the spectrometer by a factor of 10. A developed digital processing algorithm of the detector signal recorded with a digitizer sampling rate of 250 MHz has provided a pulse height analysis at count rates up to 10{sup 7} s{sup −1}. A spectrum deconvolution code DeGaSum has been applied for inferring the energy distribution of runaway electrons escaping from the plasma and interacting with materials of the FT-2 limiter in the vacuum chamber. The developed digital signal processing technique for LaBr{sub 3}(Ce) spectrometer has allowed studying the evolution of runaways energy distribution in the FT-2 plasma discharges with time resolution of 1–5 ms.

  9. Design of the 2D electron cyclotron emission imaging instrument for the J-TEXT tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Pan, X. M.; Yang, Z. J., E-mail: yangzj@hust.edu.cn; Ma, X. D.; Ruan, B. W.; Zhuang, G. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Zhu, Y. L. [School of Physics, University of Science and Technology of China, Anhui 230026 (China); Luhmann, N. C.; Domier, C. W. [Davis Millimeter Wave Research Center, University of California, Davis, California 95616 (United States)

    2016-11-15

    A new 2D Electron Cyclotron Emission Imaging (ECEI) diagnostic is being developed for the J-TEXT tokamak. It will provide the 2D electron temperature information with high spatial, temporal, and temperature resolution. The new ECEI instrument is being designed to support fundamental physics investigations on J-TEXT including MHD, disruption prediction, and energy transport. The diagnostic contains two dual dipole antenna arrays corresponding to F band (90-140 GHz) and W band (75-110 GHz), respectively, and comprises a total of 256 channels. The system can observe the same magnetic surface at both the high field side and low field side simultaneously. An advanced optical system has been designed which permits the two arrays to focus on a wide continuous region or two radially separate regions with high imaging spatial resolution. It also incorporates excellent field curvature correction with field curvature adjustment lenses. An overview of the diagnostic and the technical progress including the new remote control technique are presented.

  10. Opportunist combination of electronic technologies for real time calculations in the Tore Supra Tokamak

    International Nuclear Information System (INIS)

    Barbuti, A.; Gil, C.; Pastor, P.; Spuig, P.; Vincent, B.; Volpe, D.

    2013-06-01

    The Tore Supra tokamak real-time plasma control is based on measurements coming from various diagnostics. The complexity of all the events that occur during plasma is at the origin of measurements disturbances which have to be corrected in real time in order to ensure an optimal control. The signal correction does not just mean processing but requires complex algorithms. Electronics does not only need to process and adapt electrical signals, but it has to include corrections by mathematical calculation. The FPGA (field-programmable gate array) technology, with the help of basic adapted electronics, allows integrating the entire real time calculation and digital data transmission on the network. FMC (FPGA Mezzanine Card) coupled with in-house motherboard, which is used both as the interface with Tore Supra specific systems and as the support for other signals processing options, is the perfect answer to this request. The FMC includes a FPGA, memory, Ethernet port and multiple I/O for interfacing with the motherboard and Tore Supra signals. The algorithms are developed in VHDL (Very high speed integrated circuit Hardware Description Language), parallel process management that promotes faster calculation than a common μC (Micro-controller) in one clock pulse. The flexibility, the low cost and the implementation speed allow fitting a large number of various applications in fields where no 'off-theshelf' component can be found. And more specifically, in research and experimentation, algorithms can be continuously improved or modified for new requirements. (authors)

  11. Synchrotron emission diagnostic of full-orbit kinetic simulations of runaway electrons in tokamaks plasmas

    Science.gov (United States)

    Carbajal Gomez, Leopoldo; Del-Castillo-Negrete, Diego

    2017-10-01

    Developing avoidance or mitigation strategies of runaway electrons (RE) for the safe operation of ITER is imperative. Synchrotron radiation (SR) of RE is routinely used in current tokamak experiments to diagnose RE. We present the results of a newly developed camera diagnostic of SR for full-orbit kinetic simulations of RE in DIII-D-like plasmas that simultaneously includes: full-orbit effects, information of the spectral and angular distribution of SR of each electron, and basic geometric optics of a camera. We observe a strong dependence of the SR measured by the camera on the pitch angle distribution of RE, namely we find that crescent shapes of the SR on the camera pictures relate to RE distributions with small pitch angles, while ellipse shapes relate to distributions of RE with larger pitch angles. A weak dependence of the SR measured by the camera with the RE energy, value of the q-profile at the edge, and the chosen range of wavelengths is found. Furthermore, we observe that oversimplifying the angular distribution of the SR changes the synchrotron spectra and overestimates its amplitude. Research sponsored by the LDRD Program of ORNL, managed by UT-Battelle, LLC, for the U. S. DoE.

  12. A study of tearing modes via electron cyclotron emission from tokamak plasmas

    International Nuclear Information System (INIS)

    Ren, C.

    1998-07-01

    This thesis studies several tearing mode problems from both theoretical and experimental points of view. A major part of this thesis is to demonstrate that Electron Cyclotron Emission (ECE) is an excellent diagnostic for studying an MHD mode structure and its properties in a tokamak plasma. It is shown that an MHD mode can be detected from the electron temperature fluctuations measured by ECE. The amplitude and phase profiles of the fluctuations contain detailed information about the mode structure. The ECE fluctuation phase profile indicates the magnetic island deformation due to the combination of sheared flow and viscosity. A model is presented to relate qualitatively the observed phase gradient to the local magnetic field, flow velocity shear and viscosity in a 2D slab geometry, using an ideal Ohm's law and the plasma momentum equation including flow and viscosity. Numerical solution of the resultant Grad-Shafranov-like equation describing the deformed island shows that the experimentally observed value of the phase gradient can be obtained under realistic parameters for the shear in the flow velocity and viscosity. A new approach to the tearing mode stability boundary and saturation level is also presented

  13. A study of tearing modes via electron cyclotron emission from tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Chuang [Univ. of Wisconsin, Madison, WI (United States)

    1998-07-01

    This thesis studies several tearing mode problems from both theoretical and experimental points of view. A major part of this thesis is to demonstrate that Electron Cyclotron Emission (ECE) is an excellent diagnostic for studying an MHD mode structure and its properties in a tokamak plasma. It is shown that an MHD mode can be detected from the electron temperature fluctuations measured by ECE. The amplitude and phase profiles of the fluctuations contain detailed information about the mode structure. The ECE fluctuation phase profile indicates the magnetic island deformation due to the combination of sheared flow and viscosity. A model is presented to relate qualitatively the observed phase gradient to the local magnetic field, flow velocity shear and viscosity in a 2D slab geometry, using an ideal Ohm`s law and the plasma momentum equation including flow and viscosity. Numerical solution of the resultant Grad-Shafranov-like equation describing the deformed island shows that the experimentally observed value of the phase gradient can be obtained under realistic parameters for the shear in the flow velocity and viscosity. A new approach to the tearing mode stability boundary and saturation level is also presented.

  14. MIRI: A multichannel far-infrared laser interferometer for electron density measurements on TFTR [Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Mansfield, D.K.; Park, H.K.; Johnson, L.C.; Anderson, H.M.; Chouinard, R.; Foote, V.S.; Ma, C.H.; Clifton, B.J.

    1987-07-01

    A ten-channel far-infrared laser interferometer which is routinely used to measure the spatial and temporal behavior of the electron density profile on the TFTR tokamak is described and representative results are presented. This system has been designed for remote operation in the very hostile environment of a fusion reactor. The possible expansion of the system to include polarimetric measurements is briefly outlined. 13 refs., 8 figs

  15. Simulation of ITG instabilities with fully kinetic ions and drift-kinetic electrons in tokamaks

    Science.gov (United States)

    Hu, Youjun; Chen, Yang; Parker, Scott

    2017-10-01

    A turbulence simulation model with fully kinetic ions and drift-kinetic electrons is being developed in the toroidal electromagnetic turbulence code GEM. This is motivated by the observation that gyrokinetic ions are not well justified in simulating turbulence in tokamak edges with steep density profile, where ρi / L is not small enough to be used a small parameter needed by the gyrokinetic ordering (here ρi is the gyro-radius of ions and L is the scale length of density profile). In this case, the fully kinetic ion model may be useful. Our model uses an implicit scheme to suppress high-frequency compressional Alfven waves and waves associated with the gyro-motion of ions. The ion orbits are advanced by using the well-known Boris scheme, which reproduces correct drift-motion even with large time-step comparable to the ion gyro-period. The field equation in this model is Ampere's law with the magnetic field eliminated by using an implicit scheme of Faraday's law. The current contributed by ions are computed by using an implicit δf method. A flux tube approximation is adopted, which makes the field equation much easier to solve. Numerical results of electromagnetic ITG obtained from this model will be presented and compared with the gyrokinetic results. This work is supported by U.S. Department of Energy, Office of Fusion Energy Sciences under Award No. DE-SC0008801.

  16. Simulation of runaway electron generation and diffusion during major disruptions in the HL-2A tokamak

    International Nuclear Information System (INIS)

    Li, Yanli; Sun, Jizhong; Zhang, Yipo; Sang, Chaofeng; Wu, Na; Wang, Dezhen

    2014-01-01

    Highlights: • The strong and long duration magnetic perturbation (δB/B ∼ 1.0 × 10 −3 ) can restrain the RE generation effectively. • The REs are generated initially in the plasma core during disruptions. • The toroidal electric field does not exhibit a centrally hollow phenomenon. • The toroidal effects have little impact on the generation of RE and the evolution of toroidal electric field. - Abstract: The generation and diffusion of runaway electrons (REs) during major disruptions in the HL-2A tokamak has been studied numerically. The diffusion caused by the magnetic perturbation is especially addressed. The simulation results show that the strong magnetic perturbation (δB/B ∼ 1.0 × 10 −3 ) can cause a significant loss of REs due to the radial diffusion and restrain the RE avalanche effectively. The results also indicate that the REs are generated initially in the plasma core during disruptions, and that the toroidal electric field does not exhibit a centrally hollow phenomenon. In addition, it is found that the toroidal effects have little impact on the generation of RE and the evolution of toroidal electric field

  17. Study and impact of fast electrons diagnosed by electron cyclotron radiation on Tore-Supra tokamak

    International Nuclear Information System (INIS)

    Gomez, P.

    1999-12-01

    This thesis aims at characterizing the dynamics of fast electrons generated by the Landau absorption of the hybrid wave and studying their effects on electron cyclotron radiation. The different processes involved in the propagation and resonant absorption of the hybrid wave in plasmas are described. A method such as ray-tracing allows the characterization of the dynamics of heating but this method relies on the hypothesis of geometrical optics. Whenever absorption rate is low as it is in Tore-Supra, the hybrid wave undergoes a series of successive reflections on the edge of the plasma before being completely absorbed. These reflections generate an electromagnetic chaos in which geometrical optics hypothesis are no longer valid. A statistical treatment of the Fokker-Planck equation allows the calculation of the mean distribution function of electrons in the plasma submitted to hybrid wave. The electron cyclotron radiation is then deduced and by assuming that plasma behaves like a black body, a theoretical radiative temperature is calculated. The confrontation of this theoretical temperature profile with experimental values allows the validation of this modeling and the estimation of the effects of fast electrons on temperature measurements. (A.C.)

  18. Nonlinear features of the electron temperature gradient mode and electron thermal transport in tokamaks

    International Nuclear Information System (INIS)

    Kaw, P.K.; Singh, R.; Weiland, J.G.

    2001-01-01

    Analytical investigations of several linear and nonlinear features of ETG turbulence are reported. The linear theory includes effects such as finite beta induced electromagnetic shielding, coupling to electron magnetohydrodynamic modes like whistlers etc. It is argued that nonlinearly, turbulence and transport are dominated by radially extended modes called 'streamers'. A nonlinear mechanism generating streamers based on a modulational instability theory of the ETG turbulence is also presented. The saturation levels of the streamers using a Kelvin Helmholtz secondary instability mechanism are calculated and levels of the electron thermal transport due to streamers are estimated. (author)

  19. Electron heat transport in current carrying and currentless thermonuclear plasmas. Tokamaks and stellarators compared

    International Nuclear Information System (INIS)

    Peters, M.

    1996-01-01

    In the first experiment the plasma current in the RTP tokamak is varied. Here the underlying idea was to check whether at a low plasma current, transport in the tokamak resembles transport in stellarators more than at higher currents. Secondly, experiments have been done to study the relation of the diffusivity χ to the temperature and its gradient in both W7-AS and RTP. In this case the underlying idea was to find the explanation for the phenomenon observed in both tokamaks and stellarators that the quality of the confinement degrades when more heating is applied. A possible explanation is that the diffusivity increases with the temperature or its gradient. Whereas in standard tokamak and stellarator experiments the temperature and its gradient are strongly correlated, a special capability of the plasma heating system of W7-AS and RTP can force them to decouple. (orig.)

  20. Electron heat transport in current carrying and currentless thermonuclear plasmas. Tokamaks and stellarators compared

    Energy Technology Data Exchange (ETDEWEB)

    Peters, M

    1996-01-16

    In the first experiment the plasma current in the RTP tokamak is varied. Here the underlying idea was to check whether at a low plasma current, transport in the tokamak resembles transport in stellarators more than at higher currents. Secondly, experiments have been done to study the relation of the diffusivity {chi} to the temperature and its gradient in both W7-AS and RTP. In this case the underlying idea was to find the explanation for the phenomenon observed in both tokamaks and stellarators that the quality of the confinement degrades when more heating is applied. A possible explanation is that the diffusivity increases with the temperature or its gradient. Whereas in standard tokamak and stellarator experiments the temperature and its gradient are strongly correlated, a special capability of the plasma heating system of W7-AS and RTP can force them to decouple. (orig.).

  1. Plasma heating in the TM-3 Tokamak at electron-cyclotron resonance with magnetic fields up to 25 ke

    International Nuclear Information System (INIS)

    Alikaev, V.V.; Bobrovskii, G.A.; Poznyak, V.I.; Razumova, K.A.; Sannikov, V.V.; Sokolov, Yu.A.; Shmarin, A.A.

    Experiments were conducted in heating plasma at electron-cyclotron resonance (ECR) with longitudinal magnetic fields up to 25 ke. It was shown by the aid of laser diagnosis that the temperature of the basic component of the electrons increases in accordance with the classical mechanism of heating at ECR in the process of electron-cyclotron heating (ECH). The distribution of the temperature of electrons with respect to radius was measured. The relationship of energetic lifetime in the Tokamak and electron temperature was obtained and the magnitude of energetic lifetime of accelerated electrons in the function of their energy was estimated. The value β/sub tau/ approximately equal to 2.2 was obtained by the aid of ECH in a regime with small discharge currents

  2. High spatial resolution upgrade of the electron cyclotron emission radiometer for the DIII-D tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Truong, D. D., E-mail: dtruong@wisc.edu [Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Austin, M. E. [Institute for Fusion Studies, University of Texas, Austin, Texas, 78712 (United States)

    2014-11-15

    The 40-channel DIII-D electron cyclotron emission (ECE) radiometer provides measurements of T{sub e}(r,t) at the tokamak midplane from optically thick, second harmonic X-mode emission over a frequency range of 83–130 GHz. The frequency spacing of the radiometer's channels results in a spatial resolution of ∼1–3 cm, depending on local magnetic field and electron temperature. A new high resolution subsystem has been added to the DIII-D ECE radiometer to make sub-centimeter (0.6–0.8 cm) resolution T{sub e} measurements. The high resolution subsystem branches off from the regular channels’ IF bands and consists of a microwave switch to toggle between IF bands, a switched filter bank for frequency selectivity, an adjustable local oscillator and mixer for further frequency down-conversion, and a set of eight microwave filters in the 2–4 GHz range. Higher spatial resolution is achieved through the use of a narrower (200 MHz) filter bandwidth and closer spacing between the filters’ center frequencies (250 MHz). This configuration allows for full coverage of the 83–130 GHz frequency range in 2 GHz bands. Depending on the local magnetic field, this translates into a “zoomed-in” analysis of a ∼2–4 cm radial region. Expected uses of these channels include mapping the spatial dependence of Alfven eigenmodes, geodesic acoustic modes, and externally applied magnetic perturbations. Initial T{sub e} measurements, which demonstrate that the desired resolution is achieved, are presented.

  3. Study of electron beams within ISTTOK tokamak by means of a multi-channel Cherenkov detector; their correlation with hard X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Jakubowski, L., E-mail: Lech.Jakubowski@ipj.gov.p [Andrzej Soltan Institute for Nuclear Studies, 05-400 Otwock-Swierk (Poland); Malinowski, K.; Sadowski, M.J.; Zebrowski, J. [Andrzej Soltan Institute for Nuclear Studies, 05-400 Otwock-Swierk (Poland); Plyusnin, V.V. [Association Euratom/IST, Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Rabinski, M. [Andrzej Soltan Institute for Nuclear Studies, 05-400 Otwock-Swierk (Poland); Fernandes, H.; Silva, C.; Duarte, P. [Association Euratom/IST, Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Jakubowski, M.J. [Andrzej Soltan Institute for Nuclear Studies, 05-400 Otwock-Swierk (Poland)

    2010-11-11

    The paper describes experimental studies of electron beams emitted from a plasma torus within the ISTTOK tokamak, which were performed by means of a new four-channel detector of the Cherenkov type. A range of electron energy was estimated. There were also measured hard X-rays, and their correlation with the fast run-away electron beams was investigated experimentally.

  4. Analysis of Electron Thermal Diffusivity and Bootstrap Current in Ohmically Heated Discharges after Boronization in the HT-7 Tokamak

    International Nuclear Information System (INIS)

    Zhang, X.M.; Wan, B.N.

    2005-01-01

    Significant improvements of plasma performance after ICRF boronization have been achieved in the full range of HT-7 operation parameters. Electron power balance is analyzed in the steady state ohmic discharges of the HT-7 tokamak. The ratio of the total radiation power to ohmic input power increases with increasing the central line-averaged electron density, but decreases with plasma current. It is obviously decreased after wall conditioning. Electron heat diffusivity χ e deduced from the power balance analysis is reduced throughout the main plasma after boronization. χ e decreases with increasing central line-averaged electron density in the parameter range of our study. After boronization, the plasma current profile is broadened and a higher current can be easily obtained on the HT-7 tokamak experiment. It is expected that the fact that the bootstrap current increases after boronization will explain these phenomena. After boronization, the plasma pressure gradient and the electron temperature near the boundary are larger than before, these factors influencing that the ratio of bootstrap current to total plasma current increases from several percent to above 10%

  5. Analysis of plasma dynamic response to modulated electron cyclotron heating in TCV tokamak

    International Nuclear Information System (INIS)

    Pavlov, I.

    2008-01-01

    The need of durable, economically acceptable and safe energy sources continues to stimulate studies in the field of thermonuclear fusion. The most successful solution for controlled magnetic fusion is the tokamak. The improvement of tokamak performance depends on the optimization of pressure and current density spatial distributions which can be modified by means of an auxiliary heating and a current drive. In particular, electron cyclotron heating (ECH) is a very important tool for the study and control of basic physical processes governing plasma confinement and stability, particularly because it allows the injection of highly localized intense power. ECH power deposition location plays a crucial role in sawtooth control and suppression, it is also important for tearing mode stabilization, and for implementation of closed loop systems for automatic control/suppression of magnetohydrodynamic activity. A part of the ECH power can be modulated (MECH), and used to identify where the ECH power has been deposited, and can also be useful in the experimental analysis of the electron transport in general. Nevertheless, despite the goal of MECH being a diagnostic and analysis tool, MECH can couple to plasma oscillations, such as sawteeth. MECH-sawtooth phase coupling adds significant complications in ECH deposition location and transport analysis, in some cases making the interpretations of results misleading. This is why it is important to get an insight into the phenomenon of MECH-sawtooth interaction, and to establish the boundaries where conventional types of modulation analysis can be successfully implemented. This thesis presents the analysis and interpretation of perturbative MECH experiments performed in the TCV tokamak with particular attention paid to the non-linear phase coupling of heat waves. TCV is equipped with a very flexible and high power ECH system. Two independent ECH systems permit MECH to be deposited at two different spatial locations, with two

  6. Modeling and control of the current density profile in Tokamaks and its relation to electron transport

    International Nuclear Information System (INIS)

    Zucca, C.

    2009-04-01

    The current density in tokamak plasmas strongly affects transport phenomena, therefore its understanding and control represent a crucial challenge for controlled thermonuclear fusion. Within the vast framework of tokamak studies, three topics have been tackled in the course of the present thesis: first, the modelling of the current density evolution in electron Internal Transport Barrier (eITB) discharges in the Tokamak à Configuration Variable (TCV); second, the study of current diffusion and inversion of electron transport properties observed during Swing Electron Cyclotron Current Drive (Swing ECCD) discharges in TCV; third, the analysis of the current density tailoring obtained by local ECCD driven by the improved EC system for sawtooth control and reverse shear scenarios in the International Thermonuclear Experimental Reactor (ITER). The work dedicated to the study of eITBs in TCV has been undertaken to identify which of the main parameters, directly related to the current density, played a relevant role in the confinement improvement created during these advanced scenarios. In this context, the current density has to be modeled, there being no measurement currently available on TCV. Since the Rebut-Lallia-Watkins (RLW) model has been validated on TCV ohmic heated plasmas, the corresponding scaling factor has often been used as a measure of improved confinement on TCV. The many interpretative simulations carried on different TCV discharges have shown that the thermal confinement improvement factor, H RLW , linearly increases with the absolute value of the minimum shear outside ρ > 0.3, ρ indicating a normalized radial coordinate. These investigations, performed with the transport code ASTRA, therefore confirmed a general observation, formulated through previous studies, that the formation of the transport barrier is correlated with the magnetic shear reversal. This was, indeed, found to be true in all cases studied, regardless of the different heating and

  7. Simulation of the Plasma Density Evolution during Electron Cyclotron Resonance Heating at the T-10 Tokamak

    Science.gov (United States)

    Dnestrovskij, Yu. N.; Vershkov, V. A.; Danilov, A. V.; Dnestrovskij, A. Yu.; Zenin, V. N.; Lysenko, S. E.; Melnikov, A. V.; Shelukhin, D. A.; Subbotin, G. F.; Cherkasov, S. V.

    2018-01-01

    In ohmically heated (OH) plasma with low recycling, an improved particle confinement (IPC) mode is established during gas puffing. However, after gas puffing is switched off, this mode is retained only for about 100 ms, after which an abrupt phase transition into the low particle confinement (LPC) mode occurs in the entire plasma cross section. During such a transition, energy transport due to heat conduction does not change. The phase transition in OH plasma is similar to the effect of density pump-out from the plasma core, which occurs after electron cyclotron heating (ECH) is switched on. Analysis of the measured plasma pressure profiles in the T-10 tokamak shows that, after gas puffing in the OH mode is switched off, the plasma pressure profile in the IPC stage becomes more peaked and, after the peakedness exceeds a certain critical value, the IPC-LPC transition occurs. Similar processes are also observed during ECH. If the pressure profile is insufficiently peaked during ECH, then the density pump-out effect comes into play only after the critical peakedness of the pressure profile is reached. In the plasma core, the density and pressure profiles are close to the corresponding canonical profiles. This allows one to derive an expression for the particle flux within the canonical profile model and formulate a criterion for the IPC-LPC transition. The time evolution of the plasma density profile during phase transitions was simulated for a number of T-10 shots with ECH and high recycling. The particle transport coefficients in the IPC and LPC phases, as well as the dependences of these coefficients on the ECH power, are determined.

  8. Interpretation of the effects of electron cyclotron power absorption in pre-disruptive tokamak discharges in ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, S.; Lazzaro, E.; Granucci, G. [Associazione Euratom-CNR sulla Fusione, IFP-CNR, Via R. Cozzi 53, 20125 Milano (Italy); Esposito, B. [Associazione Euratom-CNR sulla Fusione, CR Frascati, C.P. 65, 00044 Frascati (Italy); Maraschek, M.; Zohm, H. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstr.2, 85748 Garching bei Munchen (Germany); Sauter, O.; Brunetti, D. [CRPP, Association Euratom-Confederation Suisse, EPFL, 1015 Lausanne (Switzerland); Collaboration: ASDEX Upgrade Team

    2012-09-15

    Tokamak disruptions are events of fatal collapse of the magnetohydrodynamic (MHD) confinement configuration, which cause a rapid loss of the plasma thermal energy and the impulsive release of magnetic energy and heat on the tokamak first wall components. The physics of the disruptions is very complex and non-linear, strictly associated with the dynamics of magnetic tearing perturbations. The crucial problem of the response to the effects of localized heat deposition and current driven by external (rf) sources to avoid or quench the MHD tearing instabilities has been investigated both experimentally and theoretically on the ASDEX Upgrade tokamak. The analysis of the conditions under which a disruption can be prevented by injection of electron cyclotron (EC) rf power, or, alternatively, may be caused by it, shows that the local EC heating can be more significant than EC current drive in ensuring neoclassical tearing modes (NTMs) stability, due to two main reasons: first, the drop of temperature associated with the island thermal short circuit tends to reduce the neoclassical character of the instability and to limit the EC current drive generation; second, the different effects on the mode evolution of both the location of the power deposition relative to the island separatrix and the island shape deformation lead to less strict requirements of precise power deposition focussing. A contribution to the validation of theoretical models of the events associated with NTM is given and can be used to develop concepts for their control, relevant also for ITER-like scenarios.

  9. Electron energy distribution function in the divertor region of the COMPASS tokamak during neutral beam injection heating

    Science.gov (United States)

    Hasan, E.; Dimitrova, M.; Havlicek, J.; Mitošinková, K.; Stöckel, J.; Varju, J.; Popov, Tsv K.; Komm, M.; Dejarnac, R.; Hacek, P.; Panek, R.; the COMPASS Team

    2018-02-01

    This paper presents the results from swept probe measurements in the divertor region of the COMPASS tokamak in D-shaped, L-mode discharges, with toroidal magnetic field BT = 1.15 T, plasma current Ip = 180 kA and line-average electron densities varying from 2 to 8×1019 m-3. Using neutral beam injection heating, the electron energy distribution function is studied before and during the application of the beam. The current-voltage characteristics data are processed using the first-derivative probe technique. This technique allows one to evaluate the plasma potential and the real electron energy distribution function (respectively, the electron temperatures and densities). At the low average electron density of 2×1019 m-3, the electron energy distribution function is bi-Maxwellian with a low-energy electron population with temperatures 4-6 eV and a high-energy electron group 12-25 eV. As the line-average electron density is increased, the electron temperatures decrease. At line-average electron densities above 7×1019 m-3, the electron energy distribution function is found to be Maxwellian with a temperature of 6-8.5 eV. The effect of the neutral beam injection heating power in the divertor region is also studied.

  10. A study on the heating and diagnostic of a tokamak plasma by electromagnetic waves of the electron cyclotron range of frequencies

    International Nuclear Information System (INIS)

    Hoshino, Katsumichi

    1989-09-01

    A study on the heating and diagnosis of tokamak plasma by electromagnetic waves of electron cyclotron range of frequency is summarized. The main results obtained are as follows. On the engineering and technology, the technology of injecting high frequency, large power millimeter waves into tokamak plasma was established by carrying out the design, manufacture and test of a 60 GHz, 400 kW high frequency heating system, and the design, manufacture and test of a heterodyne type electron cyclotron radiation multi-channel mealsuring system were carried out, and the technology of measuring the radiation from tokamak plasma with the time resolution of 10 μs in multi-channel was established. On nuclear fusion reactor core engineering and plasma physics, the high efficiency electron heating of tokamak plasma by the incidence of fundamental irregular and regular waves at electron cyclotron frequency was verified. The discovery and analysis of the heating by electrostatic waves arising due to mode transformation from electromagnetic waves in upper hybrid resonance layer were carried out. By the incidence of second harmonic waves, the high efficiency electron heating of tokamak plasma was verified, and the heating characteristics were clarified. And others. (K.I.) 179 refs

  11. Numerical study of the electron heating and current drive by the fast waves in the JFT-2M tokamak plasma

    International Nuclear Information System (INIS)

    Yamamoto, Takumi; Uesugi, Yoshihiko; Hoshino, Katsumichi; Kawashima, Hisato; Ohtsuka, Hideo

    1986-08-01

    A 200 MHz fast wave experiment for the JET-2M tokamak is examined. Noticeable single-path electron Landau damping of the fast waves with the parallel refractive index of N // = 4 is expected in the plasma with electron temperature more than 2.5 keV at the electron density of n e = 1.5 x 10 19 m -3 . Furthermore, it is shown that 8 kA of the plasma current is driven by the fast waves with N //≅ 2 at n e = 3 x 10 19 m -3 in the single-path damping when 100 kW of the rf power radiates into the plasma in the presence of the hot electrons with the temperature of 19 keV and the fraction of the density of 2 %. (author)

  12. Electron transport in the plasma edge with rotating resonant magnetic perturbations at the TEXTOR tokamak

    International Nuclear Information System (INIS)

    Stoschus, Henning

    2011-01-01

    Small three-dimensional (3D) magnetic perturbations can be used as a tool to control the edge plasma parameters in magnetically confined plasmas in high confinement mode (''H-mode'') to suppress edge instabilities inherent to this regime, the Edge Localized Modes (ELMs). In this work, the impact of rotating 3D resonant magnetic perturbation (RMP) fields on the edge plasma structure characterized by electron density and temperature fields is investigated. We study a low confinement (L-mode) edge plasma (r/a>0.9) with high resistivity (edge electron collisionality ν * e >4) at the TEXTOR tokamak. The plasma structure in the plasma edge is measured by a set of high resolution diagnostics: a fast CCD camera (Δt=20 μs) is set up in order to visualize the plasma structure in terms of electron density variations. A supersonic helium beam diagnostic is established as standard diagnostic at TEXTOR to measure electron density n e and temperature T e with high spatial (Δr=2 mm) and temporal resolution (Δt=20 μs). The measured plasma structure is compared to modeling results from the fluid plasma and kinetic neutral transport code EMC3-EIRENE. A sequence of five new observations is discussed: (1) Imaging of electron density variations in the plasma edge shows that a fast rotating RMP field imposes an edge plasma structure, which rotates with the external RMP rotation frequency of vertical stroke ν RMP vertical stroke =1 kHz. (2) Measurements of the electron density and temperature provide strong experimental evidence that in the far edge a rotating 3D scrape-off layer (SOL) exists with helical exhaust channels to the plasma wall components. (3) Radially inward, the plasma structure at the next rational flux surface is found to depend on the relative rotation between external RMP field and intrinsic plasma rotation. For low relative rotation the plasma structure is dominated by a particle and energy loss along open magnetic field lines to the wall components. For high

  13. Electron transport in the plasma edge with rotating resonant magnetic perturbations at the TEXTOR tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Stoschus, Henning

    2011-10-13

    Small three-dimensional (3D) magnetic perturbations can be used as a tool to control the edge plasma parameters in magnetically confined plasmas in high confinement mode (''H-mode'') to suppress edge instabilities inherent to this regime, the Edge Localized Modes (ELMs). In this work, the impact of rotating 3D resonant magnetic perturbation (RMP) fields on the edge plasma structure characterized by electron density and temperature fields is investigated. We study a low confinement (L-mode) edge plasma (r/a>0.9) with high resistivity (edge electron collisionality {nu}{sup *}{sub e}>4) at the TEXTOR tokamak. The plasma structure in the plasma edge is measured by a set of high resolution diagnostics: a fast CCD camera ({delta}t=20 {mu}s) is set up in order to visualize the plasma structure in terms of electron density variations. A supersonic helium beam diagnostic is established as standard diagnostic at TEXTOR to measure electron density n{sub e} and temperature T{sub e} with high spatial ({delta}r=2 mm) and temporal resolution ({delta}t=20 {mu}s). The measured plasma structure is compared to modeling results from the fluid plasma and kinetic neutral transport code EMC3-EIRENE. A sequence of five new observations is discussed: (1) Imaging of electron density variations in the plasma edge shows that a fast rotating RMP field imposes an edge plasma structure, which rotates with the external RMP rotation frequency of vertical stroke {nu}{sub RMP} vertical stroke =1 kHz. (2) Measurements of the electron density and temperature provide strong experimental evidence that in the far edge a rotating 3D scrape-off layer (SOL) exists with helical exhaust channels to the plasma wall components. (3) Radially inward, the plasma structure at the next rational flux surface is found to depend on the relative rotation between external RMP field and intrinsic plasma rotation. For low relative rotation the plasma structure is dominated by a particle and energy loss

  14. Collisional Damping of Electron Bernstein Waves and its Mitigation by Evaporated Lithium Conditioning in Spherical-Tokamak Plasmas

    International Nuclear Information System (INIS)

    Diem, S. J.; Caughman, J. B.; Taylor, G.; Efthimion, P. C.; Kugel, H.; LeBlanc, B. P.; Phillips, C. K.; Preinhaelter, J.; Urban, J.; Sabbagh, S. A.

    2009-01-01

    The first experimental verification of electron Bernstein wave (EBW) collisional damping, and its mitigation by evaporated Li conditioning, in an overdense spherical-tokamak plasma has been observed in the National Spherical Torus Experiment (NSTX). Initial measurements of EBW emission, coupled from NSTX plasmas via double-mode conversion to O-mode waves, exhibited <10% transmission efficiencies. Simulations show 80% of the EBW energy is dissipated by collisions in the edge plasma. Li conditioning reduced the edge collision frequency by a factor of 3 and increased the fundamental EBW transmission to 60%.

  15. Plasma potential and electron temperature evaluated by ball-pen and Langmuir probes in the COMPASS tokamak.

    Czech Academy of Sciences Publication Activity Database

    Dimitrova, Miglena; Popov, Tsv.K.; Adámek, Jiří; Kovačič, J.; Ivanova, P.; Hasan, E.; López-Bruna, D.; Seidl, Jakub; Vondráček, Petr; Dejarnac, Renaud; Stöckel, Jan; Imríšek, Martin; Pánek, Radomír

    2017-01-01

    Roč. 59, č. 12 (2017), č. článku 125001. ISSN 0741-3335 R&D Projects: GA ČR(CZ) GA15-10723S; GA MŠk(CZ) LM2015045 Institutional support: RVO:61389021 Keywords : Plasma potential * electron temperature * bi-Maxwellian EEDF * ball-pen probe * Langmuir probe * COMPASS tokamak * last closed flux surface Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.392, year: 2016

  16. Comparison in electron density distribution of tokamak plasma between ruby-laser scattering and milli-meter wave interferometric measurements

    International Nuclear Information System (INIS)

    Matoba, Tohru; Funahashi, Akimasa; Itagaki, Tokiyoshi; Takahashi, Koki; Kumagai, Katsuaki

    1976-08-01

    The electron density in JFT-2 tokamak has been measured by two methods, i.e. Thomson scattering of ruby-laser light and interferometry of millimeter wave. Two-dimensional distribution of the scattered light intensities were obtained by scattering measurement; absolute calibration was made by normalizing the scattered intensities with the averaged density determined from interferometric measurement. The horizontal density distributions in laser scattering were compared with those in from the averaged densities measured with a 4-mm interferometer through inverse-transformation. Agreement is good between the two measurements, except where they give erroneous data because of irreproducibility of the discharge. (auth.)

  17. Tokamak edge electron diffusion and distribution function in the lower hybrid antenna electric field

    Czech Academy of Sciences Publication Activity Database

    Fuchs, Vladimír; Gunn, J. P.; Goniche, M.; Petržílka, Václav

    2003-01-01

    Roč. 43, č. 5 (2003), s. 341-351 ISSN 0029-5515 R&D Projects: GA ČR GA202/00/1217 Institutional research plan: CEZ:AV0Z2043910 Keywords : tokamak, grill electric field Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.390, year: 2003

  18. Numerical analysis on the synergy between electron cyclotron current drive and lower hybrid current drive in tokamak plasmas

    International Nuclear Information System (INIS)

    Chen, S Y; Hong, B B; Liu, Y; Lu, W; Huang, J; Tang, C J; Ding, X T; Zhang, X J; Hu, Y J

    2012-01-01

    The synergy between electron cyclotron current drive (ECCD) and lower hybrid current drive (LHCD) is investigated numerically with the parameters of the HL-2A tokamak. Based on the understanding of the synergy mechanisms, a high current driven efficiency or a desired radial current profile can be achieved through properly matching the parameters of ECCD and LHCD due to the flexibility of ECCD. Meanwhile, it is found that the total current driven by the electron cyclotron wave (ECW) and the lower hybrid wave (LHW) simultaneously can be smaller than the sum of the currents driven by the ECW and LHW separately, when the power of the ECW is much larger than the LHW power. One of the reasons leading to this phenomenon (referred to as negative synergy in this context) is that fast current-carrying electrons tend to be trapped, when the perpendicular velocity driven by the ECW is large and the parallel velocity decided by the LHW is correspondingly small. (paper)

  19. Fokker-Planck code for the quasi-linear absorption of electron cyclotron waves in a tokamak plasma

    International Nuclear Information System (INIS)

    Meyer, R.L.; Giruzzi, G.; Krivenski, V.

    1986-01-01

    We present the solution of the kinetic equation describing the quasi-linear evolution of the electron momentum distribution function under the influence of the electron cyclotron wave absorption. Coulomb collisions and the dc electric field in a tokamak plasma. The solution of the quasi-linear equation is obtained numerically using a two-dimensional initial value code following an ADI scheme. Most emphasis is given to the full non-linear and self-consistent problem, namely, the wave amplitude is evaluated at any instant and any point in space according to the actual damping. This is necessary since wave damping is a very sensitive function of the slope of the local momentum distribution function because the resonance condition relates the electron momentum to the location of wave energy deposition. (orig.)

  20. Pulsed time-of-flight refractometry measurements of the electron density in the T-11M tokamak

    International Nuclear Information System (INIS)

    Petrov, A.A.; Petrov, V.G.; Malyshev, A.Yu.; Markov, V.K.; Babarykin, A.V.

    2002-01-01

    A new method for measuring the plasma density in magnetic confinement systems - pulsed time-of-flight refractometry - is developed and tested experimentally in the T-11M tokamak. The method is based on the measurements of the time delay of short (with a duration of several nanoseconds) microwave pulses propagating through the plasma. When the probing frequency is much higher than the plasma frequency, the measured delay in the propagation time is proportional to the line-averaged electron density regardless of the density profile. A key problem in such measurements is the short time delay of the pulse in the plasma (∼1 ns or less for small devices) and, consequently, low accuracy of the measurements of the average density. Various methods for improving the accuracy of such measurements are proposed and implemented in the T-11M experiments. The measurements of the line-averaged density in the T-11M tokamak in the low-density plasma regime are performed. The results obtained agree satisfactorily with interferometric data. The measurement errors are analyzed, and the possibility of using this technique to measure the electron density profile and the position of the plasma column is discussed

  1. Kadomtsev-Petviashvili solitons propagation in a plasma system with superthermal and weakly relativistic effects

    International Nuclear Information System (INIS)

    Hafeez-Ur-Rehman; Mahmood, S.; Shah, Asif; Haque, Q.

    2011-01-01

    Two dimensional (2D) solitons are studied in a plasma system comprising of relativistically streaming ions, kappa distributed electrons, and positrons. Kadomtsev-Petviashvili (KP) equation is derived through the reductive perturbation technique. Analytical solution of the KP equation has been studied numerically and graphically. It is noticed that kappa parameters of electrons and positrons as well as the ions relativistic streaming factor have an emphatic influence on the structural as well as propagation characteristics of two dimensional solitons in the considered plasma system. Our results may be helpful in the understanding of soliton propagation in astrophysical and laboratory plasmas, specifically the interaction of pulsar relativistic wind with supernova ejecta and the transfer of energy to plasma by intense electric field of laser beams producing highly energetic superthermal and relativistic particles [L. Arons, Astrophys. Space Sci. Lib. 357, 373 (2009); P. Blasi and E. Amato, Astrophys. Space Sci. Proc. 2011, 623; and A. Shah and R. Saeed, Plasma Phys. Controlled Fusion 53, 095006 (2011)].

  2. Dependence of L-mode confinement on the electron cyclotron power deposition profile in the TCV tokamak

    Science.gov (United States)

    Kirneva, N. A.; Razumova, K. A.; Pochelon, A.; Behn, R.; Coda, S.; Curchod, L.; Duval, B. P.; Goodman, T. P.; Labit, B.; Karpushov, A. N.; Rancic, M.; Sauter, O.; Silva, M.; TCV Team

    2012-01-01

    Scenarios with different electron cyclotron heating power profile distributions and widths were compared for the first time in experiments on the Tokamak à Configuration Variable (TCV). The heating profile was changed from shot to shot over a wide range from localized on-axis, with normalized minor radius half-width at half maximum σ1/2 ~ 0.1, up to a widely distributed heating power profile with σ1/2 ~ 0.4 and finally to a profile peaked far off-axis. The global confinement, MHD activity, density, temperature and electron pressure profile evolution were compared. In particular, the energy confinement properties of discharges with localized on-axis heating and distributed on-axis heating were very similar, with degradation close to that predicted by the ITER L-mode scaling; in the case of off-axis heating, on the other hand, the confinement degradation was even stronger.

  3. Preionization and start-up in the ISX-B tokamak using electron cyclotron heating at 28 GHz

    International Nuclear Information System (INIS)

    Kulchar, A.G.; Eldridge, O.C.; England, A.C.

    1983-10-01

    A 28-GHz gyrotron was used to produce a plasma at the electron cyclotron resonance in the Impurity Study Experiment (ISX-B) tokamak. The influence of the toroidal magnetic field magnitude, error fields, gas pressure, microwave power, microwave pulse length, and microwave timing was studied for experiments with magnetic field and gas only. Also, experiments with preionization followed by capacitor discharges were carried out in which these quantities were varied, as were the capacitor bank voltages. Optimum conditions of preionization for some of the parameters were determined. A theoretical model that adequately reproduces the data is given. Calculations based on this model show the temporal evolution of the electron temperature and density, the neutral density, and the plasma current. The model adequately accounts for present and previous experimental results and can be used to make predictions for future experiments

  4. A far-infrared Michelson interferometer for tokamak electron density measurements using computer-generated reference fringes

    International Nuclear Information System (INIS)

    Krug, P.A.; Stimson, P.A.; Falconer, I.S.

    1986-01-01

    A simple far-infrared interferometer which uses the 394 μm laser line from optically-pumped formic acid vapour to measure tokamak electron density is described. This interferometer is unusual in requiring only one detector and a single probing beam since reference fringes during the plasma shot are obtained by computer interpolation between the fringes observed immediately before and after the shot. Electron density has been measured with a phase resolution corresponding to + - 1/20 wavelength fringe shift, which is equivalent to a central density resolution of + - 0.1 x 10 19 m -3 for an assumed parabolic density distribution in a plasma of diameter of 0.2 m, and with a time resolution of 0.2 ms. (author)

  5. Injection of electrons with predominantly perpendicular energy into an area of toroidal field ripple in a tokamak plasma to improve plasma confinement

    Science.gov (United States)

    Ono, Masayuki; Furth, Harold

    1993-01-01

    An electron injection scheme for controlling transport in a tokamak plasma. Electrons with predominantly perpendicular energy are injected into a ripple field region created by a group of localized poloidal field bending magnets. The trapped electrons then grad-B drift vertically toward the plasma interior until they are detrapped, charging the plasma negative. Calculations indicate that the highly perpendicular velocity electrons can remain stable against kinetic instabilities in the regime of interest for tokamak experiments. The penetration distance can be controlled by controlling the "ripple mirror ratio", the energy of the injected electrons, and their v.sub..perp. /v.sub.51 ratio. In this scheme, the poloidal torque due to the injected radial current is taken by the magnets and not by the plasma. Injection is accomplished by the flat cathode containing an ECH cavity to pump electrons to high v.sub..perp..

  6. Kinetic theory of twisted waves: Application to space plasmas having superthermal population of species

    Science.gov (United States)

    Arshad, Kashif; Poedts, Stefaan; Lazar, Marian

    2017-04-01

    Nowadays electromagnetic (EM) fields have various applications in fundamental research, communication, and home appliances. Even though, there are still some subtle features of electromagnetic field known to us a century ago, yet to be utilized. It is because of the technical complexities to sense three dimensional electromagnetic field. An important characteristic of electromagnetic field is its orbital angular momentum (OAM). The angular momentum consists of two distinct parts; intrinsic part associated with the wave polarization or spin, and the extrinsic part associated with the orbital angular momentum (OAM). The orbital angular momentum (OAM) is inherited by helically phased light or helical (twisted) electric field. The investigations of Allen on lasers carrying orbital angular momentum (OAM), has initiated a new scientific and technological advancement in various growing fields, such as microscopy and imaging, atomic and nano-particle manipulation, ultra-fast optical communications, quantum computing, ionospheric radar facility to observe 3D plasma dynamics in ionosphere, photonic crystal fibre, OAM entanglement of two photons, twisted gravitational waves, ultra-intense twisted laser pulses and astrophysics. Recently, the plasma modes are also investigated with orbital angular momentum. The production of electron vortex beams and its applications are indicated by Verbeeck et al. The magnetic tornadoes (rotating magnetic field structures) exhibit three types of morphology i.e., spiral, ring and split. Leyser pumped helical radio beam carrying OAM into the Ionospheric plasma under High Frequency Active Auroral Research Program (HAARP) and characteristic ring shaped morphology is obtained by the optical emission spectrum of pumped plasma turbulence. The scattering phenomenon like (stimulated Raman and Brillouin backscattering) is observed to be responsible for the interaction between electrostatic and electromagnetic waves through orbital angular momentum. The

  7. Electron critical gradient scale length measurements of ICRF heated L-mode plasmas at Alcator C-Mod tokamak

    Science.gov (United States)

    Houshmandyar, S.; Hatch, D. R.; Horton, C. W.; Liao, K. T.; Phillips, P. E.; Rowan, W. L.; Zhao, B.; Cao, N. M.; Ernst, D. R.; Greenwald, M.; Howard, N. T.; Hubbard, A. E.; Hughes, J. W.; Rice, J. E.

    2018-04-01

    A profile for the critical gradient scale length (Lc) has been measured in L-mode discharges at the Alcator C-Mod tokamak, where electrons were heated by an ion cyclotron range of frequency through minority heating with the intention of simultaneously varying the heat flux and changing the local gradient. The electron temperature gradient scale length (LTe-1 = |∇Te|/Te) profile was measured via the BT-jog technique [Houshmandyar et al., Rev. Sci. Instrum. 87, 11E101 (2016)] and it was compared with electron heat flux from power balance (TRANSP) analysis. The Te profiles were found to be very stiff and already above the critical values, however, the stiffness was found to be reduced near the q = 3/2 surface. The measured Lc profile is in agreement with electron temperature gradient (ETG) models which predict the dependence of Lc-1 on local Zeff, Te/Ti, and the ratio of the magnetic shear to the safety factor. The results from linear Gene gyrokinetic simulations suggest ETG to be the dominant mode of turbulence in the electron scale (k⊥ρs > 1), and ion temperature gradient/trapped electron mode modes in the ion scale (k⊥ρs < 1). The measured Lc profile is in agreement with the profile of ETG critical gradients deduced from Gene simulations.

  8. Dependence of synergy current driven by lower hybrid wave and electron cyclotron wave on the frequency and parallel refractive index of electron cyclotron wave for Tokamaks

    International Nuclear Information System (INIS)

    Huang, J.; Chen, S. Y.; Tang, C. J.

    2014-01-01

    The physical mechanism of the synergy current driven by lower hybrid wave (LHW) and electron cyclotron wave (ECW) in tokamaks is investigated using theoretical analysis and simulation methods in the present paper. Research shows that the synergy relationship between the two waves in velocity space strongly depends on the frequency ω and parallel refractive index N // of ECW. For a given spectrum of LHW, the parameter range of ECW, in which the synergy current exists, can be predicted by theoretical analysis, and these results are consistent with the simulation results. It is shown that the synergy effect is mainly caused by the electrons accelerated by both ECW and LHW, and the acceleration of these electrons requires that there is overlap of the resonance regions of the two waves in velocity space

  9. Physics of the interaction between runaway electrons and the background plasma of the current quench in tokamak disruptions

    Science.gov (United States)

    Reux, Cedric

    2017-10-01

    Runaway electrons are created during disruptions of tokamak plasmas. They can be accelerated in the form of a multi-MA beam at energies up to several 10's of MeV. Prevention or suppression of runaway electrons during disruptions will be essential to ensure a reliable operation of future tokamaks such as ITER. Recent experiments showed that the suppression of an already accelerated beam with massive gas injection was unsuccessful at JET, conversely to smaller tokamaks. This was attributed to a dense, cold background plasma (up to several 1020 m-3 accompanying the runaway beam. The present contribution reports on the latest experimental results obtained at JET showing that some mitigation efficiency can be restored by changing the features of the background plasma. The density, temperature, position of the plasma and the energy of runaways were characterized using a combined analysis of interferometry, soft X-rays, bolometry, magnetics and hard X-rays. It showed that lower density background plasmas were obtained using smaller amounts of gas to trigger the disruption, leading to an improved penetration of the mitigation gas. Based on the observations, a physical model of the creation of the background plasma and its subsequent evolution is proposed. The plasma characteristics during later stages of the disruption are indeed dependent on the way it was initially created. The sustainment of the plasma during the runaway beam phase is then addressed by making a power balance between ohmic heating, power transfer from runaway electrons, radiation and atomic processes. Finally, a model of the interaction of the plasma with the mitigation gas is proposed to explain why massive gas injection of runaway beams works only in specific situations. This aims at pointing out which parameters bear the most importance if this mitigation scheme is to be used on larger devices like ITER. Acknowledgement: This work has been carried out within the framework of the EUROfusion Consortium

  10. Development of a diagnostic technique based on Cherenkov effect for measurements of fast electrons in fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Plyusnin, V. V.; Duarte, P.; Fernandes, H.; Silva, C. [Association Euratom/IST, Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Jakubowski, L.; Zebrowski, J.; Malinowski, K.; Rabinski, M.; Sadowski, M. J. [National Centre for Nuclear Research (NCBJ), 7 Andrzeja Soltana Str., 05-400 Otwock (Poland)

    2012-08-15

    A diagnostic technique based on the Cherenkov effect is proposed for detection and characterization of fast (super-thermal and runaway) electrons in fusion devices. The detectors of Cherenkov radiation have been specially designed for measurements in the ISTTOK tokamak. Properties of several materials have been studied to determine the most appropriate one to be used as a radiator of Cherenkov emission in the detector. This technique has enabled the detection of energetic electrons (70 keV and higher) and the determination of their spatial and temporal variations in the ISTTOK discharges. Measurement of hard x-ray emission has also been carried out in experiments for validation of the measuring capabilities of the Cherenkov-type detector and a high correlation was found between the data of both diagnostics. A reasonable agreement was found between experimental data and the results of numerical modeling of the runaway electron generation in ISTTOK.

  11. Geodesic mode instability driven by electron and ion fluxes during neutral beam injection in tokamaks

    Czech Academy of Sciences Publication Activity Database

    Camilo de Souza, F.; Elfimov, A.; Galvão, R.M.O.; Krbec, Jaroslav; Seidl, Jakub; Stöckel, Jan; Hron, Martin; Havlíček, Josef; Mitošinková, Klára

    2017-01-01

    Roč. 381, č. 36 (2017), s. 3066-3070 ISSN 0375-9601 R&D Projects: GA ČR(CZ) GA16-25074S; GA ČR(CZ) GA14-35260S; GA MŠk(CZ) 8D15001; GA MŠk(CZ) LM2015045 Institutional support: RVO:61389021 Keywords : Tokamak * Geodesic acoustic modes * Kinetic theory * Instability * Landau damping Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: 1.3 Physical sciences Impact factor: 1.772, year: 2016 http://www.sciencedirect.com/science/article/pii/S0375960117306989

  12. Survey of Tokamak experiments

    International Nuclear Information System (INIS)

    Bickerton, R.J.

    1977-01-01

    The survey covers the following topics:- Introduction and history of tokamak research; review of tokamak apparatus, existing and planned; remarks on measurement techniques and their limitations; main results in terms of electron and ion temperatures, plasma density, containment times, etc. Empirical scaling; range of operating densities; impurities, origin, behaviour and control (including divertors); data on fluctuations and instabilities in tokamak plasmas; data on disruptive instabilities; experiments on shaped cross-sections; present experimental evidence on β limits; auxiliary heating; experimental and theoretical problems for the future. (author)

  13. Plasma potential and electron temperature evaluated by ball-pen and Langmuir probes in the COMPASS tokamak

    Science.gov (United States)

    Dimitrova, M.; Popov, Tsv K.; Adamek, J.; Kovačič, J.; Ivanova, P.; Hasan, E.; López-Bruna, D.; Seidl, J.; Vondráček, P.; Dejarnac, R.; Stöckel, J.; Imríšek, M.; Panek, R.; the COMPASS Team

    2017-12-01

    The radial distributions of the main plasma parameters in the scrape-off-layer of the COMPASS tokamak are measured during L-mode and H-mode regimes by using both Langmuir and ball-pen probes mounted on a horizontal reciprocating manipulator. The radial profile of the plasma potential derived previously from Langmuir probes data by using the first derivative probe technique is compared with data derived using ball-pen probes. A good agreement can be seen between the data acquired by the two techniques during the L-mode discharge and during the H-mode regime within the inter-ELM periods. In contrast with the first derivative probe technique, the ball-pen probe technique does not require a swept voltage and, therefore, the temporal resolution is only limited by the data acquisition system. In the electron temperature evaluation, in the far scrape-off layer and in the limiter shadow, where the electron energy distribution is Maxwellian, the results from both techniques match well. In the vicinity of the last closed flux surface, where the electron energy distribution function is bi-Maxwellian, the ball-pen probe technique results are in agreement with the high-temperature components of the electron distribution only. We also discuss the application of relatively large Langmuir probes placed in parallel and perpendicularly to the magnetic field lines to studying the main plasma parameters. The results obtained by the two types of the large probes agree well. They are compared with Thomson scattering data for electron temperatures and densities. The results for the electron densities are compared also with the results from ASTRA code calculation of the electron source due to the ionization of the neutrals by fast electrons and the origin of the bi-Maxwellian electron energy distribution function is briefly discussed.

  14. Electron Bernstein wave heating of over-dense H-mode plasmas in the TCV tokamak via O-X-B double mode conversion

    International Nuclear Information System (INIS)

    Pochelon, A.; Mueck, A.; Curchod, L.; Camenen, Y.; Coda, S.; Duval, B.P.; Goodman, T.P.; Klimanov, I.; Laqua, H.P.; Martin, Y.; Moret, J.-M.; Porte, L.; Sushkov, A.; Udintsev, V.S.; Volpe, F.

    2007-01-01

    This paper reports on the first demonstration of electron Bernstein wave heating (EBWH) by double mode conversion from ordinary (O-) to Bernstein (B-) via the extraordinary (X-) mode in an over-dense tokamak plasma, using low field side launch, achieved in the TCV tokamak H-mode, making use of its naturally generated steep density gradient. This technique offers the possibility of overcoming the upper density limit of conventional EC microwave heating. The sensitive dependence of the O-X mode conversion on the microwave launching direction has been verified experimentally. Localized power deposition, consistent with theoretical predictions, has been observed at densities well above the conventional cut-off. Central heating has been achieved, at powers up to two megawatts. This demonstrates the potential of EBW in tokamak H-modes, the intended mode of operation for a reactor such as ITER

  15. Grating spectrometer installation for electron cyclotron emission measurements on the DIII-D tokamak using circular waveguide and synchronous detection

    International Nuclear Information System (INIS)

    Lohr, J.; Jahns, G.; Moeller, C.; Prater, R.

    1986-01-01

    The grating spectrometer installation on the DIII-D tokamak uses fundamental circular waveguide propagating the TE 11 lowest-order mode followed by oversized circular guide carrying the low-loss TE 01 mode. The short section of fundamental guide permits use of an electronic chopper operating at 100 kHz for both calibration and plasma operation. By using ac-coupled amplifiers tuned to the chopping frequency, the background signal generated in the indium antimonide detectors by neutrons and x rays is automatically subtracted and the system noise bandwidth is reduced. Compared with a quasi-optical system, the much smaller fundamental horn and front-end waveguide allow the waveguide system to be located outside a gate valve. With this configuration the entire waveguide run, including the actual horn and vacuum window used during plasma operations, can be included in the calibration setup

  16. Grating spectrometer installation for electron cyclotron emission measurements on the DIII-D tokamak using circular waveguide and synchronous detection

    International Nuclear Information System (INIS)

    Lohr, J.; Jahns, G.; Moeller, C.; Prater, R.

    1986-03-01

    The grating spectrometer installation on the DIII-D tokamak uses fundamental circular waveguide propagating the TE 11 lowest order mode followed by oversized circular guide carrying the low loss TE 01 mode. The short section of fundamental guide permits use of an electronic chopper operating at 100 kHz for both calibration and plasma operation. By using ac-coupled amplifiers tuned to the chopping frequency, the background signal generated in the indium antimonide detectors by neutrons and x-rays is automatically subtracted and the system noise bandwidth is reduced. Compared with a quasi-optical system, the much smaller fundamental horn and front end waveguide allow the waveguide system to be located outside a gate valve. With this configuration the entire waveguide run, including the actual horn and vacuum window used during plasma operations, can be included in the calibration set-up

  17. Phenomena of non-thermal electrons from the X-ray imaging crystal spectrometer on J-TEXT tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Yan, W. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan (China); Chen, Z.Y., E-mail: zychen@hust.edu.cn [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan (China); Jin, W. [Center of Interface Dynamics for Sustainability, China Academy of Engineering Physics, Chengdu 610200, Sichuan (China); Huang, D.W. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan (China); Lee, S.G.; Shi, Y.J. [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Tong, R.H.; Wang, S.Y.; Wei, Y.N.; Ma, T.K.; Zhuang, G. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan (China)

    2016-11-01

    Highlights: • Some lines from X-ray imaging crystal spectrometer (XICS) can be enhanced by non-thermal electrons, such as q, r satellite lines and z lines. • Analyze the non-thermal phenomena can reduce the error of electron temperature deduced from the intensity ratio of different lines of the He-like argon spectra from XICS. • XICS can be a tool to measure the non-thermal phenomena from these enhanced lines. - Abstract: A high spectra resolution X-ray imaging crystal spectrometer has been implemented on J-TEXT Tokamak for the measurements of K{sub α} spectra of helium-like argon and its satellite lines. The wavelength range of K{sub α} spectra of helium-like argon is from 3.9494 Å to 3.9944 Å that includes the resonance line w, intercombination lines x and y, forbidden line z and numerous satellite lines, referenced using standard Gabriel notation. In low-density discharge, the intensity of q, r satellite lines and z lines can be significantly enhanced by non-thermal electrons. Non-thermal electrons are produced due to the low plasma density. The high hard X-ray flux from NaI detector and significant downshift electron cyclotron emissions from energetic runaway electrons also indicated that there is a large population of runaway electrons in the low-density discharge. The non-thermal part of electrons can affect the excitation/transition equilibrium or ionization/recombination equilibrium. The q line is mainly produced by inner-shell excitation of lithium-like argon, and the r line is partially produced by inner-shell excitation of lithium-like argon and dielectronic recombination of helium-like argon.

  18. Profile correction to electron temperature and enhancement factor in soft-x-ray pulse-height-analysis measurements in tokamaks

    International Nuclear Information System (INIS)

    Sesnic, S.; Diesso, M.; Hill, K.; Holland, A.; Pohl, F.

    1988-01-01

    Because soft-x-ray pulse-height-analysis spectra contain chordal information, the electron temperature and the radiation intensity (enhancement factor) measurements do not represent the local values. The correction factors for the electron temperature and the enhancement factor as a function of the temperature and density profile parameters and the energy are obtained. The spectrum distortion due to pulse pileup effects is also evaluated. A set of curves is given from which the distortion of the spectrum can be obtained if the electron temperature, the Be filter thickness, and the electronic parameters of the acquisition system are known. PG 1810,1812 ID 131801CON N X-ray diagnostics TT Profile correction to electron temperature and enhancement factor in soft-x-ray pulse-height-analysis measurements in tokamaks AU S. Sesnic, M. Diesso, K. Hill, and A. Holland LO Princeton University, Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 AU F. Pohl LO Max-Planck Institut fuer Plasmaphysik, 8046-Garching, Federal Republic of Germany SD (Presented on 16 March 1988) AB Because soft-x-ray pulse-height-analysis spectra contain chordal information, the electron temperature and the radiation intensity (enhancement factor) measurements do not represent the local values. The correction factors for the electron temperature and the enhancement factor as a function of the temperature and density profile parameters and the energy are obtained. The spectrum distortion due to pulse pileup effects is also evaluated. A set of curves is given from which the distortion of the spectrum can be obtained if the electron tempe

  19. Phenomena of non-thermal electrons from the X-ray imaging crystal spectrometer on J-TEXT tokamak

    International Nuclear Information System (INIS)

    Yan, W.; Chen, Z.Y.; Jin, W.; Huang, D.W.; Lee, S.G.; Shi, Y.J.; Tong, R.H.; Wang, S.Y.; Wei, Y.N.; Ma, T.K.; Zhuang, G.

    2016-01-01

    Highlights: • Some lines from X-ray imaging crystal spectrometer (XICS) can be enhanced by non-thermal electrons, such as q, r satellite lines and z lines. • Analyze the non-thermal phenomena can reduce the error of electron temperature deduced from the intensity ratio of different lines of the He-like argon spectra from XICS. • XICS can be a tool to measure the non-thermal phenomena from these enhanced lines. - Abstract: A high spectra resolution X-ray imaging crystal spectrometer has been implemented on J-TEXT Tokamak for the measurements of K_α spectra of helium-like argon and its satellite lines. The wavelength range of K_α spectra of helium-like argon is from 3.9494 Å to 3.9944 Å that includes the resonance line w, intercombination lines x and y, forbidden line z and numerous satellite lines, referenced using standard Gabriel notation. In low-density discharge, the intensity of q, r satellite lines and z lines can be significantly enhanced by non-thermal electrons. Non-thermal electrons are produced due to the low plasma density. The high hard X-ray flux from NaI detector and significant downshift electron cyclotron emissions from energetic runaway electrons also indicated that there is a large population of runaway electrons in the low-density discharge. The non-thermal part of electrons can affect the excitation/transition equilibrium or ionization/recombination equilibrium. The q line is mainly produced by inner-shell excitation of lithium-like argon, and the r line is partially produced by inner-shell excitation of lithium-like argon and dielectronic recombination of helium-like argon.

  20. Start-up and ramp-up of the PLT tokamak by lower hybrid waves

    International Nuclear Information System (INIS)

    Jobes, F.C.; Bernabei, S.; Chu, T.K.

    1985-08-01

    Lower hybrid waves have been used on the PLT tokamak both to start the plasma current and to ramp it up from pre-existing levels. The waves, at 800 MHz, were launched from a 6-waveguide grill. The phasing between adjacent guides could be selected electronically, and thus the launched spectrum could be set and changed at will. For start-up, the waveguide phase difference was initially set at 0 0 in order to create a plasma, then switched to 90 0 to drive the current. Over 100 kA of plasma current, at a density of 0.5 to 1 x 10 12 cm -3 , was generated in this manner. Ramp-up experiments were performed under a wide variety of conditions. The most efficient ramp-up was found at the lowest plasma densities and with the fastest launched spectrum (n/sub e/ approx. 2 x 10 12 cm -3 , N/sub parallel/ approx. 1.6 peak); approx.20% of the launched RF power was converted to (increased) poloidal field energy. All of the ramp-up results are in excellent agreement with a theory which determines the efficiency of ramp-up from the consideration of the relative energy losses of the superthermal current-carrying electrons to collisions and to the opposing inductive E-field

  1. The effect of electron cyclotron heating on density fluctuations at ion and electron scales in ITER baseline scenario discharges on the DIII-D tokamak

    Science.gov (United States)

    Marinoni, A.; Pinsker, R. I.; Porkolab, M.; Rost, J. C.; Davis, E. M.; Burrell, K. H.; Candy, J.; Staebler, G. M.; Grierson, B. A.; McKee, G. R.; Rhodes, T. L.; The DIII-D Team

    2017-12-01

    Experiments simulating the ITER baseline scenario on the DIII-D tokamak show that torque-free pure electron heating, when coupled to plasmas subject to a net co-current beam torque, affects density fluctuations at electron scales on a sub-confinement time scale, whereas fluctuations at ion scales change only after profiles have evolved to a new stationary state. Modifications to the density fluctuations measured by the phase contrast imaging diagnostic (PCI) are assessed by analyzing the time evolution following the switch-off of electron cyclotron heating (ECH), thus going from mixed beam/ECH to pure neutral beam heating at fixed βN . Within 20 ms after turning off ECH, the intensity of fluctuations is observed to increase at frequencies higher than 200 kHz in contrast, fluctuations at lower frequency are seen to decrease in intensity on a longer time scale, after other equilibrium quantities have evolved. Non-linear gyro-kinetic modeling at ion and electron scales scales suggest that, while the low frequency response of the diagnostic is consistent with the dominant ITG modes being weakened by the slow-time increase in flow shear, the high frequency response is due to prompt changes to the electron temperature profile that enhance electron modes and generate a larger heat flux and an inward particle pinch. These results suggest that electron heated regimes in ITER will feature multi-scale fluctuations that might affect fusion performance via modifications to profiles.

  2. Study of the fast electron distribution function in lower hybrid and electron cyclotron current driven plasmas in the WT-3 tokamak

    International Nuclear Information System (INIS)

    Ogura, K.; Tanaka, H.; Ide, S.

    1991-01-01

    The distribution function f(p-vector) of fast electrons produced by lower hybrid current drive (LHCD) is investigated in the WT-3 tokamak, using a combination of measurements of the hard X-ray (HXR) angular distribution with respect to the toroidal magnetic field and observations of the HXR radial profile. The data obtained indicate the formation of a plateau-like region in f(p-vector) which corresponds to a region of resonant interaction between the lower hybrid (LH) wave and the electrons. The energy of the fast electrons in the peripheral plasma region is observed to be higher than that in the central plasma region under operational conditions with a high plasma current (I p ≥ 80 kA). At low current (I p < or approx. 50 kA), however, the energy of fast electrons is constant along the plasma radius. In the current ramp-up phase, fast electrons are generated in the directions normal to and opposite to the LH wave propagation. The latter case is ascribed to a negatively biased toroidal electric field induced by the current ramp-up. To study the characteristic change of f(p-vector) for various current drive mechanisms, HXR measurements are performed in electron cyclotron current driven (ECCD) plasma and in Ohmic heating (OH) plasma. In ECCD plasma, the perpendicular energy of fast electrons increases, which indicates that fast electrons are accelerated perpendicularly by electron cyclotron heating. In both LHCD and ECCD plasmas, fast electrons flow in the direction opposite to the wave propagation, while no such fast electrons are formed in OH plasma. (author). 33 refs, 16 figs, 1 tab

  3. ORNL TNS program: microwave start-up of tokamak plasmas near electron cyclotron and upper hybrid resonances

    International Nuclear Information System (INIS)

    Peng, Y.K.M.; Borowski, S.K.

    1977-12-01

    The scenario of toroidal plasma start-up with microwave initiation and heating near the electron cyclotron frequency is suggested and examined here. We assume microwave irradiation from the high field side and an anomalously large absorption of the extraordinary waves near the upper hybrid resonance. The dominant electron energy losses are assumed to be due to magnetic field curvature and parallel drifts, ionization of neutrals, cooling by ions, and radiation by low Z impurities. It is shown by particle and energy balance considerations that electron temperatures around 250 eV and densities of 10 12 to 10 13 cm -3 can be maintained, at least in a narrow region near the upper hybrid resonance, with modest microwave powers in the Impurity Study Experiment (ISX) (120 kW at 28 GHz) and The Next Step (TNS) (0.57 MW at 120 GHz). The loop voltages required for start-up from these initial plasmas are also estimated. It is shown that the loop voltage can be reduced by a factor of five to ten from that for unassisted start-up without an increase in the resistive loss in volt-seconds. If this reduction in loop voltage is verified in the ISX experiments, substantial savings in the cost of power supplies for the ohmic heating (OH) and equilibrium field (EF) coils can be realized in future large tokamaks

  4. Observation of the skin-like profiles of electron temperature and density of turbulently heated plasmas in the TRIAM-1 tokamak

    International Nuclear Information System (INIS)

    Hiraki, Naoji; Nakamura, Kazuo; Toi, Kazuo; Itoh, Satoshi

    1980-01-01

    The time evolution of electron temperature and density profiles are measured on the turbulent heating experiment in the TRIAM-1 tokamak. The skin-like profiles of electron temperature and density are observed just after the application of the pulsed electric field for turbulent heating. The width of the skin layer of the electron temperature profile is about 1 cm, and agrees well with the theoretical value. The above mentioned skin heating of electrons just after the heating pulse is also spectroscopically confirmed by the remarkable decrease of the volume emission of visible lines which is localized at the outer plasma region. (author)

  5. Observation of the skin-like profiles of electron temperature and density of turbulently heated plasmas in the TRIAM-1 tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Hiraki, N; Nakamura, K; Toi, K; Itoh, S [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1980-07-01

    The time evolution of electron temperature and density profiles are measured on the turbulent heating experiment in the TRIAM-1 tokamak. The skin-like profiles of electron temperature and density are observed just after the application of the pulsed electric field for turbulent heating. The width of the skin layer of the electron temperature profile is about 1 cm, and agrees well with the theoretical value. The above mentioned skin heating of electrons just after the heating pulse is also spectroscopically confirmed by the remarkable decrease of the volume emission of visible lines which is localized at the outer plasma region.

  6. Tokamak physics

    International Nuclear Information System (INIS)

    Haines, M.G.

    1984-01-01

    The physical conditions required for breakeven in thermonuclear fusion are derived, and the early conceptual ideas of magnetic confinement and subsequent development are followed, leading to present-day large scale tokamak experiments. Confinement and diffusion are developed in terms of particle orbits, whilst magnetohydrodynamic stability is discussed from energy considerations. From these ideas are derived the scaling laws that determine the physical size and parameters of this fusion configuration. It becomes clear that additional heating is required. However there are currently several major gaps in our understanding of experiments; the causes of anomalous electron energy loss and the major current disruption, the absence of the 'bootstrap' current and what physics determines the maximum plasma pressure consistent with stability. The understanding of these phenomena is a major challenge to plasma physicists. (author)

  7. Current drive with fast waves, electron cyclotron waves, and neutral injection in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Prater, R.; Petty, C.C.; Pinsker, R.I.

    1993-01-01

    Current drive experiments have been performed on the DIII-D tokamak using fast waves, electron cyclotron waves, and neutral injection. Fast wave experiments were performed using a 4-strap antenna with 1 MW of power at 60 MHz. These experiments showed effective heating of electrons, with a global heating efficiency equivalent to that of neutral injection even when the single pass damping was calculated to be as small as 5%. The damping was probably due to the effect of multiple passes of the wave through the plasma. Fast wave current drive experiments were performed with a toroidally directional phasing of the antenna straps. Currents driven by fast wave current drive (FWCD) in the direction of the main plasma current of up to 100 kA were found, not including a calculated 40 kA of bootstrap current. Experiments with FWCD in the counter current direction showed little current drive. In both cases, changes in the sawtooth behavior and the internal inductance qualitatively support the measurement of FWCD. Experiments on electron cyclotron current drive have shown that 100 kA of current can be driven by 1 MW of power at 60 GHz. Calculations with a Fokker-Planck code show that electron cyclotron current drive (ECCD) can be well predicted when the effects of electron trapping and of the residual electric field are included. Experiments on driving current with neutral injection showed that effective current drive could be obtained and discharges with full current drive were demonstrated. Interestingly, all of these methods of current drive had about the same efficiency. (Author)

  8. Current drive with fast waves, electron cyclotron waves, and neutral injection in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Prater, R.; Petty, C.C.; Pinsker, R.I.; Chiu, S.C.; deGrassie, J.S.; Harvey, R.W.; Ikel, H.; Lin-Liu, Y.R.; Luce, T.C.; James, R.A.; Porkolab, M.; Baity, F.W.; Goulding, R.H.; Hoffmann, D.J.; Kawashima, H.; Trukhin, V.

    1992-09-01

    Current drive experiments have been performed on the DIII-D tokamak using fast waves, electron cyclotron waves, and neutral injection. Fast wave experiments were performed using a 4-strap antenna with 1 MW of power at 60 MHz. These experiments showed effective heating of electrons, with a global heating efficiency equivalent to that of neutral injection even when the single pass damping was calculated to be as small as 5%. The damping was probably due to the effect of multiple passes of the wave through the plasma. Fast wave current drive experiments were performed with a toroidally directional phasing of the antenna straps. Currents driven by fast wave current drive (FWCD) in the direction of the main plasma current of up to 100 kA were found, not including a calculated 40 kA of bootstrap current. Experiments with FWCD in the counter current direction showed little current drive. In both cases, changes in the sawtooth behavior and the internal inductance qualitatively support the measurement of FWCD. Experiments on electron cyclotron current drive have shown that 100 kA of current can be driven by 1 MW of power at 60 GHz. Calculations with a Fokker-Planck code show that electron cyclotron current drive (ECCD) can be well predicted when the effects of electron trapping and of the residual electric field are included. Experiments on driving current with neutral injection showed that effective current drive could be obtained and discharges with full current drive were demonstrated. Interestingly, all of these methods of current drive had about the same efficiency, 0.015 x 10 20 MA/MW/m 2

  9. Texas Experimental Tokamak

    International Nuclear Information System (INIS)

    Wootton, A.J.

    1990-04-01

    This paper discusses the following work on the text tokamak: data systems; particle confinement; impurity transport; plasma rotation; runaway electrons; electron cyclotron heating; FIR system; transient transport; internal turbulence; edge turbulence; ion temperature; EML experiments; impurity pellet experiments; MHD experiments and analysis; TEXT Upgrade; and Upgrade diagnostics

  10. Profile measurements of the electron temperature on the ASDEX Upgrade, COMPASS, and ISTTOK tokamak using Thomson scattering, triple, and ball-pen probes

    Science.gov (United States)

    Adamek, J.; Müller, H. W.; Silva, C.; Schrittwieser, R.; Ionita, C.; Mehlmann, F.; Costea, S.; Horacek, J.; Kurzan, B.; Bilkova, P.; Böhm, P.; Aftanas, M.; Vondracek, P.; Stöckel, J.; Panek, R.; Fernandes, H.; Figueiredo, H.

    2016-04-01

    The ball-pen probe (BPP) technique is used successfully to make profile measurements of the electron temperature on the ASDEX Upgrade (Axially Symmetric Divertor Experiment), COMPASS (COMPact ASSembly), and ISTTOK (Instituto Superior Tecnico TOKamak) tokamak. The electron temperature is provided by a combination of the BPP potential (ΦBPP) and the floating potential (Vfl) of the Langmuir probe (LP), which is compared with the Thomson scattering diagnostic on ASDEX Upgrade and COMPASS. Excellent agreement between the two diagnostics is obtained for circular and diverted plasmas and different heating mechanisms (Ohmic, NBI, ECRH) in deuterium discharges with the same formula Te = (ΦBPP - Vfl)/2.2. The comparative measurements of the electron temperature using BPP/LP and triple probe (TP) techniques on the ISTTOK tokamak show good agreement of averaged values only inside the separatrix. It was also found that the TP provides the electron temperature with significantly higher standard deviation than BPP/LP. However, the resulting values of both techniques are well in the phase with the maximum of cross-correlation function being 0.8.

  11. Profile measurements of the electron temperature on the ASDEX Upgrade, COMPASS, and ISTTOK tokamak using Thomson scattering, triple, and ball-pen probes

    Energy Technology Data Exchange (ETDEWEB)

    Adamek, J., E-mail: adamek@ipp.cas.cz; Horacek, J.; Bilkova, P.; Böhm, P.; Aftanas, M.; Vondracek, P.; Stöckel, J.; Panek, R. [Institute of Plasma Physics, Prague (Czech Republic); Müller, H. W. [Max-Planck-Institute for Plasma Physics, Garching near Munich (Germany); Institute of Materials Chemistry & Research, University of Vienna, Vienna (Austria); Silva, C.; Fernandes, H.; Figueiredo, H. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Schrittwieser, R.; Ionita, C.; Mehlmann, F.; Costea, S. [Institute for Ion Physics and Applied Physics, University of Innsbruck, Innsbruck (Austria); Kurzan, B. [Max-Planck-Institute for Plasma Physics, Garching near Munich (Germany)

    2016-04-15

    The ball-pen probe (BPP) technique is used successfully to make profile measurements of the electron temperature on the ASDEX Upgrade (Axially Symmetric Divertor Experiment), COMPASS (COMPact ASSembly), and ISTTOK (Instituto Superior Tecnico TOKamak) tokamak. The electron temperature is provided by a combination of the BPP potential (Φ{sub BPP}) and the floating potential (V{sub fl}) of the Langmuir probe (LP), which is compared with the Thomson scattering diagnostic on ASDEX Upgrade and COMPASS. Excellent agreement between the two diagnostics is obtained for circular and diverted plasmas and different heating mechanisms (Ohmic, NBI, ECRH) in deuterium discharges with the same formula T{sub e} = (Φ{sub BPP} − V{sub fl})/2.2. The comparative measurements of the electron temperature using BPP/LP and triple probe (TP) techniques on the ISTTOK tokamak show good agreement of averaged values only inside the separatrix. It was also found that the TP provides the electron temperature with significantly higher standard deviation than BPP/LP. However, the resulting values of both techniques are well in the phase with the maximum of cross-correlation function being 0.8.

  12. Profile measurements of the electron temperature on the ASDEX Upgrade, COMPASS, and ISTTOK tokamak using Thomson scattering, triple, and ball-pen probes

    International Nuclear Information System (INIS)

    Adamek, J.; Horacek, J.; Bilkova, P.; Böhm, P.; Aftanas, M.; Vondracek, P.; Stöckel, J.; Panek, R.; Müller, H. W.; Silva, C.; Fernandes, H.; Figueiredo, H.; Schrittwieser, R.; Ionita, C.; Mehlmann, F.; Costea, S.; Kurzan, B.

    2016-01-01

    The ball-pen probe (BPP) technique is used successfully to make profile measurements of the electron temperature on the ASDEX Upgrade (Axially Symmetric Divertor Experiment), COMPASS (COMPact ASSembly), and ISTTOK (Instituto Superior Tecnico TOKamak) tokamak. The electron temperature is provided by a combination of the BPP potential (Φ_B_P_P) and the floating potential (V_f_l) of the Langmuir probe (LP), which is compared with the Thomson scattering diagnostic on ASDEX Upgrade and COMPASS. Excellent agreement between the two diagnostics is obtained for circular and diverted plasmas and different heating mechanisms (Ohmic, NBI, ECRH) in deuterium discharges with the same formula T_e = (Φ_B_P_P − V_f_l)/2.2. The comparative measurements of the electron temperature using BPP/LP and triple probe (TP) techniques on the ISTTOK tokamak show good agreement of averaged values only inside the separatrix. It was also found that the TP provides the electron temperature with significantly higher standard deviation than BPP/LP. However, the resulting values of both techniques are well in the phase with the maximum of cross-correlation function being 0.8.

  13. Microwave Tokamak Experiment

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    The Microwave Tokamak Experiment, now under construction at the Laboratory, will use microwave heating from a free-electron laser. The intense microwave pulses will be injected into the tokamak to realize several goals, including a demonstration of the effects of localized heat deposition within magnetically confined plasma, a better understanding of energy confinement in tokamaks, and use of the new free-electron laser technology for plasma heating. The experiment, soon to be operational, provides an opportunity to study dense plasmas heated by powers unprecedented in the electron-cyclotron frequency range required by the especially high magnetic fields used with the MTX and needed for reactors. 1 references, 5 figures, 3 tables

  14. Behavior of electron and ion transport in discharges with an internal transport barrier in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Greenfield, C.M.; Staebler, G.M.; Rettig, C.L.

    1999-01-01

    We report results of experiments to further determine the underlying physics behind the formation and development of internal transport barriers (ITB) in the DIII-D tokamak. The initial ITB formation occurs when the neutral beam heating power exceeds a threshold value during the early stages of the current ramp in low-density discharges. This region of reduced transport, made accessible by suppression of long-wavelength turbulence by sheared flows, is most evident in the ion temperature and impurity rotation profiles. In some cases, reduced transport is also observed in the electron temperature and density profiles. If the power is near the threshold, the barrier remains stationary and encloses only a small fraction of the plasma volume. If, however, the power is increased, the transport barrier expands to encompass a larger fraction of the plasma volume. The dynamic behavior of the transport barrier during the growth phase exhibits rapid transport events that are associated with both broadening of the profiles and reductions in turbulence and associated transport. In some, but not all, cases, these events are correlated with the safety factor q passing through integer values. The final state following this evolution is a plasma exhibiting ion thermal transport at or below neoclassical levels. Typically, the electron thermal transport remains anomalously high. Recent experimental results are reported in which rf electron heating was applied to plasmas with an ion ITB, thereby increasing both the electron and ion transport. Although the results are partially in agreement with the usual E-vector x B-vector shear suppression hypothesis, the results still leave questions that must be addressed in future experiments. (author)

  15. Behavior of electron and ion transport in discharges with an internal transport barrier in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Greenfield, C.M.; Staebler, G.M.; Rettig, C.L.

    1998-12-01

    The authors report results of experiments to further determine the underlying physics behind the formation and development of internal transport barriers (ITB) in the DIII-D tokamak. The initial ITB formation occurs when the neutral beam heating power exceeds a threshold value during the early stages of the current ramp in low-density discharges. This region of reduced transport, made accessible by suppression of long-wavelength turbulence by sheared flows, is most evident in the ion temperature and impurity rotation profiles. In some cases, reduced transport is also observed in the electron temperature and density profiles. If the power is near the threshold, the barrier remains stationary and enclosed only a small fraction of the plasma volume. If, however, the power is increased, the transport barrier expands to encompass a larger fraction of the plasma volume. The dynamic behavior of the transport barrier during the growth phase exhibits rapid transport events that are associated with both broadening of the profiles and reductions in turbulence and associated transport. In some, but not all, cases, these events are correlated with the safety factor q passing through integer values. The final state following this evolution is a plasma exhibiting ion thermal transport at or below neoclassical levels. Typically, the electron thermal transport remains anomalously high. Recent experimental results are reported in which rf electron heating was applied to plasmas with an ion ITB, thereby increasing both the electron and ion transport. Although the results are partially in agreement with the usual rvec E x rvec B shear suppression hypothesis, the results still leave questions that must be addressed in future experiments

  16. Generation of stationary current in a tokamak by electron cyclotron waves

    International Nuclear Information System (INIS)

    Parail, V.V.; Pereverzev, G.V.

    1982-01-01

    Analytical expression for stationary longitudinal current generated in plasma with electron-cyclotron (EC) waves has been derived on the basis of a kinetic equation for electrons with provision for electron-electron and electron- ion collisions. Comparative analysis of efficiency of current excitation with EC and low hybrid (LH) waves has been carried out. It is shown that under similar conditions (for the same introduced powers and the same intervals of interaction of LH waves and electrons) the current value generated with LH waves turns out to be functionally (Vsub(o)/Vsub(e))sup(2) times higher as compared with the current generated with EC waves (vsub(o)-initial velocity of electrons, Vsub(e)-√2Tsub(e)/m) [ru

  17. Turbulence and transport during electron cyclotron heating in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Rhodes, T.L.; Peebles, W.A.; DeBoo, J.C.; Prater, R.; Kinsey, J.E.; de Grassie, J.S.; Bravenec, R.V.; Burrell, K.H.; Lohr, J.; Petty, C.C.; Nguyen, X.V.; Doyle, E.J.; Greenfield, C.M.; Zeng, L.; Zeeland, M.A.; Wang, G.; Makowski, M.A.; Staebler, G.M.; St John, H.E.; Solomon, W.M.

    2007-01-01

    The response of plasma parameters and broad wavenumber turbulence (1--40 cm -1 , kρ s = 0.1--8) to auxiliary electron cyclotron heating (ECH) is reported on. In these plasmas the electron temperature responds most strongly to the ECH while the electron density and ion temperature are kept approximately constant. Thermal fluxes and diffusivities increase appreciably with ECH for both electron and ion channels. Significant changes to the density fluctuations over the full range of measured wavenumbers are observed. This range of wavenumbers encompasses that typically associated with ion temperature gradient, trapped electron mode, and electron temperature gradient modes. Changes in linear growth rates calculated using a gyrokinetic code show consistency with observed fluctuation increases over the whole range of wavenumbers.

  18. The 8 MW lower hybrid electron mode system for the additional heating of the plasma of the FTU Tokamak

    International Nuclear Information System (INIS)

    Andreani, R.; De Marco, F.; Ferro, C.; Mirizzi, F.; Papitto, P.; Santini, F.; Segre, S.E.; Sassi, M.

    1985-01-01

    The ''Electron Mode'' regime of LH Heating, based on the same physics as the current drive, has been extensively studied and experimentally tested especially with respect to the relation between frequency and density limit. These results have largely contributed to the decision to build a CD system on TORE SUPRA. Based on the same motivations, the Lower Hybrid 'Electron Mode' Heating (frequency: 8 ''Electron Mode'' Heating (frequency: 8 GHz), has been chosen to heat the plasma of the FTU Tokamak. The RF power required (8 MW at 8 GHz) will be produced by 16 gyrotron oscillators (500 KW unit power) feeding 16 grill couplers installed on 8 equatorial ports of FTU. The dc power supplies will be ,odularly built to be compatible even with completely different sort of tubes (e.g. for IRCH). The transmission lines between the generators and the grills will be circular oversized waveguides to reduce the losses to less than 1 dB. Each grill will consist of an 8x8 matrix of rectangular waveguides pressurized and terminated by thik (one wavelength) alumina windows facing the grill mouth. Gyrotron availability has been verified through studies conducted by the two major manufacturers presently on the market. Preliminary quotations and delivery times have been obtained. The design of the grill couplers has been supplemented by a study contract with an industrial research laboratory which is producing a prototype structure and ceramic windows with very promising results. Microwave mode converters and power dividers for the transmission system have been designed and prototypes are being built and will be tested shortly. An 8 GHz, 25 KW cw test bench has been already commissioned and will be used to test all the microwave components. The power level is more than adequate also to process single channels of the coupling structures

  19. Cherenkov-type diamond detectors for measurements of fast electrons in the TORE-SUPRA tokamak

    International Nuclear Information System (INIS)

    Jakubowski, L.; Sadowski, M. J.; Zebrowski, J.; Rabinski, M.; Malinowski, K.; Mirowski, R.; Lotte, Ph.; Gunn, J.; Pascal, J-Y.; Colledani, G.; Basiuk, V.; Goniche, M.; Lipa, M.

    2010-01-01

    The paper presents a schematic design and tests of a system applicable for measurements of fast electron pulses emitted from high-temperature plasma generated inside magnetic confinement fusion machines, and particularly in the TORE-SUPRA facility. The diagnostic system based on the registration of the Cherenkov radiation induced by fast electrons within selected solid radiators is considered, and electron low-energy thresholds for different radiators are given. There are some estimates of high thermal loads, which might be deposited by intense electron beams upon parts of the diagnostic equipment within the TORE-SUPRA device. There are some proposed measures to overcome this difficulty by the selection of appropriate absorption filters and Cherenkov radiators, and particularly by the application of a fast-moving reciprocating probe. The paper describes the measuring system, its tests, as well as some results of the preliminary measurements of fast electrons within TORE-SUPRA facility.

  20. Cherenkov-type diamond detectors for measurements of fast electrons in the TORE-SUPRA tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Jakubowski, L.; Sadowski, M. J.; Zebrowski, J.; Rabinski, M.; Malinowski, K.; Mirowski, R. [Andrzej Soltan Institute for Nuclear Studies (IPJ), Otwock-Swierk 05-400 (Poland); Lotte, Ph.; Gunn, J.; Pascal, J-Y.; Colledani, G.; Basiuk, V.; Goniche, M.; Lipa, M. [CEA, IRFM, St Paul-lez-Durance F-13108 (France)

    2010-01-15

    The paper presents a schematic design and tests of a system applicable for measurements of fast electron pulses emitted from high-temperature plasma generated inside magnetic confinement fusion machines, and particularly in the TORE-SUPRA facility. The diagnostic system based on the registration of the Cherenkov radiation induced by fast electrons within selected solid radiators is considered, and electron low-energy thresholds for different radiators are given. There are some estimates of high thermal loads, which might be deposited by intense electron beams upon parts of the diagnostic equipment within the TORE-SUPRA device. There are some proposed measures to overcome this difficulty by the selection of appropriate absorption filters and Cherenkov radiators, and particularly by the application of a fast-moving reciprocating probe. The paper describes the measuring system, its tests, as well as some results of the preliminary measurements of fast electrons within TORE-SUPRA facility.

  1. Sub-millisecond electron density profile measurement at the JET tokamak with the fast lithium beam emission spectroscopy system

    Science.gov (United States)

    Réfy, D. I.; Brix, M.; Gomes, R.; Tál, B.; Zoletnik, S.; Dunai, D.; Kocsis, G.; Kálvin, S.; Szabolics, T.; JET Contributors

    2018-04-01

    Diagnostic alkali atom (e.g., lithium) beams are routinely used to diagnose magnetically confined plasmas, namely, to measure the plasma electron density profile in the edge and the scrape off layer region. A light splitting optics system was installed into the observation system of the lithium beam emission spectroscopy diagnostic at the Joint European Torus (JET) tokamak, which allows simultaneous measurement of the beam light emission with a spectrometer and a fast avalanche photodiode (APD) camera. The spectrometer measurement allows density profile reconstruction with ˜10 ms time resolution, absolute position calculation from the Doppler shift, spectral background subtraction as well as relative intensity calibration of the channels for each discharge. The APD system is capable of measuring light intensities on the microsecond time scale. However ˜100 μs integration is needed to have an acceptable signal to noise ratio due to moderate light levels. Fast modulation of the beam up to 30 kHz is implemented which allows background subtraction on the 100 μs time scale. The measurement covers the 0.9 background subtraction, the relative calibration, and the comprehensive error calculation, runs a Bayesian density reconstruction code, and loads results to the JET database. The paper demonstrates the capability of the APD system by analyzing fast phenomena like pellet injection and edge localized modes.

  2. A novel fast-scanning microwave heterodyne radiometer system for electron cyclotron emission measurements in the HT-7 superconducting tokamak

    International Nuclear Information System (INIS)

    Zhang, S.Y.; Wan, Y.X.; Xie, J.K.; Luo, J.R.; Li, J.G.; Kuang, G.L.; Gao, X.; Zhang, X.D.; Wan, B.N.; Wang, K.J.; Mao, J.S.; Gong, X.Z.; Qin, P.J.

    2000-01-01

    Two sets of fast-scanning microwave heterodyne radiometer receiver systems employing backward-wave oscillators in the 78-118 GHz and 118-178 GHz ranges were developed for electron cyclotron emission measurements (ECE) on the HT-7 superconducting tokamak. The double-sideband radiometer in the 78-118 GHz range measures 16 ECE frequency points with a scanning period of 0.65 ms. The novel design of the 2 mm fast-scanning heterodyne radiometer in the 118-178 GHz range enables the unique system to measure 48 ECE frequency points in 0.65 ms periodically. The plasma profile consistency in reproducible ohmic plasmas was used to relatively calibrate each channel by changing the toroidal magnetic field shot-by-shot. The absolute temperature value was obtained by a comparison with the results from the soft x-ray pulse height analysis measurements and Thomson scattering system. A preliminary temperature profile measurement result in pellet injection plasma is presented. (author)

  3. Determination of the parametric region in which runaway electron energy losses are dominated by bremsstrahlung radiation in tokamaks

    International Nuclear Information System (INIS)

    Fernandez-Gomez, I.; Martin-Solis, J. R.; Sanchez, R.

    2007-01-01

    It has been recently argued that, at sufficiently large parallel electric fields, bremsstrahlung radiation can greatly reduce the maximum energy that runaway electrons can gain in tokamaks [M. Bakhtiari et al., Phys. Plasmas 12, 102503 (2005)]. In this contribution, the work of these authors is extended to show that the region where bremsstrahlung radiation dominate runaway energy losses is however more restricted than reported by them. Expressions will be provided for the limits of this region within the parameter space spanned by the background density and parallel electric field, as a function of the rest of the plasma parameters. It will be shown that the background density has to be above a certain critical value and that the parallel electric field must lie within a range of values, below and above which synchrotron radiation dominate the runaway energy losses. Finally, it will be demonstrated that typical disruption parameters lie within this region and, as a result, bremsstrahlung losses still play an important role in controlling the runaway energy

  4. Effect of magnetic fluctuations on the confinement and dynamics of runaway electrons in the HT-7 tokamak

    International Nuclear Information System (INIS)

    Zhou, R.J.; Hu, L.Q.; Li, E.Z.; Xu, M.; Zhong, G.Q.; Xu, L.Q.; Lin, S.Y.

    2013-01-01

    Experimental results in the HT-7 tokamak indicated significant losses of runaway electrons due to magnetic fluctuations, but the loss processes did not only rely on the fluctuation amplitude. Efficient radial runaway transport required that there were no more than small regions of the plasma volume in which there was very low transport of runaways. A radial runaway diffusion coefficient of D_r ≈ 10 m"2s"-"1 was derived for the loss processes, and diffusion coefficient near the resonant magnetic surfaces and shielding factor ϒ = 0.8 were deduced. Test particle equations were used to analyze the effect of magnetic fluctuations on runaway dynamics. It was found that the maximum energy that runaways can gain is very sensitive to the value of a_s. a_s = (0.28 - 0.33) was found for the loss processes in the experiment, and maximum runaway energy could be controlled in the range of E = (4 MeV - 6 MeV) in this case. Additionally, to control the maximum runaway energy below 5 MeV, the normalized electric field needed to be under a critical value D_a = 6.8, and the amplitude normalized magnetic fluctuations b tilde needed to be at least of the order of b tilde ≈ 3 x 10"-"5. (author)

  5. Temporal evolutions of electron temperature and density of turbulently-heated tokamak plasmas in TRIAM-1

    Energy Technology Data Exchange (ETDEWEB)

    Hiraki, N; Nakamura, K; Nakamura, Y; Itoh, S [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1981-04-01

    The temporal evolution of the electron temperature and density are measured in a turbulent heating experiment in TRIAM-1. Skin-like profiles of the electron temperature and density are clearly observed. The anomality in the electrical resistivity of the plasma in this skin-layer is estimated, and the plasma heating in this skin-layer is regarded as being due to anomalous joule heating arising from this anomalous resistivity. The ratio of drift velocity to electron thermal velocity in the layer is also calculated, and it is shown that the conditions needed to make the current-driven ion-acoustic instability triggerable are satisfied.

  6. Calibration of Fabry-Perot interferometers for electron cyclotron emission measurements on the Tore Supra tokamak

    International Nuclear Information System (INIS)

    Javon, C.; Talvard, M.

    1990-01-01

    The electron temperature is routinely measured on TORE SUPRA using Fabry-Perot cavities. These have been calibrated using a technique involving coherent addition and Fourier analysis of a chopped black-body source. Comparison with conventional techniques is reported

  7. On the physics of electron transfer (drift) in the substance: about the reason of “abnormal” fast transfer of electrons in the plasma of tokamak and at known Bohm’s diffusion

    Science.gov (United States)

    Boriev, I. A.

    2018-03-01

    An analysis of the problem of so-called “abnormal” fast transfer of electrons in tokamak plasma, which turned out much faster than the result of accepted calculation, is given. Such transfer of hot electrons leads to unexpectedly fast destruction of the inner tokamak wall with ejection of its matter in plasma volume, what violates a condition of plasma confinement for controlled thermonuclear fusion. It is shown, taking into account real physics of electron drift in the gas (plasma) and using the conservation law for momentum of electron transfer (drift), that the drift velocity of elastically scattered electrons should be significantly greater than that of accepted calculation. The reason is that the relaxation time of the momentum of electron transfer, to which the electron drift velocity is proportional, is significantly greater (from 16 up to 4 times) than the electron free path time. Therefore, generally accepted replacement of the relaxation time, which is unknown a priori, by the electron free path time, leads to significant (16 times for thermal electrons) underestimation of electron drift velocity (mobility). This result means, that transfer of elastically (and isotropically) scattered electrons in the gas phase should be so fast, and corresponds to multiplying coefficient (16), introduced by D. Bohm to explain the observed by him “abnormal” fast diffusion of electrons.

  8. Electron cyclotron current drive experiments in LHCD plasmas using a remote steering antenna on the TRIAM-1M tokamak

    International Nuclear Information System (INIS)

    Idei, H.; Hanada, K.; Zushi, H.; Ohkubo, K.; Hasegawa, M.; Kubo, S.; Nishi, S.; Fukuyama, A.; Sato, K.N.; Nakamura, K.; Sakamoto, M.; Iyomasa, A.; Kawasaki, S.; Nakashima, H.; Higashijima, A.; Notake, T.; Shimozuma, T.; Ito, S.; Hoshika, H.; Maezono, N.; Nakashima, K.; Ogawa, M.

    2006-01-01

    A remote steering antenna was recently developed for electron cyclotron heating and current drive (ECH/ECCD) experiments on the TRIAM-1M tokamak. This is the first application of the remote steering antenna concept for ECH/ECCD experiments, which have conditions relevant to the International Thermonuclear Experimental Reactor (ITER). Fundamental ECH and ECCD experiments were conducted in the ITER frequency from the low field using this antenna system. In addition to the angles near 0 0 , the launcher was a symmetric direction antenna with an extended steering-angle capability of ±(8 0 -19 0 ). The output beam from the antenna was a well-defined Gaussian with a proper steering angle. The Gaussian content and the steering-angle accuracy were 0.85 and -0.5 0 , respectively. The high power tests measured the antenna transmission efficiency at 0.90-0.94. The efficiencies obtained in the low and high power tests were consistent with the calculations using higher-order modes. In order to excite the pure O/X-modes in the oblique injection, two polarizers were used to control the elliptical polarization of the incident beam for the ECCD experiments. The fundamental O/X-mode ECH/ECCD was applied to lower hyrid current drive plasmas at the optimized incident polarization. In the X-mode experiment, at medium density (∼1 x 10 19 m -3 ), clear differences in the plasma current and the hard x-ray intensity were observed between the co- and counter-steering injections due to the ECCD effect on the coupling of forward fast electrons

  9. Silicon drift detector based X-ray spectroscopy diagnostic system for the study of non-thermal electrons at Aditya tokamak.

    Science.gov (United States)

    Purohit, S; Joisa, Y S; Raval, J V; Ghosh, J; Tanna, R; Shukla, B K; Bhatt, S B

    2014-11-01

    Silicon drift detector based X-ray spectrometer diagnostic was developed to study the non-thermal electron for Aditya tokamak plasma. The diagnostic was mounted on a radial mid plane port at the Aditya. The objective of diagnostic includes the estimation of the non-thermal electron temperature for the ohmically heated plasma. Bi-Maxwellian plasma model was adopted for the temperature estimation. Along with that the study of high Z impurity line radiation from the ECR pre-ionization experiments was also aimed. The performance and first experimental results from the new X-ray spectrometer system are presented.

  10. Temporal and spatial evolution of runaway electrons at the instability moments in Damavand tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Pourshahab, B. [Department of Nuclear Engineering, Faculty of Advance Sciences and Technologies, University of Isfahan, P.O. Box 81747-73441, Isfahan (Iran, Islamic Republic of); Abdi, M. R. [Department of Physics, Faculty of Science, University of Isfahan, P.O. Box 81747-73441, Isfahan (Iran, Islamic Republic of); Sadighzadeh, A.; Rasouli, C. [Plasma Physics and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute, AEOI, P.O. Box 14155-1339, Tehran (Iran, Islamic Republic of)

    2016-07-15

    The time and position behavior of runaway electrons at the Parail–Pogutse instability moments has been investigated using experimental observations in plasma current, loop voltage, the Hard X-ray (HXR) radiations, and 18 poloidal pickup coils signals received by data acquisition system simultaneously. The conditional average sampling (CAS) method was used to analyze the output data. Moreover, a filament current code was modified to study the runaway electrons beam movement in the event of instabilities. The results display a rapid drift of runaway beam toward the inner wall of the vacuum vessel and the collision with the wall components at the instability moments. The existence of the collisions in these experiments is evident in the HXR bursts which are considered as the main trigger for CAS Analysis. Also, the variation of HXR bursts with the toroidal magnetic field shows that the hard X-ray bursts drop with increase in the toroidal magnetic field and runaway electrons confinement quality.

  11. Comparison of transient electron heat transport in LHD helical and JT-60U tokamak plasmas

    International Nuclear Information System (INIS)

    Inagaki, S.; Ida, K.; Tamura, N.; Shimozuma, T.; Kubo, S.; Nagayama, Y.; Kawahata, K.; Sudo, S.; Ohkubo, K.; Takenaga, H.; Isayama, A.; Takizuka, T.; Kamada, Y.; Miura, Y.

    2005-01-01

    Transient transport experiments are performed in plasmas with and without Internal Transport Barrier (ITB) on LHD and JT-60U. The dependence of χ e on electron temperature, T e , and electron temperature gradient, ∇T e , is analyzed by an empirical non-linear heat transport model. In plasmas without ITB, two different types of non-linearity of the electron heat transport are observed from cold/heat pulse propagation. The χ e depends on T e and ∇T e in JT-60U, while the ∇T e dependence is weak in LHD. Inside the ITB region, there is no or weak ∇T e dependence both in LHD and JT-60U. A cold pulse growing driven by the negative T e dependence of χ e is observed inside the ITB region (LHD) and near the boundary of the ITB region (JT-60U). (author)

  12. Localized bulk electron heating with ICRF mode conversion in the JET tokamak

    DEFF Research Database (Denmark)

    Mantsinen, M.J.; Mayoral, M.-L.; Eester, D. Van

    2004-01-01

    of the He-3 ion cyclotron resonance layer in D and He-4 plasmas and subsequently damped on the bulk electrons. The resulting electron power deposition, measured using ICRF power modulation, is narrow with a typical full-width at half-maximum of approximate to30 cm (i.e. about 30% of the minor radius......) and the total deposited power to electrons comprises at least up to 80% of the applied ICRF power. The ICRF mode conversion power deposition has been kept constant using He-3 bleed throughout the ICRF phase with a typical duration of 4-6 s, i.e. 15-40 energy confinement times. Using waves propagating...

  13. Studies of suprathermal emission due to cyclotron-electronic heating of the tokamak TCV plasma

    International Nuclear Information System (INIS)

    Blanchard, P.

    2002-07-01

    Photo sensitization of wide band gap semiconductors is used in a wide range of application like silver halide photography and xerography. The development of a new type of solar cells, based on the sensitization of meso porous metal oxide films by panchromatic dyes, has triggered a lot of fundamental research on electron transfer dynamics. Upon excitation, the sensitizer transfers an electron in the conduction band of the semiconductor. Recombination of the charge separated state is prevented by the fast regeneration of the dye by an electron donor present in solution. Until recently, most of the work in this area has been focused on the competition between the recombination and the regeneration processes, which take place in the nanosecond to millisecond regime. With the development of solid-state femtosecond laser, the measurement of the dynamics of the first electron transfer step occurring in the solar cell has become possible . Electron injection from ruthenium(Il) poly pyridyl complexes into titanium dioxide has been found to occur with a poly exponential rate, with time constants ranging from 10 ps. In spite of the lately acquired capacity to measure the dynamics of these reactions, the physical meaning of this poly exponential kinetics and the factors that can influence this process are still poorly understood. In this work, the development of a new femtosecond pump-probe spectrometer, intended to monitor the ultrafast dynamics of electron injection, is presented. The study of this process requires an excellent temporal resolution and a large wavelength tunability to be able to excite a great variety of dyes and to probe the different products of the reaction. These specifications were met using the latest progress made in optical parametric amplification, which allowed the construction of a versatile experimental set-up. The interfacing by computer of the different devices used during the experiments increase the ease of use of the set-up. Transient

  14. Major results of the electron cyclotron heating experiment in the PDX tokamak

    International Nuclear Information System (INIS)

    Hsuan, H.; Bol, K.; Bowen, N.

    1984-07-01

    Electron Cyclotron Heating (ECH) experiments on PDX have been carried out with two 60 GHz pulsed gyrotrons each yielding up to approximately 100 kW. The ECH system used two waveguide runs each about 30 meters long. One run included 5 bends and the other, 7 bends. Predetermined waveguide modes were transmitted. The electron cyclotron waves were launched in narrow beams from both the high field and the low field sides of the plasma torus. The major new physics results are: (1) efficient central electron heating for both ohmic and neutral beam heated target plasmas; (2) alteration of MHD behavior using ECH; (3) identification of the trapped electron population with ECH; and (4) signature of velocity-space time evolution during ECH. In the best heating results obtained, Thomson scattering data indicated a central temperature increase from less than or equal to 1.5 keV to greater than or equal to 2.5 keV. This occurred with an average density of about 10 13 cm -3 and approximately 80 kW outside-launch ordinary-mode heating

  15. Density Gradient Stabilization of Electron Temperature Gradient Driven Turbulence in a Spherical Tokamak

    International Nuclear Information System (INIS)

    Ren, Y.; Kaye, S.M.; Mazzucato, E.; Guttenfelder, W.; Bell, R.E.; Domier, C.W.; LeBlanc, B.P.; Lee, K.C.; Luhmann, N.C. Jr.; Smith, D.R.; Yuh, H.

    2011-01-01

    In this letter we report the first clear experimental observation of density gradient stabilization of electron temperature gradient driven turbulence in a fusion plasma. It is observed that longer wavelength modes, k (perpendicular) ρ s ∼< 10, are most stabilized by density gradient, and the stabilization is accompanied by about a factor of two decrease in the plasma effective thermal diffusivity.

  16. Study of electron temperature evolution during sawtoothing and pellet injection using thermal electron cyclotron emission in the Alcator C tokamak

    International Nuclear Information System (INIS)

    Gomez, C.C.

    1986-05-01

    A study of the electron temperature evolution has been performed using thermal electron cyclotron emission. A six channel far infrared polychromator was used to monitor the radiation eminating from six radial locations. The time resolution was <3 μs. Three events were studied, the sawtooth disruption, propagation of the sawtooth generated heatpulse and the electron temperature response to pellet injection. The sawtooth disruption in Alcator takes place in 20 to 50 μs, the energy mixing radius is approx. 8 cm or a/2. It is shown that this is inconsistent with single resonant surface Kadomtsev reconnection. Various forms of scalings for the sawtooth period and amplitude were compared. The electron heatpulse propagation has been used to estimate chi e(the electron thermal diffusivity). The fast temperature relaxation observed during pellet injection has also been studied. Electron temperature profile reconstructions have shown that the profile shape can recover to its pre-injection form in a time scale of 200 μs to 3 ms depending on pellet size

  17. Measurement of the central ion and electron temperature of tokamak plasmas from the x-ray line radiation of high-Z impurity ions

    International Nuclear Information System (INIS)

    Bitter, M.; von Goeler, S.; Goldman, M.; Hill, K.W.; Horton, R.; Roney, W.; Sauthoff, N.; Stodiek, W.

    1982-04-01

    This paper describes measurements of the central ion and electron temperature of tokamak plasmas from the observation of the 1s - 2p resonance lines, and the associated dielectronic (1s 2 nl - 1s2pnl, with n greater than or equal to 2) satellites, of helium-like iron (Fe XXV) and titanium (Ti XXI). The satellite to resonance line ratios are very sensitive to the electron temperature and are used as an electron temperature diagnostic. The ion temperature is deduced from the Doppler width of the 1s - 2p resonance lines. The measurements have been performed with high resolution Bragg crystal spectrometers on the PLT (Princeton Large Torus) and PDX (Poloidal Divertor Experiment) tokamaks. The details of the experimental arrangement and line evaluation are described, and the ion and electron temperature results are compared with those obtained from independent diagnostic techniques, such as the analysis of charge-exchange neutrals and measurements of the electron cyclotron radiation. The obtained experimental results permit a detailed comparison with theoretical predictions

  18. Continuous tokamaks

    International Nuclear Information System (INIS)

    Peng, Y.K.M.

    1978-04-01

    A tokamak configuration is proposed that permits the rapid replacement of a plasma discharge in a ''burn'' chamber by another one in a time scale much shorter than the elementary thermal time constant of the chamber first wall. With respect to the chamber, the effective duty cycle factor can thus be made arbitrarily close to unity minimizing the cyclic thermal stress in the first wall. At least one plasma discharge always exists in the new tokamak configuration, hence, a continuous tokamak. By incorporating adiabatic toroidal compression, configurations of continuous tokamak compressors are introduced. To operate continuous tokamaks, it is necessary to introduce the concept of mixed poloidal field coils, which spatially groups all the poloidal field coils into three sets, all contributing simultaneously to inducing the plasma current and maintaining the proper plasma shape and position. Preliminary numerical calculations of axisymmetric MHD equilibria in continuous tokamaks indicate the feasibility of their continued plasma operation. Advanced concepts of continuous tokamaks to reduce the topological complexity and to allow the burn plasma aspect ratio to decrease for increased beta are then suggested

  19. Tokamak experiments

    International Nuclear Information System (INIS)

    Robinson, D.C.

    1987-01-01

    With the advent of the new large tokamaks JET, JT-60 and TFTR important advances in magnetic confinement have been made. These include the exploitation of radio frequency and neutral beam heating on a much larger scale than previously, the demonstration of regimes of improved confinement and the demonstration of current drive at the Megamp level. A number of small and medium sized tokamaks have also come into operation recently such as WT-3 in Japan with an emphasis on radio frequency current drive and HL-1 a medium sized tokamak in China. Each of these new tokamaks is addressing specific problems which remain for the future development of the system. Of these particular problems: β, density and q limits remain important issues for the future development of the tokamak. β limits are being addressed on the DIII-D device in the USA. The anomalous confinement that the tokamak displays is being explored in detail on the TEXT device in the USA. Two other problems are impurity control and current drive. There is significant emphasis on divertor configurations at the present time with their enhanced confinement in the so called H mode. Due to improved discharge cleaning techniques and the ability to repetitively refuel using pellets, purer plasmas can be obtained even without divertors. Current drive remains a crucial issue for quasi of near steady state operation of the tokamak in the future and many current drive schemes are being investigated. (author) [pt

  20. Optimum launching of electron-cyclotron power for localized current drive in a hot tokamak

    International Nuclear Information System (INIS)

    Smith, G.R.

    1989-05-01

    Optimum launch parameters are determined for localized electron-cyclotron current drive near the magnetic axis and the q=2 surface by solving several minimization problems. For central current drive, equatorial and bottom launch are compared. Localized current drive near q=2 is studied for equatorial launch and for an alternative outside launch geometry that may be better for suppressing tearing modes and controlling disruptions. 6 refs., 2 figs

  1. Texas Experimental Tokamak

    International Nuclear Information System (INIS)

    Wootton, A.J.

    1993-04-01

    This progress report covers the period from November 1, 1990 to April 30, 1993. During that period, TEXT was operated as a circular tokamak with a material limiter. It was devoted to the study of basic plasma physics, in particular to study of fluctuations, turbulence, and transport. The purpose is to operate and maintain TEXT Upgrade as a complete facility for applied tokamak physics, specifically to conduct a research program under the following main headings: (1) to elucidate the mechanisms of working gas, impurity, and thermal transport in tokamaks, in particular to understand the role of turbulence; (2) to study physics of the edge plasma, in particular the turbulence; (3) to study the physics or resonant magnetic fields (ergodic magnetic divertors, intra island pumping); and (4) to study the physics of electron cyclotron heating (ECRH). Results of studies in each of these areas are reported

  2. Microwave Tokamak Experiment: Overview and status

    International Nuclear Information System (INIS)

    1990-05-01

    The Microwave Tokamak Experiment, now under construction at the Laboratory, will use microwave heating from a free-electron laser. The intense microwave pulses will be injected into the tokamak to realize several goals, including a demonstration of the effects of localized heat deposition within magnetically confined plasma, a better understanding of energy confinement in tokamaks, and use of the new free-electron laser technology for plasma heating. 3 figs., 3 tabs

  3. Measurements of the runaway electron energy during disruptions in the tokamak TEXTOR

    International Nuclear Information System (INIS)

    Forster, M.; Finken, K. H.; Willi, O.; Lehnen, M.; Xu, Y.

    2012-01-01

    Calorimetric measurements of the total runaway electron energy are carried out using a reciprocating probe during induced TEXTOR disruptions. A comparison with the energy inferred from runaway energy spectra, which are measured with a scintillator probe, is used as an independent check of the results. A typical runaway current of 100 kA at TEXTOR contains 30 to 35 kJ of runaway energy. The dependencies of the runaway energy on the runaway current, the radial probe position, the toroidal magnetic field and the predisruptive plasma current are studied. The conversion efficiency of the magnetic plasma energy into runaway energy is calculated to be up to 26%.

  4. Tearing modes induced by perpendicular electron cyclotron resonance heating in the KSTAR tokamak

    Science.gov (United States)

    Lee, H. H.; Lee, S. G.; Seol, J.; Aydemir, A. Y.; Bae, C.; Yoo, J. W.; Na, Y. S.; Kim, H. S.; Woo, M. H.; Kim, J.; Joung, M.; You, K. I.; Park, B. H.

    2014-10-01

    This paper reports on experimental evidence that shows perpendicular electron cyclotron resonance heating (ECRH) can trigger classical tearing modes when deposited near a rational flux surface. The complex evolution of an m = 2 island is followed during current ramp-up in KSTAR plasmas, from its initial onset as the rational surface enters the ECRH resonance layer to its eventual lock on the wall after the rational surface leaves the layer. Stability analysis coupled to a transport calculation of the current profile with ECRH shows that the perpendicular ECRH may play a significant role in triggering and destabilizing classical m = 2 tearing modes, in agreement with our experimental observation.

  5. The influence of the edge density fluctuations on electron cyclotron wave beam propagation in tokamaks

    DEFF Research Database (Denmark)

    Bertelli, N.; Balakin, A.A.; Westerhof, E.

    2010-01-01

    are estimated in a vacuum beam propagation between the edge density layer and the EC resonance absorption layer. Consequences on the EC beam propagation are investigated by using a simplified model in which the density fluctuations are described by a single harmonic oscillation. In addition, quasi......A numerical analysis of the electron cyclotron (EC) wave beam propagation in the presence of edge density fluctuations by means of a quasi-optical code [Balakin A. A. et al, Nucl. Fusion 48 (2008) 065003] is presented. The effects of the density fluctuations on the wave beam propagation...

  6. Electron cyclotron emission radiometer upgrade on the J-TEXT tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Z. J.; Pan, X. M., E-mail: panxiaoming@hust.edu.cn; Ma, X. D.; Ruan, B. W.; Zhou, R. B.; Zhang, C. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2016-11-15

    To meet experimental requirements, the J-TEXT electron cyclotron emission (ECE) diagnostic is being upgraded. The front end antenna and transmission line have been modified and a new 8-channel W-band detecting unit has been developed. The improved ECE system will extend the frequency range from 94.5-124.5 GHz to 80.5-124.5 GHz. This will enable the system to cover the most plasma in the radius direction for B{sub T} = 1.8–2.2 T, and it even can cover almost the whole plasma range ρ = − 0.8–0.9 (minus means the high field side) at B{sub T} = 1.8 T. A new auxiliary channel bank with 8 narrow band, tunable yttrium iron garnet filters is planned to add to the ECE system. Due to observations along a major radius, perpendicular to B{sub T}, and relatively low electron temperature, Doppler and relativistic broadening are minimal and thus high spatial resolution measurements can be made at variable locations with these tunable channels.

  7. Multi-scale full-orbit analysis on phase-space behavior of runaway electrons in tokamak fields with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yulei; Liu, Jian, E-mail: jliuphy@ustc.edu.cn [School of Nuclear Science and Technology and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Key Laboratory of Geospace Environment, CAS, Hefei, Anhui 230026 (China); Qin, Hong [School of Nuclear Science and Technology and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States)

    2016-06-15

    In this paper, the secular full-orbit simulations of runaway electrons with synchrotron radiation in tokamak fields are carried out using a relativistic volume-preserving algorithm. Detailed phase-space behaviors of runaway electrons are investigated in different dynamical timescales spanning 11 orders. In the small timescale, i.e., the characteristic timescale imposed by Lorentz force, the severely deformed helical trajectory of energetic runaway electron is witnessed. A qualitative analysis of the neoclassical scattering, a kind of collisionless pitch-angle scattering phenomena, is provided when considering the coupling between the rotation of momentum vector and the background magnetic field. In large timescale up to 1 s, it is found that the initial condition of runaway electrons in phase space globally influences the pitch-angle scattering, the momentum evolution, and the loss-gain ratio of runaway energy evidently. However, the initial value has little impact on the synchrotron energy limit. It is also discovered that the parameters of tokamak device, such as the toroidal magnetic field, the loop voltage, the safety factor profile, and the major radius, can modify the synchrotron energy limit and the strength of neoclassical scattering. The maximum runaway energy is also proved to be lower than the synchrotron limit when the magnetic field ripple is considered.

  8. Tearing modes induced by perpendicular electron cyclotron resonance heating in the KSTAR tokamak

    International Nuclear Information System (INIS)

    Lee, H.H.; Lee, S.G.; Seol, J.; Aydemir, A.Y.; Bae, C.; Woo, M.H.; Kim, J.; Joung, M.; You, K.I.; Park, B.H.; Yoo, J.W.; Na, Y.S.; Kim, H.S.

    2014-01-01

    This paper reports on experimental evidence that shows perpendicular electron cyclotron resonance heating (ECRH) can trigger classical tearing modes when deposited near a rational flux surface. The complex evolution of an m = 2 island is followed during current ramp-up in KSTAR plasmas, from its initial onset as the rational surface enters the ECRH resonance layer to its eventual lock on the wall after the rational surface leaves the layer. Stability analysis coupled to a transport calculation of the current profile with ECRH shows that the perpendicular ECRH may play a significant role in triggering and destabilizing classical m = 2 tearing modes, in agreement with our experimental observation. (paper)

  9. The influence of the edge density fluctuations on electron cyclotron wave beam propagation in tokamaks

    International Nuclear Information System (INIS)

    Bertelli, N; Balakin, A A; Westerhof, E; Garcia, O E; Nielsen, A H; Naulin, V

    2010-01-01

    A numerical analysis of the electron cyclotron (EC) wave beam propagation in the presence of edge density fluctuations by means of a quasi-optical code [Balakin A. A. et al, Nucl. Fusion 48 (2008) 065003] is presented. The effects of the density fluctuations on the wave beam propagation are estimated in a vacuum beam propagation between the edge density layer and the EC resonance absorption layer. Consequences on the EC beam propagation are investigated by using a simplified model in which the density fluctuations are described by a single harmonic oscillation. In addition, quasi-optical calculations are shown by using edge density fluctuations as calculated by two-dimensional interchange turbulence simulations and validated with the experimental data [O. E. Garcia et al, Nucl. Fusion 47 (2007) 667].

  10. Generation of runaway electrons during deterioration of lower hybrid power coupling in lower hybrid current drive plasmas in the HT-7 tokamak

    International Nuclear Information System (INIS)

    Chen, Z Y; Ju, H J; Zhu, J X; Li, M; Cai, W D; Liang, H F; Wan, B N; Shi, Y J; Xu, H D

    2009-01-01

    Efficient coupling of lower hybrid (LH) power from the wave launcher to the plasma is a very important issue in lower hybrid current drive (LHCD) experiments. The large unbalanced reflections in the grill trigger the LH protection system, which will trip the power, resulting in the reduction of the coupled LH power. The generation of runaway electrons has been investigated in LHCD plasmas with deterioration of LH coupling in the HT-7 tokamak. The deterioration of LH coupling results in an increase of the loop voltage and a more energetic fast electron population. These two effects favor the generation of a runaway population. It is found that most of the fast electrons generated by LH waves through parallel electron Landau damping were converted into a runaway population through the acceleration from the toroidal electric field when significant deterioration of LH coupling occurs.

  11. Tokamak electron heat transport by direct numerical simulation of small scale turbulence; Transport de chaleur electronique dans un tokamak par simulation numerique directe d'une turbulence de petite echelle

    Energy Technology Data Exchange (ETDEWEB)

    Labit, B

    2002-10-01

    In a fusion machine, understanding plasma turbulence, which causes a degradation of the measured energy confinement time, would constitute a major progress in this field. In tokamaks, the measured ion and electron thermal conductivities are of comparable magnitude. The possible sources of turbulence are the temperature and density gradients occurring in a fusion plasma. Whereas the heat losses in the ion channel are reasonably well understood, the origin of the electron losses is more uncertain. In addition to the radial velocity associated to the fluctuations of the electric field, electrons are more affected than ions by the magnetic field fluctuations. In experiments, the confinement time can be conveniently expressed in terms of dimensionless parameters. Although still somewhat too imprecise, these scaling laws exhibit strong dependencies on the normalized pressure {beta} or the normalized Larmor radius, {rho}{sub *}. The present thesis assesses whether a tridimensional, electromagnetic, nonlinear fluid model of plasma turbulence driven by a specific instability can reproduce the dependence of the experimental electron heat losses on the dimensionless parameters {beta} and {rho}{sub *}. The investigated interchange instability is the Electron Temperature Gradient driven one (ETG). The model is built by using the set of Braginskii equations. The developed simulation code is global in the sense that a fixed heat flux is imposed at the inner boundary, leaving the gradients free to evolve. From the nonlinear simulations, we have put in light three characteristics for the ETG turbulence: the turbulent transport is essentially electrostatic; the potential and pressure fluctuations form radially elongated cells called streamers; the transport level is very low compared to the experimental values. The thermal transport dependence study has shown a very small role of the normalized pressure, which is in contradiction with the Ohkama's formula. On the other hand

  12. Design concepts and performance tests of the 60 GHz electron cyclotron heating (ECH) system for the JFT-2M tokamak

    International Nuclear Information System (INIS)

    Hoshino, Katsumichi; Yamamoto, Takumi; Kawashima, Hisato; Shibata, Takatoshi; Shibuya, Toshihiro

    1985-11-01

    60 GHz overmoded microwave launch system for the JFT-2M tokamak is described. The basic design concepts, specifications of each microwave component and the results of the performance tests are reported. The transmission of the microwave power is done in the circular TE 01 mode which has a low loss along the overmoded circular transmission components of 33 m in length. The microwave power of 80 - 90 kW, pulse width 100 ms in the circular TE 11 mode is finally launched into the JFT-2M tokamak plasma. (author)

  13. Spatially distributed scintillator arrays for diagnosing runaway electron transport and energy behavior in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    James, A. N.; Hollmann, E. M.; Tynan, G. R. [UC San Diego Center for Energy Research, La Jolla, California 92093-0417 (United States)

    2010-10-15

    We present details of a new bismuth germanate [Bi{sub 4}Ge{sub 3}O{sub 12} (BGO)] scintillator array used to diagnose the transport and energy behavior of runaway electrons (REs) in DIII-D. BGO exhibits important properties for these compact detectors including high light yield which sufficiently excites photodiode detectors (8500 photons/MeV), high density and atomic numbers of constituent materials which maximizes sensitivity, and relative neutron blindness which minimizes complications in data interpretation. The detectors observe primarily hard x-ray radiation emitted in a forward beamed pattern by RE when they strike first wall materials or bulk ions and neutrals in the plasma, although we also address photoneutron signals. The arrangement of the array enables time resolved location of x-ray emission and associated asymmetries which help identify instabilities and confinement properties of RE. By shielding a subset of detectors with different thicknesses of lead, and with interpretative support of the code EGSNRC, we also measure RE energy, although due to the often distributed nature of RE strike points and the forward beamed character of emitted hard x-rays, we restrict interpretation as a lower bound for RE energy.

  14. Spatially distributed scintillator arrays for diagnosing runaway electron transport and energy behavior in tokamaks

    International Nuclear Information System (INIS)

    James, A. N.; Hollmann, E. M.; Tynan, G. R.

    2010-01-01

    We present details of a new bismuth germanate [Bi 4 Ge 3 O 12 (BGO)] scintillator array used to diagnose the transport and energy behavior of runaway electrons (REs) in DIII-D. BGO exhibits important properties for these compact detectors including high light yield which sufficiently excites photodiode detectors (8500 photons/MeV), high density and atomic numbers of constituent materials which maximizes sensitivity, and relative neutron blindness which minimizes complications in data interpretation. The detectors observe primarily hard x-ray radiation emitted in a forward beamed pattern by RE when they strike first wall materials or bulk ions and neutrals in the plasma, although we also address photoneutron signals. The arrangement of the array enables time resolved location of x-ray emission and associated asymmetries which help identify instabilities and confinement properties of RE. By shielding a subset of detectors with different thicknesses of lead, and with interpretative support of the code EGSNRC, we also measure RE energy, although due to the often distributed nature of RE strike points and the forward beamed character of emitted hard x-rays, we restrict interpretation as a lower bound for RE energy.

  15. FPGA based phase detection technique for electron density measurement in SST-1 tokamak

    International Nuclear Information System (INIS)

    Pramila; Mandaliya, Hitesh; Rajpal, Rachana; Kaur, Rajwinder

    2016-01-01

    A multi-channel signal-conditioning and phase-detection concept is implemented in the prototype design using the high-precision OPAMP, high-speed comparators, high Q filters, high-density FPGA (Field Programmable Gate array), 10 MHz parallel-multiplying DACs (Digital to Analog Converter), etc. The complete digital-logic for the phase-detection is implemented inside the logic cells of FPGA using VHDL code, with high speed 100 MHz clock generated from Digital Clock Manager (DCM), which is used to measure the time elapsed between zero crossings of the two signals coming from reference and probe paths of the diagnostics. The logic is implemented to measure either leading or lagging phase and also to accumulate the total phase difference throughout the shot duration with the maximum value of accumulated phase of 5760 (16 cycles × 360°) degree and a resolution of 3.6 °. A precision high speed and high bandwidth (80 MHz) operational amplifiers are used as the front end-electronics component for conditioning the high-frequency (1 MHz) and low amplitude signal (μV). The hardware detail, implementation concept in FPGA and testing results will be presented in the paper.

  16. FPGA based phase detection technique for electron density measurement in SST-1 tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Pramila, E-mail: pramila@ipr.res.in; Mandaliya, Hitesh; Rajpal, Rachana; Kaur, Rajwinder

    2016-11-15

    A multi-channel signal-conditioning and phase-detection concept is implemented in the prototype design using the high-precision OPAMP, high-speed comparators, high Q filters, high-density FPGA (Field Programmable Gate array), 10 MHz parallel-multiplying DACs (Digital to Analog Converter), etc. The complete digital-logic for the phase-detection is implemented inside the logic cells of FPGA using VHDL code, with high speed 100 MHz clock generated from Digital Clock Manager (DCM), which is used to measure the time elapsed between zero crossings of the two signals coming from reference and probe paths of the diagnostics. The logic is implemented to measure either leading or lagging phase and also to accumulate the total phase difference throughout the shot duration with the maximum value of accumulated phase of 5760 (16 cycles × 360°) degree and a resolution of 3.6 °. A precision high speed and high bandwidth (80 MHz) operational amplifiers are used as the front end-electronics component for conditioning the high-frequency (1 MHz) and low amplitude signal (μV). The hardware detail, implementation concept in FPGA and testing results will be presented in the paper.

  17. Non-thermal electron populations in microwave heated plasmas investigated with X-ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Belapure, Jaydeep Sanjay

    2013-04-15

    An investigation of the generation and dynamics of superthermal electrons in fusion plasma is carried out. A SDD+CsI(Tl) based X-ray diagnostic is constructed, characterized and installed at ASDEX Upgrade. In various plasma heating power and densities, the fraction and the energy distribution of the superthermal electrons is obtained by a bi-Maxwellian model and compared with Fokker-Planck simulations.

  18. Investigation of runaway electrons in the current ramp-up by a fully non-inductive lower hybrid current drive on the EAST tokamak

    International Nuclear Information System (INIS)

    Lu, H W; Zha, X J; Zhong, F C; Hu, L Q; Zhou, R J

    2013-01-01

    The possibility of using a lower hybrid wave (LHW) to ramp up the plasma current (I p ) from a low level to a high enough level required for fusion burn in the EAST (experimental advanced superconducting tokamak) tokamak is examined experimentally. The focus in this paper is on investigating how the relevant plasma parameters evolve during the current ramp-up (CRU) phase driving by a lower hybrid current drive (LHCD) with poloidal field (PF) coil cut-off, especially the behaviors of runaway electrons generated during the CRU phase. It is found that the intensity of runaway electron emission increases first, and then decreases gradually as the discharge goes on under conditions of PF coil cut-off before LHW was launched into plasma, PF coil cut-off at the same time as LHW was launched into plasma, as well as PF coil cut-off after LHW was launched into plasma. The relevant plasma parameters, including H α line emission (Ha), impurity line emission (UV), soft x-ray emission and electron density n e , increase to a high level. The loop voltage decreases from positive to negative, and then becomes zero because of the cut-off of PF coils. Also, the magnetohydrodynamic activity takes place during the CRU driving by LHCD. (paper)

  19. Isotope effects of trapped electron modes in the presence of impurities in tokamak plasmas

    Science.gov (United States)

    Shen, Yong; Dong, J. Q.; Sun, A. P.; Qu, H. P.; Lu, G. M.; He, Z. X.; He, H. D.; Wang, L. F.

    2016-04-01

    The trapped electron modes (TEMs) are numerically investigated in toroidal magnetized hydrogen, deuterium and tritium plasmas, taking into account the effects of impurity ions such as carbon, oxygen, helium, tungsten and others with positive and negative density gradients with the rigorous integral eigenmode equation. The effects of impurity ions on TEMs are investigated in detail. It is shown that impurity ions have substantially-destabilizing (stabilizing) effects on TEMs in isotope plasmas for {{L}ez}\\equiv {{L}ne}/{{L}nz}>0 (TEM turbulences in hydrogenic isotope plasmas with and without impurities are performed. The relations between the maximum growth rate of the TEMs with respect to the poloidal wave number and the ion mass number are given in the presence of the impurity ions. The results demonstrate that the maximum growth rates scale as {γ\\max}\\propto Mi-0.5 in pure hydrogenic plasmas. The scale depends on the sign of its density gradient and charge number when there is a second species of (impurity) ions. When impurity ions have density profiles peaking inwardly (i.e. {{L}ez}\\equiv {{L}ne}/{{L}nz}>0 ), the scaling also depends on ITG parameter {ηi} . The maximum growth rates scale as {γ\\max}\\propto M\\text{eff}-0.5 for the case without ITG ({ηi}=0 ) or the ITG parameter is positive ({ηi}>0 ) but the impurity ion charge number is low (Z≤slant 5.0 ). However, when {ηi}>0 and the impurity ion charge number is moderate (Z=6.0-8.0 ), the scaling law is found as {γ\\max}\\propto M\\text{eff}-1.0 . Here, Z is impurity ion charge number, and the effective mass number, {{M}\\text{eff}}=≤ft(1-{{f}z}\\right){{M}i}+{{f}z}{{M}z} , with {{M}i} and {{M}Z} being the mass numbers of the hydrogenic and impurity ions, respectively, and {{f}z}=Z{{n}0z}/{{n}0e} being the charge concentration of impurity ions. In addition, with regard to the case of {{L}ez}<0 , the maximum growth rate scaling is {γ\\max}\\propto Mi-0.5 . The possible relations of the results

  20. Electron temperature measurements during electron cyclotron heating on PDX using a ten channel grating polychromator

    International Nuclear Information System (INIS)

    Cavallo, A.; Hsuan, H.; Boyd, D.; Grek, B.; Johnson, D.; Kritz, A.; Mikkelsen, D.; LeBlanc, B.; Takahashi, H.

    1984-10-01

    During first harmonic electron cyclotron heating (ECH) on the Princeton Divertor Experiment (PDX) (R 0 = 137 cm, a = 40 cm), electron temperature was monitored using a grating polychromator which measured second harmonic electron cyclotron emission from the low field side of the tokamak. Interference from the high power heating pulse on the broadband detectors in the grating instrument was eliminated by using a waveguide filter in the transmission line which brought the emission signal to the grating instrument. Off-axis (approx. 4 cm) location of the resonance zone resulted in heating without sawtooth or m = 1 activity. However, heating with the resonance zone at the plasma center caused very large amplitude sawteeth accompanied by strong m = 1 activity: ΔT/T/sub MAX/ approx. = 0.41, sawtooth period approx. = 4 msec, m = 1 period approx. = 90 μ sec, (11 kHz). This is the first time such intense MHD activity driven by ECH has been observed. (For both cases there was no sawtooth activity in the ohmic phase of the discharge before ECH.) At very low densities there is a clear indication that a superthermal electron population is created during ECH

  1. Numerical Tokamak Project code comparison

    International Nuclear Information System (INIS)

    Waltz, R.E.; Cohen, B.I.; Beer, M.A.

    1994-01-01

    The Numerical Tokamak Project undertook a code comparison using a set of TFTR tokamak parameters. Local radial annulus codes of both gyrokinetic and gyrofluid types were compared for both slab and toroidal case limits assuming ion temperature gradient mode turbulence in a pure plasma with adiabatic electrons. The heat diffusivities were found to be in good internal agreement within ± 50% of the group average over five codes

  2. Self-consistent kinetic simulations of lower hybrid drift instability resulting in electron current driven by fusion products in tokamak plasmas

    International Nuclear Information System (INIS)

    Cook, J W S; Chapman, S C; Dendy, R O; Brady, C S

    2011-01-01

    We present particle-in-cell (PIC) simulations of minority energetic protons in deuterium plasmas, which demonstrate a collective instability responsible for emission near the lower hybrid frequency and its harmonics. The simulations capture the lower hybrid drift instability in a parameter regime motivated by tokamak fusion plasma conditions, and show further that the excited electromagnetic fields collectively and collisionlessly couple free energy from the protons to directed electron motion. This results in an asymmetric tail antiparallel to the magnetic field. We focus on obliquely propagating modes excited by energetic ions, whose ring-beam distribution is motivated by population inversions related to ion cyclotron emission, in a background plasma with a temperature similar to that of the core of a large tokamak plasma. A fully self-consistent electromagnetic relativistic PIC code representing all vector field quantities and particle velocities in three dimensions as functions of a single spatial dimension is used to model this situation, by evolving the initial antiparallel travelling ring-beam distribution of 3 MeV protons in a background 10 keV Maxwellian deuterium plasma with realistic ion-electron mass ratio. These simulations provide a proof-of-principle for a key plasma physics process that may be exploited in future alpha channelling scenarios for magnetically confined burning plasmas.

  3. Empirical scaling for present Ohmically heated tokamaks

    International Nuclear Information System (INIS)

    Daughney, C.

    1975-01-01

    Experimental results from the Adiabatic Toroidal Compressor (ATC) tokamak are used to obtain empirical scaling laws for the average electron temperature and electron energy confinement time as functions of the average electron density, the effective ion charge, and the plasma current. These scaling laws are extended to include dependence upon minor and major plasma radius and toroidal field strength through a comparison of the various tokamaks described in the literature. Electron thermal conductivity is the dominant loss process for the ATC tokamak. The parametric dependences of the observed electron thermal conductivity are not explained by present theoretical considerations. The electron temperature obtained with Ohmic heating is shown to be a function of current density - which will not be increased in the next generation of large tokamaks. However, the temperature dependence of the electron energy confinement time suggests that significant improvement in confinement time will be obtained with supplementary electron heating. (author)

  4. Research using small tokamaks

    International Nuclear Information System (INIS)

    1991-01-01

    The technical reports contained in this collection of papers on research using small tokamaks fall into four main categories, i.e., (i) experimental work (heating, stability, plasma radial profiles, fluctuations and transport, confinement, ultra-low-q tokamaks, wall physics, a.o.), (ii) diagnostics (beam probes, laser scattering, X-ray tomography, laser interferometry, electron-cyclotron absorption and emission systems), (iii) theory (strong turbulence, effects of heating on stability, plasma beta limits, wave absorption, macrostability, low-q tokamak configurations and bootstrap currents, turbulent heating, stability of vortex flows, nonlinear islands growth, plasma-drift-induced anomalous transport, ergodic divertor design, a.o.), and (iv) new technical facilities (varistors applied to establish constant current and loop voltage in HT-6M), lower-hybrid-current-drive systems for HT-6B and HT-6M, radio-frequency systems for HT-6M ICR heating experimentation, and applications of fiber optics for visible and vacuum ultraviolet radiation detection as applied to tokamaks and reversed-field pinches. A total number of 51 papers are included in the collection. Refs, figs and tabs

  5. Non-resonant, diffusive interaction of superthermal ions with the sawtooth instability during ICRH

    International Nuclear Information System (INIS)

    Lazaros, Avrilios

    2000-01-01

    A new interpretation is proposed for the well-known observation of sawteeth stabilization, during ICRH at JET and TFTR. It is shown that the radial fluxes of superthermal and thermal ions across the q=1 surface, exchange a finite amount of power with the m=1 internal kink mode (associated with the sawtooth instability) which is suppressed. The dominant contribution to this effect in the present theory is provided by the passing ions, which experience (due to the fluctuations) a much faster (than the trapped ions) radial diffusion. (author)

  6. Tokamak COMPASS

    Czech Academy of Sciences Publication Activity Database

    Řípa, Milan; Křenek, Petr

    2011-01-01

    Roč. 17, č. 1 (2011), s. 32-34 ISSN 1210-4612 Institutional research plan: CEZ:AV0Z20430508 Keywords : fusion * tokamak * Compass * Golem * Institute of Plasma Physics AVCR v.v * NBI * diagnostics Subject RIV: BL - Plasma and Gas Discharge Physics

  7. Current-drive and plasma formation experiments on the Versator-II tokamak using lower-hybrid and electron-cyclotron waves

    International Nuclear Information System (INIS)

    Colborn, J.A.

    1992-01-01

    During lower-hybrid current-driven (LHCD) tokamak discharges with thermal electron temperature T e ∼ 150 eV, a two-parallel-temperature tail is observed in the electron distribution function. The cold tail extends to parallel energy E parallel ∼ 4.5 keV with temperature T cold tail ∼ 1.5 keV, and the hot tail extends to E parallel > 150 keV with T hot tail > 40 keV. Fokker-Planck computer simulations suggest the cold tail is created by low power, high-N parallel sidelobes in the lower-hybrid antenna spectrum, and that these sidelobes bridge the spectral gap, enabling current drive on small tokamaks such as Versator. During plasma-formation experiments using 28 GHz electroncyclotron (EC) waves, the plasma is born near the EC layer, then moves toward the upper-hybrid (UH) layer within 100-200μs. Wave power is detected in the plasma with frequency f = 300 MHz. Measured turbulent plasma fluctuations are correlated with decay-wave amplitude. Electron-cyclotron current-drive (ECCD) is observed with loop voltage V loop ≤ 0 and fully sustained plasma current I p approx-lt 15 kA at densities up to [n e ] = 2 x 10 12 cm -3 . The efficiency falls rapidly to zero as the density is raised, suggesting the ECCD depends on low collisonality. The EC waves enhance magnetic turbulence in the frequency range 50 kHz approx-lt f approx-lt 400 kHz by up to an order of magnitude. The time-of-arrival of the turbulence to probes at the plasma boundary is longer when the EC layer is farther from the probes

  8. Progress of the ECH·ECCD experiments. Research progress of the ECH·ECCD experiments in tokamaks and spherical tokamaks

    International Nuclear Information System (INIS)

    Isayama, Akihiko; Tanaka, Hitoshi

    2009-01-01

    Recent progress in the ECH·ECCD study in tokamak and spherical tokamak devices is described. As for the tokamak study, results on the control of neoclassical tearing modes and sawtooth oscillations, the current profile, the internal transport barrier, the plasma start-up and the discharge cleaning are given. As for the spherical tokamak study, the plasma start-up by ECH·ECCD and the electron-Bernstein-wave heating and the current drive are described. (T.I.)

  9. Far-from-Equilibrium Route to Superthermal Light in Bimodal Nanolasers

    Directory of Open Access Journals (Sweden)

    Mathias Marconi

    2018-01-01

    Full Text Available Microscale and nanoscale lasers inherently exhibit rich photon statistics due to complex light-matter interaction in a strong spontaneous emission noise background. It is well known that they may display superthermal fluctuations—photon superbunching—in specific situations due to either gain competition, leading to mode-switching instabilities, or carrier-carrier coupling in superradiant microcavities. Here we show a generic route to superbunching in bimodal nanolasers by preparing the system far from equilibrium through a parameter quench. We demonstrate, both theoretically and experimentally, that transient dynamics after a short-pump-pulse-induced quench leads to heavy-tailed superthermal statistics when projected onto the weak mode. We implement a simple experimental technique to access the probability density functions that further enables quantifying the distance from thermal equilibrium via the thermodynamic entropy. The universality of this mechanism relies on the far-from-equilibrium dynamical scenario, which can be mapped to a fast cooling process of a suspension of Brownian particles in a liquid. Our results open up new avenues to mold photon statistics in multimode optical systems and may constitute a test bed to investigate out-of-equilibrium thermodynamics using micro or nanocavity arrays.

  10. Far-from-Equilibrium Route to Superthermal Light in Bimodal Nanolasers

    Science.gov (United States)

    Marconi, Mathias; Javaloyes, Julien; Hamel, Philippe; Raineri, Fabrice; Levenson, Ariel; Yacomotti, Alejandro M.

    2018-02-01

    Microscale and nanoscale lasers inherently exhibit rich photon statistics due to complex light-matter interaction in a strong spontaneous emission noise background. It is well known that they may display superthermal fluctuations—photon superbunching—in specific situations due to either gain competition, leading to mode-switching instabilities, or carrier-carrier coupling in superradiant microcavities. Here we show a generic route to superbunching in bimodal nanolasers by preparing the system far from equilibrium through a parameter quench. We demonstrate, both theoretically and experimentally, that transient dynamics after a short-pump-pulse-induced quench leads to heavy-tailed superthermal statistics when projected onto the weak mode. We implement a simple experimental technique to access the probability density functions that further enables quantifying the distance from thermal equilibrium via the thermodynamic entropy. The universality of this mechanism relies on the far-from-equilibrium dynamical scenario, which can be mapped to a fast cooling process of a suspension of Brownian particles in a liquid. Our results open up new avenues to mold photon statistics in multimode optical systems and may constitute a test bed to investigate out-of-equilibrium thermodynamics using micro or nanocavity arrays.

  11. Observation of inward and outward particle convection in the core of electron cyclotron heated and current driven plasmas in the Tokamak a Configuration Variable

    International Nuclear Information System (INIS)

    Furno, I.; Weisen, H.

    2003-01-01

    In the Tokamak a Configuration Variable [F. Hofmann, J.B. Lister, M. Anton et al., Plasma Phys. Controlled Fusion 36, B277 (1994)], inward or outward convection in the core of electron cyclotron heated and current driven plasmas is observed, depending on discharge conditions. In sawtoothing discharges with central electron cyclotron heating, outward convection is observed when a quasicontinuous m=1 kink mode is present, resulting in inverted sawteeth on the central electron density, while in the absence thereof, inward convection between successive sawtooth crashes leads to 'normal' sawteeth. The occurrence of a kink mode depends sensitively on plasma triangularity. When sawteeth are stabilized with central co- or counterelectron cyclotron current drive, stationary hollow electron density profiles are observed in the presence of m=1 modes, while peaked or flat profiles are observed in magnetohydrodynamic quiescent discharges. The observation of peaked density profiles in fully electron cyclotron driven plasmas demonstrates that pinch processes other than the Ware pinch must be responsible for these phenomena

  12. Tokamak reactor startup power

    International Nuclear Information System (INIS)

    Weldon, D.M.; Murray, J.G.

    1983-01-01

    Tokamak startup with ohmic heating (OH)-induced voltages requires rather large voltages and power supplies. On present machines, with no radiofrequency (rf)-assist provisions, hundreds of volts have been specified for their designs. With the addition of electron cyclotron resonant heating (ECRH) assist, the design requirements have been lowered. To obtain information on the cost and complexity associated with this ECRH-assisted, OH-pulsed startup voltage for ignition-type machines, a trade-off study was completed. The Fusion Engineering Device (FED) configuration was selected as a model because information was available on the structure. The data obtained are applicable to all tokamaks of this general size and complexity, such as the Engineering Test Reactor

  13. Tokamak pump limiters

    International Nuclear Information System (INIS)

    Conn, R.W.

    1984-05-01

    Recent experiments with a scoop limiter without active internal pumping have been carried out in the PDX tokamak with up to 6MW of auxiliary neutral beam heating. Experiments have also been done with a rotating head pump limiter in the PLT tokamak in conjunction with RF plasma heating. Extensive experiments have been done in the ISX-B tokamak and first experiments have been completed with the ALT-I limiter in TEXTOR. The pump limiter modules in these latter two machines have internal getter pumping. Experiments in ISX-B are with ohmic and auxiliary neutral beam heating. The results in ISX-B and TEXTOR show that active density control and particle removal is achieved with pump limiters. In ISX-B, the boundary layer (or scape-off layer) plasma partially screens the core plasma from gas injection. In both ISX-B and TEXTOR, the pressure internal to the module scales linearly with plasma density but in ISX-B, with neutral beam injection, a nonlinear increase is observed at the highest densities studied. Plasma plugging is the suspected cause. Results from PDX suggest that a region may exist in which core plasma energy confinement improves using a pump limiter during neutral beam injection. Asymmetric radial profiles and an increased edge electron temperature are observed in discharges with improved confinement. The injection of small amounts of neon into ISX-B has more clearly shown an improved electron core energy confinement during neutral beam injection. While carried out with a regular limiter, this Z-mode of operation is ideal for use with pump limiters and should be a way to achieve energy confinement times similar to values for H-mode tokamak plasmas. The implication of all these results for the design of a reactor pump limiter is described

  14. Tokamak pump limiters

    International Nuclear Information System (INIS)

    Conn, R.W.; California Univ., Los Angeles

    1984-01-01

    Recent experiments with a scoop limiter without active internal pumping have been carried out in the PDX tokamak with up to 6 MW of auxiliary neutral beam heating. Experiments have also been performed with a rotating head pump limiter in the PLT tokamak in conjunction with RF plasma heating. Extensive experiments have been done in the ISX-B tokamak and first experiments have been completed with the ALT-I limiter in TEXTOR. The pump limiter modules in these latter two machines have internal getter pumping. Experiments in ISX-B are with ohmic and auxiliary neutral beam heating. The results in ISX-B and TEXTOR show that active density control and particle removal is achieved with pump limiters. In ISX-B, the boundary layer (or scrape-off layer) plasma partially screens the core plasma from gas injection. In both ISX-B and TEXTOR, the pressure internal to the module scales linearly with plasma density but in ISX-B, with neutral beam injection, a nonlinear increase is observed at the highest densities studied. Plasma plugging is the suspected cause. Results from PDX suggest that a regime may exist in which core plasma energy confinement improves using a pump limiter during neutral beam injection. Asymmetric radial profiles and an increased edge electron temperature are observed in discharges with improved confinement. The injection of small amounts of neon into ISX-B has more clearly shown an improved electron core energy confinement during neutral beam injection. While carried out with a regular limiter, this 'Z-mode' of operation is ideal for use with pump limiters and should be a way to achieve energy confinement times similar to values for H-mode tokamak plasmas. The implication of all these results for the design of a reactor pump limiter is described. (orig.)

  15. Behavior of lithium ions in the turbulent near-wall tokamak plasma under heating of ions and electrons of the main plasma

    International Nuclear Information System (INIS)

    Shurygin, R. V.; Morozov, D. Kh.

    2014-01-01

    Turbulent dynamics of the near-wall tokamak plasma is simulated by numerically solving the nonlinear reduced Braginskii magnetohydrodynamic equations with allowance for a lithium ion admixture. The effects of turbulence and radiation of the admixture are analyzed in the framework of a self-consistent approach. The radial distributions of the radiative loss power and the density of Li 0 atoms and Li +1 ions are obtained as functions of the electron and ion temperatures of the main plasma in the near-wall layer. The results of numerical simulations show that supply of lithium ions into the low-temperature near-wall plasma substantially depends on whether the additional power is deposited into the electron or ion component of the main plasma. If the electron temperature in the layer increases (ECR heating), then the ion density drops. At the same time, an increase in the temperature of the main ions (ICR heating) leads to an increase in the density of Li +1 ions. The results of numerical simulations are explained by the different influence of the electron and ion temperatures on the atomic processes governing the accumulation and loss of particles in the balance equations for neutral Li 0 atoms and Li +1 ions in the admixture. The radial profile of the electron temperature and the corresponding distribution of the radiative loss power for different densities of neutral Li 0 atoms on the wall are obtained. The calculations show that the presence of Li +1 ions affects turbulent transport of the main ions. In this case, the electron heat flux increases by 20–30% with increasing Li +1 density, whereas the flux of the main ions drops by nearly the same amount. The radial profile of the turbulent flux of lithium ions is obtained. It is demonstrated that the appearance of the pinch effect is related to the positive density gradient of lithium ions across the calculation layer. For the parameters of the T-10 tokamak, the effect of radiative cooling of the near-wall plasma

  16. Magnetic turbulent electron transport in a reversed field pinch

    International Nuclear Information System (INIS)

    Schoenberg, K.; Moses, R.

    1990-01-01

    A model of magnetic turbulent electron transport is presented. The model, based on the thermal conduction theory of Rechester and Rosenbluth, entails a Boltzmann description of electron dynamics in the long mean-free-path limit and quantitatively describes the salient features of superthermal electron measurements in the RFP edge plasma. Included are predictions of the mean superthermal electron energy, current density, and power flux asymmetry. A discussion of the transport model, the assumptions implicit in the model, and the relevance of this work to more general issue of magnetic turbulent transport in toroidal systems is presented. 32 refs., 3 figs

  17. Investigating fusion plasma instabilities in the Mega Amp Spherical Tokamak using mega electron volt proton emissions (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Perez, R. V., E-mail: rvale006@fiu.edu; Boeglin, W. U.; Angulo, A.; Avila, P.; Leon, O.; Lopez, C. [Department of Physics, Florida International University, 11200 SW 8 ST, CP204, Miami, Florida 33199 (United States); Darrow, D. S. [Princeton Plasma Physics Laboratory, James Forrestal Campus, P.O. Box 451, Princeton, New Jersey 08543 (United States); Cecconello, M.; Klimek, I. [Department of Physics and Astronomy, Uppsala University, Uppsala SE-751 20 (Sweden); Allan, S. Y.; Akers, R. J.; Keeling, D. L.; McClements, K. G.; Scannell, R.; Conway, N. J. [CCFE, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Turnyanskiy, M. [ITER Physics Department, EFDA CSU Garching, Boltzmannstrasse 2, D-85748, Garching (Germany); Jones, O. M. [CCFE, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Michael, C. A. [Australian National University, Canberra ACT 0200 (Australia)

    2014-11-15

    The proton detector (PD) measures 3 MeV proton yield distributions from deuterium-deuterium fusion reactions within the Mega Amp Spherical Tokamak (MAST). The PD’s compact four-channel system of collimated and individually oriented silicon detectors probes different regions of the plasma, detecting protons (with gyro radii large enough to be unconfined) leaving the plasma on curved trajectories during neutral beam injection. From first PD data obtained during plasma operation in 2013, proton production rates (up to several hundred kHz and 1 ms time resolution) during sawtooth events were compared to the corresponding MAST neutron camera data. Fitted proton emission profiles in the poloidal plane demonstrate the capabilities of this new system.

  18. Theory of incremental turbulent transport in tokamaks

    International Nuclear Information System (INIS)

    Similon, P.L.

    1991-01-01

    The goal of this research is to understand how the various aspect of turbulent transport operate in tokamaks, in the presence of low frequency fluctuations such as drift waves or trapped electron modes

  19. 3rd harmonic electron cyclotron resonant heating absorption enhancement by 2nd harmonic heating at the same frequency in a tokamak

    International Nuclear Information System (INIS)

    Gnesin, S; Coda, S; Goodman, T P; Decker, J; Peysson, Y; Mazon, D

    2012-01-01

    The fundamental mechanisms responsible for the interplay and synergy between the absorption dynamics of extraordinary-mode electron cyclotron waves at two different harmonic resonances (the 2nd and 3rd) are investigated in the TCV tokamak. An enhanced 3rd harmonic absorption in the presence of suprathermal electrons generated by 2nd harmonic heating is predicted by Fokker–Planck simulations, subject to complex alignment requirements in both physical space and momentum space. The experimental signature for the 2nd/3rd harmonic synergy is sought through the suprathermal bremsstrahlung emission in the hard x-ray range of photon energy. Using a synthetic diagnostic, the emission variation due to synergy is calculated as a function of the injected power and of the radial transport of suprathermal electrons. It is concluded that in the present experimental setup a synergy signature has not been unambiguously detected. The detectability of the synergy is then discussed with respect to variations and uncertainties in the plasma density and effective charge in view of future optimized experiments. (paper)

  20. Broadband measurements of electron cyclotron emission in TFTR [Tokamak Fusion Test Reactor] using a quasi-optical light collection system and a polarizing Michelson interferometer

    International Nuclear Information System (INIS)

    Stauffer, F.J.; Boyd, D.A.; Cutler, R.C.; Diesso, M.; McCarthy, M.P.; Montague, J.; Rocco, R.

    1988-04-01

    For the past three years, a Fourier transform spectrometer diagnostic system, employing a fast-scanning polarizing Michelson interferometer, has been operating on the TFTR tokamak at Princeton Plasma Physics Laboratory. It is used to measure the electron cyclotron emission spectrum over the range 2.5 to 18 cm/sup /minus/1/ (75-540 GHz) with a resolution of 0.123 cm/sup /minus/1/(3.7 GHz), at a rate of 72 spectra per second. The quasi-optical system for collecting the light and transporting it through the interferometer to the detector has been designed using the concepts of both Gaussian and geometrical optics in order to produce a system that is efficient over the entire spectral range. The commerical Michelson interferometer was custom-made for this project and is at the state of the art for this type of specialized instrument. Various pre-installation and post-installation tests of the optical system and the interferometer were performed and are reported here. An error propagation analysis of the absolute calibration process is given. Examples of electron cyclotron emission spectra measured in two polarization directions are given, and electron temperature profiles derived from each of them are compared. 34 refs., 17 figs

  1. Varennes Tokamak

    International Nuclear Information System (INIS)

    Cumyn, P.B.

    A consortium of five organizations under the leadership of IREQ, the Institute de Recherche d'Hydro-Quebec has completed a conceptual design study for a tokamak device, and in January 1981 its construction was authorized with funding being provided principally by Hydro-Quebec and the National Research Council, as well as by the Ministre d'Education du Quebec and Natural Sciences and Engineering Research Council of Canada (NSERC). The device will form the focus of Canada's magnetic-fusion program and will be located in IREQ's laboratories in Varennes. Presently the machine layout is being finalized from the physics point of view and work has started on equipment design and specification. The Tokamak de Varennes will be an experimental device, the purpose of which is to study plasma and other fusion related phenomena. In particular it will study: 1. Plasma impurities and plasma/liner interaction; 2. Long pulse or quasi-continuous operation using plasma rampdown and eventually plasma current reversal in order to maintain the plasma; and 3. Advanced diagnostics

  2. Applying the new gamma ray imager diagnostic to measurements of runaway electron Bremsstrahlung radiation in the DIII-D Tokamak (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, C. M., E-mail: coopercm@fusion.gat.com [Oak Ridge Associated Universities, Oak Ridge, Tennessee 37830 (United States); Pace, D. C.; Paz-Soldan, C.; Eidietis, N. W. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Commaux, N.; Shiraki, D. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (United States); Hollmann, E. M. [University of California, San Diego, La Jolla, California 92093-0533 (United States)

    2016-11-15

    A new gamma ray imager (GRI) is developed to probe the electron distribution function with 2D spatial resolution during runaway electron (RE) experiments at the DIII-D tokamak. The diagnostic is sensitive to 0.5–100 MeV gamma rays, allowing characterization of the RE distribution function evolution during RE growth and dissipation. The GRI consists of a lead “pinhole camera” mounted on the DIII-D midplane with 123 honeycombed tangential chords 20 cm wide that span the vessel interior. Up to 30 bismuth germanate (BGO) scintillation detectors capture RE bremsstrahlung radiation for Pulse Height Analysis (PHA) capable of discriminating up to 20 000 pulses per second. Digital signal processing routines combining shaping filters are performed during PHA to reject noise and record gamma ray energy. The GRI setup and PHA algorithms will be described and initial data from experiments will be presented. A synthetic diagnostic is developed to generate the gamma ray spectrum of a GRI channel given the plasma information and a prescribed distribution function. Magnetic reconstructions of the plasma are used to calculate the angle between every GRI sightline and orient and discriminate gamma rays emitted by a field-aligned RE distribution function.

  3. Applying the new gamma ray imager diagnostic to measurements of runaway electron Bremsstrahlung radiation in the DIII-D Tokamak (invited)

    International Nuclear Information System (INIS)

    Cooper, C. M.; Pace, D. C.; Paz-Soldan, C.; Eidietis, N. W.; Commaux, N.; Shiraki, D.; Hollmann, E. M.

    2016-01-01

    A new gamma ray imager (GRI) is developed to probe the electron distribution function with 2D spatial resolution during runaway electron (RE) experiments at the DIII-D tokamak. The diagnostic is sensitive to 0.5–100 MeV gamma rays, allowing characterization of the RE distribution function evolution during RE growth and dissipation. The GRI consists of a lead “pinhole camera” mounted on the DIII-D midplane with 123 honeycombed tangential chords 20 cm wide that span the vessel interior. Up to 30 bismuth germanate (BGO) scintillation detectors capture RE bremsstrahlung radiation for Pulse Height Analysis (PHA) capable of discriminating up to 20 000 pulses per second. Digital signal processing routines combining shaping filters are performed during PHA to reject noise and record gamma ray energy. The GRI setup and PHA algorithms will be described and initial data from experiments will be presented. A synthetic diagnostic is developed to generate the gamma ray spectrum of a GRI channel given the plasma information and a prescribed distribution function. Magnetic reconstructions of the plasma are used to calculate the angle between every GRI sightline and orient and discriminate gamma rays emitted by a field-aligned RE distribution function.

  4. Non-inductive plasmas studies by injection of electron cyclotron waves in the Tore Supra tokamak; Etudes des plasmas non-inductifs par injection d'ondes a la frequence cyclotronique electronique dans le tokamak Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Turco, F

    2008-06-15

    In this work we addressed the issue of the phenomena typical of the non-inductive discharges in the Tore Supra tokamak, probed by means of localised perturbations of the current density profile, performed by electron cyclotron (EC) waves. In order to correctly utilize the current density profile, reconstructed by means of the CRONOS code we performed a sensitivity study on the code results. Concerning the MHD regimes we have shown that a dynamic evolution of the safety factor q which tends to shrink its profile appears to be the cause of the triggering of such regimes. From the operational point of view, deposing the EC current, generated in the same direction of the plasma current, outside the q{sub min} position results hazardous because it causes a rise in q{sub 0} and consequently the shrinking of the q profile which triggers the MHD regimes. On the contrary, the EC counter-current scans show that a very central deposition ({rho}(ECCD) < 0.1) lead almost certainly to an MHD regime, while a more external countercurrent generation has generally the quality of creating internal transport barriers (ITBs). The phenomenon of non-linear temperature oscillations (the O-regime) has also been addressed, to provide an analytical description as well as from the experimental point of view, concerning the triggering and canceling of the oscillating phases. By constructing a non-linear predator-prey system with noise, solved on two regions of space coupled by a diffusion term, we could reproduce the experimental temperature oscillations: this study allowed us to confirm that the oscillatory phenomenon is the manifestation of a Lotka-Volterra like coupling between j and T{sub e}. The experimental analysis led to the identification of the mechanism at the origin of the triggering and canceling of the O-regime in presence of a perturbation in a specific shape of magnetic shear perturbation. These results have been reproduced by the simulations preformed with the integrated

  5. Note: Measurements of fast electrons in the TORE-SUPRA tokamak by means of modified Cherenkov-type diamond detector

    Energy Technology Data Exchange (ETDEWEB)

    Jakubowski, L.; Sadowski, M. J.; Zebrowski, J.; Rabinski, M.; Jakubowski, M. J.; Malinowski, K.; Mirowski, R. [National Centre for Nuclear Research (NCBJ), 7 Andrzeja Soltana Str., 05-400 Otwock (Poland); Lotte, Ph.; Goniche, M.; Gunn, J.; Colledani, G.; Pascal, J.-Y.; Basiuk, V. [CEA, IRFM, F-13108 Saint Paul-lez-Durance (France)

    2013-01-15

    The Note reports on experimental studies of ripple born fast electrons within the TORE-SUPRA facility, which were performed by means of a modified measuring head equipped with diamond detectors designed especially for recording the electron-induced Cherenkov radiation. There are presented signals produced by fast electrons in the TORE-SUPRA machine, which were recorded during two experimental campaigns performed in 2010. Shapes of these electron-induced signals are considerably different from those observed during the first measurements carried out by the prototype Cherenkov probe in 2008. An explanation of the observed differences is given.

  6. Note: Measurements of fast electrons in the TORE-SUPRA tokamak by means of modified Cherenkov-type diamond detector

    International Nuclear Information System (INIS)

    Jakubowski, L.; Sadowski, M. J.; Zebrowski, J.; Rabinski, M.; Jakubowski, M. J.; Malinowski, K.; Mirowski, R.; Lotte, Ph.; Goniche, M.; Gunn, J.; Colledani, G.; Pascal, J.-Y.; Basiuk, V.

    2013-01-01

    The Note reports on experimental studies of ripple born fast electrons within the TORE-SUPRA facility, which were performed by means of a modified measuring head equipped with diamond detectors designed especially for recording the electron-induced Cherenkov radiation. There are presented signals produced by fast electrons in the TORE-SUPRA machine, which were recorded during two experimental campaigns performed in 2010. Shapes of these electron-induced signals are considerably different from those observed during the first measurements carried out by the prototype Cherenkov probe in 2008. An explanation of the observed differences is given.

  7. Occurrence of high-beta superthermal plasma events in the close environment of Jupiter's bow shock as observed by Ulysses

    International Nuclear Information System (INIS)

    Marhavilas, P. K.; Sarris, E. T.; Anagnostopoulos, G. C.

    2011-01-01

    The ratio of the plasma pressure to the magnetic field pressure (or of their energy densities) which is known as the plasma parameter 'beta'(β) has important implications to the propagation of energetic particles and the interaction of the solar wind with planetary magnetospheres. Although in the scientific literature the contribution of the superthermal particles to the plasma pressure is generally assumed negligible, we deduced, by analyzing energetic particles and magnetic field measurements recorded by the Ulysses spacecraft, that in a series of events, the energy density contained in the superthermal tail of the particle distribution is comparable to or even higher than the energy density of the magnetic field, creating conditions of high-beta plasma. More explicitly, in this paper we analyze Ulysses/HI-SCALE measurements of the energy density ratio (parameter β ep ) of the energetic ions'(20 keV to ∼5 MeV) to the magnetic field's in order to find occurrences of high-beta (β ep >1) superthermal plasma conditions in the environment of the Jovian magnetosphere, which is an interesting plasma laboratory and an important source of emissions in our solar system. In particular, we examine high-beta ion events close to Jupiter's bow shock, which are produced by two processes: (a) bow shock ion acceleration and (b) ion leakage from the magnetosphere.

  8. Submillimeter wave propagation in tokamak plasmas

    International Nuclear Information System (INIS)

    Ma, C.H.; Hutchinson, D.P.; Staats, P.A.; Vander Sluis, K.L.; Mansfield, D.K.; Park, H.; Johnson, L.C.

    1985-01-01

    The propagation of submillimeter-waves (smm) in tokamak plasmas has been investigated both theoretically and experimentally to ensure successful measurements of electron density and plasma current distributions in tokamak devices. Theoretical analyses have been carried out to study the polarization of the smm waves in TFTR and ISX-B tokamaks. A multichord smm wave interferometer/polarimeter system has been employed to simultaneously measure the line electron density and poloidal field-induced Faraday rotation in the ISX-B tokamak. The experimental study on TFTR is under way. Computer codes have been developed and have been used to study the wave propagation and to reconstruct the distributions of plasma current and density from the measured data. The results are compared with other measurements

  9. Tokamak research in the Soviet Union

    International Nuclear Information System (INIS)

    Strelkov, V.S.

    1981-01-01

    Important milestones on the way to the tokamak fusion reactor are recapitulated. Soviet tokamak research concentrated at the I.V. Kurchatov Institute in Moscow, the A.F. Ioffe Institute in Leningrad and the Physical-Technical Institute in Sukhumi successfully provides necessary scientific and technological data for reactor design. Achievments include, the successful operation of the first tokamak with superconducting windings (T-7) and the gyrotron set for microwave plasma heating in the T-10 tokamak. The following problems have intensively been studied: Various methods of additional plasma heating, heat and particle transport, and impurity control. The efficiency of electron-cyclotron resonance heating was demonstrated. In the Joule heating regime, both the heat conduction and diffusion rates are anomalously high, but the electron heat conduction rate decreases with increasing plasma density. Progress in impurity control makes it possible to obtain a plasma with effective charge approaching unity. (J.U.)

  10. Submillimeter wave propagation in tokamak plasmas

    International Nuclear Information System (INIS)

    Ma, C.H.; Hutchinson, D.P.; Staats, P.A.; Vander Sluis, K.L.; Mansfield, D.K.; Park, H.; Johnson, L.C.

    1986-01-01

    Propagation of submillimeter waves (smm) in tokamak plasma was investigated both theoretically and experimentally to ensure successful measurements of electron density and plasma current distributions in tokamak devices. Theoretical analyses were carried out to study the polarization of the smm waves in TFTR and ISX-B tokamaks. A multichord smm wave interferometer/polarimeter system was employed to simultaneously measure the line electron density and poloidal field-induced Faraday rotation in the ISX-B tokamak. The experimental study on TFTR is under way. Computer codes were developed and have been used to study the wave propagation and to reconstruct the distributions of plasma current and density from the measured data. The results are compared with other measurements. 5 references, 2 figures

  11. Start-effect measurement of high FEL [free-electron laser] electric fields in MTX [Microwave Tokamak Experiment] by laser-aided particle-probe spectroscopy

    International Nuclear Information System (INIS)

    Oda, T.; Takiyama, K.; Odajima, K.; Ohasa, K.; Shiho, M.; Mizuno, K.; Foote, J.H.; Nilson, D.G.

    1990-01-01

    We are constructing a diagnostic system to measure the electric field (>100 kV/cm) of a free-electron laser (FEL) beam when injected into the plasma of the Microwave Tokamak Experiment (MTX). The apparatus allows a crossed-beam measurement, with 2-cm spatial resolution in the plasma, involving the FEL beam (with 140-GHz, ∼1-GW ECH pulses), a neutral-helium beam, and a dye-laser beam. After the laser beam pumps metastable helium atoms to higher excited states, their decay light is detected by an efficient optical system. Because of the Stark effect arising from the FEL electric field (rvec E), a forbidden transition can be strongly induced. The intensity of emitted light resulting from the forbidden transition is proportional to E 2 . Because photon counting rates are estimated to be low, extra effort is made to minimize background and noise levels. It is possible that the lower rvec E of an MTX gyrotron-produced ECH beam with its longer-duration pulses can also be measured using this method. Other applications of the apparatus described here may include measurements of ion temperature (using charge-exchange recombination), edge-density fluctuations, and core impurity concentrations

  12. PPPL tokamak program

    International Nuclear Information System (INIS)

    Furth, H.P.

    1984-10-01

    The economic prospects of the tokamak are reviewed briefly and found to be favorable - if the size of ignited tokamak plasmas can be kept small and appropriate auxiliary systems can be developed. The main objectives of the Princeton Plasma Physics Laboratory tokamak program are: (1) exploration of the physics of high-temperature toroidal confinement, in TFTR; (2) maximization of the tokamak beta value, in PBX; (3) development of reactor-relevant rf techniques, in PLT

  13. Status of tokamak research

    International Nuclear Information System (INIS)

    Rawls, J.M.

    1979-10-01

    An overall review of the tokamak program is given with particular emphasis upon developments over the past five years in the theoretical and experimental elements of the program. A summary of the key operating parameters for the principal tokamaks throughout the world is given. Also discussed are key issues in plasma confinement, plasma heating, and tokamak design

  14. Effect of superthermal electrons on dust-acoustic Gardner solitons in ...

    Indian Academy of Sciences (India)

    [8] R Amour and M Tribeche, Phys. Plasmas 17, 063702 (2010). [9] R Roychoudhury and P Chatterjee, Phys. Plasmas 6, 406 (1999). [10] N N Rao, P K Shukla and M Y Yu, Planet. Space Sci. 38, 543 (1990). [11] M Rosenberg, Planet. Space Sci. 41, 229 (1993). [12] A A Mamun, Phys. Plasmas 5, 3542 (1998). [13] A Barkan ...

  15. Erratum: Correction to: Soliton and shocks in pair ion plasma in presence of superthermal electron

    Science.gov (United States)

    Samanta, Utpal Kumar; Chatterjee, Prasanta; Nej, Monimala

    2018-06-01

    Correction to: Astrophys Space Sci (2013) 345:291-296 https://doi.org/10.1007/s10509-013-1403-8. There were typos in the last author's name in the original publication. The name is correctly shown here.

  16. Summary of experimental core turbulence characteristics in ohmic and electron cyclotron resonance heated discharges in T-10 tokamak plasmas

    International Nuclear Information System (INIS)

    Vershkov, V.A.; Shelukhin, D.A.; Soldatov, S.V.; Urazbaev, A.O.; Grashin, S.A.; Eliseev, L.G.; Melnikov, A.V.

    2005-01-01

    This report summarizes the results of experimental turbulence investigations carried out at T-10 for more than 10 years. The turbulence characteristics were investigated using correlation reflectometry, multipin Langmuir probe (MLP) and heavy ion beam probe diagnostics. The reflectometry capabilities were analysed using 2D full-wave simulations and verified by direct comparison using a MLP. The ohmic and electron cyclotron resonance heated discharges show the distinct transition from the core turbulence, having complex spectral structure, to the unstructured one in the scrape-off layer. The core turbulence includes 'broad band, quasi-coherent' features, arising due to the excitation of rational surfaces with high poloidal m-numbers, with a low frequency near zero and specific oscillations at 15-30 kHz. All experimentally measured properties of low frequency and high frequency quasi-coherent oscillations are in good agreement with predictions of linear theory for the ion temperature gradient/dissipative trapped electron mode instabilities. Significant local changes in the turbulence characteristics were observed at the edge velocity shear layer and in the core near q = 1 radius after switching off the electron cyclotron resonance heating (ECRH). The local decrease in the electron heat conductivity and decrease in the turbulence level could be evidence of the formation of an electron internal transport barrier. The dynamic behaviour of the core turbulence was also investigated for the case of fast edge cooling and the beginning phase of ECRH

  17. Mechanisms of the negative synergy effect between electron cyclotron current drive and lower hybrid current drive in tokamak

    International Nuclear Information System (INIS)

    Chen Shaoyong; Hong Binbin; Tang Changjian; Yang Wen; Zhang Xinjun

    2013-01-01

    The synergy current drive by combining electron cyclotron wave (ECW) with lower hybrid wave (LHW) can be used to either increase the noninductive current drive efficiency or shape the plasma current profile. In this paper, the synergy current drive by ECW and LHW is studied with numerical simulation. The nonlinear relationship between the wave powers and the synergy current of ECW and LHW is revealed. When the LHW power is small, the synergy current reduces as the ECW power increases, and the synergy current is even reduced to lower than zero, which is referred as negative synergy in the this context. Research shows that the mechanism of the negative synergy is the peaking effect of LHW power profile and the trapped electrons effect. The present research is helpful for understanding the physics of synergy between electron cyclotron current drive and lower hybrid current drive, it can also instruct the design of experiments. (authors)

  18. Tokamak Systems Code

    International Nuclear Information System (INIS)

    Reid, R.L.; Barrett, R.J.; Brown, T.G.

    1985-03-01

    The FEDC Tokamak Systems Code calculates tokamak performance, cost, and configuration as a function of plasma engineering parameters. This version of the code models experimental tokamaks. It does not currently consider tokamak configurations that generate electrical power or incorporate breeding blankets. The code has a modular (or subroutine) structure to allow independent modeling for each major tokamak component or system. A primary benefit of modularization is that a component module may be updated without disturbing the remainder of the systems code as long as the imput to or output from the module remains unchanged

  19. An enhanced tokamak startup model

    Science.gov (United States)

    Goswami, Rajiv; Artaud, Jean-François

    2017-01-01

    The startup of tokamaks has been examined in the past in varying degree of detail. This phase typically involves the burnthrough of impurities and the subsequent rampup of plasma current. A zero-dimensional (0D) model is most widely used where the time evolution of volume averaged quantities determines the detailed balance between the input and loss of particle and power. But, being a 0D setup, these studies do not take into consideration the co-evolution of plasma size and shape, and instead assume an unchanging minor and major radius. However, it is known that the plasma position and its minor radius can change appreciably as the plasma evolves in time to fill in the entire available volume. In this paper, an enhanced model for the tokamak startup is introduced, which for the first time takes into account the evolution of plasma geometry during this brief but highly dynamic period by including realistic one-dimensional (1D) effects within the broad 0D framework. In addition the effect of runaway electrons (REs) has also been incorporated. The paper demonstrates that the inclusion of plasma cross section evolution in conjunction with REs plays an important role in the formation and development of tokamak startup. The model is benchmarked against experimental results from ADITYA tokamak.

  20. Plasma diagnostics on large tokamaks

    International Nuclear Information System (INIS)

    Orlinskij, D.V.; Magyar, G.

    1988-01-01

    The main tasks of the large tokamaks which are under construction (T-15 and Tore Supra) and of those which have already been built (TFTR, JET, JT-60 and DIII-D) together with their design features which are relevant to plasma diagnostics are briefly discussed. The structural features and principal characteristics of the diagnostic systems being developed or already being used on these devices are also examined. The different diagnostic methods are described according to the physical quantities to be measured: electric and magnetic diagnostics, measurements of electron density, electron temperature, the ion components of the plasma, radiation loss measurements, spectroscopy of impurities, edge diagnostics and study of plasma stability. The main parameters of the various diagnostic systems used on the six large tokamaks are summarized in tables. (author). 351 refs, 44 figs, 22 tabs

  1. Simulation study on dynamics of runaways in tokamaks

    International Nuclear Information System (INIS)

    Liu Jian; Qin Hong; Fisch, Nathaniel J.

    2014-01-01

    Electrons with high velocities can be accelerated to very high energies by a strong electric field to form runaway electrons. In tokamak, runaway electrons are produced in many different processes, including the acceleration from the high-energy tail of thermal distribution, through the runaway avalanche, during the rf wave heating and other non-Ohmic current drive, and even in the magnetic reconnection. This proceeding focus on different dynamical problems of runaway electrons in tokamaks. (author)

  2. Minimum scaling laws in tokamaks

    International Nuclear Information System (INIS)

    Zhang, Y.Z.; Mahajan, S.M.

    1986-10-01

    Scaling laws governing anomalous electron transport in tokamaks with ohmic and/or auxiliary heating are derived using renormalized Vlasov-Ampere equations for low frequency electromagnetic microturbulence. It is also shown that for pure auxiliary heating (or when auxiliary heating power far exceeds the ohmic power), the energy confinement time scales as tau/sub E/ ∼ P/sub inj//sup -1/3/, where P/sub inj/ is the injected power

  3. Gyrosheath near the tokamak edge

    International Nuclear Information System (INIS)

    Hazeltine, R.D.; Xiao, H.; Valanju, P.M.

    1993-03-01

    A new model for the structure of the radial electric field profile in the edge during the H-mode is proposed. Charge separation caused by the difference between electron and ion gyromotion, or more importantly in a tokamak, the banana motion (halo effect) can self-consistently produce an electric dipole moment that causes the sheared radial electric field. The calculated results based on the model are consistent with D-III D and TEXTOR experimental results

  4. Tokamak plasma boundary layer model

    International Nuclear Information System (INIS)

    Volkov, T.F.; Kirillov, V.D.

    1983-01-01

    A model has been developed for the limiter layer and for the boundary region of the plasma column in a tokamak to facilitate analytic calculations of the thickness of the limiter layers, the profiles and boundary values of the temperature and the density under various conditions, and the difference between the electron and ion temperatures. This model can also be used to analyze the recycling of neutrals, the energy and particle losses to the wall and the limiter, and other characteristics

  5. Broad wavenumber turbulence and transport during Ohmic and electron cyclotron heating in the DIII-D tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Rhodes, T L [Physics and Astronomy Department, University of California-Los Angeles, Los Angeles, CA 90025 (United States); Peebles, W A [Physics and Astronomy Department, University of California-Los Angeles, Los Angeles, CA 90025 (United States); DeBoo, J C [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Prater, R [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Kinsey, J E [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Staebler, G M [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Candy, J [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Austin, M E [University of Texas-Austin, Austin, TX 78712 (United States); Bravenec, R V [University of Texas-Austin, Austin, TX 78712 (United States); Burrell, K H [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); De Grassie, J S [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Doyle, E J [Physics and Astronomy Department, University of California-Los Angeles, Los Angeles, CA 90025 (United States); Gohil, P; Greenfield, C M; Groebner, R J; Lohr, J [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Makowski, M A [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Nguyen, X V [Physics and Astronomy Department, University of California-Los Angeles, Los Angeles, CA 90025 (United States); Petty, C C [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Solomon, W M [Princeton Plasma Physics Laboratory, Princeton, NJ 08543-0451 (United States); John, H E St; Zeeland, M A Van [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Wang, G.; Zeng, L [Physics and Astronomy Department, University of California-Los Angeles, Los Angeles, CA 90025 (United States)

    2007-12-15

    The response of plasma parameters and broad wavenumber turbulence (1-39 cm{sup -1}, k{rho}{sub s} = 0.1-10, relevant to ion temperature gradient, trapped electron mode and electron temperature gradient mode turbulence, here {rho}{sub s} = ion gyroradius) to auxiliary electron cyclotron heating (ECH) is reported on. One fluid thermal fluxes and diffusivities increase appreciably with ECH. Significant changes to the density fluctuations over the full range of measured wavenumbers are observed, with an increase for lower wavenumbers and a more spatially complicated response at high k. Spatially resolved high k measurements (k = 39 cm{sup -1}, k{rho}{sub s} = 4-10) show a varying response to ECH, with n-bar decreasing at r/a = 0.35 and increasing at r/a = 0.6 and 1. These variations were found to have a positive correlation with {nabla}T{sub e} evaluated at nearby locations, consistent with a {nabla}T{sub e} drive. Comparison of the changes in high k fluctuation levels with linear gyrokinetic growth rates show qualitative agreement at the innermost location, r/a = 0.35 and disagreement at r/a = 0.6.

  6. Broad wavenumber turbulence and transport during Ohmic and electron cyclotron heating in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Rhodes, T L; Peebles, W A; DeBoo, J C; Prater, R; Kinsey, J E; Staebler, G M; Candy, J; Austin, M E; Bravenec, R V; Burrell, K H; De Grassie, J S; Doyle, E J; Gohil, P; Greenfield, C M; Groebner, R J; Lohr, J; Makowski, M A; Nguyen, X V; Petty, C C; Solomon, W M; John, H E St; Zeeland, M A Van; Wang, G.; Zeng, L

    2007-01-01

    The response of plasma parameters and broad wavenumber turbulence (1-39 cm -1 , kρ s = 0.1-10, relevant to ion temperature gradient, trapped electron mode and electron temperature gradient mode turbulence, here ρ s = ion gyroradius) to auxiliary electron cyclotron heating (ECH) is reported on. One fluid thermal fluxes and diffusivities increase appreciably with ECH. Significant changes to the density fluctuations over the full range of measured wavenumbers are observed, with an increase for lower wavenumbers and a more spatially complicated response at high k. Spatially resolved high k measurements (k = 39 cm -1 , kρ s = 4-10) show a varying response to ECH, with n-bar decreasing at r/a = 0.35 and increasing at r/a = 0.6 and 1. These variations were found to have a positive correlation with ∇T e evaluated at nearby locations, consistent with a ∇T e drive. Comparison of the changes in high k fluctuation levels with linear gyrokinetic growth rates show qualitative agreement at the innermost location, r/a = 0.35 and disagreement at r/a = 0.6

  7. Tokamak devices: towards controlled fusion

    International Nuclear Information System (INIS)

    Trocheris, M.

    1975-01-01

    The Tokamak family is from Soviet Union. These devices were exclusively studied at the Kurchatov Institute in Moscow for more than ten years. The first occidental Tokamak started in 1970 at Princeton. The TFR (Tokamak Fontenay-aux-Roses) was built to be superior to the Russian T4. Tokamak future is now represented by the JET (Joint European Tokamak) [fr

  8. Application of Thomson scattering at 1.06μm as a diagnostic for spatial profile measurements of electron temperature and density on the TCV tokamak

    International Nuclear Information System (INIS)

    Franke, S.

    1997-04-01

    The variable configuration tokamak, TCV, in operation at CRPP since the end of 1991, is a particularly challenging machine with regard to the experimental system that must provide essential information regarding properties of confined plasmas with strongly shaped, non-circular cross-sections. The importance of the energy confinement issue in a machine designed specifically for the investigation of the effect of plasma shape on confinement and stability is self-evident, as is the necessity for a diagnostic capable of providing the profiles of electron temperature and density required for evaluation of this confinement. For TCV, a comprehensive Thomson Scattering (TS) diagnostic was the natural choice, specifically owing to the resulting spatially localized and time resolved measurement. The details of the system installed on TCV, together with the results obtained from the diagnostic comprise the subject matter of this thesis. A first version of the diagnostic was equipped with only ten observation volumes. In this case, adequate spatial resolution can only be maintained if measurements are limited to plasmas located in the upper half of the highly elongated TCV vacuum vessel. The system has recently been upgraded through the addition of a further fifteen observation volumes, together with major technical improvements in the scattered light detection system. This new version now permits TS observations in all TCV plasma configurations, including equilibria produced in the lower and upper halves of the vacuum vessel and the highly elongated plasmas now routinely created. Whilst a description of the new detection system along with some results obtained using the extended set of observation volumes are included, this thesis reports principally on the hardware details of and the interpretation of data from the original, ten observation volume system. (author) figs., tabs., 75 refs

  9. Discharge cleaning for a tokamak

    International Nuclear Information System (INIS)

    Ishii, Shigeyuki

    1983-01-01

    Various methods of discharge cleaning for tokamaks are described. The material of the first walls of tokamaks is usually stainless steel, inconel, titanium and so on. Hydrogen is exclusively used as the discharge gas. Glow discharge cleaning (GDC), Taylor discharge cleaning (TDC), and electron cyclotron resonance discharge cleaning (ECR-DC) are discussed in this paper. The cleaning by GDC is made by moving a movable anode to the center of a tokamak vassel. Taylor found the good cleaning effect of induced discharge by high pressure and low power discharge. This is called TDC. When the frequency of high frequency discharge in a magnetic field is equal to that of the electron cyclotron resonance, the break down potential is lowered if the pressure is sufficiently low. The ECR-CD is made by using this effect. In TDC and ECR-DC, the electron temperature, which has a close relation to the production rate of H 0 , can be controlled by the pressure. In GDC, the operating pressure was improved by the radio frequency glow (RG) method. However, there is still the danger of arcing. In case of GDC and ECR-DC, the position of plasma can be controlled, but not in case of TDC. The TDC is accepted by most of takamak devices in the world. (Kato, T.)

  10. Anomalous transport in tokamaks

    International Nuclear Information System (INIS)

    Wootton, A.J.

    1989-01-01

    A review is presented of what is known about anomalous transport in tokamaks. It is generally thought that this anomalous transport is the result of fluctuations in various plasma parameters. In the plasma edge detailed measurements of the quantities required to directly determine the fluctuation driven fluxes are available. The total flux of particles is well explained by the measured electrostatic fluctuation driven flux. However, a satisfactory model to explain the origin of the fluctuations has not been identified. The processes responsible for determining the edge energy flux are less clear, but electrostatic convection plays an important part. In the confinement region experimental observations are presently restricted to measurements of density and potential fluctuations and their correlations. The characteristics of the measured fluctuations are discussed and compared with the predictions of various models. Comparisons between measured particle, electron heat and ion heat fluxes, and those fluxes predicted to result from the measured fluctuations, are made. Magnetic fluctuations is discussed

  11. Gyrokinetic particle-in-cell global simulations of ion-temperature-gradient and collisionless-trapped-electron-mode turbulence in tokamaks

    International Nuclear Information System (INIS)

    Jolliet, S.

    2009-02-01

    The goal of thermonuclear fusion research is to provide power plants, that will be able to produce one gigawatt of electricity. Among the different ways to achieve fusion, the tokamak, based on magnetic confinement, is the most promising one. A gas is heated up to hundreds of millions of degrees and becomes a plasma, which is maintained - or confined - in a toroidal vessel by helical magnetic field lines. Then, deuterium and tritium are injected and fuse to create an α particle and an energetic neutron. In order to have a favorable power balance, the power produced by fusion reactions must exceed the power needed to heat the plasma and the power losses. This can be cast in a very simple expression which stipulates that the product of the density, the temperature and the energy confinement time must exceed some given value. Unfortunately, present-days tokamaks are not able to reach this condition, mostly due to plasma turbulence. The latter phenomenon enhances the heat losses and degrades the energy confinement time, which cannot be predicted by analytical theories such as the so-called neoclassical theory in which the heat losses are caused by Coulomb collisions. Therefore, numerical simulations are being developed to model plasma turbulence, mainly caused by the Ion and Electron Temperature-Gradient and the Trapped-Electron-Mode (TEM) instabilities. The plasma is described by a distribution function which evolves according to the Vlasov equation. The electromagnetic fields created by the particles are self-consistently obtained through Maxwell’s equations. The resulting Vlasov-Maxwell system is greatly simplified by using the gyrokinetic theory, which consists, through an appropriate ordering, of eliminating the fast gyromotion (compared to the typical frequency of instabilities). Nevertheless, it is still extremely difficult to solve this system numerically due to the large range of time and spatial scales to be resolved. In this thesis, the Vlasov

  12. Modelling of Ohmic discharges in ADITYA tokamak using the Tokamak Simulation Code

    International Nuclear Information System (INIS)

    Bandyopadhyay, I; Ahmed, S M; Atrey, P K; Bhatt, S B; Bhattacharya, R; Chaudhury, M B; Deshpande, S P; Gupta, C N; Jha, R; Joisa, Y Shankar; Kumar, Vinay; Manchanda, R; Raju, D; Rao, C V S; Vasu, P

    2004-01-01

    Several Ohmic discharges of the ADITYA tokamak are simulated using the Tokamak Simulation Code (TSC), similar to that done earlier for the TFTR tokamak. Unlike TFTR, the dominant radiation process in ADITYA is through impurity line radiation. TSC can follow the experimental plasma current and position to very good accuracy. The thermal transport model of TSC including impurity line radiation gives a good match of the simulated results with experimental data for the Ohmic flux consumption, electron temperature and Z eff . Even the simulated magnetic probe signals are in reasonably good agreement with the experimental values

  13. Modelling of Ohmic discharges in ADITYA tokamak using the Tokamak Simulation Code

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, I; Ahmed, S M; Atrey, P K; Bhatt, S B; Bhattacharya, R; Chaudhury, M B; Deshpande, S P; Gupta, C N; Jha, R; Joisa, Y Shankar; Kumar, Vinay; Manchanda, R; Raju, D; Rao, C V S; Vasu, P [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

    2004-09-01

    Several Ohmic discharges of the ADITYA tokamak are simulated using the Tokamak Simulation Code (TSC), similar to that done earlier for the TFTR tokamak. Unlike TFTR, the dominant radiation process in ADITYA is through impurity line radiation. TSC can follow the experimental plasma current and position to very good accuracy. The thermal transport model of TSC including impurity line radiation gives a good match of the simulated results with experimental data for the Ohmic flux consumption, electron temperature and Z{sub eff}. Even the simulated magnetic probe signals are in reasonably good agreement with the experimental values.

  14. Determination of electromagnetic modes in oversized corrugated waveguides on the electron cyclotron resonance heating installation at the tokamak Tore Supra; Determination de modes electromagnetiques de guides d'ondes corrugues surdimensionnes sur l'installation de chauffage des electrons de tokamak Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Courtois, L

    2001-03-09

    Electron cyclotron resonance heating (ECRH) in the Tore Supra tokamak constitutes an important step in the research aimed at obtaining thermonuclear fusion reactions. Electron heating is achieved by transmitting an electromagnetic wave from the oscillators (gyrotrons) to the plasma via the fundamental mode, propagating in oversized corrugated waveguides. Maximizing the proportion of the gyrotron power coupled to the fundamental waveguide mode is essential for the good functioning of the transmission line and for maximizing the effect on the plasma. This thesis gives all necessary tools for finding the proportion of the fundamental mode and all other modes present in passive components and at the output of the gyrotron as installed in the Tore Supra ECRH plant. This characterisation is based on obtaining amplitude and phase diagrams of the electric field on a plane transverse to the propagation axis. The most difficult part of obtaining these diagrams is measuring the phase which, despite the very short wavelength, is measured directly at low power levels. At high power levels the phase is numerically reconstructed from amplitude measurements for gyrotron characterisation. A complete theoretical study of the phase reconstruction code is given including its validation with theoretical diagrams. This study allows the realisation of a modal characterisation unit electromagnetic for measurement of radiated beams and usable in each part of the ECRH installation. At the end, the complete modal characterisation is given at low level for a mode converter and also at high level for the first series gyrotron installed at TORE SUPRA. (author)

  15. An overview on plasma disruption mitigation and avoidance in tokamak

    International Nuclear Information System (INIS)

    He Kaihui; Pan Chuanhong; Feng Kaiming

    2002-01-01

    Plasma disruption, which seems to be unavoidable in Tokamak operation, occurs very fast and uncontrolled. In order to keep Tokamak plasma from disruption and mitigate the disruption frequency, the research on Tokamak plasma major disruption constitutes one of the main topics in plasma physics. The phenomena and processes of the precursor, thermal quench, current quench, VDE, halo current and runaway electrons generation during plasma disruption are analyzed in detail and systematically based on the data obtained from current Tokamaks such as TFTR, JET, JT-60U and ASDEX-U, etc. The methods to mitigate and avoid disruption in Tokamak are also highlighted schematically. Therefore, it is helpful and instructive for plasma disruption research in next generation large Tokamak such as ITER-FEAT

  16. Physics study of the application of an IFEL [Induction Free-Electron Laser] to CIT [Compact Ignition Tokamak

    International Nuclear Information System (INIS)

    Hooper, E.B.

    1990-01-01

    The ECH system requirements on CIT might be met by microwaves generated by an induction free-electron laser (IFEL). Design studies have assumed that the system is windowless, thus eliminating one of the most highly stressed components of the ECH system. The trade-off for this advantage is that the IFEL is exposed to tritium diffusing from CIT. As reported in the attached appendix, we have investigated the use of cryopumping to control the tritium diffusion to the IFEL. With one to three pumping stations (depending on size) we can reduce the level of tritium in the IFEL to a level that may not pose a breathing hazard after one year of operation. In addition, adding pumping may allow hands-on maintenance after one year. Preliminary indications are that likely accident scenarios will occur slowly enough to permit valves to be closed before the IFEL is significantly contaminated

  17. Lower hybrid heating experiments in tokamaks: an overview

    International Nuclear Information System (INIS)

    Porkolab, M.

    1985-10-01

    Lower hybrid wave propagation theory relevant to heating fusion grade plasmas (tokamaks) is reviewed. A brief discussion of accessibility, absorption, and toroidal ray propagation is given. The main part of the paper reviews recent results in heating experiments on tokamaks. Both electron and ion heating regimes will be discussed. The prospects of heating to high temperatures in reactor grade plasmas will be evaluated

  18. The effects of electron cyclotron heating and current drive on toroidal Alfvén eigenmodes in tokamak plasmas

    Science.gov (United States)

    Sharapov, S. E.; Garcia-Munoz, M.; Van Zeeland, M. A.; Bobkov, B.; Classen, I. G. J.; Ferreira, J.; Figueiredo, A.; Fitzgerald, M.; Galdon-Quiroga, J.; Gallart, D.; Geiger, B.; Gonzalez-Martin, J.; Johnson, T.; Lauber, P.; Mantsinen, M.; Nabais, F.; Nikolaeva, V.; Rodriguez-Ramos, M.; Sanchis-Sanchez, L.; Schneider, P. A.; Snicker, A.; Vallejos, P.; the AUG Team; the EUROfusion MST1 Team

    2018-01-01

    Dedicated studies performed for toroidal Alfvén eigenmodes (TAEs) in ASDEX-Upgrade (AUG) discharges with monotonic q-profiles have shown that electron cyclotron resonance heating (ECRH) can make TAEs more unstable. In these AUG discharges, energetic ions driving TAEs were obtained by ion cyclotron resonance heating (ICRH). It was found that off-axis ECRH facilitated TAE instability, with TAEs appearing and disappearing on timescales of a few milliseconds when the ECRH power was switched on and off. On-axis ECRH had a much weaker effect on TAEs, and in AUG discharges performed with co- and counter-current electron cyclotron current drive (ECCD), the effects of ECCD were found to be similar to those of ECRH. Fast ion distributions produced by ICRH were computed with the PION and SELFO codes. A significant increase in T e caused by ECRH applied off-axis is found to increase the fast ion slowing-down time and fast ion pressure causing a significant increase in the TAE drive by ICRH-accelerated ions. TAE stability calculations show that the rise in T e causes also an increase in TAE radiative damping and thermal ion Landau damping, but to a lesser extent than the fast ion drive. As a result of the competition between larger drive and damping effects caused by ECRH, TAEs become more unstable. It is concluded, that although ECRH effects on AE stability in present-day experiments may be quite significant, they are determined by the changes in the plasma profiles and are not particularly ECRH specific.

  19. Coupling of ion temperature gradient and trapped electron modes in the presence of impurities in tokamak plasmas

    Science.gov (United States)

    Du, Huarong; Wang, Zheng-Xiong; Dong, J. Q.; Liu, S. F.

    2014-05-01

    The coupling of ion temperature gradient (ITG or ηi) mode and trapped electron mode (TEM) in the presence of impurity ions is numerically investigated in toroidal collisionless plasmas, using the gyrokinetic integral eigenmode equation. A framework for excitations of the ITG modes and TEMs with respect to their driving sources is formulated first, and then the roles of impurity ions played in are analyzed comprehensively. In particular, the characteristics of the ITG and TEM instabilities in the presence of impurity ions are emphasized for both strong and weak coupling (hybrid and coexistent) cases. It is found that the impurity ions with inwardly (outwardly) peaked density profiles have stabilizing (destabilizing) effects on the hybrid (namely the TE-ITG) modes in consistence with previous works. A new finding of this work is that the impurity ions have stabilizing effects on TEMs in small ηi (ηi≤1) regime regardless of peaking directions of their density profiles whereas the impurity ions with density gradient Lez=Lne/Lnz>1 (LezTEMs in large ηi (ηi≥1) regime. In addition, the dependences of the growth rate, real frequency, eigenmode structure, and wave spectrum on charge concentration, charge number, and mass of impurity ions are analyzed in detail. The necessity for taking impurity ion effects on the features of turbulence into account in future transport experimental data analyses is also discussed.

  20. Tokamak engineering mechanics

    International Nuclear Information System (INIS)

    Song, Yuntao; Wu, Weiyue; Du, Shijun

    2014-01-01

    Provides a systematic introduction to tokamaks in engineering mechanics. Includes design guides based on full mechanical analysis, which makes it possible to accurately predict load capacity and temperature increases. Presents comprehensive information on important design factors involving materials. Covers the latest advances in and up-to-date references on tokamak devices. Numerous examples reinforce the understanding of concepts and provide procedures for design. Tokamak Engineering Mechanics offers concise and thorough coverage of engineering mechanics theory and application for tokamaks, and the material is reinforced by numerous examples. Chapter topics include general principles, static mechanics, dynamic mechanics, thermal fluid mechanics and multiphysics structural mechanics of tokamak structure analysis. The theoretical principle of the design and the methods of the analysis for various components and load conditions are presented, while the latest engineering technologies are also introduced. The book will provide readers involved in the study of mechanical/fusion engineering with a general understanding of tokamak engineering mechanics.

  1. Tokamak engineering mechanics

    CERN Document Server

    Song, Yuntao; Du, Shijun

    2013-01-01

    Tokamak Engineering Mechanics offers concise and thorough coverage of engineering mechanics theory and application for tokamaks, and the material is reinforced by numerous examples. Chapter topics include general principles, static mechanics, dynamic mechanics, thermal fluid mechanics and multiphysics structural mechanics of tokamak structure analysis. The theoretical principle of the design and the methods of the analysis for various components and load conditions are presented, while the latest engineering technologies are also introduced. The book will provide readers involved in the study

  2. Advanced Tokamak Stability Theory

    Science.gov (United States)

    Zheng, Linjin

    2015-03-01

    The intention of this book is to introduce advanced tokamak stability theory. We start with the derivation of the Grad-Shafranov equation and the construction of various toroidal flux coordinates. An analytical tokamak equilibrium theory is presented to demonstrate the Shafranov shift and how the toroidal hoop force can be balanced by the application of a vertical magnetic field in tokamaks. In addition to advanced theories, this book also discusses the intuitive physics pictures for various experimentally observed phenomena.

  3. Options for an ignited tokamak

    International Nuclear Information System (INIS)

    Sheffield, J.

    1984-02-01

    It is expected that the next phase of the fusion program will involve a tokamak with the goals of providing an ignited plasma for pulses of hundreds of seconds. A simple model is described in this memorandum which establishes the physics conditions for such a self-sustaining plasma, for given ion and electron thermal diffusivities, in terms of R/a, b/a, I, B/q, epsilon β/sub p/, anti T/sub i/, and anti T/sub e//anti T/sub i/. The model is used to produce plots showing the wide range of tokamaks that may ignite or have a given ignition margin. The constraints that limit this range are discussed

  4. Research using small tokamaks

    International Nuclear Information System (INIS)

    1991-05-01

    The technical reports in this document were presented at the IAEA Technical Committee Meeting ''Research on Small Tokamaks'', September 1990, in three sessions, viz., (1) Plasma Modes, Control, and Internal Phenomena, (2) Edge Phenomena, and (3) Advanced Configurations and New Facilities. In Section (1) experiments at controlling low mode number modes, feedback control using external coils, lower-hybrid current drive for the stabilization of sawtooth activity and continuous (1,1) mode, and unmodulated and fast modulated ECRH mode stabilization experiments were reported, as well as the relation to disruptions and transport of low m,n modes and magnetic island growth; static magnetic perturbations by helical windings causing mode locking and sawtooth suppression; island widths and frequency of the m=2 tearing mode; ultra-fast cooling due to pellet injection; and, finally, some papers on advanced diagnostics, i.e., lithium-beam activated charge-exchange spectroscopy, and detection through laser scattering of discrete Alfven waves. In Section (2), experimental edge physics results from a number of machines were presented (positive biasing on HYBTOK II enhancing the radial electric field and improving confinement; lower hybrid current drive on CASTOR improving global particle confinement, good current drive efficiency in HT-6B showing stabilization of sawteeth and Mirnov oscillations), as well as diagnostic developments (multi-chord time resolved soft and ultra-soft X-ray plasma radiation detection on MT-1; measurements on electron capture cross sections in multi-charged ion-atom collisions; development of a diagnostic neutral beam on Phaedrus-T). Theoretical papers discussed the influence of sheared flow and/or active feedback on edge microstability, large edge electric fields, and two-fluid modelling of non-ambipolar scrape-off layers. Section (3) contained (i) a proposal to construct a spherical tokamak ''Proto-Eta'', (ii) an analysis of ultra-low-q and runaway

  5. Hard X-ray studies on the Castor tokamak

    International Nuclear Information System (INIS)

    Mlynar, J.

    1990-04-01

    The electron runaway processes in tokamaks are discussed with regard to hard X radiation measurements. The origin and confinement of runaway electrons, their bremsstrahlung spectra and the influence of lower hybrid current drive on the distribution of high-energy electrons are analyzed for the case of the Castor tokamak. The hard X-ray spectrometer designed for the Castor tokamak is also described and preliminary qualitative results of hard X-ray measurements are presented. The first series of integral measurements made it possible to map the azimuthal dependence of the hard X radiation

  6. Tokamak confinement scaling laws

    International Nuclear Information System (INIS)

    Connor, J.

    1998-01-01

    The scaling of energy confinement with engineering parameters, such as plasma current and major radius, is important for establishing the size of an ignited fusion device. Tokamaks exhibit a variety of modes of operation with different confinement properties. At present there is no adequate first principles theory to predict tokamak energy confinement and the empirical scaling method is the preferred approach to designing next step tokamaks. This paper reviews a number of robust theoretical concepts, such as dimensional analysis and stability boundaries, which provide a framework for characterising and understanding tokamak confinement and, therefore, generate more confidence in using empirical laws for extrapolation to future devices. (author)

  7. Tokamak concept innovations

    International Nuclear Information System (INIS)

    1986-04-01

    This document contains the results of the IAEA Specialists' Meeting on Tokamak Concept Innovations held 13-17 January 1986 in Vienna. Although it is the most advanced fusion reactor concept the tokamak is not without its problems. Most of these problems should be solved within the ongoing R and D studies for the next generation of tokamaks. Emphasis for this meeting was placed on innovations that would lead to substantial improvements in a tokamak reactor, even if they involved a radical departure from present thinking

  8. Runaway acceleration during magnetic reconnection in tokamaks

    International Nuclear Information System (INIS)

    Helander, P; Eriksson, L-G; Andersson, F

    2002-01-01

    In this paper, the basic theory of runaway electron production is reviewed and recent progress is discussed. The mechanisms of primary and secondary generation of runaway electrons are described and their dynamics during a tokamak disruption is analysed, both in a simple analytical model and through numerical Monte Carlo simulation. A simple criterion for when these mechanisms generate a significant runaway current is derived, and the first self-consistent simulations of the electron kinetics in a tokamak disruption are presented. Radial cross-field diffusion is shown to inhibit runaway avalanches, as indicated in recent experiments on JET and JT-60U. Finally, the physics of relativistic post-disruption runaway electrons is discussed, in particular their slowing down due to emission of synchrotron radiation, and their ability to produce electron-positron pairs in collisions with bulk plasma ions and electrons

  9. Edge plasma diagnostics on Tore Supra tokamak

    International Nuclear Information System (INIS)

    Fujita, Junji

    1991-01-01

    From 1988 to 1991, the international scientific research 'Diagnosis of peripheral plasma in Tore Supra tokamak' was carried out as a three-year plan receiving the support of the scientific research expense of the Ministry of Education. This is to apply the method of measuring electron density distribution by neutral lithium beam probe spectroscopy to the measurement of the electron density distribution in the peripheral plasma in Tore Supra Tokamak in France. Among many tokamaks in operation doing respective characteristics researches, the Tore Supra generates the toroidal magnetic field by using superconducting coils, and aims at the long time discharge for 30 sec. for the time being, and for 300 sec. in future. In the plasma generators for long time discharge like this, the technology of particle control is a large problem. For this purpose, a divertor was added to the Tore Supra. In order to advance the research on particle control, it is necessary to examine the behavior of plasma in the peripheral part in detail. The measurement of peripheral plasma in tokamaks, beam probe spectroscopy, the Tore Supra tokamak, the progress of the joint research, the problems in the joint research and the perspective of hereafter are reported. (K.I.)

  10. Tokamak control simulator

    International Nuclear Information System (INIS)

    Edelbaum, T.N.; Serben, S.; Var, R.E.

    1976-01-01

    A computer model of a tokamak experimental power reactor and its control system is being constructed. This simulator will allow the exploration of various open loop and closed loop strategies for reactor control. This paper provides a brief description of the simulator and some of the potential control problems associated with this class of tokamaks

  11. Small-scale tearing mode in tokamaks

    International Nuclear Information System (INIS)

    Ivanov, N.V.

    1983-01-01

    Considerations are given on the possible effect of small-scale tearing mode with m >> 1 on the plasma electron thermal conductivity in a tokamak. The estimate of the electron thermal conductivity coefficient is obtained. Calculation results are compared with experimental data. The calculated dependence of radial distribution of electron temperature is shown to vary weakly with the tn(m 2 /m 1 ) alteration everywhere, except for the vicinity of point r approximately 0

  12. A survey of radio frequency heating in tokamaks

    International Nuclear Information System (INIS)

    Bhatti, Z.R.

    1998-01-01

    A brief summary is given of the plasma physics of radio frequency heating in tokamaks. The general features common to all schemes are described. The three main methods, ion cyclotron electron cyclotron, and lower hybrid are also discussed. (author)

  13. Whist code calculations of ignition margin in an ignition tokamak

    International Nuclear Information System (INIS)

    Sheffield, J.

    1985-01-01

    A simple global model was developed to determine the ignition margin of tokamaks including electron and ion conduction losses. A comparison of this model with results from a 1 1/2 dimensional Whist code is made

  14. Nonneutralized charge effects on tokamak edge magnetohydrodynamic stability

    International Nuclear Information System (INIS)

    Zheng, Linjin; Horton, W.; Miura, H.; Shi, T.H.; Wang, H.Q.

    2016-01-01

    Owing to the large ion orbits, excessive electrons can accumulate at tokamak edge. We find that the nonneutralized electrons at tokamak edge can contribute an electric compressive stress in the direction parallel to magnetic field by their mutual repulsive force. By extending the Chew–Goldburger–Low theory (Chew et al., 1956 [13]), it is shown that this newly recognized compressive stress can significantly change the plasma average magnetic well, so that a stabilization of magnetohydrodynamic modes in the pedestal can result. This linear stability regime helps to explain why in certain parameter regimes the tokamak high confinement can be rather quiet as observed experimentally.

  15. A Fast Shutdown Technique for Large Tokamaks

    International Nuclear Information System (INIS)

    Fredrickson, E.; Schmidt, G.L.; Hill, K.; Jardin, S.C.

    1999-01-01

    A practical method is proposed for the fast shutdown of a large ignited tokamak. The method consists of injecting a rapid series of 30-50 deuterium pellets doped with a small ( 0.0005%) concentration of Krypton impurity, and simultaneously ramping the plasma current and shaping fields down over a period of several seconds using the poloidal field system. Detailed modeling with the Tokamak Simulation Code using a newly developed pellet mass deposition model shows that this method should terminate the discharge in a controlled and stable way without producing significant numbers of runaway electrons. A partial prototyping of this technique was accomplished in TFTR

  16. Investigation of a superthermal ultracold neutron source based on a solid deuterium converter for the TRIGA Mainz reactor

    International Nuclear Information System (INIS)

    Lauer, Thorsten

    2010-01-01

    Research in fundamental physics with the free neutron is one of the key tools for testing the Standard Model at low energies. Most prominent goals in this field are the search for a neutron electric dipole moment (EDM) and the measurement of the neutron lifetime. Significant improvements of the experimental performance using ultracold neutrons (UCN) require reduction of both systematic and statistical errors.The development and construction of new UCN sources based on the superthermal concept is therefore an important step for the success of future fundamental physics with ultracold neutrons. Significant enhancement of today available UCN densities strongly correlates with an efficient use of an UCN converter material. The UCN converter here is to be understood as a medium which reduces the velocity of cold neutrons (CN, velocity of about 600 m/s) to the velocity of UCN (velocity of about 6 m/s).Several big research centers around the world are presently planning or constructing new superthermal UCN sources, which are mainly based on the use of either solid deuterium or superfluid helium as UCN converter.Thanks to the idea of Yu.Pokotilovsky, there exists the opportunity to build competitive UCN sources also at small research reactors of the TRIGA type. Of course these smaller facilities don't promise high UCN densities of several 1000 UCN/cm 3 , but they are able to provide densities around 100 UCN/cm 3 for experiments.In the context of this thesis, it was possible to demonstrate succesfully the feasibility of a superthermal UCN source at the tangential beamport C of the research reactor TRIGA Mainz. Based on a prototype for the future UCN source at the Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRMII) in Munich, which was planned and built in collaboration with the Technical University of Munich, further investigations and improvements were done and are presented in this thesis. In parallel, a second UCN source for the radial beamport D was designed and

  17. Investigation of a superthermal ultracold neutron source based on a solid deuterium converter for the TRIGA Mainz reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lauer, Thorsten

    2010-12-22

    Research in fundamental physics with the free neutron is one of the key tools for testing the Standard Model at low energies. Most prominent goals in this field are the search for a neutron electric dipole moment (EDM) and the measurement of the neutron lifetime. Significant improvements of the experimental performance using ultracold neutrons (UCN) require reduction of both systematic and statistical errors.The development and construction of new UCN sources based on the superthermal concept is therefore an important step for the success of future fundamental physics with ultracold neutrons. Significant enhancement of today available UCN densities strongly correlates with an efficient use of an UCN converter material. The UCN converter here is to be understood as a medium which reduces the velocity of cold neutrons (CN, velocity of about 600 m/s) to the velocity of UCN (velocity of about 6 m/s).Several big research centers around the world are presently planning or constructing new superthermal UCN sources, which are mainly based on the use of either solid deuterium or superfluid helium as UCN converter.Thanks to the idea of Yu.Pokotilovsky, there exists the opportunity to build competitive UCN sources also at small research reactors of the TRIGA type. Of course these smaller facilities don't promise high UCN densities of several 1000 UCN/cm{sup 3}, but they are able to provide densities around 100 UCN/cm{sup 3} for experiments.In the context of this thesis, it was possible to demonstrate succesfully the feasibility of a superthermal UCN source at the tangential beamport C of the research reactor TRIGA Mainz. Based on a prototype for the future UCN source at the Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRMII) in Munich, which was planned and built in collaboration with the Technical University of Munich, further investigations and improvements were done and are presented in this thesis. In parallel, a second UCN source for the radial beamport D was

  18. Tokamaks. 2. ed.

    International Nuclear Information System (INIS)

    Wesson, John; Campbell, D.J.; Connor, J.W.

    1997-01-01

    It is interesting to recall the state of tokamak research when the first edition of this book was written. My judgement of the level of real understanding at that time is indicated by the virtual absence of comparisons of experiment with theory in that edition. The need then was for a 'handbook' which collected in a single volume the concepts and models which form the basis of everyday tokamak research. The experimental and theoretical endeavours of the subsequent decade have left almost all of this intact, but have brought a massive development of the subject. Firstly, there are now several areas where the experimental behaviour is described in terms of accepted theory. This is particularly true of currents parallel to the magnetic field, and of the stability limitations on the plasma pressure. Next there has been the research on large tokamaks, hardly started at the writing of the first edition. Now our thinking is largely based on the results from these tokamaks and this work has led to the long awaited achievement of significant amounts of fusion power. Finally, the success of tokamak research has brought us face to face with the problems involved in designing and building a tokamak reactor. The present edition maintains the aim of providing a simple introduction to basic tokamak physics, but also includes an account of the advances outlined above. (Author)

  19. Heat load material studies: Simulated tokamak disruptions

    International Nuclear Information System (INIS)

    Gahl, J.M.; McDonald, J.M.; Zakharov, A.; Tserevitinov, S.; Barabash, V.; Guseva, M.

    1991-01-01

    It is clear that an improved understanding of the effects of tokamak disruptions on plasma facing component materials is needed for the ITER program. very large energy fluxes are predicted to be deposited in ITER and could be very damaging to the machine. During 1991, Sandia National Laboratories and the University of New Mexico conducted cooperative tokamak disruption simulation experiments at several Soviet facilities. These facilities were located at the Efremov Institute in Leningrad, the Kurchatov Atomic Energy Institute (Troisk and Moscow) and the Institute for Physical Chemistry of the Soviet Adademy of Sciences in Moscow. Erosion of graphite from plasma stream impact is seen to be much less than that observed with laser or electron beams with similar energy fluxes. This, along with other data obtained, seem to suggest that the ''vapor shielding'' effect is a very important phenomenon in the study of graphite erosion during tokamak disruption

  20. Tokamak reactor studies

    International Nuclear Information System (INIS)

    Baker, C.C.

    1981-01-01

    This paper presents an overview of tokamak reactor studies with particular attention to commercial reactor concepts developed within the last three years. Emphasis is placed on DT fueled reactors for electricity production. A brief history of tokamak reactor studies is presented. The STARFIRE, NUWMAK, and HFCTR studies are highlighted. Recent developments that have increased the commercial attractiveness of tokamak reactor designs are discussed. These developments include smaller plant sizes, higher first wall loadings, improved maintenance concepts, steady-state operation, non-divertor particle control, and improved reactor safety features

  1. Tokamak ARC damage

    International Nuclear Information System (INIS)

    Murray, J.G.; Gorker, G.E.

    1985-01-01

    Tokamak fusion reactors will have large plasma currents of approximately 10 MA with hundreds of megajoules stored in the magnetic fields. When a major plasma instability occurs, the disruption of the plasma current induces voltage in the adjacent conducting structures, giving rise to large transient currents. The induced voltages may be sufficiently high to cause arcing across sector gaps or from one protruding component to another. This report reviews a tokamak arcing scenario and provides guidelines for designing tokamaks to minimize the possibility of arc damage

  2. Tokamak ARC damage

    Energy Technology Data Exchange (ETDEWEB)

    Murray, J.G.; Gorker, G.E.

    1985-01-01

    Tokamak fusion reactors will have large plasma currents of approximately 10 MA with hundreds of megajoules stored in the magnetic fields. When a major plasma instability occurs, the disruption of the plasma current induces voltage in the adjacent conducting structures, giving rise to large transient currents. The induced voltages may be sufficiently high to cause arcing across sector gaps or from one protruding component to another. This report reviews a tokamak arcing scenario and provides guidelines for designing tokamaks to minimize the possibility of arc damage.

  3. Tokamak simulation code manual

    International Nuclear Information System (INIS)

    Chung, Moon Kyoo; Oh, Byung Hoon; Hong, Bong Keun; Lee, Kwang Won

    1995-01-01

    The method to use TSC (Tokamak Simulation Code) developed by Princeton plasma physics laboratory is illustrated. In KT-2 tokamak, time dependent simulation of axisymmetric toroidal plasma and vertical stability have to be taken into account in design phase using TSC. In this report physical modelling of TSC are described and examples of application in JAERI and SERI are illustrated, which will be useful when TSC is installed KAERI computer system. (Author) 15 refs., 6 figs., 3 tabs

  4. Technology and plasma-materials interaction processes of tokamak disruptions

    International Nuclear Information System (INIS)

    McGrath, R.T.; Kellman, A.G.

    1992-01-01

    A workshop on the technology and plasma-materials interaction processes of tokamak disruptions was held April 3, 1992 in Monterey, California, as a satellite meeting of the 10th International Conference on Plasma-Surface Interactions. The objective was to bring together researchers working on disruption measurements in operating tokamaks, those performing disruption simulation experiments using pulsed plasma gun, electron beam and laser systems, and computational physicists attempting to model the evolution and plasma-materials interaction processes of tokamak disruptions. This is a brief report on the workshop. 4 refs

  5. Particle injection into the Castor tokamak by electric arcs

    International Nuclear Information System (INIS)

    Hildebrandt, D.; Juettner, B.; Pursch, H.; Jakubka, K.; Stoeckel, J.; Zacek, F.

    1989-01-01

    The influence of arcing on the tokamak discharge was investigated in the Castor tokamak. A special calibrated gun which emitted tantalum by artificially ignited electric arcs, was used to study the transport of the injected tantalum ions, neutrals and droplets. The injection of tantalum led to an increase in electron density and to a change of plasma position only if the transported charge was higher than 0.01 C. As the naturally occurring arcs are well below this limit, the arcing in tokamaks is rather the consequence than the reason of instabilities. (J.U.)

  6. Soft x-ray measurements in the TRIAM-1 tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, T; Toi, K; Nakamura, K; Nakamura, Y; Hiraki, N [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1981-07-01

    Soft X-ray pulse height analysis system has been designed and constructed for measurements of electron distribution function and impurity with high spatial resolution (0.5 cm) and temporal resolution (2 msec) in the TRIAM-1 tokamak. The experimental results about electron temperature, enhancement factor, Z sub(eff) and runaway electrons are presented and discussed.

  7. Joint research using small tokamaks

    International Nuclear Information System (INIS)

    Gryaznevich, M.P.; Del Bosco, E.; Malaquias, A.; Mank, G.; Oost, G. van

    2005-01-01

    Small tokamaks have an important role in fusion research. More than 40 small tokamaks are operational. Research on small tokamaks has created a scientific basis for the scaling-up to larger tokamaks. Well-known scientific and engineering schools, which are now determining the main directions of fusion science and technology, have been established through research on small tokamaks. Combined efforts within a network of small and medium size tokamaks will further enhance the contribution of small tokamaks. A new concept of interactive co-ordinated research using small tokamaks in the mainstream fusion science areas, in testing of new diagnostics, materials and technologies as well as in education, training and broadening of the geography of fusion research in the scope of the IAEA Co-ordinated Research Project is presented. (author)

  8. Joint research using small tokamaks

    International Nuclear Information System (INIS)

    Gryaznevich, M.P.; Bosco, E. Del; Malaquias, A.; Mank, G.; Oost, G. van; He, Yexi; Hegazy, H.; Hirose, A.; Hron, M.; Kuteev, B.; Ludwig, G.O.; Nascimento, I.C.; Silva, C.; Vorobyev, G.M.

    2005-01-01

    Small tokamaks have an important role in fusion research. More than 40 small tokamaks are operational. Research on small tokamaks has created a scientific basis for the scaling-up to larger tokamaks. Well-known scientific and engineering schools, which are now determining the main directions of fusion science and technology, have been established through research on small tokamaks. Combined efforts within a network of small and medium size tokamaks will further enhance the contribution of small tokamaks. A new concept of interactive coordinated research using small tokamaks in the mainstream fusion science areas, in testing of new diagnostics, materials and technologies as well as in education, training and broadening of the geography of fusion research in the scope of the IAEA Coordinated Research Project, is presented

  9. Studies of suprathermal emission due to cyclotron-electronic heating of the tokamak TCV plasma; Etudes du rayonnement suprathermique emis lors du chauffage cyclotronique electronique du plasma du tokamak TCV

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, P

    2002-07-01

    Photo sensitization of wide band gap semiconductors is used in a wide range of application like silver halide photography and xerography. The development of a new type of solar cells, based on the sensitization of meso porous metal oxide films by panchromatic dyes, has triggered a lot of fundamental research on electron transfer dynamics. Upon excitation, the sensitizer transfers an electron in the conduction band of the semiconductor. Recombination of the charge separated state is prevented by the fast regeneration of the dye by an electron donor present in solution. Until recently, most of the work in this area has been focused on the competition between the recombination and the regeneration processes, which take place in the nanosecond to millisecond regime. With the development of solid-state femtosecond laser, the measurement of the dynamics of the first electron transfer step occurring in the solar cell has become possible . Electron injection from ruthenium(Il) poly pyridyl complexes into titanium dioxide has been found to occur with a poly exponential rate, with time constants ranging from < 100 fs up to > 10 ps. In spite of the lately acquired capacity to measure the dynamics of these reactions, the physical meaning of this poly exponential kinetics and the factors that can influence this process are still poorly understood. In this work, the development of a new femtosecond pump-probe spectrometer, intended to monitor the ultrafast dynamics of electron injection, is presented. The study of this process requires an excellent temporal resolution and a large wavelength tunability to be able to excite a great variety of dyes and to probe the different products of the reaction. These specifications were met using the latest progress made in optical parametric amplification, which allowed the construction of a versatile experimental set-up. The interfacing by computer of the different devices used during the experiments increase the ease of use of the set

  10. Parametric study of ohmic discharges in the TCA tokamak

    International Nuclear Information System (INIS)

    De Chambrier, A.; Collins, G.A.; Heym, A.; Hofmann, F.; Hollenstein, Ch.; Joye, B.; Keller, R.; Lietti, A.; Lister, J.B.; Moret, J.-M.; Nowak, S.; O'Rourke, J.; Pochelon, A.; Simm, W.

    1983-01-01

    The study of the energy confinement in a tokamak is an important aspect in the characterisation of its performance. The TCA tokamak has been in operation now for more than two years and the state of the machine and of its diagnostics have permitted such work to be performed. The authors describe the proper method for this type of approach and then present the results concerning the energy confinement of the electrons and ions. (Auth./G.T.H.)

  11. Analysis of material removed from UCLA tokamaks Microtor and Macrotor

    International Nuclear Information System (INIS)

    Baer, D.R.; Thomas, M.T.; Taylor, R.J.

    1979-02-01

    This paper reports a first effort to examine the surface of the UCLA tokamaks, Microtor and Macrotor, by analyzing samples that have been exposed to plasma discharge and cleaning for long periods. The samples were sent to the Surface Science Section at the Pacific Northwest Laboratory (PNL). There, Auger electron spectrometry and sputter profile techniques were used to examine the samples, which had been handled in atmospheric conditions after being removed from the tokamak

  12. 19 rectifiers to supply the coils of the TCV tokamak

    International Nuclear Information System (INIS)

    Fasel, D.; Perez, A.; Depreville, G.; Puchar, F.; Pahud, J.D.

    1990-01-01

    This paper describes the electrical network designed to supply the 19 coils of the TCV (Tokamak a Configuration Variable) tokamak. After a brief description of the main purpose of TCV, the general characteristics of the TCV network are given. Then the technical choices made for the rectifier power stage are detailed. There follows a description of the rectifier digital control electronics. Comments on simulations carried out and the actual status conclude the paper. (author) 3 refs., 5 figs., 2 tabs

  13. Profile measurements of the electron temperature on the ASDEX Upgrade, COMPASS, and ISTTOK tokamak using Thomson scattering, triple, and ball-pen probes

    Czech Academy of Sciences Publication Activity Database

    Adámek, Jiří; Müller, H.W.; Silva, C.; Schrittwieser, R.; Ionita, C.; Mehlmann, F.; Costea, S.; Horáček, Jan; Kurzan, B.; Bílková, Petra; Böhm, Petr; Aftanas, Milan; Vondráček, Petr; Stöckel, Jan; Pánek, Radomír; Fernandes, H.; Figueiredo, H.

    2016-01-01

    Roč. 87, č. 4 (2016), č. článku 043510. ISSN 0034-6748 R&D Projects: GA ČR(CZ) GA15-10723S; GA ČR(CZ) GAP205/12/2327; GA ČR(CZ) GA14-35260S; GA MŠk(CZ) LM2011021 Institutional support: RVO:61389021 Keywords : ball- pen probe (BPP) * ASDEX Upgrade * Langmuir probe (LP) * ISTTOK (Instituto Superior Tecnico TOKamak) * COMPASS (COMPact ASSembly), Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: 2.11 Other engineering and technologies Impact factor: 1.515, year: 2016 http://scitation.aip.org/content/aip/journal/rsi/87/4/10.1063/1.4945797

  14. Profile measurements of the electron temperature on the ASDEX Upgrade, COMPASS, and ISTTOK tokamak using Thomson scattering, triple, and ball-pen probes

    Czech Academy of Sciences Publication Activity Database

    Adámek, Jiří; Müller, H.W.; Silva, C.; Schrittwieser, R.; Ionita, C.; Mehlmann, F.; Costea, S.; Horáček, Jan; Kurzan, B.; Bílková, Petra; Böhm, Petr; Aftanas, Milan; Vondráček, Petr; Stöckel, Jan; Pánek, Radomír; Fernandes, H.; Figueiredo, H.

    2016-01-01

    Roč. 87, č. 4 (2016), č. článku 043510. ISSN 0034-6748 R&D Projects: GA ČR(CZ) GA15-10723S; GA ČR(CZ) GAP205/12/2327; GA ČR(CZ) GA14-35260S; GA MŠk(CZ) LM2011021 Institutional support: RVO:61389021 Keywords : ball-pen probe (BPP) * ASDEX Upgrade * Langmuir probe (LP) * ISTTOK (Instituto Superior Tecnico TOKamak) * COMPASS (COMPact ASSembly), Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: 2.11 Other engineering and technologies Impact factor: 1.515, year: 2016 http://scitation.aip.org/content/aip/journal/rsi/87/4/10.1063/1.4945797

  15. Advanced commercial tokamak study

    International Nuclear Information System (INIS)

    Thomson, S.L.; Dabiri, A.E.; Keeton, D.C.; Brown, T.G.; Bussell, G.T.

    1985-12-01

    Advanced commercial tokamak studies were performed by the Fusion Engineering Design Center (FEDC) as a participant in the Tokamak Power Systems Studies (TPSS) project coordinated by the Office of Fusion Energy. The FEDC studies addressed the issues of tokamak reactor cost, size, and complexity. A scoping study model was developed to determine the effect of beta on tokamak economics, and it was found that a competitive cost of electricity could be achieved at a beta of 10 to 15%. The implications of operating at a beta of up to 25% were also addressed. It was found that the economics of fusion, like those of fission, improve as unit size increases. However, small units were found to be competitive as elements of a multiplex plant, provided that unit cost and maintenance time reductions are realized for the small units. The modular tokamak configuration combined several new approaches to develop a less complex and lower cost reactor. The modular design combines the toroidal field coil with the reactor structure, locates the primary vacuum boundary at the reactor cell wall, and uses a vertical assembly and maintenance approach. 12 refs., 19 figs

  16. Magnetic field structure of experimental high beta tokamak equilibria

    International Nuclear Information System (INIS)

    Deniz, A.V.

    1986-01-01

    The magnetic field structure of several low and high β tokamaks in the Columbia High Beta Tokamak (HBT) was determined by high-impedance internal magnetic probes. From the measurement of the magnetic field, the poloidal flux, toroidal flux, toroidal current, and safety factor are calculated. In addition, the plasma position and cross-sectional shape are determined. The extent of the perturbation of the plasma by the probe was investigated and was found to be acceptably small. The tokamaks have major radii of approx.0.24 m, minor radii of approx.0.05 m, toroidal plasma current densities of approx.10 6 A/m 2 , and line-integrated electron densities of approx.10 20 m -2 . The major difference between the low and high β tokamaks is that the high β tokamak was observed to have an outward shift in major radius of both the magnetic center and peak of the toroidal current density. The magnetic center moves inward in major radius after 20 to 30 μsec, presumably because the plasma maintains major radial equilibrium as its pressure decreases from radiation due to impurity atoms. Both the equilibrium and the production of these tokamaks from a toroidal field stabilized z-pinch are modeled computationally. One tokamak evolves from a state with low β features, through a possibly unstable state, to a state with high β features

  17. Advanced statistics for tokamak transport colinearity and tokamak to tokamak variation

    International Nuclear Information System (INIS)

    Riedel, K.S.

    1989-03-01

    This is a compendium of three separate articles on the statistical analysis of tokamak transport. The first article is an expository introduction to advanced statistics and scaling laws. The second analyzes two important problems of tokamak data---colinearity and tokamak to tokamak variation in detail. The third article generalizes the Swamy random coefficient model to the case of degenerate matrices. Three papers have been processed separately

  18. Magnetic ''islandography'' in tokamaks

    International Nuclear Information System (INIS)

    Callen, J.D.; Waddell, B.V.; Hicks, H.R.

    1978-09-01

    Tearing modes are shown to be responsible for most of the experimentally observed macroscopic behavior of tokamak discharges. The effects of these collective magnetic perturbations on magnetic topology and plasma transport in tokamaks are shown to provide plausible explanations for: internal disruptions (m/n = 1); Mirnov oscillations (m/n = 2,3...); and major disruptions (coupling of 2/1-3/2 modes). The nonlinear evolution of the tearing modes is followed with fully three-dimensional computer codes. The effects on plasma confinement of the magnetic islands or stochastic field lines induced by the macroscopic tearing modes are discussed and compared with experiment. Finally, microscopic magnetic perturbations are shown to provide a natural model for the microscopic anomalous transport processes in tokamaks

  19. Accelerator technology in tokamaks

    International Nuclear Information System (INIS)

    Kustom, R.L.

    1977-01-01

    This article presents the similarities in the technology required for high energy accelerators and tokamak fusion devices. The tokamak devices and R and D programs described in the text represent only a fraction of the total fusion program. The technological barriers to producing successful, economical tokamak fusion power plants are as many as the plasma physics problems to be overcome. With the present emphasis on energy problems in this country and elsewhere, it is very likely that fusion technology related R and D programs will vigorously continue; and since high energy accelerator technology has so much in common with fusion technology, more scientists from the accelerator community are likely to be attracted to fusion problems

  20. Overview of the TCV tokamak program: scientific progress and facility upgrades

    DEFF Research Database (Denmark)

    Coda, S.; Ahn, J.; Albanese, R.

    2017-01-01

    The TCV tokamak is augmenting its unique historical capabilities (strong shaping, strong electron heating) with ion heating, additional electron heating compatible with high densities, and variable divertor geometry, in a multifaceted upgrade program designed to broaden its operational range with...

  1. Overview of the TCV tokamak program : scientific progress and facility upgrades

    NARCIS (Netherlands)

    Coda, S.; Ahn, J.; Albanese, R.; Alberti, S.; Alessi, E.; Allan, S.; Anand, H.; Anastassiou, G.; Andrèbe, Y.; Angioni, C.; Ariola, M.; Bernert, M.; Beurskens, M.N.A.; Bin, W.; Blanchard, P.; Blanken, T.C.; Boedo, J.A.; Bolzonella, T.; Bouquey, F.; Braunmüller, F.H.; Bufferand, H.; Buratti, P.; Calabró, G.; Camenen, Y.; Carnevale, D.; Carpanese, F.; Causa, F.; Cesario, R.; Chapman, I.T.; Chellai, O.; Choi, D.; Cianfarani, C.; Ciraolo, G.; Citrin, J.; Costea, S.; Crisanti, F.; Cruz, N.; Czarnecka, A.; Decker, J.; De Masi, G.; De Tommasi, G.; Douai, D.; Dunne, M.; Duval, B.P.; Eich, T.; Elmore, S.; Esposito, B.; Faitsch, M.; Fasoli, A.; Fedorczak, N.; Felici, F.; Février, O.; Ficker, O.; Fietz, S.; Fontana, M.; Frassinetti, L.; Furno, I.; Galeani, S.; Gallo, A.; Galperti, C.; Garavaglia, S.; Garrido, I.; Geiger, B.; Giovannozzi, E.; Gobbin, M.; Goodman, T.P.; Gorini, G.; Gospodarczyk, M.; Granucci, G.; Graves, J.P.; Guirlet, R.; Hakola, A.; Ham, C.; Harrison, J.; Hawke, J.; Hennequin, P.; Hnat, B.; Hogeweij, D.; Hogge, J.- P.; Honoré, C.; Hopf, C.; Horáček, J.; Huang, Z.; Igochine, V.; Innocente, P.; Ionita-Schrittwieser, C.; Isliker, H.; Jacquier, R.; Jardin, A.; Kamleitner, J.; Karpushov, A.; Keeling, D.L.; Kirneva, N.; Kong, M.; Koubiti, M.; Kovacic, J.; Krämer-Flecken, A.; Krawczyk, N.; Kudlacek, O.; Labit, B.; Lazzaro, E.; Le, H.B.; Lipschultz, B.; Llobet, X.; Lomanowski, B.; Loschiavo, V.P.; Lunt, T.; Maget, P.; Maljaars, E.; Malygin, A.; Maraschek, M.; Marini, C.; Martin, P.; Martin, Y.; Mastrostefano, S.; Maurizio, R.; Mavridis, M.; Mazon, D.; McAdams, R.; McDermott, R.; Merle, A.; Meyer, H.; Militello, F.; Miron, I.G.; Molina Cabrera, P.A.; Moret, J.M.; Moro, A.; Moulton, D.; Naulin, V.; Nespoli, F.; Nielsen, A.H.; Nocente, M.; Nouailletas, R.; Nowak, S.; Odstrčil, T.; Papp, G.; Papřok, R.; Pau, A.; Pautasso, G.; Pericoli Ridolfini, V.; Piovesan, P.; Piron, C.; Pisokas, T.; Porte, L.; Preynas, M.; Ramogida, G.; Rapson, C.; Rasmussen, J.J.; Reich, M.; Reimerdes, H.; Reux, C.; Ricci, P.; Rittich, D.; Riva, F.; Robinson, T.; Saarelma, S.; Saint-Laurent, F.; Sauter, O.; Scannell, R.; Schlatter, Ch.; Schneider, B.; Schneider, P.; Schrittwieser, R.; Sciortino, F.; Sertoli, M.; Sheikh, U.; Sieglin, B.; Silva, M.; Sinha, J.; Sozzi, C.; Spolaore, M.; Stange, T.; Stoltzfus-Dueck, T.; Tamain, P.; Teplukhina, A.; Testa, D.; Theiler, C.; Thornton, A.; Tophøj, L.; Tran, M.Q.; Tsironis, C.; Tsui, C.; Uccello, A.; Vartanian, S.; Verdoolaege, G.; Verhaegh, K.H.A.; Vermare, L.; Vianello, N.; Vijvers, W.A.J.; Vlahos, L.; Vu, N.M.T.; Walkden, N.; Wauters, T.; Weisen, H.; Wischmeier, M.; Zestanakis, P.; Zuin, M.

    2017-01-01

    The TCV tokamak is augmenting its unique historical capabilities (strong shaping, strong electron heating) with ion heating, additional electron heating compatible with high densities, and variable divertor geometry, in a multifaceted upgrade program designed to broaden its operational range without

  2. ARIES tokamak reactor study

    International Nuclear Information System (INIS)

    Steiner, D.; Embrechts, M.

    1990-07-01

    This is a status report on technical progress relative to the tasks identified for the fifth year of Grant No. FG02-85-ER52118. The ARIES tokamak reactor study is a multi-institutional effort to develop several visions of the tokamak as an attractive fusion reactor with enhanced economic, safety, and environmental features. The ARIES study is being coordinated by UCLA and involves a number of institutions, including RPI. The RPI group has been pursuing the following areas of research in the context of the ARIES-I design effort: MHD equilibrium and stability analyses; plasma-edge modeling and blanket materials issues. Progress in these areas is summarized herein

  3. Internal disruption in tokamaks

    International Nuclear Information System (INIS)

    Kuvshinov, B.N.; Savrukhin, P.V.

    1990-01-01

    A review of results of experimental and theoretical investigations of internal disruption in tokamaks is given. Specific features of various types of saw-tooth oscillations are described and their classification is performed. Theoretical models of the process of development of internal disruption instability are discussed. Effect of internal disruption on parameters of plasma, confined in tokamak, is considered. Scalings of period and amplitude of saw-tooth oscillations, as well as version radius are presented. Different methods for stabilizing instability of internal disruption are described

  4. Overview of Tokamak Results

    International Nuclear Information System (INIS)

    Unterberg, Bernhard; Samm, Ulrich

    2004-01-01

    An overview is given of recent results obtained in tokamak devices. We introduce basic confinement scenarios as L-mode, H-mode and plasmas with an internal transport barrier and discuss methods for profile control. Important findings in DT-experiments at JET as α-particle heating are described. Methods for power exhaust like plasma regimes with a radiating mantle and radiative divertor scenarios are discussed. The overall impact of plasma edge conditions on the general plasma performance in tokamaks is illustrated by describing the impact of wall conditions on confinement and the edge operational diagram of H-mode plasmas

  5. Internal disruptions in tokamaks

    International Nuclear Information System (INIS)

    Kuvshinov, B.N.; Savrukhin, P.V.

    1990-01-01

    Experimental and theoretical studies of the phenomenon of internal disruptions in tokamaks are reviewed. A classification scheme is introduced and the features of different types of sawtooth oscillations are described. A theoretical model for the development of the internal disruption instability is discussed. The effect of internal disruptions on the parameters of plasma confined in tokamaks is discussed. Scaling laws for the period and amplitude of sawtooth oscillations, as well as for the inversion radius, are presented. Different methods of stabilizing the internal disruption instability are described

  6. The physics of tokamak start-up

    International Nuclear Information System (INIS)

    Mueller, D.

    2013-01-01

    Tokamak start-up on present-day devices usually relies on inductively induced voltage from a central solenoid. In some cases, inductive startup is assisted with auxiliary power from electron cyclotron radio frequency heating. International Thermonuclear Experimental Reactor, the National Spherical Torus Experiment Upgrade and JT60, now under construction, will make use of the understanding gained from present-day devices to ensure successful start-up. Design of a spherical tokamak (ST) with DT capability for nuclear component testing would require an alternative to a central solenoid because the small central column in an ST has insufficient space to provide shielding for the insulators in the solenoid. Alternative start-up techniques such as induction using outer poloidal field coils, electron Bernstein wave start-up, coaxial helicity injection, and point source helicity injection have been used with success, but require demonstration of scaling to higher plasma current

  7. Runaway-ripple interaction in Tokamaks

    International Nuclear Information System (INIS)

    Laurent, L.; Rax, J.M.

    1989-08-01

    Two approaches of the interaction between runaway electrons and the ripple field, in tokamaks, are discussed. The first approach considers the resonance effect as an intense cyclotron heating of the electrons, by the ripple field, in the guiding center frame of the fast particles. In the second approach, an Hamiltonian formalism is used. A criterion for the onset of chaotic behavior and the results are given. A new universal instability of the runaway population in tokamak configuration is found. When combined with cyclotron losses one of its major consequence is to act as an effective slowing down mechanism preventing the free fall acceleration toward the synchrotron limit. This configuration allows the explanation of some experimental results of Tore Supra and Textor

  8. Confinement scaling and ignition in tokamaks

    International Nuclear Information System (INIS)

    Perkins, F.W.; Sun, Y.C.

    1985-10-01

    A drift wave turbulence model is used to compute the scaling and magnitude of central electron temperature and confinement time of tokamak plasmas. The results are in accord with experiment. Application to ignition experiments shows that high density (1 to 2) . 10 15 cm -3 , high field, B/sub T/ > 10 T, but low temperature T approx. 6 keV constitute the optimum path to ignition

  9. Joint Czechoslovak-Soviet workshop on current drive in tokamaks

    International Nuclear Information System (INIS)

    1985-10-01

    At the Joint Czechoslovak-Soviet Workshop on Current Drive in Tokamaks, five papers dealing with issues of general interest were presented. In a theoretical paper by Klima and Pavlo a one-dimensional model of the lower-hybrid current drive is described and the results of its analysis are used in a numerical simulation using T-7 tokamak parameters. In the second theoretical paper by Vojtsekhovich, Parail and Pereverzev the influence of the LH wave spectrum on the efficiency of the current drive is studied. Two papers deal with a new microwave system designed for experiments on LHCD in the T-7 tokamak. In particular, the power spectra of new four-waveguide grills are computed. In the last paper the non-inductive start-up of the discharge in the T-7 tokamak by means of electron cyclotron waves is investigated. (J.U.)

  10. The ICRH tokamak fusion test reactor

    International Nuclear Information System (INIS)

    Perkins, F.W.

    1976-01-01

    A Tokamak Fusion Test Reactor where the ion are maintained at Tsub(i) approximately 20keV>Tsub(e) approximately 7keV by ion-cyclotron resonance heating is shown to produce an energy amplification of Q>2 provided the principal ion energy loss channel is via collisional transfer to the electrons. Such a reactor produces 19MW of fusion power to the electrons. Such a reactor produces 19MW of fusion power and requires a 50MHz radio-frequency generator capable of 50MW peak power; it is otherwise compatible with the conceptual design for the Princeton TFTR. The required n tausub(E) values for electrons and ions are respectively ntausub(Ee)>1.5.10 13 cm -3 -sec and ntausub(Ei)>4.10 13 cm -3 -sec. The principal areas where research is needed to establish this concept are: tokamak transport calculations, ICRH physics, trapped-particle instability energy losses, tokamak equilibria with high values of βsub(theta), and, of course, impurities

  11. Studies of the disruption prevention by ECRH at plasma current rise stage in limiter discharges/Possibility of an internal transport barrier producing under dominating electron transport in the T-10 tokamak

    International Nuclear Information System (INIS)

    Alikaev, V.V.; Borshegovskij, A.A.; Chistyakov, V.V.

    2001-01-01

    'Studies of the Disruption Prevention by ECRH at Plasma Current Rise Stage in Limiter Discharges' - Studies of disruption prevention by means of ECRH in T-10 at the plasma current rise phase in limiter discharges with circular plasma cross-section were performed. Reliable disruption prevention by ECRH at HF power (P HF ) min level equal to 20% of ohmic heating power P OH was demonstrated. m/n=2/1 mode MHD-activity developed before disruption (with characteristic time ∼ 120 ms) can be considered as disruption precursor and can be used in a feedback system. 'Possibility of an Internal Transport Barrier Producing under Dominating Electron Transport in the T-10 Tokamak' - The reversed shear experiments were carried out on T-10 at the HF power up to 1MW. The reversed shear in the core was produced by on-axis ECCD in direction opposite to the plasma current. There are no obvious signs of Internal Transport Barriers formation under condition when high-k turbulence determines the electron transport. (author)

  12. High beta tokamaks

    International Nuclear Information System (INIS)

    Dory, R.A.; Berger, D.P.; Charlton, L.A.; Hogan, J.T.; Munro, J.K.; Nelson, D.B.; Peng, Y.K.M.; Sigmar, D.J.; Strickler, D.J.

    1978-01-01

    MHD equilibrium, stability, and transport calculations are made to study the accessibility and behavior of ''high beta'' tokamak plasmas in the range β approximately 5 to 15 percent. For next generation devices, beta values of at least 8 percent appear to be accessible and stable if there is a conducting surface nearby

  13. Sawtooth phenomena in tokamaks

    International Nuclear Information System (INIS)

    Kuvshinov, B.N.; Savrukhin, P.V.

    1989-01-01

    A review of experimental and theoretical investigaions of sawtooth phenomena in tokamaks is presented. Different types of sawtooth oscillations, scaling laws and methods of interanl disruption stabilization are described. Theoretical models of the sawtooth instability are discussed. 122 refs.; 4 tabs

  14. Reconnection in tokamaks

    International Nuclear Information System (INIS)

    Pare, V.K.

    1983-01-01

    Calculations with several different computer codes based on the resistive MHD equations have shown that (m = 1, n = 1) tearing modes in tokamak plasmas grow by magnetic reconnection. The observable behavior predicted by the codes has been confirmed in detail from the waveforms of signals from x-ray detectors and recently by x-ray tomographic imaging

  15. Research using small tokamaks

    International Nuclear Information System (INIS)

    1993-01-01

    This document consists of a collection of papers presented at the IAEA Technical Committee Meeting on Research Using Small Tokamaks. It contains 22 papers on a wide variety of research aspects, including diagnostics, design, transport, equilibrium, stability, and confinement. Some of these papers are devoted to other concepts (stellarators, compact tori). Refs, figs and tabs

  16. Compact tokamak reactors

    International Nuclear Information System (INIS)

    Wootton, A.J.; Wiley, J.C.; Edmonds, P.H.; Ross, D.W.

    1997-01-01

    The possible use of tokamaks for thermonuclear power plants is discussed, in particular tokamaks with low aspect ratio and copper toroidal field coils. Three approaches are presented. First, the existing literature is reviewed and summarized. Second, using simple analytic estimates, the size of the smallest tokamak to produce an ignited plasma is derived. This steady state energy balance analysis is then extended to determine the smallest tokamaks power plant, by including the power required to drive the toroidal field and by considering two extremes of plasma current drive efficiency. Third, the analytic results are augmented by a numerical calculation that permits arbitrary plasma current drive efficiency and different confinement scaling relationships. Throughout, the importance of various restrictions is emphasized, in particular plasma current drive efficiency, plasma confinement, plasma safety factor, plasma elongation, plasma beta, neutron wall loading, blanket availability and recirculation of electric power. The latest published reactor studies show little advantage in using low aspect ratios to obtain a more compact device (and a low cost of electricity) unless either remarkably high efficiency plasma current drive and low safety factor are combined, or unless confinement (the H factor), the permissible elongation and the permissible neutron wall loading increase as the aspect ratio is reduced. These results are reproduced with the analytic model. (author). 22 refs, 3 figs

  17. Tokamaks (Second Edition)

    Energy Technology Data Exchange (ETDEWEB)

    Stott, Peter [JET, UK (United Kingdom)

    1998-10-01

    The first edition of John Wesson's book on tokamaks, published in 1987, established itself as essential reading for researchers in the field of magnetic confinement fusion: it was an excellent introduction for students to tokamak physics and also a valuable reference work for the more experienced. The second edition, published in 1997, has been completely rewritten and substantially enlarged (680 pages compared with 300). The new edition maintains the aim of providing a simple introduction to basic tokamak physics, but also includes discussion of the substantial advances in fusion research during the past decade. The new book, like its predecessor, is well written and commendable for its clarity and accuracy. In fact many of the chapters are written by a series of co-authors bringing the benefits of a wide range of expertise but, by careful editing, Wesson has maintained a uniformity of style and presentation. The chapter headings and coverage for the most part remain the same - but are expanded considerably and brought up to date. The most substantial change is that the single concluding chapter in the first edition on 'Experiments' has been replaced by three chapters: 'Tokamak experiments' which deals with some of the earlier key experiments plus a selection of recent small and medium-sized devices, 'Large experiments' which gives an excellent summary of the main results from the four large tokamaks - TFTR, JET, JT60/JT60U and DIII-D, and 'The future' which gives a very short (possibly too short in my opinion) account of reactors and ITER. This is an excellent book, which I strongly recommend should have a place - on the desk rather than in the bookshelf - of researchers in magnetic confinement fusion. (book review)

  18. Tokamaks (Second Edition)

    International Nuclear Information System (INIS)

    Stott, Peter

    1998-01-01

    The first edition of John Wesson's book on tokamaks, published in 1987, established itself as essential reading for researchers in the field of magnetic confinement fusion: it was an excellent introduction for students to tokamak physics and also a valuable reference work for the more experienced. The second edition, published in 1997, has been completely rewritten and substantially enlarged (680 pages compared with 300). The new edition maintains the aim of providing a simple introduction to basic tokamak physics, but also includes discussion of the substantial advances in fusion research during the past decade. The new book, like its predecessor, is well written and commendable for its clarity and accuracy. In fact many of the chapters are written by a series of co-authors bringing the benefits of a wide range of expertise but, by careful editing, Wesson has maintained a uniformity of style and presentation. The chapter headings and coverage for the most part remain the same - but are expanded considerably and brought up to date. The most substantial change is that the single concluding chapter in the first edition on 'Experiments' has been replaced by three chapters: 'Tokamak experiments' which deals with some of the earlier key experiments plus a selection of recent small and medium-sized devices, 'Large experiments' which gives an excellent summary of the main results from the four large tokamaks - TFTR, JET, JT60/JT60U and DIII-D, and 'The future' which gives a very short (possibly too short in my opinion) account of reactors and ITER. This is an excellent book, which I strongly recommend should have a place - on the desk rather than in the bookshelf - of researchers in magnetic confinement fusion. (book review)

  19. Investigation of the microwave emission from the PRETEXT tokamak

    International Nuclear Information System (INIS)

    Gandy, R.F.

    1981-10-01

    A study of the microwave emission from the PRETEXT tokamak has been conducted. Two types of emission have been observed: electron cyclotron and electron plasma frequency. Three general emission regimes have been identified. These regimes are best classified by the dimensionless parameter α, where α = ω/sub pe//Ω/sub e/

  20. Present status of Tokamak research

    International Nuclear Information System (INIS)

    Basu, Jayanta

    1991-01-01

    The scenario of thermonuclear fusion research is presented, and the tokamak which is the most promising candidate as a fusion reactor is introduced. A brief survey is given of the most noteworthy tokamaks in the global context, and fusion programmes relating to Next Step devices are outlined. Supplementary heating of tokamak plasma by different methods is briefly reviewed; the latest achievements in heating to fusion temperatures are also reported. The progress towards the high value of the fusion product necessary for ignition is described. The improvement in plasma confinement brought about especially by the H-mode, is discussed. The latest situation in pushing up Β for increasing the efficiency of a tokamak is elucidated. Mention is made of the different types of wall treatment of the tokamak vessel for impurity control, which has led to a significant improvement in tokamak performance. Different methods of current drive for steady state tokamak operation are reviewed, and the issue of current drive efficiency is addressed. A short resume is given of the various diagnostic methods which are employed on a routine basis in the major tokamak centres. A few diagnostics recently developed or proposed in the context of the advanced tokamaks as well as the Next Step devices are indicated. The important role of the interplay between theory, experiment and simulation is noted, and the areas of investigation requiring concerted effort for further progress in tokamak research are identified. (author). 17 refs

  1. Nonlinear effects of energetic particle driven instabilities in tokamaks

    International Nuclear Information System (INIS)

    Bruedgam, Michael

    2010-01-01

    In a tokamak plasma, a population of superthermal particles generated by heating methods can lead to a destabilization of various MHD modes. Due to nonlinear wave-particle interactions, a consequential fast particle redistribution reduces the plasma heating and can cause severe damages to the wall of the fusion device. In order to describe the wave-particle interaction, the drift-kinetic perturbative HAGIS code is applied which evolves the particle trajectories and the waves nonlinearly. For a simulation speed-up, the 6-d particle phase-space is reduced by the guiding centre approach to a 5-d description. The eigenfunction of the wave is assumed to be invariant, but its amplitude and phase is altered in time. A sophisticated δ/f-method is employed to model the change in the fast particle distribution so that numerical noise and the excessive number of simulated Monte-Carlo points are reduced significantly. The original code can only calculate the particle redistribution inside the plasma region. Therefore, a code extension has been developed during this thesis which enlarges the simulation region up to the vessel wall. By means of numerical simulations, this thesis addresses the problem of nonlinear waveparticle interactions in the presence of multiple MHD modes with significantly different eigenfrequencies and the corresponding fast particle transport inside the plasma. In this context, a new coupling mechanism between resonant particles and waves has been identified that leads to enhanced mode amplitudes and fast particle losses. The extension of the code provides for the first time the possibility of a quantitative and qualitative comparison between simulation results and recent measurements in the experiment. The findings of the comparison serve as a validation of both the theoretical model and the interpretation of the experimental results. Thus, a powerful interface tool has been developed for a deeper insight of nonlinear wave-particle interaction. (orig.)

  2. Nonlinear effects of energetic particle driven instabilities in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Bruedgam, Michael

    2010-03-25

    In a tokamak plasma, a population of superthermal particles generated by heating methods can lead to a destabilization of various MHD modes. Due to nonlinear wave-particle interactions, a consequential fast particle redistribution reduces the plasma heating and can cause severe damages to the wall of the fusion device. In order to describe the wave-particle interaction, the drift-kinetic perturbative HAGIS code is applied which evolves the particle trajectories and the waves nonlinearly. For a simulation speed-up, the 6-d particle phase-space is reduced by the guiding centre approach to a 5-d description. The eigenfunction of the wave is assumed to be invariant, but its amplitude and phase is altered in time. A sophisticated {delta}/f-method is employed to model the change in the fast particle distribution so that numerical noise and the excessive number of simulated Monte-Carlo points are reduced significantly. The original code can only calculate the particle redistribution inside the plasma region. Therefore, a code extension has been developed during this thesis which enlarges the simulation region up to the vessel wall. By means of numerical simulations, this thesis addresses the problem of nonlinear waveparticle interactions in the presence of multiple MHD modes with significantly different eigenfrequencies and the corresponding fast particle transport inside the plasma. In this context, a new coupling mechanism between resonant particles and waves has been identified that leads to enhanced mode amplitudes and fast particle losses. The extension of the code provides for the first time the possibility of a quantitative and qualitative comparison between simulation results and recent measurements in the experiment. The findings of the comparison serve as a validation of both the theoretical model and the interpretation of the experimental results. Thus, a powerful interface tool has been developed for a deeper insight of nonlinear wave-particle interaction

  3. Systematic design and simulation of a tearing mode suppression feedback control system for the TEXTOR tokamak

    NARCIS (Netherlands)

    Hennen, B.A.; Westerhof, E.; Nuij, Pwjm; M.R. de Baar,; Steinbuch, M.

    2012-01-01

    Suppression of tearing modes is essential for the operation of tokamaks. This paper describes the design and simulation of a tearing mode suppression feedback control system for the TEXTOR tokamak. The two main control tasks of this feedback control system are the radial alignment of electron

  4. Large Aspect Ratio Tokamak Study

    International Nuclear Information System (INIS)

    Reid, R.L.; Holmes, J.A.; Houlberg, W.A.; Peng, Y.K.M.; Strickler, D.J.; Brown, T.G.; Wiseman, G.W.

    1980-06-01

    The Large Aspect Ratio Tokamak Study (LARTS) at Oak Ridge National Laboratory (ORNL) investigated the potential for producing a viable longburn tokamak reactor by enhancing the volt-second capability of the ohmic heating transformer through the use of high aspect ratio designs. The plasma physics, engineering, and economic implications of high aspect ratio tokamaks were assessed in the context of extended burn operation. Using a one-dimensional transport code plasma startup and burn parameters were addressed. The pulsed electrical power requirements for the poloidal field system, which have a major impact on reactor economics, were minimized by optimizing the startup and shutdown portions of the tokamak cycle. A representative large aspect ratio tokamak with an aspect ratio of 8 was found to achieve a burn time of 3.5 h at capital cost only approx. 25% greater than that of a moderate aspect ratio design tokamak

  5. Non-isomorphic radial wavenumber dependencies of residual zonal flows in ion and electron Larmor radius scales, and effects of initial parallel flow and electromagnetic potentials in a circular tokamak

    Science.gov (United States)

    Yamagishi, Osamu

    2018-04-01

    Radial wavenumber dependencies of the residual zonal potential for E × B flow in a circular, large aspect ratio tokamak is investigated by means of the collisionless gyrokinetic simulations of Rosenbluth-Hinton (RH) test and the semi-analytic approach using an analytic solution of the gyrokinetic equation Rosenbluth and Hinton (1998 Phys. Rev. Lett. 80 724). By increasing the radial wavenumber from an ion Larmor radius scale {k}r{ρ }i≲ 1 to an electron Larmor radius scale {k}r{ρ }e≲ 1, the well-known level ˜ O[1/(1+1.6{q}2/\\sqrt{r/{R}0})] is retained, while the level remains O(1) when the wavenumber is decreased from the electron to the ion Larmor radius scale, if physically same adiabatic assumption is presumed for species other than the main species that is treated kinetically. The conclusion is not modified by treating both species kinetically, so that in the intermediate scale between the ion and electron Larmor radius scale it seems difficult to determine the level uniquely. The toroidal momentum conservation property in the RH test is also investigated by including an initial parallel flow in addition to the perpendicular flow. It is shown that by taking a balance between the initial parallel flow and perpendicular flows which include both E × B flow and diamagnetic flow in the initial condition, the mechanical toroidal angular momentum is approximately conserved despite the toroidal symmetry breaking due to the finite radial wavenumber zonal modes. Effect of electromagnetic potentials is also investigated. When the electromagnetic potentials are applied initially, fast oscillations which are faster than the geodesic acoustic modes are introduced in the decay phase of the zonal modes. Although the residual level in the long time limit is not modified, this can make the time required to reach the stationary zonal flows longer and may weaken the effectiveness of the turbulent transport suppression by the zonal flows.

  6. Lower hybrid current drive in shaped tokamaks

    International Nuclear Information System (INIS)

    Kesner, J.

    1993-01-01

    A time dependent lower hybrid current drive tokamak simulation code has been developed. This code combines the BALDUR tokamak simulation code and the Bonoli/Englade lower hybrid current drive code and permits the study of the interaction of lower hybrid current drive with neutral beam heating in shaped cross-section plasmas. The code is time dependent and includes the beam driven and bootstrap currents in addition to the current driven by the lower hybrid system. Examples of simulations are shown for the PBX-M experiment which include the effect of cross section shaping on current drive, ballooning mode stabilization by current profile control and sawtooth stabilization. A critical question in current drive calculations is the radial transport of the energetic electrons. The authors have developed a response function technique to calculate radial transport in the presence of an electric field. The consequences of the combined influences of radial diffusion and electric field acceleration are discussed

  7. Boundary Plasma Turbulence Simulations for Tokamaks

    International Nuclear Information System (INIS)

    Xu, X.; Umansky, M.; Dudson, B.; Snyder, P.

    2008-05-01

    The boundary plasma turbulence code BOUT models tokamak boundary-plasma turbulence in a realistic divertor geometry using modified Braginskii equations for plasma vorticity, density (ni), electron and ion temperature (T e ; T i ) and parallel momenta. The BOUT code solves for the plasma fluid equations in a three dimensional (3D) toroidal segment (or a toroidal wedge), including the region somewhat inside the separatrix and extending into the scrape-off layer; the private flux region is also included. In this paper, a description is given of the sophisticated physical models, innovative numerical algorithms, and modern software design used to simulate edge-plasmas in magnetic fusion energy devices. The BOUT code's unique capabilities and functionality are exemplified via simulations of the impact of plasma density on tokamak edge turbulence and blob dynamics

  8. Rippling and drift instabilities in the straight cylinder tokamak

    International Nuclear Information System (INIS)

    Rogister, A.

    1984-01-01

    It is shown that the electron and ion diamagnetic drifts stabilize the rippling mode in the straigth cylindrical tokamak model. Parallel electron heat conduction is further stabilizing if the parameter etasub(e) = dlnTsub(e)/dlnN is positive. This has a consequence that the mode does not survive at temperatures exceeding, typically, 50 eV for standard values of magnetic field and density. The collisional drift wave is found to be always stable even when the effect of the tokamak current is included in the calculation. (orig.)

  9. Scaling for scrape-off layer plasma in tokamak

    International Nuclear Information System (INIS)

    Shimomura, Yasuo; Maeda, Hikosuke; Kimura, Haruyuki; Azumi, Masashi; Odajima, Kazuo

    1977-12-01

    Scaling for a scrape-off layer plasma in a tokamak is obtained by using DIVA (JFT-2a). The scaling gives the average electron temperature, the width and the mean electron density of the scrape-off layer. The temperature at the edge will be high in a future large tokamak with a small energy-loss by charge-exchange and radiation. The scrape-off layer plasma can easily shield the impurity influx from the wall. The fuel, however, can easily penetrate into the main plasma. (auth.)

  10. Tokamak fusion reactor exhaust

    International Nuclear Information System (INIS)

    Harrison, M.F.A.; Harbour, P.J.; Hotston, E.S.

    1981-08-01

    This report presents a compilation of papers dealing with reactor exhaust which were produced as part of the TIGER Tokamak Installation for Generating Electricity study at Culham. The papers are entitled: (1) Exhaust impurity control and refuelling. (2) Consideration of the physical problems of a self-consistent exhaust and divertor system for a long burn Tokamak. (3) Possible bundle divertors for INTOR and TIGER. (4) Consideration of various magnetic divertor configurations for INTOR and TIGER. (5) A appraisal of divertor experiments. (6) Hybrid divertors on INTOR. (7) Refuelling and the scrape-off layer of INTOR. (8) Simple modelling of the scrape-off layer. (9) Power flow in the scrape-off layer. (10) A model of particle transport within the scrape-off plasma and divertor. (11) Controlled recirculation of exhaust gas from the divertor into the scrape-off plasma. (U.K.)

  11. Theory of tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    White, R B [Princeton Univ., NJ (USA). Plasma Physics Lab.

    1989-01-01

    The book covers the consequences of ideal and resistive magnetohydrodynamics, these theories being responsible for most of what is well understood regarding the physics of tokamak discharges. The focus is on the description of equilibria, the linear and nonlinear theory of large scale modes, and single particle guiding center motion, including simple neoclassical effects. modern methods of general magnetic coordinates are used, and the student is introduced to the onset of chaos in Hamiltonian systems in the discussion of destruction of magnetic surfaces. Much of the book is devoted to the description of the limitations placed on tokamak operating parameters given by ideal and resistive modes, and current ideas about how to extend and optimize these parameters. (author). refs.; figs.

  12. Axisymmetric tokamak scapeoff transport

    International Nuclear Information System (INIS)

    Singer, C.E.; Langer, W.D.

    1982-08-01

    We present the first self-consistent estimate of the magnitude of each term in a fluid treatment of plasma transport for a plasma lying in regions of open field lines in an axisymmetric tokamak. The fluid consists of a pure hydrogen plasma with sources which arise from its interaction with neutral hydrogen atoms. The analysis and results are limited to the high collisionality regime, which is optimal for a gaseous neutralizer divertor, or to a cold plasma mantle in a tokamak reactor. In this regime, both classical and neoclassical transport processes are important, and loss of particles and energy by diamagnetic flow are also significant. The prospect of extending the analysis to the lower collisionality regimes encountered in many existing experiments is discussed

  13. Tokamak plasma interaction with limiters

    International Nuclear Information System (INIS)

    Pitcher, C.S.

    1987-11-01

    The importance of plasma purity is first discussed in terms of the general requirements of controlled thermonuclear fusion. The tokamak approach to fusion and its inherent problem of plasma contamination are introduced. A main source of impurities is due to the bombardment of the limiter by energetic particles and thus the three main aspects of the plasma-limiter interaction are reviewed, boundary plasma conditions, fuelling/recycling and impurity production. The experiments, carried out on the DITE tokamak at Culham Laboratory, UK, investigated these three topics and the results are compared with predicted behaviour; new physical phenomena are presented in all three areas. Simple one-dimensional fluid equations are found to adequately describe the SOL plasma, except in regard to the pre-sheath electric field and ambipolarity; that is, the electric field adjacent to the limiter surface appears to be weak and the associated plasma flow can be non-ambipolar. Recycling of fuel particles from the limiter is observed to be near unity at all times. The break-up behaviour of recycled and gas puffed D 2 molecules is dependent on the electron temperature, as expected. Impurity production at the limiter is chemical erosion of graphite being negligible. Deposition of limiter and wall-produced impurities is found on the limiter. The spatial distributions of impurities released from the limiter are observed and are in good agreement with a sputtered atom transport code. Finally, preliminary experiments on the transport of impurity ions along field lines away from the limiter have been performed and compared with simple analytic theory. The results suggest that the pre-sheath electric field in the SOL is much weaker than the simple fluid model would predict

  14. Density limits in Tokamaks

    International Nuclear Information System (INIS)

    Tendler, M.

    1984-06-01

    The energy loss from a tokamak plasma due to neutral hydrogen radiation and recycling is of great importance for the energy balance at the periphery. It is shown that the requirement for thermal equilibrium implies a constraint on the maximum attainable edge density. The relation to other density limits is discussed. The average plasma density is shown to be a strong function of the refuelling deposition profile. (author)

  15. Modular tokamak magnetic system

    International Nuclear Information System (INIS)

    Yang, T.F.

    1988-01-01

    This patent describes a tokamak reactor including a vacuum vessel, toroidal confining magnetic field coils disposed concentrically around the minor radius of the vacuum vessel, and poloidal confining magnetic field coils, an ohmic heating coil system comprising at least one magnetic coil disposed concentrically around a toroidal field coil, wherein the magnetic coil is wound around the toroidal field coil such that the ohmic heating coil enclosed the toroidal field coil

  16. TPX tokamak construction management

    International Nuclear Information System (INIS)

    Knutson, D.; Kungl, D.; Seidel, P.; Halfast, C.

    1995-01-01

    A construction management contract normally involves the acquisition of a construction management firm to assist in the design, planning, budget conformance, and coordination of the construction effort. In addition the construction management firm acts as an agent in the awarding of lower tier contracts. The TPX Tokamak Construction Management (TCM) approach differs in that the construction management firm is also directly responsible for the assembly and installation of the tokamak including the design and fabrication of all tooling required for assembly. The Systems Integration Support (SIS) contractor is responsible for the architect-engineering design of ancillary systems, such as heating and cooling, buildings, modifications and site improvements, and a variety of electrical requirements, including switchyards and >4kV power distribution. The TCM will be responsible for the procurement of materials and the installation of the ancillary systems, which can either be performed directly by the TCM or subcontracted to a lower tier subcontractor. Assurance that the TPX tokamak is properly assembled and ready for operation when turned over to the operations team is the primary focus of the construction management effort. To accomplish this a disciplined constructability program will be instituted. The constructability effort will involve the effective and timely integration of construction expertise into the planning, component design, and field operations. Although individual component design groups will provide liaison during the machine assembly operations, the construction management team is responsible for assembly

  17. Finite mean-free-path effects in tokamak scrape-off layers

    International Nuclear Information System (INIS)

    Cohen, R.H.; Rognlien, T.D.; Xu, X.Q.; Bernstein, I.B.; Chen, Q.

    1993-01-01

    When the electron mean free path (mfp) becomes bigger than about 1/10 of the parallel electron-temperature gradient scale length, it is well-known that departures from the Spitzer thermal conductivity become important. These departures are commonly modeled by limiting the parallel heat flux q parallel to an empirically determined fraction of nT e v te where v te is the electron thermal speed. The use of flux limit expressions in 2-D scrape-off layer (SOL) modeling codes leads to the qualitatively correct result that the electron temperature drops along a field line as heat is leaked by radial transport, but perhaps for the wrong reasons. In particular the flux-limiting form is demonstratably incorrect in the long-mfp limit. Here the authors re-examine this issue. Recognizing that the heat flux is carried by superthermal electrons, they formulate a linearized 3-D Fokker-Planck problem. They depart from previous treatments by noting that, for typical SOL parameters, the superthermal particles classically carrying the bulk of the heat flux have long mean free paths and are in the loss cone, and so are absent from the distribution function. They argue that this is a key feature which will reduce the heat flux below that calculated previously. They outline several strategies for reducing the Fokker-Planck equation to analytically tractable and/or computationally more tractable forms. In particular, they discuss a diffusion model for the isotropic part of the distribution function, its numerical implementation, and limits in which approximate analytic solutions can be obtained. They also present a heuristic model for the heat flux that accounts for the physical effects discussed above and which has the correct asymptotic limits for small and large mean free path. They compare this model and preliminary analytic and numerical results from the diffusion model with Monte Carlo simulations

  18. A model for plasma discharges simulation in Tokamak devices

    International Nuclear Information System (INIS)

    Fonseca, Antonio M.M.; Silva, Ruy P. da; Galvao, Ricardo M.O.; Kusnetzov, Yuri; Nascimento, I.C.; Cuevas, Nelson

    2001-01-01

    In this work, a 'zero-dimensional' model for simulation of discharges in Tokamak machine is presented. The model allows the calculation of the time profiles of important parameters of the discharge. The model was applied to the TCABR Tokamak to study the influence of parameters and physical processes during the discharges. Basically it is constituted of five differential equations: two related to the primary and secondary circuits of the ohmic heating transformer and the other three conservation equations of energy, charge and neutral particles. From the physical model, a computer program has been built with the objective of obtaining the time profiles of plasma current, the current in the primary of the ohmic heating transformer, the electronic temperature, the electronic density and the neutral particle density. It was also possible, with the model, to simulate the effects of gas puffing during the shot. The results of the simulation were compared with the experimental results obtained in the TCABR Tokamak, using hydrogen gas

  19. Resonant dissociation in N2 by electron impact: a source of heating in the thermosphere and auroras

    International Nuclear Information System (INIS)

    Spence, D.; Burrow, P.D.

    1979-01-01

    An electron impact resonant dissociation process, leading to superthermal atom production in molecular nitrogen is described. The maximum cross section for this process is found to be 2.5 x 10 -18 cm 2 at 10 eV. Measurements of scattered electrons indicate a value of -65 to -90 MeV for the electron affinity of N. The possible role of resonant dissociation as a source of heating in the thermosphere and in auroras is discussed

  20. Linear theory of microwave absortion in fusion plasmas. A study of the electron cyclotron resonance and its particularization to a helical axis device for magnetic confinement

    International Nuclear Information System (INIS)

    Castejon M, F.

    1989-01-01

    The study of the Linear Theory microwave propagation and absorption in the the frequency range of electron cyclotron resonance, in a magnetized plasma, is developed. This study is particularized to the flexible heliac TJ-II, whose main characteristics are dsetailed in a memory chapter, as an interesting case example for its peculiar magnetic configuration. As a preliminary phase, a cold plasma model is useds to analyze the resonance accessibility and the approximated density limits which will be obtainable in each electron cyclotron resonance harmonic. This analysis was used to find the suitable positions for the microwave injection in TJ-II. An analytical weakly relativistic model for the dielectric tensor is developed, valid for oblique propagation, that takes account of the effect of superthermal electrons. Second order Larmor radius effects are included, so that the Quasi-Electrostatic branch of X mode can be studied. A numerical study is then presented on the absorption properties of TJ-II. Since the TJ-II geometry is complex and its magnetic field distribution is very different from that of a tokamak, ray tracing calculations are necessary to consider refraction effects. The ray tracing codse RAYS, developed in the Oak Ridge National Laboratory (U.S.A.), was take and adapted to the helical magnetic configuration of the TJ-II. The absorption model described above was then included in RAYS. For completeness, an introduction to the Quasi Linear Theory, natural prolongation of this work, is included at the end of the memory, ands the effects of taking into account the quasi linear evolution of the distribution function are described. (Author)

  1. Status of the tokamak program

    Science.gov (United States)

    Sheffield, J.

    1981-08-01

    For a specific configuration of magnetic field and plasma to be economically attractive as a commercial source of energy, it must contain a high-pressure plasma in a stable fashion while thermally isolating the plasma from the walls of the containment vessel. The tokamak magnetic configuration is presently the most successful in terms of reaching the considered goals. Tokamaks were developed in the USSR in a program initiated in the mid-1950s. By the early 1970s tokamaks were operating not only in the USSR but also in the U.S., Australia, Europe, and Japan. The advanced state of the tokamak program is indicated by the fact that it is used as a testbed for generic fusion development - for auxiliary heating, diagnostics, materials - as well as for specific tokamak advancement. This has occurred because it is the most economic source of a large, reproducible, hot, dense plasma. The basic tokamak is considered along with tokamak improvements, impurity control, additional heating, particle and power balance in a tokamak, aspects of microscopic transport, and macroscopic stability.

  2. Magnetic confinement experiment -- 1: Tokamaks

    International Nuclear Information System (INIS)

    Goldston, R.J.

    1994-01-01

    This report reviews presentations made at the 15th IAEA Conference on Plasma Physics and Controlled Nuclear Fusion on experimental tokamak physics, particularly on advances in core plasma physics, divertor and edge physics, heating and current drive, and tokamak concept optimization

  3. The density limit in Tokamaks

    International Nuclear Information System (INIS)

    Alladio, F.

    1985-01-01

    A short summary of the present status of experimental observations, theoretical ideas and understanding of the density limit in tokamaks is presented. It is the result of the discussion that was held on this topic at the 4th European Tokamak Workshop in Copenhagen (December 4th to 6th, 1985). 610 refs

  4. Accessibility of high β tokamak states

    International Nuclear Information System (INIS)

    Hogan, J.T.

    1978-05-01

    Encouraging results with neutral beam heating and adiabatic compression of tokamak plasmas have prompted new experiments which will study the approach to high β states. As projected tokamak β values become nonnegligible (average β of 4% is the goal), the models previously used for transport calculations will become inadequate. These models will be required to account for the evolution of the magnetic geometry, along with the change in plasma parameters. We present an axisymmetric transport model which should be useful for studying the approach to higher β values in tokamak experiments. Results from transport calculations with this model allow us to draw a parallel between observed behavior in seemingly unrelated experiments: electron heating by neutral injection in the ORMAK device and adiabatic compression in the ATC experiment. Finally, we find that the nature of cross-field transport may be expected to change as significant β values are reached. Enhanced transport from ballooning instabilities is likely to play a role as important as that now played by sawtooth (m = 1) and saturated (m = 2) instabilities. New techniques for describing this transport are required

  5. The design of the KSTAR tokamak

    International Nuclear Information System (INIS)

    Lee, G.S.; Kim, J.; Hwang, S.M.

    1999-01-01

    The Korea superconducting tokamak advanced research (KSTAR) project is the major effort of the Korean national fusion program (KNFP) to develop a steady-state-capable advanced superconducting tokamak to establish a scientific and technological basis for an attractive fusion reactor. Major parameters of the tokamak are: major radius 1.8 m, minor radius 0.5 m, toroidal field 3.5 Tesla, and plasma current 2 MA with a strongly shaped plasma cross-section and double-null divertor. The initial pulse length provided by the poloidal magnet system is 20 s, but the pulse length can be increased to 300 s through non-inductive current drive. The plasma heating and current drive system consists of neutral beam, ion cyclotron waves, lower hybrid waves, and electron-cyclotron waves for flexible profile control. A comprehensive set of diagnostics is planned for plasma control and performance evaluation and physics understanding. The project has completed its conceptual design phase and moved to the engineering design phase. The target date of the first plasma is set for year 2002. (orig.)

  6. Tokamaks - Third Edition

    International Nuclear Information System (INIS)

    Rogister, A L

    2004-01-01

    John Wesson's well known book, now re-edited for the third time, provides an excellent introduction to fusion oriented plasma physics in tokamaks. The author's task was a very challenging one, for a confined plasma is a complex system characterised by a variety of dimensionless parameters and its properties change qualitatively when certain threshold values are reached in this multi-parameter space. As a consequence, theoretical description is required at different levels, which are complementary: particle orbits, kinetic and fluid descriptions, but also intuitive and empirical approaches. Theory must be carried out on many fronts: equilibrium, instabilities, heating, transport etc. Since the properties of the confined plasma depend on the boundary conditions, the physics of plasmas along open magnetic field lines and plasma surface interaction processes must also be accounted for. Those subjects (and others) are discussed in depth in chapters 2-9. Chapter 1 mostly deals with ignition requirements and the tokamak concept, while chapter 14 provides a list of useful relations: differential operators, collision times, characteristic lengths and frequencies, expressions for the neoclassical resistivity and heat conduction, the bootstrap current etc. The presentation is sufficiently broad and thorough that specialists within tokamak research can either pick useful and up-to-date information or find an authoritative introduction into other areas of the subject. It is also clear and concise so that it should provide an attractive and accurate initiation for those wishing to enter the field and for outsiders who would like to understand the concepts and be informed about the goals and challenges on the horizon. Validation of theoretical models requires adequately resolved experimental data for the various equilibrium profiles (clearly a challenge in the vicinity of transport barriers) and the fluctuations to which instabilities give rise. Chapter 10 is therefore devoted to

  7. First experiments with SST-1 tokamak

    International Nuclear Information System (INIS)

    Saxena, Y.C.

    2005-01-01

    SST-1, a steady state superconducting tokamak, is undergoing commissioning tests at the Institute for Plasma Research. The objectives of SST-1 include studying the physics of the plasma processes in a tokamak under steady state conditions and learning technologies related to the steady state operation of the tokamak. These studies are expected to contribute to the tokamak physics database for very long pulse operations. Superconducting (SC) magnets are deployed for both the toroidal and poloidal field coils in SST-1. An Ohmic transformer is provided for plasma breakdown and initial current ramp up. SST-1 deploys a fully welded ultra high vacuum vessel. Liquid nitrogen cooled radiation shield are deployed between the vacuum vessel and SC magnets as well as SC magnets and cryostat, to minimize the radiation losses at the SC magnets. The auxiliary current drive is based on 1.0 MW of Lower Hybrid current drive (LHCD) at 3.7 GHz. Auxiliary heating systems include 1 MW of Ion Cyclotron Resonance Frequency system (ICRF) at 22 MHz to 91 MHz, 0.2 MW of Electron Cyclotron Resonance heating at 84 GHz and a Neutral Beam Injection (NBI) system with peak power of 0.8 MW (at 80 keV) with variable beam energy in range of 10-80 keV. The ICRF system would also be used for initial breakdown and wall conditioning experiments. Detailed commissioning tests on the cryogenic system and experiments on the hydraulic characters and cool down features of single TF coils have been completed prior to the cool down of the entire superconducting system. Results of the single TF magnet cool down, and testing of the magnet system are presented. First experiments related to the breakdown and the current ramp up will subsequently be carried out. (author)

  8. Progress towards internal transport barriers at high plasma density sustained by pure electron heating and current drive in the FTU tokamak

    International Nuclear Information System (INIS)

    Pericoli Ridolfini, V.; Barbato, E.; Buratti, P.

    2003-01-01

    Strong electron Internal Transport Barriers (ITBs) are obtained in FTU by the combined injection of Lower Hybrid (LH, up to 1.9 MW) and Electron Cyclotron (EC up to 0.8 MW) radio frequency waves. ITBs occur during either the current plateau or the ramp up phase, and both in full and partial current drive (CD) regimes, up to peak densities n e0 >1.2·10 20 m -3 , relevant to ITER operation. Central electron temperatures T e0 >11 keV, at n e0 ∼0.8·10 20 m -3 are sustained longer than 6 confinement times. The ITB extends over a region where a slightly reversed magnetic shear is established by off-axis LHCD and can be as wide as r/a=0.5. The EC power, instead, is used either to benefit from this improved confinement by heating inside the ITB, or to enhance the peripheral LH power deposition and CD with off axis resonance. Collisional ion heating is also observed, but thermal equilibrium with the electrons cannot be attained since the e-i equipartition time is always 4-5 times longer than the energy confinement time. The transport analysis performed with both ASTRA and JETTO codes shows a very good relation between the foot of the barrier and the weak/reversed shear region, which in turn depends on the LH deposition profile. The Bohm-gyroBohm model accounts for the electron transport until T e0 <6 keV, but is pessimistic at higher temperatures, where often also a reduction in the ion thermal conductivity is observed, provided any magneto hydrodynamic activity is suppressed. (author)

  9. Theoretical scaling law for ohmically heated tokamaks

    International Nuclear Information System (INIS)

    Minardi, E.

    1981-06-01

    The electrostatic drift instability arising from the reduction of shear damping, due to toroidal effects, is assumed to be the basic source of the anomalous electron transport in tokamaks. The Maxwellian population of electrons constitutes a medium whose adiabatic nonlinear reaction to the instability (described in terms of an effective dielectric constant of the medium) determines the stationary electrostatic fluctuation level in marginally unstable situations. The existence of a random electrostatic potenial implies a fluctuating current of the Maxwellian electrons which creates a random magnetic field and a stocasticization of a magnetic configuration. The application of recent results allows the calculation of the realted radial electron transport. It is found that the confinement time under stationary ohmic conditions scales as n Tsub(i)sup( - 1/2) and is proportional roughly to the cube of the geometric dimenisions. Moreover, it is deduced that the loop voltage is approximateley the same for all tokamaks, irrespective of temperature and density and to a large extent, also of geometrical conditions. Thes results are characteristic of the ohmic stationary regime and can hardly be extrapolated to order heating regimes. (orig.)

  10. The tokamak as a neutron source

    International Nuclear Information System (INIS)

    Hendel, H.W.; Jassby, D.L.

    1989-11-01

    This paper describes the tokamak in its role as a neutron source, with emphasis on experimental results for D-D neutron production. The sections summarize tokamak operation, sources of fusion and non-fusion neutrons, principal neutron detection methods and their calibration, neutron energy spectra and fluxes outside the tokamak plasma chamber, history of neutron production in tokamaks, neutron emission and fusion power gain from JET and TFTR (the largest present-day tokamaks), and D-T neutron production from burnup of D-D tritons. This paper also discusses the prospects for future tokamak neutron production and potential applications of tokamak neutron sources. 100 refs., 16 figs., 4 tabs

  11. Deposit of thin films for Tokamaks conditioning

    International Nuclear Information System (INIS)

    Valencia A, R.

    2006-01-01

    As a main objective of this work, we present some experimental results obtained from studying the process of extracting those impurities created by the interaction plasma with its vessel wall in the case of Novillo tokamak. Likewise, we describe the main cleaning and conditioning techniques applied to it, fundamentally that of glow discharge cleaning at a low electron temperature ( -6 to 4.5 x 10 -6 Ω-m, thus taking the Z ef value from 3.46 to 2.07 which considerably improved the operational parameters of the machine. With a view to justifying the fact that controlled nuclear fusion is a feasible alternative for the energy demand that humanity will face in the future, we review in Chapter 1 some fundamentals of the energy production by nuclear fusion reactions while, in Chapter 2, we examine two relevant plasma wall interaction processes. Our experimental array used to produce both cleaning and intense plasma discharges is described in Chapter 3 along with the associated diagnostics equipment. Chapter 4 contains a description of the vessel conditioning techniques followed in the process. Finally, we report our results in Chapter 5 while, in Chapter 6, some conclusions and remarks are presented. It is widely known that tokamak impurities are generated mainly by the plasma-wall interaction, particularly in the presence of high potentials between the plasma sheath and the limiter or wall. Given that impurities affect most adversely the plasma behaviour, understanding and controlling the impurity extraction mechanisms is crucial for optimizing the cleaning and wall conditioning discharge processes. Our study of one impurity extraction mechanism for both low and high Z in Novillo tokamak was carried out though mass spectrometry, optical emission spectroscopy and plasma resistivity measurement. Such mechanism depends fundamentally on the mass of the ions that interact with the wall during the plasma current formation phase. The reaction products generated by the glow

  12. Ion temperature measurement by neutral energy analyzer in high-field tokamak TRIAM-1

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, K; Hiraki, N; Toi, K; Itoh, S [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1980-02-01

    The measurement of the ion temperature of the TRIAM-1 tokamak plasma is carried out by using a seven-channel neutral energy analyzer. The temporal and spatial variations of the ion temperature have been obtained with the spatial resolution of +-4.3 mm and the temporal resolution of 100 ..mu..sec. The energy range of the analyzed neutral particles is from 0.2 to 8 keV. The energy spectrum in the TRIAM-1 plasma without the strong gas puffing usually consists of two-component Maxwellian; the one represents the thermal part which is a superposition of the contribution from a hot region (T sub(i) = 100 - 300 eV) and that from an edge region (T sub(i) asymptotically equals 50 eV), and the other represents the superthermal part (T sub(i) asymptotically equals 1 keV). The neutral particle energy spectra at several vertical positions are obtained by scanning the analyzer in the vertical direction. From those spectra, the radial profile of the ion temperature is derived by means of the nonlinear optimization method.

  13. Tokamak instrumentation and controls

    International Nuclear Information System (INIS)

    Becraft, W.R.; Bettis, E.S.; Houlberg, W.A.; Onega, R.J.; Stone, R.S.

    1979-02-01

    The three areas of study emphasis to date are: (1) Physics implications for controls, (2) Computer simulation, and (3) Shutdown/aborts. This document reports on the FY 78 efforts (the first year of these studies) to address these problems. Transient scenario options for the startup of a tokamak are developed, and the implications for the control system are discussed. This document also presents a hybrid computer simulation (analog and digital) of the Impurity Study Experiment (ISX-B) which is now being used for corroborative controls investigations. The simulation will be expanded to represent a TNS/ETF machine

  14. Demonstration tokamak power plant

    International Nuclear Information System (INIS)

    Abdou, M.; Baker, C.; Brooks, J.; Ehst, D.; Mattas, R.; Smith, D.L.; DeFreece, D.; Morgan, G.D.; Trachsel, C.

    1983-01-01

    A conceptual design for a tokamak demonstration power plant (DEMO) was developed. A large part of the study focused on examining the key issues and identifying the R and D needs for: (1) current drive for steady-state operation, (2) impurity control and exhaust, (3) tritium breeding blanket, and (4) reactor configuration and maintenance. Impurity control and exhaust will not be covered in this paper but is discussed in another paper in these proceedings, entitled Key Issues of FED/INTOR Impurity Control System

  15. Maximum entropy tokamak configurations

    International Nuclear Information System (INIS)

    Minardi, E.

    1989-01-01

    The new entropy concept for the collective magnetic equilibria is applied to the description of the states of a tokamak subject to ohmic and auxiliary heating. The condition for the existence of steady state plasma states with vanishing entropy production implies, on one hand, the resilience of specific current density profiles and, on the other, severe restrictions on the scaling of the confinement time with power and current. These restrictions are consistent with Goldston scaling and with the existence of a heat pinch. (author)

  16. Full radius linear and nonlinear gyrokinetic simulations for tokamaks and stellarators: Zonal flows, applied E x B flows, trapped electrons and finite beta

    International Nuclear Information System (INIS)

    Villard, L.; Allfrey, S.J.; Bottino, A.

    2003-01-01

    The aim of this paper is to report on recent advances made on global gyrokinetic simulations of Ion Temperature Gradient modes (ITG) and other microinstabilities. The nonlinear development and saturation of ITG modes and the role of E x B zonal flows are studied with a global nonlinear δ f formulation that retains parallel nonlinearity and thus allows for a check of the energy conservation property as a means to verify the quality of the numerical simulation. Due to an optimised loading technique the conservation property is satisfied with an unprecedented quality well into the nonlinear stage. The zonal component of the perturbation establishes a quasi-steady state with regions of ITG suppression, strongly reduced radial energy flux and steepened effective temperature profile alternating with regions of higher ITG mode amplitudes, larger radial energy flux and flattened effective temperature profile. A semi-Lagrangian approach free of statistical noise is proposed as an alternative to the nonlinear δf formulation. An ASDEX-Upgrade experiment with an Internal Transport Barrier (ITB) is analysed with a global gyrokinetic code that includes trapped electron dynamics. The weakly destabilizing effect of trapped electron dynamics on ITG modes in an axisymmetric bumpy configuration modelling W7-X is shown in global linear simulations that retain the full electron dynamics. Finite β effects on microinstabilities are investigated with a linear global spectral electromagnetic gyrokinetic formulation. The radial global structure of electromagnetic modes shows a resonant behaviour with rational q values. (author)

  17. Loop-voltage tomography in tokamaks using transient synchrotron radiation

    International Nuclear Information System (INIS)

    Fisch, N.J.; Kritz, A.H.; Hunter Coll., New York, NY

    1989-07-01

    The loop voltage in tokamaks is particularly difficult to measure anywhere but at the plasma periphery. A brief, deliberate, perturbation of hot plasma electrons, however, produces a transient radiation response that is sensitive to this voltage. We investigate how such a radiation response can be used to diagnose the loop voltage. 24 refs., 6 figs

  18. Sensitivity of transient synchrotron radiation to tokamak plasma parameters

    International Nuclear Information System (INIS)

    Fisch, N.J.; Kritz, A.H.

    1988-12-01

    Synchrotron radiation from a hot plasma can inform on certain plasma parameters. The dependence on plasma parameters is particularly sensitive for the transient radiation response to a brief, deliberate, perturbation of hot plasma electrons. We investigate how such a radiation response can be used to diagnose a variety of plasma parameters in a tokamak. 18 refs., 13 figs

  19. Experiment of laser thomson scattering at HL-1 tokamak device

    International Nuclear Information System (INIS)

    Zuo Henian; Chen Jiafu; Yan Derong; Liu Aiping; Shi Peilan; Wang Wei; Liu Xiaomei

    1989-05-01

    The structure and performance of the Ruby Laser Thomson Scattering apparatus for HL-1 tokamak device is described. The method of acquisition and calibration of multichannel scattered signals are presented. Examples of measured electron temperature T. with experimental error are given

  20. Characteristic of slide away discharges in the KSTAR tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z.Y., E-mail: zychen@mail.hust.edu.cn [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, College of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074 (China); National Fusion Research Institute, Daejeon, 305-333 (Korea, Republic of); Kim, W.C.; Yoon, S.W.; England, A.C.; Lee, K.D.; Yoo, J.W.; Oh, Y.K.; Kwak, J.G.; Kwon, M. [National Fusion Research Institute, Daejeon, 305-333 (Korea, Republic of)

    2012-11-01

    Low density slide away discharges with anomalous Doppler resonance (ADR) effects have been observed in the KSTAR tokamak. When the line averaged electron density was lower than 0.6×10{sup 19} m{sup −3}, the discharges went into the slide-away regime with relaxations in the electron cyclotron emission due to the ADR effects which transferred the runaway electron energy from parallel to perpendicular motion. The suppression of the ADR effects has been achieved by electron cyclotron resonance heating which enhanced the perpendicular energy of electrons and led to an isotropization of the electron distribution function.